WorldWideScience

Sample records for flexible rf microcoil

  1. Electronic characterization of lithographically patterned microcoils for high sensitivity NMR detection.

    Science.gov (United States)

    Demas, Vasiliki; Bernhardt, Anthony; Malba, Vince; Adams, Kristl L; Evans, Lee; Harvey, Christopher; Maxwell, Robert S; Herberg, Julie L

    2009-09-01

    Nuclear magnetic resonance (NMR) offers a non-destructive, powerful, structure-specific analytical method for the identification of chemical and biological systems. The use of radio frequency (RF) microcoils has been shown to increase the sensitivity in mass-limited samples. Recent advances in micro-receiver technology have further demonstrated a substantial increase in mass sensitivity [D.L. Olson, T.L. Peck, A.G. Webb, R.L. Magin, J.V. Sweedler, High-resolution microcoil H-1-NMR for mass-limited, nanoliter-volume samples, Science 270 (5244) (1995) 1967-1970]. Lithographic methods for producing solenoid microcoils possess a level of flexibility and reproducibility that exceeds previous production methods, such as hand winding microcoils. This paper presents electrical characterizations of RF microcoils produced by a unique laser lithography system that can pattern three dimensional surfaces and compares calculated and experimental results to those for wire wound RF microcoils. We show that existing optimization conditions for RF coil design still hold true for RF microcoils produced by lithography. Current lithographic microcoils show somewhat inferior performance to wire wound RF microcoils due to limitations in the existing electroplating technique. In principle, however, when the pitch of the RF microcoil is less than 100mum lithographic coils should show comparable performance to wire wound coils. In the cases of larger pitch, wire cross sections can be significantly larger and resistances lower than microfabricated conductors.

  2. Flexible RF filter using a nonuniform SCISSOR.

    Science.gov (United States)

    Zhuang, Leimeng

    2016-03-15

    This work presents a flexible radiofrequency (RF) filter using an integrated microwave photonic circuit that comprises a nonuniform side-coupled integrated spaced sequence of resonators (N-SCISSOR). The filter passband can be reconfigured by varying the N-SCISSOR parameters. When employing a dual-parallel Mach-Zechnder modulator, the filter is also able to perform frequency down-conversion. In the experiment, various filter response shapes are shown, ranging from a flat-top band-pass filter to a total opposite high-rejection (>40  dB) notch filter, with a frequency coverage of greater than two octaves. The frequency down-conversion function is also demonstrated.

  3. Flexible diodes for radio frequency (RF) electronics: a materials perspective

    KAUST Repository

    Semple, James

    2017-10-30

    Over the last decade, there has been increasing interest in transferring the research advances in radiofrequency (RF) rectifiers, the quintessential element of the chip in the RF identification (RFID) tags, obtained on rigid substrates onto plastic (flexible) substrates. The growing demand for flexible RFID tags, wireless communications applications and wireless energy harvesting systems that can be produced at a low-cost is a key driver for this technology push. In this topical review, we summarise recent progress and status of flexible RF diodes and rectifying circuits, with specific focus on materials and device processing aspects. To this end, different families of materials (e.g. flexible silicon, metal oxides, organic and carbon nanomaterials), manufacturing processes (e.g. vacuum and solution processing) and device architectures (diodes and transistors) are compared. Although emphasis is placed on performance, functionality, mechanical flexibility and operating stability, the various bottlenecks associated with each technology are also addressed. Finally, we present our outlook on the commercialisation potential and on the positioning of each material class in the RF electronics landscape based on the findings summarised herein. It is beyond doubt that the field of flexible high and ultra-high frequency rectifiers and electronics as a whole will continue to be an active area of research over the coming years.

  4. Flexible diodes for radio frequency (RF) electronics: a materials perspective

    KAUST Repository

    Semple, James; Georgiadou, Dimitra G; Wyatt-Moon, Gwenhivir; Gelinck, Gerwin; Anthopoulos, Thomas D.

    2017-01-01

    Over the last decade, there has been increasing interest in transferring the research advances in radiofrequency (RF) rectifiers, the quintessential element of the chip in the RF identification (RFID) tags, obtained on rigid substrates onto plastic (flexible) substrates. The growing demand for flexible RFID tags, wireless communications applications and wireless energy harvesting systems that can be produced at a low-cost is a key driver for this technology push. In this topical review, we summarise recent progress and status of flexible RF diodes and rectifying circuits, with specific focus on materials and device processing aspects. To this end, different families of materials (e.g. flexible silicon, metal oxides, organic and carbon nanomaterials), manufacturing processes (e.g. vacuum and solution processing) and device architectures (diodes and transistors) are compared. Although emphasis is placed on performance, functionality, mechanical flexibility and operating stability, the various bottlenecks associated with each technology are also addressed. Finally, we present our outlook on the commercialisation potential and on the positioning of each material class in the RF electronics landscape based on the findings summarised herein. It is beyond doubt that the field of flexible high and ultra-high frequency rectifiers and electronics as a whole will continue to be an active area of research over the coming years.

  5. Flexible diodes for radio frequency (RF) electronics: a materials perspective

    Science.gov (United States)

    Semple, James; Georgiadou, Dimitra G.; Wyatt-Moon, Gwenhivir; Gelinck, Gerwin; Anthopoulos, Thomas D.

    2017-12-01

    Over the last decade, there has been increasing interest in transferring the research advances in radiofrequency (RF) rectifiers, the quintessential element of the chip in the RF identification (RFID) tags, obtained on rigid substrates onto plastic (flexible) substrates. The growing demand for flexible RFID tags, wireless communications applications and wireless energy harvesting systems that can be produced at a low-cost is a key driver for this technology push. In this topical review, we summarise recent progress and status of flexible RF diodes and rectifying circuits, with specific focus on materials and device processing aspects. To this end, different families of materials (e.g. flexible silicon, metal oxides, organic and carbon nanomaterials), manufacturing processes (e.g. vacuum and solution processing) and device architectures (diodes and transistors) are compared. Although emphasis is placed on performance, functionality, mechanical flexibility and operating stability, the various bottlenecks associated with each technology are also addressed. Finally, we present our outlook on the commercialisation potential and on the positioning of each material class in the RF electronics landscape based on the findings summarised herein. It is beyond doubt that the field of flexible high and ultra-high frequency rectifiers and electronics as a whole will continue to be an active area of research over the coming years.

  6. Design of Flexible RF Building Blocks : A Method for Implementing Configurable RF Transceiver Architectures

    NARCIS (Netherlands)

    Vidojkovic - Andjelovic, M.; Tang, van der J.D.; Baltus, P.G.M.; Roermund, van A.H.M.

    2005-01-01

    In today's world, new communication standards evolve fast, putting a significant burden on set makers and RFIC designer houses to bring integrated and cheap solutions quickly into the market place. The shift towards flexible RF systems that can support a range of applications via adjustability and

  7. Fabrication of 3D solenoid microcoils in silica glass by femtosecond laser wet etch and microsolidics

    Science.gov (United States)

    Meng, Xiangwei; Yang, Qing; Chen, Feng; Shan, Chao; Liu, Keyin; Li, Yanyang; Bian, Hao; Du, Guangqing; Hou, Xun

    2015-02-01

    This paper reports a flexible fabrication method for 3D solenoid microcoils in silica glass. The method consists of femtosecond laser wet etching (FLWE) and microsolidics process. The 3D microchannel with high aspect ratio is fabricated by an improved FLWE method. In the microsolidics process, an alloy was chosen as the conductive metal. The microwires are achieved by injecting liquid alloy into the microchannel, and allowing the alloy to cool and solidify. The alloy microwires with high melting point can overcome the limitation of working temperature and improve the electrical property. The geometry, the height and diameter of microcoils were flexibly fabricated by the pre-designed laser writing path, the laser power and etching time. The 3D microcoils can provide uniform magnetic field and be widely integrated in many magnetic microsystems.

  8. Development of low temperature RF magnetron sputtered ITO films on flexible substrate

    Energy Technology Data Exchange (ETDEWEB)

    Muneshwar, T.P.; Varma, V.; Meshram, N; Soni, S.; Dusane, R.O. [Department of Metallurgical Engineering and Materials Science, Indian Institute of Technology Bombay, Powai, Mumbai 400076 (India)

    2010-09-15

    Indium tin oxide (ITO) is one of the important materials used as transparent conducting oxide (TCO) layer in thin film solar cells, digital displays and other similar applications. For applications involving flexible polymeric substrates, it is important that deposition of ITO is carried out at near room temperature. This requirement puts constraint on stoichiometry leading to undesired electrical and optical properties. Effect of oxygen partial pressure on ITO films deposited on flexible Kapton {sup registered} by the RF magnetron sputtering is reported in this paper. (author)

  9. Modeling and optimization of planar microcoils

    International Nuclear Information System (INIS)

    Beyzavi, Ali; Nguyen, Nam-Trung

    2008-01-01

    Magnetic actuation has emerged as a useful tool for manipulating particles, droplets and biological samples in microfluidics. A planar coil is one of the suitable candidates for magnetic actuation and has the potential to be integrated in digital microfluidic devices. A simple model of microcoils is needed to optimize their use in actuation applications. This paper first develops an analytical model for calculating the magnetic field of a planar microcoil. The model was validated by experimental data from microcoils fabricated on printed circuit boards (PCB). The model was used for calculating the field strength and the force acting on a magnetic object. Finally, the effect of different coil parameters such as the magnitude of the electric current, the gap between the wires and the number of wire segments is discussed. Both analytical and experimental results show that a smaller gap size between wire segments, more wire segments and a higher electric current can increase both the magnitude and the gradient of the magnetic field, and consequently cause a higher actuating force. The planar coil analyzed in the paper is suitable for applications in magnetic droplet-based microfluidics

  10. Simulation and optimization of a totally free flexible RF MEMS switch

    International Nuclear Information System (INIS)

    Lorphelin, N; Robin, R; Rollier, A S; Touati, S; Kanciurzewski, A; Millet, O; Segueni, K

    2009-01-01

    This paper presents the principle and the modeling of an innovative RF MEMS switch designed for low voltage applications, especially for mobile phones. This switch is based on a totally free flexible membrane, which is supported by pillars and actuated electrostatically by two pairs of electrodes, enabling two forced states. The main advantage of this structure is the use of a lever effect in order to provide high deflections above the transmission line even with a small gap, which explains why the actuation voltage is small compared to classical MEMS switches. The Euler–Bernoulli beam theory is applied to build an analytical 1D model with boundary conditions, which depend on the type of actuation and if pull-in is reached or not. This model is discretized and solved by the finite difference method. Then, a more accurate 3D finite element method is applied to add corrections to the first model. Once this modeling approach is validated, it is used to determine adequate geometrical parameters for the desired switch specifications. Mechanical characterizations on processed components show a pull-in voltage about 7.5 V, which is in good agreement with simulated values. RF measurements show excellent performances

  11. Portable, low-cost NMR with laser-lathe lithography produced microcoils.

    Science.gov (United States)

    Demas, Vasiliki; Herberg, Julie L; Malba, Vince; Bernhardt, Anthony; Evans, Lee; Harvey, Christopher; Chinn, Sarah C; Maxwell, Robert S; Reimer, Jeffrey

    2007-11-01

    Nuclear Magnetic Resonance (NMR) is unsurpassed in its ability to non-destructively probe chemical identity. Portable, low-cost NMR sensors would enable on-site identification of potentially hazardous substances, as well as the study of samples in a variety of industrial applications. Recent developments in RF microcoil construction (i.e. coils much smaller than the standard 5mm NMR RF coils), have dramatically increased NMR sensitivity and decreased the limits-of-detection (LOD). We are using advances in laser pantographic microfabrication techniques, unique to LLNL, to produce RF microcoils for field deployable, high sensitivity NMR-based detectors. This same fabrication technique can be used to produce imaging coils for MRI as well as for standard hardware shimming or "ex-situ" shimming of field inhomogeneities typically associated with inexpensive magnets. This paper describes a portable NMR system based on the use of a 2 kg hand-held permanent magnet, laser-fabricated microcoils, and a compact spectrometer. The main limitations for such a system are the low resolution and sensitivity associated with the low field values and quality of small permanent magnets, as well as the lack of large amounts of sample of interest in most cases. The focus of the paper is on the setting up of this system, initial results, sensitivity measurements, discussion of the limitations and future plans. The results, even though preliminary, are promising and provide the foundation for developing a portable, inexpensive NMR system for chemical analysis. Such a system will be ideal for chemical identification of trace substances on site.

  12. Microcoil Embolization for Acute Lower Gastrointestinal Bleeding

    International Nuclear Information System (INIS)

    D'Othee, Bertrand Janne; Surapaneni, Padmaja; Rabkin, Dmitry; Nasser, Imad; Clouse, Melvin

    2006-01-01

    Purpose. To assess outcomes after microcoil embolization for active lower gastrointestinal (GI) bleeding. Methods. We retrospectively studied all consecutive patients in whom microcoil embolization was attempted to treat acute lower GI bleeding over 88 months. Baseline, procedural, and outcome parameters were recorded following current Society of Interventional Radiology guidelines. Outcomes included technical success, clinical success (rebleeding within 30 days), delayed rebleeding (>30 days), and major and minor complication rates. Follow-up consisted of clinical, endoscopic, and pathologic data. Results. Nineteen patients (13 men, 6 women; mean age ± 95% confidence interval = 70 ± 6 years) requiring blood transfusion (10 ± 3 units) had angiography-proven bleeding distal to the marginal artery. Main comorbidities were malignancy (42%), coagulopathy (28%), and renal failure (26%). Bleeding was located in the small bowel (n = 5), colon (n 13) or rectum (n = 1). Technical success was obtained in 17 patients (89%); 2 patients could not be embolized due to vessel tortuosity and stenoses. Clinical follow-up length was 145 ± 75 days. Clinical success was complete in 13 (68%), partial in 3 (16%), and failed in 2 patients (11%). Delayed rebleeding (3 patients, 27%) was always due to a different lesion in another bowel segment (0 late rebleeding in embolized area). Two patients experienced colonic ischemia (11%) and underwent uneventful colectomy. Two minor complications were noted. Conclusion. Microcoil embolization for active lower GI bleeding is safe and effective in most patients, with high technical and clinical success rates, no procedure-related mortality, and a low risk of bowel ischemia and late rebleeding

  13. Programmable optical processor chips: toward photonic RF filters with DSP-level flexibility and MHz-band selectivity

    Directory of Open Access Journals (Sweden)

    Xie Yiwei

    2017-12-01

    Full Text Available Integrated optical signal processors have been identified as a powerful engine for optical processing of microwave signals. They enable wideband and stable signal processing operations on miniaturized chips with ultimate control precision. As a promising application, such processors enables photonic implementations of reconfigurable radio frequency (RF filters with wide design flexibility, large bandwidth, and high-frequency selectivity. This is a key technology for photonic-assisted RF front ends that opens a path to overcoming the bandwidth limitation of current digital electronics. Here, the recent progress of integrated optical signal processors for implementing such RF filters is reviewed. We highlight the use of a low-loss, high-index-contrast stoichiometric silicon nitride waveguide which promises to serve as a practical material platform for realizing high-performance optical signal processors and points toward photonic RF filters with digital signal processing (DSP-level flexibility, hundreds-GHz bandwidth, MHz-band frequency selectivity, and full system integration on a chip scale.

  14. Flexible magnetoimpidence sensor

    KAUST Repository

    Kavaldzhiev, Mincho

    2015-05-01

    Recently, flexible electronic devices have attracted increasing interest, due to the opportunities they promise for new applications such as wearable devices, where the components are required to flex during normal use[1]. In this light, different magnetic sensors, like microcoil, spin valve, giant magnetoresistance (GMR), magnetoimpedance (MI), have been studied previously on flexible substrates.

  15. Three dimensional multilayer solenoid microcoils inside silica glass

    Science.gov (United States)

    Meng, Xiangwei; Yang, Qing; Chen, Feng; Shan, Chao; Liu, Keyin; Li, Yanyang; Bian, Hao; Si, Jinhai; Hou, Xun

    2016-01-01

    Three dimensional (3D) solenoid microcoils could generate uniform magnetic field. Multilayer solenoid microcoils are highly pursued for strong magnetic field and high inductance in advanced magnetic microsystems. However, the fabrication of the 3D multilayer solenoid microcoils is still a challenging task. In this paper, 3D multilayer solenoid microcoils with uniform diameters and high aspect ratio were fabricated in silica glass. An alloy (Bi/In/Sn/Pb) with high melting point was chosen as the conductive metal to overcome the limitation of working temperature and improve the electrical property. The inductance of the three layers microcoils was measured, and the value is 77.71 nH at 100 kHz and 17.39 nH at 120 MHz. The quality factor was calculated, and it has a value of 5.02 at 120 MHz. This approach shows an improvement method to achieve complex 3D metal microstructures and electronic components, which could be widely integrated in advanced magnetic microsystems.

  16. Characterization of a planar microcoil for implantable microsystems

    NARCIS (Netherlands)

    Neagu, Cristina; Rusu, C.R.; Jansen, Henricus V.; Smith, A.; Gardeniers, Johannes G.E.; Elwenspoek, Michael Curt

    This paper discusses the modelling, design and characterization of planar microcoils to be used in telemetry systems that supply energy to miniaturized implants. Parasitic electrical effects that may become important at a.c. frequencies of several megahertz are evaluated. The fabrication process and

  17. Superselective embolization with microcoil in acute gastronitestinal hemorrhage

    International Nuclear Information System (INIS)

    Ko, Eun Hye; Kim, Jae Kyu; Jang, Nam Kyu

    2000-01-01

    To evaluate the efficacy and safety of superselective arterial embolization using the microcoil in acute gastrointerstinal hemorrhage. We evaluated 11 of 42 patients who had undergone diagnostic angiography and transcatheter arterial embolization due to acute gastrointestinal hemorrhage and subsequently underwent superselective arterial embolization using the microcoil. Nine were males and two were females, and their age ranged from 33 to 70 (mean, 51) years. The etiologies were bleeding ulcer (n=3D5), pseudoaneurysm from pancreatitis (n=3D3), and postoperative bleeding (n=3D3). The symptoms were melena, hematemesis, and hematochzia, and the critical signs were cecreased hemoglobin and worsening of vital signs. All patients underwent superselective embolization using the microcatheter and microcoil. Bleeding occurred in the gastroduodenal artery (n=3D5), inferior pancreaticoduodenal artery (n=3D2), left gastric artery (n=3D2), right hepatic artery (n=3D1), and ileal branch of the superior mesenteric artery (n=3D1). All cases were treated succesfully, without complications. In one case in which there was bleeding in the right hepatic artery, reembolization with a microcoil was needed because of persistent melena. During follow up, three patients died from complications arising underlying diseases, namely disseminated intravascular coagulopathy, chronic renal failure, and adult resiratory distress syndrome. (author)=20

  18. Origin of high carrier mobility and low residual stress in RF superimposed DC sputtered Al doped ZnO thin film for next generation flexible devices

    Science.gov (United States)

    Kumar, Naveen; Dubey, Ashish; Bahrami, Behzad; Venkatesan, S.; Qiao, Qiquan; Kumar, Mukesh

    2018-04-01

    In this work, the energy and flux of high energetic ions were controlled by RF superimposed DC sputtering process to increase the grain size and suppress grain boundary potential with minimum residual stress in Al doped ZnO (AZO) thin film. AZO thin films were deposited at different RF/(RF + DC) ratios by keeping total power same and were investigated for their electrical, optical, structural and nanoscale grain boundaries potential. All AZO thin film showed high crystallinity and orientation along (002) with peak shift as RF/(RF + DC) ratio increased from 0.0, pure DC, to 1.0, pure RF. This peak shift was correlated with high residual stress in as-grown thin film. AZO thin film grown at mixed RF/(RF + DC) of 0.75 showed high electron mobility, low residual stress and large crystallite size in comparison to other AZO thin films. The nanoscale grain boundary potential was mapped using Kelvin Probe Force Microscopy in all AZO thin film and it was observed that carrier mobility is controlled not only by grains size but also by grain boundary potential. The XPS analysis confirms the variation in oxygen vacancies and zinc interstitials which explain the origin of low grain boundaries potential and high carrier mobility in AZO thin film deposited at 0.75 RF/(RF + DC) ratio. This study proposes a new way to control the grain size and grain boundary potential to further tune the optoelectronic-mechanical properties of AZO thin films for next generation flexible and optoelectronic devices.

  19. Flexible 2D RF Nanoelectronics based on Layered Semiconductor Transistor (NBIT III)

    Science.gov (United States)

    2016-11-11

    potential amenability to low-cost fabrication sequence. Tuning their properties by modulating the free carrier type and density and composition can...challenges and limitations to moving forward in flexible electronics technologies. The chemical doping effect is gradually reduced over time. Moreover...doping temperature, which maximizes at the center of the laser reaction spot. The full width half maximum (FWHM) of the PL intensity profile was

  20. Laminated NbTi-on-Kapton Microstrip Cables for Flexible Sub-Kelvin RF Electronics

    Science.gov (United States)

    Walter, Alex B.; Bockstiegel, Clinton; Mazin, Benjamin A.; Daal, Miguel

    2017-11-01

    Large arrays of superconducting devices such as microwave kinetic inductance detectors require high density interconnects from higher temperatures with minimal heat load, low loss, and negligible crosstalk capable of carrying large and overlapping bandwidth signals. We report the fabrication of superconducting 53 wt% Nb-47 wt% Ti (Nb-47Ti) microstrip transmission lines laminated onto flexible polyimide substrates with lengths up to 40 cm and up to ten traces. The 50 Ω traces terminate in G3PO coaxial push-on connectors. We found transmission losses of 2.5 dB and a nearest-neighbor forward crosstalk of -25 dB at 8 GHz on a typical 5 trace, 1.8-cm-wide, 0.198-mm-thick, 22-cm-long flex cable at 30 mK. A simple two-port analytical model and subsequent Sonnet simulations indicate that this loss is mainly due to a complex impedance mismatch from wirebonds at the end connector without which the insertion loss would be data show that the 0.198-mm-thick flex cables tested have roughly equivalent thermal conductance per trace below 4 K compared to the 0.86 mm Nb-47Ti coaxial cables.

  1. Microcoil Spring Interconnects for Ceramic Grid Array Integrated Circuits

    Science.gov (United States)

    Strickland, S. M.; Hester, J. D.; Gowan, A. K.; Montgomery, R. K.; Geist, D. L.; Blanche, J. F.; McGuire, G. D.; Nash, T. S.

    2011-01-01

    As integrated circuit miniaturization trends continue, they drive the need for smaller higher input/output (I/O) packages. Hermetically sealed ceramic area array parts are the package of choice by the space community for high reliability space flight electronic hardware. Unfortunately, the coefficient of thermal expansion mismatch between the ceramic area array package and the epoxy glass printed wiring board limits the life of the interconnecting solder joint. This work presents the results of an investigation by Marshall Space Flight Center into a method to increase the life of this second level interconnection by the use of compliant microcoil springs. The design of the spring and its attachment process are presented along with thermal cycling results of microcoil springs (MCS) compared with state-of-the-art ball and column interconnections. Vibration testing has been conducted on MCS and high lead column parts. Radio frequency simulation and measurements have been made and the MCS has been modeled and a stress analysis performed. Thermal cycling and vibration testing have shown MCS interconnects to be significantly more reliable than solder columns. Also, MCS interconnects are less prone to handling damage than solder columns. Future work that includes shock testing, incorporation into a digital signal processor board, and process evaluation of expansion from a 400 I/O device to a device with over 1,100 I/O is identified.

  2. Flexibility.

    Science.gov (United States)

    Humphrey, L. Dennis

    1981-01-01

    Flexibility is an important aspect of all sports and recreational activities. Flexibility can be developed and maintained by stretching exercises. Exercises designed to develop flexibility in ankle joints, knees, hips, and the lower back are presented. (JN)

  3. Characterization and evaluation of a flexible MRI receive coil array for radiation therapy MR treatment planning using highly decoupled RF circuits

    Science.gov (United States)

    McGee, Kiaran P.; Stormont, Robert S.; Lindsay, Scott A.; Taracila, Victor; Savitskij, Dennis; Robb, Fraser; Witte, Robert J.; Kaufmann, Timothy J.; Huston, John, III; Riederer, Stephen J.; Borisch, Eric A.; Rossman, Phillip J.

    2018-04-01

    The growth in the use of magnetic resonance imaging (MRI) data for radiation therapy (RT) treatment planning has been facilitated by scanner hardware and software advances that have enabled RT patients to be imaged in treatment position while providing morphologic and functional assessment of tumor volumes and surrounding normal tissues. Despite these advances, manufacturers have been slow to develop radiofrequency (RF) coils that closely follow the contour of a RT patient undergoing MR imaging. Instead, relatively large form surface coil arrays have been adapted from diagnostic imaging. These arrays can be challenging to place on, and in general do not conform to the patient’s body habitus, resulting in sub optimal image quality. The purpose of this study is to report on the characterization of a new flexible and highly decoupled RF coil for use in MR imaging of RT patients. Coil performance was evaluated by performing signal-to-noise ratio (SNR) and noise correlation measurements using two coil (SNR) and four coil (noise correlation) element combinations as a function of coil overlap distance and comparing these values to those obtained using conventional coil elements. In vivo testing was performed in both normal volunteers and patients using a four and 16 element RF coil. Phantom experiments demonstrate the highly decoupled nature of the new coil elements when compared to conventional RF coils, while in vivo testing demonstrate that these coils can be integrated into extremely flexible and form fitting substrates that follow the exact contour of the patient. The new coil design addresses limitations imposed by traditional surface coil arrays and have the potential to significantly impact MR imaging for both diagnostic and RT applications.

  4. CT-guided localization of small pulmonary nodules using adjacent microcoil implantation prior to video-assisted thoracoscopic surgical resection

    Energy Technology Data Exchange (ETDEWEB)

    Su, Tian-Hao; Jin, Long; He, Wen [Capital Medical University, Department of Radiology, Beijing Friendship Hospital, Beijing (China); Fan, Yue-Feng [Xiamen University, Department of Interventional Therapy, The First Affiliated Hospital, Xiamen, Fujian (China); Hu, Li-Bao [Peking University People' s Hospital, Department of Radiology, Beijing (China)

    2015-09-15

    To describe and assess the localization of small peripheral pulmonary nodules prior to video-assisted thoracoscopic surgical (VATS) resection using the implantation of microcoils. Ninety-two patients with 101 pulmonary nodules underwent computed tomography (CT)-guided implantation of microcoils proximal to each nodule. Patients were randomly assigned to undergo entire microcoil or leaving-microcoil-end implantations. The complications and efficacy of the two implantation methods were evaluated. VATS resection of lung tissue containing each pulmonary lesion and microcoil were performed in the direction of the microcoil marker. Histopathological analysis was performed for the resected pulmonary lesions. CT-guided microcoil implantation was successful in 99/101 cases, and the placement of microcoils within 1 cm of the nodules was not disruptive. There was no difference in the complications and efficacy associated with the entire implantation method (performed for 51/99 nodules) versus the leaving-microcoil-end implantation method (performed for 48/99 nodules). All nodules were successfully removed using VATS resection. Asymptomatic pneumothorax occurred in 16 patients and mild pulmonary haemorrhage occurred in nine patients. However, none of these patients required further surgical treatment. Preoperative localization of small pulmonary nodules using a refined percutaneous microcoil implantation method was found to be safe and useful prior to VATS resection. (orig.)

  5. Design of planar microcoil-based NMR probe ensuring high SNR

    Science.gov (United States)

    Ali, Zishan; Poenar, D. P.; Aditya, Sheel

    2017-09-01

    A microNMR probe for ex vivo applications may consist of at least one microcoil, which can be used as the oscillating magnetic field (MF) generator as well as receiver coil, and a sample holder, with a volume in the range of nanoliters to micro-liters, placed near the microcoil. The Signal-to-Noise ratio (SNR) of such a probe is, however, dependent not only on its design but also on the measurement setup, and the measured sample. This paper introduces a performance factor P independent of both the proton spin density in the sample and the external DC magnetic field, and which can thus assess the performance of the probe alone. First, two of the components of the P factor (inhomogeneity factor K and filling factor η ) are defined and an approach to calculate their values for different probe variants from electromagnetic simulations is devised. A criterion based on dominant component of the magnetic field is then formulated to help designers optimize the sample volume which also affects the performance of the probe, in order to obtain the best SNR for a given planar microcoil. Finally, the P factor values are compared between different planar microcoils with different number of turns and conductor aspect ratios, and planar microcoils are also compared with conventional solenoids. These comparisons highlight which microcoil geometry-sample volume combination will ensure a high SNR under any external setup.

  6. Design of planar microcoil-based NMR probe ensuring high SNR

    Directory of Open Access Journals (Sweden)

    Zishan Ali

    2017-09-01

    Full Text Available A microNMR probe for ex vivo applications may consist of at least one microcoil, which can be used as the oscillating magnetic field (MF generator as well as receiver coil, and a sample holder, with a volume in the range of nanoliters to micro-liters, placed near the microcoil. The Signal-to-Noise ratio (SNR of such a probe is, however, dependent not only on its design but also on the measurement setup, and the measured sample. This paper introduces a performance factor P independent of both the proton spin density in the sample and the external DC magnetic field, and which can thus assess the performance of the probe alone. First, two of the components of the P factor (inhomogeneity factor K and filling factor η are defined and an approach to calculate their values for different probe variants from electromagnetic simulations is devised. A criterion based on dominant component of the magnetic field is then formulated to help designers optimize the sample volume which also affects the performance of the probe, in order to obtain the best SNR for a given planar microcoil. Finally, the P factor values are compared between different planar microcoils with different number of turns and conductor aspect ratios, and planar microcoils are also compared with conventional solenoids. These comparisons highlight which microcoil geometry-sample volume combination will ensure a high SNR under any external setup.

  7. The application of micro-coil NMR probe technology to metabolomics of urine and serum

    International Nuclear Information System (INIS)

    Grimes, John H.; O’Connell, Thomas M.

    2011-01-01

    Increasing the sensitivity and throughput of NMR-based metabolomics is critical for the continued growth of this field. In this paper the application of micro-coil NMR probe technology was evaluated for this purpose. The most commonly used biofluids in metabolomics are urine and serum. In this study we examine different sample limited conditions and compare the detection sensitivity of the micro-coil with a standard 5 mm NMR probe. Sample concentration is evaluated as a means to leverage the greatly improved mass sensitivity of the micro-coil probes. With very small sample volumes, the sensitivity of the micro-coil probe does indeed provide a significant advantage over the standard probe. Concentrating the samples does improve the signal detection, but the benefits do not follow the expected linear increase and are both matrix and metabolite specific. Absolute quantitation will be affected by concentration, but an analysis of relative concentrations is still possible. The choice of the micro-coil probe over a standard tube based probe will depend upon a number of factors including number of samples and initial volume but this study demonstrates the feasibility of high-throughput metabolomics with the micro-probe platform.

  8. Fabrication of silicon-embedded low resistance high-aspect ratio planar copper microcoils

    Science.gov (United States)

    Syed Mohammed, Zishan Ali; Puiu, Poenar Daniel; Aditya, Sheel

    2018-01-01

    Low resistance is an important requirement for microcoils which act as a signal receiver to ensure low thermal noise during signal detection. High-aspect ratio (HAR) planar microcoils entrenched in blind silicon trenches have features that make them more attractive than their traditional counterparts employing electroplating through a patterned thick polymer or achieved through silicon vias. However, challenges met in fabrication of such coils have not been discussed in detail until now. This paper reports the realization of such HAR microcoils embedded in Si blind trenches, fabricated with a single lithography step by first etching blind trenches in the silicon substrate with an aspect ratio of almost 3∶1 and then filling them up using copper electroplating. The electroplating was followed by chemical wet etching as a faster way of removing excess copper than traditional chemical mechanical polishing. Electrical resistance was further reduced by annealing the microcoils. The process steps and challenges faced in the realization of such structures are reported here followed by their electrical characterization. The obtained electrical resistances are then compared with those of other similar microcoils embedded in blind vias.

  9. Susceptibility cancellation of a microcoil wound with a paramagnetic-liquid-filled copper capillary

    Science.gov (United States)

    Takeda, Kazuyuki; Takasaki, Tomoya; Takegoshi, K.

    2015-09-01

    Even though microcoils improve the sensitivity of NMR measurement of tiny samples, magnetic-field inhomogeneity due to the bulk susceptibility effect of the coil material can cause serious resonance-line broadening. Here, we propose to fabricate the microcoil using a thin, hollow copper capillary instead of a wire and fill paramagnetic liquid inside the capillary, so as to cancel the diamagnetic contribution of the copper. Susceptibility cancellation is demonstrated using aqueous solution of NiSO4. In addition, the paramagnetic liquid serves as coolant when it is circulated through the copper capillary, effectively transferring the heat generated by radiofrequency pulses.

  10. Fabrication and characterization of implantable and flexible nerve cuff electrodes with Pt, Ir and IrOx films deposited by RF sputtering

    International Nuclear Information System (INIS)

    Lee, Soo Hyun; Jung, Jung Hwan; Chae, Youn Mee; Kang, Ji Yoon; Suh, Jun-Kyo Francis

    2010-01-01

    This paper presents the fabrication and characterization of implantable and flexible nerve cuff electrodes for neural interfaces using the conventional BioMEMS technique. In order to fabricate a flexible nerve electrode, polyimide (PI) was chosen as the substrate material. Then, nerve electrodes were thermally re-formed in a cuff shape so as to increase the area in which the charges were transferred to the nerve. Platinum (Pt), iridium (Ir) and iridium oxide (IrO x ) films, which were to serve as conducting materials for the nerve electrodes, were deposited at different working pressures by RF magnetron sputtering. The electrochemical properties of the deposited films were characterized by electrochemical impedance spectroscopy (EIS). The charge delivery capacities of the films were recorded and calculated by cyclic voltammetry (CV). The deposited films of Pt, Ir and IrO x have strong differences in electrochemical properties, which depend on the working pressure of sputter. Each film deposited at 30 mTorr of working pressure shows the highest value of charge delivery capacity (CDC). For the IrO x films, the electrochemical properties were strongly affected by the working pressure as well as the Ar:O 2 gas ratio. The IrO x film deposited with an Ar:O 2 gas ratio of 8:1 showed the highest CDC of 59.5 mC cm −2 , which was about five times higher than that of films deposited with a 1:1 gas ratio.

  11. Ultra smooth NiO thin films on flexible plastic (PET) substrate at room temperature by RF magnetron sputtering and effect of oxygen partial pressure on their properties

    International Nuclear Information System (INIS)

    Nandy, S.; Goswami, S.; Chattopadhyay, K.K.

    2010-01-01

    Transparent p-type nickel oxide thin films were grown on polyethylene terephthalate (PET) and glass substrates by RF magnetron sputtering technique in argon + oxygen atmosphere with different oxygen partial pressures at room temperature. The morphology of the NiO thin films grown on PET and glass substrates was studied by atomic force microscope. The rms surface roughnesses of the films were in the range 0.63-0.65 nm. These ultra smooth nanocrystalline NiO thin films are useful for many applications. High resolution transmission electron microscopic studies revealed that the grains of NiO films on the highly flexible PET substrate were purely crystalline and spherical in shape with diameters 8-10 nm. XRD analysis also supported these results. NiO films grown on the PET substrates were found to have better crystalline quality with fewer defects than those on the glass substrates. The sheet resistances of the NiO films deposited on PET and glass substrates were not much different; having values 5.1 and 5.3 kΩ/□ and decreased to 3.05, 3.1 kΩ/□ respectively with increasing oxygen partial pressure. The thicknesses of the films on both substrates were ∼700 nm. It was also noted that further increase in oxygen partial pressure caused increase in resistivity due to formation of defects in NiO.

  12. Portal Hypertension Secondary to Spontaneous Arterio-Portal Venous Fistulas: Transcatheter Arterial Embolization with n-Butyl Cyanoacrylate and Microcoils

    International Nuclear Information System (INIS)

    Yamagami, Takuji; Nakamura, Toshiyuki; Nishimura, Tsunehiko

    2000-01-01

    We report a 73-year-old man with recurrent variceal bleeding due to portal hypertension caused by multiple intrahepatic arterio-portal venous fistulas, which were successfully occluded by embolization with n-butyl cyanoacrylate and micro-coils

  13. Micro-fabrication of Flexible Coils with Copper Filled Through Polymer Via Structures

    International Nuclear Information System (INIS)

    Zhu, Q S; Zhang, Y; Itoh, T; Maeda, R; Toda, A

    2013-01-01

    In this work, we present one flexible 3D micro-coil. This 3D micro-coil is successfully prepared in a thin polymer film with a thickness of 120μm. The flexible coil is expected to be used in current sensing and energy harvesting MEMS those require a large deformation degree to wrap target object. A typical micro-machined 3D coil is composed of bottom, vertical and top windings. We firstly adopt through polymer vias (TPVs) and metal filling technology to fabricate the vertical windings. A high-speed copper electrodeposition technology of TPVs is developed to obtain void-free vertical windings

  14. Amplatzer Vascular Plug Anchoring Technique to Stabilize the Delivery System for Microcoil Embolization

    International Nuclear Information System (INIS)

    Onozawa, Shiro; Murata, Satoru; Mine, Takahiko; Sugihara, Fumie; Yasui, Daisuke; Kumita, Shin-ichiro

    2016-01-01

    PurposeTo evaluate the feasibility of a novel embolization technique, the Amplatzer vascular plug (AVP) anchoring technique, to stabilize the delivery system for microcoil embolization.Materials and methodsThree patients were enrolled in this study, including two cases of internal iliac artery aneurysms and one case of internal iliac arterial occlusion prior to endovascular aortic repair. An AVP was used in each case for embolization of one target artery, and the AVP was left in place. The AVP detachment wire was then used as an anchor to stabilize the delivery system for microcoil embolization to embolize the second target artery adjacent to the first target artery. The microcatheter for the microcoils was inserted parallel to the AVP detachment wire in the guiding sheath or catheter used for the AVP.ResultsThe AVP anchoring technique was achieved and the microcatheter was easily advanced to the second target artery in all three cases.ConclusionThe AVP anchoring technique was found to be feasible to advance the microcatheter into the neighboring artery of an AVP-embolized artery.

  15. RF transport

    International Nuclear Information System (INIS)

    Choroba, Stefan

    2013-01-01

    This paper deals with the techniques of transport of high-power radiofrequency (RF) power from a RF power source to the cavities of an accelerator. Since the theory of electromagnetic waves in waveguides and of waveguide components is very well explained in a number of excellent text books it will limit itself on special waveguide distributions and on a number of, although not complete list of, special problems which sometimes occur in RF power transportation systems. (author)

  16. RF MEMS

    Indian Academy of Sciences (India)

    At the bare die level the insertion loss, return loss and the isolation ... ing and packaging of a silicon on glass based RF MEMS switch fabricated using DRIE. ..... follows the power law based on the asperity deformation model given by Pattona & ... Surface mount style RF packages (SMX series 580465) from Startedge Corp.

  17. Integration of microcoils for on-chip immunosensors based on magnetic nanoparticles capture

    Directory of Open Access Journals (Sweden)

    Olivier Lefebvre

    2017-04-01

    Full Text Available Immunoassays using magnetic nanoparticles (MNP are generally performed under the control of permanent magnet close to the micro-tube of reaction. Using a magnet gives a powerful method for driving MNP but remains unreliable or insufficient for a fully integrated immunoassay on lab-on-chip. The aim of this study is to develop a novel lab-on-chip concept for high efficient immunoassays to detect ovalbumin (Biodefense model molecule with microcoils employed for trapping MNP during the biofunctionalization steps. The objectives are essentially to optimize their efficiency for biological recognition by assuring a better bioactivity (antibodies-ovalbumin, and detect small concentrations of the targeted protein (~10 pg/mL. In this work, we studied the response of immunoassays complex function of ovalbumin concentration. The impact of MNP diameter in the biografting protocol was studied and permitted to choose a convenient MNP size for efficient biorecognition. We realized different immunoassays by controlling MNP in test tube and in microfluidic device using a permanent magnet. The comparison between these two experiments allows us to highlight an improvement of the limit of detection in microfluidic conditions by controlling MNP trapping with a magnet. Keywords: Bacteria, Lab-on-chip, ELISA, Magnetic nanoparticles, Ovalbumin, Microcoils, Fluorescent microscopy

  18. Hepatic Encephalopathy Secondary to Intrahepatic Portosystemic Venous Shunt: Balloon-Occluded Retrograde Transvenous Embolization with n-Butyl Cyanoacrylate and Microcoils

    International Nuclear Information System (INIS)

    Yamagami, Takuji; Nakamura, Toshiyuki; Iida, Shigeharu; Kato, Takeharu; Tanaka, Osamu; Matsushima, Shigenori; Ito, Hirotoshi; Okuyama, Chio; Ushijima, Yo; Shiga, Kensuke; Nishimura, Tsunehiko

    2002-01-01

    We report a 70-year-old woman with hepatic encephalopathy due to an intrahepatic portosystemic venous shunt that was successfully occluded by percutaneous transcatheter embolization with n-butyl cyanoacrylate and microcoils

  19. Effects of annealing temperature on the structural, mechanical and electrical properties of flexible bismuth telluride thin films prepared by high-pressure RF magnetron sputtering

    Science.gov (United States)

    Singkaselit, Kamolmad; Sakulkalavek, Aparporn; Sakdanuphab, Rachsak

    2017-09-01

    In this work Bi x Te y thin films were deposited on polyimide substrate by a high-pressure RF magnetron sputtering technique. The deposited condition was maintained using a high pressure of 1.3  ×  10-2 mbar. The as-deposited films show Bi2Te3 structure with Te excess phase (Te-rich Bi2Te3). After that, as-deposited films were annealed in the vacuum chamber under the N2 flow at temperatures from 250 to 400 °C for one hour. The microstructure, cross-section, [Bi]:[Te] content, and the mechanical, electrical and thermoelectric properties of as-deposited and different annealed films were investigated. It was found that the annealing temperature enhanced the crystallinity and film density for the temperature range 250-300 °C. However, the crystal structure of Bi2Te3 almost changed to the BiTe structure after annealing the films above 350 °C, due to the re-evaporation of Te. Nano-indentation results and cross-section images indicated that the hardness of the films related to the film density. The maximum hardness of 2.30 GPa was observed by annealing the films at 300 °C. As a result of an improvement in crystallinity and phase changes, the highest power factor of 11.45  ×  10-4 W m-1K-2 at 300 °C with the carrier concentration and mobility of 6.15  ×  1020 cm-3 and 34.03 cm2 V-1 s-1, respectively, was achieved for the films annealed at 400 °C. Contribution at the 4th Southeast Asia Conference on Thermoelectrics 2016 (SACT 2016), 15-18 December 2016, Da Nang City, Vietnam.

  20. RF transformer

    Science.gov (United States)

    Smith, James L.; Helenberg, Harold W.; Kilsdonk, Dennis J.

    1979-01-01

    There is provided an improved RF transformer having a single-turn secondary of cylindrical shape and a coiled encapsulated primary contained within the secondary. The coil is tapered so that the narrowest separation between the primary and the secondary is at one end of the coil. The encapsulated primary is removable from the secondary so that a variety of different capacity primaries can be utilized with one secondary.

  1. MR microscopy of human skin using phased-array of microcoils at 9.4 T

    Energy Technology Data Exchange (ETDEWEB)

    Goebel, Katharina; Leupold, Jochen; LeVan, Pierre; Hennig, Juergen; Elverfeldt, Dominik von [Dept. of Radiology, Medical Physics, University Medical Center Freiburg (Germany); Gruschke, Oliver G. [Lab. of Simulation, University of Freiburg - IMTEK (Germany); Kern, Johannes S. [Dept. of Dermatology, University Medical Center Freiburg (Germany); Korvink, Jan G. [Lab. of Simulation, University of Freiburg - IMTEK (Germany); Freiburg Institute for Advanced Studies, University of Freiburg (Germany); Baxan, Nicoleta [Dept. of Radiology, Medical Physics, University Medical Center Freiburg (Germany); Bruker BioSpin MRI GmbH, Ettlingen (Germany)

    2013-07-01

    MRI of the skin as non-invasive alternative to histopathology requires dedicated approaches to overcome both the low sensitivity and low contrast of standard MR investigations applied at microscale. The geometry of the skin with layers of large lateral dimensions and a few μm thickness demands exceptionally high resolution combined with large imaging matrix size. A home-made microcoil-based MR detector in planar phased-array geometry (diameter=5.5 mm) was developed to alleviate such limitations by combining the advantages of a large field-of-view and high signal-to-noise ratio. The detector was first characterized in terms of influence on B{sub 0} homogeneity and SNR. Trials on healthy and Acne inversa diseased human skin biopsies allowed the acquisition of high resolution images (30 x 30 x 100 μm{sup 3}) in reasonable scan time. Histology was subsequently performed to validate the MRI results, demonstrating the suitability of this methodological approach for the characterization and early detection of structural skin changes.

  2. Experimental studies on canine terminal carotid arterial aneurysm models pre- and post-embolized with microcoil

    International Nuclear Information System (INIS)

    Wang Qihong; Zhou Liangfu; Gong Jianqiu; Dai Jianhua; Zhang Xiaojun; Zhang Xinyuan

    2005-01-01

    Objective: To establish canine terminal saccular aneurysm model of common carotid artery (CCA), and evaluate the images and hemodynamic changes of aneurysm cavities pre- and post-embolized with microcoil (MC). Methods: Seven CCA terminal saccular aneurysm models had been created by using improved microsurgical technique. Seven to fourteen days after surgery, models were undergone color Doppler, Magnetic resonance image (MRI), Magnetic resonance angiography (MRA), digital subtraction angiography (DSA), and then the analysis of computational fluid dynamics (CFD) on these animal models were conducted. Afterwards they were compactly packed with MC, and then aneurysms again were examed under these methods, and simulation of pathological changes. Results: Models were created successfully with good MC compactly pack aneurysm cavities. DSA combined with other imaging methods can improve the diagnosis of aneurysms completely. CFD models can show the imitation hemodynamics of canine carotid aneurysms. Conclusions: This kind of aneurysm model is an ideal one on the area for the research of aneurysm embolization. Non-DSA imaging examination can noninvasively, repeatedly, clearly evaluate aneurysms pre- and post-embolized with MC. The interference on the inflow zone of the aneurysm is an effective method for cure and preventing recurrence of aneurysms. (authors)

  3. A new flexible DBD device for treating infected wounds: in vitro and ex vivo evaluation and comparison with a RF argon plasma jet

    International Nuclear Information System (INIS)

    Boekema, B K H L; Vlig, M; Guijt, D; Middelkoop, E; Hijnen, K; Hofmann, S; Smits, P; Sobota, A; Van Veldhuizen, E M; Bruggeman, P

    2016-01-01

    Cold plasma has been shown to provide a promising alternative antimicrobial treatment for wound healing. We developed and tested a flexible surface dielectric barrier discharge (DBD) and compared it to an argon gas based plasma jet operated remotely with a distance between plasma plume and sample of 8 mm. Tests were conducted using different models: on cultured cells, on ex vivo human skin and on bacteria (Pseudomonas aeruginosa) (on agar, in suspension, in collagen/elastin matrix or on ex vivo human skin), allowing us to directly compare bactericidal with safety aspects under identical conditions. Both plasma devices were highly efficient when used on bacteria in non-buffered solutions, but DBD was faster in reaching the maximum bacterial reduction. Treatment of bacteria on intact skin with DBD resulted in up to 6 log reductions in 3 min. The jet was far less efficient on intact skin. Even after 8 min treatment no more than 2 log reductions were obtained with the jet. Treatment of bacteria in burn wound models with DBD for 6 min resulted in a 4.5 log reduction. Even when using DBD for 6 min on infected burn wound models with colonizing or biofilm phase bacteria, the log reductions were 3.8 or 3.2 respectively. DBD plasma treatment for 6 min did not affect fibroblast viability, whereas a treatment for 8 min was detrimental. Similarly, treatment with DBD or plasma jet for 6 min did also not affect the metabolic activity of skin biopsies. After treatment for 8 min with DBD or plasma jet, 78% or 60% of activity in skin biopsies remained, respectively. Multiple treatments of in vitro burn wound models with surface DBD for 6 min or with plasma jet for 8 min did not affect re-epithelialization. With the flexible surface DBD plasma strip we were able to quickly inactivate large numbers of bacteria on and in skin. Under the same conditions, viability of skin cells or re-epithelialization was not affected. The DBD source has potential for treating

  4. The Clinical Outcomes of Transcatheter Microcoil Embolization in Patients with Active Lower Gastrointestinal Bleeding in the Small Bowel

    International Nuclear Information System (INIS)

    Kwak, Hyo Sung; Han, Young Min; Lee, Soo Teik

    2009-01-01

    To assess the clinical outcomes of the transcatheter microcoil embolization in patients with active lower gastrointestinal (LGI) bleeding in the small bowel, as well as to compare the mortality rates between the two groups based on the visualization or non-visualization of the bleeding focus determined by an angiography. We retrospectively evaluated all of the consecutive patients who underwent an angiography for treatment of acute LGI bleeding between January 2003 and October 2007. In total, the study included 36 patients who underwent a colonoscopy and were diagnosed to have an active bleeding in the LGI tracts. Based on the visualization or non-visualization of the bleeding focus, determined by an angiography, the patients were classified into two groups. The clinical outcomes included technical success, clinical success (no rebleeding within 30 days), delayed rebleeding (> 30 days), as well as the major and minor complication rates. Of the 36 patients, 17 had angiography-proven bleeding that was distal to the marginal artery. The remaining 19 patients did not have a bleeding focus based on the angiography results. The technical and clinical success rates of performing transcatheter microcoil embolizations in patients with active bleeding were 100% and 88%, respectively (15 of 17). One patient died from continued LGI bleeding and one patient received surgery to treat the continued bleeding. There was no note made on the delayed bleeding or on the major or minor complications. Of the 19 patients without active bleeding, 16 (84%) did not have recurrent bleeding. One patient died due to continuous bleeding and multi-organ failure. The superselective microcoil embolization can help successfully treat patients with active LGI bleeding in the small bowel, identified by the results of an angiography. The mortality rate is not significantly different between the patients of the visualization and non-visualization groups on angiography

  5. Transarterial embolotherapy in patients with duodenal hemorrhage using microcoils and gelfoam particles

    International Nuclear Information System (INIS)

    Shin, Tae Beom; Kim, Young Hwan; Seong, Chang Kyu

    2004-01-01

    To assess the efficacy and safety of arterial embolotherapy in patients with massive duodenal hemorrhage. Between January 1999 and June 2002, 25 patients (age: 34-81, mean 58, male: 19, female: 6) underwent arterial embolization for duodenal hemorrhage after failed endoscopic therapy. The hemorrhage originated from duodenal ulcer in sixteen patients, from cancer with duodenal invasion in five patients, from endoscopic sphincterectomy in two patients, and from pseudoaneurysm complicating acute pancreatitis in two patients. Hemorrhage was detected at endoscopy and an attempt was made to treat it endoscopically in all patients, but failed in each case. At angiography, direct bleeding signs such as contrast extravasation or pseudoaneurysm were demonstrated in nineteen patients. In the six patients without angiographic evidence of bleeding, blind embolization of the gastroduodenal artery was performed based on the endoscopic examination. Microcoil and gelfoam particles were used as embolic agents. Hemostasis was achieved immediately after embolotherapy in 21 patients (84%). Bleeding recurred in 4 patients (16%), and of these cases, one was successfully treated purely by endoscopic means, a second was reembolized three times due to bleeding from the collateral vessels of the tumor and the two others were treated by surgery. After the procedure, six patients died (24%). The causes of death were disseminated intravascular coagulopathy, multiorgan failure, sepsis and acute renal failure. The underlying diseases of the deceased patients were cancers with duodenal invasion (n=4) and abdominal aortic aneurysm with ischemic colitis (n=1). Transarterial embolotherapy in the case of massive duodenal hemorrhage is a safe and effective procedure. Even in the absence of angiographic evidence of bleeding, blind embolization of the gastroduodenal artery is effective for patients in the surgically high risk group

  6. Dual catalytic purpose of the tungsten filament during the synthesis of single-helix carbon microcoils by hot-wire CVD

    CSIR Research Space (South Africa)

    Oliphant, CJ

    2009-10-01

    Full Text Available This paper reports on the deposition of crystalline single-helix carbon microcoils, in the as-deposited state, by the hot-wire chemical vapor deposition process without any special preparation of nano-sized transition metal catalysts and subsequent...

  7. Development of a flexible microfluidic system integrating magnetic micro-actuators for trapping biological species

    International Nuclear Information System (INIS)

    Fulcrand, R; Jugieu, D; Escriba, C; Bancaud, A; Bourrier, D; Boukabache, A; Gué, A M

    2009-01-01

    A flexible microfluidic system embedding microelectromagnets has been designed, modeled and fabricated by using a photosensitive resin as structural material. The fabrication process involves the integration of micro-coils in a multilayer SU-8 microfluidic system by combining standard electroplating and dry films lamination. This technique offers numerous advantages in terms of integration, biocompatibility and chemical resistance. Various designs of micro-coils, including spiral, square or serpentine wires, have been simulated and experimentally tested. It has been established that thermal dissipation in micro-coils depends strongly on the number of turns and current density but remains compatible with biological applications. Real-time experimentations show that these micro-actuators are efficient in trapping magnetic micro-beads without any external field source or a permanent magnet and highlight that the size of microfluidic channels has been adequately designed for optimal trapping. Moreover, we trap magnetic beads in less than 2 s and release them instantaneously into the micro-channel. The actuation solely relies on electric fields, which are easier to control than standard magneto-fluidic modules

  8. Development of a flexible microfluidic system integrating magnetic micro-actuators for trapping biological species

    Science.gov (United States)

    Fulcrand, R.; Jugieu, D.; Escriba, C.; Bancaud, A.; Bourrier, D.; Boukabache, A.; Gué, A. M.

    2009-10-01

    A flexible microfluidic system embedding microelectromagnets has been designed, modeled and fabricated by using a photosensitive resin as structural material. The fabrication process involves the integration of micro-coils in a multilayer SU-8 microfluidic system by combining standard electroplating and dry films lamination. This technique offers numerous advantages in terms of integration, biocompatibility and chemical resistance. Various designs of micro-coils, including spiral, square or serpentine wires, have been simulated and experimentally tested. It has been established that thermal dissipation in micro-coils depends strongly on the number of turns and current density but remains compatible with biological applications. Real-time experimentations show that these micro-actuators are efficient in trapping magnetic micro-beads without any external field source or a permanent magnet and highlight that the size of microfluidic channels has been adequately designed for optimal trapping. Moreover, we trap magnetic beads in less than 2 s and release them instantaneously into the micro-channel. The actuation solely relies on electric fields, which are easier to control than standard magneto-fluidic modules.

  9. Technology development of solid state rf systems at 350 MHz and 325 MHz for RF accelerator

    International Nuclear Information System (INIS)

    Rama Rao, B.V.; Mishra, J.K.; Pande, Manjiri; Gupta, S.K.

    2011-01-01

    For decades vacuum tubes and klystrons have been used in high power application such as RF accelerators and broadcast transmitters. However, now, the solid-state technology can give power output in kilowatt regime. Higher RF power output can be achieved by combining several solid-state power amplifier modules using power combiners. This technology presents several advantages over traditional RF amplifiers, such as simpler start-up procedure, high modularity, high redundancy and flexibility, elimination of high voltage supplies and high power circulators, low operational cost, online maintenance without shut down of RF power station and no warm up time. In BARC, solid state amplifier technology development is being done both at 350 MHz and 325 MHz using RF transistors such as 1 kW LDMOS and 350 Watt VDMOS. Topology of input and output matching network in RF modules developed, consist of two L type matching sections with each section having a combination of series micro-strip line and parallel capacitor. The design is of equal Q for both the sections and of 25 ohm characteristics impedance of micro strip lines. Based on this, lengths of micro strips lines and values of shunt capacitors have been calculated. The calculated and simulated values of network elements have been compared. Similarly power combiners have been designed and developed based on Wilkinson techniques without internal resistors and using coaxial technology. This paper presents design and development of RF power amplifier modules, associated power combiner technologies and then integrated RF power amplifier. (author)

  10. Evaluation of an image-based tracking workflow using a passive marker and resonant micro-coil fiducials for automatic image plane alignment in interventional MRI.

    Science.gov (United States)

    Neumann, M; Breton, E; Cuvillon, L; Pan, L; Lorenz, C H; de Mathelin, M

    2012-01-01

    In this paper, an original workflow is presented for MR image plane alignment based on tracking in real-time MR images. A test device consisting of two resonant micro-coils and a passive marker is proposed for detection using image-based algorithms. Micro-coils allow for automated initialization of the object detection in dedicated low flip angle projection images; then the passive marker is tracked in clinical real-time MR images, with alternation between two oblique orthogonal image planes along the test device axis; in case the passive marker is lost in real-time images, the workflow is reinitialized. The proposed workflow was designed to minimize dedicated acquisition time to a single dedicated acquisition in the ideal case (no reinitialization required). First experiments have shown promising results for test-device tracking precision, with a mean position error of 0.79 mm and a mean orientation error of 0.24°.

  11. RF feedback for KEKB

    Energy Technology Data Exchange (ETDEWEB)

    Ezura, Eizi; Yoshimoto, Shin-ichi; Akai, Kazunori [National Lab. for High Energy Physics, Tsukuba, Ibaraki (Japan)

    1996-08-01

    This paper describes the present status of the RF feedback development for the KEK B-Factory (KEKB). A preliminary experiment concerning the RF feedback using a parallel comb-filter was performed through a choke-mode cavity and a klystron. The RF feedback has been tested using the beam of the TRISTAN Main Ring, and has proved to be effective in damping the beam instability. (author)

  12. RF guns: a review

    International Nuclear Information System (INIS)

    Travier, C.

    1990-06-01

    Free Electron Lasers and future linear colliders require very bright electron beams. Conventional injectors made of DC guns and RF bunchers have intrinsic limitations. The recently proposed RF guns have already proven their capability to produce bright beams. The necessary effort to improve further these performances and to gain reliability is now undertaken by many laboratories. More than twenty RF gun projects both thermionic and laser-driven are reviewed. Their specific characteristics are outlined and their nominal performances are given

  13. Rf power sources

    International Nuclear Information System (INIS)

    Allen, M.A.

    1988-01-01

    In this paper, the author reports on RF power sources for accelerator applications. The approach will be with particular customers in mind. These customers are high energy physicists who use accelerators as experimental tools in the study of the nucleus of the atom, and synchrotron light sources derived from electron or positron storage rings. The author pays close attention to electron- positron linear accelerators since the RF sources have always defined what is possible to achieve with these accelerators. Circular machines, cyclotrons, synchrotrons, etc. have usually not been limited by the RF power available and the machine builders have usually had their RF power source requirements met off the shelf. The main challenge for the RF scientist has been then in the areas of controls. An interesting example of this is in the Conceptual Design Report of the Superconducting Super Collider (SSC) where the RF system is described in six pages of text in a 700-page report. Also, the cost of that RF system is about one-third of a percent of the project's total cost. The RF system is well within the state of the art and no new power sources need to be developed. All the intellectual effort of the system designer would be devoted to the feedback systems necessary to stabilize beams during storage and acceleration, with the main engineering challenges (and costs) being in the superconducting magnet lattice

  14. RF Energy Compressor

    International Nuclear Information System (INIS)

    Farkas, Z.D.

    1980-02-01

    The RF Energy Compressor, REC described here, transforms cw rf into periodic pulses using an energy storage cavity, ESC, whose charging is controlled by 180 0 bi-phase modulation, PSK, and external Q switching, βs. Compression efficiency, C/sub e/, of 100% can be approached at any compression factor C/sub f/

  15. Practical RF system design

    CERN Document Server

    Egan, William F

    2003-01-01

    he ultimate practical resource for today's RF system design professionals Radio frequency components and circuits form the backbone of today's mobile and satellite communications networks. Consequently, both practicing and aspiring industry professionals need to be able to solve ever more complex problems of RF design. Blending theoretical rigor with a wealth of practical expertise, Practical RF System Design addresses a variety of complex, real-world problems that system engineers are likely to encounter in today's burgeoning communications industry with solutions that are not easily available in the existing literature. The author, an expert in the field of RF module and system design, provides powerful techniques for analyzing real RF systems, with emphasis on some that are currently not well understood. Combining theoretical results and models with examples, he challenges readers to address such practical issues as: * How standing wave ratio affects system gain * How noise on a local oscillator will affec...

  16. Microfluidic stretchable RF electronics.

    Science.gov (United States)

    Cheng, Shi; Wu, Zhigang

    2010-12-07

    Stretchable electronics is a revolutionary technology that will potentially create a world of radically different electronic devices and systems that open up an entirely new spectrum of possibilities. This article proposes a microfluidic based solution for stretchable radio frequency (RF) electronics, using hybrid integration of active circuits assembled on flex foils and liquid alloy passive structures embedded in elastic substrates, e.g. polydimethylsiloxane (PDMS). This concept was employed to implement a 900 MHz stretchable RF radiation sensor, consisting of a large area elastic antenna and a cluster of conventional rigid components for RF power detection. The integrated radiation sensor except the power supply was fully embedded in a thin elastomeric substrate. Good electrical performance of the standalone stretchable antenna as well as the RF power detection sub-module was verified by experiments. The sensor successfully detected the RF radiation over 5 m distance in the system demonstration. Experiments on two-dimensional (2D) stretching up to 15%, folding and twisting of the demonstrated sensor were also carried out. Despite the integrated device was severely deformed, no failure in RF radiation sensing was observed in the tests. This technique illuminates a promising route of realizing stretchable and foldable large area integrated RF electronics that are of great interest to a variety of applications like wearable computing, health monitoring, medical diagnostics, and curvilinear electronics.

  17. Versatile rf controller

    International Nuclear Information System (INIS)

    Howard, D.

    1985-05-01

    The low level rf system developed for the new Bevatron local injector provides precise control and regulation of the rf phase and amplitude for three 200 MHz linac cavities. The main features of the system are: extensive use of inexpensive, off-the-shelf components, ease of maintenance, and adaptability to a wide range of operation frequencies. The system utilizes separate function, easily removed rf printed circuit cards interconnected via the edge connectors. Control and monitoring are available both locally and through the computer. This paper will describe these features as well as the few component changes that would be required to adapt the techniques to other operating frequencies. 2 refs

  18. Experimental and numerical examination of eddy (Foucault) currents in rotating micro-coils: Generation of heat and its impact on sample temperature

    Science.gov (United States)

    Aguiar, Pedro M.; Jacquinot, Jacques-François; Sakellariou, Dimitris

    2009-09-01

    The application of nuclear magnetic resonance (NMR) to systems of limited quantity has stimulated the use of micro-coils (diameter Foucault (eddy) currents, which generate heat. We report the first data acquired with a 4 mm MACS system and spinning up to 10 kHz. The need to spin faster necessitates improved methods to control heating. We propose an approximate solution to calculate the power losses (heat) from the eddy currents for a solenoidal coil, in order to provide insight into the functional dependencies of Foucault currents. Experimental tests of the dependencies reveal conditions which result in reduced sample heating and negligible temperature distributions over the sample volume.

  19. Experimental and numerical examination of eddy (Foucault) currents in rotating micro-coils: Generation of heat and its impact on sample temperature.

    Science.gov (United States)

    Aguiar, Pedro M; Jacquinot, Jacques-François; Sakellariou, Dimitris

    2009-09-01

    The application of nuclear magnetic resonance (NMR) to systems of limited quantity has stimulated the use of micro-coils (diameter Foucault (eddy) currents, which generate heat. We report the first data acquired with a 4mm MACS system and spinning up to 10kHz. The need to spin faster necessitates improved methods to control heating. We propose an approximate solution to calculate the power losses (heat) from the eddy currents for a solenoidal coil, in order to provide insight into the functional dependencies of Foucault currents. Experimental tests of the dependencies reveal conditions which result in reduced sample heating and negligible temperature distributions over the sample volume.

  20. Superselective microcoil embolization in severe intractable epistaxis: an analysis of 12 consecutive cases from an otorhinolaryngologic and an interventional neuroradiologic point of view.

    Science.gov (United States)

    Seidel, D U; Remmert, S; Brassel, F; Schlunz-Hendann, M; Meila, D

    2015-11-01

    From 2006 to 2013, 12 patients with severe epistaxis refractory to prior conservative and surgical therapy were treated by superselective embolization of nasal arteries. Supersoft platinum microcoils with smallest diameters were used as the sole embolic agent in all cases. Coils were applied far distally in a stretched position for obtaining ideal target vessel superselectivity. The objective of this study is to evaluate efficacy and complications of superselective coil embolization for treatment of severe intractable epistaxis and to discuss results from an otorhinolaryngologic and an interventional neuroradiologic point of view. Retrospectively, all epistaxis inpatients between 2006 and 2013 were identified and subdivided by form of treatment: conservative, surgical and interventional therapy. Medical records of interventionally treated patients were reviewed for demographics, medical history, risk factors, clinical data, complications and short-term success, and patients were followed up for long-term success. Mean follow-up was 37 months. In 12 patients, 14 embolizations were carried out, with short-term success in 9 patients (75%), while early post-interventional rebleeding occurred in 3 patients (25%). Of 9 patients with short-term success, 1 died during stay, 1 was lost to follow-up and 1 had minor re-bleeding after 30 months. Six patients had short-term and long-term success. Before the first embolization, 3 ± 1 conservative and/or surgical procedures had been undertaken. Length of stay was 12.8 ± 3.6 days. 8 patients (67%) received red cell concentrates. Most frequent complications were mucosal damage and nasal pain, but these were related to repeated packing and surgery. Typical embolic complications as neurological or visual impairment or soft tissue necrosis were not observed in any patient. From the otorhinolaryngologic point of view, surgery is the treatment of choice in severe refractory epistaxis, but in case of repeated failure, superselective

  1. Rheumatoid factor (RF)

    Science.gov (United States)

    ... page: //medlineplus.gov/ency/article/003548.htm Rheumatoid factor (RF) To use the sharing features on this ... M. is also a founding member of Hi-Ethics and subscribes to the principles of the Health ...

  2. RF radiation safety handbook

    International Nuclear Information System (INIS)

    Kitchen, Ronald.

    1993-01-01

    Radio frequency radiation can be dangerous in a number of ways. Hazards include electromagnetic compatibility and interference, electro-explosive vapours and devices, and direct effects on the human body. This book is a general introduction to the sources and nature of RF radiation. It describes the ways in which our current knowledge, based on relevant safety standards, can be used to safeguard people from any harmful effects of RF radiation. The book is designed for people responsible for, or concerned with, safety. This target audience will primarily be radio engineers, but includes those skilled in other disciplines including medicine, chemistry or mechanical engineering. The book covers the problems of RF safety management, including the use of measuring instruments and methods, and a review of current safety standards. The implications for RF design engineers are also examined. (Author)

  3. Microbunching and RF Compression

    International Nuclear Information System (INIS)

    Venturini, M.; Migliorati, M.; Ronsivalle, C.; Ferrario, M.; Vaccarezza, C.

    2010-01-01

    Velocity bunching (or RF compression) represents a promising technique complementary to magnetic compression to achieve the high peak current required in the linac drivers for FELs. Here we report on recent progress aimed at characterizing the RF compression from the point of view of the microbunching instability. We emphasize the development of a linear theory for the gain function of the instability and its validation against macroparticle simulations that represents a useful tool in the evaluation of the compression schemes for FEL sources.

  4. Rf power sources

    International Nuclear Information System (INIS)

    Allen, M.A.

    1988-05-01

    This paper covers RF power sources for accelerator applications. The approach has been with particular customers in mind. These customers are high energy physicists who use accelerators as experimental tools in the study of the nucleus of the atom, and synchrotron light sources derived from electron or positron storage rings. This paper is confined to electron-positron linear accelerators since the RF sources have always defined what is possible to achieve with these accelerators. 11 refs., 13 figs

  5. RF Measurement Concepts

    CERN Document Server

    Caspers, F

    2014-01-01

    For the characterization of components, systems and signals in the radiofrequency (RF) and microwave ranges, several dedicated instruments are in use. In this article the fundamentals of the RF signal techniques are discussed. The key element in these front ends is the Schottky diode which can be used either as a RF mixer or as a single sampler. The spectrum analyser has become an absolutely indispensable tool for RF signal analysis. Here the front end is the RF mixer as the RF section of modern spectrum analyses has a ra ther complex architecture. The reasons for this complexity and certain working principles as well as limitations are discussed. In addition, an overview of the development of scalar and vector signal analysers is given. For the determination of the noise temperature of a one-port and the noise figure of a two-port, basic concepts and relations are shown as well as a brief discussion of commonly used noise-measurement techniques. In a further part of this article the operating principles of n...

  6. The FELIX RF system

    International Nuclear Information System (INIS)

    Manintveld, P.; Delmee, P.F.M.; Geer, C.A.J. van der; Meddens, B.J.H.; Meer, A.F.G. van der; Amersfoort, P.W. van

    1992-01-01

    The performance of the RF system for the Free Electron Laser for Infrared eXperiments (FELIX) is discussed. The RF system provides the input power for a triode gun (1 GHz, 100 W), a prebuncher (1 GHz, 10 kW), a buncher (3 GHz, 20 MW), and two linacs (3 GHz, 8 MW each). The pulse length in the system is 20 μs. The required electron beam stability imposes the following demands on the RF system: a phase stability better than 0.3 deg for the 1 GHz signals and better than 1 deg for the 3 GHz signals; the amplitude stability has to be better than 1% for the 1 GHz and better than 0.2% for the 3 GHz signals. (author) 3 refs.; 6 figs

  7. RF and feedback systems

    International Nuclear Information System (INIS)

    Boussard, D.

    1994-01-01

    The radiofrequency system of the Tau Charm Factory accelerating 10 11 particles per bunch and a circulating current of 0.5 A is presented. In order to produce the very short bunches required, the RF system of TCF must provide a large RF voltage (8 MV) at a frequency in the neighbourhood of 400-500 MHz. It appears very attractive to produce the high voltage required with superconducting cavities, for which wall losses are negligible. A comparison between the sc RF system proposed and a possible copper system run at an average 1 MV/m, shows the clear advantage of sc cavities for TCF. (R.P.). 2 figs,. 1 tab

  8. ISR RF cavities

    CERN Multimedia

    1983-01-01

    In each ISR ring the radiofrequency cavities were installed in one 9 m long straight section. The RF system of the ISR had the main purpose to stack buckets of particles (most of the time protons)coming from the CPS and also to accelerate the stacked beam. The installed RF power per ring was 18 kW giving a peak accelerating voltage of 20 kV. The system had a very fine regulation feature allowing to lower the voltage down to 75 V in a smooth and well controlled fashion.

  9. Conventional RF system design

    International Nuclear Information System (INIS)

    Puglisi, M.

    1994-01-01

    The design of a conventional RF system is always complex and must fit the needs of the particular machine for which it is planned. It follows that many different design criteria should be considered and analyzed, thus exceeding the narrow limits of a lecture. For this reason only the fundamental components of an RF system, including the generators, are considered in this short seminar. The most common formulas are simply presented in the text, while their derivations are shown in the appendices to facilitate, if desired, a more advanced level of understanding. (orig.)

  10. Cognitive Radio RF: Overview and Challenges

    Directory of Open Access Journals (Sweden)

    Van Tam Nguyen

    2012-01-01

    Full Text Available Cognitive radio system (CRS is a radio system which is aware of its operational and geographical environment, established policies, and its internal state. It is able to dynamically and autonomously adapt its operational parameters and protocols and to learn from its previous experience. Based on software-defined radio (SDR, CRS provides additional flexibility and offers improved efficiency to overall spectrum use. CRS is a disruptive technology targeting very high spectral efficiency. This paper presents an overview and challenges of CRS with focus on radio frequency (RF section. We summarize the status of the related regulation and standardization activities which are very important for the success of any emerging technology. We point out some key research challenges, especially implementation challenges of cognitive radio (CR. A particular focus is on RF front-end, transceiver, and analog-to-digital and digital-to-analog interfaces which are still a key bottleneck in CRS development.

  11. The TESLA RF System

    International Nuclear Information System (INIS)

    Choroba, S.

    2003-01-01

    The TESLA project proposed by the TESLA collaboration in 2001 is a 500 to 800GeV e+/e- linear collider with integrated free electron laser facility. The accelerator is based on superconducting cavity technology. Approximately 20000 superconducting cavities operated at 1.3GHz with a gradient of 23.4MV/m or 35MV/m will be required to achieve the energy of 500GeV or 800GeV respectively. For 500GeV ∼600 RF stations each generating 10MW of RF power at 1.3GHz at a pulse duration of 1.37ms and a repetition rate of 5 or 10Hz are required. The original TESLA design was modified in 2002 and now includes a dedicated 20GeV electron accelerator in a separate tunnel for free electron laser application. The TESLA XFEL will provide XFEL radiation of unprecedented peak brilliance and full transverse coherence in the wavelength range of 0.1 to 6.4nm at a pulse duration of 100fs. The technology of both accelerators, the TESLA linear collider and the XFEL, will be identical, however the number of superconducting cavities and RF stations for the XFEL will be reduced to 936 and 26 respectively. This paper describes the layout of the entire RF system of the TESLA linear collider and the TESLA XFEL and gives an overview of its various subsystems and components

  12. Remote RF Battery Charging

    NARCIS (Netherlands)

    Visser, H.J.; Pop, V.; Op het Veld, J.H.G.; Vullers, R.J.M.

    2011-01-01

    The design of a remote RF battery charger is discussed through the analysis and design of the subsystems of a rectenna (rectifying antenna): antenna, rectifying circuit and loaded DC-to-DC voltage (buck-boost) converter. Optimum system power generation performance is obtained by adopting a system

  13. Beyond the RF photogun

    NARCIS (Netherlands)

    Luiten, O.J.; Rozenzweig, J.; Travish, G.

    2003-01-01

    Laser-triggered switching of MV DC voltages enables acceleration gradients an order of magnitude higher than in state-of-the-art RF photoguns. In this way ultra-short, high-brightness electron bunches may be generated without the use of magnetic compression. The evolution of the bunch during the

  14. AC/RF Superconductivity

    Energy Technology Data Exchange (ETDEWEB)

    Ciovati, G [Jefferson Lab (United States)

    2014-07-01

    This contribution provides a brief introduction to AC/RF superconductivity, with an emphasis on application to accelerators. The topics covered include the surface impedance of normal conductors and superconductors, the residual resistance, the field dependence of the surface resistance, and the superheating field.

  15. AC/RF Superconductivity

    Energy Technology Data Exchange (ETDEWEB)

    Ciovati, Gianluigi [JLAB

    2015-02-01

    This contribution provides a brief introduction to AC/RF superconductivity, with an emphasis on application to accelerators. The topics covered include the surface impedance of normal conductors and superconductors, the residual resistance, the field dependence of the surface resistance, and the superheating field.

  16. Flexible Bronchoscopy.

    Science.gov (United States)

    Miller, Russell J; Casal, Roberto F; Lazarus, Donald R; Ost, David E; Eapen, George A

    2018-03-01

    Flexible bronchoscopy has changed the course of pulmonary medicine. As technology advances, the role of the flexible bronchoscope for both diagnostic and therapeutic indications is continually expanding. This article reviews the historical development of the flexible bronchoscopy, fundamental uses of the flexible bronchoscope as a tool to examine the central airways and obtain diagnostic tissue, and the indications, complications, and contraindications to flexible bronchoscopy. Copyright © 2017 Elsevier Inc. All rights reserved.

  17. Micro-coil NMR to monitor optimization of the reconstitution conditions for the integral membrane protein OmpW in detergent micelles

    International Nuclear Information System (INIS)

    Stanczak, Pawel; Zhang Qinghai; Horst, Reto; Serrano, Pedro; Wüthrich, Kurt

    2012-01-01

    Optimization of aqueous solutions of the integral membrane protein (IMP) OmpW for NMR structure determination has been monitored with micro-coil NMR, which enables the acquisition of NMR spectra using only micrograms of protein and detergent. The detergent 30-Fos (2-undecylphosphocholine) was found to yield the best 2D [ 15 N, 1 H]-TROSY correlation NMR spectra of [ 2 H, 15 N]-labeled OmpW. For the OmpW structure determination we then optimized the 30-Fos concentration, the sample temperature and long-time stability, and the deuteration level of the protein. Some emerging guidelines for reconstitution of β-barrel integral membrane proteins in structural biology are discussed.

  18. Barrier rf systems in synchrotrons

    International Nuclear Information System (INIS)

    Bhat, Chandra M.

    2004-01-01

    Recently, many interesting applications of the barrier RF system in hadron synchrotrons have been realized. A remarkable example of this is the development of longitudinal momentum mining and implementation at the Fermilab Recycler for extraction of low emittance pbars for the Tevatron shots. At Fermilab, we have barrier RF systems in four different rings. In the case of Recycler Ring, all of the rf manipulations are carried out using a barrier RF system. Here, the author reviews various uses of barrier rf systems in particle accelerators including some new schemes for producing intense proton beam and possible new applications

  19. Racetrack microtron rf system

    International Nuclear Information System (INIS)

    Tallerico, P.J.; Keffeler, D.R.

    1985-01-01

    The rf system for the National Bureau of Standards (NBS)/Los Alamos cw racetrack microtron is described. The low-power portion consists of five 75-W amplifers that drive two input ports in each of two chopper deflection cavities and one port in the prebuncher cavity. A single 500-kW klystron drives four separate 2380-MHz cavity sections: the two main accelerator sections, a capture section, and a preaccelerator section. The phases and amplitudes in all cavities are controlled by electronic or electromechanical controls. The 1-MW klystron power supply and crowbar system were purchased as a unit; several modifications are described that improve power-supply performance. The entire rf system has been tested and shipped to the NBS, and the chopper-buncher system has been operated with beam at the NBS. 5 refs., 2 figs

  20. RF Gun Optimization Study

    International Nuclear Information System (INIS)

    Alicia Hofler; Pavel Evtushenko

    2007-01-01

    Injector gun design is an iterative process where the designer optimizes a few nonlinearly interdependent beam parameters to achieve the required beam quality for a particle accelerator. Few tools exist to automate the optimization process and thoroughly explore the parameter space. The challenging beam requirements of new accelerator applications such as light sources and electron cooling devices drive the development of RF and SRF photo injectors. A genetic algorithm (GA) has been successfully used to optimize DC photo injector designs at Cornell University [1] and Jefferson Lab [2]. We propose to apply GA techniques to the design of RF and SRF gun injectors. In this paper, we report on the initial phase of the study where we model and optimize a system that has been benchmarked with beam measurements and simulation

  1. Pulsed rf operation analysis

    International Nuclear Information System (INIS)

    Puglisi, M.; Cornacchia, M.

    1981-01-01

    The need for a very low final amplifier output impedance, always associated with class A operation, requires a very large power waste in the final tube. The recently suggested pulsed rf operation, while saving a large amount of power, increases the inherent final amplifier non linearity. A method is presented for avoiding the large signal non linear analysis and it is shown how each component of the beam induced voltage depends upon all the beam harmonics via some coupling coefficients which are evaluated

  2. RF pulse compression development

    International Nuclear Information System (INIS)

    Farkas, Z.D.; Weaver, J.N.

    1987-10-01

    The body of this paper discusses the theory and some rules for designing a multistage Binary Energy Compressor (BEC) including its response to nonstandard phase coding, describes some proof-of-principle experiments with a couple of low power BECs, presents the design parameters for some sample linear collider rf systems that could possibly use a BEC to advantage and outlines in the conclusion some planned R and D efforts. 8 refs., 26 figs., 4 tabs

  3. RF Pulsed Heating

    Energy Technology Data Exchange (ETDEWEB)

    Pritzkau, David P.

    2002-01-03

    RF pulsed heating is a process by which a metal is heated from magnetic fields on its surface due to high-power pulsed RF. When the thermal stresses induced are larger than the elastic limit, microcracks and surface roughening will occur due to cyclic fatigue. Pulsed heating limits the maximum magnetic field on the surface and through it the maximum achievable accelerating gradient in a normal conducting accelerator structure. An experiment using circularly cylindrical cavities operating in the TE{sub 011} mode at a resonant frequency of 11.424 GHz is designed to study pulsed heating on OFE copper, a material commonly used in normal conducting accelerator structures. The high-power pulsed RF is supplied by an X-band klystron capable of outputting 50 MW, 1.5 {micro}s pulses. The test pieces of the cavity are designed to be removable to allow testing of different materials with different surface preparations. A diagnostic tool is developed to measure the temperature rise in the cavity utilizing the dynamic Q change of the resonant mode due to heating. The diagnostic consists of simultaneously exciting a TE{sub 012} mode to steady-state in the cavity at 18 GHz and measuring the change in reflected power as the cavity is heated from high-power pulsed RF. Two experimental runs were completed. One run was executed at a calculated temperature rise of 120 K for 56 x 10{sup 6} pulses. The second run was executed at a calculated temperature rise of 82 K for 86 x 10{sup 6} pulses. Scanning electron microscope pictures show extensive damage occurring in the region of maximum temperature rise on the surface of the test pieces.

  4. Microwave and RF engineering

    CERN Document Server

    Sorrentino, Roberto

    2010-01-01

    An essential text for both students and professionals, combining detailed theory with clear practical guidance This outstanding book explores a large spectrum of topics within microwave and radio frequency (RF) engineering, encompassing electromagnetic theory, microwave circuits and components. It provides thorough descriptions of the most common microwave test instruments and advises on semiconductor device modelling. With examples taken from the authors' own experience, this book also covers:network and signal theory;electronic technology with guided electromagnetic pr

  5. On flexibility

    OpenAIRE

    Weiss, Christoph R.; Briglauer, Wolfgang

    2000-01-01

    By building on theoretical work by Mills and Schumann (1985) and Ungern-Sternberg (1990) this paper provides evidence on the determinants of two dimensions of flexibility, the flexibility in adjusting aggregate output over time (tactical flexibility) as well as the ability to switch quickly between products (operational flexibility). Econometric analysis of a sample of 40.000 farms in Upper-Austria for the period 1980 to 1990 suggests that larger full-time farms operated by younger, better ed...

  6. RF Energy Harvesting Peel-and-Stick Sensors

    Energy Technology Data Exchange (ETDEWEB)

    Lalau-Keraly, Christopher [PARC; Schwartz, David; Daniel, George; Lee, Joseph

    2017-08-29

    PARC, a Xerox Company, is developing a low-cost system of peel-and-stick wireless sensors that will enable widespread building environment sensor deployment with the potential to deliver up to 30% energy savings. The system is embodied by a set of RF hubs that provide power to the automatically located sensor nodes, and relays data wirelessly to the building management system (BMS). The sensor nodes are flexible electronic labels powered by rectified RF energy transmitted by a RF hub and can contain multiple printed and conventional sensors. The system design overcomes limitations in wireless sensors related to power delivery, lifetime, and cost by eliminating batteries and photovoltaic devices. The sensor localization is performed automatically by the inclusion of a programmable multidirectional antenna array in the RF hub. Comparison of signal strengths when the RF beam is swept allows for sensor localization, further reducing installation effort and enabling automatic recommissioning of sensors that have been relocated, overcoming a significant challenge in building operations. PARC has already demonstrated wireless power and temperature data transmission up to a distance of 20m with a duty cycle less than a minute between measurements, using power levels well within the FCC regulation limits in the 902-928 MHz ISM band. The sensor’s RF energy harvesting antenna dimensions was less than 5cmx9cm, demonstrating the possibility of small form factor for the sensor nodes.

  7. Peel-and-Stick Sensors Powered by Directed RF Energy

    Energy Technology Data Exchange (ETDEWEB)

    Lalau-Keraly, Christopher; Daniel, George; Lee, Joseph; Schwartz, David

    2017-08-30

    PARC, a Xerox Company, is developing a low-cost system of peel-and-stick wireless sensors that will enable widespread building environment sensor deployment with the potential to deliver up to 30% energy savings. The system is embodied by a set of RF hubs that provide power to automatically located sensor nodes, and relay data wirelessly to the building management system (BMS). The sensor nodes are flexible electronic labels powered by rectified RF energy transmitted by an RF hub and can contain multiple printed and conventional sensors. The system design overcomes limitations in wireless sensors related to power delivery, lifetime, and cost by eliminating batteries and photovoltaic devices. Sensor localization is performed automatically by the inclusion of a programmable multidirectional antenna array in the RF hub. Comparison of signal strengths while the RF beam is swept allows for sensor localization, reducing installation effort and enabling automatic recommissioning of sensors that have been relocated, overcoming a significant challenge in building operations. PARC has already demonstrated wireless power and temperature data transmission up to a distance of 20m with less than one minute between measurements, using power levels well within the FCC regulation limits in the 902-928 MHz ISM band. The sensor’s RF energy harvesting antenna achieves high performance with dimensions below 5cm x 9cm

  8. Wireless RF communication in biomedical applications

    Science.gov (United States)

    Jones, Inke; Ricciardi, Lucas; Hall, Leonard; Hansen, Hedley; Varadan, Vijay; Bertram, Chris; Maddocks, Simon; Enderling, Stefan; Saint, David; Al-Sarawi, Said; Abbott, Derek

    2008-02-01

    This paper focuses on wireless transcutaneous RF communication in biomedical applications. It discusses current technology, restrictions and applications and also illustrates possible future developments. It focuses on the application in biotelemetry where the system consists of a transmitter and a receiver with a transmission link in between. The transmitted information can either be a biopotential or a nonelectric value like arterial pressure, respiration, body temperature or pH value. In this paper the use of radio-frequency (RF) communication and identification for those applications is described. Basically, radio-frequency identification or RFID is a technology that is analogous to the working principle of magnetic barcode systems. Unlike magnetic barcodes, passive RFID can be used in extreme climatic conditions—also the tags do not need to be within close proximity of the reader. Our proposed solution is to exploit an exciting new development in making circuits on polymers without the need for battery power. This solution exploits the principle of a surface acoustic wave (SAW) device on a polymer substrate. The SAW device is a set of interdigitated conducting fingers on the polymer substrate. If an appropriate RF signal is sent to the device, the fingers act as microantennas that pick up the signal, and this energy is then converted into acoustic waves that travel across the surface of the polymer substrate. Being a flexible polymer, the acoustic waves cause stresses that can either contract or stretch the material. In our case we mainly focus on an RF controllable microvalve that could ultimately be used for fertility control.

  9. Wireless RF communication in biomedical applications

    International Nuclear Information System (INIS)

    Jones, Inke; Ricciardi, Lucas; Hall, Leonard; Enderling, Stefan; Saint, David; Al-Sarawi, Said; Abbott, Derek; Hansen, Hedley; Varadan, Vijay; Bertram, Chris; Maddocks, Simon

    2008-01-01

    This paper focuses on wireless transcutaneous RF communication in biomedical applications. It discusses current technology, restrictions and applications and also illustrates possible future developments. It focuses on the application in biotelemetry where the system consists of a transmitter and a receiver with a transmission link in between. The transmitted information can either be a biopotential or a nonelectric value like arterial pressure, respiration, body temperature or pH value. In this paper the use of radio-frequency (RF) communication and identification for those applications is described. Basically, radio-frequency identification or RFID is a technology that is analogous to the working principle of magnetic barcode systems. Unlike magnetic barcodes, passive RFID can be used in extreme climatic conditions—also the tags do not need to be within close proximity of the reader. Our proposed solution is to exploit an exciting new development in making circuits on polymers without the need for battery power. This solution exploits the principle of a surface acoustic wave (SAW) device on a polymer substrate. The SAW device is a set of interdigitated conducting fingers on the polymer substrate. If an appropriate RF signal is sent to the device, the fingers act as microantennas that pick up the signal, and this energy is then converted into acoustic waves that travel across the surface of the polymer substrate. Being a flexible polymer, the acoustic waves cause stresses that can either contract or stretch the material. In our case we mainly focus on an RF controllable microvalve that could ultimately be used for fertility control

  10. RF linacs for FELs

    International Nuclear Information System (INIS)

    Schwettman, H.A.

    1992-01-01

    There are twenty rf linac-driven Free Electron Lasers (FELs) existing or under construction throughout the world and proposals for several more. A number of these FELs have recently been established as facilities to produce coherent optical beams for materials and biomedical research. Both short pulse low duty factor and long pulse high duty factor linac-driven FELs will be discussed. Accelerator issues that influence the performance of an FEL as a scientific instrument will be indicated. (Author) 6 refs., 6 figs., 2 tabs

  11. RF impedance measurement calibration

    International Nuclear Information System (INIS)

    Matthews, P.J.; Song, J.J.

    1993-01-01

    The intent of this note is not to explain all of the available calibration methods in detail. Instead, we will focus on the calibration methods of interest for RF impedance coupling measurements and attempt to explain: (1). The standards and measurements necessary for the various calibration techniques. (2). The advantages and disadvantages of each technique. (3). The mathematical manipulations that need to be applied to the measured standards and devices. (4). An outline of the steps needed for writing a calibration routine that operated from a remote computer. For further details of the various techniques presented in this note, the reader should consult the references

  12. Low frequency rf current drive

    International Nuclear Information System (INIS)

    Hershkowitz, N.

    1992-01-01

    An unshielded antenna for rf heating has been developed and tested during this report period. In addition to design specifications being given, some experimental results are presented utilizing: (1) an unprotected Faraday shield, (2) insulating guard limiters, (3) unshielded antenna experiments, (4) method for detecting small rf driven currents, (5) rf fast wave current drive experiments, (6) alfven wave interactions with electrons, and (7) machine conditioning, impurity generation and density control

  13. Modular open RF architecture: extending VICTORY to RF systems

    Science.gov (United States)

    Melber, Adam; Dirner, Jason; Johnson, Michael

    2015-05-01

    Radio frequency products spanning multiple functions have become increasingly critical to the warfighter. Military use of the electromagnetic spectrum now includes communications, electronic warfare (EW), intelligence, and mission command systems. Due to the urgent needs of counterinsurgency operations, various quick reaction capabilities (QRCs) have been fielded to enhance warfighter capability. Although these QRCs were highly successfully in their respective missions, they were designed independently resulting in significant challenges when integrated on a common platform. This paper discusses how the Modular Open RF Architecture (MORA) addresses these challenges by defining an open architecture for multifunction missions that decomposes monolithic radio systems into high-level components with welldefined functions and interfaces. The functional decomposition maximizes hardware sharing while minimizing added complexity and cost due to modularization. MORA achieves significant size, weight and power (SWaP) savings by allowing hardware such as power amplifiers and antennas to be shared across systems. By separating signal conditioning from the processing that implements the actual radio application, MORA exposes previously inaccessible architecture points, providing system integrators with the flexibility to insert third-party capabilities to address technical challenges and emerging requirements. MORA leverages the Vehicular Integration for Command, Control, Communication, Computers, Intelligence, Surveillance, and Reconnaissance (C4ISR)/EW Interoperability (VICTORY) framework. This paper concludes by discussing how MORA, VICTORY and other standards such as OpenVPX are being leveraged by the U.S. Army Research, Development, and Engineering Command (RDECOM) Communications Electronics Research, Development, and Engineering Center (CERDEC) to define a converged architecture enabling rapid technology insertion, interoperability and reduced SWaP.

  14. SPS RF Accelerating Cavity

    CERN Multimedia

    1979-01-01

    This picture shows one of the 2 new cavities installed in 1978-1979. The main RF-system of the SPS comprises four cavities: two of 20 m length and two of 16.5 m length. They are all installed in one long straight section (LSS 3). These cavities are of the travelling-wave type operating at a centre frequency of 200.2 MHz. They are wideband, filling time about 700 ns and untuned. The power amplifiers, using tetrodes are installed in a surface building 200 m from the cavities. Initially only two cavities were installed, a third cavity was installed in 1978 and a forth one in 1979. The number of power amplifiers was also increased: to the first 2 MW plant a second 2 MW plant was added and by end 1979 there were 8 500 kW units combined in pairs to feed each of the 4 cavities with up to about 1 MW RF power, resulting in a total accelerating voltage of about 8 MV. See also 7412016X, 7412017X, 7411048X

  15. rf experiments on PLT

    International Nuclear Information System (INIS)

    Hosea, J.; Wilson, J.R.; Hooke, W.

    1986-01-01

    A variety of rf experiments are being conducted on PLT in order to explore rf techniques which could improve tokamak performance parameters. Of special importance are the studies of ion Bernstein wave (IBW) heating, lower hybrid MHD stabilization and electron heating, down-shifted electron cyclotron heating, and fast wave current drive. Ion Bernstein wave heating results at modest power indicate that the particle confinement time could be enhanced relative to that for fast wave heating in the ion cyclotron range of frequencies (ICRF) and neutral beam heating. At these power levels a conclusive determination of energy confinement scaling with power cannot yet be given. Central sawtooth and m = 1 MHD stabilization is being obtained with centrally peaked lower hybrid (LH) current drive and the central electron temperature is peaking to values (approx.5 keV) well outside the bounds of ''profile consistency.'' In this case the electron energy confinement is apparently increased relative to the ohmic value. The production of relativistic electrons via heating at the down-shifted electron cyclotron (EC) frequency is found to be consistent with theoretical predictions and lends support to the use of this method for heating in relatively high magnetic field devices

  16. Accurate modeling of complete functional RF blocks: CHAMELEON RF

    NARCIS (Netherlands)

    Janssen, H.H.J.M.; Niehof, J.; Schilders, W.H.A.; Ciuprina, G.; Ioan, D.

    2007-01-01

    Next-generation nano-scale RF-IC designs have an unprecedented complexity and performance that will inevitably lead to costly re-spins and loss of market opportunities. In order to cope with this, the aim of the European Framework 6 CHAMELEON RF project is to develop methodologies and prototype

  17. The Spallation Neutron Source RF Reference System

    CERN Document Server

    Piller, Maurice; Crofford, Mark; Doolittle, Lawrence; Ma, Hengjie

    2005-01-01

    The Spallation Neutron Source (SNS) RF Reference System includes the master oscillator (MO), local oscillator(LO) distribution, and Reference RF distribution systems. Coherent low noise Reference RF signals provide the ability to control the phase relationships between the fields in the front-end and linear accelerator (linac) RF cavity structures. The SNS RF Reference System requirements, implementation details, and performance are discussed.

  18. Circuit design for RF transceivers

    CERN Document Server

    Leenaerts, Domine; Vaucher, Cicero S

    2007-01-01

    Second edition of this successful 2001 RF Circuit Design book, has been updated, latest technology reviews have been added as well as several actual case studies. Due to the authors being active in industry as well as academia, this should prove to be an essential guide on RF Transceiver Design for students and engineers.

  19. RF-Station control crate

    International Nuclear Information System (INIS)

    Beuzekom, M.G. van; Es, J.T. van.

    1992-01-01

    This report gives a description of the electronic control-system for the RF-station of AmPS. The electronics form the connection between the computer-system and the hardware of the RF-station. Only the elements of the systems which are not described in the other NIKHEF-reports are here discussed in detail. (author). 7 figs

  20. Flexible structured high-frequency film bulk acoustic resonator for flexible wireless electronics

    International Nuclear Information System (INIS)

    Zhou, Changjian; Shu, Yi; Yang, Yi; Ren, Tian-Ling; Jin, Hao; Dong, Shu-Rong; Chan, Mansun

    2015-01-01

    Flexible electronics have inspired many novel and very important applications in recent years and various flexible electronic devices such as diodes, transistors, circuits, sensors, and radiofrequency (RF) passive devices including antennas and inductors have been reported. However, the lack of a high-performance RF resonator is one of the key bottlenecks to implement flexible wireless electronics. In this study, for the first time, a novel ultra-flexible structured film bulk acoustic resonator (FBAR) is proposed. The flexible FBAR is fabricated on a flexible polyimide substrate using piezoelectric thin film aluminum nitride (AlN) for acoustic wave excitation. Both the shear wave and longitudinal wave can be excited under the surface interdigital electrodes configuration we proposed. In the case of the thickness extension mode, a flexible resonator with a working frequency as high as of 5.2325 GHz has been realized. The resonators stay fully functional under bending status and after repeated bending and re-flattening operations. This flexible high-frequency resonator will serve as a key building block for the future flexible wireless electronics, greatly expanding the application scope of flexible electronics. (paper)

  1. Conflicting flexibility

    NARCIS (Netherlands)

    De Jong, P.; Schaap, A.

    2011-01-01

    New buildings are designed for first users. For a sustainable approach there are many advantages in designing in flexibility and adjustability in order to enable and facilitate the other sequential users. For the first investor this flexibility is translated into improved exit values due to

  2. Investigation of MIM Diodes for RF Applications

    KAUST Repository

    Khan, Adnan

    2015-01-01

    zero bias condition as well as the possibility of realizing them through printing makes them attractive for (Radio Frequency) RF applications. However, MIM diodes have not been explored much for RF applications. One reason preventing their widespread RF

  3. Refurbishments of RF systems

    International Nuclear Information System (INIS)

    Baelde, J.L.

    1998-01-01

    This document describes the activities of the R.F. System group during the years 1995-1996 in the frame of the refurbishment of the control system at GANIL accelerator. Modifications concerning the following sub-assemblies are mentioned: 1. voltage standards; 2. link card between the step by step motor control and the local control systems; 3. polarization system; 4. computer software for different operations. Also reported is the installation of ECR 4 source for the CO2. In this period the R2 Regrouping system has been installed, tested and put into operation. Several problems concerning the mechanical installation of the coupling loop and other problems related to the electronics operation were solved. The results obtained with the THI machine are presented

  4. Beam induced RF heating

    CERN Document Server

    Salvant, B; Arduini, G; Assmann, R; Baglin, V; Barnes, M J; Bartmann, W; Baudrenghien, P; Berrig, O; Bracco, C; Bravin, E; Bregliozzi, G; Bruce, R; Bertarelli, A; Carra, F; Cattenoz, G; Caspers, F; Claudet, S; Day, H; Garlasche, M; Gentini, L; Goddard, B; Grudiev, A; Henrist, B; Jones, R; Kononenko, O; Lanza, G; Lari, L; Mastoridis, T; Mertens, V; Métral, E; Mounet, N; Muller, J E; Nosych, A A; Nougaret, J L; Persichelli, S; Piguiet, A M; Redaelli, S; Roncarolo, F; Rumolo, G; Salvachua, B; Sapinski, M; Schmidt, R; Shaposhnikova, E; Tavian, L; Timmins, M; Uythoven, J; Vidal, A; Wenninger, J; Wollmann, D; Zerlauth, M

    2012-01-01

    After the 2011 run, actions were put in place during the 2011/2012 winter stop to limit beam induced radio frequency (RF) heating of LHC components. However, some components could not be changed during this short stop and continued to represent a limitation throughout 2012. In addition, the stored beam intensity increased in 2012 and the temperature of certain components became critical. In this contribution, the beam induced heating limitations for 2012 and the expected beam induced heating limitations for the restart after the Long Shutdown 1 (LS1) will be compiled. The expected consequences of running with 25 ns or 50 ns bunch spacing will be detailed, as well as the consequences of running with shorter bunch length. Finally, actions on hardware or beam parameters to monitor and mitigate the impact of beam induced heating to LHC operation after LS1 will be discussed.

  5. A Micromechanical RF Channelizer

    Science.gov (United States)

    Akgul, Mehmet

    The power consumption of a radio generally goes as the number and strength of the RF signals it must process. In particular, a radio receiver would consume much less power if the signal presented to its electronics contained only the desired signal in a tiny percent bandwidth frequency channel, rather than the typical mix of signals containing unwanted energy outside the desired channel. Unfortunately, a lack of filters capable of selecting single channel bandwidths at RF forces the front-ends of contemporary receivers to accept unwanted signals, and thus, to operate with sub-optimal efficiency. This dissertation focuses on the degree to which capacitive-gap transduced micromechanical resonators can achieve the aforementioned RF channel-selecting filters. It aims to first show theoretically that with appropriate scaling capacitive-gap transducers are strong enough to meet the needed coupling requirements; and second, to fully detail an architecture and design procedure needed to realize said filters. Finally, this dissertation provides an actual experimentally demonstrated RF channel-select filter designed using the developed procedures and confirming theoretical predictions. Specifically, this dissertation introduces four methods that make possible the design and fabrication of RF channel-select filters. The first of these introduces a small-signal equivalent circuit for parallel-plate capacitive-gap transduced micromechanical resonators that employs negative capacitance to model the dependence of resonance frequency on electrical stiffness in a way that facilitates the analysis of micromechanical circuits loaded with arbitrary electrical impedances. The new circuit model not only correctly predicts the dependence of electrical stiffness on the impedances loading the input and output electrodes of parallel-plate capacitive-gap transduced micromechanical device, but does so in a visually intuitive way that identifies current drive as most appropriate for

  6. Measured performance of the GTA rf systems

    International Nuclear Information System (INIS)

    Denney, P.M.; Jachim, S.P.

    1993-01-01

    This paper describes the performance of the RF systems on the Ground Test Accelerator (GTA). The RF system architecture is briefly described. Among the RF performance results presented are RF field flatness and stability, amplitude and phase control resolution, and control system bandwidth and stability. The rejection by the RF systems of beam-induced disturbances, such as transients and noise, are analyzed. The observed responses are also compared to computer-based simulations of the RF systems for validation

  7. SQIF Arrays as RF Sensors (Briefing Charts)

    National Research Council Canada - National Science Library

    Yukon, Stanford P

    2007-01-01

    ... (Superconducting Quantum Interference Filter) arrays may be employed as sensitive RF sensors. RF SQIF arrays fabricated with high Tc Josephson junctions can be cooled with small Sterling microcoolers...

  8. SPEAR 2 RF SYSTEM LOADS

    International Nuclear Information System (INIS)

    2002-01-01

    The design and performance of higher order mode (HOM) dampers for the SPEAR 2 RF system is presented. The SPEAR beam had experienced occasional periods of instability due to transverse oscillations which were driven by HOMs in the RF cavities. A substantial fraction of this RF energy was coupled out of the cavity into the waveguide connecting the cavity to the klystron. This waveguide was modified by adding a stub of smaller cross section, terminated by a ferrite tile load, to the system. Design considerations of the load, and its effect on HOMs and beam stability will be discussed

  9. APS Storage Ring Monopulse RF BPM Upgrade

    Science.gov (United States)

    Lill, R.; Pietryla, A.; Norum, E.; Lenkszus, F.

    2004-11-01

    The Advanced Photon Source (APS) is a third-generation synchrotron light source in its ninth year of operation. The storage ring monopulse radio frequency (rf) beam position monitor (BPM) was designed to measure single-turn and multi-turn beam positions for operations and machine physics studies. Many of the components used in the original design are obsolete and costly to replace. In this paper we present a proposal to upgrade the monopulse rf BPMs in which the existing system hardware is repartitioned and the aging data acquisition system is replaced. By replacing only the data acquisition system, we will demonstrate a cost-effective approach to improved beam stability, reliability, and enhanced postmortem capabilities. An eight-channel ADC/digitizer VXI board with sampling rate of up to 105 MHz (per channel) and 14-bit resolution coupled with a field-programmable gate array and embedded central processing will provide the flexibility to revitalize this system for another decade of operation. We will discuss the upgrade system specifications, design, and prototype test results.

  10. Development of digital low level rf system

    International Nuclear Information System (INIS)

    Michizono, Shinichiro; Anami, Shozo; Katagiri, Hiroaki; Fang, Zhigao; Matsumoto, Toshihiro; Miura, Takako; Yano, Yoshiharu; Yamaguchi, Seiya; Kobayashi, Tetsuya

    2008-01-01

    One of the biggest advantages of the digital low level rf (LLRF) system is its flexibility. Owing to the recent rapid progress in digital devices (such as ADCs and DACs) and telecommunication devices (mixers and IQ modulators), digital LLRF system becomes popular in these 10 years. The J-PARC linac LLRF system adopted cPCI crates and FPGA based digital feedback system. Since the LLRF control of the normal conducting cavities are more difficult than super conducting cavities due to its lower Q values, fast processing using the FPGA was the essential to the feedback control. After the successful operation of J-PARC linac LLRF system, we developed the STF (ILC test facility in KEK) LLRF system. Since the klystron drives eight cavities in STF phase 1, we modified the FPGA board. Basic configuration and the performances of these systems are summarized. The future R and D projects (ILC and ERL) is also described from the viewpoints of LLRF. (author)

  11. RF superconductivity at CEBAF

    International Nuclear Information System (INIS)

    1990-01-01

    The Continuous Electron Beam Accelerator Facility (CEBAF) is a 4 GeV continuous beam electron accelerator being constructed to perform nuclear physics research. Construction began in February 1987 and initial operation is scheduled for February 1994. The present report describes its prototyping, problems/solutions, further development, facilities, design status, production and upgrade potential. The accelerator is 1.4 km in circumference, and has a race-track shape. It is of the recirculated linear accelerator type, and employs a total of five passes. Two linacs on opposite sides of the race-track each provide 400 MeV per pass. Beams of various energies are transported by separated arcs at each end of the straight sections to provide the recirculation. There are 4 recirculation arcs at the injector end, and 5 arcs at the other end. The full energy beam is routed by an RF separator to between one and three end stations, as desired, on a bucket-by-bucket basis. The average output beam current is 200 microamperes. Acceleration is provided by 338 superconducting cavities, which are arranged in pairs, each of which is enclosed in a helium vessel and suspended inside a vacuum jacket without ends. (N.K.)

  12. Water cooling of RF structures

    International Nuclear Information System (INIS)

    Battersby, G.; Zach, M.

    1994-06-01

    We present computer codes for heat transfer in water cooled rf cavities. RF parameters obtained by SUPERFISH or analytically are operated on by a set of codes using PLOTDATA, a command-driven program developed and distributed by TRIUMF [1]. Emphasis is on practical solutions with designer's interactive input during the computations. Results presented in summary printouts and graphs include the temperature, flow, and pressure data. (authors). 4 refs., 4 figs

  13. Unbalanced field RF electron gun

    Science.gov (United States)

    Hofler, Alicia

    2013-11-12

    A design for an RF electron gun having a gun cavity utilizing an unbalanced electric field arrangement. Essentially, the electric field in the first (partial) cell has higher field strength than the electric field in the second (full) cell of the electron gun. The accompanying method discloses the use of the unbalanced field arrangement in the operation of an RF electron gun in order to accelerate an electron beam.

  14. Workplace flexibility.

    Science.gov (United States)

    Scordato, C; Harris, J

    1990-01-01

    Whether your organization is in a growth pattern or downsizing, you are probably facing change. To gain some insight into your options, here is an in-depth look at the problems and benefits of some flexible work arrangements from a just published study by Catalyst.

  15. Flexibility conflict?

    NARCIS (Netherlands)

    Delsen, L.W.M.; Bauer, F.; Groß, H.; Sieglen, G.

    2002-01-01

    The chapter deals with the presupposed conflict of interests between employers and employees resulting from a decoupling of operating hours and working times. It starts from the notion that both long operating hours and flexibility are relative concepts. As there is some discretion, the ultimate

  16. Additive manufacturing of RF absorbers

    Science.gov (United States)

    Mills, Matthew S.

    The ability of additive manufacturing techniques to fabricate integrated electromagnetic absorbers tuned for specific radio frequency bands within structural composites allows for unique combinations of mechanical and electromagnetic properties. These composites and films can be used for RF shielding of sensitive electromagnetic components through in-plane and out-of-plane RF absorption. Structural composites are a common building block of many commercial platforms. These platforms may be placed in situations in which there is a need for embedded RF absorbing properties along with structural properties. Instead of adding radar absorbing treatments to the external surface of existing structures, which adds increased size, weight and cost; it could prove to be advantageous to integrate the microwave absorbing properties directly into the composite during the fabrication process. In this thesis, a method based on additive manufacturing techniques of composites structures with prescribed electromagnetic loss, within the frequency range 1 to 26GHz, is presented. This method utilizes screen printing and nScrypt micro dispensing to pattern a carbon based ink onto low loss substrates. The materials chosen for this study will be presented, and the fabrication technique that these materials went through to create RF absorbing structures will be described. The calibration methods used, the modeling of the RF structures, and the applications in which this technology can be utilized will also be presented.

  17. RF Group Annual Report 2011

    CERN Document Server

    Angoletta, M E; Betz, M; Brunner, O; Baudrenghien, P; Calaga, R; Caspers, F; Ciapala, E; Chambrillon, J; Damerau, H; Doebert, S; Federmann, S; Findlay, A; Gerigk, F; Hancock, S; Höfle, W; Jensen, E; Junginger, T; Liao, K; McMonagle, G; Montesinos, E; Mastoridis, T; Paoluzzi, M; Riddone, G; Rossi, C; Schirm, K; Schwerg, N; Shaposhnikova, E; Syratchev, I; Valuch, D; Venturini Delsolaro, W; Völlinger, C; Vretenar, M; Wuensch, W

    2012-01-01

    The highest priority for the RF group in 2011 was to contribute to a successful physics run of the LHC. This comprises operation of the superconducting 400 MHz accelerating system (ACS) and the transverse damper (ADT) of the LHC itself, but also all the individual links of the injector chain upstream of the LHC – Linac2, the PSB, the PS and the SPS – don’t forget that it is RF in all these accelerators that truly accelerates! A large variety of RF systems had to operate reliably, often near their limit. New tricks had to be found and implemented to go beyond limits; not to forget the equally demanding operation with Pb ions using in addition Linac3 and LEIR. But also other physics users required the full attention of the RF group: CNGS required in 2011 beams with very short, intense bunches, AD required reliable deceleration and cooling of anti-protons, Isolde the post-acceleration of radioactive isotopes in Rex, just to name a few. In addition to the supply of beams for physics, the RF group has a num...

  18. Pc based RF control system for the Vincy cyclotron

    International Nuclear Information System (INIS)

    Samardzic, B.J.; Drndarevic, V.R.

    1999-01-01

    The concept and design procedure for the RF control system of the VINCY cyclotron are described. Special attention has been paid to the choice of computer support of this system. The merits and limitations of the chosen solution have been analyzed. A PC type computer has been selected as the platform for performing the functions of initiation, control, and supervision of the RF system. The integration of the hardware is carried out by direct connection to the PC bus via standard communication interfaces. The system software operates under a graphic oriented Windows operating system applying the modern concept of virtual instrumentation. The application of this concept allowed considerable simplification of the operator-RF system interaction and resulted in additional flexibility of the software to further extensions or modifications of the system. The selected open architecture of the computer platform allows a simple and economic upgrading of the realized system in accordance with future requirements. Tests of the realized RF control system prototype are in progress. (authors)

  19. RF phase focusing in portable x-band, linear accelerators

    International Nuclear Information System (INIS)

    Miller, R.H.; Deruyter, H.; Fowkes, W.R.; Potter, J.M.; Schonberg, R.G.; Weaver, J.N.

    1985-01-01

    In order to minimize the size and weight of the x-ray or neutron source for a series of portable radiographic linear accelerators, the x-ray head was packaged separately from the rest of the system and consists of only the linac accelerating structure, electron gun, built-in target, collimator, ion pump and an RF window. All the driving electronics and cooling are connected to the x-ray head through flexible waveguide, cables, and waterlines. The x-ray head has been kept small and light weight by using the RF fields for radial focusing, as well as for longitudinal bunching and accelerating the beam. Thus, no external, bulky magnetic focusing devices are required. The RF focusing is accomplished by alternating the sign of the phase difference between the RF and the beam and by tapering from cavity to cavity the magnitude of the buncher field levels. The former requires choosing the right phase velocity taper (mix of less than vp = c cavities) and the latter requires the right sizing of the cavity to cavity coupling smiles (irises)

  20. RF phase focusing in portable X-band, linear accelerators

    International Nuclear Information System (INIS)

    Miller, R.H.; Deruyter, H.; Fowkes, W.R.; Potter, J.W.; Schonberg, R.G.; Weaver, J.W.

    1985-01-01

    In order to minimize the size and weight of the x-ray or neutron source for a series of portable radiographic linear accelerators, the x-ray head was packaged separately from the rest of the system and consists of only the linac accelerating structure, electron gun, built-in target, collimator, ion pump and an RF window. All the driving electronics and cooling are connected to the x-ray head through flexible waveguide, cables, and waterlines. The x-ray head has been kept small and light weight by using the RF fields for radial focusing, as well as for longitudinal bunching and accelerating the beam. Thus, no external, bulky magnetic focusing devices are required. The RF focusing is accomplished by alternating the sign of the phase difference between the RF and the beam and by tapering from cavity to cavity the magnitude of the buncher field levels. The former requires choosing the right phase velocity taper (mix of less than vp=c cavities) and the latter requires the right sizing of the cavity to cavity coupling smiles (irises)

  1. Rf system specifications for a linear accelerator

    International Nuclear Information System (INIS)

    Young, A.; Eaton, L.E.

    1992-01-01

    A linear accelerator contains many systems; however, the most complex and costly is the RF system. The goal of an RF system is usually simply stated as maintaining the phase and amplitude of the RF signal within a given tolerance to accelerate the charged particle beam. An RF system that drives a linear accelerator needs a complete system specification, which should contain specifications for all the subsystems (i.e., high-power RF, low-level RF, RF generation/distribution, and automation control). This paper defines a format for the specifications of these subsystems and discusses each RF subsystem independently to provide a comprehensive understanding of the function of each subsystem. This paper concludes with an example of a specification spreadsheet allowing one to input the specifications of a subsystem. Thus, some fundamental parameters (i.e., the cost and size) of the RF system can be determined

  2. Klystron equalization for RF feedback

    International Nuclear Information System (INIS)

    Corredoura, P.

    1993-01-01

    The next generation of colliding beam storage rings support higher luminosities by significantly increasing the number of bunches and decreasing the spacing between respective bunches. The heavy beam loading requires large RF cavity detuning which drives several lower coupled bunch modes very strongly. One technique which has proven to be very successful in reducing the coupled bunch mode driving impedance is RF feedback around the klystron-cavity combination. The gain and bandwidth of the feedback loop is limited by the group delay around the feedback loop. Existing klystrons on the world market have not been optimized for this application and contribute a large portion of the total loop group delay. This paper describes a technique to reduce klystron group delay by adding an equalizing filter to the klystron RF drive. Such a filter was built and tested on a 500 kill klystron as part of the on going PEP-II R ampersand D effort here at SLAC

  3. RF Loads for Energy Recovery

    CERN Document Server

    Federmann, S; Caspers, F

    2012-01-01

    Different conceptional designs for RF high power loads are presented. One concept implies the use of solid state rectifier modules for direct RF to DC conversion with efficiencies beyond 80%. In addition, robust metallic low-Q resonant structures, capable of operating at high temperatures (>150 ◦C) are discussed. Another design deals with a very high temperature (up to 800 ◦C) air cooled load using a ceramic foam block inside a metal enclosure. This porous ceramic block is the microwave absorber and is not brazed to the metallic enclosure.

  4. rf reference line for PEP

    International Nuclear Information System (INIS)

    Schwarz, H.D.; Weaver, J.N.

    1979-03-01

    A rf phase reference line in 6 segments around the 2200 meter circumference PEP storage ring is described. Each segment of the reference line is phase stabilized by its own independent feedback system, which uses an amplitude modulated reflection from the end of each line. The modulation is kept small and decoupled from the next segment to avoid crosstalk and significant modulation of the rf drive signal. An error evaluation of the system is made. The technical implementation and prototype performance are described. Prototype tests indicate that the phase error around the ring can be held below 1 degree with this relatively simple system

  5. rf reference line for PEP

    Energy Technology Data Exchange (ETDEWEB)

    Schwarz, H.D.; Weaver, J.N.

    1979-03-01

    A rf phase reference line in 6 segments around the 2200 meter circumference PEP storage ring is described. Each segment of the reference line is phase stabilized by its own independent feedback system, which uses an amplitude modulated reflection from the end of each line. The modulation is kept small and decoupled from the next segment to avoid crosstalk and significant modulation of the rf drive signal. An error evaluation of the system is made. The technical implementation and prototype performance are described. Prototype tests indicate that the phase error around the ring can be held below 1 degree with this relatively simple system.

  6. Flexible licensing

    Directory of Open Access Journals (Sweden)

    Martyn Jansen

    2012-07-01

    Full Text Available The case is presented for a more flexible approach to licensing online library resources. Today's distributed education environment creates pressure for UK higher and further education institutions (HEI/FEIs to form partnerships and to develop educational products and roll them out across the globe. Online library resources are a key component of distributed education and yet existing licensing agreements struggle to keep pace with the increasing range of users and purposes for which they are required. This article describes the process of developing a flexible approach to licensing and proposes a new model licence for online library resources which has the adaptability needed in this new global educational landscape. These ideas have been presented and discussed at various workshops across Eduserv's and JISC Collections' higher education and publisher communities, and further consultation is ongoing.

  7. Control system for RF-driven negative ion source experimental setup at HUST

    Energy Technology Data Exchange (ETDEWEB)

    Li, Dong; Wang, Xiaomin, E-mail: xm_wang@hust.edu.cn; Zhao, Peng; Liu, Kaifeng; Zhang, Lige; Yue, Haikun; Chen, Dezhi; Zuo, Chen

    2017-03-15

    Highlights: • The CompactRIO system is reliable and could achieve high-speed data collection. • The queue and event software structure allows the control code to be flexible. • TCP/IP performs better than shared variable method for mass data transmission. • The method for lowering the peak RF reflected power has been discussed and given. - Abstract: An experimental setup of RF-driven negative ion source has been built at the Huazhong University of Science and Technology (HUST). The control system for this setup is responsible for RF loading, gas feeding, filament heating, filament DC bias, data collection and Langmuir probe triggering during plasma production. To research influences on the plasma ignition of gas puff and RF power loading, the control system should be of flexible operating sequence, high-speed data collection and reliable data transmission. The general control unit (GCU) adopts a CompactRIO system, which performs high-speed data collection for gas pressure and RF power. The host control program adopts a queue and event structure for flexible operation, and TCP/IP method is applied for mass data transmission. The development of the host control program is described in detail. The test results of the shared variable and TCP/IP methods are presented, as well as data showing the advantages of the TCP/IP method. The experiment results with two different sequences of plasma production are given and discussed here.

  8. Emittance growth in rf linacs

    International Nuclear Information System (INIS)

    Jameson, R.A.

    1979-01-01

    As the space-charge limit is approached, the current that can be accelerated in an rf linac and the output emittance that can be expected are discussed. The role of the envelope equations to estimate limits is outlined. The results of numerical experiments to explore general properties of emittance growth are given

  9. Field emission in RF cavities

    International Nuclear Information System (INIS)

    Bonin, B.

    1996-01-01

    Electron field emission limits the accelerating gradient in superconducting cavities. It is shown how and why it is an important problem. The phenomenology of field emission is then described, both in DC and RF regimes. Merits of a few plausible 'remedies' to field emission are discussed. (author)

  10. Modern technologies in rf superconductivity

    International Nuclear Information System (INIS)

    Lengeler, H.

    1994-01-01

    The development and application of superconducting rf cavities in particle accelerators is a fine example of advanced technology and of close cooperation with industry. This contribution examines the theoretical and present-day practical limitations of sc cavities and describes some advanced technologies needed for their large scale applications. (orig.)

  11. Broadband direct RF digitization receivers

    CERN Document Server

    Jamin, Olivier

    2014-01-01

    This book discusses the trade-offs involved in designing direct RF digitization receivers for the radio frequency and digital signal processing domains.  A system-level framework is developed, quantifying the relevant impairments of the signal processing chain, through a comprehensive system-level analysis.  Special focus is given to noise analysis (thermal noise, quantization noise, saturation noise, signal-dependent noise), broadband non-linear distortion analysis, including the impact of the sampling strategy (low-pass, band-pass), analysis of time-interleaved ADC channel mismatches, sampling clock purity and digital channel selection. The system-level framework described is applied to the design of a cable multi-channel RF direct digitization receiver. An optimum RF signal conditioning, and some algorithms (automatic gain control loop, RF front-end amplitude equalization control loop) are used to relax the requirements of a 2.7GHz 11-bit ADC. A two-chip implementation is presented, using BiCMOS and 65nm...

  12. Introduction to RF linear accelerators

    International Nuclear Information System (INIS)

    Weiss, M.

    1994-01-01

    The basic features of RF linear accelerators are described. The concept of the 'loaded cavity', essential for the synchronism wave-particle, is introduced, and formulae describing the action of electromagnetic fields on the beam are given. The treatment of intense beams is mentioned, and various existing linear accelerators are presented as examples. (orig.)

  13. MOSFET Degradation Under RF Stress

    NARCIS (Netherlands)

    Sasse, G.T.; Kuper, F.G.; Schmitz, Jurriaan

    2008-01-01

    We report on the degradation of MOS transistors under RF stress. Hot-carrier degradation, negative-bias temperature instability, and gate dielectric breakdown are investigated. The findings are compared to established voltage- and field-driven models. The experimental results indicate that the

  14. The LHC Low Level RF

    CERN Document Server

    Baudrenghien, Philippe; Molendijk, John Cornelis; Olsen, Ragnar; Rohlev, Anton; Rossi, Vittorio; Stellfeld, Donat; Valuch, Daniel; Wehrle, Urs

    2006-01-01

    The LHC RF consists of eight 400 MHz superconducting cavities per ring, with each cavity independently powered by a 300 kW klystron, via a circulator. The challenge for the Low Level is to cope with very high beam current (more than 1 A RF component) and achieve excellent beam lifetime (emittance growth time in excess of 25 hours). Each cavity has an associated Cavity Controller rack consisting of two VME crates which implement high gain RF Feedback, a Tuner Loop with a new algorithm, a Klystron Ripple Loop and a Conditioning system. In addition each ring has a Beam Control system (four VME crates) which includes a Frequency Program, Phase Loop, Radial Loop and Synchronization Loop. A Longitudinal Damper (dipole and quadrupole mode) acting via the 400 MHz cavities is included to reduce emittance blow-up due to filamentation from phase and energy errors at injection. Finally an RF Synchronization system implements the bunch into bucket transfer from the SPS into each LHC ring. When fully installed in 2007, the...

  15. Simulation of synchrotron motion with rf noise

    International Nuclear Information System (INIS)

    Leemann, B.T.; Forest, E.; Chattopadhyay, S.

    1986-08-01

    The theoretical formulation is described that is behind an algorithm for synchrotron phase-space tracking with rf noise and some preliminary simulation results of bunch diffusion under rf noise obtained by actual tracking

  16. Foreword in "RF imperfections in high-rate wireless systems: impact and digital compensation"

    NARCIS (Netherlands)

    Linnartz, J.P.M.G.; Schenk, Tim

    2008-01-01

    Foreword This book takes a modern, multidisciplinary view on radio system design: the advantages of digital signal processing are exploited to satisfy the ever increasing demands on better performing, flexible radio frequency (RF) circuits. By accepting that analog circuits are inherently imperfect,

  17. Experimental investigation of heating phenomena in linac mechanical interfaces due to RF field penetration

    International Nuclear Information System (INIS)

    Fazio, M.V.; Reid, D.W.; Potter, J.M.

    1981-01-01

    In a high duty-factor, high-current, drift-tube linear accelerator, a critical interface exists between the drift-tube stem and the tank wall. This interface must provide vacuum integrity and RF continuity, while simultaneously allowing alignment flexibility. Because of past difficulties with RF heating of vacuum bellows and RF joints encountered by others, a paucity of available information, and the high reliability requirement for the Fusion Materials Irradiation Test (FMIT) accelerator, a program was initiated to study the problem. Because RF heating is the common failure mode, an attempt was made to find a correlation between the drift-tube-stem/linac-tank interface geometry and RF field penetration from the tank into the interface region. Experiments were performed at 80 MHz on an RF structure designed to simulate the conditions to which a drift-tube stem and vacuum bellows are exposed in a drift-tube linac. Additional testing was performed on a 367-MHz model of the FMIT prototype drift-tube linac. Experimental results, and a method to predict excessive RF heating, is presented. An experimentally tested solution to the problem is discussed

  18. Digital low level RF control system for the DESY TTF VUV-FEL Linac

    International Nuclear Information System (INIS)

    Ayvazyan, V.; Choroba, S.; Matyushin, A.; Moeller, G.; Petrosyan, G.; Rehlich, K.; Simrock, S.N.; Vetrov, P.

    2005-01-01

    In the RF system for the Vacuum Ultraviolet Free Electron Laser (VUV-FEL) Linac each klystron supplies RF power to up to 32 cavities. The superconducting cavities are operated in pulsed mode and high accelerating gradients close to the performance limit. The RF control of the cavity fields to the level of 10 -4 for amplitude and 0.1 degree for phase however presents a significant technical challenge due to the narrow bandwidth of the cavities which results in high sensitivity to perturbations of the resonance frequency by mechanical vibrations (microphonics) and Lorenz force detuning. The VUV-FEL Linac RF control system employs a completely digital feedback system to provide flexibility in the control algorithms, precise calibration of the accelerating field vector-sum, and extensive diagnostics and exception handling capabilities. The RF control algorithm is implemented in DSP (Digital Signal Processor) firmware and DOOCS (Distributed Object Oriented Control System) servers. The RF control system design objectives are discussed. Hardware and software design of the DSP based RF control are presented. (orig.)

  19. 1 MW, 352.2 MHz, CW and Pulsed RF test stand

    International Nuclear Information System (INIS)

    Badapanda, M.K.; Tripathi, Akhilesh; Upadhyay, Rinki; Tyagi, Rajiv; Hannurkar, P.R.

    2011-01-01

    A 1 MW, 352.2 MHz, RF test stand based on Thales make TH 2089 klystron amplifier is being developed at Raja Ramanna Centre for Advanced Technology (RRCAT), Indore for characterization and qualification of RF components, cavities and related subsystems. Provision to vary RF power from 50 kW to 1 MW with adequate flexibility for testing wide range of HV components, RF components and cavities is incorporated in this test stand. The paper presents a brief detail of various power supplies like high voltage cathode bias power supply, modulating anode power supply, filament power supply, electromagnet power supplies and ion pump power supplies along with their interconnections for biasing TH 2089 klystron amplifier. A digital control and interlock system is being developed to realize proper sequence of operation of various power supplies and to monitor the status of crucial parameters in this test set up. This RF test stand will be a unique national facility, capable of providing both CW and pulse RF power for realizing reliable RF power sources for various projects including the development of high energy proton linac under ADSS program of the Department of Atomic Energy. (author)

  20. Control of total voltage in the large distributed RF system of LEP

    CERN Document Server

    Ciapala, Edmond

    1995-01-01

    The LEP RF system is made up of a large number of independent RF units situated around the ring near the interaction points. These have different available RF voltages depending on their type and they may be inactive or unable to provide full voltage for certain periods. The original RF voltage control system was based on local RF unit voltage function generators pre-loaded with individual tables for energy ramping. This was replaced this year by a more flexible global RF voltage control system. A central controller in the main control room has direct access to the units over the LEP TDM system via multiplexers and local serial links. It continuously checks the state of all the units and adjusts their voltages to maintain the desired total voltage under all conditions. This voltage is distributed among the individual units to reduce the adverse effects of RF voltage asymmetry around the machine as far as possible. The central controller is a VME system with 68040 CPU and real time multitasking operating syste...

  1. Digital low level RF control system for the DESY TTF VUV-FEL Linac

    Energy Technology Data Exchange (ETDEWEB)

    Ayvazyan, V.; Choroba, S.; Matyushin, A.; Moeller, G.; Petrosyan, G.; Rehlich, K.; Simrock, S.N.; Vetrov, P.

    2005-07-01

    In the RF system for the Vacuum Ultraviolet Free Electron Laser (VUV-FEL) Linac each klystron supplies RF power to up to 32 cavities. The superconducting cavities are operated in pulsed mode and high accelerating gradients close to the performance limit. The RF control of the cavity fields to the level of 10{sup -4} for amplitude and 0.1 degree for phase however presents a significant technical challenge due to the narrow bandwidth of the cavities which results in high sensitivity to perturbations of the resonance frequency by mechanical vibrations (microphonics) and Lorenz force detuning. The VUV-FEL Linac RF control system employs a completely digital feedback system to provide flexibility in the control algorithms, precise calibration of the accelerating field vector-sum, and extensive diagnostics and exception handling capabilities. The RF control algorithm is implemented in DSP (Digital Signal Processor) firmware and DOOCS (Distributed Object Oriented Control System) servers. The RF control system design objectives are discussed. Hardware and software design of the DSP based RF control are presented. (orig.)

  2. RF gun using laser-triggered photocathode

    International Nuclear Information System (INIS)

    Akiyama, H.; Otake, Y.; Naito, T.; Takeuchi, Y.; Yoshioka, M.

    1992-01-01

    An RF gun using laser-triggered photocathode has many advantages as an injector of the linear colliders since it can generate a low emittance and high current pulsed beam. The experimental facility for the RF gun, such as an RF system, a laser system and a photocathode have been fabricated to study the fundamental characteristics. The dynamics of the RF gun has also studied by the 1D sheet beam model. (author)

  3. Flexible Consumption

    DEFF Research Database (Denmark)

    Holm Jacobsen, Peter; Pallesen, Trine

    This report presents the first findings from our qualitative study of consumer behaviour vis-à-vis flexible consumption. The main of objective of this report is to present our first round of data from Bornholm, and to assist the design of products/services designed in WP6. In the report, we adopt...... the perspective of the consumer: what does living in a demand response setup look like to participants – and what kinds of behaviour and interest motivate – and emerge from – their participation in EcoGrid 2.0....

  4. Flexible Capitalism

    DEFF Research Database (Denmark)

    Approaching “work” as at heart a practice of exchange, this volume explores sociality in work environments marked by the kind of structural changes that have come to define contemporary “flexible” capitalism. It introduces anthropological exchange theory to a wider readership, and shows how...... the perspective offers new ways to enquire about the flexible capitalism’s social dimensions. The essays contribute to a trans-disciplinary scholarship on contemporary economic practice and change by documenting how, across diverse settings, “gift-like” socialities proliferate, and even sustain the intensified...

  5. Review of pulsed rf power generation

    International Nuclear Information System (INIS)

    Lavine, T.L.

    1992-04-01

    I am going to talk about pulsed high-power rf generation for normal-conducting electron and positron linacs suitable for applications to high-energy physics in the Next Linear Collider, or NLC. The talk will cover some basic rf system design issues, klystrons and other microwave power sources, rf pulse-compression devices, and test facilities for system-integration studies

  6. Discussion of high brightness rf linear accelerators

    International Nuclear Information System (INIS)

    Jameson, R.A.

    1987-01-01

    The fundamental aspects of high-brightness rf linacs are outlined, showing the breadth and complexity of the technology and indicating that synergism with advancements in other areas is important. Areas of technology reviewed include ion sources, injectors, rf accelerator structures, beam dynamics, rf power, and automatic control

  7. High-brightness rf linear accelerators

    International Nuclear Information System (INIS)

    Jameson, R.A.

    1986-01-01

    The issue of high brightness and its ramifications in linacs driven by radio-frequency fields is discussed. A history of the RF linacs is reviewed briefly. Some current applications are then examined that are driving progress in RF linacs. The physics affecting the brightness of RF linacs is then discussed, followed by the economic feasibility of higher brightness machines

  8. RF phase distribution systems at the SLC

    International Nuclear Information System (INIS)

    Jobe, R.K.; Schwarz, H.D.

    1989-04-01

    Modern large linear accelerators require RF distribution systems with minimal phase drifts and errors. Through the use of existing RF coaxial waveguides, and additional installation of phase reference cables and monitoring equipment, stable RF distribution for the SLC has been achieved. This paper discusses the design and performance of SLAC systems, and some design considerations for future colliders. 6 refs., 4 figs

  9. Linear collider RF: Introduction and summary

    International Nuclear Information System (INIS)

    Palmer, R.B.

    1995-01-01

    The relation of acceleration gradient with RF frequency is examined, and approximate general RF power requirements are derived. Considerations of efficiency and cost are discussed. RF Sources, presented at the conference, are reviewed. Overall efficiencies of the linear collider proposals are compared. copyright 1995 American Institute of Physics

  10. Flexible nanovectors

    International Nuclear Information System (INIS)

    Pugno, Nicola M

    2008-01-01

    In this paper we show that the control of adhesion in highly flexible (a property that could be crucial for smart drug delivery but which is still ignored in the literature) nanovectors can help in smartly targeting and delivering the drug. The existence of and the conditions for activating and controlling a super-adhesive state are addressed. Even if such a state has never been observed in nanovectors, our calculations, as well as observations in spiders and geckos, suggest its existence and feasible control. Control of the competition between the drag and the adhesive force is exploited to improve the targeting ability and a hierarchical model is applied to describe a real vasculature. The high flexibility of the nanovector is used to smartly deliver the drug only during adhesion by nanopumping or, as a limiting case, by the new concept of 'adhesion induced nanovector implosion'; a liquid drop analogy is utilized for the calculations. Fast (pumping) and slow (diffusion) drug deliveries can thus be separately controlled by controlling the size and shape of the nanovector. Multiple stage nanovectors are also briefly discussed, mimicking aerospace vector strategies.

  11. Flexible nanovectors

    Science.gov (United States)

    Pugno, Nicola M.

    2008-11-01

    In this paper we show that the control of adhesion in highly flexible (a property that could be crucial for smart drug delivery but which is still ignored in the literature) nanovectors can help in smartly targeting and delivering the drug. The existence of and the conditions for activating and controlling a super-adhesive state are addressed. Even if such a state has never been observed in nanovectors, our calculations, as well as observations in spiders and geckos, suggest its existence and feasible control. Control of the competition between the drag and the adhesive force is exploited to improve the targeting ability and a hierarchical model is applied to describe a real vasculature. The high flexibility of the nanovector is used to smartly deliver the drug only during adhesion by nanopumping or, as a limiting case, by the new concept of 'adhesion induced nanovector implosion'; a liquid drop analogy is utilized for the calculations. Fast (pumping) and slow (diffusion) drug deliveries can thus be separately controlled by controlling the size and shape of the nanovector. Multiple stage nanovectors are also briefly discussed, mimicking aerospace vector strategies.

  12. A new interlock design for the TESLA RF system

    International Nuclear Information System (INIS)

    Leich, H.; Kahl, J.; Choroba, S.; Grevsmuehl, T.; Heidbrook, N.

    2001-01-01

    The RF system for TESLA requires a comprehensive interlock system. Usually interlock systems are organized in a hierarchical way. In order to react to different fault conditions in a fast and flexible manner a nonhierarchical organization seems to be the better solution. At the TESLA Test Facility (TTF) at DESY the authors will install a nonhierarchical interlock system that is based on user designed reprogrammable gate-arrays (FPGA's) which incorporate an embedded microcontroller system. This system could be used later for the TESLA linear collider replacing a strictly hierarchical design

  13. rf impedance of the accelerating beam gap and its significance to the TRIUMF rf system

    International Nuclear Information System (INIS)

    Poirier, R.

    1979-03-01

    The rf system at TRIUMF is now operating with the highest Q, the lowest rf leakage into the beam gap, the best voltage stability, and the lowest resonator strongback temperatures ever measured since it was first put into operation. This paper describes the calculation of the rf impedance of the beam gap and its correlation to the rf problems encountered, which eventually led to modifications to the flux guides and resonator tips to accomplish the improved operation of the rf system

  14. Stochastic cooling with a double rf system

    International Nuclear Information System (INIS)

    Wei, Jie.

    1992-01-01

    Stochastic cooling for a bunched beam of hadrons stored in an accelerator with a double rf system of two different frequencies has been investigated. The double rf system broadens the spread in synchrotron-oscillation frequency of the particles when they mostly oscillate near the center of the rf bucket. Compared with the ease of a single rf system, the reduction rates of the bunch dimensions are significantly increased. When the rf voltage is raised, the reduction rate, instead of decreasing linearly, now is independent of the ratio of the bunch area to the bucket area. On the other hand, the spread in synchrotron-oscillation frequency becomes small with the double rf system, if the longitudinal oscillation amplitudes of the particles are comparable to the dimension of the rf bucket. Consequently, stochastic cooling is less effective when the bunch area is close to the bucket area

  15. Superconductors for pulsed rf accelerators

    International Nuclear Information System (INIS)

    Campisi, I.E.; Farkas, Z.D.

    1985-04-01

    The choice of superconducting materials for accelerator rf cavities has been determined in the past only in part by basic properties of the superconductors, such as the critical field, and to a larger extent by criteria which include fabrication processes, surface conditions, heat transfer capabilities and so on. For cw operated cavities the trend has been toward choosing materials with higher critical temperatures and lower surface resistance, from Lead to Niobium, from Niobium to Nb 3 Sn. This trend has been dictated by the specific needs of storage ring cw system and by the relatively low fields which could be reached without breakdown. The work performed at SLAC on superconducting cavities using microsecond long high power rf pulses has shown that in Pb, Nb, and Nb 3 Sn fields close to the critical magnetic fields can be reached without magnetic breakdown

  16. Rf System for the NLCTA

    International Nuclear Information System (INIS)

    Wang, J.W.; Adolphsen, C.; Eichner, J.; Fuller, R.W.; Gold, S.L.; Hanna, S.M.; Hoag, H.A.; Holmes, S.G.; Koontz, R.F.; Lavine, Theodore L.; Loewen, R.J.; Miller, R.H.; Nantista, C.D.; Pope, R.; Rifkin, J.; Ruth, R.D.; Tantawi, S.G.; Vlieks, A.E.; Wilson, Z.; Yeremian, A.

    2011-01-01

    This paper describes an X-Band RF system for the Next Linear Collider Test Accelerator. The RF system consists of a 90 MeV injector and a 540 MeV linac. The main components of the injector are two low-Q single-cavity prebunchers and two 0.9-m-long detuned accelerator sections. The linac system consists of six 1.8-m-long detuned and damped detuned accelerator sections powered in pairs. The rf power generation, compression, delivery, distribution and measurement systems consist of klystrons, SLEDII energy compression systems, rectangular waveguides, magic-T's, and directional couplers. The phase and amplitude for each prebuncher is adjusted via a magic-T type phase shifter/attenuator. Correct phasing between the two 0.9 m accelerator sections is obtained by properly aligning the sections and adjusting two squeeze type phase shifters. Bunch phase and bunch length can be monitored with special microwave cavities and measurement systems. The design, fabrication, microwave measurement, calibration, and operation of the sub-systems and their components are briefly presented.

  17. Low jitter RF distribution system

    Science.gov (United States)

    Wilcox, Russell; Doolittle, Lawrence; Huang, Gang

    2012-09-18

    A timing signal distribution system includes an optical frequency stabilized laser signal amplitude modulated at an rf frequency. A transmitter box transmits a first portion of the laser signal and receive a modified optical signal, and outputs a second portion of the laser signal and a portion of the modified optical signal. A first optical fiber carries the first laser signal portion and the modified optical signal, and a second optical fiber carries the second portion of the laser signal and the returned modified optical signal. A receiver box receives the first laser signal portion, shifts the frequency of the first laser signal portion outputs the modified optical signal, and outputs an electrical signal on the basis of the laser signal. A detector at the end of the second optical fiber outputs a signal based on the modified optical signal. An optical delay sensing circuit outputs a data signal based on the detected modified optical signal. An rf phase detect and correct signal circuit outputs a signal corresponding to a phase stabilized rf signal based on the data signal and the frequency received from the receiver box.

  18. Oak Ridge rf Test Facility

    International Nuclear Information System (INIS)

    Gardner, W.L.; Hoffman, D.J.; McCurdy, H.C.; McManamy, T.J.; Moeller, J.A.; Ryan, P.M.

    1985-01-01

    The rf Test Facility (RFTF) of Oak Ridge National Laboratory (ORNL) provides a national facility for the testing and evaluation of steady-state, high-power (approx.1.0-MW) ion cyclotron resonance heating (ICRH) systems and components. The facility consists of a vacuum vessel and two fully tested superconducting development magnets from the ELMO Bumpy Torus Proof-of-Principle (EBT-P) program. These are arranged as a simple mirror with a mirror ratio of 4.8. The axial centerline distance between magnet throat centers is 112 cm. The vacuum vessel cavity has a large port (74 by 163 cm) and a test volume adequate for testing prototypic launchers for Doublet III-D (DIII-D), Tore Supra, and the Tokamak Fusion Test Reactor (TFTR). Attached to the internal vessel walls are water-cooled panels for removing the injected rf power. The magnets are capable of generating a steady-state field of approx.3 T on axis in the magnet throats. Steady-state plasmas are generated in the facility by cyclotron resonance breakdown using a dedicated 200-kW, 28-GHz gyrotron. Available rf sources cover a frequency range of 2 to 200 MHz at 1.5 kW and 3 to 18 MHz at 200 kW, with several sources at intermediate parameters. Available in July 1986 will be a >1.0-MW, cw source spanning 40 to 80 MHz. 5 figs

  19. Structural features of Fab fragments of rheumatoid factor IgM-RF in solution

    International Nuclear Information System (INIS)

    Volkov, V. V.; Lapuk, V. A.; Shtykova, E. V.; Stepina, N. D.; Dembo, K. A.; Sokolova, A. V.; Amarantov, S. V.; Timofeev, V. P.; Ziganshin, R. Kh.; Varlamova, E. Yu.

    2008-01-01

    The structural features of the Fab fragments of monoclonal (Waldenstroem's disease) immunoglobulin M (IgM) and rheumatoid immunoglobulin M (IgM-RF) were studied by a complex of methods, including small-angle X-ray scattering (SAXS), electron spin resonance (ESR), and mass spectrometry (MS). The Fab-RF fragment was demonstrated to be much more flexible in the region of interdomain contacts, the molecular weights and the shapes of the Fab and Fab-RF macromolecules in solution being only slightly different. According to the ESR data, the rotational correlation time for a spin label introduced into the peptide sequence for Fab is twice as large as that for Fab-RF (21±2 and 11±1 ns, respectively), whereas the molecular weights of these fragments differ by only 0.5% (mass-spectrometric data), which correlates with the results of molecular-shape modeling by small-angle X-ray scattering. The conclusion about the higher flexibility of the Fab-RF fragment contributes to an understanding of the specificity of interactions between the rheumatoid factor and the antigens of the own organism.

  20. Preparations for Upgrading the RF Systems of the PS Booster

    CERN Document Server

    Albright, Simon; Shaposhnikova, Elena

    2016-01-01

    The accelerators of the LHC injector chain need to be upgraded to provide the HL-LHC beams. The PS Booster, the first synchrotron in the LHC injection chain, uses three different RF systems (first, second and up to tenth harmonic) in each of its four rings. As part of the LHC Injector Upgrade the current ferrite RF systems will be replaced with broadband Finemet cavities, increasing the flexibility of the RF system. A Finemet test cavity has been installed in Ring 4 to investigate its effect on machine performance, especially beam stability, during extensive experimental studies. Due to large space charge impedance Landau damping is lost through most of the cycle in single harmonic operation, but is recovered when using the second harmonic and controlled longitudinal emittance blow-up. This paper compares beam parameters during acceleration with and without the Finemet test cavity. Comparisons were made using beam measurements and simulations with the BLonD code based on a full PS Booster impedance model. Thi...

  1. Microscopic investigation of RF surfaces of 3 GHz niobium accelerator cavities following RF processing

    International Nuclear Information System (INIS)

    Graber, J.; Barnes, P.; Flynn, T.; Kirchgessner, J.; Knobloch, J.; Moffat, D.; Muller, H.; Padamsee, H.; Sears, J.

    1993-01-01

    RF processing of Superconducting accelerating cavities is achieved through a change in the electron field emission (FE) characteristics of the RF surface. The authors have examined the RF surfaces of several single-cell 3 GHz cavities, following RF processing, in a Scanning Electron Microscope (SEM). The RF processing sessions included both High Peak Power (P ≤ 50 kW) pulsed processing, and low power (≤ 20 W) continuous wave processing. The experimental apparatus also included a thermometer array on the cavity outer wall, allowing temperature maps to characterize the emission before and after RF processing gains. Multiple sites have been located in cavities which showed improvements in cavity behavior due to RF processing. Several SEM-located sites can be correlated with changes in thermometer signals, indicating a direct relationship between the surface site and emission reduction due to RF processing. Information gained from the SEM investigations and thermometry are used to enhance the theoretical model of RF processing

  2. RF Processing Experience with the GTF Prototype RF Gun

    International Nuclear Information System (INIS)

    Schmerge, J.F.

    2010-01-01

    The SSRL Gun Test Facility (GTF) was built to develop a high brightness electron injector for the LCLS and has been operational since 1996. A total of five different metal cathodes (4 Cu and 1 Mg) have been installed on the GTF gun. The rf processing history with the different cathodes will be presented including peak field achieved at the cathode. The LCLS gun is intended to operate at 120 MV/m and fields up to 140 MV/m have been achieved in the GTF gun. After installing a new cathode the number of rf pulses required to reach 120 MV/m is approximately 5-10 million. Total emitted dark current and Fowler Nordheim plots are also shown over the life of the cathode. The GTF photo-injector gun is an S-band standing-wave structure, with two resonant cavities and an intervening thick washer (Figure 1). The flat, back wall of the first cavity is a copper plate that serves as photocathode when illuminated with ultraviolet light from a pulsed, high-power laser. RF power enters the gun through an iris on the outer wall of the second cavity, and is coupled to the first through the axial opening of the washer. The first cavity is often referred to as a half cell, because its full-cell length has been truncated by the cathode plate and the second cavity is called the full cell. The gun is designed to operate in a π mode, with the peak field on axis in each cell approximately equal. The maximum in the half cell occurs at the cathode, and in the full cell near the center of the cavity. The field profile and tuning procedures are discussed in a separate tech note (1).

  3. FPGA-based RF spectrum merging and adaptive hopset selection

    Science.gov (United States)

    McLean, R. K.; Flatley, B. N.; Silvius, M. D.; Hopkinson, K. M.

    The radio frequency (RF) spectrum is a limited resource. Spectrum allotment disputes stem from this scarcity as many radio devices are confined to a fixed frequency or frequency sequence. One alternative is to incorporate cognition within a reconfigurable radio platform, therefore enabling the radio to adapt to dynamic RF spectrum environments. In this way, the radio is able to actively sense the RF spectrum, decide, and act accordingly, thereby sharing the spectrum and operating in more flexible manner. In this paper, we present a novel solution for merging many distributed RF spectrum maps into one map and for subsequently creating an adaptive hopset. We also provide an example of our system in operation, the result of which is a pseudorandom adaptive hopset. The paper then presents a novel hardware design for the frequency merger and adaptive hopset selector, both of which are written in VHDL and implemented as a custom IP core on an FPGA-based embedded system using the Xilinx Embedded Development Kit (EDK) software tool. The design of the custom IP core is optimized for area, and it can process a high-volume digital input via a low-latency circuit architecture. The complete embedded system includes the Xilinx PowerPC microprocessor, UART serial connection, and compact flash memory card IP cores, and our custom map merging/hopset selection IP core, all of which are targeted to the Virtex IV FPGA. This system is then incorporated into a cognitive radio prototype on a Rice University Wireless Open Access Research Platform (WARP) reconfigurable radio.

  4. RF and microwave microelectronics packaging II

    CERN Document Server

    Sturdivant, Rick

    2017-01-01

    Reviews RF, microwave, and microelectronics assembly process, quality control, and failure analysis Bridges the gap between low cost commercial and hi-res RF/Microwave packaging technologies Engages in an in-depth discussion of challenges in packaging and assembly of advanced high-power amplifiers This book presents the latest developments in packaging for high-frequency electronics. It is a companion volume to “RF and Microwave Microelectronics Packaging” (2010) and covers the latest developments in thermal management, electrical/RF/thermal-mechanical designs and simulations, packaging and processing methods, and other RF and microwave packaging topics. Chapters provide detailed coverage of phased arrays, T/R modules, 3D transitions, high thermal conductivity materials, carbon nanotubes and graphene advanced materials, and chip size packaging for RF MEMS. It appeals to practicing engineers in the electronic packaging and high-frequency electronics domain, and to academic researchers interested in underst...

  5. Lasers for RF guns: Proceedings

    International Nuclear Information System (INIS)

    Srinivasan-Rao, T.

    1994-01-01

    In the past decade, laser driven RF guns have matured from a device under development to a proven source for high brightness and low emittance electron beams. The reliability of the electron beam from these sources is dictated by the laser system that drives it. In addition, capabilities of the laser systems play a vital role in the design of the electron source for future machines such as the TESLA and NLC. The purpose of this workshop was to provide a forum for discussing the design criteria for the laser systems so that the reliability of the existing sources could be improved and the future machines could be serviced. The Workshop brought together experts in RF Guns, accelerators, and lasers, from both the commercial and academic community. Most of the presentations, discussions and conclusions at the workshop are included in these proceedings. The contents are divided into three sections, Section I contains the invited talks that outline the requirements of the RF Guns and the capabilities of the laser systems to meet these requirements. Section II includes most of the papers presented in the poster session. These papers describe various laser systems used with electron guns, schemes to modify the laser beam profile to optimize the electron bunch, and computer simulations of electron trajectories. Section III contains the summaries of the working groups. As the summary section indicates, with sufficient feed back systems, the electron gun could be made to operate reliably with minimum downtime, using commercial lasers currently available. The design of laser systems for future colliders depend critically on the choice of the cathode m the gun and its efficiency. Tentative designs of laser systems for the TESLA test facility and LCLS had been drawn assuming a copper cathode. Using a more efficient cathode will ease the energy requirement of the laser and simplify the design. The individual papers have been cataloged separately elsewhere

  6. On the frequency scalings of RF guns

    International Nuclear Information System (INIS)

    Lin, L.C.; Chen, S.C.; Wurtele, J.S.

    1995-01-01

    A frequency scaling law for RF guns is derived from the normalized Vlasov-Maxwell equations. It shows that higher frequency RF guns can generate higher brightness beams under the assumption that the accelerating gradient and all beam and structure parameters are scaled with the RF frequency. Numerical simulation results using MAGIC confirm the scaling law. A discussion of the range of applicability of the law is presented. copyright 1995 American Institute of Physics

  7. Analog techniques in CEBAF's RF control system

    International Nuclear Information System (INIS)

    Hovater, C.; Fugitt, J.

    1989-01-01

    Recent developments in high-speed analog technology have progressed into the areas of traditional RF technology. Diode related devices are being replaced by analog IC's in the CEBAF RF control system. Complex phase modulators and attenuators have been successfully tested at 70 MHz. They have three advantages over existing technology: lower cost, less temperature sensitivity, and more linearity. RF signal conditioning components and how to implement the new analog IC's will be covered in this paper. 4 refs., 5 figs

  8. Analog techniques in CEBAF'S RF control system

    International Nuclear Information System (INIS)

    Hovater, C.; Fugitt, J.

    1989-01-01

    Recent developments in high-speed analog technology have progressed into the areas of traditional rf technology. Diode-related devices are being replaced by analog IC's in the CEBAF rf control system. Complex phase modulators and attenuators have been successfully tested at 70 MHz. They have three advantages over existing technology: lower cost, less temperature sensitivity, and more linearity. Rf signal conditioning components and how to implement the new analog IC's will be covered in this paper. 4 refs., 5 figs

  9. Fast digital feedback control systems for accelerator RF system using FPGA

    International Nuclear Information System (INIS)

    Bagduwal, Pritam Singh; Sharma, Dheeraj; Tiwari, Nitesh; Lad, M.; Hannurkar, P.R.

    2012-01-01

    Feedback control system plays important role for proper injection and acceleration of beam in particle accelerators by providing the required amplitude and phase stability of RF fields in accelerating structures. Advancement in the field of digital technology enables us to develop fast digital feedback control system for RF applications. Digital Low Level RF (LLRF) system offers the inherent advantages of Digital System like flexibility, adaptability, good repeatability and reduced long time drift errors compared to analog system. To implement the feedback control algorithm, I/Q control scheme is used. By properly sampling the down converted IF signal using fast ADC we get accurate feedback signal and also eliminates the need of two separate detectors for amplitude and phase detection. Controller is implemented in Vertex-4 FPGA. Codes for control algorithms which controls the amplitude and phase in all four quadrants with good accuracy are written in the VHDL. I/Q modulator works as common actuator for both amplitude and phase correction. Synchronization between RF, LO and ADC clock is indispensable and has been achieved by deriving the clock and LO signal from RF signal itself. Control system has been successfully tested in lab with phase and amplitude stability better then ±1% and ±1° respectively. High frequency RF signal is down converted to IF using the super heterodyne technique. Super heterodyne principal not only brings the RF signal to the Low IF frequency at which it can be easily processed but also enables us to use the same hardware and software for other RF frequencies with some minor modification. (author)

  10. RF front-end world class designs

    CERN Document Server

    Love, Janine

    2009-01-01

    All the design and development inspiration and direction a harware engineer needs in one blockbuster book! Janine Love site editor for RF Design Line,columnist, and author has selected the very best RF design material from the Newnes portfolio and has compiled it into this volume. The result is a book covering the gamut of RF front end design from antenna and filter design fundamentals to optimized layout techniques with a strong pragmatic emphasis. In addition to specific design techniques and practices, this book also discusses various approaches to solving RF front end design problems and h

  11. High power RF transmission line component development

    International Nuclear Information System (INIS)

    Hong, B. G.; Hwang, C. K.; Bae, Y. D.; Yoon, J. S.; Wang, S. J.; Gu, S. H.; Yang, J. R.; Hahm, Y. S.; Oh, G. S.; Lee, J. R.; Lee, W. I.; Park, S. H.; Kang, M. S.; Oh, S. H.; Lee, W.I.

    1999-12-01

    We developed the liquid stub and phase shifter which are the key high RF power transmission line components. They show reliable operation characteristics and increased insulation capability, and reduced the size by using liquid (silicon oil, dielectric constant ε=2.72) instead of gas for insulating dielectric material. They do not have finger stock for the electric contact so the local temperature rise due to irregular contact and RF breakdown due to scratch in conductor are prevented. They can be utilized in broadcasting, radar facility which require high RF power transmission. Moreover, they are key components in RF heating system for fusion reactor. (author)

  12. High power RF transmission line component development

    Energy Technology Data Exchange (ETDEWEB)

    Hong, B. G.; Hwang, C. K.; Bae, Y. D.; Yoon, J. S.; Wang, S. J.; Gu, S. H.; Yang, J. R.; Hahm, Y. S.; Oh, G. S.; Lee, J. R.; Lee, W. I.; Park, S. H.; Kang, M. S.; Oh, S. H.; Lee, W.I

    1999-12-01

    We developed the liquid stub and phase shifter which are the key high RF power transmission line components. They show reliable operation characteristics and increased insulation capability, and reduced the size by using liquid (silicon oil, dielectric constant {epsilon}=2.72) instead of gas for insulating dielectric material. They do not have finger stock for the electric contact so the local temperature rise due to irregular contact and RF breakdown due to scratch in conductor are prevented. They can be utilized in broadcasting, radar facility which require high RF power transmission. Moreover, they are key components in RF heating system for fusion reactor. (author)

  13. RF Power Generation in LHC

    CERN Document Server

    Brunner, O C; Valuch, D

    2003-01-01

    The counter-rotating proton beams in the Large Hadron Collider (LHC) will be captured and then accelerated to their final energies of 2 x 7 TeV by two identical 400 MHz RF systems. The RF power source required for each beam comprises eight 300 kW klystrons. The output power of each klystron is fed via a circulator and a waveguide line to the input coupler of a single-cell super-conducting (SC) cavity. Four klystrons are powered by a 100 kV, 40A AC/DC power converter, previously used for the operation of the LEP klystrons. A five-gap thyratron crowbar protects the four klystrons in each of these units. The technical specification and measured performance of the various high-power elements are discussed. These include the 400MHz/300kW klystrons with emphasis on their group delay and the three-port circulators, which have to cope with peak reflected power levels up to twice the simultaneously applied incident power of 300 kW. In addition, a novel ferrite loaded waveguide absorber, used as termination for port No...

  14. SPS RF System Amplifier plant

    CERN Multimedia

    1977-01-01

    The picture shows a 2 MW, 200 MHz amplifier plant with feeder lines. The main RF-system of the SPS comprises four cavities: two of 20 m length and two of 16.5 m length. They are all installed in one long straight section (LSS 3). These cavities are of the travelling-wave type operating at a centre frequency of 200.2 MHz. They are wideband, filling time about 700 ns and untuned. The power amplifiers, using tetrodes are installed in a surface building 200 m from the cavities. Initially only two cavities were installed, a third cavity was installed in 1978 and a forth one in 1979. The number of power amplifiers was also increased: to the first 2 MW plant a second 2 MW plant was added and by end 1979 there were 8 500 kW units combined in pairs to feed each of the 4 cavities with up to about 1 MW RF power, resulting in a total accelerating voltage of about 8 MV. See also 7412016X, 7412017X, 7411048X.

  15. The RF system of FELI

    International Nuclear Information System (INIS)

    Morii, Y.; Miyauchi, Y.; Koga, A.; Abe, H.; Keishi, T.; Bessho, I.; Tomimasu, T.

    1994-01-01

    FELI (Free Electron Laser Research Institute, Inc.) is constructing a Free Electron Laser facility covering from 20 μm (infra red region) to 0.35 μm (ultra violet region), using an S-band linac. The building will be completed in November 1993 and installation of the linac will start in December 1993. The linac consists of a thermoionic 0.5ns-pulse triggered gun, a 714 MHz SHB (subharmonic buncher), a 2856 MHz standing wave type buncher, and 7 ETL (Electrotechnical Laboratory) type accelerating sections. An RF system of the linac for FELs is required of long pulse duration and high stability. S-band klystrons (TOSHIBA E3729) are operated in three pulse operation modes (pulse width and peak RF power); 24 μs - 24 MW, 12.5 μs - 34 MW, 0.5 μs - 70 MW. Each klystron modulator has the PFN consisting of 4 parallel networks of 24 capacitors and 24 inductors, and it has a line switch of an optical thyristor stack. These equipments are manufactured now, and an S-band klystron and modulator will be combined to test their performance at the works of NISSIN ELECTRIC Co. in October 1993. (author)

  16. High gradient RF breakdown study

    International Nuclear Information System (INIS)

    Laurent, L.; Luhmann, N.C. Jr.; Scheitrum, G.; Hanna, S.; Pearson, C.; Phillips, R.

    1998-01-01

    Stanford Linear Accelerator Center and UC Davis have been investigating high gradient RF breakdown and its effects on pulse shortening in high energy microwave devices. RF breakdown is a critical issue in the development of high power microwave sources and next generation linear accelerators since it limits the output power of microwave sources and the accelerating gradient of linacs. The motivation of this research is to find methods to increase the breakdown threshold level in X-band structures by reducing dark current. Emphasis is focused on improved materials, surface finish, and cleanliness. The test platform for this research is a traveling wave resonant ring. A 30 MW klystron is employed to provide up to 300 MW of traveling wave power in the ring to trigger breakdown in the cavity. Five TM 01 cavities have previously been tested, each with a different combination of surface polish and/or coating. The onset of breakdown was extended up to 250 MV/m with a TiN surface finish, as compared to 210 MV/m for uncoated OFE copper. Although the TiN coating was helpful in depressing the field emission, the lowest dark current was obtained with a 1 microinch surface finish, single-point diamond-turned cavity

  17. Direct RF modulation transmitter, sampling clock frequency setting method for direct RF modulation transmitter

    NARCIS (Netherlands)

    Fukuda, Shuichi; Nauta, Bram

    2013-01-01

    PROBLEM TO BE SOLVED: To provide a direct RF modulation transmitter capable of satisfying a radiation level regulation even without providing a SAW filter. SOLUTION: A direct RF modulation transmitter includes: digital/RF converters 105, 106 to which an I digital baseband signal, a Q digital

  18. Direct RF modulation transmitter, sampling clock frequency setting method for direct RF modulation transmitter

    NARCIS (Netherlands)

    Fukuda, Shuichi; Nauta, Bram

    2014-01-01

    PROBLEM TO BE SOLVED: To provide a direct RF modulation transmitter capable of satisfying a radiation level regulation even without providing a SAW filter. SOLUTION: A direct RF modulation transmitter includes: digital/RF converters 105, 106 to which an I digital baseband signal, a Q digital

  19. Flexible Electronics Research Facility

    Data.gov (United States)

    Federal Laboratory Consortium — The Flexible Electronics Research Facility designs, synthesizes, tests, and fabricates materials and devices compatible with flexible substrates for Army information...

  20. 17th International Conference on RF Superconductivity

    CERN Document Server

    Laxdal, Robert E.; Schaa, Volker R.W.

    2015-01-01

    RF superconductivity is the key technology of accelerators for particle physics, nuclear physics and light sources. SRF 2015 covered the latest advances in the science, technology, and applications of superconducting RF. There was also an industrial exhibit during the conference with the key vendors in the community available to discuss their capabilities and products.

  1. 47 CFR 101.1525 - RF safety.

    Science.gov (United States)

    2010-10-01

    ... 47 Telecommunication 5 2010-10-01 2010-10-01 false RF safety. 101.1525 Section 101.1525 Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) SAFETY AND SPECIAL RADIO SERVICES FIXED MICROWAVE SERVICES Service and Technical Rules for the 70/80/90 GHz Bands § 101.1525 RF safety. Licensees in the 70...

  2. 47 CFR 90.1335 - RF safety.

    Science.gov (United States)

    2010-10-01

    ... 47 Telecommunication 5 2010-10-01 2010-10-01 false RF safety. 90.1335 Section 90.1335 Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) SAFETY AND SPECIAL RADIO SERVICES PRIVATE LAND MOBILE RADIO SERVICES Wireless Broadband Services in the 3650-3700 MHz Band § 90.1335 RF safety...

  3. 47 CFR 95.1125 - RF safety.

    Science.gov (United States)

    2010-10-01

    ... 47 Telecommunication 5 2010-10-01 2010-10-01 false RF safety. 95.1125 Section 95.1125 Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) SAFETY AND SPECIAL RADIO SERVICES PERSONAL RADIO SERVICES Wireless Medical Telemetry Service (WMTS) General Provisions § 95.1125 RF safety. Portable devices...

  4. 47 CFR 27.52 - RF safety.

    Science.gov (United States)

    2010-10-01

    ... 47 Telecommunication 2 2010-10-01 2010-10-01 false RF safety. 27.52 Section 27.52 Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) COMMON CARRIER SERVICES MISCELLANEOUS WIRELESS COMMUNICATIONS SERVICES Technical Standards § 27.52 RF safety. Licensees and manufacturers are subject to the...

  5. RF SYSTEM FOR THE SNS ACCUMULATOR RING

    International Nuclear Information System (INIS)

    BLASKIEWICZ, M.; BRENNAN, J.M.; BRODOWSKI, J.; DELONG, J.; METH, M.; SMITH, K.; ZALTSMAN, A.

    2001-01-01

    During accumulation the RF beam current in the spallation neutron source ring rises from 0 to 50 amperes. A clean, 250 nanosecond gap is needed for the extraction kicker risetime. Large momentum spread and small peak current are needed to prevent instabilities and stopband related losses. A robust RF system meeting these requirements has been designed

  6. Bevalac injector final stage RF amplifier upgrades

    International Nuclear Information System (INIS)

    Howard, D.; Calvert, J.; Dwinell, R.; Lax, J.; Lindner, A.; Richter, R.; Ridgeway, W.

    1991-01-01

    With the assistance of the DOE In-house Energy Management Program, the Bevalac injector final stage RF amplifier systems have been successfully upgraded to reduce energy consumption and operating costs. This recently completed project removed the energy-inefficient plate voltage modulator circuits that were used in conjunction with the final stage RF amplifiers. Construction, design, and operating parameters are described in detail

  7. Plasma edge cooling during RF heating

    International Nuclear Information System (INIS)

    Suckewer, S.; Hawryluk, R.J.

    1978-01-01

    A new approach to prevent the influx of high-Z impurities into the core of a tokamak discharge by using RF power to modify the edge plasma temperature profile is presented. This concept is based on spectroscopic measurements on PLT during ohmic heating and ATC during RF heating. A one dimensional impurity transport model is used to interpret the ATC results

  8. Hydrogenated amorphous silicon solar cells fabricated at low substrate temperature 110°C on flexible PET substrate

    Science.gov (United States)

    Ramakrishna, M.; Kumari, Juhi; Venkanna, K.; Agarwal, Pratima

    2018-05-01

    In this paper, we report a-Si:H solar cells fabricated on flexible Polyethylene terephthalate (PET) and corning glass. The a-Si:H thin films were prepared at low substrate temperature (110oC) on corning 1737 glass with different rf powers. The influence of rf power on structural and optoelectronic properties of i-a-Si:H were studied. The films deposited at rf power 50W show less broadening of peak. This indicates these films are more ordered. With this optimized parameter for i-layer, solar cells fabricated on flexible PET substrate show best efficiency of 3.3% whereas on corning glass 3.82%.

  9. Tunable Q-Factor RF Cavity

    Energy Technology Data Exchange (ETDEWEB)

    Balcazar, Mario D. [Fermilab; Yonehara, Katsuya [Fermilab; Moretti, Alfred [Fermilab; Kazakevitch, Gregory [Fermilab

    2018-01-01

    Intense neutrino beam is a unique probe for researching beyond the standard model. Fermilab is the main institution to produce the most powerful and widespectrum neutrino beam. From that respective, a radiation robust beam diagnostic system is a critical element in order to maintain the quality of the neutrino beam. Within this context, a novel radiation-resistive beam profile monitor based on a gasfilled RF cavity is proposed. The goal of this measurement is to study a tunable Qfactor RF cavity to determine the accuracy of the RF signal as a function of the quality factor. Specifically, measurement error of the Q-factor in the RF calibration is investigated. Then, the RF system will be improved to minimize signal error.

  10. Pulsed rf systems for large storage rings

    International Nuclear Information System (INIS)

    Wilson, P.B.

    1979-03-01

    The possibility is considered that by using a pulsed rf system a substantial reduction can be made in the rf power requirement for the next generation of large storage rings. For a ring with a sufficiently large circumference, the time between bunch passages, T/sub b/, can exceed the cavity filling time, T/sub f/. As the ratio T/sub b//T/sub f/ increases, it is clear that at some point the average power requirement can be reduced by pulsing the rf to the cavities. In this mode of operation, the rf power is turned on a filling time or so before the arrival of a bunch and is switched off again at the time of bunch passage. There is no rf energy in the accelerating structure, and hence no power dissipation, for most of the period between bunches

  11. High power RF oscillator with Marx generators

    International Nuclear Information System (INIS)

    Murase, Hiroshi; Hayashi, Izumi

    1980-01-01

    A method to maintain RF oscillation by using many Marx generators was proposed and studied experimentally. Many charging circuits were connected to an oscillator circuit, and successive pulsed charging was made. This successive charging amplified and maintained the RF oscillation. The use of vacuum gaps and high power silicon diodes improved the characteristics of RF current cut-off of the circuit. The efficiency of the pulsed charging from Marx generators to a condenser was theoretically investigated. The theoretical result showed the maximum efficiency of 0.98. The practical efficiency obtained by using a proposed circuit with a high power oscillator was in the range 0.50 to 0.56. The obtained effective output power of the RF pulses was 11 MW. The maximum holding time of the RF pulses was about 21 microsecond. (Kato, T.)

  12. RF power generation for future linear colliders

    International Nuclear Information System (INIS)

    Fowkes, W.R.; Allen, M.A.; Callin, R.S.; Caryotakis, G.; Eppley, K.R.; Fant, K.S.; Farkas, Z.D.; Feinstein, J.; Ko, K.; Koontz, R.F.; Kroll, N.; Lavine, T.L.; Lee, T.G.; Miller, R.H.; Pearson, C.; Spalek, G.; Vlieks, A.E.; Wilson, P.B.

    1990-06-01

    The next linear collider will require 200 MW of rf power per meter of linac structure at relatively high frequency to produce an accelerating gradient of about 100 MV/m. The higher frequencies result in a higher breakdown threshold in the accelerating structure hence permit higher accelerating gradients per meter of linac. The lower frequencies have the advantage that high peak power rf sources can be realized. 11.42 GHz appears to be a good compromise and the effort at the Stanford Linear Accelerator Center (SLAC) is being concentrated on rf sources operating at this frequency. The filling time of the accelerating structure for each rf feed is expected to be about 80 ns. Under serious consideration at SLAC is a conventional klystron followed by a multistage rf pulse compression system, and the Crossed-Field Amplifier. These are discussed in this paper

  13. Electron runaway in rf discharges

    International Nuclear Information System (INIS)

    Chen, F.F.

    1992-10-01

    The critical electric field is computed as a function of pressure and starting energy for electrons to run away to high energies in moderate pressure discharges. The runaway conditions depend critically on the shape of the elastic cross section vs. energy curve. Computations are made for H, H 2 , and He gases, and it is shown that runaway occurs much more readily in atomic hydrogen than in the other gases. The values of the runaway fields are larger than would normally occur in dc discharges, where large voltages would lead to arc formation. However, in rf discharges such electric fields can be sustained over times long compared to electron transit times but short compared to ion transit times. (author)

  14. Design of rf conditioner cavities

    International Nuclear Information System (INIS)

    Govil, R.; Rimmer, R.A.; Sessler, A.; Kirk, H.G.

    1992-06-01

    Theoretical studies are made of radio frequency structures which can be used to condition electron beams so as to greatly reduce the stringent emittance requirements for successful lasing in a free-electron laser. The basic strategy of conditioning calls for modulating an electron beam in the transverse dimension, by a periodic focusing channel, while it traverses a series of rf cavities, each operating in a TM 210 mode. In this paper, we analyze the cavities both analytically and numerically (using MAFIA simulations). We find that when cylindrical symmetry is broken the coupling impedance can be greatly enhanced. We present results showing various performance characteristics as a function of cavity parameters, as well as possible designs for conditioning cavities

  15. Femtosecond precision measurement of laser–rf phase jitter in a photocathode rf gun

    International Nuclear Information System (INIS)

    Shi, Libing; Zhao, Lingrong; Lu, Chao; Jiang, Tao; Liu, Shengguang; Wang, Rui; Zhu, Pengfei; Xiang, Dao

    2017-01-01

    We report on the measurement of the laser–rf phase jitter in a photocathode rf gun with femtosecond precision. In this experiment four laser pulses with equal separation are used to produce electron bunch trains; then the laser–rf phase jitter is obtained by measuring the variations of the electron bunch spacing with an rf deflector. Furthermore, we show that when the gun and the deflector are powered by the same rf source, it is possible to obtain the laser–rf phase jitter in the gun through measurement of the beam–rf phase jitter in the deflector. Based on these measurements, we propose an effective time-stamping method that may be applied in MeV ultrafast electron diffraction facilities to enhance the temporal resolution.

  16. Femtosecond precision measurement of laser–rf phase jitter in a photocathode rf gun

    Energy Technology Data Exchange (ETDEWEB)

    Shi, Libing; Zhao, Lingrong; Lu, Chao; Jiang, Tao; Liu, Shengguang; Wang, Rui; Zhu, Pengfei; Xiang, Dao, E-mail: dxiang@sjtu.edu.cn

    2017-03-21

    We report on the measurement of the laser–rf phase jitter in a photocathode rf gun with femtosecond precision. In this experiment four laser pulses with equal separation are used to produce electron bunch trains; then the laser–rf phase jitter is obtained by measuring the variations of the electron bunch spacing with an rf deflector. Furthermore, we show that when the gun and the deflector are powered by the same rf source, it is possible to obtain the laser–rf phase jitter in the gun through measurement of the beam–rf phase jitter in the deflector. Based on these measurements, we propose an effective time-stamping method that may be applied in MeV ultrafast electron diffraction facilities to enhance the temporal resolution.

  17. Balance and flexibility.

    Science.gov (United States)

    2003-12-01

    The 'work-life balance' and flexible working are currently key buzz terms in the NHS. Those looking for more information on these topics should visit Flexibility at www.flexibility.co.uk for a host of resources designed to support new ways of working, including information on flexible workers and flexible rostering, the legal balancing act for work-life balance and home working.

  18. Solid-state high voltage modulator and its application to rf source high voltage power supplies

    International Nuclear Information System (INIS)

    Tooker, J.F.; Huynh, P.; Street, R.W.

    2009-01-01

    A solid-state high voltage modulator is described in which series-connected insulated-gate bipolar transistors (IGBTs) are switched at a fixed frequency by a pulse width modulation (PWM) regulator, that adjusts the pulse width to control the voltage out of an inductor-capacitor filter network. General Atomics proposed the HV power supply (HVPS) topology of multiple IGBT modulators connected to a common HVdc source for the large number of 1 MW klystrons in the linear accelerator of the Accelerator Production of Tritium project. The switching of 24 IGBTs to obtain 20 kVdc at 20 A for short pulses was successfully demonstrated. This effort was incorporated into the design of a -70 kV, 80 A, IGBT modulator, and in a short-pulse test 12 IGBTs regulated -5 kV at 50 A under PWM control. These two tests confirm the practicality of solid-state IGBT modulators to regulate high voltage at reasonable currents. Tokamaks such as ITER require large rf heating and current drive systems with multiple rf sources. A HVPS topology is presented that readily adapts to the three rf heating systems on ITER. To take advantage of the known economy of scale for power conversion equipment, a single HVdc source feeds multiple rf sources. The large power conversion equipment, which is located outside, converts the incoming utility line voltage directly to the HVdc needed for the class of rf sources connected to it, to further reduce cost. The HVdc feeds a set of IGBT modulators, one for each rf source, to independently control the voltage applied to each source, maximizing operational flexibility. Only the modulators are indoors, close to the rf sources, minimizing the use of costly near-tokamak floor space.

  19. Flexible GaN for High Performance, Strainable Radio Frequency Devices (Postprint)

    Science.gov (United States)

    2017-11-02

    wireless systems where consumers will benefit significantly from the high power densities achievable in GaN devices.[8] Further complicating the...future strainable and conformal devices for transmission of radio-frequency (RF) signals over large distances for more efficient wireless communication... power density of traditional RF amplifier materials at different frequencies and wireless generation bands, as well as an image of the flexible GaN

  20. RF sheaths for arbitrary B field angles

    Science.gov (United States)

    D'Ippolito, Daniel; Myra, James

    2014-10-01

    RF sheaths occur in tokamaks when ICRF waves encounter conducting boundaries and accelerate electrons out of the plasma. Sheath effects reduce the efficiency of ICRF heating, cause RF-specific impurity influxes from the edge plasma, and increase the plasma-facing component damage. The rf sheath potential is sensitive to the angle between the B field and the wall, the ion mobility and the ion magnetization. Here, we obtain a numerical solution of the non-neutral rf sheath and magnetic pre-sheath equations (for arbitrary values of these parameters) and attempt to infer the parametric dependences of the Child-Langmuir law. This extends previous work on the magnetized, immobile ion regime. An important question is how the rf sheath voltage distributes itself between sheath and pre-sheath for various B field angles. This will show how generally previous estimates of the rf sheath voltage and capacitance were reasonable, and to improve the RF sheath BC. Work supported by US DOE grants DE-FC02-05ER54823 and DE-FG02-97ER54392.

  1. Design and Calibration of an RF Actuator for Low-Level RF Systems

    Science.gov (United States)

    Geng, Zheqiao; Hong, Bo

    2016-02-01

    X-ray free electron laser (FEL) machines like the Linac Coherent Light Source (LCLS) at SLAC require high-quality electron beams to generate X-ray lasers for various experiments. Digital low-level RF (LLRF) systems are widely used to control the high-power RF klystrons to provide a highly stable RF field in accelerator structures for beam acceleration. Feedback and feedforward controllers are implemented in LLRF systems to stabilize or adjust the phase and amplitude of the RF field. To achieve the RF stability and the accuracy of the phase and amplitude adjustment, low-noise and highly linear RF actuators are required. Aiming for the upgrade of the S-band Linac at SLAC, an RF actuator is designed with an I/Qmodulator driven by two digital-to-analog converters (DAC) for the digital LLRF systems. A direct upconversion scheme is selected for RF actuation, and an on-line calibration algorithm is developed to compensate the RF reference leakage and the imbalance errors in the I/Q modulator, which may cause significant phase and amplitude actuation errors. This paper presents the requirements on the RF actuator, the design of the hardware, the calibration algorithm, and the implementation in firmware and software and the test results at LCLS.

  2. The Bohm criterion for rf discharges

    International Nuclear Information System (INIS)

    Meijer, P.M.; Goedheer, W.J.

    1991-01-01

    The well-known dc Bohm criterion is extended to rf discharges. Both low- (ω rf much-lt ω pi ) and high-(ω pi much-lt ω rf ) frequency regimes are considered. For low frequencies, the dc Bohm criterion holds. This criterion states that the initial energy of the ions entering the sheath must exceed a limit in order to obtain a stable sheath. For high frequencies, a modified limit is derived, which is somewhat lower than that of the dc Bohm criterion. The resulting ion current density in a high-frequency sheath is only a few percent lower than that for the dc case

  3. RF Control System Upgrade at CAMD

    CERN Document Server

    Suller, Victor P; Jines, Paul; Launey, Daren

    2005-01-01

    A description is given of the new control system for the RF system of the CAMD light source. The new design being implemented brings all RF signals into the data acquisition system via a modular, custom made, RF detector and renders the amplitude and tune control loops in the VME computer. On line calculations ensure monitoring of proper operation and display the information to the user in an efficient way. In addition, an advanced load impedance monitoring diagnostic has been implemented, being displayed as a Smith Chart, which is based on the system used at the SRS in Daresbury, England.

  4. Multi-level RF identification system

    Science.gov (United States)

    Steele, Kerry D.; Anderson, Gordon A.; Gilbert, Ronald W.

    2004-07-20

    A radio frequency identification system having a radio frequency transceiver for generating a continuous wave RF interrogation signal that impinges upon an RF identification tag. An oscillation circuit in the RF identification tag modulates the interrogation signal with a subcarrier of a predetermined frequency and modulates the frequency-modulated signal back to the transmitting interrogator. The interrogator recovers and analyzes the subcarrier signal and determines its frequency. The interrogator generates an output indicative of the frequency of the subcarrier frequency, thereby identifying the responding RFID tag as one of a "class" of RFID tags configured to respond with a subcarrier signal of a predetermined frequency.

  5. RF engineering basic concepts: S-parameters

    CERN Document Server

    Caspers, F

    2011-01-01

    The concept of describing RF circuits in terms of waves is discussed and the S-matrix and related matrices are defined. The signal flow graph (SFG) is introduced as a graphical means to visualize how waves propagate in an RF network. The properties of the most relevant passive RF devices (hybrids, couplers, non-reciprocal elements, etc.) are delineated and the corresponding S-parameters are given. For microwave integrated circuits (MICs) planar transmission lines such as the microstrip line have become very important.

  6. Bunch Compression Stability Dependence on RF Parameters

    CERN Document Server

    Limberg, T

    2005-01-01

    In present designs for FEL's with high electron peak currents and short bunch lengths, higher harmonic RF systems are often used to optimize the final longitudinal charge distributions. This opens degrees of freedom for the choice of RF phases and amplitudes to achieve the necessary peak current with a reasonable longitudinal bunch shape. It had been found empirically that different working points result in different tolerances for phases and amplitudes. We give an analytical expression for the sensitivity of the compression factor on phase and amplitude jitter for a bunch compression scheme involving two RF systems and two magnetic chicanes as well numerical results for the case of the European XFEL.

  7. rf coupler technology for fusion applications

    International Nuclear Information System (INIS)

    Hoffman, D.J.

    1983-01-01

    Radio frequency (rf) oscillations at critical frequencies have successfully provided a means to convey power to fusion plasmas due to the electrical-magnetic properties of the plasma. While large rf systems to couple power to the plasma have been designed, built, and tested, the main link to the plasma, the coupler, is still in an evolutionary stage of development. Design and fabrication of optimal antennas for fusion applications are complicated by incomplete characterizations of the harsh plasma environment and of coupling mechanisms. A brief description of rf coupler technology required for plasma conditions is presented along with an assessment of the status and goals of coupler development

  8. Practical guide to RF-MEMS

    CERN Document Server

    Iannacci, Jacopo

    2013-01-01

    Closes the gap between hardcore-theoretical and purely experimental RF-MEMS books. The book covers, from a practical viewpoint, the most critical steps that have to be taken in order to develop novel RF-MEMS device concepts. Prototypical RF-MEMS devices, both including lumped components and complex networks, are presented at the beginning of the book as reference examples, and these are then discussed from different perspectives with regard to design, simulation, packaging, testing, and post-fabrication modeling. Theoretical concepts are introduced when necessary to complement the practical

  9. Longitudinal beam dynamics with rf noise

    International Nuclear Information System (INIS)

    Shih, H.J.; Ellison, J.A.; Cogburn, R.; Newberger, B.S.

    1993-06-01

    The Dome-Krinsky-Wang (DKW) diffusion-inaction theory for rf-noise-induced emittance dilution is reviewed and related to recent work on the approximation of stochastic processes by Markov processes. An accurate and efficient numerical procedure is developed to integrate the diffusion equation of the DKW theory. Tracking simulations are undertaken to check the validity of the theory in the parameter range of the Superconducting Super Collider (SSC) and to provide additional information. The study of effects of rf noise is applied to two problems of interest at the SSC: (1) determination of noise tolerance levels in the rf system, and (2) feasibility of beam extraction using crystal channeling

  10. SNS Low-Level RF Control System Design and Performance

    CERN Document Server

    Ma, Hengjie; Crofford, Mark; Doolittle, Lawrence; Kasemir, Kay-Uwe; Piller, Maurice; Ratti, Alessandro

    2005-01-01

    A full digital Low-Level RF controller has been developed for SNS LINAC. Its design is a good example of a modern digital implementation of the classic control theory. The digital hardware for all the control and DSP functionalities, including the final vector modulation, is implemented on a single high-density FPGA. Two models for the digital hardware have been written in VHDL and Verilog respectively, based on a very low latency control algorithm, and both have been being used for supporting the testing and commissioning the LINAC to the date. During the commissioning, the flexibility and ability for precise controls that only digital design on a larger FPGA can offer has proved to be a necessity for meeting the great challenge of a high-power pulsed SCL.

  11. TESLA superconducting RF cavity development

    International Nuclear Information System (INIS)

    Koepke, K.

    1995-01-01

    The TESLA collaboration has made steady progress since its first official meeting at Cornell in 1990. The infrastructure necessary to assemble and test superconducting rf cavities has been installed at the TESLA Test Facility (TTF) at DESY. 5-cell, 1.3 GHz cavities have been fabricated and have reached accelerating fields of 25 MV/m. Full sized 9-cell copper cavities of TESLA geometry have been measured to verify the higher order modes present and to evaluate HOM coupling designs. The design of the TESLA 9-cell cavity has been finalized and industry has started delivery. Two prototype 9-cell niobium cavities in their first tests have reached accelerating fields of 10 MV/m and 15 MV/m in a vertical dewar after high peak power (HPP) conditioning. The first 12 m TESLA cryomodule that will house 8 9-cell cavities is scheduled to be delivered in Spring 1995. A design report for the TTF is in progress. The TTF test linac is scheduled to be commissioned in 1996/1997. (orig.)

  12. KSTAR RF heating system development

    Energy Technology Data Exchange (ETDEWEB)

    Kwak, J. G.; Kim, S. K.; Hwang, C. K. (and others)

    2007-10-15

    Design, high-voltage test, and installation of 6 MW ICRF heating system for KSTAR is completed. The antenna demonstrated satisfactory standoff at high voltages up to 41 kV for 300 sec. The result indicates good power handling capabilities of the antenna as high as 10 MW/m2. This power density is equivalent to RF power coupling of 6 MW into a 4 {omega}/m target plasma, and is typical of advanced tokamak heating scenarios. In addition, vacuum feed through, DC break, and liquid stub developed for 300 sec operation are installed, as well as a 2 MW, 30-60MHz transmitter. The transmitter successfully produced output powers of 600 kW continuously, 1.5{approx}1.8 MW for 300 sec, and 2 MW for 100 msec or shorter pulses. A realtime control system based on DSP and EPICS is developed, installed, and tested on the ICRF system. Initial results from feasibility study indicate that the present antenna and the transmission lines could allow load-resilient operation on KSTAR. Until the KSTAR tokamak start to produce plasmas in 2008, however, hands-on operational experiences are obtained from participating in ICRF heating experiments at ASDEX and DIII-D tokamaks arranged through international cooperation.

  13. The CEBAF RF separator system

    International Nuclear Information System (INIS)

    Hovater, C.; Arnold, G.; Fugitt, J.; Harwood, L.; Kazimi, R.; Lahti, G.; Mammosser, J.; Nelson, R.; Piller, C.; Turlington, L.

    1996-01-01

    The 4 GeV CEBAF accelerator at Thomas Jefferson National Accelerator Facility (Jefferson Lab) is arranged in a five-pass racetrack configuration, with two superconducting radio-frequency (SRF) linacs joined by independent magnetic transport arcs. The 1497 MHz continuous electron beam is composed of three interlaced variable-intensity 499 MHz beams that can be independently directed from any of the five passes to any of the three experimental halls. Beam extraction is made possible by a system of nine warm sub-harmonic separator cavities capable of delivering a 100 urad kick to any pass at a maximum machine energy of 6 GeV. Each separator cavity is a half-wavelength, two cell design with a high transverse shunt impedance and a small transverse dimension. The cavities are powered by 1 kW solid state amplifiers operating at 499 MHz. Cavity phase and gradient control are provided through a modified version of the same control module used for the CEBAF SRF cavity controls. The system has recently been tested while delivering beam to Hall C. In this paper we present a description of the RF separator system and recent test results with beam. (author)

  14. Pd thin films on flexible substrate for hydrogen sensor

    Energy Technology Data Exchange (ETDEWEB)

    Öztürk, Sadullah [Fatih Sultan Mehmet Vakıf University, Engineering Faculty, Istanbul (Turkey); Kılınç, Necmettin, E-mail: nkilinc@nigde.edu.tr [Nigde University, Mechatronics Engineering Department, 51245 Nigde (Turkey); Nigde University, Nanotechnology Application and Research Center, 51245 Nigde (Turkey)

    2016-07-25

    In this work, palladium (Pd) thin films were prepared via RF sputtering method with various thicknesses (6 nm, 20 nm and 60 nm) on both a flexible substrate and a hard substrate. Hydrogen (H{sub 2}) sensing properties of Pd films on flexible substrate have been investigated depending on temperatures (25–100 °C) and H{sub 2} concentrations (600 ppm – 10%). The effect of H{sub 2} on structural properties of the films was also studied. The films were characterized by Scanning Electron Microscopy (SEM) and X-ray diffraction. It is found that whole Pd films on hard substrate show permanent structural deformation after exposed to 10% H{sub 2} for 30 min. But, this H{sub 2} exposure does not causes any structural deformation for 6 nm Pd film on flexible substrate and 6 nm Pd film on flexible substrate shows reversible sensor response up to 10% H{sub 2} concentration without any structural deformation. On the other hand, Pd film sensors that have the thicknesses 20 nm and 60 nm on flexible substrate are irreversible for higher H{sub 2} concentration (>2%) with film deformation. The sensor response of 6 nm Pd film on flexible substrate increased with increasing H{sub 2} concentration up 4% and then saturated. The sensitivity of the film decreased with increasing operation temperature. - Highlights: • Pd thin films fabricated by RF sputtering on both flexible and hard substrates. • Structural deformation observed for films on hard substrate after exposing 10% H{sub 2}. • 6 nm Pd film on flexible substrate shows reversible sensor response up to 10% H{sub 2}. • H{sub 2} sensing properties of film on flexible substrate investigated depending on temperature and concentration. • The sensitivity of the film decreased with increasing operation temperature.

  15. New developments in RF power sources

    International Nuclear Information System (INIS)

    Miller, R.H.

    1994-06-01

    The most challenging rf source requirements for high-energy accelerators presently being studied or designed come from the various electron-positron linear collider studies. All of these studies except TESLA (the superconducting entry in the field) have specified rf sources with much higher peak powers than any existing tubes at comparable high frequencies. While circular machines do not, in general, require high peak power, the very high luminosity electron-positron rings presently being designed as B factories require prodigious total average rf power. In this age of energy conservation, this puts a high priority on high efficiency for the rf sources. Both modulating anodes and depressed collectors are being investigated in the quest for high efficiency at varying output powers

  16. RF accelerating unit installed in the PSB

    CERN Multimedia

    CERN PhotoLab

    1972-01-01

    RF accelerating unit installed in the PSB ring between two bending magnets. Cool air from a heat exchanger is injected into the four cavities from the central feeder and the hot air recirculated via the lateral ducts.

  17. ORIC RF system: preparation for HHIRF

    International Nuclear Information System (INIS)

    Mosko, S.W.; Rylander, J.D.; Schulze, G.K.

    1977-01-01

    The integration of the Oak Ridge Isochronous Cyclotron (ORIC) into the Holifield Heavy Ion Research Facility (HHIRF) requires several rf system modifications to permit injection of ion beams from the 25 MV tandem electrostatic accelerator into ORIC. A new dee eliminates structural interference with the injected beam path and provides an opportunity to improve the mechanical stability of the resonator and to reduce rf voltage gradients in areas susceptible to sparking. Space for structural improvements is realized by reducing the ion beam aperture from 4.8 cm to 2.4 cm. The complexity of the original ORIC rf power system was substantially reduced. A new broadband solid state driver amplifier between the frequency synthesizer and the main power amplifier eliminates most circuit tuning and permits the use of a new simplified dee rf voltage regulator loop. Most of the remaining instrumentation and control circuitry is TTL compatible and will eventually tie to the ORIC computer control system through a CAMAC interface

  18. Prototype rf cavity for the HISTRAP accelerator

    International Nuclear Information System (INIS)

    Mosko, S.W.; Dowling, D.T.; Olsen, D.K.

    1989-01-01

    HISTRAP, a proposed synchrotron-cooling-storage ring designed to both accelerate and decelerate very highly charged very heavy ions for atomic physics research, requires an rf accelerating system to provide /+-/2.5 kV of peak accelerating voltage per turn while tuning through a 13.5:1 frequency range in a fraction of a second. A prototype half-wave, single gap rf cavity with biased ferrite tuning was built and tested over a continuous tuning range of 200 kHz through 2.7 MHz. Initial test results establish the feasibility of using ferrite tuning at the required rf power levels. The resonant system is located entirely outside of the accelerator's 15cm ID beam line vacuum enclosure except for a single rf window which serves as an accelerating gap. Physical separation of the cavity and the beam line permits in situ vacuum baking of the beam line at 300/degree/C

  19. Superconducting RF for energy-recovery linacs

    International Nuclear Information System (INIS)

    Liepe, M.; Knobloch, J.

    2006-01-01

    Since superconducting RF for particle accelerators made its first appearance in the 1970s, it has found highly successful application in a variety of machines. Recent progress in this technology has made so-called Energy-Recovery Linacs (ERLs)-originally proposed in 1965-feasible, and interest in this type of machine has increased enormously. A superconducting linac is the driving heart of ERLs, and emittance preservation and cost efficiency is of utmost importance. The resulting challenges for the superconducting cavity technology and RF field control are manifold. In March 2005 the first international workshop on ERLs was held at Newport News, VA, to explore the potential of ERLs and to discuss machine-physics and technology challenges and their solutions. This paper reviews the state-of-the-art in superconducting RF and RF control for ERLs, and summarizes the discussions of the SRF working group on this technology during the ERL2005 workshop

  20. Microscopic structural analysis of fractured silk fibers from Bombyx mori and Samia cynthia ricini using 13C CP/MAS NMR with a 1 mm microcoil MAS NMR probehead

    KAUST Repository

    Yamauchi, Kazuo

    2010-07-01

    Conformational changes have been studied in silk fibers from the domestic silkworm Bombyx mori and a wild silkworm Samia cynthia ricini as a result of fractured by stretching. About 300 samples consisting of only the fractured regions of [1-13C]Ala or [1-13C]Gly labeled silk fibers were collected and observed by 13C CP/MAS NMR spectra. The total amount of these fractured fibers is only about 1 mg and therefore we used a home-built 1 mm microcoil MAS NMR probehead. A very small increase in the fraction of random coil was noted for the alanine regions of both silk fibroins and for the glycine region of B. mori silk fibroin. However, there is no difference in the spectra before and after fractured for the glycine region of S. c. ricini silk fibroin. Thus, the influence of fracture occurs exclusively at the Ala region for S. c. ricini. The relationship between sequence, fracture and structure is discussed. © 2010 Elsevier Inc. All rights reserved.

  1. CAT/RF Simulation Lessons Learned

    Science.gov (United States)

    2003-06-11

    IVSS-2003-MAS-7 CAT /RF Simulation Lessons Learned Christopher Mocnik Vetronics Technology Area, RDECOM TARDEC Tim Lee DCS Corporation...developed a re- configurable Unmanned Ground Vehicle (UGV) simulation for the Crew integration and Automation Test bed ( CAT ) and Robotics Follower (RF...Advanced Technology Demonstration (ATD) experiments. This simulation was developed as a component of the Embedded Simulation System (ESS) of the CAT

  2. Normal Conducting RF Cavity for MICE

    International Nuclear Information System (INIS)

    Li, D.; DeMello, A.; Virostek, S.; Zisman, M.; Summers, D.

    2010-01-01

    Normal conducting RF cavities must be used for the cooling section of the international Muon Ionization Cooling Experiment (MICE), currently under construction at Rutherford Appleton Laboratory (RAL) in the UK. Eight 201-MHz cavities are needed for the MICE cooling section; fabrication of the first five cavities is complete. We report the cavity fabrication status including cavity design, fabrication techniques and preliminary low power RF measurements.

  3. Vortex formation during rf heating of plasma

    International Nuclear Information System (INIS)

    Motley, R.W.

    1980-05-01

    Experiments on a test plasma show that the linear theory of waveguide coupling to slow plasma waves begins to break down if the rf power flux exceeds approx. 30 W/cm 2 . Probe measurements reveal that within 30 μs an undulation appears in the surface plasma near the mouth of the twin waveguide. This surface readjustment is part of a vortex, or off-center convective cell, driven by asymmetric rf heating of the plasma column

  4. A no-load RF calorimeter

    Science.gov (United States)

    Chernoff, R. C.

    1975-01-01

    The described device can be used to measure the output of any dc powered RF source. No dummy load is required for the measurements. The device is, therefore, called the 'no-load calorimeter' (NLC). The NLC measures the power actually fed to the antenna or another useful load. It is believed that the NLC can compete successfully with directional coupler type systems in measuring the output of high-power RF sources.

  5. RF study and 3-D simulations of a side-coupling thermionic RF-gun

    International Nuclear Information System (INIS)

    Rimjaem, S.; Kusoljariyakul, K.; Thongbai, C.

    2014-01-01

    A thermionic RF-gun for generating ultra-short electron bunches was optimized, developed and used as a source at a linac-based THz radiation research laboratory of the Plasma and Beam Physics Research Facility, Chiang Mai University, Thailand. The RF-gun is a π/2-mode standing wave structure, which consists of two S-band accelerating cells and a side-coupling cavity. The 2856 MHz RF wave is supplied from an S-band klystron to the gun through the waveguide input-port at the cylindrical wall of the second cell. A fraction of the RF power is coupled from the second cell to the first one via a side-coupling cavity. Both the waveguide input-port and the side-coupling cavity lead to an asymmetric geometry of the gun. RF properties and electromagnetic field distributions inside the RF-gun were studied and numerically simulated by using computer codes SUPERFISH 7.19 and CST Microwave Studio 2012 © . RF characterizations and tunings of the RF-gun were performed to ensure the reliability of the gun operation. The results from 3D simulations and measurements are compared and discussed in this paper. The influence of asymmetric field distributions inside the RF-gun on the electron beam properties was investigated via 3D beam dynamics simulations. A change in the coupling-plane of the side-coupling cavity is suggested to improve the gun performance

  6. RF study and 3-D simulations of a side-coupling thermionic RF-gun

    Energy Technology Data Exchange (ETDEWEB)

    Rimjaem, S., E-mail: sakhorn.rimjaem@cmu.ac.th [Department of Physics and Materials Science, Faculty of Science, Chiang Mai University, Chiang Mai 50200 (Thailand); Thailand Center of Excellence in Physics (ThEP), Commission on Higher Education, Bangkok 10400 (Thailand); Kusoljariyakul, K.; Thongbai, C. [Department of Physics and Materials Science, Faculty of Science, Chiang Mai University, Chiang Mai 50200 (Thailand); Thailand Center of Excellence in Physics (ThEP), Commission on Higher Education, Bangkok 10400 (Thailand)

    2014-02-01

    A thermionic RF-gun for generating ultra-short electron bunches was optimized, developed and used as a source at a linac-based THz radiation research laboratory of the Plasma and Beam Physics Research Facility, Chiang Mai University, Thailand. The RF-gun is a π/2-mode standing wave structure, which consists of two S-band accelerating cells and a side-coupling cavity. The 2856 MHz RF wave is supplied from an S-band klystron to the gun through the waveguide input-port at the cylindrical wall of the second cell. A fraction of the RF power is coupled from the second cell to the first one via a side-coupling cavity. Both the waveguide input-port and the side-coupling cavity lead to an asymmetric geometry of the gun. RF properties and electromagnetic field distributions inside the RF-gun were studied and numerically simulated by using computer codes SUPERFISH 7.19 and CST Microwave Studio 2012{sup ©}. RF characterizations and tunings of the RF-gun were performed to ensure the reliability of the gun operation. The results from 3D simulations and measurements are compared and discussed in this paper. The influence of asymmetric field distributions inside the RF-gun on the electron beam properties was investigated via 3D beam dynamics simulations. A change in the coupling-plane of the side-coupling cavity is suggested to improve the gun performance.

  7. RF study and 3-D simulations of a side-coupling thermionic RF-gun

    Science.gov (United States)

    Rimjaem, S.; Kusoljariyakul, K.; Thongbai, C.

    2014-02-01

    A thermionic RF-gun for generating ultra-short electron bunches was optimized, developed and used as a source at a linac-based THz radiation research laboratory of the Plasma and Beam Physics Research Facility, Chiang Mai University, Thailand. The RF-gun is a π/2-mode standing wave structure, which consists of two S-band accelerating cells and a side-coupling cavity. The 2856 MHz RF wave is supplied from an S-band klystron to the gun through the waveguide input-port at the cylindrical wall of the second cell. A fraction of the RF power is coupled from the second cell to the first one via a side-coupling cavity. Both the waveguide input-port and the side-coupling cavity lead to an asymmetric geometry of the gun. RF properties and electromagnetic field distributions inside the RF-gun were studied and numerically simulated by using computer codes SUPERFISH 7.19 and CST Microwave Studio 2012©. RF characterizations and tunings of the RF-gun were performed to ensure the reliability of the gun operation. The results from 3D simulations and measurements are compared and discussed in this paper. The influence of asymmetric field distributions inside the RF-gun on the electron beam properties was investigated via 3D beam dynamics simulations. A change in the coupling-plane of the side-coupling cavity is suggested to improve the gun performance.

  8. Flexible magnetoimpedance sensor

    KAUST Repository

    Li, Bodong; Kavaldzhiev, Mincho; Kosel, Jü rgen

    2015-01-01

    Flexible magnetoimpedance (MI) sensors fabricated using a NiFe/Cu/NiFe tri-layer on Kapton substrate have been studied. A customized flexible microstrip transmission line was employed to investigate the MI sensors's magnetic field and frequency

  9. The CEBAF RF Separator System Upgrade

    International Nuclear Information System (INIS)

    Hovater, J.; Mark Augustine; Al Guerra; Richard Nelson; Robert Terrell; Mark Wissmann

    2004-01-01

    The CEBAF accelerator uses RF deflecting cavities operating at the third sub-harmonic (499 MHz) of the accelerating frequency (1497 MHz) to ''kick'' the electron beam to the experimental halls. The cavities operate in a TEM dipole mode incorporating mode enhancing rods to increase the cavity's transverse shunt impedance [1]. As the accelerators energy has increased from 4 GeV to 6 GeV the RF system, specifically the 1 kW solid-state amplifiers, have become problematic, operating in saturation because of the increased beam energy demands. Two years ago we began a study to look into replacement for the RF amplifiers and decided to use a commercial broadcast Inductive Output Tube (IOT) capable of 30 kW. The new RF system uses one IOT amplifier on multiple cavities as opposed to one amplifier per cavity as was originally used. In addition, the new RF system supports a proposed 12 GeV energy upgrade to CEBAF. We are currently halfway through the upgrade with three IOTs in operation and the remaining one nearly installed. This paper reports on the new RF system and the IOT performance

  10. RF measurements I: signal receiving techniques

    CERN Document Server

    Caspers, F

    2011-01-01

    For the characterization of components, systems and signals in the RF and microwave range, several dedicated instruments are in use. In this paper the fundamentals of the RF-signal sampling technique, which has found widespread applications in 'digital' oscilloscopes and sampling scopes, are discussed. The key element in these front-ends is the Schottky diode which can be used either as an RF mixer or as a single sampler. The spectrum analyser has become an absolutely indispensable tool for RF signal analysis. Here the front-end is the RF mixer as the RF section of modern spectrum analysers has a rather complex architecture. The reasons for this complexity and certain working principles as well as limitations are discussed. In addition, an overview of the development of scalar and vector signal analysers is given. For the determination of the noise temperature of a one-port and the noise figure of a two-port, basic concepts and relations are shown. A brief discussion of commonly used noise measurement techniq...

  11. Superconducting RF activities at Cornell University

    International Nuclear Information System (INIS)

    Kirchgessner, J.; Moffat, D.; Padamsee, H.; Rubin, D.; Sears, J.; Shu, Q.S.

    1990-01-01

    This paper outlines the RF superconductivity research and development work that has taken place at Cornell Laboratory of Nuclear Studies over the past years. The work that has been performed since the last RF superconductivity workshop is emphasized together with a discussion of the direction of future efforts. Past work is summarized first, focusing on research and development activities in the area of RF superconductivity. Superconducting TeV linear collider is then discussed focusing on the application of superconducting RF to a future TeV linear collider. Linear collider structure development is then described centering on the development of a simpler (thereby cheaper) structure for a TeV linear collider. B-factory with superconducting RF is outlined focusing on the formulation of a conceptual design for a B-factory. B-factory structure development is discussed in relation to the advancement in the capability of SC cavities to carry beam currents of several amperes necessary for a high luminosity storage ring. High gradients are discussed as the key to the realization of a high energy superconducting linac or a superconducting RF B-factory. (N.K.)

  12. Low reflectance high power RF load

    Science.gov (United States)

    Ives, R. Lawrence; Mizuhara, Yosuke M.

    2016-02-02

    A load for traveling microwave energy has an absorptive volume defined by cylindrical body enclosed by a first end cap and a second end cap. The first end cap has an aperture for the passage of an input waveguide with a rotating part that is coupled to a reflective mirror. The inner surfaces of the absorptive volume consist of a resistive material or are coated with a coating which absorbs a fraction of incident RF energy, and the remainder of the RF energy reflects. The angle of the reflector and end caps is selected such that reflected RF energy dissipates an increasing percentage of the remaining RF energy at each reflection, and the reflected RF energy which returns to the rotating mirror is directed to the back surface of the rotating reflector, and is not coupled to the input waveguide. Additionally, the reflector may have a surface which generates a more uniform power distribution function axially and laterally, to increase the power handling capability of the RF load. The input waveguide may be corrugated for HE11 mode input energy.

  13. Flexible Carpooling: Exploratory Study

    OpenAIRE

    Dorinson, Diana; Gay, Deanna; Minett, Paul; Shaheen, Susan

    2009-01-01

    Energy consumption could be reduced if more people shared rides rather than driving alone yet carpooling represents a small proportion of all potential carpoolers. Prior research has found that many who might carpool were concerned about reduced flexibility with carpooling. If flexibility is one of the barriers how could carpooling be organized to be more flexible? In Northern Virginia a flexible system has evolved where there are 3,500 single-use carpools per day. In another example there ...

  14. Towards the Realization of Graphene Based Flexible Radio Frequency Receiver

    Directory of Open Access Journals (Sweden)

    Maruthi N. Yogeesh

    2015-11-01

    Full Text Available We report on our progress and development of high speed flexible graphene field effect transistors (GFETs with high electron and hole mobilities (~3000 cm2/V·s, and intrinsic transit frequency in the microwave GHz regime. We also describe the design and fabrication of flexible graphene based radio frequency system. This RF communication system consists of graphite patch antenna at 2.4 GHz, graphene based frequency translation block (frequency doubler and AM demodulator and graphene speaker. The communication blocks are utilized to demonstrate graphene based amplitude modulated (AM radio receiver operating at 2.4 GHz.

  15. BRS 369RF and BRS 370RF: Glyphosate tolerant, high-yielding upland cotton cultivars for central Brazilian savanna

    Directory of Open Access Journals (Sweden)

    Camilo de Lelis Morello

    2015-12-01

    Full Text Available BRS 369RF and BRS 370RF were developed by the EMBRAPA as a part of efforts to create high-yielding germplasm with combinations of transgenic traits. BRS 369RF and BRS 370RF are midseason cultivars and have yield stability, adaptation to the central Brazilian savanna, good fiber quality and tolerance to glyphosate herbicide.

  16. Hybrid Ag-based inks for nanocomposite inkjet printed lines: RF properties

    Energy Technology Data Exchange (ETDEWEB)

    Chiolerio, Alessandro [Center for Space Human Robotics, Istituto Italiano di Tecnologia, Corso Trento 21, 10129 Torino (Italy); Camarchia, Vittorio, E-mail: vittorio.camarchia@polito.it [Center for Space Human Robotics, Istituto Italiano di Tecnologia, Corso Trento 21, 10129 Torino (Italy); Electronics and Telecommunications Department, Politecnico di Torino Corso Duca degli Abruzzi 24, 10129 Torino (Italy); Quaglia, Roberto; Pirola, Marco [Electronics and Telecommunications Department, Politecnico di Torino Corso Duca degli Abruzzi 24, 10129 Torino (Italy); Pandolfi, Paolo [Politronica Inkjet Printing S.r.l., C/O i3p, Corso Castelfidardo 30/A, 10129 Torino (Italy); Pirri, Candido Fabrizio [Center for Space Human Robotics, Istituto Italiano di Tecnologia, Corso Trento 21, 10129 Torino (Italy); Applied Science and Technology Department, Politecnico di Torino Corso Duca degli Abruzzi 24, 10129 Torino (Italy)

    2014-12-05

    Highlights: • Polymer–silver nanocomposite conductive ink for RF fast prototyping. • Reduction of the sintering temperature. • Improved printing resolution. • State-of-the-art electrical conductivity. • Good RF performances. - Abstract: The development of highly conductive Ag nanoparticle (NP)-based inkjet printed (IP) connections is a fundamental process for the success of next-generation digitally printed electronics. This is true both at low frequency and at RF, considering the increasing integration of heterogeneous technologies and the use of flexible substrates. Ink-based technologies provide and form at liquid state the functional material that is then delivered to solid via a sintering process to achieve NP coalescence and electrical percolation. Sintering must be performed at very low temperatures (depending on the substrate choice) to be compatible with previous process steps, to preserve the geometry and fulfill the requirements in term of electrical conductivity, as well as to reduce production costs. While IP, as additive technology, is now well settled for DC or low frequency applications, few results on electrical characterization at RF or microwave frequencies are present due to low conductivity, poor geometry definition and low reproducibility. Hence, a good setup of ink formulation and technological realization is fundamental to enable system performance assessment in the high frequency regime. In this paper we propose a breakthrough: we present a nanocomposite ink, whose thermal and DC electrical properties are extremely interesting and competitive with pure-metallic ink systems. Introducing a copolymer in the formulation, we obtained a reduction of the overall sintering temperature, if compared to the pristine NP suspension, along with improved printing resolution together with very good electrical conductivity. The RF characterization has been performed in the range 1–6 GHz on geometries printed on sintered alumina and on a power

  17. Adaptive Nonlinear RF Cancellation for Improved Isolation in Simultaneous Transmit–Receive Systems

    Science.gov (United States)

    Kiayani, Adnan; Waheed, Muhammad Zeeshan; Anttila, Lauri; Abdelaziz, Mahmoud; Korpi, Dani; Syrjala, Ville; Kosunen, Marko; Stadius, Kari; Ryynanen, Jussi; Valkama, Mikko

    2018-05-01

    This paper proposes an active radio frequency (RF) cancellation solution to suppress the transmitter (TX) passband leakage signal in radio transceivers supporting simultaneous transmission and reception. The proposed technique is based on creating an opposite-phase baseband equivalent replica of the TX leakage signal in the transceiver digital front-end through adaptive nonlinear filtering of the known transmit data, to facilitate highly accurate cancellation under a nonlinear TX power amplifier (PA). The active RF cancellation is then accomplished by employing an auxiliary transmitter chain, to generate the actual RF cancellation signal, and combining it with the received signal at the receiver (RX) low noise amplifier (LNA) input. A closed-loop parameter learning approach, based on the decorrelation principle, is also developed to efficiently estimate the coefficients of the nonlinear cancellation filter in the presence of a nonlinear TX PA with memory, finite passive isolation, and a nonlinear RX LNA. The performance of the proposed cancellation technique is evaluated through comprehensive RF measurements adopting commercial LTE-Advanced transceiver hardware components. The results show that the proposed technique can provide an additional suppression of up to 54 dB for the TX passband leakage signal at the RX LNA input, even at considerably high transmit power levels and with wide transmission bandwidths. Such novel cancellation solution can therefore substantially improve the TX-RX isolation, hence reducing the requirements on passive isolation and RF component linearity, as well as increasing the efficiency and flexibility of the RF spectrum use in the emerging 5G radio networks.

  18. Hybrid Ag-based inks for nanocomposite inkjet printed lines: RF properties

    International Nuclear Information System (INIS)

    Chiolerio, Alessandro; Camarchia, Vittorio; Quaglia, Roberto; Pirola, Marco; Pandolfi, Paolo; Pirri, Candido Fabrizio

    2014-01-01

    Highlights: • Polymer–silver nanocomposite conductive ink for RF fast prototyping. • Reduction of the sintering temperature. • Improved printing resolution. • State-of-the-art electrical conductivity. • Good RF performances. - Abstract: The development of highly conductive Ag nanoparticle (NP)-based inkjet printed (IP) connections is a fundamental process for the success of next-generation digitally printed electronics. This is true both at low frequency and at RF, considering the increasing integration of heterogeneous technologies and the use of flexible substrates. Ink-based technologies provide and form at liquid state the functional material that is then delivered to solid via a sintering process to achieve NP coalescence and electrical percolation. Sintering must be performed at very low temperatures (depending on the substrate choice) to be compatible with previous process steps, to preserve the geometry and fulfill the requirements in term of electrical conductivity, as well as to reduce production costs. While IP, as additive technology, is now well settled for DC or low frequency applications, few results on electrical characterization at RF or microwave frequencies are present due to low conductivity, poor geometry definition and low reproducibility. Hence, a good setup of ink formulation and technological realization is fundamental to enable system performance assessment in the high frequency regime. In this paper we propose a breakthrough: we present a nanocomposite ink, whose thermal and DC electrical properties are extremely interesting and competitive with pure-metallic ink systems. Introducing a copolymer in the formulation, we obtained a reduction of the overall sintering temperature, if compared to the pristine NP suspension, along with improved printing resolution together with very good electrical conductivity. The RF characterization has been performed in the range 1–6 GHz on geometries printed on sintered alumina and on a power

  19. Inkjet-/3D-/4D-printed autonomous wearable RF modules for biomonitoring, positioning and sensing applications

    Science.gov (United States)

    Bito, Jo; Bahr, Ryan; Hester, Jimmy; Kimionis, John; Nauroze, Abdullah; Su, Wenjing; Tehrani, Bijan; Tentzeris, Manos M.

    2017-05-01

    In this paper, numerous inkjet-/3D-/4D-printed wearable flexible antennas, RF electronics, modules and sensors fabricated on paper and other polymer (e.g. LCP) substrates are introduced as a system-level solution for ultra-low-cost mass production of autonomous Biomonitoring, Positioning and Sensing applications. This paper briefly discusses the state-of-the-art area of fully-integrated wearable wireless sensor modules on paper or flexible LCP and show the first ever 4D sensor module integration on paper, as well as numerous 3D and 4D multilayer paper-based and LCP-based RF/microwave, flexible and wearable structures, that could potentially set the foundation for the truly convergent wireless sensor ad-hoc "on-body networks of the future with enhanced cognitive intelligence and "rugged" packaging. Also, some challenges concerning the power sources of "nearperpetual" wearable RF modules, including flexible miniaturized batteries as well as power-scavenging approaches involving electromagnetic and solar energy forms are discuessed. The final step of the paper will involve examples from mmW wearable (e.g. biomonitoring) antennas and RF modules, as well as the first examples of the integration of inkjet-printed nanotechnology-based (e.g.CNT) sensors on paper and organic substrates for Internet of Things (IoT) applications. It has to be noted that the paper will review and present challenges for inkjetprinted organic active and nonlinear devices as well as future directions in the area of environmentally-friendly "green") wearable RF electronics and "smart-skin conformal sensors.

  20. Pregnant women models analyzed for RF exposure and temperature increase in 3T RF shimmed birdcages.

    Science.gov (United States)

    Murbach, Manuel; Neufeld, Esra; Samaras, Theodoros; Córcoles, Juan; Robb, Fraser J; Kainz, Wolfgang; Kuster, Niels

    2017-05-01

    MRI is increasingly used to scan pregnant patients. We investigated the effect of 3 Tesla (T) two-port radiofrequency (RF) shimming in anatomical pregnant women models. RF shimming improves B 1 + uniformity, but may at the same time significantly alter the induced current distribution and result in large changes in both the level and location of the absorbed RF energy. In this study, we evaluated the electrothermal exposure of pregnant women in the third, seventh, and ninth month of gestation at various imaging landmarks in RF body coils, including modes with RF shimming. Although RF shimmed configurations may lower the local RF exposure for the mother, they can increase the thermal load on the fetus. In worst-case configurations, whole-body exposure and local peak temperatures-up to 40.8°C-are equal in fetus and mother. Two-port RF shimming can significantly increase the fetal exposure in pregnant women, requiring further research to derive a very robust safety management. For the time being, restriction to the CP mode, which reduces fetal SAR exposure compared with linear-horizontal polarization modes, may be advisable. Results from this study do not support scanning pregnant patients above the normal operating mode. Magn Reson Med 77:2048-2056, 2017. © 2016 International Society for Magnetic Resonance in Medicine. © 2016 International Society for Magnetic Resonance in Medicine.

  1. Measurement technology of RF interference current in high current system

    Science.gov (United States)

    Zhao, Zhihua; Li, Jianxuan; Zhang, Xiangming; Zhang, Lei

    2018-06-01

    Current probe is a detection method commonly used in electromagnetic compatibility. With the development of power electronics technology, the power level of power conversion devices is constantly increasing, and the power current of the electric energy conversion device in the electromagnetic launch system can reach 10kA. Current probe conventionally used in EMC (electromagnetic compatibility) detection cannot meet the test requirements on high current system due to the magnetic saturation problem. The conventional high current sensor is also not suitable for the RF (Radio Frequency) interference current measurement in high current power device due to the high noise level in the output of active amplifier. In this paper, a passive flexible current probe based on Rogowski coil and matching resistance is proposed that can withstand high current and has low noise level, to solve the measurement problems of interference current in high current power converter. And both differential mode and common mode current detection can be easily carried out with the proposed probe because of the probe's flexible structure.

  2. Characteristic performance of radio-frequency(RF) plasma heating using inverter RF power supplies

    International Nuclear Information System (INIS)

    Imai, Takahiro; Uesugi, Yoshihiko; Takamura, Shuichi; Sawada, Hiroyuki; Hattori, Norifumi

    2000-01-01

    High heat flux plasma are produced by high powe (∼14 kW) ICRF heating using inverter power supplies in the linear divertor simulator NAGDIS-II. The power flow of radiated rf power is investigated by a calorimetric method. Conventional power calculation using antenna voltage and current gives that about 70% of the rf power is radiated into the plasma. But increase of the heat load at the target and anode is about 10% of the rf power. Through this experiment, we find that about half of the rf power is lost at the antenna surface through the formation of rf induced sheath. And about 30% of the power is lost into the vacuum vessel through the charge exchange and elastic collision of ions with neutrals. (author)

  3. RF characterization and testing of ridge waveguide transitions for RF power couplers

    Energy Technology Data Exchange (ETDEWEB)

    Kumar, Rajesh; Jose, Mentes; Singh, G.N. [Ion Accelerator Development Division, Bhabha Atomic Research Centre, Mumbai 400085 (India); Kumar, Girish [Department of Electrical Engineering, IIT Bombay, Mumbai 400076,India (India); Bhagwat, P.V. [Ion Accelerator Development Division, Bhabha Atomic Research Centre, Mumbai 400085 (India)

    2016-12-01

    RF characterization of rectangular to ridge waveguide transitions for RF power couplers has been carried out by connecting them back to back. Rectangular waveguide to N type adapters are first calibrated by TRL method and then used for RF measurements. Detailed information is obtained about their RF behavior by measurements and full wave simulations. It is shown that the two transitions can be characterized and tuned for required return loss at design frequency of 352.2 MHz. This opens the possibility of testing and conditioning two transitions together on a test bench. Finally, a RF coupler based on these transitions is coupled to an accelerator cavity. The power coupler is successfully tested up to 200 kW, 352.2 MHz with 0.2% duty cycle.

  4. RF BREAKDOWN STUDIES USING PRESSURIZED CAVITIES

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, Rolland

    2014-09-21

    Many present and future particle accelerators are limited by the maximum electric gradient and peak surface fields that can be realized in RF cavities. Despite considerable effort, a comprehensive theory of RF breakdown has not been achieved and mitigation techniques to improve practical maximum accelerating gradients have had only limited success. Part of the problem is that RF breakdown in an evacuated cavity involves a complex mixture of effects, which include the geometry, metallurgy, and surface preparation of the accelerating structures and the make-up and pressure of the residual gas in which plasmas form. Studies showed that high gradients can be achieved quickly in 805 MHz RF cavities pressurized with dense hydrogen gas, as needed for muon cooling channels, without the need for long conditioning times, even in the presence of strong external magnetic fields. This positive result was expected because the dense gas can practically eliminate dark currents and multipacting. In this project we used this high pressure technique to suppress effects of residual vacuum and geometry that are found in evacuated cavities in order to isolate and study the role of the metallic surfaces in RF cavity breakdown as a function of magnetic field, frequency, and surface preparation. One of the interesting and useful outcomes of this project was the unanticipated collaborations with LANL and Fermilab that led to new insights as to the operation of evacuated normal-conducting RF cavities in high external magnetic fields. Other accomplishments included: (1) RF breakdown experiments to test the effects of SF6 dopant in H2 and He gases with Sn, Al, and Cu electrodes were carried out in an 805 MHz cavity and compared to calculations and computer simulations. The heavy corrosion caused by the SF6 components led to the suggestion that a small admixture of oxygen, instead of SF6, to the hydrogen would allow the same advantages without the corrosion in a practical muon beam line. (2) A

  5. Investigation of MIM Diodes for RF Applications

    KAUST Repository

    Khan, Adnan

    2015-05-01

    Metal Insulator Metal (MIM) diodes that work on fast mechanism of tunneling have been used in a number of very high frequency applications such as (Infra-Red) IR detectors and optical Rectennas for energy harvesting. Their ability to operate under zero bias condition as well as the possibility of realizing them through printing makes them attractive for (Radio Frequency) RF applications. However, MIM diodes have not been explored much for RF applications. One reason preventing their widespread RF use is the requirement of a very thin oxide layer essential for the tunneling operation that requires sophisticated nano-fabrication processes. Another issue is that the reliability and stable performance of MIM diodes is highly dependent on the surface roughness of the metallic electrodes. Finally, comprehensive RF characterization has not been performed for MIM diodes reported in the literature, particularly from the perspective of their integration with antennas as well as their rectification abilities. In this thesis, various metal deposition methods such as sputtering, electron beam evaporation, and Atomic Layer Deposition (ALD) are compared in pursuit of achieving low surface roughness. It is worth mentioning here that MIM diodes realized through ALD method have been presented for the first time in this thesis. Amorphous metal alloy have also been investigated in terms of their low surface roughness. Zinc-oxide has been investigated for its suitability as a thin dielectric layer for MIM diodes. Finally, comprehensive RF characterization of MIM diodes has been performed in two ways: 1) by standard S-parameter methods, and 2) by investigating their rectification ability under zero bias operation. It is concluded from the Atomic Force Microscopy (AFM) imaging that surface roughness as low as sub 1 nm can be achieved reliably from crystalline metals such as copper and platinum. This value is comparable to surface roughness achieved from amorphous alloys, which are non

  6. Status of RF superconductivity at Argonne

    International Nuclear Information System (INIS)

    Shepard, K.W.

    1990-01-01

    Development of a superconducting slow-wave structures began at Argonne National Laboratory (ANL) in 1971, and led to the first superconducting heavy-ion linac (ATLAS - the Argonne Tandem-Linac Accelerator System). The Physics Division at ANL has continued to develop superconducting RF technology for accelerating heavy-ions, with the result that the linac has been in an almost continuous process of upgrade and expansion. In 1987, the Engineering Physics Division at ANL began developing of superconducting RF components for the acceleration of high-brightness proton and deuterium beams. The two divisions collaborate in work on several applications of RF superconductivity, and also in work to develop the technology generally. The present report briefly describes major features of the superconducting heavy-ion linac (very-low-velocity superconducting linac, positive ion injector), proton accelerating structures (superconducting resonant cavities for acceleration of high-current proton and deuteron beams, RF properties of oxide superconductors), and future work. Both divisions expect to continue a variety of studies, frequently in collaboration, to advance the basic technology of RF superconductivity. (N.K.)

  7. Radiofrequency (RF) radiation measurement for diathermy machine

    International Nuclear Information System (INIS)

    Rozaimah Abdul Rahim; Roha Tukimin; Mohd Amirul Nizam; Ahmad Fadzli; Mohd Azizi

    2010-01-01

    Full-text: Diathermy machine is one of medical device that use widely in hospital and clinic. During the diathermy treatment, high radiofrequency (RF) currents (shortwave and microwave) are used to heat deep muscular tissues through electromagnetic energy to body tissues. The heat increases blood flow, relieve pain and speeding up recovery. The stray RF radiation from the machine can exposes to unintended tissue of the patient, to the operator (physical therapist) and also can cause electromagnetic interference (EMI) effect to medical devices around the machine. The main objective of this study is to establish a database of the RF radiation exposure levels experienced by the operator and patient during the treatments. RF radiation (electric and magnetic field) produced by the diathermy machines were measured using special RF survey meters. The finding of this study confirms that radiation levels on the surface and near the applicator of the diathermy machine much more elevated due to the much closer distance to the source and they exceeding the occupational and general public exposure limit. The results also shows the field strengths drop very significantly when the distance of measurement increase. (author)

  8. Phase calibration strategies for synchrotron RF signals

    Energy Technology Data Exchange (ETDEWEB)

    Andreev, Aleksandr [TEMF, Technische Universitaet Darmstadt (Germany); Klingbeil, Harald [TEMF, Technische Universitaet Darmstadt (Germany); GSI Helmholtzzentrum fuer Schwerionenforschung GmbH, Darmstadt (Germany); Lens, Dieter [GSI Helmholtzzentrum fuer Schwerionenforschung GmbH, Darmstadt (Germany)

    2016-07-01

    For the FAIR facility that is currently under construction, the beam quality requirements impose several demands on the low-level RF (LLRF) systems. For example the phase error of the gap voltage of a specific RF cavity must be less than 1 . The RF reference signals for the FAIR synchrotron RF cavity systems are generated by direct digital synthesis modules (DDS) mounted in one crate called Group-DDS. In order to allow performing various multi-harmonic operations, each DDS unit operates at a certain mode defined by the harmonic number that can be changed during the operation. Since the DDS modules generate reference RF signals for different LLRF systems, the precise calibration of units to compensate the different phase response is of importance. The currently used calibration procedure is done with a fixed harmonic number for each module and uses the DDS module configured to the highest harmonic number as a reference. If the harmonic number of the DDS module is changed, one then has to repeat the calibration for the new values. Therefore, a new calibration method with respect to the absolute phases of DDS modules is under development and will be presented.

  9. RF Rectification on LAPD and NSTX: the relationship between rectified currents and potentials

    Science.gov (United States)

    Perkins, R. J.; Carter, T.; Caughman, J. B.; van Compernolle, B.; Gekelman, W.; Hosea, J. C.; Jaworski, M. A.; Kramer, G. J.; Lau, C.; Martin, E. H.; Pribyl, P.; Tripathi, S. K. P.; Vincena, S.

    2017-10-01

    RF rectification is a sheath phenomenon important in the fusion community for impurity injection, hot spot formation on plasma-facing components, modifications of the scrape-off layer, and as a far-field sink of wave power. The latter is of particular concern for the National Spherical Torus eXperiment (NSTX), where a substantial fraction of the fast-wave power is lost to the divertor along scrape-off layer field lines. To assess the relationship between rectified currents and rectified voltages, detailed experiments have been performed on the Large Plasma Device (LAPD). An electron current is measured flowing out of the antenna and into the limiters, consistent with RF rectification with a higher RF potential at the antenna. The scaling of this current with RF power will be presented. The limiters are also floated to inhibit this DC current; the impact of this change on plasma-potential and wave-field measurements will be shown. Comparison to data from divertor probes in NSTX will be made. These experiments on a flexible mid-sized experiment will provide insight and guidance into the effects of ICRF on the edge plasma in larger fusion experiments. Funded by the DOE OFES (DE-FC02-07ER54918 and DE-AC02-09CH11466), NSF (NSF- PHY 1036140), and the Univ. of California (12-LR- 237124).

  10. A compact linear accelerator based on a scalable microelectromechanical-system RF-structure

    Science.gov (United States)

    Persaud, A.; Ji, Q.; Feinberg, E.; Seidl, P. A.; Waldron, W. L.; Schenkel, T.; Lal, A.; Vinayakumar, K. B.; Ardanuc, S.; Hammer, D. A.

    2017-06-01

    A new approach for a compact radio-frequency (RF) accelerator structure is presented. The new accelerator architecture is based on the Multiple Electrostatic Quadrupole Array Linear Accelerator (MEQALAC) structure that was first developed in the 1980s. The MEQALAC utilized RF resonators producing the accelerating fields and providing for higher beam currents through parallel beamlets focused using arrays of electrostatic quadrupoles (ESQs). While the early work obtained ESQs with lateral dimensions on the order of a few centimeters, using a printed circuit board (PCB), we reduce the characteristic dimension to the millimeter regime, while massively scaling up the potential number of parallel beamlets. Using Microelectromechanical systems scalable fabrication approaches, we are working on further reducing the characteristic dimension to the sub-millimeter regime. The technology is based on RF-acceleration components and ESQs implemented in the PCB or silicon wafers where each beamlet passes through beam apertures in the wafer. The complete accelerator is then assembled by stacking these wafers. This approach has the potential for fast and inexpensive batch fabrication of the components and flexibility in system design for application specific beam energies and currents. For prototyping the accelerator architecture, the components have been fabricated using the PCB. In this paper, we present proof of concept results of the principal components using the PCB: RF acceleration and ESQ focusing. Ongoing developments on implementing components in silicon and scaling of the accelerator technology to high currents and beam energies are discussed.

  11. A compact linear accelerator based on a scalable microelectromechanical-system RF-structure.

    Science.gov (United States)

    Persaud, A; Ji, Q; Feinberg, E; Seidl, P A; Waldron, W L; Schenkel, T; Lal, A; Vinayakumar, K B; Ardanuc, S; Hammer, D A

    2017-06-01

    A new approach for a compact radio-frequency (RF) accelerator structure is presented. The new accelerator architecture is based on the Multiple Electrostatic Quadrupole Array Linear Accelerator (MEQALAC) structure that was first developed in the 1980s. The MEQALAC utilized RF resonators producing the accelerating fields and providing for higher beam currents through parallel beamlets focused using arrays of electrostatic quadrupoles (ESQs). While the early work obtained ESQs with lateral dimensions on the order of a few centimeters, using a printed circuit board (PCB), we reduce the characteristic dimension to the millimeter regime, while massively scaling up the potential number of parallel beamlets. Using Microelectromechanical systems scalable fabrication approaches, we are working on further reducing the characteristic dimension to the sub-millimeter regime. The technology is based on RF-acceleration components and ESQs implemented in the PCB or silicon wafers where each beamlet passes through beam apertures in the wafer. The complete accelerator is then assembled by stacking these wafers. This approach has the potential for fast and inexpensive batch fabrication of the components and flexibility in system design for application specific beam energies and currents. For prototyping the accelerator architecture, the components have been fabricated using the PCB. In this paper, we present proof of concept results of the principal components using the PCB: RF acceleration and ESQ focusing. Ongoing developments on implementing components in silicon and scaling of the accelerator technology to high currents and beam energies are discussed.

  12. Reliability impact of RF tube technology for the NPB

    International Nuclear Information System (INIS)

    Bueck, J.C.

    1989-01-01

    Two reliability options, redundancy and operating margin, are examined to determine their effect on power system configurations using RF tube technology (klystron and klystrode) powered Neutral Particle Beam weapons. Redundance is addressed by providing an additional identical RF tube to the tubes required to power an accelerator RF element (DTL section, RFQ, or CCL). RF elements do not share RF power with other RF elements. Operating margin provides increased reliability by sizing the RF tubes such that tube operating levels may be increased compensate for the loss of a tube. It is shown that power system mass is affected by the choice of reliability measures, that higher power tubes coupled with higher power RF elements may mitigate mass increases, and that redundancy appears preferable to operating margin as a method of improving RF system reliability

  13. An updated overview of the LEB RF system

    International Nuclear Information System (INIS)

    Rogers, J.D.; Ferrell, J.H.; Curbow, J.E.; Friedrichs, C.

    1992-01-01

    Each of the Low Energy Booster (LEB) rf systems consists of the following major subsystems: a vacuum tube final rf amplifier driven by a solid state rf amplifier, a ferrite-tuned rf cavity used to bunch and accelerate the beam, a low-level rf system including rf feedback systems, a computer-based supervisory control system, and associated power supplies. The LEB rf system is broadband with the exception of the rf cavity, which is electronically tuned from approximately 47.5 MHz to 59.7 MHz in 50 ms. The design and development status of the LEB rf system is presented, with particular emphasis on the cavity and tuner, and the tuner bias power supply

  14. Rf Station For Ion Beam Staking In Hirfl-csr

    CERN Document Server

    Arbuzov, V S; Bushuev, A A; Dranichnikov, A N; Gorniker, E I; Kendjebulatov, E K; Kondakov, A A; Kondaurov, M; Kruchkov, Ya G; Krutikhin, S A; Kurkin, G Ya; Mironenko, L A; Motygin, S V; Osipov, V N; Petrov, V M; Pilan, Andrey M; Popov, A M; Rashenko, V V; Selivanov, A N; Shteinke, A R; Vajenin, N F

    2004-01-01

    BINP has developed and produced the RF station for Institute of Modern Physics (IMP), Lanzhou, China, for multipurpose accelerator complex with electron cooling. The RF station will be used for accumulation of ion beams in the main ring of the system. It was successfully tested in IMP and installed into the main accelerator ring of the complex. The RF station includes accelerating RF cavity and RF power generator with power supplies. The station works within frequency range 6.0 - 14.0 MHz, maximum voltage across the accelerating gap of the RF cavity - 20 kV. In the RF cavity the 200 VNP ferrite is utilized. A residual gas pressure in vacuum chamber does not exceed 2,5E-11 mbar. Maximum output power of the RF generator 25 kW. The data acquisition and control of the RF station is based on COMPACT - PCI bus and provides all functions of monitoring and control.

  15. Directions for rf-controlled intelligent microvalve

    Science.gov (United States)

    Enderling, Stefan; Varadan, Vijay K.; Abbott, Derek

    2001-03-01

    In this paper, we consider the novel concept of a Radio Frequency (RF) controllable microvalve for different medical applications. Wireless communication via a Surface Acoustic Wave Identification-mark (SAW ID-tag) is used to control, drive and locate the microvalve inside the human body. The energy required for these functions is provided by RF pulses, which are transmitted to the valve and back by a reader/transmitter system outside of the body. These RF bursts are converted into Surface Acoustic Waves (SAWs), which propagate along the piezoelectric actuator material of the microvalve. These waves cause deflections, which are employed to open and close the microvalve. We identified five important areas of application of the microvalve in biomedicine: 1) fertility control; 2) artificial venous valves; 3) flow cytometry; 4) drug delivery and 5) DNA mapping.

  16. High RF Power Production for CLIC

    CERN Document Server

    Syratchev, I; Adli, E; Taborelli, M

    2007-01-01

    The CLIC Power Extraction and Transfer Structure (PETS) is a passive microwave device in which bunches of the drive beam interact with the impedance of the periodically loaded waveguide and excite preferentially the synchronous mode. The RF power produced (several hundred MW) is collected at the downstream end of the structure by means of the Power Extractor and delivered to the main linac structure. The PETS geometry is a result of multiple compromises between beam stability and main linac RF power needs. Another requirement is to provide local RF power termination in case of accelerating structure failure (ON/OFF capability). Surface electric and magnetic fields, power extraction method, HOM damping, ON/OFF capability and fabrication technology were all evaluated to provide a reliable design

  17. RF Electron Gun with Driven Plasma Cathode

    CERN Document Server

    Khodak, Igor

    2005-01-01

    It's known that RF guns with plasma cathodes based on solid-state dielectrics are able to generate an intense electron beam. In this paper we describe results of experimental investigation of the single cavity S-band RF gun with driven plasma cathode. The experimental sample of the cathode based on ferroelectric ceramics has been designed. Special design of the cathode permits to separate spatially processes of plasma development and electron acceleration. It has been obtained at RF gun output electron beam with particle energy ~500 keV, pulse current of 4 A and pulse duration of 80 ns. Results of experimental study of beam parameters are referred in. The gun is purposed to be applied as the intense electron beam source for electron linacs.

  18. Pulsed rf superconductivity program at SLAC

    International Nuclear Information System (INIS)

    Campisi, I.E.; Farkas, Z.D.

    1984-08-01

    Recent tests performed at SLAC on superconducting TM 010 caavities using short rf pulses (less than or equal to 2.5 μs) have established that at the cavity surface magnetic fields can be reached in the vicinity of the theoretical critical fields without an appreciable increase in average losses. Tests on niobium and lead cavities are reported. The pulse method seems to be best suited to study peak field properties of superconductors in the microwave band, without the limitations imposed by defects. The short pulses also seem to be more effective in decreasing the causes of field emission by rf processing. Applications of the pulsed rf superconductivity to high-gradient linear accelerators are also possible

  19. Prospects for advanced RF theory and modeling

    International Nuclear Information System (INIS)

    Batchelor, D. B.

    1999-01-01

    This paper represents an attempt to express in print the contents of a rather philosophical review talk. The charge for the talk was not to summarize the present status of the field and what we can do, but to assess what we will need to do in the future and where the gaps are in fulfilling these needs. The objective was to be complete, covering all aspects of theory and modeling in all frequency regimes, although in the end the talk mainly focussed on the ion cyclotron range of frequencies (ICRF). In choosing which areas to develop, it is important to keep in mind who the customers for RF modeling are likely to be and what sorts of tasks they will need for RF to do. This occupies the first part of the paper. Then we examine each of the elements of a complete RF theory and try to identify the kinds of advances needed. (c) 1999 American Institute of Physics

  20. X-Band RF Gun Development

    International Nuclear Information System (INIS)

    Vlieks, A.E.

    2012-01-01

    In support of the MEGa-ray program at LLNL and the High Gradient research program at SLAC, a new X-band multi-cell RF gun is being developed. This gun, similar to earlier guns developed at SLAC for Compton X-ray source program, will be a standing wave structure made of 5.5 cells operating in the pi mode with copper cathode. This gun was designed following criteria used to build SLAC X-band high gradient accelerating structures. It is anticipated that this gun will operate with surface electric fields on the cathode of 200 MeV/m with low breakdown rate. RF will be coupled into the structure through a final cell with symmetric duel feeds and with a shape optimized to minimize quadrupole field components. In addition, geometry changes to the original gun, operated with Compton X-ray source, will include a wider RF mode separation, reduced surface electric and magnetic fields.

  1. Computational Tools for RF Structure Design

    CERN Document Server

    Jensen, E

    2004-01-01

    The Finite Differences Method and the Finite Element Method are the two principally employed numerical methods in modern RF field simulation programs. The basic ideas behind these methods are explained, with regard to available simulation programs. We then go through a list of characteristic parameters of RF structures, explaining how they can be calculated using these tools. With the help of these parameters, we introduce the frequency-domain and the time-domain calculations, leading to impedances and wake-fields, respectively. Subsequently, we present some readily available computer programs, which are in use for RF structure design, stressing their distinctive features and limitations. One final example benchmarks the precision of different codes for calculating the eigenfrequency and Q of a simple cavity resonator.

  2. Design of an L-band normally conducting RF gun cavity for high peak and average RF power

    Energy Technology Data Exchange (ETDEWEB)

    Paramonov, V., E-mail: paramono@inr.ru [Institute for Nuclear Research of Russian Academy of Sciences, 60-th October Anniversary prospect 7a, 117312 Moscow (Russian Federation); Philipp, S. [Deutsches Elektronen-Synchrotron DESY, Platanenallee 6, D-15738 Zeuthen (Germany); Rybakov, I.; Skassyrskaya, A. [Institute for Nuclear Research of Russian Academy of Sciences, 60-th October Anniversary prospect 7a, 117312 Moscow (Russian Federation); Stephan, F. [Deutsches Elektronen-Synchrotron DESY, Platanenallee 6, D-15738 Zeuthen (Germany)

    2017-05-11

    To provide high quality electron bunches for linear accelerators used in free electron lasers and particle colliders, RF gun cavities operate with extreme electric fields, resulting in a high pulsed RF power. The main L-band superconducting linacs of such facilities also require a long RF pulse length, resulting in a high average dissipated RF power in the gun cavity. The newly developed cavity based on the proven advantages of the existing DESY RF gun cavities, underwent significant changes. The shape of the cells is optimized to reduce the maximal surface electric field and RF loss power. Furthermore, the cavity is equipped with an RF probe to measure the field amplitude and phase. The elaborated cooling circuit design results in a lower temperature rise on the cavity RF surface and permits higher dissipated RF power. The paper presents the main solutions and results of the cavity design.

  3. RF MEMS theory, design, and technology

    CERN Document Server

    Rebeiz, Gabriel M

    2003-01-01

    Ultrasmall Radio Frequency and Micro-wave Microelectromechanical systems (RF MEMs), such as switches, varactors, and phase shifters, exhibit nearly zero power consumption or loss. For this reason, they are being developed intensively by corporations worldwide for use in telecommunications equipment. This book acquaints readers with the basics of RF MEMs and describes how to design practical circuits and devices with them. The author, an acknowledged expert in the field, presents a range of real-world applications and shares many valuable tricks of the trade.

  4. Single-particle dynamics - RF acceleration

    International Nuclear Information System (INIS)

    Montague, B.W.

    1977-01-01

    In this paper the rf acceleration of both synchronous and non-synchronous particles is discussed and a simple linearized equation of small amplitude synchrotron oscillations is derived. Phase stability, the hamiltonian for synchrotron oscillations, oscillation amplitudes and adiabatic damping are then briefly discussed. The final sections of the paper contain a description of the basic principles of rf beam stacking in the longitudinal phase space of intersecting Storage Rings and a description of phase displacement acceleration which inspite of certain disadvantages, remains an attractive technique for proton storage rings. (B.D.)

  5. The RF spectrum: managing community health concerns

    International Nuclear Information System (INIS)

    Maclean, I.

    2001-01-01

    In this presentation I would like to share with you the way in which the Australian Communications Authority (ACA) goes about 'managing' community issues relating to the RF spectrum. In particular, I would like to refer to community issues associated with concerns about health. I will refer only briefly to the siting of mobile phone base stations as that will be covered elsewhere. Before getting into the community issues, I would like to provide some context about the ACA and the arrangements it has for regulating radiofrequency electromagnetic radiation (RF EMR). Copyright (2001) Australasian Radiation Protection Society Inc

  6. RF installation for the grain disinfestation

    CERN Document Server

    Zajtzev, B V; Kobetz, A F; Rudiak, B I

    2001-01-01

    The ecologically pure method of grain product disinfestations through the grain treatment with the RF electric field is described. The experimental data obtained showed that with strengths of the electrical RF field of E=5 kV/cm and frequency of 80 MHz the relative death rate is 100%.The time of the grain treatment it this case is 1 sec. The pulses with a duration of 600 mu s and repetition rate of 2 Hz were used, the duration of the front was 10 mu s. The schematic layout of installation with a productivity of 50 tones/h and power of 10 kW is given.

  7. Designing focusing solenoids for superconducting RF accelerators

    Energy Technology Data Exchange (ETDEWEB)

    Davis, G.; Kashikhin, V.V.; Page, T.; Terechkine, I.; Tompkins, J.; Wokas, T.; /Fermilab

    2006-08-01

    The design of a focusing solenoid for use in a superconducting RF linac requires resolving a range of problems with conflicting requirements. Providing the required focusing strength contradicts the goal of minimizing the stray field on the surfaces of adjacent superconducting RF cavities. The requirement of a compact solenoid, able to fit into a gap between cavities, contradicts the need of mechanical support necessary to restrain electromagnetic forces that can result in coil motion and subsequent quenching. In this report we will attempt to address these and other issues arising during the development of focusing solenoids. Some relevant test data will also be presented.

  8. Performance of the Brookhaven photocathode rf gun

    International Nuclear Information System (INIS)

    Batchelor, K.; Ben-Zvi, I.; Fernow, R.C.; Fischer, J.; Fisher, A.S.; Gallardo, J.; Ingold, G.; Kirk, H.G.; Leung, K.P.; Malone, R.; Pogorelsky, I.; Srinivasan-Rao, T.; Rogers, J.; Tsang, T.; Sheehan, J.; Ulc, S.; Woodle, M.; Xie, J.; Zhang, R.S.; Lin, L.Y.; McDonald, K.T.; Russell, D.P.; Hung, C.M.; Wang, X.J.

    1991-01-01

    The Brookhaven Accelerator Test Facility (ATF) uses a photocathode rf gun to provide a high-brightness electron beam intended for FEL and laser-acceleration experiments. The rf gun consists of 1 1/2 cells driven at 2856 MHz in π-mode with a maximum cathode field of 100 MV/m. To achieve long lifetimes, the photocathode development concentrates on robust metals such as copper, yttrium and samarium. We illuminate these cathodes with a 10-ps, frequency-quadrupled Nd:YAG laser. We describe the initial operation of the gun, including measurements of transverse and longitudinal emittance, quantum efficiencies, and peak current. The results are compared to models

  9. Operation of the APS rf gun

    International Nuclear Information System (INIS)

    Lewellen, J. W.

    1998-01-01

    The Advanced Photon Source (APS) has a thermionic-cathode rf gun system capable of providing beam to the APS linac. The gun system consists of a 1.6-cell thermionic-cathode rf gun, a fast kicker for beam current control, and an alpha magnet for bunch compression and injection into the APS linac line. This system is intended for use both as an injector for positron creation, and as a first beam source for the Low-Energy Undulator Test Line (LEUTL) project [1]. The first measured performance characteristics of the gun are presented.

  10. SSRL photocathode RF gun test stand

    International Nuclear Information System (INIS)

    Hernandez, M.; Baltay, M.; Boyce, A.

    1995-01-01

    A photocathode RF gun test stand designed for the production and study of high brightness electron beams will be constructed at SSRL. The beam will be generated from a laser driven third generation photocathode RF gun being developed in collaboration with BNL, LBL, and UCLA. The 3-5 [MeV] beam from the gun will be accelerated using a SLAC three meter S-band accelerator section, in order to achieve the desired low emittance beam, emittance compensation with solenoidal focusing will be employed

  11. Understanding the Double Quantum Muonium RF Resonance

    Science.gov (United States)

    Kreitzman, S. R.; Cottrell, S. P.; Fleming, D. G.; Sun-Mack, S.

    A physically intuitive analytical solution to the Mu + RF Hamiltonian and lineshape is developed. The method is based on reformulating the problem in a basis set that explicitly accounts for the 1q RF transitions and identifying an isolated upper 1q quasi-eigenstate within that basis. Subsequently the double quantum resonance explicitly manifests itself via the non-zero interaction term between the pair of lower ortho-normalized 1q basis states, which in this field region are substantially the | \\uparrow \\uparrow > and | \\downarrow \\downarrow > Mu states.

  12. RF torch discharge combined with conventional burner

    International Nuclear Information System (INIS)

    Janca, J.; Tesar, C.

    1996-01-01

    The design of the combined flame-rf-plasma reactor and experimental examination of this reactor are presented. For the determination of the temperature in different parts of the combined burner plasma the methods of emission spectroscopy were used. The temperatures measured in the conventional burner reach the maximum temperature 1900 K but in the burner with the superimposed rf discharge the neutral gas temperature substantially increased up to 2600 K but also the plasma volume increases substantially. Consequently, the resident time of reactants in the reaction zone increases

  13. Control electronics of the PEP RF system

    International Nuclear Information System (INIS)

    Pellegrin, J.L.; Schwarz, H.

    1981-01-01

    The operation of the major components used for controlling the phase and field level of the PEP RF cavities is described. The control electronics of one RF station is composed of several control loops: each cavity has a tuners' servo loop which maintains the frequency constant and also keeps the fields of each cavity balanced; the total gap voltage developed by a pair of cavities is regulated by a gap voltage controller; finally, the phase variation along the amplification chain, the klystron and the cavities are compensated by a phase lock loop. The design criteria of each loop are set forth and the circuit implementation and test results are presented

  14. RF control system of the HIMAC synchrotron

    International Nuclear Information System (INIS)

    Kanazawa, M.; Sato, K.; Itano, A.

    1992-01-01

    An RF control system of the HIMAC synchrotron has been constructed. In this control system we have adopted a digital feed back system with a digital synthesizer (DS). Combining a high power system, performance of the control system have been tested in a factory (Toshiba) with a simulator circuit of the synchrotron oscillation. Following this test, We had beam acceleration test with this control system at TARN-II in INS (Institute for Nuclear Study, University of Tokyo). This paper describes the RF control system and its tested results. (author)

  15. Pulsed RF Sources for Linear Colliders

    International Nuclear Information System (INIS)

    Fernow, R.C.

    1995-01-01

    These proceedings represent papers presented at the workshop on pulsed RF sources for linear colliders. The workshop examined the performance of RF sources for possible future linear colliders. Important sources were presented on new type of klystrons, gyrotrons and gyroklystrons. A number of auxiliary topics were covered, including modulators, pulse compression, power extraction, windows, electron guns and gun codes. The workshop was sponsored by the International Committee for Future Accelerators(ICFA), the U.S. Department of Energy and the Center for Accelerator Physics at Brookhaven National Laboratory. There were forty one papers presented at the workshop and all forty one have been abstracted for the Energy Science and Technology database

  16. Fundamentals of RF and microwave transistor amplifiers

    CERN Document Server

    Bahl, Inder J

    2009-01-01

    A Comprehensive and Up-to-Date Treatment of RF and Microwave Transistor Amplifiers This book provides state-of-the-art coverage of RF and microwave transistor amplifiers, including low-noise, narrowband, broadband, linear, high-power, high-efficiency, and high-voltage. Topics covered include modeling, analysis, design, packaging, and thermal and fabrication considerations. Through a unique integration of theory and practice, readers will learn to solve amplifier-related design problems ranging from matching networks to biasing and stability. More than 240 problems are included to help read

  17. rf driven multicusp H- ion source

    International Nuclear Information System (INIS)

    Leung, K.N.; DeVries, G.J.; DiVergilio, W.F.; Hamm, R.W.; Hauck, C.A.; Kunkel, W.B.; McDonald, D.S.; Williams, M.D.

    1991-01-01

    An rf driven multicusp source capable of generating 1-ms H - beam pulses with a repetition rate as high as 150 Hz has been developed. This source can be operated with a filament or other types of starter. There is almost no lifetime limitation and a clean plasma can be maintained for a long period of operation. It is demonstrated that rf power as high as 25 kW could be coupled inductively to the plasma via a glass-coated copper-coil antenna. The extracted H - current density achieved is about 200 mA/cm 2

  18. Cryogenic system for TRISTAN superconducting RF cavity

    International Nuclear Information System (INIS)

    Hosoyama, K.; Hara, K.; Kabe, A.; Kojima, Yuuji; Ogitsu, T.; Sakamoto, Y.; Kawamura, S.; Ishimaru, Y.

    1990-01-01

    A cryogenic system consisting of a helium refrigerator (4 kW at 4.4 K) and a liquid helium distribution transfer system for TRISTAN 508 MHz 32 x 5-cell superconducting RF cavities was designed and constructed. After the performance test of the cryogenic system, 16 x 5-cell superconducting RF cavities in 8 cryostats were installed in underground TRISTAN electron-positron collider and connected to the helium refrigerator on the ground level through the transfer line (total length about 330 m) and cooled by liquid helium pool boiling in parallel. The cryogenic system and its operation experience are described. (author)

  19. Lumped elements for RF and microwave circuits

    CERN Document Server

    Bahl, Inder

    2003-01-01

    Due to the unprecedented growth in wireless applications over the past decade, development of low-cost solutions for RF and microwave communication systems has become of great importance. This practical new book is the first comprehensive treatment of lumped elements, which are playing a critical role in the development of the circuits that make these cost-effective systems possible. The books offers you an in-depth understanding of the different types of RF and microwave circuit elements, including inductors, capacitors, resistors, transformers, via holes, airbridges, and crossovers. Support

  20. RF and microwave diagnostics of plasma

    International Nuclear Information System (INIS)

    Basu, J.

    1976-01-01

    A brief review of RF and microwave investigations carried out at laboratory plasma is presented. Both the immersive and non-immersive RF probes of various types are discussed, the major emphasis being laid on the work carried out in extending the scope of the immersive impedance probe and non-immersive coil probe. The standard microwave methods for plasma diagnosis are mentioned. The role of relatively new diagnostic tool, viz., a dielectric-rod waveguide, is described, and the technique of measuring the admittance of such a waveguide (or an antenna) enveloped in plasma is discussed. (K.B.)

  1. Emittance investigation of RF photo-injector

    CERN Document Server

    Yang Mao Rong; Li Zheng; Li Ming; Xu Zhou

    2002-01-01

    A high-power laser beam illuminates a photocathode surface placed on an end wall of an RF cavity. The emitted electrons are accelerated immediately to a relativistic energy by the strong RF find in the cavity. But space charge effect induces beam emittance growth especially near the cathode where the electrons are still nonrelativistic. The author analyzes the factors which lead the transverse emittance growth and method how to resolve this problem. After introducing solenoidal focusing near the photocathode, the beam emittance growth is suppressed dramatically. The beam emittance is given also after compensation and simulation results. The measurements show these results are coincident

  2. RF and dc desensitized electroexplosive device

    Science.gov (United States)

    Krainiak, John W.; Speaks, Paul D.; Cornett, Michael S.

    1989-07-01

    This patent application relates to electroexplosive devices (EEDs) such as detonators, blasting caps and squibs, in particular to a method and device for desensitizing EEDs to electromagnetic radiation and electrostatic charges with the added ability to desensitize the device to essentially dc currents. An insensitive electroexplosive device to electrically ignite explosive is disclosed. This device is inherently immune to radio frequency (RF) radiation, and also provides protection against dc or very low frequency RF induced by arcing. A central feature is use of zeners and capacitors to form a reactively balanced bridge circuit. When constructed in semiconductor form, as described in this application, the device is capable of incorporation in small caliber ordnance.

  3. The RF Design of an HOM Polarized RF Gun for the ILC

    International Nuclear Information System (INIS)

    Wang, J.W.; Clendenin, J.E.; Colby, E.R.; Miller, R.A.; Lewellen, J.W.

    2006-01-01

    The ILC requires a polarized electron beam. While a highly polarized beam can be produced by a GaAs-type cathode in a DC gun of the type currently in use at SLAC, JLAB and elsewhere, the ILC injector system can be simplified and made more efficient if a GaAs-type cathode can be combined with a low emittance RF gun. Since this type of cathode is known to be extremely sensitive to vacuum contamination including back bombardment by electrons and ions, any successful polarized RF gun must have a significantly improved operating vacuum compared to existing RF guns. We present a new RF design for an L-Band normal conducting (NC) RF gun for the ILC polarized electron source. This design incorporates a higher order mode (HOM) structure, whose chief virtue in this application is an improved conductance for vacuum pumping on the cathode. Computer simulation models have been used to optimize the RF parameters with two principal goals: first to minimize the required RF power; second to reduce the peak surface field relative to the field at the cathode in order to suppress field emitted electron bombardment. The beam properties have been simulated initially using PARMELA. Vacuum and other practical issues for implementing this design are discussed

  4. Office flexible cystoscopy.

    Science.gov (United States)

    Kavoussi, L R; Clayman, R V

    1988-11-01

    Since the development of the first purpose-built flexible cystoscope in 1984, flexible cystoscopy has become an accepted diagnostic and therapeutic modality. Indeed, it is estimated that more than 10 per cent of practicing urologists are already familiar with this technology. The flexible cystoscope has markedly extended the urologist's ability to examine the bladder, and it has become a valuable adjunct to the rigid cystoscope. Although the operation of this instrument is vastly different from that of its rigid counterpart, with practice, the technique can be learned. After experience is obtained with diagnostic flexible cystoscopy, the urologist will likely prefer this new instrument for bladder inspection, as it provides for a more thorough yet less morbid and less expensive examination. In the future, the development of improved and smaller instrumentation will further extend the therapeutic indications for flexible cystoscopy. Indeed, advances in laser technology are already providing the urologist with 300- to 600-micron (0.9 to 1.8F) flexible probes capable of incision (KTP laser), fulguration (Nd:YAG laser), and stone disintegration (tunable dye laser). Lastly, the skills obtained in using the flexible cystoscope are all readily applicable to the development of dexterity with the already available flexible nephroscope and the more recently developed flexible ureteroscope.

  5. Measurement of RF characteristics of magnetic alloys for an RF cavity of the accumulator cooler ring

    International Nuclear Information System (INIS)

    Watanabe, M.; Chiba, Y.; Katayama, T.; Koseki, T.; Ohtomo, K.; Tsutsui, H.

    2004-01-01

    The magnetic alloy (MA)-loaded RF cavity has been studied for an RF stacking system of the accumulator cooler ring (ACR). RF characteristics of several high-permeability MA cores were measured in the frequency range between 1 and 50 MHz. The effects of the cut-core configuration, cutting the core and leaving air gaps between two circular halves, were also investigated. The results show that the shunt impedance remains high and the appropriate inductance and Q-value can be obtained by increasing the gap width of the cut core in the frequency region of the ACR cavity

  6. Simulations of S-band RF gun with RF beam control

    Science.gov (United States)

    Barnyakov, A. M.; Levichev, A. E.; Maltseva, M. V.; Nikiforov, D. A.

    2017-08-01

    The RF gun with RF control is discussed. It is based on the RF triode and two kinds of the cavities. The first cavity is a coaxial cavity with cathode-grid assembly where beam bunches are formed, the second one is an accelerating cavity. The features of such a gun are the following: bunched and relativistic beams in the output of the injector, absence of the back bombarding electrons, low energy spread and short length of the bunches. The scheme of the injector is shown. The electromagnetic field simulation and longitudinal beam dynamics are presented. The possible using of the injector is discussed.

  7. A flexible coil array for high resolution magnetic resonance imaging at 7 Tesla

    International Nuclear Information System (INIS)

    Kriegl, R.

    2015-01-01

    Magnetic resonance imaging (MRI), among other imaging techniques, has become a major backbone of modern medical diagnostics. MRI enables the non-invasive combined, identification of anatomical structures, functional and chemical properties, especially in soft tissues. Nonetheless, applications requiring very high spatial and/or temporal resolution are often limited by the available signal-to-noise ratio (SNR) in MR experiments. Since first clinical applications, image quality in MRI has been constantly improved by applying one or several of the following strategies: increasing the static magnetic field strength, improvement of the radiofrequency (RF) detection system, development of specialized acquisition sequences and optimization of image reconstruction techniques. This work is concerned with the development of highly sensitive RF detection systems for biomedical ultra-high field MRI. In particular, auto-resonant RF coils based on transmission line technology are investigated. These resonators may be fabricated on flexible substrate which enables form-fitting of the RF detector to the target anatomy, leading to a significant SNR gain. The main objective of this work is the development of a flexible RF coil array for high-resolution MRI on a human whole-body 7 T MR scanner. With coil arrays, the intrinsically high SNR of small surface coils may be exploited for an extended field of view. Further, parallel imaging techniques are accessible with RF array technology, allowing acceleration of the image acquisition. Secondly, in this PhD project a novel design for transmission line resonators is developed, that brings an additional degree of freedom in geometric design and enables the fabrication of large multi-turn resonators for high field MR applications. This thesis describes the development, successful implementation and evaluation of novel, mechanically flexible RF devices by analytical and 3D electromagnetic simulations, in bench measurements and in MRI

  8. Flexible Gallium Nitride for High-Performance, Strainable Radio-Frequency Devices.

    Science.gov (United States)

    Glavin, Nicholas R; Chabak, Kelson D; Heller, Eric R; Moore, Elizabeth A; Prusnick, Timothy A; Maruyama, Benji; Walker, Dennis E; Dorsey, Donald L; Paduano, Qing; Snure, Michael

    2017-12-01

    Flexible gallium nitride (GaN) thin films can enable future strainable and conformal devices for transmission of radio-frequency (RF) signals over large distances for more efficient wireless communication. For the first time, strainable high-frequency RF GaN devices are demonstrated, whose exceptional performance is enabled by epitaxial growth on 2D boron nitride for chemical-free transfer to a soft, flexible substrate. The AlGaN/GaN heterostructures transferred to flexible substrates are uniaxially strained up to 0.85% and reveal near state-of-the-art values for electrical performance, with electron mobility exceeding 2000 cm 2 V -1 s -1 and sheet carrier density above 1.07 × 10 13 cm -2 . The influence of strain on the RF performance of flexible GaN high-electron-mobility transistor (HEMT) devices is evaluated, demonstrating cutoff frequencies and maximum oscillation frequencies greater than 42 and 74 GHz, respectively, at up to 0.43% strain, representing a significant advancement toward conformal, highly integrated electronic materials for RF applications. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Status of RF superconductivity at Argonne

    International Nuclear Information System (INIS)

    Shepard, K.W.

    1989-01-01

    Development of a superconducting (SC) slow-wave structures began at Argonne National Laboratory (ANL) in 1971, and led to the first SC heavy-ion linac (ATLAS - the Argonne Tandem-Linac Accelerating System), which began regularly scheduled operation in 1978. To date, more than 40,000 hours of bean-on target operating time has been accumulated with ATLAS. The Physics Division at ANL has continued to develop SC RF technology for accelerating heavy-ions, with the result that the SC linac has, up to the present, has been in an almost continuous process of upgrade and expansion. It should be noted that this has been accomplished while at the same time maintaining a vigorous operating schedule in support of the nuclear and atomic physics research programs of the division. In 1987, the Engineering Physics Division at ANL began development of SC RF components for the acceleration of high-brightness proton and deuterium beams. This work has included the evaluation of RF properties of high-T c oxide superconductors, both for the above and for other applications. The two divisions collaborated while they worked on several applications of RF SC, and also worked to develop the technology generally. 11 refs., 6 figs

  10. Modelling of an RF plasma shower

    NARCIS (Netherlands)

    Atanasova, M.; Carbone, E.A.D.; Mihailova, D.B.; Benova, E.; Degrez, G.; Mullen, van der J.J.A.M.

    2012-01-01

    A capacitive radiofrequency (RF) discharge at atmospheric pressure is studied by means of a time-dependent, two-dimensional fluid model. The plasma is created in a stationary argon gas flow guided through two perforated electrodes, hence resembling a shower. The inner electrode, the electrode facing

  11. Experimental study of rf pulsed heating

    Directory of Open Access Journals (Sweden)

    Lisa Laurent

    2011-04-01

    Full Text Available Cyclic thermal stresses produced by rf pulsed heating can be the limiting factor on the attainable reliable gradients for room temperature linear accelerators. This is especially true for structures that have complicated features for wakefield damping. These limits could be pushed higher by using special types of copper, copper alloys, or other conducting metals in constructing partial or complete accelerator structures. Here we present an experimental study aimed at determining the potential of these materials for tolerating cyclic thermal fatigue due to rf magnetic fields. A special cavity that has no electric field on the surface was employed in these studies. The cavity shape concentrates the magnetic field on one flat surface where the test material is placed. The materials tested in this study have included oxygen free electronic grade copper, copper zirconium, copper chromium, hot isostatically pressed copper, single crystal copper, electroplated copper, Glidcop®, copper silver, and silver plated copper. The samples were exposed to different machining and heat treatment processes prior to rf processing. Each sample was tested to a peak pulsed heating temperature of approximately 110°C and remained at this temperature for approximately 10×10^{6} rf pulses. In general, the results showed the possibility of pushing the gradient limits due to pulsed heating fatigue by the use of copper zirconium and copper chromium alloys.

  12. 47 CFR 101.1425 - RF safety.

    Science.gov (United States)

    2010-10-01

    ... 47 Telecommunication 5 2010-10-01 2010-10-01 false RF safety. 101.1425 Section 101.1425 Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) SAFETY AND SPECIAL RADIO SERVICES FIXED MICROWAVE... safety. MVDDS stations in the 12.2-12.7 GHz frequency band do not operate with output powers that equal...

  13. Binary rf pulse compression experiment at SLAC

    International Nuclear Information System (INIS)

    Lavine, T.L.; Spalek, G.; Farkas, Z.D.; Menegat, A.; Miller, R.H.; Nantista, C.; Wilson, P.B.

    1990-06-01

    Using rf pulse compression it will be possible to boost the 50- to 100-MW output expected from high-power microwave tubes operating in the 10- to 20-GHz frequency range, to the 300- to 1000-MW level required by the next generation of high-gradient linacs for linear for linear colliders. A high-power X-band three-stage binary rf pulse compressor has been implemented and operated at the Stanford Linear Accelerator Center (SLAC). In each of three successive stages, the rf pulse-length is compressed by half, and the peak power is approximately doubled. The experimental results presented here have been obtained at low-power (1-kW) and high-power (15-MW) input levels in initial testing with a TWT and a klystron. Rf pulses initially 770 nsec long have been compressed to 60 nsec. Peak power gains of 1.8 per stage, and 5.5 for three stages, have been measured. This corresponds to a peak power compression efficiency of about 90% per stage, or about 70% for three stages, consistent with the individual component losses. The principle of operation of a binary pulse compressor (BPC) is described in detail elsewhere. We recently have implemented and operated at SLAC a high-power (high-vacuum) three-stage X-band BPC. First results from the high-power three-stage BPC experiment are reported here

  14. Computer codes for RF cavity design

    International Nuclear Information System (INIS)

    Ko, K.

    1992-08-01

    In RF cavity design, numerical modeling is assuming an increasingly important role with the help of sophisticated computer codes and powerful yet affordable computers. A description of the cavity codes in use in the accelerator community has been given previously. The present paper will address the latest developments and discuss their applications to cavity toning and matching problems

  15. RF building block modeling: optimization and synthesis

    NARCIS (Netherlands)

    Cheng, W.

    2012-01-01

    For circuit designers it is desirable to have relatively simple RF circuit models that do give decent estimation accuracy and provide sufficient understanding of circuits. Chapter 2 in this thesis shows a general weak nonlinearity model that meets these demands. Using a method that is related to

  16. Linear collider RF structure design using ARGUS

    International Nuclear Information System (INIS)

    Kwok Ko

    1991-01-01

    In a linear collider, both the driving system (klystrons) and the accelerating system (linac) consists of RF structures that are inherently three-dimensional. These structures which are responsible for power input/output, have to satisfy many requirements in order that instabilities, beam or RF related, are to be avoided. At the same time, system efficiencies have to be maintained at optimal to minimize cost. Theoretical analysis on these geometrically complex structures are difficult and until recently, numerical solutions have been limited. At SLAC, there has been a continuing and close collaboration among accelerator physicists, engineers and numericists to integrate supercomputing into the design procedure which involves 3-D RF structures. The outcome is very encouraging. Using the 3-D/electromagnetic code ARGUS (developed by SAIC) on the Cray computers at NERSC in conjunction with supporting theories, a wide variety of critical components have been simulated and evaluated. Aside from structures related to the linear collider, the list also includes the RF cavity for the proposed Boson Factory and the anode circuit for the Cross-Field Amplifier, once considered as an alternative to the klystron as a possible power source. This presentation will focus on two specific structures: (1) the klystron output cavity; and (2) the linac input coupler. As the results demonstrate, supercomputing is fast becoming a viable technology that could conceivably replace actual cold-testing in the near future

  17. The IPNS second harmonic RF upgrade

    International Nuclear Information System (INIS)

    Middendorf, M.E.; Brumwell, F.R.; Dooling, J.C.; Horan, D.; Kustom, R.L.; Lien, M.K.; McMichael, G.E.; Moser, M.R.; Nassiri, A.; Wang, S.

    2008-01-01

    The intense pulsed neutron source (IPNS) rapid cycling synchrotron (RCS) is used to accelerate protons from 50 MeV to 450 MeV, at a repetition rate of 30 Hz. The original ring design included two identical rf systems, each consisting of an accelerating cavity, cavity bias supply, power amplifiers and low-level analog electronics. The original cavities are located 180 degrees apart in the ring and provide a total peak accelerating voltage of ∼21 kV over the 2.21-MHz to 5.14-MHz revolution frequency sweep. A third rf system has been constructed and installed in the RCS. The third rf system is capable of operating at the fundamental revolution frequency for the entire acceleration cycle, providing an additional peak accelerating voltage of up to ∼11 kV, or at the second harmonic of the revolution frequency for the first ∼4 ms of the acceleration cycle, providing an additional peak voltage of up to ∼11 kV for bunch shape control. We describe here the hardware implementation and operation to date of the third rf cavity in the second harmonic mode.

  18. Dynamics of RF captured cooled proton beams

    International Nuclear Information System (INIS)

    Kells, W.; Mills, F.

    1983-01-01

    In the course of electron cooling experiments at the Electron Cooling Ring (ECR) at Fermilab, several peculiar features of the longitudinal phase space of cold protons (200 MeV) captured in RF buckets were observed. Here we present the experimental facts, present a simple theory, and summarize computer simulation results which support the theory and facts

  19. Novel RF-MEMS capacitive switching structures

    NARCIS (Netherlands)

    Rottenberg, X.; Jansen, Henricus V.; Fiorini, P.; De Raedt, W.; Tilmans, H.A.C.

    2002-01-01

    This paper reports on novel RF-MEMS capacitive switching devices implementing an electrically floating metal layer covering the dielectric to ensure intimate contact with the bridge in the down state. This results in an optimal switch down capacitance and allows optimisation of the down/up

  20. Rf-biasing of highly idealized plasmas

    NARCIS (Netherlands)

    Westermann, R.H.J.; Blauw, M.A.; Goedheer, W.J.; Sanden, van de M.C.M.; Schmidt, J.; Simek, M.; Pekarek, S.; Prukner, V.

    2007-01-01

    Remote plasmas, which are subjected to a radio-frequency (RF) biased surface, have been investigated theoretically and experimentally for decades. The relation between the complex power (DC) voltage characteristics, the ion energy distribution and control losses of the ion bombardment are of

  1. RF sources for recent linear accelerator projects

    International Nuclear Information System (INIS)

    Terrien, J.C.; Faillon, G.; Guidee, P.

    1992-01-01

    We present the state of the art of high power klystrons at Thomson Tubes Electroniques, along with the main technological limitations for peak power and pulse width. Then we describe the work that is under way to upgrade performance and some of the alternative RF sources that have been developed. (Author) 3 refs., 4 figs., 2 tabs

  2. RF Design of the LCLS Gun

    International Nuclear Information System (INIS)

    Limborg-Deprey, C.

    2010-01-01

    Final dimensions for the LCLS RF gun are described. This gun, referred to as the LCLS gun, is a modified version of the UCLA/BNL/SLAC 1.6 cell S-Band RF gun (1), referred to as the prototype gun. The changes include a larger mode separation (15 MHz for the LCLS gun vs. 3.5 MHz for the prototype gun), a larger radius at the iris between the 2 cells, a reduced surface field on the curvature of the iris between the two cells, Z power coupling, increased cooling channels for operation at 120 Hz, dual rf feed, deformation tuning of the full cell, and field probes in both cells. Temporal shaping of the klystron pulse, to reduce the average power dissipated in the gun, has also been adopted. By increasing the mode separation, the amplitude of the 0-mode electric field on the cathode decreases from 10% of the peak on axis field for the prototype gun to less than 3% for the LCLS gun for the steady state fields. Beam performance is improved as shown by the PARMELA simulations. The gun should be designed to accept a future load lock system. Modifications follow the recommendations of our RF review committee (2). Files and reference documents are compiled in Section IV.

  3. Cathode follower RF system with frequency modulation

    International Nuclear Information System (INIS)

    Irie, Y.; Yano, Y.; Kaneko, N.; Kobayashi, Y.

    1994-01-01

    A model RF system with a cathode follower was tested under frequency modulation in the 1-3.5 MHz range. The repetition rate was 40 Hz. The oscillation was stable, and the output impedance was measured to be around 20 ohm. (author)

  4. RF Circuit Design in Nanometer CMOS

    NARCIS (Netherlands)

    Nauta, Bram

    2007-01-01

    With CMOS technology entering the nanometer regime, the design of analog and RF circuits is complicated by low supply voltages, very non-linear (and nonquadratic) devices and large 1/f noise. At the same time, circuits are required to operate over increasingly wide bandwidths to implement modern

  5. Plasma Sprayed Coatings for RF Wave Absorption

    Czech Academy of Sciences Publication Activity Database

    Nanobashvili, S.; Matějíček, Jiří; Žáček, František; Stöckel, Jan; Chráska, Pavel; Brožek, Vlastimil

    307-311, - (2002), s. 1334-1338 ISSN 0022-3115 Grant - others: COST (XE) Euratom DV4/04(TWO) Institutional research plan: CEZ:AV0Z2043910 Keywords : boron carbide, thermal spray coatings, fusion materials, RF wave absorption Subject RIV: JK - Corrosion ; Surface Treatment of Materials Impact factor: 1.730, year: 2002

  6. Superconductor Digital-RF Receiver Systems

    Science.gov (United States)

    Mukhanov, Oleg A.; Kirichenko, Dmitri; Vernik, Igor V.; Filippov, Timur V.; Kirichenko, Alexander; Webber, Robert; Dotsenko, Vladimir; Talalaevskii, Andrei; Tang, Jia Cao; Sahu, Anubhav; Shevchenko, Pavel; Miller, Robert; Kaplan, Steven B.; Sarwana, Saad; Gupta, Deepnarayan

    Digital superconductor electronics has been experiencing rapid maturation with the emergence of smaller-scale, lower-cost communications applications which became the major technology drivers. These applications are primarily in the area of wireless communications, radar, and surveillance as well as in imaging and sensor systems. In these areas, the fundamental advantages of superconductivity translate into system benefits through novel Digital-RF architectures with direct digitization of wide band, high frequency radio frequency (RF) signals. At the same time the availability of relatively small 4K cryocoolers has lowered the foremost market barrier for cryogenically-cooled digital electronic systems. Recently, we have achieved a major breakthrough in the development, demonstration, and successful delivery of the cryocooled superconductor digital-RF receivers directly digitizing signals in a broad range from kilohertz to gigahertz. These essentially hybrid-technology systems combine a variety of superconductor and semiconductor technologies packaged with two-stage commercial cryocoolers: cryogenic Nb mixed-signal and digital circuits based on Rapid Single Flux Quantum (RSFQ) technology, room-temperature amplifiers, FPGA processing and control circuitry. The demonstrated cryocooled digital-RF systems are the world's first and fastest directly digitizing receivers operating with live satellite signals in X-band and performing signal acquisition in HF to L-band at ˜30GHz clock frequencies.

  7. Sources of Emittance in RF Photocathode Injectors

    Energy Technology Data Exchange (ETDEWEB)

    Dowell, David [SLAC National Accelerator Lab., Menlo Park, CA (United States)

    2016-12-11

    Advances in electron beam technology have been central to creating the current generation of x-ray free electron lasers and ultra-fast electron microscopes. These once exotic devices have become essential tools for basic research and applied science. One important beam technology for both is the electron source which, for many of these instruments, is the photocathode RF gun. The invention of the photocathode gun and the concepts of emittance compensation and beam matching in the presence of space charge and RF forces have made these high-quality beams possible. Achieving even brighter beams requires a taking a finer resolution view of the electron dynamics near the cathode during photoemission and the initial acceleration of the beam. In addition, the high brightness beam is more sensitive to degradation by the optical aberrations of the gun’s RF and magnetic lenses. This paper discusses these topics including the beam properties due to fundamental photoemission physics, space charge effects close to the cathode, and optical distortions introduced by the RF and solenoid fields. Analytic relations for these phenomena are derived and compared with numerical simulations.

  8. Theory of RF superconductivity for resonant cavities

    Science.gov (United States)

    Gurevich, Alex

    2017-03-01

    An overview of a theory of electromagnetic response of superconductors in strong radio-frequency (RF) electromagnetic fields is given with the emphasis on applications to superconducting resonant cavities for particle accelerators. The paper addresses fundamentals of the BCS surface resistance, the effect of subgap states and trapped vortices on the residual surface resistance at low RF fields, and a nonlinear surface resistance at strong fields, particularly the effect of the RF field suppression of the surface resistance. These issues are essential for the understanding of the field dependence of high quality factors Q({B}a)˜ {10}10{--}{10}11 achieved on the Nb cavities at 1.3-2 K in strong RF fields B a close to the depairing limit, and the extended Q({B}a) rise which has been observed on Ti and N-treated Nb cavities. Possible ways of further increase of Q({B}a) and the breakdown field by optimizing impurity concentration at the surface and by multilayer nanostructuring with materials other than Nb are discussed.

  9. Cw rf operation of the FMIT RFQ

    International Nuclear Information System (INIS)

    Fazio, M.V.; Brandeberry, F.E.

    1985-01-01

    The 80-MHz RFQ for the Fusion Materials Irradiation Test Facility prototype accelerator has been rf conditioned for cw operation to the design field level of 17.5 MV/m (1.68 x Kilpatrick limit). Experimental results and operating experience will be discussed

  10. Coherence-Multiplexed Optical RF Feeder Networks

    NARCIS (Netherlands)

    Meijerink, Arjan; Taniman, R.O.; van Etten, Wim

    2007-01-01

    An optical RF feeding system for wireless access is proposed, in which the radio access points are distinguished by means of coherence multiplexing (CM). CM is a rather unknown and potentially inexpensive optical code division multiple access technique, which is particularly suitable for relatively

  11. Computer codes for RF cavity design

    International Nuclear Information System (INIS)

    Ko, K.

    1992-01-01

    In RF cavity design, numerical modeling is assuming an increasingly important role with the help of sophisticated computer codes and powerful yet affordable computers. A description of the cavity codes in use in the accelerator community has been given previously. The present paper will address the latest developments and discuss their applications to cavity tuning and matching problems. (Author) 8 refs., 10 figs

  12. Characterization of dielectric charging in RF MEMS

    NARCIS (Netherlands)

    Herfst, R.W.; Huizing, H.G.A.; Steeneken, P.G.; Schmitz, Jurriaan

    2005-01-01

    Capacitive RF MEMS switches show great promise for use in wireless communication devices such as mobile phones, but the successful application of these switches is hindered by the reliability of the devices: charge injection in the dielectric layer (SiN) can cause irreversible stiction of the moving

  13. Modeling and simulation for RF system design

    CERN Document Server

    Frevert, Ronny; Jancke, Roland; Knöchel, Uwe; Schwarz, Peter; Kakerow, Ralf; Darianian, Mohsen

    2005-01-01

    Focusing on RF specific modeling and simulation methods, and system and circuit level descriptions, this work contains application-oriented training material. Accompanied by a CD- ROM, it combines the presentation of a mixed-signal design flow, an introduction into VHDL-AMS and Verilog-A, and the application of commercially available simulators.

  14. Status of RF superconductivity at Argonne

    Energy Technology Data Exchange (ETDEWEB)

    Shepard, K.W.

    1989-01-01

    Development of a superconducting (SC) slow-wave structures began at Argonne National Laboratory (ANL) in 1971, and led to the first SC heavy-ion linac (ATLAS - the Argonne Tandem-Linac Accelerating System), which began regularly scheduled operation in 1978. To date, more than 40,000 hours of bean-on target operating time has been accumulated with ATLAS. The Physics Division at ANL has continued to develop SC RF technology for accelerating heavy-ions, with the result that the SC linac has, up to the present, has been in an almost continuous process of upgrade and expansion. It should be noted that this has been accomplished while at the same time maintaining a vigorous operating schedule in support of the nuclear and atomic physics research programs of the division. In 1987, the Engineering Physics Division at ANL began development of SC RF components for the acceleration of high-brightness proton and deuterium beams. This work has included the evaluation of RF properties of high-{Tc} oxide superconductors, both for the above and for other applications. The two divisions collaborated while they worked on several applications of RF SC, and also worked to develop the technology generally. 11 refs., 6 figs.

  15. RF Anechoic Chambers, Tri-Service Research Laboratory

    Data.gov (United States)

    Federal Laboratory Consortium — In collaboration with the Navy, there are 12 RF Anechoic and static free exposure chambers located at TSRL. These chambers cover the majority of the RF spectrum and...

  16. Outage Analysis of Asymmetric RF-FSO Systems

    KAUST Repository

    Ansari, Imran Shafique; Abdallah, Mohamed M.; Alouini, Mohamed-Slim; Qaraqe, Khalid A.

    2017-01-01

    In this work, the outage performance analysis of a dual-hop transmission system composed of asymmetric radio frequency (RF) channels cascaded with free-space optical (FSO) links is presented. The RF links are modeled by the Rayleigh fading

  17. RF electrodynamics in small particles of oxides - a review

    CSIR Research Space (South Africa)

    Srinivasu, VV

    2008-01-01

    Full Text Available RF electrodynamics, particularly, the low field rf absorption in small superconducting and manganite particles is reviewed and compared with their respective bulk counterparts. Experimental and theoretical aspects of the small particle...

  18. Rf-to-dc power converters for wireless powering

    KAUST Repository

    Ouda, Mahmoud Hamdy; Salama, Khaled N.

    2016-01-01

    feedback circuit configured to provide feedback bias signals to gates of the pair of forward rectifying transistors via feedback branch elements. In another example, a method includes receiving a radio frequency (RF) signal; rectifying the RF signal via a

  19. The Legal Investigation Peculiarities in RF Constitutional Court

    Directory of Open Access Journals (Sweden)

    Natal'ya V. Lebedeva

    2012-11-01

    Full Text Available The article features the legal proceedings between Federal Bodies, Entities of Russian Federation, and supreme bodies of RF entities which are both of theoretical and practical interests to powers of RF Constitutional Court.

  20. Organizational flexibility estimation

    OpenAIRE

    Komarynets, Sofia

    2013-01-01

    By the help of parametric estimation the evaluation scale of organizational flexibility and its parameters was formed. Definite degrees of organizational flexibility and its parameters for the Lviv region enterprises were determined. Grouping of the enterprises under the existing scale was carried out. Special recommendations to correct the enterprises behaviour were given.

  1. Reversibly Bistable Flexible Electronics

    KAUST Repository

    Alfaraj, Nasir

    2015-05-01

    Introducing the notion of transformational silicon electronics has paved the way for integrating various applications with silicon-based, modern, high-performance electronic circuits that are mechanically flexible and optically semitransparent. While maintaining large-scale production and prototyping rapidity, this flexible and translucent scheme demonstrates the potential to transform conventionally stiff electronic devices into thin and foldable ones without compromising long-term performance and reliability. In this work, we report on the fabrication and characterization of reversibly bistable flexible electronic switches that utilize flexible n-channel metal-oxide-semiconductor field-effect transistors. The transistors are fabricated initially on rigid (100) silicon substrates before they are peeled off. They can be used to control flexible batches of light-emitting diodes, demonstrating both the relative ease of scaling at minimum cost and maximum reliability and the feasibility of integration. The peeled-off silicon fabric is about 25 µm thick. The fabricated devices are transferred to a reversibly bistable flexible platform through which, for example, a flexible smartphone can be wrapped around a user’s wrist and can also be set back to its original mechanical position. Buckling and cyclic bending of such host platforms brings a completely new dimension to the development of flexible electronics, especially rollable displays.

  2. Flexibility within Fidelity

    Science.gov (United States)

    Kendall, Philip C.; Gosch, Elizabeth; Furr, Jami M.; Sood, Erica

    2008-01-01

    The authors address concerns regarding manual-based treatments, highlighting the role of flexibility and creativity. A cognitive-behavioral therapy for youth anxiety called the Coping Cat program demonstrates the flexible application of manuals and emphasizes the importance of a child-centered, personalized approach that involves the child in the…

  3. Flexible position probe assembly

    International Nuclear Information System (INIS)

    Schmitz, J.J.

    1977-01-01

    The combination of a plurality of tubular transducer sections and a flexible supporting member extending through the tubular transducer sections forms a flexible elongated probe of a design suitable for monitoring the level of an element, such as a nuclear magnetically permeable control rod or liquid. 3 claims, 23 figures

  4. Final Report for 'Design calculations for high-space-charge beam-to-RF conversion'

    International Nuclear Information System (INIS)

    Smithe, David N.

    2008-01-01

    Accelerator facility upgrades, new accelerator applications, and future design efforts are leading to novel klystron and IOT device concepts, including multiple beam, high-order mode operation, and new geometry configurations of old concepts. At the same time, a new simulation capability, based upon finite-difference 'cut-cell' boundaries, has emerged and is transforming the existing modeling and design capability with unparalleled realism, greater flexibility, and improved accuracy. This same new technology can also be brought to bear on a difficult-to-study aspect of the energy recovery linac (ERL), namely the accurate modeling of the exit beam, and design of the beam dump for optimum energy efficiency. We have developed new capability for design calculations and modeling of a broad class of devices which convert bunched beam kinetic energy to RF energy, including RF sources, as for example, klystrons, gyro-klystrons, IOT's, TWT's, and other devices in which space-charge effects are important. Recent advances in geometry representation now permits very accurate representation of the curved metallic surfaces common to RF sources, resulting in unprecedented simulation accuracy. In the Phase I work, we evaluated and demonstrated the capabilities of the new geometry representation technology as applied to modeling and design of output cavity components of klystron, IOT's, and energy recovery srf cavities. We identified and prioritized which aspects of the design study process to pursue and improve in Phase II. The development and use of the new accurate geometry modeling technology on RF sources for DOE accelerators will help spark a new generational modeling and design capability, free from many of the constraints and inaccuracy associated with the previous generation of 'stair-step' geometry modeling tools. This new capability is ultimately expected to impact all fields with high power RF sources, including DOE fusion research, communications, radar and other

  5. Flexible Carbon Aerogels

    Directory of Open Access Journals (Sweden)

    Marina Schwan

    2016-09-01

    Full Text Available Carbon aerogels are highly porous materials with a large inner surface area. Due to their high electrical conductivity they are excellent electrode materials in supercapacitors. Their brittleness, however, imposes certain limitations in terms of applicability. In that context, novel carbon aerogels with varying degree of flexibility have been developed. These highly porous, light aerogels are characterized by a high surface area and possess pore structures in the micrometer range, allowing for a reversible deformation of the aerogel network. A high ratio of pore size to particle size was found to be crucial for high flexibility. For dynamic microstructural analysis, compression tests were performed in-situ within a scanning electron microscope allowing us to directly visualize the microstructural flexibility of an aerogel. The flexible carbon aerogels were found to withstand between 15% and 30% of uniaxial compression in a reversible fashion. These findings might stimulate further research and new application fields directed towards flexible supercapacitors and batteries.

  6. Global Sourcing Flexibility

    DEFF Research Database (Denmark)

    Ørberg Jensen, Peter D.; Petersen, Bent

    2013-01-01

    the higher costs (but decreased risk for value chain disruption) embedded in a more flexible global sourcing model that allows the firm to replicate and/or relocate activities across multiple locations. We develop a model and propositions on facilitating and constraining conditions of global sourcing...... sourcing flexibility. Here we draw on prior research in the fields of organizational flexibility, international business and global sourcing as well as case examples and secondary studies. In the second part of the paper, we discuss the implications of global sourcing flexibility for firm strategy...... and operations against the backdrop of the theory-based definition of the construct. We discuss in particular the importance of global sourcing flexibility for operational performance stability, and the trade-off between specialization benefits, emerging from location and service provider specialization, versus...

  7. Rf beam control for the AGS Booster

    International Nuclear Information System (INIS)

    Brennan, J.M.

    1994-01-01

    RF beam control systems for hadron synchrotrons have evolved over the past three decades into an essentially standard design. The key difference between hadron and lepton machines is the absence of radiation damping and existence of significant frequency variation in the case of hadrons. Although the motion of the hadron in the potential well of the rf wave is inherently stable it is not strongly damped. Damping must be provided by electronic feedback through the accelerating system. This feedback is typically called the phase loop. The technology of the rf beam control system for the AGS Booster synchrotron is described. First, the overall philosophy of the design is explained in terms of a conventional servo system that regulates the beam horizontal position in the vacuum chamber. The concept of beam transfer functions is fundamental to the mathematics of the design process and is reviewed. The beam transfer functions required for this design are derived from first principles. An overview of the beam signal pick-ups and high level rf equipment is given. The major subsystems, the frequency program, the heterodyne system, and beam feedback loops, are described in detail. Beyond accelerating the beam, the rf system must also synchronize the bunches in the Booster to the buckets in the AGS before transfer. The technical challenge in this process is heightened by the need to accomplish synchronization while the frequency is still changing. Details of the synchronization system are given. This report is intended to serve two purposes. One is to document the hardware and performance of the systems that have been built. The other is to serve as a tutorial vehicle from which the non-expert can not only learn the details of this system but also learn the principles of beam control that have led to the particular design choices made

  8. Rf beam control for the AGS Booster

    Energy Technology Data Exchange (ETDEWEB)

    Brennan, J.M.

    1994-09-26

    RF beam control systems for hadron synchrotrons have evolved over the past three decades into an essentially standard design. The key difference between hadron and lepton machines is the absence of radiation damping and existence of significant frequency variation in the case of hadrons. Although the motion of the hadron in the potential well of the rf wave is inherently stable it is not strongly damped. Damping must be provided by electronic feedback through the accelerating system. This feedback is typically called the phase loop. The technology of the rf beam control system for the AGS Booster synchrotron is described. First, the overall philosophy of the design is explained in terms of a conventional servo system that regulates the beam horizontal position in the vacuum chamber. The concept of beam transfer functions is fundamental to the mathematics of the design process and is reviewed. The beam transfer functions required for this design are derived from first principles. An overview of the beam signal pick-ups and high level rf equipment is given. The major subsystems, the frequency program, the heterodyne system, and beam feedback loops, are described in detail. Beyond accelerating the beam, the rf system must also synchronize the bunches in the Booster to the buckets in the AGS before transfer. The technical challenge in this process is heightened by the need to accomplish synchronization while the frequency is still changing. Details of the synchronization system are given. This report is intended to serve two purposes. One is to document the hardware and performance of the systems that have been built. The other is to serve as a tutorial vehicle from which the non-expert can not only learn the details of this system but also learn the principles of beam control that have led to the particular design choices made.

  9. Modulator considerations for the SNS RF system

    International Nuclear Information System (INIS)

    Tallerico, P.J.; Reass, W.A.

    1998-01-01

    The Spallation Neutron Source (SNS) is an intense neutron source for neutron scattering experiments. The project is in the research stage, with construction funding beginning next year. The SNS is comprised of an ion source, a 1,000 MeV, H - linear accelerator, an accumulator ring, a neutron producing target, and experimental area to utilize the scattering of the neutrons. The linear accelerator is RF driven, and the peak beam current is 27 mA and the beam duty factor is 5.84%. The peak RF power required is 104 MW, and the H - beam pulse length is 0.97 ms at a 60 Hz repetition rate. The RF pulses must be about 0.1 ms longer than the beam pulses, due to the Q of the accelerating cavities, and the time required to establish control of the cavity fields. The modulators for the klystrons in this accelerator are discussed in this paper. The SNS is designed to be expandable, so the beam power can be doubled or even quadrupled in the future. One of the double-power options is to double the beam pulse length and duty factor. The authors are specifying the klystrons to operate in this twice-duty-factor mode, and the modulator also should be expandable to 2 ms pulses at 60 Hz. Due to the long pulse length and low RF frequency of 805 MHz, the klystron power is specified at 2.5 MW peak, and the RF system will have 56 klystrons at 805 MHz, and three 1.25 MW peak power klystrons at 402.5 MHz for the low energy portion of the accelerator. The low frequency modulators are conventional floating-deck modulation anode control systems

  10. Optical fiber cabling technologies for flexible access network

    Science.gov (United States)

    Tanji, Hisashi

    2008-07-01

    Fiber-to-the-home (FTTH) outside plant infrastructure should be so designed and constructed as to flexibly deal with increasing subscribers and system evolution to be expected in the future, taking minimization of total cost (CAPEX and OPEX) into consideration. With this in mind, fiber access architectures are reviewed and key technologies on optical fiber and cable for supporting flexible access network are presented. Low loss over wide wavelength (low water peak) and bend-insensitive single mode fiber is a future proof solution. Enhanced separable ribbon facilitates mid-span access to individual fibers in a cable installed, improving fiber utilizing efficiency and flexibility of distribution design. It also contributes to an excellent low PMD characteristic which could be required for video RF overlay system or high capacity long reach metro-access convergence network in the future. Bend-insensitive fiber based cabling technique including field installable connector greatly improves fiber/cable handling in installation and maintenance work.

  11. Flexible-Robotic Reflector for Aerospace Applications

    Directory of Open Access Journals (Sweden)

    Nir Shvalb

    2015-01-01

    Full Text Available Existing dish based antennas tend to have geometric morphologic distortion in the surface due to drastic thermal changes common in the space environment. In this paper we present a new concept for a dynamic antenna specially designed for communication satellites. The suggested flexible-robotic antenna is based on a dual-reflector structure, where the subreflector has a complex surface shaping robotic mechanism allowing it to fix most of the morphologic errors in the main reflector. We have implemented a set of searching algorithms allowing the hyper redundant robotic subreflector to adapt its surface to the morphologic distortions in the main reflector. The suggested new antenna was constructed and tested in an RF room in which it was able to fix the loss caused by distortion in the main reflector to the original gain in less than an hour.

  12. Far-field RF energy transfer and harvesting

    NARCIS (Netherlands)

    Visser, H.J.; Vullers, R.; Briand, D.; Yeatman, E.; Roundy, S.

    2015-01-01

    This chapter deals with radio frequency (RF) energy transfer over a distance. After explaining the differences between nonradiative and radiative RF energy transfer, the chapter gives definitions for transfer and harvesting. Nonradiative RF energy transfer is mostly employed in inductive systems,

  13. Study of Control Grid Thermionic Cathode RF Gun

    CERN Document Server

    Xiao, Jin; Ming, Li; Xinfan, Yang; Xumin, Shen; Yanan, Chen; Zhou, Xu

    2004-01-01

    In this paper, the beam loading effect of RF Gun was analyzed. To minimize the energy spread, the grid control RF Gun was introduced. The result shows that the grid congrol RF Gun can increase electron beam within 1% energy spread.

  14. Status of 174 MHz RF system for BEP

    International Nuclear Information System (INIS)

    Biryuchevsky, Yu.A.; Gorniker, E.I.; Kendjebulatov, E.K.; Krutikhin, S.A.; Kurkin, G.Ya.; Petrov, V.M.; Pilan, A.M.

    2012-01-01

    The new RF system for the BEP storage ring (which is an injector of VEPP-2000 accelerating complex) will increase the particles energy in the BEP from 0.9 to 1 GeV. RF system operates at a frequency of 174 MHz and consists of an accelerating cavity, RF power generator and control system.

  15. Design and development of RF system for vertical test stand for characterization of superconducting RF cavities

    International Nuclear Information System (INIS)

    Mohania, Praveen; Rajput, Vikas; Baxy, Deodatta; Agrawal, Ankur; Mahawar, Ashish; Adarsh, Kunver; Singh, Pratap; Shrivastava, Purushottam

    2011-01-01

    RRCAT is developing a Vertical Test Stand (VTS) to test and qualify 1.3 GHz/650 MHz, SCRF Cavities in collaboration with Fermi National Accelerator Laboratory (FNAL) under Indian Institutions' Fermilab Collaboration. The technical details for VTS is being provided by FNAL, USA. The RF System of VTS needs to provide stable RF power to SCRF cavity with control of amplitude, relative phase and frequency. The incident, reflected, transmitted power and field decay time constant of the cavity are measured to evaluate cavity performance parameters (E, Qo). RF Power is supplied via 500 W Solid State amplifier, 1270-1310 MHz being developed by PHPMS, RRCAT. VTS system is controlled by PXI Platform and National Instruments LabVIEW software. Low Level RF (LLRF) system is used to track the cavity frequency using Phase Locked Loop (PLL). The system is comprised of several integrated functional modules which would be assembled, optimized, and tested separately. Required components and instruments have been identified and procurement for the same is underway. Inhouse development for the Solid State RF amplifier and instrument interfacing is in progress. This paper describes the progress on the development of the RF system for VTS. (author)

  16. RF properties of high-T/sub c/ superconductors

    International Nuclear Information System (INIS)

    Bohn, C.L.; Delayen, J.R.; Dos Santos, D.I.; Lanagan, M.T.; Shepard, K.W.

    1988-01-01

    We have investigated the rf properties of high-T/sub c/ superconductors over a wide range of temperature, frequency, and rf field amplitude. We have tested both bulk polycrystalline samples and thick films on silver substrates. At 150 MHz and 4.2 K, we have measured a surface resistance of 18 μ/sup /OMEGA// at low rf field and 3.6 m/sup /OMEGA// at an rf field of 270 gauss. All samples showed a strong dependence of the surface resistance on rf field; however, no breakdown of the superconducting state has been observed up to the highest field achieved (320 gauss). 9 refs., 4 figs., 1 tab

  17. ACCELERATORS: RF system design and measurement of HIRF-CSRe

    Science.gov (United States)

    Xu, Zhe; Zhao, Hong-Wei; Wang, Chun-Xiao; Xia, Jia-Wen; Zhan, Wen-Long; Bian, Zhi-Bin

    2009-05-01

    An RF system for the CSRe (cooling storage experimental ring) is designed and manufactured domestically. The present paper mainly describes the RF system design in five main sections: ferrite ring, RF cavity, RF generator, low level system and cavity cooling. The cavity is based on a type of coaxial resonator which is shorted at the end with one gap and loaded with domestic ferrite rings. The RF generator is designed in the push-pull mode and the low level control system is based on a DSP+FGPA+DDS+USB interface and has three feedback loops. Finally we give the results of the measurement on our system.

  18. Synchronization of RF fields of Indus 2 RF cavities for proper injection and acceleration of beam

    International Nuclear Information System (INIS)

    Tiwari, Nitesh; Bagduwal, Pritam S.; Lad, M.; Hannurkar, P.R.

    2009-01-01

    Indus-2 is a synchrotron light source with designed parameters of 2.5 GeV, 300 mA beam current. Four RF cavities fed from four RF power stations have been used for beam acceleration from 550 MeV to 2.5 GeV and synchrotron loss compensation. Particle should reach the RF cavity at the proper phase for proper acceptance of the beam in ring. At injection if the phase is not proper the acceptance efficiency reduces and the maximum stored current in the ring also gets limited. Equal contribution from four cavities at every value of current and energy level is very important. Improper phase will cause the imbalance of the power among different station hence will limit maximum stored current and reduce life time of the stored beam. Phase optimization was done in two-step, first at injection to have better injection rate and the stations were operated at the sufficient power for control loops to operate. Then at 2 GeV and 2.5 GeV energy so that beam extracts equal power from all four RF stations. Phase synchronization of all four cavities from injection to 2.5 GeV has already been done at 50 mA stored beam current. If phases of RF fields inside four RF cavities is not proper then beam will not see the total RF voltage as summation of all four cavity gap voltages, hence it is a very important parameter to be optimized and maintained during operation. (author)

  19. Flexible Word Classes

    DEFF Research Database (Denmark)

    • First major publication on the phenomenon • Offers cross-linguistic, descriptive, and diverse theoretical approaches • Includes analysis of data from different language families and from lesser studied languages This book is the first major cross-linguistic study of 'flexible words', i.e. words...... that cannot be classified in terms of the traditional lexical categories Verb, Noun, Adjective or Adverb. Flexible words can - without special morphosyntactic marking - serve in functions for which other languages must employ members of two or more of the four traditional, 'specialised' word classes. Thus......, flexible words are underspecified for communicative functions like 'predicating' (verbal function), 'referring' (nominal function) or 'modifying' (a function typically associated with adjectives and e.g. manner adverbs). Even though linguists have been aware of flexible world classes for more than...

  20. Reversibly Bistable Flexible Electronics

    KAUST Repository

    Alfaraj, Nasir

    2015-01-01

    Introducing the notion of transformational silicon electronics has paved the way for integrating various applications with silicon-based, modern, high-performance electronic circuits that are mechanically flexible and optically semitransparent

  1. Flexibility in insulin prescription

    Directory of Open Access Journals (Sweden)

    Sanjay Kalra

    2016-01-01

    Full Text Available This communication explores the concept of flexibility, a propos insulin preparations and insulin regimes used in the management of type 2 diabetes. The flexibility of an insulin regime or preparation is defined as their ability to be injected at variable times, with variable injection-meal time gaps, in a dose frequency and quantum determined by shared decision making, with a minimal requirement of glucose monitoring and health professional consultation, with no compromise on safety, efficiency and tolerability. The relative flexibility of various basal, prandial and dual action insulins, as well as intensive regimes, is compared. The biopsychosocial model of health is used to assess the utility of different insulins while encouraging a philosophy of flexible insulin usage.

  2. Rare Variants in Genes Encoding MuRF1 and MuRF2 Are Modifiers of Hypertrophic Cardiomyopathy

    Directory of Open Access Journals (Sweden)

    Ming Su

    2014-05-01

    Full Text Available Modifier genes contribute to the diverse clinical manifestations of hypertrophic cardiomyopathy (HCM, but are still largely unknown. Muscle ring finger (MuRF proteins are a class of muscle-specific ubiquitin E3-ligases that appear to modulate cardiac mass and function by regulating the ubiquitin-proteasome system. In this study we screened all the three members of the MuRF family, MuRF1, MuRF2 and MuRF3, in 594 unrelated HCM patients and 307 healthy controls by targeted resequencing. Identified rare variants were confirmed by capillary Sanger sequencing. The prevalence of rare variants in both MuRF1 and MuRF2 in HCM patients was higher than that in control subjects (MuRF1 13/594 (2.2% vs. 1/307 (0.3%, p = 0.04; MuRF2 22/594 (3.7% vs. 2/307 (0.7%; p = 0.007. Patients with rare variants in MuRF1 or MuRF2 were younger (p = 0.04 and had greater maximum left ventricular wall thickness (p = 0.006 than those without such variants. Mutations in genes encoding sarcomere proteins were present in 19 (55.9% of the 34 HCM patients with rare variants in MuRF1 and MuRF2. These data strongly supported that rare variants in MuRF1 and MuRF2 are associated with higher penetrance and more severe clinical manifestations of HCM. The findings suggest that dysregulation of the ubiquitin-proteasome system contributes to the pathogenesis of HCM.

  3. A flexible super-capacitive solid-state power supply for miniature implantable medical devices.

    Science.gov (United States)

    Meng, Chuizhou; Gall, Oren Z; Irazoqui, Pedro P

    2013-12-01

    We present a high-energy local power supply based on a flexible and solid-state supercapacitor for miniature wireless implantable medical devices. Wireless radio-frequency (RF) powering recharges the supercapacitor through an antenna with an RF rectifier. A power management circuit for the super-capacitive system includes a boost converter to increase the breakdown voltage required for powering device circuits, and a parallel conventional capacitor as an intermediate power source to deliver current spikes during high current transients (e.g., wireless data transmission). The supercapacitor has an extremely high area capacitance of ~1.3 mF/mm(2), and is in the novel form of a 100 μm-thick thin film with the merit of mechanical flexibility and a tailorable size down to 1 mm(2) to meet various clinical dimension requirements. We experimentally demonstrate that after fully recharging the capacitor with an external RF powering source, the supercapacitor-based local power supply runs a full system for electromyogram (EMG) recording that consumes ~670 μW with wireless-data-transmission functionality for a period of ~1 s in the absence of additional RF powering. Since the quality of wireless powering for implantable devices is sensitive to the position of those devices within the RF electromagnetic field, this high-energy local power supply plays a crucial role in providing continuous and reliable power for medical device operations.

  4. Microwave RF antennas and circuits nonlinearity applications in engineering

    CERN Document Server

    Aluf, Ofer

    2017-01-01

    This book describes a new concept for analyzing RF/microwave circuits, which includes RF/microwave antennas. The book is unique in its emphasis on practical and innovative microwave RF engineering applications. The analysis is based on nonlinear dynamics and chaos models and shows comprehensive benefits and results. All conceptual RF microwave circuits and antennas are innovative and can be broadly implemented in engineering applications. Given the dynamics of RF microwave circuits and antennas, they are suitable for use in a broad range of applications. The book presents analytical methods for microwave RF antennas and circuit analysis, concrete examples, and geometric examples. The analysis is developed systematically, starting with basic differential equations and their bifurcations, and subsequently moving on to fixed point analysis, limit cycles and their bifurcations. Engineering applications include microwave RF circuits and antennas in a variety of topological structures, RFID ICs and antennas, micros...

  5. RF assisted switching in magnetic Josephson junctions

    Science.gov (United States)

    Caruso, R.; Massarotti, D.; Bolginov, V. V.; Ben Hamida, A.; Karelina, L. N.; Miano, A.; Vernik, I. V.; Tafuri, F.; Ryazanov, V. V.; Mukhanov, O. A.; Pepe, G. P.

    2018-04-01

    We test the effect of an external RF field on the switching processes of magnetic Josephson junctions (MJJs) suitable for the realization of fast, scalable cryogenic memories compatible with Single Flux Quantum logic. We show that the combined application of microwaves and magnetic field pulses can improve the performances of the device, increasing the separation between the critical current levels corresponding to logical "0" and "1." The enhancement of the current level separation can be as high as 80% using an optimal set of parameters. We demonstrate that external RF fields can be used as an additional tool to manipulate the memory states, and we expect that this approach may lead to the development of new methods of selecting MJJs and manipulating their states in memory arrays for various applications.

  6. Storage of RF photons in minimal conditions

    Science.gov (United States)

    Cromières, J.-P.; Chanelière, T.

    2018-02-01

    We investigate the minimal conditions to store coherently a RF pulse in a material medium. We choose a commercial quartz as a memory support because it is a widely available component with a high Q-factor. Pulse storage is obtained by varying dynamically the light-matter coupling with an analog switch. This parametric driving of the quartz dynamics can be alternatively interpreted as a stopped-light experiment. We obtain an efficiency of 26%, a storage time of 209 μs and a time-to-bandwidth product of 98 by optimizing the pulse temporal shape. The coherent character of the storage is demonstrated. Our goal is to connect different types of memories in the RF and optical domain for quantum information processing. Our motivation is essentially fundamental.

  7. New achievements in RF cavity manufacturing

    International Nuclear Information System (INIS)

    Lippmann, G.; Pimiskern, K.; Kaiser, H.

    1993-01-01

    Dornier has been engaged in development, manufacturing and testing of Cu-, Cu/Nb- and Nb-cavities for many years. Recently, several different types of RF cavities were manufactured. A prototype superconducting (s.c.) B-Factory accelerating cavity (1-cell, 500 MHz) was delivered to Cornell University, Laboratory of Nuclear Studies. A second lot of 6 s.c. cavities (20-cell, 3000 MHz) was fabricated on contract from Technical University of Darmstadt for the S-DALINAC facility. Finally, the first copper RF structures (9-cell, 1300 MHz) for TESLA were finished and delivered to DESY, two s.c. niobium structures of the same design are in production. Highlights from the manufacturing processes of these cavities are described and first performance results will be reported

  8. Material studies for CLIC RF cavities

    CERN Document Server

    Taborelli, M

    2004-01-01

    Following the EST/SM suggestion of replacing copper by molybdenum or tungsten for the construction of the RF cavity irises, different CLIC main beam accelerating structures were produced, extensively operated and disassembled for iris surface inspection. The observed surface modifications were found to be very similar to those obtained by sparking in a dedicated laboratory set-up, showing the superior behaviour of both Mo and W with respect to Cu, in terms of surface erosion and conditioning. The iris thermomechanical fatigue due to RF heating was simulated by high power pulsed laser irradiation. A CuZr alloy was found to be much more resistant than pure Cu. Measurements at higher pulse number will be performed on CuZr in order to extrapolate its fatigue behaviour up to the nominal CLIC duration. Finally a possible future development of a hybrid probe beam acceleration structure will be presented.

  9. B factory rf system design issues

    International Nuclear Information System (INIS)

    Zisman, M.S.

    1992-06-01

    We discuss the issues of relevance to the design of a B factory RF system. First, the general parameter regime is outlined, and the reasons behind certain commonly made choices are indicated. This regime involves high beam currents, and many relatively short bunches. Next, the physics difficulties associated with coupled-bunch instabilities are described briefly. We then describe in general terms the alternative approaches taken by various B factory designers, the motivation for these choices, and the technical issues raised by them. Technical solutions have been proposed for both the room-temperature and the superconducting RF scenarios, and considerable R ampersand D is being carried out worldwide to confirm and optimize these solutions

  10. PEP-II RF cavity revisited

    International Nuclear Information System (INIS)

    Rimmer, R.A.; Koehler, G.; Li, D.; Hartman, N.; Folwell, N.; Hodgson, J.; Ko, K.; McCandless, B.

    1999-01-01

    This report describes the results of numerical simulations of the PEP-II RF cavity performed after the completion of the construction phase of the project and comparisons are made to previous calculations and measured results. These analyses were performed to evaluate new calculation techniques for the HOM distribution and RF surface heating that were not available at the time of the original design. These include the use of a high frequency electromagnetic element in ANSYS and the new Omega 3P code to study wall losses, and the development of broadband time domain simulation methods in MAFIA for the HOM loading. The computed HOM spectrum is compared with cavity measurements and observed beam-induced signals. The cavity fabrication method is reviewed, with the benefit of hindsight, and simplifications are discussed

  11. Experimental study of rf pulsed heating

    CERN Document Server

    Laurent, L; Nantista, C; Dolgashev, V; Higashi, Y; Aicheler, M; Tantawi, S; Wuensch, W

    2011-01-01

    Cyclic thermal stresses produced by rf pulsed heating can be the limiting factor on the attainable reliable gradients for room temperature linear accelerators. This is especially true for structures that have complicated features for wakefield damping. These limits could be pushed higher by using special types of copper, copper alloys, or other conducting metals in constructing partial or complete accelerator structures. Here we present an experimental study aimed at determining the potential of these materials for tolerating cyclic thermal fatigue due to rf magnetic fields. A special cavity that has no electric field on the surface was employed in these studies. The cavity shape concentrates the magnetic field on one flat surface where the test material is placed. The materials tested in this study have included oxygen free electronic grade copper, copper zirconium, copper chromium, hot isostatically pressed copper, single crystal copper, electroplated copper, Glidcop (R), copper silver, and silver plated co...

  12. B factory RF system design issues

    International Nuclear Information System (INIS)

    Zisman, M.S.

    1992-01-01

    We discuss the issues of relevance to the design of a B factory RF system. First, the general parameter regime is outlined, and the reasons behind certain commonly made choices are indicated. This regime involves high beam currents, and many relatively short bunches. Next, the physics difficulties associated with coupled-bunch instabilities are described briefly. We then describe in general terms the alternative approaches taken by various B factory designers, the motivation for these choices, and the technical issues raised by them. Technical solutions have been proposed for both the room-temperature and the superconducting RF scenarios, and considerable R ampersand D is being carried out worldwide to confirm and optimize these solutions

  13. The LEP2 superconducting RF system

    CERN Document Server

    Butterworth, A; Brunner, O; Ciapala, Edmond; Frischholz, Hans; Geschonke, Günther; Peschardt, E; Sladen, J

    2008-01-01

    The upgrade of LEP2 energy to beyond the W boson production threshold required the progressive installation of a completely new radio-frequency (RF) accelerating system. The new system used superconducting (SC) cavities, which complemented and partially replaced the original LEP1 RF system based on conventional copper cavity technology. The final system consisted of 56 copper and 288 SC cavities and provided a peak acceleration of more than 3600 MV/turn. This paper describes the main elements of the SC system and reviews the 5 years of LEP2 operation at gradients well beyond the design specification. Also presented are some of the main performance limitations and problems encountered together with the various solutions and procedures found to eliminate them or reduce their effects.

  14. Four-way rf beam separator

    International Nuclear Information System (INIS)

    Neil, V.K.

    1982-01-01

    A method for separating a continuous beam of relativistic particles into four pulsed beams is investigated theoretically. The separation is periodic with period 2π/#betta# so that each of the four beams consists of current pulses of duration π/#betta#. The separation is accomplished by a series of rf cavities in the beam line. The cavities operate in the TM 110 and have frequencies, #betta#, 3#betta#, 5#betta#, 7#betta#, etc. The transverse momentum imparted to the beam particles results in a time-dependent displacement of the beam centroid at a position downstream of the cavity array. The mathematical limitations imposed by truncating a Fourier series are discussed, and an expression derived for the necessary phase and amplitude of each cavity. The rf induced by the beam in the cavities is treated in detail, and does not appear to be a serious problem

  15. Flexible displays, rigid designs?

    DEFF Research Database (Denmark)

    Hornbæk, Kasper

    2015-01-01

    Rapid technological progress has enabled a wide range of flexible displays for computing devices, but the user experience--which we're only beginning to understand--will be the key driver for successful designs.......Rapid technological progress has enabled a wide range of flexible displays for computing devices, but the user experience--which we're only beginning to understand--will be the key driver for successful designs....

  16. Wirelessly powered microfluidic dielectrophoresis devices using printable RF circuits.

    Science.gov (United States)

    Qiao, Wen; Cho, Gyoujin; Lo, Yu-Hwa

    2011-03-21

    We report the first microfluidic device integrated with a printed RF circuit so the device can be wirelessly powered by a commercially available RFID reader. For conventional dielectrophoresis devices, electrical wires are needed to connect the electric components on the microchip to external equipment such as power supplies, amplifiers, function generators, etc. Such a procedure is unfamiliar to most clinicians and pathologists who are used to working with a microscope for examination of samples on microscope slides. The wirelessly powered device reported here eliminates the entire need for wire attachments and external instruments so the operators can use the device in essentially the same manner as they do with microscope slides. The integrated circuit can be fabricated on a flexible plastic substrate at very low cost using a roll-to-roll printing method. Electrical power at 13.56 MHz transmitted by a radio-frequency identification (RFID) reader is inductively coupled to the printed RFIC and converted into 10 V DC (direct current) output, which provides sufficient power to drive a microfluidic device to manipulate biological particles such as beads and proteins via the DC dielectrophoresis (DC-DEP) effect. To our best knowledge, this is the first wirelessly powered microfluidic dielectrophoresis device. Although the work is preliminary, the device concept, the architecture, and the core technology are expected to stimulate many efforts in the future and transform the technology to a wide range of clinical and point-of-care applications. This journal is © The Royal Society of Chemistry 2011

  17. Superconducting rf activities at Cornell University

    International Nuclear Information System (INIS)

    Padamsee, H.; Hakimi, M.; Kirchgessner, J.

    1988-01-01

    Development of rf superconductivity for high energy accelerators has been a robust activity at the Cornell Laboratory of Nuclear Studies (LNS) for many years. In order to realize the potential of rf superconductivity, a two-pronged approach has been followed. On the one hand accelerator applications were selected where the existing state-of-the art of superconducting rf is competitive with alternate technologies, then LNS engaged in a program to design, construct and test suitable superconducting cavities, culminating in a full system test in an operating accelerator. On the second front the discovery and invention of ideas, techniques and materials required to make superconducting rf devices approach the ideal in performance has been aggressively pursued. Starting with the development of superconducting cavities for high energy electron synchrotrons, the technology was extended to high energy e + e - storage rings. The LE5 cavity design has now been adopted for use in the Continuous Electron Beam Accelerator Facility (CEBAF). When completed, this project will be one of the largest applications of SRF technology, using 440 LE5 modules[4]. In the last two years, the cavity design and the technology have been transferred to industry and CEBAF. Cornell has tested the early industrial prototypes and cavity pairs. LNS has developed, in collaboration with CEBAF, designs and procedures for cavity pair and cryomodule assembly and testing. Advanced research for future electron accelerators is badly needed if particle physicists hope to expand the energy frontier. Superconducting cavity technology continues to offer attractive opportunities for further advances in achievable voltage at reasonable cost for future accelerators. For Nb, the full potential implies an order of magnitude increase over current capabilities. 20 references, 11 figures

  18. RF Wireless Power Transfer: Regreening Future Networks

    OpenAIRE

    Tran, Ha-Vu; Kaddoum, Georges

    2017-01-01

    Green radio communication is an emerging topic since the overall footprint of information and communication technology (ICT) services is predicted to triple between 2007 and 2020. Given this research line, energy harvesting (EH) and wireless power transfer (WPT) networks can be evaluated as promising approaches. In this paper, an overview of recent trends for future green networks on the platforms of EH and WPT is provided. By rethinking the application of radio frequency (RF)-WPT, a new conc...

  19. Eccentric superconducting rf cavity separator structure

    International Nuclear Information System (INIS)

    Aggus, J.R.; Giordano, S.T.; Halama, H.J.

    1976-01-01

    An accelerator apparatus is described having an eccentric-shaped, iris-loaded deflecting cavity for an rf separator for a high energy high momentum, charged particle accelerator beam. In one embodiment, the deflector is superconducting, and the apparatus of this invention provides simplified machining and electron beam welding techniques. Model tests have shown that the electrical characteristics provide the desired mode splitting without adverse effects

  20. Superconducting RF separator for Omega Spectrometer

    CERN Multimedia

    1977-01-01

    The photo shows an Nb-deflector for the superconducting RF separator ready for installation in its cryostat (visible at the back). Each deflector was about 3 m long. L. Husson and P. Skacel (Karlsruhe) stand on the left, A. Scharding (CERN) stands on the right. This particle separator, the result of a collaboration between the Gesellshaft für Kernforschung, Karlsruhe, and CERN was installed in the S1 beam line to Omega spectrometer. (See Annual Report 1977.)

  1. Safety assessment for the rf Test Facility

    International Nuclear Information System (INIS)

    Nagy, A.; Beane, F.

    1984-08-01

    The Radio Frequency Test Facility (RFTF) is a part of the Magnetic Fusion Program's rf Heating Experiments. The goal of the Magnetic Fusion Program (MFP) is to develop and demonstrate the practical application of fusion. RFTF is an experimental device which will provide an essential link in the research effort aiming at the realization of fusion power. This report was compiled as a summary of the analysis done to ensure the safe operation of RFTF

  2. RF subsystem design for microwave communication receivers

    Science.gov (United States)

    Bickford, W. J.; Brodsky, W. G.

    A system review of the RF subsystems of (IFF) transponders, tropscatter receivers and SATCOM receivers is presented. The quantity potential for S-band and X-band IFF transponders establishes a baseline requirement. From this, the feasibility of a common design for these and other receivers is evaluated. Goals are established for a GaAs MMIC (monolithic microwave integrated circuit) device and related local oscillator preselector and self-test components.

  3. Conductivity of rf-heated plasma

    International Nuclear Information System (INIS)

    Fisch, N.J.

    1984-05-01

    The electron velocity distribution of rf-heated plasma may be so far from Maxwellian that Spitzer conductivity no longer holds. A new conductivity for such plasmas is derived and the result can be put in a remarkably general form. The new expression should be of great practical value in examining schemes for current ramp-up in tokamaks by means of lower-hybrid or other waves

  4. Trends in RF-structure research

    International Nuclear Information System (INIS)

    Henke, H.

    1995-01-01

    New trends in RF structure research are presented. The choice is limited to developments as they are required by the next generation of light sources, particle factories and linear colliders. Therefore, emphasis is put on the suppression of higher order modes either in standing or travelling wave resonators and on the development of superconducting cavities. Finally, a brand new development of very high frequency structures with planar geometry suited for fabrication by lithography is mentioned. copyright 1995 American Institute of Physics

  5. Modeling accelerator structures and RF components

    International Nuclear Information System (INIS)

    Ko, K., Ng, C.K.; Herrmannsfeldt, W.B.

    1993-03-01

    Computer modeling has become an integral part of the design and analysis of accelerator structures RF components. Sophisticated 3D codes, powerful workstations and timely theory support all contributed to this development. We will describe our modeling experience with these resources and discuss their impact on ongoing work at SLAC. Specific examples from R ampersand D on a future linear collide and a proposed e + e - storage ring will be included

  6. Applications of neutral beam and rf technologies

    International Nuclear Information System (INIS)

    Haselton, H.H.

    1987-04-01

    This presentation provides an update on the applications of neutral beams and radiofrequency (rf) power in the fusion program; highlights of the ion cyclotron heating (ICH) experiments now in progress, as well as the neutral beam experiments; and heating requirements of future devices and some of the available options. Some remarks on current drive are presented because this area of technology is one that is being considered for future devices

  7. High temperature stable RF MEMS microwave switches

    OpenAIRE

    Klein, Stefan

    2010-01-01

    Im Rahmen dieser Arbeit wurden elektrostatisch angesteuerte RF-MEMS Schalter mit kapazitiver Kopplung entwickelt, die Prozesstemperaturen von 400°C und darüber hinaus ohne Verlust der Funktionstüchtigkeit überstehen. Als Funktionsmaterial wird einerseits eine AlSiCu und andererseits eine WTi Legierung verwendet. Das Schalterprinzip beruht auf dem Wanderkeileffekt, der einen gekrümmten Biegebalken nutzt. Diese Verbiegung weg von der Substratoberfläche, die durch einen wohldefinierten intri...

  8. The RF system for FELI linac

    International Nuclear Information System (INIS)

    Morii, Y.; Abe, S.; Keishi, T.; Tomimasu, T.

    1995-01-01

    FELI (Free Electron Laser Research Institute, Inc.) is constructing a Free Electron Laser facility covering from 20μm (infra red region) to 0.35μm (ultra violet region), using as S-band linac. The linac consists of a thermoionic 0.5ns-pulse triggered gun, a 714-MHz SHB (subharmonic buncher), a 2856-MHz standing wave type buncher, and seven ETL (Electro-technical Laboratory) type accelerating sections. An RF system of the linac for FELs is required of long pulse duration and high stability. Two S-band klystrons (TOSHIBA E3729) are operated in three pulse operation modes (pulse width and peak RF power): 24μs-24MW, 12.5μs-34MW, 0.5μs-70MW. Each klystron modulator has a PFN consisting of 4 parallel networks of 24 capacitors and 24 variable inductors, and it has a line switch of an optical thyristor stack. An S-band klystron and its modulator were combined to test their performance at the works of NISSIN ELECTRIC Co. in December 1993. These equipments were installed at FELI in January 1994. The design and experimental results of the RF system are summarized in this paper. (author)

  9. RF-Based Accelerators for HEDP Research

    CERN Document Server

    Staples, John W; Keller, Roderich; Ostroumov, Peter; Sessler, Andrew M

    2005-01-01

    Accelerator-driven High-Energy Density Physics experiments require typically 1 nanosecond, 1 microcoulomb pulses of mass 20 ions accelerated to several MeV to produce eV-level excitations in thin targets, the "warm dense matter" regime. Traditionally the province of induction linacs, RF-based acceleration may be a viable alternative with recent breakthroughs in accelerating structures and high-field superconducting solenoids. A reference design for an RF-based accelerator for HEDP research is presented using 15 T solenoids and multiple-gap RF structures configured with either multiple parallel beams (combined at the target) or a single beam and a small stacking ring that accumulates 1 microcoulomb of charge. In either case, the beam is ballistically compressed with an induction linac core providing the necessary energy sweep and injected into a plasma-neutralized drift compression channel resulting in a 1 mm radius beam spot 1 nanosecond long at a thin foil or low-density target.

  10. Advances in high-power rf amplifiers

    International Nuclear Information System (INIS)

    Tallerico, P.J.

    1979-01-01

    Several powerful accelerators and storage rings are being considered that will require tens or even hundreds of megawatts of continuous rf power. The economics of such large machines can be dictated by the cost and efficiency of the rf amplifiers. The overall design and performance of such narrow-band amplifiers, operating in the 50- to 1500-MHz region, are being theoretically studied as a function of frequency to determine the optimum rf amplifier output power, gain, efficiency, and dc power requirements. The state of the art for three types of amplifiers (gridded tubes, klystrons, and gyrocons) is considered and the development work necessary to improve each is discussed. The gyrocon is a new device, hence its various embodiments are discussed in detail. The Soviet designs are reviewed and the gyrocon's strengths and weaknesses are compared to other types of microwave amplifiers. The primary advantages of the gyrocon are the very large amount of power available from a single device and the excellent efficiency and stable operation. The klystron however, has much greater gain and is simpler mechanically. At very low frequencies, the small size of the gridded tube makes it the optimum choice for all but the most powerful systems

  11. Silicon Micromachining in RF and Photonic Applications

    Science.gov (United States)

    Lin, Tsen-Hwang; Congdon, Phil; Magel, Gregory; Pang, Lily; Goldsmith, Chuck; Randall, John; Ho, Nguyen

    1995-01-01

    Texas Instruments (TI) has developed membrane and micromirror devices since the late 1970s. An eggcrate space membrane was used as the spatial light modulator in the early years. Discrete micromirrors supported by cantilever beams created a new era for micromirror devices. Torsional micromirror and flexure-beam micromirror devices were promising for mass production because of their stable supports. TI's digital torsional micromirror device is an amplitude modulator (known as the digital micromirror device (DMD) and is in production development, discussed elsewhere. We also use a torsional device for a 4 x 4 fiber-optic crossbar switch in a 2 cm x 2 cm package. The flexure-beam micromirror device is an analog phase modulator and is considered more efficient than amplitude modulators for use in optical processing systems. TI also developed millimeter-sized membranes for integrated optical switches for telecommunication and network applications. Using a member in radio frequency (RF) switch applications is a rapidly growing area because of the micromechanical device performance in microsecond-switching characteristics. Our preliminary membrane RF switch test structure results indicate promising speed and RF switching performance. TI collaborated with MIT for modeling of metal-based micromachining.

  12. Beam-Based Procedures for RF Guns

    CERN Document Server

    Krasilnikov, Mikhail; Grabosch, H J; Hartrott, Michael; Hui Han, Jang; Miltchev, Velizar; Oppelt, Anne; Petrosyan, Bagrat; Staykov, Lazar; Stephan, Frank

    2005-01-01

    A wide range of rf photo injector parameters has to be optimized in order to achieve an electron source performance as required for linac based high gain FELs. Some of the machine parameters can not be precisely controlled by direct measurements, whereas the tolerance on them is extremely tight. Therefore, this should be met with beam-based techniques. Procedures for beam-based alignment (BBA) of the laser on the photo cathode as well as solenoid alignment have been developed. They were applied at the Photo Injector Test facility at DESY Zeuthen (PITZ) and at the photo injector of the VUV-FEL at DESY Hamburg. A field balance of the accelerating mode in the 1 ½ cell gun cavity is one of the key beam dynamics issues of the rf gun. Since no direct field measurement in the half and full cell of the cavity is available for the PITZ gun, a beam-based technique to determine the field balance has been proposed. A beam-based rf phase monitoring procedure has been developed as well.

  13. Roll type conducting polymer legs for rigid-flexible thermoelectric generator

    Directory of Open Access Journals (Sweden)

    Teahoon Park

    2017-07-01

    Full Text Available A roll-type conducting polymer film was explored as a flexible organic p-type thermoelectric leg using poly(3,4-ethylenedioxythiophene (PEDOT doped with tosylate. The PEDOT films were prepared through solution casting polymerization and rolled up for a roll-type leg. Due to the high flexibility, the roll-type PEDOT leg enabled easy contact to both top and bottom electrodes. Simulation on the dynamic heat transfer and convective cooling for a vertically roosted rod- and roll-type PEDOT leg showed that the temperature difference (ΔT between the hot and cold sides of the leg was much higher in the roll than that of the rod. The PEDOT legs were integrated with n-type Bi2Te3 blocks, to give a 36-couple rigid-flexible thermoelectric generator (RF-TEG. The maximum output voltage from the 36-couple RF-TEG under a ΔT of 7.9 K was determined as 36.7 mV along with a high output power of 115 nW. A wearable RF-TEG was prepared upon the combination of the 36-couple RF-TEG with an arm warmer, to afford an output voltage of 10.6 mV, which was generated constantly and steadily from human wrist heat.

  14. Rf and space-charge induced emittances in laser-driven rf guns

    International Nuclear Information System (INIS)

    Kim, Kwang-Je; Chen, Yu-Jiuan.

    1988-10-01

    Laser-driven rf electron guns are potential sources of high-current, low-emittance, short bunch-length electron beams, which are required for many advanced accelerator applications, such as free-electron lasers and injectors for high-energy machines. In such guns the design of which was pioneered at Los Alamos National Laboratory and which is currently being developed at several other laboratories, a high-power laser beam illuminates a photo-cathode surface placed on an end wall of an rf cavity. The main advantages of this type of gun are that the time structure of the electron beam is controlled by the laser, eliminating the need for bunchers, and that the electric field in rf cavities can be made very strong, so that the effects due to space-charge repulsion can be minimized. In this paper, we present an approximate but simple analysis for the transverse and longitudinal emittances in rf guns that takes into account both the time variation of the rf field and the space-charge effect. The results are compared and found to agree well with those from simulation. 7 refs., 6 figs

  15. RF current distribution and topology of RF sheath potentials in front of ICRF antennae

    International Nuclear Information System (INIS)

    Colas, L.; Heuraux, S.; Bremond, S.; Bosia, G.

    2005-01-01

    The 2D (radial/poloidal) spatial topology of RF-induced convective cells developing radially in front of ion cyclotron range of frequency (ICRF) antennae is investigated, in relation to the spatial distribution of RF currents over the metallic structure of the antenna. This is done via a Green's function, determined from the ICRF wave coupling equations, and well-suited to open field lines extending toroidally far away on both sides of the antenna. Using such formalism, combined with a full-wave calculation using the 3D antenna code ICANT (Pecoul S. et al 2000 Comput. Phys. Commun. 146 166-87), two classes of convective cells are analysed. The first one appears in front of phased arrays of straps, and depending on the strap phasing, its topology is interpreted using the poloidal profiles of either the RF current or the RF voltage of the strip line theory. The other class of convective cells is specific to antenna box corners and is evidenced for the first time. Based on such analysis, general design rules are worked out in order to reduce the RF-sheath potentials, which generalize those proposed in the earlier literature, and concrete antenna design options are tested numerically. The merits of aligning all strap centres on the same (tilted) flux tube, and of reducing the antenna box toroidal conductivity in its lower and upper parts, are discussed

  16. High time resolution beam-based measurement of the rf-to-laser jitter in a photocathode rf gun

    Directory of Open Access Journals (Sweden)

    Zhen Zhang

    2014-03-01

    Full Text Available Characterizing the rf-to-laser jitter in the photocathode rf gun and its possible origins is important for improving the synchronization and beam quality of the linac based on the photocathode rf gun. A new method based on the rf compression effect in the photocathode rf gun is proposed to measure the rf-to-laser jitter in the gun. By taking advantage of the correlation between the rf compression and the laser injection phase, the error caused by the jitter of the accelerating field in the gun is minimized and thus 10 fs time resolution is expected. Experimental demonstration at the Tsinghua Thomson scattering x-ray source with a time resolution better than 35 fs is reported in this paper. The experimental results are successfully used to obtain information on the possible cause of the jitter and the accompanying drifts.

  17. A low-level rf control system for a quarter-wave resonator

    Science.gov (United States)

    Kim, Jongwon; Hwang, Churlkew

    2012-06-01

    A low-level rf control system was designed and built for an rf deflector, which is a quarter wave resonator, and was designed to deflect a secondary electron beam to measure the bunch length of an ion beam. The deflector has a resonance frequency near 88 MHz, its required phase stability is approximately ±1° and its amplitude stability is less than ±1%. The control system consists of analog input and output components and a digital system based on a field-programmable gate array for signal processing. The system is cost effective, while meeting the stability requirements. Some basic properties of the control system were measured. Then, the capability of the rf control was tested using a mechanical vibrator made of a dielectric rod attached to an audio speaker system, which could induce regulated perturbations in the electric fields of the resonator. The control system was flexible so that its parameters could be easily configured to compensate for the disturbance induced in the resonator.

  18. Concept Study of Radio Frequency (RF Plasma Thruster for Space Propulsion

    Directory of Open Access Journals (Sweden)

    Anna-Maria Theodora ANDREESCU

    2016-12-01

    Full Text Available Electric thrusters are capable of accelerating ions to speeds that are impossible to reach using chemical reaction. Recent advances in plasma-based concepts have led to the identification of electromagnetic (RF generation and acceleration systems as able to provide not only continuous thrust, but also highly controllable and wide-range exhaust velocities. For Future Space Propulsion there is a pressing need for low pressure, high mass flow rate and controlled ion energies. This paper explores the potential of using RF heated plasmas for space propulsion in order to mitigate the electric propulsion problems caused by erosion and gain flexibility in plasma manipulation. The main key components of RF thruster architecture are: a feeding system able to provide the required neutral gas flow, plasma source chamber, antenna/electrodes wrapped around the discharge tube and optimized electromagnetic field coils for plasma confinement. A preliminary analysis of system performance (thrust, specific impulse, efficiency is performed along with future plans of Space Propulsion based on this new concept of plasma mechanism.

  19. Cu mesh for flexible transparent conductive electrodes.

    Science.gov (United States)

    Kim, Won-Kyung; Lee, Seunghun; Hee Lee, Duck; Hee Park, In; Seong Bae, Jong; Woo Lee, Tae; Kim, Ji-Young; Hun Park, Ji; Chan Cho, Yong; Ryong Cho, Chae; Jeong, Se-Young

    2015-06-03

    Copper electrodes with a micromesh/nanomesh structure were fabricated on a polyimide substrate using UV lithography and wet etching to produce flexible transparent conducting electrodes (TCEs). Well-defined mesh electrodes were realized through the use of high-quality Cu thin films. The films were fabricated using radio-frequency (RF) sputtering with a single-crystal Cu target--a simple but innovative approach that overcame the low oxidation resistance of ordinary Cu. Hybrid Cu mesh electrodes were fabricated by adding a capping layer of either ZnO or Al-doped ZnO. The sheet resistance and the transmittance of the electrode with an Al-doped ZnO capping layer were 6.197 ohm/sq and 90.657%, respectively, and the figure of merit was 60.502 × 10(-3)/ohm, which remained relatively unchanged after thermal annealing at 200 °C and 1,000 cycles of bending. This fabrication technique enables the mass production of large-area flexible TCEs, and the stability and high performance of Cu mesh hybrid electrodes in harsh environments suggests they have strong potential for application in smart displays and solar cells.

  20. Design and manufacture of the RF power supply and RF transmission line for SANAEM project Prometheus

    Science.gov (United States)

    Turemen, G.; Ogur, S.; Ahiska, F.; Yasatekin, B.; Cicek, E.; Ozbey, A.; Kilic, I.; Unel, G.; Alacakir, A.

    2017-08-01

    A 1-5 MeV proton beamline is being built by the Turkish Atomic Energy Authority in collaboration with a number of graduate students from different universities. The primary goal of the project, is to acquire the design ability and manufacturing capability of all the components locally. SPP will be an accelerator and beam diagnostics test facility and it will also serve the detector development community with its low beam current. This paper discusses the design and construction of the RF power supply and the RF transmission line components such as its waveguide converters and its circulator. Additionally low and high power RF test results are presented to compare the performances of the locally produced components to the commercially available ones.

  1. The RF voltage dependence of the electron sheath heating in low pressure capacitively coupled rf discharges

    International Nuclear Information System (INIS)

    Buddemeier, U.; Kortshagen, U.; Pukropski, I.

    1995-01-01

    In low pressure capacitively coupled RF discharges two competitive electron heating mechanisms have been discussed for some time now. At low pressures the stochastic sheath heating and for somewhat higher pressures the Joule heating in the bulk plasma have been proposed. When the pressure is increased at constant RF current density a transition from concave electron distribution functions (EDF) with a pronounced cold electron group to convex EDFs with a missing strong population of cold electrons is found. This transition was interpreted as the transition from dominant stochastic to dominant Joule heating. However, a different interpretation has been given by Kaganovich and Tsendin, who attributed the concave shaped EDFs to the spatially inhomogeneous RF field in combination with the nonlocality of the EDF

  2. Pulsed rf excited spectrometer having improved pulse width control

    International Nuclear Information System (INIS)

    1977-01-01

    RF excitation for a spectrometer is obtained by pulse width modulating an RF carrier to produce the desired broadband RF exciting spectrum. The RF excitation includes a train of composite RF pulses, each composite pulse having a primary pulse portion of a first RF phase and a second pulse portion of a second RF phase opposite that of the first. In this manner, the finite rise and fall times of the primary pulse portion are compensated for by the corresponding rise and fall times of the secondary pulse portion. The primary pulse portion is lengthened by an amount equal to the secondary pulse portion so that the secondary pulse portion cancels the added primary pulse portion. In a spectrometer, the compensating second pulse component removes certain undesired side bands of the RF excitation caused by the finite rise and fall times of the applied RF pulses. The compensating second pulse component removes certain undesired side bands associated with each of the resonant lines of the excited resonance spectrum of the sample under analysis, particularly for wide band RF excitation

  3. Flexible transparent electrode

    Science.gov (United States)

    Demiryont, Hulya; Shannon, Kenneth C., III; Moorehead, David; Bratcher, Matthew

    2011-06-01

    This paper presents the properties of the EclipseTECTM transparent conductor. EclipseTECTM is a room temperature deposited nanostructured thin film coating system comprised of metal-oxide semiconductor elements. The system possesses metal-like conductivity and glass-like transparency in the visible region. These highly conductive TEC films exhibit high shielding efficiency (35dB at 1 to 100GHz). EclipseTECTM can be deposited on rigid or flexible substrates. For example, EclipseTECTM deposited on polyethylene terephthalate (PET) is extremely flexible that can be rolled around a 9mm diameter cylinder with little or no reduction in electrical conductivity and that can assume pre-extension states after an applied stress is relieved. The TEC is colorless and has been tailored to have high visible transmittance which matches the eye sensitivity curve and allows the viewing of true background colors through the coating. EclipseTECTM is flexible, durable and can be tailored at the interface for applications such as electron- or hole-injecting OLED electrodes as well as electrodes in flexible displays. Tunable work function and optical design flexibility also make EclipseTECTM well-suited as a candidate for grid electrode replacement in next-generation photovoltaic cells.

  4. Flexible magnetoimpedance sensor

    International Nuclear Information System (INIS)

    Li, Bodong; Kavaldzhiev, Mincho N.; Kosel, Jürgen

    2015-01-01

    Flexible magnetoimpedance (MI) sensors fabricated using a NiFe/Cu/NiFe tri-layer on Kapton substrate have been studied. A customized flexible microstrip transmission line was employed to investigate the MI sensors's magnetic field and frequency responses and their dependence on the sensors's deflection. For the first time, the impedance characteristic is obtained through reflection coefficient analysis over a wide range of frequencies from 0.1 MHz to 3 GHz and for deflections ranging from zero curvature to a radius of 7.2 cm. The sensor element maintains a high MI ratio of up to 90% and magnetic sensitivity of up to 9.2%/Oe over different bending curvatures. The relationship between the curvature and material composition is discussed based on the magnetostriction effect and stress simulations. The sensor's large frequency range, simple fabrication process and high sensitivity provide a great potential for flexible electronics and wireless applications. - Highlights: • A flexible magnetoimpedance (MI) sensor is developed. • Studies are carried out using a flexible microstrip transmission line. • An MI ratio of up to 90% is obtained. • The effect of magnetostriction is studied

  5. Education for Flexible Personality

    Directory of Open Access Journals (Sweden)

    Bogomir Novak

    1998-12-01

    Full Text Available Flexible personality transforms both cultural environment and itself. Post-modern personality is both contemplative and active. On one hand, it is subject to inner imagination of a creative act, and on the other hand, to creation of a tangible product What is more, flexible personality is also autonomous, mature, healthy and well balanced, as well as stable and responsive to the demand for change. Due to ever quicker changes, flexible personality is a must. And it is a task. The impact of professional work of adults on the education of children, however, is being conditioned by the exrigid family and rigid enterprises or institutions in which adults are employed. Nevertheless, flexible educational style is not repressive, as it used to be, nor permissive and totally concentrated on the child. It is a choice between the two qualities. The educators' style is dependent on their attitude towards life (play and self-education and not only towards work. Nowadays, flexibility is a way towards quality management of social and personal changes.

  6. Flexible Foam Model.

    Energy Technology Data Exchange (ETDEWEB)

    Neilsen, Michael K.; Lu, Wei-Yang; Werner, Brian T.; Scherzinger, William M.; Lo, Chi S.

    2018-03-01

    Experiments were performed to characterize the mechanical response of a 15 pcf flexible polyurethane foam to large deformation at different strain rates and temperatures. Results from these experiments indicated that at room temperature, flexible polyurethane foams exhibit significant nonlinear elastic deformation and nearly return to their original undeformed shape when unloaded. However, when these foams are cooled to temperatures below their glass transition temperature of approximately -35 o C, they behave like rigid polyurethane foams and exhibit significant permanent deformation when compressed. Thus, a new model which captures this dramatic change in behavior with temperature was developed and implemented into SIERRA with the name Flex_Foam to describe the mechanical response of both flexible and rigid foams to large deformation at a variety of temperatures and strain rates. This report includes a description of recent experiments. Next, development of the Flex Foam model for flexible polyurethane and other flexible foams is described. Selection of material parameters are discussed and finite element simulations with the new Flex Foam model are compared with experimental results to show behavior that can be captured with this new model.

  7. Application of FPGA's in Flexible Analogue Electronic Image Generator Design

    Directory of Open Access Journals (Sweden)

    Peter Kulla

    2006-01-01

    Full Text Available This paper focuses on usage of the FPGAs (Field Programmable Gate Arrays Xilinx as a part of our more complex workdedicated to design of flexible analogue electronic images generator for application in TV measurement technique or/and TV servicetechnique or/and education process. The FPGAs performs here the role of component colour R, G, B, synchronization and blanking signals source. These signals are next processed and amplified in other parts of the generator as NTSC/PAL source encoder and RF modulator. The main aim of this paper is to show the possibilities how with suitable development software use a FPGAs in analog TV technology.

  8. Natural flexible dermal armor.

    Science.gov (United States)

    Yang, Wen; Chen, Irene H; Gludovatz, Bernd; Zimmermann, Elizabeth A; Ritchie, Robert O; Meyers, Marc A

    2013-01-04

    Fish, reptiles, and mammals can possess flexible dermal armor for protection. Here we seek to find the means by which Nature derives its protection by examining the scales from several fish (Atractosteus spatula, Arapaima gigas, Polypterus senegalus, Morone saxatilis, Cyprinius carpio), and osteoderms from armadillos, alligators, and leatherback turtles. Dermal armor has clearly been developed by convergent evolution in these different species. In general, it has a hierarchical structure with collagen fibers joining more rigid units (scales or osteoderms), thereby increasing flexibility without significantly sacrificing strength, in contrast to rigid monolithic mineral composites. These dermal structures are also multifunctional, with hydrodynamic drag (in fish), coloration for camouflage or intraspecies recognition, temperature and fluid regulation being other important functions. The understanding of such flexible dermal armor is important as it may provide a basis for new synthetic, yet bioinspired, armor materials. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Flexible magnetoimpedance sensor

    KAUST Repository

    Li, Bodong

    2015-03-01

    Flexible magnetoimpedance (MI) sensors fabricated using a NiFe/Cu/NiFe tri-layer on Kapton substrate have been studied. A customized flexible microstrip transmission line was employed to investigate the MI sensors\\'s magnetic field and frequency responses and their dependence on the sensors\\'s deflection. For the first time, the impedance characteristic is obtained through reflection coefficient analysis over a wide range of frequencies from 0.1 MHz to 3 GHz and for deflections ranging from zero curvature to a radius of 7.2 cm. The sensor element maintains a high MI ratio of up to 90% and magnetic sensitivity of up to 9.2%/Oe over different bending curvatures. The relationship between the curvature and material composition is discussed based on the magnetostriction effect and stress simulations. The sensor\\'s large frequency range, simple fabrication process and high sensitivity provide a great potential for flexible electronics and wireless applications.

  10. RF system modeling and controller design for the European XFEL

    International Nuclear Information System (INIS)

    Schmidt, Christian

    2011-06-01

    The European XFEL is being constructed at the Deutsche Elektronen Synchrotron DESY to generate intense, ultrashort pulses of highly coherent and monochromatic X-Rays for material science research. X-ray flashes are generated by accelerating electron bunches within superconducting cavities with radio frequency (RF) fields to energies up to 17.5 GeV. The digital control of these fields requires extremely high quality in order to achieve the physical processes of photon generation. DESY offers with FLASH a pilot test facility, allowing to test and develop most necessary components, even before the XFEL is conducted. Current field control is based on a proportional feedback controller in addition to a constant feedforward drive, which do not meet the high requirements of the XFEL. This thesis shows that a model based controller design can achieve the necessary field regulation requirements. A linear, time invariant ''black box model'' is estimated, which characterizes the essential dynamic behavior. This model is not based on physical assumptions, but describes exclusively the transfer behavior of the plant. The acceleration modules are operated in a pulsed mode, in which the RF field must be kept constant for a finite period. The character of the disturbances and variations from pulse-to-pulse, together with the properties of the system, require a combination of controlled feedforward drive and feedback. Generally unpredictable, low frequency pulse-to-pulse variations are suppressed by the feedback controller. The structural design of the complex multivariable feedback controller is given, which constrains the model based design approach to assign the controller parameters only. Estimation of the parameters, which can not be tuned manually, is done by the method of H loop shaping which is often applied in modern control theory. However, disturbances within a pulse are in a high frequency range concerning the short pulse duration. They are not sufficiently suppressed

  11. RF system modeling and controller design for the European XFEL

    Energy Technology Data Exchange (ETDEWEB)

    Schmidt, Christian

    2011-06-15

    The European XFEL is being constructed at the Deutsche Elektronen Synchrotron DESY to generate intense, ultrashort pulses of highly coherent and monochromatic X-Rays for material science research. X-ray flashes are generated by accelerating electron bunches within superconducting cavities with radio frequency (RF) fields to energies up to 17.5 GeV. The digital control of these fields requires extremely high quality in order to achieve the physical processes of photon generation. DESY offers with FLASH a pilot test facility, allowing to test and develop most necessary components, even before the XFEL is conducted. Current field control is based on a proportional feedback controller in addition to a constant feedforward drive, which do not meet the high requirements of the XFEL. This thesis shows that a model based controller design can achieve the necessary field regulation requirements. A linear, time invariant ''black box model'' is estimated, which characterizes the essential dynamic behavior. This model is not based on physical assumptions, but describes exclusively the transfer behavior of the plant. The acceleration modules are operated in a pulsed mode, in which the RF field must be kept constant for a finite period. The character of the disturbances and variations from pulse-to-pulse, together with the properties of the system, require a combination of controlled feedforward drive and feedback. Generally unpredictable, low frequency pulse-to-pulse variations are suppressed by the feedback controller. The structural design of the complex multivariable feedback controller is given, which constrains the model based design approach to assign the controller parameters only. Estimation of the parameters, which can not be tuned manually, is done by the method of H{sub {infinity}} loop shaping which is often applied in modern control theory. However, disturbances within a pulse are in a high frequency range concerning the short pulse duration

  12. Software industrial flexible

    OpenAIRE

    Díaz Araya, Daniel; Muñoz, Leandro; Sirerol, Daniel; Oviedo, Sandra; Ibáñez, Francisco S.

    2012-01-01

    En este trabajo se pretende investigar y proponer técnicas, métodos y tecnologías que permitan el desarrollo de software flexible en ambientes industriales. El objetivo es generar métodos y técnicas para facilitar el desarrollo de software flexible en ambientes industriales. Las áreas de investigación son los sistemas de scheduling de producción, la generación de software para plataformas de hardware abiertas y la innovación.

  13. Production Flexibility and Hedging

    Directory of Open Access Journals (Sweden)

    Georges Dionne

    2015-12-01

    Full Text Available We extend the analysis on hedging with price and output uncertainty by endogenizing the output decision. Specifically, we consider the joint determination of output and hedging in the case of flexibility in production. We show that the risk-averse firm always maintains a short position in the futures market when the futures price is actuarially fair. Moreover, in the context of an example, we show that the presence of production flexibility reduces the incentive to hedge for all risk averse agents.

  14. The flexibility of flexicurity

    DEFF Research Database (Denmark)

    Jensen, Carsten Strøby

    2011-01-01

    by a special relation between flexibility, social security and active labour market policy, where a high level of social security is seen as a precondition for a labour market characterized by flexibility. In this article it is argued that the Danish labour market is characterized by having not just one model...... of flexicurity, but two. These two models cover different parts of the labour market and different segments of employees. The first model (the blue-collar flexicurity model) – the one that is often focused on in the literature – covers primarily skilled and unskilled workers on the labour market. The second...

  15. Frequency control of RF booster cavity in TRIUMF

    International Nuclear Information System (INIS)

    Fong, K.; Laverty, M.

    1993-01-01

    A booster is used in the TRIUMF cyclotron to increase the energy gain per turn for beam orbits corresponding to energies greater than 370 MeV. It operates at 92.24 MHz, the 4 th harmonic of the cyclotron main rf, and at a nominal voltage of 150 kV. Excitation is provided by a 90 kW rf system that is phase locked to the main rf. When the main rf is interrupted due to sparking or other causes, a controller built into the low frequency source of the booster rf system disables the phase-locked loop, and reconfigures the source as a temperature stabilized oscillator operating at the last locked frequency. When the cyclotron rf is restored it usually will be at different frequency. The oscillator tunes automatically to this new frequency. The acquisition time is extended by the controller to match the response time of the mechanical tuner in the cavity

  16. Effects of an RF limiter on TEXTOR's edge plasmas

    International Nuclear Information System (INIS)

    Boedo, J.A.; Sakawa, Y.; Gray, D.S.; Mank, G.; Noda, N.

    1997-01-01

    Studies directed towards the reduction of particle and heat fluxes to plasma facing components by the application of ponderomotive forces generated by radio frequency (RF) are being conducted in TEXTOR. A modified poloidal limiter is used as an antenna with up to 3 kW of RF power; the data obtained show that the plasma is repelled by the RF ponderomotive potential. The density is reduced by a factor of 2-4 and the radial decay length is substantially altered. The density near the limiter decays exponentially with RF power. The electron temperature profile changes, with the decay length becoming longer (almost flat) during the RF. The temperature in the scrape off layer (SOL) increases and its increase is roughly proportional to the RF power until it saturates, suggesting that the heating efficiency drops with power, and that improved performance is to be expected at higher powers. (orig.)

  17. EM modeling of RF drive in DTL tank 4

    International Nuclear Information System (INIS)

    Kurennoy, Sergey S.

    2012-01-01

    A 3-D MicroWave Studio model for the RF drive in the LANSCE DTL tank 4 has been built. Both eigensolver and time-domain modeling are used to evaluate maximal fields in the drive module and RF coupling. The LANSCE DTL tank 4 has recently been experiencing RF problems, which may or may not be related to its replaced RF coupler. This situation stimulated a request by Dan Rees to provide EM modeling of the RF drive in the DTL tank 4 (T4). Jim O'Hara provided a CAD model that was imported into the CST Microwave Studio (MWS) and after some modifications became a part of a simplified MWS model of the T4 RF drive. This technical note describes the model and presents simulation results.

  18. RF current drive and plasma fluctuations

    International Nuclear Information System (INIS)

    Peysson, Yves; Decker, Joan; Morini, L; Coda, S

    2011-01-01

    The role played by electron density fluctuations near the plasma edge on rf current drive in tokamaks is assessed quantitatively. For this purpose, a general framework for incorporating density fluctuations in existing modelling tools has been developed. It is valid when rf power absorption takes place far from the fluctuating region of the plasma. The ray-tracing formalism is modified in order to take into account time-dependent perturbations of the density, while the Fokker–Planck solver remains unchanged. The evolution of the electron distribution function in time and space under the competing effects of collisions and quasilinear diffusion by rf waves is determined consistently with the time scale of fluctuations described as a statistical process. Using the ray-tracing code C3PO and the 3D linearized relativistic bounce-averaged Fokker–Planck solver LUKE, the effect of electron density fluctuations on the current driven by the lower hybrid (LH) and the electron cyclotron (EC) waves is estimated quantitatively. A thin fluctuating layer characterized by electron drift wave turbulence at the plasma edge is considered. The effect of fluctuations on the LH wave propagation is equivalent to a random scattering process with a broadening of the poloidal mode spectrum proportional to the level of the perturbation. However, in the multipass regime, the LH current density profile remains sensitive to the ray chaotic behaviour, which is not averaged by fluctuations. The effect of large amplitude fluctuations on the EC driven current is found to be similar to an anomalous radial transport of the fast electrons. The resulting lower current drive efficiency and broader current profile are in better agreement with experimental observations. Finally, applied to the ITER ELMy H-mode regime, the model predicts a significant broadening of the EC driven current density profile with the fluctuation level, which can make the stabilization of neoclassical tearing mode potentially

  19. RF cavity evaluation with the code SUPERFISH

    International Nuclear Information System (INIS)

    Hori, T.; Nakanishi, T.; Ueda, N.

    1982-01-01

    The computer code SUPERFISH calculates axisymmetric rf fields and is most applicable to re-entrant cavities of an Alvarez linac. Some sample results are shown for the first Alvarez's in NUMATRON project. On the other hand the code can also be effectivily applied to TE modes excited in an RFQ linac when the cavity is approximately considered as positioning at an infinite distance from the symmetry axis. The evaluation was made for several RFQ cavities, models I, II and a test linac named LITL, and useful results for the resonator design were obtained. (author)

  20. Criteria for vacuum breakdown in rf cavities

    International Nuclear Information System (INIS)

    Peter, W.; Faehl, R.J.; Kadish, A.; Thode, L.E.

    1983-01-01

    A new high-voltage scaling based on Kilpatrick's criterion is presented that suggests that voltages more than twice the Kilpatrick limit can be obtained with identical initial conditions of vacuum and surface cleanliness. The calculations are based on the experimentally observed decrease in secondary electron emission with increasing ion-impact energy above 100 keV. A generalized secondary-emission package has been developed to simulate actual cavity dynamics in conjunction with our 2 1/2-dimensional fully electromagnetic particle-in-cell code CEMIT. The results are discussed with application to the suppression of vacuum breakdown in rf accelerator devices

  1. Accelerator and RF system development for NLC

    International Nuclear Information System (INIS)

    Vlieks, A.E.; Callin, R.; Deruyter, H.; Early, R.; Fant, K.S.; Farkas, Z.D.; Fowkes, W.R.; Galloway, C.; Hoag, H.A.; Koontz, R.

    1993-01-01

    An experimental station for an X-band Next Linear Collider has been constructed at SLAC. This station consists of a klystron and modulator, a low-loss waveguide system for rf power distribution, a SLED II pulse-compression and peak-power multiplication system, acceleration sections and beam-line components (gun, pre-buncher, pre-accelerator, focussing elements, and spectrometer). An extensive program of experiments to evaluate the performance of all components is underway. The station is described in detail in this paper, and results to date are presented

  2. Calculation of rf fields in axisymmetric cavities

    International Nuclear Information System (INIS)

    Iwashita, Y.

    1985-01-01

    A new code, PISCES, has been developed for calculating a complete set of rf electromagnetic modes in an axisymmetric cavity. The finite-element method is used with up to third-order shape functions. Although two components are enough to express these modes, three components are used as unknown variables to take advantage of the symmetry of the element matrix. The unknowns are taken to be either the electric field components or the magnetic field components. The zero-divergence condition will be satisfied by the shape function within each element

  3. STUDIES ON THE RCMS RF SYSTEM.

    CERN Document Server

    Zhao, Y

    2003-01-01

    This note addresses the various options for the Rapid Cycling Medical Synchrotron (RCMS) RF. The study was divided into three cases, namely non-tuning, tuning and filter. Each case also includes a few options. The primary study was focused on the non-tuning options. However, it was found that it requires too much driver power to cover the wide band and thus causes the cost being too high to be competitive. The proposal of RCMS is not yet clear if it can be approved or not. The results of this study might be useful to other similar machines.

  4. Investigations of electropositive and electronegative RF discharges

    International Nuclear Information System (INIS)

    Bryant, P.M.

    2000-01-01

    Electronegative RF discharges are extensively used in the semi-conductor industry for material processing. Despite this the subject of electronegative RF discharges has been largely neglected. The aim of this thesis is to investigate a RF oxygen discharge by mass/energy spectrometry, a retarding field analyser and an actively compensated Langmuir probe. Measurements are also obtained in argon for comparison. In this thesis pure oxygen will be used as this has relatively simple discharge chemistry with most of the rate constants well known. Ion energy analysis (Chapter 3) show the discharge to contract into the centre of the chamber at low pressures in both gases. The expected thinner peak of the oxygen ion energy distribution was not observed, this is shown to be due to RF modulation of the positive ions with collisions playing a role. The dominant positive ion in the discharge bulk and colliding in the sheath in oxygen was found to be O 2 + with less than 10% O + over the range of pressure investigated (Chapter 4). Various minor ions such as O 3 + and O 4 + were also observed. By actively compensating a Langmuir probe for the first three plasma harmonics it is shown that it is unnecessary to compensate when the amplitude of a given harmonic is comparable to the electron temperature (Chapter 5). A study of Langmuir probe measurements in argon (Chapter 7) has shown that the use of the collisionless Alien, Boyd and Reynolds theory leads to discrepancies in the measured electron densities. The correct density can be obtained by using the perturbation method of Shih and Levi, this corrects for ion-neutral collisions in electropositive plasmas only. This theory is extended to electronegative plasmas (Chapter 6) so that measurements of the negative ion density obtained from the collisionless theory of Arnemiya, Annaratone and Alien can be corrected. Langmuir probe measurements in oxygen indicate a peak in the negative ion density at around 3Pa and are found to be in good

  5. PEP-II RF feedback system simulation

    Energy Technology Data Exchange (ETDEWEB)

    Tighe, R [Stanford Linear Accelerator Center, Menlo Park, CA (United States)

    1996-08-01

    A model containing the fundamental impedance of the PEP-II cavity along with the longitudinal beam dynamics and RF feedback system components is in use. It is prepared in a format allowing time-domain as well as frequency-domain analysis and full graphics capability. Matlab and Simulink are control system design and analysis programs (widely available) with many built-in tools. The model allows the use of compiled C-code modules for compute intensive portions. We desire to represent as nearly as possible the components of the feedback system including all delays, sample rates and applicable nonlinearities. (author)

  6. Network Communication for Low Level RF Control

    International Nuclear Information System (INIS)

    Liu Weiqing; Yin Chengke; Zhang Tongxuan; Fu Zechuan; Liu Jianfei

    2009-01-01

    Low Level RF (LLRF) control system for storage ring of Shanghai Synchrotron Radiation Facility (SSRF) has been built by digital technology. The settings of parameters and the feedback loop status are carried out through the network communication interface, and the local oscillation and clock, which is the important component of the digital LLRF control system, are also configured through network communication. NIOS II processor was employed as a core to build the embedded system with a real-time operating system MicroC/OS-II, finally Lightweight TCP/IP (LwIP) was used to achieve the communication interface. The communication network is stable after a long-term operation. (authors)

  7. STUDIES ON THE RCMS RF SYSTEM.

    Energy Technology Data Exchange (ETDEWEB)

    ZHAO,Y.

    2003-01-22

    This note addresses the various options for the Rapid Cycling Medical Synchrotron (RCMS) RF. The study was divided into three cases, namely non-tuning, tuning and filter. Each case also includes a few options. The primary study was focused on the non-tuning options. However, it was found that it requires too much driver power to cover the wide band and thus causes the cost being too high to be competitive. The proposal of RCMS is not yet clear if it can be approved or not. The results of this study might be useful to other similar machines.

  8. RF & wireless technologies know it all

    CERN Document Server

    Fette, Bruce A; Chandra, Praphul; Dobkin, Daniel M; Bensky, Dan; Miron, Douglas B; Lide, David; Dowla, Farid; Olexa, Ron

    2007-01-01

    The Newnes Know It All Series takes the best of what our authors have written to create hard-working desk references that will be an engineer's first port of call for key information, design techniques and rules of thumb. Guaranteed not to gather dust on a shelf!RF (radio frequency) and wireless technologies drive communication today. This technology and its applications enable wireless phones, portable device roaming, and short-range industrial and commercial application communication such as the supply chain management wonder, RFID. Up-to-date information regarding software defined R

  9. RF microwave circuit design for wireless applications

    CERN Document Server

    Rohde, Ulrich L

    2012-01-01

    Provides researchers and engineers with a complete set of modeling, design, and implementation tools for tackling the newest IC technologies Revised and completely updated, RF/Microwave Circuit Design for Wireless Applications, Second Edition is a unique, state-of-the-art guide to wireless integrated circuit design that provides researchers and engineers with a complete set of modeling, design, and implementation tools for tackling even the newest IC technologies. It emphasizes practical design solutions for high-performance devices and circuitry, incorporating ample exa

  10. RF Testing Of Microwave Integrated Circuits

    Science.gov (United States)

    Romanofsky, R. R.; Ponchak, G. E.; Shalkhauser, K. A.; Bhasin, K. B.

    1988-01-01

    Fixtures and techniques are undergoing development. Four test fixtures and two advanced techniques developed in continuing efforts to improve RF characterization of MMIC's. Finline/waveguide test fixture developed to test submodules of 30-GHz monolithic receiver. Universal commercially-manufactured coaxial test fixture modified to enable characterization of various microwave solid-state devices in frequency range of 26.5 to 40 GHz. Probe/waveguide fixture is compact, simple, and designed for non destructive testing of large number of MMIC's. Nondestructive-testing fixture includes cosine-tapered ridge, to match impedance wavequide to microstrip. Advanced technique is microwave-wafer probing. Second advanced technique is electro-optical sampling.

  11. Integrated 60GHz RF beamforming in CMOS

    CERN Document Server

    Yu, Yikun; van Roermund, Arthur H M

    2011-01-01

    ""Integrated 60GHz RF Beamforming in CMOS"" describes new concepts and design techniques that can be used for 60GHz phased array systems. First, general trends and challenges in low-cost high data-rate 60GHz wireless system are studied, and the phased array technique is introduced to improve the system performance. Second, the system requirements of phase shifters are analyzed, and different phased array architectures are compared. Third, the design and implementation of 60GHz passive and active phase shifters in a CMOS technology are presented. Fourth, the integration of 60GHz phase shifters

  12. RK-TBA prototype RF source

    International Nuclear Information System (INIS)

    Houck, T.; Anderson, D.; Giordano, G.

    1996-01-01

    A prototype rf power source based on the Relativistic Klystron Two-Beam Accelerator (RK-TBA) concept is being constructed at the Lawrence Berkeley National Laboratory to study physics, engineering, and costing issues. The prototype is described and compared to a full scale design appropriate for driving the Next Linear Collider (NLC). Specific details of the induction core tests and pulsed power system are presented. The 1-MeV, 1.2-kA induction gun currently under construction is also described in detail

  13. Status of superconducting RF test facility (STF)

    International Nuclear Information System (INIS)

    Hayano, Hitoshi

    2005-01-01

    A superconducting technology was recommended for the main linac design of the International Linear Collider (ILC) by the International Technology Recommendation Panel (ITRP). The basis for this design has been developed and tested at DESY, and R and D is progressing at many laboratories around the world including DESY, Orsay, KEK, FNAL, SLAC, Cornell, and JLAB. In order to promote Asian SC-technology for ILC, construction of a test facility in KEK was discussed and decided. The role and status of the superconducting RF test facility (STF) is reported in this paper. (author)

  14. Computer control of rf at SLAC

    International Nuclear Information System (INIS)

    Schwarz, H.D.

    1985-03-01

    The Stanford Linear Accelerator is presently upgraded for the SLAC Linear Collider project. The energy is to be increased from approximately 31 GeV to 50 GeV. Two electron beams and one positron beam are to be accelerated with high demands on the quality of the beams. The beam specifications are shown. To meet these specifications, all parameters influencing the beams have to be under tight control and continuous surveillance. This task is accomplished by a new computer system implemented at SLAC which has, among many other functions, control over rf accelerating fields. 13 refs., 8 figs., 2 tabs

  15. RF accelerators for fusion and strategic defense

    International Nuclear Information System (INIS)

    Jameson, R.A.

    1985-01-01

    RF linacs have a place in fusion, either in an auxiliary role for materials testing or for direct drivers in heavy-ion fusion. For SDI, the particle-beam technology is an attractive candidate for discrimination missions and also for lethality missions. The free-electron laser is also a forerunner among the laser candidates. in many ways, there is less physics development required for these devices and there is an existing high-power technology. But in all of these technologies, in order to scale them up and then space-base them, there is an enormous amount of work yet to be done

  16. RF and microwave coupled-line circuits

    CERN Document Server

    Mongia, R K; Bhartia, P; Hong, J; Gupta, K C

    2007-01-01

    This extensively revised edition of the 1999 Artech House classic, RF and Microwave Coupled-Line Circuits, offers you a thoroughly up-to-date understanding of coupled line fundamentals, explaining their applications in designing microwave and millimeter-wave components used in today's communications, microwave, and radar systems. The Second Edition includes a wealth of new material, particularly relating to applications. You find brand new discussions on a novel simple design technique for multilayer coupled circuits, high pass filters using coupled lines, software packages used for filter des

  17. Optical fibers and RF a natural combination

    CERN Document Server

    Romeiser, Malcolm

    2004-01-01

    The optical fiber industry has experienced a period of consolidation and reorganization and is now poised for a new surge in growth. To take advantage of that growth, and to respond to the demand to use fiber more efficiently, designers need a better understanding of fiber optics. Taking the approach that optical fibers are an extension of RF-based communications, the author explains basic optical concepts, applications, and systems; the nature and performance characteristics of optical fibers; and optical sources, connectors and splices. Subsequent chapters explore current applications of fib

  18. Theoretical investigation of a travelling-wave rf gun

    International Nuclear Information System (INIS)

    Gao, J.

    1991-12-01

    A travelling-wave type rf gun (TW gun) is investigated theoretically. Analytical formulae concerning energy gain, energy spread, and transverse emittance are derived. After showing the corresponding formulae for the standing-wave rf gun (SW gun), comparisons are made between the two types of rf gun. Finally, some numerical results are calculated to demonstrate further the behaviours of the TW gun, and to compare with those from analytical formulae. (author) 11 refs.; 27 figs

  19. Electron-beam direct drive for rf accelerator cavities

    International Nuclear Information System (INIS)

    Nahemow, M.D.; Humphries, S. Jr.

    1987-01-01

    This paper describes a Program to Demonstrate Electron-Beam Direct Drive for Radio Frequency (RF) Linear Accelerators at the Westinghouse R and D Center. The experimental program was undertaken using an existing electron beam facility at the Westinghouse R and C Center to demonstrate the potential of the Direct Drive RF Cavities for High Power Beams concept discussed as part of a program to develop a viable alternate concept for driving RF linear accelerators

  20. RF system design for the PEP-II B Factory

    International Nuclear Information System (INIS)

    Schwarz, H.; Rimmer, R.

    1994-06-01

    The paper presents an overview of the design of the RF system for the PEP-II B Factory. An RF station consists of either two or four single-cell cavities driven by a 1.2 MW klystron through a waveguide distribution network. A variety of feedback loops stabilize the RF and its interaction with the beam. System parameters and all the relevant parameters of klystron and cavities are given

  1. Studies of RF Breakdown of Metals in Dense Gases

    CERN Document Server

    Hanlet, Pierrick M; Ankenbrandt, Charles; Johnson, Rolland P; Kaplan, Daniel; Kuchnir, Moyses; Moretti, Alfred; Paul, Kevin; Popovic, Milorad; Yarba, Victor; Yonehara, Katsuya

    2005-01-01

    A study of RF breakdown of metals in gases has begun as part of a program to develop RF cavities filled with dense hydrogen gas to be used for muon ionization cooling. A pressurized 800 MHz test cell has been used at Fermilab to compare the conditioning and breakdown behavior of copper, molybdenum, chromium, and beryllium electrodes as functions of hydrogen and helium gas density. These results are compared to the predicted or known RF breakdown behavior of these metals in vacuum.

  2. PEP-II RF System Operation and Performance

    International Nuclear Information System (INIS)

    McIntosh, P.

    2005-01-01

    The Low Energy Ring (LER) and High Energy Ring (HER) RF systems have operated now on PEP-II since July 1998 and have assisted in breaking all design luminosity records back in June 2001. Luminosity on PEP-II has steadily increased since then as a consequence of larger e+ and e- beam currents being accumulated. This has meant that the RF systems have inevitably been driven harder, not only to achieve these higher stored beam currents, but also to reliably keep the beams circulating whilst at the same time minimizing the number of aborts due to RF system faults. This paper details the current PEP-II RF system configurations for both rings, as well as future upgrade plans spanning the next 3-5 years. Limitations of the current RF system configurations are presented, highlighting improvement projects which will target specific areas within the RF systems to ensure that adequate operating overheads are maintained and reliable operation is assured. The Low Energy Ring (LER) and High Energy Ring (HER) RF systems have operated now on PEP-II since July 1998 and have assisted in breaking all design luminosity records back in June 2001. Luminosity on PEP-II has steadily increased since then as a consequence of larger e+ and e- beam currents being accumulated. This has meant that the RF systems have inevitably been driven harder, not only to achieve these higher stored beam currents, but also to reliably keep the beams circulating whilst at the same time minimizing the number of aborts due to RF system faults. This paper details the current PEP-II RF system configurations for both rings, as well as future upgrade plans spanning the next 3-5 years. Limitations of the current RF system configurations are presented, highlighting improvement projects which will target specific areas within the RF systems to ensure that adequate operating overheads are maintained and reliable operation is assured

  3. Application of RF correction in thin-layer chromatography by means of two reference RF values

    NARCIS (Netherlands)

    Dhont, J.H.; Vinkenborg, C.; Compaan, H.; Ritter, F.J.; Labadie, R.P.; Verweij, A.; Zeeuw, R.A. de

    1972-01-01

    Results of the inter-laboratory experiment described in this paper show that the GALANOS AND KAPOULAS equation can be applied satisfactorily to correct RF values obtained on thin-layer chromatograms in a polar multi-component solvent. Addition of Kieselguhr to the silica gel gives RFc values

  4. Comprehensive high-accuracy modeling of electromagnetic effects in complete nanoscale RF blocks: CHAMELEON RF

    NARCIS (Netherlands)

    Niehof, J.; Janssen, H.H.J.M.; Schilders, W.H.A.

    2006-01-01

    Next-generation nano-scale RFIC designs have an unprecedented complexity and performance that will inevitably lead to costly re-spins and loss of market opportunities. In order to cope with this, the aim of the European Framework 6 CHAMELEON RF project is to develop methodologies and prototype tools

  5. High power RF test of an 805 MHz RF cavity for a muon cooling channel

    International Nuclear Information System (INIS)

    Li, Derun; Corlett, J.; MacGill, R.; Rimmer, R.; Wallig, J.; Zisman, M.; Moretti, A.; Qian, Z.; Wu, V.; Summers, D.; Norem, J.

    2002-01-01

    We present recent high power RF test results on an 805 MHz cavity for a muon cooling experiment at Lab G in Fermilab. In order to achieve high accelerating gradient for large transverse emittance muon beams, the cavity design has adopted a pillbox like shape with 16 cm diameter beam iris covered by thin Be windows, which are demountable to allow for RF tests of different windows. The cavity body is made from copper with stiff stainless steel rings brazed to the cavity body for window attachments. View ports and RF probes are available for visual inspections of the surface of windows and cavity and measurement of the field gradient. Maximum of three thermo-couples can be attached to the windows for monitoring the temperature gradient on the windows caused by RF heating. The cavity was measured to have Q 0 of about 15,000 with copper windows and coupling constant of 1.3 before final assembling. A 12 MW peak power klystron is available at Lab G in Fermilab for the high power test. The cavity and coupler designs were performed using the MAFIA code in the frequency and the time domain. Numerical simulation results and cold test measurements on the cavity and coupler will be presented for comparisons

  6. Adaptive RF front-ends for hand-held applications

    CERN Document Server

    van Bezooijen, Andre; van Roermund, Arthur

    2010-01-01

    The RF front-end - antenna combination is a vital part of a mobile phone because its performance is very relevant to the link quality between hand-set and cellular network base-stations. The RF front-end performance suffers from changes in operating environment, like hand-effects, that are often unpredictable. ""Adaptive RF Front-Ends for Hand-Held Applications"" presents an analysis on the impact of fluctuating environmental parameters. In order to overcome undesired behavior two different adaptive control methods are treated that make RF frond-ends more resilient: adaptive impedance control,

  7. The system of RF beam control for electron gun

    International Nuclear Information System (INIS)

    Barnyakov, A.M.; Levichev, A.E.; Chernousov, Yu.D.; Ivannikov, V.I.; Shebolaev, I.V.

    2015-01-01

    The system of RF control of three-electrode electron gun current is described. It consists of a source of microwave signal, coaxial line, coaxial RF switch and RF antenna lead. The system allows one to get the electron beam in the form of bunches with the frequency of the accelerating section to achieve the capture of particles in the acceleration mode close to 100%. The results of calculation and analysis of the elements of the system are presented. Characteristics of the devices are obtained experimentally. The results of using RF control in three-electrode electron gun at electron linear accelerator are described

  8. Geometry Optimization of DC/RF Photoelectron Gun

    CERN Document Server

    Chen Ping; Yu, David

    2005-01-01

    Pre-acceleration of photoelectrons in a pulsed, high voltage, short, dc gap and its subsequent injection into an rf gun is a promising method to improve electron beam emittance in rf accelerators. Simulation work has been performed in order to optimize the geometric shapes of a dc/rf gun and improve electron beam properties. Variations were made on cathode and anode shapes, dc gap distance, and inlet shape of the rf cavity. Simulations showed that significant improvement on the normalized emittance (< 1 mm-mrad), compared to a dc gun with flat cathode, could be obtained after the geometric shapes of the gun were optimized.

  9. Method of electron emission control in RF guns

    International Nuclear Information System (INIS)

    Khodak, I.V.; Kushnir, V.A.

    2001-01-01

    The electron emission control method for a RF gun is considered.According to the main idea of the method,the additional resonance system is created in a cathode region where the RF field strength could be varied using the external pulse equipment. The additional resonance system is composed of a coaxial cavity coupled with a RF gun cylindrical cavity via an axial hole. Computed results of radiofrequency and electrodynamic performances of such a two-cavity system and results of the RF gun model pilot study are presented in. Results of particle dynamics simulation are described

  10. Method of electron emission control in RF guns

    CERN Document Server

    Khodak, I V

    2001-01-01

    The electron emission control method for a RF gun is considered.According to the main idea of the method,the additional resonance system is created in a cathode region where the RF field strength could be varied using the external pulse equipment. The additional resonance system is composed of a coaxial cavity coupled with a RF gun cylindrical cavity via an axial hole. Computed results of radiofrequency and electrodynamic performances of such a two-cavity system and results of the RF gun model pilot study are presented in. Results of particle dynamics simulation are described.

  11. RF pulse compression in the NLC test accelerator at SLAC

    International Nuclear Information System (INIS)

    Lavine, T.L.

    1995-01-01

    At the Stanford Linear Accelerator Center (SLAC), the authors are designing a Next Linear Collider (NLC) with linacs powered by X-band klystrons with rf pulse compression. The design of the linac rf system is based on X-band prototypes which have been tested at high power, and on a systems-integration test - the Next Linear Collider Test Accelerator (NLCTA) - which is currently under construction at SLAC. This paper discusses some of the systems implications of rf pulse compression, and the use of pulse compression in the NLCTA, both for peak power multiplication and for controlling, by rf phase modulation, intra-pulse variations in the linac beam energy

  12. Multi-Physics Analysis of the Fermilab Booster RF Cavity

    International Nuclear Information System (INIS)

    Awida, M.; Reid, J.; Yakovlev, V.; Lebedev, V.; Khabiboulline, T.; Champion, M.

    2012-01-01

    After about 40 years of operation the RF accelerating cavities in Fermilab Booster need an upgrade to improve their reliability and to increase the repetition rate in order to support a future experimental program. An increase in the repetition rate from 7 to 15 Hz entails increasing the power dissipation in the RF cavities, their ferrite loaded tuners, and HOM dampers. The increased duty factor requires careful modelling for the RF heating effects in the cavity. A multi-physic analysis investigating both the RF and thermal properties of Booster cavity under various operating conditions is presented in this paper.

  13. Rf system considerations for a large hadron collider

    International Nuclear Information System (INIS)

    Raka, E.

    1988-01-01

    In this paper, we shall discuss how we arrive at a particular choice of voltage and frequency; the type of acceleration structure that would be suitable for obtaining the required voltage and resonant impedance; static beam loading including a simplified beam stability criterion involving the beam current and total rf system shunt impedance; the basic principle of rf phase and frequency control loops; and the effect of rf noise and its interaction with these loops. Finally, we shall consider the need for and design of rf systems to damp independently coherent oscillations of individual bunches or groups of bunches. 30 refs., 17 figs., 2 tabs

  14. Flexibility as a service

    NARCIS (Netherlands)

    Aalst, van der W.M.P.; Adams, M.; Hofstede, ter A.H.M.; Pesic, M.; Schonenberg, H.; Chen, L.; Liu, C.; Liu, Q.; Deng, K.

    2009-01-01

    The lack of flexibility is often seen as an inhibitor for the successful application of workflow technology. Many researchers have proposed different ways of addressing this problem and some of these ideas have been implemented in commercial systems. However, a "one size fits all" approach is likely

  15. Valuing Flexibility. Phase 2

    Science.gov (United States)

    2012-10-29

    Quarterly (2): 38-49. Cormier, P., Olewnik, A., and Lewis, K. 2008. An Approach to Quantifying Design Flexibility for Mass Customization in Early...C. Clarkson, P., and Zanker, W. 2004. Change and customisation in complex engineering domains, Res Eng Des 15(1), 1–21. Ekstrom, M. and Bjornsson, H

  16. Flexible Query Answering Systems

    DEFF Research Database (Denmark)

    This book constitutes the refereed proceedings of the 12th International Conference on Flexible Query Answering Systems, FQAS 2017, held in London, UK, in June 2017. The 21 full papers presented in this book together with 4 short papers were carefully reviewed and selected from 43 submissions...

  17. Flexible metal bellows

    CERN Multimedia

    CERN PhotoLab

    1975-01-01

    A set of flexible metal bellows being fatigue-tested by repeated offset motion. Such bellows assemblies were used in the SPS vacuum system at places where , for instance, beam stoppers and collimators had to be moved frequently in and out of the beam path.

  18. Flexible energy systems

    DEFF Research Database (Denmark)

    Lund, Henrik

    2003-01-01

    The paper discusses and analyses diffent national strategies and points out key changes in the energy system in order to achieve a system which can benefit from a high percentage of wind and CHP without having surplus production problems, introduced here as a flexible energy system....

  19. A flexible WLAN receiver

    NARCIS (Netherlands)

    Schiphorst, Roelof; Hoeksema, F.W.; Slump, Cornelis H.

    2003-01-01

    Flexible radio receivers are also called Software Defined Radios (SDRs) [1], [2]. The focus of our SDR project [3] is on designing the front end, from antenna to demodulation in bits, of a °exible, multi-standard WLAN receiver. We try to combine an instance of a (G)FSK receiver (Bluetooth) with an

  20. Graphene oxide-based flexible metal–insulator–metal capacitors

    International Nuclear Information System (INIS)

    Bag, A; Hota, M K; Mallik, S; Maiti, C K

    2013-01-01

    This work explores the fabrication of graphene oxide (GO)-based metal–insulator–metal (MIM) capacitors on flexible polyethylene terephthalate (PET) substrates. Electrical properties are studied in detail. A high capacitance density of ∼4 fF µm −2 measured at 1 MHz and permittivity of ∼6 have been obtained. A low voltage coefficient of capacitance, VCC-α, and a low dielectric loss tangent indicate the potential of GO-based MIM capacitors for RF applications. The constant voltage stressing study has shown a high reliability against degradation up to a projected period of 10 years. Degradation in capacitance of the devices on flexible substrates has been studied by bending radius down to 1 cm even up to 6000 times of repeated bending. (paper)

  1. A new equilibrium theory for rf discharges

    Science.gov (United States)

    Chen, Francis F.; Curreli, Davide

    2011-10-01

    Two problems often encountered in RF discharges are 1) anomalous skin depth and 2) anomalous electron diffusion across magnetic fields B. Both effects can be explained if the discharges are not unusually long or short. The Simon short-circuit effect then allows the electrons to follow the Boltzmann relation even across B. Once Maxwellian electrons are assumed, a remarkable result can be obtained for radial profiles of density, potential, and ion drift velocity toward the cylindrical wall. In suitably normalized units, these profiles take on a universal shape for all discharges, regardless of B. The velocity profile naturally reaches the Bohm velocity at the wall (= sheath edge). Our code EQM solves for the radial profiles of plasma and neutral density including neutral depletion. All radial dependences are taken into account exactly, and no assumption of a presheath is necessary. To get the profile of Te requires energy balance in the specific discharge. We have done this for helicon discharges described by the HELIC code. Iteration between EQM and HELIC yields all profiles and also the absolute density for given RF power. Now at Univ. of Padua, Padua, Italy.

  2. RF Photoelectric injectors using needle cathodes

    International Nuclear Information System (INIS)

    Lewellen, J.W.; Brau, C.A.

    2003-01-01

    Photocathode RF guns, in various configurations, are the injectors of choice for both current and future applications requiring high-brightness electron beams. Many of these applications, such as single-pass free-electron lasers, require beams with high brilliance but not necessarily high charge per bunch. Field-enhanced photoelectric emission has demonstrated electron-beam current density as high as 10 10 A/m 2 , with a quantum efficiency in the UV that approaches 10% at fields on the order of 10 10 V/m. Thus, the use of even a blunt needle holds promise for increasing cathode quantum efficiency without sacrificing robustness. We present an initial study on the use of needle cathodes in photoinjectors to enhance beam brightness while reducing beam charge. Benefits include lower drive-laser power requirements, easier multibunch operation, lower emittance, and lower beam degradation due to charge-dependent effects in the postinjector accelerator. These benefits result from a combination of a smaller cathode emission area, greatly enhanced RF field strength at the cathode, and the charge scaling of detrimental postinjector linac effects, e.g., transverse wakefields and CSR

  3. RF Photoelectric injectors using needle cathodes

    Science.gov (United States)

    Lewellen, J. W.; Brau, C. A.

    2003-07-01

    Photocathode RF guns, in various configurations, are the injectors of choice for both current and future applications requiring high-brightness electron beams. Many of these applications, such as single-pass free-electron lasers, require beams with high brilliance but not necessarily high charge per bunch. Field-enhanced photoelectric emission has demonstrated electron-beam current density as high as 10 10 A/m 2, with a quantum efficiency in the UV that approaches 10% at fields on the order of 10 10 V/m. Thus, the use of even a blunt needle holds promise for increasing cathode quantum efficiency without sacrificing robustness. We present an initial study on the use of needle cathodes in photoinjectors to enhance beam brightness while reducing beam charge. Benefits include lower drive-laser power requirements, easier multibunch operation, lower emittance, and lower beam degradation due to charge-dependent effects in the postinjector accelerator. These benefits result from a combination of a smaller cathode emission area, greatly enhanced RF field strength at the cathode, and the charge scaling of detrimental postinjector linac effects, e.g., transverse wakefields and CSR.

  4. Superconducting niobium in high rf magnetic fields

    International Nuclear Information System (INIS)

    Mueller, G.

    1988-01-01

    The benefit of superconducting cavities for accelerator applications depends on the field and Q/sub 0/ levels which can be achieved reliably in mass producible multicell accelerating structures. The presently observed field and Q/sub 0/ limitations are caused by anomalous loss mechanisms which are not correlated with the intrinsic properties of the pure superconductor but rather due to defects or contaminants on the superconducting surface. The ultimate performance levels of clean superconducting cavities built from pure Nb will be given by the rf critical field and the surface resistance of the superconductor. In the first part of this paper a short survey is given of the maximum surface magnetic fields achieved in single-cell cavities. The results of model calculations for the thermal breakdown induced by very small defects and for the transition to the defect free case is discussed in part 2. In the last chapter, a discussion is given for the rf critical field of Nb on the basis of the Ginzburg-Landau Theory. It is shown that not only purity but also the homogeneity of the material should become important for the performance of superconducting Nb cavities at field levels beyond 100mT. Measurement results of the upper critical field for different grades of commercially available Nb sheet materials are given. 58 references, 20 figures, 1 table

  5. Extremely high frequency RF effects on electronics.

    Energy Technology Data Exchange (ETDEWEB)

    Loubriel, Guillermo Manuel; Vigliano, David; Coleman, Phillip Dale; Williams, Jeffery Thomas; Wouters, Gregg A.; Bacon, Larry Donald; Mar, Alan

    2012-01-01

    The objective of this work was to understand the fundamental physics of extremely high frequency RF effects on electronics. To accomplish this objective, we produced models, conducted simulations, and performed measurements to identify the mechanisms of effects as frequency increases into the millimeter-wave regime. Our purpose was to answer the questions, 'What are the tradeoffs between coupling, transmission losses, and device responses as frequency increases?', and, 'How high in frequency do effects on electronic systems continue to occur?' Using full wave electromagnetics codes and a transmission-line/circuit code, we investigated how extremely high-frequency RF propagates on wires and printed circuit board traces. We investigated both field-to-wire coupling and direct illumination of printed circuit boards to determine the significant mechanisms for inducing currents at device terminals. We measured coupling to wires and attenuation along wires for comparison to the simulations, looking at plane-wave coupling as it launches modes onto single and multiconductor structures. We simulated the response of discrete and integrated circuit semiconductor devices to those high-frequency currents and voltages, using SGFramework, the open-source General-purpose Semiconductor Simulator (gss), and Sandia's Charon semiconductor device physics codes. This report documents our findings.

  6. Pressurized rf cavities in ionizing beams

    Directory of Open Access Journals (Sweden)

    B. Freemire

    2016-06-01

    Full Text Available A muon collider or Higgs factory requires significant reduction of the six dimensional emittance of the beam prior to acceleration. One method to accomplish this involves building a cooling channel using high pressure gas filled radio frequency cavities. The performance of such a cavity when subjected to an intense particle beam must be investigated before this technology can be validated. To this end, a high pressure gas filled radio frequency (rf test cell was built and placed in a 400 MeV beam line from the Fermilab linac to study the plasma evolution and its effect on the cavity. Hydrogen, deuterium, helium and nitrogen gases were studied. Additionally, sulfur hexafluoride and dry air were used as dopants to aid in the removal of plasma electrons. Measurements were made using a variety of beam intensities, gas pressures, dopant concentrations, and cavity rf electric fields, both with and without a 3 T external solenoidal magnetic field. Energy dissipation per electron-ion pair, electron-ion recombination rates, ion-ion recombination rates, and electron attachment times to SF_{6} and O_{2} were measured.

  7. Magnetic shielding for superconducting RF cavities

    Science.gov (United States)

    Masuzawa, M.; Terashima, A.; Tsuchiya, K.; Ueki, R.

    2017-03-01

    Magnetic shielding is a key technology for superconducting radio frequency (RF) cavities. There are basically two approaches for shielding: (1) surround the cavity of interest with high permeability material and divert magnetic flux around it (passive shielding); and (2) create a magnetic field using coils that cancels the ambient magnetic field in the area of interest (active shielding). The choice of approach depends on the magnitude of the ambient magnetic field, residual magnetic field tolerance, shape of the magnetic shield, usage, cost, etc. However, passive shielding is more commonly used for superconducting RF cavities. The issue with passive shielding is that as the volume to be shielded increases, the size of the shielding material increases, thereby leading to cost increase. A recent trend is to place a magnetic shield in a cryogenic environment inside a cryostat, very close to the cavities, reducing the size and volume of the magnetic shield. In this case, the shielding effectiveness at cryogenic temperatures becomes important. We measured the permeabilities of various shielding materials at both room temperature and cryogenic temperature (4 K) and studied shielding degradation at that cryogenic temperature.

  8. Liquid Metal Droplet and Micro Corrugated Diaphragm RF-MEMS for reconfigurable RF filters

    Science.gov (United States)

    Irshad, Wasim

    Widely Tunable RF Filters that are small, cost-effective and offer ultra low power consumption are extremely desirable. Indeed, such filters would allow drastic simplification of RF front-ends in countless applications from cell phones to satellites in space by replacing switched-array of static acoustic filters and YIG filters respectively. Switched array of acoustic filters are de facto means of channel selection in mobile applications such as cell phones. SAW and BAW filters satisfy most criteria needed by mobile applications such as low cost, size and power consumption. However, the trade-off is a significant loss of 3-4 dB in modern cell phone RF front-end. This leads to need for power-hungry amplifiers and short battery life. It is a necessary trade-off since there are no better alternatives. These devices are in mm scale and consume mW. YIG filters dominate applications where size or power is not a constraint but demand excellent RF performance like low loss and high tuning ratio. These devices are measured in inches and require several watts to operate. Clearly, a tunable RF filter technology that would combine the cost, size and power consumption benefits of acoustic filters with excellent RF performance of YIG filters would be extremely desirable and imminently useful. The objective of this dissertation is to develop such a technology based upon RF-MEMS Evanescent-mode cavity filter. Two highly novel RF-MEMS devices have been developed over the course of this PhD to address the unique MEMS needs of this technology. The first part of the dissertation is dedicated to introducing the fundamental concepts of tunable cavity resonators and filters. This includes the physics behind it, key performance metrics and what they depend on and requirements of the MEMS tuners. Initial gap control and MEMS attachment method are identified as potential hurdles towards achieving very high RF performance. Simple and elegant solutions to both these issues are discussed in

  9. Uncertainty quantification in capacitive RF MEMS switches

    Science.gov (United States)

    Pax, Benjamin J.

    Development of radio frequency micro electrical-mechanical systems (RF MEMS) has led to novel approaches to implement electrical circuitry. The introduction of capacitive MEMS switches, in particular, has shown promise in low-loss, low-power devices. However, the promise of MEMS switches has not yet been completely realized. RF-MEMS switches are known to fail after only a few months of operation, and nominally similar designs show wide variability in lifetime. Modeling switch operation using nominal or as-designed parameters cannot predict the statistical spread in the number of cycles to failure, and probabilistic methods are necessary. A Bayesian framework for calibration, validation and prediction offers an integrated approach to quantifying the uncertainty in predictions of MEMS switch performance. The objective of this thesis is to use the Bayesian framework to predict the creep-related deflection of the PRISM RF-MEMS switch over several thousand hours of operation. The PRISM switch used in this thesis is the focus of research at Purdue's PRISM center, and is a capacitive contacting RF-MEMS switch. It employs a fixed-fixed nickel membrane which is electrostatically actuated by applying voltage between the membrane and a pull-down electrode. Creep plays a central role in the reliability of this switch. The focus of this thesis is on the creep model, which is calibrated against experimental data measured for a frog-leg varactor fabricated and characterized at Purdue University. Creep plasticity is modeled using plate element theory with electrostatic forces being generated using either parallel plate approximations where appropriate, or solving for the full 3D potential field. For the latter, structure-electrostatics interaction is determined through immersed boundary method. A probabilistic framework using generalized polynomial chaos (gPC) is used to create surrogate models to mitigate the costly full physics simulations, and Bayesian calibration and forward

  10. Energy Flexibility in Retail Buildings

    DEFF Research Database (Denmark)

    Ma, Zheng; Billanes, Joy Dalmacio; Kjærgaard, Mikkel Baun

    2017-01-01

    Retail buildings has an important role for demand side energy flexibility because of their high energy consumption, variety of energy flexibility resources, and centralized control via building control systems. Energy flexibility requires agreements and collaborations among different actors......), with the discussion of the stakeholders’ roles and their interrelation in delivering energy flexibility with the influential factors to the actual implementation of energy flexible operation of their buildings. Based on a literature analysis, the results cover stakeholders’ types and roles, perceptions (drivers......, barriers, and benefits), energy management activities and technology adoptions, and the stakeholders’ interaction for the energy flexibility in retail buildings....

  11. Diffusion in flexible pipes

    Energy Technology Data Exchange (ETDEWEB)

    Brogaard Kristensen, S.

    2000-06-01

    This report describes the work done on modelling and simulation of the complex diffusion of gas through the wall of a flexible pipe. The diffusion and thus the pressure in annulus depends strongly on the diffusion and solubility parameters of the gas-polymer system and on the degree of blocking of the outer surface of the inner liner due to pressure reinforcements. The report evaluates the basis modelling required to describe the complex geometries and flow patterns. Qualitatively results of temperature and concentration profiles are shown in the report. For the program to serve any modelling purpose in 'real life' the results need to be validated and possibly the model needs corrections. Hopefully, a full-scale test of a flexible pipe will provide the required temperatures and pressures in annulus to validate the models. (EHS)

  12. Flexible cryogenic conduit

    International Nuclear Information System (INIS)

    Brindza, P.D.; Wines, R.R.; Takacs, J.J.

    1999-01-01

    A flexible and relatively low cost cryogenic conduit is described. The flexible cryogenic conduit of the present invention comprises a first inner corrugated tube with single braided serving, a second outer corrugated tube with single braided serving concentric with the inner corrugated tube, and arranged outwardly about the periphery of the inner corrugated tube and between the inner and outer corrugated tubes: a superinsulation layer; a one half lap layer of polyester ribbon; a one half lap layer of copper ribbon; a spirally wound refrigeration tube; a second one half lap layer of copper ribbon; a second one half lap layer of polyester ribbon; a second superinsulation layer; a third one half lap layer of polyester ribbon; and a spirally wound stretchable and compressible filament

  13. Diffusion in flexible pipes

    Energy Technology Data Exchange (ETDEWEB)

    Brogaard Kristensen, S

    2000-06-01

    This report describes the work done on modelling and simulation of the complex diffusion of gas through the wall of a flexible pipe. The diffusion and thus the pressure in annulus depends strongly on the diffusion and solubility parameters of the gas-polymer system and on the degree of blocking of the outer surface of the inner liner due to pressure reinforcements. The report evaluates the basis modelling required to describe the complex geometries and flow patterns. Qualitatively results of temperature and concentration profiles are shown in the report. For the program to serve any modelling purpose in 'real life' the results need to be validated and possibly the model needs corrections. Hopefully, a full-scale test of a flexible pipe will provide the required temperatures and pressures in annulus to validate the models. (EHS)

  14. Flexible Laser Metal Cutting

    DEFF Research Database (Denmark)

    Villumsen, Sigurd; Jørgensen, Steffen Nordahl; Kristiansen, Morten

    2014-01-01

    This paper describes a new flexible and fast approach to laser cutting called ROBOCUT. Combined with CAD/CAM technology, laser cutting of metal provides the flexibility to perform one-of-a-kind cutting and hereby realises mass production of customised products. Today’s laser cutting techniques...... possess, despite their wide use in industry, limitations regarding speed and geometry. Research trends point towards remote laser cutting techniques which can improve speed and geometrical freedom and hereby the competitiveness of laser cutting compared to fixed-tool-based cutting technology...... such as punching. This paper presents the concepts and preliminary test results of the ROBOCUT laser cutting technology, a technology which potentially can revolutionise laser cutting....

  15. Suitability of miniature inductively coupled RF coils as MR-visible markers for clinical purposes.

    Science.gov (United States)

    Garnov, Nikita; Thormer, Gregor; Trampel, Robert; Grunder, Wilfried; Kahn, Thomas; Moche, Michael; Busse, Harald

    2011-11-01

    MR-visible markers have already been used for various purposes such as image registration, motion detection, and device tracking. Inductively coupled RF (ICRF) coils, in particular, provide a high contrast and do not require connecting wires to the scanner, which makes their application highly flexible and safe. This work aims to thoroughly characterize the MR signals of such ICRF markers under various conditions with a special emphasis on fully automatic detection. The small markers consisted of a solenoid coil that was wound around a glass tube containing the MR signal source and tuned to the resonance frequency of a 1.5 T MRI. Marker imaging was performed with a spoiled gradient echo sequence (FLASH) and a balanced steady-state free precession (SSFP) sequence (TrueFISP) in three standard projections. The signal intensities of the markers were recorded for both pulse sequences, three source materials (tap water, distilled water, and contrast agent solution), different flip angles and coil alignments with respect to the B(0) direction as well as for different marker positions in the entire imaging volume (field of view, FOV). Heating of the ICRF coils was measured during 10-min RF expositions to three conventional pulse sequences. Clinical utility of the markers was assessed from their performance in computer-aided detection and in defining double oblique scan planes. For almost the entire FOV (±215 mm) and an estimated 82% of all possible RF coil alignments with respect to B(0), the ICRF markers generated clearly visible MR signals and could be reliably localized over a large range of flip angles, in particular with the TrueFISP sequence (0.3°-4.0°). Generally, TrueFISP provided a higher marker contrast than FLASH. RF exposition caused a moderate heating (≤5 °C) of the ICRF coils only. Small ICRF coils, imaged at low flip angles with a balanced SSFP sequence showed an excellent performance under a variety of experimental conditions and therefore make for a

  16. A continuous wave RF vacuum window

    International Nuclear Information System (INIS)

    Walton, R.

    1999-09-01

    An essential part of an ICRF system to be used in fusion reactor is the RF window. This is fitted in a coaxial transmission line. It forms a vacuum and tritium boundary between the antenna, situated inside the machine, and the transmission line, which feeds it. A double window is required with a vacuum inter-space. The dielectric, which forms the vacuum boundary, must be brazed into its housing. The window must be of a robust construction, and capable of withstanding both axial and radial loads. The vacuum boundaries should be thick walled in order act as a suitable tritium barrier. A further requirement is that the window is capable of continuous operation. The design of such a window is presented below. A half scale prototype has been manufactured, which has successfully completed RF, vacuum, and mechanical testing at JET, but has no water cooling, which is a requirement for continuous operation. The design presented here is for a window to match the existing 30 Ω main transmission lines at JET. It employs two opposed ceramic dielectric cones with a much increased angle of incidence compared with existing JET windows. The housing is machined from titanium. Small corona rings are used, and the tracking distance along the ceramic surface is large. The geometry minimizes the peak electric field strength. The design uses substantial pre-stressing during manufacture, to produce a compressive stress field throughout the dielectric material. Significant tensile stresses in the ceramic, and therefore the possibility of fracture due to applied thermal and mechanical loading, are eliminated in this way. A full-scale actively cooled RF window using this basic design should be capable of continuous use at 50 kV in the 20 - 90 MHz range. A half scale, inertially cooled prototype window has been designed, built and tested successfully at JET to 48 kV for up to 20 seconds. The prototype uses alumina for the dielectric, whereas beryllia is more appropriate for continuous

  17. Wafer-scale integrated micro-supercapacitors on an ultrathin and highly flexible biomedical platform.

    Science.gov (United States)

    Maeng, Jimin; Meng, Chuizhou; Irazoqui, Pedro P

    2015-02-01

    We present wafer-scale integrated micro-supercapacitors on an ultrathin and highly flexible parylene platform, as progress toward sustainably powering biomedical microsystems suitable for implantable and wearable applications. All-solid-state, low-profile (supercapacitors are formed on an ultrathin (~20 μm) freestanding parylene film by a wafer-scale parylene packaging process in combination with a polyaniline (PANI) nanowire growth technique assisted by surface plasma treatment. These micro-supercapacitors are highly flexible and shown to be resilient toward flexural stress. Further, direct integration of micro-supercapacitors into a radio frequency (RF) rectifying circuit is achieved on a single parylene platform, yielding a complete RF energy harvesting microsystem. The system discharging rate is shown to improve by ~17 times in the presence of the integrated micro-supercapacitors. This result suggests that the integrated micro-supercapacitor technology described herein is a promising strategy for sustainably powering biomedical microsystems dedicated to implantable and wearable applications.

  18. Flexible training under threat.

    Science.gov (United States)

    Houghton, Anita; Eaton, Jennifer

    2002-10-01

    As the number of women in medicine and the general demand for a better work-life balance rises, flexible training is an increasingly important mechanism for maintaining the medical workforce. The new pay deal, together with entrenched cultural attitudes, are potential threats. Ways forward include more substantive part-time posts, more part-time opportunities at consultant level, and using positive experiences as a way of tackling attitudes in the less accepting specialties.

  19. Flexible weapons architecture design

    OpenAIRE

    Pyant, William C.

    2015-01-01

    Present day air-delivered weapons are of a closed architecture, with little to no ability to tailor the weapon for the individual engagement. The closed architectures require weaponeers to make the target fit the weapon instead of fitting the individual weapons to a target. The concept of a flexible weapons aims to modularize weapons design using an open architecture shell into which different modules are inserted to achieve the desired target fractional damage while reducing cost and civilia...

  20. Industrial Fuel Flexibility Workshop

    Energy Technology Data Exchange (ETDEWEB)

    none,

    2006-09-01

    On September 28, 2006, in Washington, DC, ITP and Booz Allen Hamilton conducted a fuel flexibility workshop with attendance from various stakeholder groups. Workshop participants included representatives from the petrochemical, refining, food and beverage, steel and metals, pulp and paper, cement and glass manufacturing industries; as well as representatives from industrial boiler manufacturers, technology providers, energy and waste service providers, the federal government and national laboratories, and developers and financiers.

  1. Flexible Land Administration

    DEFF Research Database (Denmark)

    Enemark, Stig

    2014-01-01

    Security of tenure is widely considered to be the missing piece of the puzzle when it comes to eradication of poverty. And, as explained in the previous issue of Geoinformatics, the European Union is now placing land rights at the heart of EU development policy. This article presents a way forwar...... in terms of building flexible and "fit-for-purpose" land administration systems in developing countries. This will ensure security of tenure for all and sustainable management of the use of land....

  2. RF system for the super conducting proton linac

    International Nuclear Information System (INIS)

    Touchi, Y.

    2001-01-01

    In this paper, we introduce the several types of RF sources used for proton liner accelerators. Also we discus the undesirable characteristics of super-conducting cavities, and the influence of the large beam loading for an accelerating field. We propose the RF system for the super-conducting proton linear accelerators using the Diacrode or IOT taking these effects into account. (author)

  3. A design and performance analysis tool for superconducting RF systems

    International Nuclear Information System (INIS)

    Schilcher, T.; Simrock, S.N.; Merminga, L.; Wang, D.X.

    1997-01-01

    Superconducting rf systems are usually operated with continuous rf power or with rf pulse lengths exceeding 1 ms to maximize the overall wall plug power efficiency. Typical examples are CEBAF at the Thomas Jefferson National Accelerator Facility (Jefferson Lab) and the TESLA Test Facility at DESY. The long pulses allow for effective application of feedback to stabilize the accelerating field in presence of microphonics, Lorentz force detuning, and fluctuations of the beam current. In this paper the authors describe a set of tools to be used with MATLAB and SIMULINK, which allow to analyze the quality of field regulation for a given design. The tools include models for the cavities, the rf power source, the beam, sources of field perturbations, and the rf feedback system. The rf control relevant electrical and mechanical characteristics of the cavity are described in form of time-varying state space models. The power source is modeled as a current generator and includes saturation characteristics and noise.An arbitrary time structure can be imposed on the beam current to reflect a macro-pulse structure and bunch charge fluctuations. For rf feedback several schemes can be selected: Traditional amplitude and phase control as well as I/Q control. The choices for the feedback controller include analog or digital approaches and various choices of frequency response. Feed forward can be added to further suppress repetitive errors. The results of a performance analysis of the CEBAF and the TESLA Linac rf system using these tools are presented

  4. Novel rf power sensor based on capacitive MEMS technology

    NARCIS (Netherlands)

    Fernandez, L.J.; Visser, Eelke; Sesé, J.; Jansen, Henricus V.; Wiegerink, Remco J.; Flokstra, Jakob

    2003-01-01

    We present the theory, design, fabrication of and first measurements on a novel power for radio frequency (rf) signals, based on capacitive measurements. The novelty of this sensor is thtat it measures the force that is created between the rf signal and a grounded membrande suspended above the line

  5. RF cavity using liquid dielectric for tuning and cooling

    Science.gov (United States)

    Popovic, Milorad [Warrenville, IL; Johnson, Rolland P [Newport News, VA

    2012-04-17

    A system for accelerating particles includes an RF cavity that contains a ferrite core and a liquid dielectric. Characteristics of the ferrite core and the liquid dielectric, among other factors, determine the resonant frequency of the RF cavity. The liquid dielectric is circulated to cool the ferrite core during the operation of the system.

  6. MMPI-2-RF Characteristics of Custody Evaluation Litigants

    Science.gov (United States)

    Archer, Elizabeth M.; Hagan, Leigh D.; Mason, Janelle; Handel, Richard; Archer, Robert P.

    2012-01-01

    The Minnesota Multiphasic Personality Inventory-2-Restructured Form (MMPI-2-RF) is a 338-item objective self-report measure drawn from the 567 items of the MMPI-2. Although there is a substantial MMPI-2 literature regarding child custody litigants, there has been only one previously published study using MMPI-2-RF data in this population that…

  7. Predicting Drug Court Treatment Completion Using the MMPI-2-RF

    Science.gov (United States)

    Mattson, Curtis; Powers, Bradley; Halfaker, Dale; Akeson, Steven; Ben-Porath, Yossef

    2012-01-01

    We examined the ability of the Minnesota Multiphasic Personality Inventory-2 Restructured Form (MMPI-2-RF; Ben-Porath & Tellegen, 2008) substantive scales to predict Drug Court treatment completion in a sample of individuals identified as being at risk for failure to complete the program. Higher scores on MMPI-2-RF scales…

  8. Correlates of the MMPI-2-RF in a College Setting

    Science.gov (United States)

    Forbey, Johnathan D.; Lee, Tayla T. C.; Handel, Richard W.

    2010-01-01

    The current study examined empirical correlates of scores on Minnesota Multiphasic Personality Inventory-2-Restructured Form (MMPI-2-RF; A. Tellegen & Y. S. Ben-Porath, 2008; Y. S. Ben-Porath & A. Tellegen, 2008) scales in a college setting. The MMPI-2-RF and six criterion measures (assessing anger, assertiveness, sex roles, cognitive…

  9. Series-Tuned High Efficiency RF-Power Amplifiers

    DEFF Research Database (Denmark)

    Vidkjær, Jens

    2008-01-01

    An approach to high efficiency RF-power amplifier design is presented. It addresses simultaneously efficiency optimization and peak voltage limitations when transistors are pushed towards their power limits.......An approach to high efficiency RF-power amplifier design is presented. It addresses simultaneously efficiency optimization and peak voltage limitations when transistors are pushed towards their power limits....

  10. Survey of European Community efforts in RF heating

    International Nuclear Information System (INIS)

    Consoli, T.

    1981-01-01

    The present paper briefly reviews the efforts made over the last 10 years, with particular emphasis on the period from 1978 to 1980. The RF heating experiments within EC are presented: low frequency heating; heating at medium frequencies (ICRH); RF heating at low hybrid frequency; heating at the ECR frequency. The plan of Tore-Supra is given

  11. Automotive RF immunity test set-up analysis

    NARCIS (Netherlands)

    Coenen, M.J.; Pues, H.; Bousquet, T.; Gillon, R.; Gielen, G.; Baric, A.

    2011-01-01

    Though the automotive RF emission and RF immunity requirements are highly justifiable, the application of those requirements in an non-intended manner leads to false conclusions and unnecessary redesigns for the electronics involved. When the test results become too dependent upon the test set-up

  12. RF system of a synchrotron for protons and heavy ions

    International Nuclear Information System (INIS)

    Boehne, D.

    1987-12-01

    In this paper the potential and the constraints of producing many kilovolts of rf accelerating voltage for synchrotrons in a cumbersome board frequency range are reviewed from the electrical engineering standpoint. This paper elaborates on numbers and limits which determine cost and complexity of the rf system. (orig./HSI)

  13. Development and advances in conventional high power RF systems

    International Nuclear Information System (INIS)

    Wilson, P.B.

    1995-06-01

    The development of rf systems capable of producing high peak power (hundreds of megawatts) at relatively short pulse lengths (0.1--5 microseconds) is currently being driven mainly by the requirements of future high energy linear colliders, although there may be applications to industrial, medical and research linacs as well. The production of high peak power rf typically involves four basic elements: a power supply to convert ac from the ''wall plug'' to dc; a modulator, or some sort of switching element, to produce pulsed dc power; an rf source to convert the pulsed dc to pulsed rf power; and possibly an rf pulse compression system to further enhance the peak rf power. Each element in this rf chain from wall plug to accelerating structure must perform with high efficiency in a linear collider application, such that the overall system efficiency is 30% or more. Basic design concepts are discussed for klystrons, modulators and rf pulse compression systems, and their present design status is summarized for applications to proposed linear colliders

  14. Performance Analysis of RF-FSO Multi-Hop Networks

    KAUST Repository

    Makki, Behrooz

    2017-05-12

    We study the performance of multi-hop networks composed of millimeter wave (MMW)-based radio frequency (RF) and free-space optical (FSO) links. The results are obtained in the cases with and without hybrid automatic repeat request (HARQ). Taking the MMW characteristics of the RF links into account, we derive closed-form expressions for the network outage probability. We also evaluate the effect of various parameters such as power amplifiers efficiency, number of antennas as well as different coherence times of the RF and the FSO links on the system performance. Finally, we present mappings between the performance of RF- FSO multi-hop networks and the ones using only the RF- or the FSO-based communication, in the sense that with appropriate parameter settings the same outage probability is achieved in these setups. The results show the efficiency of the RF-FSO setups in different conditions. Moreover, the HARQ can effectively improve the outage probability/energy efficiency, and compensate the effect of hardware impairments in RF-FSO networks. For common parameter settings of the RF-FSO dual- hop networks, outage probability 10^{-4} and code rate 3 nats-per-channel-use, the implementation of HARQ with a maximum of 2 and 3 retransmissions reduces the required power, compared to the cases with no HARQ, by 13 and 17 dB, respectively.

  15. Adaptive compensation of Lorentz force detuning in superconducting RF cavities

    Energy Technology Data Exchange (ETDEWEB)

    Pischalnikov, Yuriy [Fermilab; Schappert, Warren [Fermilab

    2011-11-01

    The Lorentz force can dynamically detune pulsed Superconducting RF cavities and considerable additional RF power can be required to maintain the accelerating gradient if no effort is made to compensate. Fermilab has developed an adaptive compensation system for cavities in the Horizontal Test Stand, in the SRF Accelerator Test Facility, and for the proposed Project X.

  16. RF sputtering: A viable tool for MEMS fabrication

    Indian Academy of Sciences (India)

    being prepared by RF sputtering and their application in MEMS being explored. ... crystallographic properties were evaluated using XRD analysis (CuKα radiation ..... Bhatt V, Pal P, Chandra S 2005 Feasibility study of RF sputtered ZnO film for ...

  17. Characterization of Energy Availability in RF Energy Harvesting Networks

    Directory of Open Access Journals (Sweden)

    Daniela Oliveira

    2016-01-01

    Full Text Available The multiple nodes forming a Radio Frequency (RF Energy Harvesting Network (RF-EHN have the capability of converting received electromagnetic RF signals in energy that can be used to power a network device (the energy harvester. Traditionally the RF signals are provided by high power transmitters (e.g., base stations operating in the neighborhood of the harvesters. Admitting that the transmitters are spatially distributed according to a spatial Poisson process, we start by characterizing the distribution of the RF power received by an energy harvester node. Considering Gamma shadowing and Rayleigh fading, we show that the received RF power can be approximated by the sum of multiple Gamma distributions with different scale and shape parameters. Using the distribution of the received RF power, we derive the probability of a node having enough energy to transmit a packet after a given amount of charging time. The RF power distribution and the probability of a harvester having enough energy to transmit a packet are validated through simulation. The numerical results obtained with the proposed analysis are close to the ones obtained through simulation, which confirms the accuracy of the proposed analysis.

  18. RF-MEMS capacitive switches with high reliability

    Science.gov (United States)

    Goldsmith, Charles L.; Auciello, Orlando H.; Carlisle, John A.; Sampath, Suresh; Sumant, Anirudha V.; Carpick, Robert W.; Hwang, James; Mancini, Derrick C.; Gudeman, Chris

    2013-09-03

    A reliable long life RF-MEMS capacitive switch is provided with a dielectric layer comprising a "fast discharge diamond dielectric layer" and enabling rapid switch recovery, dielectric layer charging and discharging that is efficient and effective to enable RF-MEMS switch operation to greater than or equal to 100 billion cycles.

  19. PTFE films with improved flexibility

    Science.gov (United States)

    Muraca, R. F.; Koch, A. A.

    1972-01-01

    Development and application of flexible polytetrafluroethylene films for expulsion bladders in spacecraft propellant tanks are described. Flexibility of material is obtained by reducing crystallinity through annealing and quenching in water. Physical and mechanical properties of material are presented.

  20. Upgrade of the Cryogenic CERN RF Test Facility

    CERN Document Server

    Pirotte, O; Brunner, O; Inglese, V; Koettig, T; Maesen, P; Vullierme, B

    2014-01-01

    With the large number of superconducting radiofrequency (RF) cryomodules to be tested for the former LEP and the present LHC accelerator a RF test facility was erected early in the 1990’s in the largest cryogenic test facility at CERN located at Point 18. This facility consisted of four vertical test stands for single cavities and originally one and then two horizontal test benches for RF cryomodules operating at 4.5 K in saturated helium. CERN is presently working on the upgrade of its accelerator infrastructure, which requires new superconducting cavities operating below 2 K in saturated superfluid helium. Consequently, the RF test facility has been renewed in order to allow efficient cavity and cryomodule tests in superfluid helium and to improve its thermal performances. The new RF test facility is described and its performances are presented.

  1. Development of L-band pillbox RF window

    International Nuclear Information System (INIS)

    Takeuchi, Y.; Fukuda, S.; Hisamatsu, H.; Saito, Y.; Takahashi, A.

    1994-01-01

    A pillbox RF output window was developed for the L-band pulsed klystron for the Japanese Hadron Project (JHP) 1-GeV proton linac. The window was designed to withstand a peak RF power of 6 MW, where the pulse width is 600 μsec and the repetition rate is 50 Hz. A high power model was fabricated using an alumina ceramic which has a low loss tangent of 2.5x10 -5 . A high power test was successfully performed up to a 113 kW RF average power with a 4 MW peak power, a 565 μsec pulse width and a 50 Hz repetition rate. By extrapolating the data of this high power test, the temperature rise of the ceramic is estimated low enough at the full RF power of 6 MW. Thus this RF window is expected to satisfy the specifications of the L-band Klystron. (author)

  2. PASTA - An RF Phase and Amplitude Scan and Tuning Application

    CERN Document Server

    Galambos, J; Deibele, C; Henderson, S

    2005-01-01

    To assist the beam commissioning in the Spallation Neutron Source (SNS) linac, a general purpose RF tuning application has been written to help set RF phase and amplitude. It follows the signature matching procedure described in Ref.* The method involves varying an upstream Rf cavity amplitude and phase settings and comparing the measured downstream beam phase responses to model predictions. The model input for cavity phase and amplitude calibration and for the beam energy are varied to best match observations. This scheme has advantages over other RF tuning techniques of not requiring intercepting devices (e.g. Faraday Cups), and not being restricted to a small linear response regime near the design values. The application developed here is general and can be applied to different RF structure types in the SNS linac. Example applications in the SNS Drift Tube Linac (DTL) and Coupled Cavity Linac (CCL) structures will be shown.

  3. Embedded control system for high power RF amplifiers

    International Nuclear Information System (INIS)

    Sharma, Deepak Kumar; Gupta, Alok Kumar; Jain, Akhilesh; Hannurkar, P.R.

    2011-01-01

    RF power devices are usually very sensitive to overheat and reflected RF power; hence a protective interlock system is required to be embedded with high power solid state RF amplifiers. The solid state RF amplifiers have salient features of graceful degradation and very low mean time to repair (MTTR). In order to exploit these features in favour of lowest system downtime, a real-time control system is embedded with high power RF amplifiers. The control system is developed with the features of monitoring, measurement and network publishing of various parameters, historical data logging, alarm generation, displaying data to the operator and tripping the system in case of any interlock failure. This paper discusses the design philosophy, features, functions and implementation details of the embedded control system. (author)

  4. RF Breakdown in Normal Conducting Single-cell Structures

    CERN Document Server

    Dolgashev, Valery A; Higo, Toshiyasu; Nantista, Christopher D; Tantawi, Sami G

    2005-01-01

    Operating accelerating gradient in normal conducting accelerating structures is often limited by rf breakdown. The limit depends on multiple parameters, including input rf power, rf circuit, cavity shape and material. Experimental and theoretical study of the effects of these parameters on the breakdown limit in full scale structures is difficult and costly. We use 11.4 GHz single-cell traveling wave and standing wave accelerating structures for experiments and modeling of rf breakdown behavior. These test structures are designed so that the electromagnetic fields in one cell mimic the fields in prototype multicell structures for the X-band linear collider. Fields elsewhere in the test structures are significantly lower than that of the single cell. The setup uses matched mode converters that launch the circular TM01 mode into short test structures. The test structures are connected to the mode launchers with vacuum rf flanges. This setup allows economic testing of different cell geometries, cell materials an...

  5. Indoor Wireless RF Energy Transfer for Powering Wireless Sensors

    Directory of Open Access Journals (Sweden)

    H. Visser

    2012-12-01

    Full Text Available For powering wireless sensors in buildings, rechargeable batteries may be used. These batteries will be recharged remotely by dedicated RF sources. Far-field RF energy transport is known to suffer from path loss and therefore the RF power available on the rectifying antenna or rectenna will be very low. As a consequence, the RF-to-DC conversion efficiency of the rectenna will also be very low. By optimizing not only the subsystems of a rectenna but also taking the propagation channel into account and using the channel information for adapting the transmit antenna radiation pattern, the RF energy transport efficiency will be improved. The rectenna optimization, channel modeling and design of a transmit antenna are discussed.

  6. Short range RF communication for jet engine control

    Science.gov (United States)

    Sexton, Daniel White (Inventor); Hershey, John Erik (Inventor)

    2007-01-01

    A method transmitting a message over at least one of a plurality of radio frequency (RF) channels of an RF communications network is provided. The method comprises the steps of detecting a presence of jamming pulses in the at least one of the plurality of RF channels. The characteristics of the jamming pulses in the at least one of the plurality of RF channels is determined wherein the determined characteristics define at least interstices between the jamming pulses. The message is transmitted over the at least one of the plurality of RF channels wherein the message is transmitted within the interstices of the jamming pulse determined from the step of determining characteristics of the jamming pulses.

  7. Upgrade of the cryogenic CERN RF test facility

    International Nuclear Information System (INIS)

    Pirotte, O.; Benda, V.; Brunner, O.; Inglese, V.; Maesen, P.; Vullierme, B.; Koettig, T.

    2014-01-01

    With the large number of superconducting radiofrequency (RF) cryomodules to be tested for the former LEP and the present LHC accelerator a RF test facility was erected early in the 1990’s in the largest cryogenic test facility at CERN located at Point 18. This facility consisted of four vertical test stands for single cavities and originally one and then two horizontal test benches for RF cryomodules operating at 4.5 K in saturated helium. CERN is presently working on the upgrade of its accelerator infrastructure, which requires new superconducting cavities operating below 2 K in saturated superfluid helium. Consequently, the RF test facility has been renewed in order to allow efficient cavity and cryomodule tests in superfluid helium and to improve its thermal performances. The new RF test facility is described and its performances are presented

  8. Space Shuttle and Space Station Radio Frequency (RF) Exposure Analysis

    Science.gov (United States)

    Hwu, Shian U.; Loh, Yin-Chung; Sham, Catherine C.; Kroll, Quin D.

    2005-01-01

    This paper outlines the modeling techniques and important parameters to define a rigorous but practical procedure that can verify the compliance of RF exposure to the NASA standards for astronauts and electronic equipment. The electromagnetic modeling techniques are applied to analyze RF exposure in Space Shuttle and Space Station environments with reasonable computing time and resources. The modeling techniques are capable of taking into account the field interactions with Space Shuttle and Space Station structures. The obtained results illustrate the multipath effects due to the presence of the space vehicle structures. It's necessary to include the field interactions with the space vehicle in the analysis for an accurate assessment of the RF exposure. Based on the obtained results, the RF keep out zones are identified for appropriate operational scenarios, flight rules and necessary RF transmitter constraints to ensure a safe operating environment and mission success.

  9. Commissioning of the 400 MHz LHC RF System

    CERN Document Server

    Ciapala, Edmond; Baudrenghien, P; Brunner, O; Butterworth, A; Linnecar, T; Maesen, P; Molendijk, J; Montesinos, E; Valuch, D; Weierud, F

    2008-01-01

    The installation of the 400 MHz superconducting RF system in LHC is finished and commissioning is under way. The final RF system comprises four cryo-modules each with four cavities in the LHC tunnel straight section round IP4. Also underground in an adjacent cavern shielded from the main tunnel are the sixteen 300 kW klystron RF power sources with their high voltage bunkers, two Faraday cages containing RF feedback and beam control electronics, and racks containing all the slow controls. The system and the experience gained during commissioning will be described. In particular, results from conditioning the cavities and their movable main power couplers and the setting up of the low level RF feedbacks will be presented.

  10. High power rf component testing for the NLC

    International Nuclear Information System (INIS)

    Vlieks, A.E.; Fowkes, W.R.; Loewen, R.J.; Tantawi, S.G.

    1998-09-01

    In the Next Linear Collider (NLC), the high power rf components must be capable of handling peak rf power levels in excess of 600 MW. In the current view of the NLC, even the rectangular waveguide components must transmit at least 300 MW rf power. At this power level, peak rf fields can greatly exceed 100 MV/m. The authors present recent results of high power tests performed at the Accelerator Structure Test Area (ASTA) at SLAC. These tests are designed to investigate the rf breakdown limits of several new components potentially useful for the NLC. In particular, the authors tested a new TE 01 --TE 10 circular to rectangular wrap-around mode converter, a modified (internal fin) Magic Tee hybrid, and an upgraded flower petal mode converter

  11. RF Processing of the Couplers for the SNS Superconducting Cavities

    International Nuclear Information System (INIS)

    Y.Kang; I.E. Campisi; D. Stout; A. Vassioutchenko; M. Stirbet; M. Drury; T. Powers

    2005-01-01

    All eighty-one fundamental power couplers for the 805 MHz superconducting cavities of the SNS linac have been RF conditioned and installed in the cryomodules successfully. The couplers were RF processed at JLAB or at the SNS in ORNL: more than forty couplers have been RF conditioned in the SNS RF Test Facility (RFTF) after the first forty couplers were conditioned at JLAB. The couplers were conditioned up to 650 kW forward power at 8% duty cycle in traveling and standing waves. They were installed on the cavities in the cryomodules and then assembled with the airside waveguide transitions. The couplers have been high power RF tested with satisfactory accelerating field gradients in the cooled cavities

  12. Modeling and simulation of Indus-2 RF feedback control system

    International Nuclear Information System (INIS)

    Sharma, D.; Bagduwal, P.S.; Tiwari, N.; Lad, M.; Hannurkar, P.R.

    2012-01-01

    Indus-2 synchrotron radiation source has four RF stations along with their feedback control systems. For higher beam energy and current operation amplitude and phase feedback control systems of Indus-2 are being upgraded. To understand the behaviour of amplitude and phase control loop under different operating conditions, modelling and simulation of RF feedback control system is done. RF cavity baseband I/Q model has been created due to its close correspondence with actual implementation and better computational efficiency which makes the simulation faster. Correspondence between cavity baseband and RF model is confirmed by comparing their simulation results. Low Level RF (LLRF) feedback control system simulation is done using the same cavity baseband I/Q model. Error signals are intentionally generated and response of the closed loop system is observed. Simulation will help us in optimizing parameters of upgraded LLRF system for higher beam energy and current operation. (author)

  13. Progress on a cryogenically cooled RF gun polarized electron source

    Energy Technology Data Exchange (ETDEWEB)

    Fliller, R.P., III; Edwards, H.; /Fermilab

    2006-08-01

    RF guns have proven useful in multiple accelerator applications. An RF gun capable of producing polarized electrons is an attractive electron source for the ILC or an electron-ion collider. Producing such a gun has proven elusive. The NEA GaAs photocathode needed for polarized electron production is damaged by the vacuum environment in an RF gun. Electron and ion back bombardment can also damage the cathode. These problems must be mitigated before producing an RF gun polarized electron source. In this paper we report continuing efforts to improve the vacuum environment in a normal conducting RF gun by cooling it with liquid nitrogen after a high temperature vacuum bake out. We also report on a design of a cathode preparation chamber to produce bulk GaAs photocathodes for testing in such a gun. Future directions are also discussed.

  14. Flexible automated manufacturing for SMEs

    DEFF Research Database (Denmark)

    Grube Hansen, David; Bilberg, Arne; Madsen, Erik Skov

    2017-01-01

    SMEs are in general highly flexible and agile in order to accommodate the customer demands in the paradigm of High Mix-Low Volume manufacturing. The flexibility and agility have mainly been enabled by manual labor, but as we are entering the technology and data driven fourth industrial revolution......, where augmented operators and machines work in cooperation in a highly flexible and productive manufacturing system both an opportunity and a need has raised for developing highly flexible and efficient automation....

  15. Paschen like behavior in argon RF discharge

    International Nuclear Information System (INIS)

    Al-Jwaady, Y. I.

    2011-01-01

    A 13.56 MHz radio frequency inductively coupled discharge system is used in this work to study the relation between Argon gas pressure in the discharge chamber and the threshold breakdown RF power needed to create the discharge. Experimental results indicated that although the data involve some features related to the traditional Paschen relation used in Dc discharge, this relation cannot provide a quantitative description of experimental data. For such reason, a modified from Paschen relation is suggested. The modified relation provides good agreement with experimental data. Furthermore, it seems that the Paschen relation will have significant reflections on the behavior of the transit process from capacitive to inductive discharge. This is demonstrated by studying the transit region. (author)

  16. Fast thermometry for superconducting rf cavity testing

    International Nuclear Information System (INIS)

    Orris, Darryl; Bellantoni, Leo; Carcagno, Ruben H.; Edwards, Helen; Harms, Elvin Robert; Khabiboulline, Timergali N.; Kotelnikov, Sergey; Makulski, Andrzej; Nehring, Roger; Pischalnikov, Yuriy; Fermilab

    2007-01-01

    Fast readout of strategically placed low heat capacity thermometry can provide valuable information of Superconducting RF (SRF) cavity performance. Such a system has proven very effective for the development and testing of new cavity designs. Recently, several resistance temperature detectors (RTDs) were installed in key regions of interest on a new 9 cell 3.9 GHz SRF cavity with integrated HOM design at FNAL. A data acquisition system was developed to read out these sensors with enough time and temperature resolution to measure temperature changes on the cavity due to heat generated from multipacting or quenching within power pulses. The design and performance of the fast thermometry system will be discussed along with results from tests of the 9 cell 3.9GHz SRF cavity

  17. Fast thermometry for superconducting rf cavity testing

    Energy Technology Data Exchange (ETDEWEB)

    Orris, Darryl; Bellantoni, Leo; Carcagno, Ruben H.; Edwards, Helen; Harms, Elvin Robert; Khabiboulline, Timergali N.; Kotelnikov, Sergey; Makulski, Andrzej; Nehring, Roger; Pischalnikov, Yuriy; /Fermilab

    2007-06-01

    Fast readout of strategically placed low heat capacity thermometry can provide valuable information of Superconducting RF (SRF) cavity performance. Such a system has proven very effective for the development and testing of new cavity designs. Recently, several resistance temperature detectors (RTDs) were installed in key regions of interest on a new 9 cell 3.9 GHz SRF cavity with integrated HOM design at FNAL. A data acquisition system was developed to read out these sensors with enough time and temperature resolution to measure temperature changes on the cavity due to heat generated from multipacting or quenching within power pulses. The design and performance of the fast thermometry system will be discussed along with results from tests of the 9 cell 3.9GHz SRF cavity.

  18. Mechanical design of a RF electron gun

    International Nuclear Information System (INIS)

    Woodle, M.H.; Batchelor, K.; Sheehan, J.

    1989-01-01

    Brookhaven National Laboratory is building an Accelerator Test Facility at which we plan to study laser acceleration of electrons, inverse free electron lasers and the production of X-rays by non-linear Compton scattering. The facility contains an electron gun, linac, lasers and ancillary systems which will enable the production of 6 ps duration pulses of 50-100 MeV electrons. The electron source is an one and one half cell RF Electron gun which utilizes either a thermionic or photoemissive cathode to produce 5 MeV electrons. This paper discusses how gun mechanical design considerations such as material, vacuum maintenance, surface finish, fabrication methods, cavity tuning, and cathode replacement were reconciled to arrive at the final design. 9 refs., 2 figs., 2 tabs

  19. Mechanical design of a rf electron gun

    International Nuclear Information System (INIS)

    Woodle, M.H.; Batchelor, K.; Sheehan, J.

    1988-01-01

    Brookhaven National Laboratory is building an Accelerator Test Facility at which we plan to study laser acceleration of electrons inverse free electron lasers and the production of X-rays by non- linear Compton scattering. The facility contains an electron gun, linac, lasers and ancillary systems which will enable the production of 6 ps duration pulses of 50--100 MeV electrons. The electron source is an one and one half cell RF Electron gun which utilizes either a thermionic or photoemissive cathode to produce 5 MeV electrons. This paper discusses how gun mechanical design considerations such as material, vacuum maintenance, surface finish, fabrication methods, cavity tuning, and cathode replacement were reconciled to arrive at the final design. 9 refs., 2 figs., 2 tabs

  20. rf SQUID system as tunable flux qubit

    Energy Technology Data Exchange (ETDEWEB)

    Ruggiero, B. [Istituto di Cibernetica ' E. Caianiello' del Consiglio Nazionale delle Ricerche, I-80078 Pozzuoli (Italy)]. E-mail: b.ruggiero@cib.na.cnr.it; Granata, C. [Istituto di Cibernetica ' E. Caianiello' del Consiglio Nazionale delle Ricerche, I-80078 Pozzuoli (Italy); Vettoliere, A. [Istituto di Cibernetica ' E. Caianiello' del Consiglio Nazionale delle Ricerche, I-80078 Pozzuoli (Italy); Rombetto, S. [Istituto di Cibernetica ' E. Caianiello' del Consiglio Nazionale delle Ricerche, I-80078 Pozzuoli (Italy); Russo, R. [Istituto di Cibernetica ' E. Caianiello' del Consiglio Nazionale delle Ricerche, I-80078 Pozzuoli (Italy); Russo, M. [Istituto di Cibernetica ' E. Caianiello' del Consiglio Nazionale delle Ricerche, I-80078 Pozzuoli (Italy); Corato, V. [Dipartimento di Ingegneria dell' Informazione, Seconda Universita di Napoli, I-81031 Aversa (Italy); Istituto di Cibernetica ' E. Caianiello' del Consiglio Nazionale delle Ricerche, I-80078 Pozzuoli (Italy); Silvestrini, P. [Dipartimento di Ingegneria dell' Informazione, Seconda Universita di Napoli, I-81031 Aversa (Italy); Istituto di Cibernetica ' E. Caianiello' del Consiglio Nazionale delle Ricerche, I-80078 Pozzuoli (Italy)

    2006-08-21

    We present a fully integrated rf SQUID-based system as flux qubit with a high control of the flux transfer function of the superconducting transformer modulating the coupling between the flux qubit and the readout system. The control of the system is possible by including into the superconducting flux transformer a vertical two-Josephson-junctions interferometer (VJI) in which the Josephson current is precisely modulated from a maximum to zero by a transversal magnetic field parallel to the flux transformer plane. The proposed system can be also used in a more general configuration to control the off-diagonal terms in the Hamiltonian of the flux qubit and to turn on and off the coupling between two or more qubits.