WorldWideScience

Sample records for flax seed mucilage1coa

  1. Gene expression analysis of flax seed development

    2011-01-01

    Background Flax, Linum usitatissimum L., is an important crop whose seed oil and stem fiber have multiple industrial applications. Flax seeds are also well-known for their nutritional attributes, viz., omega-3 fatty acids in the oil and lignans and mucilage from the seed coat. In spite of the importance of this crop, there are few molecular resources that can be utilized toward improving seed traits. Here, we describe flax embryo and seed development and generation of comprehensive genomic resources for the flax seed. Results We describe a large-scale generation and analysis of expressed sequences in various tissues. Collectively, the 13 libraries we have used provide a broad representation of genes active in developing embryos (globular, heart, torpedo, cotyledon and mature stages) seed coats (globular and torpedo stages) and endosperm (pooled globular to torpedo stages) and genes expressed in flowers, etiolated seedlings, leaves, and stem tissue. A total of 261,272 expressed sequence tags (EST) (GenBank accessions LIBEST_026995 to LIBEST_027011) were generated. These EST libraries included transcription factor genes that are typically expressed at low levels, indicating that the depth is adequate for in silico expression analysis. Assembly of the ESTs resulted in 30,640 unigenes and 82% of these could be identified on the basis of homology to known and hypothetical genes from other plants. When compared with fully sequenced plant genomes, the flax unigenes resembled poplar and castor bean more than grape, sorghum, rice or Arabidopsis. Nearly one-fifth of these (5,152) had no homologs in sequences reported for any organism, suggesting that this category represents genes that are likely unique to flax. Digital analyses revealed gene expression dynamics for the biosynthesis of a number of important seed constituents during seed development. Conclusions We have developed a foundational database of expressed sequences and collection of plasmid clones that comprise

  2. Gene expression analysis of flax seed development

    Sharpe Andrew

    2011-04-01

    Full Text Available Abstract Background Flax, Linum usitatissimum L., is an important crop whose seed oil and stem fiber have multiple industrial applications. Flax seeds are also well-known for their nutritional attributes, viz., omega-3 fatty acids in the oil and lignans and mucilage from the seed coat. In spite of the importance of this crop, there are few molecular resources that can be utilized toward improving seed traits. Here, we describe flax embryo and seed development and generation of comprehensive genomic resources for the flax seed. Results We describe a large-scale generation and analysis of expressed sequences in various tissues. Collectively, the 13 libraries we have used provide a broad representation of genes active in developing embryos (globular, heart, torpedo, cotyledon and mature stages seed coats (globular and torpedo stages and endosperm (pooled globular to torpedo stages and genes expressed in flowers, etiolated seedlings, leaves, and stem tissue. A total of 261,272 expressed sequence tags (EST (GenBank accessions LIBEST_026995 to LIBEST_027011 were generated. These EST libraries included transcription factor genes that are typically expressed at low levels, indicating that the depth is adequate for in silico expression analysis. Assembly of the ESTs resulted in 30,640 unigenes and 82% of these could be identified on the basis of homology to known and hypothetical genes from other plants. When compared with fully sequenced plant genomes, the flax unigenes resembled poplar and castor bean more than grape, sorghum, rice or Arabidopsis. Nearly one-fifth of these (5,152 had no homologs in sequences reported for any organism, suggesting that this category represents genes that are likely unique to flax. Digital analyses revealed gene expression dynamics for the biosynthesis of a number of important seed constituents during seed development. Conclusions We have developed a foundational database of expressed sequences and collection of plasmid

  3. Oxygen requirement of germinating flax seeds

    Kuznetsov, Oleg A.; Hasenstein, K. H.

    2003-05-01

    Plant experiments in earth orbit are typically prepared on the ground and germinated in orbit to study gravity effects on the developing seedlings. Germination requires the breakdown of storage compounds, and this metabolism depends upon respiration, making oxygen one of the limiting factors in seed germination. In microgravity lack of run-off of excess water requires careful testing of water dispensation and oxygen availability. In preparation for a shuttle experiment (MICRO on STS-107) we studied germination and growth of flax ( Linum usitatissimum L.) seedlings in the developed hardware (Magnetic Field Chamber, MFC). We tested between four to 32 seeds per chamber (air volume = 14 mL) and after 36 h measured the root length. At 90 μl O 2 per seed (32 seeds/chamber), the germination decreased from 94 to 69%, and the root length was reduced by 20%, compared to 8 seeds per chamber. Based on the percent germination and root length obtained in controlled gas mixtures between 3.6 and 21.6% O 2 we determined the lower limit of reliable germination to be 10 vol. % O 2 at atmospheric pressure. Although the oxygen available in the MFC's can support the intended number of seeds, the data show that seed storage and microgravity-related limitations may reduce germination.

  4. Oxygen requirement of germinating flax seeds

    Kuznetsov, Oleg A.; Hasenstein, K. H.; Hasentein, K. H. (Principal Investigator)

    2003-01-01

    Plant experiments in earth orbit are typically prepared on the ground and germinated in orbit to study gravity effects on the developing seedlings. Germination requires the breakdown of storage compounds, and this metabolism depends upon respiration, making oxygen one of the limiting factors in seed germination. In microgravity lack of run-off of excess water requires careful testing of water dispensation and oxygen availability. In preparation for a shuttle experiment (MICRO on STS-107) we studied germination and growth of flax (Linum usitatissimum L.) seedlings in the developed hardware (Magnetic Field Chamber, MFC). We tested between four to 32 seeds per chamber (air volume=14 mL) and after 36 h measured the root length. At 90 microliters O2 per seed (32 seeds/chamber), the germination decreased from 94 to 69%, and the root length was reduced by 20%, compared to 8 seeds per chamber. Based on the percent germination and root length obtained in controlled gas mixtures between 3.6 and 21.6% O2 we determined the lower limit of reliable germination to be 10 vol. % O2 at atmospheric pressure. Although the oxygen available in the MFC's can support the intended number of seeds, the data show that seed storage and microgravity-related limitations may reduce germination. c2003 Published by Elsevier Ltd on behalf of COSPAR.

  5. Effect of soaking seeds of flax on the ultimate strength of flaxes

    E. I. Ponomareva

    2017-01-01

    Full Text Available There are one of ways to save peoples heath is eating food, what rich in fiber. To the recovery of polyunsarurated fatty acids, protein, mineral substances, fibers it recommended to eat flax seeds and its products. One of these products are flaxes. The purpose of the work was a rational choice of the duration of soaking seeds, providing strong reception of finished products. Founds that when hydrated of 10 to 30 minutes of the study setting almost unchanged. After 30 minutes soaking the tensile strength increased, and then decreased. The maximum value observed in the samples in which lasted 40 minutes soaking. Probably, due to the fact that upon contact with water 30 minutes before the moisture is adsorbed on the surface of flax seed are thus formed in a small amount of mucus. From 30 to 40 minutes soaking carbohydrates undergo hydrolysis inner layers of the endosperm and seed shell. While the water absorption capacity of flax reaches limits. Also increases the amount of mucus, and after 40 minutes soaking becomes excessive, resulting in reduced tensile strength of the finished product. Therefore, rational while soaking flax 40 minutes, providing the maximum value of the parameter under study. Flux thus, thanks to the ability of flax seed soaking and store slime forming after drying alpha-linolenic acid is a source of polyunsaturated fatty acids, dietary fibers, vitamins, minerals.

  6. The oxygen requirement of germinating flax seeds

    Kuznetsov, O.; Hasenstein, K.

    Experiments for earth orbit are typically prepared on the ground and often germinated in orbit in order to study gravity effects on developing seedlings. Germination requires the breakdown of storage compounds and respiration. In orbit the formation of a water layer around the seed may further limit oxygen availability. Therefore, the oxygen content of the available gas volume is one of the limiting factors for seed germination. In preparation for an upcoming shuttle experiment (MICRO on STS-107) we studied germination and growth of flax (Linum usitatissimum L.) seedlings in the developed hardware. We tested per seed chamber (gas volume = 14 mL, O2 = 2.9 mL) between 4 to 32 seeds glued to germination paper by 1% (w/v) gum guar. A lexan cover and a gasket hermetically sealed each of the eight chambers. For imbibition of the seeds a previously optimized amount of distilled water was dispensed through sealed inlets. The seedlings were allowed to grow for either 32 to 48 h on a clinostat or without microgravity simulation. Then their root length was measured. With 32 seeds per chamber, four times the intended number of seeds for the flight, the germination rate decreased from 94 to 69%, and the root length was reduced by 20%. Experiments on the germination and root length in controlled atmospheres (5, 10, 15 and 21% O2 ) suggest that germination and growth for two days requires about 200 :l of O (1 mL air) per seed. Our2 experiments correlate oxygen dependency from seed mass and germination temperature, and analyze accumulation of gaseous metabolites (supported by NASA grant NAG10-0190).

  7. Irrigation and cultivar effect on flax fiber and seed yield in the southeast USA

    Flax (Linum usitatissimum L.) is a potential winter crop for the Southeast USA that can be grown for both seed and fiber. The objective of this research was to evaluate the effect of irrigation on flax straw, fiber, and seed yield of fiber-type and seed-type cultivars at different flax growth stage...

  8. Proteome profiling of flax (Linum usitatissimum) seed: characterization of functional metabolic pathways operating during seed development.

    Barvkar, Vitthal T; Pardeshi, Varsha C; Kale, Sandip M; Kadoo, Narendra Y; Giri, Ashok P; Gupta, Vidya S

    2012-12-07

    Flax (Linum usitatissimum L.) seeds are an important source of food and feed due to the presence of various health promoting compounds, making it a nutritionally and economically important plant. An in-depth analysis of the proteome of developing flax seed is expected to provide significant information with respect to the regulation and accumulation of such storage compounds. Therefore, a proteomic analysis of seven seed developmental stages (4, 8, 12, 16, 22, 30, and 48 days after anthesis) in a flax variety, NL-97 was carried out using a combination of 1D-SDS-PAGE and LC-MSE methods. A total 1716 proteins were identified and their functional annotation revealed that a majority of them were involved in primary metabolism, protein destination, storage and energy. Three carbon assimilatory pathways appeared to operate in flax seeds. Reverse transcription quantitative PCR of selected 19 genes was carried out to understand their roles during seed development. Besides storage proteins, methionine synthase, RuBisCO and S-adenosylmethionine synthetase were highly expressed transcripts, highlighting their importance in flax seed development. Further, the identified proteins were mapped onto developmental seed specific expressed sequence tag (EST) libraries of flax to obtain transcriptional evidence and 81% of them had detectable expression at the mRNA level. This study provides new insights into the complex seed developmental processes operating in flax.

  9. Seed Yield of Long Fiber Flax (Linum usitatissimum L. Plants Depending on Rates of Sawing of Seed and Mineral Fertilization

    М. Ф. Рибак

    2010-10-01

    Full Text Available Impact of rates of sawing of seed and fertilization on seed productivity of Kameniar and Irma Long Fiber Flax in the conditions of Ukrainian Woodlands are highlighted. A trustworthy proportion is established of factors influence, in particular, of the sawing and fertilization rates, on Long Fiber Flax yield formation.

  10. IR and Raman studies of oil and seedcake extracts from natural and genetically modified flax seeds

    Żuk, M.; Dymińska, L.; Kulma, A.; Boba, A.; Prescha, A.; Szopa, J.; Mączka, M.; Zając, A.; Szołtysek, K.; Hanuza, J.

    2011-03-01

    Flax plant of the third generation (F3) overexpressing key genes of flavonoid pathway cultivated in field in 2008 season was used as the plant material throughout this study. The biochemical properties of seed, oil and seedcake extracts from natural and transgenic flax plants were compared. Overproduction of flavonoids (kaempferol), phenolic acids (coumaric, ferulic/synapic) and lignan-secoisolariciresinol diglucoside (SDG) in oil and extracts from transgenic seeds has been revealed providing a valuable source of these compounds for biotechnological application. The changes in fatty acids composition and increase in their stability against oxidation along three plant generations were also detected. The analysis of oil and seedcake extracts was performed using Raman and IR spectroscopy. The wavenumbers and integral intensities of Raman and IR bands were used to identify the components of phenylpropanoid pathway in oil and seedcake extracts from control and transgenic flax seeds. The spectroscopic data were compared to those obtained from biochemical analysis.

  11. Isolation of nuclear proteins from flax (Linum usitatissimum L. seed coats for gene expression regulation studies

    Renouard Sullivan

    2012-01-01

    Full Text Available Abstract Background While seed biology is well characterized and numerous studies have focused on this subject over the past years, the regulation of seed coat development and metabolism is for the most part still non-elucidated. It is well known that the seed coat has an essential role in seed development and its features are associated with important agronomical traits. It also constitutes a rich source of valuable compounds such as pharmaceuticals. Most of the cell genetic material is contained in the nucleus; therefore nuclear proteins constitute a major actor for gene expression regulation. Isolation of nuclear proteins responsible for specific seed coat expression is an important prerequisite for understanding seed coat metabolism and development. The extraction of nuclear proteins may be problematic due to the presence of specific components that can interfere with the extraction process. The seed coat is a rich source of mucilage and phenolics, which are good examples of these hindering compounds. Findings In the present study, we propose an optimized nuclear protein extraction protocol able to provide nuclear proteins from flax seed coat without contaminants and sufficient yield and quality for their use in transcriptional gene expression regulation by gel shift experiments. Conclusions Routinely, around 250 μg of nuclear proteins per gram of fresh weight were extracted from immature flax seed coats. The isolation protocol described hereafter may serve as an effective tool for gene expression regulation and seed coat-focused proteomics studies.

  12. RESPONSE SURFACE METHODOLOGY FOR OPTIMIZATION OF THE EXTRACTION OF FLAX (LINUM USITATISSIMUM SEED OIL

    Tibor Maliar

    2011-12-01

    Full Text Available Flax seed is an important source of ω-3 polyunsaturated fatty acids essential for human physiology. The aim of this paper is to investigate the effects of major parameters of the lipid extraction from flax seed, in relation to the recovery of oil as well as the oil quality properties. The independent variables of extraction were proposed as: organic solvents, temperature, extraction time and solid-liquid ratio. The following quantitative and qualitative parameters were chosen as dependent variables: yield of the lipid fraction, acid value of oil and the absorbance at 490 nm. After calculating the optimal values of the extraction, the validation analysis was carried out and it was found out that the predicted and experimentally verified dependent variables were in agreement with the optimal extraction parameters.doi:10.5219/168

  13. The effect of cytokinins on flax seed germination at low temperature

    Irena Niedźwiedź-Siegień

    2011-01-01

    Full Text Available Germination of flax seeds (Linum usitatissimum L., cv. Szafir at 5oC was enhanced by continuous white light, gibberellin A3 (GA3, kinetin and benzylaminopurine. GA3 and kinetin at physiological concentrations (10-8-10-6 M improved significantly germination in darkness. Stimulatory effect of benzylaminopurine was visible only in the light. Almost no effect of zeatin and isopentenyladenine (2iP on germination was observed. Possible causes of this differences were suggested.

  14. Abscisic acid regulates pinoresinol-lariciresinol reductase gene expression and secoisolariciresinol accumulation in developing flax (Linum usitatissimum L.) seeds.

    Renouard, Sullivan; Corbin, Cyrielle; Lopez, Tatiana; Montguillon, Josiane; Gutierrez, Laurent; Lamblin, Frédéric; Lainé, Eric; Hano, Christophe

    2012-01-01

    Secoisolariciresinol diglucoside (SDG), the main phytoestrogenic lignan of Linum usitatissimum, is accumulated in the seed coat of flax during its development and pinoresinol-lariciresinol reductase (PLR) is a key enzyme in flax for its synthesis. The promoter of LuPLR1, a flax gene encoding a pinoresinol lariciresinol reductase, contains putative regulatory boxes related to transcription activation by abscisic acid (ABA). Gel mobility shift experiments evidenced an interaction of nuclear proteins extracted from immature flax seed coat with a putative cis-acting element involved in ABA response. As ABA regulates a number of physiological events during seed development and maturation we have investigated its involvement in the regulation of this lignan synthesis by different means. ABA and SDG accumulation time courses in the seed as well as LuPLR1 expression were first determined in natural conditions. These results showed that ABA timing and localization of accumulation in the flax seed coat could be correlated with the LuPLR1 gene expression and SDG biosynthesis. Experimental modulations of ABA levels were performed by exogenous application of ABA or fluridone, an inhibitor of ABA synthesis. When submitted to exogenous ABA, immature seeds synthesized 3-times more SDG, whereas synthesis of SDG was reduced in immature seeds treated with fluridone. Similarly, the expression of LuPLR1 gene in the seed coat was up-regulated by exogenous ABA and down-regulated when fluridone was applied. These results demonstrate that SDG biosynthesis in the flax seed coat is positively controlled by ABA through the transcriptional regulation of LuPLR1 gene.

  15. Effect of gamma rays on yield , fiber and seed characteristics of flax

    Amer, I.M.A.

    1980-01-01

    The present investigation deals with effect of radiation on flex in two main experiments . In the first one which could be considered as a pilot experiment, the seeds of giza-4 (the dominating local variety of flax) were irradiated with gamma ray doses ranging from 2.5 to 200 Kr to find out the suitable doses for a long - term program of mutation breeding in flax. The finding of such preliminary program could be summarized in the following: a) A dose of 100 kr affected the germination rate and inhibited the growth of flax plants. b) A dose of 200 kr was shown to be a lethal one under the conditions of this experiment. c) Some deviations in plant and yield characteristics than the normal type ( i . e., plant and yield characteristics of Gaza 4) were observed at relatively low doses. These deviations were tested in the M2 generation . True mutations (i.e., deviations that proved to breed true) were selected and their seeds (M2- derived lines were tested in M3 generation). Data about these M2 -derived lines when tested in the M3 generation will be summarized with the data of the main experiment

  16. Impact of Indian Mustard (Brassica juncea and Flax (Linum usitatissimum Seed Meal Applications on Soil Carbon, Nitrogen, and Microbial Dynamics

    Autumn S. Wang

    2012-01-01

    Full Text Available There is a critical need to investigate how land application of dedicated biofuel oilseed meals affects soil ecosystems. In this study, mustard (Brassica juncea and flax (Linum usitatissimum seed meals and sorghum-sudangrass (Sorghum bicolor were added to soil at levels of 0, 1, 2.5, and 5% (w/w. Both the type of amendment and application rate affected soil organic C, total C & N, and C & N mineralization. Mustard meal amendment initially inhibited C mineralization as compared to flax, but >50% of mustard and flax organic C was mineralized within 51 d. Nitrogen mineralization was similar for flax and mustard, except for the 2.5% rate for which a lower proportion of mustard N was converted to nitrate. The mustard meal greatly impacted microbial community composition, appearing to select for specific fungal populations. The potential varying impacts of different oilseed meals on soil ecosystems should be considered when developing recommendations for land application.

  17. The biomedical potential of genetically modified flax seeds overexpressing the glucosyltransferase gene

    2012-01-01

    Background Flax (Linum usitatissimum) is a potential source of many bioactive components that can be found in its oil and fibers, but also in the seedcake, which is rich in antioxidants. To increase the levels of medically beneficial compounds, a genetically modified flax type (named GT) with an elevated level of phenylopropanoids and their glycoside derivatives was generated. In this study, we investigated the influence of GT seedcake extract preparations on human fibroblast proliferation and migration, and looked at the effect on a human skin model. Moreover, we verified its activity against bacteria of clinical relevance. Methods The GT flax used in this study is characterized by overexpression of the glucosyltransferase gene derived from Solanum sogarandinum. Five GT seedcake preparations were generated. Their composition was assessed using ultra pressure liquid chromatography and confirmed using the UPLC-QTOF method. For the in vitro evaluation, the influence of the GT seedcake preparations on normal human dermal fibroblast proliferation was assessed using the MTT test and the wound scratch assay. A human skin model was used to evaluate the potential for skin irritation. To assess the antimicrobial properties of GT preparations, the percentage of inhibition of bacterial growth was calculated. Results The GT seedcake extract had elevated levels of phenylopropanoid compounds in comparison to the control, non-transformed plants. Significant increases in the content of ferulic acid, p-coumaric acid and caffeic acid, and their glucoside derivatives, kaempferol, quercitin and secoisolariciresinol diglucoside (SDG) were observed in the seeds of the modified plants. The GT seedcake preparations were shown to promote the proliferation of normal human dermal fibroblasts and the migration of fibroblasts in the wound scratch assay. The superior effect of GT seedcake extract on fibroblast migration was observed after a 24-hour treatment. The skin irritation test indicated

  18. Computer image analysis of seed shape and seed color for flax cultivar description

    Wiesnerová, Dana; Wiesner, Ivo

    2008-01-01

    Roč. 61, č. 2 (2008), s. 126-135 ISSN 0168-1699 R&D Projects: GA ČR GA521/03/0019 Institutional research plan: CEZ:AV0Z50510513 Keywords : image analysis * cultivar description * flax Subject RIV: EA - Cell Biology Impact factor: 1.273, year: 2008

  19. Influence of cadmium and mycorrhizal fungi on the fatty acid profile of flax (Linum usitatissimum) seeds.

    Kaplan, Matthew E; Simmons, Ellen R; Hawkins, Jack C; Ruane, Lauren G; Carney, Jeffrey M

    2015-09-01

    The soil environment can affect not only the quantity of crops produced but also their nutritional quality. We examined the combined effects of below-ground cadmium (0, 5, and 15 ppm) and mycorrhizal fungi (presence and absence) on the concentration of five major fatty acids within flax seeds (Linum usitatissimum). Plants grown with mycorrhizal fungi produced seeds that contained higher concentrations of unsaturated (18:1, 18:2 and 18:3), but not saturated (16:0 and 18:0) fatty acids. The effects of mycorrhizal fungi on the concentration of unsaturated fatty acids in seeds were most pronounced when plant roots were exposed to 15 ppm Cd (i.e. the concentrations of 18:1, 18:2 and 18:3 increased by 169%, 370% and 150%, respectively). The pronounced effects of mycorrhizal fungi on the concentration of unsaturated fatty acids at 15 ppm Cd may have been due to the presence of elevated levels of Cd within seeds. Our results suggest that, once the concentration of cadmium within seeds reaches a certain threshold, this heavy metal may improve the efficiency of enzymes that convert saturated fatty acids to unsaturated fatty acids. © 2014 Society of Chemical Industry.

  20. Protective Effects of Flax Seed (Linum Usitatissimum) Hydroalcoholic Extract on Fetus Brain in Aged and Young Mice.

    Kamali, Mahsa; Bahmanpour, Soghra

    2016-05-01

    One of the major problems of the aged women or older than 35 is getting pregnant in the late fertility life. Fertility rates begin to decline gradually at the age of 30, more so at 35, and markedly at 40. Even with fertility treatments such as in vitro fertilization, women have more difficulty in getting pregnant or may deliver abnormal fetus. The purpose of this study was to assess the effects of flax seed hydroalcoholic extract on the fetal brain of aged mice and its comparison with young mice. In this experimental study, 32 aged and 32 young mice were divided into 4 groups. Controls received no special treatment. The experimental mice groups, 3 weeks before mating, were fed with flax seed hydroalcoholic extract by oral gavages. After giving birth, the brains of the fetus were removed. Data analysis was performed by statistical test ANOVA using SPSS version 18 (P<0.05). The mean fetus brain weight of aged mother groups compared to the control group was increased significantly (P<0.05). This study showed that flax seed hydroalcoholic extract could improve fetal brain weights in the aged groups.

  1. Hydroxyl radical-scavenging property of secoisolariciresinol diglucoside (SDG) isolated from flax-seed.

    Prasad, K

    1997-03-01

    Recently there has been a moderate resurgence in the use of flax-seed in a variety of ways including bread. The scientific basis of its use is very limited. There is some claim for beneficial effects in cancer and lupus nephritis. These claims could be due to its ability to scavenge oxygen radicals. However, its antioxidant activity is not known. Recently a method has been developed to isolate secoisolariciresinol diglucoside (SDG) from defatted flax-seed in large quantity (patent pending). We investigated the ability of SDG to scavenge .OH using high pressure liquid chromatography (HPLC) method. .OH was generated by photolysis of H2O2 (1.25-10.0 mumoles/ml) with ultraviolet light and was trapped with salicylic acid which is hydroxylated to produce .OH-adduct products 2,3-dihydroxybenzoic acid (DHBA) and 2,5-DHBA. H2O2 produced a concentration-dependent .OH as estimated by 2,3-DHBA and 2,5-DHBA. A standard curve was constructed for known concentrations of 2,3-DHBA and 2,5-DHBA against corresponding area under the peaks which then was used for measurement of 2,3-DHBA and 2,5-DHBA generated by UV irradiation of H2O2 in the presence of salicylic acid. SDG in the concentration range of 25, 50, 100, 250, 500, 750, 1000 and 2000 micrograms/ml (36.4, 72.8, 145.6, 364.0, 728.0, 1092.0, 1456.0 and 2912.0 microM respectively) produced a concentration-dependent decrease in the formation of 2,3-DHBA and 2,5-DHBA, the inhibition being 4 and 4.65% respectively with 25 micrograms/ml (36.4 microM) and 82 and 74% respectively with 2000 micrograms/ml (2912.0 microM). The decrease in .OH-adduct products was due to scavenging of .OH and not by scavenging of formed 2,3-DHBA and 2,5-DHBA. SDG prevented the lipid peroxidation of liver homogenate in a concentration-dependent manner in the concentration range from 319.3-2554.4 microM. These results suggest that SDG scavenges .OH and therefore has an antioxidant activity.

  2. Association mapping of seed quality traits using the Canadian flax (Linum usitatissimum L.) core collection.

    Soto-Cerda, Braulio J; Duguid, Scott; Booker, Helen; Rowland, Gordon; Diederichsen, Axel; Cloutier, Sylvie

    2014-04-01

    The identification of stable QTL for seed quality traits by association mapping of a diverse panel of linseed accessions establishes the foundation for assisted breeding and future fine mapping in linseed. Linseed oil is valued for its food and non-food applications. Modifying its oil content and fatty acid (FA) profiles to meet market needs in a timely manner requires clear understanding of their quantitative trait loci (QTL) architectures, which have received little attention to date. Association mapping is an efficient approach to identify QTL in germplasm collections. In this study, we explored the quantitative nature of seed quality traits including oil content (OIL), palmitic acid, stearic acid, oleic acid, linoleic acid (LIO) linolenic acid (LIN) and iodine value in a flax core collection of 390 accessions assayed with 460 microsatellite markers. The core collection was grown in a modified augmented design at two locations over 3 years and phenotypic data for all seven traits were obtained from all six environments. Significant phenotypic diversity and moderate to high heritability for each trait (0.73-0.99) were observed. Most of the candidate QTL were stable as revealed by multivariate analyses. Nine candidate QTL were identified, varying from one for OIL to three for LIO and LIN. Candidate QTL for LIO and LIN co-localized with QTL previously identified in bi-parental populations and some mapped nearby genes known to be involved in the FA biosynthesis pathway. Fifty-eight percent of the QTL alleles were absent (private) in the Canadian cultivars suggesting that the core collection possesses QTL alleles potentially useful to improve seed quality traits. The candidate QTL identified herein will establish the foundation for future marker-assisted breeding in linseed.

  3. Proteomic analysis of flax seed grown in radioactive contaminated areas of Chernobyl

    Klubicova, K.; Danchenko, M.; Pretova, A.; Hajduch, M.; Skultety, L.; Rashydov, N.

    2010-01-01

    An explosion of one of the four reactors at the Chernobyl nuclear power occurring 26.4.1986, causing the worst nuclear disaster in human history. During the explosion is released into the environment are a number of different radioactive elements was also contaminated and much of Europe. Nowadays, after more than 20 years, the area located near the nuclear power plant is still contaminated by radioactive elements with long-lived, such as 90 Sr and 137 Cs. Despite the increased radiation in the environment of the plant not ceased to increase, that is, they have created a mechanism of adaptation. The aim of our work was to investigate the possible mechanisms involved in the adaptation of plants in the environment. During the first generation, we analyzed the mature seeds of flax (Linum usitatissimum L.) grown in the control and in the contaminated zone. Proteins have separated and identified by mass spectrometry. Identified proteins (28) We were categorized into nine functional categories. We have designed a working model of adaptation of plants to elevated levels of radiation in the environment.

  4. Proteomic analysis of flax seed grown in radioactive contaminated areas of Chernobyl

    Klubicova, K.; Danchenko, M.; Pretova, A.; Hajduch, M.; Skultety, L.; Rashydov, N.

    2010-01-01

    An explosion of one of the four reactors at the Chernobyl nuclear power plant occurred on 26 th April 1986, causing the worst nuclear disaster in human history. During the explosion a number of different radioactive elements were released into the environment which contaminated much of Europe. Nowadays, after more than 20 years, the area located near the nuclear power plant is still contaminated by radioactive long-lived elements, such as 90 Sr and 137 Cs. Despite increased radiation in the environment the plants did not stop increasing. It means that they have created a mechanism of adaptation . The aim of the work was to investigate the possible mechanisms involved in adaptation of plants in the environment. During the first generation, the authors analyzed the mature seeds of flax (Linum usitatissimum L.) grown in control zone and in contaminated zone. Proteins were separated and identified by mass spectrometry. Identified proteins (28) were categorized into nine functional categories. The authors have designed a working model of adaptation of the plants to elevated level of radiation in the environment.

  5. QTL mapping and molecular characterization of the classical D locus controlling seed and flower color in Linum usitatissimum (flax).

    Sudarshan, Gurudatt Pavagada; Kulkarni, Manoj; Akhov, Leonid; Ashe, Paula; Shaterian, Hamid; Cloutier, Sylvie; Rowland, Gordon; Wei, Yangdou; Selvaraj, Gopalan

    2017-11-16

    The flowers of flax (linseed) are blue-hued, ephemeral and self-pollinating, and the seeds are typically brown. A century-old interest in natural yellow seed variants and a historical model point to recessive alleles in B1, D and G loci being responsible, but the functional aspects had remained unknown. Here, we characterized the "D" locus by quantitative trait loci (QTL) mapping and identified a FLAVONOID 3'5' HYDROXYLASE (F3'5'H) gene therein. It does not belong to the F3'5'H clade, but resembles biochemically characterized F3'Hs (flavonoid 3' hydroxylase) but without F3'H activity. The genome lacks other F3'H or F3'H-like genes. The apparent neo-functionalization from F3'H is associated with a Thr 498  → Ser 498 substitution in a substrate recognition site (SRS). The yellow seed and white flower phenotypes of the classical d mutation was found to be due to one nucleotide deletion that would truncate the deduced product and remove three of the six potential SRS, negatively impacting delphinidin synthesis. Delphinidin is sporadic in angiosperms, and flax has no known pollination syndrome(s) with functional pollinator group(s) that are attracted to blue flowers, raising questions on the acquisition of F3'5'H. The appearance of d allele is suggestive of the beginning of the loss of F3'5'H in this species.

  6. The Effect of Flax Seed (Linum Usitatissimum) Hydroalcoholic Extract on Brain, Weight and Plasma Sexual Hormone Levels in Aged and Young Mice.

    Bahmanpour, Soghra; Kamali, Mahsa

    2016-05-01

    Flax is a food and fiber crop that is grown in some regions of the world. Its value will account for its great popularity as a food, medical and cosmetic applications. Flax fibers are taken from the stem of the plant and are two to three times as strong as cotton. In this study, we compared brain weight and plasma sex hormone levels in young and aged mice after the administration of Linum usitatissimum (flax seed) hydro alcoholic extract. In this study, 32 aged and 32 young mice were divided into 4 groups. Controls remained untreated and experimental groups were fed with flax seed hydroalcoholic extract by oral gavages during 3 weeks. After 3 weeks, the brain was removed and blood samples were collected to measure sex hormone levels by ELISA. Data analysis was done by statistical ANOVA test using SPSS version 18 (P<0.05). The results of this study shows that the brain weight of mice did not change significantly, but the sex hormone levels in the experimental groups in comparison with the control groups increased significantly (P<0.05). The hydroalcoholic extract of flax seed had no effect on the brain weight, but this extract improved the sexual hormone levels.

  7. Identification of a pair of phospholipid:diacylglycerol acyltransferases from developing flax (Linum usitatissimum L.) seed catalyzing the selective production of trilinolenin.

    Pan, Xue; Siloto, Rodrigo M P; Wickramarathna, Aruna D; Mietkiewska, Elzbieta; Weselake, Randall J

    2013-08-16

    The oil from flax (Linum usitatissimum L.) has high amounts of α-linolenic acid (ALA; 18:3(cis)(Δ9,12,15)) and is one of the richest sources of omega-3 polyunsaturated fatty acids (ω-3-PUFAs). To produce ∼57% ALA in triacylglycerol (TAG), it is likely that flax contains enzymes that can efficiently transfer ALA to TAG. To test this hypothesis, we conducted a systematic characterization of TAG-synthesizing enzymes from flax. We identified several genes encoding acyl-CoA:diacylglycerol acyltransferases (DGATs) and phospholipid:diacylglycerol acyltransferases (PDATs) from the flax genome database. Due to recent genome duplication, duplicated gene pairs have been identified for all genes except DGAT2-2. Analysis of gene expression indicated that two DGAT1, two DGAT2, and four PDAT genes were preferentially expressed in flax embryos. Yeast functional analysis showed that DGAT1, DGAT2, and two PDAT enzymes restored TAG synthesis when produced recombinantly in yeast H1246 strain. The activity of particular PDAT enzymes (LuPDAT1 and LuPDAT2) was stimulated by the presence of ALA. Further seed-specific expression of flax genes in Arabidopsis thaliana indicated that DGAT1, PDAT1, and PDAT2 had significant effects on seed oil phenotype. Overall, this study indicated the existence of unique PDAT enzymes from flax that are able to preferentially catalyze the synthesis of TAG containing ALA acyl moieties. The identified LuPDATs may have practical applications for increasing the accumulation of ALA and other polyunsaturated fatty acids in oilseeds for food and industrial applications.

  8. Identification of a Pair of Phospholipid:Diacylglycerol Acyltransferases from Developing Flax (Linum usitatissimum L.) Seed Catalyzing the Selective Production of Trilinolenin*

    Pan, Xue; Siloto, Rodrigo M. P.; Wickramarathna, Aruna D.; Mietkiewska, Elzbieta; Weselake, Randall J.

    2013-01-01

    The oil from flax (Linum usitatissimum L.) has high amounts of α-linolenic acid (ALA; 18:3cisΔ9,12,15) and is one of the richest sources of omega-3 polyunsaturated fatty acids (ω-3-PUFAs). To produce ∼57% ALA in triacylglycerol (TAG), it is likely that flax contains enzymes that can efficiently transfer ALA to TAG. To test this hypothesis, we conducted a systematic characterization of TAG-synthesizing enzymes from flax. We identified several genes encoding acyl-CoA:diacylglycerol acyltransferases (DGATs) and phospholipid:diacylglycerol acyltransferases (PDATs) from the flax genome database. Due to recent genome duplication, duplicated gene pairs have been identified for all genes except DGAT2-2. Analysis of gene expression indicated that two DGAT1, two DGAT2, and four PDAT genes were preferentially expressed in flax embryos. Yeast functional analysis showed that DGAT1, DGAT2, and two PDAT enzymes restored TAG synthesis when produced recombinantly in yeast H1246 strain. The activity of particular PDAT enzymes (LuPDAT1 and LuPDAT2) was stimulated by the presence of ALA. Further seed-specific expression of flax genes in Arabidopsis thaliana indicated that DGAT1, PDAT1, and PDAT2 had significant effects on seed oil phenotype. Overall, this study indicated the existence of unique PDAT enzymes from flax that are able to preferentially catalyze the synthesis of TAG containing ALA acyl moieties. The identified LuPDATs may have practical applications for increasing the accumulation of ALA and other polyunsaturated fatty acids in oilseeds for food and industrial applications. PMID:23824186

  9. The Influence of Agroclimatic Factors on the Formation of Oil Content In Flax Seeds in the North of Kazakhstan

    Elena Gordeyeva

    2018-05-01

    Full Text Available Flax (Linum usitatissimum L. is one of the promising oil crops in the north of Kazakhstan. Over the last 10 years, the total area under this crop in the region has increased fourteen-fold, since flax is a very plastic crop for steppe and dry steppe conditions, and oil seeds are in high demand in the world market. Flaxseed oil, due to the content of polyunsaturated fatty acids, occupies one of the first positions among other edible vegetable oils. Depending on environmental conditions, the oil content of the crop may vary from 36.4% to 52.0%, while, as noted by many researchers, the change in oil content depends on genotypic characteristics. Therefore, the study aims to analyze the influence of the genotype and climatic conditions of cultivation on fat biosynthesis in flax seeds in the context of the dry steppe zone of Northern Kazakhstan on dark chestnut soils of the Akmola region. Field experiments were conducted in 2015-2017 with the study of nine oil flaxseed cultivars (of mid-season varieties sown on May 20 at the seeding rate of 7 million seeds/ha based on the traditional technology of cultivation recommended for the region. Climatic parameters were taken into account according to the meteorological service data. Fat content was determined by the extraction method using a Soxhlet apparatus in accordance with GOST (All-Union State Standard 10857-64, and moisture content was determined by the thermogravimetric method according to the National Standard of the Republic of Kazakhstan 2.195-2010, for recalculation of oil content for absolutely dry matter. It was found that the formation of oil depends on climatic parameters and on the sum of active temperatures during the ripening period, in particular. The evaluation of plasticity and stability of the cultivars (genotypes showed that VNIIMK 620, Lirina, Karabalyksky 7 can be considered highly valuable cultivars and Severny, Biryuza, Kazar, Ilyich – valuable cultivars in terms of oil content

  10. Comparison of flax (Linum usitatissimum) and Salba-chia (Salvia hispanica L.) seeds on postprandial glycemia and satiety in healthy individuals: a randomized, controlled, crossover study.

    Vuksan, V; Choleva, L; Jovanovski, E; Jenkins, A L; Au-Yeung, F; Dias, A G; Ho, H V T; Zurbau, A; Duvnjak, L

    2017-02-01

    Flax and Salba-chia seeds have risen in popularity owing to their favorable nutrient composition, including a high fiber content. Despite having comparable nutritional profiles, preliminary observations suggest differences in gelling properties, an attribute that may alter the kinetics of food digestion. Thus, we compared the effect of two seeds on postprandial glycemia and satiety scores. Fifteen healthy participants (M/F: 5/10; age: 23.9±3 years; BMI: 22.2±0.8 kg/m 2 ) were randomized to receive a 50 g glucose challenge, alone or supplemented with either 25 g ground Salba-chia or 31.5 g flax, on three separate occasions. Blood glucose samples and satiety ratings were collected at fasting and over 2-h postprandially. In addition, in vitro viscosity of the beverages was assessed utilizing standard rheological methodology. Both Salba-chia and flax reduced blood glucose area under the curve over 120 min by 82.5±19.7 mmol/l (P<0.001) and 60.0±19.7 mmol/l (P=0.014), respectively, relative to a glucose control. Salba-chia reduced peak glucose (-0.64±0.24 mmol/l; P=0.030) and increased time to peak (11.3±3.8 min; P=0.015) compared with flax. Salba-chia significantly reduced the mean ratings of desire to eat (-7±2 mm; P=0.005), prospective consumption (-7±2 mm; P=0.010) and overall appetite score (-6±2 mm; P=0.012), when compared with flax. The viscosity of Salba-chia, flax and control was 49.9, 2.5, and 0.002 Pa·s, respectively. Despite the similarities in nutritional composition, Salba-chia appears to have the ability to convert glucose into a slow-release carbohydrate and affect satiety to a greater extent than flax, possibly due to the higher fiber viscosity. Incorporation of either flax or Salba-chia into the diet may be beneficial, although use of Salba-chia may confer additional benefit.

  11. RNAi-mediated pinoresinol lariciresinol reductase gene silencing in flax (Linum usitatissimum L.) seed coat: consequences on lignans and neolignans accumulation.

    Renouard, Sullivan; Tribalatc, Marie-Aude; Lamblin, Frederic; Mongelard, Gaëlle; Fliniaux, Ophélie; Corbin, Cyrielle; Marosevic, Djurdjica; Pilard, Serge; Demailly, Hervé; Gutierrez, Laurent; Hano, Christophe; Mesnard, François; Lainé, Eric

    2014-09-15

    RNAi technology was applied to down regulate LuPLR1 gene expression in flax (Linum usitatissimum L.) seeds. This gene encodes a pinoresinol lariciresinol reductase responsible for the synthesis of (+)-secoisolariciresinol diglucoside (SDG), the major lignan accumulated in the seed coat. If flax lignans biological properties and health benefits are well documented their roles in planta remain unclear. This loss of function strategy was developed to better understand the implication of the PLR1 enzyme in the lignan biosynthetic pathway and to provide new insights on the functions of these compounds. RNAi plants generated exhibited LuPLR1 gene silencing as demonstrated by quantitative RT-PCR experiments and the failed to accumulate SDG. The accumulation of pinoresinol the substrate of the PLR1 enzyme under its diglucosylated form (PDG) was increased in transgenic seeds but did not compensate the overall loss of SDG. The monolignol flux was also deviated through the synthesis of 8-5' linked neolignans dehydrodiconiferyl alcohol glucoside (DCG) and dihydro-dehydrodiconiferyl alcohol glucoside (DDCG) which were observed for the first time in flax seeds. Copyright © 2014 Elsevier GmbH. All rights reserved.

  12. Determination of phenolic acids in seeds of black cumin, flax, pomegranate and pumpkin and their by-products

    Krimer-Malešević Vera M.

    2016-01-01

    Full Text Available Ten phenolic acids, contained in the seeds of black cumin (Nigella sativa L., flax (Linum usitatissimum L., pomegranate (Punica granatum L. and pumpkin (Cucurbita pepo L. and their oil industry by-products, separated into the free, esterified, and insoluble-bound forms, were quantitatively analysed by reverse phase high performance liquid chromatography with photodiode array detector. The chromatographic data were interpreted using Principal Component Analysis (PCA. The PCA model with three principal components (PC1-PC2-PC3 fitted well with 12 examined plant samples, allowing their division into groups according to their origin. The total phenolic variables could be represented by two PCs and for the pattern recognition of the analysed samples, 13 phenolic variables are sufficient, including: free, esterified and insoluble-bound forms of gallic and syringic acids, free vanillic, insoluble bound p-coumaric, esterified p-hydroxybenzaldehide, and free and insoluble-bound forms of p-hydroxybenzoic and trans-synapic acids. This might have potential application in simplified screening of phenolic compounds in seeds and their oil industry by-products or in food component analysis or authenticity detection in such plant materials.[Projekat Ministarstva nauke Republike Srbije, br. III 46010

  13. Impact of Flax Seed and Canola Oils Mixture Supplementation on The Physiological and Biochemical Changes Induced by Monosodium Glutamate in Rats

    Anwar, M.M.; Mohamed, N.E.

    2010-01-01

    One of the most important problems in the human health nutrition field is the use of food flavor. Monosodium glutamate is one of the main flavors used as an ingredient in various food products, however it produces physiological and biochemical changes. The main objective of this study is to evaluate the supplementation of flax seed and canola oils mixture against the physiological and biochemical changes induced by monosodium glutamate in rats. In addition to analyses the physical and chemical characteristics of flax seed and canola oil and fatty acids composition by using gas liquid chromatography. The results concerning that unsaturated fatty acids of flax seed oil were oleic (18:1) 22%, linoleic acid (18:2) 30 % and linolenic acid (18:3) 36%. Total unsaturated fatty acids percentage in flaxseed oil was 88% and total saturated fatty acids 12%. The unsaturated fatty acids of canola oil were oleic (18:1) 66%, linoleic acid (18:2) 18% and linolenic acid (18:3) 7%, total unsaturated fatty acids percentage in canola oil was 92% and total saturated fatty acids was 8%. On the other hand, treatment of rats with monosodium glutamate for ten consecutive days led to a decrease in RBCs, Hb, Hct % and increased platelet count with decrease in WBCs and undesirable changes in its differential count. There is also, high significant increase in testicular thiobarbituric acid reactive substances (TBARS) which is accompanied with significant reduction in catalase (CAT) activity, reduced glutathione (GSH) content and serum testosterone level. These disturbances were associated with significant increase in the liver enzymes ALT,AST and ALP and increase in the level of total biluribin and glucose. Also, significant increase in urea, creatinine and uric acid were recorded. The supplementation with mixture of flax seed and canola oils mixture for one month after the injection of monosodium glutamate caused noticeable amelioration in the damage occurred as a result of this flavor. To

  14. Effects of Rice Bran, Flax Seed, and Sunflower Seed on Growth Performance, Carcass Characteristics, Fatty Acid Composition, Free Amino Acid and Peptide Contents, and Sensory Evaluations of Native Korean Cattle (Hanwoo

    Chang Bon Choi

    2016-02-01

    Full Text Available This study was conducted to evaluate the effect of dietary supplementation with rice bran, flax seed, or sunflower seed to finishing native Korean cattle (Hanwoo on growth performances, carcass characteristics, fatty acid composition, free amino acid and peptide contents, and sensory evaluations of Longissimus muscle (LM. A total of 39 Hanwoo steers (average age of 22.2 mo and average body weight (BW of 552.2 kg were randomly divided into Control, rice bran (RB, flax seed (FS, or Sunflower seed (SS groups. The steers were group fed for 273 d until they reached an average age of 31.2 mo. Final BW was 768.2, 785.8, 786.2, and 789.0 kg, and average daily gain was 0.79, 0.85, 0.82, and 0.84 kg for the Control, RS, FS, and SS groups, respectively (p>0.05. Fat thickness of the FS group (19.8 mm was greater (p0.05 scores for flavor, umami, and overall palatability in sensory evaluations. In conclusion, supplementation of flax seed to diets of finishing Hanwoo steers improved sensory evaluations which might have been caused by increases in flavor related amino acids such as methionine, glutamic acid and α-AAA and peptides, anserine and carnosine, and their complex reactions.

  15. Effect of Pre-nutrion of Flax Seed Oil (Linum Usitatissimum on the amount of Cerebral ischemic lesion and motor nerve disorders in animal model rat.

    SV Hosseini

    2015-10-01

    Full Text Available Background & aim: Stroke is the third death agent (factor in industrial countries after cardiovascular disease and cancer. With regard to high content of antioxidant materials in flax seed oil like &alpha-linolenic acid, lignan as well as phenolic combinations like secoisolarisirsinol (SDG, this study performed for studding relationship between of cerebral ischemic lesion and motor-nerve disorders in model of stroke in rat. Methods: in the study, 35 male mice from strain Wistar divided to 5 groups. The groups included control, sham and 3 experimental groups. They received doses 0.25, 0.5 and 0.75 ml/kg from flax seed oil orally. By gavage for 30 days two control and sham groups received aqua distillate (distil water. Two hours after the last gavaged dose, overly group with 7 pieces operated for measurement of the amount of cerebral lesion and motor-nerve disorders. (Middle Cerebral Artery Occlusion Model. Middle cerebral Artery Occlusion by the model resulted in local ischemic stroke in animal. Data analyzed by software SPSS, test ANOVA and disorders by test mann-Whitney. Findings: Average of records of motor-nerve disorders decreased significantly in group with dose 0.5 and 0.75 using flax seed oil (P<0.05. The amount of cerebral ischemic lesion in doses 0.5 and 0.75 than to control group is indicated meaning full different, but percent of the total cerebral lesion in control group in compared group with dose 0.25 is not indicated meaningful different. Percent of the amount of ischemic lesion in region penumbra in group 0.75 and 0.5 than to control group is indicated meaningful different, but percent of the amount of lesion in region penumbra in control group in compared region penumbra in group with dose 0.25 is not indicated meaning full different. Results: Findings of the study indicated that flax seed oil, particular in doses 0.5 and 0.75 resulted to decrease of the amount of cerebral ischemic lesion and decrease of motor-nerve disorders in

  16. Does the oxidation of methionine residue precede the inactivation of the trypsin inhibitor (LUTI in germinating seeds of common flax (Linum usitatissimum?

    Irena Lorenc-Kubis

    2011-01-01

    Full Text Available Antitrypsin activity in germinating common seeds of flax (Linum usitatissimum was investigated. At the early stage of germination an increase in antitrypsin activity was observed, followed by its decrease during the development of the seedlings. From 6-day-old seedlings a trypsin inhibitor (gerLUTI was purified. The purification procedure involved fractionation of proteins from seedling homogenate with alcohol and successive chromatography on CM-Sephadex C-25 on immobilised methylchymotrypsin in the presence of 5 M NaCl, and finally on a C18 column in RP-HPLC. The gerLUTI migrated in SDS PAGE as a single band, but in mass spectroscopy analysis it exhibited the presence of at least three forms with molecular masses of 7654 ± 3 Da, 7668/7670 ± 3 Da, and 7687 ± 3 Da. The preparation of LUTI isolated from resting seeds contained only one form, with a molecular mass of 7655 ± 3 Da. LUTI and gerLUTI differed also in methionine contents. LUTI contained two methionine residues, whereas in gerLUTI only a trace of methionine was detected. The obtained results might suggest that during flax seeds germination the inhibitor molecules undergo selective modification, e.g. oxidation at methionine residues, before being degraded by proteolytic enzymes.

  17. Bioproductive parameters and fatty acids profile of the meat from broilers treated with flax meal and grape seeds meal

    Margareta OLTEANU

    2017-05-01

    Full Text Available The 3-week feeding trial was conducted on 120, Cobb 500 chicks (14 days assigned to two groups (C, E. Compared to C diet formulation (corn, wheat, soybean meal and flax meal as basic ingredients, E diet formulation also included 3% grape seeds meal as natural antioxidant. The feed intake and the gains were not significantly (P>0.05 different between groups. Six broilers/group were slaughtered in the end of the trial and 6 samples of breast and thigh meat/group were formed and assayed for the feeding value. The proportion of polyunsaturated fatty acids (PUFA was significantly (P≤0.05 higher in group E than in group C, both for the chicken breast: 32.6±0.87g (E vs 29.29±0.96 g/100 g total fatty acids (C, and in the thigh: 37.68±2.07g (E vs 29.58±1.16 g/100g total fatty acids (C. The content of alfa linolenic acid (ALA was significantly (P≤0.05 higher also in group E, both in the breast meat: 0.99±0.02g (E vs 0.89±0.34g/100g total fatty acids (C, and in the thigh meat: 1.20±0.07g (E vs 0.90±0.0g/100g total fatty acids (C. The omega-3 PUFA content was the highest in the breast meat sample, 2.19±0.07g/100g total fatty acids (E, with no significant (P>0.05 differences between groups.

  18. 7 CFR 201.56-8 - Flax family, Linaceae.

    2010-01-01

    ..., Inspections, Marketing Practices), DEPARTMENT OF AGRICULTURE (CONTINUED) FEDERAL SEED ACT FEDERAL SEED ACT REGULATIONS Germination Tests in the Administration of the Act § 201.56-8 Flax family, Linaceae. Kind of seed: Flax. (a) General description. (1) Germination habit: Epigeal dicot. (Due to the mucilaginous nature of...

  19. Integrated non-food concept of rape seed, reed canary grass and flax processing for fiber, fuel oil and solid fuel

    Sipilae, K.

    1998-01-01

    The target of the project was to investigate if rape seed based fuel oil and diesel fuel component, agrofiber and solid fuel from other annual crops could be produced effectively as an alternative to existing non-economical biodiesel-RME and ethanol production. Without heavy tax incentives the biodiesel and grain ethanol can not compete with conventional liquid fuels, the present EU fuel tax legislation will not permit any permanent tax incentives for commercial scale operations. Based on several studies by VTT the rape seed oil will be 30 % cheaper than RME and the utilization as a component 10-30 % blended to heating oil or diesel fuel might the most flexible solution. Neste Oy has carried out the combustion tests with 20 kW boiler and VTT the diesel engine tests with 20 % unprocessed rape seed oil mixtures, the oil was delivered by Mildola Oy. For the co-utilization of annual crops and straw, several laboratory scale combustion and flash pyrolysis tests have been carried out by VTT with straw, reed canary grass etc. In fluid bed combustion 10-30 % addition of rape seed straw and reed canary grass, which have high ash melting point, seems to be less problematic compared to other straw species, which are used for example in Denmark. In a flash pyrolysis process, the alkalies will remain in the char and a low alkali level bio oils can be produced. As a final step in order to reach the zero subsidy target, an extensive laboratory work is carried out to produce agro fibre from flax, reed canary grass and wheat straw. The laboratory results show that a good quality pulp can be produced to be mixed with conventional wood fibres, the quality of flax pulp is even better compared to conventional pulp. During the next months an overall economic calculations will be carried out in Finnish, Danish and Italian conditions as an EU-Apas project in order to see the competitiveness of such integrated concepts to conventional RME and reed canary grass combustion. (orig.)

  20. Do cupins have a function beyond being seed storage proteins? An updated working model for the growth and reproductive success of flax (Linum usitatissimum in a radio-contaminated environment

    Daša eGábrišová

    2016-01-01

    Full Text Available Plants continue to flourish around the site of the Chernobyl Nuclear Power Plant disaster. The ability of plants to transcend the radio-contaminated environment was not anticipated and is not well understood. The aim of this study was to evaluate the proteome of flax (Linum usitatissimum L. during seed filling by plants grown for a third generation near Chernobyl. For this purpose, seeds were harvested at 2, 4, and 6 weeks after flowering and at maturity, from plants grown in either non-radioactive or radio-contaminated experimental fields. Total proteins were extracted and the two-dimensional gel electrophoresis (2-DE patterns analyzed. This approach established paired abundance profiles for 130 2-DE spots, e.g., profiles for the same spot across seed filling in non-radioactive and radio-contaminated experimental fields. Based on Analysis of Variance (ANOVA followed by sequential Bonferroni correction, eight of the paired abundance profiles were discordant. Results from tandem mass spectrometry show that four 2-DE spots are discordant because they contain fragments of the cupin superfamily-proteins. Most of the fragments were derived from the N-terminal half of native cupins. Revisiting previously published data, it was found that cupin-fragments were also involved with discordance in paired abundance profiles of second generation flax seeds. Based on these observations we present an updated working model for the growth and reproductive success of flax in a radio-contaminated Chernobyl environment. This model suggests that the increased abundance of cupin fragments or isoforms and monomers contributes to the successful growth and reproduction of flax in a radio-contaminated environment.

  1. Integrated non-food concept of rape seed, reed canary grass and flax processing for fiber, fuel oil and solid fuel

    Sipilae, K.

    1995-01-01

    The target of this project is to investigate if rape seed based fuel oil and diesel fuel component, agrofiber and solid fuel from other annual crops could be produced effectively as an alternative to existing non economical biodiesel-RME and ethanol production. Without heavy tax incentives the biodiesel and grain ethanol can not compete with conventional liquid fuels, the present EU fuel tax legislation will not permit any permanent tax incentives for commercial scale operations. Based on several studies by VTT the rape seed oil will be 30 % cheaper than RME and the utilization as a component 10-30 % blended to heating oil or diesel fuel might the most flexible solution. Neste Oy has carried out the combustion tests with 20 kW boiler and VTT the diesel engine tests with 20 % unprocessed rape seed oil mixtures, the oil was delivered by Mildola Oy. For the co-utilization of annual crops and straw, several laboratory scale combustion and flash pyrolysis tests have been carried out by VTT with straw, reed canary grass etc. In a flash pyrolysis process, the alkalies will remain in the char and a low alkali level bio oils can be produced. As a final step in order to reach the zero subsidy target, an extensive laboratory work is carried out to produce agrofibre from flax, reed canary grass and wheat straw. During the next months an overall economic calculations will be carried out in Finnish, Danish and Italian conditions as an EU-Apas project in order to see the competitiveness of such integrated concepts to conventional RME and reed canary grass combustion

  2. Integrated non-food concept of rape seed, reed canary grass and flax processing for fiber, fuel oil and solid fuel; Energiarypsi - peltojen non-food vaihtoehtoja

    Sipilae, K [VTT Energy, Espoo (Finland). Energy Production Technologies

    1996-12-31

    The target of this project is to investigate if rape seed based fuel oil and diesel fuel component, agrofiber and solid fuel from other annual crops could be produced effectively as an alternative to existing non economical biodiesel-RME and ethanol production. Without heavy tax incentives the biodiesel and grain ethanol can not compete with conventional liquid fuels, the present EU fuel tax legislation will not permit any permanent tax incentives for commercial scale operations. Based on several studies by VTT the rape seed oil will be 30 % cheaper than RME and the utilization as a component 10-30 % blended to heating oil or diesel fuel might the most flexible solution. Neste Oy has carried out the combustion tests with 20 kW boiler and VTT the diesel engine tests with 20 % unprocessed rape seed oil mixtures, the oil was delivered by Mildola Oy. For the co-utilization of annual crops and straw, several laboratory scale combustion and flash pyrolysis tests have been carried out by VTT with straw, reed canary grass etc. In a flash pyrolysis process, the alkalies will remain in the char and a low alkali level bio oils can be produced. As a final step in order to reach the zero subsidy target, an extensive laboratory work is carried out to produce agrofibre from flax, reed canary grass and wheat straw. During the next months an overall economic calculations will be carried out in Finnish, Danish and Italian conditions as an EU-Apas project in order to see the competitiveness of such integrated concepts to conventional RME and reed canary grass combustion

  3. Integrated non-food concept of rape seed, reed canary grass and flax processing for fiber, fuel oil and solid fuel; Energiarypsi - peltojen non-food vaihtoehtoja

    Sipilae, K. [VTT Energy, Espoo (Finland). Energy Production Technologies

    1995-12-31

    The target of this project is to investigate if rape seed based fuel oil and diesel fuel component, agrofiber and solid fuel from other annual crops could be produced effectively as an alternative to existing non economical biodiesel-RME and ethanol production. Without heavy tax incentives the biodiesel and grain ethanol can not compete with conventional liquid fuels, the present EU fuel tax legislation will not permit any permanent tax incentives for commercial scale operations. Based on several studies by VTT the rape seed oil will be 30 % cheaper than RME and the utilization as a component 10-30 % blended to heating oil or diesel fuel might the most flexible solution. Neste Oy has carried out the combustion tests with 20 kW boiler and VTT the diesel engine tests with 20 % unprocessed rape seed oil mixtures, the oil was delivered by Mildola Oy. For the co-utilization of annual crops and straw, several laboratory scale combustion and flash pyrolysis tests have been carried out by VTT with straw, reed canary grass etc. In a flash pyrolysis process, the alkalies will remain in the char and a low alkali level bio oils can be produced. As a final step in order to reach the zero subsidy target, an extensive laboratory work is carried out to produce agrofibre from flax, reed canary grass and wheat straw. During the next months an overall economic calculations will be carried out in Finnish, Danish and Italian conditions as an EU-Apas project in order to see the competitiveness of such integrated concepts to conventional RME and reed canary grass combustion

  4. Microwave-assisted extraction of herbacetin diglucoside from flax (Linum usitatissimum L.) seed cakes and its quantification using an RP-HPLC-UV system.

    Fliniaux, Ophélie; Corbin, Cyrielle; Ramsay, Aina; Renouard, Sullivan; Beejmohun, Vickram; Doussot, Joël; Falguières, Annie; Ferroud, Clotilde; Lamblin, Frédéric; Lainé, Eric; Roscher, Albrecht; Grand, Eric; Mesnard, François; Hano, Christophe

    2014-03-10

    Flax (Linum usitatissimum L.) seeds are widely used for oil extraction and the cold-pressed flaxseed (or linseed) cakes obtained during this process constitute a valuable by-product. The flavonol herbacetin diglucoside (HDG) has been previously reported as a constituent of the flaxseed lignan macromolecule linked through ester bonds to the linker molecule hydroxymethylglutaric acid. In this context, the development and validation of a new approach using microwave-assisted extraction (MAE) of HDG from flaxseed cakes followed by quantification with a reverse-phase HPLC system with UV detection was purposed. The experimental parameters affecting the HDG extraction yield, such as microwave power, extraction time and sodium hydroxide concentration, from the lignan macromolecule were optimized. A maximum HDG concentration of 5.76 mg/g DW in flaxseed cakes was measured following an irradiation time of 6 min, for a microwave power of 150 W using a direct extraction in 0.1 M NaOH in 70% (v/v) aqueous methanol. The optimized method was proven to be rapid and reliable in terms of precision, repeatability, stability and accuracy for the extraction of HDG. Comparison with a conventional extraction method demonstrated that MAE is more effective and less time-consuming.

  5. Development and validation of an efficient ultrasound assisted extraction of phenolic compounds from flax (Linum usitatissimum L.) seeds.

    Corbin, Cyrielle; Fidel, Thibaud; Leclerc, Emilie A; Barakzoy, Esmatullah; Sagot, Nadine; Falguiéres, Annie; Renouard, Sullivan; Blondeau, Jean-Philippe; Ferroud, Clotilde; Doussot, Joël; Lainé, Eric; Hano, Christophe

    2015-09-01

    Flaxseed accumulates in its seedcoat a macromolecular complex composed of lignan (secoisolariciresinol diglucoside, SDG), flavonol (herbacetin diglucoside, HDG) and hydroxycinnamic acids (p-couramic, caffeic and ferulic acid glucosides). Their antioxidant and/or cancer chemopreventive properties support their interest in human health and therefore, the demand for their extraction. In the present study, ultrasound-assisted extraction (UAE) of flaxseed phenolic compounds was investigated. Scanning Electron Microscopy imaging and histochemical analysis revealed the deep alteration of the seedcoat ultrastructure and the release of the mucilage following ultrasound treatment. Therefore, this method was found to be very efficient for the reduction of mucilage entrapment of flaxseed phenolics. The optimal conditions for UAE phenolic compounds extraction from flaxseeds were found to be: water as solvent supplemented with 0.2N of sodium hydroxide for alkaline hydrolysis of the SDG-HMG complex, an extraction time of 60 min at a temperature of 25°C and an ultrasound frequency of 30 kHz. Under these optimized and validated conditions, highest yields of SDG, HDG and hydroxycinnamic acid glucosides were detected in comparison to other published methods. Therefore, the procedure presented herein is a valuable method for efficient extraction and quantification of the main flaxseed phenolics. Moreover, this UAE is of particular interest within the context of green chemistry in terms of reducing energy consumption and valuation of flaxseed cakes as by-products resulting from the production of flax oil. Copyright © 2015 Elsevier B.V. All rights reserved.

  6. Use of flax seed mucilage or its active component for increasing suppression of hunger, increasing reduction of prospective consumption, increasing reduction of appetite in a subject during or between meals or feedings

    2017-01-01

    The present invention relates to methods for increasing the suppression of hunger and/or increasing the reduction of prospective consumption and/or increasing the reduction of appetite and/or increasing the feeling of satiety and/or reducing non-fat energy uptake in the gastrointestinal tract...... intervention comprises mucilage such as flax seed mucilage and/or one or more active compounds of mucilage useful for increasing the suppression of hunger and/or increasing the reduction of prospective consumption and/or increasing the reduction of appetite and/or increasing the feeling of satiety and...

  7. An open-label study on the effect of flax seed powder (Linum usitatissimum) supplementation in the management of diabetes mellitus.

    Mani, Uliyar Vitaldas; Mani, Indirani; Biswas, Mamta; Kumar, Smriti Nanda

    2011-09-01

    Diabetes mellitus is characterized by hyperglycemia and associated with aberrations in the metabolism of carbohydrate, protein, and lipid that result in development of secondary complications. Extensive studies have indicated that nutritional therapy plays a pivotal role in the controlling or postponing of development of these secondary complications. Several functional foods have been shown to possess hypoglycemic and hypolipidemic properties. Flax seed (FS) is a functional food that is rich in omega 3 fatty acids and antioxidants and is low in carbohydrates. In exploratory studies, FS was incorporated in recipes, which resulted in a reduction in the glycemic index of the food items. These observations prompted us to investigate the efficacy of FS supplementation in type 2 diabetics (n = 29). Subjects were assigned to the experimental (n = 18) or the control group (n = 11) on the basis of their desire to participate in the study. The experimental group's diet was supplemented daily with 10 g of FS powder for a period of 1 month. The control group received no supplementation or placebo. During the study, diet and drug intake of the subjects remained unaltered. The efficacy of supplementation with FS was evaluated through a battery of clinico-biochemical parameters. Supplementation with FS reduced fasting blood glucose by 19.7% and glycated hemoglobin by 15.6%. A favorable reduction in total cholesterol (14.3%), triglycerides (17.5%), low-density lipoprotein cholesterol (21.8%), and apolipoprotein B and an increase in high-density lipoprotein cholesterol (11.9%) were also noticed. These observations suggest the therapeutic potential of FS in the management of diabetes mellitus.

  8. THE EGG – FUNCTIONAL FOOD.COMPARATIVE STUDY ON VARIOUS NUTRITIONAL SOLUTIONS TO ENRICH THE EGG POLYUNSATURATED FATTY ACIDS. II YOLK FATTY ACIDS PROFILE RESULTING FROM THE DIETARY USE OF SAFFLOWER OIL AND FLAX SEEDS

    CRISTE RODICA. D.

    2007-05-01

    Full Text Available The paper presents the results obtained in a study on the comparative evaluation of the effect of a diet with safflower oil and flax seeds compared to a control soybean oil diet given to layers on the bioproductive effects, egg characteristics and yolk fatty acids profile. The trial involved 32 Lowman Brown layers during the age period 23- 28 weeks (1 week of accommodation and 4 experimental weeks. The layers, assigned to 2 groups (16 layers/group, 4 layers/cage received diets based on corn, wheat and soybean meal. The diets differed by the source of fatty acids: soybean oil for the control group (SO; safflower oil and flax seeds for SSO+FS. The diets were supplemented with 250 ppm vitamin E. Twelve eggs per group were collected randomly 10 and 30 days, respectively, after the beginning of the experiment. The paper presents comparative data on the: average egg weight, egg component (egg shell, yolk, egg white weight, intensity of yolk colour (Hoffman – La Roche colour range, yolk protein, fat yolk pH (measured one week after collection, the eggs being kept at 50C and yolk fatty acids. All data show that the profile of yolk unsaturated fatty acids can be handled quite easily by the nature of the dietary fats, their level of inclusion and their dietary ratio.

  9. Locus-specific view of flax domestication history

    Fu, Yong-Bi; Diederichsen, Axel; Allaby, Robin G

    2012-01-01

    Crop domestication has been inferred genetically from neutral markers and increasingly from specific domestication-associated loci. However, some crops are utilized for multiple purposes that may or may not be reflected in a single domestication-associated locus. One such example is cultivated flax (Linum usitatissimum L.), the earliest oil and fiber crop, for which domestication history remains poorly understood. Oil composition of cultivated flax and pale flax (L. bienne Mill.) indicates that the sad2 locus is a candidate domestication locus associated with increased unsaturated fatty acid production in cultivated flax. A phylogenetic analysis of the sad2 locus in 43 pale and 70 cultivated flax accessions established a complex domestication history for flax that has not been observed previously. The analysis supports an early, independent domestication of a primitive flax lineage, in which the loss of seed dispersal through capsular indehiscence was not established, but increased oil content was likely occurred. A subsequent flax domestication process occurred that probably involved multiple domestications and includes lineages that contain oil, fiber, and winter varieties. In agreement with previous studies, oil rather than fiber varieties occupy basal phylogenetic positions. The data support multiple paths of flax domestication for oil-associated traits before selection of the other domestication-associated traits of seed dispersal loss and fiber production. The sad2 locus is less revealing about the origin of winter tolerance. In this case, a single domestication-associated locus is informative about the history of domesticated forms with the associated trait while partially informative on forms less associated with the trait. PMID:22408732

  10. Ex-post assessment of genetically modified, low level presence in Canadian flax.

    Booker, Helen M; Lamb, Eric G; Smyth, Stuart J

    2017-06-01

    Canada is the world's largest producer and exporter of flaxseed. In 2009, DNA from deregistered genetically modified (GM) CDC Triffid was detected in a shipment of Canadian flaxseed exported to Europe, causing a large decrease in the amount of flax planted in Canada and a major shift in export markets. The flax industry in Canada undertook major changes to ensure the removal of transgenic flax from the supply chain. To demonstrate compliance, Canada adopted a protocol involving testing grain samples (post-harvest) using an RT-PCR test for the construct found in CDC Triffid. Efforts to remove the presence of GM flax from the value chain included reconstituting major flax varieties from GM-free plants. The reconstituted varieties represented the majority of planting seed in 2014. This study re-evaluates GM flax presence in Canadian grain stocks for an updated dataset (2009-2015) using a previously described simulation model to estimate low-level GM presence. Additionally, losses to the Canadian economy resulting from the reduction in flax production and export opportunities, costs associated with reconstituting major flax varieties, and testing for the presence of GM flax along the flax value chain are estimated.

  11. USDA Flax fiber utilization research

    The United States is pursuing natural fibers as sustainable, environmentally friendly sources for a variety of industrial applications. Flax (Linum usitatissimum L.) fiber offers many possibilities towards this goal. Research on flax fiber production, processing, and standards development is urgen...

  12. Flavonoid engineering of flax potentiate its biotechnological application

    Prescha Anna

    2011-01-01

    Full Text Available Abstract Background Flavonoids are a group of secondary plant metabolites important for plant growth and development. They show also a protective effect against colon and breast cancer, diabetes, hypercholesterolemic atherosclerosis, lupus nephritis, and immune and inflammatory reactions. Thus, overproduction of these compounds in flax by genetic engineering method might potentiate biotechnological application of these plant products. Results Flax plants of third generation overexpressing key genes of flavonoid pathway cultivated in field were used as plant material throughout this study. The biochemical properties of seed, oil and seedcake extracts and fibre from natural and transgenic flax plants were compared. The data obtained suggests that the introduced genes were stably inherited and expressed through plant generations. Overproduction of flavonoid compounds resulted in increase of fatty acids accumulation in oil from transgenic seeds due to protection from oxidation offered during synthesis and seed maturation. The biochemical analysis of seedcake extracts from seeds of transgenic flax revealed significant increase in flavonoids (kaempferol, phenolic acids (coumaric, ferulic, synapic acids and lignan content. Fibres, another product of flax plant showed increase in the level of catechine and acetylvanillone and decrease in phenolic acids upon flax modification. Biochemical analysis results were confirmed using IR spectroscopy. The integral intensities of IR bands have been used for identification of the component of phenylpropanoid pathway in oil, seedcake extract and fibre from control and transgenic flax. It was shown that levels of flavonoids, phenolic acids and lignans in oil and seedcake extract was higher in transgenic flax products compared to control. An FT-IR study of fibres confirmed the biochemical data and revealed that the arrangement of the cellulose polymer in the transgenic fibres differs from the control; in particular a

  13. Chemical modification of flax reinforced polypropylene composites

    Jacob John, Maya

    2009-04-01

    Full Text Available This paper presents an experimental study on the static and dynamic mechanical properties of nonwoven based flax fibre reinforced polypropylene composites. The effect of zein modification on flax fibres is also reported. Flax nonwovens were treated...

  14. Breaking sod or breaking even? Flax on the northern Great Plains and Prairies, 1889-1930.

    MacFayden, Joshua D

    2009-01-01

    A new thirst for paint and color in cities made extensive flax production profitable in the northern Great Plains and Prairies and contributed to the cultivation of the most fragile grassland ecosystems. The production of flax seed for linseed oil became an early spin-off of the Prairie wheat economy but, unlike wheat, flax vanished from old land after one or two rotations and reappeared in districts with the most new breaking. Officials explained the migrant crop as preparing native grasslands for cultivation or exhausting soil in old land, but farmers brought flax to their new breaking for other reasons. Producers would only put flax on any land when a range of economic and environmental conditions were in place. It was never sown without promise of adequately high prices or in the absence of affordable seed and other inputs. When price allowed, it usually appeared on new breaking because it could be planted later and transported further without upsetting the balance of other activities and without farmers learning many new techniques. Scientists discovered that diseased soil drove flax off old land, not soil exhaustion. Circumventing the disease was possible but costly, and farmers simply replaced flax with the next most lucrative commodity.

  15. Do cupins have a function beyond being seed storage proteins? An updated working model for the growth and reproductive success of flax (Linum usitatissimum) in a radio-contaminated environment

    Plants continue to flourish around the site of the Chernobyl Nuclear Power Plant disaster. The ability of plants to transcend the radio-contaminated environment was not anticipated and is not well understood. The aim of this study was to evaluate the proteome of flax (Linum usitatissimum L.) durin...

  16. Pollen-mediated gene flow in flax (Linum usitatissimum L.): can genetically engineered and organic flax coexist?

    Jhala, A J; Bhatt, H; Topinka, K; Hall, L M

    2011-04-01

    Coexistence allows growers and consumers the choice of producing or purchasing conventional or organic crops with known standards for adventitious presence of genetically engineered (GE) seed. Flax (Linum usitatissimum L.) is multipurpose oilseed crop in which product diversity and utility could be enhanced for industrial, nutraceutical and pharmaceutical markets through genetic engineering. If GE flax were released commercially, pollen-mediated gene flow will determine in part whether GE flax could coexist without compromising other markets. As a part of pre-commercialization risk assessment, we quantified pollen-mediated gene flow between two cultivars of flax. Field experiments were conducted at four locations during 2006 and 2007 in western Canada using a concentric donor (20 × 20 m) receptor (120 × 120 m) design. Gene flow was detected through the xenia effect of dominant alleles of high α-linolenic acid (ALA; 18:3(cisΔ9,12,15)) to the low ALA trait. Seeds were harvested from the pollen recipient plots up to a distance of 50 m in eight directions from the pollen donor. High ALA seeds were identified using a thiobarbituric acid test and served as a marker for gene flow. Binomial distribution and power analysis were used to predict the minimum number of seeds statistically required to detect the frequency of gene flow at specific α (confidence interval) and power (1-β) values. As a result of the low frequency of gene flow, approximately 4 million seeds were screened to derive accurate quantification. Frequency of gene flow was highest near the source: averaging 0.0185 at 0.1 m but declined rapidly with distance, 0.0013 and 0.00003 at 3 and 35 m, respectively. Gene flow was reduced to 50% (O₅₀) and 90% (O₉₀) between 0.85 to 2.64 m, and 5.68 to 17.56 m, respectively. No gene flow was detected at any site or year > 35 m distance from the pollen source, suggesting that frequency of gene flow was ≤ 0.00003 (P = 0.95). Although it is not possible to

  17. Development of basic populations of plant species suitable for the production of fatty acids, especially considering linseed, false flax and poppy

    Seehuber, R.; Dambroth, M.

    1987-01-01

    Seed yields, oil contents and oil yields from experiments conducted over a four year period and at five locations are presented for linseed (linum usitatissimum), false flax (Camelina sativa) and oilseed poppy (Papaver somniferum). The influence of year and location on the yields was very high, but oil contents have been relatively stable. The highest oil yields in kg/ha as mean for four years were for linseed 898, for false flax 892 and for poppy 901. Yields and oil contents of winter false flax were slightly higher than in summer false flax. The variability in the collections of plant genetic resources of the presented crops is demonstrated at the example of the frequency distributions of plant height. First results of yield trials of crossing progenies in false flax and poppy show the large possibilities of increasing seed yields. (orig.)

  18. [Effects of climate change on flax development and yield in Guyuan of Ningxia, Northwest China].

    Li, Shu-Zhen; Sun, Lin-Li; Ma, Yu-Ping; Ma, Yu-Ping; Xu, Yu-Dong; E, You-Hao

    2014-10-01

    Based on variations of the annual mean temperature and precipitation analyzed using ob- servation data in Guyuan of Ningxia, the effects of climate change on the local flax developmental process and yield were investigated. The results showed that the annual mean temperature had an increasing trend (0.3 °C · (10 a)-1) and the annual precipitation had a decreasing trend (-20 mm · (10 a) -1) from 1957 to 2012. While the increasing trend of mean temperature during growing season of flax was more obviously than that of the annual temperature, the decreasing trend of precipitation during growing season was similar to that of annual precipitation. With temperature increasing and precipitation decreasing, the flax development rate was accelerated, resulting in the reduced growing period. Seedling stage was advanced 0.7 d with 1 °C increase in temperature during the period from sowing to seedling emergence. The duration from seedling emergence to two pairs of needles was shortened by 0.8 d with 1 °C increase in temperature and 0.1 d with 1 mm decrease in precipitation. Maturity stage was advanced 1.8 d with 1 °C increase in temperature and 0.1 d with 1 mm decrease in precipitation during the period from technical maturity to maturity. The flax development was accelerated because of temperature increasing and precipitation decreasing in the vegetative growth phase, which was one of the main causes of flax yield reduction year by year. Meanwhile, flower bud differentiation and pollination of flax were influenced by temperature increasing in the reproductive growth phase, which would affect the number of capsules and the seed setting rate per plant and lead to the decrease of flax yield. Therefore, adjusting plant structure and enlarging the planting area of late or middle-late variety were the important measures to reduce the effects of climate change on local flax production.

  19. Germination and elongation of flax in microgravity

    Levine, Howard G.; Anderson, Ken; Boody, April; Cox, Dave; Kuznetsov, Oleg A.; Hasenstein, Karl H.

    2003-05-01

    This experiment was conducted as part of a risk mitigation payload aboard the Space Shuttle Atlantis on STS-101. The objectives were to test a newly developed water delivery system, and to determine the optimal combination of water volume and substrate for the imbibition and germination of flax ( Linum usitatissimum) seeds in space. Two different combinations of germination paper were tested for their ability to absorb, distribute, and retain water in microgravity. A single layer of thick germination paper was compared with one layer of thin germination paper under a layer of thick paper. Paper strips were cut to fit snugly into seed cassettes, and seeds were glued to them with the micropyle ends pointing outward. Water was delivered in small increments that traveled through the paper via capillary action. Three water delivery volumes were tested, with the largest (480 μL) outperforming the 400 μL, and 320 μL volumes for percent germination (90.6%) and root growth (mean = 4.1 mm) during the 34-hour spaceflight experiment. The ground control experiment yielded similar results, but with lower rates of germination (84.4%) and shorter root lengths (mean = 2.8 mm). It is not clear if the roots emerged more quickly in microgravity and/or grew faster than the ground controls. The single layer of thick germination paper generally exhibited better overall growth than the two layered option. Significant seed position effects were observed in both the flight and ground control experiments. Overall, the design of the water delivery system, seed cassettes and the germination paper strip concept was validated as an effective method for promoting seed germination and root growth under microgravity conditions.

  20. Germination and elongation of flax in microgravity

    Levine, Howard G.; Anderson, Ken; Boody, April; Cox, Dave; Kuznetsov, Oleg A.; Hasenstein, Karl H.

    2003-01-01

    This experiment was conducted as part of a risk mitigation payload aboard the Space Shuttle Atlantis on STS-101. The objectives were to test a newly developed water delivery system, and to determine the optimal combination of water volume and substrate for the imbibition and germination of flax (Linum usitatissimum) seeds in space. Two different combinations of germination paper were tested for their ability to absorb, distribute, and retain water in microgravity. A single layer of thick germination paper was compared with one layer of thin germination paper under a layer of thick paper. Paper strips were cut to fit snugly into seed cassettes, and seeds were glued to them with the micropyle ends pointing outward. Water was delivered in small increments that traveled through the paper via capillary action. Three water delivery volumes were tested, with the largest (480 microliters) outperforming the 400 microliters and 320 microliters volumes for percent germination (90.6%) and root growth (mean=4.1 mm) during the 34-hour spaceflight experiment. The ground control experiment yielded similar results, but with lower rates of germination (84.4%) and shorter root lengths (mean=2.8 mm). It is not clear if the roots emerged more quickly in microgravity and/or grew faster than the ground controls. The single layer of thick germination paper generally exhibited better overall growth than the two layered option. Significant seed position effects were observed in both the flight and ground control experiments. Overall, the design of the water delivery system, seed cassettes and the germination paper strip concept was validated as an effective method for promoting seed germination and root growth under microgravity conditions. c2003 COSPAR. Published by Elsevier Ltd. All rights reserved.

  1. Development and validation of a flax (Linum usitatissimum L.) gene expression oligo microarray.

    Fenart, Stéphane; Ndong, Yves-Placide Assoumou; Duarte, Jorge; Rivière, Nathalie; Wilmer, Jeroen; van Wuytswinkel, Olivier; Lucau, Anca; Cariou, Emmanuelle; Neutelings, Godfrey; Gutierrez, Laurent; Chabbert, Brigitte; Guillot, Xavier; Tavernier, Reynald; Hawkins, Simon; Thomasset, Brigitte

    2010-10-21

    Flax (Linum usitatissimum L.) has been cultivated for around 9,000 years and is therefore one of the oldest cultivated species. Today, flax is still grown for its oil (oil-flax or linseed cultivars) and its cellulose-rich fibres (fibre-flax cultivars) used for high-value linen garments and composite materials. Despite the wide industrial use of flax-derived products, and our actual understanding of the regulation of both wood fibre production and oil biosynthesis more information must be acquired in both domains. Recent advances in genomics are now providing opportunities to improve our fundamental knowledge of these complex processes. In this paper we report the development and validation of a high-density oligo microarray platform dedicated to gene expression analyses in flax. Nine different RNA samples obtained from flax inner- and outer-stems, seeds, leaves and roots were used to generate a collection of 1,066,481 ESTs by massive parallel pyrosequencing. Sequences were assembled into 59,626 unigenes and 48,021 sequences were selected for oligo design and high-density microarray (Nimblegen 385K) fabrication with eight, non-overlapping 25-mers oligos per unigene. 18 independent experiments were used to evaluate the hybridization quality, precision, specificity and accuracy and all results confirmed the high technical quality of our microarray platform. Cross-validation of microarray data was carried out using quantitative qRT-PCR. Nine target genes were selected on the basis of microarray results and reflected the whole range of fold change (both up-regulated and down-regulated genes in different samples). A statistically significant positive correlation was obtained comparing expression levels for each target gene across all biological replicates both in qRT-PCR and microarray results. Further experiments illustrated the capacity of our arrays to detect differential gene expression in a variety of flax tissues as well as between two contrasted flax varieties

  2. Development and validation of a flax (Linum usitatissimum L. gene expression oligo microarray

    Gutierrez Laurent

    2010-10-01

    Full Text Available Abstract Background Flax (Linum usitatissimum L. has been cultivated for around 9,000 years and is therefore one of the oldest cultivated species. Today, flax is still grown for its oil (oil-flax or linseed cultivars and its cellulose-rich fibres (fibre-flax cultivars used for high-value linen garments and composite materials. Despite the wide industrial use of flax-derived products, and our actual understanding of the regulation of both wood fibre production and oil biosynthesis more information must be acquired in both domains. Recent advances in genomics are now providing opportunities to improve our fundamental knowledge of these complex processes. In this paper we report the development and validation of a high-density oligo microarray platform dedicated to gene expression analyses in flax. Results Nine different RNA samples obtained from flax inner- and outer-stems, seeds, leaves and roots were used to generate a collection of 1,066,481 ESTs by massive parallel pyrosequencing. Sequences were assembled into 59,626 unigenes and 48,021 sequences were selected for oligo design and high-density microarray (Nimblegen 385K fabrication with eight, non-overlapping 25-mers oligos per unigene. 18 independent experiments were used to evaluate the hybridization quality, precision, specificity and accuracy and all results confirmed the high technical quality of our microarray platform. Cross-validation of microarray data was carried out using quantitative qRT-PCR. Nine target genes were selected on the basis of microarray results and reflected the whole range of fold change (both up-regulated and down-regulated genes in different samples. A statistically significant positive correlation was obtained comparing expression levels for each target gene across all biological replicates both in qRT-PCR and microarray results. Further experiments illustrated the capacity of our arrays to detect differential gene expression in a variety of flax tissues as well

  3. Natural phenolics greatly increase flax (Linum usitatissimum) oil stability.

    Hasiewicz-Derkacz, Karolina; Kulma, Anna; Czuj, Tadeusz; Prescha, Anna; Żuk, Magdalena; Grajzer, Magdalena; Łukaszewicz, Marcin; Szopa, Jan

    2015-06-30

    Flaxseed oil is characterized by high content of essential polyunsaturated fatty acids (PUFA) promoted as a human dietary supplement protecting against atherosclerosis. The disadvantage of the high PUFA content in flax oil is high susceptibility to oxidation, which can result in carcinogenic compound formation. Linola flax cultivar is characterized by high linoleic acid content in comparison to traditional flax cultivars rich in linolenic acid. The changes in fatty acid proportions increase oxidative stability of Linola oil and broaden its use as an edible oil for cooking. However one of investigated transgenic lines has high ALA content making it suitable as omega-3 source. Protection of PUFA oxidation is a critical factor in oil quality. The aim of this study was to investigate the impact of phenylpropanoid contents on the oil properties important during the whole technological process from seed storage to grinding and oil pressing, which may influence health benefits as well as shelf-life, and to establish guidelines for the selection of new cultivars. The composition of oils was determined by chromatographic (GS-FID and LC-PDA-MS) methods. Antioxidant properties of secondary metabolites were analyzed by DPPH method. The stability of oils was investigated: a) during regular storage by measuring acid value peroxide value p-anisidine value malondialdehyde, conjugated dienes and trienes; b) by using accelerated rancidity tests by TBARS reaction; c) by thermoanalytical - differential scanning calorimetry (DSC). In one approach, in order to increase oil stability, exogenous substances added are mainly lipid soluble antioxidants from the isoprenoid pathway, such as tocopherol and carotene. The other approach is based on transgenic plant generation that accumulates water soluble compounds. Increased accumulation of phenolic compounds in flax seeds was achieved by three different strategies that modify genes coding for enzymes from the phenylpropanoid pathway. The three

  4. Genome-wide identification, characterization, and expression profile of aquaporin gene family in flax (Linum usitatissimum).

    Shivaraj, S M; Deshmukh, Rupesh K; Rai, Rhitu; Bélanger, Richard; Agrawal, Pawan K; Dash, Prasanta K

    2017-04-27

    Membrane intrinsic proteins (MIPs) form transmembrane channels and facilitate transport of myriad substrates across the cell membrane in many organisms. Majority of plant MIPs have water transporting ability and are commonly referred as aquaporins (AQPs). In the present study, we identified aquaporin coding genes in flax by genome-wide analysis, their structure, function and expression pattern by pan-genome exploration. Cross-genera phylogenetic analysis with known aquaporins from rice, arabidopsis, and poplar showed five subgroups of flax aquaporins representing 16 plasma membrane intrinsic proteins (PIPs), 17 tonoplast intrinsic proteins (TIPs), 13 NOD26-like intrinsic proteins (NIPs), 2 small basic intrinsic proteins (SIPs), and 3 uncharacterized intrinsic proteins (XIPs). Amongst aquaporins, PIPs contained hydrophilic aromatic arginine (ar/R) selective filter but TIP, NIP, SIP and XIP subfamilies mostly contained hydrophobic ar/R selective filter. Analysis of RNA-seq and microarray data revealed high expression of PIPs in multiple tissues, low expression of NIPs, and seed specific expression of TIP3 in flax. Exploration of aquaporin homologs in three closely related Linum species bienne, grandiflorum and leonii revealed presence of 49, 39 and 19 AQPs, respectively. The genome-wide identification of aquaporins, first in flax, provides insight to elucidate their physiological and developmental roles in flax.

  5. Molecular physiology of seeds

    Hajduch, M.

    2014-05-01

    Plant development is well described. However, full understanding of the regulation of processes associated with plant development is still missing. Present Dr.Sc. thesis advances our understanding of the regulation of plant development by quantitative proteomics analyses of seed development of soybean, canola, castor, flax, and model plant arabidopsis in control and environmentally challenged environments. The analysis of greenhouse-grown soybean, canola, castor, and arabidospis provided complex characterization of metabolic processes during seed development, for instance, of carbon assimilation into fatty acids. Furthermore, the analyses of soybean and flax grown in Chernobyl area provided in-depth characterization of seed development in radio-contaminated environment. Soybean and flax were altered by radio-contaminated environment in different way. However, these alterations resulted into modifications in seed oil content. Further analyses showed that soybean and flax possess alterations of carbon metabolism in cytoplasm and plastids along with increased activity of photosynthetic apparatus. Our present experiments are focused on further characterization of molecular bases that might be responsible for alterations of seed oil content in Chernobyl grown plants. (author)

  6. Identification, characterization and distribution of transposable elements in the flax (Linum usitatissimum L. genome

    González Leonardo Galindo

    2012-11-01

    Full Text Available Abstract Background Flax (Linum usitatissimum L. is an important crop for the production of bioproducts derived from its seed and stem fiber. Transposable elements (TEs are widespread in plant genomes and are a key component of their evolution. The availability of a genome assembly of flax (Linum usitatissimum affords new opportunities to explore the diversity of TEs and their relationship to genes and gene expression. Results Four de novo repeat identification algorithms (PILER, RepeatScout, LTR_finder and LTR_STRUC were applied to the flax genome assembly. The resulting library of flax repeats was combined with the RepBase Viridiplantae division and used with RepeatMasker to identify TEs coverage in the genome. LTR retrotransposons were the most abundant TEs (17.2% genome coverage, followed by Long Interspersed Nuclear Element (LINE retrotransposons (2.10% and Mutator DNA transposons (1.99%. Comparison of putative flax TEs to flax transcript databases indicated that TEs are not highly expressed in flax. However, the presence of recent insertions, defined by 100% intra-element LTR similarity, provided evidence for recent TE activity. Spatial analysis showed TE-rich regions, gene-rich regions as well as regions with similar genes and TE density. Monte Carlo simulations for the 71 largest scaffolds (≥ 1 Mb each did not show any regional differences in the frequency of TE overlap with gene coding sequences. However, differences between TE superfamilies were found in their proximity to genes. Genes within TE-rich regions also appeared to have lower transcript expression, based on EST abundance. When LTR elements were compared, Copia showed more diversity, recent insertions and conserved domains than the Gypsy, demonstrating their importance in genome evolution. Conclusions The calculated 23.06% TE coverage of the flax WGS assembly is at the low end of the range of TE coverages reported in other eudicots, although this estimate does not include

  7. Identification, characterization and distribution of transposable elements in the flax (Linum usitatissimum L.) genome.

    González, Leonardo Galindo; Deyholos, Michael K

    2012-11-21

    Flax (Linum usitatissimum L.) is an important crop for the production of bioproducts derived from its seed and stem fiber. Transposable elements (TEs) are widespread in plant genomes and are a key component of their evolution. The availability of a genome assembly of flax (Linum usitatissimum) affords new opportunities to explore the diversity of TEs and their relationship to genes and gene expression. Four de novo repeat identification algorithms (PILER, RepeatScout, LTR_finder and LTR_STRUC) were applied to the flax genome assembly. The resulting library of flax repeats was combined with the RepBase Viridiplantae division and used with RepeatMasker to identify TEs coverage in the genome. LTR retrotransposons were the most abundant TEs (17.2% genome coverage), followed by Long Interspersed Nuclear Element (LINE) retrotransposons (2.10%) and Mutator DNA transposons (1.99%). Comparison of putative flax TEs to flax transcript databases indicated that TEs are not highly expressed in flax. However, the presence of recent insertions, defined by 100% intra-element LTR similarity, provided evidence for recent TE activity. Spatial analysis showed TE-rich regions, gene-rich regions as well as regions with similar genes and TE density. Monte Carlo simulations for the 71 largest scaffolds (≥ 1 Mb each) did not show any regional differences in the frequency of TE overlap with gene coding sequences. However, differences between TE superfamilies were found in their proximity to genes. Genes within TE-rich regions also appeared to have lower transcript expression, based on EST abundance. When LTR elements were compared, Copia showed more diversity, recent insertions and conserved domains than the Gypsy, demonstrating their importance in genome evolution. The calculated 23.06% TE coverage of the flax WGS assembly is at the low end of the range of TE coverages reported in other eudicots, although this estimate does not include TEs likely found in unassembled repetitive regions of

  8. Comparative description of morphological features of flax oily (Linum usitatissimum L. different sorts in the conditions of Precarpathian

    Inessa F. Drozd

    2012-03-01

    Full Text Available The paper contains the results of investigation of meteorological conditions influence on morphological features of different flax oily sorts in the conditions of Precarpathian. The results confirm, that weather terms and the terms of the sowing have influence on the height of plants, number of capsules and seeds per plant.

  9. Effect of Genotypic and Environmental Differences on Flax (Linum usitatissimum L.)

    Amer, I.M; Moustafa, H.A.M.

    2006-01-01

    Genotype X environment (GE) interactions for some flax characters nd their effects on yield of three divergent mutant lines two local cultivars were studied over five environmental conditions (three years and different soils) at Inshas, Egypt. the obtained results reveled that the variance due to environmental conditions were greater than the variance due to genotypes, or GE interaction for all studied traits. the variances due to GE interactions were greater than the variances for genotypes in seed yield and its related traits and vice versa in straw yield and its related traits. the environmental conditions exhibited greater effect on the local cultivars than on mutant lines. the mutant line 25 gave the highest seeds and straw yield / plant over all environments. adaptability and performance stability of a line over years and sites are interested for flax producer for growing a cultivar with high yield and performance stability at his location

  10. Aligned flax fibre/polylactate composites

    Madsen, Bo; Lilholt, Hans; Thygesen, Anders

    2008-01-01

    The potential of biocomposites in engineering applications is demonstrated by using aligned flax fibre/polylactate composites as a materials model system. The failure stress of flax fibres is measured by tensile testing of single fibres and fibre bundles. For both fibre configurations, it is found...... that failure stress is decreased by increasing the tested fibre volume. Based on two types of flax fibre preforms: carded sliver and unidirectional non-crimp fabric, aligned flax fibre/polylactate composites were fabricated with variable fibre content. The volumetric composition and tensile properties...... of the composite were measured. For composites with a fibre content of 37 % by volume, stiffness is about 20 GPa and failure stress is about 180 MPa. The tensile properties of the composites are analysed with a modified rule of mixtures model, which includes the effect of porosity. The experimental results...

  11. Population-based resequencing revealed an ancestral winter group of cultivated flax: implication for flax domestication processes

    Fu, Yong-Bi

    2012-01-01

    Cultivated flax (Linum usitatissimum L.) is the earliest oil and fiber crop and its early domestication history may involve multiple events of domestication for oil, fiber, capsular indehiscence, and winter hardiness. Genetic studies have demonstrated that winter cultivated flax is closely related to oil and fiber cultivated flax and shows little relatedness to its progenitor, pale flax (L. bienne Mill.), but winter hardiness is one major characteristic of pale flax. Here, we assessed the genetic relationships of 48 Linum samples representing pale flax and four trait-specific groups of cultivated flax (dehiscent, fiber, oil, and winter) through population-based resequencing at 24 genomic regions, and revealed a winter group of cultivated flax that displayed close relatedness to the pale flax samples. Overall, the cultivated flax showed a 27% reduction of nucleotide diversity when compared with the pale flax. Recombination frequently occurred at these sampled genomic regions, but the signal of selection and bottleneck was relatively weak. These findings provide some insight into the impact and processes of flax domestication and are significant for expanding our knowledge about early flax domestication, particularly for winter hardiness. PMID:22822439

  12. Fatty acid composition and desaturase gene expression in flax (Linum usitatissimum L.).

    Thambugala, Dinushika; Cloutier, Sylvie

    2014-11-01

    Little is known about the relationship between expression levels of fatty acid desaturase genes during seed development and fatty acid (FA) composition in flax. In the present study, we looked at promoter structural variations of six FA desaturase genes and their relative expression throughout seed development. Computational analysis of the nucleotide sequences of the sad1, sad2, fad2a, fad2b, fad3a and fad3b promoters showed several basic transcriptional elements including CAAT and TATA boxes, and several putative target-binding sites for transcription factors, which have been reported to be involved in the regulation of lipid metabolism. Using semi-quantitative reverse transcriptase PCR, the expression patterns throughout seed development of the six FA desaturase genes were measured in six flax genotypes that differed for FA composition but that carried the same desaturase isoforms. FA composition data were determined by phenotyping the field grown genotypes over four years in two environments. All six genes displayed a bell-shaped pattern of expression peaking at 20 or 24 days after anthesis. Sad2 was the most highly expressed. The expression of all six desaturase genes did not differ significantly between genotypes (P = 0.1400), hence there were no correlations between FA desaturase gene expression and variations in FA composition in relatively low, intermediate and high linolenic acid genotypes expressing identical isoforms for all six desaturases. These results provide further clues towards understanding the genetic factors responsible for FA composition in flax.

  13. PT-Flax (phenotyping and TILLinG of flax): development of a flax (Linum usitatissimum L.) mutant population and TILLinG platform for forward and reverse genetics.

    Chantreau, Maxime; Grec, Sébastien; Gutierrez, Laurent; Dalmais, Marion; Pineau, Christophe; Demailly, Hervé; Paysant-Leroux, Christine; Tavernier, Reynald; Trouvé, Jean-Paul; Chatterjee, Manash; Guillot, Xavier; Brunaud, Véronique; Chabbert, Brigitte; van Wuytswinkel, Olivier; Bendahmane, Abdelhafid; Thomasset, Brigitte; Hawkins, Simon

    2013-10-15

    Flax (Linum usitatissimum L.) is an economically important fiber and oil crop that has been grown for thousands of years. The genome has been recently sequenced and transcriptomics are providing information on candidate genes potentially related to agronomically-important traits. In order to accelerate functional characterization of these genes we have generated a flax EMS mutant population that can be used as a TILLinG (Targeting Induced Local Lesions in Genomes) platform for forward and reverse genetics. A population of 4,894 M2 mutant seed families was generated using 3 different EMS concentrations (0.3%, 0.6% and 0.75%) and used to produce M2 plants for subsequent phenotyping and DNA extraction. 10,839 viable M2 plants (4,033 families) were obtained and 1,552 families (38.5%) showed a visual developmental phenotype (stem size and diameter, plant architecture, flower-related). The majority of these families showed more than one phenotype. Mutant phenotype data are organised in a database and can be accessed and searched at UTILLdb (http://urgv.evry.inra.fr/UTILLdb). Preliminary screens were also performed for atypical fiber and seed phenotypes. Genomic DNA was extracted from 3,515 M2 families and eight-fold pooled for subsequent mutant detection by ENDO1 nuclease mis-match cleavage. In order to validate the collection for reverse genetics, DNA pools were screened for two genes coding enzymes of the lignin biosynthesis pathway: Coumarate-3-Hydroxylase (C3H) and Cinnamyl Alcohol Dehydrogenase (CAD). We identified 79 and 76 mutations in the C3H and CAD genes, respectively. The average mutation rate was calculated as 1/41 Kb giving rise to approximately 9,000 mutations per genome. Thirty-five out of the 52 flax cad mutant families containing missense or codon stop mutations showed the typical orange-brown xylem phenotype observed in CAD down-regulated/mutant plants in other species. We have developed a flax mutant population that can be used as an efficient

  14. seeds

    Owner

    peptidohydrolase (8.0%) from mung bean seedlings. (Baumgartner and Chrispeels, 1977), EP-HG (4.5%) from horse gram seedlings ( Rajeswari, 1997), acidic protease (15%) from germinating winged-bean seeds. (Usha and Singh, 1996) and EP-1 (1.6%) from barley seedlings and GA3-induced cysteine protease (3.38%).

  15. The result of sunflower and flax breeding in the Agricultural and Technological Research Center Zaječar

    Stanković Vesna

    2003-01-01

    Full Text Available In the Agricultural & Technological Research Centar in Zajecar the work on improvement of sunflower were initiated in 1980s. Besides improvement, in relation to the main components of yield and high genetic potential for yield in improvement programmes of consuming genotypes of sunflower, there are some specific aims, such as: increasing the of 1000 seeds, reducing the portion of a shell, uniformity of the seed color and size. The latest achievements of the sunflower improvement carried out in the Centre in Zajecar are: obtaining the consuming-type hybrid PROTEINAC 94 (released in 1998, the hybrid JUNIOR (released in 2001, and the synthetic protein cultivar ZENIT (released in 2003. At the start of the 1990s, it was initiated the work on researching the agronomic characteristics of the existing assortment of oil-flax, as well as on preparation for plant improvement is to obtain high-yielding cultivars of brown and yellow seed color that can be used both for oil extraction and for consummation. During the research, a certain number of lines of oil-flax with positive characteristics were created. In 2003 the flax cultivar with the yellow color of seed, ZLATKO, was released. .

  16. Production of flax fibers for biocomposites

    Natural fibers for many and varied industrial uses are a current area of intense interest. Production of these fibers, furthermore, can add to farmer incomes and promote agricultural sustainability. Flax (Linum usitatissimum L.), which has been used for thousands of years, is unparalleled in supplyi...

  17. The loci controlling plasticity in flax

    Bickel CL

    2012-02-01

    Full Text Available Cory L Bickel, Marshall Lukacs, Christopher A CullisCase Western Reserve University, Cleveland OH, USAAbstract: Flax undergoes heritable genomic changes in response to nutrient stress, including changes in total DNA content, rDNA copy number variation, and the appearance of Linum Insertion Sequence 1 (LIS-1. The nature of the genomic changes suggests a very different mechanism, which is not yet understood, from that of other DNA changes in response to stress, such as the activation of transposable elements. To identify the genes that control genomic changes in response to stress in flax, reciprocal crosses were made between a responsive flax line, Stormont cirrus, and an unresponsive line, Bethune. The ability of the F2 generation (from selfed F1 plants to respond to nutrient stress was assayed using the insertion of LIS-1 as the criteria for responsiveness. Twenty-nine out of 89 F2s responded at 5 weeks, suggesting that 3-4 dominant loci were all necessary for early LIS-1 insertion. Seventy out of 76 responded at 10 weeks, indicating two dominant loci independently capable of initiating LIS-1 insertion under prolonged nutrient stress. F1 plants and their progeny with either P1 or Bethune as the maternal parent were capable of responding with LIS-1 insertion, indicating that LIS-1 insertion is under nuclear genetic control and does not involve maternal factors. Thus, a small number of loci within the genome of Stormont cirrus appear to control the ability to respond to nutrient stress with LIS-1 insertion. A genetic map of the flax genome is currently under construction, and will be used to identify these loci within the genome.Keywords: nutrient stress, genomic plasticity, flax, Linum usitatissimum, LIS-1 

  18. Floral-dip transformation of flax (Linum usitatissimum) to generate transgenic progenies with a high transformation rate.

    Bastaki, Nasmah K; Cullis, Christopher A

    2014-12-19

    Agrobacterium-mediated plant transformation via floral-dip is a widely used technique in the field of plant transformation and has been reported to be successful for many plant species. However, flax (Linum usitatissimum) transformation by floral-dip has not been reported. The goal of this protocol is to establish that Agrobacterium and the floral-dip method can be used to generate transgenic flax. We show that this technique is simple, inexpensive, efficient, and more importantly, gives a higher transformation rate than the current available methods of flax transformation. In summary, inflorescences of flax were dipped in a solution of Agrobacterium carrying a binary vector plasmid (T-DNA fragment plus the Linum Insertion Sequence, LIS-1) for 1 - 2 min. The plants were laid flat on their side for 24 hr. Then, plants were maintained under normal growth conditions until the next treatment. The process of dipping was repeated 2 - 3 times, with approximately 10 - 14 day intervals between dipping. The T1 seeds were collected and germinated on soil. After approximately two weeks, treated progenies were tested by direct PCR; 2 - 3 leaves were used per plant plus the appropriate T-DNA primers. Positive transformants were selected and grown to maturity. The transformation rate was unexpectedly high, with 50 - 60% of the seeds from treated plants being positive transformants. This is a higher transformation rate than those reported for Arabidopsis thaliana and other plant species, using floral-dip transformation. It is also the highest, which has been reported so far, for flax transformation using other methods for transformation.

  19. Identification and functional characterization of a flax UDP-glycosyltransferase glucosylating secoisolariciresinol (SECO) into secoisolariciresinol monoglucoside (SMG) and diglucoside (SDG).

    Ghose, Kaushik; Selvaraj, Kumarakurubaran; McCallum, Jason; Kirby, Chris W; Sweeney-Nixon, Marva; Cloutier, Sylvie J; Deyholos, Michael; Datla, Raju; Fofana, Bourlaye

    2014-03-28

    Lignans are a class of diphenolic nonsteroidal phytoestrogens often found glycosylated in planta. Flax seeds are a rich source of secoisolariciresinol diglucoside (SDG) lignans. Glycosylation is a process by which a glycosyl group is covalently attached to an aglycone substrate and is catalyzed by uridine diphosphate glycosyltransferases (UGTs). Until now, very little information was available on UGT genes that may play a role in flax SDG biosynthesis. Here we report on the identification, structural and functional characterization of 5 putative UGTs potentially involved in secoisolariciresinol (SECO) glucosylation in flax. Five UGT genes belonging to the glycosyltransferases' family 1 (EC 2.4.x.y) were cloned and characterized. They fall under four UGT families corresponding to five sub-families referred to as UGT74S1, UGT74T1, UGT89B3, UGT94H1, UGT712B1 that all display the characteristic plant secondary product glycosyltransferase (PSPG) conserved motif. However, diversity was observed within this 44 amino acid sequence, especially in the two peptide sequences WAPQV and HCGWNS known to play a key role in the recognition and binding of diverse aglycone substrates and in the sugar donor specificity. In developing flax seeds, UGT74S1 and UGT94H1 showed a coordinated gene expression with that of pinoresinol-lariciresinol reductase (PLR) and their gene expression patterns correlated with SDG biosynthesis. Enzyme assays of the five heterologously expressed UGTs identified UGT74S1 as the only one using SECO as substrate, forming SECO monoglucoside (SMG) and then SDG in a sequential manner. We have cloned and characterized five flax UGTs and provided evidence that UGT74S1 uses SECO as substrate to form SDG in vitro. This study allowed us to propose a model for the missing step in SDG lignan biosynthesis.

  20. Physical mapping and BAC-end sequence analysis provide initial insights into the flax (Linum usitatissimum L. genome

    Cloutier Sylvie

    2011-05-01

    Full Text Available Abstract Background Flax (Linum usitatissimum L. is an important source of oil rich in omega-3 fatty acids, which have proven health benefits and utility as an industrial raw material. Flax seeds also contain lignans which are associated with reducing the risk of certain types of cancer. Its bast fibres have broad industrial applications. However, genomic tools needed for molecular breeding were non existent. Hence a project, Total Utilization Flax GENomics (TUFGEN was initiated. We report here the first genome-wide physical map of flax and the generation and analysis of BAC-end sequences (BES from 43,776 clones, providing initial insights into the genome. Results The physical map consists of 416 contigs spanning ~368 Mb, assembled from 32,025 fingerprints, representing roughly 54.5% to 99.4% of the estimated haploid genome (370-675 Mb. The N50 size of the contigs was estimated to be ~1,494 kb. The longest contig was ~5,562 kb comprising 437 clones. There were 96 contigs containing more than 100 clones. Approximately 54.6 Mb representing 8-14.8% of the genome was obtained from 80,337 BES. Annotation revealed that a large part of the genome consists of ribosomal DNA (~13.8%, followed by known transposable elements at 6.1%. Furthermore, ~7.4% of sequence was identified to harbour novel repeat elements. Homology searches against flax-ESTs and NCBI-ESTs suggested that ~5.6% of the transcriptome is unique to flax. A total of 4064 putative genomic SSRs were identified and are being developed as novel markers for their use in molecular breeding. Conclusion The first genome-wide physical map of flax constructed with BAC clones provides a framework for accessing target loci with economic importance for marker development and positional cloning. Analysis of the BES has provided insights into the uniqueness of the flax genome. Compared to other plant genomes, the proportion of rDNA was found to be very high whereas the proportion of known transposable

  1. Physical mapping and BAC-end sequence analysis provide initial insights into the flax (Linum usitatissimum L.) genome.

    Ragupathy, Raja; Rathinavelu, Rajkumar; Cloutier, Sylvie

    2011-05-09

    Flax (Linum usitatissimum L.) is an important source of oil rich in omega-3 fatty acids, which have proven health benefits and utility as an industrial raw material. Flax seeds also contain lignans which are associated with reducing the risk of certain types of cancer. Its bast fibres have broad industrial applications. However, genomic tools needed for molecular breeding were non existent. Hence a project, Total Utilization Flax GENomics (TUFGEN) was initiated. We report here the first genome-wide physical map of flax and the generation and analysis of BAC-end sequences (BES) from 43,776 clones, providing initial insights into the genome. The physical map consists of 416 contigs spanning ~368 Mb, assembled from 32,025 fingerprints, representing roughly 54.5% to 99.4% of the estimated haploid genome (370-675 Mb). The N50 size of the contigs was estimated to be ~1,494 kb. The longest contig was ~5,562 kb comprising 437 clones. There were 96 contigs containing more than 100 clones. Approximately 54.6 Mb representing 8-14.8% of the genome was obtained from 80,337 BES. Annotation revealed that a large part of the genome consists of ribosomal DNA (~13.8%), followed by known transposable elements at 6.1%. Furthermore, ~7.4% of sequence was identified to harbour novel repeat elements. Homology searches against flax-ESTs and NCBI-ESTs suggested that ~5.6% of the transcriptome is unique to flax. A total of 4064 putative genomic SSRs were identified and are being developed as novel markers for their use in molecular breeding. The first genome-wide physical map of flax constructed with BAC clones provides a framework for accessing target loci with economic importance for marker development and positional cloning. Analysis of the BES has provided insights into the uniqueness of the flax genome. Compared to other plant genomes, the proportion of rDNA was found to be very high whereas the proportion of known transposable elements was low. The SSRs identified from BES will be

  2. Production properties of flax (Linum usitatissimum L. cultivated in Strumica region, Republic of Macedonia

    P. Vuckov

    2016-12-01

    Full Text Available Abstract. The purpose of this research was to determine the production properties of 5 flax genotypes cultivated in agro-ecological conditions in the Strumica region, Republic of Macedonia.The research was conducted in a period of two years (2014 and 2015, on the research fields in Strumica at Uni Service - Agro, Faculty of Agriculture, University Goce Delchev, Stip.The research was conducted on 5 genotypes of flax, 4 of which are domestic intermediate genotypes (transitive flax (Velusina, Duferin, Belan, Belinka and one French introduced fiber flax variety (Viking. The experiment consisted of five variants in three iterations, divided by the method of random block system for each genotype.The number of fruit per plant in both years of testing is statistically different among different genotypes. In the first year of the examination (2014, the largest number of fruit per plant had genotype Velusina (156 and the lowest (70 3 genotype Belan. In the second year of the examination (2015, the largest number of fruit per plant had the genotype Velusina (102.3 and the lowest (54 7, genotype Belinka.There is no statistically significant difference in number of seeds in the fruit among the tested genotypes. In the first year of the examination (2014, the largest number of seeds in fruit had genotype Velusina (4 63 and the lowest (2 26 - genotype Viking. In the second year of the examination (2015, the largest number of seeds in fruit had genotype Belan (9.96 and the lowest (7.06 - genotype Duferin. In the first year of the examination (2014, the largest number of seed yield per plant in kg/ha had the genotype Viking (500 kg/ha and the lowest - genotype Belinka (210 kg/ha. In the second year of the examination (2015, the largest number of seed yield per plant in kg/ha had genotype Velusina (1100 kg/ha and the lowest - genotype Belinka (780 kg/ha. In both years of research (2014 and 2015 there were statistically significant differences on the level of

  3. Exogenous salicylic acid protects phospholipids against cadmium stress in flax (Linum usitatissimum L.).

    Belkadhi, Aïcha; De Haro, Antonio; Obregon, Sara; Chaïbi, Wided; Djebali, Wahbi

    2015-10-01

    Salicylic acid (SA) promotes plant defense responses against toxic metal stresses. The present study addressed the hypothesis that 8-h SA pretreatment, would alter membrane lipids in a way that would protect against Cd toxicity. Flax seeds were pre-soaked for 8h in SA (0, 250 and 1000µM) and then subjected, at seedling stage, to cadmium (Cd) stress. At 100µM CdCl2, significant decreases in the percentages of phosphatidylcholine (PC), phosphatidylglycerol (PG), phosphatidylethanolamine (PE) and monogalactosyldiacylglycerol (MGDG) and changes in their relative fatty acid composition were observed in Cd-treated roots in comparison with controls. However, in roots of 8-h SA pretreated plantlets, results showed that the amounts of PC and PE were significantly higher as compared to non-pretreated plantlets. Additionally, in both lipid classes, the proportion of linolenic acid (18:3) increased upon the pretreatment with SA. This resulted in a significant increase in the fatty acid unsaturation ratio of the root PC and PE classes. As the exogenous application of SA was found to be protective of flax lipid metabolism, the possible mechanisms of protection against Cd stress in flax roots were discussed. Copyright © 2015 Elsevier Inc. All rights reserved.

  4. Study of ecologo-biological reactions of common flax to finely dispersed metallurgical wastes

    Zakharova, O.; Gusev, A.; Skripnikova, E.; Skripnikova, M.; Krutyakov, Yu; Kudrinsky, A.; Mikhailov, I.; Senatova, S.; Chuprunov, C.; Kuznetsov, D.

    2015-11-01

    Study was carried out on the influence of metallurgic industrial sludge on morphometric and biochemical indicators as well as productivity of common flax under laboratory and field conditions. In laboratory settings negative influence on seed germinating ability and positive influence on sprouts biomass production in water medium were observed. In sand medium suppression of biological productivity under the influence of sludge together with photosynthetic system II (FS II) activity stimulation were registered. Biochemical study showed peroxidase activity decrease in laboratory, while activity of polyphenol oxidase, superoxide dismutase and catalase were given a mild boost under the influence of sludge. In the field trial, positive influence of sludge on flax photosynthetic apparatus was shown. Positive influence of sludge on vegetation and yield indicators was observed. The analysis of heavy metals content showed excess over maximum allowable concentration (MAC) of copper and zinc in control plants, it may point to the background soil pollution. In the plants from the trial groups receiving 0.5 and 2 ton/ha heavy metals content below the control values was registered. Application of 4 ton/ha led to the maximum content of copper and zinc in the plants among the trial groups. The analysis of soils from the test plots indicated no excess over maximum allowable concentrations of heavy metals. Thus, further study of possibilities of using metallurgic industrial sludge as a soil stimulator in flax cultivation at the application rate of 0.5 t/ha seems promising.

  5. Application of Electro-Technologies in Processing of Flax Fiber

    G. S. Vijaya Raghavan

    2013-08-01

    Full Text Available Flax fibers used for various applications are obtained from flax stems. Retting followed by drying and mechanical separation leads to the production of fibers. This review article discusses the application of electro-technologies in the production of bast fibers from the flax stem. In these technologies, flax stems harvested from the field are subjected to microwave assisted retting, followed by electro–osmotic dewatering which reduces the water content of the stems. Dewatered stems are transferred to a microwave chamber for further drying, thus retted stems are obtained for further processing.

  6. SSR and morphological trait based population structure analysis of 130 diverse flax (Linum usitatissimum L.) accessions.

    Choudhary, Shashi Bhushan; Sharma, Hariom Kumar; Kumar, Arroju Anil; Maruthi, Rangappa Thimmaiah; Mitra, Jiban; Chowdhury, Isholeena; Singh, Binay Kumar; Karmakar, Pran Gobinda

    2017-02-01

    A total of 130 flax accessions of diverse morphotypes and worldwide origin were assessed for genetic diversity and population structure using 11 morphological traits and microsatellite markers (15 gSSRs and 7 EST-SSRs). Analysis performed after classifying these accessions on the basis of plant height, branching pattern, seed size, Indian/foreign origin into six categories called sub-populations viz. fibre type exotic, fibre type indigenous, intermediate type exotic, intermediate type indigenous, linseed type exotic and linseed type indigenous. The study assessed different diversity indices, AMOVA, population structure and included a principal coordinate analysis based on different marker systems. The highest diversity was exhibited by gSSR markers (SI=0.46; He=0.31; P=85.11). AMOVA based on all markers explained significant difference among fibre type, intermediate type and linseed type populations of flax. In terms of variation explained by different markers, EST-SSR markers (12%) better differentiated flax populations compared to morphological (9%) and gSSR (6%) markers at P=0.01. The maximum Nei's unbiased genetic distance (D=0.11) was observed between fibre type and linseed type exotic sub-populations based on EST-SSR markers. The combined structure analysis by using all markers grouped Indian fibre type accessions (63.4%) in a separate cluster along with the Indian intermediate type (48.7%), whereas Indian accessions (82.16%) of linseed type constituted an independent cluster. These findings were supported by the results of the principal coordinate analysis. Morphological markers employed in the study found complementary with microsatellite based markers in deciphering genetic diversity and population structure of the flax germplasm. Copyright © 2016 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

  7. Genetic characterization of a core collection of flax (Linum usitatissimum L.) suitable for association mapping studies and evidence of divergent selection between fiber and linseed types.

    Soto-Cerda, Braulio J; Diederichsen, Axel; Ragupathy, Raja; Cloutier, Sylvie

    2013-05-06

    Flax is valued for its fiber, seed oil and nutraceuticals. Recently, the fiber industry has invested in the development of products made from linseed stems, making it a dual purpose crop. Simultaneous targeting of genomic regions controlling stem fiber and seed quality traits could enable the development of dual purpose cultivars. However, the genetic diversity, population structure and linkage disequilibrium (LD) patterns necessary for association mapping (AM) have not yet been assessed in flax because genomic resources have only recently been developed. We characterized 407 globally distributed flax accessions using 448 microsatellite markers. The data was analyzed to assess the suitability of this core collection for AM. Genomic scans to identify candidate genes selected during the divergent breeding process of fiber flax and linseed were conducted using the whole genome shotgun sequence of flax. Combined genetic structure analysis assigned all accessions to two major groups with six sub-groups. Population differentiation was weak between the major groups (F(ST) = 0.094) and for most of the pairwise comparisons among sub-groups. The molecular coancestry analysis indicated weak relatedness (mean = 0.287) for most individual pairs. Abundant genetic diversity was observed in the total panel (5.32 alleles per locus), and some sub-groups showed a high proportion of private alleles. The average genome-wide LD (r²) was 0.036, with a relatively fast decay of 1.5 cM. Genomic scans between fiber flax and linseed identified candidate genes involved in cell-wall biogenesis/modification, xylem identity and fatty acid biosynthesis congruent with genes previously identified in flax and other plant species. Based on the abundant genetic diversity, weak population structure and relatedness and relatively fast LD decay, we concluded that this core collection is suitable for AM studies targeting multiple agronomic and quality traits aiming at the improvement of flax as a

  8. Impact of secondary metabolites and related enzymes in flax ...

    Changes in various physiological defenses including secondary metabolites, proline, total soluble protein and antioxidant enzymes were investigated in leaves and stems of 18 flax lines either resistant or susceptible to powdery mildew. The results showed that the total alkaloids content in flax stems was significantly ...

  9. Doubled haploid production in Flax (Linum usitatissimum L.).

    Obert, Bohus; Zácková, Zuzana; Samaj, Jozef; Pretová, Anna

    2009-01-01

    There is a requirement of haploid and double haploid material and homozygous lines for cell culture studies and breeding in flax. Anther culture is currently the most successful method producing doubled haploid lines in flax. Recently, ovary culture was also described as a good source of doubled haploids. In this review we focus on tissue and plants regeneration using anther culture, and cultivation of ovaries containing unfertilized ovules. The effect of genotype, physiological status of donor plants, donor material pre-treatment and cultivation conditions for flax anthers and ovaries is discussed here. The process of plant regeneration from anther and ovary derived calli is also in the focus of this review. Attention is paid to the ploidy level of regenerated tissue and to the use of molecular markers for determining of gametic origin of flax plants derived from anther and ovary cultures. Finally, some future prospects on the use of doubled haploids in flax biotechnology are outlined here.

  10. The effect of sodium hypochlorite solutions on in vitro seedling growth and shoot regeneration of flax (Linum usitatissimum)

    Yildiz, Mustafa; Er, Celâl

    2002-04-01

    The aim of this study was to determine the effect of concentration (40, 60, and 80%) and temperature (0, 10, 20, and 30°C) of sodium hypochlorite (NaOCl) solutions on seed germination, in vitro viability and growth of flax seedlings and regeneration capacity of hypocotyl explants. Results showed that seed germination, seedling growth and shoot regeneration were negatively affected by increasing concentration and temperature of disinfectant. The best results in seedling growth and shoot regeneration were obtained when 40% disinfectant concentration at 10°C was used.

  11. Identification and functional analysis of two alternatively spliced transcripts of ABSCISIC ACID INSENSITIVE3 (ABI3) in linseed flax (Linum usitatissimum L.).

    Wang, Yanyan; Zhang, Tianbao; Song, Xiaxia; Zhang, Jianping; Dang, Zhanhai; Pei, Xinwu; Long, Yan

    2018-01-01

    Alternative splicing is a popular phenomenon in different types of plants. It can produce alternative spliced transcripts that encode proteins with altered functions. Previous studies have shown that one transcription factor, ABSCISIC ACID INSENSITIVE3 (ABI3), which encodes an important component in abscisic acid (ABA) signaling, is subjected to alternative splicing in both mono- and dicotyledons. In the current study, we identified two homologs of ABI3 in the genome of linseed flax. We screened two alternatively spliced flax LuABI3 transcripts, LuABI3-2 and LuABI3-3, and one normal flax LuABI3 transcript, LuABI3-1. Sequence analysis revealed that one of the alternatively spliced transcripts, LuABI3-3, retained a 6 bp intron. RNA accumulation analysis showed that all three transcripts were expressed during seed development, while subcellular localization and transgene experiments showed that LuABI3-3 had no biological function. The two normal transcripts, LuABI3-1 and LuABI3-2, are the important functional isoforms in flax and play significant roles in the ABA regulatory pathway during seed development, germination, and maturation.

  12. Identification and functional analysis of two alternatively spliced transcripts of ABSCISIC ACID INSENSITIVE3 (ABI3 in linseed flax (Linum usitatissimum L..

    Yanyan Wang

    Full Text Available Alternative splicing is a popular phenomenon in different types of plants. It can produce alternative spliced transcripts that encode proteins with altered functions. Previous studies have shown that one transcription factor, ABSCISIC ACID INSENSITIVE3 (ABI3, which encodes an important component in abscisic acid (ABA signaling, is subjected to alternative splicing in both mono- and dicotyledons. In the current study, we identified two homologs of ABI3 in the genome of linseed flax. We screened two alternatively spliced flax LuABI3 transcripts, LuABI3-2 and LuABI3-3, and one normal flax LuABI3 transcript, LuABI3-1. Sequence analysis revealed that one of the alternatively spliced transcripts, LuABI3-3, retained a 6 bp intron. RNA accumulation analysis showed that all three transcripts were expressed during seed development, while subcellular localization and transgene experiments showed that LuABI3-3 had no biological function. The two normal transcripts, LuABI3-1 and LuABI3-2, are the important functional isoforms in flax and play significant roles in the ABA regulatory pathway during seed development, germination, and maturation.

  13. Accuracy of genomic selection in biparental populations of flax (Linum usitatissimum L.

    Frank M. You

    2016-08-01

    Full Text Available Flax is an important economic crop for seed oil and stem fiber. Phenotyping of traits such as seed yield, seed quality, stem fiber yield, and quality characteristics is expensive and time consuming. Genomic selection (GS refers to a breeding approach aimed at selecting preferred individuals based on genomic estimated breeding values predicted by a statistical model based on the relationship between phenotypes and genome-wide genetic markers. We evaluated the prediction accuracy of GS (rMP and the efficiency of GS relative to phenotypic selection (RE for three GS models: ridge regression best linear unbiased prediction (RR-BLUP, Bayesian LASSO (BL, and Bayesian ridge regression (BRR, for seed yield, oil content, iodine value, linoleic, and linolenic acid content with a full and a common set of genome-wide simple sequence repeat markers in each of three biparental populations. The three GS models generated similar rMP and RE, while BRR displayed a higher coefficient of determination (R2 of the fitted models than did RR-BLUP or BL. The mean rMP and RE varied for traits with different heritabilities and was affected by the genetic variation of the traits in the populations. GS for seed yield generated a mean RE of 1.52 across populations and marker sets, a value significantly superior to that for direct phenotypic selection. Our empirical results provide the first validation of GS in flax and demonstrate that GS could increase genetic gain per unit time for linseed breeding. Further studies for selection of training populations and markers are warranted.

  14. Computational identification and phylogenetic analysis of the oil-body structural proteins, oleosin and caleosin, in castor bean and flax.

    Hyun, Tae Kyung; Kumar, Dhinesh; Cho, Young-Yeol; Hyun, Hae-Nam; Kim, Ju-Sung

    2013-02-25

    Oil bodies (OBs) are the intracellular particles derived from oilseeds. These OBs store lipids as a carbon resource, and have been exploited for a variety of industrial applications including biofuels. Oleosin and caleosin are the common OB structural proteins which are enabling biotechnological enhancement of oil content and OB-based pharmaceutical formations via stabilizing OBs. Although the draft whole genome sequence information for Ricinus communis L. (castor bean) and Linum usitatissimum L. (flax), important oil seed plants, is available in public database, OB-structural proteins in these plants are poorly indentified. Therefore, in this study, we performed a comprehensive bioinformatic analysis including analysis of the genome sequence, conserved domains and phylogenetic relationships to identify OB structural proteins in castor bean and flax genomes. Using comprehensive analysis, we have identified 6 and 15 OB-structural proteins from castor bean and flax, respectively. A complete overview of this gene family in castor bean and flax is presented, including the gene structures, phylogeny and conserved motifs, resulting in the presence of central hydrophobic regions with proline knot motif, providing an evolutionary proof that this central hydrophobic region had evolved from duplications in the primitive eukaryotes. In addition, expression analysis of L-oleosin and caleosin genes using quantitative real-time PCR demonstrated that seed contained their maximum expression, except that RcCLO-1 expressed maximum in cotyledon. Thus, our comparative genomics analysis of oleosin and caleosin genes and their putatively encoded proteins in two non-model plant species provides insights into the prospective usage of gene resources for improving OB-stability. Copyright © 2012 Elsevier B.V. All rights reserved.

  15. Genome-wide identification, phylogenetic classification, and exon-intron structure characterisation of the tubulin and actin genes in flax (Linum usitatissimum).

    Pydiura, Nikolay; Pirko, Yaroslav; Galinousky, Dmitry; Postovoitova, Anastasiia; Yemets, Alla; Kilchevsky, Aleksandr; Blume, Yaroslav

    2018-06-08

    Flax (Linum usitatissimum L.) is a valuable food and fiber crop cultivated for its quality fiber and seed oil. α-, β-, γ-tubulins and actins are the main structural proteins of the cytoskeleton. α- and γ-tubulin and actin genes have not been characterized yet in the flax genome. In this study, we have identified 6 α-tubulin genes, 13 β-tubulin genes, 2 γ-tubulin genes, and 15 actin genes in the flax genome and analysed the phylogenetic relationships between flax and A. thaliana tubulin and actin genes. Six α-tubulin genes are represented by 3 paralogous pairs, among 13 β-tubulin genes 7 different isotypes can be distinguished, 6 of which are encoded by two paralogous genes each. γ-tubulin is represented by a paralogous pair of genes one of which may be not functional. Fifteen actin genes represent 7 paralogous pairs - 7 actin isotypes and a sequentially duplicated copy of one of the genes of one of the isotypes. Exon-intron structure analysis has shown intron length polymorphism within the β-tubulin genes and intron number variation among the α-tubulin gene: 3 or 4 introns are found in two or four genes, respectively. Intron positioning occurs at conservative sites, as observed in numerous other plant species. Flax actin genes show both intron length polymorphisms and variation in the number of intron that may be 2 or 3. These data will be useful to support further studies on the specificity, functioning, regulation and evolution of the flax cytoskeleton proteins. This article is protected by copyright. All rights reserved.

  16. Genome-Wide Association Study Identifying Candidate Genes Influencing Important Agronomic Traits of Flax (Linum usitatissimum L.) Using SLAF-seq.

    Xie, Dongwei; Dai, Zhigang; Yang, Zemao; Sun, Jian; Zhao, Debao; Yang, Xue; Zhang, Liguo; Tang, Qing; Su, Jianguang

    2017-01-01

    Flax ( Linum usitatissimum L.) is an important cash crop, and its agronomic traits directly affect yield and quality. Molecular studies on flax remain inadequate because relatively few flax genes have been associated with agronomic traits or have been identified as having potential applications. To identify markers and candidate genes that can potentially be used for genetic improvement of crucial agronomic traits, we examined 224 specimens of core flax germplasm; specifically, phenotypic data for key traits, including plant height, technical length, number of branches, number of fruits, and 1000-grain weight were investigated under three environmental conditions before specific-locus amplified fragment sequencing (SLAF-seq) was employed to perform a genome-wide association study (GWAS) for these five agronomic traits. Subsequently, the results were used to screen single nucleotide polymorphism (SNP) loci and candidate genes that exhibited a significant correlation with the important agronomic traits. Our analyses identified a total of 42 SNP loci that showed significant correlations with the five important agronomic flax traits. Next, candidate genes were screened in the 10 kb zone of each of the 42 SNP loci. These SNP loci were then analyzed by a more stringent screening via co-identification using both a general linear model (GLM) and a mixed linear model (MLM) as well as co-occurrences in at least two of the three environments, whereby 15 final candidate genes were obtained. Based on these results, we determined that UGT and PL are candidate genes for plant height, GRAS and XTH are candidate genes for the number of branches, Contig1437 and LU0019C12 are candidate genes for the number of fruits, and PHO1 is a candidate gene for the 1000-seed weight. We propose that the identified SNP loci and corresponding candidate genes might serve as a biological basis for improving crucial agronomic flax traits.

  17. A genome-wide analysis of the flax (Linum usitatissimum L.) dirigent protein family: from gene identification and evolution to differential regulation.

    Corbin, Cyrielle; Drouet, Samantha; Markulin, Lucija; Auguin, Daniel; Lainé, Éric; Davin, Laurence B; Cort, John R; Lewis, Norman G; Hano, Christophe

    2018-05-01

    Identification of DIR encoding genes in flax genome. Analysis of phylogeny, gene/protein structures and evolution. Identification of new conserved motifs linked to biochemical functions. Investigation of spatio-temporal gene expression and response to stress. Dirigent proteins (DIRs) were discovered during 8-8' lignan biosynthesis studies, through identification of stereoselective coupling to afford either (+)- or (-)-pinoresinols from E-coniferyl alcohol. DIRs are also involved or potentially involved in terpenoid, allyl/propenyl phenol lignan, pterocarpan and lignin biosynthesis. DIRs have very large multigene families in different vascular plants including flax, with most still of unknown function. DIR studies typically focus on a small subset of genes and identification of biochemical/physiological functions. Herein, a genome-wide analysis and characterization of the predicted flax DIR 44-membered multigene family was performed, this species being a rich natural grain source of 8-8' linked secoisolariciresinol-derived lignan oligomers. All predicted DIR sequences, including their promoters, were analyzed together with their public gene expression datasets. Expression patterns of selected DIRs were examined using qPCR, as well as through clustering analysis of DIR gene expression. These analyses further implicated roles for specific DIRs in (-)-pinoresinol formation in seed-coats, as well as (+)-pinoresinol in vegetative organs and/or specific responses to stress. Phylogeny and gene expression analysis segregated flax DIRs into six distinct clusters with new cluster-specific motifs identified. We propose that these findings can serve as a foundation to further systematically determine functions of DIRs, i.e. other than those already known in lignan biosynthesis in flax and other species. Given the differential expression profiles and inducibility of the flax DIR family, we provisionally propose that some DIR genes of unknown function could be involved in

  18. Genome-Wide Association Study Identifying Candidate Genes Influencing Important Agronomic Traits of Flax (Linum usitatissimum L. Using SLAF-seq

    Dongwei Xie

    2018-01-01

    Full Text Available Flax (Linum usitatissimum L. is an important cash crop, and its agronomic traits directly affect yield and quality. Molecular studies on flax remain inadequate because relatively few flax genes have been associated with agronomic traits or have been identified as having potential applications. To identify markers and candidate genes that can potentially be used for genetic improvement of crucial agronomic traits, we examined 224 specimens of core flax germplasm; specifically, phenotypic data for key traits, including plant height, technical length, number of branches, number of fruits, and 1000-grain weight were investigated under three environmental conditions before specific-locus amplified fragment sequencing (SLAF-seq was employed to perform a genome-wide association study (GWAS for these five agronomic traits. Subsequently, the results were used to screen single nucleotide polymorphism (SNP loci and candidate genes that exhibited a significant correlation with the important agronomic traits. Our analyses identified a total of 42 SNP loci that showed significant correlations with the five important agronomic flax traits. Next, candidate genes were screened in the 10 kb zone of each of the 42 SNP loci. These SNP loci were then analyzed by a more stringent screening via co-identification using both a general linear model (GLM and a mixed linear model (MLM as well as co-occurrences in at least two of the three environments, whereby 15 final candidate genes were obtained. Based on these results, we determined that UGT and PL are candidate genes for plant height, GRAS and XTH are candidate genes for the number of branches, Contig1437 and LU0019C12 are candidate genes for the number of fruits, and PHO1 is a candidate gene for the 1000-seed weight. We propose that the identified SNP loci and corresponding candidate genes might serve as a biological basis for improving crucial agronomic flax traits.

  19. A genome-wide analysis of the flax (Linum usitatissimum L.) dirigent protein family: from gene identification and evolution to differential regulation.

    Corbin, Cyrielle; Drouet, Samantha; Markulin, Lucija; Auguin, Daniel; Laine, Eric; Davin, Laurence B.; Cort, John R.; Lewis, Norman G.; Hano, Christophe

    2018-04-30

    Identification of DIR encoding genes in flax genome. Analysis of phylogeny, gene/protein structures and evolution. Identification of new conserved motifs linked to biochemical functions. Investigation of spatio-temporal gene expression and response to stress. Dirigent proteins (DIRs) were discovered during 8-8' lignan biosynthesis studies, through identification of stereoselective coupling to afford either (+)- or (-)-pinoresinols from E-coniferyl alcohol. DIRs are also involved or potentially involved in terpenoid, allyl/propenyl phenol lignan, pterocarpan and lignin biosynthesis. DIRs have very large multigene families in different vascular plants including flax, with most still of unknown function. DIR studies typically focus on a small subset of genes and identification of biochemical/physiological functions. Herein, a genome-wide analysis and characterization of the predicted flax DIR 44-membered multigene family was performed, this species being a rich natural grain source of 8-8' linked secoisolariciresinol-derived lignan oligomers. All predicted DIR sequences, including their promoters, were analyzed together with their public gene expression datasets. Expression patterns of selected DIRs were examined using qPCR, as well as through clustering analysis of DIR gene expression. These analyses further implicated roles for specific DIRs in (-)-pinoresinol formation in seed-coats, as well as (+)-pinoresinol in vegetative organs and/or specific responses to stress. Phylogeny and gene expression analysis segregated flax DIRs into six distinct clusters with new cluster-specific motifs identified. We propose that these findings can serve as a foundation to further systematically determine functions of DIRs, i.e. other than those already known in lignan biosynthesis in flax and other species. Given the differential expression profiles and inducibility of the flax DIR family, we provisionally propose that some DIR genes of unknown function could be involved

  20. Genetic Variability of 27 Traits in a Core Collection of Flax (Linum usitatissimum L.).

    You, Frank M; Jia, Gaofeng; Xiao, Jin; Duguid, Scott D; Rashid, Khalid Y; Booker, Helen M; Cloutier, Sylvie

    2017-01-01

    Assessment of genetic variability of plant core germplasm is needed for efficient germplasm utilization in breeding improvement. A total of 391 accessions of a flax core collection, which preserves the variation present in the world collection of 3,378 accessions maintained by Plant Gene Resources of Canada (PGRC) and represents a broad range of geographical origins, different improvement statuses and two morphotypes, was evaluated in field trials in up to 8 year-location environments for 10 agronomic, eight seed quality, six fiber and three disease resistance traits. The large phenotypic variation in this subset was explained by morphotypes (22%), geographical origins (11%), and other variance components (67%). Both divergence and similarity between two basic morphotypes, namely oil or linseed and fiber types, were observed, whereby linseed accessions had greater thousand seed weight, seeds m -2 , oil content, branching capability and resistance to powdery mildew while fiber accessions had greater straw weight, plant height, protein content and resistance to pasmo and fusarium wilt diseases, but they had similar performance in many traits and some of them shared common characteristics of fiber and linseed types. Weak geographical patterns within either fiber or linseed accessions were confirmed, but specific trait performance was identified in East Asia for fiber type, and South Asia and North America for linseed type. Relatively high broad-sense heritability was obtained for seed quality traits, followed by agronomic traits and resistance to powdery mildew and fusarium wilt. Diverse phenotypic and genetic variability in the flax core collection constitutes a useful resource for breeding.

  1. Molecular Genetic Identification Of Some Flax Mutants

    AMER, I.M.; MOUSTAFA, H.A.M.

    2009-01-01

    Five flax genotypes (Linum usitatissimum L.) i.e., commercial cultivar Sakha 2, the mother variety Giza 4 and three mutant types induced by gamma rays, were screened for their salinity tolerance in field experiments (salinity concentration was 8600 and 8300 ppm for soil and irrigation water, respectively). Mutation 6 was the most salt tolerant as compared to the other four genotypes.RAPD technique was used to detect some molecular markers associated with salt tolerance in flax (Mut 6), RAPD-PCR results using 12 random primers exhibited 149 amplified fragments; 91.9% of them were polymorphic and twelve molecular markers (8.1%) for salt tolerant (mutant 6) were identified with molecular size ranged from 191 to 4159 bp and only eight primers successes to amplify these specific markers. Concerning the other mutants, Mut 15 and Mut 25 exhibited 4.3% and 16.2% specific markers, respectively. The induced mutants exhibited genetic similarity to the parent variety were about 51%, 58.3% and 61.1% for Mut 25, Mut 6 and Mut 15, respectively. These specific markers (SM) are used for identification of the induced mutations and it is important for new variety registration.

  2. Characterisation of Flax Fibres and Flax Fibre Composites. Being cellulose based sources of materials

    Aslan, Mustafa

    -melting temperature polyethylene terephthalate (LPET) filaments were aligned in assemblies of different fibre weight fractions in the range 0.24 to 0.83 to manufacture unidirectional composites using two different consolidation pressures of 1.67 and 4.10 MPa. The maximum attainable fibre volume fraction is found...... to be 47% for the low pressure composites, whereas it is found to be 60% for the high pressure composites. The stiffness of the flax fibre/LPET composites is measured to be in the range 16 to 33 GPa depending on the volumetric composition of the composites. The high pressure composites are found to have...... a similar microstructure at low fibre weight fractions. However, when the fibre content is increased, a difference in porosity content can be observed from the composite cross sections. The nominal tensile strength of the unidirectional flax fibre/LPET composites is measured in the range 180 to 340 MPa...

  3. The LuWD40-1 gene encoding WD repeat protein regulates growth and pollen viability in flax (Linum Usitatissimum L..

    Santosh Kumar

    Full Text Available As a crop, flax holds significant commercial value for its omega-3 rich oilseeds and stem fibres. Canada is the largest producer of linseed but there exists scope for significant yield improvements. Implementation of mechanisms such as male sterility can permit the development of hybrids to assist in achieving this goal. Temperature sensitive male sterility has been reported in flax but the leakiness of this system in field conditions limits the production of quality hybrid seeds. Here, we characterized a 2,588 bp transcript differentially expressed in male sterile lines of flax. The twelve intron gene predicted to encode a 368 amino acid protein has five WD40 repeats which, in silico, form a propeller structure with putative nucleic acid and histone binding capabilities. The LuWD40-1 protein localized to the nucleus and its expression increased during the transition and continued through the vegetative stages (seed, etiolated seedling, stem while the transcript levels declined during reproductive development (ovary, anthers and embryonic morphogenesis of male fertile plants. Knockout lines for LuWD40-1 in flax failed to develop shoots while overexpression lines showed delayed growth phenotype and were male sterile. The non-viable flowers failed to open and the pollen grains from these flowers were empty. Three independent transgenic lines overexpressing the LuWD40-1 gene had ∼80% non-viable pollen, reduced branching, delayed flowering and maturity compared to male fertile genotypes. The present study provides new insights into a male sterility mechanism present in flax.

  4. The LuWD40-1 gene encoding WD repeat protein regulates growth and pollen viability in flax (Linum Usitatissimum L.).

    Kumar, Santosh; Jordan, Mark C; Datla, Raju; Cloutier, Sylvie

    2013-01-01

    As a crop, flax holds significant commercial value for its omega-3 rich oilseeds and stem fibres. Canada is the largest producer of linseed but there exists scope for significant yield improvements. Implementation of mechanisms such as male sterility can permit the development of hybrids to assist in achieving this goal. Temperature sensitive male sterility has been reported in flax but the leakiness of this system in field conditions limits the production of quality hybrid seeds. Here, we characterized a 2,588 bp transcript differentially expressed in male sterile lines of flax. The twelve intron gene predicted to encode a 368 amino acid protein has five WD40 repeats which, in silico, form a propeller structure with putative nucleic acid and histone binding capabilities. The LuWD40-1 protein localized to the nucleus and its expression increased during the transition and continued through the vegetative stages (seed, etiolated seedling, stem) while the transcript levels declined during reproductive development (ovary, anthers) and embryonic morphogenesis of male fertile plants. Knockout lines for LuWD40-1 in flax failed to develop shoots while overexpression lines showed delayed growth phenotype and were male sterile. The non-viable flowers failed to open and the pollen grains from these flowers were empty. Three independent transgenic lines overexpressing the LuWD40-1 gene had ∼80% non-viable pollen, reduced branching, delayed flowering and maturity compared to male fertile genotypes. The present study provides new insights into a male sterility mechanism present in flax.

  5. Ty1-copia elements reveal diverse insertion sites linked to polymorphisms among flax (Linum usitatissimum L.) accessions.

    Galindo-González, Leonardo; Mhiri, Corinne; Grandbastien, Marie-Angèle; Deyholos, Michael K

    2016-12-07

    Initial characterization of the flax genome showed that Ty1-copia retrotransposons are abundant, with several members being recently inserted, and in close association with genes. Recent insertions indicate a potential for ongoing transpositional activity that can create genomic diversity among accessions, cultivars or varieties. The polymorphisms generated constitute a good source of molecular markers that may be associated with phenotype if the insertions alter gene activity. Flax, where accessions are bred mainly for seed nutritional properties or for fibers, constitutes a good model for studying the relationship of transpositional activity with diversification and breeding. In this study, we estimated copy number and used a type of transposon display known as Sequence-Specific Amplification Polymorphisms (SSAPs), to characterize six families of Ty1-copia elements across 14 flax accessions. Polymorphic insertion sites were sequenced to find insertions that could potentially alter gene expression, and a preliminary test was performed with selected genes bearing transposable element (TE) insertions. Quantification of six families of Ty1-copia elements indicated different abundances among TE families and between flax accessions, which suggested diverse transpositional histories. SSAPs showed a high level of polymorphism in most of the evaluated retrotransposon families, with a trend towards higher levels of polymorphism in low-copy number families. Ty1-copia insertion polymorphisms among cultivars allowed a general distinction between oil and fiber types, and between spring and winter types, demonstrating their utility in diversity studies. Characterization of polymorphic insertions revealed an overwhelming association with genes, with insertions disrupting exons, introns or within 1 kb of coding regions. A preliminary test on the potential transcriptional disruption by TEs of four selected genes evaluated in three different tissues, showed one case of significant

  6. Role of Polysaccharides on Mechanical and Adhesion Properties of Flax Fibres in Flax/PLA Biocomposite

    Gijo Raj

    2011-01-01

    Full Text Available The effect of alkali and enzymatic treatments on flax fibre morphology, mechanical, and adhesion properties was investigated. The multilength scale analysis allows for the correlation of the fibre's morphological changes induced by the treatments with mechanical properties to better explain the adherence properties between flax and PLA. The atomic force microscopy (AFM images revealed the removal of primary layers, upon treatments, down to cellulose microfibrils present in the secondary layers. The variation in mechanical properties was found to be dependent, apart from the crystalline content, on interaction between cellulose microfibrils and encrusting polysaccharides, pectins and hemicelluloses, in the secondary layers. Finally, microbond tests between the modified fibres and PLA emphasize the important role of the outer fibre's surface on the overall composite properties. It was observed here that gentle treatments of the fibres, down to the oriented microfibrils, are favourable to a better adherence with a PLA drop. This paper highlights the important role of amorphous polymers, hemicellulose and pectin, in the optimisation of the adhesion and mechanical properties of flax fibres in the biocomposite.

  7. Molecular physiology of seeds. Author-review of the Thesis

    Hajduch, M.

    2014-05-01

    Plant development is well described. However, full understanding of the regulation of processes associated with plant development is still missing. Present author-review of the Dr.Sc. thesis advances our understanding of the regulation of plant development by quantitative proteomics analyses of seed development of soybean, canola, castor, flax, and model plant arabidopsis in control and environmentally challenged environments. The analysis of greenhouse-grown soybean, canola, castor, and arabidospis provided complex characterization of metabolic processes during seed development, for instance, of carbon assimilation into fatty acids. Furthermore, the analyses of soybean and flax grown in Chernobyl area provided in-depth characterization of seed development in radio-contaminated environment. Soybean and flax were altered by radio-contaminated environment in different way. However, these alterations resulted into modifications in seed oil content. Further analyses showed that soybean and flax possess alterations of carbon metabolism in cytoplasm and plastids along with increased activity of photosynthetic apparatus. Our present experiments are focused on further characterization of molecular bases that might be responsible for alterations of seed oil content in Chernobyl grown plants. (author)

  8. SCREENING OF COMMON FLAX FAD GENES BY PCR

    Veronika Štefúnová

    2013-02-01

    Full Text Available Currently, flax (Linum usitatissimum L. is an important crop from commercial and economical aspects. In the spotlight is the linseed oil as a source of α-linolenic acid. The aim of presented study was to analyse fatty acid desaturase (FAD genes in flax. Several genotypes of flax (Hohenheim, La Plata 1938, Redwing USA and Escalina were used. The primers described by Vrinten et al. (2005 were used for PCR amplification reactions. Two FAD3 genes, LuFAD3A and LuFAD3B, were identified in a genome of flax. Subsequently the nucleotide sequences between origins and genotypes of flax FAD genes were compared. Primarily were used the nucleotide sequences of FAD2 and FAD3C genes available in NCBI database. Differences were found using BLAST program in nucleotide sequences of FAD genes and the specific primers were designed to amplify a specific target sequences in a genome of flax. These primers were used in PCR amplification reactions to identification of FAD2 and FAD3C genes. The PCR products were separated by electrophoresis on agarose gel.

  9. Flax - Evaluation of composite flour and using in cereal products

    Marie Hrušková

    2016-06-01

    Full Text Available Two types of yellow and brown linseed, differing in granulation, were tested in form of wheat flour composites (additions 2.5% and 5.0% by using the Farinograph, the Extensigraph and the Rapid Visco Analyser (RVA apparatuses. Additions of brown and yellow flax fibre significantly affected Falling Number and Zeleny test values. Curves of farinograph were differed according to flax fibre type - finer flax (better terminology granulation meant somewhat stronger negative changes in dough stability and dough softening degree. Results of extensigraph test demonstrated changes in dough elasticity and extensibility due to lowering of gluten protein content. Appearance of the RVA profiles was verifiably different, reflecting diverse wheat and flax polysaccharides, added dietary fibre type and its granulation. Due to that, bread volume and shape was lowered up to one-half in case of golden flax composites. Similar tendencies with smaller negative influence caused the brown linseed. Fibre from flax is used for technical (textile use, but linseed dietary fibre addition affected quality of laboratory prepared cut-off biscuits and dried pasta differently, showing a dependence on the fibre type, granulation as well as addition level. Sensory profiles of all mentioned product types were acceptable.

  10. Study of flax hybrid preforms reinforced epoxy composites

    Muralidhar, B. A

    2013-01-01

    Highlights: • We examine the thermal, viscoelastic and mechanical behaviour of flax preform hybrid composites. • The thermal stability of the matrix decrease with increasing volume fraction of flax preforms. • The effect of number of preform layers and the lay-up architecture were studied.. • Morphological study on the fractured surface of the composite laminate is carried out. - Abstracts: This study investigates the thermal, mechanical and thermomechanical properties of flax hybrid preform reinforced epoxy composites. Flax plain weave fabric and 1 × 1 weft rib knitted structures were together used as reinforcements and the composites were produced using hand lay-up technique. Specimen preparation and testing were carried out as per ASTM standards. Thermogravimetric analysis (TGA) indicates a decrease in thermal stability of the matrix polymer with the incorporation of flax hybrid preform. The dynamic mechanical analysis revealed a shift in the T g with the addition of flax hybrid preforms. Mechanical data obtained showed that tensile strength and stiffness is a product of the fibre/matrix synergy, whereas the compressive strength and stiffness are contributed by the reinforcing matrix. Additionally, investigation show that laminate with knitted preform as skin layer exhibits superior mechanical properties. However, improved tensile properties at lower fibre volume fraction, reinforces the opinion that hybrid preform composites can offer significant benefits in terms of performance, weight and overall cost. The failure mechanism was analysed, by scanning electron microscope (SEM)

  11. New biocomposites based on bioplastic flax fibers and biodegradable polymers.

    Wróbel-Kwiatkowska, Magdalena; Czemplik, Magdalena; Kulma, Anna; Zuk, Magdalena; Kaczmar, Jacek; Dymińska, Lucyna; Hanuza, Jerzy; Ptak, Maciej; Szopa, Jan

    2012-01-01

    A new generation of entirely biodegradable and bioactive composites with polylactic acid (PLA) or poly-ε-caprolactone (PCL) as the matrix and bioplastic flax fibers as reinforcement were analyzed. Bioplastic fibers contain polyhydroxybutyrate and were obtained from transgenic flax. Biochemical analysis of fibers revealed presence of several antioxidative compounds of hydrophilic (phenolics) and hydrophobic [cannabidiol (CBD), lutein] nature, indicating their high antioxidant potential. The presence of CBD and lutein in flax fibers is reported for the first time. FTIR analysis showed intermolecular hydrogen bonds between the constituents in composite PLA+flax fibers which were not detected in PCL-based composite. Mechanical analysis of prepared composites revealed improved stiffness and a decrease in tensile strength. The viability of human dermal fibroblasts on the surface of composites made of PLA and transgenic flax fibers was the same as for cells cultured without composites and only slightly lower (to 9%) for PCL-based composites. The amount of platelets and Escherichia coli cells aggregated on the surface of the PLA based composites was significantly lower than for pure polymer. Thus, composites made of PLA and transgenic flax fibers seem to have bacteriostatic, platelet anti-aggregated, and non-cytotoxic effect. Copyright © 2012 American Institute of Chemical Engineers (AIChE).

  12. Economic interpretation of sustainable development of the flax complex

    Oleg Ivanovich Botkin

    2012-09-01

    Full Text Available This paper reviews the definition of the notions “stability” and “stable development”, and analyzes the factors influencing the development stability. We suggest the definition of the flax complex stable development and its assessment. We also examine the factors causing the flax complex functioning instability. An integral index was proposed to determine the stability of flax complex; this index takes into account the rate of growth (or decline of major products manufacturing, commodities, profits from product sales, accounts receivable and accounts payable, investments into fixed capital, labor productivity, coefficient of manufacturing capacity utilization and updating of the basic funds. The paper deals with the problems of its development and modern state of flax sub-complex of agroindustrial complex, as well as with the matters of disproportions between the complex’s branches. It covers the causes of tolling schemes of flax processing businesses work and therole of thestatein native market of flax products formation. The necessity of industry diversification and innovation development is substantiated.

  13. Flame retardant treated flax fibre reinforced phenolic composites: Ageing and thermal characteristics

    Molaba, TP

    2018-01-01

    Full Text Available In this study, flax composites were prepared from flax fabric and phenolic resin. Chemical treatments were imparted to the fabric to improve adhesion between the fabric and the phenolic matrix. Diammonium phosphate was applied to improve...

  14. Effect of heavy metals on inhibition of root elongation in 23 cultivars of flax (Linum usitatissimum L.).

    Soudek, Petr; Katrusáková, Adéla; Sedlácek, Lukás; Petrová, Sárka; Kocí, Vladimír; Marsík, Petr; Griga, Miroslav; Vanek, Tomás

    2010-08-01

    The effect of toxic metals on seed germination was studied in 23 cultivars of flax (Linum usitatissimum L.). Toxicity of cadmium, cobalt, copper, zinc, nickel, lead, chromium, and arsenic at five different concentrations (0.01-1 mM) was tested by standard ecotoxicity test. Root length was measured after 72 h of incubation. Elongation inhibition, EC50 value, slope, and NOEC values were calculated. Results were evaluated by principal component analysis, a multidimensional statistical method. The results showed that heavy-metal toxicity decreased in the following order: As3+>or=As5+>Cu2+>Cd2+>Co2+>Cr6+>Ni2+>Pb2+>Cr3+>Zn2+.

  15. Effects of cadmium and mycorrhizal fungi on growth, fitness, and cadmium accumulation in flax (Linum usitatissimum; Linaceae).

    Hancock, Laura M S; Ernst, Charlotte L; Charneskie, Rebecca; Ruane, Lauren G

    2012-09-01

    Agricultural soils have become contaminated with a variety of heavy metals, including cadmium. The degree to which soil contaminants affect plants may depend on symbiotic relationships between plant roots and soil microorganisms. We examined (1) whether mycorrhizal fungi counteract the potentially negative effects of cadmium on the growth and fitness of flax (Linum usitatissimum) and (2) whether mycorrhizal fungi affect the accumulation of cadmium within plant parts. Two flax cultivars (Linott and Omega) were grown in three soil cadmium environments (0, 5, and 15 ppm). Within each cadmium environment, plants were grown in either the presence or absence of mycorrhizal fungi. Upon senescence, we measured growth and fitness and quantified the concentration of cadmium within plants. Soil cadmium significantly decreased plant fitness, but did not affect plant growth. Mycorrhizal fungi, which were able to colonize roots of plants growing in all cadmium levels, significantly increased plant growth and fitness. Although mycorrhizal fungi counteracted the negative effects of cadmium on fruit and seed production, they also enhanced the concentration of cadmium within roots, fruits, and seeds. The degree to which soil cadmium affects plant fitness and the accumulation of cadmium within plants depended on the ability of plants to form symbiotic relationships with mycorrhizal fungi. The use of mycorrhizal fungi in contaminated agricultural soils may offset the negative effects of metals on the quantity of seeds produced, but exacerbate the accumulation of these metals in our food supply.

  16. A study on the trans-crystallisation behaviour of flax fibre reinforced polypropylene composites and effect on mechanical properties

    George, J.; Garkhail, S.K.; Wieland, B.; Peijs, A.A.J.M.; Mattoso, L.H.C.

    2000-01-01

    The effect of flax fiber reinforcement on crystn. behavior of polypropylene (PP) was investigated using a hot-stage optical microscope. To follow the crystn. kinetics, cooling rate and crystn. temps. were varied. Flax fibers with different processing history e.g. green flax, Duralin flax, alkali and

  17. Effect of nitrogen fertilizer and gamma radiation on the morophological character and yield of flax

    Baker, R.H.; Salman, A.A.; El-Hariri, D.M.

    1984-01-01

    This work was carried out in the field of agriculture college, in split plot design to investigate the influence of different levels of fertilizer and different doses of gamma radiation on the morphological characters and yield of flax. The results could be summarized as follow:1-Plant height and number of basal branches/plant responded significantly to nitrogen. 2-Nitrogen at the rate of 80 and 60 Kg/ha increased both seed yield/donum and capsules yield/plant over control treatment and the superiority a mounted to 18.6 and 10.2 for seed yield while 16 and 36 for capsule yield. 3-Radiation caused stimulating significant effect on a number of capsules and weight of 1000 seeds. 4-Radiation significantly inhibited seed yield/donum and caused insignificant effect on total yield capsules yield and straw yield/plant. 5-Flowering zone length responded signicantly to the interraction of nitrogen and gamma doses and attained its maximum value at 80 Kg N/ha and 60 Kilorad of gamma radiation.(7 tabs., 23 refs.)

  18. FLAX OIL FROM TRANSGENIC LINUM USITATISSIMUM SELECTIVELY INHIBITS IN VITRO PROLIFERATION OF HUMAN CANCER CELL LINES.

    Gebarowski, Tomasz; Gebczak, Katarzyna; Wiatrak, Benita; Kulma, Anna; Pelc, Katarzyna; Czuj, Tadeusz; Szopa, Jan; Gasiorowski, Kazimierz

    2017-03-01

    Emulsions made of oils from transgenic flaxseeds significantly decreased in vitro proliferation of six tested human cancer cell lines in 48-h cultures, as assessed with the standard sulforhodamine assay. However, the emulsions also increased proliferation rate of normal human dermal fibroblasts and, to a lower extend, of keratinocytes. Both inhibition of in vitro proliferation of human cancer cell lines and stimulation of proliferation of normal dermal fibroblasts and keratinocytes were especially strong with the emulsion type B and with emulsion type M. Oils from seeds of transgenic flax type B and M should be considered as valuable adjunct to standard cytostatic therapy of human cancers and also could be applied to improve the treatment of skin lesions in wound healing.

  19. Ontogeny of floral organs in flax (Linum usitatissimum; Linaceae).

    Schewe, Lauren C; Sawhney, Vipen K; Davis, Arthur R

    2011-07-01

    Flax (Linum usitatissimum) is an important crop worldwide; however, a detailed study on flower development of this species is lacking. Here we describe the pattern of initiation and a program of key developmental events in flax flower ontogeny. This study provides important fundamental information for future research in various aspects of flax biology and biotechnology. Floral buds and organs were measured throughout development and examined using scanning electron microscopy. Floral organs were initiated in the following sequence: sepals, stamens and petals, gynoecium, and nectaries. The five sepals originated in a helical pattern, followed evidently by simultaneous initiation of five stamens and five petals, the former opposite of the sepals and the latter alternate to them. The gynoecium, with five carpels, was produced from the remaining, central region of the floral apex. Stamens at early stages were dominated by anther growth but filaments elongated rapidly shortly before anthesis. Early gynoecium development occurred predominantly in the ovary, and ovule initiation began prior to enclosure of carpels. A characteristic feature was the twisted growth of styles, accompanied by the differentiation of papillate stigmas. Petal growth lagged behind that of other floral organs, but petals eventually grew rapidly to enclose the inner whorls after style elongation. Flask-shaped nectaries bearing stomata developed on the external surface of the filament bases. This is the first detailed study on flax floral organ development and has established a key of 12 developmental stages, which should be useful to flax researchers.

  20. Assessing the Environmental Impact of Flax Fibre Reinforced Polymer Composite from a Consequential Life Cycle Assessment Perspective

    Yelin Deng; Yajun Tian

    2015-01-01

    The study implements the consequential life cycle assessment (CLCA) to provide a market based perspective on how overall environmental impact will change when shifting glass fibres to flax fibres as reinforcements in composite fabrication. With certain assumptions, the marginal flax fibre supply is identified to be a combination of Chinese flax fibre (70%) and French flax fibre (30%). Due to inferior cultivars and coal-fired electricity in Chinese flax cultivation, the CLCA study reveals that...

  1. Properties and performance of flax yarn/thermoplastic polyester composites

    Madsen, Bo; Mehmood, Shahid

    2012-01-01

    Aiming at demonstrating the potential of unidirectional natural fiber-reinforced thermoplastic composites in structural applications, textile flax yarn/thermoplastic polyester composites with variable fiber volume fractions have been manufactured by a filament-winding process followed by a vacuum......-assisted compression molding process. The microstructure of the composites shows that the flax fiber yarns are well impregnated by the polyester matrix, and this supports the measured low porosity content of the composites. The experimental tensile modulus and ultimate tensile stress of the composites in the axial...

  2. Molecular genetic studies in flax (Linum usitatissimum L.)

    Vromans, J.

    2006-01-01

    In this thesis five molecular genetic studies on flax ( Linum usitatissimum L.) are described, of which two chapters aim to characterize the genetic structure and the amount of genetic diversity in the primary and secondary gene pool of the crop species. Three chapters describe the development of

  3. Cannabinoid-like anti-inflammatory compounds from flax fiber.

    Styrczewska, Monika; Kulma, Anna; Ratajczak, Katarzyna; Amarowicz, Ryszard; Szopa, Jan

    2012-09-01

    Flax is a valuable source of fibers, linseed and oil. The compounds of the latter two products have already been widely examined and have been proven to possess many health-beneficial properties. In the course of analysis of fibers extract from previously generated transgenic plants overproducing phenylpropanoids a new terpenoid compound was discovered.The UV spectra and the retention time in UPLC analysis of this new compound reveal similarity to a cannabinoid-like compound, probably cannabidiol (CBD). This was confirmed by finding two ions at m/z 174.1 and 231.2 in mass spectra analysis. Further confirmation of the nature of the compound was based on a biological activity assay. It was found that the compound affects the expression of genes involved in inflammatory processes in mouse and human fibroblasts and likely the CBD from Cannabis sativa activates the specific peripheral cannabinoid receptor 2 (CB2) gene expression. Besides fibers, the compound was also found in all other flax tissues. It should be pointed out that the industrial process of fabric production does not affect CBD activity.The presented data suggest for the first time that flax products can be a source of biologically active cannabinoid-like compounds that are able to influence the cell immunological response. These findings might open up many new applications for medical flax products, especially for the fabric as a material for wound dressing with anti-inflammatory properties.

  4. Genetics, structure, and prevalence of FP967 (CDC Triffid) T-DNA in flax.

    Young, Lester; Hammerlindl, Joseph; Babic, Vivijan; McLeod, Jamille; Sharpe, Andrew; Matsalla, Chad; Bekkaoui, Faouzi; Marquess, Leigh; Booker, Helen M

    2015-01-01

    The detection of T-DNA from a genetically modified flaxseed line (FP967, formally CDC Triffid) in a shipment of Canadian flaxseed exported to Europe resulted in a large decrease in the amount of flax planted in Canada. The Canadian flaxseed industry undertook major changes to ensure the removal of FP967 from the supply chain. This study aimed to resolve the genetics and structure of the FP967 transfer DNA (T-DNA). The FP967 T-DNA is thought to be inserted in at single genomic locus. The junction between the T-DNA and genomic DNA consisted of two inverted Right Borders with no Left Border (LB) flanking genomic DNA sequences recovered. This information was used to develop an event-specific quantitative PCR (qPCR) assay. This assay and an existing assay specific to the T-DNA construct were used to determine the genetics and prevalence of the FP967 T-DNA. These data supported the hypothesis that the T-DNA is present at a single location in the genome. The FP967 T-DNA is present at a low level (between 0.01 and 0.1%) in breeder seed lots from 2009 and 2010. None of the 11,000 and 16,000 lines selected for advancement through the Flax Breeding Program in 2010 and 2011, respectively, tested positive for the FP967 T-DNA, however. Most of the FP967 T-DNA sequence was resolved via PCR cloning and next generation sequencing. A 3,720 bp duplication of an internal portion of the T-DNA (including a Right Border) was discovered between the flanking genomic DNA and the LB. An event-specific assay, SAT2-LB, was developed for the junction between this repeat and the LB.

  5. Cadmium tolerance and accumulation characteristics of mature flax, cv. Hermes: Contribution of the basal stem compared to the root

    Douchiche, Olfa, E-mail: olfa.douchiche@hotmail.fr [Laboratory Glyco-MEV EA 4358, IFRMP 23, University of Rouen, 76821 Mont Saint Aignan Cedex (France); Laboratory Biologie et Physiologie Cellulaires Vegetales, Department of Biology, University of Tunis, 1060 Tunis (Tunisia); Chaiebi, Wided [Laboratory Biologie et Physiologie Cellulaires Vegetales, Department of Biology, University of Tunis, 1060 Tunis (Tunisia); Morvan, Claudine, E-mail: claudine.morvan@univ-rouen.fr [Laboratory PBS-UMR 6270 CNRS, FR 3038, University of Rouen, 76821 Mont Saint Aignan Cedex (France)

    2012-10-15

    Highlights: Black-Right-Pointing-Pointer Cd accumulated in stem bottom part exceeded the defined hyperaccumulator threshold. Black-Right-Pointing-Pointer No toxic symptoms occurred and TI of all growth parameters ranged between 0.7 and 1. Black-Right-Pointing-Pointer The high level of Zn, Mn and Cu may contribute to the absence of chlorosis in stem. Black-Right-Pointing-Pointer Cd/Ca synergistic effect observed in the stem may alleviate Cd toxicity. Black-Right-Pointing-Pointer Hermes variety accumulated more Cd than the other flax varieties ever described. - Abstract: The potential of mature flax plants (cv. Hermes) to tolerate and accumulate cadmium (Cd) was studied to determine which part of the plant would be the key organ for phytoremediation purposes. After 4 month-growth on sand substrate containing 0.1 mM Cd in a greenhouse, the roots and stems were separated and the stems were divided into three parts. The effects of Cd were studied on growth parameters, histology and mineral nutrition. No visible toxic symptoms were observed. Tolerance-index values calculated from growth parameters and nutrients remained relatively high, allowing the development of the plant until maturity and formation of seeds. The roots and bottom stem accumulated the highest quantity of Cd (750 and 360 mg/kg dry matter), values which largely exceeded the threshold defined for hyperaccumulators. On the other hand, basal stem had a high bioconcentration factor (BCF = 32) and translocation factor TF Prime (2.5) but a low TF (0.5), indicating that this basal part would play a major role in phytoremediation (phytostabilization rather than phytorextraction). Therefore, the high tolerance to Cd and accumulation capacity make possible to grow Hermes flax on Cd-polluted soils.

  6. Structural organization and classification of cytochrome P450 genes in flax (Linum usitatissimum L.).

    Babu, Peram Ravindra; Rao, Khareedu Venkateswara; Reddy, Vudem Dashavantha

    2013-01-15

    Flax CYPome analysis resulted in the identification of 334 putative cytochrome P450 (CYP450) genes in the cultivated flax genome. Classification of flax CYP450 genes based on the sequence similarity with Arabidopsis orthologs and CYP450 nomenclature, revealed 10 clans representing 44 families and 98 subfamilies. CYP80, CYP83, CYP92, CYP702, CYP705, CYP708, CYP728, CYP729, CYP733 and CYP736 families are absent in the flax genome. The subfamily members exhibited conserved sequences, length of exons and phasing of introns. Similarity search of the genomic resources of wild flax species Linum bienne with CYP450 coding sequences of the cultivated flax, revealed the presence of 127 CYP450 gene orthologs, indicating amplification of novel CYP450 genes in the cultivated flax. Seven families CYP73, 74, 75, 76, 77, 84 and 709, coding for enzymes associated with phenylpropanoid/fatty acid metabolism, showed extensive gene amplification in the flax. About 59% of the flax CYP450 genes were present in the EST libraries. Copyright © 2012 Elsevier B.V. All rights reserved.

  7. Biological determinants of plant and crop productivity of flax (Linum usitatissimum L.

    Tadeusz Zając

    2012-12-01

    Full Text Available In Poland the cultivation of the fibrous form of flax (Linum usitatissimum L. is dying out, but the acreage of its oilseed form, linseed, which provides seed (Semen lini used in therapy and being a source of -linolenic acid, is expanding. Nowadays, linseed is grown in 64 countries of the world, but yield levels in these countries vary greatly. Under European conditions, seed yield of linseed shows high variation, which is evidence of little knowledge of the biology of this plant and the lack of precise cultivation solutions in agricultural technologies used. A major reason is the difficulty in obtaining optimal crop density. A sparse crop results in low above-ground biomass yield, which is translated into insufficient crop yields. The selection of highly productive domestic and foreign varieties can partially increase linseed yield; apart from some domestic varieties, the Canadian cultivar 'Flanders' and the Hungarian cultivar 'Barbara' are positive examples in this respect. There is a possibility of effective selection at early stages of linseed breeding, which bodes well for the prospect of obtaining highly productive varieties with normal or very low -linolenic acid content.

  8. Role of ascorbic acid and α tocopherol in alleviating salinity stress on flax plant (Linum usitatissimum L.

    Mervat Sh. Sadak

    2014-03-01

    with tap water, it was noted that ascorbic acid at 2.27 mM caused significant increase in oil content by 19.75 % in Giza 8 whereas α tocopherpl at 0.93 mM caused significant increase by 14.83% in Sakha 3 and 13.70% in Ariane. Regarding plants irrigated with saline solution (9.23 ds/m, it was found that α tocopherol at 0.93 mM caused significant increase in oil % by 30.84 %, 9.66 % and 35.62 % in Sakha 3, Giza 8 and Ariane cv. respectively. Responses of three flax cultivars to salt stress were more or less similar; since salinity stress caused marked increases in total saturated fatty acids accompanied by decreases in total unsaturated fatty acids as salinity levels increased. Myristic acid (C14:0 and oleic acid (C18:1 were the most affected saturated and unsaturated fatty acids in response to different salinity levels. The effect of ascorbic acid at 2.27 mM and tocopherol at 0.93 mM were found to be contrary to that of salinity as marked increases appeared in unsaturated fatty acids as compared with control plants. It could be concluded that foliar application of ascorbic acid and α tocopherol could play an enhancement role and alleviate the harmful effect of salinity stress on many metabolic and physiological processes of three flax cultivars that reflected in increasing seed yield quality and quantity.

  9. Fractographic observations of the microstructural characteristics of flax fibre composites

    Madsen, Bo; Asian, Mustafa; Lilholt, Hans

    2016-01-01

    Natural fibre composites possess a number of special microstructural characteristics, which need to be documented to aid in the further development of these materials. Using field emission scanning electron microscopy, fractographic observations of the microstructural characteristics of aligned f...... novel observations, measurements and interpretations to be used in the further analysis and understanding of the properties of natural fibre composites. (C) 2015 Elsevier Ltd. All rights reserved.......Natural fibre composites possess a number of special microstructural characteristics, which need to be documented to aid in the further development of these materials. Using field emission scanning electron microscopy, fractographic observations of the microstructural characteristics of aligned...... flax fibre/thermoplastic composites are presented. The findings are presented in relation to the three operational parts in composites: fibres, matrix and fibre/matrix interface. For the flax fibres, the striated structure on the fibre surface is shown to consist of cellulose macrofibrils oriented...

  10. Karg, S. New projects within the FLAX Network. In: Karg S. (ed.) Flax (Linum usitatissimum L.) - a natural resource for food and textiles for 8000 years. Cross-disciplinary investigations on the evolution and cultural history of flax and linen. Programme and abstracts of the second

    Karg, Sabine

    2010-01-01

    Karg, S. New projects within the FLAX Network. In: Karg S. (ed.) Flax (Linum usitatissimum L.) - a natural resource for food and textiles for 8000 years. Cross-disciplinary investigations on the evolution and cultural history of flax and linen. Programme and abstracts of the second workshop 28...

  11. Flax fabric reinforced arylated soy protein composites: A brittle-matrix behaviour

    Kumar, R

    2012-05-01

    Full Text Available Biocomposites were successfully prepared by the reinforcement of soy protein isolate (SPI) with different weight fractions of woven flax fabric. The flax-fabric-reinforced SPI-based composites were then arylated with 2,2-diphenyl-2-hydroxyethanoic...

  12. Modification of γ-irradiation damaging effect on the seeds of radiosensitive and radioresistant plants

    Kaplan, I.S.; Tikhomirov, F.A.; Khvostova, V.V.; AN SSSR, Novosibirsk. Inst. Tsitologii i Genetiki)

    1975-01-01

    Low and high temperature treatment of seeds during irradiation has shown to result in a decrease of the general deleterious effect of radiation in both relatively radiosensitive (bean) and radioresistant (flax, mustard) species. The protective effect of the treatment is supposed to be due to its influence on short-half-life radicals and this is supportted by experiments with storage of irradiated seeds. The treatment allows to obtain high mutation frequencies in both radiosensitive and radioresistant plants

  13. Effect of ethanolic flax (Linum usitatissimum L.) extracts on lipid oxidation and changes in nutritive value of frozen-stored meat products.

    Waszkowiak, Katarzyna; Szymandera-Buszka, Krystyna; Hęś, Marzanna

    2014-01-01

    Flaxseed (Linum usitatissimum L.) is an important source of phenolic compounds, mainly lignans. Antioxidant capacities of flaxseed extracts that contain the compounds have been reported earlier. However, there is a lack of accessible information about their activity against lipid oxidation in meat products. Therefore, the effect of ethanolic flaxseed extracts (EFEs) on lipid stability and changes in nutritive value of frozen-stored meat products (pork meatballs and burgers) was determined. EFEs from three Polish flax varieties (Szafir, Oliwin, Jantarol) were applied in the study. During 150-day storage of meat products, the lipid oxidation (peroxide and TBARS value) and thiamine retention were periodically monitored, alongside with methionine and lysine availability and protein digestibility. The addition of EFEs significantly limited lipid oxidation in stored meatballs and burgers. EFE from brown seeds of Szafir var. was superior to the others from golden seeds of Jantarol and Oliwin. Moreover, the extracts reduced changes in thiamine and available lysine content, as well as protein digestibility, during storage time. The effect of EFE addition on available methionine retention was limited. The ethanolic flaxseed extracts exhibit antioxidant activity during frozen storage of meat products. They can be utilized to prolong shelf-life of the products by protecting them against lipid oxidation and deterioration of their nutritional quality. However, antioxidant efficiency of the extracts seems to depend on chemical composition of raw material (flax variety). Further investigations should be carried on to explain the issue.

  14. Effect of Cultivars and Planting Date on Yield, Oil Content, and Fatty Acid Profile of Flax Varieties (Linum usitatissimum L.

    Maricel Andrea Gallardo

    2014-01-01

    Full Text Available In order to determine the effect of cultivars and planting date on flax fatty acid profile, seed yield, and oil content, an assay with seven cultivars (Baikal, Prointa Lucero, Prointa Ceibal, Panambí INTA, Curundú INTA, Carapé INTA, and Tape INTA was carried out at Parana Agricultural Experimental Station, Argentina. Significant differences among cultivars were found for content of palmitic (5–7 g/100 g, stearic (5–8 g/100 g, linoleic (13–19 g/100 g, saturated (11–15 g/100 g, and unsaturated acids (92–96 g/100 g within the seven cultivars. The best seed yields were observed in Prointa Lucero and Carapé INTA varieties (2091.50 kg·ha−1 and 2183.34 kg·ha−1, respectively in the first planting date and in Carapé INTA and Prointa Lucero (1667 kg·ha−1 and 1886 kg·ha−1, respectively in the second planting date. A delayed planting date had a negative effect on seed yield (1950 kg·ha−1 and 1516 kg·ha−1 and oil content (845 kg·ha−1 and 644 kg·ha−1 but did not affect oil composition.

  15. Development of Novel SSR Markers for Flax (Linum usitatissimum L.) Using Reduced-Representation Genome Sequencing.

    Wu, Jianzhong; Zhao, Qian; Wu, Guangwen; Zhang, Shuquan; Jiang, Tingbo

    2016-01-01

    Flax ( Linum usitatissimum L.) is a major fiber and oil yielding crop grown in northeastern China. Identification of flax molecular markers is a key step toward improving flax yield and quality via marker-assisted breeding. Simple sequence repeat (SSR) markers, which are based on genomic structural variation, are considered the most valuable type of genetic marker for this purpose. In this study, we screened 1574 microsatellites from Linum usitatissimum L. obtained using reduced representation genome sequencing (RRGS) to systematically identify SSR markers. The resulting set of microsatellites consisted mainly of trinucleotide (56.10%) and dinucleotide (35.23%) repeats, with each motif consisting of 5-8 repeats. We then evaluated marker sensitivity and specificity based on samples of 48 flax isolates obtained from northeastern China. Using the new SSR panel, the results demonstrated that fiber flax and oilseed flax varieties clustered into two well separated groups. The novel SSR markers developed in this study show potential value for selection of varieties for use in flax breeding programs.

  16. The influence of stages of maturity on the agronomic traits of fibre flax introduced varieties

    Jasminka Butorac

    2018-03-01

    Full Text Available The harvest time of fibre flax is influenced by climatic conditions, varieties, stages of maturity and the crop’s final use. In addition, the time of harvesting of fibre flax affects the quality of the fibres. Fibre flax can be harvested in few stages of maturity. So, this paper presents the influence of three stages of maturity (green, yellow and full ripening on the agronomic traits (stem yield, stem yield after retting, total fibre yield, share of total fibre, long fibre yield, share of long fibre of five fibre flax varieties. Varieties trials with fibre flax were set up in two years (2010-2011 and in two locations: at the experimental fields of the Faculty of Agriculture in Zagreb on eutric cambisol and of the College of Agriculture at Križevci on pseudogley on level terrain. The trials were carried out according to the randomized complete block design (RCBD with four replications. According to the results of the two-years research into the agronomic traits of fibre flax, significant differences were established among the varieties and among the stages of maturity under study. The varieties Agatha, Viola and Electra recorded higher values of investigated traits. All varieties achieved higher values of investigated traits at Križevci (production on heavier soil in which some of winter moisture remained available in spring months. The highest values of investigated traits were recorded when the fibre flax were harvested in the green ripening.

  17. Optimization of Phenolic Compounds Extraction from Flax Shives and Their Effect on Human Fibroblasts

    Magdalena Czemplik

    2017-01-01

    Full Text Available The goal of this study was to evaluate the most effective technique for extraction of phenolics present in flax shives and to assess their effect on human fibroblasts. Flax shives are by-products of fibre separation, but they were found to be a rich source of phenolic compounds and thus might have application potential. It was found that the optimal procedure for extraction of phenolics was hydrolysis enhanced by the ultrasound with NaOH for 24 h at 65°C and subsequent extraction with ethyl acetate. The influence of the flax shives extract on fibroblast growth and viability was assessed using the MTT and SRB tests. Moreover, the influence of flax shives extract on the extracellular matrix remodelling process was verified. The 20% increase of the viability was observed upon flax shives extract treatment and the decrease of mRNA collagen genes, an increase of matrix metalloproteinase gene expression, and reduction in levels of interleukin 6, interleukin 10, and suppressor of cytokinin signaling 1 mRNA were observed. Alterations in MCP-1 mRNA levels were dependent on flax shives extract concentration. Thus, we suggested the possible application of flax shives extract in the wound healing process.

  18. Optimum processing parameters for the fabrication of twill flax fabric-reinforced polypropylene (PP) composites

    Zuhudi, Nurul Zuhairah Mahmud; Minhat, Mulia; Shamsuddin, Mohd Hafizi; Isa, Mohd Dali; Nur, Nurhayati Mohd

    2017-12-01

    In recent years, natural fabric thermoplastic composites such as flax have received much attention due to its attractive capabilities for structural applications. It is crucial to study the processing of flax fabric materials in order to achieve good quality and cost-effectiveness in fibre reinforced composites. Though flax fabric has been widely utilized for several years in composite applications due to its high strength and abundance in nature, much work has been concentrated on short flax fibre and very little work focused on using flax fabric. The effectiveness of the flax fabric is expected to give higher strength performance due to its structure but the processing needs to be optimised. Flax fabric composites were fabricated using compression moulding due to its simplicity, gives good surface finish and relatively low cost in terms of labour and production. Further, the impregnation of the polymer into the fabric is easier in this process. As the fabric weave structure contributes to the impregnation quality which leads to the overall performance, the processing parameters of consolidation i.e. pressure, time, and weight fraction of fabric were optimized using the Taguchi method. This optimization enhances the consolidation quality of the composite by improving the composite mechanical properties, three main tests were conducted i.e. tensile, flexural and impact test. It is observed that the processing parameter significantly affected the consolidation and quality of composite.

  19. Biodegradation of flax fiber reinforced poly lactic acid

    Kumar, R

    2010-07-01

    Full Text Available and dried in an oven at 60°C for 24 h to remove moisture. PLA pellets equivalent to 0.8 and 0.7 weight fractions of the nonwoven web and woven fabric, respectively were dissolved in chloroform. It is to be noted that nonwoven flax fiber requires higher... amount of PLA than woven ones. The dried nonwoven web/woven fabric was then placed inside a square metal frame mold of 15 cm×15 cm in dimensions and the PLA solution was poured over the nonwoven web or woven fab- ric. It was observed that 5 to 6 g...

  20. Genomic and expression analysis of the flax (Linum usitatissimum) family of glycosyl hydrolase 35 genes.

    Hobson, Neil; Deyholos, Michael K

    2013-05-23

    Several β-galactosidases of the Glycosyl Hydrolase 35 (GH35) family have been characterized, and many of these modify cell wall components, including pectins, xyloglucans, and arabinogalactan proteins. The phloem fibres of flax (Linum usitatissimum) have gelatinous-type cell walls that are rich in crystalline cellulose and depend on β-galactosidase activity for their normal development. In this study, we investigate the transcript expression patterns and inferred evolutionary relationships of the complete set of flax GH35 genes, to better understand the functions of these genes in flax and other species. Using the recently published flax genome assembly, we identified 43 β-galactosidase-like (BGAL) genes, based on the presence of a GH35 domain. Phylogenetic analyses of their protein sequences clustered them into eight sub-families. Sub-family B, whose members in other species were known to be expressed in developing flowers and pollen, was greatly under represented in flax (p-value < 0.01). Sub-family A5, whose sole member from arabidopsis has been described as its primary xyloglucan BGAL, was greatly expanded in flax (p-value < 0.01). A number of flax BGALs were also observed to contain non-consensus GH35 active sites. Expression patterns of the flax BGALs were investigated using qRT-PCR and publicly available microarray data. All predicted flax BGALs showed evidence of expression in at least one tissue. Flax has a large number of BGAL genes, which display a distinct distribution among the BGAL sub-families, in comparison to other closely related species with available whole genome assemblies. Almost every flax BGAL was expressed in fibres, the majority of which expressed predominately in fibres as compared to other tissues, suggesting an important role for the expansion of this gene family in the development of this species as a fibre crop. Variations displayed in the canonical GH35 active site suggest a variety of roles unique to flax, which will require

  1. Effect of Atmospheric Pressure Plasma and Subsequent Enzymatic Treatment on Flax Fabrics

    Zhong Shaofeng; Yang Bin; Ou Qiongrong

    2015-01-01

    The objective is to investigate the effect of atmospheric pressure dielectric barrier discharge (APDBD) plasma and subsequent cellulase enzyme treatment on the properties of flax fabrics. The changes of surface morphology and structure, physico-mechanical properties, hydrophilicity, bending properties, whiteness, and dyeing properties of the treated substrate were investigated. The results indicated that atmospheric pressure dielectric barrier discharge plasma pre-treatment and subsequent cellulase enzyme treatment could diminish the hairiness of flax fabrics, endowing the flax fabrics with good bending properties, water uptake and fiber accessibility while keeping their good mechanical properties compared with those treated with cellulase enzyme alone. (paper)

  2. POTENTIAL USE OF GRAFT COPOLYMERS OF MERCERIZED FLAX AS FILLER IN POLYSTYRENE COMPOSITE MATERIALS

    Susheel Kalia

    2008-11-01

    Full Text Available Graft copolymerization of binary vinyl monomers onto mercerized flax fiber was carried out for the enhancement of mechanical properties of polystyrene composites. Binary vinyl monomer mixture of AA+AN has been found to show maximum grafting (33.55% onto mercerized flax. Graft copolymers thus synthesized were characterized with FT-IR spectroscopy, SEM, and TGA techniques. Mercerized flax (MF showed maximum thermal stability in comparison to graft copolymers. It has been found that polystyrene composites reinforced with graft copolymers showed improvement in mechanical properties such as wear resistance, compressive strength, and tensile strength.

  3. Comparative Evaluation of Physical and Structural Properties of Water Retted and Non-retted Flax Fibers

    Vijaya Raghavan

    2013-10-01

    Full Text Available Flax stems of Modran variety were subjected to water retting under laboratory conditions and its physical properties were compared with non-retted fibers. Physical properties including percentage of impurities, weighted average length, linear density, tenacity and elongation were analyzed and the results were compared. The analysis of retted and non-retted flax fibers showed that retting is the most important step in the processing of flax fibers and it directly affects quality attributes like strength, fineness, and homogeneity. Scanning Electron microscope images of fibers were also analyzed and the retted fibers showed much cleaner surface when compared to decorticated non-retted fibers.

  4. Improvement of Aluminum-Air Battery Performances by the Application of Flax Straw Extract.

    Grishina, Ekaterina; Gelman, Danny; Belopukhov, Sergey; Starosvetsky, David; Groysman, Alec; Ein-Eli, Yair

    2016-08-23

    The effect of a flax straw extract on Al corrosion inhibition in a strong alkaline solution was studied by using electrochemical measurements, weight-loss analysis, SEM, and FTIR spectroscopy. Flax straw extract added (3 vol %) to the 5 m KOH solution to act as a mixed-type Al corrosion inhibitor. The electrochemistry of Al in the presence of a flax straw extract in the alkaline solution, the effect of the extract on the Al morphology and surface films formed, and the corrosion inhibition mechanism are discussed. Finally, the Al-air battery discharge capacity recorded from a cell that used the flax straw extract in the alkaline electrolyte is substantially higher than that with only a pure alkaline electrolyte. This improved sustainability of the Al anode is attributed to Al corrosion inhibition and, consequently, to hydrogen evolution suppression. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. [Cellulose synthase genes that control the fiber formation of flax (Linum usitatissimum L.)].

    Galinovskiĭ, D V; Anisimova, N V; Raĭskiĭ, A P; Leont'ev, V N; Titok, V V; Hotyleva, L V

    2014-01-01

    Four cellulose synthase genes were identified by analysis of their class-specific regions (CSRII) in plants of fiber flax during the "rapid growth" stage. These genes were designated as LusCesA1, LusCesA4, LusCesA7 and LusCesA9. LusCesA4, LusCesA7, and LusCesA9 genes were expressed in the stem; LusCesA1 and LusCesA4 genes were expressed in the apex part of plants, and the LusCesA4 gene was expressed in the leaves of fiber flax. The expression of the LusCesA7 and LusCesA9 genes was specific to the stems of fiber flax. These genes may influence the quality of the flax fiber.

  6. Colour of flax fibres in regard to different pretreatment and dyeing processes

    Fakin, Darinka; Ojstršek, Alenka

    2012-01-01

    The main objective of this work was to compare the colour of different pretreated (alkaline, acidic and enzymatic) and dyed (conventional and ultrasonic-assisted) flax fibres, to establish the impact of various parameters on dyeing kinetics. Flax fibres were dyed using two direct dyes of different chemical structures and molecular mass. Diffusion profiles were established by the application of Fick's Law and dyeing behaviour was studied by means of online spectrophotometry. Finally, the dyed ...

  7. ATP Production by Respiration and Fermentation, and Energy Charge during Aerobiosis and Anaerobiosis in Twelve Fatty and Starchy Germinating Seeds.

    Raymond, P; Al-Ani, A; Pradet, A

    1985-11-01

    The respiration and fermentation rates were compared in germinating seeds of 12 different cultivated species from five families. In air, fermentation contributes significantly to the energy metabolism only in some species (pea, maize), but is generally negligible when compared to respiration. The fermentation rate under anoxia was related either to the metabolic activity under air or to the adenine nucleotide content of the seeds: it was generally higher in seeds which contain starchy reserves (rice, maize, sorghum, pea), than in seeds which do not contain starch (lettuce, sunflower, radish, turnip, cabbage, flax); however, it was similar in wheat, sorghum (starchy seeds), and soya (nonstarchy seeds). The value of the energy charge of all the seeds was lower under anoxia than in air: after 24 hours under anoxia, it was higher than 0.5 in the starchy seeds and in soya and it was around 0.25 in the other fatty seeds.

  8. Characterisation of mucilages extracted from seven Italian cultivars of flax.

    Kaewmanee, Thammarat; Bagnasco, Lucia; Benjakul, Soottawat; Lanteri, Silvia; Morelli, Carlo F; Speranza, Giovanna; Cosulich, M Elisabetta

    2014-04-01

    The chemical composition, physicochemical, functional and sensory properties of mucilages, extracted from seven Italian flax cultivars, were evaluated. All samples were composed of neutral and acidic sugars, with a low protein content. From the NMR data, a rhamnogalacturonan backbone could be inferred as a common structural feature for all the mucilages, with some variations depending on the cultivar. All the suspensions showed a poor stability, which was consistent with a low zeta potential absolute value. The viscosity seemed to be positively correlated with the neutral sugars and negatively with the amount of proteins. Functional properties were dependent on the cultivar. The sensory analysis showed that most mucilages are tasteless. All these outcomes could support the use of flaxseed mucilages for industrial applications. In particular, Solal and Festival cultivars could be useful as thickeners, due to their high viscosity, while Natural, Valoal and Kaolin as emulsifiers for their good surface-active properties. Copyright © 2013 Elsevier Ltd. All rights reserved.

  9. Gene expression profiling of flax (Linum usitatissimum L.) under edaphic stress.

    Dmitriev, Alexey A; Kudryavtseva, Anna V; Krasnov, George S; Koroban, Nadezhda V; Speranskaya, Anna S; Krinitsina, Anastasia A; Belenikin, Maxim S; Snezhkina, Anastasiya V; Sadritdinova, Asiya F; Kishlyan, Natalya V; Rozhmina, Tatiana A; Yurkevich, Olga Yu; Muravenko, Olga V; Bolsheva, Nadezhda L; Melnikova, Nataliya V

    2016-11-16

    Cultivated flax (Linum usitatissimum L.) is widely used for production of textile, food, chemical and pharmaceutical products. However, various stresses decrease flax production. Search for genes, which are involved in stress response, is necessary for breeding of adaptive cultivars. Imbalanced concentration of nutrient elements in soil decrease flax yields and also results in heritable changes in some flax lines. The appearance of Linum Insertion Sequence 1 (LIS-1) is the most studied modification. However, LIS-1 function is still unclear. High-throughput sequencing of transcriptome of flax plants grown under normal (N), phosphate deficient (P), and nutrient excess (NPK) conditions was carried out using Illumina platform. The assembly of transcriptome was performed, and a total of 34924, 33797, and 33698 unique transcripts for N, P, and NPK sequencing libraries were identified, respectively. We have not revealed any LIS-1 derived mRNA in our sequencing data. The analysis of high-throughput sequencing data allowed us to identify genes with potentially differential expression under imbalanced nutrition. For further investigation with qPCR, 15 genes were chosen and their expression levels were evaluated in the extended sampling of 31 flax plants. Significant expression alterations were revealed for genes encoding WRKY and JAZ protein families under P and NPK conditions. Moreover, the alterations of WRKY family genes differed depending on LIS-1 presence in flax plant genome. Besides, we revealed slight and LIS-1 independent mRNA level changes of KRP2 and ING1 genes, which are adjacent to LIS-1, under nutrition stress. Differentially expressed genes were identified in flax plants, which were grown under phosphate deficiency and excess nutrition, on the basis of high-throughput sequencing and qPCR data. We showed that WRKY and JAS gene families participate in flax response to imbalanced nutrient content in soil. Besides, we have not identified any mRNA, which could be

  10. Gene expression profiling of flax (Linum usitatissimum L. under edaphic stress

    Alexey A. Dmitriev

    2016-11-01

    Full Text Available Abstract Background Cultivated flax (Linum usitatissimum L. is widely used for production of textile, food, chemical and pharmaceutical products. However, various stresses decrease flax production. Search for genes, which are involved in stress response, is necessary for breeding of adaptive cultivars. Imbalanced concentration of nutrient elements in soil decrease flax yields and also results in heritable changes in some flax lines. The appearance of Linum Insertion Sequence 1 (LIS-1 is the most studied modification. However, LIS-1 function is still unclear. Results High-throughput sequencing of transcriptome of flax plants grown under normal (N, phosphate deficient (P, and nutrient excess (NPK conditions was carried out using Illumina platform. The assembly of transcriptome was performed, and a total of 34924, 33797, and 33698 unique transcripts for N, P, and NPK sequencing libraries were identified, respectively. We have not revealed any LIS-1 derived mRNA in our sequencing data. The analysis of high-throughput sequencing data allowed us to identify genes with potentially differential expression under imbalanced nutrition. For further investigation with qPCR, 15 genes were chosen and their expression levels were evaluated in the extended sampling of 31 flax plants. Significant expression alterations were revealed for genes encoding WRKY and JAZ protein families under P and NPK conditions. Moreover, the alterations of WRKY family genes differed depending on LIS-1 presence in flax plant genome. Besides, we revealed slight and LIS-1 independent mRNA level changes of KRP2 and ING1 genes, which are adjacent to LIS-1, under nutrition stress. Conclusions Differentially expressed genes were identified in flax plants, which were grown under phosphate deficiency and excess nutrition, on the basis of high-throughput sequencing and qPCR data. We showed that WRKY and JAS gene families participate in flax response to imbalanced nutrient content in soil

  11. Genome-wide analysis of drought induced gene expression changes in flax (Linum usitatissimum).

    Dash, Prasanta K; Cao, Yongguo; Jailani, Abdul K; Gupta, Payal; Venglat, Prakash; Xiang, Daoquan; Rai, Rhitu; Sharma, Rinku; Thirunavukkarasu, Nepolean; Abdin, Malik Z; Yadava, Devendra K; Singh, Nagendra K; Singh, Jas; Selvaraj, Gopalan; Deyholos, Mike; Kumar, Polumetla Ananda; Datla, Raju

    2014-01-01

    A robust phenotypic plasticity to ward off adverse environmental conditions determines performance and productivity in crop plants. Flax (linseed), is an important cash crop produced for natural textile fiber (linen) or oilseed with many health promoting products. This crop is prone to drought stress and yield losses in many parts of the world. Despite recent advances in drought research in a number of important crops, related progress in flax is very limited. Since, response of this plant to drought stress has not been addressed at the molecular level; we conducted microarray analysis to capture transcriptome associated with induced drought in flax. This study identified 183 differentially expressed genes (DEGs) associated with diverse cellular, biophysical and metabolic programs in flax. The analysis also revealed especially the altered regulation of cellular and metabolic pathways governing photosynthesis. Additionally, comparative transcriptome analysis identified a plethora of genes that displayed differential regulation both spatially and temporally. These results revealed co-regulated expression of 26 genes in both shoot and root tissues with implications for drought stress response. Furthermore, the data also showed that more genes are upregulated in roots compared to shoots, suggesting that roots may play important and additional roles in response to drought in flax. With prolonged drought treatment, the number of DEGs increased in both tissue types. Differential expression of selected genes was confirmed by qRT-PCR, thus supporting the suggested functional association of these intrinsic genes in maintaining growth and homeostasis in response to imminent drought stress in flax. Together the present study has developed foundational and new transcriptome data sets for drought stress in flax.

  12. Detection Characteristics of Gamma-Irradiated Seeds by using PSL, TL, ESR and GC/MS

    Kim, K.H.; Shon, J.H.; Kang, Y.J.; Jo, T.Y.; Park, H.Y.; Kwak, J.Y.; Lee, J.H.; Park, Y.C.; Kim, J.I.; Lee, H.J.; Lee, S.J.; Han, S.B.

    2013-01-01

    In this study, we investigated the applicability of the photostimulated luminescence (PSL), thermoluminescence (TL), electron spin resonance (ESR) and gas chromatography/mass spectrometry (GC/MS) methods for 5 seeds which are not allowed to be irradiated in Korea. All 5 seeds including evening primrose seed, safflower seed, rape seed, sunflower seed and flax seed were analyzed. Samples were irradiated at 1~10 kGy using a 60 Co gamma-ray irradiator. In PSL study, the photon counts of all the unirradiated samples showed negative (lower than 700). The photon counts of irradiated (1, 5, 10 kGy) samples showed positive (higher than 5,000). In TL analysis, results showed that it is possible to apply TL method to all foods containing minerals. In ESR measurements, the ESR signal (single-line) intensity of irradiated foods was higher than non-irradiated foods. The hydrocarbons 1,7-hexadecadiene (C 16:2 ) and 8-heptadecene (C 17:1 ) from oleic acid were detected only in the irradiated samples before and after the treatment at doses ≥ 1 kGy, but they were not detected in non-irradiated samples before and after treatment. These two hydrocarbons could be used as markers to identify irradiated safflower seed, rape seed, Sunflower seed and flax seed. And then, the hydrocarbons 1,7,10-hexadecatriene (C 16:3 ) and 6,9-heptadecadiene (C 17:2 ) from linoleic acid were detected in the evening primrose seed, safflower seed and sunflower seed. According to the results, PSL, TL and GC/ MS methods were successfully applied to detect the irradiated foods. It is concluded that PSL, TL and GC/MS methods are suitable for detection of irradiated samples and a combined method is recommendable for enhancing the reliability of detection results. (author)

  13. Genome-wide identification and characterization of microRNA genes and their targets in flax (Linum usitatissimum): Characterization of flax miRNA genes.

    Barvkar, Vitthal T; Pardeshi, Varsha C; Kale, Sandip M; Qiu, Shuqing; Rollins, Meaghen; Datla, Raju; Gupta, Vidya S; Kadoo, Narendra Y

    2013-04-01

    MicroRNAs (miRNAs) are small (20-24 nucleotide long) endogenous regulatory RNAs that play important roles in plant growth and development. They regulate gene expression at the post-transcriptional level by translational repression or target degradation and gene silencing. In this study, we identified 116 conserved miRNAs belonging to 23 families from the flax (Linum usitatissimum L.) genome using a computational approach. The precursor miRNAs varied in length; while most of the mature miRNAs were 21 nucleotide long, intergenic and showed conserved signatures of RNA polymerase II transcripts in their upstream regions. Promoter region analysis of the flax miRNA genes indicated prevalence of MYB transcription factor binding sites. Four miRNA gene clusters containing members of three phylogenetic groups were identified. Further, 142 target genes were predicted for these miRNAs and most of these represent transcriptional regulators. The miRNA encoding genes were expressed in diverse tissues as determined by digital expression analysis as well as real-time PCR. The expression of fourteen miRNAs and nine target genes was independently validated using the quantitative reverse transcription PCR (qRT-PCR). This study suggests that a large number of conserved plant miRNAs are also found in flax and these may play important roles in growth and development of flax.

  14. [Genetic polymorphism of flax Linum usitatissimum based on use of molecular cytogenetic markers].

    Rachinskaia, O A; Lemesh, V A; Muravenko, O V; Iurkevich, O Iu; Guzenko, E V; Bol'sheva, N L; Bogdanova, M V; Samatadze, T E; Popov, K V; Malyshev, S V; Shostak, N G; Heller, K; Khotyleva, L V; Zelenin, A V

    2011-01-01

    Using a set of approaches based on the use of molecular cytogenetic markers (DAPI/C-banding, estimation of the total area of DAPI-positive regions in prophase nuclei, FISH with 26S and 5S rDNA probes) and the microsatellite (SSR-PCR) assay, we studied genomic polymorphism in 15 flax (Linum usitatissimum L.) varieties from different geographic regions belonging to three directions of selection (oil, fiber, and intermediate flaxes) and in the k-37 x Viking hybrid. All individual chromosomes have been identified in the karyotypes of these varieties on the basis of the patterns of differential DAPI/C-banding and the distribution of 26S and 5S rDNA, and idiograms of the chromosomes have been generated. Unlike the oil flax varieties, the chromosomes in the karyotypes of the fiber flax varieties have, as a rule, pericentromeric and telomeric DAPI-positive bands of smaller size, but contain larger intercalary regions. Two chromosomal rearrangements (chromosome 3 inversions) were discovered in the variety Luna and in the k-37 x Viking hybrid. In both these forms, no colocalization of 26S rDNA and 5S rDNA on the satellite chromosome was detected. The SSR assay with the use of 20 polymorphic pairs of primers revealed 22 polymorphic loci. Based on the SSR data, we analyzed genetic similarity of the flax forms studied and constructed a genetic similarity dendrogram. The genotypes studied here form three clusters. The oil varieties comprise an independent cluster. The genetically related fiber flax varieties Vita and Luna, as well as the landrace Lipinska XIII belonging to the intermediate type, proved to be closer to the oil varieties than the remaining fiber flax varieties. The results of the molecular chromosomal analysis in the fiber and oil flaxes confirm their very close genetic similarity. In spite of this, the combined use of the chromosomal and molecular markers has opened up unique possibilities for describing the genotypes of flax varieties and creating their genetic

  15. Functional analyses of cellulose synthase genes in flax (Linum usitatissimum) by virus-induced gene silencing.

    Chantreau, Maxime; Chabbert, Brigitte; Billiard, Sylvain; Hawkins, Simon; Neutelings, Godfrey

    2015-12-01

    Flax (Linum usitatissimum) bast fibres are located in the stem cortex where they play an important role in mechanical support. They contain high amounts of cellulose and so are used for linen textiles and in the composite industry. In this study, we screened the annotated flax genome and identified 14 distinct cellulose synthase (CESA) genes using orthologous sequences previously identified. Transcriptomics of 'primary cell wall' and 'secondary cell wall' flax CESA genes showed that some were preferentially expressed in different organs and stem tissues providing clues as to their biological role(s) in planta. The development for the first time in flax of a virus-induced gene silencing (VIGS) approach was used to functionally evaluate the biological role of different CESA genes in stem tissues. Quantification of transcript accumulation showed that in many cases, silencing not only affected targeted CESA clades, but also had an impact on other CESA genes. Whatever the targeted clade, inactivation by VIGS affected plant growth. In contrast, only clade 1- and clade 6-targeted plants showed modifications in outer-stem tissue organization and secondary cell wall formation. In these plants, bast fibre number and structure were severely impacted, suggesting that the targeted genes may play an important role in the establishment of the fibre cell wall. Our results provide new fundamental information about cellulose biosynthesis in flax that should facilitate future plant improvement/engineering. © 2015 Society for Experimental Biology, Association of Applied Biologists and John Wiley & Sons Ltd.

  16. Analysis of action of device with spring pins for picking up of retted flax straw

    V. G. Chernikov

    2016-01-01

    Full Text Available Weather conditions in flax cultivation areas during harvesting time can be characterized with high rainfalls, relative humidity and, in some areas, extremely low temperature. Clogging of fields with stones, grass germination through flax swaths, often an absence of homogeneity on length and thickness of straw in swaths require working out new devices for straw lifting. Existing devices for picking up do not provide a high-quality lifting of flax swaths and have a low coefficient of reliability of the process. Researches and experimental-design works were carried out to create a constructive-technological scheme of the picking up device of cylindrical type with spring-loaded rigid pins. The mathematical model of the device operation when a pin touching an obstacle. The condition of balance of the mechanism under which the pin of a cilinder will operate technological process of picking up of retted flax straw without action of the safety device (spring was described. The offered method of calculation of operation of this device was introduced in a common flax swath lifter-turners

  17. Modification of flax fibres by radiation induced emulsion graft copolymerization of glycidyl methacrylate

    Moawia, Rihab Musaad; Nasef, Mohamed Mahmoud; Mohamed, Nor Hasimah; Ripin, Adnan

    2016-01-01

    Flax fibres were modified by radiation induced graft copolymerization of glycidyl methacrylate (GMA) by pre-irradiation method in an emulsion medium. The effect of reaction parameters on the degree of grafting (DOG) such as concentration of bleaching agent, absorbed dose, monomer concentration, temperature and reaction time were investigated. The DOG was found to be dependent on the investigated parameters. The incorporation of poly(GMA) grafts in the bleached flax fibres was confirmed by Fourier transform infrared spectroscopy (FTIR) and scanning electron microscopy (SEM). The structural and mechanical changes were evaluated by X-ray diffraction (XRD) and mechanical tester, respectively. The results revealed that reacting bleached flax fibres irradiated with 20 kGy with 5% GMA emulsion containing 0.5% polyoxyethylene-sorbitan monolaurate (Tween 20) surfactant at 40 °C for 1 h led to a maximum DOG of 148%. The grafted fibres showed sufficient mechanical strength and hydrophobicity which make them promising precursors for development of adsorbents after appropriate chemical treatments. - Highlights: • Flax fibers were modified by radiation induced emulsion grafting of GMA. • Bleaching with 0.7 wt% Na-chlorite was essential for achieving high DOGs. • Effect of reaction parameters on the degree of grafting were established. • The incorporation of poly-GMA grafts was proved by SEM, FTIR and XRD. • The obtained poly-GMA grafted flax fibers have potential for adsorbent making.

  18. Tensile and Flexural Properties of Cement Composites Reinforced with Flax Nonwoven Fabrics

    Josep Claramunt

    2017-02-01

    Full Text Available The aim of this study is to develop a process to produce high-performance cement-based composites reinforced with flax nonwoven fabrics, analyzing the influence of the fabric structure—thickness and entanglement—on mechanical behavior under flexural and tensile loadings. For this purpose, composite with flax nonwoven fabrics with different thicknesses were first prepared and their cement infiltration was evaluated with backscattered electron (BSE images. The nonwoven fabrics with the optimized thickness were then subjected to a water treatment to improve their stability to humid environments and the fiber-matrix adhesion. For a fixed thickness, the effect of the nonwoven entanglement on the mechanical behavior was evaluated under flexural and direct tension tests. The obtained results indicate that the flax nonwoven fabric reinforcement leads to cement composites with substantial enhancement of ductility.

  19. (Heckel) seeds

    UTILISATEUR

    Garcinia kola seeds to six different hormonal pre-germination treatments. This consisted of ... Thus, seed dormancy in this case is not a coat- imposed .... development of the cultivation of the species. The cause .... Hormonal regulation of seed ...

  20. Expression analysis of cellulose synthase and main cytoskeletal protein genes in flax (Linum usitatissimum L.).

    Galinousky, Dmitry; Padvitski, Tsimafei; Bayer, Galina; Pirko, Yaroslav; Pydiura, Nikolay; Anisimova, Natallia; Nikitinskaya, Tatyana; Khotyleva, Liubov; Yemets, Alla; Kilchevsky, Aleksandr; Blume, Yaroslav

    2017-08-09

    Fiber flax is an important source of natural fiber and a comprehensive model for the plant fiber biogenesis studies. Cellulose-synthase (CesA) and cytoskeletal genes are known to be important for the cell wall biogenesis in general and for the biogenesis of flax fibers in particular. Currently, knowledge about activity of these genes during the plant growth is limited. In this study, we have investigated flax fiber biogenesis by measuring expression of CesA and cytoskeletal genes at two stages of the flax development (seedlings and stems at the rapid growth stage) in several flax subspecies (elongatum, mediterraneum, crepitans). RT-qPCR has been used to quantify the expression of LusСesA1, LusСesA4, LusСesA7, LusСesA6, Actin, and α-Tubulin genes in plant samples. We report that CesA genes responsible for the secondary cell wall synthesis (LusCesA4, LusCesA7) have different expression pattern compared with CesA genes responsible for the primary cell wall synthesis (LusCesA1, LusCesA6): an average expression of LusCesA4 and LusCesA7 genes is relatively high in seedlings and further increases in stems at the rapid growth stage, whereas an average expression of LusCesA1 and LusCesA6 genes decreases. Interestingly, LusCesA1 is the only studied gene with different expression dynamics between the flax subspecies: its expression decreases by 5.2-10.7 folds in elongatum and mediterraneum but does not change in crepitans subspecies when the rapid growth stage and seedlings are compared. The expression of cytoskeleton genes (coding actin and α-tubulin) is relatively stable and significantly higher than the expression of cellulose-synthase genes in all the studied samples. © 2017 International Federation for Cell Biology.

  1. The instability of the flax element LIS-1 in transgenic Arabidopsis thaliana

    Bastaki NK

    2015-05-01

    Full Text Available Nasmah K Bastaki, Christopher A Cullis Department of Biology, Case Western Reserve University, Cleveland, OH, USA Background: The LIS-1 is an element that appears as a site-specific insertion event in some flax lines in response to certain growth conditions and can be transmitted to subsequent generations. The origin of LIS-1 in the flax genome is uncertain. One possibility is that since LIS-1 does not exist intact in the progenitor line, it is assembled from small sequences found scattered throughout the genome, and that, under stressful growth conditions, induction occurs and these sequences are rearranged and assembled to form the intact LIS-1 element. It is unknown whether the intact LIS-1 element would remain stably integrated in other plant species or if it would be destabilized from their genome. Results: In this study, Agrobacterium-mediated plant transformation via floral dipping was used to transform different accessions of the Columbia ecotype of Arabidopsis thaliana, with either LIS-1 or the target site into which LIS-1 integrates. The stability and the inheritance patterns of both elements were followed in subsequent generations. Our results indicate that, in the different transformed accessions, the target site of LIS-1 remains stable in the T1 and T2 generations. However, LIS-1 is not found intact in any transformed A. thaliana plants. Instead, it goes through multiple fragmentation events, which seem to be genotype dependent. In the process, the region originally flanking LIS-1 in the T-DNA construct can be converted to the same sequence found at the target site in flax, followed by complete excision of all the flax DNA in the construct. Conclusion: These results demonstrate that the processes by which LIS-1 is produced in flax are also present in A. thaliana because both plants are capable of destabilizing the intact LIS-1 element.Keywords: flax (Linum usitatissimum, Arabidopsis thaliana, plant transformation, Linum insertion

  2. Engineering and characterisation of the interface in flax/polypropylene composite materials

    Zafeiropoulos, Nikolaos Evangelos

    2001-01-01

    The main objectives of the present PhD project were to study the interface in flax/iPP composites, to develop and optimise an appropriate surface treatment for improving the interface in flax/iPP composites, and to assess the effect of the applied surface treatments on the properties of flax fibres (both physical and chemical). Two surface treatments, acetylation and stearation, were developed and optimised in the present study. The effect of these two surface treatments upon the structure of flax fibres was studied using XRD, SEM, ATR-FTIR, ToF-SIMS, XPS, IGC, DVS and single fibre tensile testing. It was found that the treatments did not significantly change the fibre strength, but they altered the fibre surface characteristics (chemical and physical). The water absorption was also significantly reduced after treatment, especially for green (as-received) flax, as was shown using DVS. In all cases the fibre surfaces were found to be very heterogeneous (from a chemistry point of view). The effect of the treatments and the processing conditions on the interfacial bond was studied using the single fibre fragmentation test, and it was shown that both treatments resulted in a stronger interface. The development of transcrystallinity was also found to produce a stronger interface, along with the use of slower cooling rates. However, an examination of the tensile properties of short flax fibre composites revealed that acetylation did not significantly change the tensile strength, in comparison with the untreated fibres, probably due to the manufacturing route followed in the present study that resulted in fibre lengths lower than the critical length. SEM post-mortem examination of the composites' fractured surfaces revealed that acetylation improved adhesion with iPP. (author)

  3. Catalytic subcritical water liquefaction of flax straw for high yield of furfural

    Harry, Inibehe; Ibrahim, Hussameldin; Thring, Ron; Idem, Raphael

    2014-01-01

    There is substantial interest in the application of biomass as a renewable fuel or for production of chemicals. Flax straw can be converted into valuable chemicals and biofuels via liquefaction in sub-critical water. In this study, the yield of furfural and the kinetics of flax straw liquefaction under sub-critical water conditions were investigated using a high-pressure autoclave reactor. The liquefaction was conducted in the temperature range of 175–325 °C, pressure of 0.1 MPa–8 MPa, retention time in the range of 0 min–120 min, and flax straw mass fraction (w F ) of 5–20 %. Also, the effect of acid catalysts on furfural yield was studied. The kinetic parameters of flax straw liquefaction were determined using nonlinear regression of the experimental data, assuming second-order kinetics. The apparent activation energy was found to be 27.97 kJ mol −1 while the reaction order was 2.0. The optimum condition for furfural yield was at 250 °C, 6.0 MPa, w F of 5% and 0 retention time after reaching set conditions. An acid catalyst was found to selectively favour furfural yield with 40% flax straw conversion. - Highlights: • Flax straw liquefaction in subcritical water. • Creation of a reaction pathway that can be used to optimized furfural production. • Acid catalyst selectively favoured furfural yield with respect to other liquid products. • At the highest process temperature of 325 °C, a carbon conversion of 40% was achieved. • Activation energy and reaction order was 28 kJ/mol and 2.0 respectively

  4. Biodegradation of flax fiber reinforced poly lactic acid

    2010-07-01

    Full Text Available Woven and nonwoven flax fiber reinforced poly lactic acid (PLA biocomposites were prepared with amphiphilic additives as accelerator for biodegradation. The prepared composites were buried in farmland soil for biodegradability studies. Loss in weight of the biodegraded composite samples was determined at different time intervals. The surface morphology of the biodegraded composites was studied with scanning electron microscope (SEM. Results indicated that in presence of mandelic acid, the composites showed accelerated biodegradation with 20–25% loss in weight after 50–60 days. On the other hand, in presence of dicumyl peroxide (as additive, biodegradation of the composites was relatively slow as confirmed by only 5–10% loss in weight even after 80–90 days. This was further confirmed by surface morphology of the biodegraded composites. We have attempted to show that depending on the end uses, we can add different amphiphilic additives for delayed or accelerated biodegradability. This work gives us the idea of biodegradation of materials from natural fiber reinforced PLA composites when discarded carelessly in the environment instead of proper waste disposal site.

  5. Effects of CO/sub 2/ and membranes on sporulation in axenic cultures of flax rust. [Melampsora lini

    Boasson, R.; Shaw, M.

    1985-01-01

    Uredospore production by axenically grown flax rust (Melampsora lini (Ehrenb.) Lev.) was measured as carotenoids (extinction units at 458 nm) per milligram protein. Sporulation was not affected by raising (flushing with 1-5% (v/v) CO/sub 2/ in air) or lowering (KOH well in culture flasks) the level of CO/sub 2/ in the air space above the cultures. Significant (two- to four-fold) increases in sporulation occurred beneath impermeable membranes of parafilm or Saran wrap placed on the surface of young (3 weeks from seeding) mycelial mats for 2 weeks. The stimulatory effect was confined strictly to those areas of the mycelial mats in contact with the membranes. Both Parafilm and Saran wrap were easily and cleanly peeled away from the mycelial mats. Permeable Unipore and HVHP membranes, to which the fungus adhered strongly, did not stimulate sporulation. The fungus did not adhere to Unipore or HVHP membranes treated with silicone or paraffin oil; membranes thus treated stimulated sporulation. The stimulatory effect of membranes on sporulation appears to depend on the nature of the contact between the membrane surface and the mycelium and to be unrelated to the effect of the membranes on the diffusion of gases or other volatile substances. 11 references, 2 figures, 4 tables.

  6. Penetration of nanoparticles in flax (Linum usitatissimum L.) calli and regenerants.

    Kokina, Inese; Gerbreders, Vjačeslavs; Sledevskis, Eriks; Bulanovs, Andrejs

    2013-05-20

    We demonstrate a method for direct delivery of metal nanoparticles to flax calli and regenerant cells by vacuum deposition of metal nanolayers on powdered hormone followed by dispersal of the combined hormone-metal in medium. The penetration and location of the gold (AuNPs) and silver (AgNPs) nanoparticles in calli and in plant regenerants were confirmed by optical absorption spectroscopy and scanning electron microscopy. We detected a significant effect of the AuNPs and AgNPs on the regeneration type of flax calli. Copyright © 2013 Elsevier B.V. All rights reserved.

  7. Manipulating cinnamyl alcohol dehydrogenase (CAD) expression in flax affects fibre composition and properties

    2014-01-01

    Background In recent decades cultivation of flax and its application have dramatically decreased. One of the reasons for this is unpredictable quality and properties of flax fibre, because they depend on environmental factors, retting duration and growing conditions. These factors have contribution to the fibre composition, which consists of cellulose, hemicelluloses, lignin and pectin. By far, it is largely established that in flax, lignin reduces an accessibility of enzymes either to pectin, hemicelluloses or cellulose (during retting or in biofuel synthesis and paper production). Therefore, in this study we evaluated composition and properties of flax fibre from plants with silenced CAD (cinnamyl alcohol dehydrogenase) gene, which is key in the lignin biosynthesis. There is evidence that CAD is a useful tool to improve lignin digestibility and/or to lower the lignin levels in plants. Results Two studied lines responded differentially to the introduced modification due to the efficiency of the CAD silencing. Phylogenetic analysis revealed that flax CAD belongs to the “bona-fide” CAD family. CAD down-regulation had an effect in the reduced lignin amount in the flax fibre cell wall and as FT-IR results suggests, disturbed lignin composition and structure. Moreover introduced modification activated a compensatory mechanism which was manifested in the accumulation of cellulose and/or pectin. These changes had putative correlation with observed improved fiber’s tensile strength. Moreover, CAD down-regulation did not disturb at all or has only slight effect on flax plants’ development in vivo, however, the resistance against flax major pathogen Fusarium oxysporum decreased slightly. The modification positively affected fibre possessing; it resulted in more uniform retting. Conclusion The major finding of our paper is that the modification targeted directly to block lignin synthesis caused not only reduced lignin level in fibre, but also affected amount and

  8. In vivo monitoring of seeds and plant-tissue water absorption using optical coherence tomography and optical coherence microscopy

    Sapozhnikova, Veronika V.; Kutis, Irina S.; Kutis, Sergey D.; Kuranov, Roman V.; Gelikonov, Grigory V.; Shabanov, Dmitry V.; Kamensky, Vladislav A.

    2004-07-01

    First experimental results on OCT imaging of internal structure of plant tissues and in situ OCT monitoring of plant tissue regeneration at different water supply are reported. Experiments for evaluating OCT capabilities were performed on Tradescantia. The investigation of seeds swelling was performed on wheat seeds (Triticum L.), barley seeds (Hordeum L.), long-fibred flax seeds (Linum usitatissimum L.) and cucumber seeds (Cucumis sativus L.). These OCT images correlate with standard microscopy data from the same tissue regions. Seeds were exposed to a low-intensity physical factor-the pulsed gradient magnetic field (GMF) with pulse duration 0.1 s and maximum amplitude 5 mT (4 successive pulses during 0.4 s). OCT and OCM enable effective monitoring of fast reactions in plants and seeds at different water supply.

  9. Assessing the Environmental Impact of Flax Fibre Reinforced Polymer Composite from a Consequential Life Cycle Assessment Perspective

    Yelin Deng

    2015-08-01

    Full Text Available The study implements the consequential life cycle assessment (CLCA to provide a market based perspective on how overall environmental impact will change when shifting glass fibres to flax fibres as reinforcements in composite fabrication. With certain assumptions, the marginal flax fibre supply is identified to be a combination of Chinese flax fibre (70% and French flax fibre (30%. Due to inferior cultivars and coal-fired electricity in Chinese flax cultivation, the CLCA study reveals that flax mat-PP has 0.8–2 times higher environmental impact values than the glass mat-PP in most environmental impact categories over the production and end-of-life (EoL phases. For purpose of providing potential trajectories of marginal flax fibre supply, additional scenarios: the “all French fibre”, and “all Chinese fibre” are evaluated formulating the lower and upper boundaries in terms of environmental impact change, respectively. A “the attributional fibre supply mix” scenario is supplied as well. All of these scenarios are useful for policy analysis.

  10. Flavonoid C-glucosides derived from flax straw extracts reduce human breast cancer cell growth in vitro and induce apoptosis.

    Magdalena Czemplik

    2016-08-01

    Full Text Available Flax straw of flax varieties that are grown for oil production is a byproduct which represents a considerable biomass source. Therefore its potential application for human use is of high interest. Our research has revealed that flax straw is rich in flavonoid C-glucosides, including vitexin, orientin and isoorientin. The objective of this study was to evaluate the cytotoxicity and possible proapoptotic effect of flax straw derived C-glucosides of flavonoids in the human breast adenocarcinoma cell line (MCF-7. The effects of flax straw derived flavonoid C-glucosides on cell proliferation of MCF-7 cells were evaluated by 3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyl-tetrazolium bromide (MTT and sulforhodamine B (SRB assays. The expression of apoptosis-related genes was assessed by real-time PCR. Our data revealed that flax C-glucosides as well as pure compounds are cytotoxic towards MCF-7 cells and inhibit their proliferation. Moreover, the induction of apoptosis was correlated with the changes in the mRNA level of pro-apoptotic genes. Increased expression of bax and caspase-7, -8, and -9 and decreased mRNA expression of bcl-2 was observed, whereas the mRNA levels of p53 and mdm2 were not altered. These results clearly demonstrated that flax straw metabolites effectively induced growth inhibition and apoptosis in human breast adenocarcinoma cells.

  11. Rheology, fatty acid profile and storage characteristics of cookies as influenced by flax seed (Linum usitatissimum).

    Rajiv, Jyotsna; Indrani, Dasappa; Prabhasankar, Pichan; Rao, G Venkateswara

    2012-10-01

    Flaxseed is a versatile functional ingredient owing to its unique nutrient profile. Studies on the effect of substitution of roasted and ground flaxseed (RGF) at 5, 10, 15 and 20% level on the wheat flour dough properties showed that amylograph peak viscosity, farinograph dough stability, extensograph resistance to extension and extensibility values decreased with the increase in the substitution of RGF from 0-20%. The cookie baking test showed a marginal decrease in spread ratio but beyond substitution of 15% RGF the texture and flavour of the cookies was adversely affected. The data on storage characteristics of control and cookies with 15% RGF showed no significant change with respect to acidity of extracted fat and peroxide values due to storage of cookies upto 90 days in metallised polyester pouches at ambient conditions. The gas chromatographic analysis of fatty acid profile indicated that the control cookies contained negligible linolenic acid and the flaxseed cookies contained 4.75 to 5.31% of linolenic acid which showed a marginal decrease over storage. Hence flaxseed could be used as a source of omega-3-fatty acid.

  12. Protective effect of flax seed oil against radiation induced hematological alterations in mammals

    Sharma, Jyoti; Singh, Ritu; Goyal, P.K.; Singh, Seema

    2014-01-01

    Human beings are exposed to ionizing and non ionizing radiation from natural as well as manmade sources. Ionizing radiations are one of the predominant exogenous factors that have deleterious consequences to human life. Exposure to ionizing radiations damages the hematopoietic, gastrointestinal or central nervous systems, depending on radiation dose. Hence, there is an urgent need to prevent such deleterious effects caused due to ionizing radiations. Chemical protection involves the use of synthetic and natural products against planned radiation exposure. Medicinal plants are rich in antioxidants and their chemical constituents may be the potential source for radioprotective agents. Linum usitatissimum plant (family: Linaceae), source of flaxseed oil (FSO), is well known for its anticarcinogenic, antidiabetic, cardioprotector, antiulcer properties owing to the presence of various phytochemicals. The present study has been focused to find out the preventive action of flaxseed oil against radiation induced hematological and biochemical lesions in mammals. For this purpose, FSO (50μL/animal/day) was orally administered to Swiss albino mice for five days, prior to 6 Gy gamma radiation exposure. The animals were sacrificed on 1 st , 3 rd , 7 th , 15 th and 30 th day after irradiation. Radiation treated control group exhibited significant reduction in erythrocytes count, hemoglobin content, hematocrit value and total WBC count in peripheral blood. In contrast, pretreatment with FSO significantly increased all these blood constituents. Further, the antioxidant parameters such as reduced glutathione, catalase, and superoxide dismutase showed a significant elevation in FSO pretreated group which were reduced in irradiated control group. Similarly, radiation induced increase lipid peroxidation in blood was significantly inhibited after FSO treatment. The present results indicate that the flaxseed oil has the ability to debilitate the radiation induced adverse alterations in the peripheral blood throughout the experiment in mammals. (author)

  13. The cinnamyl alcohol dehydrogenase (CAD gene family in flax (Linum usitatissimum L.: Insight from expression profiling of cads induced by elicitors in cultured flax cells

    Eom Hee Seung

    2016-01-01

    Full Text Available Cinnamyl alcohol dehydrogenase (CAD is a key enzyme in the biosynthesis of lignin and lignans as it catalyzes the final step of monolignol biosynthesis, using NADPH as a cofactor. In higher plants, CAD is encoded by a multigene family consisting of three major classes. Based on the recently released flax (Linum usitatissimum L. whole-genome sequences, in this study we identified six CAD family genes that contain an ADH_N domain and an ADH_zinc_N domain, which suggests that the putative flax CADs (LuCADs are zinc-dependent alcohol dehydrogenases and members of the plant CAD family. In addition, expression analysis using quantitative real-time PCR revealed spatial variations in the expression of LuCADs in different organs. Comparative analysis between LuCAD enzymatic activity and LuCAD transcripts indicates that the variation of LuCAD enzymatic activities by elicitors is reflected by transcription of LuCADs in flax suspension-cultured cells. Taken together, our genome-wide analysis of CAD genes and the expression profiling of these genes provide valuable information for understanding the function of CADs, and will assist future studies on the physiological role of monolignols associated with plant defense.

  14. Effect of water absorption on mechanical properties of flax fibre reinforced composites

    Guduri, BBR

    2007-01-01

    Full Text Available Scutched and line flax fibres, with mean linear density of about 19.5 decitex, were utilized for this study. Mechanical properties of fibre and resin were measured for assessing their contribution in the composite matrix. Polypropylene (PP)/ short...

  15. Pectinmethylesterases (PME) and pectinmethylesterase inhibitors (PMEI) enriched during phloem fiber development in flax (Linum usitatissimum).

    Pinzon-Latorre, David; Deyholos, Michael K

    2014-01-01

    Flax phloem fibers achieve their length by intrusive-diffusive growth, which requires them to penetrate the extracellular matrix of adjacent cells. Fiber elongation therefore involves extensive remodelling of cell walls and middle lamellae, including modifying the degree and pattern of methylesterification of galacturonic acid (GalA) residues of pectin. Pectin methylesterases (PME) are important enzymes for fiber elongation as they mediate the demethylesterification of GalA in muro, in either a block-wise fashion or in a random fashion. Our objective was to identify PMEs and PMEIs that mediate phloem fiber elongation in flax. For this purpose, we measured transcript abundance of candidate genes at nine different stages of stem and fiber development and found sets of genes enriched during fiber elongation and maturation as well as during xylem development. We expressed one of the flax PMEIs in E. coli and demonstrated that it was able to inhibit most of the native PME activity in the upper portion of the flax stem. These results identify key genetic components of the intrusive growth process and define targets for fiber engineering and crop improvement.

  16. Identification of cell wall proteins in the flax (Linum usitatissimum) stem.

    Day, Arnaud; Fénart, Stéphane; Neutelings, Godfrey; Hawkins, Simon; Rolando, Christian; Tokarski, Caroline

    2013-03-01

    Sequential salt (CaCl2 , LiCl) extractions were used to obtain fractions enriched in cell wall proteins (CWPs) from the stem of 60-day-old flax (Linum usitatissimum) plants. High-resolution FT-ICR MS analysis and the use of recently published genomic data allowed the identification of 11 912 peptides corresponding to a total of 1418 different proteins. Subcellular localization using TargetP, Predotar, and WoLF PSORT led to the identification of 152 putative flax CWPs that were classified into nine different functional classes previously established for Arabidopsis thaliana. Examination of different functional classes revealed the presence of a number of proteins known to be involved in, or potentially involved in cell-wall metabolism in plants. The flax stem cell wall proteome was also compared with transcriptomic data previously obtained on comparable samples. This study represents a major contribution to the identification of CWPs in flax and will lead to a better understanding of cell wall biology in this species. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. [BIOINFORMATIC SEARCH AND PHYLOGENETIC ANALYSIS OF THE CELLULOSE SYNTHASE GENES OF FLAX (LINUM USITATISSIMUM)].

    Pydiura, N A; Bayer, G Ya; Galinousky, D V; Yemets, A I; Pirko, Ya V; Podvitski, T A; Anisimova, N V; Khotyleva, L V; Kilchevsky, A V; Blume, Ya B

    2015-01-01

    A bioinformatic search of sequences encoding cellulose synthase genes in the flax genome, and their comparison to dicots orthologs was carried out. The analysis revealed 32 cellulose synthase gene candidates, 16 of which are highly likely to encode cellulose synthases, and the remaining 16--cellulose synthase-like proteins (Csl). Phylogenetic analysis of gene products of cellulose synthase genes allowed distinguishing 6 groups of cellulose synthase genes of different classes: CesA1/10, CesA3, CesA4, CesA5/6/2/9, CesA7 and CesA8. Paralogous sequences within classes CesA1/10 and CesA5/6/2/9 which are associated with the primary cell wall formation are characterized by a greater similarity within these classes than orthologous sequences. Whereas the genes controlling the biosynthesis of secondary cell wall cellulose form distinct clades: CesA4, CesA7, and CesA8. The analysis of 16 identified flax cellulose synthase gene candidates shows the presence of at least 12 different cellulose synthase gene variants in flax genome which are represented in all six clades of cellulose synthase genes. Thus, at this point genes of all ten known cellulose synthase classes are identify in flax genome, but their correct classification requires additional research.

  18. Genetic diversity of cultivated flax (Linum usitatissimum L.) germplasm assessed by retrotransposon-based markers.

    Smýkal, P; Bačová-Kerteszová, N; Kalendar, R; Corander, J; Schulman, A H; Pavelek, M

    2011-05-01

    Retrotransposon segments were characterized and inter-retrotransposon amplified polymorphism (IRAP) markers developed for cultivated flax (Linum usitatissimum L.) and the Linum genus. Over 75 distinct long terminal repeat retrotransposon segments were cloned, the first set for Linum, and specific primers designed for them. IRAP was then used to evaluate genetic diversity among 708 accessions of cultivated flax comprising 143 landraces, 387 varieties, and 178 breeding lines. These included both traditional and modern, oil (86), fiber (351), and combined-use (271) accessions, originating from 36 countries, and 10 wild Linum species. The set of 10 most polymorphic primers yielded 141 reproducible informative data points per accession, with 52% polymorphism and a 0.34 Shannon diversity index. The maximal genetic diversity was detected among wild Linum species (100% IRAP polymorphism and 0.57 Jaccard similarity), while diversity within cultivated germplasm decreased from landraces (58%, 0.63) to breeding lines (48%, 0.85) and cultivars (50%, 0.81). Application of Bayesian methods for clustering resulted in the robust identification of 20 clusters of accessions, which were unstratified according to origin or user type. This indicates an overlap in genetic diversity despite disruptive selection for fiber versus oil types. Nevertheless, eight clusters contained high proportions (70-100%) of commercial cultivars, whereas two clusters were rich (60%) in landraces. These findings provide a basis for better flax germplasm management, core collection establishment, and exploration of diversity in breeding, as well as for exploration of the role of retrotransposons in flax genome dynamics.

  19. Structural characterization of guaiacyl-rich lignins in flax (Linum usitatissimum) fibers and shives.

    del Río, José C; Rencoret, Jorge; Gutiérrez, Ana; Nieto, Lidia; Jiménez-Barbero, Jesús; Martínez, Ángel T

    2011-10-26

    The structural characteristics of the lignins from flax (Linum usitatissimum) fibers and shives were studied. Significant differences in the content and composition of the lignin from both parts were observed. The lignin contents were 3.8% in the fibers and 29.0% in the shives. Analysis by Py-GC/MS indicated a H:G:S molar ratio of 13:72:15 in the milled wood lignin (MWL) isolated from flax fibers and a molar ratio of 5:87:8 in the MWL isolated from flax shives. In addition, 2D-NMR showed a predominance of β-O-4' aryl ether linkages, followed by β-5' phenylcoumaran and β-β' resinol-type linkages in both MWLs, with a higher content of condensed linkages in flax shives. Thioacidolysis (followed by Raney nickel desulfurization) gave further information on the lignin units involved in the different linkages and confirmed the enrichment of G units. The thioacidolysis dimers released were similar from both lignins, with a predominance of the β-5' followed by β-1' and 5-5' structures.

  20. Effects of genetic modifications to flax (Linum usitatissimum) on arbuscular mycorrhiza and plant performance.

    Wróbel-Kwiatkowska, Magdalena; Turnau, Katarzyna; Góralska, Katarzyna; Anielska, Teresa; Szopa, Jan

    2012-10-01

    Although arbuscular mycorrhizal fungi (AMF) are known for their positive effect on flax growth, the impact of genetic manipulation in this crop on arbuscular mycorrhiza and plant performance was assessed for the first time. Five types of transgenic flax that were generated to improve fiber quality and resistance to pathogens, through increased levels of either phenylpropanoids (W92.40), glycosyltransferase (GT4, GT5), or PR2 beta-1,3-glucanase (B14) or produce polyhydroxybutyrate (M50), were used. Introduced genetic modifications did not change the degree of mycorrhizal colonization as compared to parent cultivars Linola and Nike. Arbuscules were well developed in each tested transgenic type (except M50). In two lines (W92.40 and B14), a higher abundance of arbuscules was observed when compared to control, untransformed flax plants. However, in some cases (W92.40, GT4, GT5, and B14 Md), the mycorrhizal dependency for biomass production of transgenic plants was slightly lower when compared to the original cultivars. No significant influence of mycorrhiza on the photosynthetic activity of transformed lines was found, but in most cases P concentration in mycorrhizal plants remained higher than in nonmycorrhizal ones. The transformed flax lines meet the demands for better quality of fiber and higher resistance to pathogens, without significantly influencing the interaction with AMF.

  1. Nitrogen, phosphorus, potassium, calcium, magnesium, and zinc in southeastern USA harvested flax

    Flax (Linum usitatissimum L.) is a winter crop in the Southeast USA that has potential in double cropping systems. This research was conducted to provide estimates of nitrogen (N), phosphorus (P), potassium (K), calcium (Ca), magnesium (Mg), and zinc (Zn) removal in the harvested portions of the cro...

  2. Pectinmethylesterases (PME and pectinmethylesterase inhibitors (PMEI enriched during phloem fiber development in flax (Linum usitatissimum.

    David Pinzon-Latorre

    Full Text Available Flax phloem fibers achieve their length by intrusive-diffusive growth, which requires them to penetrate the extracellular matrix of adjacent cells. Fiber elongation therefore involves extensive remodelling of cell walls and middle lamellae, including modifying the degree and pattern of methylesterification of galacturonic acid (GalA residues of pectin. Pectin methylesterases (PME are important enzymes for fiber elongation as they mediate the demethylesterification of GalA in muro, in either a block-wise fashion or in a random fashion. Our objective was to identify PMEs and PMEIs that mediate phloem fiber elongation in flax. For this purpose, we measured transcript abundance of candidate genes at nine different stages of stem and fiber development and found sets of genes enriched during fiber elongation and maturation as well as during xylem development. We expressed one of the flax PMEIs in E. coli and demonstrated that it was able to inhibit most of the native PME activity in the upper portion of the flax stem. These results identify key genetic components of the intrusive growth process and define targets for fiber engineering and crop improvement.

  3. Improved method for fibre content and quality analysis and their application to flax genetic diversity investigations

    Oever, van den M.J.A.; Bas, N.; Soest, van L.J.M.; Melis, C.; Dam, van J.E.G.

    2003-01-01

    Evaluation for fibre content and quality in a breeding selection program is time consuming and costly. Therefore, this study aims to develop a method for fast and reproducible fibre content analysis on small flax straw samples. A protocol has been developed and verified with fibre screening methods

  4. Cultivation of flax in spoil-bank clay: Mycorrhizal inoculation vs. high organic amendments

    Püschel, David; Rydlová, Jana; Sudová, Radka; Gryndler, Milan

    2008-01-01

    Roč. 171, č. 6 (2008), s. 872-877 ISSN 1436-8730 R&D Projects: GA MŠk 1M0571 Institutional research plan: CEZ:AV0Z60050516; CEZ:AV0Z50200510 Keywords : arbuscular mycorrhizal fungi * compost * flax Subject RIV: EF - Botanics Impact factor: 1.284, year: 2008

  5. Composition and distribution of cell wall phenolic compounds in flax (Linum usitatissimum L.) stem tissues

    Gorshkova, T.A.; Salnikov, V.V.; Pogodina, N.M.; Chemikosova, S.B.; Yablokova, E.V.; Ulanov, A.V.; Ageeva, M.V.; Dam, van J.E.G.; Lozovaya, V.V.

    2000-01-01

    Cell wall phenolic compounds were analysed in xylem and bast fibre-rich peels of flax stems by biochemical, histochemical and ultrastructural approaches. Localization of cell wall phenolics by the enzyme-gold method using laccase revealed several gold particle distribution patterns. One of the major

  6. The influence of gamma irradiation on natural dyeing properties of cotton and flax fabrics

    Chirila, Laura; Popescu, Alina; Cutrubinis, Mihalis; Stanculescu, Ioana; Moise, Valentin Ioan

    2018-04-01

    Fabrics made of 100% cotton and 100% flax respectively were exposed at ambient temperature to gamma radiation doses, from 5 to 40 kGy, using a Co-60 research irradiator. After the irradiation treatment the fabrics were subjected to dyeing process with Itodye Nat Pomegranate commercial natural dye. The influence of gamma irradiation treatment on the physical-mechanical properties, dyeing and surface morphology of natural fibres were investigated. Gamma ray treatment of 40 kGy was the most effective in the case of fabrics made from 100% cotton, enhancing the colour strength as evidenced by K/S value. The results obtained from the mechanical properties of fabrics made of 100% flax indicated that the dose of 40 kGy leads to a decrease of tensile strength up of to 41.5%. Infrared spectroscopy was used to monitor chemical and structural changes in cellulosic fibres induced during processing. Crystallinity indices calculated from various bands ratio showed insignificant variations for cotton and small variations in the case of flax. The surface morphology of irradiated cotton fabrics did not show significant changes even at the highest dose of 40 kGy, while the low doses applied on flax fabrics led to an appearance of small changes of surface morphology. The gamma irradiation increased the uptake of natural dyes on natural cellulosic fibres.

  7. Report of a Working Group on Fibre Crops (Flax and Hemp)

    Bas, N.; Pavelek, M.; Maggioni, L.; Lipman, E.

    2007-01-01

    Members of the newly established ECPGR Working Group on Fibre Crops (Flax and Hemp), in the framework of Sugar, Starch and Fibre Crops Network, met for the first time at Wageningen, the Netherlands on 14–16 June 2006. Fifteen participants from the Czech Republic, Germany, Hungary, Italy, Latvia,

  8. Thermal behavior of flax and jute reinforced in matrix acrylic composite

    Samal, Sneha Manjaree; Stuchlík, M.; Petrikova, I.

    2017-01-01

    Roč. 131, č. 2 (2017), s. 1-6 ISSN 1388-6150 Institutional support: RVO:68378271 Keywords : flax * jute * acrylic resin * composite * DMA * TG * FTIR Subject RIV: BM - Solid Matter Physics ; Magnetism OBOR OECD: Condensed matter physics (including formerly solid state physics, supercond.) Impact factor: 1.953, year: 2016

  9. Genome wide SNP discovery in flax through next generation sequencing of reduced representation libraries

    Kumar Santosh

    2012-12-01

    Full Text Available Abstract Background Flax (Linum usitatissimum L. is a significant fibre and oilseed crop. Current flax molecular markers, including isozymes, RAPDs, AFLPs and SSRs are of limited use in the construction of high density linkage maps and for association mapping applications due to factors such as low reproducibility, intense labour requirements and/or limited numbers. We report here on the use of a reduced representation library strategy combined with next generation Illumina sequencing for rapid and large scale discovery of SNPs in eight flax genotypes. SNP discovery was performed through in silico analysis of the sequencing data against the whole genome shotgun sequence assembly of flax genotype CDC Bethune. Genotyping-by-sequencing of an F6-derived recombinant inbred line population provided validation of the SNPs. Results Reduced representation libraries of eight flax genotypes were sequenced on the Illumina sequencing platform resulting in sequence coverage ranging from 4.33 to 15.64X (genome equivalents. Depending on the relatedness of the genotypes and the number and length of the reads, between 78% and 93% of the reads mapped onto the CDC Bethune whole genome shotgun sequence assembly. A total of 55,465 SNPs were discovered with the largest number of SNPs belonging to the genotypes with the highest mapping coverage percentage. Approximately 84% of the SNPs discovered were identified in a single genotype, 13% were shared between any two genotypes and the remaining 3% in three or more. Nearly a quarter of the SNPs were found in genic regions. A total of 4,706 out of 4,863 SNPs discovered in Macbeth were validated using genotyping-by-sequencing of 96 F6 individuals from a recombinant inbred line population derived from a cross between CDC Bethune and Macbeth, corresponding to a validation rate of 96.8%. Conclusions Next generation sequencing of reduced representation libraries was successfully implemented for genome-wide SNP discovery from

  10. A study of the tensile behaviour of flax tows and their potential for composite processing

    Moothoo, J.; Allaoui, S.; Ouagne, P.; Soulat, D.

    2014-01-01

    Highlights: • Flax tows are characterised by tensile testing under various conditions. • The tensile properties and their dispersion are dependent on the gauge length. • The distribution of the fibres length in specimens commands the tensile behaviour. • Packs of fibre bundle debonding failure mode are observed by image correlation. • Interesting tensile properties are obtained on epoxy impregnated and cured tows. - Abstract: To study the potential of flax tows in composite processing as an alternative to flax spun yarns, a flat flax tow consisting of aligned fibre bundles held together by a natural binder was used and characterised in tension under various conditions. The effect of the gauge length was studied on the dry reinforcement. The experimental results showed that the mechanical properties and failure mechanism varied significantly depending on the gauge length and are discussed in relation to the distribution of elementary fibres within the tow. A characteristic length as from which the mechanical properties are stable has been identified. At this length, the effect of the strain rate on the tensile properties was measured and their sensitivity to the strain rate suggests a viscous effect in the behaviour of the flax tow. To approach process conditions such as wet filament winding, a batch of specimens was impregnated with epoxy prior to tensile testing. The tensile properties under wet conditions were found to be close to the properties under dry conditions and shows that the tow can withstand typical processing tensions. Finally, tensile tests on cured-impregnated tows showed interesting mechanical properties for composite application

  11. The genome of flax (Linum usitatissimum) assembled de novo from short shotgun sequence reads.

    Wang, Zhiwen; Hobson, Neil; Galindo, Leonardo; Zhu, Shilin; Shi, Daihu; McDill, Joshua; Yang, Linfeng; Hawkins, Simon; Neutelings, Godfrey; Datla, Raju; Lambert, Georgina; Galbraith, David W; Grassa, Christopher J; Geraldes, Armando; Cronk, Quentin C; Cullis, Christopher; Dash, Prasanta K; Kumar, Polumetla A; Cloutier, Sylvie; Sharpe, Andrew G; Wong, Gane K-S; Wang, Jun; Deyholos, Michael K

    2012-11-01

    Flax (Linum usitatissimum) is an ancient crop that is widely cultivated as a source of fiber, oil and medicinally relevant compounds. To accelerate crop improvement, we performed whole-genome shotgun sequencing of the nuclear genome of flax. Seven paired-end libraries ranging in size from 300 bp to 10 kb were sequenced using an Illumina genome analyzer. A de novo assembly, comprised exclusively of deep-coverage (approximately 94× raw, approximately 69× filtered) short-sequence reads (44-100 bp), produced a set of scaffolds with N(50) =694 kb, including contigs with N(50)=20.1 kb. The contig assembly contained 302 Mb of non-redundant sequence representing an estimated 81% genome coverage. Up to 96% of published flax ESTs aligned to the whole-genome shotgun scaffolds. However, comparisons with independently sequenced BACs and fosmids showed some mis-assembly of regions at the genome scale. A total of 43384 protein-coding genes were predicted in the whole-genome shotgun assembly, and up to 93% of published flax ESTs, and 86% of A. thaliana genes aligned to these predicted genes, indicating excellent coverage and accuracy at the gene level. Analysis of the synonymous substitution rates (K(s) ) observed within duplicate gene pairs was consistent with a recent (5-9 MYA) whole-genome duplication in flax. Within the predicted proteome, we observed enrichment of many conserved domains (Pfam-A) that may contribute to the unique properties of this crop, including agglutinin proteins. Together these results show that de novo assembly, based solely on whole-genome shotgun short-sequence reads, is an efficient means of obtaining nearly complete genome sequence information for some plant species. © 2012 The Authors. The Plant Journal © 2012 Blackwell Publishing Ltd.

  12. Phylogenetic pinpointing of a paleopolyploidy event within the flax genus (Linum) using transcriptomics.

    Sveinsson, Saemundur; McDill, Joshua; Wong, Gane K S; Li, Juanjuan; Li, Xia; Deyholos, Michael K; Cronk, Quentin C B

    2014-04-01

    Cultivated flax (Linum usitatissimum) is known to have undergone a whole-genome duplication around 5-9 million years ago. The aim of this study was to investigate whether other whole-genome duplication events have occurred in the evolutionary history of cultivated flax. Knowledge of such whole-genome duplications will be important in understanding the biology and genomics of cultivated flax. Transcriptomes of 11 Linum species were sequenced using the Illumina platform. The short reads were assembled de novo and the DupPipe pipeline was used to look for signatures of polyploidy events from the age distribution of paralogues. In addition, phylogenies of all paralogues were assembled within an estimated age window of interest. These phylogenies were assessed for evidence of a paleopolyploidy event within the genus Linum. A previously unknown paleopolyploidy event that occurred 20-40 million years ago was discovered and shown to be specific to a clade within Linum containing cultivated flax (L. usitatissimum) and other mainly blue-flowered species. The finding was supported by two lines of evidence. First, a significant change of slope (peak) was shown in the age distribution of paralogues that was phylogenetically restricted to, and ubiquitous in, this clade. Second, a large number of paralogue phylogenies were retrieved that are consistent with a polyploidy event occurring within that clade. The results show the utility of multi-species transcriptomics for detecting whole-genome duplication events and demonstrate that that multiple rounds of polyploidy have been important in shaping the evolutionary history of flax. Understanding and characterizing these whole-genome duplication events will be important for future Linum research.

  13. Biomechanical properties of an advanced new carbon/flax/epoxy composite material for bone plate applications.

    Bagheri, Zahra S; El Sawi, Ihab; Schemitsch, Emil H; Zdero, Rad; Bougherara, Habiba

    2013-04-01

    This work is part of an ongoing program to develop a new carbon fiber/flax/epoxy (CF/flax/epoxy) hybrid composite material for use as an orthopaedic long bone fracture plate, instead of a metal plate. The purpose of this study was to evaluate the mechanical properties of this new novel composite material. The composite material had a "sandwich structure", in which two thin sheets of CF/epoxy were attached to each outer surface of the flax/epoxy core, which resulted in a unique structure compared to other composite plates for bone plate applications. Mechanical properties were determined using tension, three-point bending, and Rockwell hardness tests. Also, scanning electron microscopy (SEM) was used to characterize the failure mechanism of specimens in tension and three-point bending tests. The results of mechanical tests revealed a considerably high ultimate strength in both tension (399.8MPa) and flexural loading (510.6MPa), with a higher elastic modulus in bending tests (57.4GPa) compared to tension tests (41.7GPa). The composite material experienced brittle catastrophic failure in both tension and bending tests. The SEM images, consistent with brittle failure, showed mostly fiber breakage and fiber pull-out at the fractured surfaces with perfect bonding at carbon fibers and flax plies. Compared to clinically-used orthopaedic metal plates, current CF/flax/epoxy results were closer to human cortical bone, making the material a potential candidate for use in long bone fracture fixation. Copyright © 2013 Elsevier Ltd. All rights reserved.

  14. The genome of flax (Linum usitatissimum) assembled de novo from short shotgun sequence reads

    Wang, Zhiwen; Hobson, Neil; Galindo, Leonardo

    2012-01-01

    Flax (Linum usitatissimum) is an ancient crop that is widely cultivated as a source of fiber, oil and medicinally relevant compounds. To accelerate crop improvement, we performed whole-genome shotgun sequencing of the nuclear genome of flax. Seven paired-end libraries ranging in size from 300 bp...... these results show that de novo assembly, based solely on whole-genome shotgun short-sequence reads, is an efficient means of obtaining nearly complete genome sequence information for some plant species....

  15. The health condition of spring oilseed crops in relation to the fungi colonising their seeds

    Barbara Majchrzak

    2013-12-01

    Full Text Available The research was conduced in the years 1999-2000. The aim of the research was to determine the health condition of overground parts and seeds of the following spring oilseed crops: crambe (Crambe abbysinica Hoechst. cv. B o r o w s k i, false flax (Camelina sativa L. cv. B o r o w s k a, spring rape (Brassica napus ssp. oleifera L. cv. M a r g o and oleiferous radish (Raphanus sativus var. oleiferus L. cv. P e g l e t t a. In all the years of the research alternaria blight was found on the leaves and siliques of spring rape and oleiferous radish and on the leaves and stems of crambe. False flax proved to be weakly infected by pathogens. On its leaves gray mould (Botrytis cinerea was found in all the years of the research. The disease was found on the siliques only in 1999. In 2000 powdery mildew was found on spring rape and false flax (respectively, Erysiphe crucifearum and E.cichoracearum. The weather conditions affected the intensity of the diseases on the studied spring oilseed crops. Alernaria genus, especially A.alternata was most commonly isolated from the seeds of examined plants. It constituted from 37% (in crambe to 63,3% (in spring rape of all the isolates. Of the remaining pathogenic species, numerous fungi of the Fusarium genus (F.avenaceum, F.culmorum, F.equiseti and F.oxysporum were isolated. They constituted from 1,0% (false flax to 17,3% (crambe of the isolates.

  16. [Development of specific and degenerated primers to CesA genes encoding flax (Linum usitatissimum L.) cellulose synthase].

    Grushetskaia, Z E; Lemesh, V A; Khotyleva, L V

    2010-01-01

    Cellulose synthase catalytic subunit genes, CesA, have been discovered in several higher plant species, and it has been shown that the CesA gene family has multiple members. HVR2 fragment of these genes determine the class specificity of the CESA protein and its participation in the primary or secondary cell wall synthesis. The aim of this study was development of specific and degenerated primers to flax CesA gene fragments leading to obtaining the class specific HVR2 region of the gene. Two pairs of specific primers to the certain fragments of CesA-1 and CesA-6 genes and one pair of degenerated primers to HVR2 region of all flax CesA genes were developed basing on comparison of six CesA EST sequences of flax and full cDNA sequences of Arabidopsis, poplar, maize and cotton plants, obtained from GenBank. After amplification of flax cDNA, the bands of expected size were detected (201 and 300 b.p. for the CesA-1 and CesA-6, and 600 b.p. for the HVR2 region of CesA respectively). The developed markers can be used for cloning and sequencing of flax CesA genes, identifying their number in flax genome, tissue and stage specificity.

  17. Rheological properties of molten flax- and Tencel"®-polypropylene composites: Influence of fiber morphology and concentration

    Abdennadher, Ahmed; Vincent, Michel; Budtova, Tatiana

    2016-01-01

    The rheological properties of short fiber reinforced polypropylene were investigated. Flax and Tencel"® are two cellulose based fibers used in this study. Flax fibers are extracted from the bast of plants. They are composed of thin elementary fibers and rigid thick bundles made of elementary fibers “glued” together. Tencel"® is a man-made cellulosic fiber spun from cellulose solution, with a uniform diameter, thin, and flexible. First, fiber dimensions before and after compounding were analyzed. Both types of fibers were broken during compounding. Flax shows larger length and diameter than Tencel"®, but aspect ratio of flax is smaller. The reason is that after compounding flax remained in bundles. Dynamic viscosity, elastic and viscous moduli were studied as a function of fiber type, concentration (from 0 to 30 wt. %), and composite temperature (from 180 to 200 °C). All Tencel"®-based composites showed higher apparent yield stress, viscosity, and moduli compared to flax-based composites at the same fiber concentrations. The results are analyzed in terms of the influence of fiber type, aspect ratio, and flexibility. The importance of considering fiber morphology is demonstrated as far as it controls fiber flexibility and fiber-fiber interactions

  18. Selection of reference genes for quantitative gene expression normalization in flax (Linum usitatissimum L.

    Neutelings Godfrey

    2010-04-01

    Full Text Available Abstract Background Quantitative real-time PCR (qRT-PCR is currently the most accurate method for detecting differential gene expression. Such an approach depends on the identification of uniformly expressed 'housekeeping genes' (HKGs. Extensive transcriptomic data mining and experimental validation in different model plants have shown that the reliability of these endogenous controls can be influenced by the plant species, growth conditions and organs/tissues examined. It is therefore important to identify the best reference genes to use in each biological system before using qRT-PCR to investigate differential gene expression. In this paper we evaluate different candidate HKGs for developmental transcriptomic studies in the economically-important flax fiber- and oil-crop (Linum usitatissimum L. Results Specific primers were designed in order to quantify the expression levels of 20 different potential housekeeping genes in flax roots, internal- and external-stem tissues, leaves and flowers at different developmental stages. After calculations of PCR efficiencies, 13 HKGs were retained and their expression stabilities evaluated by the computer algorithms geNorm and NormFinder. According to geNorm, 2 Transcriptional Elongation Factors (TEFs and 1 Ubiquitin gene are necessary for normalizing gene expression when all studied samples are considered. However, only 2 TEFs are required for normalizing expression in stem tissues. In contrast, NormFinder identified glyceraldehyde-3-phosphate dehydrogenase (GADPH as the most stably expressed gene when all samples were grouped together, as well as when samples were classed into different sub-groups. qRT-PCR was then used to investigate the relative expression levels of two splice variants of the flax LuMYB1 gene (homologue of AtMYB59. LuMYB1-1 and LuMYB1-2 were highly expressed in the internal stem tissues as compared to outer stem tissues and other samples. This result was confirmed with both ge

  19. Selection of reference genes for quantitative gene expression normalization in flax (Linum usitatissimum L.).

    Huis, Rudy; Hawkins, Simon; Neutelings, Godfrey

    2010-04-19

    Quantitative real-time PCR (qRT-PCR) is currently the most accurate method for detecting differential gene expression. Such an approach depends on the identification of uniformly expressed 'housekeeping genes' (HKGs). Extensive transcriptomic data mining and experimental validation in different model plants have shown that the reliability of these endogenous controls can be influenced by the plant species, growth conditions and organs/tissues examined. It is therefore important to identify the best reference genes to use in each biological system before using qRT-PCR to investigate differential gene expression. In this paper we evaluate different candidate HKGs for developmental transcriptomic studies in the economically-important flax fiber- and oil-crop (Linum usitatissimum L). Specific primers were designed in order to quantify the expression levels of 20 different potential housekeeping genes in flax roots, internal- and external-stem tissues, leaves and flowers at different developmental stages. After calculations of PCR efficiencies, 13 HKGs were retained and their expression stabilities evaluated by the computer algorithms geNorm and NormFinder. According to geNorm, 2 Transcriptional Elongation Factors (TEFs) and 1 Ubiquitin gene are necessary for normalizing gene expression when all studied samples are considered. However, only 2 TEFs are required for normalizing expression in stem tissues. In contrast, NormFinder identified glyceraldehyde-3-phosphate dehydrogenase (GADPH) as the most stably expressed gene when all samples were grouped together, as well as when samples were classed into different sub-groups.qRT-PCR was then used to investigate the relative expression levels of two splice variants of the flax LuMYB1 gene (homologue of AtMYB59). LuMYB1-1 and LuMYB1-2 were highly expressed in the internal stem tissues as compared to outer stem tissues and other samples. This result was confirmed with both geNorm-designated- and Norm

  20. UGT74S1 is the key player in controlling secoisolariciresinol diglucoside (SDG) formation in flax.

    Fofana, Bourlaye; Ghose, Kaushik; McCallum, Jason; You, Frank M; Cloutier, Sylvie

    2017-02-02

    Flax lignan, commonly known as secoisolariciresinol (SECO) diglucoside (SDG), has recently been reported with health-promoting activities, including its positive impact in metabolic diseases. However, not much was reported on the biosynthesis of SDG and its monoglucoside (SMG) until lately. Flax UGT74S1 was recently reported to sequentially glucosylate SECO into SMG and SDG in vitro. However, whether this gene is the only UGT achieving SECO glucosylation in flax was not known. Flax genome-wide mining for UGTs was performed. Phylogenetic and gene duplication analyses, heterologous gene expression and enzyme assays were conducted to identify family members closely related to UGT74S1 and to establish their roles in SECO glucosylation. A total of 299 different UGTs were identified, of which 241 (81%) were duplicated. Flax UGTs diverged 2.4-153.6 MYA and 71% were found to be under purifying selection pressure. UGT74S1, a single copy gene located on chromosome 7, displayed no evidence of duplication and was deemed to be under positive selection pressure. The phylogenetic analysis identified four main clusters where cluster 4, which included UGT74S1, was the most diverse. The duplicated UGT74S4 and UGT74S3, located on chromosomes 8 and 14, respectively, were the most closely related to UGT74S1 and were differentially expressed in different tissues. Heterologous expression levels of UGT74S1, UGT74S4 and UGT74S3 proteins were similar but UGT74S4 and UGT74S3 glucosylation activity towards SECO was seven fold less than UGT74S1. In addition, they both failed to produce SDG, suggesting neofunctionalization following their divergence from UGT74S1. We showed that UGT74S1 is closely related to two duplicated genes, UGT74S4 and UGT74S3 which, unlike UGT74S1, failed to glucosylate SMG into SDG. The study suggests that UGT74S1 may be the key player in controlling SECO glucosylation into SDG in flax although its closely related genes may also contribute to a minor extent in supplying

  1. Differential gene expression in response to Fusarium oxysporum infection in resistant and susceptible genotypes of flax (Linum usitatissimum L.).

    Dmitriev, Alexey A; Krasnov, George S; Rozhmina, Tatiana A; Novakovskiy, Roman O; Snezhkina, Anastasiya V; Fedorova, Maria S; Yurkevich, Olga Yu; Muravenko, Olga V; Bolsheva, Nadezhda L; Kudryavtseva, Anna V; Melnikova, Nataliya V

    2017-12-28

    Flax (Linum usitatissimum L.) is a crop plant used for fiber and oil production. Although potentially high-yielding flax varieties have been developed, environmental stresses markedly decrease flax production. Among biotic stresses, Fusarium oxysporum f. sp. lini is recognized as one of the most devastating flax pathogens. It causes wilt disease that is one of the major limiting factors for flax production worldwide. Breeding and cultivation of flax varieties resistant to F. oxysporum is the most effective method for controlling wilt disease. Although the mechanisms of flax response to Fusarium have been actively studied, data on the plant response to infection and resistance gene candidates are currently very limited. The transcriptomes of two resistant and two susceptible flax cultivars with respect to Fusarium wilt, as well as two resistant BC 2 F 5 populations, which were grown under control conditions or inoculated with F. oxysporum, were sequenced using the Illumina platform. Genes showing changes in expression under F. oxysporum infection were identified in both resistant and susceptible flax genotypes. We observed the predominant overexpression of numerous genes that are involved in defense response. This was more pronounced in resistant cultivars. In susceptible cultivars, significant downregulation of genes involved in cell wall organization or biogenesis was observed in response to F. oxysporum. In the resistant genotypes, upregulation of genes related to NAD(P)H oxidase activity was detected. Upregulation of a number of genes, including that encoding beta-1,3-glucanase, was significantly greater in the cultivars and BC 2 F 5 populations resistant to Fusarium wilt than in susceptible cultivars in response to F. oxysporum infection. Using high-throughput sequencing, we identified genes involved in the early defense response of L. usitatissimum against the fungus F. oxysporum. In response to F. oxysporum infection, we detected changes in the

  2. Flammability and thermal properties studies of nonwoven flax reinforced acrylic based polyester composites

    Rasyid, M. F. Ahmad; Salim, M. S.; Akil, H. M.; Ishak, Z. A. Mohd.

    2017-12-01

    In the pursuit of green and more sustainable product, natural fibre reinforced composites originating from renewable resources has gained interest in recent years. These natural fibres exhibit good mechanical properties, low production costs, and good environmental properties. However, one of the disadvantages of natural fibre reinforced composites is their high flammability that limits their application in many fields. Within this research, the effect of sodium silicate on the flammability and thermal properties of flax reinforced acrylic based polyester composites has been investigated. Sodium silicate is applied as binder and flame retardant system in impregnation process of the natural flax fiber mats. The addition of sodium silicate significantly improved the flame retardant efficiency but reduced the degree of crosslinking of the composites.

  3. studies agronomic and technological characteristics of fiber and oil flax types induced by irradiation treatments

    Amer, I.M.A.

    1984-01-01

    Thirty three entries of flax (Linum usitatissimum L-) were tested in seven field trails representing seven environmental conditions the experiments were carried out at the Agric. Res . center, Fac. of agric., cairo univ., giza, egypt, the 33-entries consisted of thirty promosing mutants plus three local cultivars(i.e., giza 4, giza 5 and giza 6) . The mutants were outcome of gamma rays irradiated local cultivar giza 4 flax. the entries in M 4 and M 5 were arranged in a randomized complete block design in six environments. in the last environment, the entries in M 6 were arranged in an augmented complete block design to study yield responses and stability indices for the selected mutant lines produced via irradiation treatments

  4. High renewable content sandwich structures based on flax-basalt hybrids and biobased epoxy polymers

    Colomina, S.; Boronat, T.; Fenollar, O.; Sánchez-Nacher, L.; Balart, R.

    2014-05-01

    In the last years, a growing interest in the development of high environmental efficiency materials has been detected and this situation is more accentuated in the field of polymers and polymer composites. In this work, green composite sandwich structures with high renewable content have been developed with core cork materials. The base resin for composites was a biobased epoxy resin derived from epoxidized vegetable oils. Hybrid basalt-flax fabrics have been used as reinforcements for composites and the influence of the stacking sequence has been evaluated in order to optimize the appropriate laminate structure for the sandwich bases. Core cork materials with different thickness have been used to evaluate performance of sandwich structures thus leading to high renewable content composite sandwich structures. Results show that position of basalt fabrics plays a key role in flexural fracture of sandwich structures due to differences in stiffness between flax and basalt fibers.

  5. Outlier Loci and Selection Signatures of Simple Sequence Repeats (SSRs) in Flax (Linum usitatissimum L.).

    Soto-Cerda, Braulio J; Cloutier, Sylvie

    2013-01-01

    Genomic microsatellites (gSSRs) and expressed sequence tag-derived SSRs (EST-SSRs) have gained wide application for elucidating genetic diversity and population structure in plants. Both marker systems are assumed to be selectively neutral when making demographic inferences, but this assumption is rarely tested. In this study, three neutrality tests were assessed for identifying outlier loci among 150 SSRs (85 gSSRs and 65 EST-SSRs) that likely influence estimates of population structure in three differentiated flax sub-populations ( F ST  = 0.19). Moreover, the utility of gSSRs, EST-SSRs, and the combined sets of SSRs was also evaluated in assessing genetic diversity and population structure in flax. Six outlier loci were identified by at least two neutrality tests showing footprints of balancing selection. After removing the outlier loci, the STRUCTURE analysis and the dendrogram topology of EST-SSRs improved. Conversely, gSSRs and combined SSRs results did not change significantly, possibly as a consequence of the higher number of neutral loci assessed. Taken together, the genetic structure analyses established the superiority of gSSRs to determine the genetic relationships among flax accessions, although the combined SSRs produced the best results. Genetic diversity parameters did not differ statistically ( P  > 0.05) between gSSRs and EST-SSRs, an observation partially explained by the similar number of repeat motifs. Our study provides new insights into the ability of gSSRs and EST-SSRs to measure genetic diversity and structure in flax and confirms the importance of testing for the occurrence of outlier loci to properly assess natural and breeding populations, particularly in studies considering only few loci.

  6. Natural Hypolignification Is Associated with Extensive Oligolignol Accumulation in Flax Stems1[C][W

    Huis, Rudy; Morreel, Kris; Fliniaux, Ophélie; Lucau-Danila, Anca; Fénart, Stéphane; Grec, Sébastien; Neutelings, Godfrey; Chabbert, Brigitte; Mesnard, François; Boerjan, Wout; Hawkins, Simon

    2012-01-01

    Flax (Linum usitatissimum) stems contain cells showing contrasting cell wall structure: lignified in inner stem xylem tissue and hypolignified in outer stem bast fibers. We hypothesized that stem hypolignification should be associated with extensive phenolic accumulation and used metabolomics and transcriptomics to characterize these two tissues. 1H nuclear magnetic resonance clearly distinguished inner and outer stem tissues and identified different primary and secondary metabolites, including coniferin and p-coumaryl alcohol glucoside. Ultrahigh-performance liquid chromatography-Fourier transform ion cyclotron resonance-mass spectrometry aromatic profiling (lignomics) identified 81 phenolic compounds, of which 65 were identified, to our knowledge, for the first time in flax and 11 for the first time in higher plants. Both aglycone forms and glycosides of monolignols, lignin oligomers, and (neo)lignans were identified in both inner and outer stem tissues, with a preponderance of glycosides in the hypolignified outer stem, indicating the existence of a complex monolignol metabolism. The presence of coniferin-containing secondary metabolites suggested that coniferyl alcohol, in addition to being used in lignin and (neo)lignan formation, was also utilized in a third, partially uncharacterized metabolic pathway. Hypolignification of bast fibers in outer stem tissues was correlated with the low transcript abundance of monolignol biosynthetic genes, laccase genes, and certain peroxidase genes, suggesting that flax hypolignification is transcriptionally regulated. Transcripts of the key lignan genes Pinoresinol-Lariciresinol Reductase and Phenylcoumaran Benzylic Ether Reductase were also highly abundant in flax inner stem tissues. Expression profiling allowed the identification of NAC (NAM, ATAF1/2, CUC2) and MYB transcription factors that are likely involved in regulating both monolignol production and polymerization as well as (neo)lignan production. PMID:22331411

  7. Combined treatment of retting flax wastewater using Fenton oxidation and granular activated carbon

    Abou-Elela, Sohair I.; Ali, Mohammed Eid M.; Ibrahim, Hanan S.

    2016-01-01

    The process of retting flax produces a huge amount of wastewater which is characterized with bad unpleasant smell and high concentration of organic materials. Treatment of such waste had always been difficult because of the presence of refractory organic pollutants such as lignin. In this study, treatment of retting wastewater was carried out using combined system of Fenton oxidation process followed by adsorption on granular activated carbon (GAC). The effects of operating condition on Fento...

  8. Methyl Salicylate Level Increase in Flax after Fusarium oxysporum Infection Is Associated with Phenylpropanoid Pathway Activation

    Boba, Aleksandra; Kostyn, Kamil; Kostyn, Anna; Wojtasik, Wioleta; Dziadas, Mariusz; Preisner, Marta; Szopa, Jan; Kulma, Anna

    2017-01-01

    Flax (Linum usitatissimum) is a crop plant valued for its oil and fiber. Unfortunately, large losses in cultivation of this plant are caused by fungal infections, with Fusarium oxysporum being one of its most dangerous pathogens. Among the plant's defense strategies, changes in the expression of genes of the shikimate/phenylpropanoid/benzoate pathway and thus in phenolic contents occur. Among the benzoates, salicylic acid, and its methylated form methyl salicylate play an important role in re...

  9. Abaca fibre reinforced PP composites and comparison with jute and flax fibre PP composites

    2007-11-01

    Full Text Available Abaca fibre reinforced PP composites were fabricated with different fibre loadings (20, 30, 40, 50wt% and in some cases 35 and 45 wt%. Flax and jute fibre reinforced PP composites were also fabricated with 30 wt% fibre loading. The mechanical properties, odour emission and structure properties were investigated for those composites. Tensile, flexural and Charpy impact strengths were found to increase for fibre loadings up to 40 wt% and then decreased. Falling weight impact tests were also carried out and the same tendency was observed. Owing to the addition of coupling agent (maleated polypropylene -MAH-PP, the tensile, flexural and falling weight impact properties were found to increase in between 30 to 80% for different fibre loadings. When comparing jute and flax fibre composites with abaca fibre composites, jute fibre composites provided best tensile properties but abaca fibre polypropylene composites were shown to provide best notch Charpy and falling weight impact properties. Odours released by flax fibre composites were smaller than jute and abaca fibre composites.

  10. ANALYSIS OF STABILITY OF TRINUCLEOTIDE TTC MOTIFS IN COMMON FLAX PLANTED IN THE CHERNOBYL AREA

    Veronika Lancíková

    2015-02-01

    Full Text Available Flax (Linum usitatissimum L. is one of the oldest domesticated plants — it was cultivated as early as in ancient Egypt and Samaria 10,000 years ago to serve as a source of fiber and oil, whence it later spread around the world. Compared with other plants, the flax genome consists of a high number of repetitive sequences, middle repetitive sequences and small repetitive sequences of nucleotides. The aim of the study was to analyze the stability of the existing trinucleotides motifs of microsatellite DNA of the flax genome (genotype Kyivskyi, growing in the Chernobyl conditions. The Chernobyl area is the most extensive “natural” laboratory suitable for the study of radiation effects. Over the last 20 years, the researches collected important knowledge about the effects of low and high radiation doses on the DNA isolated from the plant material growing on the remediated fields near Chernobyl and the plant material from fields contaminated by radioactive cesium 137Cs and strontium 90Sr. Using eight pairs of microsatellite primers, we successfully amplified the samples from the remediated fields. For each primer in the control samples and remediated samples, we detected 1 to 3 fragments per locus, each in size up to 120 to 250 base pairs. The applied microsatellite primers confirmed the monomorphic condition of microsatellite loci.

  11. Integrated consensus genetic and physical maps of flax (Linum usitatissimum L.).

    Cloutier, Sylvie; Ragupathy, Raja; Miranda, Evelyn; Radovanovic, Natasa; Reimer, Elsa; Walichnowski, Andrzej; Ward, Kerry; Rowland, Gordon; Duguid, Scott; Banik, Mitali

    2012-12-01

    Three linkage maps of flax (Linum usitatissimum L.) were constructed from populations CDC Bethune/Macbeth, E1747/Viking and SP2047/UGG5-5 containing between 385 and 469 mapped markers each. The first consensus map of flax was constructed incorporating 770 markers based on 371 shared markers including 114 that were shared by all three populations and 257 shared between any two populations. The 15 linkage group map corresponds to the haploid number of chromosomes of this species. The marker order of the consensus map was largely collinear in all three individual maps but a few local inversions and marker rearrangements spanning short intervals were observed. Segregation distortion was present in all linkage groups which contained 1-52 markers displaying non-Mendelian segregation. The total length of the consensus genetic map is 1,551 cM with a mean marker density of 2.0 cM. A total of 670 markers were anchored to 204 of the 416 fingerprinted contigs of the physical map corresponding to ~274 Mb or 74 % of the estimated flax genome size of 370 Mb. This high resolution consensus map will be a resource for comparative genomics, genome organization, evolution studies and anchoring of the whole genome shotgun sequence.

  12. Linen Most Useful: Perspectives on Structure, Chemistry, and Enzymes for Retting Flax

    Akin, Danny E.

    2013-01-01

    The components of flax (Linum usitatissimum) stems are described and illustrated, with reference to the anatomy and chemical makeup and to applications in processing and products. Bast fiber, which is a major economic product of flax along with linseed and linseed oil, is described with particular reference to its application in textiles, composites, and specialty papers. A short history of retting methods, which is the separation of bast fiber from nonfiber components, is presented with emphasis on water retting, field retting (dew retting), and experimental methods. Past research on enzyme retting, particularly by the use of pectinases as a potential replacement for the current commercial practice of field retting, is reviewed. The importance and mechanism of Ca2+ chelators with pectinases in retting are described. Protocols are provided for retting of both fiber-type and linseed-type flax stems with different types of pectinases. Current and future applications are listed for use of a wide array of enzymes to improve processed fibers and blended yarns. Finally, potential lipid and aromatic coproducts derived from the dust and shive waste streams of fiber processing are indicated. PMID:25969769

  13. Osmotic stress alters the balance between organic and inorganic solutes in flax (Linum usitatissimum).

    Quéro, Anthony; Molinié, Roland; Elboutachfaiti, Redouan; Petit, Emmanuel; Pau-Roblot, Corinne; Guillot, Xavier; Mesnard, François; Courtois, Josiane

    2014-01-01

    Flax (Linum usitatissimum) is grown for its oil and its fiber. This crop, cultivated in temperate regions, has seen a renewed interest due to the presence of abundant molecules of interest for many applications. Little information is available about the behavior of flax during osmotic stress; yet this is considered a major stress that causes significant yield losses in most crops. To control the presence of this stress better, flax behavior was investigated following the application of osmotic stress and the response was examined by applying increasing concentrations of PEG 8000. This resulted in the reorganization of 32 metabolites and 6 mineral ions in the leaves. The analysis of these two types of solute highlighted the contrasting behavior between a higher metabolite content (particularly fructose, glucose and proline) and a decrease in mineral ions (especially nitrate and potassium) following PEG treatment. However, this reorganization did not lead to a greater accumulation of solutes, with the total amount remaining unchanged in leaves during osmotic stress. Copyright © 2013 Elsevier GmbH. All rights reserved.

  14. Radiation-grafting of flame retardants on flax fabrics - A comparison between different flame retardant structures

    Teixeira, Marie; Sonnier, Rodolphe; Otazaghine, Belkacem; Ferry, Laurent; Aubert, Mélanie; Tirri, Teija; Wilén, Carl-Eric; Rouif, Sophie

    2018-04-01

    Three unsaturated compounds bearing respectively phosphate, aryl bromide and sulfenamide moieties were used as flame retardants (FR) for flax fabrics. Due to the presence of carbon-carbon double bonds, radiation-grafting was considered to covalently bond these FR onto fiber structure. Grafting efficiency and location of FR molecules were investigated by weight measurements and SEM-EDX observations. Flammability and especially self-extinguishment were assessed by thermogravimetric analysis, pyrolysis-combustion flow calorimetry and a non-standardized fire test already used in previous studies. All FRs were able to diffuse into elementary fiber bulk. Nevertheless only the phosphonated monomer (noted FR-P) was significantly grafted onto flax. Self-extinguishment was obtained for fabrics containing at least around 0.5 wt% of phosphorus. On the contrary the FR content of flax fibers after radiation-grafting procedure and washing was negligible for FR-S and FR-Br, evidencing that these molecules have not been grafted upon irradiation. Moreover, the combination of these molecules prevents the radiation-grafting of other molecules which showed good grafting rate when used alone.

  15. Comparative analysis of proteomic changes in contrasting flax cultivars upon cadmium exposure.

    Hradilová, Jana; Rehulka, Pavel; Rehulková, Helena; Vrbová, Miroslava; Griga, Miroslav; Brzobohatý, Bretislav

    2010-01-01

    Cadmium (Cd) is classified as a serious pollutant due to its high toxicity, high carcinogenicity, and widespread presence in the environment. Phytoremediation represents an effective low-cost approach for removing pollutants from contaminated soils, and a crop with significant phytoremediation potential is flax. However, significant differences in Cd accumulation and tolerance were previously found among commercial flax cultivars. Notably, cv. Jitka showed substantially higher tolerance to elevated Cd levels in soil and plant tissues than cv. Tábor. Here, significant changes in the expression of 14 proteins (related to disease/defense, metabolism, protein destination and storage, signal transduction, energy and cell structure) were detected by image and mass spectrometric analysis of two-dimensionally separated proteins extracted from Cd-treated cell suspension cultures derived from these contrasting cultivars. Further, two proteins, ferritin and glutamine synthetase (a key enzyme in glutathione biosynthesis), were only up-regulated by Cd in cv. Jitka, indicating that Cd tolerance mechanisms in this cultivar may include maintenance of low Cd levels at sensitive sites by ferritin and low-molecular weight thiol peptides binding Cd. The identified changes could facilitate marker-assisted breeding for Cd tolerance and the development of transgenic flax lines with enhanced Cd tolerance and accumulation capacities for phytoremediating Cd-contaminated soils.

  16. Modification of flax fibres by radiation induced emulsion graft copolymerization of glycidyl methacrylate

    Moawia, Rihab Musaad; Nasef, Mohamed Mahmoud; Mohamed, Nor Hasimah; Ripin, Adnan

    2016-05-01

    Flax fibres were modified by radiation induced graft copolymerization of glycidyl methacrylate (GMA) by pre-irradiation method in an emulsion medium. The effect of reaction parameters on the degree of grafting (DOG) such as concentration of bleaching agent, absorbed dose, monomer concentration, temperature and reaction time were investigated. The DOG was found to be dependent on the investigated parameters. The incorporation of poly(GMA) grafts in the bleached flax fibres was confirmed by Fourier transform infrared spectroscopy (FTIR) and scanning electron microscopy (SEM). The structural and mechanical changes were evaluated by X-ray diffraction (XRD) and mechanical tester, respectively. The results revealed that reacting bleached flax fibres irradiated with 20 kGy with 5% GMA emulsion containing 0.5% polyoxyethylene-sorbitan monolaurate (Tween 20) surfactant at 40 °C for 1 h led to a maximum DOG of 148%. The grafted fibres showed sufficient mechanical strength and hydrophobicity which make them promising precursors for development of adsorbents after appropriate chemical treatments.

  17. "Green" composites from renewable resources: preparation of epoxidized soybean oil and flax fiber composites.

    Liu, Zengshe; Erhan, Sevim Z; Akin, Danny E; Barton, Franklin E

    2006-03-22

    In recent years there has been considerable interest in using natural plant fibers as reinforcements for plastics. The motivation includes cost, performance enhancement, weight reduction, and environment concerns. High performance flax fiber could potentially substitute for glass or carbon fibers as reinforcements for plastics. This study reports the "green" composites obtained from a mixture of epoxidized soybean oil and epoxy resin, 1,1,1-tris(p-hydroxyphenyl)ethane triglycidyl ether (THPE-GE), reinforced with flax fiber. The compression molding method is used for making the composites. Curing agents triethylenetetramine and diethylenetriamine provide better physical properties of the composites than Jeffamine agents D-230 and EDR-148. Both the flexural modulus and the tensile modulus of the composites increase as the amount of THPE-GE increases. The flexural modulus increased at a fiber content of fiber content until a maximum at 13.5 wt %, and then it decreases. The flax fiber length affected the mechanical properties of the composites: the longer the fiber length, the better are the mechanical properties observed.

  18. Methyl Salicylate Level Increase in Flax after Fusarium oxysporum Infection Is Associated with Phenylpropanoid Pathway Activation.

    Boba, Aleksandra; Kostyn, Kamil; Kostyn, Anna; Wojtasik, Wioleta; Dziadas, Mariusz; Preisner, Marta; Szopa, Jan; Kulma, Anna

    2016-01-01

    Flax ( Linum usitatissimum ) is a crop plant valued for its oil and fiber. Unfortunately, large losses in cultivation of this plant are caused by fungal infections, with Fusarium oxysporum being one of its most dangerous pathogens. Among the plant's defense strategies, changes in the expression of genes of the shikimate/phenylpropanoid/benzoate pathway and thus in phenolic contents occur. Among the benzoates, salicylic acid, and its methylated form methyl salicylate play an important role in regulating plants' response to stress conditions. Upon treatment of flax plants with the fungus we found that methyl salicylate content increased (4.8-fold of the control) and the expression profiles of the analyzed genes suggest that it is produced most likely from cinnamic acid, through the β-oxidative route. At the same time activation of some genes involved in lignin and flavonoid biosynthesis was observed. We suggest that increased methyl salicylate biosynthesis during flax response to F. oxysporum infection may be associated with phenylpropanoid pathway activation.

  19. Seed quality in informal seed systems

    Biemond, P.C.

    2013-01-01

    Keywords: informal seed systems, seed recycling, seed quality, germination, seed pathology, seed health, seed-borne diseases, mycotoxigenic fungi, Fusarium verticillioides, mycotoxins, Vigna unguiculata, Zea mays, Nigeria.

    Seed is a crucial input for agricultural production.

  20. Characteristics of Lignin from Flax Shives as Affected by Extraction Conditions

    Ross, Kelly; Mazza, Giuseppe

    2010-01-01

    Lignin, a polyphenolic molecule, is a major constituent of flax shives. This polyphenolic molecular structure renders lignin a potential source of a variety of commercially viable products such as fine chemicals. This work compares the performance of different lignin isolation methods. Lignin from flax shive was isolated using both conventional alkaline extraction method and a novel experimental pressurized low polarity water (PLPW) extraction process. The lignin yields and chemical composition of the lignin fractions were determined. The conventional alkali treatment with 1.25 M NaOH, heated at 80 °C for 5 h, extracted 92 g lignin per kg flax shives, while lignin yields from the PLPW extracts ranged from 27 to 241 g lignin per kg flax shives. The purity and monomeric composition of the lignins obtained from the different extraction conditions was assessed via UV spectroscopy and alkaline nitrobenzene oxidation. Lignin obtained from conventional alkali treatment with 1.25 M NaOH, heated at 80 °C for 5 h was of low purity and exhibited the lowest yields of nitrobenzene oxidation products. With respect to alkali assisted PLPW extractions, temperature created an opposing effect on lignin yield and nitrobenzene oxidation products. More lignin was extracted as temperature increased, yet the yield of nitrobenzene oxidation products decreased. The low yield of nitrobenzene oxidation products may be attributed to either the formation of condensed structures or the selective dissolution of condensed structures of lignin during the pressurized alkaline high temperature treatment. Analytical pyrolysis, using pyroprobe GC-MS, was used to investigate the molecular composition of the lignin samples. The total yield of pyrolysis lignin products was 13.3, 64.7, and 30.5% for the 1.25 M NaOH extracted lignin, alkaline assisted PLPW extracted lignin, and the unprocessed flax shives, respectively. Key lignin derived compounds such as guaiacol, 4-vinyl guaiacol, 4-methyl guaiacol

  1. Improving retting of fibre through genetic modification of flax to express pectinases.

    Musialak, Magdalena; Wróbel-Kwiatkowska, Magdalena; Kulma, Anna; Starzycka, Eligia; Szopa, Jan

    2008-02-01

    Flax (Linum usitatissimum L.) is a raw material used for important industrial products. Linen has very high quality textile properties, such as its strength, water absorption, comfort and feel. However, it occupies less than 1% of the total textile market. The major reason for this is the long and difficult retting process by which linen fibres are obtained. In retting, bast fibre bundles are separated from the core, the epidermis and the cuticle. This is accomplished by the cleavage of pectins and hemicellulose in the flax cell wall, a process mainly carried out by plant pathogens like filamentous fungi. The remaining bast fibres are mainly composed of cellulose and lignin. The aim of this study was to generate plants that could be retted more efficiently. To accomplish this, we employed the novel approach of transgenic flax plant generation with increased polygalacturonase (PGI ) and rhamnogalacturonase (RHA) activities. The constitutive expression of Aspergillus aculeatus genes resulted in a significant reduction in the pectin content in tissue-cultured and field-grown plants. This pectin content reduction was accompanied by a significantly higher (more than 2-fold) retting efficiency of the transgenic plant fibres as measured by a modified Fried's test. No alteration in the lignin or cellulose content was observed in the transgenic plants relative to the control. This indicates that the over-expression of the two enzymes does not affect flax fibre composition. The growth rate and soluble sugar and starch contents were in the range of the control levels. It is interesting to note that the RHA and PGI plants showed higher resistance to Fusarium culmorum and F. oxysporum attack, which correlates with the increased phenolic acid level. In this report, we demonstrate for the first time that over-expression of the A. aculeatus genes results in flax plants more readily usable for fibre production. The biochemical parameters of the cell wall components indicated that

  2. Molecular details of secretory phospholipase A2 from flax (Linum usitatissimum L.) provide insight into its structure and function.

    Gupta, Payal; Dash, Prasanta K

    2017-09-11

    Secretory phospholipase A 2 (sPLA 2 ) are low molecular weight proteins (12-18 kDa) involved in a suite of plant cellular processes imparting growth and development. With myriad roles in physiological and biochemical processes in plants, detailed analysis of sPLA 2 in flax/linseed is meagre. The present work, first in flax, embodies cloning, expression, purification and molecular characterisation of two distinct sPLA 2 s (I and II) from flax. PLA 2 activity of the cloned sPLA 2 s were biochemically assayed authenticating them as bona fide phospholipase A 2 . Physiochemical properties of both the sPLA 2 s revealed they are thermostable proteins requiring di-valent cations for optimum activity.While, structural analysis of both the proteins revealed deviations in the amino acid sequence at C- & N-terminal regions; hydropathic study revealed LusPLA 2 I as a hydrophobic protein and LusPLA 2 II as a hydrophilic protein. Structural analysis of flax sPLA 2 s revealed that secondary structure of both the proteins are dominated by α-helix followed by random coils. Modular superimposition of LusPLA 2 isoforms with rice sPLA 2 confirmed monomeric structural preservation among plant phospholipase A 2 and provided insight into structure of folded flax sPLA 2 s.

  3. seed oils

    Timothy Ademakinwa

    processes, production of biodiesel, as lubricant and in deep-frying purposes. They could ... for its juice, nectars and fruit while its seeds are ... Malaysia. The fine seed powder was stored in a plastic container inside a refrigerator at between 4 o.

  4. seed flour

    ONOS

    2010-09-06

    Sep 6, 2010 ... and with a nice taste, used for cooking or as lamp oil. The fatty acid ... Pra seeds were obtained from a local market in Nakhon Si Thammarat. Page 2. Table 1. Proximate composition of pra seed flour. Constituent. Percentage ...

  5. Robotic seeding

    Pedersen, Søren Marcus; Fountas, Spyros; Sørensen, Claus Aage Grøn

    2017-01-01

    Agricultural robotics has received attention for approximately 20 years, but today there are only a few examples of the application of robots in agricultural practice. The lack of uptake may be (at least partly) because in many cases there is either no compelling economic benefit......, or there is a benefit but it is not recognized. The aim of this chapter is to quantify the economic benefits from the application of agricultural robots under a specific condition where such a benefit is assumed to exist, namely the case of early seeding and re-seeding in sugar beet. With some predefined assumptions...... with regard to speed, capacity and seed mapping, we found that among these two technical systems both early seeding with a small robot and re-seeding using a robot for a smaller part of the field appear to be financially viable solutions in sugar beet production....

  6. Transcript profiling and gene characterization of three fatty acid desaturase genes in high, moderate, and low linolenic acid genotypes of flax (Linum usitatissimum L.) and their role in linolenic acid accumulation.

    Banik, Mitali; Duguid, Scott; Cloutier, Sylvie

    2011-06-01

    Three genes encoding fatty acid desaturase 3 (fad3a, fad3b, and a novel fad3c) were cloned from four flax genotypes varying in linolenic acid content. Real-time PCR was used to quantify expression levels of the three fad3 genes during seed development. High amounts of both fad3a and fad3b transcripts were observed and reached their peak levels at 20 days after anthesis, except for fad3a from SP2047 where only low level expression was observed throughout seed development. Transcript accumulation of the novel fad3c gene was at similar background levels. The fatty acid composition was analysed for all genotypes and stages of development and compared with the fad3 gene expression patterns. α-Linolenic acid gradually accumulated during seed development, while linoleic acid was transient and decreased in M5791, UGG5-5, and AC McDuff. In contrast, the linolenic acid present in the early stages of development nearly completely disappeared in SP2047, while linoleic acid steadily accumulated. fad3a of the low linolenic acid line SP2047 encoded a truncated protein caused by a premature stop codon resulting from a single point mutation, and the low level of transcript accumulation in this genotype is likely due to nonsense-mediated mRNA decay caused by the premature termination of translation as a result of this early stop codon. Although substantial amounts of transcript accumulation occurred with fad3b of SP2047 genotype, cloning of the gene revealed a mutation in the first histidine box causing an amino acid change. Heterologous expression in yeast of the SP2047 and UGG5-5 fad3b genes showed that the mutation in the histidine box in SP2047 caused the enzyme inactivity. Taken together, these results showed that fad3a and fad3b are responsible for linolenic acid accumulation in flax seeds but did not support a major role for the novel fad3c. These observations were further supported by phenotypic and genotypic assessment of a doubled haploid population. Expression patterns

  7. Seed regulations and local seed systems

    Louwaars, N.

    2000-01-01

    Seed regulations have been introduced in most countries based on the development of formal seed production. Concerns about seed quality and about the varietal identity of the seeds have commonly led to seed laws. However, formal regulations are often inappropriate for informal seed systems, which

  8. LuFLA1PRO and LuBGAL1PRO promote gene expression in the phloem fibres of flax (Linum usitatissimum).

    Hobson, Neil; Deyholos, Michael K

    2013-04-01

    Cell type-specific promoters were identified that drive gene expression in an industrially important product. To identify flax (Linum usitatissimum) gene promoters, we analyzed the genomic regions upstream of a fasciclin-like arabinogalactan protein (LuFLA1) and a beta-galactosidase (LuBGAL1). Both of these genes encode transcripts that have been found to be highly enriched in tissues bearing phloem fibres. Using a beta-glucuronidase (GUS) reporter construct, we found that a 908-bp genomic sequence upstream of LuFLA1 (LuFLA1PRO) directed GUS expression with high specificity to phloem fibres undergoing secondary cell wall development. The DNA sequence upstream of LuBGAL1 (LuBGAL1PRO) likewise produced GUS staining in phloem fibres with developing secondary walls, as well as in tissues of developing flowers and seed bolls. These data provide further evidence of a specific role for LuFLA1 in phloem fibre development, and demonstrate the utility of LuFLA1PRO and LuBGAL1PRO as tools for biotechnology and further investigations of phloem fibre development.

  9. Slipping vs sticking: water-dependent adhesive and frictional properties of Linum usitatissimum L. seed mucilaginous envelope and its biological significance.

    Kreitschitz, Agnieszka; Kovalev, Alexander; Gorb, Stanislav N

    2015-04-01

    Flax seeds produce mucilage after wetting. The mucilage due to its ability to absorb and maintain water is responsible for specific surface properties which are essential for seed dispersal in different ways. In the present paper, we asked how the hydration level affects the adhesive and frictional properties of the mucilage and which role does the mucilage play in seed dispersal? We have experimentally quantified: (1) desiccation dynamics of seeds with a mucilage envelope, (2) desiccation-time dependence of their friction coefficient, and (3) desiccation-time dependence of their pull-off forces on a smooth glass substrate. Freshly-hydrated seeds had an extremely low friction coefficient, which rapidly increased with an increasing desiccation time. Pull-off force just after hydration was rather low, then increased with an increasing water loss. Adhesion and friction experiments show that there is a clear maximum in the force values at certain hydration states of the mucilage. Different hydration levels of the mucilage can be employed in various dispersal mechanisms. Fully hydrated mucilage with its low viscosity gives optimal sliding conditions for endozoochory, whereas water loss provides conditions for the epizoochory. We suggest that the hydration level of the mucilage envelope can determine the potential mode of flax seed dispersal. Copyright © 2015 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  10. Characterization of the dynamic behaviour of flax fibre reinforced composites using vibration measurements

    El-Hafidi, Ali; Birame Gning, Papa; Piezel, Benoit; Fontaine, Stéphane

    2017-10-01

    Experimental and numerical methods to identify the linear viscoelastic properties of flax fibre reinforced epoxy (FFRE) composite are presented in this study. The method relies on the evolution of storage modulus and loss factor as observed through the frequency response. Free-free symmetrically guided beams were excited on the dynamic range of 10 Hz to 4 kHz with a swept sine excitation focused around their first modes. A fractional derivative Zener model has been identified to predict the complex moduli. A modified ply constitutive law has been then implemented in a classical laminates theory calculation (CLT) routine.

  11. Flax (Linum usitatissimum L.) - a natural resource for food and textiles for 8000 years. Cross-disciplinary investigations on the evolution and cultural history of flax and linen. Programme and abstracts of the first workshop 24-26 November 2009 in the Carlsberg Academy Copenhagen, Denmark

    Karg, Sabine

    Flax (Linum usitatissimum L.) - a natural resource for food and textiles for 8000 years. Cross-disciplinary investigations on the evolution and cultural history of flax and linen. Programme and abstracts of the first workshop 24-26 November 2009 in the Carlsberg Academy Copenhagen, Denmark...

  12. Karg S. (ed.) Flax (Linum usitatissimum L.) - a natural resource for food and textiles for 8000 years. Cross-disciplinary investigations on the evolution and cultural history of flax and linen. Programme and abstracts of the second workshop 28-30 June 2010 at Sonnerupgaard and in the Land

    Karg, Sabine

    2010-01-01

    Karg S. (ed.) Flax (Linum usitatissimum L.) - a natural resource for food and textiles for 8000 years. Cross-disciplinary investigations on the evolution and cultural history of flax and linen. Programme and abstracts of the second workshop 28-30 June 2010 at Sonnerupgaard and in the Land...

  13. Flax lignan concentrate attenuate hypertension and abnormal left ventricular contractility via modulation of endogenous biomarkers in two-kidney-one-clip (2K1C hypertensive rats

    Sameer Hanmantrao Sawant

    Full Text Available ABSTRACT The present investigation was designed to study the effect of flax lignan concentrate obtained from Linum usitatissimum L., Linaceae, in two-kidney, one clip (2K1C hypertension model in Wistar rats. 2K1C Goldblatt model rats were divided randomly into six groups: sham, 2K1C control, captopril (30 mg/kg, flax lignan concentrate (200, 400 and 800 mg/kg. Flax lignan concentrate and captopril were administered daily for eight consecutive weeks. Sham-operated, and 2K1C control rats received the vehicle. Treatment with flax lignan concentrate (400 and 800 mg/kg significantly and dose-dependently restored the hemodynamic parameters systolic blood pressure, diastolic blood pressure, mean arterial blood pressure and left ventricular functions. The flax lignan concentrate significantly restored the elevated hepatic, renal and cardiac marker enzymes in the serum. It also restored the organs weights (kidney and heart, serum electrolyte level and histological abnormalities. Furthermore, flax lignan concentrate significantly elevated the level of biochemical markers that is enzymatic antioxidants superoxide dismutase, glutathione and decreased malondialdehyde in the heart and kidney tissues. Meanwhile, we found that plasma nitric oxide and plasma nitric oxide synthase contents were significantly increased in the flax lignan concentrate-treated group, and plasma endothelin-1 and renal angiotensin-II levels were significantly lower than 2K1C hypertensive group. In conclusion, the antihypertensive and antioxidant effect of flax lignan concentrate were dose-dependent and at the highest dose (i.e. 800 mg/kg similar to those of captopril (30 mg/kg. It is suggested that flax lignan concentrate reduced blood pressure by reduction of renal angiotensin-II level, inhibition of plasma endothelin-1 production, induction of the nitric oxide, nitric oxide synthase and in vivo antioxidant defense system.

  14. Biochemical diversity of fatty acid composition in flax from VIR genetic collection and effect of environment on its development

    Elizaveta A Porokhovinova

    2016-03-01

    Full Text Available Background. In connection with climate change vary known patterns of environmental influences on the ratio of fatty acids(FA in oil. Therefore,relevant data of modern geography test. Materials and methods. In work 24 lines and 3 commercial varieties of flax including 3 low linolenic (LL accessions, grown in the Leningrad and Samara regions were used. FA composition was evaluated by gas chromatography for the ratio of palmitic (PAL, stearic (STE, oleic (OLE, linoleic (ω6,LIO, linolenic (ω3, LIN acids, ω6/ω3 and iodine number of the oil (IOD. Results. The strongest differences are due to the level of LIN. It is lower in LL and gc-119 from India and higher in 3 lines carrying the gene s1 (deranged anthocyanin biosynthesis. In gc-119, contrast to LL, LIN decrease increase of OLE, instead of LIO. In lines with the gene s1 LIN increase due to the OLE reduction. Contrary to earlier publications the seeds of northern reproduction have more PAL, OLE, less LIN, IOD. 2F ANOVA revealed significant effect of genotype and reproductions place on PAL, OLE, LIN, IOD. LIO is affected only by genotype. Independence of ω6/ω3 is explained by strong abnormity of distribution due to LL. In high linolenic (HL accessions group both factors influenced all characters except STE. Kruskal-Wallis H test (non-parametric 1F ANOVA analogue show significant effect of genotype and place of reproductions on ω6/ω3. It reveals the impact of the reproduction place on LIN,no significant effect of genotype on OLE and IOD, which in the case of 1F ANOVA were significant. For characters of HL with normal distribution, comparing of both tests showed that in case of 0,01 0,10 they are identical. Conclusion. In our studies the geographical effect is less important than the weather in the year of growing. For abnormal distribution it is desirable to use both statistics and carefully make conclusions about the significance of differences in borderline probabilities.

  15. Digital gene expression profiling of flax (Linum usitatissimum L.) stem peel identifies genes enriched in fiber-bearing phloem tissue.

    Guo, Yuan; Qiu, Caisheng; Long, Songhua; Chen, Ping; Hao, Dongmei; Preisner, Marta; Wang, Hui; Wang, Yufu

    2017-08-30

    To better understand the molecular mechanisms and gene expression characteristics associated with development of bast fiber cell within flax stem phloem, the gene expression profiling of flax stem peels and leaves were screened, using Illumina's Digital Gene Expression (DGE) analysis. Four DGE libraries (2 for stem peel and 2 for leaf), ranging from 6.7 to 9.2 million clean reads were obtained, which produced 7.0 million and 6.8 million mapped reads for flax stem peel and leave, respectively. By differential gene expression analysis, a total of 975 genes, of which 708 (73%) genes have protein-coding annotation, were identified as phloem enriched genes putatively involved in the processes of polysaccharide and cell wall metabolism. Differential expression genes (DEGs) was validated using quantitative RT-PCR, the expression pattern of all nine genes determined by qRT-PCR fitted in well with that obtained by sequencing analysis. Cluster and Gene Ontology (GO) analysis revealed that a large number of genes related to metabolic process, catalytic activity and binding category were expressed predominantly in the stem peels. The Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis of the phloem enriched genes suggested approximately 111 biological pathways. The large number of genes and pathways produced from DGE sequencing will expand our understanding of the complex molecular and cellular events in flax bast fiber development and provide a foundation for future studies on fiber development in other bast fiber crops. Copyright © 2017 Elsevier B.V. All rights reserved.

  16. Thermo-Mechanical Behaviour of Flax-Fibre Reinforced Epoxy Laminates for Industrial Applications

    Giuseppe Pitarresi

    2015-11-01

    Full Text Available The present work describes the experimental mechanical characterisation of a natural flax fibre reinforced epoxy polymer composite. A commercial plain woven quasi-unidirectional flax fabric with spun-twisted yarns is employed in particular, as well as unidirectional composite panels manufactured with three techniques: hand-lay-up, vacuum bagging and resin infusion. The stiffness and strength behaviours are investigated under both monotonic and low-cycle fatigue loadings. The analysed material has, in particular, shown a typical bilinear behaviour under pure traction, with a knee yield point occurring at a rather low stress value, after which the material tensile stiffness is significantly reduced. In the present work, such a mechanism is investigated by a phenomenological approach, performing periodical loading/unloading cycles, and repeating tensile tests on previously “yielded” samples to assess the evolution of stiffness behaviour. Infrared thermography is also employed to measure the temperature of specimens during monotonic and cyclic loading. In the first case, the thermal signal is monitored to correlate departures from the thermoelastic behaviour with the onset of energy loss mechanisms. In the case of cyclic loading, the thermoelastic signal and the second harmonic component are both determined in order to investigate the extent of elastic behaviour of the material.

  17. Low-Frequency Noise Reduction by Earmuffs with Flax Fibre-Reinforced Polypropylene Ear Cups

    Linus Yinn Leng Ang

    2018-01-01

    Full Text Available Soldiers and supporting engineers are frequently exposed to high low-frequency (<500 Hz cabin noise in military vehicles. Despite the use of commercial hearing protection devices, the risk of auditory damage is still imminent because the devices may not be optimally customised for such applications. This study considers flax fibre-reinforced polypropylene (Flax-PP as an alternative to the material selection for the ear cups of commercial earmuffs, which are typically made of acrylonitrile butadiene styrene (ABS. Different weaving configurations (woven and nonwoven and various noise environments (pink noise, cabin booming noise, and firing noise were considered to investigate the feasibility of the proposed composite earmuffs for low-frequency noise reduction. The remaining assembly components of the earmuff were kept consistent with those of a commercial earmuff, which served as a benchmark for results comparison. In contrast to the commercial earmuff, the composite earmuffs were shown to be better in mitigating low-frequency noise by up to 16.6 dB, while compromising midfrequency acoustical performance. Consequently, the proposed composite earmuffs may be an alternative for low-frequency noise reduction in vehicle cabins, at airports, and at construction sites involving heavy machineries.

  18. SEQUENCING OF FLAX LIS-1 INSERTION SITE IN THE ALBIDUM GENOTYPE

    Jana Žiarovská

    2012-12-01

    Full Text Available The paper presents a methodology of identifying the insertion site of LIS-1-1 (Linum Insertion Sequence 1 element in flax Albidum variety when growing under the in vitro combined with environmental stress conditions. Abiotic stress was induced by a reduced nutrient content in a growth medium. The LIS-1 insertion site amplification was reaLIS-1ed using the forward LIS-L: 5'-GGG CAG TTT AAC TGT AAC GAA - 3 'and revers LIS-R: 5'-GCT TGG ATT TAG ACT TGG CAA C - 3' primers by PCR. PCR product was sequenced by direct sequencing method to proove the nucleotide sequence for matching with database LIS-1 sequence. A comparison has been matched with the sequence of the amplified segment in the database for all nucleotides except the 11-position in the 5'-3 ' direction, where instead of the three adenine pair is a couple in the Albidum variety. Changes caused by mobile elements or insertion sequences result in common flax in variability that can be used for the purposes of development of effective marker identification or environment based markers development.

  19. Bacterial succession and metabolite changes during flax (Linum usitatissimum L.) retting with Bacillus cereus HDYM-02.

    Zhao, Dan; Liu, Pengfei; Pan, Chao; Du, Renpeng; Ping, Wenxiang; Ge, Jingping

    2016-09-02

    High-throughput sequencing and GC-MS (gas chromatography-mass spectrometry) were jointly used to reveal the bacterial succession and metabolite changes during flax (Linum usitatissimum L.) retting. The inoculation of Bacillus cereus HDYM-02 decreased bacterial richness and diversity. This inoculum led to the replacement of Enterobacteriaceae by Bacillaceae. The level of aerobic Pseudomonadaceae (mainly Azotobacter) and anaerobic Clostridiaceae_1 gradually increased and decreased, respectively. Following the addition of B. cereus HDYM-02, the dominant groups were all degumming enzyme producers or have been proven to be involved in microbial retting throughout the entire retting period. These results could be verified by the metabolite changes, either degumming enzymes or their catalytic products galacturonic acid and reducing sugars. The GC-MS data showed a clear separation between flax retting with and without B. cereus HDYM-02, particularly within the first 72 h. These findings reveal the important bacterial groups that are involved in fiber retting and will facilitate improvements in the retting process.

  20. Utilization of flax (Linum usitatissimum) cellulose nanocrystals as reinforcing material for chitosan films.

    Mujtaba, Muhammad; Salaberria, Asier M; Andres, María A; Kaya, Murat; Gunyakti, Ayse; Labidi, Jalel

    2017-11-01

    Use of plastic based packaging tools is causing both health and economic problems. To overcome this situation, researchers are focusing on the use of different biomaterials such as chitosan and cellulose. The current study was conducted to check the effect of flax (Linum usitatissimum) cellulose nanocrystals (CNC) on mechanical and barrier properties of chitosan-based films. CNC was incorporated in different concentrations (5, 10, 20 and 30%). CNC was isolated from flax fiber using acid hydrolysis method. Tensile strength (TS) and young modulus (YM) values increased with the increase of CNC concentration. Chitosan film with 20% CNC revealed the highest YM value as 52.35MPa. No significant improvement was recorded in water vapor permeability due to overall lower film crystallinity. All the films were observed to be transparent up to an acceptable level. SEM and AFM analysis confirmed the homogeneity of films. A gradual enhancement was recorded in the antimicrobial activity of chitosan/CNC composite films. No significant improvement revealed in the thermal stability of composites. Copyright © 2017 Elsevier B.V. All rights reserved.

  1. Pressure impact of autoclave treatment on water sorption and pectin composition of flax cellulosic-fibres.

    Alix, S; Colasse, L; Morvan, C; Lebrun, L; Marais, S

    2014-02-15

    The tensile properties of flax fibres might permit them to be used in composites as reinforcement in organic resin, as long as their mechanical properties are reproducible and their water sorption are reduced. In this study, to minimise the variability of mechanical properties, several samples of flax fibres were blended as a non-woven fabric. In order to reduce the water absorption of this non-woven technical fibres, an autoclave treatment was performed which was expected to remove the pectins and then to reduce the water sorption on their negative charges. The impact of autoclave pressure (0.5, 1 and 2 bars) on water sorption was investigated by using a gravimetric static equilibrium method. The Park model based on the three sorption modes: Langmuir, Henry's law and clustering, was successfully used to simulate the experimental sorption data. The lowest pressure treatments impacted only the Langmuir contribution while the 2 bar autoclave-treatment positively impacted the water resistance in the core of fibres by reducing Henry's absorption rate. This was shown to be related to the chemical modifications at the surface and in the core of fibres. A schematic model is presented relating the water sorption and the pectic composition of the fabric. Copyright © 2013 Elsevier Ltd. All rights reserved.

  2. Effect of Fungal Deterioration on Physical and Mechanical Properties of Hemp and Flax Natural Fiber Composites

    Bryn Crawford

    2017-10-01

    Full Text Available The development and application of bio-sourced composites have been gaining wide attention, yet their deterioration due to the growth of ubiquitous microorganisms during storage/manufacturing/in-service phases is still not fully understood for optimum material selection and design purposes. In this study, samples of non-woven flax fibers, hemp fibers, and mats made of co-mingled randomly-oriented flax or hemp fiber (50% and polypropylene fiber (50% were subjected to 28 days of exposure to (i no water-no fungi, (ii water only and (iii water along with the Chaetomium globosum fungus. Biocomposite samples were measured for weight loss over time, to observe the rate of fungal growth and the respiration of cellulose components in the fibers. Tensile testing was conducted to measure mechanical properties of the composite samples under different configurations. Scanning electron microscopy was employed to visualize fungal hyphal growth on the natural fibers, as well as to observe the fracture planes and failure modes of the biocomposite samples. Results showed that fungal growth significantly affects the dry mass as well as the tensile elastic modulus of the tested natural fiber mats and composites, and the effect depends on both the type and the length scale of fibers, as well as the exposure condition and time.

  3. Apparent interfacial shear strength of short-flax-fiber/starch acetate composites

    Andersons, J.; Modniks, J.; Joffe, R.

    2016-01-01

    The paper deals with an indirect industry-friendly method for identification of the interfacial shear strength (IFSS) in a fully bio-based composite. The IFSS of flax fiber/starch acetate is evaluated by a modified Bowyer and Bader method based on an analysis of the stress-strain curve of a short......-fiber-reinforced composite in tension. A shear lag model is developed for the tensile stress-strain response of short-fiber-reinforced composites allowing for an elastic-perfectly plastic stress transfer. Composites with different fiber volume fractions and a variable content of plasticizer have been analyzed. The apparent...... IFSS of flax/starch acetate is within the range of 5.5-20.5 MPa, depending on composition of the material. The IFSS is found to be greater for composites with a higher fiber loading and to decrease with increasing content of plasticizer. The IFSS is equal or greater than the yield strength of the neat...

  4. Turnover of galactans and other cell wall polysaccharides during development of flax plants

    Gorshkova, T.A.; Chemikosova, S.B.; Lozovaya, V.V.; Carpita, N.C.

    1997-01-01

    We investigated the synthesis and turnover of cell wall polysaccharides of the flax (Linum usitatissimum L.) plant during development of the phloem fibers. One-month-old flax plants were exposed to a 40-min pulse with 14CO2 followed by 8-h, 24-h, and 1-month periods of chase with ambient CO2, and radioactivity in cell wall sugars was determined in various plant parts. The relative radioactivity of glucose in noncellulosic polysaccharides was the highest compared with all other cell wall sugars immediately after the pulse and decreased substantially during the subsequent chase. The relative radioactivities of the other cell wall sugars changed with differing rates, indicating turnover of specific polysaccharides. Notably, after 1 month of chase there was a marked decrease in the proportional mass and total radioactivity in cell wall galactose, indicating a long-term turnover of the galactans enriched in the fiber-containing tissues. The ratio of radiolabeled xylose to arabinose also increased during the chase, indicating a turnover of arabinose-containing polymers and interconversion to xylose. The pattern of label redistribution differed between organs, indicating that the cell wall turnover processes are tissue- and cell-specific

  5. Enhanced impact properties of cementitious composites reinforced with pultruded flax/polymeric matrix fabric

    Magdi El-Messiry

    2017-09-01

    Full Text Available Fiber reinforced concrete (FRC has become increasingly applied in civil engineering in the last decades. Natural fiber fabric reinforced cement composites are considered to prevent damage resulting from an impact loading on the cementite plate. Flax woven fabric that has a high energy absorption capability was chosen. To increase the interfacial shear properties, the fabric was pultruded with different matrix properties that affect the strength and toughness of the pultruded fabric. In this study, three fabric structures are used to increase the anchoring of the cement in the fabric. The compressive strength and the impact energy were measured. The results revealed that pultruded fabric reinforced cement composite (PFRC absorbs much more impact energy. PFRC under impact loading has more micro cracks, while plain cement specimen shows brittle failure. The compressive test results of PFRC indicate that flax fiber fabric polymer enhanced compressive strength remarkably. Fiber reinforcement is a very effective in improving the impact resistance of PFRC. The study defines the influence factors that control the energy dissipation of the composite, which are the hardness of the polymer and the fabric cover factor. Significant correlation between impact energy and compressive strength was proved.

  6. A procedure for identifying textile bast fibres using microscopy: Flax, nettle/ramie, hemp and jute

    Bergfjord, Christian; Holst, Bodil

    2010-01-01

    Identifying and distinguishing between natural textile fibres is an important task in both archaeology and criminology. Wool, silk and cotton fibres can readily be distinguished from the textile bast fibres flax, nettle/ramie, hemp and jute. Distinguishing between the bast fibres is, however, not easily done and methods based on surface characteristics, chemical composition and cross section size and shape are not conclusive. A conclusive method based on X-ray microdiffraction exists, but as the method requires the use of a synchrotron it is not readily available. In this paper we present a simple procedure for identifying the above mentioned textile bast fibres. The procedure is based on measuring the fibrillar orientation with polarised light microscopy and detecting the presence of calcium oxalate crystals (CaC 2 O 4 ) in association with the fibres. To demonstrate the procedure, a series of fibre samples of flax, nettle, ramie, hemp and jute were investigated. The results are presented here. An advantage of the procedure is that only a small amount of fibre material is needed.

  7. A procedure for identifying textile bast fibres using microscopy: Flax, nettle/ramie, hemp and jute

    Bergfjord, Christian, E-mail: christian.bergfjord@uib.no [Institute for Physics and Technology, University of Bergen, Allegt. 55, 5007 Bergen (Norway); Holst, Bodil, E-mail: bodil.holst@uib.no [Institute for Physics and Technology, University of Bergen, Allegt. 55, 5007 Bergen (Norway)

    2010-08-15

    Identifying and distinguishing between natural textile fibres is an important task in both archaeology and criminology. Wool, silk and cotton fibres can readily be distinguished from the textile bast fibres flax, nettle/ramie, hemp and jute. Distinguishing between the bast fibres is, however, not easily done and methods based on surface characteristics, chemical composition and cross section size and shape are not conclusive. A conclusive method based on X-ray microdiffraction exists, but as the method requires the use of a synchrotron it is not readily available. In this paper we present a simple procedure for identifying the above mentioned textile bast fibres. The procedure is based on measuring the fibrillar orientation with polarised light microscopy and detecting the presence of calcium oxalate crystals (CaC{sub 2}O{sub 4}) in association with the fibres. To demonstrate the procedure, a series of fibre samples of flax, nettle, ramie, hemp and jute were investigated. The results are presented here. An advantage of the procedure is that only a small amount of fibre material is needed.

  8. Enzymatic grafting of simple phenols on flax and sisal pulp fibres using laccases.

    Aracri, Elisabetta; Fillat, Amanda; Colom, José F; Gutiérrez, Ana; Del Río, José C; Martínez, Angel T; Vidal, Teresa

    2010-11-01

    Flax and sisal pulps were treated with two laccases (from Pycnoporus cinnabarinus, PcL and Trametes villosa, TvL, respectively), in the presence of different phenolic compounds (syringaldehyde, acetosyringone and p-coumaric acid in the case of flax pulp, and coniferaldehyde, sinapaldehyde, ferulic acid and sinapic acid in the case of sisal pulp). In most cases the enzymatic treatments resulted in increased kappa number of pulps suggesting the incorporation of the phenols into fibres. The covalent binding of these compounds to fibres was evidenced by the analysis of the treated pulps, after acetone extraction, by pyrolysis coupled with gas chromatography/mass spectrometry in the absence and/or in the presence of tetramethylammonium hydroxide (TMAH) as methylating agent. The highest extents of phenol incorporation were observed with the p-hydroxycinnamic acids, p-coumaric and ferulic acids. The present work shows for the first time the use of analytical pyrolysis as an effective approach to study fibre functionalization by laccase-induced grafting of phenols. Copyright 2010 Elsevier Ltd. All rights reserved.

  9. Fish oil in various doses or flax oil in pregnancy and timing of spontaneous delivery

    Knudsen, V.K.; Hansen, Harald S.; Østerdal, M.L.

    2006-01-01

    treatment. Setting: The Danish National Birth Cohort. Sample: A total of 3098 women allocated into six treatment groups and one control group. Methods: The six intervention groups were offered fish oil capsules in doses of 0.1, 0.3, 0.7, 1.4 and 2.8 g of eicosapentaenoic acid and docosahexaenoic acid per......Objectives: To test the earlier suggested hypothesis that intake of long-chain n-3 fatty acids from fish oil may delay the timing of spontaneous delivery and to test if alpha-linolenic acid, provided as flax oil capsules, shows the same effect. Design: Randomised controlled trial including women...... reporting low dietary fish intake. The women were allocated in the proportions of 1:1:1:1:1:1:2 into six treatment groups and a control group, respectively, from week 17-27 of gestation. The treatment groups received fish oil, in various doses, or flax oil, and the control group did not receive any...

  10. Water Absorption Behaviour and Its Effect on the Mechanical Properties of Flax Fibre Reinforced Bioepoxy Composites

    E. Muñoz

    2015-01-01

    Full Text Available In the context of sustainable development, considerable interest is being shown in the use of natural fibres like as reinforcement in polymer composites and in the development of resins from renewable resources. This paper focuses on eco-friendly and sustainable green composites manufacturing using resin transfer moulding (RTM process. Flax fibre reinforced bioepoxy composites at different weight fractions (40 and 55 wt% were prepared in order to study the effect of water absorption on their mechanical properties. Water absorption test was carried out by immersion specimens in water bath at room temperature for a time duration. The process of water absorption of these composites was found to approach Fickian diffusion behavior. Diffusion coefficients and maximum water uptake values were evaluated; the results showed that both increased with an increase in fibre content. Tensile and flexural properties of water immersed specimens were evaluated and compared to dry composite specimens. The results suggest that swelling of flax fibres due to water absorption can have positive effects on mechanical properties of the composite material. The results of this study showed that RTM process could be used to manufacture natural fibre reinforced composites with good mechanical properties even for potential applications in a humid environment.

  11. Simple sequence repeat marker development from bacterial artificial chromosome end sequences and expressed sequence tags of flax (Linum usitatissimum L.).

    Cloutier, Sylvie; Miranda, Evelyn; Ward, Kerry; Radovanovic, Natasa; Reimer, Elsa; Walichnowski, Andrzej; Datla, Raju; Rowland, Gordon; Duguid, Scott; Ragupathy, Raja

    2012-08-01

    Flax is an important oilseed crop in North America and is mostly grown as a fibre crop in Europe. As a self-pollinated diploid with a small estimated genome size of ~370 Mb, flax is well suited for fast progress in genomics. In the last few years, important genetic resources have been developed for this crop. Here, we describe the assessment and comparative analyses of 1,506 putative simple sequence repeats (SSRs) of which, 1,164 were derived from BAC-end sequences (BESs) and 342 from expressed sequence tags (ESTs). The SSRs were assessed on a panel of 16 flax accessions with 673 (58 %) and 145 (42 %) primer pairs being polymorphic in the BESs and ESTs, respectively. With 818 novel polymorphic SSR primer pairs reported in this study, the repertoire of available SSRs in flax has more than doubled from the combined total of 508 of all previous reports. Among nucleotide motifs, trinucleotides were the most abundant irrespective of the class, but dinucleotides were the most polymorphic. SSR length was also positively correlated with polymorphism. Two dinucleotide (AT/TA and AG/GA) and two trinucleotide (AAT/ATA/TAA and GAA/AGA/AAG) motifs and their iterations, different from those reported in many other crops, accounted for more than half of all the SSRs and were also more polymorphic (63.4 %) than the rest of the markers (42.7 %). This improved resource promises to be useful in genetic, quantitative trait loci (QTL) and association mapping as well as for anchoring the physical/genetic map with the whole genome shotgun reference sequence of flax.

  12. Characterization of Bacterial and Fungal Community Dynamics by High-Throughput Sequencing (HTS Metabarcoding during Flax Dew-Retting

    Christophe Djemiel

    2017-10-01

    Full Text Available Flax dew-retting is a key step in the industrial extraction of fibers from flax stems and is dependent upon the production of a battery of hydrolytic enzymes produced by micro-organisms during this process. To explore the diversity and dynamics of bacterial and fungal communities involved in this process we applied a high-throughput sequencing (HTS DNA metabarcoding approach (16S rRNA/ITS region, Illumina Miseq on plant and soil samples obtained over a period of 7 weeks in July and August 2014. Twenty-three bacterial and six fungal phyla were identified in soil samples and 11 bacterial and four fungal phyla in plant samples. Dominant phyla were Proteobacteria, Bacteroidetes, Actinobacteria, and Firmicutes (bacteria and Ascomycota, Basidiomycota, and Zygomycota (fungi all of which have been previously associated with flax dew-retting except for Bacteroidetes and Basidiomycota that were identified for the first time. Rare phyla also identified for the first time in this process included Acidobacteria, CKC4, Chlorobi, Fibrobacteres, Gemmatimonadetes, Nitrospirae and TM6 (bacteria, and Chytridiomycota (fungi. No differences in microbial communities and colonization dynamics were observed between early and standard flax harvests. In contrast, the common agricultural practice of swath turning affects both bacterial and fungal community membership and structure in straw samples and may contribute to a more uniform retting. Prediction of community function using PICRUSt indicated the presence of a large collection of potential bacterial enzymes capable of hydrolyzing backbones and side-chains of cell wall polysaccharides. Assignment of functional guild (functional group using FUNGuild software highlighted a change from parasitic to saprophytic trophic modes in fungi during retting. This work provides the first exhaustive description of the microbial communities involved in flax dew-retting and will provide a valuable benchmark in future studies aiming

  13. seed oil

    Wara

    Neem seed oil from the neem tree (Azadiracta indica) finds wide usage one of which is its utilization for cosmetics particularly .... obtained which is higher than that of olive oil 17. mgKOH/g (Davine ... The skin tolerance of shea fat employed as ...

  14. Badania nad patogenicznością grzyba Rhizoctonia solani Kühn na lnie [Investigations of Rhizoctonia solani Kühn pathogenicity to flax

    St. Sadowski

    2015-06-01

    Full Text Available The investigations on the pathogenicity of four Rhizoctonia solani isolates were carried out in relation to three varieties of flax; LCSD - 210, LCSD - 200 and Wiera. Variety LCSD - 210 was found to be the most resistant. Isolates obtaind from flax and potatoes were especially pathogenic. Rhizoctonia solani was parasitic during the whole vegetation season, but particularly in the course of emergence. Parasitism of this fungus is of great economical significance.

  15. A selection and seed-grower are a substantial factor of increase to the productivity of oil-bearing cultures

    В. В. Кириченко

    2013-02-01

    Full Text Available Analysis of oilseeds in Ukraine, including sunflower, soybean, winter and spring rape, mustard, linseed, sesame, spring false flax, safflower. Presented research-based elements of the technology of cultivation. Described seed of oilseeds. Named most promising varieties of these crops. Disclosed their productive and qualitative potential. The above varietal structure of oilseeds in the State Register of plant varieties suitable for dissemination in Ukraine for years. In order to ensure stable population of oil and food, which include oil, and for the implementation of programs related to soil fertility, scientifically grounded recommended area of oilseeds in Ukraine for 2013–2015 years, ha.

  16. Chernobyl seed project. Advances in the identification of differentially abundant proteins in a radio-contaminated environment.

    Rashydov, Namik M; Hajduch, Martin

    2015-01-01

    Plants have the ability to grow and successfully reproduce in radio-contaminated environments, which has been highlighted by nuclear accidents at Chernobyl (1986) and Fukushima (2011). The main aim of this article is to summarize the advances of the Chernobyl seed project which has the purpose to provide proteomic characterization of plants grown in the Chernobyl area. We present a summary of comparative proteomic studies on soybean and flax seeds harvested from radio-contaminated Chernobyl areas during two successive generations. Using experimental design developed for radio-contaminated areas, altered abundances of glycine betaine, seed storage proteins, and proteins associated with carbon assimilation into fatty acids were detected. Similar studies in Fukushima radio-contaminated areas might complement these data. The results from these Chernobyl experiments can be viewed in a user-friendly format at a dedicated web-based database freely available at http://www.chernobylproteomics.sav.sk.

  17. Identification, Expression Analysis, and Target Prediction of Flax Genotroph MicroRNAs Under Normal and Nutrient Stress Conditions

    Melnikova, Nataliya V.; Dmitriev, Alexey A.; Belenikin, Maxim S.; Koroban, Nadezhda V.; Speranskaya, Anna S.; Krinitsina, Anastasia A.; Krasnov, George S.; Lakunina, Valentina A.; Snezhkina, Anastasiya V.; Sadritdinova, Asiya F.; Kishlyan, Natalya V.; Rozhmina, Tatiana A.; Klimina, Kseniya M.; Amosova, Alexandra V.; Zelenin, Alexander V.; Muravenko, Olga V.; Bolsheva, Nadezhda L.; Kudryavtseva, Anna V.

    2016-01-01

    Cultivated flax (Linum usitatissimum L.) is an important plant valuable for industry. Some flax lines can undergo heritable phenotypic and genotypic changes (LIS-1 insertion being the most common) in response to nutrient stress and are called plastic lines. Offspring of plastic lines, which stably inherit the changes, are called genotrophs. MicroRNAs (miRNAs) are involved in a crucial regulatory mechanism of gene expression. They have previously been assumed to take part in nutrient stress response and can, therefore, participate in genotroph formation. In the present study, we performed high-throughput sequencing of small RNAs (sRNAs) extracted from flax plants grown under normal, phosphate deficient and nutrient excess conditions to identify miRNAs and evaluate their expression. Our analysis revealed expression of 96 conserved miRNAs from 21 families in flax. Moreover, 475 novel potential miRNAs were identified for the first time, and their targets were predicted. However, none of the identified miRNAs were transcribed from LIS-1. Expression of seven miRNAs (miR168, miR169, miR395, miR398, miR399, miR408, and lus-miR-N1) with up- or down-regulation under nutrient stress (on the basis of high-throughput sequencing data) was evaluated on extended sampling using qPCR. Reference gene search identified ETIF3H and ETIF3E genes as most suitable for this purpose. Down-regulation of novel potential lus-miR-N1 and up-regulation of conserved miR399 were revealed under the phosphate deficient conditions. In addition, the negative correlation of expression of lus-miR-N1 and its predicted target, ubiquitin-activating enzyme E1 gene, as well as, miR399 and its predicted target, ubiquitin-conjugating enzyme E2 gene, was observed. Thus, in our study, miRNAs expressed in flax plastic lines and genotrophs were identified and their expression and expression of their targets was evaluated using high-throughput sequencing and qPCR for the first time. These data provide new insights

  18. Variability of flax characters, associated with fibre formation, and environmental influence on their expression

    Nina B Brach

    2010-03-01

    Full Text Available In this work the results of long-term evaluation of lines of flax genetic collection created in VIR are generalized. A wide variability of fibre productivity and quality characters, and also stability of their manifestation in varying environment is revealed. The genotypes possessing contrast traits of productivity, quality and stability of their display in different years are distinguished. Dependence of correlations between the evaluated characters on the environment parameters is detected. The described lines can serve as a material for profound studying of physiological processes of fibre formation, for the analysis of traits inheritance and successful breeding.

  19. Fatigue behaviour of uni-directional flax fibre/epoxy composites

    Ueki, Yosuke; Lilholt, Hans; Madsen, Bo

    2015-01-01

    A study related to the fatigue behaviour of natural fibre-reinforced composites was conducted to expand their range of product applications. A uni-directional flax-epoxy composite was fabricated and several conditions of tension-tension fatigue tests were performed. During fatigue testing......, the composite showed an increase of stiffness, a typical observation for natural fibre-reinforced composites, and this was found to be accompanied by accumulation of residual strain. A clear linear relationship was found between the stiffening effect and the residual strain. In addition, it was revealed...... that the fatigue behaviour was clearly influenced by the frequency of cyclic loading. Lower frequencies induced more significant stiffening and shorter fatigue life. These results suggest that fatigue damaging is progressing simultaneously with the stiffening effect in natural fibre-reinforced composites...

  20. “Sticky invasion” – the physical properties of Plantago lanceolata L. seed mucilage

    Agnieszka Kreitschitz

    2016-12-01

    Full Text Available The mucilage envelope of seeds has various functions including the provision of different ways for the dispersal of diaspores. Chemical composition and water content of the mucilage yield particular adhesive and frictional properties in the envelope that also influence the dispersal of seeds. To determine the physical properties of Plantago lanceolata seed mucilage we studied (1 composition, (2 desiccation, (3 adhesion, and (4 friction properties of the mucilage under different hydration conditions. We revealed the presence of cellulose fibrils in the mucilage, which are responsible for a continuous and even distribution of the mucilaginous layer on the seed surface. The measured values of adhesive and frictional properties differed significantly in comparison to the previously studied pectic mucilage of Linum usitatissimum. Also, the water loss from the cellulose mucilage was more rapid. The obtained different values can result from the presence of cellulose fibrils and their interaction with pectins in the mucilage. Because of this feature the mucilage of P. lanceolata may represent a more regularly ordered and stabile system than the pectic mucilage of flax, which lacks cellulose. In spite of the fact that P. lanceolata mucilage revealed different adhesive and frictional properties than the pectic mucilage, it still demonstrates an effective system promoting zoochoric seed dispersal. Cellulose may additionally prevent the mucilage against loss from the seed surface.

  1. The genome sequence and effector complement of the flax rust pathogen Melampsora lini

    Adnane eNemri

    2014-03-01

    Full Text Available Rust fungi cause serious yield reductions on crops, including wheat, barley, soybean, coffee, and represent real threats to global food security. Of these fungi, the flax rust pathogen Melampsora lini has been developed extensively over the past 80 years as a model to understand the molecular mechanisms that underpin pathogenesis. During infection, M. lini secretes virulence effectors to promote disease. The number of these effectors, their function and their degree of conservation across rust fungal species is unknown. To assess this, we sequenced and assembled de novo the genome of M. lini isolate CH5 into 21,130 scaffolds spanning 189 Mbp (scaffold N50 of 31 kbp. Global analysis of the DNA sequence revealed that repetitive elements, primarily retrotransposons, make up at least 45% of the genome. Using ab initio predictions, transcriptome data and homology searches, we identified 16,271 putative protein-coding genes. An analysis pipeline was then implemented to predict the effector complement of M. lini and compare it to that of the poplar rust, wheat stem rust and wheat stripe rust pathogens to identify conserved and species-specific effector candidates. Previous knowledge of four cloned M. lini avirulence effector proteins and two basidiomycete effectors was used to optimise parameters of the effector prediction pipeline. Markov clustering based on sequence similarity was performed to group effector candidates from all four rust pathogens. Clusters containing at least one member from M. lini were further analysed and prioritized based on features including expression in isolated haustoria and infected leaf tissue and conservation across rust species. Herein, we describe 200 of 940 clusters that ranked highest on our priority list, representing 725 flax rust candidate effectors. Our findings on this important model rust species provide insight into how effectors of rust fungi are conserved across species and how they may act to promote

  2. Ion Torrent sequencing as a tool for mutation discovery in the flax (Linum usitatissimum L.) genome.

    Galindo-González, Leonardo; Pinzón-Latorre, David; Bergen, Erik A; Jensen, Dustin C; Deyholos, Michael K

    2015-01-01

    Detection of induced mutations is valuable for inferring gene function and for developing novel germplasm for crop improvement. Many reverse genetics approaches have been developed to identify mutations in genes of interest within a mutagenized population, including some approaches that rely on next-generation sequencing (e.g. exome capture, whole genome resequencing). As an alternative to these genome or exome-scale methods, we sought to develop a scalable and efficient method for detection of induced mutations that could be applied to a small number of target genes, using Ion Torrent technology. We developed this method in flax (Linum usitatissimum), to demonstrate its utility in a crop species. We used an amplicon-based approach in which DNA samples from an ethyl methanesulfonate (EMS)-mutagenized population were pooled and used as template in PCR reactions to amplify a region of each gene of interest. Barcodes were incorporated during PCR, and the pooled amplicons were sequenced using an Ion Torrent PGM. A pilot experiment with known SNPs showed that they could be detected at a frequency > 0.3% within the pools. We then selected eight genes for which we wanted to discover novel mutations, and applied our approach to screen 768 individuals from the EMS population, using either the Ion 314 or Ion 316 chips. Out of 29 potential mutations identified after processing the NGS reads, 16 mutations were confirmed using Sanger sequencing. The methodology presented here demonstrates the utility of Ion Torrent technology in detecting mutation variants in specific genome regions for large populations of a species such as flax. The methodology could be scaled-up to test >100 genes using the higher capacity chips now available from Ion Torrent.

  3. Surface chemical and biological characterization of flax fabrics modified with silver nanoparticles for biomedical applications

    Paladini, F.; Picca, R.A.; Sportelli, M.C.; Cioffi, N.; Sannino, A.; Pollini, M.

    2015-01-01

    Silver nanophases are increasingly used as effective antibacterial agent for biomedical applications and wound healing. This work aims to investigate the surface chemical composition and biological properties of silver nanoparticle-modified flax substrates. Silver coatings were deposited on textiles through the in situ photo-reduction of a silver solution, by means of a large-scale apparatus. The silver-coated materials were characterized through X-ray Photoelectron Spectroscopy (XPS), to assess the surface elemental composition of the coatings, and the chemical speciation of both the substrate and the antibacterial nanophases. A detailed investigation of XPS high resolution regions outlined that silver is mainly present on nanophases' surface as Ag 2 O. Scanning electron microscopy and energy dispersive X-ray spectroscopy were also carried out, in order to visualize the distribution of silver particles on the fibers. The materials were also characterized from a biological point of view in terms of antibacterial capability and cytotoxicity. Agar diffusion tests and bacterial enumeration tests were performed on Gram positive and Gram negative bacteria, namely Staphylococcus aureus and Escherichia coli. In vitro cytotoxicity tests were performed through the extract method on murine fibroblasts in order to verify if the presence of the silver coating affected the cellular viability and proliferation. Durability of the coating was also assessed, thus confirming the successful scaling up of the process, which will be therefore available for large-scale production. - Highlights: • Silver nanophases are increasingly used as effective antibacterial agent for biomedical applications. • Silver coatings were deposited on textiles through the in situ photo-reduction of a silver solution. • Flax fabrics were characterized from a biological and surface chemical point of view. • Scaling up of the process was confirmed

  4. The genome sequence and effector complement of the flax rust pathogen Melampsora lini.

    Nemri, Adnane; Saunders, Diane G O; Anderson, Claire; Upadhyaya, Narayana M; Win, Joe; Lawrence, Gregory J; Jones, David A; Kamoun, Sophien; Ellis, Jeffrey G; Dodds, Peter N

    2014-01-01

    Rust fungi cause serious yield reductions on crops, including wheat, barley, soybean, coffee, and represent real threats to global food security. Of these fungi, the flax rust pathogen Melampsora lini has been developed most extensively over the past 80 years as a model to understand the molecular mechanisms that underpin pathogenesis. During infection, M. lini secretes virulence effectors to promote disease. The number of these effectors, their function and their degree of conservation across rust fungal species is unknown. To assess this, we sequenced and assembled de novo the genome of M. lini isolate CH5 into 21,130 scaffolds spanning 189 Mbp (scaffold N50 of 31 kbp). Global analysis of the DNA sequence revealed that repetitive elements, primarily retrotransposons, make up at least 45% of the genome. Using ab initio predictions, transcriptome data and homology searches, we identified 16,271 putative protein-coding genes. An analysis pipeline was then implemented to predict the effector complement of M. lini and compare it to that of the poplar rust, wheat stem rust and wheat stripe rust pathogens to identify conserved and species-specific effector candidates. Previous knowledge of four cloned M. lini avirulence effector proteins and two basidiomycete effectors was used to optimize parameters of the effector prediction pipeline. Markov clustering based on sequence similarity was performed to group effector candidates from all four rust pathogens. Clusters containing at least one member from M. lini were further analyzed and prioritized based on features including expression in isolated haustoria and infected leaf tissue and conservation across rust species. Herein, we describe 200 of 940 clusters that ranked highest on our priority list, representing 725 flax rust candidate effectors. Our findings on this important model rust species provide insight into how effectors of rust fungi are conserved across species and how they may act to promote infection on their

  5. Influence of Hybridizing Flax and Hemp-Agave Fibers with Glass Fiber as Reinforcement in a Polyurethane Composite

    Pankaj Pandey

    2016-05-01

    Full Text Available In this study, six combinations of flax, hemp, and glass fiber were investigated for a hybrid reinforcement system in a polyurethane (PU composite. The natural fibers were combined with glass fibers in a PU composite in order to achieve a better mechanical reinforcement in the composite material. The effect of fiber hybridization in PU composites was evaluated through physical and mechanical properties such as water absorption (WA, specific gravity (SG, coefficient of linear thermal expansion (CLTE, flexural and compression properties, and hardness. The mechanical properties of hybridized samples showed mixed trends compared to the unhybridized samples, but hybridization with glass fiber reduced water absorption by 37% and 43% for flax and hemp-agave PU composites respectively.

  6. Integration of Physical, Genetic, and Cytogenetic Mapping Data for Cellulose Synthase (CesA Genes in Flax (Linum usitatissimum L.

    Olga Y. Yurkevich

    2017-08-01

    Full Text Available Flax, Linum usitatissimum L., is a valuable multi-purpose plant, and currently, its genome is being extensively investigated. Nevertheless, mapping of genes in flax genome is still remaining a challenging task. The cellulose synthase (CesA multigene family involving in the process of cellulose synthesis is especially important for metabolism of this fiber crop. For the first time, fluorescent in situ hybridization (FISH-based chromosomal localization of the CesA conserved fragment (KF011584.1, 5S, and 26S rRNA genes was performed in landrace, oilseed, and fiber varieties of L. usitatissimum. Intraspecific polymorphism in chromosomal distribution of KF011584.1 and 5S DNA loci was revealed, and the generalized chromosome ideogram was constructed. Using BLAST analysis, available data on physical/genetic mapping and also whole-genome sequencing of flax, localization of KF011584.1, 45S, and 5S rRNA sequences on genomic scaffolds, and their anchoring to the genetic map were conducted. The alignment of the results of FISH and BLAST analyses indicated that KF011584.1 fragment revealed on chromosome 3 could be anchored to linkage group (LG 11. The common LG for 45S and 5S rDNA was not found probably due to the polymorphic localization of 5S rDNA on chromosome 1. Our findings indicate the complexity of integration of physical, genetic, and cytogenetic mapping data for multicopy gene families in plants. Nevertheless, the obtained results can be useful for future progress in constructing of integrated physical/genetic/cytological maps in L. usitatissimum which are essential for flax breeding.

  7. Effect of cotyledons and epicotyl upon the activity of endogenous gibberellins in roots of flax (Linum usitatissimum L. seedlings

    Krystyna M. Janas

    2013-12-01

    Full Text Available In 11-day-old flax seedlings, the level of endogenous gibberellins in roots decreased within 12 hours after the excision of cotyledons and the epicotyl; however, 24 to 48 hours after excision the gibberellin level increased again. The decrease in the gibberellin level within the first 12 hours after excision suggests a participation of the cotyledons and the epicotyl in the biosynthesis of endogenous gibberellins.

  8. Integration of Physical, Genetic, and Cytogenetic Mapping Data for Cellulose Synthase (CesA) Genes in Flax (Linum usitatissimum L.).

    Yurkevich, Olga Y; Kirov, Ilya V; Bolsheva, Nadezhda L; Rachinskaya, Olga A; Grushetskaya, Zoya E; Zoschuk, Svyatoslav A; Samatadze, Tatiana E; Bogdanova, Marina V; Lemesh, Valentina A; Amosova, Alexandra V; Muravenko, Olga V

    2017-01-01

    Flax, Linum usitatissimum L., is a valuable multi-purpose plant, and currently, its genome is being extensively investigated. Nevertheless, mapping of genes in flax genome is still remaining a challenging task. The cellulose synthase ( CesA ) multigene family involving in the process of cellulose synthesis is especially important for metabolism of this fiber crop. For the first time, fluorescent in situ hybridization (FISH)-based chromosomal localization of the CesA conserved fragment (KF011584.1), 5S, and 26S rRNA genes was performed in landrace, oilseed, and fiber varieties of L. usitatissimum . Intraspecific polymorphism in chromosomal distribution of KF011584.1 and 5S DNA loci was revealed, and the generalized chromosome ideogram was constructed. Using BLAST analysis, available data on physical/genetic mapping and also whole-genome sequencing of flax, localization of KF011584.1, 45S, and 5S rRNA sequences on genomic scaffolds, and their anchoring to the genetic map were conducted. The alignment of the results of FISH and BLAST analyses indicated that KF011584.1 fragment revealed on chromosome 3 could be anchored to linkage group (LG) 11. The common LG for 45S and 5S rDNA was not found probably due to the polymorphic localization of 5S rDNA on chromosome 1. Our findings indicate the complexity of integration of physical, genetic, and cytogenetic mapping data for multicopy gene families in plants. Nevertheless, the obtained results can be useful for future progress in constructing of integrated physical/genetic/cytological maps in L. usitatissimum which are essential for flax breeding.

  9. Arbuscular mycorrhizal fungi and Pseudomonas in reduce drought stress damage in flax (Linum usitatissimum L.): a field study.

    Rahimzadeh, Saeedeh; Pirzad, Alireza

    2017-08-01

    Drought stress, which is one of the most serious world environmental threats to crop production, might be compensated by some free living and symbiotic soil microorganisms. The physiological response of flax plants to inoculation with two species of arbuscular mycorrhizal (AM) fungi (Funneliformis mosseae or Rhizophagus intraradices) and a phosphate solubilizing bacterium (Pseudomonas putida P13; PSB) was evaluated under different irrigation regimes (irrigation after 60, 120, and 180 mm of evaporation from Class A pan as well-watered, mild, and severe stress, respectively). A factorial (three factors) experiment was conducted for 2 years (2014-2015) based on a randomized complete block design with three replications at Urmia University, Urmia, located at North-West of Iran (37° 39' 24.82″ N44° 58' 12.42″ E). Water deficit decreased biomass, showing that flax was sensitive to drought, and AM root colonization improved the performance of the plant within irrigation levels. In all inoculated and non-inoculated control plants, leaf chlorophyll decreased with increasing irrigation intervals. Water deficit-induced oxidative damage (hydrogen peroxide, malondialdehyde, and electrolyte leakage) were significantly reduced in dual colonized plants. All enzymatic (catalase, superoxide dismutase, glutathione reductase, and ascorbate peroxidase) and non-enzymatic (glutathione, ascorbic acid, total carotenoids) antioxidants were reduced by water-limiting irrigation. Dual inoculated plants with AM plus Pseudomonas accumulated more enzymatic and non-enzymatic antioxidants than plants with bacterial or fungal inoculation singly. Dual colonized plants significantly decreased the water deficit-induced glycine betaine and proline in flax leaves. These bacterial-fungal interactions in enzymatic and non-enzymatic defense of flax plants demonstrated equal synergism with both AM fungi species. In conclusion, increased activity of enzymatic antioxidants and higher production of non

  10. Relatedness of Indian flax genotypes (Linum usitatissimum L.): an inter-simple sequence repeat (ISSR) primer assay.

    Rajwade, Ashwini V; Arora, Ritu S; Kadoo, Narendra Y; Harsulkar, Abhay M; Ghorpade, Prakash B; Gupta, Vidya S

    2010-06-01

    The objective of this study was to analyze the genetic relationships, using PCR-based ISSR markers, among 70 Indian flax (Linum usitatissimum L.) genotypes actively utilized in flax breeding programs. Twelve ISSR primers were used for the analysis yielding 136 loci, of which 87 were polymorphic. The average number of amplified loci and the average number of polymorphic loci per primer were 11.3 and 7.25, respectively, while the percent loci polymorphism ranged from 11.1 to 81.8 with an average of 63.9 across all the genotypes. The range of polymorphism information content scores was 0.03-0.49, with an average of 0.18. A dendrogram was generated based on the similarity matrix by the Unweighted Pair Group Method with Arithmetic Mean (UPGMA), wherein the flax genotypes were grouped in five clusters. The Jaccard's similarity coefficient among the genotypes ranged from 0.60 to 0.97. When the omega-3 alpha linolenic acid (ALA) contents of the individual genotypes were correlated with the clusters in the dendrogram, the high ALA containing genotypes were grouped in two clusters. This study identified SLS 50, Ayogi, and Sheetal to be the most diverse genotypes and suggested their use in breeding programs and for developing mapping populations.

  11. Organic leek seed production - securing seed quality

    Deleuran, Lise Christina; Boelt, Birte

    2011-01-01

    To maintain integrity in organic farming, availability of organically produced GM-free seed of varieties adapted to organic production systems is of vital impor-tance. Despite recent achievements, organic seed supply for a number of vegetable species is insufficient. Still, in many countries...... seeds. Tunnel production is a means of securing seed of high genetic purity and quality, and organic leek (Allium porrum L.) seed production was tested in tunnels in Denmark. The present trial focused on steckling size and in all years large stecklings had a positive effect on both seed yield...

  12. Organic Leek Seed Production - Securing Seed Quality

    Deleuran, L C; Boelt, B

    2011-01-01

    To maintain integrity in organic farming, availability of organically produced GM-free seed of varieties adapted to organic production systems is of vital impor-tance. Despite recent achievements, organic seed supply for a number of vegetable species is insufficient. Still, in many countries...... seeds. Tunnel production is a means of securing seed of high genetic purity and quality, and organic leek (Allium porrum L.) seed production was tested in tunnels in Denmark. The present trial focused on steckling size and in all years large stecklings had a positive effect on both seed yield...

  13. Aspects of resistance of flax and linseed (Linum usitatissimum) to Fusarium oxysporum f.sp. lini = Aspecten van de resistentie in vezel- en olievlas (Linum usitatissimum) tegen Fusarium oxysporum f.sp. lini

    Kroes, I.

    1997-01-01

    In the thesis aspects have been described of the flax and linseed interaction to Fusarium oxysporum f.sp. lini, the causal agent of flax wilt. Two in vitro tests were established to screen for resistance, to investigate race specificity

  14. Fibres from flax overproducing β-1,3-glucanase show increased accumulation of pectin and phenolics and thus higher antioxidant capacity

    2013-01-01

    Background Recently, in order to improve the resistance of flax plants to pathogen infection, transgenic flax that overproduces β-1,3-glucanase was created. β-1,3-glucanase is a PR protein that hydrolyses the β-glucans, which are a major component of the cell wall in many groups of fungi. For this study, we used fourth-generation field-cultivated plants of the Fusarium -resistant transgenic line B14 to evaluate how overexpression of the β-1,3-glucanase gene influences the quantity, quality and composition of flax fibres, which are the main product obtained from flax straw. Results Overproduction of β-1,3-glucanase did not affect the quantity of the fibre obtained from the flax straw and did not significantly alter the essential mechanical characteristics of the retted fibres. However, changes in the contents of the major components of the cell wall (cellulose, hemicellulose, pectin and lignin) were revealed. Overexpression of the β-1,3-glucanase gene resulted in higher cellulose, hemicellulose and pectin contents and a lower lignin content in the fibres. Increases in the uronic acid content in particular fractions (with the exception of the 1 M KOH-soluble fraction of hemicelluloses) and changes in the sugar composition of the cell wall were detected in the fibres of the transgenic flax when compared to the contents for the control plants. The callose content was lower in the fibres of the transgenic flax. Additionally, the analysis of phenolic compound contents in five fractions of the cell wall revealed important changes, which were reflected in the antioxidant potential of these fractions. Conclusion Overexpression of the β-1,3-glucanase gene has a significant influence on the biochemical composition of flax fibres. The constitutive overproduction of β-1,3-glucanase causes a decrease in the callose content, and the resulting excess glucose serves as a substrate for the production of other polysaccharides. The monosaccharide excess redirects the phenolic

  15. Studies on the widening of the variation of the fatty acid pattern in flax (Linum usitatissimum L. ) by means of interspecific hybridisation and in-vitro techniques. Untersuchungen zur Erweiterung der genetischen Variation des Fettsaeuremusters beim Lein (Linum usitatissimum L. ) mit Hilfe von Artkreuzungen und in vitro Techniken

    Nickel, M.

    1993-01-01

    Oil flux genotypes with strongly divergent fatty acid compositions of the seed oil are vegetable raw materials of great interest to industrial users, notably to manufacturers of edible oils and dietetic products. Compared with the moderately variable fatty acid pattern of Linum usitatissimum that of wild forms shows a far greater scatter. The studies on the widening of the genetic variation of the fatty acid pattern in cultivated flax by means of interspecific hybridization and embryo cultures have revealed the possibilities offered by, and limits to, these methods. Optimisation of the embryo culture techniques have for the first time made it possible to regenerate plants from globular embryos obtained by interspecific hybridization between Linum usitatissimum and L. monogynum. (orig./EF)

  16. Enhancement of the Mechanical Properties of a Polylactic Acid/Flax Fiber Biocomposite by WPU, WPU/Starch, and TPS Polyurethanes Using Coupling Additives

    Miskolczi, N.; Sedlarik, V.; Kucharczyk, P.; Riegel, E.

    2018-01-01

    This work is addressed to the synthesis of bio-based polymers and investigation of their application in a flax-fiber-reinforced polylactic acid. Polyurethane polymers were synthesized from polyphenyl-methane-diisocyanate, poly (ethylene oxide) glycol, and ricinoleic acid, and their structure was examined by the Fourier transform infrared spectroscopy, thermogravimetric analysis, and differential scanning calorimetry. It was established that the introduction of flax fibers and different compatibilizers into the polymers improved their mechanical properties. A vinyl-trimetoxy-silane and polyalkenyl-polymaleic-anhydride derivative with a high acid number produced the best effect on the properties, but samples without additives had the highest water absorption capacity. SEM micrographs showed a good correlation between the morphology of fracture structure of the composites and the mechanical properties of flax fibers.

  17. miR319, miR390, and miR393 Are Involved in Aluminum Response in Flax (Linum usitatissimum L.).

    Dmitriev, Alexey A; Kudryavtseva, Anna V; Bolsheva, Nadezhda L; Zyablitsin, Alexander V; Rozhmina, Tatiana A; Kishlyan, Natalya V; Krasnov, George S; Speranskaya, Anna S; Krinitsina, Anastasia A; Sadritdinova, Asiya F; Snezhkina, Anastasiya V; Fedorova, Maria S; Yurkevich, Olga Yu; Muravenko, Olga V; Belenikin, Maxim S; Melnikova, Nataliya V

    2017-01-01

    Acid soils limit agricultural production worldwide. Major reason of crop losses in acid soils is the toxicity of aluminum (Al). In the present work, we investigated expression alterations of microRNAs in flax ( Linum usitatissimum L.) plants under Al stress. Flax seedlings of resistant (TMP1919 and G1071/4_k) and sensitive (Lira and G1071/4_o) to Al cultivars and lines were exposed to AlCl 3 solution for 4 and 24 hours. Twelve small RNA libraries were constructed and sequenced using Illumina platform. In total, 97 microRNAs from 18 conserved families were identified. miR319, miR390, and miR393 revealed expression alterations associated with Al treatment of flax plants. Moreover, for miR390 and miR393, the alterations were distinct in sensitive and resistant to Al genotypes. Expression level changes of miR319 and miR390 were confirmed using qPCR analysis. In flax, potential targets of miR319 are TCPs, miR390-TAS3 and GRF5, and miR393-AFB2-coding transcripts. TCPs, TAS3, GRF5, and AFB2 participate in regulation of plant growth and development. The involvement of miR319, miR390, and miR393 in response to Al stress in flax was shown here for the first time. We speculate that these microRNAs play an important role in Al response via regulation of growth processes in flax plants.

  18. Bactericidal activities of GM flax seedcake extract on pathogenic bacteria clinical strains.

    Zuk, Magdalena; Dorotkiewicz-Jach, Agata; Drulis-Kawa, Zuzanna; Arendt, Malgorzata; Kulma, Anna; Szopa, Jan

    2014-07-29

    The antibiotic resistance of pathogenic microorganisms is a worldwide problem. Each year several million people across the world acquire infections with bacteria that are antibiotic-resistant, which is costly in terms of human health. New antibiotics are extremely needed to overcome the current resistance problem. Transgenic flax plants overproducing compounds from phenylpropanoid pathway accumulate phenolic derivatives of potential antioxidative, and thus, antimicrobial activity. Alkali hydrolyzed seedcake extract containing coumaric acid, ferulic acid, caffeic acid, and lignan in high quantities was used as an assayed against pathogenic bacteria (commonly used model organisms and clinical strains). It was shown that the extract components had antibacterial activity, which might be useful as a prophylactic against bacterial infection. Bacteria topoisomerase II (gyrase) inhibition and genomic DNA disintegration are suggested to be the main reason for rendering antibacterial action. The data obtained strongly suggest that the seedcake extract preparation is a suitable candidate for antimicrobial action with a broad spectrum and partial selectivity. Such preparation can be applied in cases where there is a risk of multibacterial infection and excellent answer on global increase in multidrug resistance in pathogenic bacteria.

  19. Combined treatment of retting flax wastewater using Fenton oxidation and granular activated carbon

    Sohair I. Abou-Elela

    2016-07-01

    Full Text Available The process of retting flax produces a huge amount of wastewater which is characterized with bad unpleasant smell and high concentration of organic materials. Treatment of such waste had always been difficult because of the presence of refractory organic pollutants such as lignin. In this study, treatment of retting wastewater was carried out using combined system of Fenton oxidation process followed by adsorption on granular activated carbon (GAC. The effects of operating condition on Fenton oxidation process such as hydrogen peroxide and iron concentration were investigated. In addition, kinetic study of the adsorption process was elaborated. The obtained results indicated that degradation of organic matters follows a pseudo-first order reaction with regression coefficient of 0.98. The kinetic model suggested that the rate of reaction was highly affected by the concentration of hydrogen peroxide. Moreover, the results indicated that the treatment module was very efficient in removing the organic and inorganic pollutants. The average percentage removal of chemical oxygen demand (COD, total suspended solid (TSS, oil, and grease was 98.60%, 86.60%, and 94.22% with residual values of 44, 20, and 5 mg/L, respectively. The treated effluent was complying with the National Regulatory Standards for wastewater discharge into surface water or reuse in the retting process.

  20. Composite Materials Based on Hemp and Flax for Low-Energy Buildings

    Brzyski, Przemysław; Barnat-Hunek, Danuta; Suchorab, Zbigniew; Łagód, Grzegorz

    2017-01-01

    The article presents the results obtained in the course of a study on prospective application of flax/hemp wastes as a filling material of lime-based composites in the construction of low-energy buildings. The utilized filler comprised the hydrated lime with clay and Portland cement used as additives. The analysis involved evaluation of such properties as porosity, density, thermal conductivity, absorptivity, permeability, as well as compressive and flexural strength. Depending on the quantity of the filler, the properties of the composite changed. This, in turn, enabled to evaluate whether the utilized composite met the thermal requirements established for low-energy buildings. Afterwards, the obtained data were cross-referenced with the results gathered in the case of a room built of autoclaved aerated concrete. In order to prevent reaching the critical surface humidity, the internal surface temperature had to be calculated. Moreover, the chances of interstitial condensation occurring in the wall made of the analyzed lime–flax–hemp composite were determined as well. The study showed that the composite exhibits low strength, low density, low thermal conductivity, and high absorptivity. The external walls made of the lime–flax–hemp composite receive a limited exposure to condensation, but not significant enough to constitute any threat. The requirements established for low-energy buildings can be met by using the analyzed composite. PMID:28772871

  1. Performance and emission characteristics of compression ignition engine operating with false flax biodiesel and butanol blends

    Mustafa Atakan Akar

    2016-02-01

    Full Text Available In this study, fuel properties, engine performance, and emission characteristics of diesel fuel, false flax biodiesel, and their blends with butanol have been evaluated. Blend ratios used in this study were diesel–biodiesel–butanol (70% diesel–20% biodiesel–10% butanol and 60% diesel–20% biodiesel–20% butanol by volume and biodiesel–diesel (20% biodiesel–80% diesel and 100% biodiesel by volume. Experiments showed that 10% alcohol addition to diesel and biodiesel fuels caused a decrease in torque value up to 8.57%. When butanol ratio raised to 20%, torque value decreased to an average of 12.7% and power values decreased to an average of 13.57%. Specific fuel consumption increased to an average of 10.63% and 12.80% with 10% and 20% butanol addition, respectively. Alcohol addiction into conventional diesel and biodiesel fuel slightly increased NOX emissions. Supplement of alcohol decreased CO and CO2 emissions when it was entrained to diesel and increased it when it was added to biodiesel. It means that addition of alcohol to diesel changed CO and CO2 emissions.

  2. Study of the time varying properties of flax fiber reinforced composites

    Stochioiu, Constantin; Chettah, Ameur; Piezel, Benoit; Fontaine, Stéphane; Gheorghiu, Horia-Miron

    2018-02-01

    Bio materials have seen an increase of interest from the scientific community and the industry as a possible future generation of mass produced materials, some of the main arguments being their renewability, low production costs and recyclability. The current work is focused on the experimental data required for the viscoelastic characterization of a composite material. Similar work has been conducted on different types of composite materials by Tuttle and Brinson [1] who verified for a carbon epoxy laminate the possibility of long term predicament of creep. Nordin et al [2] studied paper impregnated with phenol-formaldehyde under compression. Muliana [3] conducted experiments on E-glass/vinyl ester materials. Behavior characterization was based on a model presented by Schapery [4]. The main objective of this work is to understand the mechanical behaviors of bio-laminates structures subjected to long and severe operating conditions. The studied material is a bio composite laminate consisting in long flax fibers embedded in an epoxy resin system. The laminates were obtained from pre-impregnated unidirectional fibers, which were cured though a thermo-compression cycle followed by a post curing cycle. Test specimens were cut down to sizes, with the help of an electric saw. The concerned fiber direction was 0° with sample dimensions of 250x25x2 mm. First, testing consisted in quasi static mechanical tests. Second, to characterize linear viscoelastic behavior of the bio-laminates, creep - recovery tests with multiple load levels have been performed for the chosen fiber direction.

  3. Effect of nanoclay on durability and mechanical properties of flax fabric reinforced geopolymer composites

    H. Assaedi

    2017-03-01

    Full Text Available The main concern of using natural fibres as reinforcement in geopolymer composites is the durability of the fibres. Geopolymers are alkaline in nature because of the alkaline solution that is required for activating the geopolymer reaction. The alkalinity of the matrix, however, is the key reason of the degradation of natural fibres. The purpose of this study is to determine the effect of nanoclay (NC loading on the mechanical properties and durability of flax fabric (FF reinforced geopolymer composites. The durability of composites after 4 and 32 weeks at ambient temperature is presented. The microstructure of geopolymer matrices was investigated using X-ray diffraction (XRD, Fourier transform infrared spectroscopy (FTIR and scanning electron microscopy (SEM. The results showed that the incorporation of NC has a positive impact on the physical properties, mechanical performance, and durability of FF reinforced geopolymer composites. The presence of NC has a positive impact through accelerating the geopolymerization, reducing the alkalinity of the system and increasing the geopolymer gel.

  4. The Longevity of Crop Seeds Stored Under Long-term Condition in the National Gene Bank of Bulgaria

    Desheva Gergana

    2016-10-01

    Full Text Available Seed accessions from 7 plant families and 28 species stored for above 20 years in the National gene bank of Bulgaria were evaluated. All seed accessions were maintained as base collection under long-term storage conditions with low moisture contents (5±2% in hermetically closed containers at −18°C. On the basis of experimental data, the seed storage characters σ (standard deviation of seed death in storage, P50% (the time for viability to fall to 50% and P10% (the time for viability reduction of 10% were determined allowing the prediction of seed storage life and the regeneration needs. The results showed significant differences in loss of seed viability among species and within the species. After 20–24 years of storage, eleven crops showed minimal viability decline under 5% as compared to the initial viability (oats, barley, maize, bread wheat, durum wheat, smooth brome grass, faba bean, chickpea, sunflower, cucumber and pepper. For the same storage time, another group of crops (sorghum, triticale, orchard grass, tall fescue, common vetch, grass pea, lentil, common bean, rapeseed, tobacco, flax, cabbage and tomatoes presented 5–10% reduction of seed viability. More significant changes in seed viability – above 10% – were detected for peanuts, lettuce, soybean and rye. The σ values varied from 20.41 years (Arachis hypogaea L. to 500 years (for Avena sativa L. and Triticum aestivum L. There was wide variation across species, both in time taken for the viability to fall to 50% and in time taken for the seed viability reduction of 10%. The study illustrates the positive effect of both seed storability early monitoring and prediction of regeneration needs as a tool for limiting undesired losses.

  5. Identification of differentially expressed genes in flax (Linum usitatissimum L.) under saline-alkaline stress by digital gene expression.

    Yu, Ying; Huang, Wengong; Chen, Hongyu; Wu, Guangwen; Yuan, Hongmei; Song, Xixia; Kang, Qinghua; Zhao, Dongsheng; Jiang, Weidong; Liu, Yan; Wu, Jianzhong; Cheng, Lili; Yao, Yubo; Guan, Fengzhi

    2014-10-01

    The salinization and alkalization of soil are widespread environmental problems, and alkaline salt stress is more destructive than neutral salt stress. Therefore, understanding the mechanism of plant tolerance to saline-alkaline stress has become a major challenge. However, little attention has been paid to the mechanism of plant alkaline salt tolerance. In this study, gene expression profiling of flax was analyzed under alkaline-salt stress (AS2), neutral salt stress (NSS) and alkaline stress (AS) by digital gene expression. Three-week-old flax seedlings were placed in 25 mM Na2CO3 (pH11.6) (AS2), 50mM NaCl (NSS) and NaOH (pH11.6) (AS) for 18 h. There were 7736, 1566 and 454 differentially expressed genes in AS2, NSS and AS compared to CK, respectively. The GO category gene enrichment analysis revealed that photosynthesis was particularly affected in AS2, carbohydrate metabolism was particularly affected in NSS, and the response to biotic stimulus was particularly affected in AS. We also analyzed the expression pattern of five categories of genes including transcription factors, signaling transduction proteins, phytohormones, reactive oxygen species proteins and transporters under these three stresses. Some key regulatory gene families involved in abiotic stress, such as WRKY, MAPKKK, ABA, PrxR and ion channels, were differentially expressed. Compared with NSS and AS, AS2 triggered more differentially expressed genes and special pathways, indicating that the mechanism of AS2 was more complex than NSS and AS. To the best of our knowledge, this was the first transcriptome analysis of flax in response to saline-alkaline stress. These data indicate that common and diverse features of saline-alkaline stress provide novel insights into the molecular mechanisms of plant saline-alkaline tolerance and offer a number of candidate genes as potential markers of tolerance to saline-alkaline stress. Copyright © 2014 Elsevier B.V. All rights reserved.

  6. Evolutionary characterization and transcript profiling of β-tubulin genes in flax (Linum usitatissimum L.) during plant development.

    Gavazzi, Floriana; Pigna, Gaia; Braglia, Luca; Gianì, Silvia; Breviario, Diego; Morello, Laura

    2017-12-08

    Microtubules, polymerized from alpha and beta-tubulin monomers, play a fundamental role in plant morphogenesis, determining the cell division plane, the direction of cell expansion and the deposition of cell wall material. During polarized pollen tube elongation, microtubules serve as tracks for vesicular transport and deposition of proteins/lipids at the tip membrane. Such functions are controlled by cortical microtubule arrays. Aim of this study was to first characterize the flax β-tubulin family by sequence and phylogenetic analysis and to investigate differential expression of β-tubulin genes possibly related to fibre elongation and to flower development. We report the cloning and characterization of the complete flax β-tubulin gene family: exon-intron organization, duplicated gene comparison, phylogenetic analysis and expression pattern during stem and hypocotyl elongation and during flower development. Sequence analysis of the fourteen expressed β-tubulin genes revealed that the recent whole genome duplication of the flax genome was followed by massive retention of duplicated tubulin genes. Expression analysis showed that β-tubulin mRNA profiles gradually changed along with phloem fibre development in both the stem and hypocotyl. In flowers, changes in relative tubulin transcript levels took place at anthesis in anthers, but not in carpels. Phylogenetic analysis supports the origin of extant plant β-tubulin genes from four ancestral genes pre-dating angiosperm separation. Expression analysis suggests that particular tubulin subpopulations are more suitable to sustain different microtubule functions such as cell elongation, cell wall thickening or pollen tube growth. Tubulin genes possibly related to different microtubule functions were identified as candidate for more detailed studies.

  7. Evaluation of the significance of cell wall polymers in flax infected with a pathogenic strain of Fusarium oxysporum.

    Wojtasik, Wioleta; Kulma, Anna; Dymińska, Lucyna; Hanuza, Jerzy; Czemplik, Magdalena; Szopa, Jan

    2016-03-22

    Fusarium oxysporum infection leads to Fusarium-derived wilt, which is responsible for the greatest losses in flax (Linum usitatissimum) crop yield. Plants infected by Fusarium oxysporum show severe symptoms of dehydration due to the growth of the fungus in vascular tissues. As the disease develops, vascular browning and leaf yellowing can be observed. In the case of more virulent strains, plants die. The pathogen's attack starts with secretion of enzymes degrading the host cell wall. The main aim of the study was to evaluate the role of the cell wall polymers in the flax plant response to the infection in order to better understand the process of resistance and develop new ways to protect plants against infection. For this purpose, the expression of genes involved in cell wall polymer metabolism and corresponding polymer levels were investigated in flax seedlings after incubation with Fusarium oxysporum. This analysis was facilitated by selecting two groups of genes responding differently to the infection. The first group comprised genes strongly affected by the infection and activated later (phenylalanine ammonia lyase and glucosyltransferase). The second group comprised genes which are slightly affected (up to five times) and their expression vary as the infection progresses. Fusarium oxysporum infection did not affect the contents of cell wall polymers, but changed their structure. The results suggest that the role of the cell wall polymers in the plant response to Fusarium oxysporum infection is manifested through changes in expression of their genes and rearrangement of the cell wall polymers. Our studies provided new information about the role of cellulose and hemicelluloses in the infection process, the change of their structure and the expression of genes participating in their metabolism during the pathogen infection. We also confirmed the role of pectin and lignin in this process, indicating the major changes at the mRNA level of lignin metabolism genes

  8. Induced Mutagenesis in UGT74S1 Gene Leads to Stable New Flax Lines with Altered Secoisolariciresinol Diglucoside (SDG) Profiles.

    Fofana, Bourlaye; Ghose, Kaushik; Somalraju, Ashok; McCallum, Jason; Main, David; Deyholos, Michael K; Rowland, Gordon G; Cloutier, Sylvie

    2017-01-01

    Flax secoisolariciresinol (SECO) diglucoside (SDG) lignan is an emerging natural product purported to prevent chronic diseases in humans. SECO, the aglycone form of SDG, has shown higher intestinal cell absorption but it is not accumulated naturally in planta . Recently, we have identified and characterized a UDP-glucosyltransferase gene, UGT74S1 , that glucosylates SECO into its monoglucoside (SMG) and SDG forms when expressed in yeast. However, whether this gene is unique in controlling SECO glucosylation into SDG in planta is unclear. Here, we report on the use of UGT74S1 in reverse and forward genetics to characterize an ethyl methane sulfonate (EMS) mutagenized flax population from cultivar CDC Bethune and consisting of 1996 M2 families. EMS mutagenesis generated 73 SNP variants causing 79 mutational events in the UGT74S1 exonic regions of 93 M2 families. The mutation frequency in the exonic regions was determined to be one per 28 Kb. Of these mutations, 13 homozygous missense mutations and two homozygous nonsense mutations were observed and all were transmitted into the M3 and M4 generations. Forward genetics screening of the population showed homozygous nonsense mutants completely lacking SDG biosynthesis while the production of SMG was observed only in a subset of the M4 lines. Heterozygous or homozygous M4 missense mutants displayed a wide range of SDG levels, some being greater than those of CDC Bethune. No additional deleterious mutations were detected in these mutant lines using a panel of 10 other genes potentially involved in the lignan biosynthesis. This study provides further evidence that UGT74S1 is unique in controlling SDG formation from SECO and this is the first report of non-transgenic flax germplasm with simultaneous knockout of SDG and presence of SMG in planta .

  9. Induced Mutagenesis in UGT74S1 Gene Leads to Stable New Flax Lines with Altered Secoisolariciresinol Diglucoside (SDG Profiles

    Bourlaye Fofana

    2017-09-01

    Full Text Available Flax secoisolariciresinol (SECO diglucoside (SDG lignan is an emerging natural product purported to prevent chronic diseases in humans. SECO, the aglycone form of SDG, has shown higher intestinal cell absorption but it is not accumulated naturally in planta. Recently, we have identified and characterized a UDP-glucosyltransferase gene, UGT74S1, that glucosylates SECO into its monoglucoside (SMG and SDG forms when expressed in yeast. However, whether this gene is unique in controlling SECO glucosylation into SDG in planta is unclear. Here, we report on the use of UGT74S1 in reverse and forward genetics to characterize an ethyl methane sulfonate (EMS mutagenized flax population from cultivar CDC Bethune and consisting of 1996 M2 families. EMS mutagenesis generated 73 SNP variants causing 79 mutational events in the UGT74S1 exonic regions of 93 M2 families. The mutation frequency in the exonic regions was determined to be one per 28 Kb. Of these mutations, 13 homozygous missense mutations and two homozygous nonsense mutations were observed and all were transmitted into the M3 and M4 generations. Forward genetics screening of the population showed homozygous nonsense mutants completely lacking SDG biosynthesis while the production of SMG was observed only in a subset of the M4 lines. Heterozygous or homozygous M4 missense mutants displayed a wide range of SDG levels, some being greater than those of CDC Bethune. No additional deleterious mutations were detected in these mutant lines using a panel of 10 other genes potentially involved in the lignan biosynthesis. This study provides further evidence that UGT74S1 is unique in controlling SDG formation from SECO and this is the first report of non-transgenic flax germplasm with simultaneous knockout of SDG and presence of SMG in planta.

  10. RNA-seq Transcriptome Response of Flax (Linum usitatissimum L.) to the Pathogenic Fungus Fusarium oxysporum f. sp. lini.

    Galindo-González, Leonardo; Deyholos, Michael K

    2016-01-01

    Fusarium oxysporum f. sp. lini is a hemibiotrophic fungus that causes wilt in flax. Along with rust, fusarium wilt has become an important factor in flax production worldwide. Resistant flax cultivars have been used to manage the disease, but the resistance varies, depending on the interactions between specific cultivars and isolates of the pathogen. This interaction has a strong molecular basis, but no genomic information is available on how the plant responds to attempted infection, to inform breeding programs on potential candidate genes to evaluate or improve resistance across cultivars. In the current study, disease progression in two flax cultivars [Crop Development Center (CDC) Bethune and Lutea], showed earlier disease symptoms and higher susceptibility in the later cultivar. Chitinase gene expression was also divergent and demonstrated and earlier molecular response in Lutea. The most resistant cultivar (CDC Bethune) was used for a full RNA-seq transcriptome study through a time course at 2, 4, 8, and 18 days post-inoculation (DPI). While over 100 genes were significantly differentially expressed at both 4 and 8 DPI, the broadest deployment of plant defense responses was evident at 18 DPI with transcripts of more than 1,000 genes responding to the treatment. These genes evidenced a reception and transduction of pathogen signals, a large transcriptional reprogramming, induction of hormone signaling, activation of pathogenesis-related genes, and changes in secondary metabolism. Among these, several key genes that consistently appear in studies of plant-pathogen interactions, had increased transcript abundance in our study, and constitute suitable candidates for resistance breeding programs. These included: an induced R PMI-induced protein kinase; transcription factors WRKY3, WRKY70, WRKY75, MYB113 , and MYB108 ; the ethylene response factors ERF1 and ERF14 ; two genes involved in auxin/glucosinolate precursor synthesis ( CYP79B2 and CYP79B3 ); the flavonoid

  11. Characterization and transcript profiling of the pectin methylesterase (PME) and pectin methylesterase inhibitor (PMEI) gene families in flax (Linum usitatissimum).

    Pinzón-Latorre, David; Deyholos, Michael K

    2013-10-30

    Pectin methylesterases (PMEs) catalyze the demethylesterification of homogalacturonans in the cell wall; their activity is regulated in part by pectin methylesterase inhibitors (PMEIs). PME activity may result in either rigidification or loosening of the cell wall, depending on the mode of demethylesterification. The activity of PMEs in the middle lamella is expected to affect intrusive elongation of phloem fibers, and their adhesion to adjacent cells. Length and extractability of phloem fibers are qualities important for their industrial uses in textiles and composites. As only three flax PMEs had been previously described, we were motivated to characterize the PME and PMEI gene families of flax. We identified 105 putative flax PMEs (LuPMEs) and 95 putative PMEIs (LuPMEIs) within the whole-genome assembly. We found experimental evidence for the transcription of 77/105 LuPMEs and 83/95 LuPMEIs, and surveyed the transcript abundance of these in 12 different tissues and stages of development. Six major monophyletic groups of LuPMEs could be defined based on the inferred relationships of flax genes and their presumed orthologs from other species. We searched the LuPMEs and LuPMEIs for conserved residues previously reported to be important for their tertiary structure and function. In the LuPMEs, the most highly conserved residues were catalytic residues while in the LuPMEIs, cysteines forming disulfude bridges between helices α2 and α3 were most highly conserved. In general, the conservation of critical residues was higher in the genes with evidence of transcript expression than in those for which no expression was detected. The LuPMEs and LuPMEIs comprise large families with complex patterns of transcript expression and a wide range of physical characteristics. We observed that multiple PMEs and PMEIs are expressed in partially overlapping domains, indicative of several genes acting redundantly during most processes. The potential for functional redundancy was

  12. RNA-seq Transcriptome Response of Flax (Linum usitatissimum L. to the Pathogenic Fungus Fusarium oxysporum f. sp. lini.

    Leonardo Miguel Galindo-González

    2016-11-01

    Full Text Available Fusarium oxysporum f. sp. lini is a hemibiotrophic fungus that causes wilt in flax. Along with rust, fusarium wilt has become an important factor in flax production worldwide. Resistant flax cultivars have been used to manage the disease, but the resistance varies, depending on the interactions between specific cultivars and isolates of the pathogen. This interaction has a strong molecular basis, but no genomic information is available on how the plant responds to attempted infection, to inform breeding programs on potential candidate genes to evaluate or improve resistance across cultivars. In the current study, disease progression in two flax cultivars (CDC Bethune and Lutea, showed earlier disease symptoms and higher susceptibility in the later cultivar. Chitinase gene expression was also divergent and demonstrated and earlier molecular response in Lutea. The most resistant cultivar (CDC Bethune was used for a full RNA-seq transcriptome study through a time-course at 2, 4, 8 and 18 days post-inoculation (DPI. While over 100 genes were significantly differentially expressed at both 4 and 8 DPI, the broadest deployment of plant defense responses was evident at 18 DPI with transcripts of more than 1,000 genes responding to the treatment. These genes evidenced a reception and transduction of pathogen signals, a large transcriptional reprogramming, induction of hormone signalling, activation of pathogenesis-related (PR genes, and changes in secondary metabolism. Among these several key genes, that consistently appear in studies of plant-pathogen interactions, had increased transcript abundance in our study, and constitute suitable candidates for resistance breeding programs. These included: an induced RPMI-induced protein kinase (RIPK; transcription factors WRKY3, WRKY70, WRKY75, MYB113 and MYB108; the ethylene response factors ERF1 and ERF14; two genes involved in auxin/glucosinolate precursor synthesis (CYP79B2 and CYP79B3; the flavonoid

  13. Characterization, Long-Term Behavior Evaluation and Thermomechanical Properties of Untreated and Treated Flax Fiber-Reinforced Composites

    Amiri, Ali

    In recent years there has been a resurgence of interest in the usage of natural fiber reinforced composites in more advanced structural applications. Consequently, the need for improving their mechanical properties as well as service life and long-term behavior modeling and predictions has arisen. In a step towards further development of these materials, in this study, two newly developed biobased resins, derived from soybean oil, methacrylated epoxidized sucrose soyate and double methacrylated epoxidized sucrose soyate are combined with untreated and alkaline treated flax fiber to produce novel biocomposites. Vinyl ester reinforced with flax fiber is used as control in addition to comparing properties of biobased composites against commercial pultruded composites. Effects of alkaline treatment of flax fiber as well as addition of 1% acrylic resin to vinyl ester and the two mentioned biobased resins on mechanical properties are studied. Properties are evaluated in short-term and also, after being exposed to accelerated weathering (i.e. UV and moisture). Moreover, long-term creep of these novel biobased composites and effect of fiber and matrix treatment on viscoelastic behavior is investigated using Time-temperature superposition (TTS) principle. Based on the results of this study, the TTS provides an accelerated method for evaluation of mechanical properties of biobased composites, and satisfactory master curves are achieved by use of this principle. Also, fiber and matrix treatments were effective in increasing mechanical properties of biobased composites in short-term, and treatments delayed the creep response and slowed the process of creep in composites under study in the steady state region. Overall, results of this study reveal the successful production of biocomposites having properties that meet or exceed those of conventional pultruded members while maintaining high biocontent. Composites using treated flax fiber and newly developed resins showed less

  14. Pyrolysis of flax straw: Characterization of char, liquid, and gas as fuel

    Tushar, Mohammad Shahed Hasan Khan

    The demand for energy continues to outstrip its supply and necessitates the development of renewable energy options. Biomass has been recognized as a major renewable energy source to supplement the declining fossil fuel source of energy. It is the most popular form of renewable energy and, currently, biofuel production is becoming more promising. Being carbon neutral, readily available, and low in sulphur content makes biomass a very promising source of renewable energy. In the present research, both the isothermal and non-isothermal pressurized pyrolysis of flax straw is studied for the first time. In case of isothermal pyrolysis, the influence of pyrolysis temperature and reaction time on char yield and morphology was investigated. The applied pyrolysis temperature was varied between 300 and 500°C. The reaction time was varied from 15 to 60 min. The char yield was found to decrease as pyrolysis temperature and reaction time increased. The char structure and surface morphology were thoroughly investigated by means of x-ray diffraction (XRD), temperature-programmed oxidation (TPO), and scanning electron microscopy (SEM). The degree of porosity and graphitization increased as pyrolysis temperature and time increased. In fact, the experiment performed at 500°C for 1h duration did not yield any char; only residual ash could be obtained. The TPO studies on the char samples corroborated the XRD findings and showed the presence of two types of carbon, namely, amorphous filamentous carbon and graphitic carbon. A thermogravimetric analysis (TGA) of the char was performed to gain an understanding of combustion kinetics and reactivity. It implied that the reactivity of the char decreases as temperature increases, and this finding is well supported by the TPO, TGA, SEM, and XRD characterization data. Furthermore, an empirical global model was devised based on the power law to estimate activation energy and other kinetic parameters. For the non-isothermal pressurized

  15. Effects of synthetic Zn chelates on flax response and soil Zn status

    Gonzalez, D.; Almendros, P.; Alvarez, J.M.

    2016-11-01

    Throughout the world, flax (Linum usitatissimum L.) is often grown in Zn-deficient soils, but appropriate fertilizer management can optimize both crop yield and micronutrient content. A greenhouse experiment was conducted on Typic Haploxeralf (pH 6.1) and Typic Calcixerept (pH 8.1) soils to study the relative efficiency of chelated Zn using two application rates of three different Zn sources [Zn-EDDHSA, ethylenediamine-di-(2-hydroxy-5-sulfophenylacetate of Zn); Zn-HEDTA, N-2-hydroxyethyl-ethylenediaminetriacetate of Zn; and Zn-EDTA, ethylenediaminetetraacetate of Zn]. Dry matter /DM) yield, Zn concentration, chlorophyll content, crude fiber and tensile properties were monitored and the soil-Zn status (available-Zn, Zn-fractions and total-Zn) was assessed. Zinc chelate applications increased the most labile forms of Zn in soils and Zn concentrations in plants. The low rate of Zn generally had a beneficial effect on DM yield and tensile properties. The exception was Zn-EDTA in the weakly acidic soil, where the highest Zn concentrations were observed in leaves and whole shoots; this coincided with the largest concentrations of labile Zn in soil. The most efficient fertilizers were Zn-EDDHSA (in both soils) and Zn-EDTA (in the calcareous soil). The relatively large amounts of labile and available Zn present in both of the soils fertilized with Zn-EDTA points to the applying this chelate at lower rate than 5 mg Zn/kg; this should, in turn, reduce the cost of Zn fertilization and minimize environmental pollution risk. (Author)

  16. Fluidized-bed Fenton coupled with ceramic membrane separation for advanced treatment of flax wastewater.

    Fan, Dong; Ding, Lili; Huang, Hui; Chen, Mengtian; Ren, Hongqiang

    2017-10-15

    Fluidized-bed Fenton coupled with ceramic membrane separation to treat the flax secondary effluent was investigated. The operating variables, including initial pH, dosage of H 2 O 2 and Fe 0 , air flow rate, TMP and pore size, were optimized. The distributions of DOMs in the treatment process were analyzed. Under the optimum condition (600mgL -1 H 2 O 2 , 1.4gL -1 Fe 0 , pH=3, 300Lh -1 air flow rate and 15psi TMP), the highest TOC and color removal efficiencies were 84% and 94% in the coupled reactor with 100nm ceramic membrane, reducing 39% of total iron with similar removal efficiency compared with Fluidized-bed Fenton. Experimental results showed that the ceramic membrane could intercept catalyst particles (average particle size >100nm), 10.4% macromolecules organic matter (AMW>20000Da) and 12.53% hydrophobic humic-like component. EEM-PARAFAC identified four humic-like (M1-M4) and one protein-like components (M5), and the fluorescence intensities of M1-M5 in the secondary effluent were 63.27, 63.05, 33.41, 16.71 and 0.72 QSE, respectively. After the coupled treatment, the removal efficiencies of M1(81%), M2(86%) were higher than M3, M4(63%, 61%). Pearson correlation analysis suggested that M1, M2 and M3 were the major contributors to the cake layer, and M4, M5 might more easily lead to pore blockages. Copyright © 2017 Elsevier B.V. All rights reserved.

  17. Origin and evolution of group XI secretory phospholipase A2 from flax (Linum usitatissimum) based on phylogenetic analysis of conserved domains.

    Gupta, Payal; Saini, Raman; Dash, Prasanta K

    2017-07-01

    Phospholipase A 2 (PLA 2 ) belongs to class of lipolytic enzymes (EC 3.1.1.4). Lysophosphatidic acid (LPA) and free fatty acids (FFAs) are the products of PLA 2 catalyzed hydrolysis of phosphoglycerides at sn-2 position. LPA and FFA that act as second mediators involved in the development and maturation of plants and animals. Mining of flax genome identified two phospholipase A 2 encoding genes, viz., LusPLA 2 I and LusPLA 2 II (Linum usitatissimum secretory phospholipase A 2 ). Molecular simulation of LusPLA 2 s with already characterized plant sPLA 2 s revealed the presence of conserved motifs and signature domains necessary to classify them as secretory phospholipase A 2 . Phylogenetic analysis of flax sPLA 2 with representative sPLA 2 s from other organisms revealed that they evolved rapidly via gene duplication/deletion events and shares a common ancestor. Our study is the first report of detailed phylogenetic analysis for secretory phospholipase A 2 in flax. Comparative genomic analysis of two LusPLA 2 s with earlier reported plant sPLA 2 s, based on their gene architectures, sequence similarities, and domain structures are presented elucidating the uniqueness of flax sPLA 2 .

  18. Construction of an SNP-based high-density linkage map for flax (Linum usitatissimum L.) using specific length amplified fragment sequencing (SLAF-seq) technology.

    Yi, Liuxi; Gao, Fengyun; Siqin, Bateer; Zhou, Yu; Li, Qiang; Zhao, Xiaoqing; Jia, Xiaoyun; Zhang, Hui

    2017-01-01

    Flax is an important crop for oil and fiber, however, no high-density genetic maps have been reported for this species. Specific length amplified fragment sequencing (SLAF-seq) is a high-resolution strategy for large scale de novo discovery and genotyping of single nucleotide polymorphisms. In this study, SLAF-seq was employed to develop SNP markers in an F2 population to construct a high-density genetic map for flax. In total, 196.29 million paired-end reads were obtained. The average sequencing depth was 25.08 in male parent, 32.17 in the female parent, and 9.64 in each F2 progeny. In total, 389,288 polymorphic SLAFs were detected, from which 260,380 polymorphic SNPs were developed. After filtering, 4,638 SNPs were found suitable for genetic map construction. The final genetic map included 4,145 SNP markers on 15 linkage groups and was 2,632.94 cM in length, with an average distance of 0.64 cM between adjacent markers. To our knowledge, this map is the densest SNP-based genetic map for flax. The SNP markers and genetic map reported in here will serve as a foundation for the fine mapping of quantitative trait loci (QTLs), map-based gene cloning and marker assisted selection (MAS) for flax.

  19. Stimulating effects of two plant growth-promoting bacteria, Enterobacter ludwigii Ez-185-17 and Raoultella terrigena Ez-555-6, on flax culture

    Sarron, Elodie; Clément, Nathalie; Pawlicki-Jullian, Nathalie; Gaillard, Isabelle; Boitel-Conti, Michèle

    2018-04-01

    Two bacteria, Enterobacter ludwigii Ez-185-17 and Raoultella terrigena Ez-555-6, isolated from root nodules of Medicago lupulina from the Chernobyl exclusion zone, were identified in a previous study and shown not to disturb plant growth. The main goal of this work is to elucidate the relationships between these bacteria and flax, in particular whether they display activities such as plant growth promoting bacteria (PGPB) properties or modulation hairy root development. In order to better understand their role in plants, some known PGPB properties were determined in comparison with several control bacteria. The influence of these bacteria on Linum usitatissimum growth under hydroponic conditions was also investigated. Our study shows that both bacteria belong to PGPB since they were able to increase considerably the root surface area of flax, especially Raoultella terrigena Ez-555-6. Significant IAA production and phosphate solubilization of Enterobacter ludwigii Ez-185-17 were highlighted, which enabled these biochemical PGPB properties to be correlated with their effects on flax growth. However, Raoultella terrigena Ez-555-6 did not express high biochemical activities, suggesting that other PGPB abilities should be studied in order to establish the link with flax growth improvement.

  20. Mechanical characterisation of hybrid composite laminates based on basalt fibres in combination with flax, hemp and glass fibres manufactured by vacuum infusion

    Petrucci, R.; Santulli, C.; Puglia, D.; Sarasini, F.; Torre, L.; Kenny, J.M.

    2013-01-01

    Highlights: ► For the first time, hybrid laminates with three different fibres were produced. ► Concerns are confirmed on the brittleness of hybrid laminates with basalt fibre core. ► An optimal configuration (FHB) for flexural properties was singled out. ► Differences between tensile and flexural properties of hybrids were identified. ► In general, the specific mechanical properties of the hybrids are quite high. - Abstract: This work concerns the production by vacuum infusion and the comparison of the properties of different hybrid composite laminates, based on basalt fibre composites as the inner core, and using also glass, flax and hemp fibre laminates to produce symmetrical configurations, all of them with a 21–23% fibre volume, in an epoxy resin. The laminates have been subjected to tensile, three-point flexural and interlaminar shear strength tests and their fracture surfaces have been characterised by scanning electron microscopy. The mechanical performance of all the hybrid laminates appears superior to pure hemp and flax fibre reinforced laminates and inferior to basalt fibre laminates. Among the hybrids, the best properties are offered by those obtained by adding glass and flax to basalt fibre reinforced laminates. Scanning electron microscopy (SEM) observation of hybrid laminates showed the diffuse presence of fibre pull-out in hemp and flax fibre reinforced layers and a general trend of brittle failure

  1. The use of phosphomannose isomerase selection system for Agrobacterium-mediated transformation of tobacco and flax aimed for phytoremediation.

    Hilgert, Jitka; Sura-De Jong, Martina; Fišer, Jiří; Tupá, Kateřina; Vrbová, Miroslava; Griga, Miroslav; Macek, Tomáš; Žiarovská, Jana

    2017-05-04

    A plant selection system based on the phosphomannose isomerase gene (pmi) as a selectable marker is often used to avoid selection using antibiotic resistance. Nevertheless, pmi gene is endogenous in several plant species and therefore difficult to use in such cases. Here we evaluated and compared Agrobacterium-mediated transformation of Linum usitatissimum breeding line AGT-952 (without endogenous pmi gene) and Nicotiana tabacum var. WSC-38 (with endogenous pmi gene). Transformation was evaluated for vectors bearing transgenes that have the potential to be involved in improved phytoremediation of contaminated environment. Tobacco regenerants selection resulted in 6.8% transformation efficiency when using a medium supplemented with 30 g/L mannose with stepwise decrease of the sucrose concentration. Similar transformation efficiency (5.3%) was achieved in transformation of flax. Relatively low selection efficiency was achieved (12.5% and 34.8%, respectively). The final detection of efficient pmi selection was conducted using PCR and the non-endogenous genes; pmi transgene for flax and todC2 transgene for tobacco plants.

  2. Bone Regeneration after Treatment with Covering Materials Composed of Flax Fibers and Biodegradable Plastics: A Histological Study in Rats

    Gedrange, Tomasz

    2016-01-01

    The aim of this study was to examine the osteogenic potential of new flax covering materials. Bone defects were created on the skull of forty rats. Materials of pure PLA and PCL and their composites with flax fibers, genetically modified producing PHB (PLA-transgen, PCL-transgen) and unmodified (PLA-wt, PCL-wt), were inserted. The skulls were harvested after four weeks and subjected to histological examination. The percentage of bone regeneration by using PLA was less pronounced than after usage of pure PCL in comparison with controls. After treatment with PCL-transgen, a large amount of new formed bone could be found. In contrast, PCL-wt decreased significantly the bone regeneration, compared to the other tested groups. The bone covers made of pure PLA had substantially less influence on bone regeneration and the bone healing proceeded with a lot of connective tissue, whereas PLA-transgen and PLA-wt showed nearly comparable amount of new formed bone. Regarding the histological data, the hypothesis could be proposed that PCL and its composites have contributed to a higher quantity of the regenerated bone, compared to PLA. The histological studies showed comparable bone regeneration processes after treatment with tested covering materials, as well as in the untreated bone lesions. PMID:27597965

  3. To improve impact damage response of single and multi-delaminated FRP composites using natural Flax yarn

    Ghasemnejad, H.; Soroush, V.R.; Mason, P.J.; Weager, B.

    2012-01-01

    Highlights: ► To study the impact resistance of delaminated composite structures. ► To improve the impact resistance of delaminated composite structures using natural Flax yarn. ► To investigate the effect of z-pinning on the damage process of composite materials. ► To develop FE techniques to model the impact process of composite structures using LSDYNA. -- Abstract: The ply delamination which is known as a principle mode of failure of layered composites due to separation along the interfaces of the layers is one of the main concerns in designing of composite material structures. In this regard, the effect of hybrid laminate lay-up in multi-delaminated composite beam was investigated. The Charpy impact test was chosen to study the energy absorbing capability of delaminated composite beam. Hybrid composite beams were fabricated from combination of glass/epoxy and carbon/epoxy composites. To improve the impact behaviour of multi-delaminated composite beams the laminated hybrid composite beams were pinned using Flax yarns before curing process. It was shown that the multi-delaminated composite beams which are pinned in z-direction are able to arrest the crack propagation and consequently absorb more energy in comparison with simple ones in hybrid composite beams. The Charpy impact test of delaminated composite beams was also simulated by finite element software LS-DYNA and the results were verified with the relevant experimental results.

  4. Experimental Analysis of Repaired Masonry Elements with Flax-FRCM and PBO-FRCM Composites Subjected to Axial Bending Loads

    Oscar A. Cevallos

    2015-11-01

    Full Text Available In the construction industry, the use of natural fabrics as a reinforcement for cement-based composites has shown great potential. The use of these sustainable composites to provide strengthening or repair old masonry structures that exhibit structural problems mainly due to a poor tensile strength of the mortar/brick joints is revealed to be a promising area of research. One of the most significant load conditions affecting the mechanical response of masonry structures occurs when axial bending loads are applied on the resistant cross-section. In this study, three different types of masonry elements were built using clay bricks and a lime-based mortar. After 28 days, the samples were subjected to concentric and eccentric compressive loads. In order to produce significant bending effects, the compressive loads were applied with large eccentricity, and a sudden failure characterized the behavior of the unreinforced masonry (URM elements. The tested masonry specimens were repaired using fabric-reinforced cementitious matrix (FRCM composites produced using bi-directional flax and polyparaphenylene benzobisoxazole (PBO fabrics. The mechanical behavior of the URM and repaired samples was compared in terms of load-displacement and moment-curvature responses. Furthermore, the results achieved using flax-FRCM composites were compared with those of using PBO-FRCM composites.

  5. Bone Regeneration after Treatment with Covering Materials Composed of Flax Fibers and Biodegradable Plastics: A Histological Study in Rats.

    Gredes, Tomasz; Kunath, Franziska; Gedrange, Tomasz; Kunert-Keil, Christiane

    2016-01-01

    The aim of this study was to examine the osteogenic potential of new flax covering materials. Bone defects were created on the skull of forty rats. Materials of pure PLA and PCL and their composites with flax fibers, genetically modified producing PHB (PLA-transgen, PCL-transgen) and unmodified (PLA-wt, PCL-wt), were inserted. The skulls were harvested after four weeks and subjected to histological examination. The percentage of bone regeneration by using PLA was less pronounced than after usage of pure PCL in comparison with controls. After treatment with PCL-transgen, a large amount of new formed bone could be found. In contrast, PCL-wt decreased significantly the bone regeneration, compared to the other tested groups. The bone covers made of pure PLA had substantially less influence on bone regeneration and the bone healing proceeded with a lot of connective tissue, whereas PLA-transgen and PLA-wt showed nearly comparable amount of new formed bone. Regarding the histological data, the hypothesis could be proposed that PCL and its composites have contributed to a higher quantity of the regenerated bone, compared to PLA. The histological studies showed comparable bone regeneration processes after treatment with tested covering materials, as well as in the untreated bone lesions.

  6. Bone Regeneration after Treatment with Covering Materials Composed of Flax Fibers and Biodegradable Plastics: A Histological Study in Rats

    Tomasz Gredes

    2016-01-01

    Full Text Available The aim of this study was to examine the osteogenic potential of new flax covering materials. Bone defects were created on the skull of forty rats. Materials of pure PLA and PCL and their composites with flax fibers, genetically modified producing PHB (PLA-transgen, PCL-transgen and unmodified (PLA-wt, PCL-wt, were inserted. The skulls were harvested after four weeks and subjected to histological examination. The percentage of bone regeneration by using PLA was less pronounced than after usage of pure PCL in comparison with controls. After treatment with PCL-transgen, a large amount of new formed bone could be found. In contrast, PCL-wt decreased significantly the bone regeneration, compared to the other tested groups. The bone covers made of pure PLA had substantially less influence on bone regeneration and the bone healing proceeded with a lot of connective tissue, whereas PLA-transgen and PLA-wt showed nearly comparable amount of new formed bone. Regarding the histological data, the hypothesis could be proposed that PCL and its composites have contributed to a higher quantity of the regenerated bone, compared to PLA. The histological studies showed comparable bone regeneration processes after treatment with tested covering materials, as well as in the untreated bone lesions.

  7. What Are Chia Seeds?

    ... your diet? Chia seeds come from the desert plant Salvia hispanica , a member of the mint family. ... ancient Aztec diet. The seeds of a related plant, Salvia columbariae (golden chia), were used primarily by ...

  8. Seeds and Synergies

    'Seeds and Synergies presents inspiring evidence of change in practice and policy ... Seeds of inspiration: breathing new life into the formal agricultural research .... and Urban Development and Poverty Alleviation and Agricultural Commodity ...

  9. Seeds as biosocial commons

    Patnaik, Archana

    2016-01-01

    This research investigates and describes the conservation and use of Plant Genetic Resources (PGRs), especially seeds through processes of commonisation. Seeds form an important element for sustaining human life (through food production) and social relations (by maintaining agricultural

  10. Seed dispersal in fens

    Middleton, Beth; van Diggelen, Rudy; Jensen, Kai

    Question: How does seed dispersal reduce fen isolation and contribute to biodiversity? Location: European and North American fens. Methods: This paper reviews the literature on seed dispersal to fens. Results: Landscape fragmentation may reduce dispersal opportunities thereby isolating fens and

  11. Seed development and carbohydrates

    Wittich, P.E.

    1998-01-01

    Seeds assure the plant the onset of a next generation and a way of dispersal. They consist of endosperm and an embryo (originating from gametophytic tissue), enveloped by a seed coat (sporophytic tissue). Plants generate different types of seeds. For instance, the endosperm may either be

  12. Hot seeding using large Y-123 seeds

    Scruggs, S J; Putman, P T; Zhou, Y X; Fang, H; Salama, K

    2006-01-01

    There are several motivations for increasing the diameter of melt textured single domain discs. The maximum magnetic field produced by a trapped field magnet is proportional to the radius of the sample. Furthermore, the availability of trapped field magnets with large diameter could enable their use in applications that have traditionally been considered to require wound electromagnets, such as beam bending magnets for particle accelerators and electric propulsion. We have investigated the possibility of using large area epitaxial growth instead of the conventional point nucleation growth mechanism. This process involves the use of large Y123 seeds for the purpose of increasing the maximum achievable Y123 single domain size. The hot seeding technique using large Y-123 seeds was employed to seed Y-123 samples. Trapped field measurements indicate that single domain samples were indeed grown by this technique. Microstructural evaluation indicates that growth can be characterized by a rapid nucleation followed by the usual peritectic grain growth which occurs when large seeds are used. Critical temperature measurements show that no local T c suppression occurs in the vicinity of the seed. This work supports the suggestion of using an iterative method for increasing the size of Y-123 single domains that can be grown

  13. Oil palm seed distribution

    Durand-Gasselin Tristan

    2005-03-01

    Full Text Available For a tropical plant, the oil palm commodity chain has the peculiarity of possessing a major seed production sector for reasons that are primarily genetic. This seed sector has numerous original aspects. Breeders are also propagators and usually also distribute their seeds. Oil palm seeds are semi-recalcitrant: they display pseudo-dormancy. Achieving seed germination is difficult and requires lengthy treatments and special installations. This restriction greatly influences seed distribution and the role of the different stakeholders in the commodity chain. It was only once it had been discovered how the “sh” gene functioned, which controls shell thickness, and when it became necessary to produce “tenera” seeds derived from exclusively “dura x pisifera” crosses, that a true seed market developed. In addition it is difficult to organize seed distribution to smallholders. This is partly due to difficulties that the profession, or a State-run organization, has in controlling middlemen networks, and partly to the absence of any protective systems (UPOV, plant breeder certificate, etc. that generally oblige breeders to preserve and propagate parents in their own installations. In fact there are major inequalities in the access to seeds between agroindustry and smallholders. Another peculiarity of the oil palm seed market is the virtually total absence of guarantees for buyers: the quality of the research conducted by breeders, the seed production strategies necessary for transferring genetic progress, and the technical quality of production. The only guarantee today comes from the relations of confidence established year after year between breeders/distributors and growers. In this fields, research can lead to some proposals: molecular biology offers some interesting prospects for certifying seed quality and social science develop effective communication methods.

  14. Identification and characterization of miRNAs and targets in flax (Linum usitatissimum) under saline, alkaline, and saline-alkaline stresses.

    Yu, Ying; Wu, Guangwen; Yuan, Hongmei; Cheng, Lili; Zhao, Dongsheng; Huang, Wengong; Zhang, Shuquan; Zhang, Liguo; Chen, Hongyu; Zhang, Jian; Guan, Fengzhi

    2016-05-27

    MicroRNAs (miRNAs) play a critical role in responses to biotic and abiotic stress and have been characterized in a large number of plant species. Although flax (Linum usitatissimum L.) is one of the most important fiber and oil crops worldwide, no reports have been published describing flax miRNAs (Lus-miRNAs) induced in response to saline, alkaline, and saline-alkaline stresses. In this work, combined small RNA and degradome deep sequencing was used to analyze flax libraries constructed after alkaline-salt stress (AS2), neutral salt stress (NSS), alkaline stress (AS), and the non-stressed control (CK). From the CK, AS, AS2, and NSS libraries, a total of 118, 119, 122, and 120 known Lus-miRNAs and 233, 213, 211, and 212 novel Lus-miRNAs were isolated, respectively. After assessment of differential expression profiles, 17 known Lus-miRNAs and 36 novel Lus-miRNAs were selected and used to predict putative target genes. Gene ontology term enrichment analysis revealed target genes that were involved in responses to stimuli, including signaling and catalytic activity. Eight Lus-miRNAs were selected for analysis using qRT-PCR to confirm the accuracy and reliability of the miRNA-seq results. The qRT-PCR results showed that changes in stress-induced expression profiles of these miRNAs mirrored expression trends observed using miRNA-seq. Degradome sequencing and transcriptome profiling showed that expression of 29 miRNA-target pairs displayed inverse expression patterns under saline, alkaline, and saline-alkaline stresses. From the target prediction analysis, the miR398a-targeted gene codes for a copper/zinc superoxide dismutase, and the miR530 has been shown to explicitly target WRKY family transcription factors, which suggesting that these two micRNAs and their targets may significant involve in the saline, alkaline, and saline-alkaline stress response in flax. Identification and characterization of flax miRNAs, their target genes, functional annotations, and gene

  15. Does the informal seed system threaten cowpea seed health?

    Biemond, P.C.; Oguntade, O.; Lava Kumar, P.; Stomph, T.J.; Termorshuizen, A.J.; Struik, P.C.

    2013-01-01

    Most smallholder farmers in developing countries depend on an informal Seed System (SS) for their seed. The informal SS is often criticized because farmer-produced seed samples are not tested for seed health, thus accepting the risk of planting infected seeds. Here we aimed at assessing the quality

  16. [Genetic transformation of flax (Linum usitatissimum L.) with chimeric GFP-TUA6 gene for visualisation of microtubules].

    Shisha, E N; Korkhovoĭ, V I; Baer, G Ia; Guzenko, E V; Lemesh, V A; Kartel', N A; Emets, A I; Blium, Ia B

    2013-01-01

    The data of Agrobacterium-mediated transformation of some Linum usitatissimum cultivars zoned on the territories of Belarus and Ukraine with the plasmid carrying chimeric GFP-TUA6 gene and nptII gene as selectable marker conferring resistance to kanamycin are presented in this study. Transformation was affected by a number of factors including optical density (OD600), time of inoculation of explants with Agrobacterium and co-culture conditions. Transgenic nature of obtained lines was confirmed by PCR analysis. Expression of GFP-TUA6 gene was detected with confocal laser scanning microscopy. The obtained transgenic lines can be used for further functional studies the role of microtubules in the processes of building the flax fibres and resistance to wind.

  17. Influence of iron supply on toxic effects of manganese, molybdenum and vanadium on soybean, peas, and flax

    Warington, K

    1954-01-01

    The investigations were carried out in nutrient solution with iron as ferric citrate and nitrogen in the form of nitrate. The addition of 2.5 ppm vanadium to plants in which iron chlorosis was already established, either by a lack of iron or by excess manganese, failed to counteract the condition, and caused toxic symptoms. The reduction of the standard iron supply to 1/2 or 1/3 accentuated the toxicity of 2.5 or 5 ppm V to soybean and flax, but a similar reduction in phosphorus had no influence. The toxicity to peas, however, was increased when the phosphorus was reduced to 1/10, provided the iron level was high (20 ppm Fe). Raising the iron supply to 20 or 30 ppm counteracted the toxicity of manganese (10 ppm), molybdenum (40 ppm) and vanadium (2.5 ppm), but the result was less marked when these three elements were combined. Iron supplied in successive, small doses proved less efficient in overcoming molybdenum or vanadium, but not manganese excess, than the same amount of iron supplied in fewer and larger quantities. Varying the iron supply had little effect when the concentration of the three elements was low. When increased iron supply had reduced the chlorosis caused by high manganese or vanadium, it also reduced the manganese and vanadium contents of the shoot (ppm/dm), but the molybdenum content was only lowered by high iron when given in non-toxic concentrations (0.1 ppm Mo) combined with excess manganese. Yield data for soybean and flax indicated an interaction between manganese with both molybdenum and vanadium if the iron supply was low, but none between molybdenum and vanadium. The effect of all three metals was additive in respect to iron.

  18. Safeguarding seeds and Maori intellectual property through partnership

    Sue Scheele

    2015-01-01

    Full Text Available The Nagoya Protocol is a recent binding international instrument that articulates the need to recognise the rights of indigenous peoples regarding their biological resources and cultural knowledge and strengthens the mechanisms to do so. New Zealand has not signed this protocol because of the overriding importance of the Treaty of Waitangi in New Zealand’s domestic affairs, and the need to ensure that government options are not limited concerning the development of domestic policy on access to biological resources. In particular, policy makers and legislators are waiting for the government response to a 2011 Waitangi Tribunal report (Ko Aotearoa Tēnei on a far-reaching and complex claim (WAI 262 concerning the place of Māori traditional knowledge, culture and identity in contemporary New Zealand law and government policies and practice. Especially pertinent to this paper is the report’s section on Māori rights relating to biological and genetic resources. In accordance with the recommendation within Ko Aotearoa Tēnei, the principle of partnership, built on the explicit Treaty premise of Crown and Māori as formal equals, is presented here as the overarching framework and mechanism by which government agencies and Māori can work together to safeguard such resources. Core concepts and values are elucidated that underpin the Māori relationship to indigenous flora and fauna and are integral to the protection of cultural knowledge of seeds and plants. Examples are given of plant species regarded as taonga (treasures and how they are conserved, and a case study is presented of institutional stewardship of harakeke (New Zealand flax weaving varieties. Seed bank facilities are also evaluated regarding their incorporation of Māori values and rights under the Treaty of Waitangi.

  19. combining high seed number and weight to improve seed yield

    ACSS

    ABSTRACT. Increasing seed size and seed weight is an important trait for trade, yield component and adaptation of chickpea ... determining yield or quality, and the development of rapid and ..... C.G. 1981. Control of seed growth in soybeans.

  20. Producing the target seed: Seed collection, treatment, and storage

    Robert P. Karrfalt

    2011-01-01

    The role of high quality seeds in producing target seedlings is reviewed. Basic seed handling and upgrading techniques are summarized. Current advances in seed science and technology as well as those on the horizon are discussed.

  1. Efficiency of alfalfa seed processing with different seed purity

    Đokić, Dragoslav; Stanisavljević, Rade; Terzić, Dragan; Milenković, Jasmina; Radivojević, Gordana; Koprivica, Ranko; Štrbanović, Ratibor

    2015-01-01

    The work was carried out analysis of the impact of the initial purity of raw alfalfa seed on the resulting amount of processed seed in the processing. Alfalfa is very important perennial forage legume which is used for fodder and seed production. Alfalfa seed is possible to achieve high yields and very good financial effects. To obtain the seed material with good characteristics complex machines for cleaning and sorting seeds are used. In the processing center of the Institute for forage crop...

  2. Paper (essay on seed

    Mirić Mladen

    2013-01-01

    Full Text Available Based on detailed studies of the past of the agrarian thought of the world (evolution of agro-innovation, and within it, the relationship of man and seed, the author has selected key data for Table 1. In addition, more or less known folk sayings, proverbs, curses and allegories in which the seed is the key word have been collected. Then, religious books, folk art and literature works (sayings of prominent individuals and experts and observations of the author himself have been studied. According to the collected opus, it can be concluded that the vast importance of seed meaningfully entwined into all spheres of folk life and cultural heritage. Seed is directly tied to the following eight key (revolutionary milestones in the food and economic life of mankind: 1. the first and for the longest time, the seed used to be the main food of the people and the first food reserve; 2. Neolithic Revolution was simply caused by the sowing of seeds; 3. for the sake of sowing man began to develop more complex processing techniques; 4. everywhere and forever, especially since the late 15th century, the seed has been a carrier of (rescuing plants between Europe and the New World, that is, between continents; 5. seed was the first product that has been chemically treated since the mid-18th century; 6. standard operation procedures and quality are promoted on seed by which it became the first product to have prescribed (compulsory methods, but it also became a good whose quality has to be tested before sale; 7. hybrid seed is a 'perpetrator' of the green revolution in the mid-20th century and at last there is disputable seed of genetically modified organisms that are spreading with certain reactions. The author proposes that the United Nations Standard International Trade Classification includes a special section (division which would classify the seed for sowing, while beyond this Classification terms such as seed, plant seed should be replaced with non-seed

  3. Seed dormancy and germination.

    Penfield, Steven

    2017-09-11

    Reproduction is a critical time in plant life history. Therefore, genes affecting seed dormancy and germination are among those under strongest selection in natural plant populations. Germination terminates seed dispersal and thus influences the location and timing of plant growth. After seed shedding, germination can be prevented by a property known as seed dormancy. In practise, seeds are rarely either dormant or non-dormant, but seeds whose dormancy-inducing pathways are activated to higher levels will germinate in an ever-narrower range of environments. Thus, measurements of dormancy must always be accompanied by analysis of environmental contexts in which phenotypes or behaviours are described. At its simplest, dormancy can be imposed by the formation of a simple physical barrier around the seed through which gas exchange and the passage of water are prevented. Seeds featuring this so-called 'physical dormancy' often require either scarification or passage through an animal gut (replete with its associated digestive enzymes) to disrupt the barrier and permit germination. In other types of seeds with 'morphological dormancy' the embryo remains under-developed at maturity and a dormant phase exists as the embryo continues its growth post-shedding, eventually breaking through the surrounding tissues. By far, the majority of seeds exhibit 'physiological dormancy' - a quiescence program initiated by either the embryo or the surrounding endosperm tissues. Physiological dormancy uses germination-inhibiting hormones to prevent germination in the absence of the specific environmental triggers that promote germination. During and after germination, early seedling growth is supported by catabolism of stored reserves of protein, oil or starch accumulated during seed maturation. These reserves support cell expansion, chloroplast development and root growth until photoauxotrophic growth can be resumed. Crown Copyright © 2017. Published by Elsevier Ltd. All rights reserved.

  4. Effect of UV and water spraying on the mechanical properties of flax fabric reinforced polymer composites used for civil engineering applications

    Yan, Libo; Chouw, Nawawi; Jayaraman, Krishnan

    2015-01-01

    Highlights: • UV weathering degraded mechanical properties of flax/epoxy composites. • SEM confirmed degradation in fibre/matrix interfacial bonding. • UV weathering caused discolouration, matrix erosion, microcracking. - Abstract: The lack of data related to durability is one major challenge that needed to be addressed prior to the widespread acceptance of natural fibre reinforced polymer composites for engineering applications. In this work, the combined effect of ultraviolet (UV) radiation and water spraying on the mechanical properties of flax fabric reinforced epoxy composite was investigated to assess the durability performance of this composite used for civil engineering applications. Specimens fabricated by hand lay-up process were exposed in an accelerated weathering chamber for 1500 h. Tensile and three-point bending tests were performed to evaluate the mechanical properties. Scanning electron microscope (SEM) was used to analyse the microstructures of the composites. In addition, the durability performance of flax/epoxy composite was compared with synthetic (glass and carbon) and hybrid fibre reinforced composites. The test results show that the tensile strength/modulus of the weathered composites decreased 29.9% and 34.9%, respectively. The flexural strength/modulus reduced 10.0% and 10.2%, respectively. SEM study confirmed the degradation in fibre/matrix interfacial bonding after exposure. Comparisons with other composites implies that flax fabric/epoxy composite has potential to be used for civil engineering applications when taking its structural and durability performance into account. Proper treatments to enhance its durability performance will make it more comparable to synthetic fibre reinforced composites when considering as construction building materials

  5. Artificial Seeds and their Applications

    currently working on ... heterozygosity of seed, minute seed size, presence of reduced ... Advantages of Artificial or Synthetic Seeds over Somatic Embryos for Propagation .... hour gives optimum bead hardness and rigidity for the produc-.

  6. Ectopic Lignification in the Flax lignified bast fiber1 Mutant Stem Is Associated with Tissue-Specific Modifications in Gene Expression and Cell Wall Composition[C][W

    Chantreau, Maxime; Portelette, Antoine; Dauwe, Rebecca; Kiyoto, Shingo; Crônier, David; Morreel, Kris; Arribat, Sandrine; Neutelings, Godfrey; Chabi, Malika; Boerjan, Wout; Yoshinaga, Arata; Mesnard, François; Grec, Sebastien; Chabbert, Brigitte; Hawkins, Simon

    2014-01-01

    Histochemical screening of a flax ethyl methanesulfonate population led to the identification of 93 independent M2 mutant families showing ectopic lignification in the secondary cell wall of stem bast fibers. We named this core collection the Linum usitatissimum (flax) lbf mutants for lignified bast fibers and believe that this population represents a novel biological resource for investigating how bast fiber plants regulate lignin biosynthesis. As a proof of concept, we characterized the lbf1 mutant and showed that the lignin content increased by 350% in outer stem tissues containing bast fibers but was unchanged in inner stem tissues containing xylem. Chemical and NMR analyses indicated that bast fiber ectopic lignin was highly condensed and rich in G-units. Liquid chromatography-mass spectrometry profiling showed large modifications in the oligolignol pool of lbf1 inner- and outer-stem tissues that could be related to ectopic lignification. Immunological and chemical analyses revealed that lbf1 mutants also showed changes to other cell wall polymers. Whole-genome transcriptomics suggested that ectopic lignification of flax bast fibers could be caused by increased transcript accumulation of (1) the cinnamoyl-CoA reductase, cinnamyl alcohol dehydrogenase, and caffeic acid O-methyltransferase monolignol biosynthesis genes, (2) several lignin-associated peroxidase genes, and (3) genes coding for respiratory burst oxidase homolog NADPH-oxidases necessary to increase H2O2 supply. PMID:25381351

  7. Seed thioredoxin h

    Hägglund, Per; Finnie, Christine; Yano, Hiroyuki

    2016-01-01

    , for example chloroplastic f- and m-type thioredoxins involved in regulation of the Calvin-Benson cycle. The cytosolic h-type thioredoxins act as key regulators of seed germination and are recycled by NADPH-dependent thioredoxin reductase. The present review on thioredoxin h systems in plant seeds focuses...

  8. Saving Seed Microbiomes

    Berg, Gabriele; Raaijmakers, J.M.

    2018-01-01

    Plant seeds are home to diverse microbial communities whose composition is determined by plant genotype, environment, and management practices. Plant domestication is now recognized as an important driver of plant-associated microbial diversity. To what extent and how domestication affects seed

  9. Can Plant-Based Natural Flax Replace Basalt and E-Glass for Fiber-Reinforced Polymer Tubular Energy Absorbers? A Comparative Study on Quasi-Static Axial Crushing

    Libo Yan

    2017-12-01

    Full Text Available Using plant-based natural fibers to substitute glass fibers as reinforcement of composite materials is of particular interest due to their economic, technical, and environmental significance. One potential application of plant-based natural fiber reinforced polymer (FRP composites is in automotive engineering as crushable energy absorbers. Current study experimentally investigated and compared the energy absorption efficiency of plant-based natural flax, mineral-based basalt, and glass FRP (GFRP composite tubular energy absorbers subjected to quasi-static axial crushing. The effects of number of flax fabric layer, the use of foam filler and the type of fiber materials on the crashworthiness characteristics, and energy absorption capacities were discussed. In addition, the failure mechanisms of the hollow and foam-filled flax, basalt, and GFRP tubes in quasi-static axial crushing were analyzed and compared. The test results showed that the energy absorption capabilities of both hollow and foam-filled energy absorbers made of flax were superior to the corresponding energy absorbers made of basalt and were close to energy absorbers made of glass. This study, therefore, indicated that flax fiber has the great potential to be suitable replacement of basalt and glass fibers for crushable energy absorber application.

  10. Glioblastoma with spinal seeding

    Fakhrai, N.; Fazeny-Doerner, B.; Marosi, C.; Czech, T.; Diekmann, K.; Birner, P.; Hainfellner, J.A.; Prayer, D.

    2004-01-01

    Background: extracranial seeding of glioblastoma multiforme (GBM) is very rare and its development depends on several factors. This case report describes two patients suffering from GBM with spinal seeding. In both cases, the anatomic localization of the primary tumor close to the cerebrospinal fluid (CSF) was the main factor for spinal seeding. Case reports: two patients with GBM and spinal seeding are presented. After diagnosis of spinal seeding, both patients were highly symptomatic from their spinal lesions. Case 1 experienced severe pain requiring opiates, and case 2 had paresis of lower limbs as well as urinary retention/incontinence. Both patients were treated with spinal radiation therapy. Nevertheless, they died 3 months after diagnosis of spinal seeding. Results: in both patients the diagnosis of spinal seeding was made at the time of cranial recurrence. Both tumors showed close contact to the CSF initially. Even though the patients underwent intensive treatment, it was not possible to keep them in a symptom-free state. Conclusion: because of short survival periods, patients deserve optimal pain management and dedicated palliative care. (orig.)

  11. Glioblastoma with spinal seeding

    Fakhrai, N.; Fazeny-Doerner, B.; Marosi, C. [Clinical Div. of Oncology, Dept. of Medicine I, Univ. of Vienna (Austria); Czech, T. [Dept. of Neurosurgery, Univ. of Vienna (Austria); Diekmann, K. [Dept. of Radiooncology, Univ. of Vienna (Austria); Birner, P.; Hainfellner, J.A. [Clinical Inst. for Neurology, Univ. of Vienna (Austria); Prayer, D. [Dept. of Neuroradiology, Univ. of Vienna (Austria)

    2004-07-01

    Background: extracranial seeding of glioblastoma multiforme (GBM) is very rare and its development depends on several factors. This case report describes two patients suffering from GBM with spinal seeding. In both cases, the anatomic localization of the primary tumor close to the cerebrospinal fluid (CSF) was the main factor for spinal seeding. Case reports: two patients with GBM and spinal seeding are presented. After diagnosis of spinal seeding, both patients were highly symptomatic from their spinal lesions. Case 1 experienced severe pain requiring opiates, and case 2 had paresis of lower limbs as well as urinary retention/incontinence. Both patients were treated with spinal radiation therapy. Nevertheless, they died 3 months after diagnosis of spinal seeding. Results: in both patients the diagnosis of spinal seeding was made at the time of cranial recurrence. Both tumors showed close contact to the CSF initially. Even though the patients underwent intensive treatment, it was not possible to keep them in a symptom-free state. Conclusion: because of short survival periods, patients deserve optimal pain management and dedicated palliative care. (orig.)

  12. Physalis peruviana seed storage

    Cíntia L. M. de Souza

    2016-03-01

    Full Text Available ABSTRACT Physalis peruviana belongs to Solanaceae family and has a high nutritional and nutraceutical potential. The production is intended for fruit consumption and the propagation is mainly by seeds. This study aimed to evaluate the influence of priming on the kinetics of germination of P. peruviana seeds stored at different temperatures. The seeds were stored at 5 and 25 °C in a chamber saturated with zinc chloride solution and in liquid nitrogen (-196 °C. Every 4 months, the seeds were removed from storage for evaluation of germination and moisture content in the laboratory and emergence and development of seedlings in greenhouse. During the last evaluation at 16 months, the seeds under the same conditions were subjected to salt stress. The moisture content varied during the storage period, but was always higher for seeds kept at -196 ºC. These seeds kept high germination percentage in water until 16 months, regardless of the tested temperature; however, in salt solution the germination percentage was significantly reduced.

  13. Effects of seed fermentation method on seed germination and vigor ...

    The present study was conducted to examine the influence of Lagenaria siceraria seed fermentation method on seed germination and vigor. Three seed fermentation methods (fermented in ambient air, plastic bag stored in ambient or in plastic bag buried) were tested on two cultivars during two years. Seed germination and ...

  14. Prosopis Africana SEEDS (OKPEYE)

    User

    Keywords: Prosopis africana, okpeye seeds, thermal heat conductivity, specific heat capacity, thermal heat diffusivity, .... 2.3 Determination of Thermal Properties of Prosopis. Africana .... and the guard ring was filled with fiber glass at both the.

  15. Oil seed marketing prospects

    Ceroni, G.

    1992-01-01

    With its 100 million tonnes annual production, the American continent is by far the world's biggest producer of oil seed, followed by Asia - 52 million, and Europe - 27 million tonnes. The Italian and European Communities have the farming capacity to double their production, but international agreements currently prohibit such initiatives. After first providing a panorama of the world oil seed market, this paper discusses new reforms in European Communities internal agricultural policies which currently limit production. These reforms, intended to encourage the production of oil seed for use as an ecological automotive fuel alternative, call for an obligatory set-aside of 15% of producing farm-land in exchange for the compensatory removal of oil seed production limits

  16. Genetics and Forest Seed Handling

    Schmidt, Lars Holger

    2016-01-01

    High genetic quality seed is obtained from seed sources that match the planting site, have a good outcrossing rate, and are superior in some desirable characters. Non-degraded natural forests and plantations may be used as untested seed sources, which can sometimes be managed to promote outbreeding...... and increase seed production. Planted seed orchards aim at capturing large genetic variation and are planted in a design that facilitates genetic evaluation and promotes outbred seed production. Good seed production relies upon success of the whole range of reproductive events from flower differentiation...

  17. Seeds of impurity

    Andrea Pavoni

    2015-06-01

    Full Text Available Ai Weiwei’s art installation Kui Hua Zi [Sunflower Seeds] took place between 2010 and 2011 in the gigantic Turbine Hall of the Tate Modern Gallery, in London. It consisted of 100 millions hand-crafted porcelain seeds made in Jingdezhen, China.1 An uneven surface to dive into, a haptic space of undulating vision, rustling steps, unusual horizontality, a meaningless quicksand where the separation between artwork and spectator is engulfed, the immunity of distant contemplation denied.

  18. Storage of sunflower seeds

    Denise de Castro Lima

    Full Text Available The sunflower is among the top five crops in the world for the production of edible vegetable oil. The species displays rustic behavior, with an excellent edaphic and climatic adaptability index, being able to be cultivated throughout Brazil. Seed quality is the key to increasing production and productivity in the sunflower. The objective of this work was to monitor the viability of sunflower seeds with a view to their conservation when stored in different environments and packaging. The seeds were packed in paper bags, multilayered paper, black polyethylene and PET bottles; and stored for a period of twelve months in the following environments: dry cold room (10 ºC and 55% RH, the ambient conditions of Fortaleza, Ceará, Brazil (30-32 ºC and 75% RH, refrigerator (4 ºC and 38-43% RH and freezer (-20 ºC. Every three months, the water content of the seeds was determined and germination, accelerated ageing, speed of emergence index, and seedling dry weight were evaluated. The experimental design was completely randomized, in a scheme of split-lots, with four replications. It can be concluded that the natural environment is not suitable for the storage of sunflower seeds. Sunflower seeds remain viable for 12 months when stored in a dry cold room, refrigerator or freezer, irrespective of the type of packaging used.

  19. Seed dispersal in fens

    Middleton, B.; Van Diggelen, R.; Jensen, K.

    2006-01-01

    Question: How does seed dispersal reduce fen isolation and contribute to biodiversity? Location: European and North American fens. Methods: This paper reviews the literature on seed dispersal to fens. Results: Landscape fragmentation may reduce dispersal opportunities thereby isolating fens and reducing genetic exchange. Species in fragmented wetlands may have lower reproductive success, which can lead to biodiversity loss. While fens may have always been relatively isolated from each other, they have become increasingly fragmented in modern times within agricultural and urban landscapes in both Europe and North America. Dispersal by water, animals and wind has been hampered by changes related to development in landscapes surrounding fens. Because the seeds of certain species are long-lived in the seed bank, frequent episodes of dispersal are not always necessary to maintain the biodiversity of fens. However, of particular concern to restoration is that some dominant species, such as the tussock sedge Carex stricta, may not disperse readily between fens. Conclusions: Knowledge of seed dispersal can be used to maintain and restore the biodiversity of fens in fragmented landscapes. Given that development has fragmented landscapes and that this situation is not likely to change, the dispersal of seeds might be enhanced by moving hay or cattle from fens to damaged sites, or by reestablishing lost hydrological connections. ?? IAVS; Opulus Press.

  20. Seed-borne pathogens and electrical conductivity of soybean seeds

    Adriana Luiza Wain-Tassi

    2012-02-01

    Full Text Available Adequate procedures to evaluate seed vigor are important. Regarding the electrical conductivity test (EC, the interference in the test results caused by seed-borne pathogens has not been clarified. This research was carried out to study the influence of Phomopsis sojae (Leh. and Colletotrichum dematium (Pers. ex Fr. Grove var. truncata (Schw. Arx. fungi on EC results. Soybean seeds (Glycine max L. were inoculated with those fungi using potato, agar and dextrose (PDA medium with manitol (-1.0 MPa and incubated for 20 h at 25 °C. The colony diameter, index of mycelial growth, seed water content, occurrence of seed-borne pathogens, physiological potential of the seeds, measured by germination and vigor tests (seed germination index, cold test, accelerated aging and electrical conductivity, and seedling field emergence were determined. The contents of K+, Ca2+, and Mg2+ in the seed and in the soaking solution were also determined. A complete 2 × 4 factorial design with two seed sizes (5.5 and 6.5 mm and four treatments (control, seeds incubated without fungi, seeds incubated with Phomopsis and seeds incubated with Colletotrichum were used with eight (5.5 mm large seeds and six (6.5 mm large seeds replications. All seeds submitted to PDA medium had their germination reduced in comparison to the control seeds. This reduction was also observed when seed vigor and leached ions were considered. The presence of Phomopsis sojae fungus in soybean seed samples submitted to the EC test may be the cause of misleading results.

  1. Proteomic Analysis of Flax Seeds from the Chernobyl Area Suggests Involvement of Stress, Signaling, and Transcription/Translation in Response to Ionizing Radiation

    The accident at the Chernobyl Nuclear Power Plant (CNPP) on April 26, 1986 is the most serious nuclear disaster in human history. However, while the area proximal to the CNPP remains substantially contaminated with long-lived radioisotopes including 90Sr and 137Cs, the local ecosystem has been able...

  2. Agricultural recovery of a formerly contaminated area: Establishment of a high-resolution quantitative protein map of mature flax seeds harvested from the remediated chernobyl area

    In recent years there has been an increasing tendency toward remediation of contaminated areas for agricultural purposes. The study described herein is part of a comprehensive, long-term characterization of crop plants grown in the area formerly contaminated with radioactivity. As a first step, we ...

  3. The importance of using certified seed

    Bogdanović Sandra; Mladenov Velimir; Balešević-Tubić Svetlana

    2015-01-01

    Certified seed is produced from the seed of known genetic origin and genetic purity with controlled and tested production, processed and declared in accordance with the Law on Seeds. Production of certified seed is carried out under the supervision of the Ministry of Agriculture and Environmental Protection, by seed producers formally listed in the Seed Register. Seed is processed in registered seed processing centres and quality is tested in laboratories accredited for seed testing. The orga...

  4. Magnetic-seeding filtration

    Ying, T.Y.; Chin, C.J.; Lu, S.C.; Yiacoumi, S.

    1997-10-01

    Magnetic-seeding filtration consists of two steps: heterogeneous particle flocculation of magnetic and nonmagnetic particles in a stirred tank and high-gradient magnetic filtration (HGMF). The effects of various parameters affecting magnetic-seeding filtration (HGMF). The effects of various parameters affecting magnetic seeding filtration are theoretically and experimentally investigated. A trajectory model that includes hydrodynamic resistance, van der Waals, and electrostatic forces is developed to calculate the flocculation frequency in a turbulent-shear regime. Fractal dimension is introduced to simulate the open structure of aggregates. A magnetic-filtration model that consists of trajectory analysis, a particle build-up model, a breakthrough model, and a bivariate population-balance model is developed to predict the breakthrough curve of magnetic-seeding filtration. A good agreement between modeling results and experimental data is obtained. The results show that the model developed in this study can be used to predict the performance of magnetic-seeding filtration without using empirical coefficients or fitting parameters. 35 refs., 7 figs., 1 tab

  5. Transport behaviors of anionic azo dyes at interface between surfactant-modified flax shives and aqueous solution: Synchrotron infrared and adsorption studies

    Wang, Wenxia [MOE Key Laboratory of Resources and Environmental Systems Optimization, Institute for Energy, Environment and Sustainability Research, UR-NCEPU, North China Electric Power University, Beijing, 102206 (China); Huang, Guohe, E-mail: huang@iseis.org [MOE Key Laboratory of Resources and Environmental Systems Optimization, Institute for Energy, Environment and Sustainability Research, UR-NCEPU, North China Electric Power University, Beijing, 102206 (China); An, Chunjiang; Xin, Xiaying [Institute for Energy, Environment and Sustainable Communities, University of Regina, Regina, S4S 0A2 (Canada); Zhang, Yan [MOE Key Laboratory of Resources and Environmental Systems Optimization, Institute for Energy, Environment and Sustainability Research, UR-NCEPU, North China Electric Power University, Beijing, 102206 (China); Liu, Xia [Canadian Light Source, Saskatoon, S7N 2V3 (Canada)

    2017-05-31

    Highlights: • Surfactant modified flax shives for removing anionic azo dyes. • The equilibrium and kinetic studies for the adsorption of anionic azo dyes. • The migration patterns of dye pollutants at flax shive-water interface. • New insights from synchrotron infrared-assisted characterization. • Potential as biomass adsorbent for the removal of dyes from wastewater. - Abstract: From the viewpoint of sustainability, biomass adsorbent has a high potential in pollution control and there is an emerging interest to investigate the behaviors of pollutants at the interface between biomass adsorbent and solution. This study investigated the performance of cetyltrimethylammonium bromide surfactant-modified flax shives (MFS) for removal of anionic azo dyes from aqueous solution. The equilibrium and kinetic analysis for the adsorption of Acid Orange 7 (AO-7), Acid Red 18 (AR-18) and Acid Black 1 (AB-1) on MFS were conducted. The surface of MFS was characterized by synchrotron infrared and SEM analysis. The absorbed amount of three anionic azo dyes varied with the change of adsorbent dosage, pH and ionic strength. The adsorption isotherm data well fit to the Langmuir model. The adsorption process followed the pseudo-second-order kinetics and the liquid film diffusion models. Thermodynamic studies indicated that the adsorption of three anionic azo dyes was spontaneous. The adsorption of AR-18 and AB-1 onto MFS was endothermic while the adsorption of AO-7 was exothermic. The results can help better understand the behaviors of organic pollutants at biomass adsorbent-water interface. They also present the potential of using MFS as a suitable adsorbent for the removal of anionic azo dyes from wastewater.

  6. Flax fibers as a raw material: How to bleach efficiently a non-woody plant to obtain high-quality pulp

    Fillat, Ursula; Pepio, Montserrat; Vidal, Teresa; Roncero, M. Blanca

    2010-01-01

    Fiber crops constitute a good alternative to wood fiber for manufacturing pulp and paper. In fact, fiber plants like flax surpass wood fiber in some technical respects and also in the environmental benignity of their processing. In this work, flax fiber was subjected to environmentally friendly bleaching sequences in order to obtain a high-quality pulp. The totally chlorine-free sequences (TCF) used for this purpose (LE and LRE) included an enzyme treatment with laccase in the presence of HBT as mediator (L stage), an alkaline extraction (E stage) and a reductive treatment with NaBH 4 (R stage). The operating conditions for the L stage (laccase and HBT doses, reaction time and oxygen pressure) were optimised by using a sequential statistical plan to assess their influence on pulp properties after the E stage. Mathematical models accurately predicting brightness and kappa number in terms of the previous four variables were developed based on which the most influential factors were the laccase and HBT rates, and treatment time. By contrast, oxygen pressures of 0.2-0.6 MPa in the reactor had no effect on brightness or kappa number. The flax pulp obtained contained some oxidized cellulose that was partially degraded in the alkaline extraction step and reduced viscosity as a result. The viscosity loss associated with the presence of oxidized cellulose in the control and enzyme-treated pulp samples was efficiently recovered by using a reductive stage with sodium borohydride. Effluent was also analysed in order to assess the environmental impact of the process.

  7. Chitinase-like (CTL) and cellulose synthase (CESA) gene expression in gelatinous-type cellulosic walls of flax (Linum usitatissimum L.) bast fibers.

    Mokshina, Natalia; Gorshkova, Tatyana; Deyholos, Michael K

    2014-01-01

    Plant chitinases (EC 3.2.1.14) and chitinase-like (CTL) proteins have diverse functions including cell wall biosynthesis and disease resistance. We analyzed the expression of 34 chitinase and chitinase-like genes of flax (collectively referred to as LusCTLs), belonging to glycoside hydrolase family 19 (GH19). Analysis of the transcript expression patterns of LusCTLs in the stem and other tissues identified three transcripts (LusCTL19, LusCTL20, LusCTL21) that were highly enriched in developing bast fibers, which form cellulose-rich gelatinous-type cell walls. The same three genes had low relative expression in tissues with primary cell walls and in xylem, which forms a xylan type of secondary cell wall. Phylogenetic analysis of the LusCTLs identified a flax-specific sub-group that was not represented in any of other genomes queried. To provide further context for the gene expression analysis, we also conducted phylogenetic and expression analysis of the cellulose synthase (CESA) family genes of flax, and found that expression of secondary wall-type LusCESAs (LusCESA4, LusCESA7 and LusCESA8) was correlated with the expression of two LusCTLs (LusCTL1, LusCTL2) that were the most highly enriched in xylem. The expression of LusCTL19, LusCTL20, and LusCTL21 was not correlated with that of any CESA subgroup. These results defined a distinct type of CTLs that may have novel functions specific to the development of the gelatinous (G-type) cellulosic walls.

  8. Transport behaviors of anionic azo dyes at interface between surfactant-modified flax shives and aqueous solution: Synchrotron infrared and adsorption studies

    Wang, Wenxia; Huang, Guohe; An, Chunjiang; Xin, Xiaying; Zhang, Yan; Liu, Xia

    2017-01-01

    Highlights: • Surfactant modified flax shives for removing anionic azo dyes. • The equilibrium and kinetic studies for the adsorption of anionic azo dyes. • The migration patterns of dye pollutants at flax shive-water interface. • New insights from synchrotron infrared-assisted characterization. • Potential as biomass adsorbent for the removal of dyes from wastewater. - Abstract: From the viewpoint of sustainability, biomass adsorbent has a high potential in pollution control and there is an emerging interest to investigate the behaviors of pollutants at the interface between biomass adsorbent and solution. This study investigated the performance of cetyltrimethylammonium bromide surfactant-modified flax shives (MFS) for removal of anionic azo dyes from aqueous solution. The equilibrium and kinetic analysis for the adsorption of Acid Orange 7 (AO-7), Acid Red 18 (AR-18) and Acid Black 1 (AB-1) on MFS were conducted. The surface of MFS was characterized by synchrotron infrared and SEM analysis. The absorbed amount of three anionic azo dyes varied with the change of adsorbent dosage, pH and ionic strength. The adsorption isotherm data well fit to the Langmuir model. The adsorption process followed the pseudo-second-order kinetics and the liquid film diffusion models. Thermodynamic studies indicated that the adsorption of three anionic azo dyes was spontaneous. The adsorption of AR-18 and AB-1 onto MFS was endothermic while the adsorption of AO-7 was exothermic. The results can help better understand the behaviors of organic pollutants at biomass adsorbent-water interface. They also present the potential of using MFS as a suitable adsorbent for the removal of anionic azo dyes from wastewater.

  9. 7 CFR 201.33 - Seed in bulk or large quantities; seed for cleaning or processing.

    2010-01-01

    ... quantities; seed for cleaning or processing. (a) In the case of seed in bulk, the information required under... seeds. (b) Seed consigned to a seed cleaning or processing establishment, for cleaning or processing for... pertaining to such seed show that it is “Seed for processing,” or, if the seed is in containers and in...

  10. The test of Tensile Properties and Water Resistance of a Novel Cross-linked Starch Prepared by Adding Oil-Flax

    Shi, Dawei; Wang, Rui

    2017-12-01

    In this study, to solve the poor water resistance and the low mechanical properties of starch, a mixed-starch composite matrix which including glycerol, sorbitol, and urea, were prepared via single-crew extrusion, then adding oil-flax to improve its physical mechanical and used to a source of biodegradable plastics material. The composite matrix was systematically characterized using various analytic tools including XRD, SEM and TG. The composite showed a maximum tensile strength of 18.11Mpa and moisture absorption 17.67%, while the original starch matrix was only 12.51 Mpa and 24.98%, respectively.

  11. Improving Soil Seed Bank Management.

    Haring, Steven C; Flessner, Michael L

    2018-05-08

    Problems associated with simplified weed management motivate efforts for diversification. Integrated weed management uses fundamentals of weed biology and applied ecology to provide a framework for diversified weed management programs; the soil seed bank comprises a necessary part of this framework. By targeting seeds, growers can inhibit the propagule pressure on which annual weeds depend for agricultural invasion. Some current management practices affect weed seed banks, such as crop rotation and tillage, but these tools are often used without specific intention to manage weed seeds. Difficulties quantifying the weed seed bank, understanding seed bank phenology, and linking seed banks to emerged weed communities challenge existing soil seed bank management practices. Improved seed bank quantification methods could include DNA profiling of the soil seed bank, mark and recapture, or 3D LIDAR mapping. Successful and sustainable soil seed bank management must constrain functionally diverse and changing weed communities. Harvest weed seed controls represent a step forward, but over-reliance on this singular technique could make it short-lived. Researchers must explore tools inspired by other pest management disciplines, such as gene drives or habitat modification for predatory organisms. Future weed seed bank management will combine multiple complementary practices that enhance diverse agroecosystems. This article is protected by copyright. All rights reserved.

  12. Seeds of confusion : the impact of policies on seed systems

    Louwaars, N.P.

    2007-01-01

    Seed is basic to crop production. Next to its importance in production, food security and rural development, seed is a key element in many debates about technology development and transfer, biodiversity, globalisation and equity. The sustainable availability of good quality seed is thus an important development issue. This study deals with the impact different types of regulation have on how farmers access seed. I have analysed current regulatory frameworks in terms of their impact on differe...

  13. Magnetic-seeding filtration

    Depaoli, D.

    1996-01-01

    This task will investigate the capabilities of magnetic-seeding filtration for the enhanced removal of magnetic and nonmagnetic particulates from liquids. This technology appies to a wide range of liquid wastes, including groundwater, process waters, and tank supernatant. Magnetic-seeding filtration can be used in several aspects of treatment, such as (1) removal of solids, particularly those in the colloidal-size range that are difficult to remove by conventional means; (2) removal of contaminants by precipitation processes; and (3) removal of contaminants by sorption processes

  14. genetics and inheritance of seed dormancy inflicted by seed

    Mgina

    ABSTRACT. The study was undertaken to investigate the genetic mode of inheritance of dormancy imposed by the hull (seed coat) in rice seeds. Freshly harvested seeds of parents, F1 and F2 populations of a cross between a dormant cultivar Kisegese and non-dormant strain K2004 were used. Germination test of the ...

  15. Seeds of confusion : the impact of policies on seed systems

    Louwaars, N.P.

    2007-01-01

    Seed is basic to crop production. Next to its importance in production, food security and rural development, seed is a key element in many debates about technology development and transfer, biodiversity, globalisation and equity. The sustainable availability of good quality seed is thus an important

  16. Effects of seed collecting date and storage duration on seed ...

    The objective of this study was to determine the effect of seed collecting dates (5 to 6 times from mid-November to early January, 10 days intervals) and seed storage duration (4, 8, and 12 months) at room temperature on seed germination of four Artemisia species (Artemisia sieberi, A. diffusa, A. kupetdaghensis, and A.

  17. Cone and seed yields in white spruce seed production areas

    John A. Pitcher

    1966-01-01

    The source of seed is an important consideration in the reforestation program on the National Forests in the North Central Region. Thirty-five seed production areas have been set up in the Region, along the lines proposed by the North Central Forest Experiment Station, to provide control of seed source. Red pine, white pine, shortleaf and loblolly pine, and white...

  18. seed germination and seedlings growth

    STORAGESEVER

    2007-12-17

    Dec 17, 2007 ... The role of 20E in plant physiology including seed germination is not studied. ..... GA3, ABA and CKs on lettuce Lactuca sativa seed germination are ..... Practical uses for ecdysteroids in mammals and humans: an update. J.

  19. Seed research for improved technologies

    Bino,R.J.; Jalink,H.; Oluoch,M.O.; Groot,S.P.C.

    1998-01-01

    The production of high-quality seed is the basis for a durable a profitable agriculture. After production, seed is processed, conditioned, stored, shipped and germinated. For quality assurance, seed quality has to be controlled at all steps of the production chain. Seed functioning is accompanied by programmed transitions from cell proliferation to quiescence upon maturation and from quiescence to reinitiation of cellular metabolism upon imbibition. Despite the obvious importance of these con...

  20. (Lupinus albus) SEEDS

    user

    2010-08-08

    Aug 8, 2010 ... lupin samples indicated that lupins can be used as a raw material for various food ... lupin seeds can be utilized for milk and meat imitation products. ... estimated by multiplying the percentage of crude protein, crude fat and ...

  1. Seed for change

    Hassena Beko, Mohammed

    2017-01-01

    Ethiopia is an agrarian country where agriculture dominates the economy, and thus agriculture is considered as an engine of growth by the government. Seed as one of the agricultural technologies, in fact, a carrier of many technologies, is critical to increasing production, but the use of quality

  2. Managing Stress. Project Seed.

    Muto, Donna; Wilk, Jan

    One of eight papers from Project Seed, this paper describes a stress management project undertaken with high school sophomores. Managing Stress is described as an interactive workshop that offers young people an opportunity to examine specific areas of stress in their lives and to learn effective ways to deal with them. The program described…

  3. Grape Seed Extract

    ... Greece people have used grapes, grape leaves, and sap for health purposes. Grape seed extract was developed ... sharing research results, and educating the public. Its resources include publications (such as Dietary ... Department of Health & Human Services, National Institutes of Health, National Center for ...

  4. The SEED Initiative

    Teich, Carolyn R.

    2011-01-01

    Committed to fulfilling the promise of the green economy, the American Association of Community Colleges (AACC) launched the Sustainability Education and Economic Development (SEED) initiative (www.theseedcenter.org) in October 2010. The project advances sustainability and clean energy workforce development practices at community colleges by…

  5. Dormancy in Plant Seeds

    Hilhorst, H.W.M.; Finch-Savage, W.E.; Buitink, J.; Bolingue, W.; Leubner-Metzger, G.

    2010-01-01

    Seed dormancy has been studied intensely over the past decades and, at present, knowledge of this plant trait is at the forefront of plant biology. The main model species is Arabidopsis thaliana, an annual weed, possessing nondeep physiological dormancy. This overview presents the state-of-the-art

  6. Magnetic-seeding filtration

    DePaoli, D.W.; Tsouris, C. [Oak Ridge National Lab., TN (United States); Yiacoumi, Sotira

    1997-10-01

    Magnetic-seeding filtration is a technology under development for the enhanced removal of magnetic and non-magnetic particulates from liquids. This process involves the addition of a small amount of magnetic seed particles (such as naturally occurring iron oxide) to a waste suspension, followed by treatment with a magnetic filter. Non-magnetic and weakly magnetic particles are made to undergo nonhomogeneous flocculation with the seed particles, forming flocs of high magnetic susceptibility that are readily removed by a conventional high-gradient magnetic filter. This technology is applicable to a wide range of liquid wastes, including groundwater, process waters, and tank supernatants. Magnetic-seeding filtration may be used in several aspects of treatment, such as (1) removal of solids, particularly those in the colloidal size range that are difficult to remove by conventional means; (2) removal of contaminants by precipitation processes; and (3) removal of contaminants by sorption processes. Waste stream characteristics for which the technology may be applicable include (1) particle sizes ranging from relatively coarse (several microns) to colloidal particles, (2) high or low radiation levels, (3) broad-ranging flow rates, (4) low to moderate solids concentration, (5) cases requiring high decontamination factors, and (6) aqueous or non-aqueous liquids. At this point, the technology is at the bench-scale stage of development; laboratory studies and fundamental modeling are currently being employed to determine the capabilities of the process.

  7. Magnetic-seeding filtration

    DePaoli, D.W.; Tsouris, C.; Yiacoumi, Sotira.

    1997-01-01

    Magnetic-seeding filtration is a technology under development for the enhanced removal of magnetic and non-magnetic particulates from liquids. This process involves the addition of a small amount of magnetic seed particles (such as naturally occurring iron oxide) to a waste suspension, followed by treatment with a magnetic filter. Non-magnetic and weakly magnetic particles are made to undergo nonhomogeneous flocculation with the seed particles, forming flocs of high magnetic susceptibility that are readily removed by a conventional high-gradient magnetic filter. This technology is applicable to a wide range of liquid wastes, including groundwater, process waters, and tank supernatants. Magnetic-seeding filtration may be used in several aspects of treatment, such as (1) removal of solids, particularly those in the colloidal size range that are difficult to remove by conventional means; (2) removal of contaminants by precipitation processes; and (3) removal of contaminants by sorption processes. Waste stream characteristics for which the technology may be applicable include (1) particle sizes ranging from relatively coarse (several microns) to colloidal particles, (2) high or low radiation levels, (3) broad-ranging flow rates, (4) low to moderate solids concentration, (5) cases requiring high decontamination factors, and (6) aqueous or non-aqueous liquids. At this point, the technology is at the bench-scale stage of development; laboratory studies and fundamental modeling are currently being employed to determine the capabilities of the process

  8. [Study on seed testing for Salvia miltiorrhiza].

    Dan, Hong-mei; Qi, Jian-jun; Zhou, Li-li; Li, Xian-en

    2008-09-01

    To establish a seed testing methods for Salvia miltiorrhiza. Referring to the International Seed Testing Rules made by ISTA and the Seed Testing for Crops (GB/T3543. 1-1995) issued by China. The seeds are selected by winnowing; the seed purity is about 50%-60%; 100 grain weight is used to determine the quality of the seed; the seed moisture content is determined by air drying, the drying hour is 3 h. Seed viability is tested by TFC method.

  9. Germination of red alder seed.

    M.A. Radwan; D.S. DeBell

    1981-01-01

    Red alder seeds were collected from six locations throughout the natural range of the species. Each seed lot was obtained from a single tree, and the seeds were used to determine germination with and without stratification treatment. Irrespective of treatment, germination varied significantly (P

  10. Nest-mediated seed dispersal

    Robert J. Warren; Jason P. Love; Mark A. Bradford

    2017-01-01

    Many plant seeds travel on the wind and through animal ingestion or adhesion; however, an overlooked dispersal mode may lurk within those dispersal modes. Viable seeds may remain attached or embedded within materials birds gather for nest building. Our objective was to determine if birds inadvertently transport seeds when they forage for plant materials to...

  11. Seed systems support in Kenya

    Munyi, Peter; Jonge, De Bram

    2015-01-01

    The threats of climate change and rising food prices have stirred renewed attention for seed and food security in Africa, inviting new thinking on the role of seed sector development in coping with these concerns. One conceptual framework that has gained attention is the Integrated Seed Sector

  12. 7 CFR 201.15 - Weed seeds.

    2010-01-01

    ... 7 Agriculture 3 2010-01-01 2010-01-01 false Weed seeds. 201.15 Section 201.15 Agriculture... REGULATIONS Labeling Agricultural Seeds § 201.15 Weed seeds. The percentage of weed seeds shall include seeds of plants considered weeds in the State into which the seed is offered for transportation or...

  13. Role of protein farnesylation events in the ABA-mediated regulation of the Pinoresinol-Lariciresinol Reductase 1 (LuPLR1) gene expression and lignan biosynthesis in flax (Linum usitatissimum L.).

    Corbin, Cyrielle; Decourtil, Cédric; Marosevic, Djurdjica; Bailly, Marlène; Lopez, Tatiana; Renouard, Sullivan; Doussot, Joël; Dutilleul, Christelle; Auguin, Daniel; Giglioli-Guivarc'h, Nathalie; Lainé, Eric; Lamblin, Frédéric; Hano, Christophe

    2013-11-01

    A Linum usitatissimum LuERA1 gene encoding a putative ortholog of the ERA1 (Enhanced Response to ABA 1) gene of Arabidopsis thaliana (encoding the beta subunit of a farnesyltransferase) was analyzed in silico and for its expression in flax. The gene and the protein sequences are highly similar to other sequences already characterized in plants and all the features of a farnesyltransferase were detected. Molecular modeling of LuERA1 protein confirmed its farnesyltransferase nature. LuERA1 is expressed in the vegetative organs and also in the outer seedcoat of the flaxseed, where it could modulate the previously observed regulation operated by ABA on lignan synthesis. This effect could be mediated by the regulation of the transcription of a key gene for lignan synthesis in flax, the LuPLR1 gene, encoding a pinoresinol lariciresinol reductase. The positive effect of manumycin A, a specific inhibitor of farnesyltransferase, on lignan biosynthesis in flax cell suspension systems supports the hypothesis of the involvement of such an enzyme in the negative regulation of ABA action. In Arabidopsis, ERA1 is able to negatively regulate the ABA effects and the mutant era1 has an enhanced sensitivity to ABA. When expressed in an Arabidopsis cell suspension (heterologous system) LuERA1 is able to reverse the effect of the era1 mutation. RNAi experiments in flax targeting the farnesyltransferase β-subunit encoded by the LuERA1 gene led to an increase LuPLR1 expression level associated with an increased content of lignan in transgenic calli. Altogether these results strongly suggest a role of the product of this LuERA1 gene in the ABA-mediated upregulation of lignan biosynthesis in flax cells through the activation of LuPLR1 promoter. This ABA signaling pathway involving ERA1 probably acts through the ABRE box found in the promoter sequence of LuPLR1, a key gene for lignan synthesis in flax, as demonstrated by LuPLR1 gene promoter-reporter experiments in flax cells using wild

  14. Sistema radicular do fórmio, sisal e bambu imperial Root systems of new zealand flax, sisal, and imperial bamboo

    Júlio César Medina

    1963-01-01

    Full Text Available Os autores apresentam e discutem os resultados de estudos preliminares sôbre o sistema radicular do fórmio (Phormium tenax Forster, sisal (Agave sisalana Perrine e bambu .imperial (Bambusa vulgaris Schrad. var. vittata A. ,& C, Riv.. Concluem, que o sistema radicular do fórmio é relativamente raso, o do sisal bastante superficial é o do bambu imperial se limitada às primeiras carnadas do solo.Results of preliminary studies on root-systems of New Zealand flax (Phormium tenax Forster, sisal (Agave sisalana Perrine, and imperial bamboo (Bambusa vulgaris Schrad. var. vittata A. & C. Riv. plants by the method of soil block, are apresented and discussed by the authors. According to local soil conditions, it is concluded that the root-system of New Zealand flax is relatively superficial, with the main concentration of roots in the 12 in. soil top layer. In sisal, the root-systems of the three plants investigated were found to occur in the soil surface layer, with more of 90% of the roots in the top 6 in. Finally, in the imperial bamboo clump atudied, the main concentration of roots was found in the layer 6-12 in. deep.

  15. Chalcone Synthase (CHS) Gene Suppression in Flax Leads to Changes in Wall Synthesis and Sensing Genes, Cell Wall Chemistry and Stem Morphology Parameters

    Zuk, Magdalena; Działo, Magdalena; Richter, Dorota; Dymińska, Lucyna; Matuła, Jan; Kotecki, Andrzej; Hanuza, Jerzy; Szopa, Jan

    2016-01-01

    The chalcone synthase (CHS) gene controls the first step in the flavonoid biosynthesis. In flax, CHS down-regulation resulted in tannin accumulation and reduction in lignin synthesis, but plant growth was not affected. This suggests that lignin content and thus cell wall characteristics might be modulated through CHS activity. This study investigated the possibility that CHS affects cell wall sensing as well as polymer content and arrangement. CHS-suppressed and thus lignin-reduced plants showed significant changes in expression of genes involved in both synthesis of components and cell wall sensing. This was accompanied by increased levels of cellulose and hemicellulose. CHS-reduced flax also showed significant changes in morphology and arrangement of the cell wall. The stem tissue layers were enlarged averagely twofold compared to the control, and the number of fiber cells more than doubled. The stem morphology changes were accompanied by reduction of the crystallinity index of the cell wall. CHS silencing induces a signal transduction cascade that leads to modification of plant metabolism in a wide range and thus cell wall structure. PMID:27446124

  16. A comparative study on cellulose nanocrystals extracted from bleached cotton and flax and used for casting films with glycerol and sorbitol plasticisers.

    Csiszár, Emilia; Nagy, Sebestyén

    2017-10-15

    Cellulose nanocrystals (CNCs) were released from bleached cotton and flax by a sulphuric acid hydrolysis with about 40 and 34% yield, respectively. The rod-like cotton-CNC particles were slightly longer and wider and had a less pronounced aggregation ability in aqueous suspension than the flax-CNC ones. Films were cast from the CNC suspensions with sorbitol and glycerol plasticisers. The concept behind this research was to explore how the plasticisers - with similar structure but different molecular weight - and their concentrations affect the perceptible and measured properties of CNC films. Results revealed that the type of plasticiser determined the morphology and the optical and tensile properties of films. The best quality CNC film with an averaged thickness of 50μm was obtained with 20% sorbitol from cotton-CNC. It was proved that behaviour of sorbitol and glycerol plasticisers in CNC films was very similar to that reported previously for starch films. Copyright © 2017 Elsevier Ltd. All rights reserved.

  17. The use of Co2+ for crystallization and structure determination, using a conventional monochromatic X-ray source, of flax rust avirulence protein

    Gunčar, Gregor; Wang, Ching-I A.; Forwood, Jade K.; Teh, Trazel; Catanzariti, Ann-Maree; Ellis, Jeffrey G.; Dodds, Peter N.; Kobe, Boštjan

    2007-01-01

    It is demonstrated that anomalous diffraction based on the signal from a cobalt ion measured on a conventional monochromatic X-ray source can be used to determine the structure of a protein with a novel fold (M. lini avirulence protein AvrL567-A). The approach could be applicable to many metal-binding proteins, particularly when synchrotron radiation is not readily available. Metal-binding sites are ubiquitous in proteins and can be readily utilized for phasing. It is shown that a protein crystal structure can be solved using single-wavelength anomalous diffraction based on the anomalous signal of a cobalt ion measured on a conventional monochromatic X-ray source. The unique absorption edge of cobalt (1.61 Å) is compatible with the Cu Kα wavelength (1.54 Å) commonly available in macromolecular crystallography laboratories. This approach was applied to the determination of the structure of Melampsora lini avirulence protein AvrL567-A, a protein with a novel fold from the fungal pathogen flax rust that induces plant disease resistance in flax plants. This approach using cobalt ions may be applicable to all cobalt-binding proteins and may be advantageous when synchrotron radiation is not readily available

  18. Mechanical harvesting of pumpkin seeds

    Sito, Stjepan; Ivančan, Stjepan; Barković, Edi; Mucalo, Ana

    2009-01-01

    One of the key problems in production technology of pumpkin seed for oil production is mechanized harvesting and losses of seed during mechanical harvesting. The losses of pumpkin seed during mechanical harvesting at peripheral velocity of 1.57 m/s (optimally adjusted machine) were 4.4% for Gleisdorf species, 5.2% for Slovenska species and 7.8% for pumpkin with husk. The higher average losses of pumpkin seed with husk were caused by tight connection of seed and pumpkin fruit.

  19. Irradiation effect on the seed vigor, SOD activity and MDA content in germinating seeds of yellow-seeded and black-seeded rape seed (Brassica napus L.)

    Han Jixiang; Hu Danhong; Liu Houli

    1993-01-01

    Seeds of a set of near-isogenic lines (Brassica napus L.) with different seed coat color from yellow to black were irradiated by 60 Co γ-rays of 150 krad. Seed vigor, superoxide dismutase (SOD) and malondialdehyde (MDA) in germinating seeds were analysed. In these characters, no significant difference between yellow-seeded lines (YLs) and black-seeded lines (BLs) showed before irradiation. But after irradiation, SOD activity in YLs was lower than that in BLs. While MDA content in YLs was obviously higher that that in DLs. As a result of irradiation, seed vigor of YLs was lower than that in BLs. these results indicated that the irradiation resistance of rape seed was related to the level of SOD as well as protective structure or substances in seed coat and that the radiosensitivity of YLs was higher than that of DLs

  20. Breeding for Grass Seed Yield

    Boelt, Birte; Studer, Bruno

    2010-01-01

    Seed yield is a trait of major interest for many fodder and amenity grass species and has received increasing attention since seed multiplication is economically relevant for novel grass cultivars to compete in the commercial market. Although seed yield is a complex trait and affected...... by agricultural practices as well as environmental factors, traits related to seed production reveal considerable genetic variation, prerequisite for improvement by direct or indirect selection. This chapter first reports on the biological and physiological basics of the grass reproduction system, then highlights...... important aspects and components affecting the seed yield potential and the agronomic and environmental aspects affecting the utilization and realization of the seed yield potential. Finally, it discusses the potential of plant breeding to sustainably improve total seed yield in fodder and amenity grasses....

  1. Physiological quality and seed respiration of primed Jatropha curcas seeds

    Micheli Angelica Horbach

    2017-11-01

    Full Text Available ABSTRACT Seed deterioration is a natural and irreversible process. Nevertheless, seed priming with water and antioxidants can minimize oxidative damage in oilseeds, resulting in attenuation of seed deterioration. The objective of this assay was to evaluate seed priming on respiratory activity of Jatropha curcas submitted to accelerated aging. Seeds from two provenances (Janauba and Pedro J. Caballero were submitted to three priming treatments (control, immersion in deionized water, and with 750 µmol L-1 of ascorbic acid and treated for accelerated aging at 41 °C for 72 h. The results showed that the priming of J. curcas seeds promoted tolerance to accelerated aging. Primed seeds, with ascorbic acid from Janauba and deionized water from Pedro J. Caballero, resulted in a higher percentage of normal seedlings, and increased germination speed index and seed respiration. The decline of physiological quality of J. curcas seeds after accelerated aging is directly associated with a reduction in respiratory activity that is related to seed moisture content.

  2. Empty seeds are not always bad: simultaneous effect of seed emptiness and masting on animal seed predation.

    Ramón Perea

    Full Text Available Seed masting and production of empty seeds have often been considered independently as different strategies to reduce seed predation by animals. Here, we integrate both phenomena within the whole assemblage of seed predators (both pre and post-dispersal and in two contrasting microsites (open vs. sheltered to improve our understanding of the factors controlling seed predation in a wind-dispersed tree (Ulmus laevis. In years with larger crop sizes more avian seed predators were attracted with an increase in the proportion of full seeds predated on the ground. However, for abundant crops, the presence of empty seeds decreased the proportion of full seeds predated. Empty seeds remained for a very long period in the tree, making location of full seeds more difficult for pre-dispersal predators and expanding the overall seed drop period at a very low cost (in dry biomass and allocation of C, N and P. Parthenocarpy (non-fertilized seeds was the main cause of seed emptiness whereas seed abortion was produced in low quantity. These aborted seeds fell prematurely and, thus, could not work as deceptive seeds. A proportion of 50% empty seeds significantly reduced ground seed predation by 26%. However, a high rate of parthenocarpy (beyond 50% empty seeds did not significantly reduce seed predation in comparison to 50% empty seeds. We also found a high variability and unpredictability in the production of empty seeds, both at tree and population level, making predator deception more effective. Open areas were especially important to facilitate seed survival since rodents (the main post-dispersal predators consumed seeds mostly under shrub cover. In elm trees parthenocarpy is a common event that might work as an adaptive strategy to reduce seed predation. Masting per se did not apparently reduce the overall proportion of seeds predated in this wind-dispersed tree, but kept great numbers of seeds unconsumed.

  3. Seeds of the Future

    CERN. Geneva

    2015-01-01

    Five of the global issues most frequently debated today are the decline of biodiversity in general and of agrobiodiversity in particular, climate change, hunger and malnutrition, poverty and water. These issues are connected with each other, and should be dealt with as such. Most of our food comes from seeds (even when we eat meat, we indirectly eat plants, which come from seeds) and food affects our health. The evolution of plant breeding, the science which is responsible for the type and the diversity of seed that farmers plant, and hence for the diversity of food that we eat, helps us understand how agrobiodiversity has decreased. An agro-ecological model of agriculture could be solution to the most important problems affecting the planet, but is often criticized for not being able to produce enough food for a growing population casting doubts on whether food security and food safety can be compatible objectives. Participatory and evolutionary plant breeding, while benefiting from advances in molecular g...

  4. Physicochemical Evaluation of Seeds and Oil of Nontraditional Oil Seeds

    Adam Ismail Ahmed

    2015-08-01

    Full Text Available The present work was conducted in the Laboratory of Biochemistry and Food science department, Faculty of Natural Resources and Environmental Studies, University of Kordofan, in order to evaluate some nontraditional oil seeds these are i.e. Marula (Sclerocarya birrea, Roselle (Hibiscus sabdariffa L. seeds and Christ’s thorn (Zizyphus spina-christi seeds. The seeds of the roselle and Christ’s thorn fruits were procured from Elobeid local market, North Kordofan State, while marula fruits were obtained from Elnuhod, West Kordofan State. The proximate composition of the seeds, cake and christ’s thorn pulp was done. Some chemical and physical properties were performed for the extracted oil. The results revealed that proximate composition of the seeds and cake differ statistically among the studied materials. Significant differences were observed among the oil extracted from these species; moreover, these oils differ significantly in color and viscosity only.

  5. Sunflower seed allergy

    Ukleja-Sokołowska, Natalia; Gawrońska-Ukleja, Ewa; Żbikowska-Gotz, Magdalena; Bartuzi, Zbigniew; Sokołowski, Łukasz

    2016-01-01

    Sunflower seeds are a rare source of allergy, but several cases of occupational allergies to sunflowers have been described. Sunflower allergens on the whole, however, still await precise and systematic description. We present an interesting case of a 40-year-old male patient, admitted to hospital due to shortness of breath and urticaria, both of which appeared shortly after the patient ingested sunflower seeds. Our laryngological examination revealed swelling of the pharynx with retention of saliva and swelling of the mouth and tongue. During diagnostics, 2 months later, we found that skin prick tests were positive to mugwort pollen (12/9 mm), oranges (6/6 mm), egg protein (3/3 mm), and hazelnuts (3/3 mm). A native prick by prick test with sunflower seeds was strongly positive (8/5 mm). Elevated concentrations of specific IgE against weed mix (inc. lenscale, mugwort, ragweed) allergens (1.04 IU/mL), Artemisia vulgaris (1.36 IU/mL), and Artemisia absinthium (0.49 IU/mL) were found. An ImmunoCap ISAC test found an average level of specific IgE against mugwort pollen allergen component Art v 1 - 5,7 ISU-E, indicating an allergy to mugwort pollen and low to medium levels of specific IgE against lipid transfer proteins (LTP) found in walnuts, peanuts, mugwort pollen, and hazelnuts. Through the ISAC inhibition test we proved that sunflower seed allergen extracts contain proteins cross-reactive with patients’ IgE specific to Art v 1, Art v 3, and Jug r 3. Based on our results and the clinical pattern of the disease we confirmed that the patient is allergic to mugwort pollen and that he had an anaphylactic reaction as a result of ingesting sunflower seeds. We suspected that hypersensitivity to sunflower LTP and defensin-like proteins, both cross-reactive with mugwort pollen allergens, were the main cause of the patient’s anaphylactic reaction. PMID:27222528

  6. Oligodeoxynucleotides Can Transiently Up- and Downregulate CHS Gene Expression in Flax by Changing DNA Methylation in a Sequence-Specific Manner

    Magdalena Dzialo

    2017-05-01

    Full Text Available Chalcone synthase (CHS has been recognized as an essential enzyme in the phenylpropanoid biosynthesis pathway. Apart from the leading role in the production of phenolic compounds with many valuable biological activities beneficial to biomedicine, CHS is well appreciated in science. Genetic engineering greatly facilitates expanding knowledge on the function and genetics of CHS in plants. The CHS gene is one of the most intensively studied genes in flax. In our study, we investigated engineering of the CHS gene through genetic and epigenetic approaches. Considering the numerous restrictions concerning the application of genetically modified (GM crops, the main purpose of this research was optimization of the plant's modulation via epigenetics. In our study, plants modified through two methods were compared: a widely popular agrotransformation and a relatively recent oligodeoxynucleotide (ODN strategy. It was recently highlighted that the ODN technique can be a rapid and time-serving antecedent in quick analysis of gene function before taking vector-mediated transformation. In order to understand the molecular background of epigenetic variation in more detail and evaluate the use of ODNs as a tool for predictable and stable gene engineering, we concentrated on the integration of gene expression and gene-body methylation. The treatment of flax with a series of short oligonucleotides homologous to a different part of CHS gene isoforms revealed that those directed to regulatory gene regions (5′- and 3′-UTR activated gene expression, directed to non-coding region (introns caused gen activity reduction, while those homologous to a coding region may have a variable influence on its activity. Gene expression changes were accompanied by changes in its methylation status. However, only certain (CCGG motifs along the gene sequence were affected. The analyzed DNA motifs of the CHS flax gene are more accessible for methylation when located within a Cp

  7. Pathogenic mycoflora on carrot seeds

    Bogdan Nowicki

    2013-12-01

    Full Text Available Altogether 300 seed samples were collected during 9 years in 8 regions of Poland and the fungi Were isolated and their pathogenicity to carrot seedlings was examined. Alternaria rudicina provcd to be the most important pathogen although. A. alternata was more common. The other important pathogens were Fusarium spp., Phoma spp. and Botrytis cinerea. The infection of carrot seeds by A. radicina should be used as an important criterium in seed quality evaluation.

  8. Maturation of sugar maple seed

    Clayton M., Jr. Carl; Albert G., Jr. Snow; Albert G. Snow

    1971-01-01

    The seeds of a sugar maple tree (Acer saccharum Marsh.) do not mature at the same time every year. And different trees mature their seeds at different times. So time of year is not a reliable measure of when seeds are ripe. Better criteria are needed. In recent studies we have found that moisture content and color are the best criteria for judging when sugar maple...

  9. Within canopy distribution of cotton seed N

    Whole cotton seeds can be an important component of dairy rations. Nitrogen content of the seed is an important determinant of the feed value of the seed. Efforts to increase the seed value as feed will be enhanced with knowledge of the range and distribution of seed N within the cotton crop. This s...

  10. Lipophilic extractives from several nonwoody lignocellulosic crops (flax, hemp, sisal, abaca) and their fate during alkaline pulping and TCF/ECF bleaching.

    Marques, Gisela; del Río, José C; Gutiérrez, Ana

    2010-01-01

    The fate of lipophilic extractives from several nonwoody species (flax, hemp, sisal and abaca) used for the manufacturing of cellulose pulps, was studied during soda/anthraquinone (AQ) pulping and totally chorine free (TCF) and elemental chlorine free (ECF) bleaching. With this purpose, the lipophilic extracts from the raw materials and their unbleached and bleached industrial pulps, were analyzed by gas chromatography-mass spectrometry. Aldehydes, hydroxyfatty acids and esterified compounds such as ester waxes, sterol esters and alkylferulates strongly decreased after soda/AQ pulping while alkanes, alcohols, free sterols and sterol glycosides survived the cooking process. Among the lipophilic extractives that remained in the unbleached pulps, some amounts of free sterols were still present in the TCF pulps whereas they were practically absent in the ECF pulps. Sterol glycosides were also removed after both TCF and ECF bleaching. By contrast, saturated fatty acids, fatty alcohols and alkanes were still present in both bleached pulps.

  11. A role for seed storage proteins in Arabidopsis seed longevity

    Nguyen, Thu-Phuong|info:eu-repo/dai/nl/328228818; Cueff, Gwendal; Hegedus, Dwayne D; Rajjou, Loïc; Bentsink, Leónie|info:eu-repo/dai/nl/241338735

    2015-01-01

    Proteomics approaches have been a useful tool for determining the biological roles and functions of individual proteins and identifying the molecular mechanisms that govern seed germination, vigour and viability in response to ageing. In this work the dry seed proteome of four Arabidopsis thaliana

  12. 19 CFR 10.57 - Certified seed potatoes, and seed corn or maize.

    2010-04-01

    ... 19 Customs Duties 1 2010-04-01 2010-04-01 false Certified seed potatoes, and seed corn or maize... Provisions Potatoes, Corn, Or Maize § 10.57 Certified seed potatoes, and seed corn or maize. Claim for classification as seed potatoes under subheading 0701.10.00, as seed corn (maize) under subheading 1005.10...

  13. Seed dormancy and seed longevity: from genetic variation to gene identification

    Nguyen, T.P.

    2014-01-01

    Seed dormancy and seed longevity are the most important survival traits in the soil seed bank. Both traits are induced during seed maturation and evolved to assure seed survival during environmental conditions that cannot support the regular course of life. Seed dormancy is related to the timing of

  14. Why high seed densities within buried mesh bags may overestimate depletion rates of soil seed banks

    Mourik, van T.A.; Stomph, T.J.; Murdoch, A.J.

    2005-01-01

    1. Estimates of seed bank depletion rates are essential for modelling and management of plant populations. The seed bag burial method is often used to measure seed mortality in the soil. However, the density of seeds within seed bags is higher than densities in natural seed banks, which may elevate

  15. Heirloom biodynamic seeds network rescue, conservation and multiplication of local seeds in Brazil

    Jovchelevich, Pedro

    2014-01-01

    Structuring a network organic and biodynamic seed involving farmers in the central- southern Brazil. Training, participatory breeding, edition of publications, fairs of exchange seeds, a processing unit and assessment of seed quality, commercial seed multiplication with emphasis on vegetables. This network has garanteed the autonomy of farmers in seed production and enriched agrobiodiversity through exchanges of seed.

  16. Seed drill depth control system for precision seeding

    Kirkegaard Nielsen, Søren; Munkholm, Lars Juhl; Lamandé, Mathieu

    2018-01-01

    acting on the drill coulters, which generates unwanted vibrations and, consequently, a non-uniform seed placement. Therefore, a proof-of-concept dynamic coulter depth control system for a low-cost seed drill was developed and studied in a field experiment. The performance of the active control system...... depth control system this variability was reduced to±2 mm. The system with the active control system operated more accurately at an operational speed of 12 km h−1 than at 4 km h−1 without the activated control system.......An adequate and uniform seeding depth is crucial for the homogeneous development of a crop, as it affects time of emergence and germination rate. The considerable depth variations observed during seeding operations - even for modern seed drills - are mainly caused by variability in soil resistance...

  17. Intramolecular interaction influences binding of the Flax L5 and L6 resistance proteins to their AvrL567 ligands.

    Michael Ravensdale

    Full Text Available L locus resistance (R proteins are nucleotide binding (NB-ARC leucine-rich repeat (LRR proteins from flax (Linum usitatissimum that provide race-specific resistance to the causal agent of flax rust disease, Melampsora lini. L5 and L6 are two alleles of the L locus that directly recognize variants of the fungal effector AvrL567. In this study, we have investigated the molecular details of this recognition by site-directed mutagenesis of AvrL567 and construction of chimeric L proteins. Single, double and triple mutations of polymorphic residues in a variety of AvrL567 variants showed additive effects on recognition strength, suggesting that multiple contact points are involved in recognition. Domain-swap experiments between L5 and L6 show that specificity differences are determined by their corresponding LRR regions. Most positively selected amino acid sites occur in the N- and C-terminal LRR units, and polymorphisms in the first seven and last four LRR units contribute to recognition specificity of L5 and L6 respectively. This further confirms that multiple, additive contact points occur between AvrL567 variants and either L5 or L6. However, we also observed that recognition of AvrL567 is affected by co-operative polymorphisms between both adjacent and distant domains of the R protein, including the TIR, ARC and LRR domains, implying that these residues are involved in intramolecular interactions to optimize detection of the pathogen and defense signal activation. We suggest a model where Avr ligand interaction directly competes with intramolecular interactions to cause activation of the R protein.

  18. Histidine 352 (His352 and tryptophan 355 (Trp355 are essential for flax UGT74S1 glucosylation activity toward secoisolariciresinol.

    Kaushik Ghose

    Full Text Available Flax secoisolariciresinol diglucoside (SDG lignan is a natural phytoestrogen for which a positive role in metabolic diseases is emerging. Until recently however, much less was known about SDG and its monoglucoside (SMG biosynthesis. Lately, flax UGT74S1 was identified and characterized as an enzyme sequentially glucosylating secoisolariciresinol (SECO into SMG and SDG when expressed in yeast. However, the amino acids critical for UGT74S1 glucosyltransferase activity were unknown. A 3D structural modeling and docking, site-directed mutagenesis of five amino acids in the plant secondary product glycosyltransferase (PSPG motif, and enzyme assays were conducted. UGT74S1 appeared to be structurally similar to the Arabidopsis thaliana UGT72B1 model. The ligand docking predicted Ser357 and Trp355 as binding to the phosphate and hydroxyl groups of UDP-glucose, whereas Cys335, Gln337 and Trp355 were predicted to bind the 7-OH, 2-OCH3 and 17-OCH3 of SECO. Site-directed mutagenesis of Cys335, Gln337, His352, Trp355 and Ser357, and enzyme assays revealed an alteration of these binding sites and a significant reduction of UGT74S1 glucosyltransferase catalytic activity towards SECO and UDP-glucose in all mutants. A complete abolition of UGT74S1 activity was observed when Trp355 was substituted to Ala355 and Gly355 or when changing His352 to Asp352, and an altered metabolite profile was observed in Cys335Ala, Gln337Ala, and Ser357Ala mutants. This study provided for the first time evidence that Trp355 and His352 are critical for UGT74S1's glucosylation activity toward SECO and suggested the possibility for SMG production in vitro.

  19. 7 CFR 201.50 - Weed seed.

    2010-01-01

    ... REGULATIONS Purity Analysis in the Administration of the Act § 201.50 Weed seed. Seeds (including bulblets or... sieve are considered weed seeds. For wild onion and wild garlic (Allium spp.) bulblets classed as inert...

  20. Seeding and planting upland oaks

    1989-01-01

    Oaks can be planted or seeded in uplands to: (1) afforest old fields, strip-mined areas, or other areas devoid of trees, and (2) supplement natural reproduction within existing forests. Planting is usually more successful than direct seeding. But even under good conditions survival and growth of planted oak has been considerably poorer than with conifers and other...

  1. STORAGE OF Handroanthus umbellatus SEEDS

    Cibele Chalita Martins

    2014-09-01

    Full Text Available http://dx.doi.org/10.5902/1980509815725Seed storage under controlled environmental conditions represents one of the most important lines of research to be applied on short-lived forest species as Handroanthus. The present research aimed to identify the most suitable seed storage conditions and longevity behavior of Handroanthus umbellatus seeds subject to the following storage treatments: packaging permeable paper bags under a no-controlled laboratory temperature and humidity (control and multiwall semipermeable bag at temperatures of -18 ºC, 1 ºC and 25 ºC. Seeds were dried to 6.3% of water content. Stored seeds were evaluated every three months until 24 months for water content, germination percentage and vigor utilizing first counting test. Seeds of T. umbellata are orthodox, with low longevity under natural conditions, once they remain viable for less than 5 months. The best conditions of seed preservation of these species were obtained by storage at -18° C in multiwall bags. Under these conditions physiological seed quality remains unchanged for a 24-month period.

  2. Uganda Early Generation Seed Study

    Mastenbroek, A.; Ntare, Bonny

    2016-01-01

    One of the major bottlenecks limiting farmers’ access to good quality seed for food crops in Uganda is the shortage of early generation seed (EGS - breeder and foundation) to produce sufficient quantities of certified and/or quality declared) to satisfy the needs of farmers. A national study was

  3. Insecticide seed treatments for sugarbeet

    Pest feeding and vectoring of viruses cause serious problems in sugarbeet production worldwide. In order to ameliorate pest and disease problems on sugarbeet, two seed treatments, Poncho Beta (60 g a.i. clothianidin + 8 g a.i. beta-cyfluthrin/100,000 seed) and Cruiser Tef (60 g a.i. thiamethoxam + 8...

  4. Orthodox seeds and resurrection plants

    Costa, Maria Cecília Dias; Cooper, Keren; Hilhorst, Henk W.M.; Farrant, Jill M.

    2017-01-01

    Although staple crops do not survive extended periods of drought, their seeds possess desiccation tolerance (DT), as they survive almost complete dehydration (desiccation) during the late maturation phase of development. Resurrection plants are plant species whose seeds and vegetative tissues are

  5. Efficient computation of spaced seeds

    Ilie Silvana

    2012-02-01

    Full Text Available Abstract Background The most frequently used tools in bioinformatics are those searching for similarities, or local alignments, between biological sequences. Since the exact dynamic programming algorithm is quadratic, linear-time heuristics such as BLAST are used. Spaced seeds are much more sensitive than the consecutive seed of BLAST and using several seeds represents the current state of the art in approximate search for biological sequences. The most important aspect is computing highly sensitive seeds. Since the problem seems hard, heuristic algorithms are used. The leading software in the common Bernoulli model is the SpEED program. Findings SpEED uses a hill climbing method based on the overlap complexity heuristic. We propose a new algorithm for this heuristic that improves its speed by over one order of magnitude. We use the new implementation to compute improved seeds for several software programs. We compute as well multiple seeds of the same weight as MegaBLAST, that greatly improve its sensitivity. Conclusion Multiple spaced seeds are being successfully used in bioinformatics software programs. Enabling researchers to compute very fast high quality seeds will help expanding the range of their applications.

  6. Kauri seeds and larval somersaults

    Dupont, Steen Thorleif

    2012-01-01

    The trunk morphology of the larvae of the kauri pine (Agathis) seed infesting moth Agathiphaga is described using conventional, polarization, and scanning electron microscopy. The pine seed chamber formed by the larva is also described and commented on. The simple larval chaetotaxy includes more ...

  7. Banking Wyoming big sagebrush seeds

    Robert P. Karrfalt; Nancy Shaw

    2013-01-01

    Five commercially produced seed lots of Wyoming big sagebrush (Artemisia tridentata Nutt. var. wyomingensis (Beetle & Young) S.L. Welsh [Asteraceae]) were stored under various conditions for 5 y. Purity, moisture content as measured by equilibrium relative humidity, and storage temperature were all important factors to successful seed storage. Our results indicate...

  8. Vigor of sunflower and soybean aging seed

    Tatić M.; Balešević-Tubić S.; Ðorđević V.; Miklič V.; Vujaković M.; Ðukić V.

    2012-01-01

    Seed aging and deterioration affect seed vigor and viability. The characteristics of the chemical composition of oil crops seed are related to specific processes occurring in the seed during storage. This study was performed to examine the changes in seed vigor of different sunflower and soybean genotypes under controlled and conventional (uncontrolled) conditions of natural aging for six and twelve months. Obtained results show that the degree of seed dama...

  9. Effect of Heavy Metals on Inhibition of Root Elongation in 23 Cultivars of Flax (Linum usitatissimum L.)

    Soudek, Petr; Katrušáková, Adéla; Sedláček, Lukáš; Petrová, Šárka; Kočí, V.; Maršík, Petr; Griga, M.; Vaněk, Tomáš

    2010-01-01

    Roč. 59, č. 2 (2010), s. 194-203 ISSN 0090-4341 R&D Projects: GA MŠk 2B08058; GA MŠk OC09082; GA MŠk 1M06030 Institutional research plan: CEZ:AV0Z50380511 Keywords : SINAPIS-ALBA * SEED-GERMINATION * PLANT -GROWTH Subject RIV: DK - Soil Contamination ; De-contamination incl. Pesticides Impact factor: 1.930, year: 2010

  10. Wheat seed system in Ethiopia: Farmers' varietal perception, seed sources, and seed management

    Bishaw, Z.; Struik, P.C.; Gastel, van A.J.G.

    2010-01-01

    Knowledge and information on farmers' perception and its influence on adoption of modern wheat varieties, awareness and source of new wheat production technology, wheat seed sources, and on-farm seed-management practices remain sporadic in Ethiopia. This study was conducted to understand the

  11. Farmer’s seed sources and seed quality: 2. seed health

    Bishaw, Z.; Struik, P.C.; Gastel, van A.J.G.

    2013-01-01

    The study assessed the health quality of wheat (Triticum aestivum L.) and barley (Hordeum vulgare L.) seed samples collected from formal and informal sector in Ethiopia and Syria. In Ethiopia, several seed-borne fungi were found on wheat samples: Cochliobolus sativum, Fusarium avenaceum, F.

  12. Size, physiological quality, and green seed occurrence influenced by seeding rate in soybeans

    André Sampaio Ferreira

    2017-05-01

    Full Text Available The seeding rate influences the intraspecific competition, which might affect the development and quality of seeds in soybean. However, the impact of seeding rate on the physical and physiological qualities of soybean seeds needs to be better elucidated. This study aimed to evaluate the effects of soybean plant density on the seed size as well as the effects of the interaction between the plant density and seed size on the seed mass, green seed occurence, and physiological seed quality. The experiments were carried out in the growing seasons of the years 2013/14 and 2014/15 in a Latossolo Vermelho distroférrico, under a randomized complete block design, using the NK 7059 RR cultivar with six replications. Four plant densities (150, 300, 440, and 560 thousand viable seeds ha–1 were evaluated. After the classification of seeds into four sizes, using a set of sieves, a 4 ×4 factorial scheme was used for the statistical analysis of the four plant densities and four seed sizes. The seed samples were evaluated for the seed mass, green seed percentage, germination, and vigor. Under thermal and water stress during seed development, an increase in the seeding rate led to a reduction in the green seed occurrence and an increase in the seed size and mass. However, in the absence of thermal and water stress, the seed size and mass were not altered by the seeding rate and, there was no occurrence of green seeds.

  13. Wheat and barley seed systems in Ethiopia and Syria

    Bishaw, Z.

    2004-01-01

    Keywords: Wheat,Triticumspp., Barley,Hordeumvulgare L., Seed Systems, Formal Seed Sector, Informal Seed Sector, National Seed Program, Seed Source, Seed Selection, Seed Management, Seed Quality,

  14. Identification and characterization of cis-acting elements involved in the regulation of ABA- and/or GA-mediated LuPLR1 gene expression and lignan biosynthesis in flax (Linum usitatissimum L.) cell cultures.

    Corbin, Cyrielle; Renouard, Sullivan; Lopez, Tatiana; Lamblin, Frédéric; Lainé, Eric; Hano, Christophe

    2013-03-15

    Pinoresinol lariciresinol reductase 1, encoded by the LuPLR1 gene in flax (Linum usitatissimum L.), is responsible for the biosynthesis of (+)-secoisolariciresinol, a cancer chemopreventive phytoestrogenic lignan accumulated in high amount in the hull of flaxseed. Our recent studies have demonstrated a key role of abscisic acid (ABA) in the regulation of LuPLR1 gene expression and thus of the (+)-secoisolariciresinol synthesis during the flax seedcoat development. It is well accepted that gibberellins (GA) and ABA play antagonistic roles in the regulation of numerous developmental processes; therefore it is of interest to clarify their respective effects on lignan biosynthesis. Herein, using flax cell suspension cultures, we demonstrate that LuPLR1 gene expression and (+)-secoisolariciresinol synthesis are up-regulated by ABA and down-regulated by GA. The LuPLR1 gene promoter analysis and mutation experiments allow us to identify and characterize two important cis-acting sequences (ABRE and MYB2) required for these regulations. These results imply that a cross-talk between ABA and GA signaling orchestrated by transcription factors is involved in the regulation of lignan biosynthesis. This is particularly evidenced in the case of the ABRE cis-regulatory sequence of LuPLR1 gene promoter that appears to be a common target sequence of GA and ABA signals. Copyright © 2012 Elsevier GmbH. All rights reserved.

  15. A system for generating virtual seeds

    Sako Y.

    1998-01-01

    Full Text Available Seed analysts need to identify seeds, and seed catalogs are used as a reference to accomplish this task. Conventional seed catalogs supply two-dimensional photographs and hand-drawn diagrams. In this study, a new, three-dimensional representation of seeds is developed to supplement these traditional photographs and drawings. QuickTime VR is a promising method for viewing three-dimensional objects on a computer screen. It permits manipulation of an object by rotating and viewing it from any pre-specified angle at an interactive speed, allowing the viewer the sense of examining a hand-held object. In this study, QuickTime VR object movies of seeds were created as interactive "movies" of seeds that can be rotated and scaled to give the viewer the sensation of examining actual seeds. This approach allows the examination of virtual seeds from any angle, permitting more accurate identification of seeds by seed analysts.

  16. Seed selection by earthworms : chemical seed properties matter more than morphological traits

    Clause, J.; Forey, E.; Eisenhauer, N.; Seal, C.E.; Soudey, A.; Colville, L.; Barot, Sébastien

    2017-01-01

    Aims : The passage of seeds through the earthworm gut potentially damages seeds, altering seed and seedling performances depending on seed traits. This work was conducted to study to what extent chemical and morphological seed traits determine the seed attractiveness for earthworms. Methods : We tested seed selection via the ingestion and digestion of 23 grassland plant species spanning a range of 14 morphological and chemical traits by two common earthworm species: the anecic Lumbricus te...

  17. Effects of seed fermentation method on seed germination and vigor ...

    BERTIN

    2013-11-27

    Nov 27, 2013 ... methods (fermented in ambient air, plastic bag stored in ambient or in plastic bag buried) were tested ... fruits into plastic bag that was exposed in ambient air in the field; SFD, seeds ..... Concepts and technologies of selected.

  18. Improving the traditional sesame seed planting with seed pelleting

    PRECIOUS

    2009-11-16

    Nov 16, 2009 ... 1Department of Agricultural Machinery, Faculty of Agriculture, Adnan Menderes University, Turkey. 2Fethiye ... the pelleted sesame seeds improved the yield significantly ... Sesame holds a special importance in the world's oil.

  19. Laser treatment of radish seed

    Kartalov, P.; Nidal, T.

    1987-01-01

    Trials were conducted in unheated plastic greenhouses in 1985-1986 to test the effect of laser treatment on radish seed. Seed of cv Saxia was irradiated with helio-neon laser of 632.8 Nm wave length at: 2-, 4- and 6-fold irradiation. Results showed that plants of all variants emerged almost simultaneously. The root mass was greatest for plants obtained from 4-fold irradiated seed. Treatment enhanced root production in 1985, and in 1986 4-fold irradiation boosted yield by 15%

  20. Studies on the Vigour of Soybean Seeds : II. Varietal Differences in Seed Coat Quality and Swelling Components of Seed during Moisture Imbibition

    Mugnisjah, Wahju Qamara; Shimano, Itaru; Matsumoto, Shigeo; 島野, 至; 松本, 重男

    1987-01-01

    Laboratory experiment was conducted to elucidate the physiological factor determining the association of seed size and seed coat quality with varietal differences in seed vigour, and to pursue an alternative on the mechanism of varietal differences in seed resistance to field weathering. Results of this study revealed that seed polymer change (seed volume change minus seed weight change during moisture imbibition) was the physiological factor determining the association of seed size and seed ...

  1. Zinc Fertilization Effects on Seed Cadmium Accumulation in Oilseed and Grain Crops Grown on North Dakota Soils Efecto de la Fertilización con Zinc en la Acumulación de Cadmio en Semillas Oleaginosas y Cereales producidos en Suelos de Dakota del Norte

    Gonzalo A Rojas-Cifuentes

    2012-03-01

    Full Text Available The Cd concentration in the seed of crops depends on various soil factors including parent material, texture, pH, soil redox, and salinity. Cadmium accumulation also varies among crop species and cultivars within a species. Cadmium and Zn may have either an antagonistic or a synergistic effect on plant uptake that can be influenced by the soil Cd and Zn concentrations. The objective was to determine the effect of Zn fertilizer additions on the seed Cd of nine crops commonly grown in North Dakota, USA. Studies were conducted at five North Dakota locations representing different soil series during 1994 and 1995. In Experiment 1, nine crops common in North Dakota were grown with and without the addition of 25 kg ha-1 Zn fertilizer. Among crops evaluated, the greatest seed Cd accumulation occurred in flax (Linum usitatissimum L. followed by sunflower (Helianthus annuus L., soybean (Glycine max [L.] Merr., and durum wheat (Triticum turgidum L. var. durum. In Experiment 2, two durum wheats and one flax cultivar were grown under three Zn treatments of 0, 5, and 25 kg ha-1. In Experiment again flax had the higher seed Cd level compared with the two durum varieties. Based on the results from both studies, addition of Zn fertilizer did not consistently reduce seed Cd content, and even when statistically significant, the level of reduction was small and not likely to impact marketability of Cd accumulating crops such as flax, sunflower, soybean, and durum.La concentración de Cd en semillas depende de varios factores, tanto del suelo como de la planta. Cadmio y Zn pueden tener efectos antagónicos o sinérgicos en la absorción de la planta dependiendo de las concentraciones de Cd y Zn existentes en el suelo. El objetivo de este estudio fue determinar el efecto de la fertilización con Zn en la acumulación de Cd en la semilla de diversos cultivos comúnmente producidos en Dakota del Norte, EE.UU. Dos estudios fueron realizados en cinco localidades en

  2. Seed cryopreservation of Fraxinus angustifolia Vahl

    Università

    2013-04-17

    control) and liquid nitrogen-treated seeds were .... 76.0 ± 4.0 (NT in GA3), with an intermediary value of 70.0. ± 5.0% (Cryo seeds in water .... in November, suggesting a loss of dormancy during seed maturation. Furthermore, seed ...

  3. Storage requirements for sugar maple seeds

    Harry W. Yawney; Clayton M., Jr. Carl

    1974-01-01

    Sugar maple seeds, collected from three trees in northern Vermont, were stored at four temperatures (18, 7, 2, and -10ºC) in combination with four seed moisture contents (35, 25, 17, and 10 percent). Seed moisture content and storage temperature significantly affected keeping ability, and these factors were highly interrelated. Seeds from all trees kept best...

  4. 7 CFR 948.6 - Seed potatoes.

    2010-01-01

    ... 7 Agriculture 8 2010-01-01 2010-01-01 false Seed potatoes. 948.6 Section 948.6 Agriculture... and Orders; Fruits, Vegetables, Nuts), DEPARTMENT OF AGRICULTURE IRISH POTATOES GROWN IN COLORADO Order Regulating Handling Definitions § 948.6 Seed potatoes. Seed potatoes or seed means any potatoes...

  5. 7 CFR 201.57 - Hard seeds.

    2010-01-01

    ... REGULATIONS Germination Tests in the Administration of the Act § 201.57 Hard seeds. Seeds which remain hard at the end of the prescribed test because they have not absorbed water, due to an impermeable seed coat... percentage of germination. For flatpea, continue the swollen seed in test for 14 days when germinating at 15...

  6. Brassica rapa L. seed development in hypergravity

    Musgrave, M.E.; Kuang, A.; Allen, J.; Blasiak, J.; van Loon, J.J.W.A.

    2009-01-01

    Previous experiments had shown that microgravity adversely affected seed development in Brassica rapa L. We tested the hypothesis that gravity controls seed development via modulation of gases around the developing seeds, by studying how hypergravity affects the silique microenvironment and seed

  7. Evaluation of Lettuce Genotypes for Seed Thermotolerance

    Thermoinhibition of lettuce (Lactuca sativa L.) seed germination is a common problem associated with lettuce production. Depending on lettuce cultivars, seed germination may be inhibited when temperatures exceed 28oC. The delay or inhibition of seed germination at high temperatures may reduce seedli...

  8. Analysis of seed quality in NS sunflower hybrid seed processed between 2010 and 2014

    Jokić Goran

    2015-01-01

    Full Text Available This paper analyzed the processed seed of five sunflower hybrid seed developed at the Institute of Field and Vegetable Crops in Novi Sad. The cultivars were Rimi PR, Duško, NS Dukat, Sumo 1 PR and Sremac. The analysis was conducted on seed lots processed between 2010 and 2014 and involved the following parameters: seed purity percentage, 1000-seed weight, germination energy, germination, seed moisture, number of weed seeds per 1000 grams of seed. The results of the study produced the following average values: seed purity - 99.72%, 1000-seed weight - 67.59g, germination energy - 88.2%, germination - 91.8%, seed moisture - 8.3%. There were not found weeds seeds as well as pathogens on the seed samples, these values are all within the legally prescribed limits.

  9. Autoradiography for iodine-125 seeds

    Alberti, W.; Divoux, S.; Pothmann, B.; Tabor, P.; Hermann, K.P.; Harder, D.

    1993-01-01

    To study the interior design of model 6702 and 6711 iodine-125 seeds, contact autoradiographs were performed using mammography film. Improved resolution was obtained using a pin-hole camera with a hole of 0.1 mm x 0.1 mm. With these techniques, qualitative determination of the relative activity distribution within each seed was possible. The number of the activated resin spheres and the positions of the centers of these spheres can be exactly determined. A model calculation shows that variations in the arrangement of the activated spheres within a seed have a moderate influence on the dose distribution at source distances below 10 mm. Knowing the exact source configuration may be useful when comparing dose calculations with measured data for model 6702 125 I seeds which are currently employed in ophthalmic plaque and implant therapy of other tumors. 16 refs., 5 figs., 2 tabs

  10. Ethylene, seed germination, and epinasty.

    Stewart, E R; Freebairn, H T

    1969-07-01

    Ethylene activity in lettuce seed (Lactuca satina) germination and tomato (Lycopersicon esculentum) petiole epinasty has been characterized by using heat to inhibit ethylene synthesis. This procedure enabled a separation of the production of ethylene from the effect of ethylene. Ethylene was required in tomato petioles to produce the epinastic response and auxin was found to be active in producing epinasty through a stimulation of ethylene synthesis with the resulting ethylene being responsible for the epinasty. In the same manner, it was shown that gibberellic acid stimulated ethylene synthesis in lettuce seeds. The ethylene produced then in turn stimulated the seeds to germinate. It was hypothesized that ethylene was the intermediate which caused epinasty or seed germination. Auxin and gibberellin primarily induced their response by stimulating ethylene production.

  11. Lack of caching of direct-seeded Douglas fir seeds by deer mice

    Sullivan, T.P.

    1978-01-01

    Seed caching by deer mice was investigated by radiotagging seeds in forest and clear-cut areas in coastal British Columbia. Deer mice tend to cache very few Douglas fir seeds in the fall when the seed is uniformly distributed and is at densities comparable with those used in direct-seeding programs. (author)

  12. Seed mass and mast seeding enhance dispersal by a neotropical scatter-hoarding rodent

    Jansen, P.A.; Bongers, F.J.J.M.; Hemerik, L.

    2004-01-01

    Many tree species that depend on scatter-hoarding animals for seed dispersal produce massive crops of large seeds at irregular intervals. Mast seeding and large seed size in these species have been explained as adaptations to increase animal dispersal and reduce predation. We studied how seed size

  13. Chloroxyanion residue on seeds and sprouts after chlorine dioxide sanitation of alfalfa seed

    The effects of a 6-h chlorine dioxide sanitation of alfalfa seed (0, 50, 100, and 200 mg/kg seed) on total coliform bacteria, seed germination, and on the presence of chlorate and perchlorate residues in seed rinse, seed soak, and in alfalfa sprouts was determined. Chlorate residues in 20000 ppm cal...

  14. Moringa Seed Oils

    Joana O. Ilesanmi

    2010-01-01

    Full Text Available This study was conducted to determine the effects of neem (Azadirachta indica A. Juss and moringa (Moringa oleifera seed oils on the storability of cowpea grain. Cowpea samples were treated with various concentrations (0.5, 1.0, and 1.5 mL/200 g cowpea of pure neem and moringa oils and their mixtures in ratios of 1:1, 1:2, and 1:3. The treated cowpea samples were stored for 180 days. Data were collected every 30 days on number of eggs laid, total weevil population, and percentage of uninfested grains and analysed statistically. Significantly different means were compared using LSD at <.05. Increasing oil concentration resulted in better cowpea protection, for example, in oviposition where the control had 6513 eggs, only 8 eggs were recorded in pure neem oil-treated sample at 0.5 mL/200 g. Generally, better results were obtained with higher oil concentrations either in their pure forms or mixtures. The control had a total weevil population of 4988, while most treated samples had none. The control samples had 0% uninfested grains, while 73–94% of uninfested grains were observed in treated samples after 6 months of storage. Therefore, mixture of the oils at 1.5 mL/200 g can be effectively used to store cowpea.

  15. Diamond Synthesis Employing Nanoparticle Seeds

    Uppireddi, Kishore (Inventor); Morell, Gerardo (Inventor); Weiner, Brad R. (Inventor)

    2014-01-01

    Iron nanoparticles were employed to induce the synthesis of diamond on molybdenum, silicon, and quartz substrates. Diamond films were grown using conventional conditions for diamond synthesis by hot filament chemical vapor deposition, except that dispersed iron oxide nanoparticles replaced the seeding. This approach to diamond induction can be combined with dip pen nanolithography for the selective deposition of diamond and diamond patterning while avoiding surface damage associated to diamond-seeding methods.

  16. Caractérisation microstructurale et mécanique d’un composite cimentaire renforcé par des fibres de lin Characterizations mechanical and microstructural of flax fibre cement composite reinforced

    Boutouil M.

    2012-09-01

    Full Text Available Dans la perspective de valorisation des fibres de lin dans les matériaux de construction, la présente étude s’intéresse à la caractérisation microstructurale et mécanique d’un composite cimentaire renforcé par des fibres de lin. Les analyses microstructurales au MEB ont été menées pour évaluer l’homogénéité de la distribution des fibres, la qualité de l’interaction fibre/matrice et l’influence de leur présence sur les défauts microstructuraux. Le comportement mécanique en flexion du mortier renforcé par les fibres de lin est étudié en fonction de la longueur et la teneur en fibres. Les résultats indiquent une bonne adhésion entre les fibres et la matrice à l’état frais. Mais les fibres étant hydrophiles, elles gonflent pendant la prise du ciment et le retrait lors du séchage engendre alors des déchaussements. Les résultats de caractérisation mécanique sont encourageants. Tout d’abord, la fissuration du mortier due au retrait au jeune âge est fortement réduite du fait de la présence des fibres. Ensuite, la rupture brutale de la matrice en monolithe laisse place à un comportement quasi-ductile quand la teneur ou la longueur de fibre augmente. Ce changement de comportement, analysé en termes d’indice de ténacité, illustre la capacité remarquable des fibres de lin à renforcer les matrices cimentaires du fait de leurs bonnes propriétés mécaniques. With the purpose of the flax fibre valuing in construction materials, this study focuses on the characterizations mechanical and microstructural of flax fibre cement composite reinforced. The mechanical strength was studied as the function of fibre volume ratio and length. Meanwhile, the microstructural analysis investigated the homogeneity of fibre scattering, the interaction fibre/cement matrix and the influence of flax fibres on the defects microstructures. The results show the interesting mechanical properties of flax fibre in comparison with

  17. Antioxidants and dairy production: the example of flax Antioxidantes e produção leiteira: o exemplo da linhaça

    Hélène V. Petit

    2009-07-01

    Full Text Available This manuscript reports on the main problems decreasing productivity of dairy cows (e.g. fatty liver syndrome and poor fertility and how antioxidants could enhance it. High producing dairy cows are prone to oxidative stress, and the situation can be exacerbated under certain environmental, physiological, and dietary conditions. Antioxidants have important effects on the expression of genes involved in the antioxidant status, which may enhance animal health and reproduction. Moreover, antioxidants may contribute to decrease the incidence of spontaneous oxidized flavour in milk enriched in polyunsaturated fatty acids. Plant lignans are strong antioxidants and flax is the richest source of plant lignans. Flax lignans are converted in the mammalian lignans enterolactone and enterodiol. The main mammalian lignan in milk is enterolactone and flax lignans are converted in enterolactone mainly under the action of ruminal microbiota. Therefore, ruminal microbiota may be the most important flora to target for plant lignan metabolism in order to increase concentration of mammalian lignan antioxidants in milk of dairy cows. However, more research is required to improve our knowledge on metabolism of other antioxidants in dairy cows and how they can contribute in decreasing milk oxidation.O artigo aborda os principais problemas na diminuição da produtividade de vacas leiteiras (por exemplo, síndrome do fígado gorduroso e baixa fertilidade e como antioxidantes podem melhorá-los. Vacas de alta produção são propensas ao estresse oxidativo, e a situação pode ser exacerbada sob certas condições ambientais, fisiológicas e de alimentação. Os antioxidantes têm importantes efeitos na expressão de genes envolvidos no status antioxidante, o qual pode melhorar a saúde animal e a reprodução. Além disso, os antioxidantes podem contribuir na diminuição da incidência de oxidação espontânea no leite enriquecido com ácidos graxos poli

  18. Effects of photoperiod regimes and ultraviolet-C radiations on biosynthesis of industrially important lignans and neolignans in cell cultures of Linum usitatissimum L. (Flax).

    Anjum, Sumaira; Abbasi, Bilal Haider; Doussot, Joël; Favre-Réguillon, Alain; Hano, Christophe

    2017-02-01

    Lignans and neolignans are principal bioactive components of Linum usitatissimum L. (Flax), having multiple pharmacological activities. In present study, we are reporting an authoritative abiotic elicitation strategy of photoperiod regimes along with UV-C radiations. Cell cultures were grown in different photoperiod regimes (24h-dark, 24h-light and 16L/8D h photoperiod) either alone or in combination with various doses (1.8-10.8kJ/m 2 ) of ultraviolet-C (UV-C) radiations. Secoisolariciresinol diglucoside (SDG), lariciresinol diglucoside (LDG), dehydrodiconiferyl alcohol glucoside (DCG), and guaiacylglycerol-β-coniferyl alcohol ether glucoside (GGCG) were quantified by using reverse phase-high performance liquid chromatography (RP-HPLC). Results showed that the cultures exposed to UV-C radiations, accumulated higher levels of lignans, neolignans and other biochemical markers than cultures grown under different photoperiod regimes. 3.6kJ/m 2 dose of UV-C radiations resulted in 1.86-fold (7.1mg/g DW) increase in accumulation of SDG, 2.25-fold (21.6mg/g DW) in LDG, and 1.33-fold (9.2mg/g DW) in GGCG in cell cultures grown under UV+photoperiod than their respective controls. Furthermore, cell cultures grown under UV+dark showed 1.36-fold (60.0mg/g DW) increase in accumulation of DCG in response to 1.8kJ/m 2 dose of UV-C radiations. Smilar trends were observed in productivity of SDG, LDG and GGCG. Additionally, 3.6kJ/m 2 dose of UV-C radiations also resulted in 2.82-fold (195.65mg/l) increase in total phenolic production, 2.94-fold (98.9mg/l) in total flavonoid production and 1.04-fold (95%) in antioxidant activity of cell cultures grown under UV+photoperiod. These findings open new dimensions for feasible production of biologically active lignans and neolignans by Flax cell cultures. Copyright © 2017 Elsevier B.V. All rights reserved.

  19. Seed governance. From seed aid to seed system security in fragile areas

    Rietberg, P.I.; Gevers, H.; Hospes, O.

    2014-01-01

    Intergovernmental agencies and development organizations, including Cordaid, consider interventions directed at seed security of utmost importance to support smallholders recovering from conflict situations and disasters, and to contribute to revitalisation of local agricultural production and food

  20. Optimum harvest maturity for Leymus chinensis seed

    Jixiang Lin

    2016-06-01

    Full Text Available Timely harvest is critical to achieve maximum seed viability and vigour in agricultural production. However, little information exists concerning how to reap the best quality seeds of Leymus chinensis, which is the dominant and most promising grass species in the Songnen Grassland of Northern China. The objective of this study was to investigate and evaluate possible quality indices of the seeds at different days after peak anthesis. Seed quality at different development stages was assessed by the colours of the seed and lemmas, seed weight, moisture content, electrical conductivity of seed leachate and germination indices. Two consecutive years of experimental results showed that the maximum seed quality was recorded at 39 days after peak anthesis. At this date, the colours of the seed and lemmas reached heavy brown and yellow, respectively. The seed weight was highest and the moisture content and the electrical conductivity of seed leachate were lowest. In addition, the seed also reached its maximum germination percentage and energy at this stage, determined using a standard germination test (SGT and accelerated ageing test (AAT. Thus, Leymus chinensis can be harvested at 39 days after peak anthesis based on the changes in parameters. Colour identification can be used as an additional indicator to provide a more rapid and reliable measure of optimum seed maturity; approximately 10 days after the colour of the lemmas reached yellow and the colour of the seed reached heavy brown, the seed of this species was suitable for harvest.

  1. Phenolics in the seed coat of wild soybean (Glycine soja) and their significance for seed hardness and seed germination.

    Zhou, San; Sekizaki, Haruo; Yang, Zhihong; Sawa, Satoko; Pan, Jun

    2010-10-27

    Hardseededness in annual wild soybean (Glycine soja Sieb. Et Zucc.) is a valuable trait that affects the germination, viability, and quality of stored seeds. Two G. soja ecotypes native to Shandong Province of China have been used to identify the phenolics in the seed coat that correlate with the seed hardness and seed germination. Three major phenolics from the seed coat were isolated and identified as epicatechin, cyanidin 3-O-glucoside, and delphinidin 3-O-glucoside. Of the three phenolics, only the change of epicatechin exhibited a significant positive correlation with the change of hard seed percentages both under different water conditions during seed development and under different gas conditions during seed storage. Epicatechin also reveals a hormesis-like effect on the seed germination of G. soja. Epicatechin is suggested to be functionally related to coat-imposed hardseededness in G. soja.

  2. Equilibrium relative humidity as a tool to monitor seed moisture

    Robert P. Karrfalt

    2010-01-01

    The importance of seed moisture in maintaining high seed viability is well known. The seed storage chapters in the Tropical Tree Seed Manual (Hong and Ellis 2003) and the Woody Plant Seed Manual (Bonner 2008a) give a detailed discussion and many references on this point. Working with seeds in an operational setting requires a test of seed moisture status. It is...

  3. The Seed Proteome Web Portal

    Marc eGalland

    2012-06-01

    Full Text Available The Seed Proteome Web Portal (SPWP; http://www.seedproteome.com/ gives access to information both on quantitative seed proteomic data and on seed-related protocols. Firstly, the SPWP provides access to the 475 different Arabidopsis seed proteins annotated from 2 dimensional electrophoresis (2DE maps. Quantitative data are available for each protein according to their accumulation profile during the germination process. These proteins can be retrieved either in list format or directly on scanned 2DE maps. These proteomic data reveal that 40% of seed proteins maintain a stable abundance over germination, up to radicle protrusion. During sensu stricto germination (24 h upon imbibition about 50% of the proteins display quantitative variations, exhibiting an increased abundance (35% or a decreasing abundance (15%. Moreover, during radicle protrusion (24 h to 48 h upon imbibition, 41% proteins display quantitative variations with an increased (23% or a decreasing abundance (18%. In addition, an analysis of the seed proteome revealed the importance of protein post-translational modifications as demonstrated by the poor correlation (r2 = 0.29 between the theoretical (predicted from Arabidopsis genome and the observed protein isoelectric points. Secondly, the SPWP is a relevant technical resource for protocols specifically dedicated to Arabidopsis seed proteome studies. Concerning 2D electrophoresis, the user can find efficient procedures for sample preparation, electrophoresis coupled with gel analysis and protein identification by mass spectrometry, which we have routinely used during the last 12 years. Particular applications such as the detection of oxidized proteins or de novo synthetized proteins radiolabeled by [35S]-methionine are also given in great details. Future developments of this portal will include proteomic data from studies such as dormancy release and protein turnover through de novo protein synthesis analyses during germination.

  4. Report on seed born diseases in organic seed and propagation material

    Micheloni, C.; Plakolm, G.; Schärer, H.

    2007-01-01

    The key questions which will be addressed in this report are: • Are seed born diseases an important factor that prevents seed companies from producing organic seeds and organic farmers from using them? • Which seed treatments are available in organic farming? Which treatments are or will be acceptable? To which degree are they effective? • Are the thresholds for seed born diseases different among Member States? Can this cause unfair competition among farmers and seed producers? • ...

  5. Influence of Fungicides Application and Seed Processing on Sunflower Seed Quality

    Šimić, Branimir; Svitlica, Brankica; Ćosić, Jasenka; Andrić, Luka; Rozman, Vlatka; Postić, Jelena; Liović, Ivica

    2009-01-01

    The aim of the research was to determine influence of methods of seed processing and application of fungicides on mass of 1000 seeds, intergrowth energy and seed germination of sunflower hybrids ‘Favorit’ and ‘Apolon’ in 2005 and 2006. Selected untreated seeds of both sunflower hybrids (control) had a minimal mass of 1000 seeds (55-59 g), intergrowth energy (18-37 %) and seed germination (39-52 %). In both years of research maximal seed quality, mass of 1000 seeds (67-69 g), intergrowth energ...

  6. Neutron irradiation of seeds 2

    1968-10-01

    The irradiation of seeds with the fast neutron of research reactors has been hampered by difficulties in accurately measuring dose and in obtaining repeatable and comparable results. Co-ordinated research under an international program organized by the FAO and IAEA has already resulted in significant improvements in methods of exposing seeds in research reactors and in obtaining accurate dosimetry. This has been accomplished by the development of a standard reactor facility for the neutron irradiation of seeds and standard methods for determining fast-neutron dose and the biological response after irradiation. In this program various divisions of the IAEA and the Joint FAO/IAEA Division co-operate with a number of research institutes and reactor centres throughout the world. Results of the preliminary experiments were reported in Technical Reports Series No. 76, ''Neutron Irradiation of Seeds''. This volume contains the proceedings of a meeting of co-operators in the FAO/IAEA Neutron Seed Irradiation Program and other active scientists in this field. The meeting was held in Vienna from 11 to 15 December 1967. Refs, figs and tabs.

  7. Neutron irradiation of seeds 2

    1968-01-01

    The irradiation of seeds with the fast neutron of research reactors has been hampered by difficulties in accurately measuring dose and in obtaining repeatable and comparable results. Co-ordinated research under an international program organized by the FAO and IAEA has already resulted in significant improvements in methods of exposing seeds in research reactors and in obtaining accurate dosimetry. This has been accomplished by the development of a standard reactor facility for the neutron irradiation of seeds and standard methods for determining fast-neutron dose and the biological response after irradiation. In this program various divisions of the IAEA and the Joint FAO/IAEA Division co-operate with a number of research institutes and reactor centres throughout the world. Results of the preliminary experiments were reported in Technical Reports Series No. 76, ''Neutron Irradiation of Seeds''. This volume contains the proceedings of a meeting of co-operators in the FAO/IAEA Neutron Seed Irradiation Program and other active scientists in this field. The meeting was held in Vienna from 11 to 15 December 1967. Refs, figs and tabs

  8. A new genotype of flax (Linum usitatissimum L.) with decreased susceptibility to fat oxidation: consequences to hematological and biochemical profiles of blood indices.

    Króliczewska, Bożena; Miśta, Dorota; Króliczewski, Jarosław; Zawadzki, Wojciech; Kubaszewski, Rafał; Wincewicz, Edyta; Żuk, Magdalena; Szopa, Jan

    2017-01-01

    Flaxseed is an alternative to marine products that provide the traditional dietary sources of ω-fatty acids. A new genotype of flax, W92, is rich in natural antioxidants as well as having a reduced content of α-linolenic acid and therefore shows decreased susceptibility to fat oxidation. The objective of this study was to evaluate the effect of a diet supplemented with W92 flaxseed on hematological and biochemical blood indices. A positive impact of diet with the addition of flaxseed was observed on erythrocyte indices, including red blood cell (RBC), hematocrit (HCT), mean corpuscular hemoglobin (MCH) and mean corpuscular hemoglobin concentration (MCHC) values. There were no significant differences for white blood cell (WBC), total protein and glucose values. Aspartate aminotransferase and alanine aminotransferase estimations in serum were also carried out and no obvious toxicity to the liver was shown. Moreover, a lipid profile was performed in serum samples and a decrease in total cholesterol and low-density lipoprotein cholesterol (LDL-C), accompanied by an increase in high-density lipoprotein cholesterol (HDL-C), was observed in rabbits fed flaxseed diets. Based on the results obtained, it appeared that the inclusion of a new genetically modified type of flaxseed in the diet altered cholesterol metabolism and could reduce the possibility of cardiovascular diseases. Diet enrichment with W92 flaxseed may be a solution to the health issues that are a result of improper diet in humans and animals. © 2016 Society of Chemical Industry. © 2016 Society of Chemical Industry.

  9. Effect of molybdenum on the severity of toxicity symptoms in flax induced by an excess of either manganese, zinc, copper, nickel or cobalt in the nutrient solution

    Millikan, C R

    1947-01-01

    The addition of molybdenum to solutions containing an excess of either manganese, zinc, copper, nickel or cobalt respectively, resulted in decreases in the severity of iron deficiency symptoms which normally occurred when flax was grown in solutions containing the same concentrations of any of these elements, but without molybdenum. The efficacy of molybdenum in this regard increased with increasing concentration up to 25 parts per million. However, concentrations of 0.5 to 2 parts per million of molybdenum had little effect on the severity of iron deficiency symptoms at the concentrations of heavy metals used. Molybdenum 5, 10 or 25 parts per million also retarded the date of appearance and reduced the severity of lower leaf necrosis which is another characteristic symptom of the presence of excess manganese (25 to 100 parts per million) in the nutrient solution. It is concluded that an essential function of molybdenum is intimately associated with the regulation of the deleterious effect of manganese, zinc, copper, nickel or cobalt on the physiological availability of iron to the plant. 46 references, 3 figures.

  10. [Dynamics of seed rain of Tripterygium hypoglaucum and soil seed bank].

    Zhang, Zhi-Wei; Wei, Yong-Sheng; Liu, Xiang; Su, Shu; Qu, Xian-You; Wang, Chang-Hua

    2017-11-01

    Tripterygium hypoglaucum is an endangered species in arid areas of Xiannvshan Chongqing, China. The dynamic characteristics of seed rain and soil seed bank of T. hypoglaucum were studied in this paper.Results showed that T. hypoglaucum years of mature seeds distribution number up to October; the seed rain occurred from the last ten-day of September to in the first ten-day of November and the peak of scattered seed rain concentrated in the October.The numbers of soil seed bank at 2-5 cm soil layer,mainly concentrated in the 1.5-3.5 m range. T. hypoglaucum seeds to the wind as a force for transmission, the transmission ability is strong, but in the process of natural reproduction, full mature seed rate is low, the soil seed bank seeds seed short-lived factors these were unfavorable for the natural reproduction of T. hypoglaucum population. Copyright© by the Chinese Pharmaceutical Association.

  11. Factors influencing upon the incidence of seed migration in I-125 seed transperineal prostate implantation

    Itami, Jun; Onishi, Kayoko; Kanemura, Mikio

    2005-01-01

    Transperineal I-125 seed brachytherapy for prostate cancer is rapidly expanding in Japan. Seed migrations to lung and abdomen are well known complication in the seed brachytherapy. The rate of incidence and the predisposing factors were studied. From April 2004 through January 2005, 36 patients underwent transperineal I-125 seed brachytherapy for prostate cancer. In all patients loose I-125 seeds were inserted with Mick applicator according to modified peripheral loading pattern. One day, 1 week, and 1 month after the procedure, posteroanterior and lateral chest X-rays and abdominal X-ray were performed. Abdominal and chest seed migrations were seen in 11 (30.6%) and 14 (38.9%) patients, respectively. In total, 20 patients (55.6%) showed seed migrations. Forty-two I-125 seeds migrated out of 2,508 implanted seeds. Most of the migrations were seen until 1 month after the procedure. The preplanned number of the extraprostatic seeds had a statistically significant influence upon the incidence of seed migration. Seed migration is not a rare phenomenon in transperineal I-125 seed brachytherapy for prostate cancer. To confirm seed migration, X-ray examinations 1 month after the procedure are suited. At the preplanning, the number of extraprostatic seeds should be limited to minimal to decrease the incidence of seed migration. In future, the introduction of linked I-125 seeds is preferred. (author)

  12. Ash (Fraxinus excelsior) seed quality in relation to seed ...

    Jane

    2011-07-18

    Jul 18, 2011 ... bottles were seal-locked and kept in the accelerated ageing cham- ber at three ... Hundred (100) seeds of each treatment were performed in plastic ..... by heat stress: the activation state of Rubisco as a limiting factor in.

  13. Effects of seed fermentation method on seed germination and vigor ...

    BERTIN

    2013-11-27

    Nov 27, 2013 ... high, suggesting that wet soil is necessary for an on farm reliable evaluation of seed fermentation method in the .... with tap water, and sundried in ambient air until attaining 6 to 7% moisture. ..... arabica in Brazil. Int. J. Food ...

  14. Nutrient composition of Dacryodes edulis seed and seed coat mixture

    C.U. OGUNKA-NNOKA

    2017-07-01

    Full Text Available This study investigated the nutrient composition of D. edulis seed and seed coat mixture. Qualitative and quantitative phytochemicals, proximate, and vitamin compositions were evaluated using standard methods. Saponins were very high, alkaloids, flavonoids, and tannins were high, while terpenoids were low, and glycosides, aldehydes, and steroids were absent. The quantitative phytochemical determination followed the order; saponin > kaempferol > rutin > catechin > tannin > sapogenin > lunamarine > phenol > ribalinidine > anthocyanin > oxalate > phytate. For the proximate composition, carbohydrates had the highest concentration, followed by lipids and fibre, while, protein concentration was the lowest. Vitamin E (5.42 mg/100g, vitamin C (3.24 mg/100g, and vitamin A (2.84 mg/100g were the highest occurring constituent vitamins while vitamin B12 (0.035 mg/100g and vitamin B2 (0.075 mg/100g were the least occurring vitamins. This study has shown the rich phytochemical composition of D. edulis seed and seed coat mixture while showing deficiencies in proteins, distinct vitamins, and ash contents.

  15. Chlorophyll in tomato seeds: marker for seed performance?

    Suhartanto, M.R.

    2002-01-01

    Using Xe-PAM, laser induced fluorometry and high performance liquid chromatography we found that chlorophyll was present in young tomato (cv. Moneymaker) seeds and was degraded during maturation. Fluorescence microscopy and imaging showed that the majority of chlorophyll is located in the

  16. The role of seed priming in improving seed germination and ...

    win7

    2013-11-13

    Nov 13, 2013 ... As a result, fresh and dry weights of shoot and root were improved. Seed priming alleviated the inhibitory effect of salt stress on germination and seedling growth of maize under salt stress. ... Salinization is more spreading in irrigated lands because of inappropriate management of irrigation and drainage.

  17. Seed producer cooperatives in the Ethiopian seed sector and their role in seed supply improvement: A review

    Sisay, D.T.; Verhees, F.J.H.M.; Trijp, van J.C.M.

    2017-01-01

    The role of seed producer cooperatives (SPCs) in the Ethiopian seed sector and their contribution to seed supply improvement have received attention from researchers, policymakers, and development partners. However, limited work has been done in reviewing and documenting their involvement in the

  18. Forest Seed Collection, Processing,and Testing

    Schmidt, Lars Holger

    2016-01-01

    This chapter pertains to the techniques of capturing the best genetic quality seeds a seed source can produce at the optimal time of high physiological maturity and maintaining these qualities throughout the handling processes, all at a minimum cost. Different collection and processing techniques...... apply to different species, seed types, situations, and purposes. Yet the collection and processing toolbox contains a number of “standard” methods for most of these groups. Records and documentation help in evaluating “best practice” for future method improvement, and it helps in linking offspring...... to seed source. Conditions are set for short- and long-term seed storage by their inert storability physiology. The potential storage life of seed may for some robust “orthodox” species be several decades, while no available storage conditions can maintain viability for sensitive “recalcitrant” seed. Seed...

  19. Chemical Composition of Kapok (Ceibapentandra) Seed and ...

    -5 years. ... with a sharp steel knife from which healthy seeds were selected. ... Total carbohydrate was determined by difference. .... resistance to microbial attack of plant tissue (Taiz and. Zeiger, 1991 ... Maintenance of soybean seed quality in ...

  20. Inheritance of egusi seed type in watermelon.

    Gusmini, G; Wehner, T C; Jarret, R L

    2004-01-01

    An unusual seed mutant in watermelon (Citrullus lanatus var. lanatus) has seeds with a fleshy pericarp, commonly called egusi seeds. The origin of the phenotype is unknown, but it is widely cultivated in Nigeria for the high protein and carbohydrate content of the edible seeds. Egusi seeds have a thick, fleshy pericarp that appears during the second to third week of fruit development. We studied the inheritance of this phenotype in crosses of normal seeded Charleston Gray and Calhoun Gray with two plant introduction accessions, PI 490383w and PI 560006, having the egusi seed type. We found that the egusi seed type is controlled by a single recessive gene, and the symbol eg was assigned. Copyright 2004 The American Genetic Association

  1. Seed technology training in the year 2000

    McDonald M.B.

    1998-01-01

    Full Text Available Seed quality will remain the centerpiece of successful agricultural programs in the year 2000. As new changes occur in agriculture driven by advancements in biotechnology, seed enhancement technologies, a more diverse seed user clientele, and communication technologies, successful seed companies will require a knowledgeable and informed workforce to assure high seed quality. A new approach to seed technology training is professed that relies on the establishment of a three-institution consortium to achieve this objective. Advantages of the consortium are identified that emphasize the unique strengths of each institution, their geographic advantages representing major climactic/agricultural zones in the world, and differing approaches to seed technology training that are facilitated by increasing ease of global communication. This may be a better way to conduct seed technology training in the year 2000.

  2. Analysis of Seed Potato Systems in Ethiopia

    Hirpa, A.; Meuwissen, M.P.M.; Tesfaye, A.; Lommen, W.J.M.; Oude Lansink, A.G.J.M.; Tsegaye, A.; Struik, P.C.

    2010-01-01

    This study aimed to analyze the seed potato systems in Ethiopia, identify constraints and prioritize improvement options, combining desk research, rapid appraisal and formal surveys, expert elicitation, field observations and local knowledge. In Ethiopia, informal, alternative and formal seed

  3. Updated Methods for Seed Shape Analysis

    Emilio Cervantes

    2016-01-01

    Full Text Available Morphological variation in seed characters includes differences in seed size and shape. Seed shape is an important trait in plant identification and classification. In addition it has agronomic importance because it reflects genetic, physiological, and ecological components and affects yield, quality, and market price. The use of digital technologies, together with development of quantification and modeling methods, allows a better description of seed shape. Image processing systems are used in the automatic determination of seed size and shape, becoming a basic tool in the study of diversity. Seed shape is determined by a variety of indexes (circularity, roundness, and J index. The comparison of the seed images to a geometrical figure (circle, cardioid, ellipse, ellipsoid, etc. provides a precise quantification of shape. The methods of shape quantification based on these models are useful for an accurate description allowing to compare between genotypes or along developmental phases as well as to establish the level of variation in different sets of seeds.

  4. Effects of seed and seedling predation by small mammals on ...

    Seed predation reduced seedling recruitment from seeds planted in March 1986 in mature fynbos, but ... Seed predation did not significantly reduce seedling recruitment from seed planted in July, August and ... AJOL African Journals Online.

  5. Use of linear discriminant function analysis in seed morphotype ...

    Use of linear discriminant function analysis in seed morphotype relationship study in 31 ... Data were collected on 100-seed weight, seed length and seed width. ... to the Mesoamerican gene pool, comprising the cultigroups Sieva-Big Lima, ...

  6. Challenges and opportunities for quality seed potato availability and ...

    ACSS

    Key words: Quality seed potato, seed system and challenges ... systems, inadequate seed production and ... informal sources of seed potato, despite ..... Directorate General for International. Co-operation (DGIC), Brussels,. Belgium. 1540pp.

  7. Efficient chaining of seeds in ordered trees

    Allali, Julien; Chauve, Cédric; Ferraro, Pascal; Gaillard, Anne-Laure

    2010-01-01

    International audience; We consider here the problem of chaining seeds in ordered trees. Seeds are mappings between two trees Q and T and a chain is a subset of non overlapping seeds that is consistent with respect to postfix order and ancestrality. This problem is a natural extension of a similar problem for sequences, and has applications in computational biology, such as mining a database of RNA secondary structures. For the chaining problem with a set of m constant size seeds, we describe...

  8. Composition of jojoba seeds and foliage

    Verbiscar, A.J.; Banigan, T.F.

    1978-01-01

    The desert shrub jojoba (Simmondsia chinensis) may be browsed by cattle. The seeds have about 50% oil but the extracted meal is at present unsuitable for feeding. Simmondsin, the most prevalent toxin, is present in seed, 2.3%, and in husks, leaves and twigs. Seeds contained another toxin, Simmondsin 2'-ferulate. The contents of oil, protein, carbohydrate and amino acids in seed are tabulated. 13 references.

  9. Drug Plant Seed Viability Preservation by Cryoconservation

    Alexandra Sh. Dodonova

    2013-01-01

    Full Text Available The article considers the possibility of cryopreservation of seeds of several species of drug plants in Central Kazakhstan – Tanacetum ulutavicum, Niedzwedzkia semiretschenskia, Rhaponticum carthamoides. To increase the amount of viable seeds after liquid nitrogen freezing, we used different defrosting temperatures, deposited seeds with different moisture contents and used different containers for cryopreservation. Recommendations, concerning conditions of cryopreservation of seeds of these drug plant species were developed, basing on the obtained results.

  10. Training and research in seed technology. No quality seeds without skilled staff

    Groot, S.P.C.; Hilhorst, H.W.M.

    2016-01-01

    The seed industry in the Netherlands is the largest exporter of horticultural seeds, reaching farmers in every country of the world. High seed quality is one of the key factors of this success. Maintaining and increasing the level of seed qualtiy requires skilled staff, innovation and collaboration

  11. How seed orchard culture affects seed quality: experience with the southern pines

    James P. Barnett

    1996-01-01

    Tree improvement programs have influenced significantly the quality of southern pine seeds produced when compared to collections from native stands. Seed orchard management practices such as fertilization can increase seed size and reduce seed dormancy. These result in the need for less complex pregermination treatments. Repeated cone collections from the same clones...

  12. Consistent individual differences in seed disperser quality in a seed-eating fish

    Pollux, Bart J.A.

    2017-01-01

    Animal-mediated seed dispersal (zoochory) is considered to be an important mechanism regulating biological processes at larger spatial scales. To date, intra-specific variation in seed disperser quality within seed-dispersing animals has not been studied. Here, I employed seed feeding trials to

  13. Securing Access to Seed: Social Relations and Sorghum Seed Exchange in Eastern Ethiopia

    McGuire, S.

    2008-01-01

    Access to seed is crucial for farming, though few studies investigate household-level access in the informal `farmer seed systems¿ which still supply most seed in poor countries. This paper uses empirical data of seed exchange practices for sorghum in eastern Ethiopia to analyze how social

  14. seed germination and seedlings growth

    STORAGESEVER

    2007-12-17

    Dec 17, 2007 ... however, abscisic acid (ABA) can counter this effect by keeping seeds ... Tris-HCl buffer at pH 8.8, with constant current set at 20 mA/gel. The gels were ..... on plants is rarely studied and the importance of 20E in the life cycle ...

  15. The Seed Is the Law

    Antone, Eileen M.

    2005-01-01

    Since humanities arise from a specific place and from the people of that place, this article will focus on Peacemaker's revolutionary teachings about the seed of law. Long before the people from across the ocean arrived here on Turtle Island (North America) there was much warfare happening. According to John Mohawk (2001, para. 1), an Iroquoian…

  16. Seed production for fuel oils

    Mosca, G.

    1992-01-01

    With the aim of assessing commercialization prospects for vegetable oils to be used as diesel fuel alternatives, this paper provides maps indicating regional production quantities for soybean, rape and sunflower seeds in Italy. It then tables and discusses the results of energy input-output analyses carried out for rape and soybean oil production

  17. Hormones and tomato seed germination

    Liu, Y.

    1996-01-01

    Using GA- and ABA-deficient mutants, exogenous gibberellins (GAs), abscisic acid (ABA) and osmoticum, we studied the roles of GAs and ABA in the induction of cell cycle activities, internal free space formation and changes in water relations during seed development and imbibition in tomato. First of

  18. Spiny hopsage fruit and seed morphology

    Nancy L. Shaw; Emerenciana G. Hurd; Marshall R. Haferkamp

    1996-01-01

    Rangeland seedings of spiny hopsage (Gruyia spinosa [Hook.] Moq.) may be made with either bracted utricles or seeds. Problems have resulted from inconsistent use of terminology describing these 2 structures and the fact their germination and seedling emergence is not the same with similar environmental conditions and seeding techniques. We examined...

  19. Galactinol as marker for seed longevity

    Souza Vidigal, De D.; Willems, L.A.J.; Arkel, van J.; Dekkers, S.J.W.; Hilhorst, H.W.M.; Bentsink, L.

    2016-01-01

    Reduced seed longevity or storability is a major problem in seed storage and contributes to increasedcosts in crop production. Here we investigated whether seed galactinol contents could be predictive forseed storability behavior in Arabidopsis, cabbage and tomato. The analyses revealed a positive

  20. Seed dormancy and germination : light and nitrate

    Hilhorst, H.W.M.

    1990-01-01

    One of the most important aspects of the life cycle of seed plants is the formation and development of seeds on the motherplant and the subsequent dispersal. An equally important element of the survival strategy is the ability of seeds to prevent germination in unfavorable

  1. Dormancy cycling in seeds: mechanisms and regulation

    Claessens, S.M.C.

    2012-01-01

    The life cycle of most plants starts, and ends, at the seed stage. In most species mature seeds are shed and dispersed on the ground. At this stage of its life cycle the seed may be dormant and will, by definition, not germinate under favourable conditions (Bewley, 1997).

    Seasonal

  2. Seed coat darkening in Cowpea bean

    Seed coat of cowpea bean (Vigna unguiculata L. Walp) slowly browns to a darker color during storage. High temperature and humidity during storage might contribute to this color change. Variation in browning rate among seeds in a lot leads to a mixture of seed colors creating an unacceptable product...

  3. 7 CFR 947.12 - Seed potatoes.

    2010-01-01

    ... 7 Agriculture 8 2010-01-01 2010-01-01 false Seed potatoes. 947.12 Section 947.12 Agriculture... and Orders; Fruits, Vegetables, Nuts), DEPARTMENT OF AGRICULTURE IRISH POTATOES GROWN IN MODOC AND... Definitions § 947.12 Seed potatoes. Seed potatoes means and includes all potatoes officially certified and...

  4. 7 CFR 946.12 - Seed potatoes.

    2010-01-01

    ... 7 Agriculture 8 2010-01-01 2010-01-01 false Seed potatoes. 946.12 Section 946.12 Agriculture... and Orders; Fruits, Vegetables, Nuts), DEPARTMENT OF AGRICULTURE IRISH POTATOES GROWN IN WASHINGTON Order Regulating Handling Definitions § 946.12 Seed potatoes. Seed potatoes means and includes all...

  5. Running title: Water distribution in chickpea seeds

    agriphy20

    2012-07-24

    Jul 24, 2012 ... molecular mobility of cellular water in magnetically exposed seeds as compared to unexposed seeds. Analysis of ... protrusion takes place through the seed coat and absorption .... directly related to water activity (aw) of the cell water. (Gambhir ..... plants, including photosynthesis, respiration and enzymatic ...

  6. Strategies for Seed Propagation of Native Forbs

    Susan E. Meyer

    2006-01-01

    Native forbs are an increasingly important component of container production for many public and private nurseries. Propagators are often called upon to grow species with unknown requirements. A systematic approach is required to obtain plants from seeds of these species, beginning with determining what is a propagule and evaluating seed quality. Next, seed dormancy...

  7. Inheritance of fresh seed dormancy in groundnut

    SERVER

    2008-02-19

    Feb 19, 2008 ... Seed dormancy has been defined as the failure of an intact, viable seed to ... expected ratio of 3 dormant : 1 non-dormant seeds in F2 generations of crosses of ICGV 87378 and ICGV ... ICGV 87378 x ICGV 86158. 163. 0. 163.

  8. Spinach seed quality - potential for combining seed size grading and chlorophyll flourescence sorting

    Deleuran, Lise Christina; Olesen, Merete Halkjær; Boelt, Birte

    2013-01-01

    might therefore improve the establishment of spinach for producers. Spinach seeds were harvested at five different times (H1, H2, H3, H4 and H5) starting 3 weeks before estimated optimum harvest time. The harvested seeds were sorted according to chlorophyll fluorescence (CF) and seed size. Two harvest.......5–3.25 mm size seeds had germinated on day 3 than both their larger and smaller counterparts at the later time of harvest (H4). Seeds with a diameter below 2.5 mm displayed the lowest MGT. Commercially, the use of chlorophyll fluorescence (CF)-sorted seeds, in combination with seed size sorting, may provide...

  9. [Effects of illumination and seed-soaking reagent on seed germination of Solanum nigrum].

    Yang, Chuan-Jie; Wei, Shu-He; Zhou, Qi-Xing; Hu, Ya-Hu; Niu, Rong-Cheng

    2009-05-01

    To explore a rapid seed germination method for hyperaccumulator Solanum nigrum, a germination experiment with different illumination and seed-soaking treatments was conducted in constant temperature box and greenhouse, with filter as burgeon base. Under illumination, the germination rate was about 5 times high of that without illumination (P seed germination of S. nigrum. All test seed-soaking reagents could significantly improve the germination rate of S. nigrum (P seeds treated with H2O2 had the shortest germination time. The germination rate of seeds soaked but without cleaning was 2-3 times as high as that of seeds soaked and cleaned with water.

  10. The biomechanics of seed germination.

    Steinbrecher, Tina; Leubner-Metzger, Gerhard

    2017-02-01

    From a biomechanical perspective, the completion of seed (and fruit) germination depends on the balance of two opposing forces: the growth potential of the embryonic axis (radicle-hypocotyl growth zone) and the restraint of the seed-covering layers (endosperm, testa, and pericarp). The diverse seed tissues are composite materials which differ in their dynamic properties based on their distinct cell wall composition and water uptake capacities. The biomechanics of embryo cell growth during seed germination depend on irreversible cell wall loosening followed by water uptake due to the decreasing turgor, and this leads to embryo elongation and eventually radicle emergence. Endosperm weakening as a prerequisite for radicle emergence is a widespread phenomenon among angiosperms. Research into the biochemistry and biomechanics of endosperm weakening has demonstrated that the reduction in puncture force of a seed's micropylar endosperm is environmentally and hormonally regulated and involves tissue-specific expression of cell wall remodelling proteins such as expansins, diverse hydrolases, and the production of directly acting apoplastic reactive oxygen. The endosperm-weakening biomechanics and its underlying cell wall biochemistry differ between the micropylar (ME) and chalazal (CE) endosperm domains. In the ME, they involve cell wall loosening, cell separation, and programmed cell death to provide decreased and localized ME tissue resistance, autolysis, and finally the formation of an ME hole required for radicle emergence. Future work will further unravel the molecular mechanisms, environmental regulation, and evolution of the diverse biomechanical cell wall changes underpinning the control of germination by endosperm weakening. © The Author 2016. Published by Oxford University Press on behalf of the Society for Experimental Biology. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  11. Improving seed potato quality in Ethiopia: a value chain perspective

    Hirpa, A.; Gielen-Meuwissen, M.P.M.; Lommen, W.J.M.; Oude Lansink, A.G.J.M.; Tsegaye, A.; Struik, Paul

    2016-01-01

    In Ethiopia, use of low-quality seed potatoes by the majority of potato growers is
    associated with underdevelopment of the seed potato value chains. Three seed potato systems are present in Ethiopia: the informal seed system, the alternative seed system and the formal seed system. This chapter

  12. Evaluation of seed production of scots pine ( Pinus sylvestris L ...

    This research was carried out to investigate seed production in a 13 years-old scots pine (Pinus sylvestris L.) clonal seed orchard, including 30 clones. Eight of cone and seed traits as number of fertile and infertile scales, cone volume, cone number, filled and empty seed number, seed efficiency and 1000 seed weight were ...

  13. Multivariate NIR studies of seed-water interaction in Scots Pine Seeds (Pinus sylvestris L.)

    Lestander, Torbjörn

    2003-01-01

    This thesis describes seed-water interaction using near infrared (NIR) spectroscopy, multivariate regression models and Scots pine seeds. The presented research covers classification of seed viability, prediction of seed moisture content, selection of NIR wavelengths and interpretation of seed-water interaction modelled and analysed by principal component analysis, ordinary least squares (OLS), partial least squares (PLS), bi-orthogonal least squares (BPLS) and genetic algorithms. The potenti...

  14. Influence the Rubber Seed Type and Altitude on Characteristic of Seed, Oil and Biodiesel

    Salni Salni; Poedji Loekitowati Hariani; Hanifa Marisa Hanifa

    2017-01-01

    This research studies the influence of the type of rubber seed that is superior and local, altitude plant in South Sumatra province to the characteristic of seed, oil and biodiesel (methyl ester). Rubber plants planted from local rubber seed by seeds seedlings and superior rubber seed by selected clones. In the study, rubber plants planted at a different altitude, namely in Banyuasin district (18 m above sea level), Prabumulih District (176 m above sea level) and Lahat District (627 m above s...

  15. Influence of the Rubber Seed Type and Altitude on Characteristic of Seed, Oil and Biodiesel

    Salni, Salni; Hariani, Poedji Loekitowati; Hanifa, Hanifa Marisa

    2017-01-01

    This research studies the influence of the type of rubber seed that is superior and local, altitude plant in South Sumatra province to the characteristic of seed, oil and biodiesel (methyl ester). Rubber plants planted from local rubber seed by seeds seedlings and superior rubber seed by selected clones. In the study, rubber plants planted at a different altitude, namely in Banyuasin district (18 m above sea level), Prabumulih District (176 m above sea level) and Lahat District (627 m above s...

  16. [Procedure of seed quality testing and seed grading standard of Prunus humilis].

    Wen, Hao; Ren, Guang-Xi; Gao, Ya; Luo, Jun; Liu, Chun-Sheng; Li, Wei-Dong

    2014-11-01

    So far there exists no corresponding quality test procedures and grading standards for the seed of Prunus humilis, which is one of the important source of base of semen pruni. Therefor we set up test procedures that are adapt to characteristics of the P. humilis seed through the study of the test of sampling, seed purity, thousand-grain weight, seed moisture, seed viability and germination percentage. 50 cases of seed specimens of P. humilis tested. The related data were analyzed by cluster analysis. Through this research, the seed quality test procedure was developed, and the seed quality grading standard was formulated. The seed quality of each grade should meet the following requirements: for first grade seeds, germination percentage ≥ 68%, thousand-grain weight 383 g, purity ≥ 93%, seed moisture ≤ 5%; for second grade seeds, germination percentage ≥ 26%, thousand-grain weight ≥ 266 g, purity ≥ 73%, seed moisture ≤9%; for third grade seeds, germination percentage ≥ 10%, purity ≥ 50%, thousand-grain weight ≥ 08 g, seed moisture ≤ 13%.

  17. Myrmecochory and short-term seed fate in Rhamnus alaternus: Ant species and seed characteristics

    Bas, J. M.; Oliveras, J.; Gómez, C.

    2009-05-01

    Benefits conferred on plants in ant-mediated seed dispersal mutualisms (myrmecochory) depend on the fate of transported seeds. We studied the effects of elaiosome presence, seed size and seed treatment (with and without passage through a bird's digestive tract) on short-term seed fate in Rhamnus alaternus. In our study, we define short-term seed, or initial, seed fate, as the location where ants release the seeds after ant contact with it. The elaiosomes had the most influence on short-term fate, i.e. whether or not seeds were transported to the nest. The workers usually transported big seeds more often than small ones, but small ants did not transport large seeds. Effect of seed size on transport depended on the ant species and on the treatment of the seed (manual extraction simulating a direct fall from the parent plant vs. bird deposition corresponding to preliminary primary dispersal). Probability of removal of elaiosome-bearing seeds to the nest by Aphaenogaster senilis increased with increasing seed weight.

  18. Trade and Transfer of Tree Seed

    Schmidt, Lars Holger

    2016-01-01

    testing records. Genetic quality is documented as documents on origin or seed source. New types of tree planting by smallholders imply special problems in distribution and supply systems since production systems for tree seeds have large areas while many consumers have small space for planting....... A centralized forest seed supply contains large central units with good facilities for production and procurement but is far from seed users. Alternative decentralized systems with many small producers may have problems meeting high standards of seed quality and dealing with central regulations....

  19. Stimulation of lettuce seed germination by ethylene.

    Abeles, F B; Lonski, J

    1969-02-01

    Ethylene increased the germination of freshly imbibed lettuce (Lactuca sativa L. var. Grand Rapids) seeds. Seeds receiving either red or far-red light or darkness all showed a positive response to the gas. However, ethylene was apparently without effect on dormant seeds, those which failed to germinate after an initial red or far-red treatment. Carbon dioxide, which often acts as a competitive inhibitor of ethylene, failed to clearly reverse ethylene-enhanced seed germination. While light doubled ethylene production from the lettuce seeds, its effect was not mediated by the phytochrome system since both red and far-red light had a similar effect.

  20. IMPACT OF FOLIAR APPLICATION OF ASCORBIC ACID AND α-TOCOPHEROL ON ANTIOXIDANT ACTIVITY AND SOME BIOCHEMICAL ASPECTS OF FLAX CULTIVARS UNDER SALINITY STRESS

    Hala M.S. El-Bassiouny

    2015-05-01

    Full Text Available ABSTRACT The interactive effects of saline water (2000, 4000 and 6000 mg/l and foliar application of 400 mg/l of ascorbic acid (Asc or α – tocopherol (α-Toco on three flax cultivars (Sakha 3, Giza 8 and Ariane were conducted during two successive seasons (2011 and 2012. The results showed that, total soluble carbohydrates, free amino acids, proline contents were significantly increased with increasing salinity levels in all three tested cultivars except free amino acid content of Giza 8 which showed a non significant decrease. While, nucleic acids (DNA and RNA showed significant decreases compared with the corresponding controls. Moreover, applications of vitamins (Asc or α-Toco as foliar spraying increased all mentioned contents compared to the corresponding salinity levels. On the other hand, lipid peroxidation, and activity levels of polyphenol oxidase (PPO, peroxidase (POX and catalase (CAT enzymes showed progressive significant increases with increasing salinity levels of all tested three cultivars, while the behaviour of superoxide dismutase (SOD activity showed an opposite response as compared with the control in Sakha 3 and Giza 8. Treatments with Asc or α-Toco induced significant reduction in lipid peroxidation and activities of PPO and POX of all three tested cultivars. Meanwhile, SOD increased in all three cultivars, and CAT activities increased only in Sakha 3 cultivar under salt stress as compared with reference controls. Some modifications are observed in protein patterns hence some proteins were disappeared, while certain other proteins were selectively increased and synthesis of a new set of proteins were induced, some of these responses were observed under treatments and salinity, while others were induced by either treatments or salinity.