WorldWideScience

Sample records for flexible structures

  1. Designing structural supply chain flexibility

    NARCIS (Netherlands)

    Mulinski, Ksawery Jan

    2012-01-01

    In a continuously changing business environment the role of supply chain flexibility is constantly increasing. A flexible supply chain can ensure survival in quickly changing market conditions as well as enable sustainable growth. This thesis explores the topic of supply chain flexibility with focus

  2. Resonant Electromagnetic Shunt Damping of Flexible Structures

    DEFF Research Database (Denmark)

    Høgsberg, Jan Becker

    2016-01-01

    Electromagnetic transducers convert mechanical energy to electrical energy and vice versa. Effective passive vibration damping of flexible structures can therefore be introduced by shunting with an accurately calibrated resonant electrical network thatcontains a capacitor to create the desired...

  3. Flow Control of Flexible Structures

    Science.gov (United States)

    2017-09-06

    levels of modeling [Dowell and Hall, 2001]. Fur- thermore, even for the most complex models, the main research goal has been a mathe - matical description...possibility for localized, discrete actuation to coun- teract detrimental flow developments before they result in significant structural loads and

  4. Modeling and control of flexible space structures

    Science.gov (United States)

    Wie, B.; Bryson, A. E., Jr.

    1981-01-01

    The effects of actuator and sensor locations on transfer function zeros are investigated, using uniform bars and beams as generic models of flexible space structures. It is shown how finite element codes may be used directly to calculate transfer function zeros. The impulse response predicted by finite-dimensional models is compared with the exact impulse response predicted by the infinite dimensional models. It is shown that some flexible structures behave as if there were a direct transmission between actuator and sensor (equal numbers of zeros and poles in the transfer function). Finally, natural damping models for a vibrating beam are investigated since natural damping has a strong influence on the appropriate active control logic for a flexible structure.

  5. Analysis of flexible structures under lateral impact

    International Nuclear Information System (INIS)

    Ramirez, D. F.; Razavi, H.

    2012-01-01

    Three methods for analysis of flexible structures under lateral impact are presented. The first proposed method (Method A) consists of: (1) modifying an available deceleration on a rigid target with conservation principles to account for structural flexibility; and (2) transient nonlinear analysis of the structure with the corrected forcing function. The second proposed method (Method B) is similar to Method A in obtaining the forcing function but it solves the equations of motion of an idealized two-degree-of-freedom system instead of directly using conservation principles. The last method simply provides the maximum force in the structure using the conservation of energy and linear momentum. A coupled simulation is also performed in LS-DYNA and compared against the proposed methods. A case study is presented to illustrate the applicability of all three methods and the LS-DYNA simulation. (authors)

  6. Emulating a flexible space structure: Modeling

    Science.gov (United States)

    Waites, H. B.; Rice, S. C.; Jones, V. L.

    1988-01-01

    Control Dynamics, in conjunction with Marshall Space Flight Center, has participated in the modeling and testing of Flexible Space Structures. Through the series of configurations tested and the many techniques used for collecting, analyzing, and modeling the data, many valuable insights have been gained and important lessons learned. This paper discusses the background of the Large Space Structure program, Control Dynamics' involvement in testing and modeling of the configurations (especially the Active Control Technique Evaluation for Spacecraft (ACES) configuration), the results from these two processes, and insights gained from this work.

  7. System Reduction and Damping of Flexible Structures

    DEFF Research Database (Denmark)

    Høgsberg, Jan Riess; Krenk, Steen

    2007-01-01

    An increasing number of flexible structures such as cable-stayed bridges, pedestrian bridges and high-rise buildings are fitted with local dampers to mitigate vibration problems. In principle the effect of local dampers can be analyzed by use of complex modes, e.g. in conjunction with an averaging...... technique for local linearization of the damper characteristics. However, the complex mode shapes and frequencies depend on the magnitude of the damper and therefore are less suitable for design of the damper system. An efficient alternative consists in the use of a two-component representation...... of the damped modes of the structure. The idea is to represent the damped mode as a linear combination of the modes that occur in two distinctly different situations representing extreme conditions: the mode shape of the structure without the damper(s), and the mode shape of the structure, when the damper...

  8. Flexible joints in structural and multibody dynamics

    Directory of Open Access Journals (Sweden)

    O. A. Bauchau

    2013-02-01

    Full Text Available Flexible joints, sometimes called bushing elements or force elements, are found in all structural and multibody dynamics codes. In their simplest form, flexible joints simply consist of sets of three linear and three torsional springs placed between two nodes of the model. For infinitesimal deformations, the selection of the lumped spring constants is an easy task, which can be based on a numerical simulation of the joint or on experimental measurements. If the joint undergoes finite deformations, identification of its stiffness characteristics is not so simple, specially if the joint is itself a complex system. When finite deformations occur, the definition of deformation measures becomes a critical issue. This paper proposes a family of tensorial deformation measures suitable for elastic bodies of finite dimension. These families are generated by two parameters that can be used to modify the constitutive behavior of the joint, while maintaining the tensorial nature of the deformation measures. Numerical results demonstrate the objectivity of the deformations measures, a feature that is not shared by the deformations measures presently used in the literature. The impact of the choice of the two parameters on the constitutive behavior of the flexible joint is also investigated.

  9. Flexible structured high-frequency film bulk acoustic resonator for flexible wireless electronics

    International Nuclear Information System (INIS)

    Zhou, Changjian; Shu, Yi; Yang, Yi; Ren, Tian-Ling; Jin, Hao; Dong, Shu-Rong; Chan, Mansun

    2015-01-01

    Flexible electronics have inspired many novel and very important applications in recent years and various flexible electronic devices such as diodes, transistors, circuits, sensors, and radiofrequency (RF) passive devices including antennas and inductors have been reported. However, the lack of a high-performance RF resonator is one of the key bottlenecks to implement flexible wireless electronics. In this study, for the first time, a novel ultra-flexible structured film bulk acoustic resonator (FBAR) is proposed. The flexible FBAR is fabricated on a flexible polyimide substrate using piezoelectric thin film aluminum nitride (AlN) for acoustic wave excitation. Both the shear wave and longitudinal wave can be excited under the surface interdigital electrodes configuration we proposed. In the case of the thickness extension mode, a flexible resonator with a working frequency as high as of 5.2325 GHz has been realized. The resonators stay fully functional under bending status and after repeated bending and re-flattening operations. This flexible high-frequency resonator will serve as a key building block for the future flexible wireless electronics, greatly expanding the application scope of flexible electronics. (paper)

  10. Utilization of Flexible Airspace Structure in Flight Efficiency Optimization

    Directory of Open Access Journals (Sweden)

    Tomislav Mihetec

    2013-04-01

    Full Text Available With increasing air traffic demand in the Pan-European airspace there is a need for optimizing the use of the airspace structure (civilian and military in a manner that would satisfy the requirements of civil and military users. In the area of Europe with the highest levels of air traffic (Core area 32% of the volume of airspace above FL 195 is shared by both civil and military users. Until the introduction of the concept of flexible use of airspace, flexible airspace structures were 24 hours per day unavailable for commercial air transport. Flexible use of airspace concept provides a substantial level of dynamic airspace management by the usage of conditional routes. This paper analyses underutilization of resources, flexible airspace structures in the Pan-European airspace, especially in the south-eastern part of the traffic flows (East South Axis, reducing the efficiency of flight operations, as result of delegating the flexible structures to military users. Based on previous analysis, utilization model for flexible use of airspace is developed (scenarios with defined airspace structure. The model is based on the temporal, vertical, and modular airspace sectorisation parameters in order to optimize flight efficiency. The presented model brings significant improvement in flight efficiency (in terms of reduced flight distance for air carriers that planned to fly through the selected flexible airspace structure (LI_RST-49.

  11. Nature-Inspired Structural Materials for Flexible Electronic Devices.

    Science.gov (United States)

    Liu, Yaqing; He, Ke; Chen, Geng; Leow, Wan Ru; Chen, Xiaodong

    2017-10-25

    Exciting advancements have been made in the field of flexible electronic devices in the last two decades and will certainly lead to a revolution in peoples' lives in the future. However, because of the poor sustainability of the active materials in complex stress environments, new requirements have been adopted for the construction of flexible devices. Thus, hierarchical architectures in natural materials, which have developed various environment-adapted structures and materials through natural selection, can serve as guides to solve the limitations of materials and engineering techniques. This review covers the smart designs of structural materials inspired by natural materials and their utility in the construction of flexible devices. First, we summarize structural materials that accommodate mechanical deformations, which is the fundamental requirement for flexible devices to work properly in complex environments. Second, we discuss the functionalities of flexible devices induced by nature-inspired structural materials, including mechanical sensing, energy harvesting, physically interacting, and so on. Finally, we provide a perspective on newly developed structural materials and their potential applications in future flexible devices, as well as frontier strategies for biomimetic functions. These analyses and summaries are valuable for a systematic understanding of structural materials in electronic devices and will serve as inspirations for smart designs in flexible electronics.

  12. Rapid Slewing of Flexible Space Structures

    Science.gov (United States)

    2015-09-01

    maneuvers while minimizing the impact of flexible motion. An antenna must point at its targets with a certain degree of accuracy to ensure link...of mass 1 due to force 1 is greatly impacted by mode 1, especially in the low frequency range. This is because the magnitudes of mode 2 and mode 3...mass 1). See responses for H12 and H13 in Figure 14. Figure 14. Impulse responses, h jk t( ) , for system in Figure 10. 53 The residue

  13. Flexibility.

    Science.gov (United States)

    Humphrey, L. Dennis

    1981-01-01

    Flexibility is an important aspect of all sports and recreational activities. Flexibility can be developed and maintained by stretching exercises. Exercises designed to develop flexibility in ankle joints, knees, hips, and the lower back are presented. (JN)

  14. Apparatus and method for detecting tampering in flexible structures

    Science.gov (United States)

    Maxey, Lonnie C [Knoxville, TN; Haynes, Howard D [Knoxville, TN

    2011-02-01

    A system for monitoring or detecting tampering in a flexible structure includes taking electrical measurements on a sensing cable coupled to the structure, performing spectral analysis on the measured data, and comparing the spectral characteristics of the event to those of known benign and/or known suspicious events. A threshold or trigger value may used to identify an event of interest and initiate data collection. Alternatively, the system may be triggered at preset intervals, triggered manually, or triggered by a signal from another sensing device such as a motion detector. The system may be used to monitor electrical cables and conduits, hoses and flexible ducts, fences and other perimeter control devices, structural cables, flexible fabrics, and other flexible structures.

  15. Continuous compliance compensation of position-dependent flexible structures

    NARCIS (Netherlands)

    Kontaras, Nikolaos; Heertjes, Marcel; Zwart, Heiko J.

    2016-01-01

    The implementation of lightweight high-performance motion systems in lithography and other applications imposes lower requirements on actuators, amplifiers, and cooling. However, the decreased stiffness of lightweight designs increases the effect of structural flexibilities especially when the point

  16. Piezoelectric RL shunt damping of flexible structures

    DEFF Research Database (Denmark)

    Høgsberg, Jan Becker; Krenk, Steen

    2015-01-01

    in the present analysis is based on equal damping of the two modes associated with the resonant vibration form of the structure. An important result of the presented calibration procedure is the explicit inclusion of a quasi-static contribution from the non-resonant vibration modes of the structure via a single...

  17. Flexibility of Data-driven Process Structures

    NARCIS (Netherlands)

    Muller, Dominic; Reichert, Manfred; Herbst, Joachim; Eder, Johann; Dustdar, Schahram

    2006-01-01

    The coordination of complex process structures is a fundamental task for enterprises, such as in the automotive industry. Usually, such process structures consist of several (sub-)processes whose execution must be coordinated and synchronized. Effecting this manually is both ineffective and

  18. Optimal resonant control of flexible structures

    DEFF Research Database (Denmark)

    Krenk, Steen; Høgsberg, Jan Becker

    2009-01-01

    When introducing a resonant controller for a particular vibration mode in a structure this mode splits into two. A design principle is developed for resonant control based oil equal damping of these two modes. First the design principle is developed for control of a system with a single degree...... of freedom, and then it is extended to multi-mode structures. A root locus analysis of the controlled single-mode structure identifies the equal modal damping property as a condition oil the linear and Cubic terms of the characteristic equation. Particular solutions for filtered displacement feedback...... and filtered acceleration feedback are developed by combining the root locus analysis with optimal properties of the displacement amplification frequency curve. The results are then extended to multi-mode structures by including a quasi-static representation of the background modes in the equations...

  19. Control of large flexible space structures

    Science.gov (United States)

    Vandervelde, W. E.

    1986-01-01

    Progress in robust design of generalized parity relations, design of failure sensitive observers using the geometric system theory of Wonham, computational techniques for evaluation of the performance of control systems with fault tolerance and redundancy management features, and the design and evaluation od control systems for structures having nonlinear joints are described.

  20. Out-of-plane structural flexibility of phosphorene.

    Science.gov (United States)

    Wang, Gaoxue; Loh, G C; Pandey, Ravindra; Karna, Shashi P

    2016-02-05

    Phosphorene has been rediscovered recently, establishing itself as one of the most promising two-dimensional group-V elemental monolayers with direct band gap, high carrier mobility, and anisotropic electronic properties. In this paper, surface buckling and its effect on its electronic properties are investigated by using molecular dynamics simulations together with density functional theory calculations. We find that phosphorene shows superior structural flexibility along the armchair direction allowing it to have large curvatures. The semiconducting and direct band gap nature are retained with buckling along the armchair direction; the band gap decreases and transforms to an indirect band gap with buckling along the zigzag direction. The structural flexibility and electronic robustness along the armchair direction facilitate the fabrication of devices with complex shapes, such as folded phosphorene and phosphorene nano-scrolls, thereby offering new possibilities for the application of phosphorene in flexible electronics and optoelectronics.

  1. Nonlinear vibration with control for flexible and adaptive structures

    CERN Document Server

    Wagg, David

    2015-01-01

    This book provides a comprehensive discussion of nonlinear multi-modal structural vibration problems, and shows how vibration suppression can be applied to such systems by considering a sample set of relevant control techniques. It covers the basic principles of nonlinear vibrations that occur in flexible and/or adaptive structures, with an emphasis on engineering analysis and relevant control techniques. Understanding nonlinear vibrations is becoming increasingly important in a range of engineering applications, particularly in the design of flexible structures such as aircraft, satellites, bridges, and sports stadia. There is an increasing trend towards lighter structures, with increased slenderness, often made of new composite materials and requiring some form of deployment and/or active vibration control. There are also applications in the areas of robotics, mechatronics, micro electrical mechanical systems, non-destructive testing and related disciplines such as structural health monitoring. Two broader ...

  2. A Study of Flexible Composites for Expandable Space Structures

    Science.gov (United States)

    Scotti, Stephen J.

    2016-01-01

    Payload volume for launch vehicles is a critical constraint that impacts spacecraft design. Deployment mechanisms, such as those used for solar arrays and antennas, are approaches that have successfully accommodated this constraint, however, providing pressurized volumes that can be packaged compactly at launch and expanded in space is still a challenge. One approach that has been under development for many years is to utilize softgoods - woven fabric for straps, cloth, and with appropriate coatings, bladders - to provide this expandable pressure vessel capability. The mechanics of woven structure is complicated by a response that is nonlinear and often nonrepeatable due to the discrete nature of the woven fiber architecture. This complexity reduces engineering confidence to reliably design and certify these structures, which increases costs due to increased requirements for system testing. The present study explores flexible composite materials systems as an alternative to the heritage softgoods approach. Materials were obtained from vendors who utilize flexible composites for non-aerospace products to determine some initial physical and mechanical properties of the materials. Uniaxial mechanical testing was performed to obtain the stress-strain response of the flexible composites and the failure behavior. A failure criterion was developed from the data, and a space habitat application was used to provide an estimate of the relative performance of flexible composites compared to the heritage softgoods approach. Initial results are promising with a 25% mass savings estimated for the flexible composite solution.

  3. Structure and flexibility of worm-like micelles

    DEFF Research Database (Denmark)

    Jerke, G.; Pedersen, J.S.; Egelhaaf, S.U.

    1997-01-01

    Small-angle neutron scattering and static light scattering experiments have been performed on worm-like micelles formed by soybean lecithin and trace amounts of water in deuterated iso-octane. The structure and flexibility of the aggregates have been investigated as a function of solution...

  4. A Flexible Frame Structure for 5G Wide Area

    DEFF Research Database (Denmark)

    Pedersen, Klaus I.; Frederiksen, Frank; Berardinelli, Gilberto

    2015-01-01

    In this paper we present a 5G frame structure designed for efficient support of users with highly diverse service requirements, including mobile broadband (MBB) data, mission critical communication (MCC), and massive machine communication (MMC). The proposed solution encompasses flexible multiple...... transmission, as well as efficient time-frequency inter-cell interference coordination. Numerical results are presented, including simple comparison against LTE....

  5. Telerobotic operation of structurally flexible, long-reach manipulators

    International Nuclear Information System (INIS)

    Kwon, D.S.; Hwang, D.H.; Babcock, S.M.

    1994-01-01

    As a part of the Department of Energy's Environmental Restoration and Waste Management Program, long-reach manipulators are being considered for the retrieval of waste from large storage tanks. Long-reach manipulators may have characteristics significantly different from those of typical industrial robots because of the flexibility of long links needed to cover the large workspace. To avoid structural vibrations during operation, control algorithms employing various types of shaping filters were investigated. A new approach that uses embedded simulation was developed and compared with others. In the new approach, generation of joint trajectories considering link flexibility was also investigated

  6. AUTOMATED LOW-COST PHOTOGRAMMETRY FOR FLEXIBLE STRUCTURE MONITORING

    Directory of Open Access Journals (Sweden)

    C. H. Wang

    2012-07-01

    Full Text Available Structural monitoring requires instruments which can provide high precision and accuracy, reliable measurements at good temporal resolution and rapid processing speeds. Long-term campaigns and flexible structures are regarded as two of the most challenging subjects in monitoring engineering structures. Long-term monitoring in civil engineering is generally considered to be labourintensive and financially expensive and it can take significant effort to arrange the necessary human resources, transportation and equipment maintenance. When dealing with flexible structure monitoring, it is of paramount importance that any monitoring equipment used is able to carry out rapid sampling. Low cost, automated, photogrammetric techniques therefore have the potential to become routinely viable for monitoring non-rigid structures. This research aims to provide a photogrammetric solution for long-term flexible structural monitoring purposes. The automated approach was achieved using low-cost imaging devices (mobile phones to replace traditional image acquisition stations and substantially reduce the equipment costs. A self-programmed software package was developed to deal with the hardware-software integration and system operation. In order to evaluate the performance of this low-cost monitoring system, a shaking table experiment was undertaken. Different network configurations and target sizes were used to determine the best configuration. A large quantity of image data was captured by four DSLR cameras and four mobile phone cameras respectively. These image data were processed using photogrammetric techniques to calculate the final results for the system evaluation.

  7. An efficient structural finite element for inextensible flexible risers

    Science.gov (United States)

    Papathanasiou, T. K.; Markolefas, S.; Khazaeinejad, P.; Bahai, H.

    2017-12-01

    A core part of all numerical models used for flexible riser analysis is the structural component representing the main body of the riser as a slender beam. Loads acting on this structural element are self-weight, buoyant and hydrodynamic forces, internal pressure and others. A structural finite element for an inextensible riser with a point-wise enforcement of the inextensibility constrain is presented. In particular, the inextensibility constraint is applied only at the nodes of the meshed arc length parameter. Among the virtues of the proposed approach is the flexibility in the application of boundary conditions and the easy incorporation of dissipative forces. Several attributes of the proposed finite element scheme are analysed and computation times for the solution of some simplified examples are discussed. Future developments aim at the appropriate implementation of material and geometric parameters for the beam model, i.e. flexural and torsional rigidity.

  8. Vibration control of a flexible structure with electromagnetic actuators

    DEFF Research Database (Denmark)

    Gruzman, Maurício; Santos, Ilmar

    2016-01-01

    This work presents the model of a shear-frame-type structure composed of six flexible beams and three rigid masses. Fixed on the ground, outside the structure, two voltage-controlled electromagnetic actuators are used for vibration control. To model the flexible beams, unidimensional finite...... elements were used. Nonlinear equations for the actuator electromagnetic force, noise in the position sensor, time delays for the control signal update and voltage saturation were also considered in the model. For controlling purposes, a discrete linear quadratic regulator combined with a predictive full......-order discrete linear observer was employed. Results of numerical simulations, where the structure is submitted to an impulsive disturbance force and to a harmonic force, show that the oscillations can be significantly reduced with the use of the electromagnetic actuators....

  9. Matrix Transfer Function Design for Flexible Structures: An Application

    Science.gov (United States)

    Brennan, T. J.; Compito, A. V.; Doran, A. L.; Gustafson, C. L.; Wong, C. L.

    1985-01-01

    The application of matrix transfer function design techniques to the problem of disturbance rejection on a flexible space structure is demonstrated. The design approach is based on parameterizing a class of stabilizing compensators for the plant and formulating the design specifications as a constrained minimization problem in terms of these parameters. The solution yields a matrix transfer function representation of the compensator. A state space realization of the compensator is constructed to investigate performance and stability on the nominal and perturbed models. The application is made to the ACOSSA (Active Control of Space Structures) optical structure.

  10. [Functional characteristics of flexible supporting structures for heart valve bioprosthesis].

    Science.gov (United States)

    Dobrova, N B; Agafonov, A V; Barbarash, L S; Zavalishin, N N; Neniukov, A K

    1984-01-01

    Hydraulic characteristics of heart valve bioprostheses mounted on supporting structures of various rigidity have been studied under physiologic conditions. An actual mobility of the supporting structures made of different polymers is determined. Static and dynamic components of the support displacements have been shown to develop as the bioprosthesis is under the load, the dynamic component being strongly dependent upon the rigidity of fastening the bioprosthesis on the axis. It is noted that considerable improvements in hydraulic characteristics of bioprostheses are achieved through the use of flexible supporting structures.

  11. All dispenser printed flexible 3D structured thermoelectric generators

    Science.gov (United States)

    Cao, Z.; Shi, J. J.; Torah, R. N.; Tudor, M. J.; Beeby, S. P.

    2015-12-01

    This work presents a vertically fabricated 3D thermoelectric generator (TEG) by dispenser printing on flexible polyimide substrate. This direct-write technology only involves printing of electrodes, thermoelectric active materials and structure material, which needs no masks to transfer the patterns onto the substrate. The dimension for single thermoelectric element is 2 mm × 2 mm × 0.5 mm while the distance between adjacent cubes is 1.2 mm. The polymer structure layer was used to support the electrodes which are printed to connect the top ends of the thermoelectric material and ensure the flexibility as well. The advantages and the limitations of the dispenser printed 3D TEGs will also be evaluated in this paper. The proposed method is potential to be a low-cost and scalable fabrication solution for TEGs.

  12. A Structured Light Scanner for Hyper Flexible Industrial Automation

    DEFF Research Database (Denmark)

    Hansen, Kent; Pedersen, Jeppe; Sølund, Thomas

    2014-01-01

    A current trend in industrial automation implies a need for doing automatic scene understanding, from optical 3D sensors, which in turn imposes a need for a lightweight and reliable 3D optical sensor to be mounted on a collaborative robot e.g., Universal Robot UR5 or Kuka LWR. Here, we empirically...... contribute to the robustness of the system. Hereby, we demonstrate that structured light scanning is a technology well suited for hyper flexible industrial automation, by proposing an appropriate system....

  13. Flexibility of the genetic code with respect to DNA structure

    DEFF Research Database (Denmark)

    Baisnée, P. F.; Baldi, Pierre; Brunak, Søren

    2001-01-01

    Motivation. The primary function of DNA is to carry genetic information through the genetic code. DNA, however, contains a variety of other signals related, for instance, to reading frame, codon bias, pairwise codon bias, splice sites and transcription regulation, nucleosome positioning and DNA...... structure. Here we study the relationship between the genetic code and DNA structure and address two questions. First, to which degree does the degeneracy of the genetic code and the acceptable amino acid substitution patterns allow for the superimposition of DNA structural signals to protein coding...... sequences? Second, is the origin or evolution of the genetic code likely to have been constrained by DNA structure? Results. We develop an index for code flexibility with respect to DNA structure. Using five different di- or tri-nucleotide models of sequence-dependent DNA structure, we show...

  14. Flexible PCPDTBT:PCBM solar cells with integrated grating structures

    DEFF Research Database (Denmark)

    Oliveira Hansen, Roana Melina de; Liu, Yinghui; Madsen, Morten

    2013-01-01

    We report on development of flexible PCPDTBT:PCBM solar cells with integrated diffraction gratings on the bottom electrodes. The presented results address PCPDTBT:PCBM solar cells in an inverted geometry, which contains implemented grating structures whose pitch is tuned to match the absorption...... spectra of the active layer. This optimized solar cell structure leads to an enhanced absorption in the active layer and thus improved short-circuit currents and power conversion efficiencies in the fabricated devices. Fabrication of the solar cells on thin polyimide substrates which are compatible...

  15. Damage assessment using flexibility and flexibility-based curvature for structural health monitoring

    International Nuclear Information System (INIS)

    Catbas, F N; Gul, M; Burkett, J L

    2008-01-01

    As a result of the recent advances in sensors, information technologies and material science, a considerable amount of research has been conducted in the area of smart infrastructures. While there are many important components of a smart infrastructure, an automated and continuous structural health monitoring (SHM) system is a critical one. SHM is typically used to track and evaluate the performance of a structure, symptoms of operational incidents, anomalies due to deterioration and damage during regular operation as well as after an extreme event. Successful health monitoring applications can be achieved by integrating experimental, analytical and information technologies on real-life operating structures. However, real-life investigations must be backed up by laboratory benchmark studies for validating theory, concepts, and new technologies. For this reason, a physical bridge model is developed to implement SHM methods and technologies. In this study, different aspects of model development are outlined in terms of design considerations, instrumentation, finite element modeling, and simulating damage scenarios. Different damage detection methods are evaluated using the numerical and the physical models. Modal parameter estimation studies are carried out to reliably identify the eigenvalues, eigenvectors and modal scaling from the measurement data. To assess the simulated damage, modal flexibility-based displacements and curvatures are employed. Structural behavior after damage is evaluated by inspecting the deflected shapes obtained using modal flexibility. More localized damage simulations such as stiffness reduction at a joint yield a very subtle stiffness decrease. In this case, the writers use a baseline to identify damage and also investigate the use of curvature as a complementary index. Curvature is advantageous for certain cases where the displacement results do not provide substantial changes. Issues related to using curvature as a damage identification

  16. Novel structural flexibility identification in narrow frequency bands

    International Nuclear Information System (INIS)

    Zhang, J; Moon, F L

    2012-01-01

    A ‘Sub-PolyMAX’ method is proposed in this paper not only for estimating modal parameters, but also for identifying structural flexibility by processing the impact test data in narrow frequency bands. The traditional PolyMAX method obtains denominator polynomial coefficients by minimizing the least square (LS) errors of frequency response function (FRF) estimates over the whole frequency range, but FRF peaks in different structural modes may have different levels of magnitude, which leads to the modal parameters identified for the modes with small FRF peaks being inaccurate. In contrast, the proposed Sub-PolyMAX method implements the LS solver in each subspace of the whole frequency range separately; thus the results identified from a narrow frequency band are not affected by FRF data in other frequency bands. In performing structural identification in narrow frequency bands, not in the whole frequency space, the proposed method has the following merits: (1) it produces accurate modal parameters, even for the modes with very small FRF peaks; (2) it significantly reduces computation cost by reducing the number of frequency lines and the model order in each LS implementation; (3) it accurately identifies structural flexibility from impact test data, from which structural deflection under any static load can be predicted. Numerical and laboratory examples are investigated to verify the effectiveness of the proposed method. (paper)

  17. Aquatic plants are open flexible structures - a reply to Sukhodolov

    DEFF Research Database (Denmark)

    Sand-Jensen, K.

    2005-01-01

    1. Aquatic plant stands are flexible, mesh-like open structures that undergo modification in shape and experience a cascade of declining flow velocities and micro-scale Reynolds numbers with increasing distance into the stands. It is not possible to define or measure the frontal area of this open...... other problems. Relating drag coefficients to macro-scale Reynolds numbers would result in exactly the same form of relationship as to water velocity because macro-scale Reynolds numbers changed in direct proportion to water velocity in the experiments, while kinematic viscosity and characteristic...

  18. Active control of flexible structures using a fuzzy logic algorithm

    Science.gov (United States)

    Cohen, Kelly; Weller, Tanchum; Ben-Asher, Joseph Z.

    2002-08-01

    This study deals with the development and application of an active control law for the vibration suppression of beam-like flexible structures experiencing transient disturbances. Collocated pairs of sensors/actuators provide active control of the structure. A design methodology for the closed-loop control algorithm based on fuzzy logic is proposed. First, the behavior of the open-loop system is observed. Then, the number and locations of collocated actuator/sensor pairs are selected. The proposed control law, which is based on the principles of passivity, commands the actuator to emulate the behavior of a dynamic vibration absorber. The absorber is tuned to a targeted frequency, whereas the damping coefficient of the dashpot is varied in a closed loop using a fuzzy logic based algorithm. This approach not only ensures inherent stability associated with passive absorbers, but also circumvents the phenomenon of modal spillover. The developed controller is applied to the AFWAL/FIB 10 bar truss. Simulated results using MATLAB© show that the closed-loop system exhibits fairly quick settling times and desirable performance, as well as robustness characteristics. To demonstrate the robustness of the control system to changes in the temporal dynamics of the flexible structure, the transient response to a considerably perturbed plant is simulated. The modal frequencies of the 10 bar truss were raised as well as lowered substantially, thereby significantly perturbing the natural frequencies of vibration. For these cases, too, the developed control law provides adequate settling times and rates of vibrational energy dissipation.

  19. Dynamics of Rigid Bodies and Flexible Beam Structures

    DEFF Research Database (Denmark)

    Nielsen, Martin Bjerre

    of rigid bodies and flexible beam structures with emphasis on the rotational motion. The first part deals with motion in a rotating frame of reference. A novel approach where the equations of motion are formulated in a hybrid state-space in terms of local displacements and global velocities is presented...... quaternion parameters or nine convected base vector components. In both cases, the equations of motion are obtained via Hamilton’s equations by including the kinematic constraints associated with the redundant rotation description by means of Lagrange multipliers. A special feature of the formulation...... of the global components of the position vectors and associated convected base vectors for the element nodes. The kinematics is expressed in a homogeneous quadratic form and the constitutive stiffness is derived from complementary energy of a set of equilibrium modes, each representing a state of constant...

  20. Modeling, Control, and Estimation of Flexible, Aerodynamic Structures

    Science.gov (United States)

    Ray, Cody W.

    Engineers have long been inspired by nature’s flyers. Such animals navigate complex environments gracefully and efficiently by using a variety of evolutionary adaptations for high-performance flight. Biologists have discovered a variety of sensory adaptations that provide flow state feedback and allow flying animals to feel their way through flight. A specialized skeletal wing structure and plethora of robust, adaptable sensory systems together allow nature’s flyers to adapt to myriad flight conditions and regimes. In this work, motivated by biology and the successes of bio-inspired, engineered aerial vehicles, linear quadratic control of a flexible, morphing wing design is investigated, helping to pave the way for truly autonomous, mission-adaptive craft. The proposed control algorithm is demonstrated to morph a wing into desired positions. Furthermore, motivated specifically by the sensory adaptations organisms possess, this work transitions to an investigation of aircraft wing load identification using structural response as measured by distributed sensors. A novel, recursive estimation algorithm is utilized to recursively solve the inverse problem of load identification, providing both wing structural and aerodynamic states for use in a feedback control, mission-adaptive framework. The recursive load identification algorithm is demonstrated to provide accurate load estimate in both simulation and experiment.

  1. Modeling and Simulation of Variable Mass, Flexible Structures

    Science.gov (United States)

    Tobbe, Patrick A.; Matras, Alex L.; Wilson, Heath E.

    2009-01-01

    The advent of the new Ares I launch vehicle has highlighted the need for advanced dynamic analysis tools for variable mass, flexible structures. This system is composed of interconnected flexible stages or components undergoing rapid mass depletion through the consumption of solid or liquid propellant. In addition to large rigid body configuration changes, the system simultaneously experiences elastic deformations. In most applications, the elastic deformations are compatible with linear strain-displacement relationships and are typically modeled using the assumed modes technique. The deformation of the system is approximated through the linear combination of the products of spatial shape functions and generalized time coordinates. Spatial shape functions are traditionally composed of normal mode shapes of the system or even constraint modes and static deformations derived from finite element models of the system. Equations of motion for systems undergoing coupled large rigid body motion and elastic deformation have previously been derived through a number of techniques [1]. However, in these derivations, the mode shapes or spatial shape functions of the system components were considered constant. But with the Ares I vehicle, the structural characteristics of the system are changing with the mass of the system. Previous approaches to solving this problem involve periodic updates to the spatial shape functions or interpolation between shape functions based on system mass or elapsed mission time. These solutions often introduce misleading or even unstable numerical transients into the system. Plus, interpolation on a shape function is not intuitive. This paper presents an approach in which the shape functions are held constant and operate on the changing mass and stiffness matrices of the vehicle components. Each vehicle stage or component finite element model is broken into dry structure and propellant models. A library of propellant models is used to describe the

  2. Deployment of a multi-link flexible structure

    Science.gov (United States)

    Na, Kyung-Su; Kim, Ji-Hwan

    2006-06-01

    Deployment of a multi-link beam structure undergoing locking is analyzed in the Timoshenko beam theory. In the modeling of the system, dynamic forces are assumed to be torques and restoring forces due to the torsion spring at each joint. Hamilton's principle is used to determine the equations of motion and the finite element method is adopted to analyze the system. Newmark time integration and Newton-Raphson iteration methods are used to solve for the non-linear equations of motion at each time step. The locking at the joints of the multi-link flexible structure is analyzed by the momentum balance method. Numerical results are compared with the previous experimental data. The angles and angular velocities of each joint, tip displacement, and velocity of each link are investigated to study the motions of the links at each time step. To analyze the effect of thickness on the motion of the link, the angle and the tip displacement of each link are compared according to the various slenderness ratios. Additionally, in order to investigate the effect of shear, the tip displacements of a Timoshenko beam are compared with those of an Euler-Bernoulli beam.

  3. Flexible High Energy-Conversion Sensing Materials for Structural Health Monitoring, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — The applicant is developing flexible highly-efficient piezoelectric materials for use in structural health monitoring (SHM) as contemplated in the solicitation...

  4. Simplified design of flexible expansion anchored plates for nuclear structures

    International Nuclear Information System (INIS)

    Mehta, N.K.; Hingorani, N.V.; Longlais, T.G.; Sargent and Lundy, Chicago, IL)

    1984-01-01

    In nuclear power plant construction, expansion anchored plates are used to support pipe, cable tray and HVAC duct hangers, and various structural elements. The expansion anchored plates provide flexibility in the installation of field-routed lines where cast-in-place embedments are not available. General design requirements for expansion anchored plate assemblies are given in ACI 349, Appendix B (1). The manufacturers recommend installation procedures for their products. Recent field testing in response to NRC Bulletin 79-02 (2) indicates that anchors, installed in accordance with manufacturer's recommended procedures, perform satisfactorily under static and dynamic loading conditions. Finite element analysis is a useful tool to correctly analyze the expansion anchored plates subject to axial tension and biaxial moments, but it becomes expensive and time-consuming to apply this tool for a large number of plates. It is, therefore, advantageous to use a simplified method, even though it may be more conservative as compared to the exact method of analysis. This paper presents a design method referred to as the modified rigid plate analysis approach to simplify both the initial design and the review of as-built conditions

  5. Sensor placement optimization for structural modal identification of flexible structures using genetic algorithm

    International Nuclear Information System (INIS)

    Jung, B. K.; Cho, J. R.; Jeong, W. B.

    2015-01-01

    The position of vibration sensors influences the modal identification quality of flexible structures for a given number of sensors, and the quality of modal identification is usually estimated in terms of correlation between the natural modes using the modal assurance criterion (MAC). The sensor placement optimization is characterized by the fact that the design variables are not continuous but discrete, implying that the conventional sensitivity-driven optimization methods are not applicable. In this context, this paper presents the application of genetic algorithm to the sensor placement optimization for improving the modal identification quality of flexible structures. A discrete-type optimization problem using genetic algorithm is formulated by defining the sensor positions and the MAC as the design variables and the objective function, respectively. The proposed GA-based evolutionary optimization method is validated through the numerical experiment with a rectangular plate, and its excellence is verified from the comparison with the cases using different modal correlation measures.

  6. Flexible organic solar cells including efficiency enhancing grating structures

    DEFF Research Database (Denmark)

    Oliveira Hansen, Roana Melina de; Liu, Yinghui; Madsen, Morten

    2013-01-01

    , such as photolithography and electron-beam lithography, besides the steps required for the bulk-heterojunction organic solar cell fabrication. After the production steps, the solar cells on polyimide are peeled off the silicon support substrates, resulting in flexible devices containing nanostructures for light absorption......In this work, a new method for the fabrication of organic solar cells containing functional light-trapping nanostructures on flexible substrates is presented. Polyimide is spin-coated on silicon support substrates, enabling standard micro- and nanotechnology fabrication techniques...

  7. Flexible organic solar cells including efficiency enhancing grating structures

    International Nuclear Information System (INIS)

    De Oliveira Hansen, Roana Melina; Liu Yinghui; Madsen, Morten; Rubahn, Horst-Günter

    2013-01-01

    In this work, a new method for the fabrication of organic solar cells containing functional light-trapping nanostructures on flexible substrates is presented. Polyimide is spin-coated on silicon support substrates, enabling standard micro- and nanotechnology fabrication techniques, such as photolithography and electron-beam lithography, besides the steps required for the bulk-heterojunction organic solar cell fabrication. After the production steps, the solar cells on polyimide are peeled off the silicon support substrates, resulting in flexible devices containing nanostructures for light absorption enhancement. Since the solar cells avoid using brittle electrodes, the performance of the flexible devices is not affected by the peeling process. We have investigated three different nanostructured grating designs and conclude that gratings with a 500 nm pitch distance have the highest light-trapping efficiency for the selected active layer material (P3HT:PCBM), resulting in an enhancement of about 34% on the solar cell efficiency. The presented method can be applied to a large variety of flexible nanostructured devices in future applications. (paper)

  8. Lecture Recording: Structural and Symbolic Information vs. Flexibility of Presentation

    Science.gov (United States)

    Stolzenberg, Daniel; Pforte, Stefan

    2007-01-01

    Rapid eLearning is an ongoing trend which enables flexible and cost-effective creation of learning materials. Especially, lecture recording has turned out to be a lightweight method particularly suited for existing lectures and blended learning strategies. In order to not only sequentially play back but offer full fledged navigation, search and…

  9. How do Resource Structuring and Strategic Flexibility Interact to Shape Radical Innovation?

    DEFF Research Database (Denmark)

    Li, Yuan; Li, Peter Ping; Wang, Haifeng

    2017-01-01

    flexibility could be complementary or substitutive, and the effective utilization of these two organizational dimensions as a joint force should be well aligned to achieve scientific breakthroughs. Specifically, this study explores how two different types of strategic flexibility (i.e., resource flexibility......As high resource consumption and high uncertainty are two of the most critical challenges to radical innovation, it is imperative to adopt resource structuring for an active management of resource portfolios, and also to adopt strategic flexibility for active management of contextual uncertainties......, especially for firms in the emerging economies characterized by serious resource deficiency and high contextual uncertainty. Though firms engaging in resource structuring and strategic flexibility separately could foster radical innovation, the interaction effect of resource structuring and strategic...

  10. Adaptive Neuro-Fuzzy Inference System Models for Force Prediction of a Mechatronic Flexible Structure

    DEFF Research Database (Denmark)

    Achiche, S.; Shlechtingen, M.; Raison, M.

    2016-01-01

    This paper presents the results obtained from a research work investigating the performance of different Adaptive Neuro-Fuzzy Inference System (ANFIS) models developed to predict excitation forces on a dynamically loaded flexible structure. For this purpose, a flexible structure is equipped...... obtained from applying a random excitation force on the flexible structure. The performance of the developed models is evaluated by analyzing the prediction capabilities based on a normalized prediction error. The frequency domain is considered to analyze the similarity of the frequencies in the predicted...... of the sampling frequency and sensor location on the model performance is investigated. The results obtained in this paper show that ANFIS models can be used to set up reliable force predictors for dynamical loaded flexible structures, when a certain degree of inaccuracy is accepted. Furthermore, the comparison...

  11. Pavement structure mechanics response of flexible on semi-flexible overlay that based on the old cement concrete pavement damage

    Directory of Open Access Journals (Sweden)

    Jiang Ruinan

    2015-01-01

    Full Text Available The old cement pavement damage status directly affect the design of the paving renovation. Based on the state of the old road investigation, combined with the research data at home and abroad, use the control index that average deflection, deflection value and CBR value to determine the reasonable time to overlay. Draw up the typical pavement structure according to the principle of combination of old cement pavement overlay structure design, and calculated that the tensile stress and shear stress in asphalt layer ,semi-flexible layer and the tensile in the old cement pavement adopting BISA3.0 statics finite element analysis model when modulus in the old road was diminishing. Use the computed result to analyses the influence of old road damage condition the influence of pavement structure.

  12. Third-order polynomial model for analyzing stickup state laminated structure in flexible electronics

    Science.gov (United States)

    Meng, Xianhong; Wang, Zihao; Liu, Boya; Wang, Shuodao

    2018-02-01

    Laminated hard-soft integrated structures play a significant role in the fabrication and development of flexible electronics devices. Flexible electronics have advantageous characteristics such as soft and light-weight, can be folded, twisted, flipped inside-out, or be pasted onto other surfaces of arbitrary shapes. In this paper, an analytical model is presented to study the mechanics of laminated hard-soft structures in flexible electronics under a stickup state. Third-order polynomials are used to describe the displacement field, and the principle of virtual work is adopted to derive the governing equations and boundary conditions. The normal strain and the shear stress along the thickness direction in the bi-material region are obtained analytically, which agree well with the results from finite element analysis. The analytical model can be used to analyze stickup state laminated structures, and can serve as a valuable reference for the failure prediction and optimal design of flexible electronics in the future.

  13. Structure-preserving integrators in nonlinear structural dynamics and flexible multibody dynamics

    CERN Document Server

    2016-01-01

    This book focuses on structure-preserving numerical methods for flexible multibody dynamics, including nonlinear elastodynamics and geometrically exact models for beams and shells. It also deals with the newly emerging class of variational integrators as well as Lie-group integrators. It discusses two alternative approaches to the discretization in space of nonlinear beams and shells. Firstly, geometrically exact formulations, which are typically used in the finite element community and, secondly, the absolute nodal coordinate formulation, which is popular in the multibody dynamics community. Concerning the discretization in time, the energy-momentum method and its energy-decaying variants are discussed. It also addresses a number of issues that have arisen in the wake of the structure-preserving discretization in space. Among them are the parameterization of finite rotations, the incorporation of algebraic constraints and the computer implementation of the various numerical methods. The practical application...

  14. Broadband Liquid Dampers to Stabilize Flexible Spacecraft Structures

    NARCIS (Netherlands)

    Kuiper, J.M.

    2012-01-01

    Mass-spring and liquid dampers enable structural vibration control to attenuate single, coupled lateral and torsional vibrations in diverse structures. Out of these, the passively tuned liquid damper (TLD) class is wanted due to its broad applicability, extreme reliability, robustness, long life

  15. Flexibility of Bricard's linkages and other structures via resultants and computer algebra.

    Science.gov (United States)

    Lewis, Robert H; Coutsias, Evangelos A

    2016-07-01

    Flexibility of structures is extremely important for chemistry and robotics. Following our earlier work, we study flexibility using polynomial equations, resultants, and a symbolic algorithm of our creation that analyzes the resultant. We show that the software solves a classic arrangement of quadrilaterals in the plane due to Bricard. We fill in several gaps in Bricard's work and discover new flexible arrangements that he was apparently unaware of. This provides strong evidence for the maturity of the software, and is a wonderful example of mathematical discovery via computer assisted experiment.

  16. Systematic study of the structure of alternate pyromellitimide-PEO copolymers: Influence of the chain flexibility

    International Nuclear Information System (INIS)

    Djurado, David; Curtet, Jean Pierre; Bee, Marc; Michot, Christophe; Armand, Michel

    2007-01-01

    The structure of a family of copolyimides in which are alternating stiff/redox pyromellitimide units and flexible/solvating polyethyleneoxide (PEO) strands were studied by using wide angle and small angle X-ray scattering techniques and is fully discussed. It is shown that the rich variety of structures exhibited by these compounds can be understood by considering the dramatic change of flexibility of the chain induced by the variation of the length of the PEO strand compared to that of the pyromellimide segment. In this respect, concerning the compounds which exhibit fully amorphous structures a better understanding of their structural behavior can be obtained in the framework of Flory's theory of semi-rigid polymers. In this approach, the degree of flexibility of the chain is mainly resulting from the relative amount of flexible units constituting the repetition unit of the polymer chain. The final structural mode adopted by each compound in the solid state is then directly a consequence of this intrinsic property of the chain. The introduction of a lithium salt in contact with the copolymer chains induces some structure changes which can also be explained by the modification of the degree of flexibility of the chain. It is found that the best performances in terms of electroactivity and mixed conduction are precisely obtained with the only compound which keeps full amorphicity in absence and in presence of the lithium salt

  17. Magnetophoresis of flexible DNA-based dumbbell structures

    Science.gov (United States)

    Babić, B.; Ghai, R.; Dimitrov, K.

    2008-02-01

    Controlled movement and manipulation of magnetic micro- and nanostructures using magnetic forces can give rise to important applications in biomedecine, diagnostics, and immunology. We report controlled magnetophoresis and stretching, in aqueous solution, of a DNA-based dumbbell structure containing magnetic and diamagnetic microspheres. The velocity and stretching of the dumbbell were experimentally measured and correlated with a theoretical model based on the forces acting on individual magnetic beads or the entire dumbbell structures. The results show that precise and predictable manipulation of dumbbell structures is achievable and can potentially be applied to immunomagnetic cell separators.

  18. Basic performance tests on vibration of support structure with flexible plates for ITER tokamak device

    International Nuclear Information System (INIS)

    Takeda, Nobukazu; Kakudate, Satoshi; Shibanuma, Kiyoshi

    2005-01-01

    The vibration experiments of the support structures with flexible plates for the ITER major components such as toroidal field coil (TF coil) and vacuum vessel (VV) were performed using small-sized flexible plates aiming to obtain its basic mechanical characteristics such as dependence of the stiffness on the loading angle. The experimental results obtained by the hammering and frequency sweep tests were agreed each other, so that the experimental method is found to be reliable. In addition, the experimental results were compared with the analytical ones in order to estimate an adequate analytical model for ITER support structure with flexible plates. As a result, the bolt connection of the flexible plates on the base plate strongly affected on the stiffness of the flexible plates. After studies of modeling the bolts, it is found that the analytical results modeling the bolts with finite stiffness only in the axial direction and infinite stiffness in the other directions agree well with the experimental ones. Using this adequate model, the stiffness of the support structure with flexible plates for the ITER major components can be calculated precisely in order to estimate the dynamic behaviors such as eigen modes and amplitude of deformation of the major components of the ITER tokamak device. (author)

  19. Hierarchically structured nanocarbon electrodes for flexible solid lithium batteries

    KAUST Repository

    Wei, Di

    2013-09-01

    The ever increasing demand for storage of electrical energy in portable electronic devices and electric vehicles is driving technological improvements in rechargeable batteries. Lithium (Li) batteries have many advantages over other rechargeable battery technologies, including high specific energy and energy density, operation over a wide range of temperatures (-40 to 70. °C) and a low self-discharge rate, which translates into a long shelf-life (~10 years) [1]. However, upon release of the first generation of rechargeable Li batteries, explosions related to the shorting of the circuit through Li dendrites bridging the anode and cathode were observed. As a result, Li metal batteries today are generally relegated to non-rechargeable primary battery applications, because the dendritic growth of Li is associated with the charging and discharging process. However, there still remain significant advantages in realizing rechargeable secondary batteries based on Li metal anodes because they possess superior electrical conductivity, higher specific energy and lower heat generation due to lower internal resistance. One of the most practical solutions is to use a solid polymer electrolyte to act as a physical barrier against dendrite growth. This may enable the use of Li metal once again in rechargeable secondary batteries [2]. Here we report a flexible and solid Li battery using a polymer electrolyte with a hierarchical and highly porous nanocarbon electrode comprising aligned multiwalled carbon nanotubes (CNTs) and carbon nanohorns (CNHs). Electrodes with high specific surface area are realized through the combination of CNHs with CNTs and provide a significant performance enhancement to the solid Li battery performance. © 2013 Elsevier Ltd.

  20. Flexible Structural Design for Side-Sliding Force Reduction for a Caterpillar Climbing Robot

    Directory of Open Access Journals (Sweden)

    Weina Cui

    2012-11-01

    Full Text Available Due to sliding force arising from the closed chain mechanism among the adhering points of a climbing caterpillar robot (CCR, a sliding phenomenon will happen at the adhering points, e.g., the vacuum pads or claws holding the surface. This sliding force makes the attachment of the climbing robot unsteady and reducesthe motion efficiency. According to the new bionic research on the soft-body structure of caterpillars, some flexible structures made of natural rubber bars are applied in CCRs correspondingly as an improvement to the old rigid mechanical design of the robotic structure. This paper firstly establishes the static model of the sliding forces, the distortion of flexible bars and the driving torques of joints. Then, a method to reduce the sliding force by exerting a compensating angle to an active joint of the CCR is presented. The analyses and experimental results indicate that the flexible structure and the compensating angle method can reduce the sliding forces remarkably.

  1. Viscoelastic fluid-structure interactions between a flexible cylinder and wormlike micelle solution

    Science.gov (United States)

    Dey, Anita A.; Modarres-Sadeghi, Yahya; Rothstein, Jonathan P.

    2018-06-01

    It is well known that when a flexible or flexibly mounted structure is placed perpendicular to the flow of a Newtonian fluid, it can oscillate due to the shedding of separated vortices at high Reynolds numbers. Unlike Newtonian fluids, the flow of viscoelastic fluids can become unstable even at infinitesimal Reynolds numbers due to a purely elastic flow instability that can occur at large Weissenberg numbers. Recent work has shown that these elastic flow instabilities can drive the motion of flexible sheets. The fluctuating fluid forces exerted on the structure from the elastic flow instabilities can lead to a coupling between an oscillatory structural motion and the state of stress in the fluid flow. In this paper, we present the results of an investigation into the flow of a viscoelastic wormlike micelle solution past a flexible circular cylinder. The time variation of the flow field and the state of stress in the fluid are shown using a combination of particle image tracking and flow-induced birefringence images. The static and dynamic responses of the flexible cylinder are presented for a range of flow velocities. The nonlinear dynamics of the structural motion is studied to better understand an observed transition from a symmetric to an asymmetric structural deformation and oscillation behavior.

  2. Fast flexible modeling of RNA structure using internal coordinates.

    Science.gov (United States)

    Flores, Samuel Coulbourn; Sherman, Michael A; Bruns, Christopher M; Eastman, Peter; Altman, Russ Biagio

    2011-01-01

    Modeling the structure and dynamics of large macromolecules remains a critical challenge. Molecular dynamics (MD) simulations are expensive because they model every atom independently, and are difficult to combine with experimentally derived knowledge. Assembly of molecules using fragments from libraries relies on the database of known structures and thus may not work for novel motifs. Coarse-grained modeling methods have yielded good results on large molecules but can suffer from difficulties in creating more detailed full atomic realizations. There is therefore a need for molecular modeling algorithms that remain chemically accurate and economical for large molecules, do not rely on fragment libraries, and can incorporate experimental information. RNABuilder works in the internal coordinate space of dihedral angles and thus has time requirements proportional to the number of moving parts rather than the number of atoms. It provides accurate physics-based response to applied forces, but also allows user-specified forces for incorporating experimental information. A particular strength of RNABuilder is that all Leontis-Westhof basepairs can be specified as primitives by the user to be satisfied during model construction. We apply RNABuilder to predict the structure of an RNA molecule with 160 bases from its secondary structure, as well as experimental information. Our model matches the known structure to 10.2 Angstroms RMSD and has low computational expense.

  3. Application of partial differential equation modeling of the control/structural dynamics of flexible spacecraft

    Science.gov (United States)

    Taylor, Lawrence W., Jr.; Rajiyah, H.

    1991-01-01

    Partial differential equations for modeling the structural dynamics and control systems of flexible spacecraft are applied here in order to facilitate systems analysis and optimization of these spacecraft. Example applications are given, including the structural dynamics of SCOLE, the Solar Array Flight Experiment, the Mini-MAST truss, and the LACE satellite. The development of related software is briefly addressed.

  4. Recursive thoughts on the simulation of the flexible multibody dynamics of slender offshore structures

    NARCIS (Netherlands)

    Schilder, Jurnan Paul; Ellenbroek, Marcellinus Hermannus Maria; de Boer, A.

    2017-01-01

    In this work, the floating frame of reference formulation is used to create a flexible multibody model of slender offshore structures such as pipelines and risers. It is shown that due to the chain-like topology of the considered structures, the equation of motion can be expressed in terms of

  5. Photogrammetric Verification of Fiber Optic Shape Sensors on Flexible Aerospace Structures

    Science.gov (United States)

    Moore, Jason P.; Rogge, Matthew D.; Jones, Thomas W.

    2012-01-01

    Multi-core fiber (MCF) optic shape sensing offers the possibility of providing in-flight shape measurements of highly flexible aerospace structures and control surfaces for such purposes as gust load alleviation, flutter suppression, general flight control and structural health monitoring. Photogrammetric measurements of surface mounted MCF shape sensing cable can be used to quantify the MCF installation path and verify measurement methods.

  6. Modal estimation by FBG for flexible structures attitude control

    NARCIS (Netherlands)

    Jiang, Hao; Van Der Veek, B.; Dolk, V.; Kirk, D.; Gutierrez, H.

    2014-01-01

    This work investigates an online mode shape estimation method to estimate the time-varying modal properties and correct IMU readings in real time using distributed strain measurements of FBG sensor arrays. Compared to the notch filter approach, the proposed method removes structural vibration

  7. Passive Control of Flexible Structures by Confinement of Vibrations

    Directory of Open Access Journals (Sweden)

    M. Ouled Chtiba

    2007-01-01

    Full Text Available We propose a two-step strategy for the design of passive controllers for the simultaneous confinement and suppression of vibrations (SCSV in mechanical structures. Once the sensitive and insensitive elements of these structures are identified, the first design step synthesizes an active control law, which is referred to as the reference control law (RCL, for the SCSV. We show that the problem of SCSV can be formulated as an LQR-optimal control problem through which the maximum amplitudes, associated with the control input and the displacements of the sensitive and insensitive parts, can be regulated. In the second design step, a transformation technique that yields an equivalent passive controller is used. Such a technique uses the square root of sum of squares method to approximate an equivalent passive controller while maximizing the effects of springs and dampers characterizing passive elements that are added to the original structure. The viability of the proposed control design is illustrated using a three-DOF mechanical system subject to an excitation. It is assumed that all of the masses are sensitive to the excitation, and thus the vibratory energy must be confined in the added passive elements (insensitive parts. We show that the vibration amplitudes associated with the sensitive masses are attenuated at fast rate at the expense of slowing down the convergence of the passive elements to their steady states. It is also demonstrated that a combination of the RCL and the equivalent passive control strategy leads to similar structural performance.

  8. The Catalog: A Flexible Data Structure for Magnetic Tape.

    Science.gov (United States)

    Kay, Martin; Ziehe, Theodore

    This report outlines a generalized storage scheme for large files of highly structured data, or catalogs, and describes their realization on magnetic tape. Each datum, large or small, is assigned to one of a number of data classes of which a user may define any number. The over-all organization of a catalog is given by a map that imposes a tree…

  9. Flexibility-based structural damage identification using Gauss ...

    Indian Academy of Sciences (India)

    ... structural damages in civil infrastructure, such as high-rise buildings, long-span ... tion is widely used in bridges and buildings today because it is easy and ..... The objective of this paper is to design a mathematical algo- ..... Single damage.

  10. Crystal structure prediction of flexible molecules using parallel genetic algorithms with a standard force field.

    Science.gov (United States)

    Kim, Seonah; Orendt, Anita M; Ferraro, Marta B; Facelli, Julio C

    2009-10-01

    This article describes the application of our distributed computing framework for crystal structure prediction (CSP) the modified genetic algorithms for crystal and cluster prediction (MGAC), to predict the crystal structure of flexible molecules using the general Amber force field (GAFF) and the CHARMM program. The MGAC distributed computing framework includes a series of tightly integrated computer programs for generating the molecule's force field, sampling crystal structures using a distributed parallel genetic algorithm and local energy minimization of the structures followed by the classifying, sorting, and archiving of the most relevant structures. Our results indicate that the method can consistently find the experimentally known crystal structures of flexible molecules, but the number of missing structures and poor ranking observed in some crystals show the need for further improvement of the potential. Copyright 2009 Wiley Periodicals, Inc.

  11. Highly conductive and flexible color filter electrode using multilayer film structure

    Science.gov (United States)

    Han, Jun Hee; Kim, Dong-Young; Kim, Dohong; Choi, Kyung Cheol

    2016-07-01

    In this paper, a high performance flexible component that serves as a color filter and an electrode simultaneously is suggested. The suggested highly conductive and flexible color filter electrode (CFE) has a multilayer film structure composed of silver (Ag) and tungsten trioxide (WO3). The CFE maintained its color filtering capability even when the films were bent on a polyethylene terephthalate (PET) film. Low sheet resistance of the CFE was obtained using WO3 as a bridge layer that connects two Ag layers electrically. The sheet resistance was less than 2 Ω/sq. and it was negligibly changed after bending the film, confirming the flexibility of the CFE. The CFE can be easily fabricated using a thermal evaporator and is easily patterned by photolithography or a shadow mask. The proposed CFE has enormous potential for applications involving optical devices including large area devices and flexible devices.

  12. Comparison of reconfigurable structures for flexible word-length multiplication

    Directory of Open Access Journals (Sweden)

    O. A. Pfänder

    2008-05-01

    Full Text Available Binary multiplication continues to be one of the essential arithmetic operations in digital circuits. Even though field-programmable gate arrays (FPGAs are becoming more and more powerful these days, the vendors cannot avoid implementing multiplications with high word-lengths using embedded blocks instead of configurable logic. But on the other hand, the circuit's efficiency decreases if the provided word-length of the hard-wired multipliers exceeds the precision requirements of the algorithm mapped into the FPGA. Thus it is beneficial to use multiplier blocks with configurable word-length, optimized for area, speed and power dissipation, e.g. regarding digital signal processing (DSP applications.

    In this contribution, we present different approaches and structures for the realization of a multiplication with variable precision and perform an objective comparison. This includes one approach based on a modified Baugh and Wooley algorithm and three structures using Booth's arithmetic operand recoding with different array structures. All modules have the option to compute signed two's complement fix-point numbers either as an individual computing unit or interconnected to a superior array. Therefore, a high throughput at low precision through parallelism, or a high precision through concatenation can be achieved.

  13. Numerical simulation of fluid structure interaction in two flexible tubes

    International Nuclear Information System (INIS)

    Feng Zhipeng; Zang Fenggang; Zhang Yixiong

    2014-01-01

    In order to further investigate fluid structure interaction problems, occurring in the nuclear field such as the behavior of PWR fuel rods, steam generator and other heat exchanger tubes, a numerical model was presented. It is a three-dimensional fully coupled approach with solving the fluid flow and the structure vibration simultaneously, for the tube bundles in cross flow. The unsteady three-dimensional Navier-Stokes equation and LES turbulence model were solved with finite volume approach on structured grids combined with the technique of dynamic mesh. The dynamic equilibrium equation was discretized according to the finite element theory. The vibration response of a single tube in cross flow was calculated by the numerical model. Both the amplitude and frequency were compared with experimental data and existing models in the literature. It is shown that the present model is reasonable. The flow induced vibration characteristics, for both inline and parallel sets in cross flow, were investigated by the numerical model. The dynamic response and flow characteristics, for both inline tubes and parallel tubes with pitch ratio of 1.2, 1.6, 2, 3 and 4 under different incident velocities, were studied. Critical pitch and critical velocity were obtained. (authors)

  14. Mechanism Design and Testing of a Self-Deploying Structure Using Flexible Composite Tape Springs

    Science.gov (United States)

    Footdale, Joseph N.; Murphey, Thomas W.

    2014-01-01

    The detailed mechanical design of a novel deployable support structure that positions and tensions a membrane optic for space imagining applications is presented. This is a complex three-dimensional deployment using freely deploying rollable composite tape spring booms that become load bearing structural members at full deployment. The deployment tests successfully demonstrate a new architecture based on rolled and freely deployed composite tape spring members that achieve simultaneous deployment without mechanical synchronization. Proper design of the flexible component mounting interface and constraint systems, which were critical in achieving a functioning unit, are described. These flexible composite components have much potential for advancing the state of the art in deployable structures, but have yet to be widely adopted. This paper demonstrates the feasibility and advantages of implementing flexible composite components, including the design details on how to integrate with required traditional mechanisms.

  15. Coupled Fluid-Structure Interaction Analysis of Solid Rocket Motor with Flexible Inhibitors

    Science.gov (United States)

    Yang, H. Q.; West, Jeff; Harris, Robert E.

    2014-01-01

    Flexible inhibitors are generally used in solid rocket motors (SRMs) as a means to control the burning of propellant. Vortices generated by the flow of propellant around the flexible inhibitors have been identified as a driving source of instabilities that can lead to thrust oscillations in launch vehicles. Potential coupling between the SRM thrust oscillations and structural vibration modes is an important risk factor in launch vehicle design. As a means to predict and better understand these phenomena, a multidisciplinary simulation capability that couples the NASA production CFD code, Loci/CHEM, with CFDRC's structural finite element code, CoBi, has been developed. This capability is crucial to the development of NASA's new space launch system (SLS). This paper summarizes the efforts in applying the coupled software to demonstrate and investigate fluid-structure interaction (FSI) phenomena between pressure waves and flexible inhibitors inside reusable solid rocket motors (RSRMs). The features of the fluid and structural solvers are described in detail, and the coupling methodology and interfacial continuity requirements are then presented in a general Eulerian-Lagrangian framework. The simulations presented herein utilize production level CFD with hybrid RANS/LES turbulence modeling and grid resolution in excess of 80 million cells. The fluid domain in the SRM is discretized using a general mixed polyhedral unstructured mesh, while full 3D shell elements are utilized in the structural domain for the flexible inhibitors. Verifications against analytical solutions for a structural model under a steady uniform pressure condition and under dynamic modal analysis show excellent agreement in terms of displacement distribution and eigenmode frequencies. The preliminary coupled results indicate that due to acoustic coupling, the dynamics of one of the more flexible inhibitors shift from its first modal frequency to the first acoustic frequency of the solid rocket motor

  16. Comparison Study of Subspace Identification Methods Applied to Flexible Structures

    Science.gov (United States)

    Abdelghani, M.; Verhaegen, M.; Van Overschee, P.; De Moor, B.

    1998-09-01

    In the past few years, various time domain methods for identifying dynamic models of mechanical structures from modal experimental data have appeared. Much attention has been given recently to so-called subspace methods for identifying state space models. This paper presents a detailed comparison study of these subspace identification methods: the eigensystem realisation algorithm with observer/Kalman filter Markov parameters computed from input/output data (ERA/OM), the robust version of the numerical algorithm for subspace system identification (N4SID), and a refined version of the past outputs scheme of the multiple-output error state space (MOESP) family of algorithms. The comparison is performed by simulating experimental data using the five mode reduced model of the NASA Mini-Mast structure. The general conclusion is that for the case of white noise excitations as well as coloured noise excitations, the N4SID/MOESP algorithms perform equally well but give better results (improved transfer function estimates, improved estimates of the output) compared to the ERA/OM algorithm. The key computational step in the three algorithms is the approximation of the extended observability matrix of the system to be identified, for N4SID/MOESP, or of the observer for the system to be identified, for the ERA/OM. Furthermore, the three algorithms only require the specification of one dimensioning parameter.

  17. Protein flexibility: coordinate uncertainties and interpretation of structural differences

    Energy Technology Data Exchange (ETDEWEB)

    Rashin, Alexander A., E-mail: alexander-rashin@hotmail.com [BioChemComp Inc., 543 Sagamore Avenue, Teaneck, NJ 07666 (United States); LH Baker Center for Bioinformatics and Department of Biochemistry, Biophysics and Molecular Biology, 112 Office and Lab Building, Iowa State University, Ames, IA 50011-3020 (United States); Rashin, Abraham H. L. [BioChemComp Inc., 543 Sagamore Avenue, Teaneck, NJ 07666 (United States); Rutgers, The State University of New Jersey, 22371 BPO WAY, Piscataway, NJ 08854-8123 (United States); Jernigan, Robert L. [LH Baker Center for Bioinformatics and Department of Biochemistry, Biophysics and Molecular Biology, 112 Office and Lab Building, Iowa State University, Ames, IA 50011-3020 (United States); BioChemComp Inc., 543 Sagamore Avenue, Teaneck, NJ 07666 (United States)

    2009-11-01

    Criteria for the interpretability of coordinate differences and a new method for identifying rigid-body motions and nonrigid deformations in protein conformational changes are developed and applied to functionally induced and crystallization-induced conformational changes. Valid interpretations of conformational movements in protein structures determined by X-ray crystallography require that the movement magnitudes exceed their uncertainty threshold. Here, it is shown that such thresholds can be obtained from the distance difference matrices (DDMs) of 1014 pairs of independently determined structures of bovine ribonuclease A and sperm whale myoglobin, with no explanations provided for reportedly minor coordinate differences. The smallest magnitudes of reportedly functional motions are just above these thresholds. Uncertainty thresholds can provide objective criteria that distinguish between true conformational changes and apparent ‘noise’, showing that some previous interpretations of protein coordinate changes attributed to external conditions or mutations may be doubtful or erroneous. The use of uncertainty thresholds, DDMs, the newly introduced CDDMs (contact distance difference matrices) and a novel simple rotation algorithm allows a more meaningful classification and description of protein motions, distinguishing between various rigid-fragment motions and nonrigid conformational deformations. It is also shown that half of 75 pairs of identical molecules, each from the same asymmetric crystallographic cell, exhibit coordinate differences that range from just outside the coordinate uncertainty threshold to the full magnitude of large functional movements. Thus, crystallization might often induce protein conformational changes that are comparable to those related to or induced by the protein function.

  18. Non-Newtonian fluid structure interaction in flexible biomimetic microchannels

    Science.gov (United States)

    Kiran, M.; Dasgupta, Sunando; Chakraborty, Suman

    2017-11-01

    To investigate the complex fluid structure interactions in a physiologically relevant microchannel with deformable wall and non-Newtonian fluid that flows within it, we fabricated cylindrical microchannels of various softness out of PDMS. Experiments to measure the transient pressure drop across the channel were carried out with high sampling frequencies to capture the intricate flow physics. In particular, we showed that the waveforms varies greatly for each of the non-Newtonian and Newtonian cases for both non-deformable and deformable microchannels in terms of the peak amplitude, r.m.s amplitude and the crest factor. In addition, we carried out frequency sweep experiments to evaluate the frequency response of the system. We believe that these results will aid in the design of polymer based microfluidic phantoms for arterial FSI studies, and in particular for studying blood analog fluids in cylindrical microchannels as well as developing frequency specific Lab-on-chip systems for medical diagnostics.

  19. Negative derivative feedback for vibration control of flexible structures

    International Nuclear Information System (INIS)

    Cazzulani, G; Resta, F; Ripamonti, F; Zanzi, R

    2012-01-01

    In this paper a resonant control technique, called negative derivative feedback (NDF), for structural vibration control is presented. Resonant control is a class of control logics, based on the modal approach, which calculates the control action through a dynamic compensator in order to achieve a damping increase on a certain number of system modes. The NDF compensator is designed to work as a band-pass filter, cutting off the control action far from the natural frequencies associated with the controlled modes and reducing the so-called spillover effect. In the paper the proposed control logic is compared both theoretically and experimentally with the most common state-of-the-art resonant control techniques. (paper)

  20. Effects of structural flexibility of wings in flapping flight of butterfly

    International Nuclear Information System (INIS)

    Senda, Kei; Yokoyama, Naoto; Obara, Takuya; Kitamura, Masahiko; Hirai, Norio; Iima, Makoto

    2012-01-01

    The objective of this paper is to clarify the effects of structural flexibility of wings of a butterfly in flapping flight. For this purpose, a dynamics model of a butterfly is derived by Lagrange’s method, where the butterfly is considered as a rigid multi-body system. The panel method is employed to simulate the flow field and the aerodynamic forces acting on the wings. The mathematical model is validated by the agreement of the numerical result with the experimentally measured data. Then, periodic orbits of flapping-of-wings flights are parametrically searched in order to fly the butterfly models. Almost periodic orbits are found, but they are unstable. Deformation of the wings is modeled in two ways. One is bending and its effect on the aerodynamic forces is discussed. The other is passive wing torsion caused by structural flexibility. Numerical simulations demonstrate that flexible torsion reduces the flight instability. (paper)

  1. Effects of structural flexibility of wings in flapping flight of butterfly.

    Science.gov (United States)

    Senda, Kei; Obara, Takuya; Kitamura, Masahiko; Yokoyama, Naoto; Hirai, Norio; Iima, Makoto

    2012-06-01

    The objective of this paper is to clarify the effects of structural flexibility of wings of a butterfly in flapping flight. For this purpose, a dynamics model of a butterfly is derived by Lagrange's method, where the butterfly is considered as a rigid multi-body system. The panel method is employed to simulate the flow field and the aerodynamic forces acting on the wings. The mathematical model is validated by the agreement of the numerical result with the experimentally measured data. Then, periodic orbits of flapping-of-wings flights are parametrically searched in order to fly the butterfly models. Almost periodic orbits are found, but they are unstable. Deformation of the wings is modeled in two ways. One is bending and its effect on the aerodynamic forces is discussed. The other is passive wing torsion caused by structural flexibility. Numerical simulations demonstrate that flexible torsion reduces the flight instability.

  2. Moving loads on flexible structures presented in the floating frame of reference formulation

    Energy Technology Data Exchange (ETDEWEB)

    Hartweg, Stefan, E-mail: stefan.hartweg@web.de; Heckmann, Andreas, E-mail: andreas.heckmann@dlr.de [German Aerospace Center (DLR), Institute of System Dynamics and Control (Germany)

    2016-06-15

    The introduction of moving loads in the Floating Frame of Reference Formulation is presented. We derive the kinematics and governing equations of motion of a general flexible multibody system and their extension to moving loads. The equivalence of convective effects with Coriolis and centripetal forces is shown. These effects are measured numerically and their significance in moving loads traveling at high speed is confirmed. A method is presented to handle discontinuities when moving loads separate from the flexible structure. The method is extended from beam models to general flexible structures obtained by means of the Finite Element Method. An interpolation method for the deformation field of the modal representation of these bodies is introduced.The work is concluded by application of the method to modern mechanical problems in numerical simulations.

  3. Hydraulic pressure pulses with elastic and plastic structural flexibility: test and analysis (LWBR Development Program)

    International Nuclear Information System (INIS)

    Schwirian, R.E.

    1978-03-01

    Pressure pulse tests were conducted with a flexible test section in a test vessel filled with room temperature water. The pressure pulses were generated with a drop hammer and piston pulse generator and were of a sufficient magnitude to cause plastic deformation of the test section. Because of the strong pressure relief effect of the deforming test section, pressure pulse magnitudes were below 265 psig in magnitude and had durations of 50 to 55 msecs. Calculations performed with the FLASH-35 bi-linear hysteresis model of structural deformation show good agreement with experiment. In particular, FLASH 35 adequately predicts the decrease in peak pressure and the increase in pulse duration due to elastic and plastic deformation of the test section. Predictions of flexible member motion are good, but are less satisfactory than the pressure pulse results due to uncertainties in the values of yield point and beyond yield stiffness used to model the various flexible members. Coupled with this is a strong sensitivity of the FLASH 35 predictions to the values of yield point and beyond yield stiffness chosen for the various flexible members. The test data versus calculation comparisons presented here provide preliminary qualification for FLASH 35 calculations of transient hydraulic pressures and pressure differentials in the presence of flexible structural members which deform both elastically and plastically

  4. Accurate calibration of RL shunts for piezoelectric vibration damping of flexible structures

    DEFF Research Database (Denmark)

    Høgsberg, Jan Becker; Krenk, Steen

    2016-01-01

    Piezoelectric RL (resistive-inductive) shunts are passive resonant devices used for damping of dominantvibration modes of a flexible structure and their efficiency relies on precise calibration of the shuntcomponents. In the present paper improved calibration accuracy is attained by an extension...

  5. A Flexible 5G Frame Structure Design for Frequency-Division Duplex Cases

    DEFF Research Database (Denmark)

    Pedersen, Klaus I.; Berardinelli, Gilberto; Frederiksen, Frank

    2016-01-01

    A 5G frame structure designed for efficient support of users with highly diverse service requirements is proposed. It includes support for mobile broadband data, mission-critical communication, and massive machine communication. The solution encompasses flexible multiplexing of users on a shared...

  6. Method for analyzing structural changes of flexible metal-organic frameworks induced by adsorbates

    NARCIS (Netherlands)

    Dubbeldam, D.; Krishna, R.; Snurr, R.Q.

    2009-01-01

    Metal−organic frameworks (MOFs) have crystal structures that exhibit unusual flexibility. An extreme example is that of the "breathing MOF" MIL-53 that expands or shrinks to admit guest molecules like CO2 and water. We present a powerful simulation tool to quickly calculate unit cell shape and size

  7. Electrohydrodynamic Direct-Write Orderly Micro/Nanofibrous Structure on Flexible Insulating Substrate

    Directory of Open Access Journals (Sweden)

    Jiang-Yi Zheng

    2014-01-01

    Full Text Available AC pulse-modulated electrohydrodynamic direct-writing (EDW was utilized to direct-write orderly micro/nanofibrous structure on the flexible insulating polyethylene terephthalate (PET substrate. During the EDW process, AC electrical field induced charges to reciprocate along the jet and decreased the charge repulsive force that applied on charged jet. Thanks to the smaller charge repulsive force, stable straight jet can be built up to direct-write orderly micro/nanofibrous structures on the insulating substrate. The minimum motion velocity required to direct-write straight line fibrous structure on insulating PET substrate was 700 mm/s. Moreover, the influences of AC voltage amplitude, frequency, and duty cycle ratio on the line width of fibrous structures were investigated. This work proposes a novel solution to overcome the inherent charge repulsion emerging on the insulating substrate, and promotes the application of EDW technology on the flexible electronics.

  8. Flexible solid-state supercapacitors based on carbon nanoparticles/MnO2 nanorods hybrid structure.

    Science.gov (United States)

    Yuan, Longyan; Lu, Xi-Hong; Xiao, Xu; Zhai, Teng; Dai, Junjie; Zhang, Fengchao; Hu, Bin; Wang, Xue; Gong, Li; Chen, Jian; Hu, Chenguo; Tong, Yexiang; Zhou, Jun; Wang, Zhong Lin

    2012-01-24

    A highly flexible solid-state supercapacitor was fabricated through a simple flame synthesis method and electrochemical deposition process based on a carbon nanoparticles/MnO(2) nanorods hybrid structure using polyvinyl alcohol/H(3)PO(4) electrolyte. Carbon fabric is used as a current collector and electrode (mechanical support), leading to a simplified, highly flexible, and lightweight architecture. The device exhibited good electrochemical performance with an energy density of 4.8 Wh/kg at a power density of 14 kW/kg, and a demonstration of a practical device is also presented, highlighting the path for its enormous potential in energy management. © 2011 American Chemical Society

  9. Investigation of ITO layers for application as transparent contacts in flexible photovoltaic cell structures

    Science.gov (United States)

    Znajdek, Katarzyna; Sibiński, Maciej

    2013-07-01

    In this paper authors present the mechanical, optical and electrical parameters of Indium Tin Oxide (ITO) Transparent Conductive Layers (TCL) deposited on flexible substrate. Layers' properties are analyzed and verified. Investigated Transparent Conductive Oxide (TCO) was deposited, using magnetron sputtering method. Flexible polymer PET (polyethylene terephthalate) foil was used as a substrate, in order to photovoltaic (PV) cell's emitter contact application of investigated material. ITO-coated PET foils have been dynamically bent on numerous cylinders of various diameters according to the standard requirements. Resistance changes for each measured sample were measured and recorded during bending cycle. Thermal durability, as well as temperature influence on resistance and optical transmission are verified. Presented results were conducted to verify practical suitability and to evaluate possible applications of Indium Tin Oxide as a front contact in flexible photovoltaic cell structures.

  10. Transform methods for precision continuum and control models of flexible space structures

    Science.gov (United States)

    Lupi, Victor D.; Turner, James D.; Chun, Hon M.

    1991-01-01

    An open loop optimal control algorithm is developed for general flexible structures, based on Laplace transform methods. A distributed parameter model of the structure is first presented, followed by a derivation of the optimal control algorithm. The control inputs are expressed in terms of their Fourier series expansions, so that a numerical solution can be easily obtained. The algorithm deals directly with the transcendental transfer functions from control inputs to outputs of interest, and structural deformation penalties, as well as penalties on control effort, are included in the formulation. The algorithm is applied to several structures of increasing complexity to show its generality.

  11. Room temperature phosphorescence study on the structural flexibility of single tryptophan containing proteins

    Science.gov (United States)

    Kowalska-Baron, Agnieszka; Gałęcki, Krystian; Wysocki, Stanisław

    2015-01-01

    In this study, we have undertaken efforts to find correlation between phosphorescence lifetimes of single tryptophan containing proteins and some structural indicators of protein flexibility/rigidity, such as the degree of tryptophan burial or its exposure to solvent, protein secondary and tertiary structure of the region of localization of tryptophan as well as B factors for tryptophan residue and its immediate surroundings. Bearing in mind that, apart from effective local viscosity of the protein/solvent matrix, the other factor that concur in determining room temperature tryptophan phosphorescence (RTTP) lifetime in proteins is the extent of intramolecular quenching by His, Cys, Tyr and Trp side chains, the crystallographic structures derived from the Brookhaven Protein Data Bank were also analyzed concentrating on the presence of potentially quenching amino acid side chains in the close proximity of the indole chromophore. The obtained results indicated that, in most cases, the phosphorescence lifetimes of tryptophan containing proteins studied tend to correlate with the above mentioned structural indicators of protein rigidity/flexibility. This correlation is expected to provide guidelines for the future development of phosphorescence lifetime-based method for the prediction of structural flexibility of proteins, which is directly linked to their biological function.

  12. A Coupled Fluid-Structure Interaction Analysis of Solid Rocket Motor with Flexible Inhibitors

    Science.gov (United States)

    Yang, H. Q.; West, Jeff

    2014-01-01

    A capability to couple NASA production CFD code, Loci/CHEM, with CFDRC's structural finite element code, CoBi, has been developed. This paper summarizes the efforts in applying the installed coupling software to demonstrate/investigate fluid-structure interaction (FSI) between pressure wave and flexible inhibitor inside reusable solid rocket motor (RSRM). First a unified governing equation for both fluid and structure is presented, then an Eulerian-Lagrangian framework is described to satisfy the interfacial continuity requirements. The features of fluid solver, Loci/CHEM and structural solver, CoBi, are discussed before the coupling methodology of the solvers is described. The simulation uses production level CFD LES turbulence model with a grid resolution of 80 million cells. The flexible inhibitor is modeled with full 3D shell elements. Verifications against analytical solutions of structural model under steady uniform pressure condition and under dynamic condition of modal analysis show excellent agreements in terms of displacement distribution and eigen modal frequencies. The preliminary coupled result shows that due to acoustic coupling, the dynamics of one of the more flexible inhibitors shift from its first modal frequency to the first acoustic frequency of the solid rocket motor.

  13. Ultra-thin ZnSe: Anisotropic and flexible crystal structure

    Energy Technology Data Exchange (ETDEWEB)

    Bacaksiz, C., E-mail: cihanbacaksiz@iyte.edu.tr [Department of Physics, Izmir Institute of Technology, 35430 Izmir (Turkey); Senger, R.T. [Department of Physics, Izmir Institute of Technology, 35430 Izmir (Turkey); Sahin, H. [Department of Photonics, Izmir Institute of Technology, 35430 Izmir (Turkey)

    2017-07-01

    Highlights: • Ultra-thin ZnSe is dynamically stable. • Ultra-thin ZnSe is electronically direct-gap semiconductor. • Ultra-thin ZnSe is ultra-flexible. • Ultra-thin ZnSe is mechanically in-plane anisotropic. - Abstract: By performing density functional theory-based calculations, we investigate the structural, electronic, and mechanical properties of the thinnest ever ZnSe crystal . The vibrational spectrum analysis reveals that the monolayer ZnSe is dynamically stable and has flexible nature with its soft phonon modes. In addition, a direct electronic band gap is found at the gamma point for the monolayer structure of ZnSe. We also elucidate that the monolayer ZnSe has angle dependent in-plane elastic parameters. In particular, the in-plane stiffness values are found to be 2.07 and 6.89 N/m for the arm-chair and zig-zag directions, respectively. The angle dependency is also valid for the Poisson ratio of the monolayer ZnSe. More significantly, the in-plane stiffness of the monolayer ZnSe is the one-tenth of Young modulus of bulk zb-ZnSe which indicates that the monolayer ZnSe is a quite flexible single layer crystal. With its flexible nature and in-plane anisotropic mechanical properties, the monolayer ZnSe is a good candidate for nanoscale mechanical applications.

  14. Ultra-thin ZnSe: Anisotropic and flexible crystal structure

    International Nuclear Information System (INIS)

    Bacaksiz, C.; Senger, R.T.; Sahin, H.

    2017-01-01

    Highlights: • Ultra-thin ZnSe is dynamically stable. • Ultra-thin ZnSe is electronically direct-gap semiconductor. • Ultra-thin ZnSe is ultra-flexible. • Ultra-thin ZnSe is mechanically in-plane anisotropic. - Abstract: By performing density functional theory-based calculations, we investigate the structural, electronic, and mechanical properties of the thinnest ever ZnSe crystal . The vibrational spectrum analysis reveals that the monolayer ZnSe is dynamically stable and has flexible nature with its soft phonon modes. In addition, a direct electronic band gap is found at the gamma point for the monolayer structure of ZnSe. We also elucidate that the monolayer ZnSe has angle dependent in-plane elastic parameters. In particular, the in-plane stiffness values are found to be 2.07 and 6.89 N/m for the arm-chair and zig-zag directions, respectively. The angle dependency is also valid for the Poisson ratio of the monolayer ZnSe. More significantly, the in-plane stiffness of the monolayer ZnSe is the one-tenth of Young modulus of bulk zb-ZnSe which indicates that the monolayer ZnSe is a quite flexible single layer crystal. With its flexible nature and in-plane anisotropic mechanical properties, the monolayer ZnSe is a good candidate for nanoscale mechanical applications.

  15. Influence of the structural flexibility in the evaluation of loads due to soft projectile impact

    International Nuclear Information System (INIS)

    Godoy, A.R.; Alvarez, L.M.

    1984-01-01

    It's presented a study to evaluate the influence of the structural stiffness (of flexibility) in the reaction time functions for tornado-generated projectiles, usually considered in the verification of Nuclear Power Plant Facilities. It is analyzed the evaluation of the load acting on a typical structure of the Reactor Building of a NPP and the global behaviour of the targets. The structural deformations are taken into consideration through different assumptions, such as linear or nonlinear material behaviour, rotational inertia, shear and flexural deformations and small geometric non linearities. (Author) [pt

  16. Optimizing The Organic/Inorganic Barrier Structure For Flexible Plastic Substrate Encapsulation

    Directory of Open Access Journals (Sweden)

    Yi-Chiuan Lin

    2012-07-01

    Full Text Available A multilayered barrier structure stacked with organosilicon and silicon oxide (SiOx films consecutively prepared using plasma-enhanced chemical vapor deposition (PECVD was developed to encapsulate flexible plastic substrate. The evolution on the residual internal stress, structural quality of the organosilicon/SiOx multilayered structure as well as its adhesion to the substrate were found to correlate closely with the thickness of the inset organosilicon layer. Due to the significant discrepancy in the thermal expansion coefficient between the substrate and SiOx film, the thickness of the organosilicon layer deposited onto the substrate and SiOx film thus was crucial to optimize the barrier property of the organosilicon/SiOx structure. The organosilicon/SiOx barrier structure possessed a lowest residual compressive stress and quality adhesion to the substrate was achieved from engineering the organosilicon layer thickness in the multilayered structure. The relaxation of the residual internal stress in the barrier structure led to a dense SiOx film as a consequence of the enhancement in the Si-O-Si networks and thereby resulted in the reduction of the water vapor permeation. Accordingly, a water vapor transmission rate (WVTR below 1 × 10-2 g/m2 /day being potential for the application on the flexible optoelectronic device packaging was achievable from the 3-pairs organosilicon/SiOx multilayered structure deposited onto the polyethylene terephthalate (PET substrate.

  17. Flexible, highly sensitive pressure sensor with a wide range based on graphene-silk network structure

    Science.gov (United States)

    Liu, Ying; Tao, Lu-Qi; Wang, Dan-Yang; Zhang, Tian-Yu; Yang, Yi; Ren, Tian-Ling

    2017-03-01

    In this paper, a flexible, simple-preparation, and low-cost graphene-silk pressure sensor based on soft silk substrate through thermal reduction was demonstrated. Taking silk as the support body, the device had formed a three-dimensional structure with ordered multi-layer structure. Through a simple and low-cost process technology, graphene-silk pressure sensor can achieve the sensitivity value of 0.4 kPa - 1 , and the measurement range can be as high as 140 kPa. Besides, pressure sensor can have a good combination with knitted clothing and textile product. The signal had good reproducibility in response to different pressures. Furthermore, graphene-silk pressure sensor can not only detect pressure higher than 100 kPa, but also can measure weak body signals. The characteristics of high-sensitivity, good repeatability, flexibility, and comfort for skin provide the high possibility to fit on various wearable electronics.

  18. Low-frequency and wideband vibration energy harvester with flexible frame and interdigital structure

    Directory of Open Access Journals (Sweden)

    Pengwei Li

    2015-04-01

    Full Text Available As an alternative to traditional cantilever beam structures and their evolutions, a flexible beam based, interdigital structure, vibration energy harvester has been presented and investigated. The proposed interdigital-shaped oscillator consists of a rectangular flexible frame and series of cantilever beams interdigitally bonded to it. In order to achieve low frequency and wide-bandwidth harvesting, Young’s modulus of materials, frame size and the amount of the cantilevers have been studied systematically. The measured frequency responses of the designed device (PDMS frame, quintuple piezoelectric cantilever beams show a 460% increase in bandwidth below 80Hz. When excited at an acceleration of 1.0 g, the energy harvester achieves to a maximum open-circuit voltage of 65V, and the maximum output power 4.5 mW.

  19. Low-frequency and wideband vibration energy harvester with flexible frame and interdigital structure

    Energy Technology Data Exchange (ETDEWEB)

    Li, Pengwei, E-mail: lipengwei@tyut.edu.cn; Wang, Yanfen; Luo, Cuixian; Li, Gang; Hu, Jie; Zhang, Wendong [MicroNano System Research Center of College of Information Engineering and Key Lab of Advanced Transducers and Intelligent Control System of the Ministry of Education, Taiyuan University of Technology, Taiyuan 030024, Shanxi (China); Liu, Ying [MicroNano System Research Center of College of Information Engineering and Key Lab of Advanced Transducers and Intelligent Control System of the Ministry of Education, Taiyuan University of Technology, Taiyuan 030024, Shanxi (China); Baicheng Ordnance Test Center of China, Baicheng 137000, Jilin (China); Liu, Wei [Baicheng Ordnance Test Center of China, Baicheng 137000, Jilin (China)

    2015-04-15

    As an alternative to traditional cantilever beam structures and their evolutions, a flexible beam based, interdigital structure, vibration energy harvester has been presented and investigated. The proposed interdigital-shaped oscillator consists of a rectangular flexible frame and series of cantilever beams interdigitally bonded to it. In order to achieve low frequency and wide-bandwidth harvesting, Young’s modulus of materials, frame size and the amount of the cantilevers have been studied systematically. The measured frequency responses of the designed device (PDMS frame, quintuple piezoelectric cantilever beams) show a 460% increase in bandwidth below 80Hz. When excited at an acceleration of 1.0 g, the energy harvester achieves to a maximum open-circuit voltage of 65V, and the maximum output power 4.5 mW.

  20. Laser Structuring of Thin Layers for Flexible Electronics by a Shock Wave-induced Delamination Process

    Science.gov (United States)

    Lorenz, Pierre; Ehrhardt, Martin; Zimmer, Klaus

    The defect-free laser-assisted structuring of thin films on flexible substrates is a challenge for laser methods. However, solving this problem exhibits an outstanding potential for a pioneering development of flexible electronics. Thereby, the laser-assisted delamination method has a great application potential. At the delamination process: the localized removal of the layer is induced by a shock wave which is produced by a laser ablation process on the rear side of the substrate. In this study, the thin-film patterning process is investigated for different polymer substrates dependent on the material and laser parameters using a KrF excimer laser. The resultant structures were studied by optical microscopy and white light interferometry (WLI). The delamination process was tested at different samples (indium tin oxide (ITO) on polyethylene terephthalate (PET), epoxy-based negative photoresist (SU8) on polyimide (PI) and indium tin oxide/copper indium gallium selenide/molybdenum (ITO/CIGS/Mo) on PI.

  1. Effects of flexibility and soil-structure interaction on a completely buried structure with a heavily loaded roof system

    International Nuclear Information System (INIS)

    Chen, R.C.; Maryak, M.E.; Mulliken, J.S.

    1993-01-01

    A completely buried structure with a heavily loaded roof system has been analyzed for seismic forces. The seismic input was a site-specific spectrum shape anchored at 0.2g zero period acceleration in the horizontal directions, and the vertical input was prescribed at two thirds of the horizontal input. Models of the structure were developed to account for the flexibility of the base mat, walls, and roof, and were analyzed for the above seismic input with uncertainties in the soil properties considered. The results indicate that horizontal rigid body soil-structure interaction effects are negligible and the seismic amplifications are dominated by the soil-structure system natural frequencies. In addition, the analysis shows that the flexibility of the structure and soil-structure interaction cause considerable amplification of the vertical structural response of the facility's roof system. Finally it was shown that the computer program SASSI can be used to predict the soil-structure interaction responses of a completely buried structure

  2. Vibration sensing in flexible structures using a distributed-effect modal domain optical fiber sensor

    Science.gov (United States)

    Reichard, Karl M.; Lindner, Douglas K.; Claus, Richard O.

    1991-01-01

    Modal domain optical fiber sensors have recently been employed in the implementation of system identification algorithms and the closed-loop control of vibrations in flexible structures. The mathematical model of the modal domain optical fiber sensor used in these applications, however, only accounted for the effects of strain in the direction of the fiber's longitudinal axis. In this paper, we extend this model to include the effects of arbitrary stress. Using this sensor model, we characterize the sensor's sensitivity and dynamic range.

  3. Structure-Property Relationships of Semiconducting Polymers for Flexible and Durable Polymer Field-Effect Transistors.

    Science.gov (United States)

    Kim, Min Je; Jung, A-Ra; Lee, Myeongjae; Kim, Dongjin; Ro, Suhee; Jin, Seon-Mi; Nguyen, Hieu Dinh; Yang, Jeehye; Lee, Kyung-Koo; Lee, Eunji; Kang, Moon Sung; Kim, Hyunjung; Choi, Jong-Ho; Kim, BongSoo; Cho, Jeong Ho

    2017-11-22

    We report high-performance top-gate bottom-contact flexible polymer field-effect transistors (FETs) fabricated by flow-coating diketopyrrolopyrrole (DPP)-based and naphthalene diimide (NDI)-based polymers (P(DPP2DT-T2), P(DPP2DT-TT), P(DPP2DT-DTT), P(NDI2OD-T2), P(NDI2OD-F2T2), and P(NDI2OD-Se2)) as semiconducting channel materials. All of the polymers displayed good FET characteristics with on/off current ratios exceeding 10 7 . The highest hole mobility of 1.51 cm 2 V -1 s -1 and the highest electron mobility of 0.85 cm 2 V -1 s -1 were obtained from the P(DPP2DT-T2) and P(NDI2OD-Se2) polymer FETs, respectively. The impacts of the polymer structures on the FET performance are well-explained by the interplay between the crystallinity, the tendency of the polymer backbone to adopt an edge-on orientation, and the interconnectivity of polymer fibrils in the film state. Additionally, we demonstrated that all of the flexible polymer-based FETs were highly resistant to tensile stress, with negligible changes in their carrier mobilities and on/off ratios after a bending test. Conclusively, these high-performance, flexible, and durable FETs demonstrate the potential of semiconducting conjugated polymers for use in flexible electronic applications.

  4. Cognitive flexibility and undergraduate physiology students: increasing advanced knowledge acquisition within an ill-structured domain.

    Science.gov (United States)

    Rhodes, Ashley E; Rozell, Timothy G

    2017-09-01

    Cognitive flexibility is defined as the ability to assimilate previously learned information and concepts to generate novel solutions to new problems. This skill is crucial for success within ill-structured domains such as biology, physiology, and medicine, where many concepts are simultaneously required for understanding a complex problem, yet the problem consists of patterns or combinations of concepts that are not consistently used or needed across all examples. To succeed within ill-structured domains, a student must possess a certain level of cognitive flexibility: rigid thought processes and prepackaged informational retrieval schemes relying on rote memorization will not suffice. In this study, we assessed the cognitive flexibility of undergraduate physiology students using a validated instrument entitled Student's Approaches to Learning (SAL). The SAL evaluates how deeply and in what way information is processed, as well as the investment of time and mental energy that a student is willing to expend by measuring constructs such as elaboration and memorization. Our results indicate that students who rely primarily on memorization when learning new information have a smaller knowledge base about physiological concepts, as measured by a prior knowledge assessment and unit exams. However, students who rely primarily on elaboration when learning new information have a more well-developed knowledge base about physiological concepts, which is displayed by higher scores on a prior knowledge assessment and increased performance on unit exams. Thus students with increased elaboration skills possibly possess a higher level of cognitive flexibility and are more likely to succeed within ill-structured domains. Copyright © 2017 the American Physiological Society.

  5. Study of thermodynamic and structural properties of a flexible homopolymer chain using advanced Monte Carlo methods

    Directory of Open Access Journals (Sweden)

    Hammou Amine Bouziane

    2013-03-01

    Full Text Available We study the thermodynamic and structural properties of a flexible homopolymer chain using both multi canonical Monte Carlo method and Wang-Landau method. In this work, we focus on the coil-globule transition. Starting from a completely random chain, we have obtained a globule for different sizes of the chain. The implementation of these advanced Monte Carlo methods allowed us to obtain a flat histogram in energy space and calculate various thermodynamic quantities such as the density of states, the free energy and the specific heat. Structural quantities such as the radius of gyration where also calculated.

  6. Design of a Generic and Flexible Data Structure for Efficient Formulation of Large Scale Network Problems

    DEFF Research Database (Denmark)

    Quaglia, Alberto; Sarup, Bent; Sin, Gürkan

    2013-01-01

    structure for efficient formulation of enterprise-wide optimization problems is presented. Through the integration of the described data structure in our synthesis and design framework, the problem formulation workflow is automated in a software tool, reducing time and resources needed to formulate large......The formulation of Enterprise-Wide Optimization (EWO) problems as mixed integer nonlinear programming requires collecting, consolidating and systematizing large amount of data, coming from different sources and specific to different disciplines. In this manuscript, a generic and flexible data...... problems, while ensuring at the same time data consistency and quality at the application stage....

  7. Design and development an insect-inspired humanoid gripper that is structurally sound, yet very flexible

    International Nuclear Information System (INIS)

    Hajjaj, S; Pun, N

    2013-01-01

    One of the biggest challenges in mechanical robotics design is the balance between structural integrity and flexibility. An industrial robotic gripper could be technically advanced, however it contains only 1 Degree of Freedom (DOF). If one is to add more DOFs the design would become complex. On the other hand, the human wrist and fingers contain 23 DOFs, and is very lightweight and highly flexible. Robotics are becoming more and more part of our social life, they are more and more being incorporated in social, medical, and personal application. Therefore, for such robots to be effective, they need to mimic human performance, both in performance as well as in mechanical design. In this work, a Humanoid Gripper is designed and built to mimic a simplified version of a human wrist and fingers. This is attempted by mimicking insect and human designs of grippes. The main challenge was to insure that the gripper is structurally sound, but at the same time flexible and lightweight. A combination of light weight material and a unique design of finger actuators were applied. The gripper is controlled by a PARALLAX servo controller 28823 (PSCI), which mounted on the assembly itself. At the end, a 6 DOF humanoid gripper made of lightweight material, similar in size to the human arm, and is able to carry a weight of 1 Kg has been designed and built.

  8. Design and development an insect-inspired humanoid gripper that is structurally sound, yet very flexible

    Science.gov (United States)

    Hajjaj, S.; Pun, N.

    2013-06-01

    One of the biggest challenges in mechanical robotics design is the balance between structural integrity and flexibility. An industrial robotic gripper could be technically advanced, however it contains only 1 Degree of Freedom (DOF). If one is to add more DOFs the design would become complex. On the other hand, the human wrist and fingers contain 23 DOFs, and is very lightweight and highly flexible. Robotics are becoming more and more part of our social life, they are more and more being incorporated in social, medical, and personal application. Therefore, for such robots to be effective, they need to mimic human performance, both in performance as well as in mechanical design. In this work, a Humanoid Gripper is designed and built to mimic a simplified version of a human wrist and fingers. This is attempted by mimicking insect and human designs of grippes. The main challenge was to insure that the gripper is structurally sound, but at the same time flexible and lightweight. A combination of light weight material and a unique design of finger actuators were applied. The gripper is controlled by a PARALLAX servo controller 28823 (PSCI), which mounted on the assembly itself. At the end, a 6 DOF humanoid gripper made of lightweight material, similar in size to the human arm, and is able to carry a weight of 1 Kg has been designed and built.

  9. Optimal Reference Strain Structure for Studying Dynamic Responses of Flexible Rockets

    Science.gov (United States)

    Tsushima, Natsuki; Su, Weihua; Wolf, Michael G.; Griffin, Edwin D.; Dumoulin, Marie P.

    2017-01-01

    In the proposed paper, the optimal design of reference strain structures (RSS) will be performed targeting for the accurate observation of the dynamic bending and torsion deformation of a flexible rocket. It will provide the detailed description of the finite-element (FE) model of a notional flexible rocket created in MSC.Patran. The RSS will be attached longitudinally along the side of the rocket and to track the deformation of the thin-walled structure under external loads. An integrated surrogate-based multi-objective optimization approach will be developed to find the optimal design of the RSS using the FE model. The Kriging method will be used to construct the surrogate model. For the data sampling and the performance evaluation, static/transient analyses will be performed with MSC.Natran/Patran. The multi-objective optimization will be solved with NSGA-II to minimize the difference between the strains of the launch vehicle and RSS. Finally, the performance of the optimal RSS will be evaluated by checking its strain-tracking capability in different numerical simulations of the flexible rocket.

  10. xMDFF: molecular dynamics flexible fitting of low-resolution X-ray structures

    International Nuclear Information System (INIS)

    McGreevy, Ryan; Singharoy, Abhishek; Li, Qufei; Zhang, Jingfen; Xu, Dong; Perozo, Eduardo; Schulten, Klaus

    2014-01-01

    A new real-space refinement method for low-resolution X-ray crystallography is presented. The method is based on the molecular dynamics flexible fitting protocol targeted at addressing large-scale deformations of the search model to achieve refinement with minimal manual intervention. An explanation of the method is provided, augmented by results from the refinement of both synthetic and experimental low-resolution data, including an independent electrophysiological verification of the xMDFF-refined crystal structure of a voltage-sensor protein. X-ray crystallography remains the most dominant method for solving atomic structures. However, for relatively large systems, the availability of only medium-to-low-resolution diffraction data often limits the determination of all-atom details. A new molecular dynamics flexible fitting (MDFF)-based approach, xMDFF, for determining structures from such low-resolution crystallographic data is reported. xMDFF employs a real-space refinement scheme that flexibly fits atomic models into an iteratively updating electron-density map. It addresses significant large-scale deformations of the initial model to fit the low-resolution density, as tested with synthetic low-resolution maps of d-ribose-binding protein. xMDFF has been successfully applied to re-refine six low-resolution protein structures of varying sizes that had already been submitted to the Protein Data Bank. Finally, via systematic refinement of a series of data from 3.6 to 7 Å resolution, xMDFF refinements together with electrophysiology experiments were used to validate the first all-atom structure of the voltage-sensing protein Ci-VSP

  11. xMDFF: molecular dynamics flexible fitting of low-resolution X-ray structures

    Energy Technology Data Exchange (ETDEWEB)

    McGreevy, Ryan; Singharoy, Abhishek [University of Illinois at Urbana-Champaign, Urbana, IL 61801 (United States); Li, Qufei [The University of Chicago, Chicago, IL 60637 (United States); Zhang, Jingfen; Xu, Dong [University of Missouri, Columbia, MO 65211 (United States); Perozo, Eduardo [The University of Chicago, Chicago, IL 60637 (United States); Schulten, Klaus, E-mail: kschulte@ks.uiuc.edu [University of Illinois at Urbana-Champaign, Urbana, IL 61801 (United States); University of Illinois at Urbana-Champaign, Urbana, IL 61801 (United States)

    2014-09-01

    A new real-space refinement method for low-resolution X-ray crystallography is presented. The method is based on the molecular dynamics flexible fitting protocol targeted at addressing large-scale deformations of the search model to achieve refinement with minimal manual intervention. An explanation of the method is provided, augmented by results from the refinement of both synthetic and experimental low-resolution data, including an independent electrophysiological verification of the xMDFF-refined crystal structure of a voltage-sensor protein. X-ray crystallography remains the most dominant method for solving atomic structures. However, for relatively large systems, the availability of only medium-to-low-resolution diffraction data often limits the determination of all-atom details. A new molecular dynamics flexible fitting (MDFF)-based approach, xMDFF, for determining structures from such low-resolution crystallographic data is reported. xMDFF employs a real-space refinement scheme that flexibly fits atomic models into an iteratively updating electron-density map. It addresses significant large-scale deformations of the initial model to fit the low-resolution density, as tested with synthetic low-resolution maps of d-ribose-binding protein. xMDFF has been successfully applied to re-refine six low-resolution protein structures of varying sizes that had already been submitted to the Protein Data Bank. Finally, via systematic refinement of a series of data from 3.6 to 7 Å resolution, xMDFF refinements together with electrophysiology experiments were used to validate the first all-atom structure of the voltage-sensing protein Ci-VSP.

  12. A novel imaging technique for measuring kinematics of light-weight flexible structures

    Energy Technology Data Exchange (ETDEWEB)

    Zakaria, Mohamed Y., E-mail: zakaria@vt.edu [Virginia Polytechnic Institute and State University, Blacksburg, Virginia 24061, USA and Department of Aerospace Engineering, Military Technical College, Cairo 11241 (Egypt); Eliethy, Ahmed S. [Department of Electrical and Computer Engineering, University of Rochester, Rochester, New York 14627 (United States); Canfield, Robert A. [Department of Aerospace and Ocean Engineering, Virginia Polytechnic Institute and State University, Blacksburg, Virginia 24061 (United States); Hajj, Muhammad R. [Department of Biomedical Engineering and Mechanics, Virginia Polytechnic Institute and State University, Blacksburg, Virginia 24061 (United States)

    2016-07-15

    A new imaging algorithm is proposed to capture the kinematics of flexible, thin, light structures including frequencies and motion amplitudes for real time analysis. The studied case is a thin flexible beam that is preset at different angles of attack in a wind tunnel. As the angle of attack is increased beyond a critical value, the beam was observed to undergo a static deflection that is ensued by limit cycle oscillations. Imaging analysis of the beam vibrations shows that the motion consists of a superposition of the bending and torsion modes. The proposed algorithm was able to capture the oscillation amplitudes as well as the frequencies of both bending and torsion modes. The analysis results are validated through comparison with measurements from a piezoelectric sensor that is attached to the beam at its root.

  13. Preliminary results on the dynamics of large and flexible space structures in Halo orbits

    Science.gov (United States)

    Colagrossi, Andrea; Lavagna, Michèle

    2017-05-01

    The global exploration roadmap suggests, among other ambitious future space programmes, a possible manned outpost in lunar vicinity, to support surface operations and further astronaut training for longer and deeper space missions and transfers. In particular, a Lagrangian point orbit location - in the Earth- Moon system - is suggested for a manned cis-lunar infrastructure; proposal which opens an interesting field of study from the astrodynamics perspective. Literature offers a wide set of scientific research done on orbital dynamics under the Three-Body Problem modelling approach, while less of it includes the attitude dynamics modelling as well. However, whenever a large space structure (ISS-like) is considered, not only the coupled orbit-attitude dynamics should be modelled to run more accurate analyses, but the structural flexibility should be included too. The paper, starting from the well-known Circular Restricted Three-Body Problem formulation, presents some preliminary results obtained by adding a coupled orbit-attitude dynamical model and the effects due to the large structure flexibility. In addition, the most relevant perturbing phenomena, such as the Solar Radiation Pressure (SRP) and the fourth-body (Sun) gravity, are included in the model as well. A multi-body approach has been preferred to represent possible configurations of the large cis-lunar infrastructure: interconnected simple structural elements - such as beams, rods or lumped masses linked by springs - build up the space segment. To better investigate the relevance of the flexibility effects, the lumped parameters approach is compared with a distributed parameters semi-analytical technique. A sensitivity analysis of system dynamics, with respect to different configurations and mechanical properties of the extended structure, is also presented, in order to highlight drivers for the lunar outpost design. Furthermore, a case study for a large and flexible space structure in Halo orbits around

  14. Overview of the 6 Meter HIAD Inflatable Structure and Flexible TPS Static Load Test Series

    Science.gov (United States)

    Swanson, Greg; Kazemba, Cole; Johnson, Keith; Calomino, Anthony; Hughes, Steve; Cassell, Alan; Cheatwood, Neil

    2014-01-01

    To support NASAs long term goal of landing humans on Mars, technologies which enable the landing of heavy payloads are being developed. Current entry, decent, and landing technologies are not practical for this class of payloads due to geometric constraints dictated by current launch vehicle fairing limitations. Therefore, past and present technologies are now being explored to provide a mass and volume efficient solution to atmospheric entry, including Hypersonic Inflatable Aerodynamic Decelerators (HIADs). At the beginning of 2014, a 6m HIAD inflatable structure with an integrated flexible thermal protection system (TPS) was subjected to a static load test series to verify the designs structural performance. The 6m HIAD structure was constructed in a stacked toroid configuration using nine inflatable torus segments composed of fiber reinforced thin films, which were joined together using adhesives and high strength textile woven structural straps to help distribute the loads throughout the inflatable structure. The 6m flexible TPS was constructed using multiple layers of high performance materials to protect the inflatable structure from heat loads that would be seen during atmospheric entry. To perform the static load test series, a custom test fixture was constructed. The fixture consisted of a structural tub rim with enough height to allow for displacement of the inflatable structure as loads were applied. The bottom of the tub rim had an airtight seal with the floor. The centerbody of the inflatable structure was attached to a pedestal mount as seen in Figure 1. Using an impermeable membrane seal draped over the test article, partial vacuum was pulled beneath the HIAD, resulting in a uniform static pressure load applied to the outer surface. During the test series an extensive amount of instrumentation was used to provide many data sets including: deformed shape, shoulder deflection, strap loads, cord loads, inflation pressures, and applied static load

  15. Inclusion of Structural Flexibility in Design Load Analysis for Wave Energy Converters: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Guo, Yi [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Yu, Yi-Hsiang [National Renewable Energy Laboratory (NREL), Golden, CO (United States); van Rij, Jennifer A [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Tom, Nathan M [National Renewable Energy Laboratory (NREL), Golden, CO (United States)

    2017-08-14

    Hydroelastic interactions, caused by ocean wave loading on wave energy devices with deformable structures, are studied in the time domain. A midfidelity, hybrid modeling approach of rigid-body and flexible-body dynamics is developed and implemented in an open-source simulation tool for wave energy converters (WEC-Sim) to simulate the dynamic responses of wave energy converter component structural deformations under wave loading. A generalized coordinate system, including degrees of freedom associated with rigid bodies, structural modes, and constraints connecting multiple bodies, is utilized. A simplified method of calculating stress loads and sectional bending moments is implemented, with the purpose of sizing and designing wave energy converters. Results calculated using the method presented are verified with those of high-fidelity fluid-structure interaction simulations, as well as low-fidelity, frequency-domain, boundary element method analysis.

  16. Structural dynamics and aerodynamics measurements of biologically inspired flexible flapping wings

    International Nuclear Information System (INIS)

    Wu, P; Stanford, B K; Ifju, P G; Saellstroem, E; Ukeiley, L

    2011-01-01

    Flapping wing flight as seen in hummingbirds and insects poses an interesting unsteady aerodynamic problem: coupling of wing kinematics, structural dynamics and aerodynamics. There have been numerous studies on the kinematics and aerodynamics in both experimental and computational cases with both natural and artificial wings. These studies tend to ignore wing flexibility; however, observation in nature affirms that passive wing deformation is predominant and may be crucial to the aerodynamic performance. This paper presents a multidisciplinary experimental endeavor in correlating a flapping micro air vehicle wing's aeroelasticity and thrust production, by quantifying and comparing overall thrust, structural deformation and airflow of six pairs of hummingbird-shaped membrane wings of different properties. The results show that for a specific spatial distribution of flexibility, there is an effective frequency range in thrust production. The wing deformation at the thrust-productive frequencies indicates the importance of flexibility: both bending and twisting motion can interact with aerodynamic loads to enhance wing performance under certain conditions, such as the deformation phase and amplitude. By measuring structural deformations under the same aerodynamic conditions, beneficial effects of passive wing deformation can be observed from the visualized airflow and averaged thrust. The measurements and their presentation enable observation and understanding of the required structural properties for a thrust effective flapping wing. The intended passive responses of the different wings follow a particular pattern in correlation to their aerodynamic performance. Consequently, both the experimental technique and data analysis method can lead to further studies to determine the design principles for micro air vehicle flapping wings.

  17. Structural dynamics and aerodynamics measurements of biologically inspired flexible flapping wings

    Energy Technology Data Exchange (ETDEWEB)

    Wu, P; Stanford, B K; Ifju, P G [Department of Mechanical and Aerospace Engineering, MAE-A 231, University of Florida, Gainesville, FL 32611 (United States); Saellstroem, E; Ukeiley, L, E-mail: diccidwp@ufl.edu [Department of Mechanical and Aerospace Engineering, University of Florida, Shalimar, FL 32579 (United States)

    2011-03-15

    Flapping wing flight as seen in hummingbirds and insects poses an interesting unsteady aerodynamic problem: coupling of wing kinematics, structural dynamics and aerodynamics. There have been numerous studies on the kinematics and aerodynamics in both experimental and computational cases with both natural and artificial wings. These studies tend to ignore wing flexibility; however, observation in nature affirms that passive wing deformation is predominant and may be crucial to the aerodynamic performance. This paper presents a multidisciplinary experimental endeavor in correlating a flapping micro air vehicle wing's aeroelasticity and thrust production, by quantifying and comparing overall thrust, structural deformation and airflow of six pairs of hummingbird-shaped membrane wings of different properties. The results show that for a specific spatial distribution of flexibility, there is an effective frequency range in thrust production. The wing deformation at the thrust-productive frequencies indicates the importance of flexibility: both bending and twisting motion can interact with aerodynamic loads to enhance wing performance under certain conditions, such as the deformation phase and amplitude. By measuring structural deformations under the same aerodynamic conditions, beneficial effects of passive wing deformation can be observed from the visualized airflow and averaged thrust. The measurements and their presentation enable observation and understanding of the required structural properties for a thrust effective flapping wing. The intended passive responses of the different wings follow a particular pattern in correlation to their aerodynamic performance. Consequently, both the experimental technique and data analysis method can lead to further studies to determine the design principles for micro air vehicle flapping wings.

  18. xMDFF: molecular dynamics flexible fitting of low-resolution X-ray structures.

    Science.gov (United States)

    McGreevy, Ryan; Singharoy, Abhishek; Li, Qufei; Zhang, Jingfen; Xu, Dong; Perozo, Eduardo; Schulten, Klaus

    2014-09-01

    X-ray crystallography remains the most dominant method for solving atomic structures. However, for relatively large systems, the availability of only medium-to-low-resolution diffraction data often limits the determination of all-atom details. A new molecular dynamics flexible fitting (MDFF)-based approach, xMDFF, for determining structures from such low-resolution crystallographic data is reported. xMDFF employs a real-space refinement scheme that flexibly fits atomic models into an iteratively updating electron-density map. It addresses significant large-scale deformations of the initial model to fit the low-resolution density, as tested with synthetic low-resolution maps of D-ribose-binding protein. xMDFF has been successfully applied to re-refine six low-resolution protein structures of varying sizes that had already been submitted to the Protein Data Bank. Finally, via systematic refinement of a series of data from 3.6 to 7 Å resolution, xMDFF refinements together with electrophysiology experiments were used to validate the first all-atom structure of the voltage-sensing protein Ci-VSP.

  19. Evaluation of current Louisiana flexible pavement structures using PMS data and new M-E pavement design guide.

    Science.gov (United States)

    2010-10-01

    The proposed study uses the new MEPDG together with data available from LADOTDs Pavement Management System (PMS) and other data sources from LADOTDs main frame to evaluate typical flexible pavement structures currently used and to make changes ...

  20. Optimal sensor configuration for flexible structures with multi-dimensional mode shapes

    International Nuclear Information System (INIS)

    Chang, Minwoo; Pakzad, Shamim N

    2015-01-01

    A framework for deciding the optimal sensor configuration is implemented for civil structures with multi-dimensional mode shapes, which enhances the applicability of structural health monitoring for existing structures. Optimal sensor placement (OSP) algorithms are used to determine the best sensor configuration for structures with a priori knowledge of modal information. The signal strength at each node is evaluated by effective independence and modified variance methods. Euclidean norm of signal strength indices associated with each node is used to expand OSP applicability into flexible structures. The number of sensors for each method is determined using the threshold for modal assurance criterion (MAC) between estimated (from a set of observations) and target mode shapes. Kriging is utilized to infer the modal estimates for unobserved locations with a weighted sum of known neighbors. A Kriging model can be expressed as a sum of linear regression and random error which is assumed as the realization of a stochastic process. This study presents the effects of Kriging parameters for the accurate estimation of mode shapes and the minimum number of sensors. The feasible ranges to satisfy MAC criteria are investigated and used to suggest the adequate searching bounds for associated parameters. The finite element model of a tall building is used to demonstrate the application of optimal sensor configuration. The dynamic modes of flexible structure at centroid are appropriately interpreted into the outermost sensor locations when OSP methods are implemented. Kriging is successfully used to interpolate the mode shapes from a set of sensors and to monitor structures associated with multi-dimensional mode shapes. (paper)

  1. Improvement of mechanical reliability by patterned silver/Indium-Tin-Oxide structure for flexible electronic devices

    International Nuclear Information System (INIS)

    Baek, Kyunghyun; Jang, Kyungsoo; Lee, Youn-Jung; Ryu, Kyungyul; Choi, Woojin; Kim, Doyoung; Yi, Junsin

    2013-01-01

    We report the effect of silver (Ag)-buffer layer Indium-Tin-Oxide (ITO) film on a polyethylene terephthalate substrate on the electrical, optical and reliable properties for transparent–flexible displays. The electrical and optical characteristics of an ITO-only film and an Ag-layer-inserted ITO film are measured and compared to assess the applicability of the triple layered structure in flexible displays. The sheet resistance, the resistivity and the light transmittance of the ITO-only film were 400 Ω/sq, 1.33 × 10 −3 Ω-cm and 99.2%, while those of the ITO film inserted with a 10 nm thick Ag layer were 165 Ω/sq, 4.78 × 10 −4 Ω-cm and about 97%, respectively. To evaluate the mechanical reliability of the different ITO films, bending tests were carried out. After the dynamic bending test of 900 cycles, the sheet resistance of the ITO film inserted with the Ag layer changed from 154 Ω/sq to 475 Ω/sq, about a 3-time increase but that of the ITO-only film changed from 400 Ω/sq to 61,986 Ω/sq, about 150-time increase. When the radius is changed from 25 mm to 20 mm in the static bending test, the sheet resistance of the ITO-only film changed from 400 to 678.3 linearly whereas that of the Ag-layer inserted ITO film changed a little from 154.4 to 154.9. These results show that Ag-layer inserted ITO film had better mechanical characteristics than the ITO-only film. - Highlights: ► Transparent flexible electrode fabricated on glass substrate. ► Electrode fabricated using vertically-patterned design on glass substrate. ► Optimization of the vertical patterns ► Application of the vertically-patterned electrode in transparent–flexible electronics

  2. Vibration-based monitoring for performance evaluation of flexible civil structures in Japan

    Science.gov (United States)

    FUJINO, Yozo

    2018-01-01

    The vibration-based monitoring of flexible civil structures and performance evaluation from this monitoring are reviewed, with an emphasis on research and practice in Japan and the author’s experiences. Some new findings and unexpected vibrations from the monitoring of real bridges and buildings are reported to emphasize the importance of monitoring. Future developments and applications of vibration-based monitoring to civil infrastructure management are also described. Many examples are taken from the author’s past 30 years’ experience of research on bridge dynamics. PMID:29434082

  3. Structural evaluation of W-211 flexible receiver platforms and tank pit walls

    International Nuclear Information System (INIS)

    Shrivastava, H.P.

    1997-01-01

    This document is a structural analysis of the Flexible Receiver Platforms and the tank-pit wall during removal of equipment and during a accidental drop of that equipment. The platform and the pit walls must withstand a accidental drop of a mixer and transfer pumps in specific pits in tanks 102-AP and 104-AP. A mixer pump will be removed from riser 11 in pit 2A on tank 241-AP-102. A transfer pump will be removed from riser 13 in pit 2D on tank 241-AP-102 and another transfer pump will be removed from riser 3A in pit 4A on tank 241-AP-104

  4. Using Data Mining Approaches for Force Prediction of a Dynamically Loaded Flexible Structure

    DEFF Research Database (Denmark)

    Schlechtingen, Meik; Achiche, Sofiane; Lourenco Costa, Tiago

    2014-01-01

    -deterministic excitation forces with different excitation frequencies and amplitudes. Additionally, the influence of the sampling frequency and sensor location on the model performance is investigated. The results obtained in this paper show that most data mining approaches can be used, when a certain degree of inaccuracy...... of freedom and a force transducer for validation and training. The models are trained using data obtained from applying a random excitation force on the flexible structure. The performance of the developed models is evaluated by analyzing the prediction capabilities based on a normalized prediction error...

  5. Rapid prototyping of flexible intrafascicular electrode arrays by picosecond laser structuring.

    Science.gov (United States)

    Mueller, Matthias; de la Oliva, Natalia; Del Valle, Jaume; Delgado-Martínez, Ignacio; Navarro, Xavier; Stieglitz, Thomas

    2017-12-01

    Interfacing the peripheral nervous system can be performed with a large variety of electrode arrays. However, stimulating and recording a nerve while having a reasonable amount of channels limits the number of available systems. Translational research towards human clinical trial requires device safety and biocompatibility but would benefit from design flexibility in the development process to individualize probes. We selected established medical grade implant materials like precious metals and Parylene C to develop a rapid prototyping process for novel intrafascicular electrode arrays using a picosecond laser structuring. A design for a rodent animal model was developed in conjunction with an intrafascicular implantation strategy. Electrode characterization and optimization was performed first in saline solution in vitro before performance and biocompatibility were validated in sciatic nerves of rats in chronic implantation. The novel fabrication process proved to be suitable for prototyping and building intrafascicular electrode arrays. Electrochemical properties of the electrode sites were enhanced and tested for long-term stability. Chronic implantation in the sciatic nerve of rats showed good biocompatibility, selectivity and stable stimulation thresholds. Established medical grade materials can be used for intrafascicular nerve electrode arrays when laser structuring defines structure size in the micro-scale. Design flexibility reduces re-design cycle time and material certificates are beneficial support for safety studies on the way to clinical trials.

  6. Flexible structure control experiments using a real-time workstation for computer-aided control engineering

    Science.gov (United States)

    Stieber, Michael E.

    1989-01-01

    A Real-Time Workstation for Computer-Aided Control Engineering has been developed jointly by the Communications Research Centre (CRC) and Ruhr-Universitaet Bochum (RUB), West Germany. The system is presently used for the development and experimental verification of control techniques for large space systems with significant structural flexibility. The Real-Time Workstation essentially is an implementation of RUB's extensive Computer-Aided Control Engineering package KEDDC on an INTEL micro-computer running under the RMS real-time operating system. The portable system supports system identification, analysis, control design and simulation, as well as the immediate implementation and test of control systems. The Real-Time Workstation is currently being used by CRC to study control/structure interaction on a ground-based structure called DAISY, whose design was inspired by a reflector antenna. DAISY emulates the dynamics of a large flexible spacecraft with the following characteristics: rigid body modes, many clustered vibration modes with low frequencies and extremely low damping. The Real-Time Workstation was found to be a very powerful tool for experimental studies, supporting control design and simulation, and conducting and evaluating tests withn one integrated environment.

  7. Rapid prototyping of flexible intrafascicular electrode arrays by picosecond laser structuring

    Science.gov (United States)

    Mueller, Matthias; de la Oliva, Natalia; del Valle, Jaume; Delgado-Martínez, Ignacio; Navarro, Xavier; Stieglitz, Thomas

    2017-12-01

    Objective. Interfacing the peripheral nervous system can be performed with a large variety of electrode arrays. However, stimulating and recording a nerve while having a reasonable amount of channels limits the number of available systems. Translational research towards human clinical trial requires device safety and biocompatibility but would benefit from design flexibility in the development process to individualize probes. Approach. We selected established medical grade implant materials like precious metals and Parylene C to develop a rapid prototyping process for novel intrafascicular electrode arrays using a picosecond laser structuring. A design for a rodent animal model was developed in conjunction with an intrafascicular implantation strategy. Electrode characterization and optimization was performed first in saline solution in vitro before performance and biocompatibility were validated in sciatic nerves of rats in chronic implantation. Main results. The novel fabrication process proved to be suitable for prototyping and building intrafascicular electrode arrays. Electrochemical properties of the electrode sites were enhanced and tested for long-term stability. Chronic implantation in the sciatic nerve of rats showed good biocompatibility, selectivity and stable stimulation thresholds. Significance. Established medical grade materials can be used for intrafascicular nerve electrode arrays when laser structuring defines structure size in the micro-scale. Design flexibility reduces re-design cycle time and material certificates are beneficial support for safety studies on the way to clinical trials.

  8. Recursive thoughts on the simulation of the flexible multibody dynamics of slender offshore structures

    Science.gov (United States)

    Schilder, J.; Ellenbroek, M.; de Boer, A.

    2017-12-01

    In this work, the floating frame of reference formulation is used to create a flexible multibody model of slender offshore structures such as pipelines and risers. It is shown that due to the chain-like topology of the considered structures, the equation of motion can be expressed in terms of absolute interface coordinates. In the presented form, kinematic constraint equations are satisfied explicitly and the Lagrange multipliers are eliminated from the equations. Hence, the structures can be conveniently coupled to finite element or multibody models of for example seabed and vessel. The chain-like topology enables the efficient use of recursive solution procedures for both transient dynamic analysis and equilibrium analysis. For this, the transfer matrix method is used. In order to improve the convergence of the equilibrium analysis, the analytical solution of an ideal catenary is used as an initial configuration, reducing the number of required iterations.

  9. Structures of parasite calreticulins provide insights into their flexibility and dual carbohydrate/peptide-binding properties.

    Science.gov (United States)

    Moreau, Christophe; Cioci, Gianluca; Iannello, Marina; Laffly, Emmanuelle; Chouquet, Anne; Ferreira, Arturo; Thielens, Nicole M; Gaboriaud, Christine

    2016-11-01

    Calreticulin (CRT) is a multifaceted protein, initially discovered as an endoplasmic reticulum (ER) chaperone protein, that is essential in calcium metabolism. Various implications in cancer, early development and immunology have been discovered more recently for CRT, as well as its role as a dominant 'eat-me' prophagocytic signal. Intriguingly, cell-surface exposure/secretion of CRT is among the infective strategies used by parasites such as Trypanosoma cruzi , Entamoeba histolytica , Taenia solium , Leishmania donovani and Schistosoma mansoni . Because of the inherent flexibility of CRTs, their analysis by X-ray crystallography requires the design of recombinant constructs suitable for crystallization, and thus only the structures of two very similar mammalian CRT lectin domains are known. With the X-ray structures of two distant parasite CRTs, insights into species structural determinants that might be harnessed to fight against the parasites without affecting the functions of the host CRT are now provided. Moreover, although the hypothesis that CRT can exhibit both open and closed conformations has been proposed in relation to its chaperone function, only the open conformation has so far been observed in crystal structures. The first evidence is now provided of a complex conformational transition with the junction reoriented towards P-domain closure. SAXS experiments also provided additional information about the flexibility of T. cruzi CRT in solution, thus complementing crystallographic data on the open conformation. Finally, regarding the conserved lectin-domain structure and chaperone function, evidence is provided of its dual carbohydrate/protein specificity and a new scheme is proposed to interpret such unusual substrate-binding properties. These fascinating features are fully consistent with previous experimental observations, as discussed considering the broad spectrum of CRT sequence conservations and differences.

  10. Structures of parasite calreticulins provide insights into their flexibility and dual carbohydrate/peptide-binding properties

    Directory of Open Access Journals (Sweden)

    Christophe Moreau

    2016-11-01

    Full Text Available Calreticulin (CRT is a multifaceted protein, initially discovered as an endoplasmic reticulum (ER chaperone protein, that is essential in calcium metabolism. Various implications in cancer, early development and immunology have been discovered more recently for CRT, as well as its role as a dominant `eat-me' prophagocytic signal. Intriguingly, cell-surface exposure/secretion of CRT is among the infective strategies used by parasites such as Trypanosoma cruzi, Entamoeba histolytica, Taenia solium, Leishmania donovani and Schistosoma mansoni. Because of the inherent flexibility of CRTs, their analysis by X-ray crystallography requires the design of recombinant constructs suitable for crystallization, and thus only the structures of two very similar mammalian CRT lectin domains are known. With the X-ray structures of two distant parasite CRTs, insights into species structural determinants that might be harnessed to fight against the parasites without affecting the functions of the host CRT are now provided. Moreover, although the hypothesis that CRT can exhibit both open and closed conformations has been proposed in relation to its chaperone function, only the open conformation has so far been observed in crystal structures. The first evidence is now provided of a complex conformational transition with the junction reoriented towards P-domain closure. SAXS experiments also provided additional information about the flexibility of T. cruzi CRT in solution, thus complementing crystallographic data on the open conformation. Finally, regarding the conserved lectin-domain structure and chaperone function, evidence is provided of its dual carbohydrate/protein specificity and a new scheme is proposed to interpret such unusual substrate-binding properties. These fascinating features are fully consistent with previous experimental observations, as discussed considering the broad spectrum of CRT sequence conservations and differences.

  11. Modeling, estimation and identification methods for static shape determination of flexible structures. [for large space structure design

    Science.gov (United States)

    Rodriguez, G.; Scheid, R. E., Jr.

    1986-01-01

    This paper outlines methods for modeling, identification and estimation for static determination of flexible structures. The shape estimation schemes are based on structural models specified by (possibly interconnected) elliptic partial differential equations. The identification techniques provide approximate knowledge of parameters in elliptic systems. The techniques are based on the method of maximum-likelihood that finds parameter values such that the likelihood functional associated with the system model is maximized. The estimation methods are obtained by means of a function-space approach that seeks to obtain the conditional mean of the state given the data and a white noise characterization of model errors. The solutions are obtained in a batch-processing mode in which all the data is processed simultaneously. After methods for computing the optimal estimates are developed, an analysis of the second-order statistics of the estimates and of the related estimation error is conducted. In addition to outlining the above theoretical results, the paper presents typical flexible structure simulations illustrating performance of the shape determination methods.

  12. High Performance, Robust Control of Flexible Space Structures: MSFC Center Director's Discretionary Fund

    Science.gov (United States)

    Whorton, M. S.

    1998-01-01

    Many spacecraft systems have ambitious objectives that place stringent requirements on control systems. Achievable performance is often limited because of difficulty of obtaining accurate models for flexible space structures. To achieve sufficiently high performance to accomplish mission objectives may require the ability to refine the control design model based on closed-loop test data and tune the controller based on the refined model. A control system design procedure is developed based on mixed H2/H(infinity) optimization to synthesize a set of controllers explicitly trading between nominal performance and robust stability. A homotopy algorithm is presented which generates a trajectory of gains that may be implemented to determine maximum achievable performance for a given model error bound. Examples show that a better balance between robustness and performance is obtained using the mixed H2/H(infinity) design method than either H2 or mu-synthesis control design. A second contribution is a new procedure for closed-loop system identification which refines parameters of a control design model in a canonical realization. Examples demonstrate convergence of the parameter estimation and improved performance realized by using the refined model for controller redesign. These developments result in an effective mechanism for achieving high-performance control of flexible space structures.

  13. Singularity and steering logic for control moment gyros on flexible space structures

    Science.gov (United States)

    Hu, Quan; Guo, Chuandong; Zhang, Jun

    2017-08-01

    Control moment gyros (CMGs) are a widely used device for generating control torques for spacecraft attitude control without expending propellant. Because of its effectiveness and cleanness, it has been considered to be mounted on a space structure for active vibration suppression. The resultant system is the so-called gyroelastic body. Since CMGs could exert both torque and modal force to the structure, it can also be used to simultaneously achieve attitude maneuver and vibration reduction of a flexible spacecraft. In this paper, we consider the singularity problem in such application of CMGs. The dynamics of an unconstrained gyroelastic body is established, from which the output equations of the CMGs are extracted. Then, torque singular state and modal force singular state are defined and visualized to demonstrate the singularity. Numerical examples of several typical CMGs configurations on a gyroelastic body are given. Finally, a steering law allowing output error is designed and applied to the vibration suppression of a plate with distributed CMGs.

  14. Control of 2D Flexible Structures by Confinement of Vibrations and Regulation of Their Energy Flow

    Directory of Open Access Journals (Sweden)

    Fakhreddine Landolsi

    2009-01-01

    Full Text Available In this paper, we investigate the control of 2D flexible structures by vibration confinement and the regulation of their energy flow along prespecified spatial paths. A discretized-model-based feedback strategy, aiming at confining and suppressing simultaneously the vibration, is proposed. It is assumed that the structure consists of parts that are sensitive to vibrations. The control design introduces a new pseudo-modal matrix derived from the computed eigenvectors of the discretized model. Simulations are presented to show the efficacy of the proposed control law. A parametric study is carried out to examine the effects of the different control parameters on the simultaneous confinement and suppression of vibrations. In addition, we conducted a set of simulations to investigate the flow control of vibrational energy during the confinement-suppression process. We found that the energy flow can be regulated via a set of control parameters for different confinement configurations.

  15. 3D flexible NiTi-braided elastomer composites for smart structure applications

    International Nuclear Information System (INIS)

    Heller, L; Vokoun, D; Šittner, P; Finckh, H

    2012-01-01

    While outstanding functional properties of thin NiTi wires are nowadays well recognized and beneficially utilized in medical NiTi devices, development of 2D/3D wire structures made out of these NiTi wires remains challenging and mostly unexplored. The research is driven by the idea of creating novel 2D/3D smart structures which inherit the functional properties of NiTi wires and actively utilize geometrical deformations within the structure to create new/improved functional properties. Generally, textile technology provides attractive processing methods for manufacturing 2D/3D smart structures made out of NiTi wires. Such structures may be beneficially combined with soft elastomers to create smart deformable composites. Following this route, we carried out experimental work focused on development of 3D flexible NiTi-braided elastomer composites involving their design, laboratory manufacture and thermomechanical testing. We describe the manufacturing technology and structural properties of these composites; and perform thermomechanical tests on the composites, focusing particularly on quasistatic tensile properties, energy absorption, damping and actuation under tensile loading. Functional thermomechanical properties of the composites are discussed with regard to the mechanical properties of the components and architecture of the composites. It is found that the composites indeed inherit all important features of the thermomechanical behavior of NiTi wires but, due to their internal architecture, outperform single NiTi wires in some features such as the magnitude of recoverable strain, superelastic damping capacity and thermally induced actuation strain. (paper)

  16. High temperature flexible ultrasonic transducers for structural health monitoring and NDT

    Energy Technology Data Exchange (ETDEWEB)

    Shih, J.L. [McGill Univ., Montreal, PQ (Canada). Dept. of Electrical and Computer Engineering; Kobayashi, M.; Jen, C.K.; Tatibouet, J. [National Research Council of Canada, Boucherville, PQ (Canada). Industrial Materials Inst.; Mrad, N. [Department of National Defence, Ottawa, ON (Canada). Air Vehicles Research Station

    2009-07-01

    Ultrasonic techniques are often used for non-destructive testing (NDT) and structural health monitoring (SHM) of pipes in nuclear and fossil fuel power plants, petrochemical plants and other structures as a method to improve safety and extend the service life of the structure. In such applications, ultrasonic transducers (UTs) must be able to operate at high temperature, and must come in contact with structures that have surfaces with different curvatures. As such, flexible UTs (FUTs) are most suitable because they ensure self-alignment to the object's surface. The purpose of this study was to develop FUTs that have high flexibility similar to commercially available polyvinylidene fluoride PVDF FUTs, but which can operate at up to at least 150 degrees C and have a high ultrasonic performance comparable to commercial broadband UTs. The fabrication of the FUT consisted of a sol-gel based sensor fabrication process. The substrate was a 75 {mu}m thick titanium (Ti) membrane, a piezoelectric composite with a thickness larger than 85 {mu}m and a top electrode. The ultrasonic performance of the FUT in terms of signal strength was found to be at least as good as commercially available broadband ultrasonic transducers at room temperature. Onsite gluing and brazing installation techniques which bond the FUTs onto steel pipes for SHM and NDT purposes up to 100 and 150 degrees C were developed, respectively. The best thickness measurement accuracy of FUT at 150 degrees C was estimated to be 26 {mu}m. 18 refs., 2 tabs., 6 figs.

  17. Towards flexible asymmetric MSM structures using Si microwires through contact printing

    Science.gov (United States)

    Khan, S.; Lorenzelli, L.; Dahiya, R.

    2017-08-01

    This paper presents development of flexible metal-semiconductor-metal devices using silicon (Si) microwires. Monocrystalline Si in the shape of microwires are used which are developed through standard photolithography and etching. These microwires are assembled on secondary flexible substrates through a dry transfer printing by using a polydimethylsiloxane stamp. The conductive patterns on Si microwires are printed using a colloidal silver nanoparticles based solution and an organic conductor i.e. poly (3,4-ethylene dioxthiophene) doped with poly (styrene sulfonate). A custom developed spray coating technique is used for conductive patterns on Si microwires. A comparative study of the current-voltage (I-V) responses is carried out in flat and bent orientations as well as the response to the light illumination of the wires is explored. Current variations as high as 17.1 μA are recorded going from flat to bend conditions, while the highest I on/I off ratio i.e. 43.8 is achieved with light illuminations. The abrupt changes in the current response due to light-on/off conditions validates these devices for fast flexible photodetector switches. These devices are also evaluated based on transfer procedure i.e. flip-over and stamp-assisted transfer printing for manipulating Si microwires and their subsequent post-processing. These new developments were made to study the most feasible approach for transfer printing of Si microwires and to harvest their capabilities such as photodetection and several other applications in the shape of metal-semiconductor-metal structures.

  18. Exploring the potential of a structural alphabet-based tool for mining multiple target conformations and target flexibility insight.

    Science.gov (United States)

    Regad, Leslie; Chéron, Jean-Baptiste; Triki, Dhoha; Senac, Caroline; Flatters, Delphine; Camproux, Anne-Claude

    2017-01-01

    Protein flexibility is often implied in binding with different partners and is essential for protein function. The growing number of macromolecular structures in the Protein Data Bank entries and their redundancy has become a major source of structural knowledge of the protein universe. The analysis of structural variability through available redundant structures of a target, called multiple target conformations (MTC), obtained using experimental or modeling methods and under different biological conditions or different sources is one way to explore protein flexibility. This analysis is essential to improve the understanding of various mechanisms associated with protein target function and flexibility. In this study, we explored structural variability of three biological targets by analyzing different MTC sets associated with these targets. To facilitate the study of these MTC sets, we have developed an efficient tool, SA-conf, dedicated to capturing and linking the amino acid and local structure variability and analyzing the target structural variability space. The advantage of SA-conf is that it could be applied to divers sets composed of MTCs available in the PDB obtained using NMR and crystallography or homology models. This tool could also be applied to analyze MTC sets obtained by dynamics approaches. Our results showed that SA-conf tool is effective to quantify the structural variability of a MTC set and to localize the structural variable positions and regions of the target. By selecting adapted MTC subsets and comparing their variability detected by SA-conf, we highlighted different sources of target flexibility such as induced by binding partner, by mutation and intrinsic flexibility. Our results support the interest to mine available structures associated with a target using to offer valuable insight into target flexibility and interaction mechanisms. The SA-conf executable script, with a set of pre-compiled binaries are available at http://www.mti.univ-paris-diderot.fr/recherche/plateformes/logiciels.

  19. Exploring the potential of a structural alphabet-based tool for mining multiple target conformations and target flexibility insight.

    Directory of Open Access Journals (Sweden)

    Leslie Regad

    Full Text Available Protein flexibility is often implied in binding with different partners and is essential for protein function. The growing number of macromolecular structures in the Protein Data Bank entries and their redundancy has become a major source of structural knowledge of the protein universe. The analysis of structural variability through available redundant structures of a target, called multiple target conformations (MTC, obtained using experimental or modeling methods and under different biological conditions or different sources is one way to explore protein flexibility. This analysis is essential to improve the understanding of various mechanisms associated with protein target function and flexibility. In this study, we explored structural variability of three biological targets by analyzing different MTC sets associated with these targets. To facilitate the study of these MTC sets, we have developed an efficient tool, SA-conf, dedicated to capturing and linking the amino acid and local structure variability and analyzing the target structural variability space. The advantage of SA-conf is that it could be applied to divers sets composed of MTCs available in the PDB obtained using NMR and crystallography or homology models. This tool could also be applied to analyze MTC sets obtained by dynamics approaches. Our results showed that SA-conf tool is effective to quantify the structural variability of a MTC set and to localize the structural variable positions and regions of the target. By selecting adapted MTC subsets and comparing their variability detected by SA-conf, we highlighted different sources of target flexibility such as induced by binding partner, by mutation and intrinsic flexibility. Our results support the interest to mine available structures associated with a target using to offer valuable insight into target flexibility and interaction mechanisms. The SA-conf executable script, with a set of pre-compiled binaries are available at

  20. Three-dimensional fluid-structure interaction case study on cubical fluid cavity with flexible bottom

    Science.gov (United States)

    Ghelardi, Stefano; Rizzo, Cesare; Villa, Diego

    2017-12-01

    In this paper, we report our study on a numerical fluid-structure interaction problem originally presented by Mok et al. (2001) in two dimensions and later studied in three dimensions by Valdés Vazquez (2007), Lombardi (2012), and Trimarchi (2012). We focus on a 3D test case in which we evaluated the sensitivity of several input parameters on the fluid and structural results. In particular, this analysis provides a starting point from which we can look deeper into specific aspects of these simulations and analyze more realistic cases, e.g., in sails design. In this study, using the commercial software ADINA™, we addressed a well-known unsteadiness problem comprising a square box representing the fluid domain with a flexible bottom modeled with structural shell elements. We compared data from previously published work whose authors used the same numerical approach, i.e., a partitioned approach coupling a finite volume solver (for the fluid domain) and a finite element solver (for the solid domain). Specifically, we established several benchmarks and made comparisons with respect to fluid and solid meshes, structural element types, and structural damping, as well as solution algorithms. Moreover, we compared our method with a monolithic finite element solution method. Our comparisons of new and old results provide an outline of best practices for such simulations.

  1. Structure refinement of flexible proteins using dipolar couplings: Application to the protein p8MTCP1

    International Nuclear Information System (INIS)

    Demene, Helene; Ducat, Thierry; Barthe, Philippe; Delsuc, Marc-Andre; Roumestand, Christian

    2002-01-01

    The present study deals with the relevance of using mobility-averaged dipolar couplings for the structure refinement of flexible proteins. The 68-residue protein p8 MTCP1 has been chosen as model for this study. Its solution state consists mainly of three α-helices. The two N-terminal helices are strapped in a well-determined α-hairpin, whereas, due to an intrinsic mobility, the position of the third helix is less well defined in the NMR structure. To further characterize the degrees of freedom of this helix, we have measured the dipolar coupling constants in the backbone of p8 MTCP1 in a bicellar medium. We show here that including D HN dip dipolar couplings in the structure calculation protocol improves the structure of the α-hairpin but not the positioning of the third helix. This is due to the motional averaging of the dipolar couplings measured in the last helix. Performing two calculations with different force constants for the dipolar restraints highlights the inconstancy of these mobility-averaged dipolar couplings. Alternatively, prior to any structure calculations, comparing the values of the dipolar couplings measured in helix III to values back-calculated from an ideal helix demonstrates that they are atypical for a helix. This can be partly attributed to mobility effects since the inclusion of the 15 N relaxation derived order parameter allows for a better fit

  2. Flexible Structure Control Scheme of a UAVs Formation to Improve the Formation Stability During Maneuvers

    Directory of Open Access Journals (Sweden)

    Kownacki Cezary

    2017-09-01

    Full Text Available One of the issues related to formation flights, which requires to be still discussed, is the stability of formation flight in turns, where the aerodynamic conditions can be substantially different for outer vehicles due to varying bank angles. Therefore, this paper proposes a decentralized control algorithm based on a leader as the reference point for followers, i.e. other UAVs and two flocking behaviors responsible for local position control, i.e. cohesion and repulsion. But opposite to other research in this area, the structure of the formation becomes flexible (structure is being reshaped and bent according to actual turn radius of the leader. During turns the structure is bent basing on concentred circles with different radiuses corresponding to relative locations of vehicles in the structure. Simultaneously, UAVs' air-speeds must be modified according to the length of turn radius to achieve the stability of the structure. The effectiveness of the algorithm is verified by the results of simulated flights of five UAVs.

  3. Scalable Synthesis of Freestanding Sandwich-structured Graphene/Polyaniline/Graphene Nanocomposite Paper for Flexible All-Solid-State Supercapacitor

    OpenAIRE

    Xiao, Fei; Yang, Shengxiong; Zhang, Zheye; Liu, Hongfang; Xiao, Junwu; Wan, Lian; Luo, Jun; Wang, Shuai; Liu, Yunqi

    2015-01-01

    We reported a scalable and modular method to prepare a new type of sandwich-structured graphene-based nanohybrid paper and explore its practical application as high-performance electrode in flexible supercapacitor. The freestanding and flexible graphene paper was firstly fabricated by highly reproducible printing technique and bubbling delamination method, by which the area and thickness of the graphene paper can be freely adjusted in a wide range. The as-prepared graphene paper possesses a c...

  4. Calibration of a flexible measurement system based on industrial articulated robot and structured light sensor

    Science.gov (United States)

    Mu, Nan; Wang, Kun; Xie, Zexiao; Ren, Ping

    2017-05-01

    To realize online rapid measurement for complex workpieces, a flexible measurement system based on an articulated industrial robot with a structured light sensor mounted on the end-effector is developed. A method for calibrating the system parameters is proposed in which the hand-eye transformation parameters and the robot kinematic parameters are synthesized in the calibration process. An initial hand-eye calibration is first performed using a standard sphere as the calibration target. By applying the modified complete and parametrically continuous method, we establish a synthesized kinematic model that combines the initial hand-eye transformation and distal link parameters as a whole with the sensor coordinate system as the tool frame. According to the synthesized kinematic model, an error model is constructed based on spheres' center-to-center distance errors. Consequently, the error model parameters can be identified in a calibration experiment using a three-standard-sphere target. Furthermore, the redundancy of error model parameters is eliminated to ensure the accuracy and robustness of the parameter identification. Calibration and measurement experiments are carried out based on an ER3A-C60 robot. The experimental results show that the proposed calibration method enjoys high measurement accuracy, and this efficient and flexible system is suitable for online measurement in industrial scenes.

  5. Crystal structure analysis reveals functional flexibility in the selenocysteine-specific tRNA from mouse.

    Directory of Open Access Journals (Sweden)

    Oleg M Ganichkin

    Full Text Available Selenocysteine tRNAs (tRNA(Sec exhibit a number of unique identity elements that are recognized specifically by proteins of the selenocysteine biosynthetic pathways and decoding machineries. Presently, these identity elements and the mechanisms by which they are interpreted by tRNA(Sec-interacting factors are incompletely understood.We applied rational mutagenesis to obtain well diffracting crystals of murine tRNA(Sec. tRNA(Sec lacking the single-stranded 3'-acceptor end ((ΔGCCARNA(Sec yielded a crystal structure at 2.0 Å resolution. The global structure of (ΔGCCARNA(Sec resembles the structure of human tRNA(Sec determined at 3.1 Å resolution. Structural comparisons revealed flexible regions in tRNA(Sec used for induced fit binding to selenophosphate synthetase. Water molecules located in the present structure were involved in the stabilization of two alternative conformations of the anticodon stem-loop. Modeling of a 2'-O-methylated ribose at position U34 of the anticodon loop as found in a sub-population of tRNA(Secin vivo showed how this modification favors an anticodon loop conformation that is functional during decoding on the ribosome. Soaking of crystals in Mn(2+-containing buffer revealed eight potential divalent metal ion binding sites but the located metal ions did not significantly stabilize specific structural features of tRNA(Sec.We provide the most highly resolved structure of a tRNA(Sec molecule to date and assessed the influence of water molecules and metal ions on the molecule's conformation and dynamics. Our results suggest how conformational changes of tRNA(Sec support its interaction with proteins.

  6. Analysis of flexible fabric structures for large-scale subsea compressed air energy storage

    International Nuclear Information System (INIS)

    Pimm, A; Garvey, S

    2009-01-01

    The idea of storing compressed air in submerged flexible fabric structures anchored to the seabed is being investigated for its potential to be a clean, economically-attractive means of energy storage which could integrate well with offshore renewable energy conversion. In this paper a simple axisymmetric model of an inextensional pressurised bag is presented, along with its implementation in a constrained multidimensional optimization used to minimise the cost of the bag materials per unit of stored energy. Base pressure difference and circumferential stress are included in the optimization, and the effect of hanging ballast masses from the inside of the bag is also considered. Results are given for a zero pressure natural shape bag, a zero pressure bag with circumferential stress and hanging masses, and a nonzero pressure bag with circumferential stress and hanging masses.

  7. Flexible Labour, Flexible Production and Innovation-by-Agreement: International Comparisons Contesting the Lindbeck-Snower Insider-Outsider Thesis and 'Structural Reforms' in the European Union

    Directory of Open Access Journals (Sweden)

    Teresa Carla Oliveira

    2017-09-01

    Full Text Available This paper critiques the case for flexibilisation of labour markets. It evidences that influential claims for this in terms of an insider-outsider thesis by former Nobel economics committee member Assar Lindbeck and the British economist Dennis Snower were purely theoretical without offering any evidence, or recognising contrary evidence. It cites a recent admission by the IMF that there is no basis for claiming that protection of employee rights inhibits economic efficiency and cites also a questioning of structural reforms and an obsession with competitiveness by Benoît Cœuré, an Executive Director of the ECB. It illustrates that the achievement of some of the most competitive companies in the world, in Japan, has been based on reinforcing insider rights through commitment to lifetime employment for core employees and how this has enabled high levels of efficiency and process innovation through continuous improvement. It relates this to theories of psychological and social contracts, and evidences the influence of this flexible production rather than flexible labour market model on the recommendation of innovation-by-agreement in the 2000 Lisbon Agenda of the European Council including the right to work-life balance which has not been integral to flexible production in Japan. It then summarises some implications.

  8. Scheduling policies of intelligent sensors and sensor/actuators in flexible structures

    Science.gov (United States)

    Demetriou, Michael A.; Potami, Raffaele

    2006-03-01

    In this note, we revisit the problem of actuator/sensor placement in large civil infrastructures and flexible space structures within the context of spatial robustness. The positioning of these devices becomes more important in systems employing wireless sensor and actuator networks (WSAN) for improved control performance and for rapid failure detection. The ability of the sensing and actuating devices to possess the property of spatial robustness results in reduced control energy and therefore the spatial distribution of disturbances is integrated into the location optimization measures. In our studies, the structure under consideration is a flexible plate clamped at all sides. First, we consider the case of sensor placement and the optimization scheme attempts to produce those locations that minimize the effects of the spatial distribution of disturbances on the state estimation error; thus the sensor locations produce state estimators with minimized disturbance-to-error transfer function norms. A two-stage optimization procedure is employed whereby one first considers the open loop system and the spatial distribution of disturbances is found that produces the maximal effects on the entire open loop state. Once this "worst" spatial distribution of disturbances is found, the optimization scheme subsequently finds the locations that produce state estimators with minimum transfer function norms. In the second part, we consider the collocated actuator/sensor pairs and the optimization scheme produces those locations that result in compensators with the smallest norms of the disturbance-to-state transfer functions. Going a step further, an intelligent control scheme is presented which, at each time interval, activates a subset of the actuator/sensor pairs in order provide robustness against spatiotemporally moving disturbances and minimize power consumption by keeping some sensor/actuators in sleep mode.

  9. Flexible deep brain neural probes based on a parylene tube structure

    Science.gov (United States)

    Zhao, Zhiguo; Kim, Eric; Luo, Hao; Zhang, Jinsheng; Xu, Yong

    2018-01-01

    Most microfabricated neural probes have limited shank length, which prevents them from reaching many deep brain structures. This paper reports deep brain neural probes with ultra-long penetrating shanks based on a simple but novel parylene tube structure. The mechanical strength of the parylene tube shank is temporarily enhanced during implantation by inserting a metal wire. The metal wire can be removed after implantation, making the implanted probe very flexible and thus minimizing the stress caused by micromotions of brain tissues. Optogenetic stimulation and chemical delivery capabilities can be potentially integrated by taking advantage of the tube structure. Single-shank prototypes with a shank length of 18.2 mm have been developed. The microfabrication process comprises of deep reactive ion etching (DRIE) of silicon, parylene conformal coating/refilling, and XeF2 isotropic silicon etching. In addition to bench-top insertion characterization, the functionality of developed probes has been preliminarily demonstrated by implanting into the amygdala of a rat and recording neural signals.

  10. Biological knowledge bases using Wikis: combining the flexibility of Wikis with the structure of databases.

    Science.gov (United States)

    Brohée, Sylvain; Barriot, Roland; Moreau, Yves

    2010-09-01

    In recent years, the number of knowledge bases developed using Wiki technology has exploded. Unfortunately, next to their numerous advantages, classical Wikis present a critical limitation: the invaluable knowledge they gather is represented as free text, which hinders their computational exploitation. This is in sharp contrast with the current practice for biological databases where the data is made available in a structured way. Here, we present WikiOpener an extension for the classical MediaWiki engine that augments Wiki pages by allowing on-the-fly querying and formatting resources external to the Wiki. Those resources may provide data extracted from databases or DAS tracks, or even results returned by local or remote bioinformatics analysis tools. This also implies that structured data can be edited via dedicated forms. Hence, this generic resource combines the structure of biological databases with the flexibility of collaborative Wikis. The source code and its documentation are freely available on the MediaWiki website: http://www.mediawiki.org/wiki/Extension:WikiOpener.

  11. Intelligent Flexible Materials for Space Structures: Expandable Habitat Engineering Development Unit

    Science.gov (United States)

    Hinkle, Jon; Sharpe, George; Lin, John; Wiley, Cliff; Timmers, Richard

    2010-01-01

    Expandable habitable elements are an enabling technology for human exploration in space and on planetary surfaces. Large geometries can be deployed from a small launch volume, allowing greater mission capability while reducing mass and improving robustness over traditional rigid shells. This report describes research performed by ILC Dover under the Intelligent Flexible Materials for Space Structures program on the design and manufacture of softgoods for LaRC's Expandable Habitat Engineering Development Unit (EDU). The EDU is a full-scale structural test article of an expandable hybrid habitat, integrating an expandable softgoods center section with two rigid end caps. The design of the bladder, restraint layer and a mock-up Thermal Micrometeoroid Cover is detailed together with the design of the interface hardware used to attach them to the end caps. The integration and design of two windows and a floor are also covered. Analysis was performed to study the effects of the open weave design, and to determine the correct webbing and fabric configuration. Stress analyses were also carried out on the interfaces between the softgoods and the end caps and windows. Testing experimentally determined the strength of the fabric and straps, and component testing was used to proof several critical parts of the design. This program established new manufacturing and design techniques that can be applied to future applications in expandable structures.

  12. Improving electrochemical performance of flexible thin film electrodes with micropillar array structures

    International Nuclear Information System (INIS)

    Myllymaa, Sami; Myllymaa, Katja; Lappalainen, Reijo; Pirinen, Sami; Pakkanen, Tapani A; Pakkanen, Tuula T; Suvanto, Mika

    2012-01-01

    For reliable function, bioelectrodes require a stable, low-impedance contact with the target tissue. In biosignal monitoring applications, in which low ion current densities are recorded, it is important to minimize electrode contact impedances. Recently, several flexible electrode concepts have been introduced for single-patient use. These electrodes conform well on the patient skin enabling an artifact-free, low-noise recording. In this study, polydimethylsiloxane (PDMS) elastomer was used as an electrode substrate material. One half of the substrates were surface-patterned with micropillars produced by using micro-working robot-made mold inserts and a replica molding technique. The substrates were subsequently coated with thin films of titanium (Ti), copper (Cu), silver (Ag) or silver–silver chloride (Ag/AgCl). Electrical impedance spectroscopy studies revealed that the micropillar structure caused statistically significant reductions in impedance modulus and phase for each coating candidate. The relative effect was strongest for pure Ag, for which the values of the real part (Z′) and the imaginary part (Z″) decreased to less than one tenth of the original (smooth) values. However, Ag/AgCl, as expected, proved to be a superior electrode material. Coating with chloride drastically reduced the interfacial impedance compared to pure Ag. Further significant reduction was achieved by the micropillars, since the phase angle declined from 10–13° (for smooth samples, f < 50 Hz) to a value as low as 5°. Equivalent circuit modeling was used to obtain a better understanding of phenomena occurring at various electrode–electrolyte interfaces. The knowledge obtained in this study will be exploited in the further development of flexible electrodes and miniaturized biointerfaces with improved electrochemical characteristics. (paper)

  13. Flexible tension sensor based on poly(l-lactic acid) film with coaxial structure

    Science.gov (United States)

    Yoshida, Mitsunobu; Onishi, Katsuki; Tanimoto, Kazuhiro; Nishikawa, Shigeo

    2017-10-01

    We have developed a tension sensor with a coaxial structure using a narrow slit ribbon made of a uniaxially stretched poly(l-lactic acid) (PLLA) film for application to a wearable device. The tension sensor is produced as follows. We used tinsel wire as the center conductor of the sensor. The tinsel wire consists of a yarn of synthetic fibers arranged at the center, with a spirally wound rolled copper foil ribbon on the side surface. Next, slit ribbons obtained from a uniaxially oriented film of PLLA are wound helically on the side surface of the center conductor in the direction of a left-handed screw, at an angle of 45° to the central axis. The rolled copper foil is used as an outer conductor and covers the yarn without a gap. The prototype of the fabricated tension sensor has good flexibility, since the sensor is in the form of a filament and consists of a highly flexible material. For the 1 mm tension sensor, it was found that for a tension of 1 N, a charge of 14 pC was output. It was also found that the sensor maintained its room-temperature sensitivity up to 60 °C. Compared with an existing coaxial line sensor using poly(vinylidene fluoride) (PVDF), the sensor using PLLA does not exhibit pyroelectricity, meaning that no undesirable voltage is generated when in contact with body heat, which is a significant advantage as wearable sensors. The result has demonstrated the potential application of the PLLA film to wearable devices for detecting heartbeat and respiration.

  14. Fully integrated carbon nanotube composite thin film strain sensors on flexible substrates for structural health monitoring

    Science.gov (United States)

    Burton, A. R.; Lynch, J. P.; Kurata, M.; Law, K. H.

    2017-09-01

    Multifunctional thin film materials have opened many opportunities for novel sensing strategies for structural health monitoring. While past work has established methods of optimizing multifunctional materials to exhibit sensing properties, comparatively less work has focused on their integration into fully functional sensing systems capable of being deployed in the field. This study focuses on the advancement of a scalable fabrication process for the integration of multifunctional thin films into a fully integrated sensing system. This is achieved through the development of an optimized fabrication process that can create a broad range of sensing systems using multifunctional materials. A layer-by-layer deposited multifunctional composite consisting of single walled carbon nanotubes (SWNT) in a polyvinyl alcohol and polysodium-4-styrene sulfonate matrix are incorporated with a lithography process to produce a fully integrated sensing system deposited on a flexible substrate. To illustrate the process, a strain sensing platform consisting of a patterned SWNT-composite thin film as a strain-sensitive element within an amplified Wheatstone bridge sensing circuit is presented. Strain sensing is selected because it presents many of the design and processing challenges that are core to patterning multifunctional thin film materials into sensing systems. Strain sensors fabricated on a flexible polyimide substrate are experimentally tested under cyclic loading using standard four-point bending coupons and a partial-scale steel frame assembly under lateral loading. The study reveals the material process is highly repeatable to produce fully integrated strain sensors with linearity and sensitivity exceeding 0.99 and 5 {{V}}/{ε }, respectively. The thin film strain sensors are robust and are capable of high strain measurements beyond 3000 μ {ε }.

  15. Nonlinear Dynamic Behavior of a Flexible Structure to Combined External Acoustic and Parametric Excitation

    Directory of Open Access Journals (Sweden)

    Paulo S. Varoto

    2006-01-01

    Full Text Available Flexible structures are frequently subjected to multiple inputs when in the field environment. The accurate determination of the system dynamic response to multiple inputs depends on how much information is available from the excitation sources that act on the system under study. Detailed information include, but are not restricted to appropriate characterization of the excitation sources in terms of their variation in time and in space for the case of distributed loads. Another important aspect related to the excitation sources is how inputs of different nature contribute to the measured dynamic response. A particular and important driving mechanism that can occur in practical situations is the parametric resonance. Another important input that occurs frequently in practice is related to acoustic pressure distributions that is a distributed type of loading. In this paper, detailed theoretical and experimental investigations on the dynamic response of a flexible cantilever beam carrying a tip mass to simultaneously applied external acoustic and parametric excitation signals have been performed. A mathematical model for transverse nonlinear vibration is obtained by employing Lagrange’s equations where important nonlinear effects such as the beam’s curvature and quadratic viscous damping are accounted for in the equation of motion. The beam is driven by two excitation sources, a sinusoidal motion applied to the beam’s fixed end and parallel to its longitudinal axis and a distributed sinusoidal acoustic load applied orthogonally to the beam’s longitudinal axis. The major goal here is to investigate theoretically as well as experimentally the dynamic behavior of the beam-lumped mass system under the action of these two excitation sources. Results from an extensive experimental work show how these two excitation sources interacts for various testing conditions. These experimental results are validated through numerically simulated results

  16. Robust control of flexible space vehicles with minimum structural excitation: On-off pulse control of flexible space vehicles

    Science.gov (United States)

    Wie, Bong; Liu, Qiang

    1992-01-01

    Both feedback and feedforward control approaches for uncertain dynamical systems (in particular, with uncertainty in structural mode frequency) are investigated. The control objective is to achieve a fast settling time (high performance) and robustness (insensitivity) to plant uncertainty. Preshaping of an ideal, time optimal control input using a tapped-delay filter is shown to provide a fast settling time with robust performance. A robust, non-minimum-phase feedback controller is synthesized with particular emphasis on its proper implementation for a non-zero set-point control problem. It is shown that a properly designed, feedback controller performs well, as compared with a time optimal open loop controller with special preshaping for performance robustness. Also included are two separate papers by the same authors on this subject.

  17. In situ ice and structure thickness monitoring using integrated and flexible ultrasonic transducers

    International Nuclear Information System (INIS)

    Liu, Q; Wu, K-T; Kobayashi, M; Jen, C-K; Mrad, N

    2008-01-01

    Two types of ultrasonic sensors are presented for in situ capability development of ice detection and structure thickness measurement. These piezoelectric film based sensors have been fabricated by a sol–gel spray technique for aircraft environments and for temperatures ranging from −80 to 100 °C. In one sensor type, piezoelectric films of thickness greater than 40 µm are deposited directly onto the interior of a 1.3 mm thick aluminum (Al) alloy control surface (stabilizer) of an aircraft wing structure as integrated ultrasonic transducers (UTs). In the other sensor type, piezoelectric films are coated onto a 50 µm thick polyimide membrane as flexible UTs. These were subsequently glued onto similar locations at the same control surfaces. In situ monitoring of stabilizer outer skin thickness was performed. Ice build-up ranging from a fraction of 1 mm to less than 1.5 mm was also detected on a 3 mm thick Al plate. Measurements using these ultrasonic sensors agreed well with those obtained by a micrometer. Tradeoffs of these two approaches are presented

  18. Input shaping filter methods for the control of structurally flexible, long-reach manipulators

    International Nuclear Information System (INIS)

    Kwon, Dong-Soo; Hwang, Dong-Hwan; Babcock, S.M.; Burks, B.L.

    1993-01-01

    Within the Environmental Restoration and Waste Management Program of the US Department of Energy, the remediation of single-shell radioactive waste storage tanks is one of the areas that challenge state-of-the-art equipment and methods. Concepts that utilize long-reach manipulators are being seriously considered for this task. Due to high payload capacity and high length-to-cross-section ratio requirements, these long-reach manipulator systems are expected to exhibit significant structural flexibility. To avoid structural vibrations during operation, various types of shaping filter methods have been investigated. A robust notch filtering method and an impulse shaping method were used as simulation benchmarks. In addition to that, two very different approaches have been developed and compared. One new approach, referred to as a ''feedforward simulation filter,'' uses imbedded simulation with complete knowledge of the system dynamics. The other approach, ''fuzzy shaping method,'' employs a fuzzy logic method to modify the joint trajectory from the desired end-position trajectory without precise knowledge of the system dynamics

  19. Ensemble refinement shows conformational flexibility in crystal structures of human complement factor D

    International Nuclear Information System (INIS)

    Forneris, Federico; Burnley, B. Tom; Gros, Piet

    2014-01-01

    Ensemble-refinement analysis of native and mutant factor D (FD) crystal structures indicates a dynamical transition in FD from a self-inhibited inactive conformation to a substrate-bound active conformation that is reminiscent of the allostery in thrombin. Comparison with previously observed dynamics in thrombin using NMR data supports the crystallographic ensembles. Human factor D (FD) is a self-inhibited thrombin-like serine proteinase that is critical for amplification of the complement immune response. FD is activated by its substrate through interactions outside the active site. The substrate-binding, or ‘exosite’, region displays a well defined and rigid conformation in FD. In contrast, remarkable flexibility is observed in thrombin and related proteinases, in which Na + and ligand binding is implied in allosteric regulation of enzymatic activity through protein dynamics. Here, ensemble refinement (ER) of FD and thrombin crystal structures is used to evaluate structure and dynamics simultaneously. A comparison with previously published NMR data for thrombin supports the ER analysis. The R202A FD variant has enhanced activity towards artificial peptides and simultaneously displays active and inactive conformations of the active site. ER revealed pronounced disorder in the exosite loops for this FD variant, reminiscent of thrombin in the absence of the stabilizing Na + ion. These data indicate that FD exhibits conformational dynamics like thrombin, but unlike in thrombin a mechanism has evolved in FD that locks the unbound native state into an ordered inactive conformation via the self-inhibitory loop. Thus, ensemble refinement of X-ray crystal structures may represent an approach alternative to spectroscopy to explore protein dynamics in atomic detail

  20. Structural analysis: Flexible receiver yoke brace for the 241SY101 mixer pump

    International Nuclear Information System (INIS)

    Jones, K.M.

    1994-01-01

    This report documents the structural analysis of the flexible-receiver yoke brace that will be used to maintain the mixer pump lifting yoke in a vertical position during the removal of the mixer pump from waste tank 241SY101. During the removal process, the crane is connected to a lifting yoke which is attached to the lifting on the mounting flange of the mixer pump. The pump then can be lifted from the tank. At one point in the removal procedure, the crane will be disconnected from the lifting yoke. At this time, it is possible for the lifting yoke to rotate around the pinned connection between it and the pump if it is subjected to a horizontal load. To prevent the rotation of the lifting yoke, the yoke brace was designed to maintain the yoke in a vertical position while it is disconnected from the crane. This analysis addressed the adequacy of the yoke brace to provide support for the lifting yoke during high winds and a seismic event. The results of this analysis show that, when subjected to a combined design wind and seismic load, the yoke brace design is acceptable to maintain the lifting yoke in a vertical position when the yoke is disconnected from the crane

  1. Phase and gain control policies for robust active vibration control of flexible structures

    International Nuclear Information System (INIS)

    Zhang, K; Ichchou, M N; Scorletti, G; Mieyeville, F

    2013-01-01

    The interest of this paper is to develop a general and systematic robust control methodology for active vibration control of flexible structures. For this purpose, first phase and gain control policies are proposed to impose qualitative frequency-dependent requirements on the controller to consider a complete set of control objectives. Then the proposed control methodology is developed by employing phase and gain control policies in the dynamic output feedback H ∞  control: according to the set of control objectives, phase and gain control policies incorporate necessary weighting functions and determine them in a rational and systematic way; on the other hand, with the appropriate weighting functions efficient H ∞  control algorithms can automatically realize phase and gain control policies and generate a satisfactory H ∞  controller. The proposed control methodology can be used for both SISO and MIMO systems with collocated or non-collocated sensors and actuators. In this paper, it is validated on a non-collocated piezoelectric cantilever beam. Both numerical simulations and experimental results demonstrate the effectiveness of the proposed control methodology. (paper)

  2. Two new bivariate zero-inflated generalized Poisson distributions with a flexible correlation structure

    Directory of Open Access Journals (Sweden)

    Chi Zhang

    2015-05-01

    Full Text Available To model correlated bivariate count data with extra zero observations, this paper proposes two new bivariate zero-inflated generalized Poisson (ZIGP distributions by incorporating a multiplicative factor (or dependency parameter λ, named as Type I and Type II bivariate ZIGP distributions, respectively. The proposed distributions possess a flexible correlation structure and can be used to fit either positively or negatively correlated and either over- or under-dispersed count data, comparing to the existing models that can only fit positively correlated count data with over-dispersion. The two marginal distributions of Type I bivariate ZIGP share a common parameter of zero inflation while the two marginal distributions of Type II bivariate ZIGP have their own parameters of zero inflation, resulting in a much wider range of applications. The important distributional properties are explored and some useful statistical inference methods including maximum likelihood estimations of parameters, standard errors estimation, bootstrap confidence intervals and related testing hypotheses are developed for the two distributions. A real data are thoroughly analyzed by using the proposed distributions and statistical methods. Several simulation studies are conducted to evaluate the performance of the proposed methods.

  3. Structure and phase behavior of a confined nanodroplet composed of the flexible chain molecules.

    Science.gov (United States)

    Kim, Soon-Chul; Kim, Eun-Young; Seong, Baek-Seok

    2011-04-28

    A polymer density functional theory has been employed for investigating the structure and phase behaviors of the chain polymer, which is modelled as the tangentially connected sphere chain with an attractive interaction, inside the nanosized pores. The excess free energy of the chain polymer has been approximated as the modified fundamental measure-theory for the hard spheres, the Wertheim's first-order perturbation for the chain connectivity, and the mean-field approximation for the van der Waals contribution. For the value of the chemical potential corresponding to a stable liquid phase in the bulk system and a metastable vapor phase, the flexible chain molecules undergo the liquid-vapor transition as the pore size is reduced; the vapor is the stable phase at small volume, whereas the liquid is the stable phase at large volume. The wide liquid-vapor coexistence curve, which explains the wide range of metastable liquid-vapor states, is observed at low temperature. The increase of temperature and decrease of pore size result in a narrowing of liquid-vapor coexistence curves. The increase of chain length leads to a shift of the liquid-vapor coexistence curve towards lower values of chemical potential. The coexistence curves for the confined phase diagram are contained within the corresponding bulk liquid-vapor coexistence curve. The equilibrium capillary phase transition occurs at a higher chemical potential than in the bulk phase.

  4. Structural and Optical Properties of Spray Coated Carbon Hybrid Materials Applied to Transparent and Flexible Electrodes

    Directory of Open Access Journals (Sweden)

    Grzegorz Wroblewski

    2017-01-01

    Full Text Available Transparent and flexible electrodes were fabricated with cost-effective spray coating technique on polyethylene terephthalate foil substrates. Particularly designed paint compositions contained mixtures of multiwalled carbon nanotubes and graphene platelets to achieve their desired rheology and electrooptical layers parameters. Electrodes were prepared in standard technological conditions without the need of clean rooms or high temperature processing. The sheet resistance and optical transmittance of fabricated layers were tuned with the number of coatings; then the most suitable relation of these parameters was designated through the figure of merit. Optical measurements were performed in the range of wavelengths from 250 to 2500 nm with a spectrophotometer with the integration sphere. Spectral dependence of total and diffusive optical transmission for thin films with graphene platelet covered by multiwalled carbon nanotubes was designated which allowed determining the relative absorbance. Layer parameters such as thickness, refractive index, energy gap, and effective reflectance coefficient show the correlation of electrooptical properties with the technological conditions. Moreover the structural properties of fabricated layers were examined by means of the X-ray diffraction.

  5. Numerical Evaluation of Dynamic Response for Flexible Composite Structures under Slamming Impact for Naval Applications

    Science.gov (United States)

    Hassoon, O. H.; Tarfaoui, M.; El Moumen, A.; Benyahia, H.; Nachtane, M.

    2018-06-01

    The deformable composite structures subjected to water-entry impact can be caused a phenomenon called hydroelastic effect, which can modified the fluid flow and estimated hydrodynamic loads comparing with rigid body. This is considered very important for ship design engineers to predict the global and the local hydrodynamic loads. This paper presents a numerical model to simulate the slamming water impact of flexible composite panels using an explicit finite element method. In order to better describe the hydroelastic influence and mechanical properties, composite materials panels with different stiffness and under different impact velocities with deadrise angle of 100 have been studied. In the other hand, the inertia effect was observed in the early stage of the impact that relative to the loading rate. Simulation results have been indicated that the lower stiffness panel has a higher hydroelastic effect and becomes more important when decreasing of the deadrise angle and increasing the impact velocity. Finally, the simulation results were compared with the experimental data and the analytical approaches of the rigid body to describe the behavior of the hydroelastic influence.

  6. Development of a Flexible Strain Sensor Based on PEDOT:PSS for Thin Film Structures

    Directory of Open Access Journals (Sweden)

    Alexandra El Zein

    2017-06-01

    Full Text Available The aim of this study was to develop and optimize a reproducible flexible sensor adapted to thin low-density polyethylene (LDPE films and/or structures to enable their deformation measurements. As these deformations are suspected to be weak (less than 10%, the developed sensor needs to be particularly sensitive. Moreover, it is of prime importance that sensor integration and usability do not modify the mechanical behavior of its LDPE substrate. The literature review allowed several materials to be investigated and an elastomer/intrinsically conductive polymer PEDOT:PSS (CleviosTM filled composite was selected to simultaneously combine mechanical properties and electrical conductivity. This composite (made of PEDOT:PSS and silicone Bluesil® presented satisfying compatibilities with piezoresistive effects, negative temperature performances (in a range from −60 °C to 20 °C, as well as elongation properties (until the elastic limit of the substrate was reached. The method used for creating the sensor is fully described, as are the optimization of the sensor manufacture in terms of used materials, the used amount of materials where the percolation theory aspects must be considered, the adhesion to the substrate, and the manufacturing protocol. Electromechanical characterization was performed to assess the gauge factor (K of the sensor on its substrate.

  7. Comparison of Flow Structures in the Downstream Region of a Cylinder with Flexible Strip

    Directory of Open Access Journals (Sweden)

    Tekşin Süleyman

    2015-01-01

    Full Text Available The present study investigates the details of flow structure to downstream of a circular cylinder mounted on a flat surface, in successive plan-view plane both in the boundary layer and up level region. The behavior of the flow in the wake of the bare cylinder and attached a flexible strip which has a 1400 N/mm2 modulus of elasticity vinyl PVC transperent film. The length of strip 240 mm (L/D=4 is investigated using Particle Image Velocimetry (PIV technique for Reynolds numbers based on the cylinder diameter of 2500. The flow data downstream of the cylinder are presented using time-averaged velocity vector map, Vavg, streamline patterns, ψavg, vorticity contours, ωavg, and Reynolds stress correlations, u’u’ avg, v’v’ avg, u’v’ avg and rms velocity values. The locations of the peak values of Reynolds stress correlations and other data are also presented in both bare cylinder and attached body in order to determine the regions under high fluctuations. Another L/D ratios will be investigated in other experiments.

  8. Modal Analysis in Periodic, Time-Varying Systems with emphasis to the Coupling between Flexible Rotating Beams and Non-Rotating Flexible Structures

    DEFF Research Database (Denmark)

    Saracho, C. M.; Santos, Ilmar

    2003-01-01

    The analysis of dynamical response of a system built by a non-rotating structure coupled to flexible rotating beams is the purpose of this work. The effect of rotational speed upon the beam natural frequencies is well-known, so that an increase in the angular speeds leads to an increase in beam...... natural frequencies, the so-called centrifugal stiffening. The equations of motion of such a global system present matrices with time-depending coefficients, which vary periodically with the angular rotor speed, and introduce parametric vibrations into the system response. The principles of modal analysis...... for time-invariant linear systems are expanded to investigate time-varying systems. Concepts as eigenvalues and eigenvectors, which in this special case are also time-varying, are used to analyse the dynamical response of global system. The time-varying frequencies and modes are also illustrated....

  9. Forecasting supply and demand in nursing professions: impacts of occupational flexibility and employment structure in Germany

    Science.gov (United States)

    2013-01-01

    Background In light of Germany's ageing society, demand for nursing professionals is expected to increase in the coming years. This will pose a challenge for policy makers to increase the supply of nursing professionals. Methodology To portray the different possible developments in the supply of nursing professionals, we projected the supply of formally trained nurses and the potential supply of persons who are able to work in a nursing profession. This potential supply of nursing professionals was calculated on the basis of empirical information on occupational mobility provided by the German Microcensus 2005 (Labour Force Survey). We also calculated how the supply of full-time equivalents (FTEs) will develop if current employment structures develop in the direction of employment behaviour in nursing professions in eastern and western Germany. We then compared these different supply scenarios with two demand projections ('status quo' and 'compression of morbidity' scenarios) from Germany's Federal Statistical Office. Results Our results show that, even as early as 2005, meeting demand for FTEs in nursing professions was not arithmetically possible when only persons with formal qualification in a nursing profession were taken into account on the supply side. When additional semi-skilled nursing professionals are included in the calculation, a shortage of labour in nursing professions can be expected in 2018 when the employment structure for all nursing professionals remains the same as the employment structure seen in Germany in 2005 (demand: 'status quo scenario'). Furthermore, given an employment structure as in eastern Germany, where more nursing professionals work on a full-time basis with longer working hours, a theoretical shortage of nursing professionals could be delayed until 2024. Conclusions Our analysis of occupational flexibility in the nursing field indicates that additional potential supply could be generated by especially training more young people

  10. Forecasting supply and demand in nursing professions: impacts of occupational flexibility and employment structure in Germany.

    Science.gov (United States)

    Maier, Tobias; Afentakis, Anja

    2013-06-05

    In light of Germany's ageing society, demand for nursing professionals is expected to increase in the coming years. This will pose a challenge for policy makers to increase the supply of nursing professionals. To portray the different possible developments in the supply of nursing professionals, we projected the supply of formally trained nurses and the potential supply of persons who are able to work in a nursing profession. This potential supply of nursing professionals was calculated on the basis of empirical information on occupational mobility provided by the German Microcensus 2005 (Labour Force Survey). We also calculated how the supply of full-time equivalents (FTEs) will develop if current employment structures develop in the direction of employment behaviour in nursing professions in eastern and western Germany. We then compared these different supply scenarios with two demand projections ('status quo' and 'compression of morbidity' scenarios) from Germany's Federal Statistical Office. Our results show that, even as early as 2005, meeting demand for FTEs in nursing professions was not arithmetically possible when only persons with formal qualification in a nursing profession were taken into account on the supply side. When additional semi-skilled nursing professionals are included in the calculation, a shortage of labour in nursing professions can be expected in 2018 when the employment structure for all nursing professionals remains the same as the employment structure seen in Germany in 2005 (demand: 'status quo scenario'). Furthermore, given an employment structure as in eastern Germany, where more nursing professionals work on a full-time basis with longer working hours, a theoretical shortage of nursing professionals could be delayed until 2024. Our analysis of occupational flexibility in the nursing field indicates that additional potential supply could be generated by especially training more young people for a nursing profession as they tend to

  11. High-Performance Flexible Force and Temperature Sensing Array with a Robust Structure

    Science.gov (United States)

    Kim, Min-Seok; Song, Han-Wook; Park, Yon-Kyu

    We have developed a flexible tactile sensor array capable of sensing physical quantities, e.g. force and temperature with high-performances and high spatial resolution. The fabricated tactile sensor consists of 8 × 8 force measuring array with 1 mm spacing and a thin metal (copper) temperature sensor. The flexible force sensing array consists of sub-millimetre-size bar-shaped semi-conductor strain gage array attached to a thin and flexible printed circuit board covered by stretchable elastomeric material on both sides. This design incorporates benefits of both materials; the semi-conductor's high performance and the polymer's mechanical flexibility and robustness, while overcoming their drawbacks of those two materials. Special fabrication processes, so called “dry-transfer technique” have been used to fabricate the tactile sensor along with standard micro-fabrication processes.

  12. The Influence of Chordwise Flexibility on the Flow Structure and Streamwise Force of a Sinusoidally Pitching Airfoil

    Science.gov (United States)

    Olson, David Arthur

    Many natural flyers and swimmers need to exploit unsteady mechanisms in order to generate sufficient aerodynamic forces for sustained flight and propulsion. This is, in part, due to the low speed and length scales at which they typically operate. In this low Reynolds number regime, there are many unanswered questions on how existing aerodynamic theory for both steady and unsteady flows can be applied. Additionally, most of these natural flyers and swimmers have deformable wing/fin structures, three dimensional wing planforms, and exhibit complex kinematics during motion. While some biologically-inspired studies seek to replicate these complex structures and kinematics in the laboratory or in numerical simulations, it becomes difficult to draw explicit connections to the existing knowledge base of classical unsteady aerodynamic theory due to the complexity of the problems. In this experimental study, wing kinematics, structure, and planform are greatly simplified to investigate the effect of chordwise flexibility on the streamwise force (thrust) and wake behavior of a sinusoidally pitching airfoil. The study of flexibility in the literature has typically utilized flat plates with varying thicknesses or lengths to change their chordwise flexibility. This choice introduces additional complexities when comparing to the wealth of knowledge originally developed on streamlined aerodynamic shapes. The current study capitalizes on the recent developments in 3D printer technology to create accurate shapes out of materials with varying degrees of flexibility by creating two standard NACA 0009 airfoils: one rigid and one flexible. Each of the two airfoils are sinusoidally pitched about the quarter chord over a range of oscillation amplitudes and frequencies while monitoring the deformation of the airfoil. The oscillation amplitude is selected to be small enough such that leading edge vortices do not form, and the vortical structures in the wake are formed from the trailing

  13. Scalable Synthesis of Freestanding Sandwich-structured Graphene/Polyaniline/Graphene Nanocomposite Paper for Flexible All-Solid-State Supercapacitor

    Science.gov (United States)

    Xiao, Fei; Yang, Shengxiong; Zhang, Zheye; Liu, Hongfang; Xiao, Junwu; Wan, Lian; Luo, Jun; Wang, Shuai; Liu, Yunqi

    2015-03-01

    We reported a scalable and modular method to prepare a new type of sandwich-structured graphene-based nanohybrid paper and explore its practical application as high-performance electrode in flexible supercapacitor. The freestanding and flexible graphene paper was firstly fabricated by highly reproducible printing technique and bubbling delamination method, by which the area and thickness of the graphene paper can be freely adjusted in a wide range. The as-prepared graphene paper possesses a collection of unique properties of highly electrical conductivity (340 S cm-1), light weight (1 mg cm-2) and excellent mechanical properties. In order to improve its supercapacitive properties, we have prepared a unique sandwich-structured graphene/polyaniline/graphene paper by in situ electropolymerization of porous polyaniline nanomaterials on graphene paper, followed by wrapping an ultrathin graphene layer on its surface. This unique design strategy not only circumvents the low energy storage capacity resulting from the double-layer capacitor of graphene paper, but also enhances the rate performance and cycling stability of porous polyaniline. The as-obtained all-solid-state symmetric supercapacitor exhibits high energy density, high power density, excellent cycling stability and exceptional mechanical flexibility, demonstrative of its extensive potential applications for flexible energy-related devices and wearable electronics.

  14. Scalable synthesis of freestanding sandwich-structured graphene/polyaniline/graphene nanocomposite paper for flexible all-solid-state supercapacitor.

    Science.gov (United States)

    Xiao, Fei; Yang, Shengxiong; Zhang, Zheye; Liu, Hongfang; Xiao, Junwu; Wan, Lian; Luo, Jun; Wang, Shuai; Liu, Yunqi

    2015-03-23

    We reported a scalable and modular method to prepare a new type of sandwich-structured graphene-based nanohybrid paper and explore its practical application as high-performance electrode in flexible supercapacitor. The freestanding and flexible graphene paper was firstly fabricated by highly reproducible printing technique and bubbling delamination method, by which the area and thickness of the graphene paper can be freely adjusted in a wide range. The as-prepared graphene paper possesses a collection of unique properties of highly electrical conductivity (340 S cm(-1)), light weight (1 mg cm(-2)) and excellent mechanical properties. In order to improve its supercapacitive properties, we have prepared a unique sandwich-structured graphene/polyaniline/graphene paper by in situ electropolymerization of porous polyaniline nanomaterials on graphene paper, followed by wrapping an ultrathin graphene layer on its surface. This unique design strategy not only circumvents the low energy storage capacity resulting from the double-layer capacitor of graphene paper, but also enhances the rate performance and cycling stability of porous polyaniline. The as-obtained all-solid-state symmetric supercapacitor exhibits high energy density, high power density, excellent cycling stability and exceptional mechanical flexibility, demonstrative of its extensive potential applications for flexible energy-related devices and wearable electronics.

  15. lme4qtl: linear mixed models with flexible covariance structure for genetic studies of related individuals.

    Science.gov (United States)

    Ziyatdinov, Andrey; Vázquez-Santiago, Miquel; Brunel, Helena; Martinez-Perez, Angel; Aschard, Hugues; Soria, Jose Manuel

    2018-02-27

    Quantitative trait locus (QTL) mapping in genetic data often involves analysis of correlated observations, which need to be accounted for to avoid false association signals. This is commonly performed by modeling such correlations as random effects in linear mixed models (LMMs). The R package lme4 is a well-established tool that implements major LMM features using sparse matrix methods; however, it is not fully adapted for QTL mapping association and linkage studies. In particular, two LMM features are lacking in the base version of lme4: the definition of random effects by custom covariance matrices; and parameter constraints, which are essential in advanced QTL models. Apart from applications in linkage studies of related individuals, such functionalities are of high interest for association studies in situations where multiple covariance matrices need to be modeled, a scenario not covered by many genome-wide association study (GWAS) software. To address the aforementioned limitations, we developed a new R package lme4qtl as an extension of lme4. First, lme4qtl contributes new models for genetic studies within a single tool integrated with lme4 and its companion packages. Second, lme4qtl offers a flexible framework for scenarios with multiple levels of relatedness and becomes efficient when covariance matrices are sparse. We showed the value of our package using real family-based data in the Genetic Analysis of Idiopathic Thrombophilia 2 (GAIT2) project. Our software lme4qtl enables QTL mapping models with a versatile structure of random effects and efficient computation for sparse covariances. lme4qtl is available at https://github.com/variani/lme4qtl .

  16. Effect of foundation flexibility on the vibrational stability of the National Ignition Facility optical system support structures

    International Nuclear Information System (INIS)

    McCallen, D.

    1997-01-01

    Alignment requirements for the National Ignition Facility (NIF) optical components will require a number of support structures which minimize the system displacements and deformations. The stringent design requirements for this facility will result in a system in which vibrations due to ambient environmental loads (e.g. foundation motion due to typical traffic loads, microseisms or nearby equipment) will have a significant, and perhaps predominant, influence on the design of the supporting structures. When considering the total deformations and displacements of the structural systems, the contribution of the foundation to the overall system flexibility must be addressed. Classical fixed-base structural analyses, which are predicated on an assumption of an infinitely rigid foundation system, neglect the influence of foundation flexibility and for the vibration regime in which the NIF structures reside, may result in significant underestimation of the system ambient vibration displacements. In the work described herein, parametric studies were performed in order to understand the potential contributions of soil-structure- interaction (SSI) to optical system displacements. Time domain finite element analyses were employed to quantify the effect of wave scattering by the mat foundation and the effects of inertial SSI due to the rocking of the massive shear wall support structures. A simplified procedure is recommended for accounting for SSI effects in the design of the special equipment structures. The simplified approach consists of applying a scale factor to displacements obtained from fixed base analyses to approximately account for the effects of soil-structure interaction and variable support input motion

  17. Intramolecular structures in a single copolymer chain consisting of flexible and semiflexible blocks: Monte Carlo simulation of a lattice model

    International Nuclear Information System (INIS)

    Martemyanova, Julia A; Ivanov, Victor A; Paul, Wolfgang

    2014-01-01

    We study conformational properties of a single multiblock copolymer chain consisting of flexible and semiflexible blocks. Monomer units of different blocks are equivalent in the sense of the volume interaction potential, but the intramolecular bending potential between successive bonds along the chain is different. We consider a single flexible-semiflexible regular multiblock copolymer chain with equal content of flexible and semiflexible units and vary the length of the blocks and the stiffness parameter. We perform flat histogram type Monte Carlo simulations based on the Wang-Landau approach and employ the bond fluctuation lattice model. We present here our data on different non-trivial globular morphologies which we have obtained in our model for different values of the block length and the stiffness parameter. We demonstrate that the collapse can occur in one or in two stages depending on the values of both these parameters and discuss the role of the inhomogeneity of intraglobular distributions of monomer units of both flexible and semiflexible blocks. For short block length and/or large stiffness the collapse occurs in two stages, because it goes through intermediate (meta-)stable structures, like a dumbbell shaped conformation. In such conformations the semiflexible blocks form a cylinder-like core, and the flexible blocks form two domains at both ends of such a cylinder. For long block length and/or small stiffness the collapse occurs in one stage, and in typical conformations the flexible blocks form a spherical core of a globule while the semiflexible blocks are located on the surface and wrap around this core.

  18. Development of highly flexible and ultra-low permeation rate thin-film barrier structure for organic electronics

    International Nuclear Information System (INIS)

    Kim, Namsu; Graham, Samuel

    2013-01-01

    A flexible thin-film encapsulation architecture for organic electronics was built and consisted of a silicon oxide/alumina and parylene layer deposited over Ca sensors on a barrier-coated polyethylene terephthalate substrate. The film's effective water vapor transmission rate was 2.4 ± 1.5 × 10 −5 g/m 2 /day at 20 °C and 50% relative humidity. Flexural tests revealed that for films deposited on the polyethylene terephthalate substrate, the barrier layer failed due to cracking at a curvature radius of 6.4 mm, corresponding to a strain of 0.8%. Adding an epoxy top coat of suitable thickness shifted the neutral axis toward the encapsulation layer, reducing the induced strain. Barrier performance was maintained under the 6.4 mm radius of curvature in this encapsulation structure. Thus, shifting the neutral axis via device structural design is an effective method of extending the flexibility of thin-film encapsulation structure without compromising the performance loss as a barrier layer. - Highlights: • High performance barrier is fabricated on flexible substrate. • The water vapor transmission rate is 2.4 ± 1.5 × 10 −5 g/m 2 /day. • The structure maintains its performance under a small radius of bending curvature

  19. A flexible multidomain structure drives the function of the urokinase-type plasminogen activator receptor (uPAR)

    DEFF Research Database (Denmark)

    Mertens, Haydyn D.T.; Kjærgaard, Magnus; Mysling, Simon

    2012-01-01

    -deuterium exchange, and surface plasmon resonance to develop a structural model describing the allosteric regulation of uPAR. We show that the flexibility of its N-terminal domain provides the key for understanding this allosteric mechanism. Importantly, our model has direct implications for understanding uPAR-assisted...... cell adhesion and migration as well as for translational research including targeted intervention therapy and non-invasive tumor imaging in vivo....

  20. Micro-fabrication of Flexible Coils with Copper Filled Through Polymer Via Structures

    International Nuclear Information System (INIS)

    Zhu, Q S; Zhang, Y; Itoh, T; Maeda, R; Toda, A

    2013-01-01

    In this work, we present one flexible 3D micro-coil. This 3D micro-coil is successfully prepared in a thin polymer film with a thickness of 120μm. The flexible coil is expected to be used in current sensing and energy harvesting MEMS those require a large deformation degree to wrap target object. A typical micro-machined 3D coil is composed of bottom, vertical and top windings. We firstly adopt through polymer vias (TPVs) and metal filling technology to fabricate the vertical windings. A high-speed copper electrodeposition technology of TPVs is developed to obtain void-free vertical windings

  1. The Pine-Needle-Inspired Structure of Zinc Oxide Nanorods Grown on Electrospun Nanofibers for High-Performance Flexible Supercapacitors.

    Science.gov (United States)

    Sami, Syed Kamran; Siddiqui, Saqib; Shrivastava, Sajal; Lee, Nae-Eung; Chung, Chan-Hwa

    2017-12-01

    Flexible supercapacitors with high electrochemical performance and stability along with mechanical robustness have gained immense attraction due to the substantial advancements and rampant requirements of storage devices. To meet the exponentially growing demand of microsized energy storage device, a cost-effective and durable supercapacitor is mandatory to realize their practical applications. Here, in this work, the fabrication route of novel electrode materials with high flexibility and charge-storage capability is reported using the hybrid structure of 1D zinc oxide (ZnO) nanorods and conductive polyvinylidene fluoride-tetrafluoroethylene (P(VDF-TrFE)) electrospun nanofibers. The ZnO nanorods are conformably grown on conductive P(VDF-TrFE) nanofibers to fabricate the light-weighted porous electrodes for supercapacitors. The conductive nanofibers acts as a high surface area scaffold with significant electrochemical performance, while the addition of ZnO nanorods further enhances the specific capacitance by 59%. The symmetric cell with the fabricated electrodes presents high areal capacitance of 1.22 mF cm -2 at a current density of 0.1 mA cm -2 with a power density of more than 1600 W kg -1 . Furthermore, these electrodes show outstanding flexibility and high stability with 96% and 78% retention in specific capacitance after 1000 and 5000 cycles, respectively. The notable mechanical durability and robustness of the cell acquire both good flexibility and high performance. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. RNAPattMatch: a web server for RNA sequence/structure motif detection based on pattern matching with flexible gaps

    Science.gov (United States)

    Drory Retwitzer, Matan; Polishchuk, Maya; Churkin, Elena; Kifer, Ilona; Yakhini, Zohar; Barash, Danny

    2015-01-01

    Searching for RNA sequence-structure patterns is becoming an essential tool for RNA practitioners. Novel discoveries of regulatory non-coding RNAs in targeted organisms and the motivation to find them across a wide range of organisms have prompted the use of computational RNA pattern matching as an enhancement to sequence similarity. State-of-the-art programs differ by the flexibility of patterns allowed as queries and by their simplicity of use. In particular—no existing method is available as a user-friendly web server. A general program that searches for RNA sequence-structure patterns is RNA Structator. However, it is not available as a web server and does not provide the option to allow flexible gap pattern representation with an upper bound of the gap length being specified at any position in the sequence. Here, we introduce RNAPattMatch, a web-based application that is user friendly and makes sequence/structure RNA queries accessible to practitioners of various background and proficiency. It also extends RNA Structator and allows a more flexible variable gaps representation, in addition to analysis of results using energy minimization methods. RNAPattMatch service is available at http://www.cs.bgu.ac.il/rnapattmatch. A standalone version of the search tool is also available to download at the site. PMID:25940619

  3. Functional neuroimaging correlates of thinking flexibility and knowledge structure in memory: Exploring the relationships between clinical reasoning and diagnostic thinking.

    Science.gov (United States)

    Durning, Steven J; Costanzo, Michelle E; Beckman, Thomas J; Artino, Anthony R; Roy, Michael J; van der Vleuten, Cees; Holmboe, Eric S; Lipner, Rebecca S; Schuwirth, Lambert

    2016-06-01

    Diagnostic reasoning involves the thinking steps up to and including arrival at a diagnosis. Dual process theory posits that a physician's thinking is based on both non-analytic or fast, subconscious thinking and analytic thinking that is slower, more conscious, effortful and characterized by comparing and contrasting alternatives. Expertise in clinical reasoning may relate to the two dimensions measured by the diagnostic thinking inventory (DTI): memory structure and flexibility in thinking. Explored the functional magnetic resonance imaging (fMRI) correlates of these two aspects of the DTI: memory structure and flexibility of thinking. Participants answered and reflected upon multiple-choice questions (MCQs) during fMRI. A DTI was completed shortly after the scan. The brain processes associated with the two dimensions of the DTI were correlated with fMRI phases - assessing flexibility in thinking during analytical clinical reasoning, memory structure during non-analytical clinical reasoning and the total DTI during both non-analytical and analytical reasoning in experienced physicians. Each DTI component was associated with distinct functional neuroanatomic activation patterns, particularly in the prefrontal cortex. Our findings support diagnostic thinking conceptual models and indicate mechanisms through which cognitive demands may induce functional adaptation within the prefrontal cortex. This provides additional objective validity evidence for the use of the DTI in medical education and practice settings.

  4. Printable Fabrication of Nanocoral-Structured Electrodes for High-Performance Flexible and Planar Supercapacitor with Artistic Design.

    Science.gov (United States)

    Lin, Yuanjing; Gao, Yuan; Fan, Zhiyong

    2017-11-01

    Planar supercapacitors with high flexibility, desirable operation safety, and high performance are considered as attractive candidates to serve as energy-storage devices for portable and wearable electronics. Here, a scalable and printable technique is adopted to construct novel and unique hierarchical nanocoral structures as the interdigitated electrodes on flexible substrates. The as-fabricated flexible all-solid-state planar supercapacitors with nanocoral structures achieve areal capacitance up to 52.9 mF cm -2 , which is 2.5 times that of devices without nanocoral structures, and this figure-of-merit is among the highest in the literature for the same category of devices. More interestingly, due to utilization of the inkjet-printing technique, excellent versatility on electrode-pattern artistic design is achieved. Particularly, working supercapacitors with artistically designed patterns are demonstrated. Meanwhile, the high scalability of such a printable method is also demonstrated by fabrication of large-sized artistic supercapacitors serving as energy-storage devices in a wearable self-powered system as a proof of concept. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. A new approach to flexibility-in-use: adaptability of structural elements

    NARCIS (Netherlands)

    Gijsbers, R.; Lichtenberg, J.J.N.; Erkelens, P.A.

    2009-01-01

    The building stock in the Netherlands is seriously out of balance, because the quality of the supplied stock does not satisfy the ever growing demand of users. Flexible use and transformation capacity are a possible solution to create buildings that can adapt to changing user requirements. A

  6. Flexible Engineering Structures from the Corrugated Metal Sheets - Comparison of Costs of Solutions used in the Road Building

    Science.gov (United States)

    Ołdakowska, E.

    2017-11-01

    The flexible structures from the corrugated metal sheets are used in particular in the road building, especially as passages for animals. Easy and quick assembly, as well as lower realization costs when compared to the traditional solutions increase interest in such structures. Availability and variety of systems allows for searching for solutions which are the best and optimal in the economical range. The article presents the comparison of costs of the basic materials used in various systems of flexible structures from the corrugated metal sheets. In order to determine the costs of the material solutions the data for two systems used in Poland (for construction of the upper passages for animals) since 2008 have been used. The cost estimation for the basic materials required for realization of 1 m2 of the flexible structure from the corrugated steel sheets have been prepared with use of prices obtained directly from the Polish contractors and manufacturers, as well as process included in the quarterly information (Sekocenbud). The difference of prices of materials available on the market allows the investor for selecting the structure depending on the needs and financial possibilities, as well as for achieving some savings. The savings in case of purchasing sheets of identical parameters (thickness, profile characteristics) are from approx. 4% to 8% per 1 m2 of sheet. The connectors in form of bolts M20 cl. 8.8 of various lengths are an expense from 3.00 PLN to 3.50 PLN. Those values may seem low, but taking into consideration amounts connected with construction of many square meters of structure they may become very important factor in the total investment costs.

  7. Using Variable-Length Aligned Fragment Pairs and an Improved Transition Function for Flexible Protein Structure Alignment.

    Science.gov (United States)

    Cao, Hu; Lu, Yonggang

    2017-01-01

    With the rapid growth of known protein 3D structures in number, how to efficiently compare protein structures becomes an essential and challenging problem in computational structural biology. At present, many protein structure alignment methods have been developed. Among all these methods, flexible structure alignment methods are shown to be superior to rigid structure alignment methods in identifying structure similarities between proteins, which have gone through conformational changes. It is also found that the methods based on aligned fragment pairs (AFPs) have a special advantage over other approaches in balancing global structure similarities and local structure similarities. Accordingly, we propose a new flexible protein structure alignment method based on variable-length AFPs. Compared with other methods, the proposed method possesses three main advantages. First, it is based on variable-length AFPs. The length of each AFP is separately determined to maximally represent a local similar structure fragment, which reduces the number of AFPs. Second, it uses local coordinate systems, which simplify the computation at each step of the expansion of AFPs during the AFP identification. Third, it decreases the number of twists by rewarding the situation where nonconsecutive AFPs share the same transformation in the alignment, which is realized by dynamic programming with an improved transition function. The experimental data show that compared with FlexProt, FATCAT, and FlexSnap, the proposed method can achieve comparable results by introducing fewer twists. Meanwhile, it can generate results similar to those of the FATCAT method in much less running time due to the reduced number of AFPs.

  8. Impact of repeated uniaxial mechanical strain on flexible a-IGZO thin film transistors with symmetric and asymmetric structures

    Science.gov (United States)

    Liao, Po-Yung; Chang, Ting-Chang; Su, Wan-Ching; Chen, Bo-Wei; Chen, Li-Hui; Hsieh, Tien-Yu; Yang, Chung-Yi; Chang, Kuan-Chang; Zhang, Sheng-Dong; Huang, Yen-Yu; Chang, Hsi-Ming; Chiang, Shin-Chuan

    2017-06-01

    This letter investigates repeated uniaxial mechanical stress-induced degradation behavior in flexible amorphous In-Ga-Zn-O thin-film transistors (TFTs) of different geometric structures. Two types of via-contact structure TFTs are investigated: symmetrical and UI structure (TFTs with I- and U-shaped asymmetric electrodes). After repeated mechanical stress, I-V curves for the symmetrical structure show a significant negative threshold voltage (VT) shift, due to mechanical stress-induced oxygen vacancy generation. However, degradation in the UI structure TFTs after stress is a negative VT shift along with the parasitic transistor characteristic in the forward-operation mode, with this hump not evident in the reverse-operation mode. This asymmetrical degradation is clarified by the mechanical strain simulation of the UI TFTs.

  9. Constraint Network Analysis (CNA): a Python software package for efficiently linking biomacromolecular structure, flexibility, (thermo-)stability, and function.

    Science.gov (United States)

    Pfleger, Christopher; Rathi, Prakash Chandra; Klein, Doris L; Radestock, Sebastian; Gohlke, Holger

    2013-04-22

    For deriving maximal advantage from information on biomacromolecular flexibility and rigidity, results from rigidity analyses must be linked to biologically relevant characteristics of a structure. Here, we describe the Python-based software package Constraint Network Analysis (CNA) developed for this task. CNA functions as a front- and backend to the graph-based rigidity analysis software FIRST. CNA goes beyond the mere identification of flexible and rigid regions in a biomacromolecule in that it (I) provides a refined modeling of thermal unfolding simulations that also considers the temperature-dependence of hydrophobic tethers, (II) allows performing rigidity analyses on ensembles of network topologies, either generated from structural ensembles or by using the concept of fuzzy noncovalent constraints, and (III) computes a set of global and local indices for quantifying biomacromolecular stability. This leads to more robust results from rigidity analyses and extends the application domain of rigidity analyses in that phase transition points ("melting points") and unfolding nuclei ("structural weak spots") are determined automatically. Furthermore, CNA robustly handles small-molecule ligands in general. Such advancements are important for applying rigidity analysis to data-driven protein engineering and for estimating the influence of ligand molecules on biomacromolecular stability. CNA maintains the efficiency of FIRST such that the analysis of a single protein structure takes a few seconds for systems of several hundred residues on a single core. These features make CNA an interesting tool for linking biomacromolecular structure, flexibility, (thermo-)stability, and function. CNA is available from http://cpclab.uni-duesseldorf.de/software for nonprofit organizations.

  10. A matrix-focused structure-activity and binding site flexibility study of quinolinol inhibitors of botulinum neurotoxin serotype A.

    Science.gov (United States)

    Harrell, William A; Vieira, Rebecca C; Ensel, Susan M; Montgomery, Vicki; Guernieri, Rebecca; Eccard, Vanessa S; Campbell, Yvette; Roxas-Duncan, Virginia; Cardellina, John H; Webb, Robert P; Smith, Leonard A

    2017-02-01

    Our initial discovery of 8-hydroxyquinoline inhibitors of BoNT/A and separation/testing of enantiomers of one of the more active leads indicated considerable flexibility in the binding site. We designed a limited study to investigate this flexibility and probe structure-activity relationships; utilizing the Betti reaction, a 36 compound matrix of quinolinol BoNT/A LC inhibitors was developed using three 8-hydroxyquinolines, three heteroaromatic amines, and four substituted benzaldehydes. This study has revealed some of the most effective quinolinol-based BoNT/A inhibitors to date, with 7 compounds displaying IC 50 values ⩽1μM and 11 effective at ⩽2μM in an ex vivo assay. Published by Elsevier Ltd.

  11. CAB-Align: A Flexible Protein Structure Alignment Method Based on the Residue-Residue Contact Area.

    Directory of Open Access Journals (Sweden)

    Genki Terashi

    Full Text Available Proteins are flexible, and this flexibility has an essential functional role. Flexibility can be observed in loop regions, rearrangements between secondary structure elements, and conformational changes between entire domains. However, most protein structure alignment methods treat protein structures as rigid bodies. Thus, these methods fail to identify the equivalences of residue pairs in regions with flexibility. In this study, we considered that the evolutionary relationship between proteins corresponds directly to the residue-residue physical contacts rather than the three-dimensional (3D coordinates of proteins. Thus, we developed a new protein structure alignment method, contact area-based alignment (CAB-align, which uses the residue-residue contact area to identify regions of similarity. The main purpose of CAB-align is to identify homologous relationships at the residue level between related protein structures. The CAB-align procedure comprises two main steps: First, a rigid-body alignment method based on local and global 3D structure superposition is employed to generate a sufficient number of initial alignments. Then, iterative dynamic programming is executed to find the optimal alignment. We evaluated the performance and advantages of CAB-align based on four main points: (1 agreement with the gold standard alignment, (2 alignment quality based on an evolutionary relationship without 3D coordinate superposition, (3 consistency of the multiple alignments, and (4 classification agreement with the gold standard classification. Comparisons of CAB-align with other state-of-the-art protein structure alignment methods (TM-align, FATCAT, and DaliLite using our benchmark dataset showed that CAB-align performed robustly in obtaining high-quality alignments and generating consistent multiple alignments with high coverage and accuracy rates, and it performed extremely well when discriminating between homologous and nonhomologous pairs of proteins

  12. CAB-Align: A Flexible Protein Structure Alignment Method Based on the Residue-Residue Contact Area.

    Science.gov (United States)

    Terashi, Genki; Takeda-Shitaka, Mayuko

    2015-01-01

    Proteins are flexible, and this flexibility has an essential functional role. Flexibility can be observed in loop regions, rearrangements between secondary structure elements, and conformational changes between entire domains. However, most protein structure alignment methods treat protein structures as rigid bodies. Thus, these methods fail to identify the equivalences of residue pairs in regions with flexibility. In this study, we considered that the evolutionary relationship between proteins corresponds directly to the residue-residue physical contacts rather than the three-dimensional (3D) coordinates of proteins. Thus, we developed a new protein structure alignment method, contact area-based alignment (CAB-align), which uses the residue-residue contact area to identify regions of similarity. The main purpose of CAB-align is to identify homologous relationships at the residue level between related protein structures. The CAB-align procedure comprises two main steps: First, a rigid-body alignment method based on local and global 3D structure superposition is employed to generate a sufficient number of initial alignments. Then, iterative dynamic programming is executed to find the optimal alignment. We evaluated the performance and advantages of CAB-align based on four main points: (1) agreement with the gold standard alignment, (2) alignment quality based on an evolutionary relationship without 3D coordinate superposition, (3) consistency of the multiple alignments, and (4) classification agreement with the gold standard classification. Comparisons of CAB-align with other state-of-the-art protein structure alignment methods (TM-align, FATCAT, and DaliLite) using our benchmark dataset showed that CAB-align performed robustly in obtaining high-quality alignments and generating consistent multiple alignments with high coverage and accuracy rates, and it performed extremely well when discriminating between homologous and nonhomologous pairs of proteins in both

  13. Passive wireless structural health monitoring sensor made with a flexible planar dipole antenna

    International Nuclear Information System (INIS)

    Jang, Sang-Dong; Kim, Jaehwan

    2012-01-01

    Cheap and efficient wireless sensors have been widely studied by electronics and communication technology development. In this paper, a flexible planar dipole antenna based passive wireless strain sensor has been investigated. The planar dipole antenna is designed for X band and made on a flexible polymer substrate using a conventional photolithography process. The fabricated dipole antenna is attached to a nonmetallic cantilever beam and monitors its bending strain. Mechanical strain and load impedance of the dipole antenna can change its resonance frequency, return loss and reflected signal. The return loss and reflected signals of the dipole antenna sensor are characterized by using a network analyzer. The strain sensitivity of the sensor is proportional to the return loss variation with the bending strain of the cantilever beam. The magnitude of reflected signals increases as the bending strain increases. (technical note)

  14. Flexible, angle-independent, structural color reflectors inspired by morpho butterfly wings.

    Science.gov (United States)

    Chung, Kyungjae; Yu, Sunkyu; Heo, Chul-Joon; Shim, Jae Won; Yang, Seung-Man; Han, Moon Gyu; Lee, Hong-Seok; Jin, Yongwan; Lee, Sang Yoon; Park, Namkyoo; Shin, Jung H

    2012-05-08

    Thin-film color reflectors inspired by Morpho butterflies are fabricated. Using a combination of directional deposition, silica microspheres with a wide size distribution, and a PDMS (polydimethylsiloxane) encasing, a large, flexible reflector is created that actually provides better angle-independent color characteristics than Morpho butterflies and which can even be bent and folded freely without losing its Morpho-mimetic photonic properties. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Effect of torus wall flexibility on hydro-structural interaction in BWR containment system

    International Nuclear Information System (INIS)

    Lu, S.C.H.; McCauley, E.W.; Holman, G.S.

    1979-01-01

    The MARK I boiling water reactor (BWR) containment system is comprised of a light-bulb-shaped reactor compartment connected through vent pipes to a torus-shaped and partially water-filled pressure suppression chamber, or the wetwell. During either a normally occurring safety relief valve (SRV) discharge or a hypothetical loss-of-coolant accident (LOCA), air or steam is forced into the wetwell water pool for condensation and results in hydrodynamically induced loads on the torus shell. An analytical program is described which employs the finite element method to investigate the influence of torus wall flexibility on hydrodynamically induced pressure and the resultant force on the torus shell surface. The shell flexibility is characterized by the diameter-to-thickness ratio which is varied from the perfectly rigid case to the nominal plant condition. The general conclusion reached is that torus wall flexibility decreases both the maximum pressure seen by the shell wall and the total vertical load resulted from the hydrodynamically induced pressure

  16. Open challenges in structure-based virtual screening: Receptor modeling, target flexibility consideration and active site water molecules description.

    Science.gov (United States)

    Spyrakis, Francesca; Cavasotto, Claudio N

    2015-10-01

    Structure-based virtual screening is currently an established tool in drug lead discovery projects. Although in the last years the field saw an impressive progress in terms of algorithm development, computational performance, and retrospective and prospective applications in ligand identification, there are still long-standing challenges where further improvement is needed. In this review, we consider the conceptual frame, state-of-the-art and recent developments of three critical "structural" issues in structure-based drug lead discovery: the use of homology modeling to accurately model the binding site when no experimental structures are available, the necessity of accounting for the dynamics of intrinsically flexible systems as proteins, and the importance of considering active site water molecules in lead identification and optimization campaigns. Copyright © 2015 Elsevier Inc. All rights reserved.

  17. All solution-processed micro-structured flexible electrodes for low-cost light-emitting pressure sensors fabrication.

    Science.gov (United States)

    Shimotsu, Rie; Takumi, Takahiro; Vohra, Varun

    2017-07-31

    Recent studies have demonstrated the advantage of developing pressure-sensitive devices with light-emitting properties for direct visualization of pressure distribution, potential application to next generation touch panels and human-machine interfaces. To ensure that this technology is available to everyone, its production cost should be kept as low as possible. Here, simple device concepts, namely, pressure sensitive flexible hybrid electrodes and OLED architecture, are used to produce low-cost resistive or light-emitting pressure sensors. Additionally, integrating solution-processed self-assembled micro-structures into the flexible hybrid electrodes composed of an elastomer and conductive materials results in enhanced device performances either in terms of pressure or spatial distribution sensitivity. For instance, based on the pressure applied, the measured values for the resistances of pressure sensors range from a few MΩ down to 500 Ω. On the other hand, unlike their evaporated equivalents, the combination of solution-processed flexible electrodes with an inverted OLED architectures display bright green emission when a pressure over 200 kPa is applied. At a bias of 3 V, their luminance can be tuned by applying a higher pressure of 500 kPa. Consequently, features such as fingernails and fingertips can be clearly distinguished from one another in these long-lasting low-cost devices.

  18. Active joint mechanism driven by multiple actuators made of flexible bags: a proposal of dual structural actuator.

    Science.gov (United States)

    Kimura, Hitoshi; Matsuzaki, Takuya; Kataoka, Mokutaro; Inou, Norio

    2013-01-01

    An actuator is required to change its speed and force depending on the situation. Using multiple actuators for one driving axis is one of the possible solutions; however, there is an associated problem of output power matching. This study proposes a new active joint mechanism using multiple actuators. Because the actuator is made of a flexible bag, it does not interfere with other actuators when it is depressurized. The proposed joint achieved coordinated motion of multiple actuators. This report also discusses a new actuator which has dual cylindrical structure. The cylinders are composed of flexible bags with different diameters. The joint torque is estimated based on the following factors: empirical formula for the flexible actuator torque, geometric relationship between the joint and the actuator, and the principle of virtual work. The prototype joint mechanism achieves coordinated motion of multiple actuators for one axis. With this motion, small inner actuator contributes high speed motion, whereas large outer actuator generates high torque. The performance of the prototype joint is examined by speed and torque measurements. The joint showed about 30% efficiency at 2.0 Nm load torque under 0.15 MPa air input.

  19. A Novel High-Performance Beam-Supported Membrane Structure with Enhanced Design Flexibility for Partial Discharge Detection

    Directory of Open Access Journals (Sweden)

    Chenzhao Fu

    2017-03-01

    Full Text Available A novel beam-supported membrane (BSM structure for the fiber optic extrinsic Fabry-Perot interferometer (EFPI sensors showing an enhanced performance and an improved resistance to the temperature change was proposed for detecting partial discharges (PDs. The fundamental frequency, sensitivity, linear range, and flatness of the BSM structure were investigated by employing the finite element simulations. Compared with the intact membrane (IM structure commonly used by EFPI sensors, BSM structure provides extra geometrical parameters to define the fundamental frequency when the diameter of the whole membrane and its thickness is determined, resulting in an enhanced design flexibility of the sensor structure. According to the simulation results, it is noted that BSM structure not only shows a much higher sensitivity (increased by almost four times for some cases, and a wider working range of fundamental frequency to choose, but also an improved linear range, making the system development much easier. In addition, BSM structure presents a better flatness than its IM counterpart, providing an increased signal-to-noise ratio (SNR. A further improvement of performance is thought to be possible with a step-forward structural optimization. The BSM structure shows a great potential to design the EFPI sensors, as well as others for detecting the acoustic signals.

  20. Dynamic characterization, monitoring and control of rotating flexible beam-mass structures via piezo-embedded techniques

    Science.gov (United States)

    Lai, Steven H.-Y.

    1992-01-01

    A variational principle and a finite element discretization technique were used to derive the dynamic equations for a high speed rotating flexible beam-mass system embedded with piezo-electric materials. The dynamic equation thus obtained allows the development of finite element models which accommodate both the original structural element and the piezoelectric element. The solutions of finite element models provide system dynamics needed to design a sensing system. The characterization of gyroscopic effect and damping capacity of smart rotating devices are addressed. Several simulation examples are presented to validate the analytical solution.

  1. Flexible Overoxidized Polypyrrole Films with Orderly Structure as High-Performance Anodes for Li- and Na-Ion Batteries.

    Science.gov (United States)

    Yuan, Tao; Ruan, Jiafeng; Zhang, Weimin; Tan, Zhuopeng; Yang, Junhe; Ma, Zi-Feng; Zheng, Shiyou

    2016-12-28

    Flexible polypyrrole (PPy) films with highly ordered structures were fabricated by a novel vapor phase polymerization (VPP) process and used as the anode material in lithium-ion batteries (LIBs) and sodium-ion batteries (SIBs). The PPy films demonstrate excellent rate performance and cycling stability. At a charge/discharge rate of 1 C, the reversible capacities of the PPy film anode reach 284.9 and 177.4 mAh g -1 in LIBs and SIBs, respectively. Even at a charge/discharge rate of 20 C, the reversible capacity of the PPy film anode retains 54.0% and 52.9% of the capacity of 1 C in LIBs and SIBs, respectively. After 1000 electrochemical cycles at a rate of 10 C, there is no obvious capacity fading. The molecular structure and electrochemical behaviors of Li- and Na-ion doping and dedoping in the PPy films are investigated by XPS and ex situ XRD. It is believed that the PPy film electrodes in the overoxidized state can be reversibly charged and discharged through the doping and dedoping of lithium or sodium ions. Because of the self-adaptation of the doped ions, the ordered pyrrolic chain structure can realize a fast charge/discharge process. This result may substantially contribute to the progress of research into flexible polymer electrodes in various types of batteries.

  2. Flexible Near-Field Nanopatterning with Ultrathin, Conformal Phase Masks on Nonplanar Substrates for Biomimetic Hierarchical Photonic Structures.

    Science.gov (United States)

    Kwon, Young Woo; Park, Junyong; Kim, Taehoon; Kang, Seok Hee; Kim, Hyowook; Shin, Jonghwa; Jeon, Seokwoo; Hong, Suck Won

    2016-04-26

    Multilevel hierarchical platforms that combine nano- and microstructures have been intensively explored to mimic superior properties found in nature. However, unless directly replicated from biological samples, desirable multiscale structures have been challenging to efficiently produce to date. Departing from conventional wafer-based technology, new and efficient techniques suitable for fabricating bioinspired structures are highly desired to produce three-dimensional architectures even on nonplanar substrates. Here, we report a facile approach to realize functional nanostructures on uneven microstructured platforms via scalable optical fabrication techniques. The ultrathin form (∼3 μm) of a phase grating composed of poly(vinyl alcohol) makes the material physically flexible and enables full-conformal contact with rough surfaces. The near-field optical effect can be identically generated on highly curved surfaces as a result of superior conformality. Densely packed nanodots with submicron periodicity are uniformly formed on microlens arrays with a radius of curvature that is as low as ∼28 μm. Increasing the size of the gratings causes the production area to be successfully expanded by up to 16 in(2). The "nano-on-micro" structures mimicking real compound eyes are transferred to flexible and stretchable substrates by sequential imprinting, facilitating multifunctional optical films applicable to antireflective diffusers for large-area sheet-illumination displays.

  3. Phase field theory of proper displacive phase transformations: Structural anisotropy and directional flexibility, a vector model, and the transformation kinetics

    Energy Technology Data Exchange (ETDEWEB)

    Rao Weifeng [Department of Materials Science and Engineering, Rutgers University, 607 Taylor Road, Piscataway, NJ 08854 (United States); Khachaturyan, Armen G., E-mail: khach@jove.rutgers.edu [Department of Materials Science and Engineering, Rutgers University, 607 Taylor Road, Piscataway, NJ 08854 (United States)

    2011-06-15

    A phase field theory of proper displacive transformations is developed to address the microstructure evolution and its response to applied fields in decomposing and martensitic systems. The theory is based on the explicit equation for the non-equilibrium free energy function of the transformation strain obtained by a consistent separation of the total strain into transformation and elastic strains. The transformation strain is considered to be a relaxing long-range order parameter evolving in accordance with the system energetics rather than as a fixed material constant used in the conventional Eshelby theory of coherent inclusions. The elastic strain is defined as a coherency strain recovering the crystal lattice compatibility. The obtained free energy function of the transformation strain leads to the concepts of structural anisotropy and directional flexibility of low symmetry phases. The formulated vector model of displacive transformation makes apparent a similarity between proper displacive transformation and ferromagnetic/ferroelectric transformation and, in particular, a similarity between the structural anisotropy and magnetic/polar anisotropy of ferromagnetic/ferroelectric materials. It even predicts the feasibility of a glass-like structural state with unlimited directional flexibility of the transformation strain that is conceptually similar to a ferromagnetic glass. The thermodynamics of the equilibrium between low symmetry phases and the thermodynamic conditions leading to the formation of adaptive states are formulated.

  4. Active vibration control of a cylindrical structure using flexible piezoactuators: experimental work in air and water environments

    International Nuclear Information System (INIS)

    Sohn, Jung Woo; Choi, Seung-Bok

    2014-01-01

    In the present work, the modal characteristics and vibration control performance of a cylindrical structure in air and water are experimentally investigated, and the results are presented in time and frequency domains. In order to achieve this goal, an end-capped cylindrical shell structure is considered as a host structure, and MFC (macro fiber composite) actuators, which are flexible, are bonded on the surface of the structure. After manufacturing a cylindrical shell structure with aluminum, a modal test is carried out, and the natural frequencies of the proposed structure are obtained and analyzed. To verify the modal test results, a finite element analysis is also performed, and the results are compared with the modal test results. By using the experimentally obtained modal characteristics, a state space control model is established. An optimal controller is then designed in order to control the unwanted vibration and is experimentally realized. It has been shown that the structural vibration can be effectively decreased with the optimal control methodology in both air and water environmental conditions. (technical note)

  5. High-Performance and Simply-Synthesized Ladder-Like Structured Methacrylate Siloxane Hybrid Material for Flexible Hard Coating

    Directory of Open Access Journals (Sweden)

    Yun Hyeok Kim

    2018-04-01

    Full Text Available A high performance ladder-like structured methacrylate siloxane hybrid material (LMSH was fabricated via simple hydrolytic sol–gel reaction, followed by free-radical polymerization. A structurally ordered siloxane backbone, the ladder-like structure, which is an essential factor for high performance, could be achieved by a short period of sol–gel reaction in only 4 h. This results in superior optical (Transmittance > 90% at 550 nm, thermal (T5 wt % decomposition > 400 ℃ , mechanical properties(elastic recovery = 0.86, hardness = 0.6 GPa compared to the random- and even commercialized cage-structured silsesquioxane, which also has ordered structure. It was investigated that the fabricated ladder-like structured MSH showed the highest overall density of organic/inorganic co-networks that are originated from highly ordered siloxane network, along with high conversion rate of polymerizable methacrylate groups. Our findings suggest a potential of the ladder-like structured MSH as a powerful alternative for the methacrylate polysilsesquioxane, which can be applied to thermally stable and flexible optical coatings, even with an easier and simpler preparation process.

  6. Control over structure-specific flexibility improves anatomical accuracy for point-based deformable registration in bladder cancer radiotherapy.

    Science.gov (United States)

    Wognum, S; Bondar, L; Zolnay, A G; Chai, X; Hulshof, M C C M; Hoogeman, M S; Bel, A

    2013-02-01

    Future developments in image guided adaptive radiotherapy (IGART) for bladder cancer require accurate deformable image registration techniques for the precise assessment of tumor and bladder motion and deformation that occur as a result of large bladder volume changes during the course of radiotherapy treatment. The aim was to employ an extended version of a point-based deformable registration algorithm that allows control over tissue-specific flexibility in combination with the authors' unique patient dataset, in order to overcome two major challenges of bladder cancer registration, i.e., the difficulty in accounting for the difference in flexibility between the bladder wall and tumor and the lack of visible anatomical landmarks for validation. The registration algorithm used in the current study is an extension of the symmetric-thin plate splines-robust point matching (S-TPS-RPM) algorithm, a symmetric feature-based registration method. The S-TPS-RPM algorithm has been previously extended to allow control over the degree of flexibility of different structures via a weight parameter. The extended weighted S-TPS-RPM algorithm was tested and validated on CT data (planning- and four to five repeat-CTs) of five urinary bladder cancer patients who received lipiodol injections before radiotherapy. The performance of the weighted S-TPS-RPM method, applied to bladder and tumor structures simultaneously, was compared with a previous version of the S-TPS-RPM algorithm applied to bladder wall structure alone and with a simultaneous nonweighted S-TPS-RPM registration of the bladder and tumor structures. Performance was assessed in terms of anatomical and geometric accuracy. The anatomical accuracy was calculated as the residual distance error (RDE) of the lipiodol markers and the geometric accuracy was determined by the surface distance, surface coverage, and inverse consistency errors. Optimal parameter values for the flexibility and bladder weight parameters were determined

  7. Control over structure-specific flexibility improves anatomical accuracy for point-based deformable registration in bladder cancer radiotherapy

    International Nuclear Information System (INIS)

    Wognum, S.; Chai, X.; Hulshof, M. C. C. M.; Bel, A.; Bondar, L.; Zolnay, A. G.; Hoogeman, M. S.

    2013-01-01

    Purpose: Future developments in image guided adaptive radiotherapy (IGART) for bladder cancer require accurate deformable image registration techniques for the precise assessment of tumor and bladder motion and deformation that occur as a result of large bladder volume changes during the course of radiotherapy treatment. The aim was to employ an extended version of a point-based deformable registration algorithm that allows control over tissue-specific flexibility in combination with the authors’ unique patient dataset, in order to overcome two major challenges of bladder cancer registration, i.e., the difficulty in accounting for the difference in flexibility between the bladder wall and tumor and the lack of visible anatomical landmarks for validation. Methods: The registration algorithm used in the current study is an extension of the symmetric-thin plate splines-robust point matching (S-TPS-RPM) algorithm, a symmetric feature-based registration method. The S-TPS-RPM algorithm has been previously extended to allow control over the degree of flexibility of different structures via a weight parameter. The extended weighted S-TPS-RPM algorithm was tested and validated on CT data (planning- and four to five repeat-CTs) of five urinary bladder cancer patients who received lipiodol injections before radiotherapy. The performance of the weighted S-TPS-RPM method, applied to bladder and tumor structures simultaneously, was compared with a previous version of the S-TPS-RPM algorithm applied to bladder wall structure alone and with a simultaneous nonweighted S-TPS-RPM registration of the bladder and tumor structures. Performance was assessed in terms of anatomical and geometric accuracy. The anatomical accuracy was calculated as the residual distance error (RDE) of the lipiodol markers and the geometric accuracy was determined by the surface distance, surface coverage, and inverse consistency errors. Optimal parameter values for the flexibility and bladder weight

  8. Control over structure-specific flexibility improves anatomical accuracy for point-based deformable registration in bladder cancer radiotherapy

    Energy Technology Data Exchange (ETDEWEB)

    Wognum, S.; Chai, X.; Hulshof, M. C. C. M.; Bel, A. [Department of Radiotherapy, Academic Medical Center, Meiberdreef 9, 1105 AZ Amsterdam (Netherlands); Bondar, L.; Zolnay, A. G.; Hoogeman, M. S. [Department of Radiation Oncology, Daniel den Hoed Cancer Center, Erasmus Medical Center, Groene Hilledijk 301, 3075 EA Rotterdam (Netherlands)

    2013-02-15

    Purpose: Future developments in image guided adaptive radiotherapy (IGART) for bladder cancer require accurate deformable image registration techniques for the precise assessment of tumor and bladder motion and deformation that occur as a result of large bladder volume changes during the course of radiotherapy treatment. The aim was to employ an extended version of a point-based deformable registration algorithm that allows control over tissue-specific flexibility in combination with the authors' unique patient dataset, in order to overcome two major challenges of bladder cancer registration, i.e., the difficulty in accounting for the difference in flexibility between the bladder wall and tumor and the lack of visible anatomical landmarks for validation. Methods: The registration algorithm used in the current study is an extension of the symmetric-thin plate splines-robust point matching (S-TPS-RPM) algorithm, a symmetric feature-based registration method. The S-TPS-RPM algorithm has been previously extended to allow control over the degree of flexibility of different structures via a weight parameter. The extended weighted S-TPS-RPM algorithm was tested and validated on CT data (planning- and four to five repeat-CTs) of five urinary bladder cancer patients who received lipiodol injections before radiotherapy. The performance of the weighted S-TPS-RPM method, applied to bladder and tumor structures simultaneously, was compared with a previous version of the S-TPS-RPM algorithm applied to bladder wall structure alone and with a simultaneous nonweighted S-TPS-RPM registration of the bladder and tumor structures. Performance was assessed in terms of anatomical and geometric accuracy. The anatomical accuracy was calculated as the residual distance error (RDE) of the lipiodol markers and the geometric accuracy was determined by the surface distance, surface coverage, and inverse consistency errors. Optimal parameter values for the flexibility and bladder weight

  9. Vocal communication in a complex multi-level society: constrained acoustic structure and flexible call usage in Guinea baboons.

    Science.gov (United States)

    Maciej, Peter; Ndao, Ibrahima; Hammerschmidt, Kurt; Fischer, Julia

    2013-09-23

    To understand the evolution of acoustic communication in animals, it is important to distinguish between the structure and the usage of vocal signals, since both aspects are subject to different constraints. In terrestrial mammals, the structure of calls is largely innate, while individuals have a greater ability to actively initiate or withhold calls. In closely related taxa, one would therefore predict a higher flexibility in call usage compared to call structure. In the present study, we investigated the vocal repertoire of free living Guinea baboons (Papio papio) and examined the structure and usage of the animals' vocal signals. Guinea baboons live in a complex multi-level social organization and exhibit a largely tolerant and affiliative social style, contrary to most other baboon taxa. To classify the vocal repertoire of male and female Guinea baboons, cluster analyses were used and focal observations were conducted to assess the usage of vocal signals in the particular contexts. In general, the vocal repertoire of Guinea baboons largely corresponded to the vocal repertoire other baboon taxa. The usage of calls, however, differed considerably from other baboon taxa and corresponded with the specific characteristics of the Guinea baboons' social behaviour. While Guinea baboons showed a diminished usage of contest and display vocalizations (a common pattern observed in chacma baboons), they frequently used vocal signals during affiliative and greeting interactions. Our study shows that the call structure of primates is largely unaffected by the species' social system (including grouping patterns and social interactions), while the usage of calls can be more flexibly adjusted, reflecting the quality of social interactions of the individuals. Our results support the view that the primary function of social signals is to regulate social interactions, and therefore the degree of competition and cooperation may be more important to explain variation in call usage

  10. Development of a cost-effective and flexible vibration DAQ system for long-term continuous structural health monitoring

    Science.gov (United States)

    Nguyen, Theanh; Chan, Tommy H. T.; Thambiratnam, David P.; King, Les

    2015-12-01

    In the structural health monitoring (SHM) field, long-term continuous vibration-based monitoring is becoming increasingly popular as this could keep track of the health status of structures during their service lives. However, implementing such a system is not always feasible due to on-going conflicts between budget constraints and the need of sophisticated systems to monitor real-world structures under their demanding in-service conditions. To address this problem, this paper presents a comprehensive development of a cost-effective and flexible vibration DAQ system for long-term continuous SHM of a newly constructed institutional complex with a special focus on the main building. First, selections of sensor type and sensor positions are scrutinized to overcome adversities such as low-frequency and low-level vibration measurements. In order to economically tackle the sparse measurement problem, a cost-optimized Ethernet-based peripheral DAQ model is first adopted to form the system skeleton. A combination of a high-resolution timing coordination method based on the TCP/IP command communication medium and a periodic system resynchronization strategy is then proposed to synchronize data from multiple distributed DAQ units. The results of both experimental evaluations and experimental-numerical verifications show that the proposed DAQ system in general and the data synchronization solution in particular work well and they can provide a promising cost-effective and flexible alternative for use in real-world SHM projects. Finally, the paper demonstrates simple but effective ways to make use of the developed monitoring system for long-term continuous structural health evaluation as well as to use the instrumented building herein as a multi-purpose benchmark structure for studying not only practical SHM problems but also synchronization related issues.

  11. Topology and electronic structure of flexible (Nb,Ru)O2 thermoelectrics

    International Nuclear Information System (INIS)

    Music, Denis; Schnabel, Volker; Bednarcik, Jozef

    2017-01-01

    Using combinatorial reactive sputtering, we have synthesised Nb–Ru–O thin films on Kapton (polyimide) with the Ru/Nb ratio from 0.5 to 1.1 in a dioxide type of environment. Based on correlative analysis, including synchrotron diffraction experiments and density functional theory, the topology of these amorphous samples is characterised by short metal–oxygen bonds and very pronounced metal–metal interactions within the second coordination shell. We suggest that the role of Nb is within bond length reduction and promotion of quantum confinement, giving rise to an increase in the Seebeck coefficient. Furthermore, these Nb–Ru–O thin films are mechanically flexible as there are no crack formation and delamination upon bending or rolling. This may be rationalised as follows. Nb–Ru–O appears ductile due to low topological connectivity and forms strong bonds with Kapton. (paper)

  12. The Hourglass Model: Are There Structural Problems with the Scarcity of Positive Results for Flexible ACT?

    Science.gov (United States)

    Norlander, Torsten; Nordén, Tommy

    2015-01-01

    The aim of the present article was to discuss the commentary by van Veldhuizen, Delespaul and Mulder (2015) regarding the review by Nordén and Norlander (2014) based on five empirical articles about Flexible Assertive Community Treatment (FACT). Veldhuizen et al. agree on that there is insufficient evidence for the effectiveness of FACT. However, van Veldhuizen et al. avoid a discussion of the lack of positive results despite extensive research during several years and therefore an analysis of why FACT did not fare better is missing. According to FACT it is an advantage that one single team spans the entire chain of care and rehabilitation, but no evidence is given for such an opinion. Instead there may be difficulties for the staff to shift between psychiatric care and psychiatric rehabilitation and the clients perhaps don't want to encounter the same professional team during all phases of care and rehabilitation.

  13. H{sub 2}/H{infinity} control of flexible structures through linear matrix inequalities with pole placement

    Energy Technology Data Exchange (ETDEWEB)

    Lopes, Jean C. [PETROBRAS S.A., Rio de Janeiro, RJ (Brazil)

    2009-07-01

    The objective of this work is to apply the H2/H{infinity} control technique using linear matrix inequalities and pole placement constraints to the flexible structures control problem. The H2/H{infinity}control is a technique to design a controller with mixed features of the H2 and H{infinity} control formulations, such as, optimal dynamical performance and robust performance. The Linear Matrix Inequalities allow formulating the problem as a convex optimization problem, and additional constraints can be included such as the pole placement. The pole placement requirement comes from the necessity of adjusting the transient response of the plant and ensuring a specific behavior in terms of speed and damping responses. The mathematical model used for this study is related to a flexible beam, with an applied disturbance and an actuator in different positions. The state-space matrices of the structure were obtained using the finite element method with the Euler-Bernoulli formulation of beams. The results showed that the pole placement constraints can improve the performance of the controller H2/H{infinity}. The Matlab was used for the computational implementation. (author)

  14. Conformational flexibility of BECN1: Essential to its key role in autophagy and beyond: BECN1 Structure and Mechanism

    Energy Technology Data Exchange (ETDEWEB)

    Mei, Yang [Department of Chemistry and Biochemistry, North Dakota State University, Fargo North Dakota 58108-6050; Glover, Karen [Department of Chemistry and Biochemistry, North Dakota State University, Fargo North Dakota 58108-6050; Su, Minfei [Department of Chemistry and Biochemistry, North Dakota State University, Fargo North Dakota 58108-6050; Sinha, Sangita C. [Department of Chemistry and Biochemistry, North Dakota State University, Fargo North Dakota 58108-6050

    2016-08-13

    BECN1 (Beclin 1), a highly conserved eukaryotic protein, is a key regulator of autophagy, a cellular homeostasis pathway, and also participates in vacuolar protein sorting, endocytic trafficking, and apoptosis. BECN1 is important for embryonic development, the innate immune response, tumor suppression, and protection against neurodegenerative disorders, diabetes, and heart disease. BECN1 mediates autophagy as a core component of the class III phosphatidylinositol 3-kinase complexes. However, the exact mechanism by which it regulates the activity of these complexes, or mediates its other diverse functions is unclear. BECN1 interacts with several diverse protein partners, perhaps serving as a scaffold or interaction hub for autophagy. Based on extensive structural, biophysical and bioinformatics analyses, BECN1 consists of an intrinsically disordered region (IDR), which includes a BH3 homology domain (BH3D); a flexible helical domain (FHD); a coiled-coil domain (CCD); and a β-α-repeated autophagy-specific domain (BARAD). Each of these BECN1 domains mediates multiple diverse interactions that involve concomitant conformational changes. Thus, BECN1 conformational flexibility likely plays a key role in facilitating diverse protein interactions. Further, BECN1 conformation and interactions are also modulated by numerous post-translational modifications. A better structure-based understanding of the interplay between different BECN1 conformational and binding states, and the impact of post-translational modifications will be essential to elucidating the mechanism of its multiple biological roles.

  15. Solid-State High Performance Flexible Supercapacitors Based on Polypyrrole-MnO2-Carbon Fiber Hybrid Structure

    Science.gov (United States)

    Tao, Jiayou; Liu, Nishuang; Ma, Wenzhen; Ding, Longwei; Li, Luying; Su, Jun; Gao, Yihua

    2013-07-01

    A solid-state flexible supercapacitor (SC) based on organic-inorganic composite structure was fabricated through an ``in situ growth for conductive wrapping'' and an electrode material of polypyrrole (PPy)-MnO2 nanoflakes-carbon fiber (CF) hybrid structure was obtained. The conductive organic material of PPy greatly improved the electrochemical performance of the device. With a high specific capacitance of 69.3 F cm-3 at a discharge current density of 0.1 A cm-3 and an energy density of 6.16 × 10-3 Wh cm-3 at a power density of 0.04 W cm-3, the device can drive a commercial liquid crystal display (LCD) after being charged. The organic-inorganic composite active materials have enormous potential in energy management and the ``in situ growth for conductive wrapping'' method might be generalized to open up new strategies for designing next-generation energy storage devices.

  16. CABS-flex 2.0: a web server for fast simulations of flexibility of protein structures.

    Science.gov (United States)

    Kuriata, Aleksander; Gierut, Aleksandra Maria; Oleniecki, Tymoteusz; Ciemny, Maciej Pawel; Kolinski, Andrzej; Kurcinski, Mateusz; Kmiecik, Sebastian

    2018-05-14

    Classical simulations of protein flexibility remain computationally expensive, especially for large proteins. A few years ago, we developed a fast method for predicting protein structure fluctuations that uses a single protein model as the input. The method has been made available as the CABS-flex web server and applied in numerous studies of protein structure-function relationships. Here, we present a major update of the CABS-flex web server to version 2.0. The new features include: extension of the method to significantly larger and multimeric proteins, customizable distance restraints and simulation parameters, contact maps and a new, enhanced web server interface. CABS-flex 2.0 is freely available at http://biocomp.chem.uw.edu.pl/CABSflex2.

  17. Flexible Capitalism

    DEFF Research Database (Denmark)

    Approaching “work” as at heart a practice of exchange, this volume explores sociality in work environments marked by the kind of structural changes that have come to define contemporary “flexible” capitalism. It introduces anthropological exchange theory to a wider readership, and shows how...... the perspective offers new ways to enquire about the flexible capitalism’s social dimensions. The essays contribute to a trans-disciplinary scholarship on contemporary economic practice and change by documenting how, across diverse settings, “gift-like” socialities proliferate, and even sustain the intensified...

  18. FY1995 study of very flexible software structures based on soft-software components; 1995 nendo yawarankana software buhin ni motozuku software no choju kozo ni kansuru kenkyu

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-03-01

    The purpose of this study is to develop the method and tools for changing the software structure flexibly along with the continuous continuous change of its environment and conditions of use. The goal is the software of very high adaptability by using soft-software components and flexible assembly. The CASE tool platform Sapid based on a fine-grained repository was developed and enforced for raising the abstraction level of program code and for mining potential flexible components. To reconstruct the software adaptable to a required environment, the SQM (Software Quark Model) was used in managing interconnectivity and other semantic relationships of among components. On these two basic systems, we developed various methods and tools such as those for static and dynamic analysis of very flexible software structures, program transformation description, program pattern extraction and composition component optimization by partial evaluation, component extraction by function slicing, code encapsulation, and component navigation and application. (NEDO)

  19. Flexible metallic ultrasonic transducers for structural health monitoring of pipes at high temperatures.

    Science.gov (United States)

    Shih, Jeanne-Louise; Kobayashi, Makiko; Jen, Cheng-Kuei

    2010-09-01

    Piezoelectric films have been deposited by a sol-gel spray technique onto 75-μm-thick titanium and stainless steel (SS) membranes and have been fabricated into flexible ultrasonic transducers (FUTs). FUTs using titanium membranes were glued and those using SS membranes brazed onto steel pipes, procedures that serve as on-site installation techniques for the purpose of offering continuous thickness monitoring capabilities at up to 490 °C. At 150 °C, the thickness measurement accuracy of a pipe with an outer diameter of 26.6 mm and a wall thickness of 2.5 mm was estimated to be 26 μm and the center frequency of the FUT was 10.8 MHz. It is demonstrated that the frequency bandwidth of the FUTs and SNR of signals using glue or brazing materials as high-temperature couplant for FUTs are sufficient to inspect the steel pipes even with a 2.5 mm wall thickness.

  20. Transparent and Flexible Capacitors with an Ultrathin Structure by Using Graphene as Bottom Electrodes

    Directory of Open Access Journals (Sweden)

    Tao Guo

    2017-11-01

    Full Text Available Ultrathin, transparent and flexible capacitors using graphene as the bottom electrodes were directly fabricated on polyethylene naphthalate (PEN substrates. ZrO2 dielectric films were deposited on the treated surface of graphene by atomic layer deposition (ALD. The deposition process did not introduce any detectible defects in the graphene, as indicated by Raman measurements, guaranteeing the electrical performances of the graphene electrodes. The Aluminum-doped zinc oxide (AZO films were prepared as the top electrodes using the ALD technique. The capacitors presented a high capacitance density (10.3 fF/μm2 at 10 kHz and a relatively low leakage current (5.3 × 10−6 A/cm2 at 1 V. Bending tests revealed that the capacitors were able to work normally at an outward bending radius of 10 mm without any deterioration of electrical properties. The capacitors exhibited an average optical transmittance of close to 70% at visible wavelengths. Thus, it opens the door to practical applications in transparent integrated circuits.

  1. Beams dynamics optimisation of LINAC4 structures for increased operational flexibility

    CERN Document Server

    Bellodi, G; Garcia Tudela, M; Hein, L M; Lallement, J B; Lombardi, A M; Posocco, P A; Sargsyan, E; Stovall, J

    2010-01-01

    Linac4 is a new 160 MeV, 40 mA pulsed beam current H- accelerator which will be the source of particles for all proton accelerators at CERN. Construction started in October 2008, and beam commissioning of the 3 MeV front-end is scheduled for early next year. A baseline design of the linac beam dynamics was completed 2 years ago and validated by a systematic campaign of transverse and longitudinal error studies to assess tolerance limits and machine activation levels. Recent studies have been mainly focused on optimising this design to achieve both a smoother performance for nominal beam conditions and to gain operational flexibility for non-nominal scenarios. These include a review of the chopper beam dynamics design, a re-definition of the DTL and CCDTL inter-tank regions and a study of operational schemes for reduced beam currents (either permanent or in pulse-to-pulse mode). These studies have been carried out in parallel to first specifications for a beam commissioning strategy of the linac and its low-en...

  2. Structural design of flexible Au electrode to enable shape memory polymer for electrical actuation

    Science.gov (United States)

    Lu, Haibao; Lei, Ming; Zhao, Chao; Xu, Ben; Leng, Jinsong; Fu, Y. Q.

    2015-04-01

    An effective resistive Joule heating approach was conducted to improve the electrical actuation and shape-recovery performance of a shape memory polymer (SMP) nanocomposite. Two types of gold (Au) film patterns were deposited to be used as electrodes to drive thermal-responsive SMPs and achieve a uniform temperature distribution during electro-activated shape recovery. Furthermore, the sensing capability of the Au electrode to both mechanical and thermal stimuli applied to the SMP nanocomposite was experimentally investigated and theoretically analyzed. It was found that the change in the electrical resistance of the Au electrode could be used as an indication of shape-recovery performance. The linear response of the electrical resistance to strain was identified mainly due to the opening/closing of microcracks and their propagations in the Au electrodes during out-of-plane deformations. With an increment of thermomechanical bending cycles, the electrical resistance was increased exponentially, but it returned back to the original reading when the SMP nanocomposite returned back to its permanent shape. Finally, the flexible Au electrode enabled the actuation of the SMP nanocomposite under an electric voltage of 13.4 V, with an improved shape-recovery performance and temperature distribution.

  3. The structural flexibility of the human copper chaperone Atox1: Insights from combined pulsed EPR studies and computations.

    Science.gov (United States)

    Levy, Ariel R; Turgeman, Meital; Gevorkyan-Aiapetov, Lada; Ruthstein, Sharon

    2017-08-01

    Metallochaperones are responsible for shuttling metal ions to target proteins. Thus, a metallochaperone's structure must be sufficiently flexible both to hold onto its ion while traversing the cytoplasm and to transfer the ion to or from a partner protein. Here, we sought to shed light on the structure of Atox1, a metallochaperone involved in the human copper regulation system. Atox1 shuttles copper ions from the main copper transporter, Ctr1, to the ATP7b transporter in the Golgi apparatus. Conventional biophysical tools such as X-ray or NMR cannot always target the various conformational states of metallochaperones, owing to a requirement for crystallography or low sensitivity and resolution. Electron paramagnetic resonance (EPR) spectroscopy has recently emerged as a powerful tool for resolving biological reactions and mechanisms in solution. When coupled with computational methods, EPR with site-directed spin labeling and nanoscale distance measurements can provide structural information on a protein or protein complex in solution. We use these methods to show that Atox1 can accommodate at least four different conformations in the apo state (unbound to copper), and two different conformations in the holo state (bound to copper). We also demonstrate that the structure of Atox1 in the holo form is more compact than in the apo form. Our data provide insight regarding the structural mechanisms through which Atox1 can fulfill its dual role of copper binding and transfer. © 2017 The Protein Society.

  4. Structural Basis for Toughness and Flexibility in the C-terminal Passenger Domain of an Acinetobacter Trimeric Autotransporter Adhesin*

    Science.gov (United States)

    Koiwai, Kotaro; Hartmann, Marcus D.; Linke, Dirk; Lupas, Andrei N.; Hori, Katsutoshi

    2016-01-01

    Trimeric autotransporter adhesins (TAAs) on the cell surface of Gram-negative pathogens mediate bacterial adhesion to host cells and extracellular matrix proteins. However, AtaA, a TAA in the nonpathogenic Acinetobacter sp. strain Tol 5, shows nonspecific high adhesiveness to abiotic material surfaces as well as to biotic surfaces. It consists of a passenger domain secreted by the C-terminal transmembrane anchor domain (TM), and the passenger domain contains an N-terminal head, N-terminal stalk, C-terminal head (Chead), and C-terminal stalk (Cstalk). The Chead-Cstalk-TM fragment, which is conserved in many Acinetobacter TAAs, has by itself the head-stalk-anchor architecture of a complete TAA. Here, we show the crystal structure of the Chead-Cstalk fragment, AtaA_C-terminal passenger domain (CPSD), providing the first view of several conserved TAA domains. The YadA-like head (Ylhead) of the fragment is capped by a unique structure (headCap), composed of three β-hairpins and a connector motif; it also contains a head insert motif (HIM1) before its last inner β-strand. The headCap, Ylhead, and HIM1 integrally form a stable Chead structure. Some of the major domains of the CPSD fragment are inherently flexible and provide bending sites for the fiber between segments whose toughness is ensured by topological chain exchange and hydrophobic core formation inside the trimer. Thus, although adherence assays using in-frame deletion mutants revealed that the characteristic adhesive sites of AtaA reside in its N-terminal part, the flexibility and toughness of the CPSD part provide the resilience that enables the adhesive properties of the full-length fiber across a wide range of conditions. PMID:26698633

  5. Design and Development of a Flexible Strain Sensor for Textile Structures Based on a Conductive Polymer Composite

    Directory of Open Access Journals (Sweden)

    Claude Dufour

    2007-04-01

    Full Text Available The aim of this work is to develop a smart flexible sensor adapted to textile structures, able to measure their strain deformations. The sensors are “smart” because of their capacity to adapt to the specific mechanical properties of textile structures that are lightweight, highly flexible, stretchable, elastic, etc. Because of these properties, textile structures are continuously in movement and easily deformed, even under very low stresses. It is therefore important that the integration of a sensor does not modify their general behavior. The material used for the sensor is based on a thermoplastic elastomer (Evoprene/carbon black nanoparticle composite, and presents general mechanical properties strongly compatible with the textile substrate. Two preparation techniques are investigated: the conventional melt-mixing process, and the solvent process which is found to be more adapted for this particular application. The preparation procedure is fully described, namely the optimization of the process in terms of filler concentration in which the percolation theory aspects have to be considered. The sensor is then integrated on a thin, lightweight Nylon fabric, and the electromechanical characterization is performed to demonstrate the adaptability and the correct functioning of the sensor as a strain gauge on the fabric. A normalized relative resistance is defined in order to characterize the electrical response of the sensor. Finally, the influence of environmental factors, such as temperature and atmospheric humidity, on the sensor performance is investigated. The results show that the sensor’s electrical resistance is particularly affected by humidity. This behavior is discussed in terms of the sensitivity of the carbon black filler particles to the presence of water.

  6. Red Phosphorus-Embedded Cross-Link-Structural Carbon Films as Flexible Anodes for Highly Reversible Li-Ion Storage

    Energy Technology Data Exchange (ETDEWEB)

    Ruan, Jiafeng [School of Materials; Yuan, Tao [School of Materials; Pang, Yuepeng [School of Materials; Xu, Xinbo [School of Materials; Yang, Junhe [School of Materials; Hu, Wenbin; Zhong, Cheng; Ma, Zi-Feng [Shanghai Electrochemical Energy Devices Research Center,; Bi, Xuanxuan [Chemical; Zheng, Shiyou [School of Materials

    2017-10-06

    Red phosphorus (P) is considered to be one of the most attractive anodic materials for lithium-ion batteries (LIBs) due to its high theoretical capacity of 2596 mAh g–1. However, intrinsic characteristics such as the poor electronic conductivity and large volume expansion at lithiation impede the development of red P. Here, we design a new strategy to embed red P particles into a cross-link-structural carbon film (P–C film), in order to improve the electronic conductivity and accommodate the volume expansion. The red P/carbon film is synthesized via vapor phase polymerization (VPP) followed by the pyrolysis process, working as a flexible binder-free anode for LIBs. High cycle stability and good rate capability are achieved by the P–C film anode. With 21% P content in the film, it displays a capacity of 903 mAh g–1 after 640 cycles at a current density of 100 mA g–1 and a capacity of 460 mAh g–1 after 1000 cycles at 2.0 A g–1. Additionally, the Coulombic efficiency reaches almost 100% for each cycle. The superior properties of the P–C films together with their facile fabrication make this material attractive for further flexible and high energy density LIB applications.

  7. A High-Sensitivity Flexible Eddy Current Array Sensor for Crack Monitoring of Welded Structures under Varying Environment.

    Science.gov (United States)

    Chen, Tao; He, Yuting; Du, Jinqiang

    2018-06-01

    This paper develops a high-sensitivity flexible eddy current array (HS-FECA) sensor for crack monitoring of welded structures under varying environment. Firstly, effects of stress, temperature and crack on output signals of the traditional flexible eddy current array (FECA) sensor were investigated by experiments that show both stress and temperature have great influences on the crack monitoring performance of the sensor. A 3-D finite element model was established using Comsol AC/DC module to analyze the perturbation effects of crack on eddy currents and output signals of the sensor, which showed perturbation effect of cracks on eddy currents is reduced by the current loop when crack propagates. Then, the HS-FECA sensor was proposed to boost the sensitivity to cracks. Simulation results show that perturbation effect of cracks on eddy currents excited by the HS-FECA sensor gradually grows stronger when the crack propagates, resulting in much higher sensitivity to cracks. Experimental result further shows that the sensitivity of the new sensor is at least 19 times that of the original one. In addition, both stress and temperature variations have little effect on signals of the new sensor.

  8. Flexible Bronchoscopy.

    Science.gov (United States)

    Miller, Russell J; Casal, Roberto F; Lazarus, Donald R; Ost, David E; Eapen, George A

    2018-03-01

    Flexible bronchoscopy has changed the course of pulmonary medicine. As technology advances, the role of the flexible bronchoscope for both diagnostic and therapeutic indications is continually expanding. This article reviews the historical development of the flexible bronchoscopy, fundamental uses of the flexible bronchoscope as a tool to examine the central airways and obtain diagnostic tissue, and the indications, complications, and contraindications to flexible bronchoscopy. Copyright © 2017 Elsevier Inc. All rights reserved.

  9. Exploring the atomic structure and conformational flexibility of a 320 Å long engineered viral fiber using X-ray crystallography

    Energy Technology Data Exchange (ETDEWEB)

    Bhardwaj, Anshul [Thomas Jefferson University, 233 South 10th Street, Philadelphia, PA 19107 (United States); Casjens, Sherwood R. [University of Utah School of Medicine, Salt Lake City, UT 84112 (United States); Cingolani, Gino, E-mail: gino.cingolani@jefferson.edu [Thomas Jefferson University, 233 South 10th Street, Philadelphia, PA 19107 (United States)

    2014-02-01

    This study presents the crystal structure of a ∼320 Å long protein fiber generated by in-frame extension of its repeated helical coiled-coil core. Protein fibers are widespread in nature, but only a limited number of high-resolution structures have been determined experimentally. Unlike globular proteins, fibers are usually recalcitrant to form three-dimensional crystals, preventing single-crystal X-ray diffraction analysis. In the absence of three-dimensional crystals, X-ray fiber diffraction is a powerful tool to determine the internal symmetry of a fiber, but it rarely yields atomic resolution structural information on complex protein fibers. An 85-residue-long minimal coiled-coil repeat unit (MiCRU) was previously identified in the trimeric helical core of tail needle gp26, a fibrous protein emanating from the tail apparatus of the bacteriophage P22 virion. Here, evidence is provided that an MiCRU can be inserted in frame inside the gp26 helical core to generate a rationally extended fiber (gp26-2M) which, like gp26, retains a trimeric quaternary structure in solution. The 2.7 Å resolution crystal structure of this engineered fiber, which measures ∼320 Å in length and is only 20–35 Å wide, was determined. This structure, the longest for a trimeric protein fiber to be determined to such a high resolution, reveals the architecture of 22 consecutive trimerization heptads and provides a framework to decipher the structural determinants for protein fiber assembly, stability and flexibility.

  10. Exploring the atomic structure and conformational flexibility of a 320 Å long engineered viral fiber using X-ray crystallography

    International Nuclear Information System (INIS)

    Bhardwaj, Anshul; Casjens, Sherwood R.; Cingolani, Gino

    2014-01-01

    This study presents the crystal structure of a ∼320 Å long protein fiber generated by in-frame extension of its repeated helical coiled-coil core. Protein fibers are widespread in nature, but only a limited number of high-resolution structures have been determined experimentally. Unlike globular proteins, fibers are usually recalcitrant to form three-dimensional crystals, preventing single-crystal X-ray diffraction analysis. In the absence of three-dimensional crystals, X-ray fiber diffraction is a powerful tool to determine the internal symmetry of a fiber, but it rarely yields atomic resolution structural information on complex protein fibers. An 85-residue-long minimal coiled-coil repeat unit (MiCRU) was previously identified in the trimeric helical core of tail needle gp26, a fibrous protein emanating from the tail apparatus of the bacteriophage P22 virion. Here, evidence is provided that an MiCRU can be inserted in frame inside the gp26 helical core to generate a rationally extended fiber (gp26-2M) which, like gp26, retains a trimeric quaternary structure in solution. The 2.7 Å resolution crystal structure of this engineered fiber, which measures ∼320 Å in length and is only 20–35 Å wide, was determined. This structure, the longest for a trimeric protein fiber to be determined to such a high resolution, reveals the architecture of 22 consecutive trimerization heptads and provides a framework to decipher the structural determinants for protein fiber assembly, stability and flexibility

  11. Linking Flexible-Dynamic Team Structures through Distributed Leadership: A Qualitative Evaluation with Single Design Case Approach and Application of Roster Method

    Directory of Open Access Journals (Sweden)

    Aykut BERBER

    2012-09-01

    Full Text Available Fierce competition in every sector has forced companies to re-design their structures towards being more customer-focused, faster and more responsive. In this vein, there is rising dominance of flexible-dynamic team structures in organizations and these teams are, most of the times, self-managed. Among these team structures, leadership characteristics are not only observed in official team leaders but such characteristics are distributed among team members. The concept of "leading without leaders" has gained scholarly interest and in this paper, aim is to evaluate and combine constructs of distributed leadership and flexible-dynamic team structures within a single design case approach. Local division of a multinational company that operates in luxury cosmetics sector is selected. In-depth interviews were conducted at the company site, and flexible-dynamic team structures were examined in detail. As a second tool, Roster method is applied to see existence and strength of distributed leadership among different departments. Findings supported that organizational structure of this company has become more flexible-dynamic with distributed leadership characteristics seen across all departments. These findings were significant because our selected company entered into Turkey market twice and the second entry has been operationally successful. Arguments are offered regarding differences between two periods and further implications are suggested in relation to adoption of a new and more responsive company structure. Structural changes between two periods constituted the focal point of this research.

  12. Hollow Few-Layer Graphene-Based Structures from Parafilm Waste for Flexible Transparent Supercapacitors and Oil Spill Cleanup.

    Science.gov (United States)

    Nguyen, Duc Dung; Hsieh, Ping-Yen; Tsai, Meng-Ting; Lee, Chi-Young; Tai, Nyan-Hwa; To, Bao Dong; Vu, Duc Tu; Hsu, Chia Chen

    2017-11-22

    We report a versatile strategy to exploit parafilm waste as a carbon precursor for fabrication of freestanding, hollow few-layer graphene fiber mesh (HFGM) structures without use of any gaseous carriers/promoters via an annealing route. The freestanding HFGMs possess good mechanical flexibility, tailorable transparency, and high electrical conductivity, consequently qualifying them as promising electrochemical electrodes. Because of the hollow spaces, electrolyte ions can easily access into and contact with interior surfaces of the graphene fibers, accordingly increasing electrode/electrolyte interfacial area. As expected, solid-state supercapacitors based on the HFGMs exhibit a considerable enhancement in specific capacitance (20-30 fold) as compared to those employing chemical vapor deposition compact graphene films. Moreover, the parafilm waste is found to be beneficial for one-step fabrication of nanocarbon/few-layer graphene composite meshes with superior electrochemical performance, outstanding superhydrophobic property, good self-cleaning ability, and great promise for oil spill cleanup.

  13. Changing Feeding Regimes To Demonstrate Flexible Biogas Production: Effects on Process Performance, Microbial Community Structure, and Methanogenesis Pathways

    Science.gov (United States)

    Mulat, Daniel Girma; Jacobi, H. Fabian; Feilberg, Anders; Adamsen, Anders Peter S.; Richnow, Hans-Hermann

    2015-01-01

    Flexible biogas production that adapts biogas output to energy demand can be regulated by changing feeding regimes. In this study, the effect of changes in feeding intervals on process performance, microbial community structure, and the methanogenesis pathway was investigated. Three different feeding regimes (once daily, every second day, and every 2 h) at the same organic loading rate were studied in continuously stirred tank reactors treating distiller's dried grains with solubles. A larger amount of biogas was produced after feeding in the reactors fed less frequently (once per day and every second day), whereas the amount remained constant in the reactor fed more frequently (every 2 h), indicating the suitability of the former for the flexible production of biogas. Compared to the conventional more frequent feeding regimes, a methane yield that was up to 14% higher and an improved stability of the process against organic overloading were achieved by employing less frequent feeding regimes. The community structures of bacteria and methanogenic archaea were monitored by terminal restriction fragment length polymorphism (T-RFLP) analysis of 16S rRNA and mcrA genes, respectively. The results showed that the composition of the bacterial community varied under the different feeding regimes, and the observed T-RFLP patterns were best explained by the differences in the total ammonia nitrogen concentrations, H2 levels, and pH values. However, the methanogenic community remained stable under all feeding regimes, with the dominance of the Methanosarcina genus followed by that of the Methanobacterium genus. Stable isotope analysis showed that the average amount of methane produced during each feeding event by acetoclastic and hydrogenotrophic methanogenesis was not influenced by the three different feeding regimes. PMID:26497462

  14. Changing Feeding Regimes To Demonstrate Flexible Biogas Production: Effects on Process Performance, Microbial Community Structure, and Methanogenesis Pathways.

    Science.gov (United States)

    Mulat, Daniel Girma; Jacobi, H Fabian; Feilberg, Anders; Adamsen, Anders Peter S; Richnow, Hans-Hermann; Nikolausz, Marcell

    2016-01-15

    Flexible biogas production that adapts biogas output to energy demand can be regulated by changing feeding regimes. In this study, the effect of changes in feeding intervals on process performance, microbial community structure, and the methanogenesis pathway was investigated. Three different feeding regimes (once daily, every second day, and every 2 h) at the same organic loading rate were studied in continuously stirred tank reactors treating distiller's dried grains with solubles. A larger amount of biogas was produced after feeding in the reactors fed less frequently (once per day and every second day), whereas the amount remained constant in the reactor fed more frequently (every 2 h), indicating the suitability of the former for the flexible production of biogas. Compared to the conventional more frequent feeding regimes, a methane yield that was up to 14% higher and an improved stability of the process against organic overloading were achieved by employing less frequent feeding regimes. The community structures of bacteria and methanogenic archaea were monitored by terminal restriction fragment length polymorphism (T-RFLP) analysis of 16S rRNA and mcrA genes, respectively. The results showed that the composition of the bacterial community varied under the different feeding regimes, and the observed T-RFLP patterns were best explained by the differences in the total ammonia nitrogen concentrations, H2 levels, and pH values. However, the methanogenic community remained stable under all feeding regimes, with the dominance of the Methanosarcina genus followed by that of the Methanobacterium genus. Stable isotope analysis showed that the average amount of methane produced during each feeding event by acetoclastic and hydrogenotrophic methanogenesis was not influenced by the three different feeding regimes. Copyright © 2016, American Society for Microbiology. All Rights Reserved.

  15. (In)Flexibility of Constituency in Japanese in Multi-Modal Categorial Grammar with Structured Phonology

    Science.gov (United States)

    Kubota, Yusuke

    2010-01-01

    This dissertation proposes a theory of categorial grammar called Multi-Modal Categorial Grammar with Structured Phonology. The central feature that distinguishes this theory from the majority of contemporary syntactic theories is that it decouples (without completely segregating) two aspects of syntax--hierarchical organization (reflecting…

  16. Joint nonlinearity effects in the design of a flexible truss structure control system

    Science.gov (United States)

    Mercadal, Mathieu

    1986-01-01

    Nonlinear effects are introduced in the dynamics of large space truss structures by the connecting joints which are designed with rather important tolerances to facilitate the assembly of the structures in space. The purpose was to develop means to investigate the nonlinear dynamics of the structures, particularly the limit cycles that might occur when active control is applied to the structures. An analytical method was sought and derived to predict the occurrence of limit cycles and to determine their stability. This method is mainly based on the quasi-linearization of every joint using describing functions. This approach was proven successful when simple dynamical systems were tested. Its applicability to larger systems depends on the amount of computations it requires, and estimates of the computational task tend to indicate that the number of individual sources of nonlinearity should be limited. Alternate analytical approaches, which do not account for every single nonlinearity, or the simulation of a simplified model of the dynamical system should, therefore, be investigated to determine a more effective way to predict limit cycles in large dynamical systems with an important number of distributed nonlinearities.

  17. Finite element analysis of a fluid-structure interaction in flexible pipe ...

    African Journals Online (AJOL)

    The obtained mathematical system is constituted of four non-linear hyperbolic partial differential equations describing the wave propagation in both pipe wall and liquid flow. The fluid-structure interaction is found to be governed by Poisson's ratio. In this steady finite element method based on Galerkin formulation is applied.

  18. Flexible and elastic porous poly(trimethylene carbonate) structures for use in vascular tissue engineering

    NARCIS (Netherlands)

    Song, Y.; Kamphuis, Marloes; Zhang Zheng, Z.Z.; Zhang, Z.; Sterk, L.M.Th.; Vermes, I.; Poot, Andreas A.; Feijen, Jan; Grijpma, Dirk W.

    Biocompatible and elastic porous tubular structures based on poly(1,3-trimethylene carbonate), PTMC, were developed as scaffolds for tissue engineering of small-diameter blood vessels. High-molecular-weight PTMC (Mn = 4.37 × 105) was cross-linked by gamma-irradiation in an inert nitrogen atmosphere.

  19. Micro/Nano-Structured Flexible Foils for Anti-Counterfeiting Purposes

    DEFF Research Database (Denmark)

    Okulova, Nastasia

    2016-01-01

    has been demonstrated. The focus of this study lies on the reproduction of the previous results for nano- or micro-structures and implementation of this technology for mass production of such patterned foils for the use in packaging. An interesting application is production of holograms with build...

  20. Simulation of the fluid structure interaction for an aerostatic bearing and a flexible substrate

    NARCIS (Netherlands)

    Olieslagers, R.; Wild, M. de; Melick, S. van; Knaapen, R.

    2014-01-01

    The fluid structure interaction for an aerostatic bearing and a substrate is solved numerically by a semi-analytical model, programmed in the software package MATLAB. This semi-analytical model uses a fluidic network of resistances and capacities to solve the pressure field in the bearing channel.

  1. Analysis and Design Tools for Fluid-Structure Interaction with Multi-Body Flexible Structures, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — The overall objective of this proposal (Phases I and II) is to develop a robust and accurate solver for fluid-structure interaction computations capable of...

  2. Global Structural Flexibility of Metalloproteins Regulates Reactivity of Transition Metal Ion in the Protein Core: An Experimental Study Using Thiol-subtilisin as a Model Protein.

    Science.gov (United States)

    Matsuo, Takashi; Kono, Takamasa; Shobu, Isamu; Ishida, Masaya; Gonda, Katsuya; Hirota, Shun

    2018-02-21

    The functions of metal-containing proteins (metalloproteins) are determined by the reactivities of transition metal ions at their active sites. Because protein macromolecular structures have several molecular degrees of freedom, global structural flexibility may also regulate the properties of metalloproteins. However, the influence of this factor has not been fully delineated in mechanistic studies of metalloproteins. Accordingly, we have investigated the relationship between global protein flexibility and the characteristics of a transition metal ion in the protein core using thiol-subtilisin (tSTL) with a Cys-coordinated Cu 2+ ion as a model system. Although tSTL has two Ca 2+ -binding sites, the Ca 2+ -binding status hardly affects its secondary structure. Nevertheless, guanidinium-induced denaturation and amide H/D exchange indicated the increase in the structural flexibility of tSTL by the removal of bound Ca 2+ ions. Electron paramagnetic resonance and absorption spectral changes have revealed that the protein flexibility determines the characteristics of a Cu 2+ ion in tSTL. Therefore, global protein flexibility should be recognized as an important factor that regulates the properties of metalloproteins. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Concerted Flexibility of Chromatin Structure, Methylome, and Histone Modifications along with Plant Stress Responses

    Directory of Open Access Journals (Sweden)

    Ana Paula Santos

    2017-01-01

    Full Text Available The spatial organization of chromosome structure within the interphase nucleus, as well as the patterns of methylome and histone modifications, represent intersecting layers that influence genome accessibility and function. This review is focused on the plastic nature of chromatin structure and epigenetic marks in association to stress situations. The use of chemical compounds (epigenetic drugs or T-DNA-mediated mutagenesis affecting epigenetic regulators (epi-mutants are discussed as being important tools for studying the impact of deregulated epigenetic backgrounds on gene function and phenotype. The inheritability of epigenetic marks and chromatin configurations along successive generations are interpreted as a way for plants to “communicate” past experiences of stress sensing. A mechanistic understanding of chromatin and epigenetics plasticity in plant response to stress, including tissue- and genotype-specific epigenetic patterns, may help to reveal the epigenetics contributions for genome and phenotype regulation.

  4. Salt and divalent cations affect the flexible nature of the natural beaded chromatin structure

    DEFF Research Database (Denmark)

    Christiansen, Gunna; Griffith, J

    1977-01-01

    Cl or 0.6M NaCL, and is compact in 0.01 M NaCl solutions if histone H 1 is present. Even high concentrations of urea did not alter the fundamental beaded structure, consisting of 110A beads of 200 base pair content, each joined by thin DNA bridges of 50 base pairs. The physical bead observed by EM...

  5. Transform Methods for Precision Nonlinear Wave Models of Flexible space Structures

    Science.gov (United States)

    1990-08-20

    developed, each of which has motivated a structural control methodology in a natural way. The Transform Element Modelling (TEM) approach uses the Laplace...IEk A L 2 = -, c G= ( C .3 a ,b ) Talng the Laplace transfor-m (neglecting initial conditions) )ields [1+tjSZ-(,s) +S ((X’S) + al2a~ pS4 (X’S) j(X’s) (04

  6. 3D flexible NiTi-braided elastomer composites for smart structure applications

    Czech Academy of Sciences Publication Activity Database

    Heller, Luděk; Vokoun, David; Šittner, Petr; Finckh, H.

    2012-01-01

    Roč. 21, č. 4 (2012), s. 1-13 ISSN 0964-1726 R&D Projects: GA ČR GAP108/10/1296 EU Projects: European Commission(XE) 46559 - CERINKA; European Commission(XE) 19945 - UPWIND; European Commission(XE) 515813 - AVALON Institutional research plan: CEZ:AV0Z10100520 Keywords : NiTi * braided structures * composites Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 2.024, year: 2012

  7. Structure and Misfolding of the Flexible Tripartite Coiled-Coil Domain of Glaucoma-Associated Myocilin

    Energy Technology Data Exchange (ETDEWEB)

    Hill, Shannon E.; Nguyen, Elaine; Donegan, Rebecca K.; Patterson-Orazem, Athéna C.; Hazel, Anthony; Gumbart, James C.; Lieberman, Raquel L.

    2017-11-01

    Glaucoma-associated myocilin is a member of the olfactomedins, a protein family involved in neuronal development and human diseases. Molecular studies of the myocilin N-terminal coiled coil demonstrate a unique tripartite architecture: a Y-shaped parallel dimer-of-dimers with distinct tetramer and dimer regions. The structure of the dimeric C-terminal 7-heptad repeats elucidates an unexpected repeat pattern involving inter-strand stabilization by oppositely charged residues. Molecular dynamics simulations reveal an alternate accessible conformation in which the terminal inter-strand disulfide limits the extent of unfolding and results in a kinked configuration. By inference, full-length myocilin is also branched, with two pairs of C-terminal olfactomedin domains. Selected variants within the N-terminal region alter the apparent quaternary structure of myocilin but do so without compromising stability or causing aggregation. In addition to increasing our structural knowledge of naturally occurring extracellular coiled coils and biomedically important olfactomedins, this work broadens the scope of protein misfolding in the pathogenesis of myocilin-associated glaucoma.

  8. Structure and Misfolding of the Flexible Tripartite Coiled-Coil Domain of Glaucoma-Associated Myocilin.

    Science.gov (United States)

    Hill, Shannon E; Nguyen, Elaine; Donegan, Rebecca K; Patterson-Orazem, Athéna C; Hazel, Anthony; Gumbart, James C; Lieberman, Raquel L

    2017-11-07

    Glaucoma-associated myocilin is a member of the olfactomedins, a protein family involved in neuronal development and human diseases. Molecular studies of the myocilin N-terminal coiled coil demonstrate a unique tripartite architecture: a Y-shaped parallel dimer-of-dimers with distinct tetramer and dimer regions. The structure of the dimeric C-terminal 7-heptad repeats elucidates an unexpected repeat pattern involving inter-strand stabilization by oppositely charged residues. Molecular dynamics simulations reveal an alternate accessible conformation in which the terminal inter-strand disulfide limits the extent of unfolding and results in a kinked configuration. By inference, full-length myocilin is also branched, with two pairs of C-terminal olfactomedin domains. Selected variants within the N-terminal region alter the apparent quaternary structure of myocilin but do so without compromising stability or causing aggregation. In addition to increasing our structural knowledge of naturally occurring extracellular coiled coils and biomedically important olfactomedins, this work broadens the scope of protein misfolding in the pathogenesis of myocilin-associated glaucoma. Copyright © 2017 Elsevier Ltd. All rights reserved.

  9. Analysis of Structural Flexibility of Damaged DNA Using Thiol-Tethered Oligonucleotide Duplexes.

    Directory of Open Access Journals (Sweden)

    Masashi Fujita

    Full Text Available Bent structures are formed in DNA by the binding of small molecules or proteins. We developed a chemical method to detect bent DNA structures. Oligonucleotide duplexes in which two mercaptoalkyl groups were attached to the positions facing each other across the major groove were prepared. When the duplex contained the cisplatin adduct, which was proved to induce static helix bending, interstrand disulfide bond formation under an oxygen atmosphere was detected by HPLC analyses, but not in the non-adducted duplex, when the two thiol-tethered nucleosides were separated by six base pairs. When the insert was five and seven base pairs, the disulfide bond was formed and was not formed, respectively, regardless of the cisplatin adduct formation. The same reaction was observed in the duplexes containing an abasic site analog and the (6–4 photoproduct. Compared with the cisplatin case, the disulfide bond formation was slower in these duplexes, but the reaction rate was nearly independent of the linker length. These results indicate that dynamic structural changes of the abasic site- and (6–4 photoproduct-containing duplexes could be detected by our method. It is strongly suggested that the UV-damaged DNA-binding protein, which specifically binds these duplexes and functions at the first step of global-genome nucleotide excision repair, recognizes the easily bendable nature of damaged DNA.

  10. Modelling of flexibles for structural analysis of short straight section of Large Hadron Collider

    International Nuclear Information System (INIS)

    Abhay Kumar; Dutta, Subhajit; Dwivedi, Jishnu; Soni, H.C.

    2003-01-01

    Short Straight Section (SSS) of Large hadron Collider (LRCM) is a 8-meter long structure with a diameter of 1 meter and it houses a twin quadrupole. The cryogens are fed to the Sass through a jumper connection between Cryogenic Distribution Line (QRL) and SSS. The bus bars travel through interconnection bellows to adjoining magnets. CAT is studying the structural behavior of cold mass and the cryostat when subjected to various forces imposed on the SSS under various operating conditions of LHC machine including realignment required to compensate local sinking of the floor of the tunnel during the LHC machine's lifetime. CAT did calculation of reaction forces and moments on the Short Straight Section due to presence of jumper connection last year after the experimental verification of finite element model at CERN. Subsequently, a unified Fe model consisting of cold mass, cold feet, vacuum vessel, main vacuum vessel bellows (large sleeves), magnet interconnects, jumper connection, service module and precision motion jacks is being developed for studying the structural behaviour. (author)

  11. Structural flexibility of the sulfur mustard molecule at finite temperature from Car-Parrinello molecular dynamics simulations.

    Science.gov (United States)

    Lach, Joanna; Goclon, Jakub; Rodziewicz, Pawel

    2016-04-05

    Sulfur mustard (SM) is one of the most dangerous chemical compounds used against humans, mostly at war conditions but also in terrorist attacks. Even though the sulfur mustard has been synthesized over a hundred years ago, some of its molecular properties are not yet resolved. We investigate the structural flexibility of the SM molecule in the gas phase by Car-Parrinello molecular dynamics simulations. Thorough conformation analysis of 81 different SM configurations using density functional theory is performed to analyze the behavior of the system at finite temperature. The conformational diversity is analyzed with respect to the formation of intramolecular blue-shifting CH⋯S and CH⋯Cl hydrogen bonds. Molecular dynamics simulations indicate that all structural rearrangements between SM local minima are realized either in direct or non-direct way, including the intermediate structure in the last case. We study the lifetime of the SM conformers and perform the population analysis. Additionally, we provide the anharmonic dynamical finite temperature IR spectrum from the Fourier Transform of the dipole moment autocorrelation function to mimic the missing experimental IR spectrum. Copyright © 2015 Elsevier B.V. All rights reserved.

  12. The crystal structure of the Dachshund domain of human SnoN reveals flexibility in the putative protein interaction surface.

    Directory of Open Access Journals (Sweden)

    Tomas Nyman

    2010-09-01

    Full Text Available The human SnoN is an oncoprotein that interacts with several transcription-regulatory proteins such as the histone-deacetylase, N-CoR containing co-repressor complex and Smad proteins. This study presents the crystal structure of the Dachshund homology domain of human SnoN. The structure reveals a groove composed of conserved residues with characteristic properties of a protein-interaction surface. A comparison of the 12 monomers in the asymmetric unit reveals the presence of two major conformations: an open conformation with a well accessible groove and a tight conformation with a less accessible groove. The variability in the backbone between the open and the tight conformations matches the differences seen in previously determined structures of individual Dachshund homology domains, suggesting a general plasticity within this fold family. The flexibility observed in the putative protein binding groove may enable SnoN to recognize multiple interaction partners.This article can also be viewed as an enhanced version in which the text of the article is integrated with interactive 3D representations and animated transitions. Please note that a web plugin is required to access this enhanced functionality. Instructions for the installation and use of the web plugin are available in Text S1.

  13. Crystal structure and conformational flexibility of the unligated FK506-binding protein FKBP12.6

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Hui; Mustafi, Sourajit M. [New York State Department of Health, Empire State Plaza, Albany, NY 12201 (United States); LeMaster, David M. [New York State Department of Health, Empire State Plaza, Albany, NY 12201 (United States); University at Albany – SUNY, Empire State Plaza, Albany, NY 12201 (United States); Li, Zhong [New York State Department of Health, Empire State Plaza, Albany, NY 12201 (United States); Héroux, Annie [Brookhaven National Laboratory, Upton, NY 11973 (United States); Li, Hongmin; Hernández, Griselda, E-mail: griselda@wadsworth.org [New York State Department of Health, Empire State Plaza, Albany, NY 12201 (United States); University at Albany – SUNY, Empire State Plaza, Albany, NY 12201 (United States)

    2014-03-01

    Two crystal forms of unligated FKBP12.6 exhibit multiple conformations in the active site and in the 80s loop, the primary site for known protein-recognition interactions. The previously unreported NMR backbone assignment of FKBP12.6 revealed extensive doubling of amide resonances, which reflects a slow conformational transition centered in the 80s loop. The primary known physiological function of FKBP12.6 involves its role in regulating the RyR2 isoform of ryanodine receptor Ca{sup 2+} channels in cardiac muscle, pancreatic β islets and the central nervous system. With only a single previously reported X-ray structure of FKBP12.6, bound to the immunosuppressant rapamycin, structural inferences for this protein have been drawn from the more extensive studies of the homologous FKBP12. X-ray structures at 1.70 and 1.90 Å resolution from P2{sub 1} and P3{sub 1}21 crystal forms are reported for an unligated cysteine-free variant of FKBP12.6 which exhibit a notable diversity of conformations. In one monomer from the P3{sub 1}21 crystal form, the aromatic ring of Phe59 at the base of the active site is rotated perpendicular to its typical orientation, generating a steric conflict for the immunosuppressant-binding mode. The peptide unit linking Gly89 and Val90 at the tip of the protein-recognition ‘80s loop’ is flipped in the P2{sub 1} crystal form. Unlike the >30 reported FKBP12 structures, the backbone conformation of this loop closely follows that of the first FKBP domain of FKBP51. The NMR resonances for 21 backbone amides of FKBP12.6 are doubled, corresponding to a slow conformational transition centered near the tip of the 80s loop, as recently reported for 31 amides of FKBP12. The comparative absence of doubling for residues along the opposite face of the active-site pocket in FKBP12.6 may in part reflect attenuated structural coupling owing to increased conformational plasticity around the Phe59 ring.

  14. Simulating the fluid-structure interaction of a flexible tube in an array of rigid tubes

    International Nuclear Information System (INIS)

    Warnica, D.; Maleki, M.; Hariri, A.; Feldman, H.

    2011-01-01

    Two important single-phase mechanisms for flow-induced vibration of heat-exchanger tube bundles were used to demonstrate the capabilities of commercial software to simulate unsteady fluid-structure interactions (FSI). Reasonable agreement was obtained between the FSI simulations and experimental data for the onset of fluid elastic instability. There was also reasonable agreement between the FSI simulations and empirical correlations for the dynamic tube response to random turbulence excitation. Additional benefits of performing FSI simulations were the ability to characterize important features of the unsteady flow fields and hydrodynamic parameters such as viscous damping coefficients, which would otherwise require elaborate experimental measurements. (author)

  15. Structural insights into the evolution of a sexy protein: novel topology and restricted backbone flexibility in a hypervariable pheromone from the red-legged salamander, Plethodon shermani.

    Science.gov (United States)

    Wilburn, Damien B; Bowen, Kathleen E; Doty, Kari A; Arumugam, Sengodagounder; Lane, Andrew N; Feldhoff, Pamela W; Feldhoff, Richard C

    2014-01-01

    In response to pervasive sexual selection, protein sex pheromones often display rapid mutation and accelerated evolution of corresponding gene sequences. For proteins, the general dogma is that structure is maintained even as sequence or function may rapidly change. This phenomenon is well exemplified by the three-finger protein (TFP) superfamily: a diverse class of vertebrate proteins co-opted for many biological functions - such as components of snake venoms, regulators of the complement system, and coordinators of amphibian limb regeneration. All of the >200 structurally characterized TFPs adopt the namesake "three-finger" topology. In male red-legged salamanders, the TFP pheromone Plethodontid Modulating Factor (PMF) is a hypervariable protein such that, through extensive gene duplication and pervasive sexual selection, individual male salamanders express more than 30 unique isoforms. However, it remained unclear how this accelerated evolution affected the protein structure of PMF. Using LC/MS-MS and multidimensional NMR, we report the 3D structure of the most abundant PMF isoform, PMF-G. The high resolution structural ensemble revealed a highly modified TFP structure, including a unique disulfide bonding pattern and loss of secondary structure, that define a novel protein topology with greater backbone flexibility in the third peptide finger. Sequence comparison, models of molecular evolution, and homology modeling together support that this flexible third finger is the most rapidly evolving segment of PMF. Combined with PMF sequence hypervariability, this structural flexibility may enhance the plasticity of PMF as a chemical signal by permitting potentially thousands of structural conformers. We propose that the flexible third finger plays a critical role in PMF:receptor interactions. As female receptors co-evolve, this flexibility may allow PMF to still bind its receptor(s) without the immediate need for complementary mutations. Consequently, this unique

  16. Structural insights into the evolution of a sexy protein: novel topology and restricted backbone flexibility in a hypervariable pheromone from the red-legged salamander, Plethodon shermani.

    Directory of Open Access Journals (Sweden)

    Damien B Wilburn

    Full Text Available In response to pervasive sexual selection, protein sex pheromones often display rapid mutation and accelerated evolution of corresponding gene sequences. For proteins, the general dogma is that structure is maintained even as sequence or function may rapidly change. This phenomenon is well exemplified by the three-finger protein (TFP superfamily: a diverse class of vertebrate proteins co-opted for many biological functions - such as components of snake venoms, regulators of the complement system, and coordinators of amphibian limb regeneration. All of the >200 structurally characterized TFPs adopt the namesake "three-finger" topology. In male red-legged salamanders, the TFP pheromone Plethodontid Modulating Factor (PMF is a hypervariable protein such that, through extensive gene duplication and pervasive sexual selection, individual male salamanders express more than 30 unique isoforms. However, it remained unclear how this accelerated evolution affected the protein structure of PMF. Using LC/MS-MS and multidimensional NMR, we report the 3D structure of the most abundant PMF isoform, PMF-G. The high resolution structural ensemble revealed a highly modified TFP structure, including a unique disulfide bonding pattern and loss of secondary structure, that define a novel protein topology with greater backbone flexibility in the third peptide finger. Sequence comparison, models of molecular evolution, and homology modeling together support that this flexible third finger is the most rapidly evolving segment of PMF. Combined with PMF sequence hypervariability, this structural flexibility may enhance the plasticity of PMF as a chemical signal by permitting potentially thousands of structural conformers. We propose that the flexible third finger plays a critical role in PMF:receptor interactions. As female receptors co-evolve, this flexibility may allow PMF to still bind its receptor(s without the immediate need for complementary mutations. Consequently

  17. Enhancing sound absorption and transmission through flexible multi-layer micro-perforated structures.

    Science.gov (United States)

    Bravo, Teresa; Maury, Cédric; Pinhède, Cédric

    2013-11-01

    Theoretical and experimental results are presented into the sound absorption and transmission properties of multi-layer structures made up of thin micro-perforated panels (ML-MPPs). The objective is to improve both the absorption and insulation performances of ML-MPPs through impedance boundary optimization. A fully coupled modal formulation is introduced that predicts the effect of the structural resonances onto the normal incidence absorption coefficient and transmission loss of ML-MPPs. This model is assessed against standing wave tube measurements and simulations based on impedance translation method for two double-layer MPP configurations of relevance in building acoustics and aeronautics. Optimal impedance relationships are proposed that ensure simultaneous maximization of both the absorption and the transmission loss under normal incidence. Exhaustive optimization of the double-layer MPPs is performed to assess the absorption and/or transmission performances with respect to the impedance criterion. It is investigated how the panel volumetric resonances modify the excess dissipation that can be achieved from non-modal optimization of ML-MPPs.

  18. Fluid structure interaction modeling of liquid sloshing phenomena in flexible tanks

    International Nuclear Information System (INIS)

    Nicolici, S.; Bilegan, R.M.

    2013-01-01

    Highlights: ► We used Ansys Workbench package to study sloshing phenomena in liquid containers. ► The interaction liquid–structure is modeled considering full and one-way coupling. ► The results obtained with the FSI models were compared against design codes. ► The results have shown that the sloshing is influenced by tank wall elasticity. -- Abstract: The present paper is concerned with the problem of modeling the fluid–structure interaction (FSI) in partially filled liquid containers. The study focuses on the sloshing phenomena and on the coupling computational fluid dynamics (CFD) analysis with the finite element stress analysis (FEA) used to predict the sloshing wave amplitude, convective mode frequency, pressure exerted on the walls and the effect of sloshing on the anchoring points forces. The interaction between fluids (water and air) and tank wall is modeled considering full and one-way coupling. Using the time history of an earthquake excitation, the results of the FSI model are compared with those obtained employing simplified mechanical models given in design codes. The coupling phenomenon was found to influence the sloshing effect, the impulsive pressure being amplified by the wall elasticity. The applied FSI methodology proves to be feasible in analyzing a 3D full coupled CFD/FEA storage tank subjected to a long time history excitation

  19. On flexibility

    OpenAIRE

    Weiss, Christoph R.; Briglauer, Wolfgang

    2000-01-01

    By building on theoretical work by Mills and Schumann (1985) and Ungern-Sternberg (1990) this paper provides evidence on the determinants of two dimensions of flexibility, the flexibility in adjusting aggregate output over time (tactical flexibility) as well as the ability to switch quickly between products (operational flexibility). Econometric analysis of a sample of 40.000 farms in Upper-Austria for the period 1980 to 1990 suggests that larger full-time farms operated by younger, better ed...

  20. Electroactive nanoparticle directed assembly of functionalized graphene nanosheets into hierarchical structures with hybrid compositions for flexible supercapacitors

    Science.gov (United States)

    Choi, Bong Gill; Huh, Yun Suk; Hong, Won Hi; Erickson, David; Park, Ho Seok

    2013-04-01

    Hierarchical structures of hybrid materials with the controlled compositions have been shown to offer a breakthrough for energy storage and conversion. Here, we report the integrative assembly of chemically modified graphene (CMG) building blocks into hierarchical complex structures with the hybrid composition for high performance flexible pseudocapacitors. The formation mechanism of hierarchical CMG/Nafion/RuO2 (CMGNR) microspheres, which is triggered by the cooperative interplay during the in situ synthesis of RuO2 nanoparticles (NPs), was extensively investigated. In particular, the hierarchical CMGNR microspheres consisting of the aggregates of CMG/Nafion (CMGN) nanosheets and RuO2 NPs provided large surface area and facile ion accessibility to storage sites, while the interconnected nanosheets offered continuous electron pathways and mechanical integrity. The synergistic effect of CMGNR hybrids on the supercapacitor (SC) performance was derived from the hybrid composition of pseudocapacitive RuO2 NPs with the conductive CMGNs as well as from structural features. Consequently, the CMGNR-SCs showed a specific capacitance as high as 160 F g-1, three-fold higher than that of conventional graphene SCs, and a capacitance retention of >95% of the maximum value even after severe bending and 1000 charge-discharge tests due to the structural and compositional features.Hierarchical structures of hybrid materials with the controlled compositions have been shown to offer a breakthrough for energy storage and conversion. Here, we report the integrative assembly of chemically modified graphene (CMG) building blocks into hierarchical complex structures with the hybrid composition for high performance flexible pseudocapacitors. The formation mechanism of hierarchical CMG/Nafion/RuO2 (CMGNR) microspheres, which is triggered by the cooperative interplay during the in situ synthesis of RuO2 nanoparticles (NPs), was extensively investigated. In particular, the hierarchical CMGNR

  1. Zn(II) coordination polymers with flexible V-shaped dicarboxylate ligand: Syntheses, helical structures and properties

    Energy Technology Data Exchange (ETDEWEB)

    Li, Lin [School of Environment and Chemical Engineering, Nanchang Hangkong University, Nanchang 330063 (China); Liu, Chong-Bo, E-mail: cbliu@nchu.edu.cn [School of Environment and Chemical Engineering, Nanchang Hangkong University, Nanchang 330063 (China); Yang, Gao-Shan [School of Environment and Chemical Engineering, Nanchang Hangkong University, Nanchang 330063 (China); Xiong, Zhi-Qiang [Center for Analysis and Testing, Nanchang Hangkong University, Nanchang 330063 (China); Liu, Hong [School of Environment and Chemical Engineering, Nanchang Hangkong University, Nanchang 330063 (China); Wen, Hui-Liang [State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047 (China)

    2015-11-15

    Hydrothermal reactions of 2,2′-[hexafluoroisopropylidenebis(p-phenyleneoxy)]diacetic acid (H{sub 2}L) and zinc ions in the presence of N-donor ancillary ligands afford four novel coordination polymers, namely, [Zn{sub 2}(μ{sub 2}-OH)(μ{sub 4}-O){sub 0.5}(L)]·0.5H{sub 2}O (1), [Zn(L)(2,2′-bipy)(H{sub 2}O)] (2), [Zn{sub 3}(L){sub 3}(phen){sub 2}]·H{sub 2}O (3) and [Zn{sub 2}(L){sub 2}(4,4′-bipy)] (4) (2,2′-bipy=2,2′-bipyridine; 4,4′-bipy=4,4′-bipyridine; phen=1,10-phenanthroline). Their structures have been determined by single-crystal X-ray diffraction analyses, elemental analyses, IR spectra, powder X-ray diffraction (PXRD), and thermogravimetric (TG) analyses. Complex 1 shows a 3-D clover framework consisting of [Zn{sub 4}(µ{sub 4}-O)(µ{sub 2}-OH){sub 2}]{sup 4+} clusters, and exhibits a novel (3,8)-connected topological net with the Schläfli symbol of {3·4·5}{sub 2}{3"4·4"4·5"2·6"6·7"1"0·8"2}, and contains double-stranded and two kinds of meso-helices. 2 displays a helical chain structure, which is further extended via hydrogen bonds into a 3-D supramolecular structure with meso-helix chains. 3 displays a 2-D {4"4·6"2} parallelogram structure, which is further extended via hydrogen bonds into a 3-D supramolecular structure with single-stranded helical chains. 4 shows a 2-D {4"4·6"2} square structure with left- and right-handed helical chains. Moreover, the luminescent properties of 1–4 have been investigated. - Graphical abstract: Four new Zn(II) coordination polymers with helical structures based on flexible V-shaped dicarboxylate ligand have been synthesized and structurally characterized. Photoluminescent properties have been investigated. - Highlights: • Four novel Zn(II) coordination polymers with V-shaped ligand were characterized. • Complexes 1–4 show diverse intriguing helical characters. • Fluorescence properties of complexes 1–4 were investigated.

  2. Active vibration reduction of a flexible structure bonded with optimised piezoelectric pairs using half and quarter chromosomes in genetic algorithms

    International Nuclear Information System (INIS)

    Daraji, A H; Hale, J M

    2012-01-01

    The optimal placement of sensors and actuators in active vibration control is limited by the number of candidates in the search space. The search space of a small structure discretized to one hundred elements for optimising the location of ten actuators gives 1.73 × 10 13 possible solutions, one of which is the global optimum. In this work, a new quarter and half chromosome technique based on symmetry is developed, by which the search space for optimisation of sensor/actuator locations in active vibration control of flexible structures may be greatly reduced. The technique is applied to the optimisation for eight and ten actuators located on a 500×500mm square plate, in which the search space is reduced by up to 99.99%. This technique helps for updating genetic algorithm program by updating natural frequencies and mode shapes in each generation to find the global optimal solution in a greatly reduced number of generations. An isotropic plate with piezoelectric sensor/actuator pairs bonded to its surface was investigated using the finite element method and Hamilton's principle based on first order shear deformation theory. The placement and feedback gain of ten and eight sensor/actuator pairs was optimised for a cantilever and clamped-clamped plate to attenuate the first six modes of vibration, using minimization of linear quadratic index as an objective function.

  3. Target specific proteochemometric model development for BACE1 - protein flexibility and structural water are critical in virtual screening.

    Science.gov (United States)

    Manoharan, Prabu; Chennoju, Kiranmai; Ghoshal, Nanda

    2015-07-01

    BACE1 is an attractive target in Alzheimer's disease (AD) treatment. A rational drug design effort for the inhibition of BACE1 is actively pursued by researchers in both academic and pharmaceutical industries. This continued effort led to the steady accumulation of BACE1 crystal structures, co-complexed with different classes of inhibitors. This wealth of information is used in this study to develop target specific proteochemometric models and these models are exploited for predicting the prospective BACE1 inhibitors. The models developed in this study have performed excellently in predicting the computationally generated poses, separately obtained from single and ensemble docking approaches. The simple protein-ligand contact (SPLC) model outperforms other sophisticated high end models, in virtual screening performance, developed during this study. In an attempt to account for BACE1 protein active site flexibility information in predictive models, we included the change in the area of solvent accessible surface and the change in the volume of solvent accessible surface in our models. The ensemble and single receptor docking results obtained from this study indicate that the structural water mediated interactions improve the virtual screening results. Also, these waters are essential for recapitulating bioactive conformation during docking study. The proteochemometric models developed in this study can be used for the prediction of BACE1 inhibitors, during the early stage of AD drug discovery.

  4. Structure and dynamics of confined flexible and unentangled polymer melts in highly adsorbing cylindrical pores

    International Nuclear Information System (INIS)

    Carrillo, Jan-Michael Y.; Sumpter, Bobby G.

    2014-01-01

    Coarse-grained molecular dynamics simulations are used to probe the dynamic phenomena of polymer melts confined in nanopores. The simulation results show excellent agreement in the values obtained for the normalized coherent single chain dynamic structure factor, (S(Q,Δt))/(S(Q,0)) . In the bulk configuration, both simulations and experiments confirm that the polymer chains follow Rouse dynamics. However, under confinement, the Rouse modes are suppressed. The mean-square radius of gyration 〈R g 2 〉 and the average relative shape anisotropy 〈κ 2 〉 of the conformation of the polymer chains indicate a pancake-like conformation near the surface and a bulk-like conformation near the center of the confining cylinder. This was confirmed by direct visualization of the polymer chains. Despite the presence of these different conformations, the average form factor of the confined chains still follows the Debye function which describes linear ideal chains, which is in agreement with small angle neutron scattering experiments (SANS). The experimentally inaccessible mean-square displacement (MSD) of the confined monomers, calculated as a function of radial distance from the pore surface, was obtained in the simulations. The simulations show a gradual increase of the MSD from the adsorbed, but mobile layer, to that similar to the bulk far away from the surface

  5. Three-dimensional skeleton networks of graphene wrapped polyaniline nanofibers: an excellent structure for high-performance flexible solid-state supercapacitors

    Science.gov (United States)

    Hu, Nantao; Zhang, Liling; Yang, Chao; Zhao, Jian; Yang, Zhi; Wei, Hao; Liao, Hanbin; Feng, Zhenxing; Fisher, Adrian; Zhang, Yafei; Xu, Zhichuan J.

    2016-01-01

    Thin, robust, lightweight, and flexible supercapacitors (SCs) have aroused growing attentions nowadays due to the rapid development of flexible electronics. Graphene-polyaniline (PANI) hybrids are attractive candidates for high performance SCs. In order to utilize them in real devices, it is necessary to improve the capacitance and the structure stability of PANI. Here we report a hierarchical three-dimensional structure, in which all of PANI nanofibers (NFs) are tightly wrapped inside reduced graphene oxide (rGO) nanosheet skeletons, for high-performance flexible SCs. The as-fabricated film electrodes with this unique structure showed a highest gravimetric specific capacitance of 921 F/g and volumetric capacitance of 391 F/cm3. The assembled solid-state SCs gave a high specific capacitance of 211 F/g (1 A/g), a high area capacitance of 0.9 F/cm2, and a competitive volumetric capacitance of 25.6 F/cm3. The SCs also exhibited outstanding rate capability (~75% retention at 20 A/g) as well as excellent cycling stability (100% retention at 10 A/g for 2000 cycles). Additionally, no structural failure and loss of performance were observed under the bending state. This structure design paves a new avenue for engineering rGO/PANI or other similar hybrids for high performance flexible energy storage devices. PMID:26795067

  6. Hierarchically structured self-supported latex films for flexible and semi-transparent electronics

    International Nuclear Information System (INIS)

    Määttänen, Anni; Ihalainen, Petri; Törngren, Björn; Rosqvist, Emil; Pesonen, Markus; Peltonen, Jouko

    2016-01-01

    Graphical abstract: - Highlights: • Transparent self-supported latex films were fabricated by a peel-off process. • Various template substrates were used for creating e.g. hierarchically structured latex films. • Ultra-thin and semi-transparent conductive gold electrodes were evaporated on the latex films.Electrochemical experiments were carried out to verify the applicability of the electrodes. - Abstract: Different length scale alterations in topography, surface texture, and symmetry are known to evoke diverse cell behavior, including adhesion, orientation, motility, cytoskeletal condensation, and modulation of intracellular signaling pathways. In this work, self-supported latex films with well-defined isotropic/anisotropic surface features and hierarchical morphologies were fabricated by a peel-off process from different template surfaces. In addition, the latex films were used as substrates for evaporated ultrathin gold films with nominal thicknesses of 10 and 20 nm. Optical properties and topography of the samples were characterized using UV–vis spectroscopy and Atomic Force Microscopy (AFM) measurements, respectively. The latex films showed high-level transmittance of visible light, enabling the fabrication of semi-transparent gold electrodes. Electrochemical impedance spectroscopy (EIS) measurements were carried out for a number of days to investigate the long-term stability of the electrodes. The effect of 1-octadecanethiol (ODT) and HS(CH_2)_1_1OH (MuOH) thiolation and protein (human serum albumin, HSA) adsorption on the impedance and capacitance was studied. In addition, cyclic voltammetry (CV) measurements were carried out to determine active medicinal components, i.e., caffeic acid with interesting biological activities and poorly water-soluble anti-inflammatory drug, piroxicam. The results show that the fabrication procedure presented in this study enables the formation of platforms with hierarchical morphologies for multimodal (optical and

  7. Hierarchically structured self-supported latex films for flexible and semi-transparent electronics

    Energy Technology Data Exchange (ETDEWEB)

    Määttänen, Anni, E-mail: anni.maattanen@abo.fi [Laboratory of Physical Chemistry, Faculty of Science and Engineering, Center for Functional Materials, Åbo Akademi University, Porthaninkatu 3, 20500, Turku (Finland); Ihalainen, Petri, E-mail: petri.ihalainen@abo.fi [Laboratory of Physical Chemistry, Faculty of Science and Engineering, Center for Functional Materials, Åbo Akademi University, Porthaninkatu 3, 20500, Turku (Finland); Törngren, Björn, E-mail: bjorn.torngren@abo.fi [Laboratory of Physical Chemistry, Faculty of Science and Engineering, Center for Functional Materials, Åbo Akademi University, Porthaninkatu 3, 20500, Turku (Finland); Rosqvist, Emil, E-mail: emil.rosqvist@abo.fi [Laboratory of Physical Chemistry, Faculty of Science and Engineering, Center for Functional Materials, Åbo Akademi University, Porthaninkatu 3, 20500, Turku (Finland); Pesonen, Markus, E-mail: markus.pesonen@abo.fi [Physics, Faculty of Science and Engineering, Center for Functional Materials, Åbo Akademi University, Porthaninkatu 3, 20500, Turku (Finland); Peltonen, Jouko, E-mail: jouko.peltonen@abo.fi [Laboratory of Physical Chemistry, Faculty of Science and Engineering, Center for Functional Materials, Åbo Akademi University, Porthaninkatu 3, 20500, Turku (Finland)

    2016-02-28

    Graphical abstract: - Highlights: • Transparent self-supported latex films were fabricated by a peel-off process. • Various template substrates were used for creating e.g. hierarchically structured latex films. • Ultra-thin and semi-transparent conductive gold electrodes were evaporated on the latex films.Electrochemical experiments were carried out to verify the applicability of the electrodes. - Abstract: Different length scale alterations in topography, surface texture, and symmetry are known to evoke diverse cell behavior, including adhesion, orientation, motility, cytoskeletal condensation, and modulation of intracellular signaling pathways. In this work, self-supported latex films with well-defined isotropic/anisotropic surface features and hierarchical morphologies were fabricated by a peel-off process from different template surfaces. In addition, the latex films were used as substrates for evaporated ultrathin gold films with nominal thicknesses of 10 and 20 nm. Optical properties and topography of the samples were characterized using UV–vis spectroscopy and Atomic Force Microscopy (AFM) measurements, respectively. The latex films showed high-level transmittance of visible light, enabling the fabrication of semi-transparent gold electrodes. Electrochemical impedance spectroscopy (EIS) measurements were carried out for a number of days to investigate the long-term stability of the electrodes. The effect of 1-octadecanethiol (ODT) and HS(CH{sub 2}){sub 11}OH (MuOH) thiolation and protein (human serum albumin, HSA) adsorption on the impedance and capacitance was studied. In addition, cyclic voltammetry (CV) measurements were carried out to determine active medicinal components, i.e., caffeic acid with interesting biological activities and poorly water-soluble anti-inflammatory drug, piroxicam. The results show that the fabrication procedure presented in this study enables the formation of platforms with hierarchical morphologies for multimodal

  8. The GlycanBuilder: a fast, intuitive and flexible software tool for building and displaying glycan structures.

    Science.gov (United States)

    Ceroni, Alessio; Dell, Anne; Haslam, Stuart M

    2007-08-07

    interfaces: an example is the "GlycoWorkbench", a software tool for assisted annotation of glycan mass spectra. The "GlycanBuilder" represent a flexible, reliable and efficient solution to the problem of input and output of glycan structures in any glycomic tool or database.

  9. The GlycanBuilder: a fast, intuitive and flexible software tool for building and displaying glycan structures

    Directory of Open Access Journals (Sweden)

    Dell Anne

    2007-08-01

    applications to create intuitive and appealing user interfaces: an example is the "GlycoWorkbench", a software tool for assisted annotation of glycan mass spectra. The "GlycanBuilder" represent a flexible, reliable and efficient solution to the problem of input and output of glycan structures in any glycomic tool or database.

  10. Enantioselective recognition of an isomeric ligand by a biomolecule: mechanistic insights into static and dynamic enantiomeric behavior and structural flexibility.

    Science.gov (United States)

    Peng, Wei; Ding, Fei

    2017-10-24

    Chirality is a ubiquitous basic attribute of nature, which inseparably relates to the life activity of living organisms. However, enantiomeric differences have still failed to arouse enough attention during the biological evaluation and practical application of chiral substances, and this poses a large threat to human health. In the current study, we explore the enantioselective biorecognition of a chiral compound by an asymmetric biomolecule, and then decipher the molecular basis of such a biological phenomenon on the static and, in particular, the dynamic scale. In light of the wet experiments, in silico docking results revealed that the orientation of the latter part of the optical isomer structures in the recognition domain can be greatly affected by the chiral carbon center in a model ligand molecule, and this event may induce large disparities between the static chiral bioreaction modes and noncovalent interactions (especially hydrogen bonding). Dynamic stereoselective biorecognition assays indicated that the conformational stability of the protein-(S)-diclofop system is clearly greater than the protein-(R)-diclofop adduct; and moreover, the conformational alterations of the diclofop enantiomers in the dynamic process will directly influence the conformational flexibility of the key residues found in the biorecognition region. These points enable the changing trends of biopolymer structural flexibility and free energy to exhibit significant distinctions when proteins sterically recognize the (R)-/(S)-stereoisomers. The outcomes of the energy decomposition further showed that the van der Waals' energy has roughly the same contribution to the chiral recognition biosystems, whereas the contribution of electrostatic energy to the protein-(R)-diclofop complex is notably smaller than to the protein-(S)-diclofop bioconjugate. This proves that differences in the noncovalent bonds would have a serious impact on the stereoselective biorecognition between a

  11. Crystal Structures of Trypanosoma cruzi UDP-Galactopyranose Mutase Implicate Flexibility of the Histidine Loop in Enzyme Activation

    Energy Technology Data Exchange (ETDEWEB)

    Dhatwalia, Richa; Singh, Harkewal; Oppenheimer, Michelle; Sobrado, Pablo; Tanner, John J. (Virginia Tech); (UMC)

    2012-11-01

    Chagas disease is a neglected tropical disease caused by the protozoan parasite Trypanosoma cruzi. Here we report crystal structures of the galactofuranose biosynthetic enzyme UDP-galactopyranose mutase (UGM) from T. cruzi, which are the first structures of this enzyme from a protozoan parasite. UGM is an attractive target for drug design because galactofuranose is absent in humans but is an essential component of key glycoproteins and glycolipids in trypanosomatids. Analysis of the enzyme-UDP noncovalent interactions and sequence alignments suggests that substrate recognition is exquisitely conserved among eukaryotic UGMs and distinct from that of bacterial UGMs. This observation has implications for inhibitor design. Activation of the enzyme via reduction of the FAD induces profound conformational changes, including a 2.3 {angstrom} movement of the histidine loop (Gly60-Gly61-His62), rotation and protonation of the imidazole of His62, and cooperative movement of residues located on the si face of the FAD. Interestingly, these changes are substantially different from those described for Aspergillus fumigatus UGM, which is 45% identical to T. cruzi UGM. The importance of Gly61 and His62 for enzymatic activity was studied with the site-directed mutant enzymes G61A, G61P, and H62A. These mutations lower the catalytic efficiency by factors of 10-50, primarily by decreasing k{sub cat}. Considered together, the structural, kinetic, and sequence data suggest that the middle Gly of the histidine loop imparts flexibility that is essential for activation of eukaryotic UGMs. Our results provide new information about UGM biochemistry and suggest a unified strategy for designing inhibitors of UGMs from the eukaryotic pathogens.

  12. Crystal structures of Trypanosoma cruzi UDP-galactopyranose mutase implicate flexibility of the histidine loop in enzyme activation.

    Science.gov (United States)

    Dhatwalia, Richa; Singh, Harkewal; Oppenheimer, Michelle; Sobrado, Pablo; Tanner, John J

    2012-06-19

    Chagas disease is a neglected tropical disease caused by the protozoan parasite Trypanosoma cruzi. Here we report crystal structures of the galactofuranose biosynthetic enzyme UDP-galactopyranose mutase (UGM) from T. cruzi, which are the first structures of this enzyme from a protozoan parasite. UGM is an attractive target for drug design because galactofuranose is absent in humans but is an essential component of key glycoproteins and glycolipids in trypanosomatids. Analysis of the enzyme-UDP noncovalent interactions and sequence alignments suggests that substrate recognition is exquisitely conserved among eukaryotic UGMs and distinct from that of bacterial UGMs. This observation has implications for inhibitor design. Activation of the enzyme via reduction of the FAD induces profound conformational changes, including a 2.3 Å movement of the histidine loop (Gly60-Gly61-His62), rotation and protonation of the imidazole of His62, and cooperative movement of residues located on the si face of the FAD. Interestingly, these changes are substantially different from those described for Aspergillus fumigatus UGM, which is 45% identical to T. cruzi UGM. The importance of Gly61 and His62 for enzymatic activity was studied with the site-directed mutant enzymes G61A, G61P, and H62A. These mutations lower the catalytic efficiency by factors of 10-50, primarily by decreasing k(cat). Considered together, the structural, kinetic, and sequence data suggest that the middle Gly of the histidine loop imparts flexibility that is essential for activation of eukaryotic UGMs. Our results provide new information about UGM biochemistry and suggest a unified strategy for designing inhibitors of UGMs from the eukaryotic pathogens.

  13. The Structure of Urease Activation Complexes Examined by Flexibility Analysis, Mutagenesis, and Small-angle X-ray Scattering Approaches

    International Nuclear Information System (INIS)

    Quiroz, Soledad; Sukuru, Sai Chetan K.; Hausinger, Robert P.; Kuhn, Leslie A.; Heller, William T

    2008-01-01

    Conformational changes of Klebsiella aerogenes urease apoprotein (UreABC) 3 induced upon binding of the UreD and UreF accessory proteins were examined by a combination of flexibility analysis, mutagenesis, and small-angle X-ray scattering (SAXS). ProFlex analysis of urease provided evidence that the major domain of UreB can move in a hinge-like motion to account for prior chemical cross-linking results. Rigidification of the UreB hinge region, accomplished through a G11P mutation, reduced the extent of urease activation, in part by decreasing the nickel content of the mutant enzyme, and by sequestering a portion of the urease apoprotein in a novel activation complex that includes all of the accessory proteins. SAXS analyses of urease, (UreABC-UreD) 3 , and (UreABC-UreDF) 3 confirm that UreD and UreF bind near UreB at the periphery of the (UreAC) 3 structure. This study supports an activation model in which a domain-shifted UreB conformation in (UreABC-UreDF) 3 allows CO 2 and nickel ions to gain access to the nascent active site

  14. SYNERGETIC APPROACH TO IMPROVEMENT OF THE STRUCTURAL FLEXIBILITY OF AN INVESTMENT CONSTRUCTION PROJECT ON THE BASIS OF THE NYQUIST - MIKHAILOV CRITERION OF STABILITY

    OpenAIRE

    Morozenko Andrey Alexandrovich

    2012-01-01

    In the article, the author proves that the resistance to crises that originate both inside the organization and in the external environment has a great importance in terms of formation of stability of the organizational structure. In this article, the issue of flexibility of the organizational structure is considered; the author demonstrates that the rapidity of the system response to any internal and external impacts is essential for the purpose of appraisal of the system propert...

  15. Inhibitor design strategy based on an enzyme structural flexibility: a case of bacterial MurD ligase.

    Science.gov (United States)

    Perdih, Andrej; Hrast, Martina; Barreteau, Hélène; Gobec, Stanislav; Wolber, Gerhard; Solmajer, Tom

    2014-05-27

    Increasing bacterial resistance to available antibiotics stimulated the discovery of novel efficacious antibacterial agents. The biosynthesis of the bacterial peptidoglycan, where the MurD enzyme is involved in the intracellular phase of the UDP-MurNAc-pentapeptide formation, represents a collection of highly selective targets for novel antibacterial drug design. In our previous computational studies, the C-terminal domain motion of the MurD ligase was investigated using Targeted Molecular Dynamic (TMD) simulation and the Off-Path Simulation (OPS) technique. In this study, we present a drug design strategy using multiple protein structures for the identification of novel MurD ligase inhibitors. Our main focus was the ATP-binding site of the MurD enzyme. In the first stage, three MurD protein conformations were selected based on the obtained OPS/TMD data as the initial criterion. Subsequently, a two-stage virtual screening approach was utilized combining derived structure-based pharmacophores with molecular docking calculations. Selected compounds were then assayed in the established enzyme binding assays, and compound 3 from the aminothiazole class was discovered to act as a dual MurC/MurD inhibitor in the micomolar range. A steady-state kinetic study was performed on the MurD enzyme to provide further information about the mechanistic aspects of its inhibition. In the final stage, all used conformations of the MurD enzyme with compound 3 were simulated in classical molecular dynamics (MD) simulations providing atomistic insights of the experimental results. Overall, the study depicts several challenges that need to be addressed when trying to hit a flexible moving target such as the presently studied bacterial MurD enzyme and show the possibilities of how computational tools can be proficiently used at all stages of the drug discovery process.

  16. Structural variability in Cu(I) and Ag(I) coordination polymers with a flexible dithione ligand: Synthesis, crystal structure, microbiological and theoretical studies

    Energy Technology Data Exchange (ETDEWEB)

    Beheshti, Azizolla, E-mail: a.beheshti@scu.ac.ir [Department of Chemistry, Faculty of Sciences, Shahid Chamran University of Ahvaz, Ahvaz (Iran, Islamic Republic of); Nozarian, Kimia; Babadi, Susan Soleymani; Noorizadeh, Siamak [Department of Chemistry, Faculty of Sciences, Shahid Chamran University of Ahvaz, Ahvaz (Iran, Islamic Republic of); Motamedi, Hossein [Department of Biology, Faculty of Sciences, Shahid Chamran University of Ahvaz, Ahvaz (Iran, Islamic Republic of); Mayer, Peter [LMU München Department Chemie, Butenandtstr 5-13, D-81377 München (Germany); Bruno, Giuseppe [Dipartimento di Chimica Inorganica, Università di Messina, Vill. S. Agata, Salita Sperone 31, 98166 Messina (Italy); Rudbari, Hadi Amiri [Faculty of Chemistry, University of Isfahan, Isfahan 81746-73441 (Iran, Islamic Republic of)

    2017-05-15

    Two new compounds namely [Cu(SCN)(µ-L)]{sub n} (1) and ([Ag (µ{sub 2}-L)](ClO{sub 4})){sub n} (2) have been synthesized at room temperature by one-pot reactions between the 1,1-(1,4-butanediyl)bis(1,3-dihydro-3-methyl-1H-imidazole- 2-thione) (L) and appropriate copper(I) and silver(I) salts. These polymers have been characterized by single crystal X-ray diffraction, XRPD, TGA, elemental analysis, infrared spectroscopy, antibacterial activity and scanning probe microscopy studies. In the crystal structure of 1, copper atoms have a distorted trigonal planar geometry with a CuS{sub 2}N coordination environment. Each of the ligands in the structure of 1 acting as a bidentate S-bridging ligand to form a 1D chain structure. Additionally, the adjacent 1D chains are interconnected by the intermolecular C-H…S interactions to create a 2D network structure. In contrast to 1, in the cationic 3D structure of 2 each of the silver atoms exhibits an AgS{sub 4} tetrahedral geometry with 4-membered Ag{sub 2}S{sub 2} rings. In the structure of 2, the flexible ligand adopts two different conformations; gauche-anti-gauche and anti-anti-anti. The antibacterial studies of these polymers showed that polymer 2 is more potent antibacterial agent than 1. Scanning probe microscopy (SPM) study of the treated bacteria was carried out to investigate the structural changes cause by the interactions between the polymers and target bacteria. Theoretical study of polymer 1 investigated by the DFT calculations indicates that observed transitions at 266 nm and 302 nm in the UV–vis spectrum could be attributed to the π→π* and MLCT transitions, respectively. - Graphical abstract: Two new Cu(I) and Ag(I) coordination polymers have been have been synthesized by one-pot reactions. Copper complex has a 2D non-covalent structure, but silver compound is a 3D coordination compound. These compounds have effective antibacterial activity. - Highlights: • Cu(I) and Ag(I) based coordination polymers

  17. Reversible flexible structural changes in multidimensional MOFs by guest molecules (I{sub 2}, NH{sub 3}) and thermal stimulation

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Yang; Li, Libo; Yang, Jiangfeng; Wang, Shuang; Li, Jinping, E-mail: Jpli211@hotmail.com

    2015-03-15

    Three metal–organic frameworks (MOFs), [Cu(INA){sub 2}], [Cu(INA){sub 2}I{sub 2}] and [Cu(INA){sub 2}(H{sub 2}O){sub 2}(NH{sub 3}){sub 2}], were synthesized with 3D, 2D, and 0D structures, respectively. Reversible flexible structural changes of these MOFs were reported. Through high temperature (60–100 °C) stimulation of I{sub 2} or ambient temperature stimulation of NH{sub 3}, [Cu(INA){sub 2}] (3D) converted to [Cu(INA){sub 2}I{sub 2}] (2D) and [Cu(INA){sub 2}(H{sub 2}O){sub 2}(NH{sub 3}){sub 2}] (0D); as the temperature increased to 150 °C, the MOFs changed back to their original form. In this way, this 3D MOF has potential application in the capture of I{sub 2} and NH{sub 3} from polluted water and air. XRD, TGA, SEM, NH{sub 3}-TPD, and the measurement of gas adsorption were used to describe the changes in processes regarding the structure, morphology, and properties. - Graphical abstract: Through I{sub 2}, NH{sub 3} molecules and thermal stimulation, the three MOFs can achieve reversible flexible structural changes. Different methods were used to prove the flexible reversible changes. - Highlights: • [Cu(INA){sub 2}] can flexible transform to [Cu(INA){sub 2}I{sub 2}] and [Cu(INA){sub 2}(H{sub 2}O){sub 2}(NH{sub 3}){sub 2}] by adsorbing I{sub 2} or NH{sub 3}. • The reversible flexible transformation related to material source, temperature and concentration. • Potential applications for the capture of I{sub 2} and NH{sub 3} from polluted water or air.

  18. Flexible Carbon Aerogels

    Directory of Open Access Journals (Sweden)

    Marina Schwan

    2016-09-01

    Full Text Available Carbon aerogels are highly porous materials with a large inner surface area. Due to their high electrical conductivity they are excellent electrode materials in supercapacitors. Their brittleness, however, imposes certain limitations in terms of applicability. In that context, novel carbon aerogels with varying degree of flexibility have been developed. These highly porous, light aerogels are characterized by a high surface area and possess pore structures in the micrometer range, allowing for a reversible deformation of the aerogel network. A high ratio of pore size to particle size was found to be crucial for high flexibility. For dynamic microstructural analysis, compression tests were performed in-situ within a scanning electron microscope allowing us to directly visualize the microstructural flexibility of an aerogel. The flexible carbon aerogels were found to withstand between 15% and 30% of uniaxial compression in a reversible fashion. These findings might stimulate further research and new application fields directed towards flexible supercapacitors and batteries.

  19. Conflicting flexibility

    NARCIS (Netherlands)

    De Jong, P.; Schaap, A.

    2011-01-01

    New buildings are designed for first users. For a sustainable approach there are many advantages in designing in flexibility and adjustability in order to enable and facilitate the other sequential users. For the first investor this flexibility is translated into improved exit values due to

  20. Syntheses, structures, molecular and cationic recognitions and catalytic properties of two lanthanide coordination polymers based on a flexible tricarboxylate

    Energy Technology Data Exchange (ETDEWEB)

    Zhu, Yu; Wang, Yan-Mei; Xu, Ji; Liu, Pan; Weththasinha, H.A.B.M.D.; Wu, Yun-Long; Lu, Xiao-Qing; Xie, Ji-Min, E-mail: xiejm391@sohu.com

    2014-11-15

    Two lanthanide coordination polymers, namely, ([La(TTTA)(H{sub 2}O){sub 2}]·2H{sub 2}O){sub n} (La-TTTA) and [Nd(TTTA)(H{sub 2}O){sub 2}]·2H{sub 2}O){sub n} (Nd-TTTA) have been hydrothermally synthesized through the reaction of lanthanide ions (La{sup 3+} and Nd{sup 3+}) with the flexible tripodal ligand 2,2′,2″-[1,3,5-triazine-2,4,6-triyltris(thio)]tris-acetic acid (H{sub 3}TTTA). La-TTTA and Nd-TTTA are isostructural and both show three dimensional structures. La-TTTA and Nd-TTTA show good recognition of amine molecules via quenching the luminescent intensities in amines emulsions. They can also recognize Fe{sup 3+}, Cu{sup 2+}, Mg{sup 2+}, Cr{sup 3+} and Co{sup 2+} ions with the quenching the peak around 361 nm when the compounds immersed in ionic solutions. The two compounds act as efficient Lewis acid catalysts for the cyanosilylation of benzaldehyde and derivatives in high yields shortly due to the strong Lewis acidity and the possible open sites of the lanthanide ions. - Graphical abstract: We have synthesized two isostructural 3D compounds based on H{sub 3}TTTA. They are chemical sensor of amine solvents and cations. They have higher yields and TOFs to catalyze cyanosilylation reactions. - Highlights: • The compounds show recognition of amine molecules via quenching luminescent intensities. • The compounds recognize Fe{sup 3+}, Cu{sup 2+}, Mg{sup 2+}, Cr{sup 3+} and Co{sup 2+} ions via quenching the peak around 361 nm. • They act as efficient Lewis acid catalysts for the cyanosilylation reactions in high yields.

  1. Stainless and Galvanized Steel, Hydrophobic Admixture and Flexible Polymer-Cement Coating Compared in Increasing Durability of Reinforced Concrete Structures

    Science.gov (United States)

    Tittarelli, Francesca; Giosuè, Chiara; Mobili, Alessandra

    2017-08-01

    The use of stainless or galvanized steel reinforcements, a hydrophobic admixture or a flexible polymer-cement coating were compared as methods to improve the corrosion resistance of sound or cracked reinforced concrete specimens exposed to chloride rich solutions. The results show that in full immersion condition, negligible corrosion rates were detected in all cracked specimens, except those treated with the flexible polymer-cement mortar as preventive method against corrosion and the hydrophobic concrete specimens. High corrosion rates were measured in all cracked specimens exposed to wet-dry cycles, except for those reinforced with stainless steel, those treated with the flexible polymer-cement coating as restorative method against reinforcement corrosion and for hydrophobic concrete specimens reinforced with galvanized steel reinforcements.

  2. THE FLEXIBILITY-AUTOMATION CORRESPONDENCE TO A VIRTUAL COMMERCIAL SOCIETY

    Directory of Open Access Journals (Sweden)

    Liliana Doble

    2012-01-01

    Full Text Available Design and operation of FMS is based on system requirement can be as productive and flexible as necessary, i.e. obtaining controlled correspondence between the degree of flexibility and automation of system.The flexibility of a FMS (Flexible Manufacturing Systems is determined by two important criteria: Flexible hardware structure of the system; Flexible software structure. Flexible hardware structure of the CS system (calculation system is determined to its turn according to three components: Flexibility of technological subsystem; Flexibility subsystem of storage, transport and handling;Flexibility of informational subsystem.

  3. Analysis of the forced vibration test of the Hualien large scale soil-structure interaction model using a flexible volume substructuring method

    International Nuclear Information System (INIS)

    Tang, H.T.; Nakamura, N.

    1995-01-01

    A 1/4-scale cylindrical reactor containment model was constructed in Hualien, Taiwan for foil-structure interaction (SSI) effect evaluation and SSI analysis procedure verification. Forced vibration tests were executed before backfill (FVT-1) and after backfill (FVT-2) to characterize soil-structure system characteristics under low excitations. A number of organizations participated in the pre-test blind prediction and post-test correlation analyses of the forced vibration test using various industry familiar methods. In the current study, correlation analyses were performed using a three-dimensional flexible volume substructuring method. The results are reported and soil property sensitivities are evaluated in the paper. (J.P.N.)

  4. Sandwich-structured nanohybrid paper based on controllable growth of nanostructured MnO2 on ionic liquid functionalized graphene paper as a flexible supercapacitor electrode.

    Science.gov (United States)

    Sun, Yimin; Fang, Zheng; Wang, Chenxu; Ariyawansha, K R Rakhitha Malinga; Zhou, Aijun; Duan, Hongwei

    2015-05-07

    A sandwich-structured flexible supercapacitor electrode has been developed based on MnO2 nanonest (MNN) modified ionic liquid (IL) functionalized graphene paper (GP), which is fabricated by functionalizing graphene nanosheets with an amine-terminated IL (i.e., 1-(3-aminopropyl)-3-methylimidazolium bromide) to form freestanding IL functionalized GP (IL-GP), and then modifying IL-GP with a unique MNN structure via controllable template-free ultrasonic electrodeposition. The as-obtained MNN modified IL-GP (MNN/IL-GP) inherits the excellent pseudocapacity of the metal oxide, the high conductivity and electric double layer charging/discharging of IL-graphene composites, and therefore shows an enhanced supercapacitor performance. The maximum specific capacitance of 411 F g(-1) can be achieved by chronopotentiometry at a current density of 1 A g(-1). Meanwhile, the MNN/IL-GP electrode exhibits excellent rate capability and cycling stability, its specific capacitance is maintained at 70% as the current densities increase from 1 to 20 A g(-1) and 85% at a current density of 10 A g(-1) after 10 000 cycles. More importantly, the MNN/IL-GP displays distinguished mechanical stability and flexibility for device packaging, although its thickness is merely 8 μm. These features collectively demonstrate the potential of MNN/IL-GP as a high-performance paper electrode for flexible and lightweight and highly efficient electrochemical capacitor applications.

  5. Transparent, flexible surface enhanced Raman scattering substrates based on Ag-coated structured PET (polyethylene terephthalate) for in-situ detection

    International Nuclear Information System (INIS)

    Zuo, Zewen; Zhu, Kai; Gu, Chuan; Wen, Yibing; Cui, Guanglei; Qu, Jun

    2016-01-01

    Highlights: • Transparent, flexible SERS substrates were prepared using techniques compatible with well-established silicon device technologies. • The SERS substrates exhibit high sensitivity and good reproducibility. • The high performance is related with the quasi-three-dimensional structure of the PET. • In-situ detection of analyte on irregular objects was achieved by this SERS substrate. - Abstract: Transparent, flexible surface-enhanced Raman scattering (SERS) substrates were fabricated by metalization of structured polyethylene terephthalate (PET) sheets. The resultant Ag-coated structured PET SERS substrates were revealed to be highly sensitive with good reproducibility and stability, an enhancement factor of 3 × 10 6 was acquired, which can be attributed mainly to the presence of plentiful multiple-type hot spots within the quasi-three-dimensional surface of the structured PET obtained by oxygen plasma etching. In addition, detections of model molecules on fruit skin were also carried out, demonstrating the great potential of the Ag-coated structured PET in in-situ detection of analyte on irregular objects. Importantly, the technique used for the preparation of such substrate is completely compatible with well-established silicon device technologies, and large-area fabrication with low cost can be readily realized.

  6. Transparent, flexible surface enhanced Raman scattering substrates based on Ag-coated structured PET (polyethylene terephthalate) for in-situ detection

    Energy Technology Data Exchange (ETDEWEB)

    Zuo, Zewen, E-mail: zuozewen@mail.ahnu.edu.cn; Zhu, Kai; Gu, Chuan; Wen, Yibing; Cui, Guanglei; Qu, Jun

    2016-08-30

    Highlights: • Transparent, flexible SERS substrates were prepared using techniques compatible with well-established silicon device technologies. • The SERS substrates exhibit high sensitivity and good reproducibility. • The high performance is related with the quasi-three-dimensional structure of the PET. • In-situ detection of analyte on irregular objects was achieved by this SERS substrate. - Abstract: Transparent, flexible surface-enhanced Raman scattering (SERS) substrates were fabricated by metalization of structured polyethylene terephthalate (PET) sheets. The resultant Ag-coated structured PET SERS substrates were revealed to be highly sensitive with good reproducibility and stability, an enhancement factor of 3 × 10{sup 6} was acquired, which can be attributed mainly to the presence of plentiful multiple-type hot spots within the quasi-three-dimensional surface of the structured PET obtained by oxygen plasma etching. In addition, detections of model molecules on fruit skin were also carried out, demonstrating the great potential of the Ag-coated structured PET in in-situ detection of analyte on irregular objects. Importantly, the technique used for the preparation of such substrate is completely compatible with well-established silicon device technologies, and large-area fabrication with low cost can be readily realized.

  7. A structural, functional, and computational analysis suggests pore flexibility as the base for the poor selectivity of CNG channels.

    Science.gov (United States)

    Napolitano, Luisa Maria Rosaria; Bisha, Ina; De March, Matteo; Marchesi, Arin; Arcangeletti, Manuel; Demitri, Nicola; Mazzolini, Monica; Rodriguez, Alex; Magistrato, Alessandra; Onesti, Silvia; Laio, Alessandro; Torre, Vincent

    2015-07-07

    Cyclic nucleotide-gated (CNG) ion channels, despite a significant homology with the highly selective K(+) channels, do not discriminate among monovalent alkali cations and are permeable also to several organic cations. We combined electrophysiology, molecular dynamics (MD) simulations, and X-ray crystallography to demonstrate that the pore of CNG channels is highly flexible. When a CNG mimic is crystallized in the presence of a variety of monovalent cations, including Na(+), Cs(+), and dimethylammonium (DMA(+)), the side chain of Glu66 in the selectivity filter shows multiple conformations and the diameter of the pore changes significantly. MD simulations indicate that Glu66 and the prolines in the outer vestibule undergo large fluctuations, which are modulated by the ionic species and the voltage. This flexibility underlies the coupling between gating and permeation and the poor ionic selectivity of CNG channels.

  8. Workplace flexibility.

    Science.gov (United States)

    Scordato, C; Harris, J

    1990-01-01

    Whether your organization is in a growth pattern or downsizing, you are probably facing change. To gain some insight into your options, here is an in-depth look at the problems and benefits of some flexible work arrangements from a just published study by Catalyst.

  9. Flexibility conflict?

    NARCIS (Netherlands)

    Delsen, L.W.M.; Bauer, F.; Groß, H.; Sieglen, G.

    2002-01-01

    The chapter deals with the presupposed conflict of interests between employers and employees resulting from a decoupling of operating hours and working times. It starts from the notion that both long operating hours and flexibility are relative concepts. As there is some discretion, the ultimate

  10. Natural flexible dermal armor.

    Science.gov (United States)

    Yang, Wen; Chen, Irene H; Gludovatz, Bernd; Zimmermann, Elizabeth A; Ritchie, Robert O; Meyers, Marc A

    2013-01-04

    Fish, reptiles, and mammals can possess flexible dermal armor for protection. Here we seek to find the means by which Nature derives its protection by examining the scales from several fish (Atractosteus spatula, Arapaima gigas, Polypterus senegalus, Morone saxatilis, Cyprinius carpio), and osteoderms from armadillos, alligators, and leatherback turtles. Dermal armor has clearly been developed by convergent evolution in these different species. In general, it has a hierarchical structure with collagen fibers joining more rigid units (scales or osteoderms), thereby increasing flexibility without significantly sacrificing strength, in contrast to rigid monolithic mineral composites. These dermal structures are also multifunctional, with hydrodynamic drag (in fish), coloration for camouflage or intraspecies recognition, temperature and fluid regulation being other important functions. The understanding of such flexible dermal armor is important as it may provide a basis for new synthetic, yet bioinspired, armor materials. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. A Finite-Volume approach for compressible single- and two-phase flows in flexible pipelines with fluid-structure interaction

    Science.gov (United States)

    Daude, F.; Galon, P.

    2018-06-01

    A Finite-Volume scheme for the numerical computations of compressible single- and two-phase flows in flexible pipelines is proposed based on an approximate Godunov-type approach. The spatial discretization is here obtained using the HLLC scheme. In addition, the numerical treatment of abrupt changes in area and network including several pipelines connected at junctions is also considered. The proposed approach is based on the integral form of the governing equations making it possible to tackle general equations of state. A coupled approach for the resolution of fluid-structure interaction of compressible fluid flowing in flexible pipes is considered. The structural problem is solved using Euler-Bernoulli beam finite elements. The present Finite-Volume method is applied to ideal gas and two-phase steam-water based on the Homogeneous Equilibrium Model (HEM) in conjunction with a tabulated equation of state in order to demonstrate its ability to tackle general equations of state. The extensive application of the scheme for both shock tube and other transient flow problems demonstrates its capability to resolve such problems accurately and robustly. Finally, the proposed 1-D fluid-structure interaction model appears to be computationally efficient.

  12. Flexible licensing

    Directory of Open Access Journals (Sweden)

    Martyn Jansen

    2012-07-01

    Full Text Available The case is presented for a more flexible approach to licensing online library resources. Today's distributed education environment creates pressure for UK higher and further education institutions (HEI/FEIs to form partnerships and to develop educational products and roll them out across the globe. Online library resources are a key component of distributed education and yet existing licensing agreements struggle to keep pace with the increasing range of users and purposes for which they are required. This article describes the process of developing a flexible approach to licensing and proposes a new model licence for online library resources which has the adaptability needed in this new global educational landscape. These ideas have been presented and discussed at various workshops across Eduserv's and JISC Collections' higher education and publisher communities, and further consultation is ongoing.

  13. Functional aspects of protein flexibility

    DEFF Research Database (Denmark)

    Teilum, Kaare; Olsen, Johan G; Kragelund, Birthe B

    2009-01-01

    this into an intuitive perception of protein function is challenging. Flexibility is of overwhelming importance for protein function, and the changes in protein structure during interactions with binding partners can be dramatic. The present review addresses protein flexibility, focusing on protein-ligand interactions...

  14. Primary and secondary structure dependence of peptide flexibility assessed by fluorescence-based measurement of end-to-end collision rates.

    Science.gov (United States)

    Huang, Fang; Hudgins, Robert R; Nau, Werner M

    2004-12-22

    The intrachain fluorescence quenching of the fluorophore 2,3-diazabicyclo[2.2.2]oct-2-ene (DBO) is measured in short peptide fragments, namely the two strands and the turn of the N-terminal beta-hairpin of ubiquitin. The investigated peptides adopt a random-coil conformation in aqueous solution according to CD and NMR experiments. The combination of quenchers with different quenching efficiencies, namely tryptophan and tyrosine, allows the extrapolation of the rate constants for end-to-end collision rates as well as the dissociation of the end-to-end encounter complex. The measured activation energies for fluorescence quenching demonstrate that the end-to-end collision process in peptides is partially controlled by internal friction within the backbone, while measurements in solvents of different viscosities (H2O, D2O, and 7.0 M guanidinium chloride) suggest that solvent friction is an additional important factor in determining the collision rate. The extrapolated end-to-end collision rates, which are only slightly larger than the experimental rates for the DBO/Trp probe/quencher system, provide a measure of the conformational flexibility of the peptide backbone. The chain flexibility is found to be strongly dependent on the type of secondary structure that the peptides represent. The collision rates for peptides derived from the beta-strand motifs (ca. 1 x 10(7) s(-1)) are ca. 4 times slower than that derived from the beta-turn. The results provide further support for the hypothesis that chain flexibility is an important factor in the preorganization of protein fragments during protein folding. Mutations to the beta-turn peptide show that subtle sequence changes strongly affect the flexibility of peptides as well. The protonation and charge status of the peptides, however, are shown to have no significant effect on the flexibility of the investigated peptides. The meaning and definition of end-to-end collision rates in the context of protein folding are critically

  15. Ink for Ink-Jet Printing of Electrically Conductive Structures on Flexible Substrates with Low Thermal Resistance

    Science.gov (United States)

    Mościcki, A.; Smolarek-Nowak, A.; Felba, J.; Kinart, A.

    2017-07-01

    The development of new technologies in electronics related to flexible polymeric substrates forces the industry to introduce suitable tools (special type of dispensers) and modern conductive materials for printing electronic circuits. Moreover, due to the wide use of inexpensive polymeric foils (polyethene, PE, or poly(ethylene terephthalate), PET), there is a need to develop materials with the lowest possible processing temperatures. The present paper presents the selection criteria of suitable components and their preparation for obtaining electrically conductive ink with a special nanosilver base. In the case of the discussed solution, all components allow to make circuits in relatively low sintering temperature (even below 130°C). Additionally, the authors show the most significant ink parameters that should be taken into consideration during Research and Development (R&D) works with electrically conductive inks. Moreover, ink stability parameters are discussed and some examples of printed circuits are presented.

  16. Two new coordination polymers with flexible alicyclic carboxylate and bipyridyl co-ligands bearing trinuclear [Ni3(COO)6] SBUs: Synthesis, crystal structures, and magnetic properties

    Science.gov (United States)

    Zhu, Xian-Dong; Li, Yong; Gao, Jian-Gang; Wang, Fen-Hua; Li, Qing-Hai; Yang, Hong-Xun; Chen, Lei

    2017-02-01

    Two new coordination polymers generally formulated as [Ni3(Hchda)2(chda)2(bpy)2(H2O)2]n (1) and [Ni3(Hchda)2(chda)2(bpp)2(H2O)2]n (2) [H2chda = 1,1'-cyclohexanediacetic acid, bpy = 4,4'-bipyridine and bpp = 1,3-bis(4-pyridyl)propane], have been successfully assembled through mixed-ligands synthetic strategy with flexible alicyclic carboxylate and bipyridyl ligands. There structures feature trinuclear nickel secondary building units connected via the bridging bipyridyl spacers to form two-dimensional (4,4) grid layer. The nature of the different N-donor auxiliary ligands leads to the discrepancy in supramolecular structure of the two compounds. Magnetic studies indicate the ferromagnetic intra-complex magnetic interaction in the molecule for 1 and 2.

  17. Growth, Structural and Optical Characterization of ZnO Nanotubes on Disposable-Flexible Paper Substrates by Low-Temperature Chemical Method

    Directory of Open Access Journals (Sweden)

    M. Y. Soomro

    2012-01-01

    Full Text Available We report the synthesis of vertically aligned ZnO nanotubes (NTs on paper substrates by low-temperature hydrothermal method. The growth of ZnO NTs on the paper substrate is discussed; further, the structural and optical properties are investigated by scanning electron microscope (SEM, transmission electron microscopy (TEM, X-ray diffraction (XRD, energy-dispersive X-ray spectroscopy (EDS, and cathodoluminescence (CL, and it was found that the ZnO NTs on paper substrate fulfill the structural and optical properties of ZnO NTs grown on other conventional substrates. This will be more beneficial in future usage of ZnO NTs in different fields and applications. Particularly, this approach opens the ways in research and development for high volume manufacturing of low-cost, flexible optoelectronics devices on disposable paper substrates and can be used in the future miniaturization trends.

  18. Exploring the atomic structure and conformational flexibility of a 320 Å long engineered viral fiber using X-ray crystallography.

    Science.gov (United States)

    Bhardwaj, Anshul; Casjens, Sherwood R; Cingolani, Gino

    2014-02-01

    Protein fibers are widespread in nature, but only a limited number of high-resolution structures have been determined experimentally. Unlike globular proteins, fibers are usually recalcitrant to form three-dimensional crystals, preventing single-crystal X-ray diffraction analysis. In the absence of three-dimensional crystals, X-ray fiber diffraction is a powerful tool to determine the internal symmetry of a fiber, but it rarely yields atomic resolution structural information on complex protein fibers. An 85-residue-long minimal coiled-coil repeat unit (MiCRU) was previously identified in the trimeric helical core of tail needle gp26, a fibrous protein emanating from the tail apparatus of the bacteriophage P22 virion. Here, evidence is provided that an MiCRU can be inserted in frame inside the gp26 helical core to generate a rationally extended fiber (gp26-2M) which, like gp26, retains a trimeric quaternary structure in solution. The 2.7 Å resolution crystal structure of this engineered fiber, which measures ∼320 Å in length and is only 20-35 Å wide, was determined. This structure, the longest for a trimeric protein fiber to be determined to such a high resolution, reveals the architecture of 22 consecutive trimerization heptads and provides a framework to decipher the structural determinants for protein fiber assembly, stability and flexibility.

  19. Flexible Consumption

    DEFF Research Database (Denmark)

    Holm Jacobsen, Peter; Pallesen, Trine

    This report presents the first findings from our qualitative study of consumer behaviour vis-à-vis flexible consumption. The main of objective of this report is to present our first round of data from Bornholm, and to assist the design of products/services designed in WP6. In the report, we adopt...... the perspective of the consumer: what does living in a demand response setup look like to participants – and what kinds of behaviour and interest motivate – and emerge from – their participation in EcoGrid 2.0....

  20. Structural insight and flexible features of NS5 proteins from all four serotypes of Dengue virus in solution

    Energy Technology Data Exchange (ETDEWEB)

    Saw, Wuan Geok; Tria, Giancarlo; Grüber, Ardina; Subramanian Manimekalai, Malathy Sony; Zhao, Yongqian; Chandramohan, Arun; Srinivasan Anand, Ganesh; Matsui, Tsutomu; Weiss, Thomas M.; Vasudevan, Subhash G.; Grüber, Gerhard

    2015-10-31

    Infection by the four serotypes ofDengue virus(DENV-1 to DENV-4) causes an important arthropod-borne viral disease in humans. The multifunctional DENV nonstructural protein 5 (NS5) is essential for capping and replication of the viral RNA and harbours a methyltransferase (MTase) domain and an RNA-dependent RNA polymerase (RdRp) domain. In this study, insights into the overall structure and flexibility of the entire NS5 of all fourDengue virusserotypes in solution are presented for the first time. The solution models derived revealed an arrangement of the full-length NS5 (NS5FL) proteins with the MTase domain positioned at the top of the RdRP domain. The DENV-1 to DENV-4 NS5 forms are elongated and flexible in solution, with DENV-4 NS5 being more compact relative to NS5 from DENV-1, DENV-2 and DENV-3. Solution studies of the individual MTase and RdRp domains show the compactness of the RdRp domain as well as the contribution of the MTase domain and the ten-residue linker region to the flexibility of the entire NS5. Swapping the ten-residue linker between DENV-4 NS5FL and DENV-3 NS5FL demonstrated its importance in MTase–RdRp communication and in concerted interaction with viral and host proteins, as probed by amide hydrogen/deuterium mass spectrometry. Conformational alterations owing to RNA binding are presented.

  1. The effectiveness of the Pilates method: reducing the degree of non-structural scoliosis, and improving flexibility and pain in female college students.

    Science.gov (United States)

    Alves de Araújo, Maria Erivânia; Bezerra da Silva, Elirez; Bragade Mello, Danielli; Cader, Samária Ali; Shiguemi Inoue Salgado, Afonso; Dantas, Estélio Henrique Martin

    2012-04-01

    To evaluate the effectiveness of Pilates with regard to the degree of scoliosis, flexibility and pain. The study included 31 female students divided into two groups: a control group (CG = 11), which had no therapeutic intervention, and an experimental group (EG = 20), which underwent Pilates-based therapy. We used radiological goniometry measurements to assess the degree of scoliosis, standard goniometry measurements to determine the degree of flexibility and the scale of perceived pain using the Borg CR 10 to quantify the level of pain. The independent t test of the Cobb angle (t = - 2.317, p = 0.028), range of motion of trunk flexion (t = 3.088, p = 0.004) and pain (t = -2.478, p = 0.019) showed significant differences between the groups, with best values in the Pilates group. The dependent t test detected a significant decrease in the Cobb angle (Δ% = 38%, t = 6.115, p = 0.0001), a significant increase in trunk flexion (Δ% = 80%, t = -7.977, p = 0.0001) and a significant reduction in pain (Δ% = 60%, t = 7.102, p = 0.0001) in the EG. No significant difference in Cobb angle (t = 0.430, p = 0.676), trunk flexion, (t = 0.938p = 0.371) or pain (t = 0.896, p = 0.391) was found for the CG. The Pilates group was better than control group. The Pilates method showed a reduction in the degree of non-structural scoliosis, increased flexibility and decreased pain. Copyright © 2011 Elsevier Ltd. All rights reserved.

  2. Flexible nanovectors

    International Nuclear Information System (INIS)

    Pugno, Nicola M

    2008-01-01

    In this paper we show that the control of adhesion in highly flexible (a property that could be crucial for smart drug delivery but which is still ignored in the literature) nanovectors can help in smartly targeting and delivering the drug. The existence of and the conditions for activating and controlling a super-adhesive state are addressed. Even if such a state has never been observed in nanovectors, our calculations, as well as observations in spiders and geckos, suggest its existence and feasible control. Control of the competition between the drag and the adhesive force is exploited to improve the targeting ability and a hierarchical model is applied to describe a real vasculature. The high flexibility of the nanovector is used to smartly deliver the drug only during adhesion by nanopumping or, as a limiting case, by the new concept of 'adhesion induced nanovector implosion'; a liquid drop analogy is utilized for the calculations. Fast (pumping) and slow (diffusion) drug deliveries can thus be separately controlled by controlling the size and shape of the nanovector. Multiple stage nanovectors are also briefly discussed, mimicking aerospace vector strategies.

  3. Flexible nanovectors

    Science.gov (United States)

    Pugno, Nicola M.

    2008-11-01

    In this paper we show that the control of adhesion in highly flexible (a property that could be crucial for smart drug delivery but which is still ignored in the literature) nanovectors can help in smartly targeting and delivering the drug. The existence of and the conditions for activating and controlling a super-adhesive state are addressed. Even if such a state has never been observed in nanovectors, our calculations, as well as observations in spiders and geckos, suggest its existence and feasible control. Control of the competition between the drag and the adhesive force is exploited to improve the targeting ability and a hierarchical model is applied to describe a real vasculature. The high flexibility of the nanovector is used to smartly deliver the drug only during adhesion by nanopumping or, as a limiting case, by the new concept of 'adhesion induced nanovector implosion'; a liquid drop analogy is utilized for the calculations. Fast (pumping) and slow (diffusion) drug deliveries can thus be separately controlled by controlling the size and shape of the nanovector. Multiple stage nanovectors are also briefly discussed, mimicking aerospace vector strategies.

  4. A 3D porous zinc MOF constructed from a flexible tripodal ligand: Synthesis, structure, and photoluminescence property

    International Nuclear Information System (INIS)

    Wen Lili; Wang Dong'e; Wang Chenggang; Wang Feng; Li Dongfeng; Deng Kejian

    2009-01-01

    A new metal-organic framework, [Zn 5 (trencba) 2 (OH) 2 Cl 2 .4H 2 O] (1) [H 3 trencba=N,N,N',N',N'',N''-tris[(4-carboxylate-2-yl)methyl]-tris (2-aminoethyl)amine], constructed from a flexible tripodal ligand based on C 3 symmetric tris(2-aminoethyl)amine, has been synthesized hydrothermally and characterized by elemental analysis, IR, TG, XRD and single-crystal X-ray diffraction analysis. Compound 1 contains an unprecedented linear penta-nuclear zinc cluster fragment. Each ligand links four penta-nuclear fragments, and every fragment links eight ligands to generate a three-dimensional non-interpenetrated porous framework. The uncoordinated water molecules were observed trapped in the void pores. Compound 1 represents the first example of (6,8)-connected 3D bi-nodal framework based on a single kind of organic ligand. The photoluminescence measurements showed that complex 1 exhibits relatively stronger blue emissions at room temperature than that of the ligand. - Graphical abstract: The MOF [Zn 5 (trencba) 2 (OH) 2 Cl 2 .4H 2 O] (H 3 trencba=N,N,N',N',N',N'-tris[(4-carboxylate-2-yl)methyl]-tris (2-aminoethyl)amine) reveals a (6,8)-connected bi-nodal three-dimensional porous framework with unprecedented penta-nuclear fragment, which appears to be a good candidate of hybrid inorganic-organic photoactive materials

  5. Thermally activated 3D to 2D structural transformation of [Ni2(en)2(H2O)6(pyr)]·4H2O flexible coordination polymer

    International Nuclear Information System (INIS)

    Begović, Nebojša N.; Blagojević, Vladimir A.; Ostojić, Sanja B.; Radulović, Aleksandra M.; Poleti, Dejan; Minić, Dragica M.

    2015-01-01

    Thermally activated 3D to 2D structural transformation of the binuclear [Ni 2 (en) 2 (H 2 O) 6 (pyr)]·4H 2 O complex was investigated using a combination of theoretical and experimental methods. Step-wise thermal degradation (dehydration followed by release of ethylene diamine) results in two layered flexible coordination polymer structures. Dehydration process around 365 K results in a conjugated 2D structure with weak interlayer connectivity. It was shown to be a reversible 3D to 2D framework transformation by a guest molecule, and rehydration of the dehydration product occurs at room temperature in saturated water vapor. Rehydrated complex exhibits lower dehydration temperature, due to decreased average crystalline size, with higher surface area resulting in easier release and diffusion of water during dehydration. Thermal degradation of dehydration around 570 K, results in loss of ethylene diamine, producing a related 2D layered polymer structure, without interconnectivity between individual polymer layers. - Highlights: • Reversible 3D to 2D framework topochemical transformation on dehydration around 365 K. • Resulting polymer exhibits 2D layered structure with weak interlayer connectivity. • Dehydration is fully reversible in saturated water vapor at room temperature. • Further degradation around 570 K yields 2D polymer without interlayer connectivity. • 2D polymer exhibits conjugated electronic system

  6. Cost-benefit analysis of the construction of different flexible pavement structures considering the axle load and type of binder

    Directory of Open Access Journals (Sweden)

    Lucas Dotto Bueno

    2016-08-01

    Full Text Available The status of Brazilian highways reflects a deficient pavement performance when they are subjected to loadings imposed by heavy traffic. Current legislation, as enacted by Contran (National Traffic Council, has increased the axle weight limit for cargo vehicles by up to 10%. Therefore, the aim of this study was to determine a cost-benefit ratio by using different types of structures, asphalt binders and load intensities. Typical pavements were determined and then analyzed by the software AEMC (SisPav to obtain the horizontal tensile strain (εt values at the bottom of the asphalt concrete layer and, later, the NFATIGUE value. It was found that the increase in weight, within values covered by legislation, might result in a reduction of approximately 50% in the NFATIGUE value for the pavement structures analyzed. As for economic impact, the same weight increase caused a mean increase of 120% in the cost of repeated loading on pavement structures (R$ NFATIGUE-1. It was also observed that structures with more robust asphalt concrete layers can provide the best R$ NFATIGUE-1 ratios. The best results for granular materials were found with thinner layers, associated with a thicker coating. The benefits of modified binders were shown by the analyses of the best structural options: both the polymer-modified binder and the rubber asphalt binder offer significant structural and economic improvements to the structure.

  7. A flexible and transparent graphene/ZnO nanorod hybrid structure fabricated by exfoliating a graphite substrate

    Science.gov (United States)

    Nam, Gwang-Hee; Baek, Seong-Ho; Cho, Chang-Hee; Park, Il-Kyu

    2014-09-01

    We demonstrate the fabrication of a graphene/ZnO nanorod (NR) hybrid structure by mechanical exfoliation of ZnO NRs grown on a graphite substrate. We confirmed the existence of graphene sheets on the hybrid structure by analyzing the Raman spectra and current-voltage (I-V) characteristics. The Raman spectra of the exfoliated graphene/ZnO NR hybrid structure show G and 2D band peaks that are shifted to lower wavenumbers, indicating that the exfoliated graphene layer exists under a significant amount of strain. The I-V characteristics of the graphene/ZnO NR hybrid structure show current flow through the graphene layer, while no current flow is observed on the ZnO NR/polydimethylsiloxane (PDMS) composite without graphene, thereby indicating that the few-layer graphene was successfully transferred onto the hybrid structure. A piezoelectric nanogenerator is demonstrated by using the fabricated graphene/ZnO NR hybrid structure. The nanogenerator exhibits stable output voltage up to 3.04 V with alternating current output characteristics.We demonstrate the fabrication of a graphene/ZnO nanorod (NR) hybrid structure by mechanical exfoliation of ZnO NRs grown on a graphite substrate. We confirmed the existence of graphene sheets on the hybrid structure by analyzing the Raman spectra and current-voltage (I-V) characteristics. The Raman spectra of the exfoliated graphene/ZnO NR hybrid structure show G and 2D band peaks that are shifted to lower wavenumbers, indicating that the exfoliated graphene layer exists under a significant amount of strain. The I-V characteristics of the graphene/ZnO NR hybrid structure show current flow through the graphene layer, while no current flow is observed on the ZnO NR/polydimethylsiloxane (PDMS) composite without graphene, thereby indicating that the few-layer graphene was successfully transferred onto the hybrid structure. A piezoelectric nanogenerator is demonstrated by using the fabricated graphene/ZnO NR hybrid structure. The nanogenerator

  8. Flexible one-structure arched triboelectric nanogenerator based on common electrode for high efficiency energy harvesting and self-powered motion sensing

    Science.gov (United States)

    Chen, Xi; He, Jian; Song, Linlin; Zhang, Zengxing; Tian, Zhumei; Wen, Tao; Zhai, Cong; Chen, Yi; Cho, Jundong; Chou, Xiujian; Xue, Chenyang

    2018-04-01

    Triboelectric nanogenerators are widely used because of low cost, simple manufacturing process and high output performance. In this work, a flexible one-structure arched triboelectric nanogenerator (FOAT), based on common electrode to combine the single-electrode mode and contact-separation, was designed using silicone rubber, epoxy resin and flexible electrode. The peak-to-peak short circuit current of 18μ A and the peak-to-peak open circuit voltage of 570V can be obtained from the FOAT with the size of 5×7 cm2 under the frequency of 3Hz and the pressure of 300N. The peak-to-peak short circuit current of FOAT is increased by 29% and 80%, and the peak-to-peak open circuit voltage is increased by 33% and 54% compared with single-electrode mode and contact-separation mode, respectively. FOAT realizes the combination of two generation modes, which improves the output performance of triboelectric nanogenerator (TENG). 62 light-emitting-diodes (LEDs) can be completely lit up and 2.2μ F capacitor can be easily charged to 1.2V in 9s. When the FOAT is placed at different parts of the human body, the human motion energy can be harvested and be the sensing signal for motion monitoring sensor. Based on the above characteristics, FOAT exhibits great potential in illumination, power supplies for wearable electronic devices and self-powered motion monitoring sensor via harvesting the energy of human motion.

  9. (1,3;1,4)-β-Glucan Biosynthesis by the CSLF6 Enzyme: Position and Flexibility of Catalytic Residues Influence Product Fine Structure.

    Science.gov (United States)

    Dimitroff, George; Little, Alan; Lahnstein, Jelle; Schwerdt, Julian G; Srivastava, Vaibhav; Bulone, Vincent; Burton, Rachel A; Fincher, Geoffrey B

    2016-04-05

    Cellulose synthase-like F6 (CslF6) genes encode polysaccharide synthases responsible for (1,3;1,4)-β-glucan biosynthesis in cereal grains. However, it is not clear how both (1,3)- and (1,4)-linkages are incorporated into a single polysaccharide chain and how the frequency and arrangement of the two linkage types that define the fine structure of the polysaccharide are controlled. Through transient expression in Nicotiana benthamiana leaves, two CSLF6 orthologs from different cereal species were shown to mediate the synthesis of (1,3;1,4)-β-glucans with very different fine structures. Chimeric cDNA constructs with interchanged sections of the barley and sorghum CslF6 genes were developed to identify regions of the synthase enzyme responsible for these differences. A single amino acid residue upstream of the TED motif in the catalytic region was shown to dramatically change the fine structure of the polysaccharide produced. The structural basis of this effect can be rationalized by reference to a homology model of the enzyme and appears to be related to the position and flexibility of the TED motif in the active site of the enzyme. The region and amino acid residue identified provide opportunities to manipulate the solubility of (1,3;1,4)-β-glucan in grains and vegetative tissues of the grasses and, in particular, to enhance the solubility of dietary fibers that are beneficial to human health.

  10. Investigation of the structural preference and flexibility of the loop residues in amyloid fibrils of the HET-s prion.

    Science.gov (United States)

    Dolenc, Jožica; Meier, Beat H; Rusu, Victor H; van Gunsteren, Wilfred F

    2016-02-17

    The structural variability of a 16-residue loop (residues 246-261) which is in part disordered and connects two layers of the β-solenoid formed by the prion-form of HET-s and its prion domain HET-s(218-289) is investigated using molecular dynamics computer simulation. A system of three HET-s(218-289) molecules in a β-sheet structure as in the fibril is simulated in aqueous solution. The trajectory structures appear to be consistent with the Cα chemical shift data obtained. In order to delineate the influence of the β-sheet core of the fibril upon the structural variability of the loop, the latter is also simulated without the β-sheet core, but with its N- and C-terminal residues restrained at their positions in the fibril. The analysis of the trajectories shows that the structural variability of the loop is restricted by the β-sheet core, least at its N-terminal end and most in the middle of the trimer.

  11. On the synthesis of a bio-inspired dual-cellular fluidic flexible matrix composite adaptive structure based on a non-dimensional dynamics model

    International Nuclear Information System (INIS)

    Li, Suyi; Wang, K W

    2013-01-01

    A recent study investigated the dynamic characteristics of an adaptive structure concept featuring dual fluidic flexible matrix composite (F 2 MC) cells inspired by the configuration of plant cells and cell walls. This novel bio-inspired system consists of two F 2 MC cells with different fiber angles connected through internal fluid circuits. It was discovered that the dual F 2 MC cellular structure can be characterized as a two degree of freedom damped mass–spring oscillator, and can be utilized as a vibration absorber or an enhanced actuator under different operation conditions. These results demonstrated that the concept is promising and further investigations are needed to develop methodologies for synthesizing future multi-cellular F 2 MC structural systems. While interesting, the previous study focused on specific case studies and analysis. That is, the outcome did not provide insight that could be generalized, or tools for synthesizing a multiple F 2 MC cellular structure. This paper attempts to address this important issue by developing a non-dimensional dynamic model, which reveals good physical insights as well as identifying crucial constitutive parameters for F 2 MC cellular design. Working with these parameters, rather than physical variables, can greatly simplify the mathematics involved in the study. A synthesis tool is then developed for the dual-cellular structure, and it is found that for each set of achievable target poles and zero, there exist multiple F 2 MC cellular designs, forming a design space. The presented physical insights and synthesis tool for the dual-cellular structure will be the building blocks for future investigation on cellular structures with a larger number of cells. (paper)

  12. Static structure factor of polymerlike micelles: Overall dimension, flexibility, and local properties of lecithin reverse micelles in deuterated isooctane

    DEFF Research Database (Denmark)

    Jerke, G.; Pedersen, J.S.; Egelhaaf, S.U.

    1997-01-01

    We report a systematic investigation of the static structure factor S(q,c) of polymerlike reverse micelles formed by soybean lecithin and trace amounts of water in deuterated isooctane using small-angle neutron scattering and static light scattering. The experimental data for different concentrat......We report a systematic investigation of the static structure factor S(q,c) of polymerlike reverse micelles formed by soybean lecithin and trace amounts of water in deuterated isooctane using small-angle neutron scattering and static light scattering. The experimental data for different...

  13. Layer Structured Bismuth Selenides of Bi2Se3 and Bi3Se4 for High Energy and Flexible All-Solid-State Micro-Supercapacitors.

    Science.gov (United States)

    Hao, Chunxue; Wang, Lidan; Wen, Fusheng; Xiang, Jianyong; Li, Lei; Hu, Wentao; Liu, Zhongyuan

    2017-12-20

    Bismuth selenides (Bi2Se3 and Bi3Se4), both of which have the layered rhombohedral crystal structure, and found to be useful as electrode materials for supercapacitor application in this work. Bi2Se3 nanoplates as electrode material exhibit much better performance than that of Bi3Se4 nanoparticles in liquid electrolyte system (6 M KOH), which delivers a higher specific capacitance (272.9 F/g) than that of Bi3Se4 (193.6 F/g) at 5 mV/s. This result would may be attributed to that Bi2Se3 nanoplates possess more active electrochemical surfaces for the reversible surface redox reactions owing to its planar quintuple stacked layers (septuple layers for Bi3Se4). For the demand of electronic skin, we used a novel flexible annular interdigital structure electrode applying for all-solid-state micro-supercapacitors (AMSCs). Bi2Se3 AMSCs device delivers a much more excellent supercapacitor performance, exhibits a large stack capacitance 89.5 F/cm3 (Bi3Se4: 79.1 F/cm3) at 20 mV/s, a high energy density 17.9 mWh/cm3 and high power density 18.9 W/cm3. The bismuth selenides also exhibit good cycle stability, retention 95.5% (90.3%) after 1000 c for Bi2Se3 (Bi3Se4). Obviously, Bi2Se3 nanoplates can be promising electrode materials for flexible annular interdigital all-solid-sate supercapacitor. © 2017 IOP Publishing Ltd.

  14. Layer structured bismuth selenides Bi2Se3 and Bi3Se4 for high energy and flexible all-solid-state micro-supercapacitors

    Science.gov (United States)

    Hao, Chunxue; Wang, Lidan; Wen, Fusheng; Xiang, Jianyong; Li, Lei; Hu, Wentao; Liu, Zhongyuan

    2018-02-01

    In this work, bismuth selenides (Bi2Se3 and Bi3Se4), both of which have a layered rhombohedral crystal structure, have been found to be useful as electrode materials for supercapacitor applications. In a liquid electrolyte system (6M KOH), Bi2Se3 nanoplates exhibit much better performance as an electrode material than Bi3Se4 nanoparticles do, delivering a higher specific capacitance (272.9 F g-1) than that of Bi3Se4 (193.6 F g-1) at 5 mV s-1. This result may be attributed to the fact that Bi2Se3 nanoplates possess more active electrochemical surfaces for the reversible surface redox reactions owing to their planar quintuple stacked layers (septuple layers for Bi3Se4). To meet the demands of electronic skin, we used a novel flexible annular interdigital structure electrode to support the all-solid-state micro-supercapacitors (AMSCs). The Bi2Se3 AMSC device delivers a much better supercapacitor performance, exhibits a large stack capacitance of 89.5 F cm-3 at 20 mV s-1 (Bi3Se4: 79.1 F cm-3), a high energy density of 17.9 mWh cm-3 and a high power density of 18.9 W cm-3. The bismuth selenides also exhibit good cycle stability, with 95.5% retention after 1000 c for Bi2Se3 (Bi3Se4:90.3%). Clearly, Bi2Se3 nanoplates can be promising electrode materials for flexible annular interdigital AMSCs.

  15. Production of Curved Precast Concrete Elements for Shell Structures and Free-form Architecture using the Flexible Mould Method

    NARCIS (Netherlands)

    Schipper, H.R.; Grünewald, S.; Eigenraam, P.; Raghunath, P.; Kok, M.A.D.

    2014-01-01

    Free-form buildings tend to be expensive. By optimizing the production process, economical and well-performing precast concrete structures can be manufactured. In this paper, a method is presented that allows producing highly accurate double curved-elements without the need for milling two expensive

  16. Seriality and Transmediality in the Fan Multiverse: Flexible and Multiple Narrative Structures in Fan Fiction, Art, and Vids

    NARCIS (Netherlands)

    Kustritz, A.

    2014-01-01

    This article explores new forms of serial structure found in transmedia story worlds, with particular attention to the innovations of amateur transmedia works. Although the term transmedia has most often been associated only with corporate media at the center, taking amateur works as the

  17. Seriality and Transmediality in the Fan Multiverse : Flexible and Multiple Narrative Structures in Fan Fiction, Art, and Vids

    NARCIS (Netherlands)

    Kustritz, A.M.

    2014-01-01

    This article explores new forms of serial structure found in transmedia story worlds, with particular attention to the innovations of amateur transmedia works. Although the term transmedia has most often been associated only with corporate media at the center, taking amateur works as the

  18. Relative effectiveness of insulin pump treatment over multiple daily injections and structured education during flexible intensive insulin treatment for type 1 diabetes: cluster randomised trial (REPOSE).

    Science.gov (United States)

    2017-03-30

    Objective  To compare the effectiveness of insulin pumps with multiple daily injections for adults with type 1 diabetes, with both groups receiving equivalent training in flexible insulin treatment. Design  Pragmatic, multicentre, open label, parallel group, cluster randomised controlled trial (Relative Effectiveness of Pumps Over MDI and Structured Education (REPOSE) trial). Setting  Eight secondary care centres in England and Scotland. Participants  Adults with type 1 diabetes who were willing to undertake intensive insulin treatment, with no preference for pumps or multiple daily injections. Participants were allocated a place on established group training courses that taught flexible intensive insulin treatment ("dose adjustment for normal eating," DAFNE). The course groups (the clusters) were then randomly allocated in pairs to either pump or multiple daily injections. Interventions  Participants attended training in flexible insulin treatment (using insulin analogues) structured around the use of pump or injections, followed for two years. Main outcome measures  The primary outcomes were a change in glycated haemoglobin (HbA1c) values (%) at two years in participants with baseline HbA1c value of ≥7.5% (58 mmol/mol), and the proportion of participants achieving an HbA1c value of intention to treat analysis, of which 235 (119 pump and 116 injection) had baseline HbA1c values of ≥7.5%. Glycaemic control and rates of severe hypoglycaemia improved in both groups. The mean change in HbA1c at two years was -0.85% with pump treatment and -0.42% with multiple daily injections. Adjusting for course, centre, age, sex, and accounting for missing values, the difference was -0.24% (-2.7 mmol/mol) in favour of pump users (95% confidence interval -0.53 to 0.05, P=0.10). Most psychosocial measures showed no difference, but pump users showed greater improvement in treatment satisfaction and some quality of life domains (dietary freedom and daily hassle) at 12 and 24

  19. Fabrication of Photonic Crystal Structures on Flexible Organic Light-Emitting Diodes by Using Nano-Imprint and PDMS Mold

    Directory of Open Access Journals (Sweden)

    Ho Ting-Lin

    2016-01-01

    Full Text Available In this paper, nanoimprint lithography was used to create a photonic crystals structure film in organic light-emitting diode (OLED component, and then compare the efficiency of components whether with nanostructure or not. By using two different kinds of mold, such as silicon mold and PDMS mold, the nano structures in PMMA (molecular weight of 350K were fabricated. Nanostructures in period of 403.53nm with silicon mold and nano structures in period of 385.64nm with PDMS mold as photonic crystal films were fabricated and were integrated into OLED. In experimental results, the OLED without photonic crystal films (with packing behaves 193.3cd/m2 for luminous intensity, 3.481cd/A for lightening efficiency (ηL and 0.781 lm/W for lightening power (ηP where V is 14V and I is 5.5537mA; the OLED with photonic crystal films (with packing behaves 241.6cd/m2 for luminous intensity, 4.173cd/A for lightening efficiency (ηL and 0.936 lm/W for lightening power (ηP where voltage of 14V and current (I of 5.7891mA, which shows that the latter perform is well.

  20. Structural flexibility of the G alpha s alpha-helical domain in the beta2-adrenoceptor Gs complex

    DEFF Research Database (Denmark)

    Westfield, Gerwin H; Rasmussen, Søren Gøgsig Faarup; Su, Min

    2011-01-01

    The active-state complex between an agonist-bound receptor and a guanine nucleotide-free G protein represents the fundamental signaling assembly for the majority of hormone and neurotransmitter signaling. We applied single-particle electron microscopy (EM) analysis to examine the architecture...... of agonist-occupied β(2)-adrenoceptor (β(2)AR) in complex with the heterotrimeric G protein Gs (Gαsβγ). EM 2D averages and 3D reconstructions of the detergent-solubilized complex reveal an overall architecture that is in very good agreement with the crystal structure of the active-state ternary complex...

  1. Effect of low-temperature argon matrices on IR spectra and structure of flexible N-acetylglycine molecules

    International Nuclear Information System (INIS)

    Stepan'yan, S.G.; Ivanov, A.Yu.; Adamowicz, L.

    2016-01-01

    The influence of the matrix environment on structure and IR spectra of the N-acetylglycine conformers was studied. Based on the FTIR spectra of N-acetyl-glycine isolated in low temperature argon matrices we determined its conformational composition. The spectra bands of main and two minor conformers of N-acetylglycine were identified in the FTIR spectra. The structure of the observed conformers was stabilized by different intramolecular hydrogen bonds. The Gibbs free energies of the conformers (CCSD(T)/CBS method) were performed and population of the con-formers at 360 K were determined. They were 85.3% for the main conformer and 9.6 and 5.1% for the mi-nor N-acetylglycine conformers. We also determined size and shape of the cavities which were formed by embedding of the N-acetylglycine conformers in argon matrices during deposition. It was found that for the planar main conformer the most energetically preferred cavity was formed by substituting of 7 argon atoms. At the same time, bulky minor conformers were embedded in a cavity formed by substituting of 8 argon atoms. Complexation energies as well as the deformation energies of the argon crystal and conformers of N-acetylglycine were calculated. Also we determined values of the matrix shifts of vibrational frequencies of N-acetylglycine conformers.

  2. Topologically and geometrically flexible structural units in seven new organically templated uranyl selenates and selenite-selenates

    Science.gov (United States)

    Gurzhiy, Vladislav V.; Kovrugin, Vadim M.; Tyumentseva, Olga S.; Mikhaylenko, Pavel A.; Krivovichev, Sergey V.; Tananaev, Ivan G.

    2015-09-01

    Single crystals of seven novel uranyl oxysalts of selenium with protonated methylamine molecules, [C2H8N]2[(UO2)(SeO4)2(H2O)] (I), [C2H8N]2[(UO2)2(SeO4)3(H2O)] (II), [C4H15N3][H3O]0.5[(UO2)2(SeO4)2.93(SeO3)0.07(H2O)](NO3)0.5 (III), [C2H8N]3[H5O2][(UO2)2(SeO4)3(H2O)2]2(H2O)5 (IV), [C2H8N]2[H3O][(UO2)3(SeO4)4(HSeO3)(H2O)](H2SeO3)0.2 (V), [C4H12N]3[H3O][(UO2)3(SeO4)5(H2O)] (VI), and [C2H8N]3(C2H7N)[(UO2)3(SeO4)4(HSeO3)(H2O)] (VII) have been prepared by isothermal evaporation from aqueous solutions. Their crystal structures have been solved by direct methods and their uranyl selenate and selenite-selenate units investigated using black-and-white graphs from the viewpoints of topology of interpolyhedral linkages and isomeric variations. The crystal structure of IV is based upon complex layers with unique topology, which has not been observed previously in uranyl selenates. Investigations of the statistics and local distribution of the U-Obr-Se bond angles demonstrates that shorter angles associate with undulations, whereas larger angles correspond to planar areas of the uranyl selenite layers.

  3. Solvation Structure and Thermodynamic Mapping (SSTMap): An Open-Source, Flexible Package for the Analysis of Water in Molecular Dynamics Trajectories.

    Science.gov (United States)

    Haider, Kamran; Cruz, Anthony; Ramsey, Steven; Gilson, Michael K; Kurtzman, Tom

    2018-01-09

    We have developed SSTMap, a software package for mapping structural and thermodynamic water properties in molecular dynamics trajectories. The package introduces automated analysis and mapping of local measures of frustration and enhancement of water structure. The thermodynamic calculations are based on Inhomogeneous Fluid Solvation Theory (IST), which is implemented using both site-based and grid-based approaches. The package also extends the applicability of solvation analysis calculations to multiple molecular dynamics (MD) simulation programs by using existing cross-platform tools for parsing MD parameter and trajectory files. SSTMap is implemented in Python and contains both command-line tools and a Python module to facilitate flexibility in setting up calculations and for automated generation of large data sets involving analysis of multiple solutes. Output is generated in formats compatible with popular Python data science packages. This tool will be used by the molecular modeling community for computational analysis of water in problems of biophysical interest such as ligand binding and protein function.

  4. Synthesis and characterization of two new zinc(II) coordination polymers with bidentate flexible ligands: Formation of a 2D structure with (44.62)-sql topology

    Science.gov (United States)

    Lalegani, Arash; Khaledi Sardashti, Mohammad; Gajda, Roman; Woźniak, Krzysztof

    2017-12-01

    Zinc(II) coordination polymers [Zn(bip)2(NCS)2]n (1) and [Zn(μ-bbd)(N3)2]n (2) were synthesized by using the neutral flexible bidentate N-donor ligands 1,4-bis(3,5-dimethylpyrazolyl)butane (bbd) and 1,3-bis(imidazolyl)propane (bip), mono-anionic NCS- or N3-ligand and zinc(II) chloride salts. The results of the X-ray analyses demonstrate that in the structure of 1, the zinc(II) ion is located on an inversion center and exhibits an ZnN6 octahedral arrangement while, in the structure of 2, the zinc(II) ion adopts an ZnN4 tetrahedral geometry. In the polymer 1, the NCS groups are terminally N-bonded to the metal center and the each bip with anti-gauche conformation acts as bridging connecting four zinc(II) ions to form a two-dimensional network with a sql [point symbol (44.62)] topology while, in the polymer 1, the N3 groups are terminally bonded to the metal center and each bbd with anti-anti-anti conformation acts as bridging ligand connecting two zinc(II) ions to form a one-dimensional zig-zag chain. Coordination compounds 1 and 2 have been characterized by infrared spectroscopy, elemental analyses and single-crystal X-ray diffraction. Thermal analyses of polymers were also presented.

  5. A crystal structure of the Dengue virus NS5 protein reveals a novel inter-domain interface essential for protein flexibility and virus replication.

    Directory of Open Access Journals (Sweden)

    Yongqian Zhao

    2015-03-01

    Full Text Available Flavivirus RNA replication occurs within a replication complex (RC that assembles on ER membranes and comprises both non-structural (NS viral proteins and host cofactors. As the largest protein component within the flavivirus RC, NS5 plays key enzymatic roles through its N-terminal methyltransferase (MTase and C-terminal RNA-dependent-RNA polymerase (RdRp domains, and constitutes a major target for antivirals. We determined a crystal structure of the full-length NS5 protein from Dengue virus serotype 3 (DENV3 at a resolution of 2.3 Å in the presence of bound SAH and GTP. Although the overall molecular shape of NS5 from DENV3 resembles that of NS5 from Japanese Encephalitis Virus (JEV, the relative orientation between the MTase and RdRp domains differs between the two structures, providing direct evidence for the existence of a set of discrete stable molecular conformations that may be required for its function. While the inter-domain region is mostly disordered in NS5 from JEV, the NS5 structure from DENV3 reveals a well-ordered linker region comprising a short 310 helix that may act as a swivel. Solution Hydrogen/Deuterium Exchange Mass Spectrometry (HDX-MS analysis reveals an increased mobility of the thumb subdomain of RdRp in the context of the full length NS5 protein which correlates well with the analysis of the crystallographic temperature factors. Site-directed mutagenesis targeting the mostly polar interface between the MTase and RdRp domains identified several evolutionarily conserved residues that are important for viral replication, suggesting that inter-domain cross-talk in NS5 regulates virus replication. Collectively, a picture for the molecular origin of NS5 flexibility is emerging with profound implications for flavivirus replication and for the development of therapeutics targeting NS5.

  6. Flexible Electronics Research Facility

    Data.gov (United States)

    Federal Laboratory Consortium — The Flexible Electronics Research Facility designs, synthesizes, tests, and fabricates materials and devices compatible with flexible substrates for Army information...

  7. Novel binding motif and new flexibility revealed by structural analyses of a pyruvate dehydrogenase-dihydrolipoyl acetyltransferase subcomplex from the Escherichia coli pyruvate dehydrogenase multienzyme complex.

    Science.gov (United States)

    Arjunan, Palaniappa; Wang, Junjie; Nemeria, Natalia S; Reynolds, Shelley; Brown, Ian; Chandrasekhar, Krishnamoorthy; Calero, Guillermo; Jordan, Frank; Furey, William

    2014-10-24

    The Escherichia coli pyruvate dehydrogenase multienzyme complex contains multiple copies of three enzymatic components, E1p, E2p, and E3, that sequentially carry out distinct steps in the overall reaction converting pyruvate to acetyl-CoA. Efficient functioning requires the enzymatic components to assemble into a large complex, the integrity of which is maintained by tethering of the displaced, peripheral E1p and E3 components to the E2p core through non-covalent binding. We here report the crystal structure of a subcomplex between E1p and an E2p didomain containing a hybrid lipoyl domain along with the peripheral subunit-binding domain responsible for tethering to the core. In the structure, a region at the N terminus of each subunit in the E1p homodimer previously unseen due to crystallographic disorder was observed, revealing a new folding motif involved in E1p-E2p didomain interactions, and an additional, unexpected, flexibility was discovered in the E1p-E2p didomain subcomplex, both of which probably have consequences in the overall multienzyme complex assembly. This represents the first structure of an E1p-E2p didomain subcomplex involving a homodimeric E1p, and the results may be applicable to a large range of complexes with homodimeric E1 components. Results of HD exchange mass spectrometric experiments using the intact, wild type 3-lipoyl E2p and E1p are consistent with the crystallographic data obtained from the E1p-E2p didomain subcomplex as well as with other biochemical and NMR data reported from our groups, confirming that our findings are applicable to the entire E1p-E2p assembly. © 2014 by The American Society for Biochemistry and Molecular Biology, Inc.

  8. Novel Binding Motif and New Flexibility Revealed by Structural Analyses of a Pyruvate Dehydrogenase-Dihydrolipoyl Acetyltransferase Subcomplex from the Escherichia coli Pyruvate Dehydrogenase Multienzyme Complex*

    Science.gov (United States)

    Arjunan, Palaniappa; Wang, Junjie; Nemeria, Natalia S.; Reynolds, Shelley; Brown, Ian; Chandrasekhar, Krishnamoorthy; Calero, Guillermo; Jordan, Frank; Furey, William

    2014-01-01

    The Escherichia coli pyruvate dehydrogenase multienzyme complex contains multiple copies of three enzymatic components, E1p, E2p, and E3, that sequentially carry out distinct steps in the overall reaction converting pyruvate to acetyl-CoA. Efficient functioning requires the enzymatic components to assemble into a large complex, the integrity of which is maintained by tethering of the displaced, peripheral E1p and E3 components to the E2p core through non-covalent binding. We here report the crystal structure of a subcomplex between E1p and an E2p didomain containing a hybrid lipoyl domain along with the peripheral subunit-binding domain responsible for tethering to the core. In the structure, a region at the N terminus of each subunit in the E1p homodimer previously unseen due to crystallographic disorder was observed, revealing a new folding motif involved in E1p-E2p didomain interactions, and an additional, unexpected, flexibility was discovered in the E1p-E2p didomain subcomplex, both of which probably have consequences in the overall multienzyme complex assembly. This represents the first structure of an E1p-E2p didomain subcomplex involving a homodimeric E1p, and the results may be applicable to a large range of complexes with homodimeric E1 components. Results of HD exchange mass spectrometric experiments using the intact, wild type 3-lipoyl E2p and E1p are consistent with the crystallographic data obtained from the E1p-E2p didomain subcomplex as well as with other biochemical and NMR data reported from our groups, confirming that our findings are applicable to the entire E1p-E2p assembly. PMID:25210042

  9. Investigation of the Structural, Electrical, and Optical Properties of the Nano-Scale GZO Thin Films on Glass and Flexible Polyimide Substrates

    Directory of Open Access Journals (Sweden)

    Fang-Hsing Wang

    2016-05-01

    Full Text Available In this study, Ga2O3-doped ZnO (GZO thin films were deposited on glass and flexible polyimide (PI substrates at room temperature (300 K, 373 K, and 473 K by the radio frequency (RF magnetron sputtering method. After finding the deposition rate, all the GZO thin films with a nano-scale thickness of about 150 ± 10 nm were controlled by the deposition time. X-ray diffraction patterns indicated that the GZO thin films were not amorphous and all exhibited the (002 peak, and field emission scanning electron microscopy showed that only nano-scale particles were observed. The dependences of the structural, electrical, and optical properties of the GZO thin films on different deposition temperatures and substrates were investigated. X-ray photoemission spectroscopy (XPS was used to measure the elemental composition at the chemical and electronic states of the GZO thin films deposited on different substrates, which could be used to clarify the mechanism of difference in electrical properties of the GZO thin films. In this study, the XPS binding energy spectra of Ga2p3/2 and Ga2p1/2 peaks, Zn2p3/2 and Zn2p1/2 peaks, the Ga3d peak, and O1s peaks for GZO thin films on glass and PI substrates were well compared.

  10. Cognitive structure, flexibility, and plasticity in human multitasking-An integrative review of dual-task and task-switching research.

    Science.gov (United States)

    Koch, Iring; Poljac, Edita; Müller, Hermann; Kiesel, Andrea

    2018-06-01

    Numerous studies showed decreased performance in situations that require multiple tasks or actions relative to appropriate control conditions. Because humans often engage in such multitasking activities, it is important to understand how multitasking affects performance. In the present article, we argue that research on dual-task interference and sequential task switching has proceeded largely separately using different experimental paradigms and methodology. In our article we aim at organizing this complex set of research in terms of three complementary research perspectives on human multitasking. One perspective refers to structural accounts in terms of cognitive bottlenecks (i.e., critical processing stages). A second perspective refers to cognitive flexibility in terms of the underlying cognitive control processes. A third perspective emphasizes cognitive plasticity in terms of the influence of practice on human multitasking abilities. With our review article we aimed at highlighting the value of an integrative position that goes beyond isolated consideration of a single theoretical research perspective and that broadens the focus from single experimental paradigms (dual task and task switching) to favor instead a view that emphasizes the fundamental similarity of the underlying cognitive mechanisms across multitasking paradigms. (PsycINFO Database Record (c) 2018 APA, all rights reserved).

  11. Balance and flexibility.

    Science.gov (United States)

    2003-12-01

    The 'work-life balance' and flexible working are currently key buzz terms in the NHS. Those looking for more information on these topics should visit Flexibility at www.flexibility.co.uk for a host of resources designed to support new ways of working, including information on flexible workers and flexible rostering, the legal balancing act for work-life balance and home working.

  12. Rational assembly of Pb(II)/Cd(II)/Mn(II) coordination polymers based on flexible V-shaped dicarboxylate ligand: Syntheses, helical structures and properties

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Gao-Shan [School of Environment and Chemical Engineering, Nanchang Hangkong University, Nanchang 330063 (China); Liu, Chong-Bo, E-mail: cbliu@nchu.edu.cn [School of Environment and Chemical Engineering, Nanchang Hangkong University, Nanchang 330063 (China); School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, GA 30332 (United States); Liu, Hong [School of Environment and Chemical Engineering, Nanchang Hangkong University, Nanchang 330063 (China); Robbins, Julianne; Zhang, Z. John [School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, GA 30332 (United States); Yin, Hong-Shan [School of Environment and Chemical Engineering, Nanchang Hangkong University, Nanchang 330063 (China); Wen, Hui-Liang [State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047 (China); Wang, Yu-Hua [School of Environment and Chemical Engineering, Nanchang Hangkong University, Nanchang 330063 (China)

    2015-05-15

    Six new coordination polymers, namely, [Pb(L)(H{sub 2}O)] (1), [Pb(L)(phen)] (2), [Pb{sub 2}(L){sub 2}(4,4′-bipy){sub 0.5}] (3), [Cd(L)(phen)] (4), [Cd(L)(4,4′-bipy)]·H{sub 2}O (5) and [Mn(L)(4,4′-bipy)]·H{sub 2}O (6) have been synthesized by the hydrothermal reaction of 2,2′-[hexafluoroisopropylidenebis(p-phenyleneoxy)]diacetic acid (H{sub 2}L) with Pb(II)/Cd(II)/Mn(II) in the presence of ancillary ligands 4,4′-bipyridine (4,4′-bipy) or 1,10-phenanthroline (phen). Complexes 1 and 4–6 exhibit 2-D structures, and complexes 2–3 display 3-D frameworks, of which L{sup 2−} ligands join metal ions to single-stranded helical chains of 1, 3–6 and double-stranded helical chains of 2. Complexes 2 and 3 also contain double-stranded Metal–O helices. Topology analysis reveals that complexes 1 and 4 both represent 4-connected sql net, 2 represents 6-connected pcu net, 3 exhibits a novel (3,12)-connected net, while 5 and 6 display (3,5)-connected gek1 net. The six complexes exhibit two kinds of inorganic–organic connectivities: I{sup 0}O{sup 2} for 1, 4–6, and I{sup 1}O{sup 2} for 2–3. The photoluminescent properties of 4–5 and the magnetic properties of 6 have been investigated. - Graphical abstract: Six new Pb(II)/Cd(II)/Mn(II) coordination polymers with helical structures based on flexible V-shaped dicarboxylate ligand have been synthesized and structurally characterized. Photoluminescent and magnetic properties have been investigated. - Highlights: • Six novel M(II) coordination polymers with 2,2′-[hexafluoroisopropylidenebis(p-phenyleneoxy)]diacetic acid and N-donor ligands. • Complexes 1–6 show diverse intriguing helical characters. • The luminescent properties of complexes 1–5 were investigated. • Complex 6 shows antiferromagnetic coupling.

  13. Conformational flexibility of aspartame.

    Science.gov (United States)

    Toniolo, Claudio; Temussi, Pierandrea

    2016-05-01

    L-Aspartyl-L-phenylalanine methyl ester, better known as aspartame, is not only one of the most used artificial sweeteners, but also a very interesting molecule with respect to the correlation between molecular structure and taste. The extreme conformational flexibility of this dipeptide posed a huge difficulty when researchers tried to use it as a lead compound to design new sweeteners. In particular, it was difficult to take advantage of its molecular model as a mold to infer the shape of the, then unknown, active site of the sweet taste receptor. Here, we follow the story of the 3D structural aspects of aspartame from early conformational studies to recent docking into homology models of the receptor. © 2016 Wiley Periodicals, Inc. Biopolymers (Pept Sci) 106: 376-384, 2016. © 2016 Wiley Periodicals, Inc.

  14. Flexible packaging for PV modules

    Science.gov (United States)

    Dhere, Neelkanth G.

    2008-08-01

    Economic, flexible packages that provide needed level of protection to organic and some other PV cells over >25-years have not yet been developed. However, flexible packaging is essential in niche large-scale applications. Typical configuration used in flexible photovoltaic (PV) module packaging is transparent frontsheet/encapsulant/PV cells/flexible substrate. Besides flexibility of various components, the solder bonds should also be flexible and resistant to fatigue due to cyclic loading. Flexible front sheets should provide optical transparency, mechanical protection, scratch resistance, dielectric isolation, water resistance, UV stability and adhesion to encapsulant. Examples are Tefzel, Tedlar and Silicone. Dirt can get embedded in soft layers such as silicone and obscure light. Water vapor transmittance rate (WVTR) of polymer films used in the food packaging industry as moisture barriers are ~0.05 g/(m2.day) under ambient conditions. In comparison, light emitting diodes employ packaging components that have WVTR of ~10-6 g/(m2.day). WVTR of polymer sheets can be improved by coating them with dense inorganic/organic multilayers. Ethylene vinyl acetate, an amorphous copolymer used predominantly by the PV industry has very high O2 and H2O diffusivity. Quaternary carbon chains (such as acetate) in a polymer lead to cleavage and loss of adhesional strength at relatively low exposures. Reactivity of PV module components increases in presence of O2 and H2O. Adhesional strength degrades due to the breakdown of structure of polymer by reactive, free radicals formed by high-energy radiation. Free radical formation in polymers is reduced when the aromatic rings are attached at regular intervals. This paper will review flexible packaging for PV modules.

  15. Novel metal-organic and supramolecular 3D frameworks constructed from flexible biphenyl-2,5,3‧-tricarboxylate blocks: Synthesis, structural features and properties

    Science.gov (United States)

    You, Ao; Li, Yu; Zhang, Ze-Min; Zou, Xun-Zhong; Gu, Jin-Zhong; Kirillov, Alexander M.; Chen, Jin-Wei; Chen, Yun-Bo

    2017-10-01

    Biphenyl-2,5,3‧-tricarboxylic acid (H3L) was selected as an unexplored tricarboxylate building block and applied for the hydrothermal synthesis of three novel coordination compounds, namely a 0D tetramer [Co4(HL)2(μ3-HL)2(phen)6(H2O)2]·3H2O (1) and two 3D metal-organic frameworks (MOFs) [Cd3(μ5-L)(μ6-L)(py)(μ-H2O)2(H2O)]n·H2O (2) and [Zn3(μ4-L)2(2,2‧-bpy)(μ-4,4‧-bpy)]n·2H2O (3). These products were easily generated in aqueous medium from the corresponding metal(II) chlorides, H3L, and various N-donor ancillary ligands, selected from 1,10-phenanthroline (phen), pyridine (py), 2,2‧-bipyridine (2,2‧-bpy), and 4,4‧-bipyridine (4,4‧-bpy). Compounds 1-3 were isolated as stable crystalline solids and were fully characterized by IR and UV-vis spectroscopy, elemental, thermogravimetric (TGA), powder (PXRD) and single-crystal X-ray diffraction analyses. Compound 1 possesses a discrete tetracobalt(II) structure, which is extended into a 3D H-bonded network with the pcu topology. In contrast, MOF 2 discloses a very complex trinodal 4,5,12-connected net with an undocumented topology, while MOF 3 features the nce/I topological framework. The magnetic (for 1) and luminescence (for 2 and 3) properties were also studied and discussed. The present study thus widens a still very limited family of metal-organic and supramolecular frameworks driven by flexible biphenyl-2,5,3‧-tricarboxylate building blocks.

  16. Structural modulation and luminescent properties of four Cd{sup II} coordination architectures based on 3-(pyridin-4-yl)-5-(pyrazin-2-yl)-1H-1,2,4-triazole and flexible/rigid dicarboxylate ligands

    Energy Technology Data Exchange (ETDEWEB)

    Xia, Liang; Dong, Wen-Wen, E-mail: dongww1@126.com; Ye, Xiao; Zhao, Jun; Li, Dong-Sheng, E-mail: lidongsheng1@126.com

    2016-10-15

    To systematically investigate the influence of the flexible or rigid auxiliary ligands on the structures and properties of transition metal compounds, we synthesized four new d{sup 10} coordination polymers (CPs) from 3-(pyridin-4-yl)-5-(pyrazin-2-yl)-1H-1,2,4-triazole (4-Hpzpt) and flexible/rigid dicarboxylate ligands, [Cd(4-pzpt){sub 2}]{sub n} (1), [Cd{sub 3}(4-pzpt){sub 2}(suc){sub 2}]{sub n} (2), [Cd{sub 2}(4-Hpzpt)(nbc){sub 2}(H{sub 2}O)]{sub n} (3) and ([Cd{sub 2}(4-pzpt){sub 2}(tfbdc)(H{sub 2}O){sub 4}]·H{sub 2}O){sub n} (4) (H{sub 2}suc=1,2-ethanedicarboxylic acid, H{sub 2}nbc=hthalene-1,4-dicarboxylic acid, H{sub 2}tfbdc =2,3,5,6-tetrafluoroterephthalic acid). Single crystal X-ray analysis indicates that compound 1 shows a 4{sup 4}-sql layer, which is extended to a 3D network via nonclassical C–H{sup …}N hydrogen bonds. Compound 2 possesses a 6-connected pcu-4{sup 12}0.6{sup 3} net composed of trinuclear Cd{sup II}-clusters. Compound 3 represents a rare 3D (3,4,4,5)-connected topology with a Schläfli symbol of (4·6·7)(4·5{sup 3}·7{sup 2})(5{sup 3}·6·7·9)(4{sup 2}·5{sup 5}·6·7{sup 2}). Compound 4 exhibits a 2D+2D→2D parallel interpenetrated 6{sup 3}-hcb network. The adjacent 2D networks are interdigitated with each other to form the resulting 3D supramolecular architecture through classical O–H{sup …}N and O–H{sup …}O hydrogen bonds. Structural diversities indicate that the nature of flexible/rigid-dicarboxlates plays crucial roles in modulating structures of these compounds. Moreover, the luminescent properties of them have been briefly investigated. - Graphical abstract: Four new Cd{sup II} coordination architectures constructed from the primary ligand 4-Hpzpt and flexible/rigid dicarboxylate coligands. Structural diversities indicate that the nature of flexible/rigid-dicarboxlates plays crucial roles in modulating structures of these compounds. And more, the thermal stability and luminescence are discussed. - Highlights:

  17. Flexible Bistable Cholesteric Reflective Displays

    Science.gov (United States)

    Yang, Deng-Ke

    2006-03-01

    Cholesteric liquid crystals (ChLCs) exhibit two stable states at zero field condition-the reflecting planar state and the nonreflecting focal conic state. ChLCs are an excellent candidate for inexpensive and rugged electronic books and papers. This paper will review the display cell structure,materials and drive schemes for flexible bistable cholesteric (Ch) reflective displays.

  18. Flexible magnetoimpedance sensor

    KAUST Repository

    Li, Bodong; Kavaldzhiev, Mincho; Kosel, Jü rgen

    2015-01-01

    Flexible magnetoimpedance (MI) sensors fabricated using a NiFe/Cu/NiFe tri-layer on Kapton substrate have been studied. A customized flexible microstrip transmission line was employed to investigate the MI sensors's magnetic field and frequency

  19. Flexible Carpooling: Exploratory Study

    OpenAIRE

    Dorinson, Diana; Gay, Deanna; Minett, Paul; Shaheen, Susan

    2009-01-01

    Energy consumption could be reduced if more people shared rides rather than driving alone yet carpooling represents a small proportion of all potential carpoolers. Prior research has found that many who might carpool were concerned about reduced flexibility with carpooling. If flexibility is one of the barriers how could carpooling be organized to be more flexible? In Northern Virginia a flexible system has evolved where there are 3,500 single-use carpools per day. In another example there ...

  20. Formation of double-layered TiO2 structures with selectively-positioned molecular dyes for efficient flexible dye-sensitized solar cells

    International Nuclear Information System (INIS)

    Kim, Eun Yi; Yu, Sora; Moon, Jeong Hoon; Yoo, Seon Mi; Kim, Chulhee; Kim, Hwan Kyu; Lee, Wan In

    2013-01-01

    Graphical abstract: A novel flexible tandem dye-sensitized solar cell, selectively loading different dyes in discrete layers, was successfully formed on a plastic substrate by transferring the high-temperature-processed N719/TiO 2 over an organic dye-adsorbed TiO 2 film by a typical compression process at room temperature. -- Highlights: • A novel flexible dye-sensitized solar cell, selectively loading two different dyes in discrete layers, was successfully formed on a plastic substrate. • η of the flexible tandem cell obtained by transferring the high-temperature-processed TiO 2 layer was enhanced from 2.91% to 6.86%. • Interface control between two TiO 2 layers is crucial for the efficient transport of photo-injected electrons from the top to bottom TiO 2 layer. -- Abstract: To fabricate flexible dye-sensitized solar cells (DSCs) utilizing full solar spectrum, the double-layered TiO 2 films, selectively loading two different dyes in discrete layers, were formed on a plastic substrate by transferring the high-temperature-processed N719/TiO 2 over an organic dye (TA-St-CA)-sensitized TiO 2 film by a typical compression process at room temperature. It was found that interface control between two TiO 2 layers is crucial for the efficient transport of photo-injected electrons from the N719/TiO 2 to the TA-St-CA/TiO 2 layer. Electron impedance spectra (EIS) and transient photoelectron spectroscopic analyses exhibited that introduction of a thin interfacial TiO 2 layer between the two TiO 2 layers remarkably decreased the resistance at the interface, while increasing the electron diffusion constant (D e ) by ∼10 times. As a result, the photovoltaic conversion efficiency (η) of the flexible tandem DSC was 6.64%, whereas that of the flexible cell derived from the single TA-St-CA/TiO 2 layer was only 2.98%. Another organic dye (HC-acid), absorbing a short wavelength region of solar spectrum, was also applied to fabricate flexible tandem DSC. The η of the cell

  1. Structural flexibility in magnetocaloric RE5T4 (RE=rare-earth; T=Si,Ge,Ga) materials: Effect of chemical substitution on structure, bonding and properties

    Energy Technology Data Exchange (ETDEWEB)

    Misra, Sumohan [Iowa State Univ., Ames, IA (United States)

    2008-01-01

    The binary, ternary and multicomponent intermetallic compounds of rare-earth metals (RE) with group 14 elements (Tt) at the RE5Tt4 stoichiometry have been known for over 30 years, but only in the past decade have these materials become a gold mine for solid-state chemistry, materials science and condensed matter physics. It all started with the discovery of a giant magnetocaloric effect in Gd5Si2Ge2, along with other extraordinary magnetic properties, such as a colossal magnetostriction and giant magnetoresistance. The distinctiveness of this series is in the remarkable flexibility of the chemical bonding between well-defined, subnanometer-thick slabs and the resultant magnetic, transport, and thermodynamic properties of these materials. This can be controlled by varying either or both RE and Tt elements, including mixed rare-earth elements on the RE sites and different group 14 (or T = group 13 or 15) elements occupying the Tt sites. In addition to chemical means, the interslab interactions are also tunable by temperature, pressure, and magnetic field. Thus, this system provides a splendid 'playground' to investigate the interrelationships among composition, structure, physical properties, and chemical bonding. The work presented in this dissertation involving RE5T4 materials has resulted in the successful synthesis, characterization, property measurements, and theoretical analyses of various new intermetallic compounds. The results provide significant insight into the fundamental magnetic and structural behavior of these materials and help us better understand the complex link between a compound's composition, its observed structure, and its properties.

  2. Resistive switching effect in the planar structure of all-printed, flexible and rewritable memory device based on advanced 2D nanocomposite of graphene quantum dots and white graphene flakes

    International Nuclear Information System (INIS)

    Rehman, Muhammad Muqeet; Siddiqui, Ghayas Uddin; Kim, Sowon; Choi, Kyung Hyun

    2017-01-01

    Pursuit of the most appropriate materials and fabrication methods is essential for developing a reliable, rewritable and flexible memory device. In this study, we have proposed an advanced 2D nanocomposite of white graphene (hBN) flakes embedded with graphene quantum dots (GQDs) as the functional layer of a flexible memory device owing to their unique electrical, chemical and mechanical properties. Unlike the typical sandwich type structure of a memory device, we developed a cost effective planar structure, to simplify device fabrication and prevent sneak current. The entire device fabrication was carried out using printing technology followed by encapsulation in an atomically thin layer of aluminum oxide (Al 2 O 3 ) for protection against environmental humidity. The proposed memory device exhibited attractive bipolar switching characteristics of high switching ratio, large electrical endurance and enhanced lifetime, without any crosstalk between adjacent memory cells. The as-fabricated device showed excellent durability for several bending cycles at various bending diameters without any degradation in bistable resistive states. The memory mechanism was deduced to be conductive filamentary; this was validated by illustrating the temperature dependence of bistable resistive states. Our obtained results pave the way for the execution of promising 2D material based next generation flexible and non-volatile memory (NVM) applications. (paper)

  3. Thin Flexible IMM Solar Array, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — Thin, flexible, and highly efficient solar arrays are needed that package compactly for launch and deploy into large, structurally stable high power generators....

  4. Structural and electrical characteristics of high-k/metal gate metal oxide semiconductor capacitors fabricated on flexible, semi-transparent silicon (100) fabric

    KAUST Repository

    Rojas, Jhonathan Prieto

    2013-02-12

    In pursuit of flexible computers with high performance devices, we demonstrate a generic process to fabricate 10 000 metal-oxide-semiconductor capacitors (MOSCAPs) with semiconductor industry\\'s most advanced high-k/metal gate stacks on widely used, inexpensive bulk silicon (100) wafers and then using a combination of iso-/anisotropic etching to release the top portion of the silicon with the already fabricated devices as a mechanically flexible (bending curvature of 133 m−1), optically semi-transparent silicon fabric (1.5 cm × 3 cm × 25 μm). The electrical characteristics show 3.7 nm effective oxide thickness, −0.2 V flat band voltage, and no hysteresis from the fabricated MOSCAPs.

  5. Structural and electrical characteristics of high-k/metal gate metal oxide semiconductor capacitors fabricated on flexible, semi-transparent silicon (100) fabric

    KAUST Repository

    Rojas, Jhonathan Prieto; Hussain, Muhammad Mustafa; Sevilla, Galo T.

    2013-01-01

    In pursuit of flexible computers with high performance devices, we demonstrate a generic process to fabricate 10 000 metal-oxide-semiconductor capacitors (MOSCAPs) with semiconductor industry's most advanced high-k/metal gate stacks on widely used, inexpensive bulk silicon (100) wafers and then using a combination of iso-/anisotropic etching to release the top portion of the silicon with the already fabricated devices as a mechanically flexible (bending curvature of 133 m−1), optically semi-transparent silicon fabric (1.5 cm × 3 cm × 25 μm). The electrical characteristics show 3.7 nm effective oxide thickness, −0.2 V flat band voltage, and no hysteresis from the fabricated MOSCAPs.

  6. The Flexibility of Organization and the flexibility of product – premises of organizational success

    OpenAIRE

    Todorut, Amalia Venera

    2008-01-01

    Flexibility represents the ability of a manufactural system to adapt to some diversified tasks of production, thus to assure an economic efficiency – the rapport time/cost should be optimum, with insignificant structure changes within a long period of time. The central role of flexibility is to permit the survival and the success of the organizations in a turbulent circumstance, which is characteristic to the new world tendencies. The more flexible the organization becomes, the better it resp...

  7. The Flexibility of Pusher Furnace Grate

    Directory of Open Access Journals (Sweden)

    Słowik J.A.

    2016-12-01

    Full Text Available The lifetime of guide grates in pusher furnaces for heat treatment could be increased by raising the flexibility of their structure through, for example, the replacement of straight ribs, parallel to the direction of grate movement, with more flexible segments. The deformability of grates with flexible segments arranged in two orientations, i.e. crosswise (perpendicular to the direction of compression and lengthwise (parallel to the direction of compression, was examined. The compression process was simulated using SolidWorks Simulation program. Relevant regression equations were also derived describing the dependence of force inducing the grate deformation by 0.25 mm ‒ modulus of grate elasticity ‒ on the number of flexible segments in established orientations. These calculations were made in Statistica and Scilab programs. It has been demonstrated that, with the same number of segments, the crosswise orientation of flexible segments increases the grate structure flexibility in a more efficient way than the lengthwise orientation. It has also been proved that a crucial effect on the grate flexibility has only the quantity and orientation of segments (crosswise / lengthwise, while the exact position of segments changes the grate flexibility by less than 1%.

  8. Flexible piezotronic strain sensor.

    Science.gov (United States)

    Zhou, Jun; Gu, Yudong; Fei, Peng; Mai, Wenjie; Gao, Yifan; Yang, Rusen; Bao, Gang; Wang, Zhong Lin

    2008-09-01

    Strain sensors based on individual ZnO piezoelectric fine-wires (PFWs; nanowires, microwires) have been fabricated by a simple, reliable, and cost-effective technique. The electromechanical sensor device consists of a single electrically connected PFW that is placed on the outer surface of a flexible polystyrene (PS) substrate and bonded at its two ends. The entire device is fully packaged by a polydimethylsiloxane (PDMS) thin layer. The PFW has Schottky contacts at its two ends but with distinctly different barrier heights. The I- V characteristic is highly sensitive to strain mainly due to the change in Schottky barrier height (SBH), which scales linear with strain. The change in SBH is suggested owing to the strain induced band structure change and piezoelectric effect. The experimental data can be well-described by the thermionic emission-diffusion model. A gauge factor of as high as 1250 has been demonstrated, which is 25% higher than the best gauge factor demonstrated for carbon nanotubes. The strain sensor developed here has applications in strain and stress measurements in cell biology, biomedical sciences, MEMS devices, structure monitoring, and more.

  9. Office flexible cystoscopy.

    Science.gov (United States)

    Kavoussi, L R; Clayman, R V

    1988-11-01

    Since the development of the first purpose-built flexible cystoscope in 1984, flexible cystoscopy has become an accepted diagnostic and therapeutic modality. Indeed, it is estimated that more than 10 per cent of practicing urologists are already familiar with this technology. The flexible cystoscope has markedly extended the urologist's ability to examine the bladder, and it has become a valuable adjunct to the rigid cystoscope. Although the operation of this instrument is vastly different from that of its rigid counterpart, with practice, the technique can be learned. After experience is obtained with diagnostic flexible cystoscopy, the urologist will likely prefer this new instrument for bladder inspection, as it provides for a more thorough yet less morbid and less expensive examination. In the future, the development of improved and smaller instrumentation will further extend the therapeutic indications for flexible cystoscopy. Indeed, advances in laser technology are already providing the urologist with 300- to 600-micron (0.9 to 1.8F) flexible probes capable of incision (KTP laser), fulguration (Nd:YAG laser), and stone disintegration (tunable dye laser). Lastly, the skills obtained in using the flexible cystoscope are all readily applicable to the development of dexterity with the already available flexible nephroscope and the more recently developed flexible ureteroscope.

  10. Porous honeycomb structures formed from interconnected MnO2 sheets on CNT-coated substrates for flexible all-solid-state supercapacitors

    Science.gov (United States)

    Ko, Wen-Yin; Chen, You-Feng; Lu, Ke-Ming; Lin, Kuan-Jiuh

    2016-01-01

    The use of lightweight and easily-fabricated MnO2/carbon nanotube (CNT)-based flexible networks as binder-free electrodes and a polyvinyl alcohol/H2SO4 electrolyte for the formation of stretchable solid-state supercapacitors was examined. The active electrodes were fabricated from 3D honeycomb porous MnO2 assembled from cross-walled and interconnected sheet-architectural MnO2 on CNT-based plastic substrates (denoted as honeycomb MnO2/CNT textiles).These substrates were fabricated through a simple two-step procedure involving the coating of multi-walled carbon nanotubes (MWCNTs) onto commercial textiles by a dipping-drying process and subsequent electrodeposition of the interconnected MnO2 sheets onto the MWCNT-coated textile. With such unique MnO2 architectures integrated onto CNT flexible films, good performance was achieved with a specific capacitance of 324 F/g at 0.5 A/g. A maximum energy density of 7.2 Wh/kg and a power density as high as 3.3 kW/kg were exhibited by the honeycomb MnO2/CNT network device, which is comparable to the performance of other carbon-based and metal oxide/carbon-based solid-state supercapacitor devices. Specifically, the long-term cycling stability of this material is excellent, with almost no loss of its initial capacitance and good Coulombic efficiency of 82% after 5000 cycles. These impressive results identify these materials as a promising candidate for use in environmentally friendly, low-cost, and high-performance flexible energy-storage devices. PMID:26726724

  11. Relationship between structure, conformational flexibility, and biological activity of agonists and antagonists at the N-methyl-D-aspartic acid subtype of excitatory amino acid receptors

    DEFF Research Database (Denmark)

    Madsen, U; Brehm, L; Schaumburg, Kjeld

    1990-01-01

    The relationship between conformational flexibility and agonist or antagonist actions at the N-Methyl-D-aspartic acid (NMDA) subtype of central L-glutamic acid (GLU) receptors of a series of racemic piperidinedicarboxylic acids (PDAs) was studied. The conformational analyses were based on 1H NMR...... receptors. Each of the three cyclic acidic amino acids showing NMDA agonist activities was found to exist as an equilibrium mixture of two conformers in aqueous solution. In contrast, the NMDA antagonists cis-2,3-PDA and cis-2,4-PDA as well as the inactive compounds trans-2,5-PDA and cis-2,6-PDA were shown...

  12. Structural modulation and luminescent properties of four CdII coordination architectures based on 3-(pyridin-4-yl)-5-(pyrazin-2-yl)-1H-1,2,4-triazole and flexible/rigid dicarboxylate ligands

    Science.gov (United States)

    Xia, Liang; Dong, Wen-Wen; Ye, Xiao; Zhao, Jun; Li, Dong-Sheng

    2016-10-01

    To systematically investigate the influence of the flexible or rigid auxiliary ligands on the structures and properties of transition metal compounds, we synthesized four new d10 coordination polymers (CPs) from 3-(pyridin-4-yl)-5-(pyrazin-2-yl)-1H-1,2,4-triazole (4-Hpzpt) and flexible/rigid dicarboxylate ligands, [Cd(4-pzpt)2]n (1), [Cd3(4-pzpt)2(suc)2]n (2), [Cd2(4-Hpzpt)(nbc)2(H2O)]n (3) and {[Cd2(4-pzpt)2(tfbdc)(H2O)4]·H2O}n (4) (H2suc=1,2-ethanedicarboxylic acid, H2nbc=hthalene-1,4-dicarboxylic acid, H2tfbdc =2,3,5,6-tetrafluoroterephthalic acid). Single crystal X-ray analysis indicates that compound 1 shows a 44-sql layer, which is extended to a 3D network via nonclassical C-H…N hydrogen bonds. Compound 2 possesses a 6-connected pcu-4120.63 net composed of trinuclear CdII-clusters. Compound 3 represents a rare 3D (3,4,4,5)-connected topology with a Schläfli symbol of (4·6·7)(4·53·72)(53·6·7·9)(42·55·6·72). Compound 4 exhibits a 2D+2D→2D parallel interpenetrated 63-hcb network. The adjacent 2D networks are interdigitated with each other to form the resulting 3D supramolecular architecture through classical O-H…N and O-H…O hydrogen bonds. Structural diversities indicate that the nature of flexible/rigid-dicarboxlates plays crucial roles in modulating structures of these compounds. Moreover, the luminescent properties of them have been briefly investigated.

  13. Organizational flexibility estimation

    OpenAIRE

    Komarynets, Sofia

    2013-01-01

    By the help of parametric estimation the evaluation scale of organizational flexibility and its parameters was formed. Definite degrees of organizational flexibility and its parameters for the Lviv region enterprises were determined. Grouping of the enterprises under the existing scale was carried out. Special recommendations to correct the enterprises behaviour were given.

  14. Reversibly Bistable Flexible Electronics

    KAUST Repository

    Alfaraj, Nasir

    2015-05-01

    Introducing the notion of transformational silicon electronics has paved the way for integrating various applications with silicon-based, modern, high-performance electronic circuits that are mechanically flexible and optically semitransparent. While maintaining large-scale production and prototyping rapidity, this flexible and translucent scheme demonstrates the potential to transform conventionally stiff electronic devices into thin and foldable ones without compromising long-term performance and reliability. In this work, we report on the fabrication and characterization of reversibly bistable flexible electronic switches that utilize flexible n-channel metal-oxide-semiconductor field-effect transistors. The transistors are fabricated initially on rigid (100) silicon substrates before they are peeled off. They can be used to control flexible batches of light-emitting diodes, demonstrating both the relative ease of scaling at minimum cost and maximum reliability and the feasibility of integration. The peeled-off silicon fabric is about 25 µm thick. The fabricated devices are transferred to a reversibly bistable flexible platform through which, for example, a flexible smartphone can be wrapped around a user’s wrist and can also be set back to its original mechanical position. Buckling and cyclic bending of such host platforms brings a completely new dimension to the development of flexible electronics, especially rollable displays.

  15. Flexible magnetoimpidence sensor

    KAUST Repository

    Kavaldzhiev, Mincho

    2015-05-01

    Recently, flexible electronic devices have attracted increasing interest, due to the opportunities they promise for new applications such as wearable devices, where the components are required to flex during normal use[1]. In this light, different magnetic sensors, like microcoil, spin valve, giant magnetoresistance (GMR), magnetoimpedance (MI), have been studied previously on flexible substrates.

  16. Flexibility within Fidelity

    Science.gov (United States)

    Kendall, Philip C.; Gosch, Elizabeth; Furr, Jami M.; Sood, Erica

    2008-01-01

    The authors address concerns regarding manual-based treatments, highlighting the role of flexibility and creativity. A cognitive-behavioral therapy for youth anxiety called the Coping Cat program demonstrates the flexible application of manuals and emphasizes the importance of a child-centered, personalized approach that involves the child in the…

  17. Flexible position probe assembly

    International Nuclear Information System (INIS)

    Schmitz, J.J.

    1977-01-01

    The combination of a plurality of tubular transducer sections and a flexible supporting member extending through the tubular transducer sections forms a flexible elongated probe of a design suitable for monitoring the level of an element, such as a nuclear magnetically permeable control rod or liquid. 3 claims, 23 figures

  18. Global Sourcing Flexibility

    DEFF Research Database (Denmark)

    Ørberg Jensen, Peter D.; Petersen, Bent

    2013-01-01

    the higher costs (but decreased risk for value chain disruption) embedded in a more flexible global sourcing model that allows the firm to replicate and/or relocate activities across multiple locations. We develop a model and propositions on facilitating and constraining conditions of global sourcing...... sourcing flexibility. Here we draw on prior research in the fields of organizational flexibility, international business and global sourcing as well as case examples and secondary studies. In the second part of the paper, we discuss the implications of global sourcing flexibility for firm strategy...... and operations against the backdrop of the theory-based definition of the construct. We discuss in particular the importance of global sourcing flexibility for operational performance stability, and the trade-off between specialization benefits, emerging from location and service provider specialization, versus...

  19. Mercury coordination polymers with flexible ethane-1,2-diyl-bis-(pyridyl-3-carboxylate): Synthesis, structures, thermal and luminescent properties

    Energy Technology Data Exchange (ETDEWEB)

    Vallejos, Javier [Departamento de Química, Universidad Católica del Norte, Av. Angamos 0610, Antofagasta (Chile); Brito, Iván, E-mail: ivanbritob@yahoo.com [Departamento de Quimica, Universidad de Antofagasta, Av. Angamos 601, Antofagasta (Chile); Cárdenas, Alejandro [Departamento de Física, Universidad de Antofagasta, Av. Angamos 601, Antofagasta (Chile); Llanos, Jaime [Departamento de Química, Universidad Católica del Norte, Av. Angamos 0610, Antofagasta (Chile); Bolte, Michael [Institut für Anorganische Chemie der Goethe—Universität Frankfurt, Max-von-Laue-Strasse 7, D-60438 Frankfurt am Main (Germany); López-Rodríguez, Matías [Instituto de Bio-Orgánica “Antonio González”, Universidad de La Laguna, Astrofísico Francisco Sánchez N° 2, La Laguna, Tenerife (Spain)

    2015-03-15

    The reaction of the flexible ligand, ethane-1,2-diyl-bis-(pyridyl-3-carboxylate), (L) with HgI{sub 2} and HgBr{sub 2} salts under the same experimental conditions leads to the formation of two coordination polymers with different motifs: ([Hg(L)(Br{sub 2})]){sub n}(1) and ([Hg(L)(I{sub 2})]){sub n}(2). In both compounds, the ligand, (L) acts in a μ2-N:N′-bidentate fashion to link HgBr{sub 2} and HgI{sub 2} units to form a linear and helical chain motif, along [1 0 0] for (1) and [0 0 1] for (2). The ethylene moiety of (L) has gauche and trans conformation in compounds (1) and (2), respectively. The flexible conformation of L produces differences in the optical and crystal properties of the two compounds. - Graphical abstract: This work demonstrates how the HgX{sub 2} units are coordinates by bi-dentate ligand forming polymeric coordination complexes by self-assembly of both chemical units.- Highlights: • News 1-D d{sup 10} transition metal coordination polymers. • The photoluminescent properties have been measured. • The thermal properties have been measured.

  20. Integrated engineering increases flexibility

    International Nuclear Information System (INIS)

    Smith, Ray

    1991-01-01

    Integrated Engineering (IE) can be used to describe the best use of increasingly rare good engineering talent in an increasingly competive world. A number of organisations are now moving towards IE without any general agreement on a precise definition. The engineering division of British Nuclear Fuels (BNFL) is one such organisation. This feature covers the reasoning behind the decision, and our experience to date. BNFL engineering division is responsible primarily for the provision of major facilities on BNFL operational sites. This provision includes feasibility, front end and detailed design, procurement, installation and commissioning. Task force working has been used for some of the large projects. But the future workload is expected to comprise many more smaller projects. At the same time, equipment is becoming more complex and the need for mutual understanding and appreciation between disciplines is increasing. To meet this increasing need for flexibility, BNFL has decided to move to the matrix structure of project management and functional departments described in the article. (Author)

  1. Intrinsic flexibility of porous materials; theory, modelling and the flexibility window of the EMT zeolite framework

    International Nuclear Information System (INIS)

    Fletcher, Rachel E.; Wells, Stephen A.; Leung, Ka Ming; Edwards, Peter P.; Sartbaeva, Asel

    2015-01-01

    Framework materials possess intrinsic flexibility which can be investigated using geometric simulation. We review framework flexibility properties in energy materials and present novel results on the flexibility window of the EMT zeolite framework containing 18-crown-6 ether as a structure directing agent (SDA). Framework materials have structures containing strongly bonded polyhedral groups of atoms connected through their vertices. Typically the energy cost for variations of the inter-polyhedral geometry is much less than the cost of distortions of the polyhedra themselves – as in the case of silicates, where the geometry of the SiO 4 tetrahedral group is much more strongly constrained than the Si—O—Si bridging angle. As a result, framework materials frequently display intrinsic flexibility, and their dynamic and static properties are strongly influenced by low-energy collective motions of the polyhedra. Insight into these motions can be obtained in reciprocal space through the ‘rigid unit mode’ (RUM) model, and in real-space through template-based geometric simulations. We briefly review the framework flexibility phenomena in energy-relevant materials, including ionic conductors, perovskites and zeolites. In particular we examine the ‘flexibility window’ phenomenon in zeolites and present novel results on the flexibility window of the EMT framework, which shed light on the role of structure-directing agents. Our key finding is that the crown ether, despite its steric bulk, does not limit the geometric flexibility of the framework

  2. Optimal reduction of flexible dynamic system

    International Nuclear Information System (INIS)

    Jankovic, J.

    1994-01-01

    Dynamic system reduction is basic procedure in various problems of active control synthesis of flexible structures. In this paper is presented direct method for system reduction by explicit extraction of modes included in reduced model form. Criterion for optimal system discrete approximation in synthesis reduced dynamic model is also presented. Subjected method of system decomposition is discussed in relation to the Schur method of solving matrix algebraic Riccati equation as condition for system reduction. By using exposed method procedure of flexible system reduction in addition with corresponding example is presented. Shown procedure is powerful in problems of active control synthesis of flexible system vibrations

  3. Flexible Temperature Sensors on Fibers

    Directory of Open Access Journals (Sweden)

    Marcin Sloma

    2010-08-01

    Full Text Available The aim of this paper is to present research dedicated to the elaboration of novel, miniaturized flexible temperature sensors for textronic applications. Examined sensors were manufactured on a single yarn, which ensures their high flexibility and good compatibility with textiles. Stable and linear characteristics were obtained by special technological process and applied temperature profiles. As a thermo-sensitive materials the innovative polymer compositions filled with multiwalled carbon nanotubes were used. Elaborated material was adapted to printing and dip-coating techniques to produce NTC composites. Nanotube sensors were free from tensometric effect typical for other carbon-polymer sensor, and demonstrated TCR of 0.13%/K. Obtained temperature sensors, compatible with textile structure, can be applied in rapidly developing smart textiles and be used for health and protections purposes.

  4. Core/shell structured NaYF4:Yb3+/Er3+/Gd+3 nanorods with Au nanoparticles or shells for flexible amorphous silicon solar cells

    International Nuclear Information System (INIS)

    Li, Z Q; Li, X D; Liu, Q Q; Chen, X H; Sun, Z; Huang, S M; Liu, C; Ye, X J

    2012-01-01

    A simple approach for preparing near-infrared (NIR) to visible upconversion (UC) NaYF 4 :Yb/Er/Gd nanorods in combination with gold nanostructures has been reported. The grown UC nanomaterials with Au nanostructures have been applied to flexible amorphous silicon solar cells on the steel substrates to investigate their responses to sub-bandgap infrared irradiation. Photocurrent–voltage measurements were performed on the solar cells. It was demonstrated that UC of NIR light led to a 16-fold to 72-fold improvement of the short-circuit current under 980 nm illumination compared to a cell without upconverters. A maximum current of 1.16 mA was obtained for the cell using UC nanorods coated with Au nanoparticles under 980 nm laser illumination. This result corresponds to an external quantum efficiency of 0.14% of the solar cell. Mechanisms of erbium luminescence in the grown UC nanorods were analyzed and discussed. (paper)

  5. Conformational flexibility in the catalytic triad revealed by the high-resolution crystal structure of Streptomyces erythraeus trypsin in an unliganded state

    Energy Technology Data Exchange (ETDEWEB)

    Blankenship, Elise; Vukoti, Krishna [Case Western Reserve University, 10900 Euclid Avenue, Cleveland, OH 44106 (United States); Miyagi, Masaru, E-mail: mxm356@cwru.edu [Case Western Reserve University, 10900 Euclid Avenue, Cleveland, OH 44106 (United States); Case Western Reserve University, 10900 Euclid Avenue, Cleveland, OH 44106 (United States); Case Western Reserve University, 10900 Euclid Avenue, Cleveland, OH 44106 (United States); Lodowski, David T., E-mail: mxm356@cwru.edu [Case Western Reserve University, 10900 Euclid Avenue, Cleveland, OH 44106 (United States); Case Western Reserve University, 10900 Euclid Avenue, Cleveland, OH 44106 (United States)

    2014-03-01

    This work reports the first sub-angstrom resolution structure of S. erythraeus trypsin. The detailed model of a prototypical serine protease at a catalytically relevant pH with an unoccupied active site is presented and is compared with other high-resolution serine protease structures. With more than 500 crystal structures determined, serine proteases make up greater than one-third of all proteases structurally examined to date, making them among the best biochemically and structurally characterized enzymes. Despite the numerous crystallographic and biochemical studies of trypsin and related serine proteases, there are still considerable shortcomings in the understanding of their catalytic mechanism. Streptomyces erythraeus trypsin (SET) does not exhibit autolysis and crystallizes readily at physiological pH; hence, it is well suited for structural studies aimed at extending the understanding of the catalytic mechanism of serine proteases. While X-ray crystallographic structures of this enzyme have been reported, no coordinates have ever been made available in the Protein Data Bank. Based on this, and observations on the extreme stability and unique properties of this particular trypsin, it was decided to crystallize it and determine its structure. Here, the first sub-angstrom resolution structure of an unmodified, unliganded trypsin crystallized at physiological pH is reported. Detailed structural analysis reveals the geometry and structural rigidity of the catalytic triad in the unoccupied active site and comparison to related serine proteases provides a context for interpretation of biochemical studies of catalytic mechanism and activity.

  6. Conformational flexibility in the catalytic triad revealed by the high-resolution crystal structure of Streptomyces erythraeus trypsin in an unliganded state

    International Nuclear Information System (INIS)

    Blankenship, Elise; Vukoti, Krishna; Miyagi, Masaru; Lodowski, David T.

    2014-01-01

    This work reports the first sub-angstrom resolution structure of S. erythraeus trypsin. The detailed model of a prototypical serine protease at a catalytically relevant pH with an unoccupied active site is presented and is compared with other high-resolution serine protease structures. With more than 500 crystal structures determined, serine proteases make up greater than one-third of all proteases structurally examined to date, making them among the best biochemically and structurally characterized enzymes. Despite the numerous crystallographic and biochemical studies of trypsin and related serine proteases, there are still considerable shortcomings in the understanding of their catalytic mechanism. Streptomyces erythraeus trypsin (SET) does not exhibit autolysis and crystallizes readily at physiological pH; hence, it is well suited for structural studies aimed at extending the understanding of the catalytic mechanism of serine proteases. While X-ray crystallographic structures of this enzyme have been reported, no coordinates have ever been made available in the Protein Data Bank. Based on this, and observations on the extreme stability and unique properties of this particular trypsin, it was decided to crystallize it and determine its structure. Here, the first sub-angstrom resolution structure of an unmodified, unliganded trypsin crystallized at physiological pH is reported. Detailed structural analysis reveals the geometry and structural rigidity of the catalytic triad in the unoccupied active site and comparison to related serine proteases provides a context for interpretation of biochemical studies of catalytic mechanism and activity

  7. Limited access: gender, occupational composition, and flexible work scheduling.

    Science.gov (United States)

    Glauber, Rebecca

    2011-01-01

    The current study draws on national data to explore differences in access to flexible work scheduling by the gender composition of women's and men's occupations. Results show that those who work in integrated occupations are more likely to have access to flexible scheduling. Women and men do not take jobs with lower pay in return for greater access to flexibility. Instead, jobs with higher pay offer greater flexibility. Integrated occupations tend to offer the greatest access to flexible scheduling because of their structural locations. Part-time work is negatively associated with men's access to flexible scheduling but positively associated with women's access. Women have greater flexibility when they work for large establishments, whereas men have greater flexibility when they work for small establishments.

  8. Flexible Word Classes

    DEFF Research Database (Denmark)

    • First major publication on the phenomenon • Offers cross-linguistic, descriptive, and diverse theoretical approaches • Includes analysis of data from different language families and from lesser studied languages This book is the first major cross-linguistic study of 'flexible words', i.e. words...... that cannot be classified in terms of the traditional lexical categories Verb, Noun, Adjective or Adverb. Flexible words can - without special morphosyntactic marking - serve in functions for which other languages must employ members of two or more of the four traditional, 'specialised' word classes. Thus......, flexible words are underspecified for communicative functions like 'predicating' (verbal function), 'referring' (nominal function) or 'modifying' (a function typically associated with adjectives and e.g. manner adverbs). Even though linguists have been aware of flexible world classes for more than...

  9. Reversibly Bistable Flexible Electronics

    KAUST Repository

    Alfaraj, Nasir

    2015-01-01

    Introducing the notion of transformational silicon electronics has paved the way for integrating various applications with silicon-based, modern, high-performance electronic circuits that are mechanically flexible and optically semitransparent

  10. Flexibility in insulin prescription

    Directory of Open Access Journals (Sweden)

    Sanjay Kalra

    2016-01-01

    Full Text Available This communication explores the concept of flexibility, a propos insulin preparations and insulin regimes used in the management of type 2 diabetes. The flexibility of an insulin regime or preparation is defined as their ability to be injected at variable times, with variable injection-meal time gaps, in a dose frequency and quantum determined by shared decision making, with a minimal requirement of glucose monitoring and health professional consultation, with no compromise on safety, efficiency and tolerability. The relative flexibility of various basal, prandial and dual action insulins, as well as intensive regimes, is compared. The biopsychosocial model of health is used to assess the utility of different insulins while encouraging a philosophy of flexible insulin usage.

  11. Flexible displays, rigid designs?

    DEFF Research Database (Denmark)

    Hornbæk, Kasper

    2015-01-01

    Rapid technological progress has enabled a wide range of flexible displays for computing devices, but the user experience--which we're only beginning to understand--will be the key driver for successful designs.......Rapid technological progress has enabled a wide range of flexible displays for computing devices, but the user experience--which we're only beginning to understand--will be the key driver for successful designs....

  12. Docking to flexible nicotinic acetylcholine receptors

    DEFF Research Database (Denmark)

    Sander, Tommy; Bruun, Anne T; Balle, Thomas

    2010-01-01

    Computational docking to nicotinic acetylcholine receptors (nAChRs) and other members of the Cys-loop receptor family is complicated by the flexibility of the so-called C-loop. As observed in the large number of published crystal structures of the acetylcholine binding protein (AChBP), a structural...

  13. Mechanical properties of flexible knitted composites

    NARCIS (Netherlands)

    Haan, de J.; Peijs, A.A.J.M.

    1996-01-01

    This study investigates the influence of the matrix material and the degree of prestretch of a knitted fibre structure on the mechanical properties of knitted composites with low fibre volume fractions. By embedding a flexible textile structure in an elastomeric matrix, composite materials are

  14. Flexible Multi-Numerology Systems for 5G New Radio

    OpenAIRE

    Yazar, Ahmet; Peköz, Berker; Arslan, Hüseyin

    2018-01-01

    The physical layer of 5G cellular communications systems is designed to achieve better flexibility in an effort to support diverse services and user requirements. OFDM waveform parameters are enriched with flexible multi-numerology structures. This paper describes the differences between Long Term Evolution (LTE) systems and new radio (NR) from the flexibility perspective. Research opportunities for multi-numerology systems are presented in a structured manner. Finally, inter-numerology inter...

  15. Graphene-cellulose paper flexible supercapacitors

    Energy Technology Data Exchange (ETDEWEB)

    Weng, Zhe; Su, Yang; Li, Feng; Du, Jinhong; Cheng, Hui-Ming [Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, 72 Wenhua Road, Shenyang 110016 (China); Wang, Da-Wei [ARC Centre of Excellence for Functional Nanomaterials, Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, St Lucia, Brisbane, Qld 4072 (Australia)

    2011-10-15

    A simple and scalable method to fabricate graphene-cellulose paper (GCP) membranes is reported; these membranes exhibit great advantages as freestanding and binder-free electrodes for flexible supercapacitors. The GCP electrode consists of a unique three-dimensional interwoven structure of graphene nanosheets and cellulose fibers and has excellent mechanical flexibility, good specific capacitance and power performance, and excellent cyclic stability. The electrical conductivity of the GCP membrane shows high stability with a decrease of only 6% after being bent 1000 times. This flexible GCP electrode has a high capacitance per geometric area of 81 mF cm{sup -2}, which is equivalent to a gravimetric capacitance of 120 F g{sup -1} of graphene, and retains >99% capacitance over 5000 cycles. Several types of flexible GCP-based polymer supercapacitors with various architectures are assembled to meet the power-energy requirements of typical flexible or printable electronics. Under highly flexible conditions, the supercapacitors show a high capacitance per geometric area of 46 mF cm{sup -2} for the complete devices. All the results demonstrate that polymer supercapacitors made using GCP membranes are versatile and may be used for flexible and portable micropower devices. (Copyright copyright 2011 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  16. Factors impeding flexible inpatient unit design.

    Science.gov (United States)

    Pati, Debajyoti; Evans, Jennie; Harvey, Thomas E; Bazuin, Doug

    2012-01-01

    To identify and examine factors extraneous to the design decision-making process that could impede the optimization of flexibility on inpatient units. A 2006 empirical study to identify domains of design decisions that affect flexibility on inpatient units found some indication in the context of the acuity-adaptable operational model that factors extraneous to the design process could have negatively influenced the successful implementation of the model. This raised questions regarding extraneous factors that might influence the successful optimization of flexibility. An exploratory, qualitative method was adopted to examine the question. Stakeholders from five recently built acute care inpatient units participated in the study, which involved three types of data collection: (1) verbal protocol data from a gaming session; (2) in-depth semi-structured interviews; and (3) shadowing frontline personnel. Data collection was conducted between June 2009 and November 2010. The study revealed at least nine factors extraneous to the design process that have the potential to hinder the optimization of flexibility in four domains: (1) systemic; (2) cultural; (3) human; and (4) financial. Flexibility is critical to hospital operations in the new healthcare climate, where cost reduction constitutes a vital target. From this perspective, flexibility and efficiency strategies can be influenced by (1) return on investment, (2) communication, (3) culture change, and (4) problem definition. Extraneous factors identified in this study could also affect flexibility in other care settings; therefore, these findings may be viewed from the overall context of hospital design.

  17. [Flexibility and safety in hospitals].

    Science.gov (United States)

    Fara, G M; Barni, M

    2011-01-01

    The paper explains the reasons according to which the newly-planned hospitals must adopt the concept of advanced flexibility (structural, technological, organizational, diagnostic and therapeutic), in order to avoid the risk of being already obsolete at the moment of their opening, and this due to the fact that too much time elapses in this Country between the moment of planning a new hospital and the moment of the start of its activity. Flexibility is needed at different levels: at low or medium levels for what concerns administrative spaces and also patient rooms (except, in this latter case, when differential intensity of care is adopted); at advanced levelfor what concerns diagnostic and therapeutic areas, which must be rapidly adaptable to new solutions offered by advances in technology and organization. From a different standpoint, flexibility applies also to the fact that hospital must increasingly become a node of a large net including territorial health services: the latter devoted to take care of chronicity, while hospitals should concentrate on acute pathology. Of course the territory surrounding the hospital, through its outpatient service and consultories, is in charge also for first level diagnosy and therapy, leaving the hospital to more sophisticated activities.

  18. Ultra-fine CuO Nanoparticles Embedded in Three-dimensional Graphene Network Nano-structure for High-performance Flexible Supercapacitors

    International Nuclear Information System (INIS)

    Li, Yanrong; Wang, Xue; Yang, Qi; Javed, Muhammad Sufyan; Liu, Qipeng; Xu, Weina; Hu, Chenguo; Wei, Dapeng

    2017-01-01

    High conductivity, large specific surface area and excellent performance redox materials are urgently desired for improving electrochemical energy storage. However, with single redox material it is hard to achieve these properties. Herein, we develop ultra-fine CuO nanoparticles embedded in three-dimensional graphene network grown on carbon cloth (CuO/3DGN/CC) to construct a novel electrode material with advantages of high conductivity, large specific area and excellent redox activity for supercapacitor application. The CuO/3DGN/CC with different CuO mass ratios are utilized to fabricate supercapacitors and the optimized mass loading achieves the high areal capacitance of 2787 mF cm"−"2 and specific capacitance of 1539.8 F g"−"1 at current density of 6 mA cm"−"2 with good stability. In addition, a high-flexible solid-state symmetric supercapacitor is also fabricated by using this CuO/3DGN/CC composite. The device shows excellent electrochemical performance even at various bending angles indicating a promising application for wearable electronic devices, and two devices with area 2 × 4 cm"2 in series can light nine light emitting diodes for more than 3 minutes.

  19. A spherically-shaped PZT thin film ultrasonic transducer with an acoustic impedance gradient matching layer based on a micromachined periodically structured flexible substrate.

    Science.gov (United States)

    Feng, Guo-Hua; Liu, Wei-Fan

    2013-10-09

    This paper presents the microfabrication of an acoustic impedance gradient matching layer on a spherically-shaped piezoelectric ultrasonic transducer. The acoustic matching layer can be designed to achieve higher acoustic energy transmission and operating bandwidth. Also included in this paper are a theoretical analysis of the device design and a micromachining technique to produce the novel transducer. Based on a design of a lead titanium zirconium (PZT) micropillar array, the constructed gradient acoustic matching layer has much better acoustic transmission efficiency within a 20-50 MHz operation range compared to a matching layer with a conventional quarter-wavelength thickness Parylene deposition. To construct the transducer, periodic microcavities are built on a flexible copper sheet, and then the sheet forms a designed curvature with a ball shaping. After PZT slurry deposition, the constructed PZT micropillar array is released onto a curved thin PZT layer. Following Parylene conformal coating on the processed PZT micropillars, the PZT micropillars and the surrounding Parylene comprise a matching layer with gradient acoustic impedance. By using the proposed technique, the fabricated transducer achieves a center frequency of 26 MHz and a -6 dB bandwidth of approximately 65%.

  20. Thermally activated 3D to 2D structural transformation of [Ni{sub 2}(en){sub 2}(H{sub 2}O){sub 6}(pyr)]·4H{sub 2}O flexible coordination polymer

    Energy Technology Data Exchange (ETDEWEB)

    Begović, Nebojša N. [Faculty of Physical Chemistry, University of Belgrade (Serbia); Institute of General and Physical Chemistry, Belgrade (Serbia); Blagojević, Vladimir A. [Faculty of Physical Chemistry, University of Belgrade (Serbia); Ostojić, Sanja B.; Radulović, Aleksandra M. [Institute of General and Physical Chemistry, Belgrade (Serbia); Poleti, Dejan [Faculty of Technology and Metallurgy, University of Belgrade (Serbia); Minić, Dragica M., E-mail: dminic@ffh.bg.ac.rs [Faculty of Physical Chemistry, University of Belgrade (Serbia); Department of Biomedical Sciences, State University of Novi Pazar (Serbia)

    2015-01-15

    Thermally activated 3D to 2D structural transformation of the binuclear [Ni{sub 2}(en){sub 2}(H{sub 2}O){sub 6}(pyr)]·4H{sub 2}O complex was investigated using a combination of theoretical and experimental methods. Step-wise thermal degradation (dehydration followed by release of ethylene diamine) results in two layered flexible coordination polymer structures. Dehydration process around 365 K results in a conjugated 2D structure with weak interlayer connectivity. It was shown to be a reversible 3D to 2D framework transformation by a guest molecule, and rehydration of the dehydration product occurs at room temperature in saturated water vapor. Rehydrated complex exhibits lower dehydration temperature, due to decreased average crystalline size, with higher surface area resulting in easier release and diffusion of water during dehydration. Thermal degradation of dehydration around 570 K, results in loss of ethylene diamine, producing a related 2D layered polymer structure, without interconnectivity between individual polymer layers. - Highlights: • Reversible 3D to 2D framework topochemical transformation on dehydration around 365 K. • Resulting polymer exhibits 2D layered structure with weak interlayer connectivity. • Dehydration is fully reversible in saturated water vapor at room temperature. • Further degradation around 570 K yields 2D polymer without interlayer connectivity. • 2D polymer exhibits conjugated electronic system.

  1. Carbon Nanotube Flexible and Stretchable Electronics.

    Science.gov (United States)

    Cai, Le; Wang, Chuan

    2015-12-01

    The low-cost and large-area manufacturing of flexible and stretchable electronics using printing processes could radically change people's perspectives on electronics and substantially expand the spectrum of potential applications. Examples range from personalized wearable electronics to large-area smart wallpapers and from interactive bio-inspired robots to implantable health/medical apparatus. Owing to its one-dimensional structure and superior electrical property, carbon nanotube is one of the most promising material platforms for flexible and stretchable electronics. Here in this paper, we review the recent progress in this field. Applications of single-wall carbon nanotube networks as channel semiconductor in flexible thin-film transistors and integrated circuits, as stretchable conductors in various sensors, and as channel material in stretchable transistors will be discussed. Lastly, state-of-the-art advancement on printing process, which is ideal for large-scale fabrication of flexible and stretchable electronics, will also be reviewed in detail.

  2. Receptiveness to Flexible Employment at Hungarian SMEs

    Directory of Open Access Journals (Sweden)

    Ákos Essősy

    2018-04-01

    Full Text Available Nowadays, only companies that are adaptable and flexible in their structure and processes can survive. The basis for a motivated company aiming for peak performance is organisational innovation. Hungary is one of the less innovative countries in Europe. Only organisations that can integrate new solutions smoothly into their everyday operations will remain truly competitive. The Government of Hungary, in its Partnership Agreement with the European Union, set out the goals for improving and supporting the adaptability of enterprises, the promotion of flexible and family-friendly workplace practices and services, and the employment of women with young children. The aim of this study is to demonstrate, through a Hungarian example, the receptiveness of Hungarian small and medium-sized enterprises to flexible forms of employment. The effect of flexible employment on economic adaptability and competitiveness through workforce efficiency and retention is examined. Its aim is the raise the awareness of options to increase employment among Hungarian SME managers.

  3. Flexible thin film magnetoimpedance sensors

    International Nuclear Information System (INIS)

    Kurlyandskaya, G.V.; Fernández, E.; Svalov, A.; Burgoa Beitia, A.; García-Arribas, A.; Larrañaga, A.

    2016-01-01

    Magnetically soft thin film deposited onto polymer substrates is an attractive option for flexible electronics including magnetoimpedance (MI) applications. MI FeNi/Ti based thin film sensitive elements were designed and prepared using the sputtering technique by deposition onto rigid and flexible substrates at different deposition rates. Their structure, magnetic properties and MI were comparatively analyzed. The main structural features were sufficiently accurately reproduced in the case of deposition onto cyclo olefine polymer substrates compared to glass substrates for the same conditions. Although for the best condition (28 nm/min rate) of the deposition onto polymer a significant reduction of the MI field sensitivity was found satisfactory for sensor applications sensitivity: 45%/Oe was obtained for a frequency of 60 MHz. - Highlights: • [FeNi/Ti] 3 /Cu/[FeNi/Ti] 3 films were prepared by sputtering at different deposition rates. • Polymer substrates insure sufficiently accurate reproducibility of the film structure. • High deposition rate of 28 nm/min insures the highest values of the magnetoimpedance sensitivity. • Deposition onto polymer results in the satisfactory magnetoimpedance sensitivity of 45%/Oe.

  4. Flexible thin film magnetoimpedance sensors

    Energy Technology Data Exchange (ETDEWEB)

    Kurlyandskaya, G.V., E-mail: galina@we.lc.ehu.es [Universidad del País Vasco, UPV/EHU, Departamento de Electricidad y Electrónica, P.O. Box 644, Bilbao 48080 (Spain); Ural Federal University, Laboratory of Magnetic sensoric, Lenin Ave. 51, 620083 Ekaterinburg (Russian Federation); Fernández, E. [BCMaterials UPV-EHU, Vizcaya Science and Technology Park, 48160 Derio (Spain); Svalov, A. [Universidad del País Vasco, UPV/EHU, Departamento de Electricidad y Electrónica, P.O. Box 644, Bilbao 48080 (Spain); Ural Federal University, Laboratory of Magnetic sensoric, Lenin Ave. 51, 620083 Ekaterinburg (Russian Federation); Burgoa Beitia, A. [Universidad del País Vasco, UPV/EHU, Departamento de Electricidad y Electrónica, P.O. Box 644, Bilbao 48080 (Spain); García-Arribas, A. [Universidad del País Vasco, UPV/EHU, Departamento de Electricidad y Electrónica, P.O. Box 644, Bilbao 48080 (Spain); BCMaterials UPV-EHU, Vizcaya Science and Technology Park, 48160 Derio (Spain); Larrañaga, A. [SGIker, Servicios Generales de Investigación, Universidad del País Vasco (UPV/EHU), 48080 Bilbao (Spain)

    2016-10-01

    Magnetically soft thin film deposited onto polymer substrates is an attractive option for flexible electronics including magnetoimpedance (MI) applications. MI FeNi/Ti based thin film sensitive elements were designed and prepared using the sputtering technique by deposition onto rigid and flexible substrates at different deposition rates. Their structure, magnetic properties and MI were comparatively analyzed. The main structural features were sufficiently accurately reproduced in the case of deposition onto cyclo olefine polymer substrates compared to glass substrates for the same conditions. Although for the best condition (28 nm/min rate) of the deposition onto polymer a significant reduction of the MI field sensitivity was found satisfactory for sensor applications sensitivity: 45%/Oe was obtained for a frequency of 60 MHz. - Highlights: • [FeNi/Ti]{sub 3}/Cu/[FeNi/Ti]{sub 3} films were prepared by sputtering at different deposition rates. • Polymer substrates insure sufficiently accurate reproducibility of the film structure. • High deposition rate of 28 nm/min insures the highest values of the magnetoimpedance sensitivity. • Deposition onto polymer results in the satisfactory magnetoimpedance sensitivity of 45%/Oe.

  5. Flexible transparent electrode

    Science.gov (United States)

    Demiryont, Hulya; Shannon, Kenneth C., III; Moorehead, David; Bratcher, Matthew

    2011-06-01

    This paper presents the properties of the EclipseTECTM transparent conductor. EclipseTECTM is a room temperature deposited nanostructured thin film coating system comprised of metal-oxide semiconductor elements. The system possesses metal-like conductivity and glass-like transparency in the visible region. These highly conductive TEC films exhibit high shielding efficiency (35dB at 1 to 100GHz). EclipseTECTM can be deposited on rigid or flexible substrates. For example, EclipseTECTM deposited on polyethylene terephthalate (PET) is extremely flexible that can be rolled around a 9mm diameter cylinder with little or no reduction in electrical conductivity and that can assume pre-extension states after an applied stress is relieved. The TEC is colorless and has been tailored to have high visible transmittance which matches the eye sensitivity curve and allows the viewing of true background colors through the coating. EclipseTECTM is flexible, durable and can be tailored at the interface for applications such as electron- or hole-injecting OLED electrodes as well as electrodes in flexible displays. Tunable work function and optical design flexibility also make EclipseTECTM well-suited as a candidate for grid electrode replacement in next-generation photovoltaic cells.

  6. Flexible magnetoimpedance sensor

    International Nuclear Information System (INIS)

    Li, Bodong; Kavaldzhiev, Mincho N.; Kosel, Jürgen

    2015-01-01

    Flexible magnetoimpedance (MI) sensors fabricated using a NiFe/Cu/NiFe tri-layer on Kapton substrate have been studied. A customized flexible microstrip transmission line was employed to investigate the MI sensors's magnetic field and frequency responses and their dependence on the sensors's deflection. For the first time, the impedance characteristic is obtained through reflection coefficient analysis over a wide range of frequencies from 0.1 MHz to 3 GHz and for deflections ranging from zero curvature to a radius of 7.2 cm. The sensor element maintains a high MI ratio of up to 90% and magnetic sensitivity of up to 9.2%/Oe over different bending curvatures. The relationship between the curvature and material composition is discussed based on the magnetostriction effect and stress simulations. The sensor's large frequency range, simple fabrication process and high sensitivity provide a great potential for flexible electronics and wireless applications. - Highlights: • A flexible magnetoimpedance (MI) sensor is developed. • Studies are carried out using a flexible microstrip transmission line. • An MI ratio of up to 90% is obtained. • The effect of magnetostriction is studied

  7. Education for Flexible Personality

    Directory of Open Access Journals (Sweden)

    Bogomir Novak

    1998-12-01

    Full Text Available Flexible personality transforms both cultural environment and itself. Post-modern personality is both contemplative and active. On one hand, it is subject to inner imagination of a creative act, and on the other hand, to creation of a tangible product What is more, flexible personality is also autonomous, mature, healthy and well balanced, as well as stable and responsive to the demand for change. Due to ever quicker changes, flexible personality is a must. And it is a task. The impact of professional work of adults on the education of children, however, is being conditioned by the exrigid family and rigid enterprises or institutions in which adults are employed. Nevertheless, flexible educational style is not repressive, as it used to be, nor permissive and totally concentrated on the child. It is a choice between the two qualities. The educators' style is dependent on their attitude towards life (play and self-education and not only towards work. Nowadays, flexibility is a way towards quality management of social and personal changes.

  8. Flexible Foam Model.

    Energy Technology Data Exchange (ETDEWEB)

    Neilsen, Michael K.; Lu, Wei-Yang; Werner, Brian T.; Scherzinger, William M.; Lo, Chi S.

    2018-03-01

    Experiments were performed to characterize the mechanical response of a 15 pcf flexible polyurethane foam to large deformation at different strain rates and temperatures. Results from these experiments indicated that at room temperature, flexible polyurethane foams exhibit significant nonlinear elastic deformation and nearly return to their original undeformed shape when unloaded. However, when these foams are cooled to temperatures below their glass transition temperature of approximately -35 o C, they behave like rigid polyurethane foams and exhibit significant permanent deformation when compressed. Thus, a new model which captures this dramatic change in behavior with temperature was developed and implemented into SIERRA with the name Flex_Foam to describe the mechanical response of both flexible and rigid foams to large deformation at a variety of temperatures and strain rates. This report includes a description of recent experiments. Next, development of the Flex Foam model for flexible polyurethane and other flexible foams is described. Selection of material parameters are discussed and finite element simulations with the new Flex Foam model are compared with experimental results to show behavior that can be captured with this new model.

  9. Flexible organization of floor composition and flexible organization of dwelling space as a response to contemporary market demands

    OpenAIRE

    Jovanović Goran

    2007-01-01

    The paper presents the application of the principle of flexibility of architectonic space on the concrete example of flat composition. This example demonstrates that with a proper choice of structural spans dimensions and regular arrangement of sanitary and ventilation vertical assemblies, a structure with high flexibility in terms of flat space organization and floor space organization, can be achieved.

  10. Structures of class A macrophage scavenger receptors. Electron microscopic study of flexible, multidomain, fibrous proteins and determination of the disulfide bond pattern of the scavenger receptor cysteine-rich domain.

    Science.gov (United States)

    Resnick, D; Chatterton, J E; Schwartz, K; Slayter, H; Krieger, M

    1996-10-25

    Structures of secreted forms of the human type I and II class A macrophage scavenger receptors were studied using biochemical and biophysical methods. Proteolytic analysis was used to determine the intramolecular disulfide bonds in the type I-specific scavenger receptor cysteine-rich (SRCR) domain: Cys2-Cys7, Cys3-Cys8, and Cys5-Cys6. This pattern is likely to be shared by the highly homologous domains in the many other members of the SRCR domain superfamily. Electron microscopy using rotary shadowing and negative staining showed that the type I and II receptors are extended molecules whose contour lengths are approximately 440 A. They comprised two adjacent fibrous segments, an alpha-helical coiled-coil ( approximately 230 A, including a contribution from the N-terminal spacer domain) and a collagenous triple helix ( approximately 210 A). The type I molecules also contained a C-terminal globular structure ( approximately 58 x 76 A) composed of three SRCR domains. The fibrous domains were joined by an extremely flexible hinge. The angle between these domains varied from 0 to 180 degrees and depended on the conditions of sample preparation. Unexpectedly, at physiologic pH, the prevalent angle seen using rotary shadowing was 0 degrees , resulting in a structure that is significantly more compact than previously suggested. The apparent juxtaposition of the fibrous domains at neutral pH provides a framework for future structure-function studies of these unusual multiligand receptors.

  11. Flexible magnetoimpedance sensor

    KAUST Repository

    Li, Bodong

    2015-03-01

    Flexible magnetoimpedance (MI) sensors fabricated using a NiFe/Cu/NiFe tri-layer on Kapton substrate have been studied. A customized flexible microstrip transmission line was employed to investigate the MI sensors\\'s magnetic field and frequency responses and their dependence on the sensors\\'s deflection. For the first time, the impedance characteristic is obtained through reflection coefficient analysis over a wide range of frequencies from 0.1 MHz to 3 GHz and for deflections ranging from zero curvature to a radius of 7.2 cm. The sensor element maintains a high MI ratio of up to 90% and magnetic sensitivity of up to 9.2%/Oe over different bending curvatures. The relationship between the curvature and material composition is discussed based on the magnetostriction effect and stress simulations. The sensor\\'s large frequency range, simple fabrication process and high sensitivity provide a great potential for flexible electronics and wireless applications.

  12. Software industrial flexible

    OpenAIRE

    Díaz Araya, Daniel; Muñoz, Leandro; Sirerol, Daniel; Oviedo, Sandra; Ibáñez, Francisco S.

    2012-01-01

    En este trabajo se pretende investigar y proponer técnicas, métodos y tecnologías que permitan el desarrollo de software flexible en ambientes industriales. El objetivo es generar métodos y técnicas para facilitar el desarrollo de software flexible en ambientes industriales. Las áreas de investigación son los sistemas de scheduling de producción, la generación de software para plataformas de hardware abiertas y la innovación.

  13. Production Flexibility and Hedging

    Directory of Open Access Journals (Sweden)

    Georges Dionne

    2015-12-01

    Full Text Available We extend the analysis on hedging with price and output uncertainty by endogenizing the output decision. Specifically, we consider the joint determination of output and hedging in the case of flexibility in production. We show that the risk-averse firm always maintains a short position in the futures market when the futures price is actuarially fair. Moreover, in the context of an example, we show that the presence of production flexibility reduces the incentive to hedge for all risk averse agents.

  14. The flexibility of flexicurity

    DEFF Research Database (Denmark)

    Jensen, Carsten Strøby

    2011-01-01

    by a special relation between flexibility, social security and active labour market policy, where a high level of social security is seen as a precondition for a labour market characterized by flexibility. In this article it is argued that the Danish labour market is characterized by having not just one model...... of flexicurity, but two. These two models cover different parts of the labour market and different segments of employees. The first model (the blue-collar flexicurity model) – the one that is often focused on in the literature – covers primarily skilled and unskilled workers on the labour market. The second...

  15. Chemically modified graphene based supercapacitors for flexible and miniature devices

    Science.gov (United States)

    Ghosh, Debasis; Kim, Sang Ouk

    2015-09-01

    Rapid progress in the portable and flexible electronic devises has stimulated supercapacitor research towards the design and fabrication of high performance flexible devices. Recent research efforts for flexible supercapacitor electrode materials are highly focusing on graphene and chemically modified graphene owing to the unique properties, including large surface area, high electrical and thermal conductivity, excellent mechanical flexibility, and outstanding chemical stability. This invited review article highlights current status of the flexible electrode material research based on chemically modified graphene for supercapacitor application. A variety of electrode architectures prepared from chemically modified graphene are summarized in terms of their structural dimensions. Novel prototypes for the supercapacitor aiming at flexible miniature devices, i.e. microsupercapacitor with high energy and power density are highlighted. Future challenges relevant to graphene-based flexible supercapacitors are also suggested. [Figure not available: see fulltext.

  16. Modelling the Implications of Quality Management Elements on Strategic Flexibility

    Directory of Open Access Journals (Sweden)

    Ana Belén Escrig-Tena

    2011-01-01

    Full Text Available This paper presents a theoretical and empirical analysis of the implications of a quality management (QM initiative on strategic flexibility. Our study defines flexibility from a strategic approach and examines the extent to which, why, and how the triggering factors of strategic flexibility are related to QM elements. The hypotheses put forward are tested in an empirical study carried out on a sample of Spanish firms, using structural equation models. The results demonstrate the positive effect of adopting an integral QM initiative on enhancing strategic flexibility. QM enhances strategic flexibility more effectively when it is introduced comprehensively rather than in a piecemeal fashion. A series of practices linked to the application of a QM initiative are outlined, which managers can use to improve strategic flexibility. The approach used in the study can be applied to analyse other antecedents of flexibility and to propose possible studies that consider QM as an antecedent of other organisational variables.

  17. Preparation, structure and luminescent characterization of a series of metal-organic frameworks based on flexible ligands with nitrogen heterocycles and carboxyl

    Science.gov (United States)

    Dai, Hai-yu; Tang, Yu-yuan; Wang, Cui-juan; Chen, Shuang; Tong, Yan; Zhang, Zhi-Bing

    2017-12-01

    Seven new compounds, [Zn(pypymba)2]n(1), [Co(pypymba)2]n(2), [Cd(pypymba)2]n(3), [Cd(Hpypymba)Cl2]n(4), {[Cd(pypymba)Cl]·C2H5OH·H2O}n(5), [Cd(pypyaa)Cl]n(6), {[Cd2(pyznpy)2Cl2H2O]·H2O}n(7) [Hpypymba = 4-((3-(pyrazin-2-yl)-1H-pyrazol-1-yl)methyl)benzoic acid, Hpyznpy = 4-((3-(pyridin-2-yl)-1H-pyrazol-1-yl)methyl)benzoic acid, Hpypyaa = 2-(3-pyridin-2-yl)-1H-pyrazol-1-yl)acetic acid], were hydrothermally synthesized by tuning the metal ion's species, counter anions, solvents and pH values and characterized by routine methods: XRD, elemental analysis, fluorescence properties analysis, TGA and crystal structure analysis and single-crystal X-ray crystallography. The main structures of the compounds 1, 2, and 3 are extended to similar 3D structures by C-H…N, C-H…O hydrogen bonds and π…π stacking under the same synthesis method. Each Cd(II) node of compound 4 has four chlorine bridges (two pairs of double chlorine); Each Cd(II) node of compounds 5, 6 has two chlorine bridges (a pair of double chlorine bridges), while their spatial structures are expanded in different ways. Compound 7 also contains chlorine atoms, but does not contain chlorine bridged structures. The luminescent properties of compound 7 and the ones immersed in various kinds of organic compounds and nitrate@EtOH solutions have been investigated. Importantly, 7 shows highly sensitive response to nitrobenzene and Fe3+ through luminescence quenching effects, making it a promising luminescent sensor for nitrobenzene and Fe3+.

  18. Structural, dynamic, electronic, and vibrational properties of flexible, intermediate, and stressed rigid As-Se glasses and liquids from first principles molecular dynamics

    International Nuclear Information System (INIS)

    Bauchy, M.; Kachmar, A.; Micoulaut, M.

    2014-01-01

    The structural, vibrational, electronic, and dynamic properties of amorphous and liquid As x Se 1-x (0.10 structural and dynamical atomic-scale fingerprints for the onset of rigidity within the network, while also providing a much more complex picture than the one derived from mean-field approaches of stiffness transitions

  19. Structural, dynamic, electronic, and vibrational properties of flexible, intermediate, and stressed rigid As-Se glasses and liquids from first principles molecular dynamics

    Energy Technology Data Exchange (ETDEWEB)

    Bauchy, M. [Department of Civil and Environmental Engineering, University of California, Los Angeles, California 90095-1593 (United States); Kachmar, A. [Laboratoire de Physique Théorique de la Matière Condensée, Université Pierre et Marie Curie, 4 Place Jussieu, F-75252 Paris Cedex 05 (France); Qatar Environment and Energy Research Institute, Qatar Foundation, P.O. Box 5825, Doha (Qatar); Micoulaut, M., E-mail: mmi@lptl.jussieu.fr [Laboratoire de Physique Théorique de la Matière Condensée, Université Pierre et Marie Curie, 4 Place Jussieu, F-75252 Paris Cedex 05 (France)

    2014-11-21

    The structural, vibrational, electronic, and dynamic properties of amorphous and liquid As{sub x}Se{sub 1-x} (0.10 structural and dynamical atomic-scale fingerprints for the onset of rigidity within the network, while also providing a much more complex picture than the one derived from mean-field approaches of stiffness transitions.

  20. Flexibility as a service

    NARCIS (Netherlands)

    Aalst, van der W.M.P.; Adams, M.; Hofstede, ter A.H.M.; Pesic, M.; Schonenberg, H.; Chen, L.; Liu, C.; Liu, Q.; Deng, K.

    2009-01-01

    The lack of flexibility is often seen as an inhibitor for the successful application of workflow technology. Many researchers have proposed different ways of addressing this problem and some of these ideas have been implemented in commercial systems. However, a "one size fits all" approach is likely

  1. Valuing Flexibility. Phase 2

    Science.gov (United States)

    2012-10-29

    Quarterly (2): 38-49. Cormier, P., Olewnik, A., and Lewis, K. 2008. An Approach to Quantifying Design Flexibility for Mass Customization in Early...C. Clarkson, P., and Zanker, W. 2004. Change and customisation in complex engineering domains, Res Eng Des 15(1), 1–21. Ekstrom, M. and Bjornsson, H

  2. Flexible Query Answering Systems

    DEFF Research Database (Denmark)

    This book constitutes the refereed proceedings of the 12th International Conference on Flexible Query Answering Systems, FQAS 2017, held in London, UK, in June 2017. The 21 full papers presented in this book together with 4 short papers were carefully reviewed and selected from 43 submissions...

  3. Flexible metal bellows

    CERN Multimedia

    CERN PhotoLab

    1975-01-01

    A set of flexible metal bellows being fatigue-tested by repeated offset motion. Such bellows assemblies were used in the SPS vacuum system at places where , for instance, beam stoppers and collimators had to be moved frequently in and out of the beam path.

  4. Flexible energy systems

    DEFF Research Database (Denmark)

    Lund, Henrik

    2003-01-01

    The paper discusses and analyses diffent national strategies and points out key changes in the energy system in order to achieve a system which can benefit from a high percentage of wind and CHP without having surplus production problems, introduced here as a flexible energy system....

  5. A flexible WLAN receiver

    NARCIS (Netherlands)

    Schiphorst, Roelof; Hoeksema, F.W.; Slump, Cornelis H.

    2003-01-01

    Flexible radio receivers are also called Software Defined Radios (SDRs) [1], [2]. The focus of our SDR project [3] is on designing the front end, from antenna to demodulation in bits, of a °exible, multi-standard WLAN receiver. We try to combine an instance of a (G)FSK receiver (Bluetooth) with an

  6. Knowledge of damage identification about tensegrities via flexibility disassembly

    Science.gov (United States)

    Jiang, Ge; Feng, Xiaodong; Du, Shigui

    2017-12-01

    Tensegrity structures composing of continuous cables and discrete struts are under tension and compression, respectively. In order to determine the damage extents of tensegrity structures, a new method for tensegrity structural damage identification is presented based on flexibility disassembly. To decompose a tensegrity structural flexibility matrix into the matrix represention of the connectivity between degress-of-freedoms and the diagonal matrix comprising of magnitude informations. Step 1: Calculate perturbation flexibility; Step 2: Compute the flexibility connectivity matrix and perturbation flexibility parameters; Step 3: Calculate the perturbation stiffness parameters. The efficiency of the proposed method is demonstrated by a numeical example comprising of 12 cables and 4 struts with pretensioned. Accurate identification of local damage depends on the availability of good measured data, an accurate and reasonable algorithm.

  7. Same but not alike: Structure, flexibility and energetics of domains in multi-domain proteins are influenced by the presence of other domains.

    Science.gov (United States)

    Vishwanath, Sneha; de Brevern, Alexandre G; Srinivasan, Narayanaswamy

    2018-02-01

    The majority of the proteins encoded in the genomes of eukaryotes contain more than one domain. Reasons for high prevalence of multi-domain proteins in various organisms have been attributed to higher stability and functional and folding advantages over single-domain proteins. Despite these advantages, many proteins are composed of only one domain while their homologous domains are part of multi-domain proteins. In the study presented here, differences in the properties of protein domains in single-domain and multi-domain systems and their influence on functions are discussed. We studied 20 pairs of identical protein domains, which were crystallized in two forms (a) tethered to other proteins domains and (b) tethered to fewer protein domains than (a) or not tethered to any protein domain. Results suggest that tethering of domains in multi-domain proteins influences the structural, dynamic and energetic properties of the constituent protein domains. 50% of the protein domain pairs show significant structural deviations while 90% of the protein domain pairs show differences in dynamics and 12% of the residues show differences in the energetics. To gain further insights on the influence of tethering on the function of the domains, 4 pairs of homologous protein domains, where one of them is a full-length single-domain protein and the other protein domain is a part of a multi-domain protein, were studied. Analyses showed that identical and structurally equivalent functional residues show differential dynamics in homologous protein domains; though comparable dynamics between in-silico generated chimera protein and multi-domain proteins were observed. From these observations, the differences observed in the functions of homologous proteins could be attributed to the presence of tethered domain. Overall, we conclude that tethered domains in multi-domain proteins not only provide stability or folding advantages but also influence pathways resulting in differences in

  8. Effects of annealing temperature on the structural, mechanical and electrical properties of flexible bismuth telluride thin films prepared by high-pressure RF magnetron sputtering

    Science.gov (United States)

    Singkaselit, Kamolmad; Sakulkalavek, Aparporn; Sakdanuphab, Rachsak

    2017-09-01

    In this work Bi x Te y thin films were deposited on polyimide substrate by a high-pressure RF magnetron sputtering technique. The deposited condition was maintained using a high pressure of 1.3  ×  10-2 mbar. The as-deposited films show Bi2Te3 structure with Te excess phase (Te-rich Bi2Te3). After that, as-deposited films were annealed in the vacuum chamber under the N2 flow at temperatures from 250 to 400 °C for one hour. The microstructure, cross-section, [Bi]:[Te] content, and the mechanical, electrical and thermoelectric properties of as-deposited and different annealed films were investigated. It was found that the annealing temperature enhanced the crystallinity and film density for the temperature range 250-300 °C. However, the crystal structure of Bi2Te3 almost changed to the BiTe structure after annealing the films above 350 °C, due to the re-evaporation of Te. Nano-indentation results and cross-section images indicated that the hardness of the films related to the film density. The maximum hardness of 2.30 GPa was observed by annealing the films at 300 °C. As a result of an improvement in crystallinity and phase changes, the highest power factor of 11.45  ×  10-4 W m-1K-2 at 300 °C with the carrier concentration and mobility of 6.15  ×  1020 cm-3 and 34.03 cm2 V-1 s-1, respectively, was achieved for the films annealed at 400 °C. Contribution at the 4th Southeast Asia Conference on Thermoelectrics 2016 (SACT 2016), 15-18 December 2016, Da Nang City, Vietnam.

  9. Research into Flexibility Services. Final Report

    International Nuclear Information System (INIS)

    2005-03-01

    The Dutch Office for Energy Regulation (DTe) is currently investigating the Dutch gas flexibility market. DTe is concerned that Gasunie is dominant in the market. In order to take a view of Gasunie's market position, DTe needs to first define the market for gas flexibility services and then explore whether Gasunie is dominant in the market (or markets). DTe has commissioned Frontier to undertake the respective formal analysis. This report summarises the findings by Frontier. On the basis of this report and a formal consultation process, We follow a three-step approach to the study: (1) We first define the relevant markets for gas flexibility (Section 3); (2) We then analyse the structure of the markets for flexibility that we have defined (Section 4); (3) Finally, we assess whether Gasunie is dominant in the relevant markets, taking account of market shares and other competitive effects (Section 5). This document is the Final Report, which contains our views as to the market definition for gas flexibility and the position of Gasunie in the market. The remainder of this document is set out as follows: Section 2 provides an overview of aspects of the Dutch gas industry relevant to this study; Section 3 sets out our approach to defining the market and de-Mops our conclusions on the markets for gas flexibility; Section 4 provides our view as to the structure of the relevant flexibility markets as defined in Section 3; Section 5 reports our assessment as to whether Gasunie is dominant in the relevant markets, taking account of market shares and other competitive effects; Section 6 sets out our conclusions about the competitive assessment. We include three annexes that set out details related to the market definition and analysis of dominance

  10. Flexible MgO Barrier Magnetic Tunnel Junctions.

    Science.gov (United States)

    Loong, Li Ming; Lee, Wonho; Qiu, Xuepeng; Yang, Ping; Kawai, Hiroyo; Saeys, Mark; Ahn, Jong-Hyun; Yang, Hyunsoo

    2016-07-01

    Flexible MgO barrier magnetic tunnel junction (MTJ) devices are fabricated using a transfer printing process. The flexible MTJ devices yield significantly enhanced tunneling magnetoresistance of ≈300% and improved abruptness of switching, as residual strain in the MTJ structure is released during the transfer process. This approach could be useful for flexible electronic systems that require high-performance memory components. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Enhanced cyclic performance and lithium storage capacity of SnO2/graphene nanoporous electrodes with three-dimensionally delaminated flexible structure.

    Science.gov (United States)

    Paek, Seung-Min; Yoo, EunJoo; Honma, Itaru

    2009-01-01

    To fabricate nanoporous electrode materials with delaminated structure, the graphene nanosheets (GNS) in the ethylene glycol solution were reassembled in the presence of rutile SnO(2) nanoparticles. According to the TEM analysis, the graphene nanosheets are homogeneously distributed between the loosely packed SnO(2) nanoparticles in such a way that the nanoporous structure with a large amount of void spaces could be prepared. The obtained SnO(2)/GNS exhibits a reversible capacity of 810 mAh/g; furthermore, its cycling performance is drastically enhanced in comparison with that of the bare SnO(2) nanoparticle. After 30 cycles, the charge capacity of SnO(2)/GNS still remained 570 mAh/g, that is, about 70% retention of the reversible capacity, while the specific capacity of the bare SnO(2) nanoparticle on the first charge was 550 mAh/g, dropping rapidly to 60 mAh/g only after 15 cycles. The dimensional confinement of tin oxide nanoparticles by the surrounding GNS limits the volume expansion upon lithium insertion, and the developed pores between SnO(2) and GNS could be used as buffered spaces during charge/discharge, resulting in the superior cyclic performances.

  12. Flexible heat pipes with integrated bioinspired design

    Directory of Open Access Journals (Sweden)

    Chao Yang

    2015-02-01

    Full Text Available In this work we report the facile fabrication and performance evaluation of flexible heat pipes that have integrated bioinspired wick structures and flexible polyurethane polymer connector design between the copper condenser and evaporator. Inside the heat pipe, a bioinspired superhydrophilic strong-base-oxidized copper mesh with multi-scale micro/nano-structures was used as the wicking material and deionized water was selected as working fluid. Thermal resistances of the fabricated flexible heat pipes charged with different filling ratios were measured under thermal power inputs ranging from 2 W to 12 W while the device was bent at different angles. The fabricated heat pipes with a 30% filling ratio demonstrated a low thermal resistance less than 0.01 K/W. Compared with the vertically oriented straight heat pipes, bending from 30° up to 120° has negligible influence on the heat-transfer performance. Furthermore, repeated heating tests indicated that the fabricated flexible heat pipes have consistent and reliable heat-transfer performance, thus would have important applications for advanced thermal management in three dimensional and flexible electronic devices.

  13. Energy Flexibility in Retail Buildings

    DEFF Research Database (Denmark)

    Ma, Zheng; Billanes, Joy Dalmacio; Kjærgaard, Mikkel Baun

    2017-01-01

    Retail buildings has an important role for demand side energy flexibility because of their high energy consumption, variety of energy flexibility resources, and centralized control via building control systems. Energy flexibility requires agreements and collaborations among different actors......), with the discussion of the stakeholders’ roles and their interrelation in delivering energy flexibility with the influential factors to the actual implementation of energy flexible operation of their buildings. Based on a literature analysis, the results cover stakeholders’ types and roles, perceptions (drivers......, barriers, and benefits), energy management activities and technology adoptions, and the stakeholders’ interaction for the energy flexibility in retail buildings....

  14. A Model for Flexibly Editing CSCL Scripts

    Science.gov (United States)

    Sobreira, Pericles; Tchounikine, Pierre

    2012-01-01

    This article presents a model whose primary concern and design rationale is to offer users (teachers) with basic ICT skills an intuitive, easy, and flexible way of editing scripts. The proposal is based on relating an end-user representation as a table and a machine model as a tree. The table-tree model introduces structural expressiveness and…

  15. Step growth of two flexible ABf monomers

    DEFF Research Database (Denmark)

    Cameron, Colin; Fawcett, Allan H.; Hetherington, Cecil R.

    2000-01-01

    A three-dimensional lattice model was used to simulate the competition between the growth of hyperbranched structures and cycle formation that occurs when flexible ABf monomers undergo step growth. The monomers in the model are mapped onto several lattice sites. The effect of functionality...

  16. Towards Flexibility in Academic Labour Markets?

    Science.gov (United States)

    Nieuwenhuysen, John

    1985-01-01

    It is argued that Australia's relatively uniform and consistent academic salary structure and personnel policies should be more flexible and competitive in order to alleviate current problems of academic labor market stagnation, uneven faculty distribution, and other results of financial stringency. (MSE)

  17. Shadowgraph studies of laser-assisted non-thermal structuring of thin layers on flexible substrates by shock-wave-induced delamination processes

    Energy Technology Data Exchange (ETDEWEB)

    Lorenz, Pierre, E-mail: pierre.lorenz@iom-leipzig.de [Leibniz-Institut für Oberflächenmodifizierung e. V., Permoserstraße 15, 04318 Leipzig (Germany); Smausz, Tomi [Department of Optics and Quantum Electronics, University of Szeged, H-6720 Szeged, Dóm tér 9 (Hungary); MTA-SZTE Research Group on Photoacoustic Spectroscopy, University of Szeged, H-6720 Szeged, Dóm tér 9 (Hungary); Csizmadia, Tamas [Department of Optics and Quantum Electronics, University of Szeged, H-6720 Szeged, Dóm tér 9 (Hungary); Ehrhardt, Martin; Zimmer, Klaus [Leibniz-Institut für Oberflächenmodifizierung e. V., Permoserstraße 15, 04318 Leipzig (Germany); Hopp, Bela [Department of Optics and Quantum Electronics, University of Szeged, H-6720 Szeged, Dóm tér 9 (Hungary)

    2015-05-01

    Highlights: • The shock-wave-induced film delamination (SWIFD) is a laser patterning process. • The SWIFD process of CIGS solar cells was studied by shadowgraph measurements. • The study presented that SWIFD allows the structuring of CIGS solar cells. • The dynamics of the delamination process was analyzed. - Abstract: The laser-assisted microstructuring of thin films especially for electronic applications without damaging the layers or the substrates is a challenge for the laser micromachining techniques. The laser-induced thin-film patterning by ablation of the polymer substrate at the rear side that is called ‘SWIFD’ – shock-wave-induced film delamination patterning has been demonstrated. This study focuses on the temporal sequence of processes that characterize the mechanism of this SWIFD process on a copper indium gallium selenide (CIGS) solar cell stacks on polyimide. For this purpose high-speed shadowgraph experiments were performed in a pump probe experimental set-up using a KrF excimer laser for ablating the rear side of the polyimide substrate and measuring the shock wave generation at laser ablation of the polymer substrate as well as the thin-film delamination. The morphology and size of the thin-film structures were studied by scanning electron microscopy (SEM). Furthermore, the composition after the laser treatment was analyzed by energy dispersive X-ray (EDX) spectroscopy. The shadowgraph experiments allow the time-dependent identification and evaluation of the shock wave formation, substrate bending, and delamination of the thin film in dependence on the laser parameters. These results will contribute to improve the physical understanding of the laser-induced delamination effect for thin-film patterning.

  18. Diffusion in flexible pipes

    Energy Technology Data Exchange (ETDEWEB)

    Brogaard Kristensen, S.

    2000-06-01

    This report describes the work done on modelling and simulation of the complex diffusion of gas through the wall of a flexible pipe. The diffusion and thus the pressure in annulus depends strongly on the diffusion and solubility parameters of the gas-polymer system and on the degree of blocking of the outer surface of the inner liner due to pressure reinforcements. The report evaluates the basis modelling required to describe the complex geometries and flow patterns. Qualitatively results of temperature and concentration profiles are shown in the report. For the program to serve any modelling purpose in 'real life' the results need to be validated and possibly the model needs corrections. Hopefully, a full-scale test of a flexible pipe will provide the required temperatures and pressures in annulus to validate the models. (EHS)

  19. Flexible cryogenic conduit

    International Nuclear Information System (INIS)

    Brindza, P.D.; Wines, R.R.; Takacs, J.J.

    1999-01-01

    A flexible and relatively low cost cryogenic conduit is described. The flexible cryogenic conduit of the present invention comprises a first inner corrugated tube with single braided serving, a second outer corrugated tube with single braided serving concentric with the inner corrugated tube, and arranged outwardly about the periphery of the inner corrugated tube and between the inner and outer corrugated tubes: a superinsulation layer; a one half lap layer of polyester ribbon; a one half lap layer of copper ribbon; a spirally wound refrigeration tube; a second one half lap layer of copper ribbon; a second one half lap layer of polyester ribbon; a second superinsulation layer; a third one half lap layer of polyester ribbon; and a spirally wound stretchable and compressible filament

  20. Diffusion in flexible pipes

    Energy Technology Data Exchange (ETDEWEB)

    Brogaard Kristensen, S

    2000-06-01

    This report describes the work done on modelling and simulation of the complex diffusion of gas through the wall of a flexible pipe. The diffusion and thus the pressure in annulus depends strongly on the diffusion and solubility parameters of the gas-polymer system and on the degree of blocking of the outer surface of the inner liner due to pressure reinforcements. The report evaluates the basis modelling required to describe the complex geometries and flow patterns. Qualitatively results of temperature and concentration profiles are shown in the report. For the program to serve any modelling purpose in 'real life' the results need to be validated and possibly the model needs corrections. Hopefully, a full-scale test of a flexible pipe will provide the required temperatures and pressures in annulus to validate the models. (EHS)

  1. Flexible Laser Metal Cutting

    DEFF Research Database (Denmark)

    Villumsen, Sigurd; Jørgensen, Steffen Nordahl; Kristiansen, Morten

    2014-01-01

    This paper describes a new flexible and fast approach to laser cutting called ROBOCUT. Combined with CAD/CAM technology, laser cutting of metal provides the flexibility to perform one-of-a-kind cutting and hereby realises mass production of customised products. Today’s laser cutting techniques...... possess, despite their wide use in industry, limitations regarding speed and geometry. Research trends point towards remote laser cutting techniques which can improve speed and geometrical freedom and hereby the competitiveness of laser cutting compared to fixed-tool-based cutting technology...... such as punching. This paper presents the concepts and preliminary test results of the ROBOCUT laser cutting technology, a technology which potentially can revolutionise laser cutting....

  2. Flexible training under threat.

    Science.gov (United States)

    Houghton, Anita; Eaton, Jennifer

    2002-10-01

    As the number of women in medicine and the general demand for a better work-life balance rises, flexible training is an increasingly important mechanism for maintaining the medical workforce. The new pay deal, together with entrenched cultural attitudes, are potential threats. Ways forward include more substantive part-time posts, more part-time opportunities at consultant level, and using positive experiences as a way of tackling attitudes in the less accepting specialties.

  3. Flexible weapons architecture design

    OpenAIRE

    Pyant, William C.

    2015-01-01

    Present day air-delivered weapons are of a closed architecture, with little to no ability to tailor the weapon for the individual engagement. The closed architectures require weaponeers to make the target fit the weapon instead of fitting the individual weapons to a target. The concept of a flexible weapons aims to modularize weapons design using an open architecture shell into which different modules are inserted to achieve the desired target fractional damage while reducing cost and civilia...

  4. Industrial Fuel Flexibility Workshop

    Energy Technology Data Exchange (ETDEWEB)

    none,

    2006-09-01

    On September 28, 2006, in Washington, DC, ITP and Booz Allen Hamilton conducted a fuel flexibility workshop with attendance from various stakeholder groups. Workshop participants included representatives from the petrochemical, refining, food and beverage, steel and metals, pulp and paper, cement and glass manufacturing industries; as well as representatives from industrial boiler manufacturers, technology providers, energy and waste service providers, the federal government and national laboratories, and developers and financiers.

  5. Flexible Land Administration

    DEFF Research Database (Denmark)

    Enemark, Stig

    2014-01-01

    Security of tenure is widely considered to be the missing piece of the puzzle when it comes to eradication of poverty. And, as explained in the previous issue of Geoinformatics, the European Union is now placing land rights at the heart of EU development policy. This article presents a way forwar...... in terms of building flexible and "fit-for-purpose" land administration systems in developing countries. This will ensure security of tenure for all and sustainable management of the use of land....

  6. Flat flexible polymer heat pipes

    International Nuclear Information System (INIS)

    Oshman, Christopher; Li, Qian; Liew, Li-Anne; Yang, Ronggui; Bright, Victor M; Lee, Y C

    2013-01-01

    Flat, flexible, lightweight, polymer heat pipes (FPHP) were fabricated. The overall geometry of the heat pipe was 130 mm × 70 mm × 1.31 mm. A commercially available low-cost film composed of laminated sheets of low-density polyethylene terephthalate, aluminum and polyethylene layers was used as the casing. A triple-layer sintered copper woven mesh served as a liquid wicking structure, and water was the working fluid. A coarse nylon woven mesh provided space for vapor transport and mechanical rigidity. Thermal power ranging from 5 to 30 W was supplied to the evaporator while the device was flexed at 0°, 45° and 90°. The thermal resistance of the FPHP ranged from 1.2 to 3.0 K W −1 depending on the operating conditions while the thermal resistance for a similar-sized solid copper reference was a constant at 4.6 K W −1 . With 25 W power input, the thermal resistance of the liquid–vapor core of the FPHP was 23% of a copper reference sample with identical laminated polymer material. This work shows a promising combination of technologies that has the potential to usher in a new generation of highly flexible, lightweight, low-cost, high-performance thermal management solutions. (paper)

  7. Oxygen storage capacity and structural flexibility of LuFe2O4+x (0≤x≤0.5)

    Science.gov (United States)

    Hervieu, M.; Guesdon, A.; Bourgeois, J.; Elkaïm, E.; Poienar, M.; Damay, F.; Rouquette, J.; Maignan, A.; Martin, C.

    2014-01-01

    Combining functionalities in devices with high performances is a great challenge that rests on the discovery and optimization of materials. In this framework, layered oxides are attractive for numerous purposes, from energy conversion and storage to magnetic and electric properties. We demonstrate here the oxygen storage ability of ferroelectric LuFe2O4+x within a large x range (from 0 to 0.5) and its cycling possibility. The combination of thermogravimetric analyses, X-ray diffraction and transmission electron microscopy evidences a complex oxygen intercalation/de-intercalation process with several intermediate metastable states. This topotactic mechanism is mainly governed by nanoscale structures involving a shift of the cationic layers. The ferrite is highly promising because absorption begins at a low temperature (), occurs in a low oxygen pressure and the uptake of oxygen is reversible without altering the quality of the crystals. The storage/release of oxygen coupled to the transport and magnetic properties of LnFe2O4 opens the door to new tunable multifunctional applications.

  8. PTFE films with improved flexibility

    Science.gov (United States)

    Muraca, R. F.; Koch, A. A.

    1972-01-01

    Development and application of flexible polytetrafluroethylene films for expulsion bladders in spacecraft propellant tanks are described. Flexibility of material is obtained by reducing crystallinity through annealing and quenching in water. Physical and mechanical properties of material are presented.

  9. Free-Standing, Flexible, Superomniphobic Films.

    Science.gov (United States)

    Vahabi, Hamed; Wang, Wei; Movafaghi, Sanli; Kota, Arun K

    2016-08-31

    Fabrication of most superomniphobic surfaces requires complex process conditions or specialized and expensive equipment or skilled personnel. In order to circumvent these issues and make them end-user-friendly, we developed the free-standing, flexible, superomniphobic films. These films can be stored and delivered to the end-users, who can readily attach them to virtually any surface (even irregular shapes) and impart superomniphobicity. The hierarchical structure, the re-entrant texture, and the low solid surface energy render our films superomniphobic for a wide variety of liquids. We demonstrate that our free-standing, flexible, superomniphobic films have applications in enhanced chemical resistance and enhanced weight bearing.

  10. Flexible automated manufacturing for SMEs

    DEFF Research Database (Denmark)

    Grube Hansen, David; Bilberg, Arne; Madsen, Erik Skov

    2017-01-01

    SMEs are in general highly flexible and agile in order to accommodate the customer demands in the paradigm of High Mix-Low Volume manufacturing. The flexibility and agility have mainly been enabled by manual labor, but as we are entering the technology and data driven fourth industrial revolution......, where augmented operators and machines work in cooperation in a highly flexible and productive manufacturing system both an opportunity and a need has raised for developing highly flexible and efficient automation....

  11. The influence of flexible branches in flexible polymers

    International Nuclear Information System (INIS)

    Wescott, J.T.

    1998-06-01

    In this work the influence of branches in flexible polymer systems has been investigated by consideration of (1) the behaviour of isolated poly-α-olefin chains and (2) the p -T phase behaviour of poly(4-methylpentene-1)(P4MP1). Molecular dynamics simulations of isolated poly-α-olefins were performed in order to gauge directly the effect of molecular structure on chain dimensions, flexibility (via the persistence length) and shape. Under Θ-conditions the addition of short linear branches was shown to increase the flexibility of the backbone. In conditions of good solvent, however, the effect of longer and bulkier branches was to increase the persistence length and average size of the coil with the arrangement of side chain atoms making a small difference. The side branches themselves also affected the solvent conditions experienced by the backbone, behaving much like bound solvent. Consideration of ethylene-α-olefin copolymers, where the branch content was varied from 0-50%, showed that under good solvent conditions the branches increased the chain stiffness only when the gap between side branches was less than five backbone carbon atoms. The backbone torsions were also shown to play an important role in determining these trends. For comparison with the above simulations, persistence length values for polyethylene (= 7.3±0.2A) and P4MP1 (=7.6±0.3A) were measured experimentally by neutron scattering in dilute solution. A value of 6.7±0.5 for the characteristic ratio of PE was also calculated. To investigate the role of a bulky side group in crystalline phases, wide angle X-ray diffraction experiments using a Hikosaka pressure cell were performed on P4MP1. Computer modelling, utilising the experimental data obtained, determined the structure of a disordered phase produced at room temperature and a new high pressure/high temperature phase. The disordered phase was found to be due to a collapse of the backbone combined with some disordering of the side chains

  12. Analysis of non-typeable Haemophilous influenzae VapC1 mutations reveals structural features required for toxicity and flexibility in the active site.

    Directory of Open Access Journals (Sweden)

    Brooke Hamilton

    Full Text Available Bacteria have evolved mechanisms that allow them to survive in the face of a variety of stresses including nutrient deprivation, antibiotic challenge and engulfment by predator cells. A switch to dormancy represents one strategy that reduces energy utilization and can render cells resistant to compounds that kill growing bacteria. These persister cells pose a problem during treatment of infections with antibiotics, and dormancy mechanisms may contribute to latent infections. Many bacteria encode toxin-antitoxin (TA gene pairs that play an important role in dormancy and the formation of persisters. VapBC gene pairs comprise the largest of the Type II TA systems in bacteria and they produce a VapC ribonuclease toxin whose activity is inhibited by the VapB antitoxin. Despite the importance of VapBC TA pairs in dormancy and persister formation, little information exists on the structural features of VapC proteins required for their toxic function in vivo. Studies reported here identified 17 single mutations that disrupt the function of VapC1 from non-typeable H. influenzae in vivo. 3-D modeling suggests that side chains affected by many of these mutations sit near the active site of the toxin protein. Phylogenetic comparisons and secondary mutagenesis indicate that VapC1 toxicity requires an alternative active site motif found in many proteobacteria. Expression of the antitoxin VapB1 counteracts the activity of VapC1 mutants partially defective for toxicity, indicating that the antitoxin binds these mutant proteins in vivo. These findings identify critical chemical features required for the biological function of VapC toxins and PIN-domain proteins.

  13. A Comparison of Two Approaches to Beta-Flexible Clustering.

    Science.gov (United States)

    Belbin, Lee; And Others

    1992-01-01

    A method for hierarchical agglomerative polythetic (multivariate) clustering, based on unweighted pair group using arithmetic averages (UPGMA) is compared with the original beta-flexible technique, a weighted average method. Reasons the flexible UPGMA strategy is recommended are discussed, focusing on the ability to recover cluster structure over…

  14. Providing a Flexible, Learner-Centred Programme: Challenges for Educators

    Science.gov (United States)

    Cornelius, Sarah; Gordon, Carole

    2008-01-01

    This paper presents a case study of the implementation of a flexible learner-centred programme of study which blends face-to-face and online learning. The programme was developed to be flexible in terms of content and study strategies, whilst remaining within more rigid organisational structures and processes. This paper outlines the programme and…

  15. Global Analysis of Flexible Risers

    DEFF Research Database (Denmark)

    Banke, Lars

    1996-01-01

    Flexible pipes are often a technically attractive alternative to the traditional steel pipe. Often commercial utilisation of oil/gas fields depends on the use of flexible pipes. An example is when floating production vessels are used, where the flexible pipe follows the wave induced motions...

  16. Tunnel flexibility effect on the ground surface acceleration response

    Science.gov (United States)

    Baziar, Mohammad Hassan; Moghadam, Masoud Rabeti; Choo, Yun Wook; Kim, Dong-Soo

    2016-09-01

    Flexibility of underground structures relative to the surrounding medium, referred to as the flexibility ratio, is an important factor that influences their dynamic interaction. This study investigates the flexibility effect of a box-shaped subway tunnel, resting directly on bedrock, on the ground surface acceleration response using a numerical model verified against dynamic centrifuge test results. A comparison of the ground surface acceleration response for tunnel models with different flexibility ratios revealed that the tunnels with different flexibility ratios influence the acceleration response at the ground surface in different ways. Tunnels with lower flexibility ratios have higher acceleration responses at short periods, whereas tunnels with higher flexibility ratios have higher acceleration responses at longer periods. The effect of the flexibility ratio on ground surface acceleration is more prominent in the high range of frequencies. Furthermore, as the flexibility ratio of the tunnel system increases, the acceleration response moves away from the free field response and shifts towards the longer periods. Therefore, the flexibility ratio of the underground tunnels influences the peak ground acceleration (PGA) at the ground surface, and may need to be considered in the seismic zonation of urban areas.

  17. Lumbopelvic flexibility modulates neuromuscular responses during trunk flexion-extension.

    Science.gov (United States)

    Sánchez-Zuriaga, Daniel; Artacho-Pérez, Carla; Biviá-Roig, Gemma

    2016-06-01

    Various stimuli such as the flexibility of lumbopelvic structures influence the neuromuscular responses of the trunk musculature, leading to different load sharing strategies and reflex muscle responses from the afferents of lumbopelvic mechanoreceptors. This link between flexibility and neuromuscular response has been poorly studied. The aim of this study was to investigate the relationship between lumbopelvic flexibility and neuromuscular responses of the erector spinae, hamstring and abdominal muscles during trunk flexion-extension. Lumbopelvic movement patterns were measured in 29 healthy women, who were separated into two groups according to their flexibility during trunk flexion-extension. The electromyographic responses of erector spinae, rectus abdominis and biceps femoris were also recorded. Subjects with greater lumbar flexibility had significantly less pelvic flexibility and vice versa. Subjects with greater pelvic flexibility had a higher rate of relaxation and lower levels of hamstring activation during maximal trunk flexion. The neuromuscular response patterns of the hamstrings seem partially modulated by pelvic flexibility. Not so with the lumbar erector spinae and lumbar flexibility, despite the assertions of some previous studies. The results of this study improve our knowledge of the relationships between trunk joint flexibility and neuromuscular responses, a relationship which may play a role in low back pain. Copyright © 2016 Elsevier Ltd. All rights reserved.

  18. Application of carbon nanotubes flexible strain sensor in smart textiles

    Directory of Open Access Journals (Sweden)

    Qiong CHENG

    2017-10-01

    Full Text Available Smart textiles have not only the necessary functions of daily wear, but also the intelligence. The focus of the current textile materials research is the selection of flexible material. For flexible materials, carbon material is one of the ideal materials for preparing flexible strain gauges. The application of flexible strain sensor prepared by carbon nanotubes as a flexible material in smart textiles is the research content. The research status of carbon nanotubes flexible strain sensor is introduced from the aspects of the structure, properties and application. The characteristics and functions of flexible strain gages prepared with carbon nanotube fibers and carbon nanotube films as flexible materials are discussed in terms of selection, preparation method, performance test and application. At the same time, the advantages and disadvantages of the flexible strain sensor of carbon nanotubes are reviewed from the aspects of preparation difficulty, production cost and practical application effect. High sensitivity with high strain will be a key research direction for carbon nanotube flexible strain sensors.

  19. Analytical and numerical modeling for flexible pipes

    Science.gov (United States)

    Wang, Wei; Chen, Geng

    2011-12-01

    The unbonded flexible pipe of eight layers, in which all the layers except the carcass layer are assumed to have isotropic properties, has been analyzed. Specifically, the carcass layer shows the orthotropic characteristics. The effective elastic moduli of the carcass layer have been developed in terms of the influence of deformation to stiffness. With consideration of the effective elastic moduli, the structure can be properly analyzed. Also the relative movements of tendons and relative displacements of wires in helical armour layer have been investigated. A three-dimensional nonlinear finite element model has been presented to predict the response of flexible pipes under axial force and torque. Further, the friction and contact of interlayer have been considered. Comparison between the finite element model and experimental results obtained in literature has been given and discussed, which might provide practical and technical support for the application of unbonded flexible pipes.

  20. Printed electronic on flexible and glass substrates

    Science.gov (United States)

    Futera, Konrad; Jakubowska, Małgorzata; Kozioł, Grażyna

    2010-09-01

    Organic electronics is a platform technology that enables multiple applications based on organic electronics but varied in specifications. Organic electronics is based on the combination of new materials and cost-effective, large area production processes that provide new fields of application. Organic electronic by its size, weight, flexibility and environmental friendliness electronics enables low cost production of numerous electrical components and provides for such promising fields of application as: intelligent packaging, low cost RFID, flexible solar cells, disposable diagnostic devices or games, and printed batteries [1]. The paper presents results of inkjetted electronics elements on flexible and glass substrates. The investigations was target on characterizing shape, surface and geometry of printed structures. Variety of substrates were investigated, within some, low cost, non specialized substrate, design for other purposes than organic electronic.

  1. Hydrodynamics of a flexible plate between pitching rigid plates

    Science.gov (United States)

    Kim, Junyoung; Kim, Daegyoum

    2017-11-01

    The dynamics of a flexible plate have been studied as a model problem in swimming and flying of animals and fluid-structure interaction of plants and flags. Motivated by fish schooling and an array of sea grasses, we investigate the dynamics of a flexible plate closely placed between two pitching rigid plates. In most studies on passive deformation of the flexible plate, the plate is immersed in a uniform flow or a wavy flow. However, in this study, the flexible plate experiences periodic deformation by the oscillatory flow generated by the prescribed pitching motion of the rigid plates. In our model, the pitching axes of the rigid plates and the clamping position of the flexible plate are aligned on the same line. The flexible plate shows various responses depending on length and pitching frequency of rigid plates, thickness of a flexible plate, and free-stream velocity. To find the effect of each variable on the response of the flexible plate, amplitude of a trailing edge and modal contribution of a flapping motion are compared, and flow structure around the flexible plate is examined.

  2. Security and labour market flexibility

    DEFF Research Database (Denmark)

    Refslund, Bjarke; Rasmussen, Stine; Sørensen, Ole H.

    2017-01-01

    In the face of the economic and financial crisis, several European countries have implemented a number of structural reforms to increase employment and the flexibility of the labour market, in particular by reducing employment protection in an effort to deregulate labour markets. Reform proponents...... employment. Conversely, reform opponents claim that this view builds on a misguided view of labour market dynamics. They do not believe that such reforms will lead to job growth, asserting that such reforms are as likely to reduce as to increase employment and that they will lead to growing inequality...... and labour market segmentation. In Denmark, employee protection in terms of notice periods and dismissal compensation, which is mainly regulated by collective agreement, is among the lowest in the EU. Unemployment was, before the crisis, among the lowest in the EU but the crisis also negatively affected...

  3. Movable MEMS Devices on Flexible Silicon

    KAUST Repository

    Ahmed, Sally

    2013-05-05

    Flexible electronics have gained great attention recently. Applications such as flexible displays, artificial skin and health monitoring devices are a few examples of this technology. Looking closely at the components of these devices, although MEMS actuators and sensors can play critical role to extend the application areas of flexible electronics, fabricating movable MEMS devices on flexible substrates is highly challenging. Therefore, this thesis reports a process for fabricating free standing and movable MEMS devices on flexible silicon substrates; MEMS flexure thermal actuators have been fabricated to illustrate the viability of the process. Flexure thermal actuators consist of two arms: a thin hot arm and a wide cold arm separated by a small air gap; the arms are anchored to the substrate from one end and connected to each other from the other end. The actuator design has been modified by adding etch holes in the anchors to suit the process of releasing a thin layer of silicon from the bulk silicon substrate. Selecting materials that are compatible with the release process was challenging. Moreover, difficulties were faced in the fabrication process development; for example, the structural layer of the devices was partially etched during silicon release although it was protected by aluminum oxide which is not attacked by the releasing gas . Furthermore, the thin arm of the thermal actuator was thinned during the fabrication process but optimizing the patterning and etching steps of the structural layer successfully solved this problem. Simulation was carried out to compare the performance of the original and the modified designs for the thermal actuators and to study stress and temperature distribution across a device. A fabricated thermal actuator with a 250 μm long hot arm and a 225 μm long cold arm separated by a 3 μm gap produced a deflection of 3 μm before silicon release, however, the fabrication process must be optimized to obtain fully functioning

  4. Flexible Query Answering Systems

    DEFF Research Database (Denmark)

    This book constitutes the refereed proceedings of the 10th International Conference on Flexible Query Answering Systems, FQAS 2013, held in Granada, Spain, in September 2013. The 59 full papers included in this volume were carefully reviewed and selected from numerous submissions. The papers...... are organized in a general session train and a parallel special session track. The general session train covers the following topics: querying-answering systems; semantic technology; patterns and classification; personalization and recommender systems; searching and ranking; and Web and human...

  5. Active vibration control of spatial flexible multibody systems

    Energy Technology Data Exchange (ETDEWEB)

    Neto, Maria Augusta, E-mail: augusta.neto@dem.uc.pt [Universidade de Coimbra (Polo II), Departamento de Engenharia Mecanica, Faculdade de Ciencia e Tecnologia (Portugal); Ambrosio, Jorge A. C., E-mail: jorge@dem.ist.utl.pt [Instituto Superior Tecnico, Instituto de Engenharia Mecanica (Portugal); Roseiro, Luis M., E-mail: lroseiro@isec.pt [Instituto Superior de Engenharia de Coimbra, Departamento de Engenharia Mecanica (Portugal); Amaro, A., E-mail: ana.amaro@dem.uc.pt [Universidade de Coimbra (Polo II), Departamento de Engenharia Mecanica, Faculdade de Ciencia e Tecnologia (Portugal); Vasques, C. M. A., E-mail: cvasques@inegi.up.pt [Universidade do Porto, INEGI-Instituto de Engenharia Mecanica e Gestao Industrial (Portugal)

    2013-06-15

    In this work a flexible multibody dynamics formulation of complex models including elastic components made of composite materials is extended to include piezoelectric sensors and actuators. The only limitation for the deformation of a structural member is that they must remain elastic and linear when described in a coordinate frame fixed to a material point or region of its domain. The flexible finite-element model of each flexible body is obtained referring the flexible body nodal coordinates to the body fixed frame and using a diagonalized mass description of the inertia in the mass matrix and on the gyroscopic force vector. The modal superposition technique is used to reduce the number of generalized coordinates to a reasonable dimension for complex shaped structural models of flexible bodies. The active vibration control of the flexible multibody components is implemented using an asymmetric collocated piezoelectric sensor/actuator pair. An electromechanically coupled model is taken into account to properly consider the surface-bonded piezoelectric transducers and their effects on the time and spatial response of the flexible multibody components. The electromechanical effects are introduced in the flexible multibody equations of motion by the use of beam and plate/shell elements, developed to this purpose. A comparative study between the classical control strategies, constant gain and amplitude velocity feedback, and optimal control strategy, linear quadratic regulator (LQR), is performed in order to investigate their effectiveness to suppress vibrations in structures with piezoelectric sensing and actuating patches.

  6. Active vibration control of spatial flexible multibody systems

    International Nuclear Information System (INIS)

    Neto, Maria Augusta; Ambrósio, Jorge A. C.; Roseiro, Luis M.; Amaro, A.; Vasques, C. M. A.

    2013-01-01

    In this work a flexible multibody dynamics formulation of complex models including elastic components made of composite materials is extended to include piezoelectric sensors and actuators. The only limitation for the deformation of a structural member is that they must remain elastic and linear when described in a coordinate frame fixed to a material point or region of its domain. The flexible finite-element model of each flexible body is obtained referring the flexible body nodal coordinates to the body fixed frame and using a diagonalized mass description of the inertia in the mass matrix and on the gyroscopic force vector. The modal superposition technique is used to reduce the number of generalized coordinates to a reasonable dimension for complex shaped structural models of flexible bodies. The active vibration control of the flexible multibody components is implemented using an asymmetric collocated piezoelectric sensor/actuator pair. An electromechanically coupled model is taken into account to properly consider the surface-bonded piezoelectric transducers and their effects on the time and spatial response of the flexible multibody components. The electromechanical effects are introduced in the flexible multibody equations of motion by the use of beam and plate/shell elements, developed to this purpose. A comparative study between the classical control strategies, constant gain and amplitude velocity feedback, and optimal control strategy, linear quadratic regulator (LQR), is performed in order to investigate their effectiveness to suppress vibrations in structures with piezoelectric sensing and actuating patches.

  7. A Signal Processing Method to Explore Similarity in Protein Flexibility

    Directory of Open Access Journals (Sweden)

    Simina Vasilache

    2010-01-01

    Full Text Available Understanding mechanisms of protein flexibility is of great importance to structural biology. The ability to detect similarities between proteins and their patterns is vital in discovering new information about unknown protein functions. A Distance Constraint Model (DCM provides a means to generate a variety of flexibility measures based on a given protein structure. Although information about mechanical properties of flexibility is critical for understanding protein function for a given protein, the question of whether certain characteristics are shared across homologous proteins is difficult to assess. For a proper assessment, a quantified measure of similarity is necessary. This paper begins to explore image processing techniques to quantify similarities in signals and images that characterize protein flexibility. The dataset considered here consists of three different families of proteins, with three proteins in each family. The similarities and differences found within flexibility measures across homologous proteins do not align with sequence-based evolutionary methods.

  8. Asymmetric Flexible Supercapacitor Stack

    Directory of Open Access Journals (Sweden)

    Leela Mohana Reddy A

    2008-01-01

    Full Text Available AbstractElectrical double layer supercapacitor is very significant in the field of electrical energy storage which can be the solution for the current revolution in the electronic devices like mobile phones, camera flashes which needs flexible and miniaturized energy storage device with all non-aqueous components. The multiwalled carbon nanotubes (MWNTs have been synthesized by catalytic chemical vapor deposition technique over hydrogen decrepitated Mischmetal (Mm based AB3alloy hydride. The polymer dispersed MWNTs have been obtained by insitu polymerization and the metal oxide/MWNTs were synthesized by sol-gel method. Morphological characterizations of polymer dispersed MWNTs have been carried out using scanning electron microscopy (SEM, transmission electron microscopy (TEM and HRTEM. An assymetric double supercapacitor stack has been fabricated using polymer/MWNTs and metal oxide/MWNTs coated over flexible carbon fabric as electrodes and nafion®membrane as a solid electrolyte. Electrochemical performance of the supercapacitor stack has been investigated using cyclic voltammetry, galvanostatic charge-discharge, and electrochemical impedance spectroscopy.

  9. A structural study of [CpM(CO)3H] (M = Cr, Mo and W) by single-crystal X-ray diffraction and DFT calculations: sterically crowded yet surprisingly flexible molecules.

    Science.gov (United States)

    Burchell, Richard P L; Sirsch, Peter; Decken, Andreas; McGrady, G Sean

    2009-08-14

    The single-crystal X-ray structures of the complexes [CpCr(CO)3H] 1, [CpMo(CO)3H] 2 and [CpW(CO)3H] 3 are reported. The results indicate that 1 adopts a structure close to a distorted three-legged piano stool geometry, whereas a conventional four-legged piano stool arrangement is observed for 2 and 3. Further insight into the equilibrium geometries and potential energy surfaces of all three complexes was obtained by DFT calculations. These show that in the gas phase complex 1 also prefers a geometry close to a four-legged piano stool in line with its heavier congeners, and implying strong packing forces at work for 1 in the solid state. Comparison with their isolelectronic group 7 tricarbonyl counterparts [CpM(CO)3] (M = Mn 4 and Re 5) illustrates that 1, 2 and 3 are sterically crowded complexes. However, a surprisingly soft bending potential is evident for the M-H moiety, whose order (1 approximately = 2 < 3) correlates with the M-H bond strength rather than with the degree of congestion at the metal centre, indicating electronic rather than steric control of the potential. The calculations also reveal cooperative motions of the hydride and carbonyl ligands in the M(CO)3H unit, which allow the M-H moiety to move freely, in spite of the closeness of the four basal ligands, helping to explain the surprising flexibility of the crowded coordination sphere observed for this family of high CN complexes.

  10. Methamphetamine Alters Brain Structures, Impairs Mental Flexibility

    Science.gov (United States)

    ... Alcohol Club Drugs Cocaine Fentanyl Hallucinogens Inhalants Heroin Marijuana MDMA (Ecstasy/Molly) Methamphetamine Opioids Over-the-Counter Medicines Prescription Medicines Steroids (Anabolic) Synthetic Cannabinoids (K2/Spice) Synthetic Cathinones (Bath Salts) Tobacco/ ...

  11. Flexible Nanocellulose - Nanoparticle Composites: Structures and Properties

    OpenAIRE

    UTHPALA MANAVI GARUSINGHE

    2018-01-01

    Nanocellulose is biodegradable and renewable and has many attractive properties of technological interest. Therefore, nanocellulose can be converted into thin films, which is used in wide range of applications. However, the property range achievable with nanocellulose by itself still has limitations. This thesis focuses on the production of nanocellulose-inorganic nanoparticle composites to combine the advantage associated with both individual components together to extend the range of proper...

  12. Dynamics of an articulated shell type flexible rotor

    International Nuclear Information System (INIS)

    Suleman, M.; Khan, M.Z.; Nazeer, M.M.

    2001-01-01

    An ultra high speed articulated shell type flexible rotor supported by low stiffness flexible bearing encounters a number of dynamic problems while traversing towards or from the service speed. The major and critical problems that arise are: Synchronous and Sub-synchronous vibration due to instabilities. Structural resonances and rubs due to eccentricities of structure and magnetic bearing. The symptoms of these troubles, their root causes and remedial measures are highlighted and discussed in this work. (author)

  13. On flexible and rigid nouns

    DEFF Research Database (Denmark)

    Rijkhoff, Jan

    2010-01-01

    classes. Finally this article wants to claim that the distinction between rigid and flexible noun categories (a) adds a new dimension to current classifications of parts of speech systems, (b) correlates with certain grammatical phenomena (e.g. so-called number discord), and (c) helps to explain the parts......This article argues that in addition to the major flexible lexical categories in Hengeveld’s classification of parts of speech systems (Contentive, Non-Verb, Modifier), there are also flexible word classes within the rigid lexical category Noun (Set Noun, Sort Noun, General Noun). Members...... by the flexible item in the external world. I will then argue that flexible word classes constitute a proper category (i.e. they are not the result of a merger of some rigid word classes) in that members of flexible word categories display the same properties regarding category membership as members of rigid word...

  14. On flexible and rigid nouns

    DEFF Research Database (Denmark)

    Rijkhoff, Jan

    2008-01-01

    Studies in Language 32-3 (2008), 727-752. Special issue: Parts of Speech: Descriptive tools, theoretical constructs Jan Rijkhoff - On flexible and rigid nouns This article argues that in addition to the flexible lexical categories in Hengeveld’s classification of parts-of-speech systems (Contentive......, Non-Verb, Modifier), there are also flexible word classes within the rigid lexical category Noun (Set Noun, Sort Noun, General Noun). Members of flexible word classes are characterized by their vague semantics, which in the case of nouns means that values for the semantic features Shape...... and Homogeneity are either left undetermined or they are specified in such a way that they do not quite match the properties of the kind of entity denoted by the flexible item in the external world. I will then argue that flexible word classes constitute a proper category (i.e. they are not the result of a merger...

  15. Flexible Language Interoperability

    DEFF Research Database (Denmark)

    Ekman, Torbjörn; Mechlenborg, Peter; Schultz, Ulrik Pagh

    2007-01-01

    Virtual machines raise the abstraction level of the execution environment at the cost of restricting the set of supported languages. Moreover, the ability of a language implementation to integrate with other languages hosted on the same virtual machine typically constrains the features...... of the language. In this paper, we present a highly flexible yet efficient approach to hosting multiple programming languages on an object-oriented virtual machine. Our approach is based on extending the interface of each class with language-specific wrapper methods, offering each language a tailored view...... of a given class. This approach can be deployed both on a statically typed virtual machine, such as the JVM, and on a dynamic virtual machine, such as a Smalltalk virtual machine. We have implemented our approach to language interoperability on top of a prototype virtual machine for embedded systems based...

  16. Flexible cultural repertoires

    DEFF Research Database (Denmark)

    Lindegaard, Marie Rosenkrantz; Zimmermann, Francisca

    2017-01-01

    Despite extensive studies of street culture and the risks of offending and victimization in urban marginalized areas, little is known about the role of cultural repertoires for variation in victimization risks among young men not involved in crime. Based on two ethnographic studies, conducted...... independently of the authors in neighbouring township areas of Cape Town, we offer insights into patterns of victimization among young men not involved in crime who live and attend school in the townships. Young men WHO perform decent cultural repertoires are highly exposed to victimization due to their moral...... rejection of crime-involved youth. Young men who perform flexible cultural repertoires, by incorporating and shifting between gang and decent repertoires, experience low victimization due to their adaptation to crime-involved youth. Findings emphasize the importance of detailed investigations of the way...

  17. Flexible helical yarn swimmers.

    Science.gov (United States)

    Zakharov, A P; Leshansky, A M; Pismen, L M

    2016-09-01

    We investigate the motion of a flexible Stokesian flagellar swimmer realised as a yarn made of two intertwined elastomer fibres, one active, that can reversibly change its length in response to a local excitation causing transition to the nematic state or swelling, and the other one, a passive isotropic elastomer with identical mechanical properties. A propagating chemical wave may provide an excitation mechanism ensuring a constant length of the excited region. Generally, the swimmer moves along a helical trajectory, and the propagation and rotation velocity are very sensitive to the ratio of the excited region to the pitch of the yarn, as well as to the size of a carried load. External excitation by a moving actuating beam is less effective, unless the direction of the beam is adjusted to rotation of the swimmer.

  18. Flexible weapons architecture design

    Science.gov (United States)

    Pyant, William C., III

    Present day air-delivered weapons are of a closed architecture, with little to no ability to tailor the weapon for the individual engagement. The closed architectures require weaponeers to make the target fit the weapon instead of fitting the individual weapons to a target. The concept of a flexible weapons aims to modularize weapons design using an open architecture shell into which different modules are inserted to achieve the desired target fractional damage while reducing cost and civilian casualties. This thesis shows that the architecture design factors of damage mechanism, fusing, weapons weight, guidance, and propulsion are significant in enhancing weapon performance objectives, and would benefit from modularization. Additionally, this thesis constructs an algorithm that can be used to design a weapon set for a particular target class based on these modular components.

  19. Pd thin films on flexible substrate for hydrogen sensor

    Energy Technology Data Exchange (ETDEWEB)

    Öztürk, Sadullah [Fatih Sultan Mehmet Vakıf University, Engineering Faculty, Istanbul (Turkey); Kılınç, Necmettin, E-mail: nkilinc@nigde.edu.tr [Nigde University, Mechatronics Engineering Department, 51245 Nigde (Turkey); Nigde University, Nanotechnology Application and Research Center, 51245 Nigde (Turkey)

    2016-07-25

    In this work, palladium (Pd) thin films were prepared via RF sputtering method with various thicknesses (6 nm, 20 nm and 60 nm) on both a flexible substrate and a hard substrate. Hydrogen (H{sub 2}) sensing properties of Pd films on flexible substrate have been investigated depending on temperatures (25–100 °C) and H{sub 2} concentrations (600 ppm – 10%). The effect of H{sub 2} on structural properties of the films was also studied. The films were characterized by Scanning Electron Microscopy (SEM) and X-ray diffraction. It is found that whole Pd films on hard substrate show permanent structural deformation after exposed to 10% H{sub 2} for 30 min. But, this H{sub 2} exposure does not causes any structural deformation for 6 nm Pd film on flexible substrate and 6 nm Pd film on flexible substrate shows reversible sensor response up to 10% H{sub 2} concentration without any structural deformation. On the other hand, Pd film sensors that have the thicknesses 20 nm and 60 nm on flexible substrate are irreversible for higher H{sub 2} concentration (>2%) with film deformation. The sensor response of 6 nm Pd film on flexible substrate increased with increasing H{sub 2} concentration up 4% and then saturated. The sensitivity of the film decreased with increasing operation temperature. - Highlights: • Pd thin films fabricated by RF sputtering on both flexible and hard substrates. • Structural deformation observed for films on hard substrate after exposing 10% H{sub 2}. • 6 nm Pd film on flexible substrate shows reversible sensor response up to 10% H{sub 2}. • H{sub 2} sensing properties of film on flexible substrate investigated depending on temperature and concentration. • The sensitivity of the film decreased with increasing operation temperature.

  20. Flexible strip supercapacitors for future energy storage

    OpenAIRE

    Zhang, R-R; Xu, Y-M; Harrison, D; Fyson, J; Qiu, F-L; Southee, D

    2015-01-01

    Flexible strip supercapacitors are developed and their electrochemical properties are characterized. Activated carbon is used as the electrode material and it is found to have a good porous structure which provides a large surface area for energy storage. Furthermore, this activated carbon performs well. The manufacturing processes for the supercapacitors are described in detail and the preparation process has good reproducibility. The strip supercapacitors are combined in series and parallel...

  1. Static inelastic analysis of steel frames with flexible connections

    Directory of Open Access Journals (Sweden)

    Nefovska-Danilović M.

    2004-01-01

    Full Text Available The effects of connection flexibility and material yielding on the behavior of plane steel frames subjected to static (monotonic loads are presented in this paper. Two types of material nonlinearities are considered: flexible nodal connections and material yielding, as well as geometric nonlinearity of the structure. To account for material yielding, a plastic hinge concept is adopted. A flexible connection is idealized by nonlinear rotational spring. Plastic hinge is also idealized by nonlinear rotational spring attached in series with the rotational spring that accounts for connection flexibility. The stiffness matrix for the beam with flexible connections and plastic hinges at its ends is obtained. To illustrate the validity and accuracy of the proposed numerical model, several examples have been conducted.

  2. Special Issue: Flexible Work Arrangements.

    Science.gov (United States)

    Olmstead, Barney, Ed.

    1996-01-01

    Section 1 contains five chapters on flexible work arrangements, self-employment, working from home, part-time professionals, job sharing, and temporary employment. Section 2 includes reviews of four books on working flexibly, concluding with a list of 23 additional readings. (SK)

  3. Measuring and Comparing Energy Flexibilities

    DEFF Research Database (Denmark)

    Valsomatzis, Emmanouil; Hose, Katja; Pedersen, Torben Bach

    2015-01-01

    induced by time and amount individually, and by their com- bination. To this end, we introduce several flexibility measures that take into account the combined effect of time and energy on flex-offer flexibility and discuss their respective pros and cons through a number of realistic examples....

  4. Sensor Technologies on Flexible Substrates

    Science.gov (United States)

    Koehne, Jessica

    2016-01-01

    NASA Ames has developed sensor technologies on flexible substrates integrated into textiles for personalized environment monitoring and human performance evaluation. Current technologies include chemical sensing for gas leak and event monitoring and biological sensors for human health and performance monitoring. Targeted integration include next generation EVA suits and flexible habitats.

  5. Global mapping of DNA conformational flexibility on Saccharomyces cerevisiae.

    Directory of Open Access Journals (Sweden)

    Giulia Menconi

    2015-04-01

    Full Text Available In this study we provide the first comprehensive map of DNA conformational flexibility in Saccharomyces cerevisiae complete genome. Flexibility plays a key role in DNA supercoiling and DNA/protein binding, regulating DNA transcription, replication or repair. Specific interest in flexibility analysis concerns its relationship with human genome instability. Enrichment in flexible sequences has been detected in unstable regions of human genome defined fragile sites, where genes map and carry frequent deletions and rearrangements in cancer. Flexible sequences have been suggested to be the determinants of fragile gene proneness to breakage; however, their actual role and properties remain elusive. Our in silico analysis carried out genome-wide via the StabFlex algorithm, shows the conserved presence of highly flexible regions in budding yeast genome as well as in genomes of other Saccharomyces sensu stricto species. Flexibile peaks in S. cerevisiae identify 175 ORFs mapping on their 3'UTR, a region affecting mRNA translation, localization and stability. (TAn repeats of different extension shape the central structure of peaks and co-localize with polyadenylation efficiency element (EE signals. ORFs with flexible peaks share common features. Transcripts are characterized by decreased half-life: this is considered peculiar of genes involved in regulatory systems with high turnover; consistently, their function affects biological processes such as cell cycle regulation or stress response. Our findings support the functional importance of flexibility peaks, suggesting that the flexible sequence may be derived by an expansion of canonical TAYRTA polyadenylation efficiency element. The flexible (TAn repeat amplification could be the outcome of an evolutionary neofunctionalization leading to a differential 3'-end processing and expression regulation in genes with peculiar function. Our study provides a new support to the functional role of flexibility in

  6. Global mapping of DNA conformational flexibility on Saccharomyces cerevisiae.

    Science.gov (United States)

    Menconi, Giulia; Bedini, Andrea; Barale, Roberto; Sbrana, Isabella

    2015-04-01

    In this study we provide the first comprehensive map of DNA conformational flexibility in Saccharomyces cerevisiae complete genome. Flexibility plays a key role in DNA supercoiling and DNA/protein binding, regulating DNA transcription, replication or repair. Specific interest in flexibility analysis concerns its relationship with human genome instability. Enrichment in flexible sequences has been detected in unstable regions of human genome defined fragile sites, where genes map and carry frequent deletions and rearrangements in cancer. Flexible sequences have been suggested to be the determinants of fragile gene proneness to breakage; however, their actual role and properties remain elusive. Our in silico analysis carried out genome-wide via the StabFlex algorithm, shows the conserved presence of highly flexible regions in budding yeast genome as well as in genomes of other Saccharomyces sensu stricto species. Flexibile peaks in S. cerevisiae identify 175 ORFs mapping on their 3'UTR, a region affecting mRNA translation, localization and stability. (TA)n repeats of different extension shape the central structure of peaks and co-localize with polyadenylation efficiency element (EE) signals. ORFs with flexible peaks share common features. Transcripts are characterized by decreased half-life: this is considered peculiar of genes involved in regulatory systems with high turnover; consistently, their function affects biological processes such as cell cycle regulation or stress response. Our findings support the functional importance of flexibility peaks, suggesting that the flexible sequence may be derived by an expansion of canonical TAYRTA polyadenylation efficiency element. The flexible (TA)n repeat amplification could be the outcome of an evolutionary neofunctionalization leading to a differential 3'-end processing and expression regulation in genes with peculiar function. Our study provides a new support to the functional role of flexibility in genomes and a

  7. Flexible ring seal

    International Nuclear Information System (INIS)

    Abbes, Claude; Gournier, Andre; Rouaud, Christian; Villepoix, Raymond de.

    1976-01-01

    The invention concerns a flexible metal ring seal, able to ensure a perfect seal between two bearings due to the crushing and elastic deformation properties akin to similar properties in elastomers. Various designs of seal of this kind are already known, particularly a seal made of a core formed by a helical wire spring with close-wound turns and with high axial compression ratio, closed on itself and having the shape of an annulus. This wire ring is surrounded by at least one envelope having at rest the shape of a toroidal surface of which the generating circle does not close on itself. In a particular design mode, the seal in question can include, around the internal spring, two envelopes of which one in contact with the spring is composed of a low ductility elastic metal, such as mild steel or stainless steel and the other is, on the contrary, made of a malleable metal, such as copper or nickel. The first envelope evenly distributes the partial crushing of the spring, when the seal is tightened, on the second envelope which closely fits the two surfaces between which the seal operates. The stress-crushing curve characteristic of the seal comprises two separate parts, the first with a relatively sharp slope corresponds to the start of the seal compression phase, enabling at least some of these curves to reach the requisite seal threshold very quickly, then, beyond this, a second part, practically flat, where the stress is appreciably constant for a wide operating bracket [fr

  8. Orthogonal flexible Rydberg aggregates

    Science.gov (United States)

    Leonhardt, K.; Wüster, S.; Rost, J. M.

    2016-02-01

    We study the link between atomic motion and exciton transport in flexible Rydberg aggregates, assemblies of highly excited light alkali-metal atoms, for which motion due to dipole-dipole interaction becomes relevant. In two one-dimensional atom chains crossing at a right angle adiabatic exciton transport is affected by a conical intersection of excitonic energy surfaces, which induces controllable nonadiabatic effects. A joint exciton-motion pulse that is initially governed by a single energy surface is coherently split into two modes after crossing the intersection. The modes induce strongly different atomic motion, leading to clear signatures of nonadiabatic effects in atomic density profiles. We have shown how this scenario can be exploited as an exciton switch, controlling direction and coherence properties of the joint pulse on the second of the chains [K. Leonhardt et al., Phys. Rev. Lett. 113, 223001 (2014), 10.1103/PhysRevLett.113.223001]. In this article we discuss the underlying complex dynamics in detail, characterize the switch, and derive our isotropic interaction model from a realistic anisotropic one with the addition of a magnetic bias field.

  9. SOCMA study urges flexibility

    International Nuclear Information System (INIS)

    Kirschner, E.

    1993-01-01

    In implementing the 1990 Pollution Prevention Act, regulators and legislators should hold off on cookie-cutter, numerical goal-based requirements to allow for site and process specific programs, says a study sponsored by the Synthetic Organic Chemicals Manufacturers Association (SOCMA; Washington). Companies should have that flexibility to target their resources toward those activities that reduce pollution cost effectively, says SOCMA environmental quality committee chairman Art Gillen, who is also BASF director of environmental regulatory affairs. The study - conducted by Woodward-Clyde Consultants (Denver) - examines four batch and custom chemical manufacturing films. As in the Clean Air Act, the batch processing of SOCMA-member plants should be considered in new regulations, Gillen says. For example, the study found that most wastes are from shutdowns and cleanouts, and there are frequent charges in waste streams and raw materials. Those characteristics do not lend themselves to annual reduction goals. Also, specific goals could have a wide range of costs: measures to reduce stack air emissions run from $18/lb to $1,106/lb. SOCMA says it will present the study to Congress and the Environmental Protection Agency

  10. Extremely flexible nanoscale ultrathin body silicon integrated circuits on plastic.

    Science.gov (United States)

    Shahrjerdi, Davood; Bedell, Stephen W

    2013-01-09

    In recent years, flexible devices based on nanoscale materials and structures have begun to emerge, exploiting semiconductor nanowires, graphene, and carbon nanotubes. This is primarily to circumvent the existing shortcomings of the conventional flexible electronics based on organic and amorphous semiconductors. The aim of this new class of flexible nanoelectronics is to attain high-performance devices with increased packing density. However, highly integrated flexible circuits with nanoscale transistors have not yet been demonstrated. Here, we show nanoscale flexible circuits on 60 Å thick silicon, including functional ring oscillators and memory cells. The 100-stage ring oscillators exhibit the stage delay of ~16 ps at a power supply voltage of 0.9 V, the best reported for any flexible circuits to date. The mechanical flexibility is achieved by employing the controlled spalling technology, enabling the large-area transfer of the ultrathin body silicon devices to a plastic substrate at room temperature. These results provide a simple and cost-effective pathway to enable ultralight flexible nanoelectronics with unprecedented level of system complexity based on mainstream silicon technology.

  11. Flexible Transpiration Cooled Thermal Protection System for Inflatable Atmospheric Capture and Entry Systems, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — Andrews Space, Inc. proposes an innovative transpiration cooled aerobrake TPS design that is thermally protective, structurally flexible, and lightweight. This...

  12. Flexible Transpiration Cooled Thermal Protection System for Inflatable Atmospheric Capture and Entry Systems, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Andrews Space, Inc. proposes an innovative transpiration cooled aerobrake TPS design that is thermally protective, structurally flexible, and lightweight. This...

  13. Designing flexible procurement systems

    OpenAIRE

    Hughes, Will

    1990-01-01

    The systems used for the procurement of buildings are organizational systems. They involve people in a series of strategic decisions, and a pattern of roles, responsibilities and relationships that combine to form the organizational structure of the project. To ensure effectiveness of the building team, this organizational structure needs to be contingent upon the environment within which the construction project takes place. In addition, a changing environment means that the organizational s...

  14. Flexibility in fuel manufacturing

    International Nuclear Information System (INIS)

    Reparaz, A.; Stavig, W.E.; McLees, R.B.

    1987-01-01

    From its inception Exxon Nuclear has produced both BWR and PWR fuels. This is reflected in a product line that, to date, includes over 20 fuel designs. These range from 6x6 design at one end of the spectrum to the recently introduced 17x17 design. The benefits offered include close tailoring of the fuel design to match the customer's requirements, and the ability to rapidly introduce product changes, such as the axial blanket design, with a minimal impact on manufacturing. This flexibility places a number of demands on the manufacturing organization. Close interfaces must be established, and maintained, between the marketing, product design, manufacturing, purchasing and quality organizations, and the information flows must be immediate and accurate. Production schedules must be well planned and must be maintained or revised to reflect changing circumstances. Finally, the manufacturing facilities must be designed to allow rapid switchover between product designs with minor tooling changes and/or rerouting of product flows to alternate work stations. Among the tools used to manage the flow of information and to maintain the tight integration necessary between the various manufacturing, engineering and quality organizations is a commercially available, computerized planning and tracking system, AMAPS. A real-time production data collection system has been designed which gathers data from each production work station for use by the shop floor control module of AMAPS. Accuracy of input to the system is improved through extensive use of bar codes to gather information on the product as it moves through and between work stations. This computerized preparation of material tracing has an impact on direct manufacturing records, quality control records, nuclear material records and accounting and inventory records. This is of benefit to both Exxon Nuclear and its customers

  15. Flexible Al-doped ZnO films grown on PET substrates using linear facing target sputtering for flexible OLEDs

    International Nuclear Information System (INIS)

    Jeong, Jin-A; Shin, Hyun-Su; Choi, Kwang-Hyuk; Kim, Han-Ki

    2010-01-01

    We report the characteristics of flexible Al-doped zinc oxide (AZO) films prepared by a plasma damage-free linear facing target sputtering (LFTS) system on PET substrates for use as a flexible transparent conducting electrode in flexible organic light-emitting diodes (OLEDs). The electrical, optical and structural properties of LFTS-grown flexible AZO electrodes were investigated as a function of dc power. We obtained a flexible AZO film with a sheet resistance of 39 Ω/□ and an average transmittance of 84.86% in the visible range although it was sputtered at room temperature without activation of the Al dopant. Due to the effective confinement of the high-density plasma between the facing AZO targets, the AZO film was deposited on the PET substrate without plasma damage and substrate heating caused by bombardment of energy particles. Moreover, the flexible OLED fabricated on the AZO/PET substrate showed performance similar to the OLED fabricated on a ITO/PET substrate in spite of a lower work function. This indicates that LFTS is a promising plasma damage-free and low-temperature sputtering technique for deposition of flexible and indium-free AZO electrodes for use in cost-efficient flexible OLEDs.

  16. The Geographical Aspect of Flexibility in Distribution Grids

    DEFF Research Database (Denmark)

    Kouzelis, Konstantinos; Bak-Jensen, Birgitte; Pillai, Jayakrishnan Radhakrishna

    2015-01-01

    , the reason for this is that flexibility is a multidimensional commodity. It can be associated with a unit or a system, a time-frame and a time-horizon of measuring it, its power magnitude and ramp rate, its energy shifting capability, its location and several other features. In this paper, the locational...... aggregation taking into account the distribution grid's radial structure. By aggregating the flexibility in this manner, different geographical points for offering it are defined. Through an illustrative market scenario, it is demonstrated how utilities might profit from their local flexibility by assisting...

  17. Is the structural damping of flexible pipes important for its strength against armor lateral buckling?; O amortecimento estrutural de dutos flexiveis e importante para sua resistencia contra flambagem lateral de armaduras?

    Energy Technology Data Exchange (ETDEWEB)

    Braga, Mauro Pastor [PETROBRAS S.A., Rio de Janeiro, RJ (Brazil)

    2005-07-01

    This paper presents conclusions and results of a project conducted by the PETROBRAS Research Center in 1998. 163 laboratory tests were obtained under the Research Project. The purpose of the Research Project was to determine mechanical properties to be used in the global flexible riser analysis of the ultra deep water Roncador Field. Although the Research Project reached its objective, it had more success than the expected. That is statistics of the results of the Research Project lead to the theoretical background for the behavior of empty flexible pipes operating in ultra deep water. Other research project, finished 5 years later, fully proved this theoretical background. (author)

  18. Incentivizing Flexibility in System Operations

    Energy Technology Data Exchange (ETDEWEB)

    Milligan, Michael [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Bloom, Aaron P [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Townsend, Aaron [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Ela, Erik [Electric Power Research Institute; Botterud, Audun [Argonne National Laboratory; Levin, Todd [Argonne National Laboratory

    2018-02-15

    Defining flexibility has been a challenge that a number of industry members and researchers have attempted to address in recent years. With increased variability and uncertainty of variable generation (VG), the resources on the system will have to be more flexible to adjust output, so that power output ranges, power ramp rates, and energy duration sustainability are sufficient to meet the needs of balancing supply with demand at various operational timescales. This chapter discusses whether existing market designs provide adequate incentives for resources to offer their flexibility into the market to meet the increased levels of variability and uncertainty introduced by VG in the short-term operational time frame. It presents a definition of flexibility and discusses how increased levels of VG require increased needs for flexibility on power systems. Following this introductory material, the chapter examines how existing market designs ensure that resources have the right incentives to provide increased flexibility, and then discusses a number of emerging market design elements that impact flexibility incentives.

  19. Flexible work schedules, older workers, and retirement.

    Science.gov (United States)

    Siegenthaler, J K; Brenner, A M

    2000-01-01

    Older workers in the United States indicate that they would prefer flexible work arrangements rather than abrupt retirement, yet management has done very little to make this possible. A review of two bodies of literature from the late 1980s is presented: social science writings including sociological, gerontological, and economic literature, and business and management literature. There is a clash between the way jobs are traditionally scheduled and the needs of growing numbers of older workers. Workers continue to be subject to obstacles to phased retirement due to the structuring of health care and pension benefits, downsizing, organizational inflexibility, and "corporate culture." Thus, general views among social scientists regarding the desirability of flexible schedules toward retirement will not produce real changes unless management becomes committed to such changes and they are securely embedded in company policies.

  20. Procedural Optimization Models for Multiobjective Flexible JSSP

    Directory of Open Access Journals (Sweden)

    Elena Simona NICOARA

    2013-01-01

    Full Text Available The most challenging issues related to manufacturing efficiency occur if the jobs to be sched-uled are structurally different, if these jobs allow flexible routings on the equipments and mul-tiple objectives are required. This framework, called Multi-objective Flexible Job Shop Scheduling Problems (MOFJSSP, applicable to many real processes, has been less reported in the literature than the JSSP framework, which has been extensively formalized, modeled and analyzed from many perspectives. The MOFJSSP lie, as many other NP-hard problems, in a tedious place where the vast optimization theory meets the real world context. The paper brings to discussion the most optimization models suited to MOFJSSP and analyzes in detail the genetic algorithms and agent-based models as the most appropriate procedural models.

  1. Fast and anisotropic flexibility-rigidity index for protein flexibility and fluctuation analysis

    Energy Technology Data Exchange (ETDEWEB)

    Opron, Kristopher [Department of Biochemistry and Molecular Biology, Michigan State University, Michigan 48824 (United States); Xia, Kelin [Department of Mathematics, Michigan State University, Michigan 48824 (United States); Wei, Guo-Wei, E-mail: wei@math.msu.edu [Department of Biochemistry and Molecular Biology, Michigan State University, Michigan 48824 (United States); Department of Mathematics, Michigan State University, Michigan 48824 (United States); Department of Electrical and Computer Engineering, Michigan State University, Michigan 48824 (United States)

    2014-06-21

    Protein structural fluctuation, typically measured by Debye-Waller factors, or B-factors, is a manifestation of protein flexibility, which strongly correlates to protein function. The flexibility-rigidity index (FRI) is a newly proposed method for the construction of atomic rigidity functions required in the theory of continuum elasticity with atomic rigidity, which is a new multiscale formalism for describing excessively large biomolecular systems. The FRI method analyzes protein rigidity and flexibility and is capable of predicting protein B-factors without resorting to matrix diagonalization. A fundamental assumption used in the FRI is that protein structures are uniquely determined by various internal and external interactions, while the protein functions, such as stability and flexibility, are solely determined by the structure. As such, one can predict protein flexibility without resorting to the protein interaction Hamiltonian. Consequently, bypassing the matrix diagonalization, the original FRI has a computational complexity of O(N{sup 2}). This work introduces a fast FRI (fFRI) algorithm for the flexibility analysis of large macromolecules. The proposed fFRI further reduces the computational complexity to O(N). Additionally, we propose anisotropic FRI (aFRI) algorithms for the analysis of protein collective dynamics. The aFRI algorithms permit adaptive Hessian matrices, from a completely global 3N × 3N matrix to completely local 3 × 3 matrices. These 3 × 3 matrices, despite being calculated locally, also contain non-local correlation information. Eigenvectors obtained from the proposed aFRI algorithms are able to demonstrate collective motions. Moreover, we investigate the performance of FRI by employing four families of radial basis correlation functions. Both parameter optimized and parameter-free FRI methods are explored. Furthermore, we compare the accuracy and efficiency of FRI with some established approaches to flexibility analysis, namely

  2. Aggregating and Disaggregating Flexibility Objects

    DEFF Research Database (Denmark)

    Siksnys, Laurynas; Valsomatzis, Emmanouil; Hose, Katja

    2015-01-01

    In many scientific and commercial domains we encounter flexibility objects, i.e., objects with explicit flexibilities in a time and an amount dimension (e.g., energy or product amount). Applications of flexibility objects require novel and efficient techniques capable of handling large amounts...... and aiming at energy balancing during aggregation. In more detail, this paper considers the complete life cycle of flex-objects: aggregation, disaggregation, associated requirements, efficient incremental computation, and balance aggregation techniques. Extensive experiments based on real-world data from...

  3. Rescaling or Institutional Flexibility?

    DEFF Research Database (Denmark)

    Hansen, Povl Adler; Serin, Göran Folke

    2010-01-01

    -border integration has given rise? Does a process exist whereby the ‘problem' and its solution are readily identified and absorbed by existing institutional structures with actions carried out through ‘selective competence delegation'? Based on two case studies, the integration of the labour market and the creation...

  4. Flexible Thermoelectric Generators on Silicon Fabric

    KAUST Repository

    Sevilla, Galo T.

    2012-01-01

    In this work, the development of a Thermoelectric Generator on Flexible Silicon Fabric is explored to extend silicon electronics for flexible platforms. Low cost, easily deployable plastic based flexible electronics are of great interest for smart

  5. Three-dimensional, flexible graphene bioelectronics.

    Science.gov (United States)

    Chun, SungGyu; Choi, Jonghyun; Ashraf, Ali; Nam, SungWoo

    2014-01-01

    We report 3-dimensional (3D) graphene-based biosensors fabricated via 3D transfer of monolithic graphene-graphite structures. This mechanically flexible all-carbon structure is a prospective candidate for intimate 3D interfacing with biological systems. Monolithic graphene-graphite structures were synthesized using low pressure chemical vapor deposition (LPCVD) process relying on the heterostructured metal catalyst layers. Nonplanar substrates and wet-transfer method were used with a thin Au film as a transfer layer to achieve the 3D graphene structure. Instead of the typical wet-etching method, vapor-phase etching was performed to minimize the delamination of the graphene while removing the transfer layer. We believe that the monolithic graphene-graphite synthesis combined with the conformal 3D transfer will pave the way for the 3D conformal sensing capability as well as the intracellular recording of living cells in the future.

  6. Flexibility of trunnion piping elbows

    International Nuclear Information System (INIS)

    Lewis, G.D.; Chao, Y.J.

    1987-01-01

    Flexibility factors and stress indices for piping component such as straight pipe, elbows, butt-welding tees, branch connections, and butt-welding reducers are contained in the code, but many of the less common piping components, like the trunnion elbow, do not have flexibility factors or stress indices defined. The purpose of this paper is to identify the in-plane and out-of-plane flexibility factors in accordance with code procedures for welded trunnions attached to the tangent centerlines of long radius elbows. This work utilized the finite element method as applicable to plates and shells for calculating the relative rotations of the trunnion elbow-ends for in-plane and out-of-plane elbow moment loadings. These rotations are used to derive the corresponding in-plane and out-of-plane flexibility factors. (orig./GL)

  7. Distributed flexibility in inertial swimmers

    Science.gov (United States)

    Floryan, Daniel; Rowley, Clarence W.; Smits, Alexander J.

    2017-11-01

    To achieve fast and efficient swimming, the flexibility of the propulsive surfaces is an important feature. To better understand the effects of distributed flexibility (either through inhomogeneous material properties, varying geometry, or both) we consider the coupled solid and fluid mechanics of the problem. Here, we develop a simplified model of a flexible swimmer, using Euler-Bernoulli theory to describe the solid, Theodorsen's theory to describe the fluid, and a Blasius boundary layer to incorporate viscous effects. Our primary aims are to understand how distributed flexibility affects the thrust production and efficiency of a swimmer with imposed motion at its leading edge. In particular, we examine the modal shapes of the swimmer to gain physical insight into the observed trends. Supported under ONR MURI Grant N00014-14-1-0533, Program Manager Robert Brizzolara.

  8. Determinants of flexible work arrangements

    OpenAIRE

    Sarbu, Miruna

    2014-01-01

    Flexible work arrangements such as allowing employees to work at home are used in firms, especially since information and communication technologies have become so widespread. Using individual-level data from 10,884 German employees, this paper analyses the determinants of working at home as a form of flexible work arrangements. The analysis is based on descriptive analyses and a discrete choice model using a probit estimation approach. The results reveal that men have a higher...

  9. Workplace flexibility across the lifespan

    OpenAIRE

    Bal, Pieter; Jansen, Paul G W

    2016-01-01

    As demographic changes impact the workplace, governments, organizations and workers arelooking for ways to sustain optimal working lives at higher ages. Workplace flexibility has beenintroduced as a potential way workers can have more satisfying working lives until theirretirement ages. This paper presents a critical review of the literature on workplace flexibilityacross the lifespan. It discusses how flexibility has been conceptualized across differentdisciplines, and postulates a definitio...

  10. Flexible forms of working hours

    OpenAIRE

    Knapp, Viktor

    2017-01-01

    66 Abstract - Flexible forms of working hours This diploma thesis deals with the flexible forms of working hours and its goal is to describe this issue in intelligible and comprehensive way. It is being very interesting and current theme which is to a great extent not subject to direct legal regulations and provides its contracting parties with a big amount of freedom of contract. This fact assists in bigger flexibilization of labour market and represents a significant instrument in the fight...

  11. Developmental constraints on behavioural flexibility.

    Science.gov (United States)

    Holekamp, Kay E; Swanson, Eli M; Van Meter, Page E

    2013-05-19

    We suggest that variation in mammalian behavioural flexibility not accounted for by current socioecological models may be explained in part by developmental constraints. From our own work, we provide examples of constraints affecting variation in behavioural flexibility, not only among individuals, but also among species and higher taxonomic units. We first implicate organizational maternal effects of androgens in shaping individual differences in aggressive behaviour emitted by female spotted hyaenas throughout the lifespan. We then compare carnivores and primates with respect to their locomotor and craniofacial adaptations. We inquire whether antagonistic selection pressures on the skull might impose differential functional constraints on evolvability of skulls and brains in these two orders, thus ultimately affecting behavioural flexibility in each group. We suggest that, even when carnivores and primates would theoretically benefit from the same adaptations with respect to behavioural flexibility, carnivores may nevertheless exhibit less behavioural flexibility than primates because of constraints imposed by past adaptations in the morphology of the limbs and skull. Phylogenetic analysis consistent with this idea suggests greater evolutionary lability in relative brain size within families of primates than carnivores. Thus, consideration of developmental constraints may help elucidate variation in mammalian behavioural flexibility.

  12. Modeling of Flexible Beams for Robotic Manipulators

    International Nuclear Information System (INIS)

    Martins, Jorge; Ayala Botto, Miguel; Costa, Jose sa da

    2002-01-01

    This work treats the problem of modeling robotic manipulators with structural flexibility. A mathematical model of a planar manipulator with a single flexible link is developed. This model is capable of reproducing nonlinear dynamic effects, such as the beam stiffening due to the centrifugal forces induced by the rotation of the joints, giving it the capability to predict reliable dynamic behaviors for a wide range of applications. On the other hand, the model complexity is reduced, in order to keep it amenable for analysis and controller design. The models found in current literature for control design of flexible manipulator arms present dynamic limitations for the sake of real time implementation in a control scheme. These limitations are the result of premature linearization in the formulation of the dynamics equations. In this paper, this common linearization is presented and their dynamic limitations uncovered. An alternative reliable model is then presented. The model is founded on two basic assumptions: inextensibility of the neutral fiber and moderate rotations of the cross sections in order to account for the foreshortening of the beam due to bending. Simulation and experimental results show that the proposed model has the closest dynamic behavior to the real beam

  13. Flexible goal attribution in early mindreading.

    Science.gov (United States)

    Michael, John; Christensen, Wayne

    2016-03-01

    The 2-systems theory developed by Apperly and Butterfill (2009; Butterfill & Apperly, 2013) is an influential approach to explaining the success of infants and young children on implicit false-belief tasks. There is extensive empirical and theoretical work examining many aspects of this theory, but little attention has been paid to the way in which it characterizes goal attribution. We argue here that this aspect of the theory is inadequate. Butterfill and Apperly's characterization of goal attribution is designed to show how goals could be ascribed by infants without representing them as related to other psychological states, and the minimal mindreading system is supposed to operate without employing flexible semantic-executive cognitive processes. But research on infant goal attribution reveals that infants exhibit a high degree of situational awareness that is strongly suggestive of flexible semantic-executive cognitive processing, and infants appear moreover to be sensitive to interrelations between goals, preferences, and beliefs. Further, close attention to the structure of implicit mindreading tasks--for which the theory was specifically designed--indicates that flexible goal attribution is required to succeed. We conclude by suggesting 2 approaches to resolving these problems. (c) 2016 APA, all rights reserved).

  14. Flexible friends? Flexible working time arrangements, blurred work-life boundaries and friendship

    OpenAIRE

    Pedersen, Vivi Bach; Lewis, Suzan

    2012-01-01

    The changing nature and demands of work raise concerns about how workers can find time for activities such as friendship and leisure, which are important for well-being. This article brings friendship into the work-life debate by exploring how individuals do friendship in a period characterised by time dilemmas, blurred work-life boundaries and increased employer- and employee-led flexible working. Interviews with employees selected according to their working time structures were supplemented...

  15. Testing of the coping flexibility hypothesis based on the dual-process theory: Relationships between coping flexibility and depressive Symptoms.

    Science.gov (United States)

    Kato, Tsukasa

    2015-12-15

    According to the dual-process theory of coping flexibility (Kato, 2012), coping flexibility is the ability to discontinue an ineffective coping strategy (i.e., evaluation coping process) and implement an alternative strategy (i.e., adaptive coping process). The coping flexibility hypothesis (CFH) proposes that the ability to engage in flexible coping is related to better psychological functioning and physical health, including less depression. I the present study, participants were 393 American Whites, 429 Australian Whites, and 496 Chinese, selected from the data pool of the 2013 Coping and Health Survey (see Kato, 2014b). They completed both the Coping Flexibility Scale (Kato, 2012), which is based on the dual-process theory of coping flexibility, and the Center for Epidemiologic Studies Depression Scale (CES-D). For all nationalities and genders, evaluation coping and adaptive coping were significantly correlated with lower levels of depressive symptoms. Structural equation modeling revealed that evaluation coping was associated with lower depressive symptoms for all nationalities and genders, whereas no significant relationships between adaptive coping and depressive symptoms were found for any nationalities. Our results partially supported that the CFH fits with the dual-process theory of coping flexibility. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  16. An Overview of the Development of Flexible Sensors.

    Science.gov (United States)

    Han, Su-Ting; Peng, Haiyan; Sun, Qijun; Venkatesh, Shishir; Chung, Kam-Sing; Lau, Siu Chuen; Zhou, Ye; Roy, V A L

    2017-09-01

    Flexible sensors that efficiently detect various stimuli relevant to specific environmental or biological species have been extensively studied due to their great potential for the Internet of Things and wearable electronics applications. The application of flexible and stretchable electronics to device-engineering technologies has enabled the fabrication of slender, lightweight, stretchable, and foldable sensors. Here, recent studies on flexible sensors for biological analytes, ions, light, and pH are outlined. In addition, contemporary studies on device structure, materials, and fabrication methods for flexible sensors are discussed, and a market overview is provided. The conclusion presents challenges and perspectives in this field. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Recent advances in flexible low power cholesteric LCDs

    Science.gov (United States)

    Khan, Asad; Shiyanovskaya, Irina; Montbach, Erica; Schneider, Tod; Nicholson, Forrest; Miller, Nick; Marhefka, Duane; Ernst, Todd; Doane, J. W.

    2006-05-01

    Bistable reflective cholesteric displays are a liquid crystal display technology developed to fill a market need for very low power displays. Their unique look, high reflectivity, bistability, and simple structure make them an ideal flat panel display choice for handheld or other portable devices where small lightweight batteries with long lifetimes are important. Applications ranging from low resolution large signs to ultra high resolution electronic books can utilize cholesteric displays to not only benefit from the numerous features, but also create enabling features that other flat panel display technologies cannot. Flexible displays are the focus of attention of numerous research groups and corporations worldwide. Cholesteric displays have been demonstrated to be highly amenable to flexible substrates. This paper will review recent advances in flexible cholesteric displays including both phase separation and emulsification approaches to encapsulation. Both approaches provide unique benefits to various aspects of manufacturability, processes, flexibility, and conformability.

  18. Broadband and flexible acoustic focusing by metafiber bundles

    Science.gov (United States)

    Sun, Hong-Xiang; Chen, Jia-He; Ge, Yong; Yuan, Shou-Qi; Liu, Xiao-Jun

    2018-06-01

    We report a broadband and flexible acoustic focusing through metafiber bundles in air, in which each metafiber consists of eight circular and narrow rectangular cavities. The fractional bandwidth of the acoustic focusing could reach about 0.2, which arises from the eigenmodes of the metafiber structure. Besides, owing to the flexible characteristic of the metafibers, the focus position can be manipulated by bending the metafiber bundles, and the metafiber bundles could bypass rigid scatterers inside the lens structure. More interestingly, the acoustic propagation and focusing directions can be changed by using a designed right-angled direction converter fabricated by the metafibers, and a waveform converter and a focusing lens of the cylindrical acoustic source are realized based on the metafiber bundles. The proposed focusing lens has the advantages of broad bandwidth, flexible structure, and high focusing performance, showing great potentials in versatile applications.

  19. Development of flexible array tactile sensors

    DEFF Research Database (Denmark)

    Drimus, Alin; Marian, Nicolae; Bilberg, Arne

    2010-01-01

    time data acquisition system scans all the cells and converts electrical resistance to tactile pressure maps. We validate that this information can be used to improve grasping and perform object recognition. Key words: piezoresistivity, tactile, sensor, pressure, robotics......In this paper we describe the development of an array tactile sensor for use in robotic grippers based on a flexible piezoresistive material. We start by comparing different cell structures in terms of output characteristics and we construct an array of cells in a row and columns layout. A real...

  20. Rosetta Ligand docking with flexible XML protocols.

    Science.gov (United States)

    Lemmon, Gordon; Meiler, Jens

    2012-01-01

    RosettaLigand is premiere software for predicting how a protein and a small molecule interact. Benchmark studies demonstrate that 70% of the top scoring RosettaLigand predicted interfaces are within 2Å RMSD from the crystal structure [1]. The latest release of Rosetta ligand software includes many new features, such as (1) docking of multiple ligands simultaneously, (2) representing ligands as fragments for greater flexibility, (3) redesign of the interface during docking, and (4) an XML script based interface that gives the user full control of the ligand docking protocol.