WorldWideScience

Sample records for flavored quantum boltzmann

  1. Boltzmann equations for neutrinos with flavor mixings

    OpenAIRE

    Yamada, Shoichi

    2000-01-01

    With a view of applications to the simulations of supernova explosion and proto neutron star cooling, we derive the Boltzmann equations for the neutrino transport with the flavor mixing based on the real time formalism of the nonequilibrium field theory and the gradient expansion of the Green function. The relativistic kinematics is properly taken into account. The advection terms are derived in the mean field approximation for the neutrino self-energy whiles the collision terms are obtained ...

  2. Quantum corrections for Boltzmann equation

    Institute of Scientific and Technical Information of China (English)

    M.; Levy; PETER

    2008-01-01

    We present the lowest order quantum correction to the semiclassical Boltzmann distribution function,and the equation satisfied by this correction is given. Our equation for the quantum correction is obtained from the conventional quantum Boltzmann equation by explicitly expressing the Planck constant in the gradient approximation,and the quantum Wigner distribution function is expanded in pow-ers of Planck constant,too. The negative quantum correlation in the Wigner dis-tribution function which is just the quantum correction terms is naturally singled out,thus obviating the need for the Husimi’s coarse grain averaging that is usually done to remove the negative quantum part of the Wigner distribution function. We also discuss the classical limit of quantum thermodynamic entropy in the above framework.

  3. Lattice Boltzmann equation for relativistic quantum mechanics.

    Science.gov (United States)

    Succi, Sauro

    2002-03-15

    Relativistic versions of the quantum lattice Boltzmann equation are discussed. It is shown that the inclusion of nonlinear interactions requires the standard collision operator to be replaced by a pair of dynamic fields coupling to the relativistic wave function in a way which can be described by a multicomponent complex lattice Boltzmann equation.

  4. Matrix-valued Quantum Lattice Boltzmann Method

    CERN Document Server

    Mendl, Christian B

    2013-01-01

    We develop a numerical framework for the quantum analogue of the "classical" lattice Boltzmann method (LBM), with the Maxwell-Boltzmann distribution replaced by the Fermi-Dirac function. To accommodate the spin density matrix, the distribution functions become 2x2-matrix valued. We show that the efficient, commonly used BGK approximation of the collision operator is valid in the present setting. The framework could leverage the principles of LBM for simulating complex spin systems, with applications to spintronics.

  5. Heavy Flavor in Medium Momentum Evolution: Langevin vs Boltzmann

    CERN Document Server

    Das, Santosh K; Greco, Vincenzo

    2013-01-01

    The propagation of heavy quarks through the quark-gluon plasma (QGP) has been often treated within the framework of Langevin equation (LV), i.e. assuming the heavy flavor momentum transfer is small or the scatterings are sufficiently forward peaked, small screening mass $m_D$. We address a thorough study of the approximations involved in Langevin dynamics by mean of a direct comparison with the solution of the Boltzmann collisional integral (BM) when a bulk medium is in equilibrium at fixed temperature. We show that unless the cross section is quite forward peaked ($m_D\\cong T $) or the mass to temperature ratio is quite large ($M_q/T \\gtrsim 8-10$) there are significant differences in the evolution of the $p-$spectra with time and consequently on the so-called nuclear modification factor $R_{AA}(p_T)$. However for charm quark we find that very similar $R_{AA}(p_T)$ between the LV and BM can be obtained, but the estimate of the underlying diffusion coefficient can differ by about $\\sim 15-50\\%$ depending on t...

  6. Hot electrons in superlattices: quantum transport versus Boltzmann equation

    DEFF Research Database (Denmark)

    Wacker, Andreas; Jauho, Antti-Pekka; Rott, S.;

    1999-01-01

    A self-consistent solution of the transport equation is presented for semiconductor superlattices within different approaches: (i) a full quantum transport model based on nonequilibrium Green functions, (ii) the semiclassical Boltzmann equation for electrons in a miniband, and (iii) Boltzmann...

  7. Comparison of Boltzmann Equations with Quantum Dynamics for Scalar Fields

    CERN Document Server

    Lindner, Manfred; Lindner, Manfred; Muller, Markus Michael

    2006-01-01

    Boltzmann equations are often used to study the thermal evolution of particle reaction networks. Prominent examples are the computation of the baryon asymmetry of the universe and the evolution of the quark-gluon plasma after relativistic heavy ion collisions. However, Boltzmann equations are only a classical approximation of the quantum thermalization process which is described by the so-called Kadanoff-Baym equations. This raises the question how reliable Boltzmann equations are as approximations to the full Kadanoff-Baym equations. Therefore, we present in this paper a detailed comparison between the Kadanoff-Baym and Boltzmann equations in the framework of a scalar Phi^4 quantum field theory in 3+1 space-time dimensions. The obtained numerical solutions reveal significant discrepancies in the results predicted by both types of equations. Most notably, apart from quantitative discrepancies, on a qualitative level the universality observed for the Kadanoff-Baym equations is severely restricted in the case o...

  8. Network geometry with flavor: From complexity to quantum geometry

    Science.gov (United States)

    Bianconi, Ginestra; Rahmede, Christoph

    2016-03-01

    its statistical properties reveal the relation to its quantum mechanical description. In fact the δ -dimensional faces of the NGF have generalized degrees that follow either the Fermi-Dirac, Boltzmann, or Bose-Einstein statistics depending on the flavor s and the dimensions d and δ .

  9. Diffusive limit for a quantum linear Boltzmann dynamics

    CERN Document Server

    Clark, Jeremy

    2010-01-01

    We study the diffusive behavior for a quantum test particle interacting with a dilute background gas. The model we begin with is a reduced picture for the test particle dynamics given by a quantum linear Boltzmann equation in which the scattering with the gas particles is assumed to occur through a hard-sphere interaction. The state of the particle is represented by a density matrix evolving according to a translation-covariant Lindblad equation. Our main result is a proof that the particle diffuses for large times.

  10. An Algorithm of Quantum Restricted Boltzmann Machine Network Based on Quantum Gates and Its Application

    Directory of Open Access Journals (Sweden)

    Peilin Zhang

    2015-01-01

    Full Text Available We present an algorithm of quantum restricted Boltzmann machine network based on quantum gates. The algorithm is used to initialize the procedure that adjusts the qubit and weights. After adjusting, the network forms an unsupervised generative model that gives better classification performance than other discriminative models. In addition, we show how the algorithm can be constructed with quantum circuit for quantum computer.

  11. Flavoured quantum Boltzmann equations from cQPA

    CERN Document Server

    Fidler, Christian; Kainulainen, Kimmo; Rahkila, Pyry Matti

    2011-01-01

    We develop a Boltzmann-type quantum transport theory for interacting fermion and scalar fields including both flavour and particle-antiparticle mixing. Our formalism is based on the coherent quasiparticle approximation (cQPA) for the 2-point correlation functions, whose extended phase-space structure contains new spectral shells for flavour- and particle-antiparticle coherence. We derive explicit cQPA propagators and Feynman rules for the transport theory. In particular the nontrivial Wightman functions can be written as composite operators $\\sim {\\cal A} F {\\cal A}$, which generalize the usual Kadanoff-Baym ansatz. Our numerical results show that particle-antiparticle coherence can strongly influence CP-violating flavour mixing even for relatively slowly-varying backgrounds. Thus, unlike recently suggested, these correlations cannot be neglected when studying asymmetry generation due to time-varying mass transition, for example in electroweak-type baryogenesis models. Finally, we show that the cQPA coherence...

  12. Quantum phase transitions with dynamical flavors

    CERN Document Server

    Bea, Yago; Ramallo, Alfonso V

    2016-01-01

    We study the properties of a D6-brane probe in the ABJM background with smeared massless dynamical quarks in the Veneziano limit. Working at zero temperature and non-vanishing charge density, we show that the system undergoes a quantum phase transition in which the topology of the brane embedding changes from a black hole to a Minkowski embedding. In the unflavored background the phase transition is of second order and takes place when the charge density vanishes. We determine the corresponding critical exponents and show that the scaling behavior near the quantum critical point has multiplicative logarithmic corrections. In the background with dynamical quarks the phase transition is of first order and occurs at non-zero charge density. In this case we compute the discontinuity of several physical quantities as functions of the number $N_f$ of unquenched quarks of the background.

  13. Quantum phase transitions with dynamical flavors

    Science.gov (United States)

    Bea, Yago; Jokela, Niko; Ramallo, Alfonso V.

    2016-07-01

    We study the properties of a D6-brane probe in the Aharony-Bergman-Jafferis-Maldacena (ABJM) background with smeared massless dynamical quarks in the Veneziano limit. Working at zero temperature and nonvanishing charge density, we show that the system undergoes a quantum phase transition in which the topology of the brane embedding changes from a black hole to a Minkowski embedding. In the unflavored background the phase transition is of second order and takes place when the charge density vanishes. We determine the corresponding critical exponents and show that the scaling behavior near the quantum critical point has multiplicative logarithmic corrections. In the background with dynamical quarks the phase transition is of first order and occurs at nonzero charge density. In this case we compute the discontinuity of several physical quantities as functions of the number Nf of unquenched quarks of the background.

  14. Comparison of Boltzmann Kinetics with Quantum Dynamics for a Chiral Yukawa Model Far From Equilibrium

    CERN Document Server

    Lindner, Manfred

    2007-01-01

    Boltzmann equations are often used to describe the non-equilibrium time-evolution of many-body systems in particle physics. Prominent examples are the computation of the baryon asymmetry of the universe and the evolution of the quark-gluon plasma after a relativistic heavy ion collision. However, Boltzmann equations are only a classical approximation of the quantum thermalization process, which is described by so-called Kadanoff-Baym equations. This raises the question how reliable Boltzmann equations are as approximations to the complete Kadanoff-Baym equations. Therefore, we present in this article a detailed comparison of Boltzmann and Kadanoff-Baym equations in the framework of a chirally invariant Yukawa-type quantum field theory including fermions and scalars. The obtained numerical results reveal significant differences between both types of equations. Apart from quantitative differences, on a qualitative level the late-time universality respected by Kadanoff-Baym equations is severely restricted in th...

  15. Universal Property of Quantum Gravity implied by Bekenstein-Hawking Entropy and Boltzmann formula

    CERN Document Server

    Saida, Hiromi

    2013-01-01

    We search for a universal property of quantum gravity. By "universal", we mean the independence from any existing model of quantum gravity (such as the super string theory, loop quantum gravity, causal dynamical triangulation, and so on). To do so, we try to put the basis of our discussion on theories established by some experiments. Thus, we focus our attention on thermodynamical and statistical-mechanical basis of the black hole thermodynamics: Let us assume that the Bekenstein-Hawking entropy is given by the Boltzmann formula applied to the underlying theory of quantum gravity. Under this assumption, the conditions justifying Boltzmann formula together with uniqueness of Bekenstein-Hawking entropy imply a reasonable universal property of quantum gravity. The universal property indicates a repulsive gravity at Planck length scale, otherwise stationary black holes can not be regarded as thermal equilibrium states of gravity. Further, in semi-classical level, we discuss a possible correction of Einstein equat...

  16. Reprint of : The Boltzmann--Langevin approach: A simple quantum-mechanical derivation

    Science.gov (United States)

    Nagaev, K. E.

    2016-08-01

    We present a simple quantum-mechanical derivation of correlation function of Langevin sources in the semiclassical Boltzmann-Langevin equation. The specific case of electron-phonon scattering is considered. It is shown that the assumption of weak scattering leads to the Poisson nature of the scattering fluxes.

  17. An exact energy conservation property of the quantum lattice Boltzmann algorithm

    Energy Technology Data Exchange (ETDEWEB)

    Dellar, Paul J., E-mail: dellar@maths.ox.ac.uk [OCIAM, Mathematical Institute, 24-29 St Giles' , Oxford OX1 3LB (United Kingdom)

    2011-11-28

    The quantum lattice Boltzmann algorithm offers a unitary and readily parallelisable discretisation of the Dirac equation that is free of the fermion-doubling problem. The expectation of the discrete time-advance operator is an exact invariant of the algorithm. Its imaginary part determines the expectation of the Hamiltonian operator, the energy of the solution, with an accuracy that is consistent with the overall accuracy of the algorithm. In the one-dimensional case, this accuracy may be increased from first to second order using a variable transformation. The three-dimensional quantum lattice Boltzmann algorithm uses operator splitting to approximate evolution under the three-dimensional Dirac equation by a sequence of solutions of one-dimensional Dirac equations. The three-dimensional algorithm thus inherits the energy conservation property of the one-dimensional algorithm, although the implementation shown remains only first-order accurate due to the splitting error. -- Highlights: ► The quantum lattice Boltzmann algorithm approximates the Dirac equation. ► It has an exact invariant: the expectation of the discrete time-advance operator. ► The invariant consistently approximates the energy of the continuous system. ► We achieve second-order accuracy through a variable transformation.

  18. Quantum Boltzmann equation solved by Monte Carlo method for nano-scale semiconductor devices simulation

    Institute of Scientific and Technical Information of China (English)

    Du Gang; Liu Xiao-Yan; Han Ru-Qi

    2006-01-01

    A two-dimensional (2D) full band self-consistent ensemble Monte Carlo (MC) method for solving the quantum Boltzmann equation, including collision broadening and quantum potential corrections, is developed to extend the MC method to the study of nano-scale semiconductor devices with obvious quantum mechanical (QM) effects. The quantum effects both in real space and momentum space in nano-scale semiconductor devices can be simulated. The effective mobility in the inversion layer of n and p channel MOSFET is simulated and compared with experimental data to verify this method. With this method 50nm ultra thin body silicon on insulator MOSFET are simulated. Results indicate that this method can be used to simulate the 2D QM effects in semiconductor devices including tunnelling effect.

  19. Normal and Anomalous Diffusion: An Analytical Study Based on Quantum Collision Dynamics and Boltzmann Transport Theory.

    Science.gov (United States)

    Mahakrishnan, Sathiya; Chakraborty, Subrata; Vijay, Amrendra

    2016-09-15

    Diffusion, an emergent nonequilibrium transport phenomenon, is a nontrivial manifestation of the correlation between the microscopic dynamics of individual molecules and their statistical behavior observed in experiments. We present a thorough investigation of this viewpoint using the mathematical tools of quantum scattering, within the framework of Boltzmann transport theory. In particular, we ask: (a) How and when does a normal diffusive transport become anomalous? (b) What physical attribute of the system is conceptually useful to faithfully rationalize large variations in the coefficient of normal diffusion, observed particularly within the dynamical environment of biological cells? To characterize the diffusive transport, we introduce, analogous to continuous phase transitions, the curvature of the mean square displacement as an order parameter and use the notion of quantum scattering length, which measures the effective interactions between the diffusing molecules and the surrounding, to define a tuning variable, η. We show that the curvature signature conveniently differentiates the normal diffusion regime from the superdiffusion and subdiffusion regimes and the critical point, η = ηc, unambiguously determines the coefficient of normal diffusion. To solve the Boltzmann equation analytically, we use a quantum mechanical expression for the scattering amplitude in the Boltzmann collision term and obtain a general expression for the effective linear collision operator, useful for a variety of transport studies. We also demonstrate that the scattering length is a useful dynamical characteristic to rationalize experimental observations on diffusive transport in complex systems. We assess the numerical accuracy of the present work with representative experimental results on diffusion processes in biological systems. Furthermore, we advance the idea of temperature-dependent effective voltage (of the order of 1 μV or less in a biological environment, for example

  20. Quantum Zeno effect and the impact of flavor in leptogenesis

    CERN Document Server

    Blanchet, S; Raffelt, G G

    2006-01-01

    In thermal leptogenesis, the cosmic matter-antimatter asymmetry is produced by CP violation in the decays N --> l + \\Phi of heavy right-handed Majorana neutrinos N into ordinary leptons l and Higgs particles \\Phi. If some charged-lepton Yukawa couplings are in equilibrium during the leptogenesis epoch, the l interactions with the background medium are flavor sensitive and the coherence of their flavor content defined by N --> l+\\Phi is destroyed, modifying the efficiency of the inverse decays. We point out, however, that it is not enough that the flavor-sensitive processes are fast on the cosmic expansion time scale, they must be fast relative to the N l +\\Phi reactions lest the flavor amplitudes of l remain frozen by the repeated N l+\\Phi ``measurements''. Our more restrictive requirement is significant in the most interesting ``strong wash-out case'' where N l +\\Phi is fast relative to the cosmic expansion rate. We derive conditions for the unflavored treatment to be adequate and for flavor effects to be...

  1. A quantum-information theoretic analysis of three-flavor neutrino oscillations

    Energy Technology Data Exchange (ETDEWEB)

    Banerjee, Subhashish, E-mail: subhashish@iitj.ac.in; Alok, Ashutosh Kumar, E-mail: akalok@iitj.ac.in [Indian Institute of Technology Jodhpur, 342011, Jodhpur (India); Srikanth, R., E-mail: srik@poornaprajna.org [Poornaprajna Institute of Scientific Research, Sadashivnagar, 560080, Banglore (India); Hiesmayr, Beatrix C., E-mail: Beatrix.Hiesmayr@univie.ac.at [University of Vienna, Boltzmanngasse 5, 1090, Vienna (Austria)

    2015-10-13

    Correlations exhibited by neutrino oscillations are studied via quantum-information theoretic quantities. We show that the strongest type of entanglement, genuine multipartite entanglement, is persistent in the flavor changing states. We prove the existence of Bell-type nonlocal features, in both its absolute and genuine avatars. Finally, we show that a measure of nonclassicality, dissension, which is a generalization of quantum discord to the tripartite case, is nonzero for almost the entire range of time in the evolution of an initial electron-neutrino. Via these quantum-information theoretic quantities, capturing different aspects of quantum correlations, we elucidate the differences between the flavor types, shedding light on the quantum-information theoretic aspects of the weak force.

  2. A quantum-information theoretic analysis of three-flavor neutrino oscillations. Quantum entanglement, nonlocal and nonclassical features of neutrinos

    Science.gov (United States)

    Banerjee, Subhashish; Alok, Ashutosh Kumar; Srikanth, R.; Hiesmayr, Beatrix C.

    2015-10-01

    Correlations exhibited by neutrino oscillations are studied via quantum-information theoretic quantities. We show that the strongest type of entanglement, genuine multipartite entanglement, is persistent in the flavor changing states. We prove the existence of Bell-type nonlocal features, in both its absolute and genuine avatars. Finally, we show that a measure of nonclassicality, dissension, which is a generalization of quantum discord to the tripartite case, is nonzero for almost the entire range of time in the evolution of an initial electron-neutrino. Via these quantum-information theoretic quantities, capturing different aspects of quantum correlations, we elucidate the differences between the flavor types, shedding light on the quantum-information theoretic aspects of the weak force.

  3. A quantum-information theoretic analysis of three-flavor neutrino oscillations. Quantum entanglement, nonlocal and nonclassical features of neutrinos

    Energy Technology Data Exchange (ETDEWEB)

    Banerjee, Subhashish; Alok, Ashutosh Kumar [Indian Institute of Technology Jodhpur, Jodhpur (India); Srikanth, R. [Poornaprajna Institute of Scientific Research, Banglore (India); Hiesmayr, Beatrix C. [University of Vienna, Vienna (Austria)

    2015-10-15

    Correlations exhibited by neutrino oscillations are studied via quantum-information theoretic quantities. We show that the strongest type of entanglement, genuine multipartite entanglement, is persistent in the flavor changing states. We prove the existence of Bell-type nonlocal features, in both its absolute and genuine avatars. Finally, we show that a measure of nonclassicality, dissension, which is a generalization of quantum discord to the tripartite case, is nonzero for almost the entire range of time in the evolution of an initial electron-neutrino. Via these quantum-information theoretic quantities, capturing different aspects of quantum correlations, we elucidate the differences between the flavor types, shedding light on the quantum-information theoretic aspects of the weak force. (orig.)

  4. Triviality - quantum decoherence of Fermionic quantum chromodynamics SU (N{sub c}) in the presence of an external strong U ({infinity}) flavored constant noise field

    Energy Technology Data Exchange (ETDEWEB)

    Botelho, Luiz C.L. [Universidade Federal Fluminense (UFF), Niteroi, RJ (Brazil). Inst. de Matematica. Dept. de Matematica Aplicada]. E-mail: botelho.luiz@ig.com.br

    2008-07-01

    We analyze the triviality-quantum decoherence of Euclidean quantum chromodynamics in the gauge invariant quark current sector in the presence of an external U ({infinity}) flavor constant charged white noise reservoir. (author)

  5. Spin-flavor oscillations of Dirac neutrinos described by relativistic quantum mechanics

    CERN Document Server

    Dvornikov, Maxim

    2010-01-01

    We study spin-flavor oscillations of Dirac neutrinos in matter and magnetic field using the method of relativistic quantum mechanics. We start from the exact solution of the wave equation for a massive neutrino, taking into account external fields. Then we derive an effective Hamiltonian governing neutrino spin-flavor oscillations. We demonstrate the consistency of our approach with the commonly used quantum mechanical method. Our correction to the usual effective Hamiltonian results in the appearance of a new resonance in neutrino oscillations. We discuss applications to spin-flavor neutrino oscillations in the expanding envelope of a supernova. In particular, transitions between right-handed electron neutrinos and sterile neutrinos are studied for a realistic background matter and magnetic field distributions. We also analyze the influence of other factors such as a longitudinal magnetic field, matter polarization, and the non-standard contributions to the neutrino effective potential.

  6. A quantum information theoretic analysis of three flavor neutrino oscillations

    CERN Document Server

    Banerjee, Subhashish; Srikanth, R; Hiesmayr, Beatrix C

    2015-01-01

    Correlations exhibited by neutrino oscillations are studied via quantum information theoretic quantities. We show that the strongest type of entanglement, genuine multipartite entanglement, is persistent in the flavour changing states. We prove the existence of Bell-type nonlocal features, in both its absolute and genuine avatars. Finally, we show that a measure of nonclassicality, dissension, which is a generalization of quantum discord to the tripartite case, is nonzero for almost the entire range of time in the evolution of an initial electron-neutrino. Via these quantum information theoretic quantities capturing different aspects of quantum correlations, we elucidate the differences between the flavour types, shedding light on the quantum-information theoretic aspects of the weak force.

  7. How to Convert a Flavor of Quantum Bit Commitment

    DEFF Research Database (Denmark)

    Crepeau, Claude; Legare, Frédéric; Salvail, Louis

    2001-01-01

    In this paper we show how to convert a statistically binding but computationally concealing quantum bit commitment scheme into a computationally binding but statistically concealing QBC scheme. For a security parameter n, the construction of the statistically concealing scheme requires O(n2......) executions of the statistically binding scheme. As a consequence, statistically concealing but computationally binding quantum bit commitments can be based upon any family of quantum one-way functions. Such a construction is not known to exist in the classical world....

  8. Boltzmann-conserving classical dynamics in quantum time-correlation functions: Matsubara dynamics

    CERN Document Server

    Hele, Timothy J H; Muolo, Andrea; Althorpe, Stuart C

    2015-01-01

    We show that a single change in the derivation of the linearized semiclassical-initial value representation (LSC-IVR or classical Wigner approximation) results in a classical dynamics which conserves the quantum Boltzmann distribution. We rederive the (standard) LSC-IVR approach by writing the (exact) quantum time-correlation function in terms of the normal modes of a free ring-polymer (i.e. a discrete imaginary-time Feynman path), taking the limit that the number of polymer beads $N \\to \\infty$, such that the lowest normal-mode frequencies take their Matsubara values. The change we propose is to truncate the quantum Liouvillian, not explicitly in powers of $\\hbar^2$ at $\\hbar^0$ (which gives back the standard LSC-IVR approximation), but in the normal-mode derivatives corresponding to the lowest Matsubara frequencies. The resulting Matsubara dynamics is inherently classical (since all terms $\\mathcal{O}\\left(\\hbar^{2}\\right)$ disappear from the Matsubara Liouvillian in the limit $N \\to \\infty$), and conserves...

  9. How to Convert a Flavor of Quantum Bit Commitment

    DEFF Research Database (Denmark)

    Crepeau, Claude; Legare, Frédéric; Salvail, Louis

    2001-01-01

    In this paper we show how to convert a statistically binding but computationally concealing quantum bit commitment scheme into a computationally binding but statistically concealing QBC scheme. For a security parameter n, the construction of the statistically concealing scheme requires O(n2) exec...

  10. Light Nuclei and Hypernuclei from Quantum Chromodynamics in the Limit of SU(3) Flavor Symmetry

    CERN Document Server

    Beane, S R; Cohen, S D; Detmold, W; Lin, H W; Luu, T C; Orginos, K; Parreno, A; Savage, M J; Walker-Loud, A

    2012-01-01

    The binding energies of a range of nuclei and hypernuclei with atomic number A <= 4 and strangeness |s| <= 2, including the deuteron, di-neutron, H-dibaryon, 3He, Lambda 3He, Lambda 4He, and Lambda Lambda 4He, are calculated in the limit of flavor-SU(3) symmetry at the physical strange quark mass with quantum chromodynamics (without electromagnetic interactions). The nuclear states are extracted from Lattice QCD calculations performed with n_f=3 dynamical light quarks using an isotropic clover discretization of the quark-action in three lattice volumes of spatial extent L ~ 3.4 fm, 4.5 fm and 6.7 fm, and with a single lattice spacing b ~ 0.145 fm.

  11. Electronic measurement of the Boltzmann constant with a quantum-voltage-calibrated Johnson-noise thermometer

    NARCIS (Netherlands)

    Benz, Samuel; White, D. Rod; Qu, JiFeng; Rogalla, Horst; Tew, Weston

    2010-01-01

    Currently, the CODATA value of the Boltzmann constant is dominated by a single gas-based thermometry measurement with a relative standard uncertainty of 1.8×10−6 [P.J. Mohr, B.N. Taylor, D.B. Newell, CODATA recommended values of the fundamental physical constants: 2006, Rev. Mod. Phys. 80 (2008)

  12. Applications of Canonical transformations and nontrivial vacuum solutions to flavor mixing and critical phenomena in quantum field theory

    Energy Technology Data Exchange (ETDEWEB)

    Mishchenko, Yuriy [North Carolina State Univ., Raleigh, NC (United States)

    2004-12-01

    MISHCHENKO, YURIY. Applications of Canonical Transformations and Nontrivial Vacuum Solutions to flavor mixing and critical phenomena in Quantum Field Theory. (Under the direction of Chueng-Ryong Ji.) In this dissertation we consider two recent applications of Bogoliubov Transformation to the phenomenology of quantum mixing and the theory of critical phenomena. In recent years quantum mixing got in the focus of the searches for New Physics due to its unparalleled sensitivity to SM parameters and indications of neutrino mixing. It was recently suggested that Bogoliubov Transformation may be important in proper definition of the flavor states that otherwise results in problems in perturbative treatment. As first part of this dissertation we investigate this conjecture and develop a complete formulation of such a mixing field theory involving introduction of general formalism, analysis of space-time conversion and phenomenological implications. As second part of this dissertati

  13. Effects of anisotropy and magnetic fields on the specific heat of a quasi-two-dimensional Boltzmann gas in an elliptical parabolic quantum dot

    Institute of Scientific and Technical Information of China (English)

    Zhai Zhi-Yuan; Li Yu-Qi; Pan Xiao-Yin

    2012-01-01

    We investigate the effects due to anisotropy and magnetic field interaction for a quasi-two-dimensional Boltzmann gas in an elliptical parabolic quantum dot.The specific heat is studied with varying temperature,anisotropy,and magnetic field strength.The cases without and with the inclusion of the spin Zeeman interaction are considered.

  14. Hawking radiation and the Stefan-Boltzmann law: The effective radius of the black-hole quantum atmosphere

    CERN Document Server

    Hod, Shahar

    2016-01-01

    It has recently been suggested [S. B. Giddings, Phys. Lett. B {\\bf 754}, 39 (2016)] that the Hawking black-hole radiation spectrum originates from an effective quantum "atmosphere" which extends well outside the black-hole horizon. In particular, comparing the Hawking radiation power of a $(3+1)$-dimensional Schwarzschild black hole of horizon radius $r_{\\text{H}}$ with the familiar Stefan-Boltzmann radiation power of a $(3+1)$-dimensional flat space perfect blackbody emitter, Giddings concluded that the source of the Hawking semi-classical black-hole radiation is a quantum region outside the Schwarzschild black-hole horizon whose effective radius $r_{\\text{A}}$ is characterized by the relation $\\Delta r\\equiv r_{\\text{A}}-r_{\\text{H}}\\sim r_{\\text{H}}$. It is of considerable physical interest to test the general validity of Giddings's intriguing conclusion. To this end, we study the Hawking radiation of $(D+1)$-dimensional Schwarzschild black holes. We find that the dimensionless radii $r_{\\text{A}}/r_{\\text...

  15. Inelastic Quantum Transport in Superlattices: Success and Failure of the Boltzmann Equation

    DEFF Research Database (Denmark)

    Wacker, Andreas; Jauho, Antti-Pekka; Rott, Stephan;

    1999-01-01

    Electrical transport in semiconductor superlattices is studied within a fully self-consistent quantum transport model based on nonequilibrium Green functions, including phonon and impurity scattering. We compute both the drift-velocity-held relation and the momentum distribution function covering...

  16. A self-consistent numerical method for simulation of quantum transport in high electron mobility transistor; part I: The Boltzmann-Poisson-Schrödinger solver

    Directory of Open Access Journals (Sweden)

    Khoie R.

    1996-01-01

    Full Text Available A self-consistent Boltzmann-Poisson-Schrödinger solver for High Electron Mobility Transistor is presented. The quantization of electrons in the quantum well normal to the heterojunction is taken into account by solving the two higher moments of Boltzmann equation along with the Schrödinger and Poisson equations, self-consistently. The Boltzmann transport equation in the form of a current continuity equation and an energy balance equation are solved to obtain the transient and steady-state transport behavior. The numerical instability problems associated with the simulator are presented, and the criteria for smooth convergence of the solutions are discussed. The current-voltage characteristics, transconductance, gate capacitance, and unity-gain frequency of a single quantum well HEMT is discussed. It has been found that a HEMT device with a gate length of 0.7 μ m , and with a gate bias voltage of 0.625 V, has a transconductance of 579.2 mS/mm, which together with the gate capacitance of 19.28 pF/cm, can operate at a maximum unity-gain frequency of 47.8 GHz.

  17. A self-consistent numerical method for simulation of quantum transport in high electron mobility transistor; part I: The Boltzmann-Poisson-Schrödinger solver

    Directory of Open Access Journals (Sweden)

    R. Khoie

    1996-01-01

    Full Text Available A self-consistent Boltzmann-Poisson-Schrödinger solver for High Electron Mobility Transistor is presented. The quantization of electrons in the quantum well normal to the heterojunction is taken into account by solving the two higher moments of Boltzmann equation along with the Schrödinger and Poisson equations, self-consistently. The Boltzmann transport equation in the form of a current continuity equation and an energy balance equation are solved to obtain the transient and steady-state transport behavior. The numerical instability problems associated with the simulator are presented, and the criteria for smooth convergence of the solutions are discussed. The current-voltage characteristics, transconductance, gate capacitance, and unity-gain frequency of a single quantum well HEMT is discussed. It has been found that a HEMT device with a gate length of 0.7 μm, and with a gate bias voltage of 0.625 V, has a transconductance of 579.2 mS/mm, which together with the gate capacitance of 19.28 pF/cm, can operate at a maximum unity-gain frequency of 47.8 GHz.

  18. Neutrino flavor entanglement

    Energy Technology Data Exchange (ETDEWEB)

    Blasone, Massimo [Dipartimento di Fisica, Università degli Studi di Salerno, Via Ponte don Melillo, I-84084 Fisciano (Italy); INFN Sezione di Napoli, Gruppo collegato di Salerno (Italy); Dell' Anno, Fabio; De Siena, Silvio; Illuminati, Fabrizio [Dipartimento di Ingegneria Industriale, Università degli Studi di Salerno, Via Ponte don Melillo, I-84084 Fisciano (Italy)

    2013-04-15

    Neutrino oscillations can be equivalently described in terms of (dynamical) entanglement of neutrino flavor modes. We review previous results derived in the context of quantum mechanics and extend them to the quantum field theory framework, were a rich structure of quantum correlations appears.

  19. Boltzmann-Gibbs states in topological quantum walks and associated many-body systems: fidelity and Uhlmann parallel transport analysis of phase transitions

    Science.gov (United States)

    Mera, Bruno; Vlachou, Chrysoula; Paunković, Nikola; Vieira, Vítor R.

    2017-09-01

    We perform the fidelity analysis for Boltzmann-Gibbs-like states in order to investigate whether the topological order of 1D fermionic systems at zero temperature is maintained at finite temperatures. We use quantum walk protocols that are known to simulate topological phases and the respective quantum phase transitions for chiral symmetric Hamiltonians. Using the standard approaches of the fidelity analysis and the study of edge states, we conclude that no thermal-like phase transitions occur as temperature increases, i.e. the topological behaviour is washed out gradually. We also show that the behaviour of the Uhlmann geometric factor associated to the considered fidelity exhibits the same behaviour as the latter, thus confirming the results obtained using the previously established approaches.

  20. Are there Boltzmann brains in the vacuum

    CERN Document Server

    Davenport, Matthew

    2010-01-01

    "Boltzmann brains" are human brains that arise as thermal or quantum fluctuations and last at least long enough to think a few thoughts. In many scenarios involving universes of infinite size or duration, Boltzmann brains are infinitely more common than human beings who arise in the ordinary way. Thus we should expect to be Boltzmann brains, in contradiction to observation. We discuss here the question of whether Boltzmann brains can arise as quantum fluctuations in the vacuum. Such Boltzmann brains pose an even worse problem than those arising as fluctuations in the thermal state of an exponentially expanding universe. We give several arguments for and against inclusion of vacuum Boltzmann brains in the anthropic reference class, but find neither choice entirely satisfactory.

  1. Quantum Link Models with Many Rishon Flavors and with Many Colors

    CERN Document Server

    Bär, O; Schlittgen, B; Wiese, U J

    2002-01-01

    Quantum link models are a novel formulation of gauge theories in terms of discrete degrees of freedom. These degrees of freedom are described by quantum operators acting in a finite-dimensional Hilbert space. We show that for certain representations of the operator algebra, the usual Yang-Mills action is recovered in the continuum limit. The quantum operators can be expressed as bilinears of fermionic creation and annihilation operators called rishons. Using the rishon representation the quantum link Hamiltonian can be expressed entirely in terms of color-neutral operators. This allows us to study the large N_c limit of this model. In the 't Hooft limit we find an area law for the Wilson loop and a mass gap. Furthermore, the strong coupling expansion is a topological expansion in which graphs with handles and boundaries are suppressed.

  2. Quantum link models with many rishon flavors and with many colors

    Science.gov (United States)

    Bär, O.; Brower, R.; Schlittgen, B.; Wiese, U.-J.

    2002-03-01

    Quantum link models are a novel formulation of gauge theories in terms of discrete degrees of freedom. These degrees of freedom are described by quantum operators acting in a finite-dimensional Hilbert space. We show that for certain representations of the operator algebra, the usual Yang-Mills action is recovered in the continuum limit. The quantum operators can be expressed as bilinears of fermionic creation and annihilation operators called rishons. Using the rishon representation the quantum link Hamiltonian can be expressed entirely in terms of color-neutral operators. This allows us to study the large N tc limit of this model. In the 't Hooft limit we find an area law for the Wilson loop and a mass gap. Furthermore, the strong coupling expansion is a topological expansion in which graphs with handles and boundaries are suppressed.

  3. Skew-Flavored Dark Matter

    CERN Document Server

    Agrawal, Prateek; Fortes, Elaine C F S; Kilic, Can

    2015-01-01

    We explore a novel flavor structure in the interactions of dark matter with the Standard Model. We consider theories in which both the dark matter candidate, and the particles that mediate its interactions with the Standard Model fields, carry flavor quantum numbers. The interactions are skewed in flavor space, so that a dark matter particle does not directly couple to the Standard Model matter fields of the same flavor, but only to the other two flavors. This framework respects Minimal Flavor Violation, and is therefore naturally consistent with flavor constraints. We study the phenomenology of a benchmark model in which dark matter couples to right-handed charged leptons. In large regions of parameter space the dark matter can emerge as a thermal relic, while remaining consistent with the constraints from direct and indirect detection. The collider signatures of this scenario include events with multiple leptons and missing energy. These events exhibit a characteristic flavor pattern that may allow this cla...

  4. Account of Nonpolynomial SU(3)-Breaking Effects By Use of Quantum Groups As Flavor Symmetries

    CERN Document Server

    Gavrilik, A M

    1998-01-01

    Using instead of ordinary flavour symmetries SU(n_f) their corresponding quantum (q-deformed) analogs yields new baryon mass sum rules of extreme accuracy. We show, in the 3-flavour case, that such approach accounts for highly nonlinear (nonpolynomial) SU(3)-breaking effects both in the octet and decuplet baryon masses. A version of this approach is considered that involves q-covariant ingredients in the mass operator. The resulting new 'q-deformed' mass relation (q-MR) is simpler than previously derived q-MRs, but requires, for its empirical validity, a fitting to fix the value of the deformation parameter q. Well-known Gell-Mann--Okubo (GMO) octet mass sum rule is found to result not only from usual SU(3), but also from some exotic symmetry corresponding to the q=-1 (i.e., singular) limit of the q-algebra U_q(su_3).

  5. Flavor Memory

    NARCIS (Netherlands)

    Mojet, Jos; Köster, Ep

    2016-01-01

    Odor, taste, texture, temperature, and pain all contribute to the perception and memory of food flavor. Flavor memory is also strongly linked to the situational aspects of previous encounters with the flavor, but does not depend on the precise recollection of its sensory features as in vision and

  6. A Note on Boltzmann Brains

    CERN Document Server

    Nomura, Yasunori

    2015-01-01

    Understanding the observed arrow of time is equivalent, under general assumptions, to explaining why Boltzmann brains do not overwhelm ordinary observers. It is usually thought that this provides a condition on the decay rate of every cosmologically accessible de Sitter vacuum, and that this condition is determined by the production rate of Boltzmann brains calculated using semiclassical theory built on each such vacuum. We argue, based on a recently developed picture of microscopic quantum gravitational degrees of freedom, that this thinking needs to be modified. In particular, depending on the structure of the fundamental theory, the decay rate of a de Sitter vacuum may not have to satisfy any condition except possibly the one imposed by the Poincare recurrence. The framework discussed here also addresses the question of whether a Minkowski vacuum may produce Boltzmann brains.

  7. Interpretation of Lepton Flavor Violation

    CERN Document Server

    Heeck, Julian

    2016-01-01

    The observation of a charged-lepton flavor violating process would be a definite sign for physics beyond the Standard Model, but would actually only prove that one particular linear combination of lepton numbers is violated. We categorize lepton-flavor-violating processes by their quantum numbers and show how their discovery can be interpreted model-independently, studying in particular which processes are required to establish that the entire flavor group is broken. We also comment on total lepton number, seeing as lepton number violation practically implies lepton flavor violation as well.

  8. QSAR Study on the Flavor Intensity of Flavor Compositions in Foods by Electronegativity Distance Vector and Quantum Chemical Parameters%食品香味化合物香味强度的构效关系

    Institute of Scientific and Technical Information of China (English)

    李鸣建; 冯长君

    2012-01-01

    基于电性距离矢量(Mk)、量化参数(Qi)及最佳变量子集回归建立了12种食品香味分子的4类克拉克值(C)的三元数学模型,这些模型均通过VIF及F检验,具有良好的稳健性.结果表明,分子内的—CH3、CH、—OH、—O—等基团及分子的Ehomo、ΔE对食品香味化合物的克拉克值具有很大影响。%Based on the revision of the electronegativity distance vector(Mk),the quantum chemical parameters(Qi),and the leaps-and-bounds regression,three-parameter mathematics models with four types crockors of twelve flavor molecules in food have been built.These models are robust after they are verified by using VIF test and F test.Results show that the functional groups,such as —CH3,CH,—OH and —O—,and Ehomo,ΔE of a molecule produce great influence on the crockors of the flavor compounds.

  9. Einstein and Boltzmann

    Science.gov (United States)

    Nauenberg, Michael

    2005-03-01

    In 1916 Einstein published a remarkable paper entitled ``On the Quantum Theory of Radiation''ootnotetextA. Einstein ``On the Quantum theory of Radiation,'' Phys. Zeitschrift 18 (1917) 121. First printed in Mitteilungender Physikalischen Gesellschaft Zurich. No 18, 1916. Translated into English in Van der Waerden ``Sources of Quantum Mechanics'' (North Holland 1967) pp. 63-77. in which he obtained Planck's formula for black-body radiation by introducing a new statistical hypothesis for the emmision and absorption of electromagneic radiation based on discrete bundles of energy and momentum which are now called photons. Einstein radiation theory replaced Maxwell's classical theory by a stochastic process which, when properly interpreted, also gives well known statistics of massless particles with even spin.^2 This quantum distribution, however, was not discovered by Einstein but was communicated to him by Bose in 1924. Like Boltzmann's classical counterpart, Einstein's statistical theory leads to an irreversible approach to thermal equilibrium, but because this violates time reversal, Einstein theory can not be regarded as a fundamental theory of physical process.ootnotetextM. Nauenberg ``The evolution of radiation towards thermal equilibrium: A soluble model which illustrates the foundations of statistical mechanics,'' American Journal of Physics 72 (2004) 313 Apparently Einstein and his contemporaries were unaware of this problem, and even today this problem is ignored in contemporary discussions of Einstein's treatment of the black-body spectrum.

  10. Chaotic Boltzmann machines.

    Science.gov (United States)

    Suzuki, Hideyuki; Imura, Jun-ichi; Horio, Yoshihiko; Aihara, Kazuyuki

    2013-01-01

    The chaotic Boltzmann machine proposed in this paper is a chaotic pseudo-billiard system that works as a Boltzmann machine. Chaotic Boltzmann machines are shown numerically to have computing abilities comparable to conventional (stochastic) Boltzmann machines. Since no randomness is required, efficient hardware implementation is expected. Moreover, the ferromagnetic phase transition of the Ising model is shown to be characterised by the largest Lyapunov exponent of the proposed system. In general, a method to relate probabilistic models to nonlinear dynamics by derandomising Gibbs sampling is presented.

  11. Neutrino flavor oscillations in rotating matter

    CERN Document Server

    Dvornikov, Maxim

    2010-01-01

    We study the evolution of the neutrinos system in rotating matter. Neutrinos are supposed to be mixed massive particles interacting with background fermions by means of the electroweak forces. First we find the solutions of wave equations for the neutrino mass eigenstates in matter. Then we study the behavior of neutrino flavor eigenstates in background matter. The problems of neutrino bound states and neutrino flavor oscillations are discussed. We also derive the analog of the quantum mechanical evolution equation for the system of two flavor neutrinos in rotating matter and analyze its solution for the particular initial condition for neutrino flavor eigenstates.

  12. Finite Boltzmann schemes

    NARCIS (Netherlands)

    Sman, van der R.G.M.

    2006-01-01

    In the special case of relaxation parameter = 1 lattice Boltzmann schemes for (convection) diffusion and fluid flow are equivalent to finite difference/volume (FD) schemes, and are thus coined finite Boltzmann (FB) schemes. We show that the equivalence is inherent to the homology of the

  13. QSPR models based on molecular mechanics and quantum chemical calculations. 1. Construction of Boltzmann averaged descriptors for alkanes, alcohols, diols, ethers and cyclic compounds

    DEFF Research Database (Denmark)

    Dyekjær, Jane Dannow; Rasmussen, Kjeld; Jonsdottir, Svava Osk

    2002-01-01

    Values for nine descriptors for QSPR (quantitative structure-property relationships) modeling of physical properties of 96 alkanes, alcohols, ethers, diols, triols and cyclic alkanes and alcohols in conjunction with the program Codessa are presented. The descriptors are Boltzmann-averaged by sele...... der Waals energies and the molecular polarizabilities, which correlate very well with boiling points. Five more simple descriptors that only depend on the molecular constitutional formula are also discussed briefly....

  14. Full Boltzmann equations for leptogenesis including scattering

    CERN Document Server

    Hahn-Woernle, F; Wong, Y Y Y

    2009-01-01

    We study the evolution of a cosmological baryon asymmetry produced via leptogenesis by means of the full classical Boltzmann equations, without the assumption of kinetic equilibrium and including all quantum statistical factors. Beginning with the full mode equations we derive the usual equations of motion for the right-handed neutrino number density and integrated lepton asymmetry, and show explicitly the impact of each assumption on these quantities. For the first time, we investigate also the effects of scattering of the right-handed neutrino with the top quark to leading order in the Yukawa couplings by means of the full Boltzmann equations. We find that in our full Boltzmann treatment the final lepton asymmetry can be suppressed by as much as a factor of 1.5 in the weak wash-out regime (K1), the full Boltzmann treatment and the integrated approach give nearly identical final lepton asymmetries (within 10 % of each other at K>3). Finally, we show that the opposing effects of quantum statistics on decays/i...

  15. Approximate flavor symmetries

    OpenAIRE

    Rašin, Andrija

    1994-01-01

    We discuss the idea of approximate flavor symmetries. Relations between approximate flavor symmetries and natural flavor conservation and democracy models is explored. Implications for neutrino physics are also discussed.

  16. Flavor entanglement in neutrino oscillations in the wave packet description

    Science.gov (United States)

    Blasone, Massimo; Dell'Anno, Fabio; De Siena, Silvio; Illuminati, Fabrizio

    2015-10-01

    The wave packet approach to neutrino oscillations provides an enlightening description of quantum decoherence induced, during propagation, by localization effects. Within this approach, we show that a deeper insight into the dynamical aspects of particle mixing can be obtained if one investigates the behavior of quantum correlations associated to flavor oscillations. By identifying the neutrino three-flavor modes with (suitably defined) three-qubit modes, the exploitation of tools of quantum information theory for mixed states allows a detailed analysis of the dynamical behavior of flavor entanglement during free propagation. This provides further elements leading to a more complete understanding of the phenomenon of neutrino oscillations, and a basis for possible applicative implementations. The analysis is carried out by studying the distribution of the flavor entanglement; to this aim, we perform combined investigations of the behaviors of the two-flavor concurrence and of the logarithmic negativities associated with specific bipartitions of the three flavors.

  17. Quark-flavored scalar dark matter

    CERN Document Server

    Bhattacharya, Bhubanjyoti; Datta, Alakabha; Dupuis, Grace; London, David

    2015-01-01

    It is an intriguing possibility that dark matter (DM) could have flavor quantum numbers like the quarks. We propose and investigate a class of UV-complete models of this kind, in which the dark matter is in a scalar triplet of an SU(3) flavor symmetry, and interacts with quarks via a colored flavor-singlet fermionic mediator. Such mediators could be discovered at the LHC if their masses are $\\sim 1$ TeV. We constrain the DM-mediator couplings using relic abundance, direct detection, and flavor-changing neutral-current considerations. We find that, for reasonable values of its couplings, scalar flavored DM can contribute significantly to the real and imaginary parts of the $B_s$-$\\bar B_s$ mixing amplitude. We further assess the potential for such models to explain the galactic center GeV gamma-ray excess.

  18. Ludwig Boltzmann: Atomic genius

    Energy Technology Data Exchange (ETDEWEB)

    Cercignani, C. [Department of Mathematics, Politecnico di Milano (Italy)]. E-mail: carcer@mate.polimi.it

    2006-09-15

    On the centenary of the death of Ludwig Boltzmann, Carlo Cercignani examines the immense contributions of the man who pioneered our understanding of the atomic nature of matter. The man who first gave a convincing explanation of the irreversibility of the macroscopic world and the symmetry of the laws of physics was the Austrian physicist Ludwig Boltzmann, who tragically committed suicide 100 years ago this month. One of the key figures in the development of the atomic theory of matter, Boltzmann's fame will be forever linked to two fundamental contributions to science. The first was his interpretation of 'entropy' as a mathematically well-defined measure of the disorder of atoms. The second was his derivation of what is now known as the Boltzmann equation, which describes the statistical properties of a gas as made up of molecules. The equation, which described for the first time how a probability can evolve with time, allowed Boltzmann to explain why macroscopic phenomena are irreversible. The key point is that while microscopic objects like atoms can behave reversibly, we never see broken coffee cups reforming because it would involve a long series of highly improbable interactions - and not because it is forbidden by the laws of physics. (U.K.)

  19. New Mechanism of Flavor Symmetry Breaking from Supersymmetric Strong Dynamics

    CERN Document Server

    Carone, C D; Moroi, T; Carone, Christopher D.; Hall, Lawrence J.; Moroi, Takeo

    1997-01-01

    We present a class of supersymmetric models in which flavor symmetries are broken dynamically, by a set of composite flavon fields. The strong dynamics that is responsible for confinement in the flavor sector also drives flavor symmetry breaking vacuum expectation values, as a consequence of a quantum-deformed moduli space. Yukawa couplings result as a power series in the ratio of the confinement to Planck scale, and the fermion mass hierarchy depends on the differing number of preons in different flavor symmetry-breaking operators. We present viable non-Abelian and Abelian flavor models that incorporate this mechanism.

  20. Lepton flavor violating quarkonium decays

    CERN Document Server

    Hazard, Derek E

    2016-01-01

    We argue that lepton flavor violating (LFV) decays $M \\to \\ell_1 \\overline \\ell_2$ of quarkonium states $M$ with different quantum numbers could be used to put constraints on the Wilson coefficients of effective operators describing LFV interactions at low energy scales. We note that restricted kinematics of the two-body quarkonium decays allows us to select operators with particular quantum numbers, significantly reducing the reliance on the single operator dominance assumption that is prevalent in constraining parameters of the effective LFV Lagrangian. We shall also argue that studies of radiative lepton flavor violating $M \\to \\gamma \\ell_1 \\overline \\ell_2$ decays could provide important complementary access to those effective operators.

  1. Lattice Boltzmann Stokesian dynamics.

    Science.gov (United States)

    Ding, E J

    2015-11-01

    Lattice Boltzmann Stokesian dynamics (LBSD) is presented for simulation of particle suspension in Stokes flows. This method is developed from Stokesian dynamics (SD) with resistance and mobility matrices calculated using the time-independent lattice Boltzmann algorithm (TILBA). TILBA is distinguished from the traditional lattice Boltzmann method (LBM) in that a background matrix is generated prior to the calculation. The background matrix, once generated, can be reused for calculations for different scenarios, thus the computational cost for each such subsequent calculation is significantly reduced. The LBSD inherits the merits of the SD where both near- and far-field interactions are considered. It also inherits the merits of the LBM that the computational cost is almost independent of the particle shape.

  2. Gli atomi di Boltzmann

    CERN Document Server

    Lindley, David

    2002-01-01

    Ludwig Boltzmann (1844-1906) è il fisico e matematico austriaco che negli ultimi decenni dell'Ottocento e ancora ai primi del Novecento lottò contro l'opinione dominante tra gli scienziati dell'epoca per affermare la teoria atomica della materia. È noto come con Albert Einstein e fino a oggi la fisica si sia sviluppata e abbia celebrato i propri trionfi lungo le linee anticipate da Boltzmann. La controversia con Mach non riguardava soltanto l'esistenza degli atomi, ma l'intero modo di fare fisica che Boltzmann non riteneva di dover limitare allo studio di quantità misurabili, introducendo invece spiegazioni più elaborate basate su ipotesi più ampie.

  3. Polarised photon and flavoured lepton quantum Boltzmann equations in the early universe; Polarisierte Photon- und geflavourte Lepton-Quantenboltzmanngleichungen im fruehen Universum

    Energy Technology Data Exchange (ETDEWEB)

    Fidler, Christian

    2011-12-16

    Polarisation and Nongaussianity are expected to play a central role in future studies of the cosmic microwave background radiation. Polarisation can be split into a divergence-like E-mode and a curl-like B-mode, of which the later can only be induced by primordial gravitational waves (tensor fluctuations of the metric) at leading order. Nongaussianity is not generated at first order and is directly proportional to the primordial Nongaussianity of inflation. Thus B-mode polarisation and Nongaussianity constrain inflation models directly. While E-mode polarisation has already been detected and is being observed with increasing precision, B-mode polarisation and Nongaussianity remains elusive. The absence of B-mode polarisation when the primordial fluctuations are purely scalar holds, however, only in linear perturbation theory. B-mode polarisation is also generated from scalar sources in second order, which may constitute an important background to the search for primordial gravitational waves. While such an effect would naturally be expected to be relevant at tensor-to-scalar ratios of order 10{sup -5}, which is the size of perturbations in the microwave background, only a full second order calculation can tell whether there are no enhancements. For Nongaussianity the situation is analogous: At second order intrinsic Nongaussianities are induced to the spectrum, which may be an important background to the primordial Nongaussianity. After the full second-order Boltzmann equations for the cosmological evolution of the polarised radiation distribution have become available, I focused on the novel sources to B-mode polarisation that appear in the second-order collision term, which have not been calculated before. In my PHD thesis I developed a numerical code, which solves the second order Boltzmann hierarchy and calculates the C{sub l}{sup BB}-spectrum.

  4. Training Restricted Boltzmann Machines

    DEFF Research Database (Denmark)

    Fischer, Asja

    Restricted Boltzmann machines (RBMs) are probabilistic graphical models that can also be interpreted as stochastic neural networks. Training RBMs is known to be challenging. Computing the likelihood of the model parameters or its gradient is in general computationally intensive. Thus, training...

  5. Lepton flavor violation in flavored gauge mediation

    Energy Technology Data Exchange (ETDEWEB)

    Calibbi, Lorenzo [Universite Libre de Bruxelles, Service de Physique Theorique, Brussels (Belgium); Paradisi, Paride [Universita di Padova, Dipartimento di Fisica e Astronomia, Padua (Italy); INFN Sezione di Padova, Padua (Italy); SISSA, Trieste (Italy); Ziegler, Robert [Sorbonne Universites, UPMC Univ Paris 06, UMR 7589, LPTHE, Paris (France); CNRS, UMR 7589, LPTHE, Paris (France)

    2014-12-01

    We study the anatomy and phenomenology of lepton flavor violation (LFV) in the context of flavored gauge mediation (FGM). Within FGM, the messenger sector couples directly to the MSSM matter fields with couplings controlled by the same dynamics that explains the hierarchies in the SM Yukawas. Although the pattern of flavor violation depends on the particular underlying flavor model, FGM provides a built-in flavor suppression similar to wave function renormalization or SUSY partial compositeness. Moreover, in contrast to these models, there is an additional suppression of left-right flavor transitions by third-generation Yukawas that in particular provides an extra protection against flavor-blind phases. We exploit the consequences of this setup for lepton flavor phenomenology, assuming that the new couplings are controlled by simple U(1) flavor models that have been proposed to accommodate large neutrino mixing angles. Remarkably, it turns out that in the context of FGM these models can pass the impressive constraints from LFV processes and leptonic electric dipole moments (EDMs) even for light superpartners, therefore offering the possibility of resolving the longstanding muon g - 2 anomaly. (orig.)

  6. Neutrino Flavor Oscillations without Flavor Mixing Angles

    CERN Document Server

    Dienes, Keith R; Dienes, Keith R.; Sarcevic, Ina

    2001-01-01

    We demonstrate that sizable neutrino flavor oscillations can be generated in a model with large extra spacetime dimensions even if the physics on the brane is flavor-diagonal, the bulk neutrino theory is flavor-neutral, and the brane/bulk couplings are flavor-blind. We also discuss several phenomenological aspects of the ``bulk-mediated'' neutrino oscillations inherent in this model. [Based on talks given at Neutrino 2000 (Sudbury, Canada, June 2000), the Aspen Workshop on Neutrinos with Mass (Aspen, Colorado, July 2000), and DARK 2000 (Heidelberg, Germany, July 2000).

  7. Neutrinos and flavor symmetries

    Science.gov (United States)

    Tanimoto, Morimitsu

    2015-07-01

    We discuss the recent progress of flavor models with the non-Abelian discrete symmetry in the lepton sector focusing on the θ13 and CP violating phase. In both direct approach and indirect approach of the flavor symmetry, the non-vanishing θ13 is predictable. The flavor symmetry with the generalised CP symmetry can also predicts the CP violating phase. We show the phenomenological analyses of neutrino mixing for the typical flavor models.

  8. Neutrinos and flavor symmetries

    Energy Technology Data Exchange (ETDEWEB)

    Tanimoto, Morimitsu

    2015-07-15

    We discuss the recent progress of flavor models with the non-Abelian discrete symmetry in the lepton sector focusing on the θ{sub 13} and CP violating phase. In both direct approach and indirect approach of the flavor symmetry, the non-vanishing θ{sub 13} is predictable. The flavor symmetry with the generalised CP symmetry can also predicts the CP violating phase. We show the phenomenological analyses of neutrino mixing for the typical flavor models.

  9. Parametric lattice Boltzmann method

    Science.gov (United States)

    Shim, Jae Wan

    2017-06-01

    The discretized equilibrium distributions of the lattice Boltzmann method are presented by using the coefficients of the Lagrange interpolating polynomials that pass through the points related to discrete velocities and using moments of the Maxwell-Boltzmann distribution. The ranges of flow velocity and temperature providing positive valued distributions vary with regulating discrete velocities as parameters. New isothermal and thermal compressible models are proposed for flows of the level of the isothermal and thermal compressible Navier-Stokes equations. Thermal compressible shock tube flows are simulated by only five on-lattice discrete velocities. Two-dimensional isothermal and thermal vortices provoked by the Kelvin-Helmholtz instability are simulated by the parametric models.

  10. Slepton Flavor Physics at Linear Colliders

    CERN Document Server

    Dine, Michael; Thomas, S; Dine, Michael; Grossman, Yuval; Thomas, Scott

    2001-01-01

    If low energy supersymmetry is realized in nature it is possible that a first generation linear collider will only have access to some of the superpartners with electroweak quantum numbers. Among these, sleptons can provide sensitive probes for lepton flavor violation through potentially dramatic lepton violating signals. Theoretical proposals to understand the absence of low energy quark and lepton flavor changing neutral currents are surveyed and many are found to predict observable slepton flavor violating signals at linear colliders. The observation or absence of such sflavor violation will thus provide important indirect clues to very high energy physics. Previous analyses of slepton flavor oscillations are also extended to include the effects of finite width and mass differences.

  11. Gras flavoring substances 24

    NARCIS (Netherlands)

    Smith, R.L.; Waddell, W.J.; Cohen, S.M.; Feron, V.J.; Marnett, L.J.; Portoghese, P.S.; Rietjens, I.M.C.M.; Adams, T.B.; Gavin, C.L.; Mcgowen, M.M.; Taylor, S.V.; Williams, M.C.

    2009-01-01

    The Expert Panel of the Flavor and Extract Manufacturers Association (FEMA) presented safety and usage data on 236 GRAS flavor ingredients in its 24th publication. The publication revealed that these 236 flavor ingredients were of Japanese origin that were granted GRAS status. It revealed that the G

  12. Search for Lepton Flavor Violation with ATLAS

    CERN Document Server

    Blocker, Craig; The ATLAS collaboration

    2016-01-01

    Searches for Lepton Flavor Violation (LFV) are performed with 8- and 13-TeV data from the ATLAS detector at the LHC. Processes considered include LFV decays of Standard model particles (Z and H), LFV decays of potential new particles (Z' and sneutrino), RPV SUSY, heavy Marjorana neutrinos, and Quantum Black Holes.

  13. Natural Flavorings on Meat and Poultry Labels

    Science.gov (United States)

    ... substances or ingredients can be listed as "natural flavor," "flavor," or "flavorings" rather than by a specific common ... substances or ingredients can be listed as "natural flavor," "flavor," or "flavorings" rather than by a specific ...

  14. Fluctuating multicomponent lattice Boltzmann model.

    Science.gov (United States)

    Belardinelli, D; Sbragaglia, M; Biferale, L; Gross, M; Varnik, F

    2015-02-01

    Current implementations of fluctuating lattice Boltzmann equations (FLBEs) describe single component fluids. In this paper, a model based on the continuum kinetic Boltzmann equation for describing multicomponent fluids is extended to incorporate the effects of thermal fluctuations. The thus obtained fluctuating Boltzmann equation is first linearized to apply the theory of linear fluctuations, and expressions for the noise covariances are determined by invoking the fluctuation-dissipation theorem directly at the kinetic level. Crucial for our analysis is the projection of the Boltzmann equation onto the orthonormal Hermite basis. By integrating in space and time the fluctuating Boltzmann equation with a discrete number of velocities, the FLBE is obtained for both ideal and nonideal multicomponent fluids. Numerical simulations are specialized to the case where mean-field interactions are introduced on the lattice, indicating a proper thermalization of the system.

  15. Learning thermodynamics with Boltzmann machines

    Science.gov (United States)

    Torlai, Giacomo; Melko, Roger G.

    2016-10-01

    A Boltzmann machine is a stochastic neural network that has been extensively used in the layers of deep architectures for modern machine learning applications. In this paper, we develop a Boltzmann machine that is capable of modeling thermodynamic observables for physical systems in thermal equilibrium. Through unsupervised learning, we train the Boltzmann machine on data sets constructed with spin configurations importance sampled from the partition function of an Ising Hamiltonian at different temperatures using Monte Carlo (MC) methods. The trained Boltzmann machine is then used to generate spin states, for which we compare thermodynamic observables to those computed by direct MC sampling. We demonstrate that the Boltzmann machine can faithfully reproduce the observables of the physical system. Further, we observe that the number of neurons required to obtain accurate results increases as the system is brought close to criticality.

  16. Multisensory Flavor Priming

    DEFF Research Database (Denmark)

    Dijksterhuis, Garmt Bernard

    2016-01-01

    Flavor is multisensory; several interacting sensory systems-taste, smell, and mouthfeel-together comprise "flavor," making it a cognitively constructed percept rather than a bottom-up sensory one. In this chapter, some of the complications this entails for flavor priming are introduced, along...... with a taxonomy of different priming situations. In food-related applications of flavor, both bottom-up (sensory) as well as top-down (expectations) processes are at play. Most of the complex interactions that this leads to take place outside the awareness of the perceiving subject. A model is presented where...... many, past and current, aspects (sensory, surroundings, social, somatic, sentimental) of a (flavor) perception, together result in the perception of a flavor, its liking. or its choice. This model borrows on ideas from priming, situated/embodied cognition, and (food-related) perception....

  17. Flavored Orbifold GUT

    CERN Document Server

    Adulpravitchai, Adisorn

    2010-01-01

    Orbifold grand unified theories (GUTs) solve several problems in GUT model building. Therefore, it is intriguing to investigate similar constructions in the flavor context. In this letter, we propose that a flavor symmetry might emerge due to orbifold compactification and be simultaneously broken by boundary conditions of the orbifold. The combination of the orbifold parities in gauge and flavor space determines the zero modes. We demonstrate the construction in a 6d supersymmetric (SUSY) SO(10)\\times S_4 orbifold GUT model.

  18. Flavors Fragrance Delivery Systems

    National Research Council Canada - National Science Library

    Quellet, Christian; Schudel, Markus; Ringgenberg, Rudolf

    2001-01-01

    This article focusses on the art of encapsulating flavors and fragrances into carrier materials, emphasizing the scientific challenges imposed by the particular nature of these essentially volatile encapsulants...

  19. Physical scales in the Wigner-Boltzmann equation.

    Science.gov (United States)

    Nedjalkov, M; Selberherr, S; Ferry, D K; Vasileska, D; Dollfus, P; Querlioz, D; Dimov, I; Schwaha, P

    2013-01-01

    The Wigner-Boltzmann equation provides the Wigner single particle theory with interactions with bosonic degrees of freedom associated with harmonic oscillators, such as phonons in solids. Quantum evolution is an interplay of two transport modes, corresponding to the common coherent particle-potential processes, or to the decoherence causing scattering due to the oscillators. Which evolution mode will dominate depends on the scales of the involved physical quantities. A dimensionless formulation of the Wigner-Boltzmann equation is obtained, where these scales appear as dimensionless strength parameters. A notion called scaling theorem is derived, linking the strength parameters to the coupling with the oscillators. It is shown that an increase of this coupling is equivalent to a reduction of both the strength of the electric potential, and the coherence length. Secondly, the existence of classes of physically different, but mathematically equivalent setups of the Wigner-Boltzmann evolution is demonstrated.

  20. Gapless Color-Flavor-Locked Quark Matter

    DEFF Research Database (Denmark)

    Alford, Mark; Kouvaris, Christoforos; Rajagopal, Krishna

    2004-01-01

    In neutral cold quark matter that is sufficiently dense that the strange quark mass M_s is unimportant, all nine quarks (three colors; three flavors) pair in a color-flavor locked (CFL) pattern, and all fermionic quasiparticles have a gap. We argue that as a function of decreasing quark chemical...... potential mu or increasing M_s, there is a quantum phase transition from the CFL phase to a new ``gapless CFL phase'' in which only seven quasiparticles have a gap. The transition occurs where M_s^2/mu is approximately equal to 2*Delta, with Delta the gap parameter. Gapless CFL, like CFL, leaves unbroken...... different from those of the CFL phase, even though its U(1) symmetries are the same. Both gapless quasiparticles have quadratic dispersion relations at the quantum critical point. For values of M_s^2/mu above the quantum critical point, one branch has conventional linear dispersion relations while the other...

  1. Flavor violation in supersymmetric theories with gauged flavor symmetries

    OpenAIRE

    Kobayashi, Tatsuo; Nakano, Hiroaki; Terao, Haruhiko; Yoshioka, Koichi

    2002-01-01

    In this paper we study flavor violation in supersymmetric models with gauged flavor symmetries. There are several sources of flavor violation in these theories. The dominant flavor violation is the tree-level $D$-term contribution to scalar masses generated by flavor symmetry breaking. We present a new approach for suppressing this phenomenologically dangerous effects by separating the flavor-breaking sector from supersymmetry-breaking one. The separation can be achieved in geometrical setups...

  2. ABJM with Flavors and FQHE

    CERN Document Server

    Hikida, Yasuaki; Takayanagi, Tadashi

    2009-01-01

    We add fundamental matters to the N=6 Chern-Simons theory (ABJM theory), and show that D6-branes wrapped over AdS_4 x S^3/Z_2 in type IIA superstring theory on AdS_4 x CP^3 give its dual description with N=3 supersymmetry. We confirm this by the arguments based on R-symmetry, supersymmetry, and brane configuration of ABJM theory. We also analyze the fluctuations of the D6-brane and compute the conformal dimensions of dual operators. In the presence of fractional branes, the ABJM theory can model the fractional quantum Hall effect (FQHE), with RR-fields regarded as the external electric-magnetic field. We show that an addition of the flavor D6-brane describes a class of fractional quantum Hall plateau transition.

  3. Differential hedonic, sensory and behavioral changes associated with flavor-nutrient and flavor-flavor learning.

    Science.gov (United States)

    Yeomans, Martin R; Leitch, Margaret; Gould, Natalie J; Mobini, Sirous

    2008-03-18

    Flavor-flavor and flavor-nutrient associations can modify liking for a flavor CS, while flavor-flavor associations can also modify the sensory experience of the trained flavor. Less is known about how these associations modify behavioral responses to the trained CS. To test this, 60 participants classified as sweet likers were divided into five training conditions with a novel flavor CS. In the flavor-flavor only condition, participants consumed the target CS in a sweetened, low-energy form, with energy (maltodextrin) but no sweetness added in the flavor-nutrient only condition and both energy and sweetness (sucrose) in the combined flavor-flavor, flavor-nutrient condition. Comparison groups controlled for exposure to the CS, and repeat testing. Training was conducted in a hungry state on four non-consecutive days. To test for acquired changes in evaluation and intake, the flavor CS was processed into a low-energy sorbet, which was evaluated and consumed ad libitum on test days before and after training. Liking for the flavor CS increased only in the sucrose-sweetened condition, but intake increased significantly in both high-energy conditions. In contrast, rated sweetness of the sorbet increased in both sucrose-sweetened and aspartame-sweetened conditions. These findings suggest that liking changes were maximal when flavor-flavor and flavor-nutrient associations co-occurred, but that behavioral changes were specific to flavor-nutrient associations.

  4. Flavorings-Related Lung Disease

    Science.gov (United States)

    ... and Products Programs Contact NIOSH NIOSH FLAVORINGS-RELATED LUNG DISEASE Recommend on Facebook Tweet Share Compartir On this ... practices that place workers at risk. Flavorings-Related Lung Disease Microwave popcorn plant and flavoring plant workers have ...

  5. Training Restricted Boltzmann Machines

    DEFF Research Database (Denmark)

    Fischer, Asja

    Restricted Boltzmann machines (RBMs) are probabilistic graphical models that can also be interpreted as stochastic neural networks. Training RBMs is known to be challenging. Computing the likelihood of the model parameters or its gradient is in general computationally intensive. Thus, training...... relies on sampling based approximations of the log-likelihood gradient. I will present an empirical and theoretical analysis of the bias of these approximations and show that the approximation error can lead to a distortion of the learning process. The bias decreases with increasing mixing rate...... of the applied sampling procedure and I will introduce a transition operator that leads to faster mixing. Finally, a different parametrisation of RBMs will be discussed that leads to better learning results and more robustness against changes in the data representation....

  6. Lattice Boltzmann model for nanofluids

    Energy Technology Data Exchange (ETDEWEB)

    Xuan Yimin; Yao Zhengping [Nanjing University of Science and Technology, School of Power Engineering, Nanjing (China)

    2005-01-01

    A nanofluid is a particle suspension that consists of base liquids and nanoparticles and has great potential for heat transfer enhancement. By accounting for the external and internal forces acting on the suspended nanoparticles and interactions among the nanoparticles and fluid particles, a lattice Boltzmann model is proposed for simulating flow and energy transport processes inside the nanofluids. First, we briefly introduce the conventional lattice Boltzmann model for multicomponent systems. Then, we discuss the irregular motion of the nanoparticles and inherent dynamic behavior of nanofluids and describe a lattice Boltzmann model for simulating nanofluids. Finally, we conduct some calculations for the distribution of the suspended nanoparticles. (orig.)

  7. Multisensory Flavor Perception

    NARCIS (Netherlands)

    Piqueras-Fiszman, Betina; Spence, Charles

    2016-01-01

    Multisensory Flavor Perception: From Fundamental Neuroscience Through to the Marketplace provides state-of-the-art coverage of the latest insights from the rapidly-expanding world of multisensory flavor research. The book highlights the various types of crossmodal interactions, such as sound and

  8. Theories of Leptonic Flavor

    DEFF Research Database (Denmark)

    Hagedorn, Claudia

    2017-01-01

    I discuss different theories of leptonic flavor and their capability of describing the features of the lepton sector, namely charged lepton masses, neutrino masses, lepton mixing angles and leptonic (low and high energy) CP phases. In particular, I show examples of theories with an abelian flavor...

  9. Nonequilibrium phenomena in QCD and BEC. Boltzmann and beyond

    Energy Technology Data Exchange (ETDEWEB)

    Stockamp, T.

    2006-12-22

    In chapter 2 we chose the real time formalism to discuss some basic principles in quantum field theory at finite temperature. This enables us to derive the quantum Boltzmann equation from the Schwinger-Dyson series. We then shortly introduce the basic concepts of QCD which are needed to understand the physics of QGP formation. After a detailed account on the bottom-up scenario we show the consistency of this approach by a diagramatical analysis of the relevant Boltzmann collision integrals. Chapter 3 deals with BEC dynamics out of equilibrium. After an introduction to the fundamental theoretical tool - namely the Gross-Pitaevskii equation - we focus on a generalization to finite temperature developed by Zaremba, Nikuni and Griffin (ZNG). These authors use a Boltzmann equation to describe the interactions between condensed and excited atoms and manage in this way to describe condensate growth. We then turn to a discussion on the 2PI effective action and derive equations of motion for a relativistic scalar field theory. In the nonrelativistic limit these equations are shown to coincide with the ZNG theory when a quasiparticle approximation is applied. Finally, we perform a numerical analysis of the full 2PI equations. These remain valid even at strong coupling and far from equilibrium, and thus go far beyond Boltzmann's approach. For simplicity, we limit ourselves to a homogeneous system and present the first 3+1 dimensional study of condensate melting. (orig.)

  10. Flavored Co-annihilations

    CERN Document Server

    Choudhury, Debtosh; Vempati, Sudhir K

    2011-01-01

    In minimal supergravity (mSUGRA) or CMSSM, one of the main co-annihilating partners of the neutralino is the right handed stau, $\\tilde{\\tau}_R$. In the presence of flavor violation in the right handed sector, the co-annihilating partner would be a flavor mixed state. The flavor effect is two fold: (a) It changes the mass of the $\\tilde{\\tau}_{1}$, thus modifying the parameter space of the co-annihilation and (b) flavor violating scatterings could now contribute to the cross-sections in the early universe. In fact, it is shown that for large enough $\\delta \\sim 0.2$, these processes would constitute the dominant channels in co-annihilation regions. The amount of flavor mixing permissible is constrained by flavor violating $\\tau \\to \\mu$ or $\\tau \\to e$ processes. For $\\Delta_{RR}$ mass insertions, the constraints from flavor violation are not strong enough in some regions of the parameter space due to partial cancellations in the amplitudes. In mSUGRA, the regions with cancelations within LFV amplitudes do no...

  11. FormFlavor Manual

    CERN Document Server

    Evans, Jared A

    2016-01-01

    This manual describes the usage and structure of FormFlavor, a Mathematica-based tool for computing a broad list of flavor and CP observables in general new physics models. Based on the powerful machinery of FeynArts and FormCalc, FormFlavor calculates the one-loop Wilson coefficients of the dimension 5 and 6 Standard Model effective Lagrangian entirely from scratch. These Wilson coefficients are then evolved down to the low scale using one-loop QCD RGEs, where they are transformed into flavor and CP observables. The last step is accomplished using a model-independent, largely stand-alone package called FFObservables that is included with FormFlavor. The SM predictions in FFObservables include up-to-date references and accurate current predictions. Using the functions and modular structure provided by FormFlavor, it is straightforward to add new observables. Currently, FormFlavor is set up to perform these calculations for the general, non-MFV MSSM, but in principle it can be generalized to arbitrary FeynArts...

  12. Crystallographic Lattice Boltzmann Method

    Science.gov (United States)

    Namburi, Manjusha; Krithivasan, Siddharth; Ansumali, Santosh

    2016-01-01

    Current approaches to Direct Numerical Simulation (DNS) are computationally quite expensive for most realistic scientific and engineering applications of Fluid Dynamics such as automobiles or atmospheric flows. The Lattice Boltzmann Method (LBM), with its simplified kinetic descriptions, has emerged as an important tool for simulating hydrodynamics. In a heterogeneous computing environment, it is often preferred due to its flexibility and better parallel scaling. However, direct simulation of realistic applications, without the use of turbulence models, remains a distant dream even with highly efficient methods such as LBM. In LBM, a fictitious lattice with suitable isotropy in the velocity space is considered to recover Navier-Stokes hydrodynamics in macroscopic limit. The same lattice is mapped onto a cartesian grid for spatial discretization of the kinetic equation. In this paper, we present an inverted argument of the LBM, by making spatial discretization as the central theme. We argue that the optimal spatial discretization for LBM is a Body Centered Cubic (BCC) arrangement of grid points. We illustrate an order-of-magnitude gain in efficiency for LBM and thus a significant progress towards feasibility of DNS for realistic flows. PMID:27251098

  13. Classical Boltzmann equation and high-temperature QED

    OpenAIRE

    Brandt, F. T.; Ferreira, R. B.; Thuorst, J. F.

    2015-01-01

    The equivalence between thermal field theory and the Boltzmann transport equation is investigated at higher orders in the context of quantum electrodynamics. We compare the contributions obtained from the collisionless transport equation with the high temperature limit of the one-loop thermal Green's function. Our approach employs the representation of the thermal Green's functions in terms of forward scattering amplitudes. The general structure of these amplitudes clearly indicates that the ...

  14. Flavor Programming During Infancy

    OpenAIRE

    Julie A. Mennella; Griffin, Cara E.; Beauchamp, Gary K.

    2004-01-01

    Objective. Although individuals differ substantially in their flavor and food preferences, the source of such differences remains a mystery. The present experimental study was motivated by clinical observations that early experience with formulas establishes subsequent preferences.

  15. Boltzmann babies in the proper time measure

    Energy Technology Data Exchange (ETDEWEB)

    Bousso, Raphael; Bousso, Raphael; Freivogel, Ben; Yang, I-Sheng

    2007-12-20

    After commenting briefly on the role of the typicality assumption in science, we advocate a phenomenological approach to the cosmological measure problem. Like any other theory, a measure should be simple, general, well defined, and consistent with observation. This allows us to proceed by elimination. As an example, we consider the proper time cutoff on a geodesic congruence. It predicts that typical observers are quantum fluctuations in the early universe, or Boltzmann babies. We sharpen this well-known youngness problem by taking into account the expansion and open spatial geometry of pocket universes. Moreover, we relate the youngness problem directly to the probability distribution for observables, such as the temperature of the cosmic background radiation. We consider a number of modifications of the proper time measure, but find none that would make it compatible with observation.

  16. Classical Boltzmann equation and high-temperature QED

    Science.gov (United States)

    Brandt, F. T.; Ferreira, R. B.; Thuorst, J. F.

    2015-02-01

    The equivalence between thermal field theory and the Boltzmann transport equation is investigated at higher orders in the context of quantum electrodynamics. We compare the contributions obtained from the collisionless transport equation with the high temperature limit of the one-loop thermal Green's function. Our approach employs the representation of the thermal Green's functions in terms of forward scattering amplitudes. The general structure of these amplitudes clearly indicates that the physics described by the leading high temperature limit of quantum electrodynamics can be obtained from the Boltzman transport equation. We also present some explicit examples of this interesting equivalence.

  17. Classical Boltzmann equation and high-temperature QED

    CERN Document Server

    Brandt, F T; Thuorst, J F

    2015-01-01

    The equivalence between thermal field theory and the Boltzmann transport equation is investigated at higher orders in the context of Quantum Electrodynamics. We compare the contributions obtained from the collisionless transport equation with the high temperature limit of the one-loop thermal Green's function. Our approach employs the representation of the thermal Green's functions in terms of forward scattering amplitudes. The general structure of these amplitudes clearly indicates that the physics described by the leading high temperature limit of Quantum Electrodynamics can be obtained from the Boltzman transport equation. We also present some explicit examples of this interesting equivalence.

  18. Temperature based Restricted Boltzmann Machines.

    Science.gov (United States)

    Li, Guoqi; Deng, Lei; Xu, Yi; Wen, Changyun; Wang, Wei; Pei, Jing; Shi, Luping

    2016-01-13

    Restricted Boltzmann machines (RBMs), which apply graphical models to learning probability distribution over a set of inputs, have attracted much attention recently since being proposed as building blocks of multi-layer learning systems called deep belief networks (DBNs). Note that temperature is a key factor of the Boltzmann distribution that RBMs originate from. However, none of existing schemes have considered the impact of temperature in the graphical model of DBNs. In this work, we propose temperature based restricted Boltzmann machines (TRBMs) which reveals that temperature is an essential parameter controlling the selectivity of the firing neurons in the hidden layers. We theoretically prove that the effect of temperature can be adjusted by setting the parameter of the sharpness of the logistic function in the proposed TRBMs. The performance of RBMs can be improved by adjusting the temperature parameter of TRBMs. This work provides a comprehensive insights into the deep belief networks and deep learning architectures from a physical point of view.

  19. Scalar triplet flavored leptogenesis: a systematic approach

    CERN Document Server

    Sierra, D Aristizabal; Hambye, Thomas

    2014-01-01

    Type-II seesaw is a simple scenario in which Majorana neutrino masses are generated by the exchange of a heavy scalar electroweak triplet. When endowed with additional heavy fields, such as right-handed neutrinos or extra triplets, it also provides a compelling framework for baryogenesis via leptogenesis. We derive in this context the full network of Boltzmann equations for studying leptogenesis in the flavored regime. To this end we determine the relations which hold among the chemical potentials of the various particle species in the thermal bath. This takes into account the SM Yukawa interactions of both leptons and quarks as well as sphaleron processes which, depending on the temperature, may be classified as faster or slower than the Hubble rate. We find that when leptogenesis is enabled by the presence of an extra triplet, lepton flavor effects allow the production of the $B-L$ asymmetry through lepton number conserving CP asymmetries. This scenario becomes dominant as soon as the triplets couple more t...

  20. Non-Boltzmann behavior from the Boltzmann equation

    NARCIS (Netherlands)

    Hagen, M.H.J.; Lowe, C.P.; Frenkel, D.

    1995-01-01

    We compute the stress autocorrelation function in a two- and three-dimensional system by using the lattice-Boltzmann method. The algebraic long-time behavior ∼t-d/2 in the stress correlation function is clearly observed. The amplitude of this tail is compared with the mode-coupling expression for

  1. Lattice Boltzmann solver of Rossler equation

    Institute of Scientific and Technical Information of China (English)

    GuangwuYAN; LiRUAN

    2000-01-01

    We proposed a lattice Boltzmann model for the Rossler equation. Using a method of multiscales in the lattice Boltzmann model, we get the diffusion reaction as a special case. If the diffusion effect disappeared, we can obtain the lattice Boltzmann solution of the Rossler equation on the mesescopic scale. The numerical results show the method can be used to simulate Rossler equation.

  2. Quantum Gravity effect on the Quark-Gluon Plasma

    CERN Document Server

    Elmashad, I; Abou-Salem, L I; Nabi, Jameel-Un; Tawfik, A

    2012-01-01

    The Generalized Uncertainty Principle (GUP), which has been predicted by various theories of quantum gravity near the Planck scale is implemented on deriving the thermodynamics of ideal Quark-Gluon Plasma (QGP) consisting of two massless quark flavors at the hadron-QGP phase equilibrium and at a vanishing chemical potential. The effective degrees of freedom and MIT bag pressure are utilized to distinguish between the hadronic and partonic phases. We find that GUP makes a non-negligible contribution to all thermodynamic quantities, especially at high temperatures. The asymptotic behavior of corresponding QGP thermodynamic quantities characterized by the Stephan-Boltzmann limit would be approached, when the GUP approach is taken into consideration.

  3. Flavor physics: The flavor physics (P2) working group

    Energy Technology Data Exchange (ETDEWEB)

    Marina Artuso et al.

    2002-12-10

    Flavor physics has recently made striking advances. The Snowmass Flavor Physics Working Group has attempted to identify the important open questions in this field, and to describe the diverse future program that would address them.

  4. The flavor of the Composite Twin Higgs

    Science.gov (United States)

    Csáki, Csaba; Geller, Michael; Telem, Ofri; Weiler, Andreas

    2016-09-01

    The assumption of anarchic quark flavor puts serious stress on composite Higgs models: flavor bounds imply a tuning of a few per-mille (at best) in the Higgs potential. Composite twin Higgs (CTH) models significantly reduce this tension by opening up a new region of parameter space, obtained by raising the coupling among the composites close to the strong coupling limit g ∗ ˜ 4π, thereby raising the scale of composites to around 10 TeV. This does not lead to large tuning in the Higgs potential since the leading quantum corrections are canceled by the twin partners (rather than the composites). We survey the leading flavor bounds on the CTH, which correspond to tree-level Δ F = 2 four-Fermi operators from Kaluza-Klein (KK) Z exchange in the kaon system and 1-loop corrections from KK fermions to the electric dipole moment of the neutron. We provide a parametric estimate for these bounds and also perform a numeric scan of the parameter space using the complete calculation for both quantities. The results confirm our expectation that CTH models accommodate anarchic flavor significantly better than regular composite Higgs (CH) models. Our conclusions apply both to the identical and fraternal twin cases.

  5. The Super Flavor Factory

    Energy Technology Data Exchange (ETDEWEB)

    Bevan, A.J.; /Queen Mary, U. of London

    2007-01-26

    The main physics goals of a high luminosity e{sup +}e{sup -} flavor factory are discussed, including the possibilities to perform detailed studies of the CKM mechanism of quark mixing, and constrain virtual Higgs and Non-Standard Model particle contributions to the dynamics of rare B{sub u,d,s} decays. The large samples of D mesons and {tau} leptons produced at a flavor factory will result in improved sensitivities on D mixing and lepton flavor violation searches, respectively. One can also test fundamental concepts such as lepton universality to much greater precision than existing constraints and improve the precision on tests of CPT from B meson decays. Recent developments in accelerator physics have demonstrated the feasibility to build an accelerator that can achieve luminosities of {Omicron}(10{sup 36} cm{sup -2} s{sup -1}).

  6. Wine flavor and aroma.

    Science.gov (United States)

    Styger, Gustav; Prior, Bernard; Bauer, Florian F

    2011-09-01

    The perception of wine flavor and aroma is the result of a multitude of interactions between a large number of chemical compounds and sensory receptors. Compounds interact and combine and show synergistic (i.e., the presence of one compound enhances the perception of another) and antagonistic (a compound suppresses the perception of another) interactions. The chemical profile of a wine is derived from the grape, the fermentation microflora (in particular the yeast Saccharomyces cerevisiae), secondary microbial fermentations that may occur, and the aging and storage conditions. Grape composition depends on the varietal and clonal genotype of the vine and on the interaction of the genotype and its phenotype with many environmental factors which, in wine terms, are usually grouped under the concept of "terroir" (macro, meso and microclimate, soil, topography). The microflora, and in particular the yeast responsible for fermentation, contributes to wine aroma by several mechanisms: firstly by utilizing grape juice constituents and biotransforming them into aroma- or flavor-impacting components, secondly by producing enzymes that transform neutral grape compounds into flavor-active compounds, and lastly by the de novo synthesis of many flavor-active primary (e.g., ethanol, glycerol, acetic acid, and acetaldehyde) and secondary metabolites (e.g., esters, higher alcohols, fatty acids). This review aims to present an overview of the formation of wine flavor and aroma-active components, including the varietal precursor molecules present in grapes and the chemical compounds produced during alcoholic fermentation by yeast, including compounds directly related to ethanol production or secondary metabolites. The contribution of malolactic fermentation, ageing, and maturation on the aroma and flavor of wine is also discussed.

  7. Gapless color-flavor-locked quark matter.

    Science.gov (United States)

    Alford, Mark; Kouvaris, Chris; Rajagopal, Krishna

    2004-06-04

    In neutral cold quark matter that is so dense that the strange quark mass Ms is unimportant, all three quark flavors pair in a color-flavor locked (CFL) pattern, and all nine fermionic quasiparticles have a gap Delta (or 2Delta). We argue that, as the density decreases (or Ms increases), there is a quantum phase transition (at M(2s/mu approximately 2Delta) to a new "gapless CFL phase" in which only seven quasiparticles have a gap. There is still an unbroken U(1)(Q) gluon/photon, but, unlike CFL, gapless CFL is a Q conductor with gapless (charged) quasiquarks and a nonzero electron density at zero temperature, so its low energy effective theory and astrophysical properties are qualitatively new. At the transition, the dispersion relations of both gapless quasiparticles are quadratic, but for larger M2s/mu, one becomes conventionally linear while the other remains quadratic, up to tiny corrections.

  8. The mystery of flavor

    Science.gov (United States)

    Peccei, R. D.

    1998-02-01

    After outlining some of the issues surrounding the flavor problem, I present three speculative ideas on the origin of families. In turn, families are conjectured to arise from an underlying preon dynamics; from random dynamics at very short distances; or as a result of compactification in higher dimensional theories. Examples and limitations of each of these speculative scenarios are discussed.

  9. Gluino Meets Flavored Naturalness

    CERN Document Server

    Blanke, Monika; Galon, Iftah; Perez, Gilad

    2015-01-01

    We study constraints from LHC run I on squark and gluino masses in the presence of squark flavor violation. Inspired by the concept of `flavored naturalness', we focus on the impact of a non-zero stop-scharm mixing and mass splitting in the right-handed sector. To this end, we recast four searches of the ATLAS and CMS collaborations, dedicated either to third generation squarks, to gluino and squarks of the first two generations, or to charm-squarks. In the absence of extra structure, the mass of the gluino provides an additional source of fine tuning and is therefore important to consider within models of flavored naturalness that allow for relatively light squark states. When combining the searches, the resulting constraints in the plane of the lightest squark and gluino masses are rather stable with respect to the presence of flavor-violation, and do not allow for gluino masses of less than 1.2 TeV and squarks lighter than about 550 GeV. While these constraints are stringent, interesting models with sizabl...

  10. Dihedral flavor symmetries

    Energy Technology Data Exchange (ETDEWEB)

    Blum, Alexander Simon

    2009-06-10

    This thesis deals with the possibility of describing the flavor sector of the Standard Model of Particle Physics (with neutrino masses), that is the fermion masses and mixing matrices, with a discrete, non-abelian flavor symmetry. In particular, mass independent textures are considered, where one or several of the mixing angles are determined by group theory alone and are independent of the fermion masses. To this end a systematic analysis of a large class of discrete symmetries, the dihedral groups, is analyzed. Mass independent textures originating from such symmetries are described and it is shown that such structures arise naturally from the minimization of scalar potentials, where the scalars are gauge singlet flavons transforming non-trivially only under the flavor group. Two models are constructed from this input, one describing leptons, based on the group D{sub 4}, the other describing quarks and employing the symmetry D{sub 14}. In the latter model it is the quark mixing matrix element V{sub ud} - basically the Cabibbo angle - which is at leading order predicted from group theory. Finally, discrete flavor groups are discussed as subgroups of a continuous gauge symmetry and it is shown that this implies that the original gauge symmetry is broken by fairly large representations. (orig.)

  11. Student understanding of the Boltzmann factor

    CERN Document Server

    Smith, Trevor I; Thompson, John R

    2015-01-01

    We present results of our investigation into student understanding of the physical significance and utility of the Boltzmann factor in several simple models. We identify various justifications, both correct and incorrect, that students use when answering written questions that require application of the Boltzmann factor. Results from written data as well as teaching interviews suggest that many students can neither recognize situations in which the Boltzmann factor is applicable, nor articulate the physical significance of the Boltzmann factor as an expression for multiplicity, a fundamental quantity of statistical mechanics. The specific student difficulties seen in the written data led us to develop a guided-inquiry tutorial activity, centered around the derivation of the Boltzmann factor, for use in undergraduate statistical mechanics courses. We report on the development process of our tutorial, including data from teaching interviews and classroom observations on student discussions about the Boltzmann f...

  12. A Pedagogical Approach to the Boltzmann Factor through Experiments and Simulations

    Science.gov (United States)

    Battaglia, O. R.; Bonura, A.; Sperandeo-Mineo, R. M.

    2009-01-01

    The Boltzmann factor is the basis of a huge amount of thermodynamic and statistical physics, both classical and quantum. It governs the behaviour of all systems in nature that are exchanging energy with their environment. To understand why the expression has this specific form involves a deep mathematical analysis, whose flow of logic is hard to…

  13. The supersymmetric flavor problem

    CERN Document Server

    Dimopoulos, Savas K; Dimopoulos, Savas; Sutter, Dave

    1995-01-01

    The supersymmetric SU(3)\\times SU(2)\\times U(1) theory with minimal particle content and general soft supersymmetry breaking terms has 110 physical parameters in its flavor sector: 30 masses, 39 real mixing angles and 41 phases. The absence of an experimental indication for the plethora of new parameters places severe constraints on theories posessing Planck or GUT-mass particles and suggests that theories of flavor conflict with naturalness. We illustrate the problem by studying the processes \\mu \\rightarrow e + \\gamma and K^0 - \\bar{K}^0 mixing which are very sensitive probes of Planckian physics: a single Planck mass particle coupled to the electron or the muon with a Yukawa coupling comparable to the gauge coupling typically leads to a rate for \\mu \\rightarrow e + \\gamma exceeding the present experimental limits. A possible solution is that the messengers which transmit supersymmetry breaking to the ordinary particles are much lighter than M_{\\rm Planck}.

  14. Open Flavor Strong Decays

    Science.gov (United States)

    García-Tecocoatzi, H.; Bijker, R.; Ferretti, J.; Galatà, G.; Santopinto, E.

    2016-10-01

    In this contribution, we discuss the results of a QM calculation of the open-flavor strong decays of **** light nucleon resonances. These are the results of a recent calculation, where we used a modified ^3P_0 model for the amplitudes and the U(7) algebraic model and the hypercentral quark model to predict the baryon spectrum. The decay amplitudes are compared with the existing experimental data.

  15. The mystery of flavor

    Energy Technology Data Exchange (ETDEWEB)

    Peccei, R.D. [Department of Physics and Astronomy, UCLA, Los Angeles, California 90095-1547 (United States)

    1998-02-01

    After outlining some of the issues surrounding the flavor problem, I present three speculative ideas on the origin of families. In turn, families are conjectured to arise from an underlying preon dynamics; from random dynamics at very short distances; or as a result of compactification in higher dimensional theories. Examples and limitations of each of these speculative scenarios are discussed. {copyright} {ital 1998 American Institute of Physics.}

  16. Boltzmann Transport in Hybrid PIC HET Modeling

    Science.gov (United States)

    2015-07-01

    Paper 3. DATES COVERED (From - To) July 2015-July 2015 4. TITLE AND SUBTITLE Boltzmann transport in hybrid PIC HET modeling 5a. CONTRACT NUMBER In...produced a variety of self-consistent electron swarm codes, such as the Magboltz code, focused on directly solving the steady Boltzmann trans-port...Std. 239.18 Boltzmann transport in hybrid PIC HET modeling IEPC-2015- /ISTS-2015-b- Presented at Joint Conference of 30th International

  17. Collective excitations of massive flavor branes

    CERN Document Server

    Itsios, Georgios; Ramallo, Alfonso V

    2016-01-01

    We study the intersections of two sets of D-branes of different dimensionalities. This configuration is dual to a supersymmetric gauge theory with flavor hypermultiplets in the fundamental representation of the gauge group which live on the defect of the unflavored theory determined by the directions common to the two types of branes. One set of branes is dual to the color degrees of freedom, while the other set adds flavor to the system. We work in the quenched approximation, i.e., where the flavor branes are considered as probes, and focus specifically on the case in which the quarks are massive. We study the thermodynamics and the speeds of first and zero sound at zero temperature and non-vanishing chemical potential. We show that the system undergoes a quantum phase transition when the chemical potential approaches its minimal value and we obtain the corresponding non-relativistic critical exponents that characterize its critical behavior. In the case of (2+1)-dimensional intersections, we further study a...

  18. Collective excitations of massive flavor branes

    Science.gov (United States)

    Itsios, Georgios; Jokela, Niko; Ramallo, Alfonso V.

    2016-08-01

    We study the intersections of two sets of D-branes of different dimensionalities. This configuration is dual to a supersymmetric gauge theory with flavor hypermultiplets in the fundamental representation of the gauge group which live on the defect of the unflavored theory determined by the directions common to the two types of branes. One set of branes is dual to the color degrees of freedom, while the other set adds flavor to the system. We work in the quenched approximation, i.e., where the flavor branes are considered as probes, and focus specifically on the case in which the quarks are massive. We study the thermodynamics and the speeds of first and zero sound at zero temperature and non-vanishing chemical potential. We show that the system undergoes a quantum phase transition when the chemical potential approaches its minimal value and we obtain the corresponding non-relativistic critical exponents that characterize its critical behavior. In the case of (2 + 1)-dimensional intersections, we further study alternative quantization and the zero sound of the resulting anyonic fluid. We finally extend these results to non-zero temperature and magnetic field and compute the diffusion constant in the hydrodynamic regime. The numerical results we find match the predictions by the Einstein relation.

  19. The Flavor of the Composite Twin Higgs

    CERN Document Server

    Csaki, Csaba; Telem, Ofri; Weiler, Andreas

    2015-01-01

    The assumption of anarchic quark flavor puts serious stress on composite Higgs models: flavor bounds imply a tuning of a few per-mille (at best) in the Higgs potential. Composite twin Higgs (CTH) models significantly reduce this tension by opening up a new region of parameter space, obtained by raising the coupling among the composites close to the strong coupling limit $g_* \\sim 4\\pi$, thereby raising the scale of composites to around 10 TeV. This does not lead to large tuning in the Higgs potential since the leading quantum corrections are canceled by the twin partners (rather than the composites). We survey the leading flavor bounds on the CTH, which correspond to tree-level $\\Delta F=2$ four-Fermi operators from Kaluza-Klein (KK) Z exchange in the kaon system and 1-loop corrections from KK fermions to the electric dipole moment of the neutron. We provide a parametric estimate for these bounds and also perform a numeric scan of the parameter space using the complete calculation for both quantities. The res...

  20. Flavor Physics in the Quark Sector

    CERN Document Server

    Antonelli, Mario; Bauer, Daniel Adams; Becher, Thomas G.; Beneke, M.; Bevan, Adrian John; Blanke, Monika; Bloise, C.; Bona, Marcella; Bondar, Alexander E.; Bozzi, Concezio; Brod, Joachim; Buras, Andrzej J.; Cabibbo, N.; Carbone, A.; Cavoto, Gianluca; Cirigliano, Vincenzo; Ciuchini, Marco; Coleman, Jonathon P.; Cronin-Hennessy, Daniel P.; Dalseno, J.P.; Davies, C.H.; Di Lodovico, Francesca; Dingfelder, Jochen C.; Dolezal, Zdenek; Donati, Simone; Dungel, W.; Egede, Ulrik; Eigen, Gerald; Faccini, Riccardo; Feldmann, Thorsten; Ferroni, Fernando; Flynn, Jonathan M.; Franco, Enrico; Fujikawa, M.; Furic, Ivan K.; Gambino, Paolo; Gardi, E.; Gershon, Timothy John; Giagu, Stefano; Golowich, Eugene; Goto, Toru; Greub, C.; Grojean, Christophe; Guadagnoli, Diego; Haisch, U.A.; Harr, Robert Francis; Hoang, Andre H.; Hurth, Tobias; Isidori, Gino; Jaffe, D.E.; Juttner, Andreas; Jager, Sebastian; Khodjamirian, Alexander; Koppenburg, Patrick Stefan; Kowalewski, Robert V.; Krokovny, P.; Kronfeld, Andreas Samuel; Laiho, J.; Lanfranchi, G.; Latham, Thomas Edward; Libby, James F.; Limosani, A.; Lopes Pegna, David; Lu, Cai-Dian; Lubicz, Vittorio; Lunghi, Enrico; Luth, Vera G.; Maltman, K.; Marciano, William Joseph; Martin, Emilie Claire Mutsumi; Martinelli, Guido; Martinez-Vidal, Fernando; Masiero, A.; Mateu, V.; Mescia, Federico; Mohanty, Gagan Bihari; Moulson, Matthew; Neubert, Matthias; Neufeld, Helmut; Nishida, Shohei; Offen, Nils; Palutan, M.; Paradisi, Paride; Parsa, Z.; Passemar, Emilie; Patel, M.; Pecjak, B.D.; Petrov, Alexey A.; Pich, Antonio; Pierini, Maurizio; Plaster, Brad; Powell, Brian Alfred; Prell, Soeren Andre; Rademaker, J.; Rescigno, Marco; Ricciardi, Stefania; Robbe, Patrick; Rodrigues, E.; Rotondo, Marcello; Sacco, Roberto; Schilling, Christopher James; Schneider, Olivier; Scholz, Enno E.; Schumm, Bruce Andrew; Schwanda, C.; Schwartz, Alan Jay; Sciascia, Barbara; Serrano, Justine; Shigemitsu, J.; Shipsey, Ian P.J.; Sibidanov, A.L.; Silvestrini, Luca; Simonetto, Franco; Simula, Silvano; Smith, Christopher; Soni, A.; Sonnenschein, Lars; Sordini, Viola; Sozzi, Marco S.; Spadaro, Tommaso; Spradlin, Patrick Michael; Stocchi, Achille; Tantalo, Nazario; Tarantino, Cecilia; Telnov, Alexandre V.; Tonelli, Diego; Towner, I.S.; Trabelsi, K.; Urquijo, Phillip; Van de Water, R.S.; Van Kooten, Richard J.; Virto, Javier; Volpi, Guido; Wanke, R.; Westhoff, Susanne; Wilkinson, G.; Wingate, Matthew Bowen; Xie, Y.; Zupan, Jure

    2010-01-01

    One of the major challenges of particle physics has been to gain an in-depth understanding of the role of quark flavor and measurements and theoretical interpretations of their results have advanced tremendously: apart from masses and quantum numbers of flavor particles, there now exist detailed measurements of the characteristics of their interactions allowing stringent tests of Standard Model predictions. Among the most interesting phenomena of flavor physics is the violation of the CP symmetry that has been subtle and difficult to explore. Till early 1990s observations of CP violation were confined to neutral $K$ mesons, but since then a large number of CP-violating processes have been studied in detail in neutral $B$ mesons. In parallel, measurements of the couplings of the heavy quarks and the dynamics for their decays in large samples of $K, D$, and $B$ mesons have been greatly improved in accuracy and the results are being used as probes in the search for deviations from the Standard Model. In the near...

  1. 7 CFR 58.718 - Flavor ingredients.

    Science.gov (United States)

    2010-01-01

    ... 7 Agriculture 3 2010-01-01 2010-01-01 false Flavor ingredients. 58.718 Section 58.718 Agriculture... Material § 58.718 Flavor ingredients. Flavor ingredients used in process cheese and related products shall... quality or flavor of the finished product. In the case of bulky flavoring ingredients such as pimento, the...

  2. Accurate lineshape spectroscopy and the Boltzmann constant.

    Science.gov (United States)

    Truong, G-W; Anstie, J D; May, E F; Stace, T M; Luiten, A N

    2015-10-14

    Spectroscopy has an illustrious history delivering serendipitous discoveries and providing a stringent testbed for new physical predictions, including applications from trace materials detection, to understanding the atmospheres of stars and planets, and even constraining cosmological models. Reaching fundamental-noise limits permits optimal extraction of spectroscopic information from an absorption measurement. Here, we demonstrate a quantum-limited spectrometer that delivers high-precision measurements of the absorption lineshape. These measurements yield a very accurate measurement of the excited-state (6P1/2) hyperfine splitting in Cs, and reveals a breakdown in the well-known Voigt spectral profile. We develop a theoretical model that accounts for this breakdown, explaining the observations to within the shot-noise limit. Our model enables us to infer the thermal velocity dispersion of the Cs vapour with an uncertainty of 35 p.p.m. within an hour. This allows us to determine a value for Boltzmann's constant with a precision of 6 p.p.m., and an uncertainty of 71 p.p.m.

  3. Quantum

    CERN Document Server

    Al-Khalili, Jim

    2003-01-01

    In this lively look at quantum science, a physicist takes you on an entertaining and enlightening journey through the basics of subatomic physics. Along the way, he examines the paradox of quantum mechanics--beautifully mathematical in theory but confoundingly unpredictable in the real world. Marvel at the Dual Slit experiment as a tiny atom passes through two separate openings at the same time. Ponder the peculiar communication of quantum particles, which can remain in touch no matter how far apart. Join the genius jewel thief as he carries out a quantum measurement on a diamond without ever touching the object in question. Baffle yourself with the bizzareness of quantum tunneling, the equivalent of traveling partway up a hill, only to disappear then reappear traveling down the opposite side. With its clean, colorful layout and conversational tone, this text will hook you into the conundrum that is quantum mechanics.

  4. Quantum Simulator for Transport Phenomena in Fluid Flows

    CERN Document Server

    Mezzacapo, A; Lamata, L; Egusquiza, I L; Succi, S; Solano, E

    2015-01-01

    Transport phenomena are one of the most challenging problems in computational physics. We present a quantum simulator based on pseudospin-boson quantum systems, which is suitable for encoding fluid dynamics problems within a lattice kinetic formalism. This quantum simulator is obtained by exploiting the analogies between Dirac and lattice Boltzmann equations. It is shown that both the streaming and collision processes of lattice Boltzmann dynamics can be implemented with controlled quantum operations, using a heralded quantum protocol to encode non-unitary scattering processes. The proposed simulator is amenable to realization in controlled quantum platforms, such as ion-trap quantum computers or circuit quantum electrodynamics processors.

  5. Flavor Physics in the Quark Sector

    Energy Technology Data Exchange (ETDEWEB)

    Antonelli, Mario; /Frascati; Asner, David Mark; /Carleton U.; Bauer, Daniel Adams; /Imperial Coll., London; Becher, Thomas G.; /Fermilab; Beneke, M.; /Aachen, Tech. Hochsch.; Bevan, Adrian John; /Queen Mary, U. of London; Blanke, Monika; /Munich, Tech. U. /Munich, Max Planck Inst.; Bloise, C.; /Frascati; Bona, Marcella; /CERN; Bondar, Alexander E.; /Novosibirsk, IYF; Bozzi, Concezio; /INFN, Ferrara; Brod, Joachim; /Karlsruhe U.; Buras, Andrzej J.; /Munich, Tech. U.; Cabibbo, N.; /INFN, Rome /Rome U.; Carbone, A.; /INFN, Bologna; Cavoto, Gianluca; /INFN, Rome; Cirigliano, Vincenzo; /Los Alamos; Ciuchini, Marco; /INFN, Rome; Coleman, Jonathon P.; /SLAC; Cronin-Hennessy, Daniel P.; /Minnesota U.; Dalseno, J.P.; /KEK, Tsukuba /Glasgow U. /Queen Mary, U. of London /Freiburg U. /Charles U. /Pisa U. /Vienna, OAW /Imperial Coll., London /Bergen U. /INFN, Rome /Rome U. /Munich, Tech. U. /INFN, Rome /Rome U. /Southampton U. /INFN, Rome /Nara Women' s U. /Florida U. /INFN, Turin /Turin U. /Edinburgh U. /Warwick U. /INFN, Rome /Rome U. /Massachusetts U., Amherst /KEK, Tsukuba /Bern U. /CERN /Munich, Tech. U. /Mainz U., Inst. Phys. /Wayne State U. /Munich, Max Planck Inst. /CERN /Frascati /Brookhaven /Mainz U., Inst. Kernphys. /Munich, Tech. U. /Siegen U. /Imperial Coll., London /Victoria U. /KEK, Tsukuba /Fermilab /Washington U., St. Louis /Frascati /Warwick U. /Indian Inst. Tech., Madras /Melbourne U. /Princeton U. /Beijing, Inst. High Energy Phys. /INFN, Rome /INFN, Rome3 /Fermilab /SLAC /York U., Canada /Brookhaven /UC, Irvine /INFN, Rome /Rome U. /Valencia U., IFIC /INFN, Padua /Padua U. /Munich, Max Planck Inst. /Barcelona U. /Warwick U. /Tata Inst. /Frascati /Mainz U., Inst. Phys. /Vienna U. /KEK, Tsukuba /Orsay, LPT /Frascati /Munich, Tech. U. /Brookhaven /Bern U. /CERN /Mainz U., Inst. Phys. /Wayne State U. /Valencia U., IFIC /CERN /Kentucky U. /Oxford U. /Iowa State U. /Bristol U. /INFN, Rome /Rutherford /CERN /Orsay, LAL /Glasgow U. /INFN, Padua /Queen Mary, U. of London /Texas U. /LPHE, Lausanne /Fermilab /UC, Santa Cruz /Vienna, OAW /Cincinnati U. /Frascati /Orsay, LAL /Ohio State U. /Purdue U. /Novosibirsk, IYF /Frascati /INFN, Rome /Padua U. /INFN, Rome /Bern U. /Karlsruhe U. /Brookhaven /CERN /Paris U., VI-VII /Zurich, ETH /Pisa U. /Frascati /Oxford U. /Orsay, LAL /INFN, Rome2 /INFN, Rome /INFN, Rome3 /Princeton U. /Fermilab /Queen' s U., Kingston /KEK, Tsukuba /Melbourne U. /Brookhaven /Indiana U. /INFN, Rome /Rome U. /Pisa U. /Mainz U., Inst. Phys. /Karlsruhe U. /Oxford U. /Cambridge U., DAMTP /Edinburgh U. /CERN

    2010-08-26

    In the past decade, one of the major challenges of particle physics has been to gain an in-depth understanding of the role of quark flavor. In this time frame, measurements and the theoretical interpretation of their results have advanced tremendously. A much broader understanding of flavor particles has been achieved, apart from their masses and quantum numbers, there now exist detailed measurements of the characteristics of their interactions allowing stringent tests of Standard Model predictions. Among the most interesting phenomena of flavor physics is the violation of the CP symmetry that has been subtle and difficult to explore. In the past, observations of CP violation were confined to neutral K mesons, but since the early 1990s, a large number of CP-violating processes have been studied in detail in neutral B mesons. In parallel, measurements of the couplings of the heavy quarks and the dynamics for their decays in large samples of K,D, and B mesons have been greatly improved in accuracy and the results are being used as probes in the search for deviations from the Standard Model. In the near future, there will be a transition from the current to a new generation of experiments, thus a review of the status of quark flavor physics is timely. This report is the result of the work of the physicists attending the 5th CKM workshop, hosted by the University of Rome 'La Sapienza', September 9-13, 2008. It summarizes the results of the current generation of experiments that is about to be completed and it confronts these results with the theoretical understanding of the field which has greatly improved in the past decade.

  6. Student Understanding of the Boltzmann Factor

    Science.gov (United States)

    Smith, Trevor I.; Mountcastle, Donald B.; Thompson, John R.

    2015-01-01

    We present results of our investigation into student understanding of the physical significance and utility of the Boltzmann factor in several simple models. We identify various justifications, both correct and incorrect, that students use when answering written questions that require application of the Boltzmann factor. Results from written data…

  7. SIMPLE LATTICE BOLTZMANN MODEL FOR TRAFFIC FLOWS

    Institute of Scientific and Technical Information of China (English)

    Yan Guangwu; Hu Shouxin

    2000-01-01

    A lattice Boltzmann model with 5-bit lattice for traffic flows is proposed.Using the Chapman-Enskog expansion and multi-scale technique,we obtain the higher-order moments of equilibrium distribution function.A simple traffic light problem is simulated by using the present lattice Boltzmann model,and the result agrees well with analytical solution.

  8. The Mystery of Flavor

    CERN Document Server

    Peccei, Roberto D

    1998-01-01

    After outlining some of the issues surrounding the flavor problem, I present three speculative ideas on the origin of families. In turn, families are conjectured to arise from an underlying preon dynamics; from random dynamics at very short distances; or as a result of compactification in higher-dimensional theories. Examples and limitations of each of these speculative scenarios are discussed. The twin roles that family symmetries and GUT's can have on the spectrum of quarks and leptons is emphasized, along with the dominant role that the top mass is likely to play in the dynamics of mass generation.

  9. Flavor changing nucleon decay

    Science.gov (United States)

    Maekawa, Nobuhiro; Muramatsu, Yu

    2017-04-01

    Recent discovery of neutrino large mixings implies the large mixings in the diagonalizing matrices of 5 bar fields in SU (5) grand unified theory (GUT), while the diagonalizing matrices of 10 fields of SU (5) are expected to have small mixings like Cabibbo-Kobayashi-Maskawa matrix. We calculate the predictions of flavor changing nucleon decays (FCND) in SU (5), SO (10), and E6 GUT models which have the above features for mixings. We found that FCND can be the main decay mode and play an important role to test GUT models.

  10. Self-induced neutrino flavor conversion without flavor mixing

    CERN Document Server

    Chakraborty, Sovan; Izaguirre, Ignacio; Raffelt, Georg

    2016-01-01

    Neutrino-neutrino refraction in dense media can cause self-induced flavor conversion triggered by collective run-away modes of the interacting flavor oscillators. The growth rates were usually found to be of order a typical vacuum oscillation frequency $\\Delta m^2/2E$. However, even in the simple case of a $\

  11. The Einstein-Boltzmann system and positivity

    CERN Document Server

    Lee, Ho

    2012-01-01

    The Einstein-Boltzmann system is studied, with particular attention to the non-negativity of the solution of the Boltzmann equation. A new parametrization of post-collisional momenta in general relativity is introduced and then used to simplify the conditions on the collision cross-section given by Bancel and Choquet-Bruhat. The non-negativity of solutions of the Boltzmann equation on a given curved spacetime has been studied by Bichteler and by Tadmon. By examining to what extent the results of these authors apply in the framework of Bancel and Choquet-Bruhat, the non-negativity problem for the Einstein-Boltzmann system is resolved for a certain class of scattering kernels. It is emphasized that it is a challenge to extend the existing theory of the Cauchy problem for the Einstein-Boltzmann system so as to include scattering kernels which are physically well-motivated.

  12. Heavy flavor results from CMS

    CERN Document Server

    Ronchese, Paolo

    2017-01-01

    Heavy flavor particles produced in LHC $pp$ collisions at $7, 8,$ and $13~\\mathrm{TeV}$ constitute an excellent opportunity to test the standard model and probe for new physics effects. Recent results by the CMS Collaboration on heavy flavor production and decays are presented.

  13. Peanut composition, flavor, and nutrition

    Science.gov (United States)

    Peanuts are an important source of nutrition worldwide. They are used as food, as an ingredient and as an important source of cooking oil. They are usually roasted before consumption which results in changes in nutrition, texture and flavor. The flavor is important for repeat purchases. This cha...

  14. A Domino Theory of Flavor

    CERN Document Server

    Graham, Peter W

    2010-01-01

    We argue that the fermion masses and mixings are organized in a specific pattern. The approximately equal hierarchies between successive generations, the sizes of the mixing angles, the heaviness of just the top quark, and the approximate down-lepton equality can all be accommodated by many flavor models but can appear ad hoc. We present a simple, predictive mechanism to explain these patterns. All generations are treated democratically and the flavor symmetries are broken collectively by only two allowed couplings in flavor-space, a vector and matrix, with arbitrary O(1) entries. Repeated use of these flavor symmetry breaking spurions radiatively generates the Yukawa couplings with a natural hierarchy. We demonstrate this idea with two models in a split supersymmetric grand unified framework, with minimal additional particle content at the unification scale. Although flavor is generated at the GUT scale, there are several potentially testable predictions. In our minimal model the usual prediction of exact b-...

  15. Quantum Simulator for Transport Phenomena in Fluid Flows.

    Science.gov (United States)

    Mezzacapo, A; Sanz, M; Lamata, L; Egusquiza, I L; Succi, S; Solano, E

    2015-08-17

    Transport phenomena still stand as one of the most challenging problems in computational physics. By exploiting the analogies between Dirac and lattice Boltzmann equations, we develop a quantum simulator based on pseudospin-boson quantum systems, which is suitable for encoding fluid dynamics transport phenomena within a lattice kinetic formalism. It is shown that both the streaming and collision processes of lattice Boltzmann dynamics can be implemented with controlled quantum operations, using a heralded quantum protocol to encode non-unitary scattering processes. The proposed simulator is amenable to realization in controlled quantum platforms, such as ion-trap quantum computers or circuit quantum electrodynamics processors.

  16. Recent patents in flavor controlled release.

    Science.gov (United States)

    Feng, Tao; Xiao, Zuobing; Tian, Huaixiang

    2010-06-01

    In recent years, considerable effort has been directed toward the preparation of flavoring materials specifically, flavor materials have been sought that provide greater flavor intensity coupled with controlled flavor release for long periods of time. Here, some recent patents related to controlled flavor release are reviewed from the angle of its application field, its mechanism and its determination method. It is found that controlled flavor release often depends not only on materials' chemical and physical properties, such as melting point, solution properties and so on, but also on flavors' chemical and physical properties, such as diffusion capacity, its stability in different media etc. Meanwhile, flavor release is also controlled by an electric reducing device according to the flavor generation condition. It might be also known that flavor release rate could be determined by using a purge-and-trap/gas chromatographic procedure. In future, it's necessary to use mathematical model to study the kinetic behavior of controlled flavor release.

  17. Thermal cascaded lattice Boltzmann method

    CERN Document Server

    Fei, Linlin

    2016-01-01

    In this paper, a thermal cascaded lattice Boltzmann method (TCLBM) is developed in combination with the double-distribution-function (DDF) approach. A density distribution function relaxed by the cascaded scheme is employed to solve the flow field, and a total energy distribution function relaxed by the BGK scheme is used to solve temperature field, where two distribution functions are coupled naturally. The forcing terms are incorporated by means of central moments, which is consistent with the previous force scheme [Premnath \\emph{et al.}, Phys. Rev. E \\textbf{80}, 036702 (2009)] but the derivation is more intelligible and the evolution process is simpler. In the method, the viscous heat dissipation and compression work are taken into account, the Prandtl number and specific-heat ratio are adjustable, the external force is considered directly without the Boussinesq assumption, and the low-Mach number compressible flows can also be simulated. The forcing scheme is tested by simulating a steady Taylor-Green f...

  18. An Infinite Restricted Boltzmann Machine.

    Science.gov (United States)

    Côté, Marc-Alexandre; Larochelle, Hugo

    2016-07-01

    We present a mathematical construction for the restricted Boltzmann machine (RBM) that does not require specifying the number of hidden units. In fact, the hidden layer size is adaptive and can grow during training. This is obtained by first extending the RBM to be sensitive to the ordering of its hidden units. Then, with a carefully chosen definition of the energy function, we show that the limit of infinitely many hidden units is well defined. As with RBM, approximate maximum likelihood training can be performed, resulting in an algorithm that naturally and adaptively adds trained hidden units during learning. We empirically study the behavior of this infinite RBM, showing that its performance is competitive to that of the RBM, while not requiring the tuning of a hidden layer size.

  19. Binary Tetrahedral Flavor Symmetry

    CERN Document Server

    Eby, David A

    2013-01-01

    A study of the T' Model and its variants utilizing Binary Tetrahedral Flavor Symmetry. We begin with a description of the historical context and motivations for this theory, together with some conceptual background for added clarity, and an account of our theory's inception in previous works. Our model endeavors to bridge two categories of particles, leptons and quarks, a unification made possible by the inclusion of additional Higgs particles, shared between the two fermion sectors and creating a single coherent system. This is achieved through the use of the Binary Tetrahedral symmetry group and an investigation of the Tribimaximal symmetry evidenced by neutrinos. Our work details perturbations and extensions of this T' Model as we apply our framework to neutrino mixing, quark mixing, unification, and dark matter. Where possible, we evaluate model predictions against experimental results and find excellent matching with the atmospheric and reactor neutrino mixing angles, an accurate prediction of the Cabibb...

  20. Pruning Boltzmann networks and hidden Markov models

    DEFF Research Database (Denmark)

    Pedersen, Morten With; Stork, D.

    1996-01-01

    We present sensitivity-based pruning algorithms for general Boltzmann networks. Central to our methods is the efficient calculation of a second-order approximation to the true weight saliencies in a cross-entropy error. Building upon previous work which shows a formal correspondence between linear...... Boltzmann chains and hidden Markov models (HMMs), we argue that our method can be applied to HMMs as well. We illustrate pruning on Boltzmann zippers, which are equivalent to two HMMs with cross-connection links. We verify that our second-order approximation preserves the rank ordering of weight saliencies...

  1. Multiphase lattice Boltzmann methods theory and application

    CERN Document Server

    Huang, Haibo; Lu, Xiyun

    2015-01-01

    Theory and Application of Multiphase Lattice Boltzmann Methods presents a comprehensive review of all popular multiphase Lattice Boltzmann Methods developed thus far and is aimed at researchers and practitioners within relevant Earth Science disciplines as well as Petroleum, Chemical, Mechanical and Geological Engineering. Clearly structured throughout, this book will be an invaluable reference  on the current state of all popular multiphase Lattice Boltzmann Methods (LBMs). The advantages and disadvantages of each model are presented in an accessible manner to enable the reader to choose the

  2. Disentangling heavy flavor at colliders

    Science.gov (United States)

    Ilten, Philip; Rodd, Nicholas L.; Thaler, Jesse; Williams, Mike

    2017-09-01

    We propose two new analysis strategies for studying charm and beauty quarks at colliders. The first strategy is aimed at testing the kinematics of heavy-flavor quarks within an identified jet. Here, we use the SoftDrop jet-declustering algorithm to identify two subjets within a large-radius jet, using subjet flavor tagging to test the heavy-quark splitting functions of QCD. For subjets containing a J /ψ or ϒ , this declustering technique can also help probe the mechanism for quarkonium production. The second strategy is aimed at isolating heavy-flavor production from gluon splitting. Here, we introduce a new FlavorCone algorithm, which smoothly interpolates from well-separated heavy-quark jets to the gluon-splitting regime where jets overlap. Because of its excellent ability to identify charm and beauty hadrons, the LHCb detector is ideally suited to pursue these strategies, though similar measurements should also be possible at ATLAS and CMS. Together, these SoftDrop and FlavorCone studies should clarify a number of aspects of heavy-flavor physics at colliders, and provide crucial information needed to improve heavy-flavor modeling in parton-shower generators.

  3. Vacuum Alignment with more Flavors

    DEFF Research Database (Denmark)

    Ryttov, Thomas

    2014-01-01

    _f=2$ and $N_f=3$ we reproduce earlier known results including the Dashen phase with spontaneous violation of the combined charge conjugation and parity symmetry, CP. For $N_f=4$ we find regions with and without spontaneous CP violation. We then generalize to an arbitrary number of flavors. Here...... it is shown that at the point where $N_f-1$ flavors are degenerate with positive mass $m>0$ and the mass of the $N_f$'th flavor becomes negative and equal to $-m$ CP breaks spontaneously....

  4. Flavor-diagonal CP violation

    Science.gov (United States)

    Batell, Brian

    2012-09-01

    The focus of this brief review is on new physics (NP) sources of CP violation, especially related to the flavor-diagonal phenomena of electric dipole moments (EDMs) of elementary particles and atoms. Using weak scale supersymmetry as an example, we illustrate various aspects of the "new physics CP-problem". We also explore the interplay between flavor-changing and flavor-diagonal CP violation in the context of the recent hints from the Tevatron for new sources of CP violation in the B-meson systems.

  5. An introduction to the theory of the Boltzmann equation

    CERN Document Server

    Harris, Stewart

    2011-01-01

    Boltzmann's equation (or Boltzmann-like equations) appears extensively in such disparate fields as laser scattering, solid-state physics, nuclear transport, and beyond the conventional boundaries of physics and engineering, in the fields of cellular proliferation and automobile traffic flow. This introductory graduate-level course for students of physics and engineering offers detailed presentations of the basic modern theory of Boltzmann's equation, including representative applications using both Boltzmann's equation and the model Boltzmann equations developed within the text. It emphasizes

  6. Flavor variability and flavor stability of U.S.-produced whole milk powder.

    Science.gov (United States)

    Lloyd, M A; Drake, M A; Gerard, P D

    2009-09-01

    Flavor variability and stability of U.S.-produced whole milk powder (WMP) are important parameters for maximizing quality and global competitiveness of this commodity. This study characterized flavor and flavor stability of domestic WMP. Freshly produced (flavors based on selected volatiles. All WMP were between 2% and 3% moisture and 0.11 and 0.25 water activity initially. WMP varied in initial flavor profiles with varying levels of cooked, milk fat, and sweet aromatic flavors. During storage, grassy and painty flavors developed while sweet aromatic flavor intensities decreased (P flavors were confirmed by increased levels (P flavor (R(2)= 0.38, P flavor (R(2)= 0.61, P flavor and flavor stability.

  7. Studies on the Stable Rice Flavoring Agent

    Institute of Scientific and Technical Information of China (English)

    MaoJinsheng; YaoHuiyuan; 等

    2000-01-01

    The reaction flavor as the stabilized rice flavor enhancer,whice is in initial stage at home presently,was made by studying the essence of forming aromatic rice scented and imitating ways to form process flavor in natural foods.The steam volatile of flavoring rice was determined by sensory evaluation and GC-MS analysis.

  8. Studies on the Stable Rice Flavoring Agent

    Institute of Scientific and Technical Information of China (English)

    Mao Jinsheng; Yao Huiyuan; Zhang Hui

    2000-01-01

    The reaction flavor as the stabilized rice flavor enhancer, whice is in initial stage at home presently, was made by studying the essence of forming aromatic rice scented and imitating ways to form process flavor in natural foods .The steam volatile of flavoring rice was determined by sensory evaluation and GC-MS analysis.

  9. Handbook of Fruit and Vegetable Flavors

    OpenAIRE

    Hui, YH; Chen, F; Nollet, LML; Guiné, Raquel; Martín-Belloso, O.; Mínguez-Mosquera, MI; Poliyath, D; Pessoa, FLP; Le Quéré, J-L; Sidhu, JS; N. Sinha; Stanfield, P

    2010-01-01

    Acting as chemical messengers for olfactory cells, food flavor materials are organic compounds that give off a strong, typically pleasant smells. Handbook of Fruit and Vegetable Flavors explores the flavor science and technology of fruits and vegetables, spices, and oils by first introducing specific flavors and their commercialization, then detailing the technical aspects, including biology, biotechnology, chemistry, physiochemistry, processing, analysis, extraction, commodities, and require...

  10. Flux and Hall states in ABJM with dynamical flavors

    CERN Document Server

    Bea, Yago; Lippert, Matthew; Ramallo, Alfonso V; Zoakos, Dimitrios

    2014-01-01

    We study the physics of probe D6-branes with quantized internal worldvolume flux in the ABJM background with unquenched massless flavors. This flux breaks parity in the (2+1)-dimensional gauge theory and allows quantum Hall states. Parity breaking is also explicitly demonstrated via the helicity dependence of the meson spectrum. We obtain general expressions for the conductivities, both in the gapped Minkowski embeddings and in the compressible black hole ones. These conductivities depend on the flux and contain a contribution from the dynamical flavors which can be regarded as an effect of intrinsic disorder due to quantum fluctuations of the fundamentals. We present an explicit, analytic family of supersymmetric solutions with nonzero charge density, electric, and magnetic fields.

  11. Student understanding of the Boltzmann factor

    Science.gov (United States)

    Smith, Trevor I.; Mountcastle, Donald B.; Thompson, John R.

    2015-12-01

    [This paper is part of the Focused Collection on Upper Division Physics Courses.] We present results of our investigation into student understanding of the physical significance and utility of the Boltzmann factor in several simple models. We identify various justifications, both correct and incorrect, that students use when answering written questions that require application of the Boltzmann factor. Results from written data as well as teaching interviews suggest that many students can neither recognize situations in which the Boltzmann factor is applicable nor articulate the physical significance of the Boltzmann factor as an expression for multiplicity, a fundamental quantity of statistical mechanics. The specific student difficulties seen in the written data led us to develop a guided-inquiry tutorial activity, centered around the derivation of the Boltzmann factor, for use in undergraduate statistical mechanics courses. We report on the development process of our tutorial, including data from teaching interviews and classroom observations of student discussions about the Boltzmann factor and its derivation during the tutorial development process. This additional information informed modifications that improved students' abilities to complete the tutorial during the allowed class time without sacrificing the effectiveness as we have measured it. These data also show an increase in students' appreciation of the origin and significance of the Boltzmann factor during the student discussions. Our findings provide evidence that working in groups to better understand the physical origins of the canonical probability distribution helps students gain a better understanding of when the Boltzmann factor is applicable and how to use it appropriately in answering relevant questions.

  12. Boltzmann and the art of flying

    CERN Document Server

    Dahmen, Silvio R

    2007-01-01

    One of the less known facets of Ludwig Boltzmann was that of an advocate of Aviation, one of the most challenging technological problems of his times. Boltzmann followed closely the studies of pioneers like Otto Lilienthal in Berlin, and during a lecture on a prestigious conference he vehemently defended further investments in the area. In this article I discuss his involvement with Aviation, his role in its development and his correspondence with two flight pioneers, Otto Lilienthal e Wilhelm Kress.

  13. Lattice Boltzmann approach for complex nonequilibrium flows.

    Science.gov (United States)

    Montessori, A; Prestininzi, P; La Rocca, M; Succi, S

    2015-10-01

    We present a lattice Boltzmann realization of Grad's extended hydrodynamic approach to nonequilibrium flows. This is achieved by using higher-order isotropic lattices coupled with a higher-order regularization procedure. The method is assessed for flow across parallel plates and three-dimensional flows in porous media, showing excellent agreement of the mass flow with analytical and numerical solutions of the Boltzmann equation across the full range of Knudsen numbers, from the hydrodynamic regime to ballistic motion.

  14. Formal analogy between the Dirac equation in its Majorana form and the discrete-velocity version of the Boltzmann kinetic equation.

    Science.gov (United States)

    Fillion-Gourdeau, F; Herrmann, H J; Mendoza, M; Palpacelli, S; Succi, S

    2013-10-18

    We point out a formal analogy between the Dirac equation in Majorana form and the discrete-velocity version of the Boltzmann kinetic equation. By a systematic analysis based on the theory of operator splitting, this analogy is shown to turn into a concrete and efficient computational method, providing a unified treatment of relativistic and nonrelativistic quantum mechanics. This might have potentially far-reaching implications for both classical and quantum computing, because it shows that, by splitting time along the three spatial directions, quantum information (Dirac-Majorana wave function) propagates in space-time as a classical statistical process (Boltzmann distribution).

  15. Expectation values of flavor-neutrino currents in field theoretical approach to oscillation problem -- formulation

    CERN Document Server

    Fujii, Kanji; Fujii, Kanji; Shimomura, Takashi

    2004-01-01

    As a possible approach to the neutrino oscillation on the basis of quantum field theory, the expectation values of the flavor-neutrino currents are investigated by employing the finite-time transition matrix in the interaction representation. Such expectation values give us in the simplest form a possible way of treating the neutrino oscillation without recourse to any one flavor-neutrino states. The present paper is devoted to presenting the formulation and the main structures of the relevant expectation values.

  16. Expectation values of flavor-neutrino currents in field theoretical approach to oscillation problem -- formulation

    OpenAIRE

    FUJII, Kanji; Shimomura, Takashi

    2004-01-01

    As a possible approach to the neutrino oscillation on the basis of quantum field theory, the expectation values of the flavor-neutrino currents are investigated by employing the finite-time transition matrix in the interaction representation. Such expectation values give us in the simplest form a possible way of treating the neutrino oscillation without recourse to any one flavor-neutrino states. The present paper is devoted to presenting the formulation and the main structures of the relevan...

  17. Flavored model building

    Energy Technology Data Exchange (ETDEWEB)

    Hagedorn, C.

    2008-01-15

    In this thesis we discuss possibilities to solve the family replication problem and to understand the observed strong hierarchy among the fermion masses and the diverse mixing pattern of quarks and leptons. We show that non-abelian discrete symmetries which act non-trivially in generation space can serve as profound explanation. We present three low energy models with the permutation symmetry S{sub 4}, the dihedral group D{sub 5} and the double-valued group T' as flavor symmetry. The T' model turns out to be very predictive, since it explains tri-bimaximal mixing in the lepton sector and, moreover, leads to two non-trivial relations in the quark sector, {radical}((m{sub d})/(m{sub s}))= vertical stroke V{sub us} vertical stroke and {radical}((m{sub d})/(m{sub s}))= vertical stroke (V{sub td})/(V{sub ts}) vertical stroke. The main message of the T' model is the observation that the diverse pattern in the quark and lepton mixings can be well-understood, if the flavor symmetry is not broken in an arbitrary way, but only to residual (non-trivial) subgroups. Apart from leading to deeper insights into the origin of the fermion mixings this idea enables us to perform systematic studies of large classes of discrete groups. This we show in our study of dihedral symmetries D{sub n} and D'{sub n}. As a result we find only five distinct (Dirac) mass matrix structures arising from a dihedral group, if we additionally require partial unification of either left-handed or left-handed conjugate fermions and the determinant of the mass matrix to be non-vanishing. Furthermore, we reveal the ability of dihedral groups to predict the Cabibbo angle {theta}{sub C}, i.e. vertical stroke V{sub us(cd)} vertical stroke = cos((3{pi})/(7)), as well as maximal atmospheric mixing, {theta}{sub 23}=({pi})/(4), and vanishing {theta}{sub 13} in the lepton sector. (orig.)

  18. Approximate Flavor Symmetry in Supersymmetric Model

    OpenAIRE

    Tao, Zhijian

    1998-01-01

    We investigate the maximal approximate flavor symmetry in the framework of generic minimal supersymmetric standard model. We consider the low energy effective theory of the flavor physics with all the possible operators included. Spontaneous flavor symmetry breaking leads to the approximate flavor symmetry in Yukawa sector and the supersymmetry breaking sector. Fermion mass and mixing hierachies are the results of the hierachy of the flavor symmetry breaking. It is found that in this theory i...

  19. Neutrino Masses and Flavor Oscillations

    Science.gov (United States)

    Wang, Yifang; Xing, Zhi-Zhong

    2016-10-01

    This essay is intended to provide a brief description of the peculiar properties of neutrinos within and beyond the standard theory of weak interactions. The focus is on the flavor oscillations of massive neutrinos, from which one has achieved some striking knowledge about their mass spectrum and flavor mixing pattern. The experimental prospects towards probing the absolute neutrino mass scale, possible Majorana nature and CP-violating effects, will also be addressed.

  20. Flavoring exposure in food manufacturing.

    Science.gov (United States)

    Curwin, Brian D; Deddens, Jim A; McKernan, Lauralynn T

    2015-05-01

    Flavorings are substances that alter or enhance the taste of food. Workers in the food-manufacturing industry, where flavorings are added to many products, may be exposed to any number of flavoring compounds. Although thousands of flavoring substances are in use, little is known about most of these in terms of worker health effects, and few have occupational exposure guidelines. Exposure assessment surveys were conducted at nine food production facilities and one flavor manufacturer where a total of 105 area and 74 personal samples were collected for 13 flavoring compounds including five ketones, five aldehydes, and three acids. The majority of the samples were below the limit of detection (LOD) for most compounds. Diacetyl had eight area and four personal samples above the LOD, whereas 2,3-pentanedione had three area samples above the LOD. The detectable values ranged from 25-3124 ppb and 15-172 ppb for diacetyl and 2,3-pentanedione respectively. These values exceed the proposed National Institute for Occupational Safety and Health (NIOSH) recommended exposure limit for these compounds. The aldehydes had the most detectable samples, with each of them having >50% of the samples above the LOD. Acetaldehyde had all but two samples above the LOD, however, these samples were below the OSHA PEL. It appears that in the food-manufacturing facilities surveyed here, exposure to the ketones occurs infrequently, however levels above the proposed NIOSH REL were found. Conversely, aldehyde exposure appears to be ubiquitous.

  1. Why Boltzmann Brains Don't Fluctuate Into Existence From the De Sitter Vacuum

    CERN Document Server

    Boddy, Kimberly K; Pollack, Jason

    2015-01-01

    Many modern cosmological scenarios feature large volumes of spacetime in a de Sitter vacuum phase. Such models are said to be faced with a "Boltzmann Brain problem" - the overwhelming majority of observers with fixed local conditions are random fluctuations in the de Sitter vacuum, rather than arising via thermodynamically sensible evolution from a low-entropy past. We argue that this worry can be straightforwardly avoided in the Many-Worlds (Everett) approach to quantum mechanics, as long as the underlying Hilbert space is infinite-dimensional. In that case, de Sitter settles into a truly stationary quantum vacuum state. While there would be a nonzero probability for observing Boltzmann-Brain-like fluctuations in such a state, "observation" refers to a specific kind of dynamical process that does not occur in the vacuum (which is, after all, time-independent). Observers are necessarily out-of-equilibrium physical systems, which are absent in the vacuum. Hence, the fact that projection operators corresponding...

  2. The strong coupling constant of QCD with four flavors

    Energy Technology Data Exchange (ETDEWEB)

    Tekin, Fatih

    2010-11-01

    In this thesis we study the theory of strong interaction Quantum Chromodynamics on a space-time lattice (lattice QCD) with four flavors of dynamical fermions by numerical simulations. In the early days of lattice QCD, only pure gauge field simulations were accessible to the computational facilities and the effects of quark polarization were neglected. The so-called fermion determinant in the path integral was set to one (quenched approximation). The reason for this approximation was mainly the limitation of computational power because the inclusion of the fermion determinant required an enormous numerical effort. However, for full QCD simulations the virtual quark loops had to be taken into account and the development of new machines and new algorithmic techniques made the so-called dynamical simulations with at least two flavors possible. In recent years, different collaborations studied lattice QCD with dynamical fermions. In our project we study lattice QCD with four degenerated flavors of O(a) improved Wilson quarks in the Schroedinger functional scheme and calculate the energy dependence of the strong coupling constant. For this purpose, we determine the O(a) improvement coefficient c{sub sw} with four flavors and use this result to calculate the step scaling function of QCD with four flavors which describes the scale evolution of the running coupling. Using a recursive finite-size technique, the {lambda} parameter is determined in units of a technical scale L{sub max} which is an unambiguously defined length in the hadronic regime. The coupling {alpha}{sub SF} of QCD in the so-called Schroedinger functional scheme is calculated over a wide range of energies non-perturbatively and compared with 2-loop and 3-loop perturbation theory as well as with the non-perturbative result for only two flavors. (orig.)

  3. Potential Hazards in Smoke-Flavored Fish

    Institute of Scientific and Technical Information of China (English)

    LIN Hong; JIANG Jie; LI Donghua

    2008-01-01

    Smoking is widely used in fish processing for the color and flavor. Smoke flavorings have evolved as a successful alter- native to traditional smoking. The hazards of the fish products treated by liquid-smoking process are discussed in this review. The smoke flavoring is one important ingredient in the smoke-flavored fish. This paper gives the definition of smoke flavorings and the hazard of polycyclic aromatic hydrocarbons (PAHs) residue in the smoke flavorings on the market. It gives also an assessment of chemical hazards such as carcinogenic PAHs, especially Benzo-[a]pyrene, as well as biological hazards such as Listeria monocyto- genes, Clostridium botulinum, histamine and parasites in smoke-flavored fish. The limitations in regulations or standards are dis- cussed. Smoke flavored fish have lower content of PAHs as compared with the traditional smoking techniques if the PAHs residue in smoke flavorings is controlled by regulations or standards.

  4. Contextual control of flavor neophobia.

    Science.gov (United States)

    De la Casa, L G; Díaz, E

    2013-06-13

    The role of context in the retrieval of learned information has been widely analyzed in the associative learning domain. However, evidence about the effect of context on flavor memory retrieval is more limited. We have carried out four experiments with rats testing for possible interactions between neophobia habituation and the context in which flavors are presented, by manipulating prior experience with contexts. Our results point to the relevance of context familiarity for the establishment and recovery of a safe taste memory trace. More specifically, the use of the animals' home cages as experimental context favored neophobia habituation (Experiments 1A and 2), reduced dopamine levels induced by administration of the dopamine D1-like receptor antagonist SCH-23390 disrupted neophobia habituation when tested in presence of a new context (Experiment 1B), and testing in the animal's home cage increases the amount of flavor consumed, even when such flavor had a previous history of aversive conditioning (Experiment 3). We propose that exploring context without aversive consequences generates a safe memory trace of such context that becomes in the basis of increased flavor consumption.

  5. Quantum mechanics of leptogenesis

    Energy Technology Data Exchange (ETDEWEB)

    Mendizabal Cofre, Sebastian

    2010-08-15

    Leptogenesis is an attractive mechanism that simultaneously explains the matterantimatter asymmetry of the universe as well as the small masses of the standard model neutrinos. This is performed by naturally extending the standard model with the insertion of right handed neutrinos. Leptogenesis is usually studied via the semi-classical Boltzmann equations. However, these equations suffer from basic conceptual problems and they lack to include many quantum phenomena, such as memory effects and coherence oscillations. In order to fully describe leptogenesis, a full quantum treatment is required. In this work we show how to address leptogenesis systematically in a purely quantum way. We start by studying scalar and fermionic excitations in a plasma by solving the Kadanoff-Baym equations of motion for Green's functions, with significant emphasis on the initial and boundary conditions of the solutions. We compute analytically the asymmetry generated from the departure of equilibrium of a particle in a thermal bath. The comparison with the semi-classical Boltzmann approach is also analysed, leading to a qualitative difference between both methods. The non-locality of the Kadanoff-Baym equations shows how off-shell effects can have a huge impact on the generated asymmetry, effects that cannot be studied with the Boltzmann equations. The insertion of standard model interactions like the decay widths for the particles of the bath is also discussed. We explain how with a trivial insertion of these widths we regain locality on the processes, i.e. we regain the Boltzmann equations. (orig.)

  6. Wigner distribution functions for complex dynamical systems: the emergence of the Wigner-Boltzmann equation.

    Science.gov (United States)

    Sels, Dries; Brosens, Fons

    2013-10-01

    The equation of motion for the reduced Wigner function of a system coupled to an external quantum system is presented for the specific case when the external quantum system can be modeled as a set of harmonic oscillators. The result is derived from the Wigner function formulation of the Feynman-Vernon influence functional theory. It is shown how the true self-energy for the equation of motion is connected with the influence functional for the path integral. Explicit expressions are derived in terms of the bare Wigner propagator. Finally, we show under which approximations the resulting equation of motion reduces to the Wigner-Boltzmann equation.

  7. Lepton-Flavor Violating Mediators

    CERN Document Server

    Galon, Iftah; Tanedo, Philip

    2016-01-01

    We present a framework where dark matter interacts with the Standard Model through a light, spin-0 mediator that couples chirally to pairs of different-flavor leptons. This flavor violating final state weakens bounds on new physics coupled to leptons from terrestrial experiments and cosmic-ray measurements. As an example, we apply this framework to construct a model for the Fermi-LAT excess of GeV $\\gamma$-rays from the galactic center. We comment on the viability of this portal for self-interacting dark matter explanations of small scale structure anomalies and embeddings in flavor models. Models of this type are shown to be compatible with the muon anomalous magnetic moment anomaly. We review current experimental constraints and identify possible future theoretical and experimental directions.

  8. Flavor Symmetries in Extra Dimensions

    CERN Document Server

    Aranda, A; Aranda, Alfredo

    2002-01-01

    We present a model of flavor based on a discrete local symmetry that reproduces all fermion masses and mixing angles both in the quark and lepton sectors. The particle content of the model is that of the standard model plus an additional flavon field. All the fields propagate in a fifth universal extra dimension and the flavor scale is associated with the cutoff of the 5D theory which is $\\sim 10$ TeV. The Yukawa matrices as well as the Majorana mass matrix for the neutrinos are generated by higher dimension operators involving the flavon field. When the flavon field acquires a vacuum expectation value it breaks the flavor symmetry and thus generates the Yukawa couplings. The model is consistent with the nearly bimaximal solution to the solar and atmospheric neutrino deficits.

  9. Flavor mixings in flux compactifications

    Science.gov (United States)

    Buchmuller, Wilfried; Schweizer, Julian

    2017-04-01

    A multiplicity of quark-lepton families can naturally arise as zero modes in flux compactifications. The flavor structure of quark and lepton mass matrices is then determined by the wave function profiles of the zero modes. We consider a supersymmetric S O (10 )×U (1 ) model in six dimensions compactified on the orbifold T2/Z2 with Abelian magnetic flux. A bulk 16 -plet charged under the U (1 ) provides the quark-lepton generations whereas two uncharged 10 -plets yield two Higgs doublets. Bulk anomaly cancellation requires the presence of additional 16 - and 10 -plets. The corresponding zero modes form vectorlike split multiplets that are needed to obtain a successful flavor phenomenology. We analyze the pattern of flavor mixings for the two heaviest families of the Standard Model and discuss possible generalizations to three and more generations.

  10. Phantom cosmology and Boltzmann brains problem

    CERN Document Server

    Astashenok, Artyom V; Yurov, Valerian V

    2013-01-01

    We consider the well-known Boltzmann brains problem in frames of simple phantom energy models with little rip, big rip and big freeze singularity. It is showed that these models (i) satisfy to observational data and (ii) may be free from Boltzmann brains problem. The human observers in phantom models can exist only in during for a certain period $tBoltzmann brains problem doesn't appear. The bounds on model parameters derived from such requirement don't contradict to allowable range from observational data.

  11. Boltzmann-Electron Model in Aleph.

    Energy Technology Data Exchange (ETDEWEB)

    Hughes, Thomas Patrick; Hooper, Russell

    2014-11-01

    We apply the Boltzmann-electron model in the electrostatic, particle-in-cell, finite- element code Aleph to a plasma sheath. By assuming a Boltzmann energy distribution for the electrons, the model eliminates the need to resolve the electron plasma fre- quency, and avoids the numerical "grid instability" that can cause unphysical heating of electrons. This allows much larger timesteps to be used than with kinetic electrons. Ions are treated with the standard PIC algorithm. The Boltzmann-electron model re- quires solution of a nonlinear Poisson equation, for which we use an iterative Newton solver (NOX) from the Trilinos Project. Results for the spatial variation of density and voltage in the plasma sheath agree well with an analytic model

  12. How good is the Lattice Boltzmann method?

    Science.gov (United States)

    Kocheemoolayil, Joseph; Barad, Michael; Kiris, Cetin

    2016-11-01

    Conflicting opinions exist in literature regarding how efficient the lattice Boltzmann method is relative to high-order finite difference approximations of the Navier-Stokes equations on Cartesian meshes, especially at high Mach numbers. We address the question from the pragmatic viewpoint of a practitioner. Dispersion, dissipation and aliasing errors of various lattice Boltzmann models are systematically quantified. The number of floating point operations and memory required for a desired accuracy level are carefully compared for the two numerical methods. Turbulent kinetic energy budgets for several standard test cases such as the decaying Taylor-Green vortex problem are used to evaluate how effective the stabilization mechanisms necessary for lattice Boltzmann method at high Reynolds numbers are. Detailed comments regarding the cyclomatic complexity of the underlying software, scalability of the underlying algorithm on state-of-the-art high-performance computing platforms and wall clock times and relative accuracy for selected simulations conducted using the two approaches are also made.

  13. Hierarchical Boltzmann simulations and model error estimation

    Science.gov (United States)

    Torrilhon, Manuel; Sarna, Neeraj

    2017-08-01

    A hierarchical simulation approach for Boltzmann's equation should provide a single numerical framework in which a coarse representation can be used to compute gas flows as accurately and efficiently as in computational fluid dynamics, but a subsequent refinement allows to successively improve the result to the complete Boltzmann result. We use Hermite discretization, or moment equations, for the steady linearized Boltzmann equation for a proof-of-concept of such a framework. All representations of the hierarchy are rotationally invariant and the numerical method is formulated on fully unstructured triangular and quadrilateral meshes using a implicit discontinuous Galerkin formulation. We demonstrate the performance of the numerical method on model problems which in particular highlights the relevance of stability of boundary conditions on curved domains. The hierarchical nature of the method allows also to provide model error estimates by comparing subsequent representations. We present various model errors for a flow through a curved channel with obstacles.

  14. Adaptive Lattice Boltzmann Model for Compressible Flows

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    A new lattice Boltzmann model for compressible flows is presented. The main difference from the standard lattice Boltzmann model is that the particle velocities are no longer constant, but vary with the mean velocity and internal energy. The adaptive nature of the particle velocities permits the mean flow to have a high Mach number. The introduction of a particle potential energy makes the model suitable for a perfect gas with arbitrary specific heat ratio. The Navier-Stokes (N-S) equations are derived by the Chapman-Enskog method from the BGK Boltzmann equation. Two kinds of simulations have been carried out on the hexagonal lattice to test the proposed model. One is the Sod shock-tube simulation. The other is a strong shock of Mach number 5.09 diffracting around a corner.

  15. Flavor symmetries and fermion masses

    Energy Technology Data Exchange (ETDEWEB)

    Rasin, A.

    1994-04-01

    We introduce several ways in which approximate flavor symmetries act on fermions and which are consistent with observed fermion masses and mixings. Flavor changing interactions mediated by new scalars appear as a consequence of approximate flavor symmetries. We discuss the experimental limits on masses of the new scalars, and show that the masses can easily be of the order of weak scale. Some implications for neutrino physics are also discussed. Such flavor changing interactions would easily erase any primordial baryon asymmetry. We show that this situation can be saved by simply adding a new charged particle with its own asymmetry. The neutrality of the Universe, together with sphaleron processes, then ensures a survival of baryon asymmetry. Several topics on flavor structure of the supersymmetric grand unified theories are discussed. First, we show that the successful predictions for the Kobayashi-Maskawa mixing matrix elements, V{sub ub}/V{sub cb} = {radical}m{sub u}/m{sub c} and V{sub td}/V{sub ts} = {radical}m{sub d}/m{sub s}, are a consequence of a large class of models, rather than specific properties of a few models. Second, we discuss how the recent observation of the decay {beta} {yields} s{gamma} constrains the parameter space when the ratio of the vacuum expectation values of the two Higgs doublets, tan{Beta}, is large. Finally, we discuss the flavor structure of proton decay. We observe a surprising enhancement of the branching ratio for the muon mode in SO(10) models compared to the same mode in the SU(5) model.

  16. Contact allergy to toothpaste flavors

    DEFF Research Database (Denmark)

    Andersen, Klaus Ejner

    1978-01-01

    Toothpaste flavors are fragrance mixtures. Oil of peppermint and spearmint, carvone and anethole are ingredients with a low sensitizing potential, but they are used in almost every brand of toothpaste and caused seven cases of contact allergy in a 6-year period at Gentofte Hospital. Toothpaste...... reactions are rare due to several reasons; local factors in the mouth, the low sensitizing potential of the flavors generally used, and the lack of recognition. It is emphasized that the toothpaste battery for patch testing has to be relevant and changed according to the consumers' and manufacturers' taste...

  17. Flavored axion-monodromy inflation

    Science.gov (United States)

    Ramos, Raymundo

    2016-10-01

    In this talk we consider the breaking of a flavor-symmetric potential as the origin of the pseudo-Goldstone bosons responsible for inflation. The breaking of flavor symmetry generates the fermion mass hierarchy while the breaking of accidental symmetries leads to pseudo-Goldstone bosons with an axion-monodromy potential appropriate for inflation. We deal with models where the inflaton is a linear combination of two fields. We will show that the mechanism by which inflation ends depends on the choice of parameters.

  18. Contact allergy to toothpaste flavors

    DEFF Research Database (Denmark)

    Andersen, Klaus Ejner

    1978-01-01

    Toothpaste flavors are fragrance mixtures. Oil of peppermint and spearmint, carvone and anethole are ingredients with a low sensitizing potential, but they are used in almost every brand of toothpaste and caused seven cases of contact allergy in a 6-year period at Gentofte Hospital. Toothpaste...... reactions are rare due to several reasons; local factors in the mouth, the low sensitizing potential of the flavors generally used, and the lack of recognition. It is emphasized that the toothpaste battery for patch testing has to be relevant and changed according to the consumers' and manufacturers' taste...

  19. Flavor Models In Extra Dimensions

    CERN Document Server

    Valadez, J

    2005-01-01

    This thesis consists of implementing flavor symmetries in the context of extra dimensions. To the particle content of the Standard Model we add an additional scalar (flavon) field and we assume that all the fields propagate in the extra-dimensional space-time. When the flavon field acquires a vacuum expectation value the flavor symmetry is effectively broken thus generating the Yukawa textures associated with the particles. An specific model in 5D that reproduces all fermion masses, mixing angles and ratios is presented.

  20. Kinetic Boltzmann, Vlasov and Related Equations

    CERN Document Server

    Sinitsyn, Alexander; Vedenyapin, Victor

    2011-01-01

    Boltzmann and Vlasov equations played a great role in the past and still play an important role in modern natural sciences, technique and even philosophy of science. Classical Boltzmann equation derived in 1872 became a cornerstone for the molecular-kinetic theory, the second law of thermodynamics (increasing entropy) and derivation of the basic hydrodynamic equations. After modifications, the fields and numbers of its applications have increased to include diluted gas, radiation, neutral particles transportation, atmosphere optics and nuclear reactor modelling. Vlasov equation was obtained in

  1. Grid refinement for entropic lattice Boltzmann models.

    Science.gov (United States)

    Dorschner, B; Frapolli, N; Chikatamarla, S S; Karlin, I V

    2016-11-01

    We propose a multidomain grid refinement technique with extensions to entropic incompressible, thermal, and compressible lattice Boltzmann models. Its validity and accuracy are assessed by comparison to available direct numerical simulation and experiment for the simulation of isothermal, thermal, and viscous supersonic flow. In particular, we investigate the advantages of grid refinement for the setups of turbulent channel flow, flow past a sphere, Rayleigh-Bénard convection, as well as the supersonic flow around an airfoil. Special attention is paid to analyzing the adaptive features of entropic lattice Boltzmann models for multigrid simulations.

  2. Grid refinement for entropic lattice Boltzmann models

    CERN Document Server

    Dorschner, B; Chikatamarla, S S; Karlin, I V

    2016-01-01

    We propose a novel multi-domain grid refinement technique with extensions to entropic incompressible, thermal and compressible lattice Boltzmann models. Its validity and accuracy are accessed by comparison to available direct numerical simulation and experiment for the simulation of isothermal, thermal and viscous supersonic flow. In particular, we investigate the advantages of grid refinement for the set-ups of turbulent channel flow, flow past a sphere, Rayleigh-Benard convection as well as the supersonic flow around an airfoil. Special attention is payed to analyzing the adaptive features of entropic lattice Boltzmann models for multi-grid simulations.

  3. Fast lattice Boltzmann solver for relativistic hydrodynamics.

    Science.gov (United States)

    Mendoza, M; Boghosian, B M; Herrmann, H J; Succi, S

    2010-07-01

    A lattice Boltzmann formulation for relativistic fluids is presented and numerically validated through quantitative comparison with recent hydrodynamic simulations of relativistic fluids. In order to illustrate its capability to handle complex geometries, the scheme is also applied to the case of a three-dimensional relativistic shock wave, generated by a supernova explosion, impacting on a massive interstellar cloud. This formulation opens up the possibility of exporting the proven advantages of lattice Boltzmann methods, namely, computational efficiency and easy handling of complex geometries, to the context of (mildly) relativistic fluid dynamics at large, from quark-gluon plasmas up to supernovae with relativistic outflows.

  4. Celebrating Cercignani's conjecture for the Boltzmann equation

    KAUST Repository

    Villani, Cédric

    2011-01-01

    Cercignani\\'s conjecture assumes a linear inequality between the entropy and entropy production functionals for Boltzmann\\'s nonlinear integral operator in rarefied gas dynamics. Related to the field of logarithmic Sobolev inequalities and spectral gap inequalities, this issue has been at the core of the renewal of the mathematical theory of convergence to thermodynamical equilibrium for rarefied gases over the past decade. In this review paper, we survey the various positive and negative results which were obtained since the conjecture was proposed in the 1980s. © American Institute of Mathematical Sciences.

  5. Oscillation and Mixing Among the Three Neutrino Flavors

    CERN Document Server

    Weiler, Thomas J

    2013-01-01

    With the educated, interested non-specialist as the target audience, we overview what is known and not known about contemporary neutrino physics. Theory tells us that neutrinos are the second-most common particle in the Universe, behind only the quanta of radiation called photons. Almost a trillion neutrinos per second enter each human eyeball, and yet we do not see them; these neutrinos, in roughly equal numbers, are emanations from our Sun and relics of the hot "big bang" era of the early Universe. Much of what we know about neutrinos, and hope to learn in the future, is derived from a unique feature of neutrinos -- "oscillation" among neutrino "flavor" types. An initial neutrino flavor will in general oscillate into another flavor as the neutrino propagates in space and time. Oscillations are a quantum mechanical phenomenon. One of the wonders of neutrinos is that their quantum mechanics may be observed over large distances, even astronomically large. We begin this article with neutrino phenomenology in te...

  6. Flavor issues in the Higgs sector

    CERN Document Server

    Díaz-Cruz, J L

    2002-01-01

    We discuss the conditions under which the flavor structure of SUSY model induces, either radiatively or through mixing, new flavor-violating interactions in the Higgs sector. The radiative flavor mediation mechanism is illustrated using the minimal SUSY extension of the SM (MSSM) with generic trilinear A-terms, and applied to evaluate the corrections to Lepton Flavor-Violating (LFV) and Flavor-Conserving (LFC) Higgs vertices. Flavor mediation through mixing is discussed within the context of an $E_6$-inspired multi-Higgs model, suplemented with an abelian flavor symmetry. Tevatron and LHC can probe the flavor structure of these models through the detection of the LFV Higgs mode h->tau mu, while NLC can perform high-precision tests of the LFC mode h ->tau+ tau-.

  7. Fluctuating lattice Boltzmann method for the diffusion equation.

    Science.gov (United States)

    Wagner, Alexander J; Strand, Kyle

    2016-09-01

    We derive a fluctuating lattice Boltzmann method for the diffusion equation. The derivation removes several shortcomings of previous derivations for fluctuating lattice Boltzmann methods for hydrodynamic systems. The comparative simplicity of this diffusive system highlights the basic features of this first exact derivation of a fluctuating lattice Boltzmann method.

  8. Multispeed models in off-lattice Boltzmann simulations

    NARCIS (Netherlands)

    Bardow, A.; Karlin, I.V.; Gusev, A.A.

    2008-01-01

    The lattice Boltzmann method is a highly promising approach to the simulation of complex flows. Here, we realize recently proposed multispeed lattice Boltzmann models [S. Chikatamarla et al., Phys. Rev. Lett. 97 190601 (2006)] by exploiting the flexibility offered by off-lattice Boltzmann methods.

  9. A Fluctuating Lattice Boltzmann Method for the Diffusion Equation

    CERN Document Server

    Wagner, Alexander J

    2016-01-01

    We derive a fluctuating lattice Boltzmann method for the diffusion equation. The derivation removes several shortcomings of previous derivations for fluctuating lattice Boltzmann methods for hydrodynamic systems. The comparative simplicity of this diffusive system highlights the basic features of this first exact derivation of a fluctuating lattice Boltzmann method.

  10. Flavor Dependence of the S-parameter

    DEFF Research Database (Denmark)

    Di Chiara, Stefano; Pica, Claudio; Sannino, Francesco

    2011-01-01

    of flavors, colors and matter representation. We show that S, normalized to the number of flavors, increases as we decrease the number of flavors and gives a direct measure of the anomalous dimension of the mass of the fermions. Our findings support the conjecture presented in [arXiv:1006.0207 [hep......-lat

  11. Genetic mapping of flavor loci in wheat

    Science.gov (United States)

    Flavor is an essential aspect of consumer acceptance, especially with whole-wheat foods. However, little if any selection is performed during breeding of new wheat cultivars for flavor, and little is known regarding the genetics of flavor. Our research is aimed at identifying genes that impart eithe...

  12. Minimal flavor violation and anomalous top decays

    NARCIS (Netherlands)

    Faller, S.; Mannel, T.; Gadatsch, S.

    2013-01-01

    Top-quark physics at the LHC may open a window to physics beyond the Standard Model and even lead us to an understanding of the phenomenon of "flavor." However, current flavor data is a strong hint that no "new physics" with a generic flavor structure can be expected at the TeV scale. In turn, if

  13. Flavor physics of leptons and dipole moments

    NARCIS (Netherlands)

    Raidal, M.; van der Schaaf, A.; Bigi, I.; Mangano, M. L.; Semertzidis, Y.; Abel, S.; Albino, S.; Antusch, S.; Arganda, E.; Bajc, B.; Banerjee, S.; Biggio, C.; Blanke, M.; Bonivento, W.; Branco, G. C.; Bryman, D.; Buras, A. J.; Calibbi, L.; Ceccucci, A.; Chankowski, P. H.; Davidson, S.; Deandrea, A.; DeMille, D. P.; Deppisch, F.; Diaz, M. A.; Duling, B.; Felcini, M.; Fetscher, W.; Forti, F.; Ghosh, D. K.; Giffels, M.; Giorgi, M. A.; Giudice, G.; Goudzovskij, E.; Han, T.; Harris, P. G.; Herrero, M. J.; Hisano, J.; Holt, R. J.; Huitu, K.; Ibarra, A.; Igonkina, O.; Ilakovac, A.; Imazato, J.; Isidori, G.; Joaquim, F. R.; Kadastik, M.; Kajiyama, Y.; King, S. F.; Kirch, K.; Kozlov, M. G.; Krawczyk, M.; Kress, T.; Lebedev, O.; Lusiani, A.; Ma, E.; Marchiori, G.; Masiero, A.; Masina, I.; Moreau, G.; Mori, T.; Muntel, M.; Neri, N.; Nesti, F.; Onderwater, C. J. G.; Paradisi, P.; Petcov, S. T.; Picariello, M.; Porretti, V.; Poschenrieder, A.; Pospelov, M.; Rebane, L.; Rebelo, M. N.; Ritz, A.; Roberts, L.; Romanino, A.; Roney, J. M.; Rossi, A.; Rueckl, R.; Senjanovic, G.; Serra, N.; Shindou, T.; Takanishi, Y.; Tarantino, C.; Teixeira, A. M.; Torrente-Lujan, E.; Turzynski, K. J.; Underwood, T. E. J.; Vempati, S. K.; Vives, O.

    2008-01-01

    This chapter of the report of the "Flavor in the era of the LHC" Workshop discusses the theoretical, phenomenological and experimental issues related to flavor phenomena in the charged lepton sector and in flavor conserving CP-violating processes. We review the current experimental limits and the ma

  14. Minimal flavor violation and anomalous top decays

    NARCIS (Netherlands)

    Faller, S.; Mannel, T.; Gadatsch, S.

    2013-01-01

    Top-quark physics at the LHC may open a window to physics beyond the Standard Model and even lead us to an understanding of the phenomenon of "flavor." However, current flavor data is a strong hint that no "new physics" with a generic flavor structure can be expected at the TeV scale. In turn, if th

  15. Transport theory for a two-flavor color superconductor

    CERN Document Server

    Litim, Daniel F; Litim, Daniel F.; Manuel, Cristina

    2001-01-01

    QCD with two light quark flavors at high baryonic density and low temperature is a color superconductor. The diquark condensate partially breaks the SU(3) gauge symmetry down to an SU(2) subgroup. We study thermal fluctuations of the superconductor for temperatures below the gap. These are described by a simple transport equation, linked to a quasiparticle behavior of the thermal excitations of the condensate. When solved in the collisionless limit and close to equilibrium, it gives rise to the ``hard superconducting loop'' (HSL) effective theory for the unbroken SU(2) gauge fields with momenta much smaller than the gap. This theory describes Debye screening and Landau damping of the gauge fields in the presence of the diquark condensate. We also explain how our effective theory follows to one-loop order from quantum field theory. Our approach provides a convenient starting point for the computation of transport coefficients of the two-flavor color superconductor.

  16. Flavor Analysis of Nucleon, Δ , and Hyperon Electromagnetic Form Factors

    Science.gov (United States)

    Rohrmoser, Martin; Choi, Ki-Seok; Plessas, Willibald

    2017-03-01

    By the analysis of the world data base of elastic electron scattering on the proton and the neutron (for the latter, in fact, on ^2H and ^3He) important experimental insights have recently been gained into the flavor compositions of nucleon electromagnetic form factors. We report on testing the Graz Goldstone-boson-exchange relativistic constituent-quark model in comparison to the flavor contents in low-energy nucleons, as revealed from electron-scattering phenomenology. It is found that a satisfactory agreement is achieved between theory and experiment for momentum transfers up to Q^2˜ 4 GeV^2, relying on three-quark configurations only. Analogous studies have been extended to the Δ and the hyperon electromagnetic form factors. For them we here show only some sample results in comparison to data from lattice quantum chromodynamics.

  17. Physics Labs with Flavor II

    Science.gov (United States)

    Agrest, Mikhail M.

    2011-01-01

    This paper was inspired by the numerous requests from "TPT" readers to expand the number of examples of "recurrent study" lab exercises described in my previous paper "Physics Labs with Flavor." I recommend that readers examine it first in order to better understand this one as my attempt here is to be brief. In that paper, one can find details…

  18. Physics Labs with Flavor II

    Science.gov (United States)

    Agrest, Mikhail M.

    2011-01-01

    This paper was inspired by the numerous requests from "TPT" readers to expand the number of examples of "recurrent study" lab exercises described in my previous paper "Physics Labs with Flavor." I recommend that readers examine it first in order to better understand this one as my attempt here is to be brief. In that paper, one can find details…

  19. Minimal Flavor Constraints for Technicolor

    DEFF Research Database (Denmark)

    Sakuma, Hidenori; Sannino, Francesco

    2010-01-01

    We analyze the constraints on the the vacuum polarization of the standard model gauge bosons from a minimal set of flavor observables valid for a general class of models of dynamical electroweak symmetry breaking. We will show that the constraints have a strong impact on the self-coupling and mas...

  20. Flavor Release from French Fries

    NARCIS (Netherlands)

    Loon, W.A.M.; Linssen, J.P.H.; Boelrijk, A.E.M.; Burgering, M.J.M.; Voragen, A.G.J.

    2006-01-01

    Flavor release from French fries was measured with the MS-NOSE using both panelists and a mouth-model system. The identity of several volatiles measured with the MS-NOSE was verified with MS-MS. The effect of frying time and the effect of adding salt on I-max (maximum intensity of compounds) and on

  1. Flavor Constraints on New Physics

    CERN Document Server

    Ligeti, Zoltan

    2016-01-01

    This talk highlights, from a theoretical point of view, some recent exciting results in flavor physics, as well as future prospects. We discuss possible implications of a subset of the experimental results in tension with the standard model, such as the $4\\sigma$ deviation in the $B\\to D^{(*)}\\tau\\bar\

  2. Three Neutrino Flavors are Enough

    CERN Document Server

    Acker, A

    1996-01-01

    It is shown that it is possible to account for all three experimental indications for neutrino oscillations with just three neutrino flavors. In particular, we suggest that the solar and atmospheric neutrino anomalies are to be explained by the same mass difference and mixing. Possible implications and future tests of the resulting mass-mixing pattern are given.

  3. Lepton-Flavored Electroweak Baryogenesis

    CERN Document Server

    Guo, Huai-Ke; Liu, Tao; Ramsey-Musolf, Michael; Shu, Jing

    2016-01-01

    We explore lepton-flavored electroweak baryogenesis, driven by CP-violation in leptonic Yukawa sector, using the $\\tau-\\mu$ system in the two Higgs doublet model as an example. This setup generically yields, together with the flavor-changing decay $h\\to \\tau \\mu$, a tree-level Jarlskog-invariant that can drive dynamical generation of baryon asymmetry during a first-order electroweak phase transition and results in CP-violating effect in the decay $h\\to \\tau\\tau$. We find that the observed baryon asymmetry can be generated in parameter space compatible with current experimental results for the decays $h\\to \\tau \\mu$, $h\\to \\tau\\tau$ and $\\tau \\rightarrow \\mu \\gamma$, as well as the present bound on the electric dipole moment of the electron. The baryon asymmetry generated is intrinsically correlated with the CP-violating decay $h\\to \\tau\\tau$ and the flavor-changing decay $h\\to \\tau\\mu$, which thus may serve as "smoking guns" to test lepton-flavored electroweak baryogenesis.

  4. Recent patents in flavor microencapsulation.

    Science.gov (United States)

    Feng, Tao; Xiao, Zuobing; Tian, Huaixiang

    2009-11-01

    Many aroma compounds, used to flavor food products, are used in a solid state, after encapsulation. Synthetic or natural polymers are the common matrices used to entrap these volatiles. This paper reviews the recent patents of versatile matrices and methods used in flavor microencapsulation. The encapsulation ratio depends on both the carriers' physicochemical properties and the characteristics of the aroma compound. The patents about flavor encapsulation methods are spray drying, fluidized bed coating, melt extrusion, complex coacervation, aqueous diffusion and novel fat-coating etc. All these methods have both advantages and disadvantages. In brief, spray drying is very convenient but unsuitable for heat sensitive flavor and stored with moisture instability. Fluidized bed coating is costly but having better storage stability. Melt extrusion is suitable for large-scale production but having bad particle size distribution. Complex coacervation has good capsule size uniformity but controversial safety. Aqueous diffusion has excellent safety but low efficient encapsulation. Novel fat-coating has good encapsulation efficiency but uncontrollable size distribution.

  5. Bianchi type-I magnetized cosmological models for the Einstein-Boltzmann equation with the cosmological constant

    Energy Technology Data Exchange (ETDEWEB)

    Ayissi, Raoul Domingo, E-mail: raoulayissi@yahoo.fr; Noutchegueme, Norbert, E-mail: nnoutch@yahoo.fr [Department of Mathematics, Faculty of Science, University of Yaounde I, P.O. Box 812, Yaounde (Cameroon)

    2015-01-15

    Global solutions regular for the Einstein-Boltzmann equation on a magnetized Bianchi type-I cosmological model with the cosmological constant are investigated. We suppose that the metric is locally rotationally symmetric. The Einstein-Boltzmann equation has been already considered by some authors. But, in general Bancel and Choquet-Bruhat [Ann. Henri Poincaré XVIII(3), 263 (1973); Commun. Math. Phys. 33, 83 (1973)], they proved only the local existence, and in the case of the nonrelativistic Boltzmann equation. Mucha [Global existence of solutions of the Einstein-Boltzmann equation in the spatially homogeneous case. Evolution equation, existence, regularity and singularities (Banach Center Publications, Institute of Mathematics, Polish Academy of Science, 2000), Vol. 52] obtained a global existence result, for the relativistic Boltzmann equation coupled with the Einstein equations and using the Yosida operator, but confusing unfortunately with the nonrelativistic case. Noutchegueme and Dongho [Classical Quantum Gravity 23, 2979 (2006)] and Noutchegueme, Dongho, and Takou [Gen. Relativ. Gravitation 37, 2047 (2005)], have obtained a global solution in time, but still using the Yosida operator and considering only the uncharged case. Noutchegueme and Ayissi [Adv. Stud. Theor. Phys. 4, 855 (2010)] also proved a global existence of solutions to the Maxwell-Boltzmann system using the characteristic method. In this paper, we obtain using a method totally different from those used in the works of Noutchegueme and Dongho [Classical Quantum Gravity 23, 2979 (2006)], Noutchegueme, Dongho, and Takou [Gen. Relativ. Gravitation 37, 2047 (2005)], Noutchegueme and Ayissi [Adv. Stud. Theor. Phys. 4, 855 (2010)], and Mucha [Global existence of solutions of the Einstein-Boltzmann equation in the spatially homogeneous case. Evolution equation, existence, regularity and singularities (Banach Center Publications, Institute of Mathematics, Polish Academy of Science, 2000), Vol. 52] the

  6. The Non-Classical Boltzmann Equation, and Diffusion-Based Approximations to the Boltzmann Equation

    CERN Document Server

    Frank, Martin; Larsen, Edward W; Vasques, Richard

    2014-01-01

    We show that several diffusion-based approximations (classical diffusion or SP1, SP2, SP3) to the linear Boltzmann equation can (for an infinite, homogeneous medium) be represented exactly by a non-classical transport equation. As a consequence, we indicate a method to solve diffusion-based approximations to the Boltzmann equation via Monte Carlo, with only statistical errors - no truncation errors.

  7. Stefan-Boltzmann law for massive photons

    CERN Document Server

    Moreira, E S

    2015-01-01

    Thirty years ago a paper appeared in the literature generalizing the Stefan-Boltzmann law to include massive photons. The paper suffers from a flaw though: it assumes that a massive photon travels at the speed of (massless) light. The present work fixes the mistake and presents the correct formula for the radiance.

  8. Stefan-Boltzmann Law for Massive Photons

    Science.gov (United States)

    Moreira, E. S.; Ribeiro, T. G.

    2016-08-01

    This paper generalizes the Stefan-Boltzmann law to include massive photons. A crucial ingredient to obtain the correct formula for the radiance is to realize that a massive photon does not travel at the speed of (massless) light. It follows that, contrary to what could be expected, the radiance is not proportional to the energy density times the speed of light.

  9. Boltzmann und das Ende des mechanistischen Weltbildes

    CERN Document Server

    Renn, Jürgen

    2007-01-01

    Der Wissenschaftshistoriker und Physiker Jürgen Renn untersucht die Rolle des österreichischen Physikers und Philosophen Ludwig Boltzmann (18441906) bei der Entwicklung der modernen Physik. Boltzmann war einer der letzen Vertreter des mechanistischen Weltbildes und stand somit am Ende eines Zeitalters. Renn porträtiert den Wissenschaftler aber als einen Pionier der modernen Physik, dessen Beschäftigung mit den inneren Spannungen der klassischen Physik ihn visionär zukünftige Fragestellungen aufgreifen ließ. So befasste sich Boltzmann etwa mit den Grenzproblemen zwischen Mechanik und Thermodynamik, die ihn zur Entwicklung immer raffinierterer Instrumente der statistischen Physik antrieb, die schließlich zu Schlüsselinstrumenten der modernen Physik wurden. Boltzmanns Werk steht somit am Übergang vom mechanistischen Weltbild zur Relativitäts- und Quantentheorie. Der Aussage des viel bekannteren Physikers Albert Einstein, dass Fantasie wichtiger sei als Wissen, hält Jürgen Renn im Hinblick auf Leben ...

  10. Entropic lattice Boltzmann model for Burgers's equation.

    Science.gov (United States)

    Boghosian, Bruce M; Love, Peter; Yepez, Jeffrey

    2004-08-15

    Entropic lattice Boltzmann models are discrete-velocity models of hydrodynamics that possess a Lyapunov function. This feature makes them useful as nonlinearly stable numerical methods for integrating hydrodynamic equations. Over the last few years, such models have been successfully developed for the Navier-Stokes equations in two and three dimensions, and have been proposed as a new category of subgrid model of turbulence. In the present work we develop an entropic lattice Boltzmann model for Burgers's equation in one spatial dimension. In addition to its pedagogical value as a simple example of such a model, our result is actually a very effective way to simulate Burgers's equation in one dimension. At moderate to high values of viscosity, we confirm that it exhibits no trace of instability. At very small values of viscosity, however, we report the existence of oscillations of bounded amplitude in the vicinity of the shock, where gradient scale lengths become comparable with the grid size. As the viscosity decreases, the amplitude at which these oscillations saturate tends to increase. This indicates that, in spite of their nonlinear stability, entropic lattice Boltzmann models may become inaccurate when the ratio of gradient scale length to grid spacing becomes too small. Similar inaccuracies may limit the utility of the entropic lattice Boltzmann paradigm as a subgrid model of Navier-Stokes turbulence.

  11. General relativistic Boltzmann equation, I: Covariant treatment

    NARCIS (Netherlands)

    Debbasch, F.; van Leeuwen, W.A.

    2009-01-01

    This series of two articles aims at dissipating the rather dense haze existing in the present literature around the General Relativistic Boltzmann equation. In this first article, the general relativistic one-particle distribution function in phase space is defined as an average of delta functions.

  12. Geometric variations of the Boltzmann entropy

    OpenAIRE

    Kalogeropoulos, Nikos

    2008-01-01

    We perform a calculation of the first and second order infinitesimal variations, with respect to energy, of the Boltzmann entropy of constant energy hypersurfaces of a system with a finite number of degrees of freedom. We comment on the stability interpretation of the second variation in this framework.

  13. THREE WAY DECOMPOSITION FOR THE BOLTZMANN EQUATION

    Institute of Scientific and Technical Information of China (English)

    Ilgis Ibragimov; Sergej Rjasanow

    2009-01-01

    The initial value problem for the spatially homogeneous Boltzmann equation is considered. A deterministic numerical scheme for this problem is developed by the use of the three way decomposition of the unknown function as well as of the collision integral. On this way, almost linear complexity of the algorithm is achieved. Some numerical examples are presented.

  14. Boltzmann Samplers for Colored Combinatorial Objects

    CERN Document Server

    Bodini, Olivier

    2009-01-01

    In this paper, we give a general framework for the Boltzmann generation of colored objects belonging to combinatorial constructible classes. We propose an intuitive notion called profiled objects which allows the sampling of size-colored objects (and also of k-colored objects) although the corresponding class cannot be described by an analytic ordinary generating function.

  15. Simulation of the spherically symmetric stellar core collapse, bounce, and postbounce evolution of a star of 13 solar masses with boltzmann neutrino transport, and its implications for the supernova mechanism.

    Science.gov (United States)

    Mezzacappa, A; Liebendörfer, M; Messer, O E; Hix, W R; Thielemann, F K; Bruenn, S W

    2001-03-05

    With exact three-flavor Boltzmann neutrino transport, we simulate the stellar core collapse, bounce, and postbounce evolution of a 13M star in spherical symmetry, the Newtonian limit, without invoking convection. In the absence of convection, prior spherically symmetric models, which implemented approximations to Boltzmann transport, failed to produce explosions. We consider exact transport to determine if these failures were due to the transport approximations made and to answer remaining fundamental questions in supernova theory. The model presented here is the first in a sequence of models beginning with different progenitors. In this model, a supernova explosion is not obtained.

  16. Flavor Mixing Phenomenology in Supersymmetric Models

    CERN Document Server

    Rehman, Muhammad

    2016-01-01

    This dissertation investigates the flavor mixing effects in supersymmetric models on electroweak precision observables, Higgs boson mass predictions, B-physics observables, quark flavor violating Higgs decays, lepton flavor violating charged lepton decays and lepton flavor violating Higgs decays. The flavor mixing effects are studied in model independent way i.e. by putting off-diagonal entries in the sfermion mass matrix by hand as well as in the minimal flavor violating constrained MSSM, where mixing can originate from CKM matrix in the case of squarks and from PMNS matrix in the case of sleptons. We found that flavor mixing can have large impact to some observables, enabling us to put new constraints on parameter space in supersymmetric models.

  17. Analytical solution of the Boltzmann-Poisson equation and its application to MIS tunneling junctions

    Institute of Scientific and Technical Information of China (English)

    Zhang Li-Zhi; Wang Zheng-Chuan

    2009-01-01

    In order to consider quantum transport under the influence of an electron-electron (e-e) interaction in a mesoscopic conductor, the Boltzmann equation and Poisson equation are investigated jointly. The analytical expressions of the distribution function for the Boltzmann equation and the self-consistent average potential concerned with e-e interaction are obtained, and the dielectric function appearing in the self-consistent average potential is naturally generalized beyond the Thomas-Fermi approximation. Then we apply these results to the tunneling junctions of a metal-insulatorsemiconductor (MIS) in which the electrons are accumulated near the interface of the semiconductor, and we find that the e-e interaction plays an important role in the transport procedure of this system. The electronic density, electric current as well as screening Coulombic potential in this case are studied, and we reveal the time and position dependence of these physical quantities explicitly affected by the e-e interaction.

  18. Heavy flavor measurements at LHC

    CERN Document Server

    Spagnolo, S; The ATLAS collaboration

    2013-01-01

    ATLAS and CMS measurements in the area of heavy flavor physics are reviewed with focus on the most recent results. The topics discussed include heavy flavor production rates and properties, exclusive b-hadron production, with attention to the recent observations of rare b-hadrons and to the precise measurements of Lambda_b production cross section, lifetime and mass. Differential production cross sections and polarization measurements of Upsilon states are presented, along with production ratios of chi_c states in the charmonium system. Evidence for a new Xsi_b state and observations of structures in the J/Psi phi spectrum from B+- decays to J/Psi phi K+- in the CMS data are also reported. Precision studies of the Bs system and determination of CP-violation sensitive parameters are discussed. Finally the status of the searches for rare FCNC decays is presented.

  19. Flavor hierarchies from dynamical scales

    CERN Document Server

    Panico, Giuliano

    2016-07-20

    One main obstacle for any beyond the SM (BSM) scenario solving the hierarchy problem is its potentially large contributions to electric dipole moments. An elegant way to avoid this problem is to have the light SM fermions couple to the BSM sector only through bilinears, $\\bar ff$. This possibility can be neatly implemented in composite Higgs models. We study the implications of dynamically generating the fermion Yukawa couplings at different scales, relating larger scales to lighter SM fermions. We show that all flavor and CP-violating constraints can be easily accommodated for a BSM scale of few TeV, without requiring any extra symmetry. Contributions to B physics are mainly mediated by the top, giving a predictive pattern of deviations in $\\Delta F=2$ and $\\Delta F=1$ flavor observables that could be seen in future experiments.

  20. Flavor asymmetry of the nucleon

    CERN Document Server

    Bijker, R

    2008-01-01

    The flavor asymmetry of the nucleon sea is discussed in an unquenched quark model for baryons in which the effects of quark-antiquark pairs (u anti-u, d anti-d and s anti-s) are taken into account in an explicit form. The inclusion of q anti-q pairs leads automatically to an excess of anti-d over anti-u quarks in the proton, in agreement with experimental data.

  1. Brain mechanisms of flavor learning

    Directory of Open Access Journals (Sweden)

    Takashi eYamamoto

    2011-09-01

    Full Text Available Once the flavor of the ingested food (conditioned stimulus, CS is associated with a preferable (e.g., good taste or nutritive satisfaction or aversive (e.g., malaise with displeasure signal (unconditioned stimulus, US, animals react to its subsequent exposure by increasing or decreasing ingestion to the food. These two types of association learning (preference learning vs. aversion learning are known as classical conditioned reactions which are basic learning and memory phenomena, leading selection of food and proper food intake. Since the perception of flavor is generated by interaction of taste and odor during food intake, taste and/or odor are mainly associated with bodily signals in the flavor learning. After briefly reviewing flavor learning in general, brain mechanisms of conditioned taste aversion is described in more detail. The CS-US association leading to long-term potentiation in the amygdala, especially in its basolateral nucleus, is the basis of establishment of conditioned taste aversion. The novelty of the CS detected by the cortical gustatory area may be supportive in CS-US association. After the association, CS input is conveyed through the amygdala to different brain regions including the hippocampus for contextual fear formation, to the supramammilary and thalamic paraventricular nuclei for stressful anxiety or memory dependent fearful or stressful emotion, to the reward system to induce aversive expression to the CS, or hedonic shift from positive to negative, and to the CS-responsive neurons in the gustatory system to enhance the responsiveness to facilitate to detect the harmful stimulus.

  2. Flavors of Supersymmetry Beyond Vanilla

    CERN Document Server

    Evans, Jared A

    2015-01-01

    This review surveys the territory of supersymmetry beyond the vanilla MSSM. With a viewpoint guided by electroweak naturalness, the review focuses on constructions that weaken or bypass current LHC constraints. Models of SUSY containing Dirac gluinos, compressed spectra, flavor-violating squarks, R-parity violation, stealth sectors, exotic detector objects, and more are discussed. In addition to presenting ways of hiding SUSY, these models highlight a few opportunities to improve LHC coverage.

  3. Dirac neutrinos from flavor symmetry

    CERN Document Server

    Aranda, Alfredo; Morisi, S; Peinado, E; Valle, J W F

    2013-01-01

    We present a model where Majorana neutrino mass terms are forbidden by the flavor symmetry group Delta(27). Neutrinos are Dirac fermions and their masses arise in the same way as that of the charged fermions, due to very small Yukawa couplings. The model fits current neutrino oscillation data and correlates the octant of the atmospheric angle with the magnitude of the lightest neutrino mass, with maximal mixing excluded for any neutrino mass

  4. The Flavor World of Childhood

    OpenAIRE

    Mennella, Julie A

    2014-01-01

    Many of the chronic illnesses that plague modern society, such as obesity, diabetes, and hypertension, derive in large part from poor food choices, dictated in part by flavor preferences. Against the advice and recommendations of health authorities worldwide, people eat too much salt, fat, and simple sugars and too few fruits and vegetables, even and especially among children. How can we account for patterns of food choice that are antithetical to health, and why is it so difficult to develo...

  5. Neutrino Masses and Flavor Mixing

    Science.gov (United States)

    Xing, Zhi-zhong

    2010-06-01

    I give a theoretical overview of some basic properties of massive neutrinos in these lectures. Particular attention is paid to the origin of neutrino masses, the pattern of lepton flavor mixing, the feature of leptonic CP violation and the electromagnetic properties of massive neutrinos. I highlight the TeV seesaw mechanisms as a possible bridge between neutrino physics and collider physics in the era characterized by the Large Hadron Collider.

  6. Flavor effects on leptogenesis predictions

    CERN Document Server

    Blanchet, S; Bari, Pasquale Di; Blanchet, Steve

    2006-01-01

    Flavor effects in leptogenesis reduce the region of the see-saw parameter space where the final predictions do not depend on the initial conditions, the strong wash-out regime. In this case we show that the lowest bounds holding on the lightest right-handed (RH) neutrino mass and on the reheating temperature for hierarchical heavy neutrinos, do not get relaxed compared to the usual ones in the one-flavor approximation, M_1 (T_reh) \\gtrsim 3 (1.5) x 10^9 GeV. Flavor effects can however relax down to these minimal values the lower bounds holding for fixed large values of the decay parameter K_1. We discuss a relevant definite example showing that, when the known information on the neutrino mixing matrix is employed, the lower bounds for K_1 \\gg 10, are relaxed by a factor 2-3 for light hierarchical neutrinos, without any dependence on \\theta_13 and on possible phases. On the other hand, going beyond the limit of light hierarchical neutrinos and taking into account Majorana phases, the lower bounds can be relaxe...

  7. The Flavor World of Childhood

    Directory of Open Access Journals (Sweden)

    Julie A Mennella

    2014-07-01

    Although some may view food choice as a cultural trait, not directly related to our biology, overwhelming evidence suggests that children’s biology makes them especially vulnerable to the current food environment of processed foods high in salt and refined sugars. Emerging research in humans and animal models suggests that, beginning very early in life, sensory experiences shape and modify flavor and food preferences and have far-reaching effects on behavior. Such early life experiences with healthy levels of salt and sweet tastes and repeated exposure to healthy food flavors may go a long way toward promoting healthy eating and growth, which could have a significant impact in addressing the many chronic illnesses associated with poor food choice. Yet because of the lack of research, many feeding practices are based on idiosyncratic parental behavior, family traditions, or medical lore, rather than research. One of the keys to continued advances and applications on how to develop good food habits comes from studying the fundamental principles underlying flavor learning, which provides an understanding and appreciation of essential aspect of cultural food practices and habits.

  8. Volatile flavor compounds in yogurt: a review.

    Science.gov (United States)

    Cheng, Hefa

    2010-11-01

    Considerable knowledge has been accumulated on the volatile compounds contributing to the aroma and flavor of yogurt. This review outlines the production of the major flavor compounds in yogurt fermentation and the analysis techniques, both instrumental and sensory, for quantifying the volatile compounds in yogurt. The volatile compounds that have been identified in plain yogurt are summarized, with the few key aroma compounds described in detail. Most flavor compounds in yogurt are produced from lipolysis of milkfat and microbiological transformations of lactose and citrate. More than 100 volatiles, including carbonyl compounds, alcohols, acids, esters, hydrocarbons, aromatic compounds, sulfur-containing compounds, and heterocyclic compounds, are found in yogurt at low to trace concentrations. Besides lactic acid, acetaldehyde, diacetyl, acetoin, acetone, and 2-butanone contribute most to the typical aroma and flavor of yogurt. Extended storage of yogurt causes off-flavor development, which is mainly attributed to the production of undesired aldehydes and fatty acids during lipid oxidation. Further work on studying the volatile flavor compounds-matrix interactions, flavor release mechanisms, and the synergistic effect of flavor compounds, and on correlating the sensory properties of yogurt with the compositions of volatile flavor compounds are needed to fully elucidate yogurt aroma and flavor.

  9. Flavor Mixing in Gauge-Higgs Unification

    CERN Document Server

    Adachi, Yuki; Lim, C S; Maru, Nobuhito

    2010-01-01

    We discuss flavor mixing and resultant flavor changing neutral current processes in the SU(3) \\otimes SU(3)_\\text{color} gauge-Higgs unification scenario. To achieve flavor violation is a challenging issue in the scenario, since the Yukawa couplings are originally higher dimensional gauge interactions. We argue that the presence of Z_2-odd bulk masses of fermions plays a crucial role as the new source of flavor violation. Although introducing brane-localized mass terms in addition to the bulk masses is necessary to realize flavor mixing, if the bulk masses were universal among generations, the flavor mixing and flavor changing neutral current processes are known to disappear. We also discuss whether natural flavor conservation is realized in the scenario. It is shown that the new source of flavor violation leads to flavor changing neutral current processes at the tree level due to the exchange of non-zero Kaluza-Klein gauge bosons. As a typical example we calculate the rate of K^0 - \\bar{K}^0 mixing due to th...

  10. Nonequilibrium thermodynamics of restricted Boltzmann machines

    Science.gov (United States)

    Salazar, Domingos S. P.

    2017-08-01

    In this work, we analyze the nonequilibrium thermodynamics of a class of neural networks known as restricted Boltzmann machines (RBMs) in the context of unsupervised learning. We show how the network is described as a discrete Markov process and how the detailed balance condition and the Maxwell-Boltzmann equilibrium distribution are sufficient conditions for a complete thermodynamics description, including nonequilibrium fluctuation theorems. Numerical simulations in a fully trained RBM are performed and the heat exchange fluctuation theorem is verified with excellent agreement to the theory. We observe how the contrastive divergence functional, mostly used in unsupervised learning of RBMs, is closely related to nonequilibrium thermodynamic quantities. We also use the framework to interpret the estimation of the partition function of RBMs with the annealed importance sampling method from a thermodynamics standpoint. Finally, we argue that unsupervised learning of RBMs is equivalent to a work protocol in a system driven by the laws of thermodynamics in the absence of labeled data.

  11. Lattice-Boltzmann simulations of droplet evaporation

    KAUST Repository

    Ledesma-Aguilar, Rodrigo

    2014-09-04

    © the Partner Organisations 2014. We study the utility and validity of lattice-Boltzmann (LB) simulations to explore droplet evaporation driven by a concentration gradient. Using a binary-fluid lattice-Boltzmann algorithm based on Cahn-Hilliard dynamics, we study the evaporation of planar films and 3D sessile droplets from smooth solid surfaces. Our results show that LB simulations accurately reproduce the classical regime of quasi-static dynamics. Beyond this limit, we show that the algorithm can be used to explore regimes where the evaporative and diffusive timescales are not widely separated, and to include the effect of boundaries of prescribed driving concentration. We illustrate the method by considering the evaporation of a droplet from a solid surface that is chemically patterned with hydrophilic and hydrophobic stripes. This journal is

  12. The Boltzmann equation in the difference formulation

    Energy Technology Data Exchange (ETDEWEB)

    Szoke, Abraham [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Brooks III, Eugene D. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2015-05-06

    First we recall the assumptions that are needed for the validity of the Boltzmann equation and for the validity of the compressible Euler equations. We then present the difference formulation of these equations and make a connection with the time-honored Chapman - Enskog expansion. We discuss the hydrodynamic limit and calculate the thermal conductivity of a monatomic gas, using a simplified approximation for the collision term. Our formulation is more consistent and simpler than the traditional derivation.

  13. Hybrid lattice Boltzmann method on overlapping grids.

    Science.gov (United States)

    Di Ilio, G; Chiappini, D; Ubertini, S; Bella, G; Succi, S

    2017-01-01

    In this work, a hybrid lattice Boltzmann method (HLBM) is proposed, where the standard lattice Boltzmann implementation based on the Bhatnagar-Gross-Krook (LBGK) approximation is combined together with an unstructured finite-volume lattice Boltzmann model. The method is constructed on an overlapping grid system, which allows the coexistence of a uniform lattice nodes spacing and a coordinate-free lattice structure. The natural adaptivity of the hybrid grid system makes the method particularly suitable to handle problems involving complex geometries. Moreover, the provided scheme ensures a high-accuracy solution near walls, given the capability of the unstructured submodel of achieving the desired level of refinement in a very flexible way. For these reasons, the HLBM represents a prospective tool for solving multiscale problems. The proposed method is here applied to the benchmark problem of a two-dimensional flow past a circular cylinder for a wide range of Reynolds numbers and its numerical performances are measured and compared with the standard LBGK ones.

  14. Consistent lattice Boltzmann equations for phase transitions.

    Science.gov (United States)

    Siebert, D N; Philippi, P C; Mattila, K K

    2014-11-01

    Unlike conventional computational fluid dynamics methods, the lattice Boltzmann method (LBM) describes the dynamic behavior of fluids in a mesoscopic scale based on discrete forms of kinetic equations. In this scale, complex macroscopic phenomena like the formation and collapse of interfaces can be naturally described as related to source terms incorporated into the kinetic equations. In this context, a novel athermal lattice Boltzmann scheme for the simulation of phase transition is proposed. The continuous kinetic model obtained from the Liouville equation using the mean-field interaction force approach is shown to be consistent with diffuse interface model using the Helmholtz free energy. Density profiles, interface thickness, and surface tension are analytically derived for a plane liquid-vapor interface. A discrete form of the kinetic equation is then obtained by applying the quadrature method based on prescribed abscissas together with a third-order scheme for the discretization of the streaming or advection term in the Boltzmann equation. Spatial derivatives in the source terms are approximated with high-order schemes. The numerical validation of the method is performed by measuring the speed of sound as well as by retrieving the coexistence curve and the interface density profiles. The appearance of spurious currents near the interface is investigated. The simulations are performed with the equations of state of Van der Waals, Redlich-Kwong, Redlich-Kwong-Soave, Peng-Robinson, and Carnahan-Starling.

  15. On the full Boltzmann equations for Leptogenesis

    CERN Document Server

    Garayoa, J; Pinto, T; Rius, N; Vives, O

    2009-01-01

    We consider the full Boltzmann equations for standard and soft leptogenesis, instead of the usual integrated Boltzmann equations which assume kinetic equilibrium for all species. Decays and inverse decays may be inefficient for thermalising the heavy-(s)neutrino distribution function, leading to significant deviations from kinetic equilibrium. We analyse the impact of using the full kinetic equations in the case of a previously generated lepton asymmetry, and find that the washout of this initial asymmetry due to the interactions of the right-handed neutrino is larger than when calculated via the integrated equations. We also solve the full Boltzmann equations for soft leptogenesis, where the lepton asymmetry induced by the soft SUSY-breaking terms in sneutrino decays is a purely thermal effect, since at T=0 the asymmetry in leptons cancels the one in sleptons. In this case, we obtain that in the weak washout regime (K ~< 1) the final lepton asymmetry can change up to a factor four with respect to previous...

  16. On the full Boltzmann equations for leptogenesis

    Energy Technology Data Exchange (ETDEWEB)

    Garayoa, J.; Pastor, S.; Pinto, T.; Rius, N.; Vives, O., E-mail: garayoa@ific.uv.es, E-mail: pastor@ific.uv.es, E-mail: teguayco@gmail.com, E-mail: nuria@ific.uv.es, E-mail: vives@ific.uv.es [Depto. de Física Teórica and IFIC, Universidad de Valencia-CSIC, Edificio de Institutos de Paterna, Apt. 22085, 46071 Valencia (Spain)

    2009-09-01

    We consider the full Boltzmann equations for standard and soft leptogenesis, instead of the usual integrated Boltzmann equations which assume kinetic equilibrium for all species. Decays and inverse decays may be inefficient for thermalising the heavy-(s)neutrino distribution function, leading to significant deviations from kinetic equilibrium. We analyse the impact of using the full kinetic equations in the case of a previously generated lepton asymmetry, and find that the washout of this initial asymmetry due to the interactions of the right-handed neutrino is larger than when calculated via the integrated equations. We also solve the full Boltzmann equations for soft leptogenesis, where the lepton asymmetry induced by the soft SUSY-breaking terms in sneutrino decays is a purely thermal effect, since at T = 0 the asymmetry in leptons cancels the one in sleptons. In this case, we obtain that in the weak washout regime (K ∼< 1) the final lepton asymmetry can change up to a factor four with respect to previous estimates.

  17. Thermoelectric coefficients of n -doped silicon from first principles via the solution of the Boltzmann transport equation

    Science.gov (United States)

    Fiorentini, Mattia; Bonini, Nicola

    2016-08-01

    We present a first-principles computational approach to calculate thermoelectric transport coefficients via the exact solution of the linearized Boltzmann transport equation, also including the effect of nonequilibrium phonon populations induced by a temperature gradient. We use density functional theory and density functional perturbation theory for an accurate description of the electronic and vibrational properties of a system, including electron-phonon interactions; carriers' scattering rates are computed using standard perturbation theory. We exploit Wannier interpolation (both for electronic bands and electron-phonon matrix elements) for an efficient sampling of the Brillouin zone, and the solution of the Boltzmann equation is achieved via a fast and stable conjugate gradient scheme. We discuss the application of this approach to n -doped silicon. In particular, we discuss a number of thermoelectric properties such as the thermal and electrical conductivities of electrons, the Lorenz number and the Seebeck coefficient, including the phonon drag effect, in a range of temperatures and carrier concentrations. This approach gives results in good agreement with experimental data and provides a detailed characterization of the nature and the relative importance of the individual scattering mechanisms. Moreover, the access to the exact solution of the Boltzmann equation for a realistic system provides a direct way to assess the accuracy of different flavors of relaxation time approximation, as well as of models that are popular in the thermoelectric community to estimate transport coefficients.

  18. New Physics in Astrophysical Neutrino Flavor

    CERN Document Server

    Argüelles, Carlos A; Salvado, Jordi

    2015-01-01

    Recently, the IceCube collaboration announced the first detection of extra-terrestrial ultra high energy neutrinos. Astrophysical neutrinos are powerful tools to investigate the fundamental properties of particle physics through their flavor content. In this paper, we study the effect of new physics in the context of the ultra high energy neutrino flavor content. We find that in new physics dominated scenarios, the flavor content at Earth is confined to a region related to the assumed initial flavor content. Furthermore, we conclude that a precise measure of the flavor content at Earth will provide orders of magnitude improvement on new physics bounds. Finally, we discuss the current best fits of flavor content of the IceCube data and their interplay with new physics scenarios.

  19. Holographic Thermodynamics and Transport of Flavor Fields

    CERN Document Server

    O'Bannon, Andy

    2008-01-01

    We use gauge-gravity duality to study a strongly-coupled non-Abelian gauge theory with flavor fields, i.e. fields transforming in the fundamental representation of the gauge group. We first study the thermodynamics of the flavor fields. In the grand canonical ensemble at zero temperature, we find a second-order transition when the mass of the flavor fields equals the chemical potential. We then study the transport properties of the flavor fields at finite temperature and density. We introduce external electric and magnetic fields and compute the resulting current of flavor charge. From this current we extract the conductivity, using Ohm's law. In addition, we compute the drag force on the flavor fields at large mass, in the presence of a finite baryon density and external electric and magnetic fields.

  20. Holographic thermodynamics and transport of flavor fields

    Science.gov (United States)

    O'Bannon, Andrew Hill

    We use gauge-gravity duality to study a strongly-coupled non-Abelian gauge theory with flavor fields, i.e. fields transforming in the fundamental representation of the gauge group. We first study the thermodynamics of the flavor fields. In the grand canonical ensemble at zero temperature, we find a second-order transition when the mass of the flavor fields equals the chemical potential. We then study the transport properties of the flavor fields at finite temperature and density. We introduce external electric and magnetic fields and compute the resulting current of flavor charge. From this current we extract the conductivity, using Ohm's law. In addition, we compute the drag force on the flavor fields at large mass, in the presence of a finite baryon density and external electric and magnetic fields.

  1. Lattice Boltzmann solution of the transient Boltzmann transport equation in radiative and neutron transport.

    Science.gov (United States)

    Wang, Yahui; Yan, Liming; Ma, Yu

    2017-06-01

    Applications of the transient Boltzmann transport equation (BTE) have undergone much investigation, such as radiative heat transfer and neutron transport. This paper provides a lattice Boltzmann model to efficiently resolve the multidimensional transient BTE. For a higher angular resolution, enough transport directions are considered while the transient BTE in each direction is treated as a conservation law equation and solved independently. Both macroscopic equations recovered from a Chapman-Enskog expansion and simulated results of typical benchmark problems show not only the second-order accuracy but also the flexibility and applicability of the proposed lattice Boltzmann model. This approach may contribute a powerful technique for the parallel simulation of large-scale engineering and some alternative perspectives for solving the nonlinear transport problem further.

  2. 7 CFR 58.639 - Addition of flavor.

    Science.gov (United States)

    2010-01-01

    ... 7 Agriculture 3 2010-01-01 2010-01-01 false Addition of flavor. 58.639 Section 58.639 Agriculture... Procedures § 58.639 Addition of flavor. The addition of flavoring ingredients to semi-frozen mix just prior... flavor injection equipment has been properly cleaned and sanitized prior to use and that the flavor...

  3. Quantum leptogenesis I

    Energy Technology Data Exchange (ETDEWEB)

    Anisimov, A. [Bielefeld Univ. (Germany). Fakultaet fuer Physik; Buchmueller, W. [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany); Drewes, M. [Institute de Theorie des Phenomenes Physiques EPFL, Lausanne (Switzerland); Mendizabal, S. [Frankfurt Univ. (Germany). Inst. fuer Theoretische Physik

    2010-12-15

    Thermal leptogenesis explains the observed matter-antimatter asymmetry of the universe in terms of neutrino masses, consistent with neutrino oscillation experiments. We present a full quantum mechanical calculation of the generated lepton asymmetry based on Kadanoff-Baym equations. Origin of the asymmetry is the departure from equilibrium of the statistical propagator of the heavy Majorana neutrino, together with CP violating couplings. The lepton asymmetry is calculated directly in terms of Green's functions without referring to ''number densities''. Compared to Boltzmann and quantum Boltzmann equations, the crucial difference are memory effects, rapid oscillations much faster than the heavy neutrino equilibration time. These oscillations strongly suppress the generated lepton asymmetry, unless the standard model gauge interactions, which cause thermal damping, are properly taken into account. We find that these damping effects essentially compensate the enhancement due to quantum statistical factors, so that finally the conventional Boltzmann equations again provide rather accurate predictions for the lepton asymmetry. (orig.)

  4. Flavor physics of leptons and dipole moments

    Energy Technology Data Exchange (ETDEWEB)

    Raidal, M.; Kadastik, M.; Kajiyama, Y.; Muntel, M.; Rebane, L. [National Inst. for Chemical Physics and Biophysics, Tallinn (Estonia); Schaaf, A. van der [Physik-Inst. der Univ. Zuerich, Zuerich (Switzerland); Bigi, I. [Univ. of Notre Dame du Lac, Physics Dept., Notre Dame, IN (United States); Mangano, M.L.; Ceccucci, A.; Felcini, M.; Giudice, G.; Lebedev, O.; Masina, I. [CERN, Physics Dept., Geneva (Switzerland); Semertzidis, Y. [Brookhaven National Lab., Upton, NY (United States); Abel, S.; Underwood, T.E.J. [Durham Univ., Inst. for Particle Physics Phenomenology, Durham (United Kingdom); Albino, S. [Univ. of Hamburg, II. Inst. for Theoretical Physics, Hamburg (Germany); Antusch, S.; Biggio, C. [Max-Planck-Inst. fuer Physik, Muenchen (Germany); Arganda, E.; Herrero, M.J.; Joaquim, F.R. [Univ. Autonoma de Madrid, Dept. de Fisica Teorica (Spain)]|[IFT/CSIC-UAM, Madrid (Spain); Bajc, B. [J. Stefan Inst., Ljubljana (Slovenia); Banerjee, S.; Roney, J.M. [Univ. of Victoria, Dept. of Physics, Victoria, BC (Canada); Blanke, M. [Max-Planck-Inst. fuer Physik, Muenchen (Germany)]|[TU Munich, Physics Dept., Garching (Germany); Bonivento, W.; Serra, N. [Univ. degli Studi di Cagliari (Italy)]|[INFN Cagliari, Monserrato (Italy); Branco, G.C.; Rebelo, M.N. [CERN, Physics Dept., Geneva (Switzerland)]|[Inst. Superior Tecnico, Dept. de Fisica (Portugal)]|[Centro de Fisica Teorica de Particulas, Lisboa (Portugal); Bryman, D. [Univ. of British Columbia, TRIUMF, Dept. of Physics and Astronomy, Vancouver, BC (Canada); Buras, A.J.; Duling, B.; Poschenrieder, A.; Tarantino, C. [TU Munich, Physics Dept., Garching (Germany); Calibbi, L. [SISSA (Italy)]|[INFN, Sezione di Trieste, Trieste (Italy)]|[Univ. de Valencia-CSIC, Dept. de Fisica Teorica, Burjassot (Spain)]|[Dipt. di Fisica ' G. Galilei' (Italy)]|[INFN, Padova (Italy); Chankowski, P.H. [Univ. of Warsaw, Warsaw (Poland); Davidson, S.; Deandrea, A. [Univ. Lyon-1, IPNL, CNRS, Villeurbanne (France)] [and others

    2008-09-15

    This chapter of the report of the ''Flavor in the era of the LHC'' Workshop discusses the theoretical, phenomenological and experimental issues related to flavor phenomena in the charged lepton sector and in flavor conserving CP-violating processes. We review the current experimental limits and the main theoretical models for the flavor structure of fundamental particles. We analyze the phenomenological consequences of the available data, setting constraints on explicit models beyond the standard model, presenting benchmarks for the discovery potential of forthcoming measurements both at the LHC and at low energy, and exploring options for possible future experiments. (orig.)

  5. Minimal Flavor Violation in the Lepton Sector

    OpenAIRE

    Cirigliano, Vincenzo; Grinstein, Benjamin; Isidori, Gino; Wise, Mark B.

    2005-01-01

    We extend the notion of Minimal Flavor Violation to the lepton sector. We introduce a symmetry principle which allows us to express lepton flavor violation in the charged lepton sector in terms of neutrino masses and mixing angles. We explore the dependence of the rates for flavor changing radiative charged lepton decays (ell(i) -> ell(j) + gamma) and mu-to-e conversion in nuclei on the scales for total lepton number violation, lepton flavor violation and the neutrino masses and mixing angles...

  6. Theoretically palatable flavor combinations of astrophysical neutrinos

    CERN Document Server

    Bustamante, Mauricio; Winter, Walter

    2015-01-01

    The flavor composition of high-energy astrophysical neutrinos can reveal the particle physics governing their production, propagation, and interaction. The IceCube Collaboration has published the first experimental determination of the ratio of each flavor to the total flux. We present, as a theoretical counterpart, new results for the full range of received flavor ratios for arbitrary flavor ratios in the sources. With just standard neutrino mixing, this range is quite small. Even when a broad class of new-physics effects is included, it remains surprisingly small. Our results will allow IceCube to more quickly identify when their measurements imply standard, new, or truly exotic physics.

  7. A generalized Poisson and Poisson-Boltzmann solver for electrostatic environments

    Energy Technology Data Exchange (ETDEWEB)

    Fisicaro, G., E-mail: giuseppe.fisicaro@unibas.ch; Goedecker, S. [Department of Physics, University of Basel, Klingelbergstrasse 82, 4056 Basel (Switzerland); Genovese, L. [University of Grenoble Alpes, CEA, INAC-SP2M, L-Sim, F-38000 Grenoble (France); Andreussi, O. [Institute of Computational Science, Università della Svizzera Italiana, Via Giuseppe Buffi 13, CH-6904 Lugano (Switzerland); Theory and Simulations of Materials (THEOS) and National Centre for Computational Design and Discovery of Novel Materials (MARVEL), École Polytechnique Fédérale de Lausanne, Station 12, CH-1015 Lausanne (Switzerland); Marzari, N. [Theory and Simulations of Materials (THEOS) and National Centre for Computational Design and Discovery of Novel Materials (MARVEL), École Polytechnique Fédérale de Lausanne, Station 12, CH-1015 Lausanne (Switzerland)

    2016-01-07

    The computational study of chemical reactions in complex, wet environments is critical for applications in many fields. It is often essential to study chemical reactions in the presence of applied electrochemical potentials, taking into account the non-trivial electrostatic screening coming from the solvent and the electrolytes. As a consequence, the electrostatic potential has to be found by solving the generalized Poisson and the Poisson-Boltzmann equations for neutral and ionic solutions, respectively. In the present work, solvers for both problems have been developed. A preconditioned conjugate gradient method has been implemented for the solution of the generalized Poisson equation and the linear regime of the Poisson-Boltzmann, allowing to solve iteratively the minimization problem with some ten iterations of the ordinary Poisson equation solver. In addition, a self-consistent procedure enables us to solve the non-linear Poisson-Boltzmann problem. Both solvers exhibit very high accuracy and parallel efficiency and allow for the treatment of periodic, free, and slab boundary conditions. The solver has been integrated into the BigDFT and Quantum-ESPRESSO electronic-structure packages and will be released as an independent program, suitable for integration in other codes.

  8. Electric-field conditions for Landauer and Boltzmann-Drude conductance equations

    Science.gov (United States)

    Fenton, E. W.

    1992-08-01

    It is shown explicitly in a unified theory of conductance, for bulk metals and mesoscopic systems, that a Landauer type of conductance equation is compatible with a spatially localized continuous-q-spectrum electric field that is unidirectional, but not with a homogeneous q=0 field. The reverse field condition holds for the Boltzmann-Drude conductance equation for an inhomogeneous bulk metal that has no inelastic scattering. A Feynman-diagram form of Green-function theory shows explicitly the virtual processes and repeated quantum scattering from a single object that occur with Feynman path integrals. The distinction between repeated scattering of current and repeated one-electron scattering is important. For a mesoscopic system, infinite conduction would occur if scattering were to be exactly zero-there is no necessity for postulated contact potentials between lead wires and thermal reservoirs. This is because just in this translationally invariant case a q=0 electric field must occur, and for this the Landauer equation must be replaced by the Boltzmann-Drude equation with zero scattering. In contrast to the strong frequency dependence of the Boltzmann-Drude equation, it is shown that no frequency dependence of the conductance occurs in the Landauer type of equation for frequencies much smaller than the inverse of the electron transit time across the electric-field region.

  9. Thermodynamics for two flavor QCD

    CERN Document Server

    Bernard, C W; Tar, C D; Gottlieb, S; Heller, U M; Hetrick, J E; Kärkkäinen, L; Neile, C M; Rummukainen, K; Sugar, R L; Toussaint, D; Wingate, M; Gottlieb, Steven

    1996-01-01

    We conclude our analysis of the N_t=6 equation of state for two flavor QCD, first described at last year's conference. We have obtained new runs at am_q=0.025 and improved runs at am_q=0.0125. The results are extrapolated to m_q=0, and we extract the speed of sound as well. We also present evidence for a restoration of the SU(2) X SU(2) chiral symmetry just above the crossover, but not of the axial U(1) chiral symmetry.

  10. TASI Lectures on Flavor Physics

    CERN Document Server

    Ligeti, Zoltan

    2015-01-01

    These notes overlap with lectures given at the TASI summer schools in 2014 and 2011, as well as at the European School of High Energy Physics in 2013. This is primarily an attempt at transcribing my hand-written notes, with emphasis on topics and ideas discussed in the lectures. It is not a comprehensive introduction or review of the field, nor does it include a complete list of references. I hope, however, that someone may find it useful to better understand the reasons for excitement about recent progress and future opportunities in flavor physics.

  11. TASI Lectures on Flavor Physics

    Science.gov (United States)

    Ligeti, Zoltan

    These notes overlap with lectures given at the TASI summer schools in 2014 and 2011, as well as at the European School of High Energy Physics in 2013. This is primarily an attempt at transcribing my handwritten notes, with emphasis on topics and ideas discussed in the lectures. It is not a comprehensive introduction or review of the field, nor does it include a complete list of references. I hope, however, that some may find it useful to better understand the reasons for excitement about recent progress and future opportunities in flavor physics.

  12. Spectral model selection in the electronic measurement of the Boltzmann constant by Johnson noise thermometry

    Science.gov (United States)

    Coakley, Kevin J.; Qu, Jifeng

    2017-04-01

    In the electronic measurement of the Boltzmann constant based on Johnson noise thermometry, the ratio of the power spectral densities of thermal noise across a resistor at the triple point of water, and pseudo-random noise synthetically generated by a quantum-accurate voltage-noise source is constant to within 1 part in a billion for frequencies up to 1 GHz. Given knowledge of this ratio, and the values of other parameters that are known or measured, one can determine the Boltzmann constant. Due, in part, to mismatch between transmission lines, the experimental ratio spectrum varies with frequency. We model this spectrum as an even polynomial function of frequency where the constant term in the polynomial determines the Boltzmann constant. When determining this constant (offset) from experimental data, the assumed complexity of the ratio spectrum model and the maximum frequency analyzed (fitting bandwidth) dramatically affects results. Here, we select the complexity of the model by cross-validation—a data-driven statistical learning method. For each of many fitting bandwidths, we determine the component of uncertainty of the offset term that accounts for random and systematic effects associated with imperfect knowledge of model complexity. We select the fitting bandwidth that minimizes this uncertainty. In the most recent measurement of the Boltzmann constant, results were determined, in part, by application of an earlier version of the method described here. Here, we extend the earlier analysis by considering a broader range of fitting bandwidths and quantify an additional component of uncertainty that accounts for imperfect performance of our fitting bandwidth selection method. For idealized simulated data with additive noise similar to experimental data, our method correctly selects the true complexity of the ratio spectrum model for all cases considered. A new analysis of data from the recent experiment yields evidence for a temporal trend in the offset

  13. Boltzmann equation integration in thermionic converter conditions. Part II. Terms in Boltzmann equation

    Energy Technology Data Exchange (ETDEWEB)

    Stoenescu, M.L.

    1977-06-01

    The terms in Boltzmann kinetic equation corresponding to elastic short range collisions, inelastic excitational collisions, coulomb interactions and electric field acceleration are evaluated numerically for a standard distribution function minimizing the computational volume by expressing the terms as linear combinations with recalculable coefficients, of the distribution function and its derivatives. The present forms are suitable for spatial distribution calculations.

  14. Electroweak constraints on flavorful effective theories

    CERN Document Server

    Efrati, Aielet; Soreq, Yotam

    2015-01-01

    We derive model-independent constraints arising from the Z and W boson observables on dimension six operators in the effective theory beyond the Standard Model. In particular, we discuss the generic flavor structure for these operators as well as several flavor patterns motivated by simple new physics scenarios.

  15. Electroweak constraints on flavorful effective theories

    Science.gov (United States)

    Efrati, Aielet; Falkowski, Adam; Soreq, Yotam

    2015-07-01

    We derive model-independent constraints arising from the Z and W boson observables on dimension six operators in the effective theory beyond the Standard Model. In particular, we discuss the generic flavor structure for these operators as well as several flavor patterns motivated by simple new physics scenarios.

  16. A Heavy Flavor Tracker for STAR

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Z.; Chen, Y.; Kleinfelder, S.; Koohi, A.; Li, S.; Huang, H.; Tai, A.; Kushpil, V.; Sumbera, M.; Colledani, C.; Dulinski, W.; Himmi,A.; Hu, C.; Shabetai, A.; Szelezniak, M.; Valin, I.; Winter, M.; Miller,M.; Surrow, B.; Van Nieuwenhuizen G.; Bieser, F.; Gareus, R.; Greiner,L.; Lesser, F.; Matis, H.S.; Oldenburg, M.; Ritter, H.G.; Pierpoint, L.; Retiere, F.; Rose, A.; Schweda, K.; Sichtermann, E.; Thomas, J.H.; Wieman, H.; Yamamoto, E.; Kotov, I.

    2005-03-14

    We propose to construct a Heavy Flavor Tracker (HFT) for theSTAR experiment at RHIC. The HFT will bring new physics capabilities toSTAR and it will significantly enhance the physics capabilities of theSTAR detector at central rapidities. The HFT will ensure that STAR willbe able to take heavy flavor data at all luminosities attainablethroughout the proposed RHIC II era.

  17. A Heavy Flavor Tracker for STAR

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Z.; Chen, Y.; Kleinfelder, S.; Koohi, A.; Li, S.; Huang, H.; Tai, A.; Kushpil, V.; Sumbera, M.; Colledani, C.; Dulinski, W.; Himmi,A.; Hu, C.; Shabetai, A.; Szelezniak, M.; Valin, I.; Winter, M.; Surrow,B.; Van Nieuwenhuizen, G.; Bieser, F.; Gareus, R.; Greiner, L.; Lesser,F.; Matis, H.S.; Oldenburg, M.; Ritter, H.G.; Pierpoint, L.; Retiere, F.; Rose, A.; Schweda, K.; Sichtermann, E.; Thomas, J.H.; Wieman, H.; Yamamoto, E.; Kotov, I.

    2005-03-14

    We propose to construct a Heavy Flavor Tracker (HFT) for the STAR experiment at RHIC. The HFT will bring new physics capabilities to STAR and it will significantly enhance the physics capabilities of the STAR detector at central rapidities. The HFT will ensure that STAR will be able to take heavy flavor data at all luminosities attainable throughout the proposed RHIC II era.

  18. Lectures on Flavor Physics and CP Violation

    OpenAIRE

    Grinstein, B.

    2017-01-01

    Two short introductory lectures on Flavor Physics delivered at CLASHEP 2015. Among included topics: The KM matrix and the KM model of CP-violation, Determination of KM Elements, FCNC and GIM, New Physics and Flavor, Neutral Meson Mixing and CP Asymmetries. Many problems for the student, and solutions to selected problems, included.

  19. Privacy-Preserving Restricted Boltzmann Machine

    Science.gov (United States)

    Li, Yu

    2014-01-01

    With the arrival of the big data era, it is predicted that distributed data mining will lead to an information technology revolution. To motivate different institutes to collaborate with each other, the crucial issue is to eliminate their concerns regarding data privacy. In this paper, we propose a privacy-preserving method for training a restricted boltzmann machine (RBM). The RBM can be got without revealing their private data to each other when using our privacy-preserving method. We provide a correctness and efficiency analysis of our algorithms. The comparative experiment shows that the accuracy is very close to the original RBM model. PMID:25101139

  20. Application of lattice Boltzmann scheme to nanofluids

    Institute of Scientific and Technical Information of China (English)

    XUAN Yimin; LI Qiang; YAO Zhengping

    2004-01-01

    A nanofluid is a particle suspension that consists of base liquids and nanoparticles. Nanofluid has greater potential for heat transfer enhancement than traditional solid-liquid mixture. By accounting for the external and internal forces acting on the suspended nanoparticles and interactions among the nanoparticles and fluid particles,a lattice Boltzmann model for simulating flow and energy transport processes inside the nanofluids is proposed. The irregular motion of the nanoparticles and inherent dynamic behavior of nanofluids are discussed. The distributions of suspended nanoparticles inside nanofluids are calculated.

  1. Lattice-Boltzmann-based Simulations of Diffusiophoresis

    Science.gov (United States)

    Castigliego, Joshua; Kreft Pearce, Jennifer

    We present results from a lattice-Boltzmann-base Brownian Dynamics simulation on diffusiophoresis and the separation of particles within the system. A gradient in viscosity that simulates a concentration gradient in a dissolved polymer allows us to separate various types of particles by their deformability. As seen in previous experiments, simulated particles that have a higher deformability react differently to the polymer matrix than those with a lower deformability. Therefore, the particles can be separated from each other. This simulation, in particular, was intended to model an oceanic system where the particles of interest were zooplankton, phytoplankton and microplastics. The separation of plankton from the microplastics was achieved.

  2. Celebrating Cercignani's conjecture for the Boltzmann equation

    CERN Document Server

    Desvillettes, Laurent; Villani, Cédric

    2010-01-01

    Cercignani's conjecture assumes a linear inequality between the entropy and entropy production functionals for Boltzmann's nonlinear integral operator in rarefied gas dynamics. Related to the field of logarithmic Sobolev inequalities and spectral gap inequalities, this issue has been at the core of the renewal of the mathematical theory of convergence to thermodynamical equilibrium for rarefied gases over the past decade. In this review paper, we survey the various positive and negative results which were obtained since the conjecture was proposed in the 1980s.

  3. Flavor and stability of milk proteins.

    Science.gov (United States)

    Smith, T J; Campbell, R E; Jo, Y; Drake, M A

    2016-06-01

    A greater understanding of the nature and source of dried milk protein ingredient flavor(s) is required to characterize flavor stability and identify the sources of flavors. The objective of this study was to characterize the flavor and flavor chemistry of milk protein concentrates (MPC 70, 80, 85), isolates (MPI), acid and rennet caseins, and micellar casein concentrate (MCC) and to determine the effect of storage on flavor and functionality of milk protein concentrates using instrumental and sensory techniques. Spray-dried milk protein ingredients (MPC, MPI, caseins, MCC) were collected in duplicate from 5 commercial suppliers or manufactured at North Carolina State University. Powders were rehydrated and evaluated in duplicate by descriptive sensory analysis. Volatile compounds were extracted by solid phase microextraction followed by gas chromatography-mass spectrometry (GC-MS) and gas chromatography-olfactometry. Compounds were identified by comparison of retention indices, odor properties, and mass spectra against reference standards. A subset of samples was selected for further analysis using direct solvent extraction with solvent-assisted flavor extraction, and aroma extract dilution analysis. External standard curves were created to quantify select volatile compounds. Pilot plant manufactured MPC were stored at 3, 25, and 40°C (44% relative humidity). Solubility, furosine, sensory properties, and volatile compound analyses were performed at 0, 1, 3, 6, and 12 mo. Milk proteins and caseins were diverse in flavor and exhibited sweet aromatic and cooked/milky flavors as well as cardboard, brothy, tortilla, soapy, and fatty flavors. Key aroma active compounds in milk proteins and caseins were 2-aminoacetophenone, nonanal, 1-octen-3-one, dimethyl trisulfide, 2-acetyl-1-pyrroline, heptanal, methional, 1-hexen-3-one, hexanal, dimethyl disulfide, butanoic acid, and acetic acid. Stored milk proteins developed animal and burnt sugar flavors over time. Solubility of

  4. Impact of flavor and Higgs physics on theories beyond the standard model

    Energy Technology Data Exchange (ETDEWEB)

    Casagrande, Sandro

    2013-02-13

    Quantum effects of physics beyond the Standard Model receive strong indirect constraints from precisely measured collider observables. In the conceptual part of this thesis, we apply the generic relations between particle interactions in perturbatively unitary theories to calculate one-loop amplitudes for flavor physics. We provide template results applicable for any model of this class. We also investigate example models that are partly and such that are not perturbatively unitary: the Littlest Higgs model and Randall-Sundrum models. The latter have a unique coupling structure, which we cover exhaustively. We find strong constraints on the Randall-Sundrum models and numerically compare those from flavor, electroweak precision, and Higgs physics by performing detailed parameter scans. We observe interesting correlations between flavor observables, and we find that constraints from Higgs production and decays are already competitive.

  5. Flavor dependence of baryon melting temperature in effective models of QCD

    Science.gov (United States)

    Torres-Rincon, Juan M.; Sintes, Benjamin; Aichelin, Joerg

    2015-06-01

    We apply the three-flavor (Polyakov-)Nambu-Jona-Lasinio model to generate baryons as quark-diquark bound states using many-body techniques at finite temperature. All the baryonic states belonging to the octet and decuplet flavor representations are generated in the isospin-symmetric case. For each state we extract the melting temperature at which the baryon may decay into a quark-diquark pair. We seek for an evidence of the strangeness dependence of the baryon melting temperature as suggested by the statistical thermal models and supported by lattice quantum chromodynamics results. A clear and robust signal for this claim is found, pointing to a flavor dependence of the hadronic deconfinement temperature.

  6. Patterns of flavor signals in supersymmetric models

    Energy Technology Data Exchange (ETDEWEB)

    Goto, T. [KEK National High Energy Physics, Tsukuba (Japan)]|[Kyoto Univ. (Japan). YITP; Okada, Y. [KEK National High Energy Physics, Tsukuba (Japan)]|[Graduate Univ. for Advanced Studies, Tsukuba (Japan). Dept. of Particle and Nucelar Physics; Shindou, T. [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany)]|[International School for Advanced Studies, Trieste (Italy); Tanaka, M. [Osaka Univ., Toyonaka (Japan). Dept. of Physics

    2007-11-15

    Quark and lepton flavor signals are studied in four supersymmetric models, namely the minimal supergravity model, the minimal supersymmetric standard model with right-handed neutrinos, SU(5) supersymmetric grand unified theory with right-handed neutrinos and the minimal supersymmetric standard model with U(2) flavor symmetry. We calculate b{yields}s(d) transition observables in B{sub d} and B{sub s} decays, taking the constraint from the B{sub s}- anti B{sub s} mixing recently observed at Tevatron into account. We also calculate lepton flavor violating processes {mu} {yields} e{gamma}, {tau} {yields} {mu}{gamma} and {tau} {yields} e{gamma} for the models with right-handed neutrinos. We investigate possibilities to distinguish the flavor structure of the supersymmetry breaking sector with use of patterns of various flavor signals which are expected to be measured in experiments such as MEG, LHCb and a future Super B Factory. (orig.)

  7. Collective neutrino flavor conversion: Recent developments

    CERN Document Server

    Chakraborty, Sovan; Izaguirre, Ignacio; Raffelt, Georg

    2016-01-01

    Neutrino flavor evolution in core-collapse supernovae, neutron-star mergers, or the early universe is dominated by neutrino-neutrino refraction, often spawning "self-induced flavor conversion", i.e., shuffling of flavor among momentum modes. This effect is driven by collective run-away modes of the coupled "flavor oscillators" and can spontaneously break the initial symmetries such as axial symmetry, homogeneity, isotropy, and even stationarity. Moreover, the growth rates of unstable modes can be of the order of the neutrino-neutrino interaction energy instead of the much smaller vacuum oscillation frequency: self-induced flavor conversion does not always require neutrino masses. We illustrate these newly found phenomena in terms of simple toy models. What happens in realistic astrophysical settings is up to speculation at present.

  8. General relativistic Boltzmann equation, II: Manifestly covariant treatment

    NARCIS (Netherlands)

    Debbasch, F.; van Leeuwen, W.A.

    2009-01-01

    In a preceding article we presented a general relativistic treatment of the derivation of the Boltzmann equation. The four-momenta occurring in this formalism were all on-shell four-momenta, verifying the mass-shell restriction p(2) = m(2)c(2). Due to this restriction, the resulting Boltzmann equati

  9. Soluble Boltzmann equations for internal state and Maxwell models

    NARCIS (Netherlands)

    Futcher, E.; Hoare, M.R.; Hendriks, E.M.; Ernst, M.H.

    1980-01-01

    We consider a class of scalar nonlinear Boltzmann equations describing the evolution of a microcanonical ensemble in which sub-systems exchange internal energy ‘randomly’ in binary interactions. In the continuous variable version these models can equally be interpreted as Boltzmann equations for Ma

  10. Reciprocal Symmetric Boltzmann Function and Unified Boson-Fermion Statistics

    OpenAIRE

    2007-01-01

    The differential equation for Boltzmann's function is replaced by the corresponding discrete finite difference equation. The difference equation is, then, symmetrized so that the equation remains invariant when step d is replaced by -d. The solutions of this equation come in Boson-Fermion pairs. Reciprocal symmetric Boltzmann's function, thus, unifies both Bosonic and Fermionic distributions.

  11. Boltzmann's "H"-Theorem and the Assumption of Molecular Chaos

    Science.gov (United States)

    Boozer, A. D.

    2011-01-01

    We describe a simple dynamical model of a one-dimensional ideal gas and use computer simulations of the model to illustrate two fundamental results of kinetic theory: the Boltzmann transport equation and the Boltzmann "H"-theorem. Although the model is time-reversal invariant, both results predict that the behaviour of the gas is time-asymmetric.…

  12. General relativistic Boltzmann equation, II: Manifestly covariant treatment

    NARCIS (Netherlands)

    Debbasch, F.; van Leeuwen, W.A.

    2009-01-01

    In a preceding article we presented a general relativistic treatment of the derivation of the Boltzmann equation. The four-momenta occurring in this formalism were all on-shell four-momenta, verifying the mass-shell restriction p(2) = m(2)c(2). Due to this restriction, the resulting Boltzmann

  13. Axisymmetric multiphase lattice Boltzmann method for generic equations of state

    NARCIS (Netherlands)

    Reijers, Sten Arjen; Gelderblom, Hanneke; Toschi, F.

    2016-01-01

    We present an axisymmetric lattice Boltzmann model based on the Kupershtokh et al. multiphase model that is capable of solving liquid–gas density ratios up to 103. Appropriate source terms are added to the lattice Boltzmann evolution equation to fully recover the axisymmetric multiphase conservation

  14. Distributional Monte Carlo Methods for the Boltzmann Equation

    Science.gov (United States)

    2013-03-01

    become the first to possess non - Maxwellian distributions, and therefore become the only location where 112 collisions are required to be calculated... Maxwellian . . . . . . . . . . . . . . . . . 16 fMB Maxwell-Boltzmann Density . . . . . . . . . . . . . . . . . . . . . . . . 16 nMB Maxwell-Boltzmann...is equivalent to assuming that millions of actual particles all share the exact velocity vector. This assumption is non -physical in the sense that

  15. Thermal equation of state for lattice Boltzmann gases

    Institute of Scientific and Technical Information of China (English)

    Ran Zheng

    2009-01-01

    The Galilean invaxiance and the induced thermo-hydrodynamics of the lattice Boltzmann Bhatnagar-Gross-Krook model axe proposed together with their rigorous theoretical background. From the viewpoint of group invariance,recovering the Galilean invariance for the isothermal lattice Boltzmann Bhatnagar-Gross-Krook equation (LBGKE) induces a new natural thermal-dynamical system, which is compatible with the elementary statistical thermodynamics.

  16. Axisymmetric multiphase lattice Boltzmann method for generic equations of state

    NARCIS (Netherlands)

    Reijers, S.A.; Gelderblom, H.; Toschi, F.

    2016-01-01

    We present an axisymmetric lattice Boltzmann model based on the Kupershtokh et al. multiphase model that is capable of solving liquid–gas density ratios up to 103. Appropriate source terms are added to the lattice Boltzmann evolution equation to fully recover the axisymmetric multiphase conservation

  17. Multireflection boundary conditions for lattice Boltzmann models.

    Science.gov (United States)

    Ginzburg, Irina; d'Humières, Dominique

    2003-12-01

    We present a general framework for several previously introduced boundary conditions for lattice Boltzmann models, such as the bounce-back rule and the linear and quadratic interpolations. The objectives are twofold: first to give theoretical tools to study the existing link-type boundary conditions and their corresponding accuracy; second to design boundary conditions for general flows which are third-order kinetic accurate. Using these new boundary conditions, Couette and Poiseuille flows are exact solutions of the lattice Boltzmann models for a Reynolds number Re=0 (Stokes limit) for arbitrary inclination with the lattice directions. Numerical comparisons are given for Stokes flows in periodic arrays of spheres and cylinders, linear periodic array of cylinders between moving plates, and for Navier-Stokes flows in periodic arrays of cylinders for Re<200. These results show a significant improvement of the overall accuracy when using the linear interpolations instead of the bounce-back reflection (up to an order of magnitude on the hydrodynamics fields). Further improvement is achieved with the new multireflection boundary conditions, reaching a level of accuracy close to the quasianalytical reference solutions, even for rather modest grid resolutions and few points in the narrowest channels. More important, the pressure and velocity fields in the vicinity of the obstacles are much smoother with multireflection than with the other boundary conditions. Finally the good stability of these schemes is highlighted by some simulations of moving obstacles: a cylinder between flat walls and a sphere in a cylinder.

  18. Entropic Lattice Boltzmann Methods for Fluid Mechanics

    Science.gov (United States)

    Chikatamarla, Shyam; Boesch, Fabian; Sichau, David; Karlin, Ilya

    2013-11-01

    With its roots in statistical mechanics and kinetic theory, the lattice Boltzmann method (LBM) is a paradigm-changing innovation, offering for the first time an intrinsically parallel CFD algorithm. Over the past two decades, LBM has achieved numerous results in the field of CFD and is now in a position to challenge state-of-the art CFD techniques. Our major restyling of LBM resulted in an unconditionally stable entropic LBM which restored Second Law (Boltzmann H theorem) in the LBM kinetics and thus enabled affordable direct simulations of fluid turbulence. We review here recent advances in ELBM as a practical, modeling-free tool for simulation of turbulent flows in complex geometries. We shall present recent simulations including turbulent channel flow, flow past a circular cylinder, knotted vortex tubes, and flow past a surface mounted cube. ELBM listed all admissible lattices supporting a discrete entropy function and has classified them in hierarchically increasing order of accuracy. Applications of these higher-order lattices to simulations of turbulence and thermal flows shall also be presented. This work was supported CSCS grant s437.

  19. Immersed boundary lattice Boltzmann model based on multiple relaxation times.

    Science.gov (United States)

    Lu, Jianhua; Han, Haifeng; Shi, Baochang; Guo, Zhaoli

    2012-01-01

    As an alterative version of the lattice Boltzmann models, the multiple relaxation time (MRT) lattice Boltzmann model introduces much less numerical boundary slip than the single relaxation time (SRT) lattice Boltzmann model if some special relationship between the relaxation time parameters is chosen. On the other hand, most current versions of the immersed boundary lattice Boltzmann method, which was first introduced by Feng and improved by many other authors, suffer from numerical boundary slip as has been investigated by Le and Zhang. To reduce such a numerical boundary slip, an immerse boundary lattice Boltzmann model based on multiple relaxation times is proposed in this paper. A special formula is given between two relaxation time parameters in the model. A rigorous analysis and the numerical experiments carried out show that the numerical boundary slip reduces dramatically by using the present model compared to the single-relaxation-time-based model.

  20. Boltzmann equations for a binary one-dimensional ideal gas.

    Science.gov (United States)

    Boozer, A D

    2011-09-01

    We consider a time-reversal invariant dynamical model of a binary ideal gas of N molecules in one spatial dimension. By making time-asymmetric assumptions about the behavior of the gas, we derive Boltzmann and anti-Boltzmann equations that describe the evolution of the single-molecule velocity distribution functions for an ensemble of such systems. We show that for a special class of initial states of the ensemble one can obtain an exact expression for the N-molecule velocity distribution function, and we use this expression to rigorously prove that the time-asymmetric assumptions needed to derive the Boltzmann and anti-Boltzmann equations hold in the limit of large N. Our results clarify some subtle issues regarding the origin of the time asymmetry of Boltzmann's H theorem.

  1. PHENIX recent heavy flavor results

    Energy Technology Data Exchange (ETDEWEB)

    Lim, Sanghoon

    2014-06-15

    Cold nuclear matter (CNM) effects provide an important ingredient to interpret the results from heavy-ion collisions. Such effects include nuclear shadowing, intrinsic parton transverse momentum broadening, and initial patron energy loss. The measurement of heavy quark production is a good probe to study the CNM effects particularly on gluons, since heavy quarks are mainly produced via gluon fusions at RHIC energy. The PHENIX experiment has an ability to study the CNM effects by measuring leptons from heavy-flavor decay in a broad kinematic range. Comparisons of the results measured in different rapidity regions allow us to study modification of gluon density function in the Au nucleus depending on parton fractional momentum x. In addition, comparisons to the results from heavy-ion collisions (Au + Au and Cu + Cu) measured by PHENIX provide an insight into the role of CNM effects in such collisions. Recent PHENIX results on heavy quark production are discussed in this presentation.

  2. Tetraquark states with open flavors

    Energy Technology Data Exchange (ETDEWEB)

    Tang, Liang [Hebei Normal University, Department of Physics, Shijiazhuang (China); CAS Center for Excellence in Particle Physics, Beijing (China); Qiao, Cong-Feng [University of Chinese Academy of Sciences, School of Physics, Beijing (China); CAS Center for Excellence in Particle Physics, Beijing (China)

    2016-10-15

    In this work, we estimate the masses of tetraquark states with four different flavors by virtue of QCD sum rules, in both b and c sectors. We construct four [8{sub c}] {sub anti} {sub bs} x [8{sub c}] {sub anti} {sub du} tetraquark currents with J{sup P} = 0{sup +}, and then we perform an analytic calculation up to dimension eight in the operator product expansion. We keep terms which are linear in the strange quark mass m{sub s}, and in the end we find two possible tetraquark states with masses (5.57 ± 0.15) and (5.58 ± 0.15) GeV. We find that their charmed-partner masses lie in (2.54 ± 0.13) and (2.55 ± 0.13) GeV, respectively, and are hence accessible in experiments like BESIII and Belle. (orig.)

  3. Neutral B meson flavor tagging

    Science.gov (United States)

    Wilson, Robert J.

    2001-07-01

    We present an investigation of the use of net charge and kaon identification to tag the flavor of neutral B mesons. The net charge of the neutral B meson decay products is zero if all charged particles are used and slightly non-zero if only undiscriminated hadronic final states are used. The net charge of the kaons alone correctly tags the identity of the neutral meson in at least a third of all decays. We have parametrized the particle identification capability of several techniques, such as dE/dx in time projection chambers, LEP/SLC ring-imaging chambers and an enhanced BaBar DIRC. Using these parametrisations we compare the relative tagging power of each technique to that of an ideal detector.

  4. Neutral B meson flavor tagging

    CERN Document Server

    Wilson, R J

    2001-01-01

    We present an investigation of the use of net charge and kaon identification to tag the flavor of neutral B mesons. The net charge of the neutral B meson decay products is zero if all charged particles are used and slightly non-zero if only undiscriminated hadronic final states are used. The net charge of the kaons alone correctly tags the identity of the neutral meson in at least a third of all decays. We have parametrized the particle identification capability of several techniques, such as dE/dx in time projection chambers, LEP/SLC ring-imaging chambers and an enhanced BaBar DIRC. Using these parametrisations we compare the relative tagging power of each technique to that of an ideal detector. (8 refs).

  5. Flavor Physics and Lattice QCD

    CERN Document Server

    Bouchard, C M

    2013-01-01

    Our ability to resolve new physics effects is, largely, limited by the precision with which we calculate. The calculation of observables in the Standard (or a new physics) Model requires knowledge of associated hadronic contributions. The precision of such calculations, and therefore our ability to leverage experiment, is typically limited by hadronic uncertainties. The only first-principles method for calculating the nonperturbative, hadronic contributions is lattice QCD. Modern lattice calculations have controlled errors, are systematically improvable, and in some cases, are pushing the sub-percent level of precision. I outline the role played by, highlight state of the art efforts in, and discuss possible future directions of lattice calculations in flavor physics.

  6. Determining flavor and flavor variability in commercially produced liquid cheddar whey.

    Science.gov (United States)

    Carunchia Whetstine, M E; Parker, J D; Drake, M A; Larick, D K

    2003-02-01

    Dried whey and whey protein are important food ingredients. Functionality of whey products has been studied extensively. Flavor inconsistency and flavors which may carry through to the finished product can limit whey ingredient applications in dairy and nondairy foods. The goal of this research was to determine the flavor and flavor variability of commercially produced liquid Cheddar cheese whey. Liquid Cheddar cheese whey from five culture blends from two different stirred-curd Cheddar cheese manufacturing facilities was collected. Whey flavor was characterized using instrumental and sensory methods. Wide variation in whey headspace volatiles was observed between different manufacturing facilities (P whey samples were also different (P whey flavor profiles were also confirmed by descriptive sensory analysis (P whey flavor were attributed to differences in milk source, processing and handling and starter culture blend. The flavor of liquid Cheddar cheese whey is variable and impacted by milk source and starter culture rotation. Results from this study will aid future studies that address the impact of liquid whey flavor variability on flavor of dried whey ingredients.

  7. A Flavor Protection for Warped Higgsless Models

    CERN Document Server

    Csaki, Csaba

    2009-01-01

    We examine various possibilities for realistic 5D higgsless models and construct a full quark sector featuring next-to-minimal flavor violation (with an exact bulk SU(2) protecting the first two generations) satisfying electroweak and flavor constraints. The "new custodially protected representation" is used for the third generation to protect the light quarks from flavor violations induced due to the heavy top. A combination of flavor symmetries, and RS-GIM for the right-handed quarks suppresses flavor-changing neutral currents below experimental bounds, assuming CKM-type mixing on the UV brane. In addition to the usual higgsless RS signals, this model predicts an exotic charge-5/3 quark with mass of about 0.5 TeV which should show up at the LHC very quickly, as well as nonzero flavor-changing neutral currents which could be detected in the next generation of flavor experiments. In the course of our analysis, we also find quantitative estimates for the errors of the fermion zero mode approximation, which are...

  8. A flavor protection for warped Higgsless models

    Science.gov (United States)

    Csáki, Csaba; Curtin, David

    2009-07-01

    We examine various possibilities for realistic 5D Higgsless models on a Randall-Sundrum (RS) background, and construct a full quark sector featuring next-to-minimal flavor violation (with an exact bulk SU(2) protecting the first two generations) which satisfies electroweak and flavor constraints. The “new custodially protected representation” is used for the third generation to protect the light quarks from flavor violations induced due to the heavy top. A combination of flavor symmetries, and an “RS-GIM” mechanism for the right-handed quarks suppresses flavor-changing neutral currents below experimental bounds, assuming Cabibbo-Kobayashi-Maskawa-type mixing on the UV brane. In addition to the usual Higgsless RS signals, this model predicts an exotic charge-5/3 quark with mass of about 0.5 TeV which should show up at the LHC very quickly, as well as nonzero flavor-changing neutral currents which could be detected in the next generation of flavor experiments. In the course of our analysis, we also find quantitative estimates for the errors of the fermion zero-mode approximation, which are significant for Higgsless-type models.

  9. Flavor and CP invariant composite Higgs models

    Energy Technology Data Exchange (ETDEWEB)

    Redi, Michele [CERN - European Organization for Nuclear Research, Geneva (Switzerland). Theory Div.; INFN, Firenze (Italy); Weiler, Andreas [CERN - European Organization for Nuclear Research, Geneva (Switzerland). Theory Div.; Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany)

    2011-09-15

    The flavor protection in composite Higgs models with partial compositeness is known to be insufficient. We explore the possibility to alleviate the tension with CP odd observables by assuming that flavor or CP are symmetries of the composite sector, broken by the coupling to Standard Model fields. One realization is that the composite sector has a flavor symmetry SU(3) or SU(3){sub U} x SU(3){sub D} which allows us to realize Minimal Flavor Violation. We show how to avoid the previously problematic tension between a flavor symmetric composite sector and electro-weak precision tests. Some of the light quarks are substantially or even fully composite with striking signals at the LHC. We discuss the constraints from recent dijet mass measurements and give an outlook on the discovery potential. We also present a different protection mechanism where we separate the generation of flavor hierarchies and the origin of CP violation. This can eliminate or safely reduce unwanted CP violating effects, realizing effectively ''Minimal CP Violation'' and is compatible with a dynamical generation of flavor at low scales. (orig.)

  10. D-foam-induced flavor condensates and breaking of supersymmetry in free Wess-Zumino fluids

    CERN Document Server

    Mavromatos, N E; Tarantino, W

    2011-01-01

    Recently {[}N. E. Mavromatos and S. Sarkar, New J. Phys. 10, 073009 (2008); N. E. Mavromatos, S. Sarkar, and W. Tarantino, Phys. Rev. D 80, 084046 (2009)], we argued that a particular model of string-inspired quantum space-time foam (D-foam) may induce oscillations and mixing among flavored particles. As a result, rather than the mass-eigenstate vacuum, the correct ground state to describe the underlying dynamics is the flavor vacuum, proposed some time ago by Blasone and Vitiello as a description of quantum field theories with mixing. At the microscopic level, the breaking of target-space supersymmetry is induced in our space-time foam model by the relative transverse motion of brane defects. Motivated by these results, we show that the flavor vacuum, introduced through an inequivalent representation of the canonical (anti-) commutation relations, provides a vehicle for the breaking of supersymmetry at a low-energy effective field-theory level; on considering the flavor-vacuum expectation value of the energy...

  11. Topics in three flavor chiral dynamics

    Energy Technology Data Exchange (ETDEWEB)

    Nissler, Robin

    2007-07-01

    In this work, we investigate several processes in low-energy hadron physics by combining chiral perturbation theory (ChPT), the effective field theory of quantum chromodynamics (QCD) at low energies, with a unitarization method based on the Bethe-Salpeter equation. Such so-called chiral unitary approaches are capable of describing processes in the three flavor sector of the strong interaction which involve substantial effects from final-state interactions and the excitation of (subthreshold) resonances, a domain where the perturbative framework of ChPT is not applicable. In part I of this work we study {eta} and {eta}' decays which constitute a perfect tool to examine symmetries and symmetry breaking patterns of QCD being incorporated in a model-independent fashion in ChPT. In particular, these decays allow to investigate the breaking of isospin symmetry due to the light quark mass difference m{sub d}-m{sub u} as well as effects of anomalies stemming from the quantum nature of QCD. For these reasons the decays of {eta} and {eta}' have also attracted considerable experimental interest. They are currently under investigation at several facilities including KLOE rate at DA{phi}NE, Crystal Ball at MAMI, WASA-at-COSY, VES at IHEP, and CLEO at CESR. In part II we investigate low-energy meson-baryon scattering in the strangeness S=-1 sector which is dominated by the {lambda}(1405) resonance immediately below the anti KN threshold. The anti KN interaction below threshold is of relevance for the quest of possible deeply bound anti K-nuclear clusters and has recently received an additional tight constraint: the K{sup -}p scattering length as determined from kaonic hydrogen by the KEK and the DEAR collaborations. Apart from successfully describing a large amount of experimental data and furnishing predictions for yet unmeasured quantities, our calculations allow to interrelate different experimental observables providing important consistency tests of experiments. E

  12. The Bohmian Approach to the Problems of Cosmological Quantum Fluctuations

    CERN Document Server

    Goldstein, Sheldon; Tumulka, Roderich

    2015-01-01

    There are two kinds of quantum fluctuations relevant to cosmology that we focus on in this article: those that form the seeds for structure formation in the early universe and those giving rise to Boltzmann brains in the late universe. First, structure formation requires slight inhomogeneities in the density of matter in the early universe, which then get amplified by the effect of gravity, leading to clumping of matter into stars and galaxies. According to inflation theory, quantum fluctuations form the seeds of these inhomogeneities. However, these quantum fluctuations are described by a quantum state which is homogeneous and isotropic, and this raises a problem, connected to the foundations of quantum theory, as the unitary evolution alone cannot break the symmetry of the quantum state. Second, Boltzmann brains are random agglomerates of particles that, by extreme coincidence, form functioning brains. Unlikely as these coincidences are, they seem to be predicted to occur in a quantum universe as vacuum flu...

  13. [Inheritance on and innovation of traditional Chinese medicine (TCM) flavor theory and TCM flavor standardization principle flavor theory in Compendium of Materia Medica].

    Science.gov (United States)

    Zhang, Wei; Zhang, Rui-xian; Li, Jian

    2015-12-01

    All previous literatures about Chinese herbal medicines show distinctive traditional Chinese medicine (TCM) flavors. Compendium of Materia Medica is an influential book in TCM history. The TCM flavor theory and flavor standardization principle in this book has important significance for modern TCM flavor standardization. Compendium of Materia Medica pays attention to the flavor theory, explain the relations between the flavor of medicine and its therapeutic effects by means of Neo-Confucianism of the Song and Ming Dynasties. However,the book has not reflected and further developed the systemic theory, which originated in the Jin and Yuan dynasty. In Compendium of Materia Medica , flavor are standardized just by tasting medicines, instead of deducing flavors. Therefore, medicine tasting should be adopted as the major method to standardize the flavor of medicine.

  14. Contributed report: Flavor anarchy for Majorana neutrinos

    Indian Academy of Sciences (India)

    Yosef Nir; Yael Shadmi

    2004-12-01

    We argue that neutrino flavor parameters may exhibit features that are very different from those of quarks and charged leptons. Specifically, within the Froggatt–Nielsen (FN) framework, charged fermion parameters depend on the ratio between two scales, while for neutrinos a third scale – that of lepton number breaking – is involved. Consequently, the selection rules for neutrinos may be different. In particular, if the scale of lepton number breaking is similar to the scale of horizontal symmetry breaking, neutrinos may become flavor-blind even if they carry different horizontal charges. This provides an attractive mechanism for neutrino flavor anarchy.

  15. Flavor release measurement from gum model system

    DEFF Research Database (Denmark)

    Ovejero-López, I.; Haahr, Anne-Mette; van den Berg, Frans W.J.

    2004-01-01

    Flavor release from a mint-flavored chewing gum model system was measured by atmospheric pressure chemical ionization mass spectroscopy (APCI-MS) and sensory time-intensity (TI). A data analysis method for handling the individual curves from both methods is presented. The APCI-MS data are ratio...... composition can be measured by both instrumental and sensory techniques, providing comparable information. The peppermint oil level (0.5-2% w/w) in the gum influenced both the retronasal concentration and the perceived peppermint flavor. The sweeteners' (sorbitol or xylitol) effect is less apparent. Sensory...

  16. Heavy flavor baryons in hypercentral model

    Indian Academy of Sciences (India)

    Bhavin Patel; Ajay Kumar Rai; P C Vinodkumar

    2008-05-01

    Heavy flavor baryons containing single and double charm (beauty) quarks with light flavor combinations are studied using the hypercentral description of the three-body problem. The confinement potential is assumed as hypercentral Coulomb plus power potential with power index . The ground state masses of the heavy flavor, $J^{P} = \\dfrac{1}{2}^{+}$ and $\\dfrac{3}{2}^{+}$ baryons are computed for different power indices, starting from 0.5 to 2.0. The predicted masses are found to attain a saturated value in each case of quark combinations beyond the power index = 1.0.

  17. Neutrino scattering and flavor transformation in supernovae

    CERN Document Server

    Cherry, John F; Friedland, Alexander; Fuller, George M; Vlasenko, Alexey

    2012-01-01

    We argue that the small fraction of neutrinos that undergo direction-changing scattering outside of the neutrinosphere could have significant influence on neutrino flavor transformation in core-collapse supernova environments. We show that the standard treatment for collective neutrino flavor transformation is adequate at late times, but could be inadequate in the crucial shock revival/explosion epoch of core-collapse supernovae, where the potentials that govern neutrino flavor evolution are affected by the scattered neutrinos. Taking account of this effect, and the way it couples to entropy and composition, will require a new paradigm in supernova modeling.

  18. Poisson-Boltzmann versus Size-Modified Poisson-Boltzmann Electrostatics Applied to Lipid Bilayers.

    Science.gov (United States)

    Wang, Nuo; Zhou, Shenggao; Kekenes-Huskey, Peter M; Li, Bo; McCammon, J Andrew

    2014-12-26

    Mean-field methods, such as the Poisson-Boltzmann equation (PBE), are often used to calculate the electrostatic properties of molecular systems. In the past two decades, an enhancement of the PBE, the size-modified Poisson-Boltzmann equation (SMPBE), has been reported. Here, the PBE and the SMPBE are reevaluated for realistic molecular systems, namely, lipid bilayers, under eight different sets of input parameters. The SMPBE appears to reproduce the molecular dynamics simulation results better than the PBE only under specific parameter sets, but in general, it performs no better than the Stern layer correction of the PBE. These results emphasize the need for careful discussions of the accuracy of mean-field calculations on realistic systems with respect to the choice of parameters and call for reconsideration of the cost-efficiency and the significance of the current SMPBE formulation.

  19. Poisson–Boltzmann versus Size-Modified Poisson–Boltzmann Electrostatics Applied to Lipid Bilayers

    Science.gov (United States)

    2015-01-01

    Mean-field methods, such as the Poisson–Boltzmann equation (PBE), are often used to calculate the electrostatic properties of molecular systems. In the past two decades, an enhancement of the PBE, the size-modified Poisson–Boltzmann equation (SMPBE), has been reported. Here, the PBE and the SMPBE are reevaluated for realistic molecular systems, namely, lipid bilayers, under eight different sets of input parameters. The SMPBE appears to reproduce the molecular dynamics simulation results better than the PBE only under specific parameter sets, but in general, it performs no better than the Stern layer correction of the PBE. These results emphasize the need for careful discussions of the accuracy of mean-field calculations on realistic systems with respect to the choice of parameters and call for reconsideration of the cost-efficiency and the significance of the current SMPBE formulation. PMID:25426875

  20. Quantum Transition-State Theory

    CERN Document Server

    Hele, Timothy J H

    2014-01-01

    This dissertation unifies one of the central methods of classical rate calculation, `Transition-State Theory' (TST), with quantum mechanics, thereby deriving a rigorous `Quantum Transition-State Theory' (QTST). The resulting QTST is identical to ring polymer molecular dynamics transition-state theory (RPMD-TST), which was previously considered a heuristic method, and whose results we thereby validate. The key step in deriving a QTST is alignment of the flux and side dividing surfaces in path-integral space to obtain a quantum flux-side time-correlation function with a non-zero $t\\to 0_+$ limit. We then prove that this produces the exact quantum rate in the absence of recrossing by the exact quantum dynamics, fulfilling the requirements of a QTST. Furthermore, strong evidence is presented that this is the only QTST with positive-definite Boltzmann statistics and therefore the pre-eminent method for computation of thermal quantum rates in direct reactions.

  1. 21 CFR 172.585 - Sugar beet extract flavor base.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Sugar beet extract flavor base. 172.585 Section 172... CONSUMPTION Flavoring Agents and Related Substances § 172.585 Sugar beet extract flavor base. Sugar beet...) Sugar beet extract flavor base is the concentrated residue of soluble sugar beet extractives from...

  2. 21 CFR 169.181 - Vanilla-vanillin flavoring.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 2 2010-04-01 2010-04-01 false Vanilla-vanillin flavoring. 169.181 Section 169... Dressings and Flavorings § 169.181 Vanilla-vanillin flavoring. (a) Vanilla-vanillin flavoring conforms to... ingredients prescribed for vanilla-vanillin extract by § 169.180, except that its content of ethyl alcohol...

  3. Lattice Boltzmann Model for Numerical Relativity

    CERN Document Server

    Ilseven, E

    2015-01-01

    In the Bona-Masso formulation, Einstein equations are written as a set of flux conservative first order hyperbolic equations that resemble fluid dynamics equations. Based on this formulation, we construct a lattice Boltzmann model for Numerical Relativity. Our model is validated with well-established tests, showing good agreement with analytical solutions. Furthermore, we show that by increasing the relaxation time, we gain stability at the cost of losing accuracy, and by decreasing the lattice spacings while keeping a constant numerical diffusivity, the accuracy and stability of our simulations improves. Finally, in order to show the potential of our approach a linear scaling law for parallelisation with respect to number of CPU cores is demonstrated. Our model represents the first step in using lattice kinetic theory to solve gravitational problems.

  4. Lattice Boltzmann model with nearly constant density.

    Science.gov (United States)

    Fang, Hai-ping; Wan, Rong-zheng; Lin, Zhi-fang

    2002-09-01

    An improved lattice Boltzmann model is developed to simulate fluid flow with nearly constant fluid density. The ingredient is to incorporate an extra relaxation for fluid density, which is realized by introducing a feedback equation in the equilibrium distribution functions. The pressure is dominated by the moving particles at a node, while the fluid density is kept nearly constant and explicit mass conservation is retained as well. Numerical simulation based on the present model for the (steady) plane Poiseuille flow and the (unsteady) two-dimensional Womersley flow shows a great improvement in simulation results over the previous models. In particular, the density fluctuation has been reduced effectively while achieving a relatively large pressure gradient.

  5. Lattice Boltzmann modelling of intrinsic permeability

    CERN Document Server

    Li, Jun; Wu, Lei; Zhang, Yonghao

    2016-01-01

    Lattice Boltzmann method (LBM) has been applied to predict flow properties of porous media including intrinsic permeability, where it is implicitly assumed that the LBM is equivalent to the incompressible (or near incompressible) Navier-Stokes equation. However, in LBM simulations, high-order moments, which are completely neglected in the Navier-Stokes equation, are still available through particle distribution functions. To ensure that the LBM simulation is correctly working at the Navier-Stokes hydrodynamic level, the high-order moments have to be negligible. This requires that the Knudsen number (Kn) is small so that rarefaction effect can be ignored. In this technical note, we elaborate this issue in LBM modelling of porous media flows, which is particularly important for gas flows in ultra-tight media.

  6. The Lattice Boltzmann method principles and practice

    CERN Document Server

    Krüger, Timm; Kuzmin, Alexandr; Shardt, Orest; Silva, Goncalo; Viggen, Erlend Magnus

    2017-01-01

    This book is an introduction to the theory, practice, and implementation of the Lattice Boltzmann (LB) method, a powerful computational fluid dynamics method that is steadily gaining attention due to its simplicity, scalability, extensibility, and simple handling of complex geometries. The book contains chapters on the method's background, fundamental theory, advanced extensions, and implementation. To aid beginners, the most essential paragraphs in each chapter are highlighted, and the introductory chapters on various LB topics are front-loaded with special "in a nutshell" sections that condense the chapter's most important practical results. Together, these sections can be used to quickly get up and running with the method. Exercises are integrated throughout the text, and frequently asked questions about the method are dealt with in a special section at the beginning. In the book itself and through its web page, readers can find example codes showing how the LB method can be implemented efficiently on a va...

  7. A lattice Boltzmann model for adsorption breakthrough

    Energy Technology Data Exchange (ETDEWEB)

    Agarwal, Saurabh; Verma, Nishith [Indian Institute of Technology Kanpur, Department of Chemical Engineering, Kanpur (India); Mewes, Dieter [Universitat Hannover, Institut fur Verfahrenstechnik, Hannover (Germany)

    2005-07-01

    A lattice Boltzmann model is developed to simulate the one-dimensional (1D) unsteady state concentration profiles, including breakthrough curves, in a fixed tubular bed of non-porous adsorbent particles. The lattice model solves the 1D time dependent convection-diffusion-reaction equation for an ideal binary gaseous mixture, with solute concentrations at parts per million levels. The model developed in this study is also able to explain the experimental adsorption/desorption data of organic vapours (toluene) on silica gel under varying conditions of temperature, concentrations and flowrates. Additionally, the programming code written for simulating the adsorption breakthrough is modified with minimum changes to successfully simulate a few flow problems, such as Poiseuille flow, Couette flow, and axial dispersion in a tube. The present study provides an alternative numerical approach to solving such types of mass transfer related problems. (orig.)

  8. Ordinal Boltzmann Machines for Collaborative Filtering

    CERN Document Server

    Truyen, Tran The; Venkatesh, Svetha

    2012-01-01

    Collaborative filtering is an effective recommendation technique wherein the preference of an individual can potentially be predicted based on preferences of other members. Early algorithms often relied on the strong locality in the preference data, that is, it is enough to predict preference of a user on a particular item based on a small subset of other users with similar tastes or of other items with similar properties. More recently, dimensionality reduction techniques have proved to be equally competitive, and these are based on the co-occurrence patterns rather than locality. This paper explores and extends a probabilistic model known as Boltzmann Machine for collaborative filtering tasks. It seamlessly integrates both the similarity and co-occurrence in a principled manner. In particular, we study parameterisation options to deal with the ordinal nature of the preferences, and propose a joint modelling of both the user-based and item-based processes. Experiments on moderate and large-scale movie recomm...

  9. Lattice Boltzmann model for numerical relativity.

    Science.gov (United States)

    Ilseven, E; Mendoza, M

    2016-02-01

    In the Z4 formulation, Einstein equations are written as a set of flux conservative first-order hyperbolic equations that resemble fluid dynamics equations. Based on this formulation, we construct a lattice Boltzmann model for numerical relativity and validate it with well-established tests, also known as "apples with apples." Furthermore, we find that by increasing the relaxation time, we gain stability at the cost of losing accuracy, and by decreasing the lattice spacings while keeping a constant numerical diffusivity, the accuracy and stability of our simulations improve. Finally, in order to show the potential of our approach, a linear scaling law for parallelization with respect to number of CPU cores is demonstrated. Our model represents the first step in using lattice kinetic theory to solve gravitational problems.

  10. Lattice Boltzmann model for resistive relativistic magnetohydrodynamics

    CERN Document Server

    Mohseni, F; Succi, S; Herrmann, H J

    2015-01-01

    In this paper, we develop a lattice Boltzmann model for relativistic magnetohydrodynamics (MHD). Even though the model is derived for resistive MHD, it is shown that it is numerically robust even in the high conductivity (ideal MHD) limit. In order to validate the numerical method, test simulations are carried out for both ideal and resistive limits, namely the propagation of Alfv\\'en waves in the ideal MHD and the evolution of current sheets in the resistive regime, where very good agreement is observed comparing to the analytical results. Additionally, two-dimensional magnetic reconnection driven by Kelvin-Helmholtz instability is studied and the effects of different parameters on the reconnection rate are investigated. It is shown that the density ratio has negligible effect on the magnetic reconnection rate, while an increase in shear velocity decreases the reconnection rate. Additionally, it is found that the reconnection rate is proportional to $\\sigma^{-\\frac{1}{2}}$, $\\sigma$ being the conductivity, w...

  11. Training Restricted Boltzmann Machines on Word Observations

    CERN Document Server

    Dahl, George E; Larochelle, Hugo

    2012-01-01

    The restricted Boltzmann machine (RBM) is a flexible tool for modeling complex data, however there have been significant computational difficulties in using RBMs to model high-dimensional multinomial observations. In natural language processing applications, words are naturally modeled by K-ary discrete distributions, where K is determined by the vocabulary size and can easily be in the hundred thousands. The conventional approach to training RBMs on word observations is limited because it requires sampling the states of K-way softmax visible units during block Gibbs updates, an operation that takes time linear in K. In this work, we address this issue by employing a more general class of Markov chain Monte Carlo operators on the visible units, yielding updates with computational complexity independent of K. We demonstrate the success of our approach by training RBMs on hundreds of millions of word n-grams using larger vocabularies than previously feasible with RBMs and using the learned features to improve p...

  12. Lattice Boltzmann modeling of water entry problems

    Science.gov (United States)

    Zarghami, A.; Falcucci, G.; Jannelli, E.; Succi, S.; Porfiri, M.; Ubertini, S.

    2014-12-01

    This paper deals with the simulation of water entry problems using the lattice Boltzmann method (LBM). The dynamics of the free surface is treated through the mass and momentum fluxes across the interface cells. A bounce-back boundary condition is utilized to model the contact between the fluid and the moving object. The method is implemented for the analysis of a two-dimensional flow physics produced by a symmetric wedge entering vertically a weakly-compressible fluid at a constant velocity. The method is used to predict the wetted length, the height of water pile-up, the pressure distribution and the overall force on the wedge. The accuracy of the numerical results is demonstrated through comparisons with data reported in the literature.

  13. Classification of Sets using Restricted Boltzmann Machines

    CERN Document Server

    Louradour, Jérôme

    2011-01-01

    We consider the problem of classification when inputs correspond to sets of vectors. This setting occurs in many problems such as the classification of pieces of mail containing several pages, of web sites with several sections or of images that have been pre-segmented into smaller regions. We propose generalizations of the restricted Boltzmann machine (RBM) that are appropriate in this context and explore how to incorporate different assumptions about the relationship between the input sets and the target class within the RBM. In experiments on standard multiple-instance learning datasets, we demonstrate the competitiveness of approaches based on RBMs and apply the proposed variants to the problem of incoming mail classification.

  14. Flux Limiter Lattice Boltzmann for Compressible Flows

    Institute of Scientific and Technical Information of China (English)

    陈峰; 许爱国; 张广财; 李英骏

    2011-01-01

    In this paper, a new flux limiter scheme with the splitting technique is successfully incorporated into a multiple-relaxation-time lattice Boltzmann (LB) model for shacked compressible flows. The proposed flux limiter scheme is efficient in decreasing the artificial oscillations and numerical diffusion around the interface. Due to the kinetic nature, some interface problems being difficult to handle at the macroscopic level can be modeled more naturally through the LB method. Numerical simulations for the Richtmyer-Meshkov instability show that with the new model the computed interfaces are smoother and more consistent with physical analysis. The growth rates of bubble and spike present a satisfying agreement with the theoretical predictions and other numerical simulations.

  15. Accurate deterministic solutions for the classic Boltzmann shock profile

    Science.gov (United States)

    Yue, Yubei

    The Boltzmann equation or Boltzmann transport equation is a classical kinetic equation devised by Ludwig Boltzmann in 1872. It is regarded as a fundamental law in rarefied gas dynamics. Rather than using macroscopic quantities such as density, temperature, and pressure to describe the underlying physics, the Boltzmann equation uses a distribution function in phase space to describe the physical system, and all the macroscopic quantities are weighted averages of the distribution function. The information contained in the Boltzmann equation is surprisingly rich, and the Euler and Navier-Stokes equations of fluid dynamics can be derived from it using series expansions. Moreover, the Boltzmann equation can reach regimes far from the capabilities of fluid dynamical equations, such as the realm of rarefied gases---the topic of this thesis. Although the Boltzmann equation is very powerful, it is extremely difficult to solve in most situations. Thus the only hope is to solve it numerically. But soon one finds that even a numerical simulation of the equation is extremely difficult, due to both the complex and high-dimensional integral in the collision operator, and the hyperbolic phase-space advection terms. For this reason, until few years ago most numerical simulations had to rely on Monte Carlo techniques. In this thesis I will present a new and robust numerical scheme to compute direct deterministic solutions of the Boltzmann equation, and I will use it to explore some classical gas-dynamical problems. In particular, I will study in detail one of the most famous and intrinsically nonlinear problems in rarefied gas dynamics, namely the accurate determination of the Boltzmann shock profile for a gas of hard spheres.

  16. Prenatal flavor exposure affects flavor recognition and stress-related behavior of piglets.

    Science.gov (United States)

    Oostindjer, Marije; Bolhuis, J Elizabeth; van den Brand, Henry; Kemp, Bas

    2009-11-01

    Exposure to flavors in the amniotic fluid and mother's milk derived from the maternal diet has been shown to modulate food preferences and neophobia of young animals of several species. Aim of the experiment was to study the effects of pre- and postnatal flavor exposure on behavior of piglets during (re)exposure to this flavor. Furthermore, we investigated whether varying stress levels, caused by different test settings, affected behavior of animals during (re)exposure. Piglets were exposed to anisic flavor through the maternal diet during late gestation and/or during lactation or never. Piglets that were prenatally exposed to the flavor through the maternal diet behaved differently compared with unexposed pigs during reexposure to the flavor in several tests, suggesting recognition of the flavor. The differences between groups were more pronounced in tests with relatively high stress levels. This suggests that stress levels, caused by the design of the test, can affect the behavior shown in the presence of the flavor. We conclude that prenatal flavor exposure affects behaviors of piglets that are indicative of recognition and that these behaviors are influenced by stress levels during (re)exposure.

  17. Gauged flavor, supersymmetry and grand unification

    Science.gov (United States)

    Mohapatra, Rabindra N.

    2012-07-01

    I review a recent work on gauged flavor with left-right symmetry, where all masses and all Yukawa couplings owe their origin to spontaneous flavor symmetry breaking. This is suggested as a precursor to a full understanding of flavor of quarks and leptons. An essential ingredient of this approach is the existence of heavy vector-like fermions, which is the home of flavor, which subsequently gets transmitted to the familiar quarks and leptons via the seesaw mechanism. I then discuss implications of extending this idea to include supersymmetry and finally speculate on a possible grand unified model based on the gauge group SU(5)L×SU(5)R which provides a group theoretic origin for the vector-like fermions.

  18. Gauged Flavor, Supersymmetry and Grand Unification

    CERN Document Server

    Mohapatra, Rabindra N

    2012-01-01

    I review a recent work on gauged flavor with left-right symmetry, where all masses and all Yukawa couplings owe their origin to spontaneous flavor symmetry breaking. This is suggested as a precursor to a full understanding of flavor of quarks and leptons. An essential ingredient of this approach is the existence of heavy vector-like fermions, which is the home of flavor, which subsequently gets transmitted to the familiar quarks and leptons via the seesaw mechanism. I then discuss implications of extending this idea to include supersymmetry and finally speculate on a possible grand unified model based on the gauge group $SU(5)_L\\times SU(5)_R$ which provides a group theoretic origin for the vector-like fermions.

  19. Lectures on Flavor Physics and CP Violation

    CERN Document Server

    Grinstein, B

    2016-01-01

    These lectures on flavor physics are an introduction to the subject. First lec- ture: We discuss the meaning of flavor and the importance of flavor physics in restricting extensions of the Standard Model (SM) of Electroweak interactions. We explain the origin of the KM matrix and how its elements are determined. We discuss FCNC and the GIM mechanism, followed by how a principle of Minimal Flavor Violation leads to SM extensions that are safe as far as FCNC are concerned even if the new physics comes in at low, TeVish scales. This is illustrated by the example of B radiative decays ( b → sγ ). Second lecture: We then turn our attention to CP-violation. We start by presenting neutral meson mixing. Then we consider various CP-asymmetries, culminating in the theoretically clean interference between mixing and decay into CP eigenstates.

  20. Quantum dot nanostructures

    Directory of Open Access Journals (Sweden)

    Mohamed Henini

    2002-06-01

    These sophisticated technologies for the growth of high quality epitaxial layers of compound semiconductor materials on single crystal semiconductor substrates are becoming increasingly important for the development of the semiconductor electronics industry. This article is intended to convey the flavor of the subject by focusing on the technology and applications of self-assembled quantum dots (QDs and to give an introduction to some of the essential characteristics.

  1. Neutrino Mass Matrix with Approximate Flavor Symmetry

    CERN Document Server

    Riazuddin, M

    2003-01-01

    Phenomenological implications of neutrino oscillations implied by recent experimental data on pattern of neutrino mass matrix are disscussed. It is shown that it is possible to have a neutrino mass matrix which shows approximate flavor symmetry; the neutrino mass differences arise from flavor violation in off-diagonal Yukawa couplings. Two modest extensions of the standard model, which can embed the resulting neutrino mass matix have also been discussed.

  2. Collective flavor transitions of supernova neutrinos

    CERN Document Server

    Sigl, Guenter; Esteban-Pretel, Andreu; Pastor, Sergio; Mirizzi, Alessandro; Raffelt, Georg G; Serpico, Pasquale D

    2009-01-01

    We give a very brief overview of collective effects in neutrino oscillations in core collapse supernovae where refractive effects of neutrinos on themselves can considerably modify flavor oscillations, with possible repercussions for future supernova neutrino detection. We discuss synchronized and bipolar oscillations, the role of energy and angular neutrino modes, as well as three-flavor effects. We close with a short summary and some open questions.

  3. Lepton flavor violation in an extended MSSM

    CERN Document Server

    Espinosa-Castañeda, R.; Gómez-Bock, M.; Mondragón, M.

    2016-01-01

    In this work we explore a lepton flavor violation effect induced at one loop for a flavor structure in an extended minimal standard supersymmetric model, considering an ansatz for the trilinear term. In particular we find a finite expression which will show the impact of this phenomena in the $h\\to \\mu \\tau$ decay, produced by a mixing in the trilinear coupling of the soft supersymmetric Lagrangian.

  4. Flavor Unification and Discrete Nonabelian Symmetries

    CERN Document Server

    Kaplan, D B; Kaplan, David B.; Schmaltz, Martin

    1994-01-01

    Grand unified theories with fermions transforming as irreducible representations of a discrete nonabelian flavor symmetry can lead to realistic fermion masses, without requiring very small fundamental parameters. We construct a specific example of a supersymmetric GUT based on the flavor symmetry $\\Delta(75)$ --- a subgroup of $SU(3)$ --- which can explain the observed quark and lepton masses and mixing angles. The model predicts $\\tan\\beta \\simeq 2-5$ and gives a $\\tau$ neutrino mass $m_\

  5. Twisted flavors and tribimaximal neutrino mixing.

    Science.gov (United States)

    Haba, Naoyuki; Watanabe, Atsushi; Yoshioka, Koichi

    2006-07-28

    A new framework for handling flavor symmetry breaking in the neutrino sector is discussed where the source of symmetry breaking is traced to the global property of right-handed neutrinos in extra-dimensional space. Light neutrino phenomenology has rich and robust predictions such as the tribimaximal form of generation mixing, controlled mass spectrum, and no need of flavor mixing couplings in the theory.

  6. Ideal Quantum Gases with Planck Scale Limitations

    CERN Document Server

    Collier, Rainer

    2015-01-01

    A thermodynamic system of non-interacting quantum particles changes its statistical distribution formulas if there is a universal limitation for the size of energetic quantum leaps (magnitude of quantum leaps smaller than Planck energy). By means of a restriction of the a priori equiprobability postulate one can reach a thermodynamic foundation of these corrected distribution formulas. The number of microstates is determined by means of a suitable counting method and combined with thermodynamics via the Boltzmann principle. The result is that, for particle energies that come close to the Planck energy, the thermodynamic difference between fermion and boson distribution vanishes. Both distributions then approximate a Boltzmann distribution. The wave and particle character of the quantum particles, too, can be influenced by choosing the size of the temperature and particle energy parameters relative to the Planck energy, as you can see from the associated fluctuation formulas. In the case of non-relativistic de...

  7. Flavor physics and the TeV scale

    CERN Document Server

    Hou, George W S

    2009-01-01

    This monograph treats the effectiveness of useing flavor physics in offering probes of the TeV scale, while providing a timely interface during the emerging LHC era. By concentrating only with the TeV-scale connection, a large part of the B factory output can be bypassed, and emphasis is placed on loop-induced processes, i.e. virtual, quantum processes that probe TeV-scale physics. The experimental perspective is taken, resulting in selecting processes, rather than the theories or models, as the basis to exploration. Two-thirds of the book is therefore concerned with b -> s or bs sb transitions. The guiding principle is: unless it can be identified as the smoking gun, it is better to stick to the simplest, rather than elaborate, explanation of an effect that may call for New Physics. By focusing on heavy flavor as a probe of TeV-scale physics, technicalities can be employed to unveil their beauty, without getting ensnared in them, while aiming for the deeper, higher-scale physics that such probes provide. Th...

  8. A Linearized Boltzmann transport model for jet propagation in the quark-gluon plasma: Heavy quark evolution

    CERN Document Server

    Cao, Shanshan; Qin, Guang-You; Wang, Xin-Nian

    2016-01-01

    A Linearized Boltzmann Transport (LBT) model coupled with hydrodynamical background is established to describe the evolution of jet shower partons and medium excitations in high energy heavy-ion collisions. We extend the LBT model to include both elastic and inelastic processes for light and heavy partons in the quark-gluon plasma. A hybrid model of fragmentation and coalescence is developed for the hadronization of heavy quarks. Within this framework, we investigate how heavy flavor observables depend on various ingredients, such as different energy loss and hadronization mechanisms, the momentum and temperature dependences of the transport coefficients, and the radial flow of the expanding fireball. Our model calculations show good descriptions of $D$ meson suppression and elliptic flow observed at the LHC and RHIC. The prediction for the Pb-Pb collisions at $\\sqrt{s_\\mathrm{NN}}$=5.02 TeV is provided.

  9. Minimal flavor violation and anomalous top decays

    Science.gov (United States)

    Faller, Sven; Mannel, Thomas; Gadatsch, Stefan

    2013-08-01

    Top-quark physics at the LHC may open a window to physics beyond the Standard Model and even lead us to an understanding of the phenomenon of “flavor.” However, current flavor data is a strong hint that no “new physics” with a generic flavor structure can be expected at the TeV scale. In turn, if there is “new physics” at the TeV scale, it must be “minimally flavor violating.” This has become a widely accepted assumption for “new physics” models. In this paper we propose a model-independent scheme to test minimal flavor violation for the anomalous charged Wtq, q∈{d,s,b} and flavor-changing Vtq, q∈{u,c} and V∈{Z,γ,g} couplings within an effective field theory framework, i.e., in a model-independent way. We perform a spurion analysis of our effective field theory approach and calculate the decay rates for the anomalous top-quark decays in terms of the effective couplings for different helicities by using a two-Higgs doublet model of type II, under the assumption that the top-quark is produced at a high-energy collision and decays as a quasi-free particle.

  10. A Couplet from Flavored Dark Matter

    CERN Document Server

    Agrawal, Prateek; Kilic, Can; Verhaaren, Christopher B

    2015-01-01

    We show that a couplet, a pair of closely spaced photon lines, in the X-ray spectrum is a distinctive feature of lepton flavored dark matter models for which the mass spectrum is dictated by Minimal Flavor Violation. In such a scenario, mass splittings between different dark matter flavors are determined by Standard Model Yukawa couplings and can naturally be small, allowing all three flavors to be long-lived and contribute to the observed abundance. Then, in the presence of a tiny source of flavor violation, heavier dark matter flavors can decay via a dipole transition on cosmological timescales, giving rise to three photon lines. The ratios of the line energies are completely determined in terms of the charged lepton masses, and constitute a firm prediction of this framework. For dark matter masses of order the weak scale, the couplet lies in the keV-MeV region, with a much weaker line in the eV-keV region. This scenario constitutes a potential explanation for the recent claim of the observation of a 3.5 ke...

  11. Flavor Symmetry and Vacuum Aligned Mass Textures

    CERN Document Server

    Kaneko, S; Shingai, T; Tanimoto, M; Yoshioka, K; Kaneko, Satoru; Sawanaka, Hideyuki; Shingai, Takaya; Tanimoto, Morimitsu; Yoshioka, Koichi

    2007-01-01

    The mass matrix forms of quarks and leptons are discussed in theory with permutation flavor symmetry. The structure of scalar potential is analyzed in case that electroweak doublet Higgs fields have non-trivial flavor symmetry charges. We find that realistic forms of mass matrices are obtained dynamically in the vacuum of the theory, where some of Higgs bosons have vanishing expectation values which lead to vanishing elements in quark and lepton mass matrices. Mass textures are realized in the true vacuum and their positions are controlled by flavor symmetry. An interesting point is that, due to the flavor group structure, the up and down quark mass matrices are automatically made different in the vacuum, which lead to non-vanishing generation mixing. It is also discussed that flavor symmetry is needed to be broken in order not to have too light scalars. The lower bounds of Higgs masses are derived from the experimental data of flavor-changing rare processes such as the neutral K meson mixing.

  12. LHC Benchmarks from Flavored Gauge Mediation

    CERN Document Server

    Ierushalmi, N; Lee, G; Nepomnyashy, V; Shadmi, Y

    2016-01-01

    We present benchmark points for LHC searches from flavored gauge mediation models, in which messenger-matter couplings give flavor-dependent squark masses. Our examples include spectra in which a single squark - stop, scharm, or sup - is much lighter than all other colored superpartners, motivating improved quark flavor tagging at the LHC. Many examples feature flavor mixing; in particular, large stop-scharm mixing is possible. The correct Higgs mass is obtained in some examples by virtue of the large stop A-term. We also revisit the general flavor and CP structure of the models. We find that, even though the A-terms can be substantial, their contributions to EDM's are very suppressed, because of the particular dependence of the A-terms on the messenger coupling. This holds regardless of the messenger-coupling texture. More generally, the special structure of the soft terms often leads to stronger suppression of flavor- and CP-violating processes, compared to naive estimates.

  13. Early flavor experiences: research update.

    Science.gov (United States)

    Mennella, J A; Beauchamp, G K

    1998-07-01

    Anyone who has observed infants for any period of time can testify to the intense activity occurring in and around their mouths--the primary site for learning in the first few months of life. Before they are even able to crawl, infants have learned much about their new sensory world. Though recent research we have begun to explore the impact of these early experiences on infants' acceptance of solid foods and how they explore objects in their environment. We have also begun to focus on the sensory experiences of the formula-fed infant, in particular, how their responses to particular formulas, which are extremely unpalatable to older children and adults, change during infancy. This is a relatively new and exciting area of study, with much research yet to be done. It is clear, however, that infants are not passive receptacles for flavored foods. Parents who offer a variety of foods will provide both a nutritious, well-balanced diet, as well as an opportunity for their children's own personal preferences to develop.

  14. Heavy Flavor Production in ATLAS

    CERN Document Server

    Stahl, T

    2009-01-01

    ATLAS prepares a program for measurements of production cross sections both of b-hadrons and quarkonia in central proton-proton collisions at a new center-of-mass energy of 14 TeV at the LHC. Dedicated triggers based on muon, di-muon or electron signatures are designed to accommodate large statistics already in the first several months. Starting from semi-inclusive measurements at the very early stage, exclusive channels will soon dominate the measurements, allowing for tests of QCD in the Heavy Flavor sector already with 10 pb−1 of data. With larger statistics, polarization measurements are being prepared for J/psi and Lambda_b. It is expected, that 30 fb−1 of data collected at a luminosity of 10^33 cm−2s−1 will allow specific measurements not accessible with the statistics collected at the Tevatron. In particular, a Lambda_b polarization measurement will be achieved using Lambda_b -> J/psi Lambda decays. For J/psi, a polarization measurement will allow to confirm or exclude model predictions within ...

  15. Three-flavor color superconductivity

    Energy Technology Data Exchange (ETDEWEB)

    Malekzadeh, H.

    2007-12-15

    I investigate some of the inert phases in three-flavor, spin-zero color-superconducting quark matter: the CFL phase (the analogue of the B phase in superfluid {sup 3}He), the A and A{sup *} phases, and the 2SC and sSC phases. I compute the pressure of these phases with and without the neutrality condition. Without the neutrality condition, after the CFL phase the sSC phase is the dominant phase. However, including the neutrality condition, the CFL phase is again the energetically favored phase except for a small region of intermediate densities where the 2SC/A{sup *} phase is favored. It is shown that the 2SC phase is identical to the A{sup *} phase up to a color rotation. In addition, I calculate the self-energies and the spectral densities of longitudinal and transverse gluons at zero temperature in color-superconducting quark matter in the CFL phase. I find a collective excitation, a plasmon, at energies smaller than two times the gap parameter and momenta smaller than about eight times the gap. The dispersion relation of this mode exhibits a minimum at some nonzero value of momentum, indicating a van Hove singularity. (orig.)

  16. Quark Flavors as Entropy Ordered States of QCD

    CERN Document Server

    Pérez-Mercader, J

    1993-01-01

    We discuss a natural notion of entropy in quantum field theory and apply it to asymptotically free theories in their perturbative regimes. We then specialize to QCD and find that quark flavor states can be described as entropy--ordered states of QCD, and that the masses for the $s\\bar{s}$--state, charm, $c\\bar{c}$--state, bottom and $b\\bar{b}$--state can all be fitted by requiring that the entropy of each of these states be the same. The resulting Pearson correlation coefficient between theory and experiment is better than 0.99, and the known quark masses can be accounted for with less than an 8\\% error.

  17. Noise source identification with the lattice Boltzmann method.

    Science.gov (United States)

    Vergnault, Etienne; Malaspinas, Orestis; Sagaut, Pierre

    2013-03-01

    In this paper the sound source identification problem is addressed with the use of the lattice Boltzmann method. To this aim, a time-reversed problem coupled to a complex differentiation method is used. In order to circumvent the inherent instability of the time-reversed lattice Boltzmann scheme, a method based on a split of the lattice Boltzmann equation into a mean and a perturbation component is used. Lattice Boltzmann method formulation around an arbitrary base flow is recalled and specific applications to acoustics are presented. The implementation of the noise source detection method for two-dimensional weakly compressible (low Mach number) flows is discussed, and the applicability of the method is demonstrated.

  18. Explicit finite-difference lattice Boltzmann method for curvilinear coordinates.

    Science.gov (United States)

    Guo, Zhaoli; Zhao, T S

    2003-06-01

    In this paper a finite-difference-based lattice Boltzmann method for curvilinear coordinates is proposed in order to improve the computational efficiency and numerical stability of a recent method [R. Mei and W. Shyy, J. Comput. Phys. 143, 426 (1998)] in which the collision term of the Boltzmann Bhatnagar-Gross-Krook equation for discrete velocities is treated implicitly. In the present method, the implicitness of the numerical scheme is removed by introducing a distribution function different from that being used currently. As a result, an explicit finite-difference lattice Boltzmann method for curvilinear coordinates is obtained. The scheme is applied to a two-dimensional Poiseuille flow, an unsteady Couette flow, a lid-driven cavity flow, and a steady flow around a circular cylinder. The numerical results are in good agreement with the results of previous studies. Extensions to other lattice Boltzmann models based on nonuniform meshes are also discussed.

  19. Lattice Boltzmann method fundamentals and engineering applications with computer codes

    CERN Document Server

    Mohamad, A A

    2014-01-01

    Introducing the Lattice Boltzmann Method in a readable manner, this book provides detailed examples with complete computer codes. It avoids the most complicated mathematics and physics without scarifying the basic fundamentals of the method.

  20. Analysis of spectral methods for the homogeneous Boltzmann equation

    KAUST Repository

    Filbet, Francis

    2011-04-01

    The development of accurate and fast algorithms for the Boltzmann collision integral and their analysis represent a challenging problem in scientific computing and numerical analysis. Recently, several works were devoted to the derivation of spectrally accurate schemes for the Boltzmann equation, but very few of them were concerned with the stability analysis of the method. In particular there was no result of stability except when the method was modified in order to enforce the positivity preservation, which destroys the spectral accuracy. In this paper we propose a new method to study the stability of homogeneous Boltzmann equations perturbed by smoothed balanced operators which do not preserve positivity of the distribution. This method takes advantage of the "spreading" property of the collision, together with estimates on regularity and entropy production. As an application we prove stability and convergence of spectral methods for the Boltzmann equation, when the discretization parameter is large enough (with explicit bound). © 2010 American Mathematical Society.

  1. Lattice Boltzmann modeling of directional wetting: Comparing simulations to experiments

    NARCIS (Netherlands)

    Jansen, H.P.; Sotthewes, K.; Swigchem, van J.; Zandvliet, H.J.W.; Kooij, E.S.

    2013-01-01

    Lattice Boltzmann Modeling (LBM) simulations were performed on the dynamic behavior of liquid droplets on chemically striped patterned surfaces, ultimately with the aim to develop a predictive tool enabling reliable design of future experiments. The simulations accurately mimic experimental results,

  2. Permit Allocation in Emissions Trading using the Boltzmann Distribution

    CERN Document Server

    Park, Ji-Won; Isard, Walter

    2011-01-01

    In emissions trading, the initial permit allocation is an intractable issue because it needs to be essentially fair to the participating countries. There are many ways to distribute a given total amount of emissions permits among countries, but the existing distribution methods such as auctioning and grandfathering have been debated. Here we describe a new model for permit allocation in emissions trading using the Boltzmann distribution. The Boltzmann distribution is introduced to permit allocation by combining it with concepts in emissions trading. A price determination mechanism for emission permits is then developed in relation to the {\\beta} value in the Boltzmann distribution. Finally, it is demonstrated how emissions permits can be practically allocated among participating countries in empirical results. The new allocation model using the Boltzmann distribution describes a most probable, natural, and unbiased distribution of emissions permits among multiple countries. Based on its simplicity and versati...

  3. Computational Aeroacoustics Using the Generalized Lattice Boltzmann Equation Project

    Data.gov (United States)

    National Aeronautics and Space Administration — The overall objective of the proposed project is to develop a generalized lattice Boltzmann (GLB) approach as a potential computational aeroacoustics (CAA) tool for...

  4. Maxwell iteration for the lattice Boltzmann method with diffusive scaling.

    Science.gov (United States)

    Zhao, Weifeng; Yong, Wen-An

    2017-03-01

    In this work, we present an alternative derivation of the Navier-Stokes equations from Bhatnagar-Gross-Krook models of the lattice Boltzmann method with diffusive scaling. This derivation is based on the Maxwell iteration and can expose certain important features of the lattice Boltzmann solutions. Moreover, it will be seen to be much more straightforward and logically clearer than the existing approaches including the Chapman-Enskog expansion.

  5. Upper Maxwellian bounds for the spatially homogeneous Boltzmann equation

    OpenAIRE

    Gamba, I. M.; Panferov, V.; Villani, C.

    2007-01-01

    For the spatially homogeneous Boltzmann equation with cutoff hard potentials it is shown that solutions remain bounded from above, uniformly in time, by a Maxwellian distribution, provided the initial data have a Maxwellian upper bound. The main technique is based on a comparison principle that uses a certain dissipative property of the linear Boltzmann equation. Implications of the technique to propagation of upper Maxwellian bounds in the spatially-inhomogeneous case are discussed.

  6. A new lattice Boltzmann model for incompressible magnetohydrodynamics

    Institute of Scientific and Technical Information of China (English)

    Chen Xing-Wang; Shi Bao-Chang

    2005-01-01

    Most of the existing lattice Boltzmann magnetohydrodynamics (MHD) models can be viewed as compressible schemes to simulate incompressible MHD flows. The compressible effect might lead to some undesired errors in numerical simulations. In this paper a new incompressible lattice Boltzmann MHD model without compressible effect is presented for simulating incompressible MHD flows. Numerical simulations of the Hartmann flow are performed. We do numerous tests and make comparison with Dellar's model in detail. The numerical results are in good agreement with the analytical error.

  7. [Welding arc temperature field measurements based on Boltzmann spectrometry].

    Science.gov (United States)

    Si, Hong; Hua, Xue-Ming; Zhang, Wang; Li, Fang; Xiao, Xiao

    2012-09-01

    Arc plasma, as non-uniform plasma, has complicated energy and mass transport processes in its internal, so plasma temperature measurement is of great significance. Compared with absolute spectral line intensity method and standard temperature method, Boltzmann plot measuring is more accurate and convenient. Based on the Boltzmann theory, the present paper calculates the temperature distribution of the plasma and analyzes the principle of lines selection by real time scanning the space of the TIG are measurements.

  8. Boltzmann Samplers for v-balanced Colored Necklaces

    CERN Document Server

    Bodini, Olivier

    2009-01-01

    This paper is devoted to the random generation of particular colored necklaces for which the number of beads of a given color is constrained (these necklaces are called v-balanced). We propose an efficient sampler (its expected time complexity is linear) which satisfies the Boltzmann model principle introduced by Duchon, Flajolet, Louchard and Schaeffer. Our main motivation is to show that the absence of a decomposable specification can be circumvented by mixing the Boltzmann samplers with other types of samplers.

  9. Prenatal Flavor Exposure Affects Flavor Recognition and Stress-Related Behavior of Piglets

    NARCIS (Netherlands)

    Oostindjer, M.; Bolhuis, J.E.; Brand, van den H.; Kemp, B.

    2009-01-01

    Exposure to flavors in the amniotic fluid and mother's milk derived from the maternal diet has been shown to modulate food preferences and neophobia of young animals of several species. Aim of the experiment was to study the effects of pre- and postnatal flavor exposure on behavior of piglets during

  10. Prenatal Flavor Exposure Affects Flavor Recognition and Stress-Related Behavior of Piglets

    NARCIS (Netherlands)

    Oostindjer, M.; Bolhuis, J.E.; Brand, van den H.; Kemp, B.

    2009-01-01

    Exposure to flavors in the amniotic fluid and mother's milk derived from the maternal diet has been shown to modulate food preferences and neophobia of young animals of several species. Aim of the experiment was to study the effects of pre- and postnatal flavor exposure on behavior of piglets during

  11. Meshless lattice Boltzmann method for the simulation of fluid flows.

    Science.gov (United States)

    Musavi, S Hossein; Ashrafizaadeh, Mahmud

    2015-02-01

    A meshless lattice Boltzmann numerical method is proposed. The collision and streaming operators of the lattice Boltzmann equation are separated, as in the usual lattice Boltzmann models. While the purely local collision equation remains the same, we rewrite the streaming equation as a pure advection equation and discretize the resulting partial differential equation using the Lax-Wendroff scheme in time and the meshless local Petrov-Galerkin scheme based on augmented radial basis functions in space. The meshless feature of the proposed method makes it a more powerful lattice Boltzmann solver, especially for cases in which using meshes introduces significant numerical errors into the solution, or when improving the mesh quality is a complex and time-consuming process. Three well-known benchmark fluid flow problems, namely the plane Couette flow, the circular Couette flow, and the impulsively started cylinder flow, are simulated for the validation of the proposed method. Excellent agreement with analytical solutions or with previous experimental and numerical results in the literature is observed in all the simulations. Although the computational resources required for the meshless method per node are higher compared to that of the standard lattice Boltzmann method, it is shown that for cases in which the total number of nodes is significantly reduced, the present method actually outperforms the standard lattice Boltzmann method.

  12. KOMPUTASI DISTRIBUSI NEUTRON DALAM STATISTIK MAXWELL BOLTZMANN

    Directory of Open Access Journals (Sweden)

    Tuti Purwoningsih

    2013-03-01

    Full Text Available The migration of neutron is arranged by some probability distributions such as probability of spread distribution, probability of distance distribution, probability of energy distribution and probability of flux distribution. One application of these pattern distributions is modelling the reaction between neutron and elements which compose the tissue related to the absorption of neutron in brain cancer tissues. This article explores computation analysis of pattern of distribution of neutron flux in a reactor system. Variables were the amount of neutron simulated and the depth of cylindrical reactor system. Simulations showed that 20-120 minutes was needed in executing 100,000 neutrons to build the distribution pattern of neutrons flux. This pattern was also depended on the depth of the system. In all depths, the peak of neutron flux distribution pattern was in the 3rd bin. Comparison between this simulations and experiment results in literatures showed that by analyzing the simulation of the distribution of neutron flux, a Poisson distribution which follows the Maxwell-Boltzmann was resulted. Perpindahan neutron diatur dengan beberapa peluang distribusi, seperti peluang distribusi sudut hamburan, peluang distribusi jarak perpindahan, peluang distribusi energi transfer, serta peluang distribusi fluks neutron. Salah satu aplikasi dari pola distribusi ini adalah pemodelan reaksi antara neutron dengan elemen-elemen penyusun jaringan yang terkait dengan serapan neutron dan dosis yang terserap oleh jaringan tumor otak pada terapi BNCT (Boron Neutron Capture Therapy. Dalam penelitian ini dibahas analisis komputasi tentang pola distribusi fluks neutron dalam suatu sistem reaktor. Variabel dalam penelitian ini adalah banyaknya neutron yang disimulasikan, serta kedalaman sistem reaktor yang dalam penelitian ini menggunakan sistem reaktor berbentuk silinder. Hasil simulasi menunjukkan bahwa dengan neutron sebanyak 100.000 diperlukan waktu eksekusi sekitar

  13. Strong-coupling constant with flavor thresholds at five loops in the anti M anti S scheme

    Energy Technology Data Exchange (ETDEWEB)

    Kniehl, B.A.; Kotikov, A.V.; Onishchenko, A.I.; Veretin, O.L. [Hamburg Univ. (Germany). 2. Inst. fuer Theoretische Physik

    2006-07-15

    We present in analytic form the matching conditions for the strong-coupling constant {alpha}{sub s}{sup (n{sub f})}({mu}) at the flavor thresholds to four loops in the modified minimal-subtraction scheme. Taking into account the present knowledge on the coefficient {beta}{sub 4} of the Callan-Symanzik beta function of quantum chromo-dynamics, we thus derive a five-loop formula for {alpha}{sub s}{sup (n{sub f})}({mu}) together with appropriate relationships between the asymptotic scale parameters {lambda}{sup (n{sub f})} for different numbers of flavors n{sub f}. (Orig.)

  14. Flavor release and perception of flavored whey protein gels: perception is determined by texture rather than by release.

    Science.gov (United States)

    Weel, Koen G C; Boelrijk, Alexandra E M; Alting, Arno C; Van Mil, Peter J J M; Burger, Jack J; Gruppen, Harry; Voragen, Alphons G J; Smit, Gerrit

    2002-08-28

    Five whey protein gels, with different gel hardnesses and waterholding capacities, were flavored with ethylbutyrate or diacetyl and evaluated by a 10-person panel to study the relation between the gel structure and the sensory perception, as well as the nosespace flavor concentration during eating. The sensory perception of the flavor compounds was measured by the time-intensity method, while simultaneously the nosespace flavor concentration was monitored by the MS-Nose. The nosespace flavor concentration was found to be independent of the gel hardness or waterholding capacity. However, significant changes in flavor intensity between the gels were perceived by the majority of the panelists, despite the fact that the panelists were instructed to focus only on flavor perception and to not take texture into account. From these observations it is concluded that the texture of gels determines perception of flavor intensity rather than the in-nose flavor concentration.

  15. Extended lattice Boltzmann scheme for droplet combustion

    Science.gov (United States)

    Ashna, Mostafa; Rahimian, Mohammad Hassan; Fakhari, Abbas

    2017-05-01

    The available lattice Boltzmann (LB) models for combustion or phase change are focused on either single-phase flow combustion or two-phase flow with evaporation assuming a constant density for both liquid and gas phases. To pave the way towards simulation of spray combustion, we propose a two-phase LB method for modeling combustion of liquid fuel droplets. We develop an LB scheme to model phase change and combustion by taking into account the density variation in the gas phase and accounting for the chemical reaction based on the Cahn-Hilliard free-energy approach. Evaporation of liquid fuel is modeled by adding a source term, which is due to the divergence of the velocity field being nontrivial, in the continuity equation. The low-Mach-number approximation in the governing Navier-Stokes and energy equations is used to incorporate source terms due to heat release from chemical reactions, density variation, and nonluminous radiative heat loss. Additionally, the conservation equation for chemical species is formulated by including a source term due to chemical reaction. To validate the model, we consider the combustion of n-heptane and n -butanol droplets in stagnant air using overall single-step reactions. The diameter history and flame standoff ratio obtained from the proposed LB method are found to be in good agreement with available numerical and experimental data. The present LB scheme is believed to be a promising approach for modeling spray combustion.

  16. Analysis of Jeans instability from Boltzmann equation

    CERN Document Server

    Kremer, Gilberto M

    2015-01-01

    The dynamics of self-gravitating fluids is analyzed within the framework of a collisionless Boltzmann equation in the presence of gravitational fields and Poisson equation. The equilibrium distribution function takes into account the expansion of the Universe and a pressureless fluid in the matter dominated Universe. Without invoking Jeans "swindle" a dispersion relation is obtained by considering small perturbations of the equilibrium values of the distribution function and gravitational potential. The collapse criterion -- which happens in an unstable region where the solution grows exponentially with time -- is determined from the dispersion relation. The collapse criterion in a static Universe occurs when the wavenumber $k$ is smaller than the Jeans wavenumber $k_J$, which was the solution found by Jeans. For an expanding Universe it is shown that this criterion is $k\\leq\\sqrt{7/6}\\,k_J$. As a consequence the ratio of the mass contained in a sphere of diameter equal to the wavelength $\\lambda=2\\pi/k$ to t...

  17. Lattice Boltzmann model for resistive relativistic magnetohydrodynamics.

    Science.gov (United States)

    Mohseni, F; Mendoza, M; Succi, S; Herrmann, H J

    2015-08-01

    In this paper, we develop a lattice Boltzmann model for relativistic magnetohydrodynamics (MHD). Even though the model is derived for resistive MHD, it is shown that it is numerically robust even in the high conductivity (ideal MHD) limit. In order to validate the numerical method, test simulations are carried out for both ideal and resistive limits, namely the propagation of Alfvén waves in the ideal MHD and the evolution of current sheets in the resistive regime, where very good agreement is observed comparing to the analytical results. Additionally, two-dimensional magnetic reconnection driven by Kelvin-Helmholtz instability is studied and the effects of different parameters on the reconnection rate are investigated. It is shown that the density ratio has a negligible effect on the magnetic reconnection rate, while an increase in shear velocity decreases the reconnection rate. Additionally, it is found that the reconnection rate is proportional to σ-1/2, σ being the conductivity, which is in agreement with the scaling law of the Sweet-Parker model. Finally, the numerical model is used to study the magnetic reconnection in a stellar flare. Three-dimensional simulation suggests that the reconnection between the background and flux rope magnetic lines in a stellar flare can take place as a result of a shear velocity in the photosphere.

  18. Extended lattice Boltzmann scheme for droplet combustion.

    Science.gov (United States)

    Ashna, Mostafa; Rahimian, Mohammad Hassan; Fakhari, Abbas

    2017-05-01

    The available lattice Boltzmann (LB) models for combustion or phase change are focused on either single-phase flow combustion or two-phase flow with evaporation assuming a constant density for both liquid and gas phases. To pave the way towards simulation of spray combustion, we propose a two-phase LB method for modeling combustion of liquid fuel droplets. We develop an LB scheme to model phase change and combustion by taking into account the density variation in the gas phase and accounting for the chemical reaction based on the Cahn-Hilliard free-energy approach. Evaporation of liquid fuel is modeled by adding a source term, which is due to the divergence of the velocity field being nontrivial, in the continuity equation. The low-Mach-number approximation in the governing Navier-Stokes and energy equations is used to incorporate source terms due to heat release from chemical reactions, density variation, and nonluminous radiative heat loss. Additionally, the conservation equation for chemical species is formulated by including a source term due to chemical reaction. To validate the model, we consider the combustion of n-heptane and n-butanol droplets in stagnant air using overall single-step reactions. The diameter history and flame standoff ratio obtained from the proposed LB method are found to be in good agreement with available numerical and experimental data. The present LB scheme is believed to be a promising approach for modeling spray combustion.

  19. The flavor of pomegranate fruit: a review.

    Science.gov (United States)

    Mayuoni-Kirshinbaum, Lina; Porat, Ron

    2014-01-15

    Despite the increasing commercial importance of pomegranate, especially because of its recently discovered health-promoting benefits, relatively little is yet known regarding its sensory quality and flavor preferences, or about the biochemical constituents that determine its sensory characteristics. The perceived flavor of pomegranate fruit results from the combination of various taste, aroma and mouthfeel sensations. The taste is governed mainly by the presence of sugars (glucose and fructose) and organic acids (primarily citric and malic acids). The aroma evolves from the presence of dozens of volatiles, including alcohols, aldehydes, ketones, and terpenes, which provide a mixture of various 'green', 'woody', 'earthy', 'fruity', 'floral', 'sweet' and 'musty' notes. In addition, the sensory satisfaction during the eating of pomegranate arils is complemented by various mouthfeel sensations, including seed hardness and astringency sensations. In the present review we will describe the sensory quality and flavor preferences of pomegranate fruit, including the genetic diversity in flavor characteristics among distinct varieties. In addition, we will describe the dynamic changes that occur in fruit flavor during fruit ripening and postharvest storage.

  20. Toward the stereochemical identification of prohibited characterizing flavors in tobacco products: the case of strawberry flavor.

    Science.gov (United States)

    Paschke, Meike; Hutzler, Christoph; Henkler, Frank; Luch, Andreas

    2015-08-01

    With the revision of the European Tobacco Products Directive (2014/40/EU), characterizing flavors such as strawberry, candy, vanillin or chocolate will be prohibited in cigarettes and fine-cut tobacco. Product surveillance will therefore require analytical means to define and subsequently detect selected characterizing flavors that are formed by supplemented flavors within the complex matrix tobacco. We have analyzed strawberry-flavored tobacco products as an example for characterizing fruit-like aroma. Using this approach, we looked into aroma components to find indicative patterns or features that can be used to satisfy obligatory product information as requested by the European Directive. Accordingly, a headspace solid-phase microextraction (HS-SPME) technique was developed and coupled to subsequent gas chromatography-mass spectrometry (GC/MS) to characterize different strawberry-flavored tobacco products (cigarettes, fine-cut tobacco, liquids for electronic cigarettes, snus, shisha tobacco) for their volatile additives. The results were compared with non-flavored, blend characteristic flavored and other fruity-flavored cigarettes, as well as fresh and dried strawberries. Besides different esters and aldehydes, the terpenes linalool, α-terpineol, nerolidol and limonene as well as the lactones γ-decalactone, γ-dodecalactone and γ-undecalactone could be verified as compounds sufficient to convey some sort of strawberry flavor to tobacco. Selected flavors, i.e., limonene, linalool, α-terpineol, citronellol, carvone and γ-decalactone, were analyzed further with respect to their stereoisomeric composition by using enantioselective HS-SPME-GC/MS. These experiments confirmed that individual enantiomers that differ in taste or physiological properties can be distinguished within the tobacco matrix. By comparing the enantiomeric composition of these compounds in the tobacco with that of fresh and dried strawberries, it can be concluded that non-natural strawberry

  1. Lepton Flavor Violating Radion Decays in the Randall-Sundrum Scenario: The Thesis

    CERN Document Server

    Korutlu, Beste

    2008-01-01

    he lepton flavor violating interactions are worthwhile to examine since they are sensitive to physics beyond the Standard Model. The simplest extension of the Standard Model promoting the lepton flavor violating interactions are the so called two Higgs doublet model which contains an additional Higgs doublet carrying the same quantum numbers as the first one. In this model, the lepton flavor violating interactions are induced by new scalar Higgs bosons, scalar $h^{0}$ and pseudo scalar $A^{0}$, and Yukawa couplings, appearing as free parameters, are determined by using the experimental data. On the other hand, the possible extra dimensions are interesting in the sense that they ensure a solution to the hierarchy and cosmological constant problems and also result in the enhancement in the physical quantities of various processes. In the present work, we predict the branching ratios of lepton flavor violating radion decays $r\\to e^{\\pm},\\mu^{\\pm}$, $r\\to e^{\\pm},\\tau^{\\pm}$ and $r\\to\\mu^{\\pm},\\tau^{\\pm}$ in the...

  2. How can Early Life Flavor Experiences Affect Food Preferences?

    Directory of Open Access Journals (Sweden)

    Seray Kabaran

    2017-01-01

    Full Text Available Early experiences with food flavors lead up to children’s food preferences and develop long-lasting flavor preferences and healthy eating habits. The process of flavor learning begins during pregnancy by the foods eaten by mothers which pass to the amniotic fluid. Some flavors coming from the mother’s diet that pass to the amniotic fluid are detected by the fetus. This flavor learning continues after birth with breastfeeding, since the human milk is composed of flavors which reflect the foods consumed by the mother. Flavor composition in human milk which changes during the course of lactation due to the transmission of flavors into human milk enables the baby to get used to new flavors. Therefore, breastfed infants are likely to accept flavor changes and novel flavors more than formula fed infants. Flavor learning continues with starting complementary foods and eating the foods directly. Exposure to a specific flavor and repeated exposures in different times may facilitate the acceptance of this flavor. Furthermore, infants exposed to a variety of foods accept new flavors than infants following a monotonous diet. This underlines the importance of promoting the access to a variety of foods in early childhood. In conclusion, pregnant and lactating women should have variety of healthy foods in their diets with a variety of flavors and they should be encouraged to breastfeed their babies. In addition, starting complementary foods and early repeated exposure to a wide variety of healthy foods, the infants should get familiar with the flavor of healthy and various food. These factors may influence the development of healthy food preferences and healthy eating habits in later periods.

  3. Unquenched flavor on the Higgs branch

    CERN Document Server

    Faedo, Anton F; Pantelidou, Christiana; Tarrio, Javier

    2016-01-01

    We construct the gravity duals of the Higgs branches of three-dimensional (four-dimensional) super Yang-Mills theories coupled to $N_\\textrm{f}$ quark flavors. The effect of the quarks on the color degrees of freedom is included, and corresponds on the gravity side to the backreaction of $N_\\textrm{f}$ flavor D6-branes (D7-branes) on the background of $N_\\textrm{c}$ color D2-branes (D3-branes). The Higgsing of the gauge group arises from the dissolution of some color branes inside the flavor branes. The dissolved color branes are represented by non-Abelian instantons whose backreaction is also included. The result is a cascading-like solution in which the effective number of color branes varies along the holographic direction. In the three-dimensional case the solution may include an arbitrary number of quasi-conformal (walking) regions.

  4. Collider Signatures of Flavorful Higgs Bosons

    CERN Document Server

    Altmannshofer, Wolfgang; Gori, Stefania; Lotito, Matteo; Martone, Mario; Tuckler, Douglas

    2016-01-01

    Motivated by our limited knowledge of the Higgs couplings to first two generation fermions, we analyze the collider phenomenology of a class of two Higgs doublet models (2HDMs) with a non-standard Yukawa sector. One Higgs doublet is mainly responsible for the masses of the weak gauge bosons and the third generation fermions, while the second Higgs doublet provides mass for the lighter fermion generations. The characteristic collider signatures of this setup differ significantly from well-studied 2HDMs with natural flavor conservation, flavor alignment, or minimal flavor violation. New production mechanisms for the heavy scalar, pseudoscalar, and charged Higgs involving second generation quarks can become dominant. The most interesting decay modes include H/A -> cc, tc, {\\mu}{\\mu}, {\\tau}{\\mu} and H+ -> cb, cs, {\\mu}{\

  5. Unquenched flavor on the Higgs branch

    Energy Technology Data Exchange (ETDEWEB)

    Faedo, Antón F. [Departament de Física Quàntica i Astrofísica & Institut de Ciències del Cosmos (ICC),Universitat de Barcelona,Martí i Franquès 1, 08028 Barcelona (Spain); Mateos, David [Departament de Física Quàntica i Astrofísica & Institut de Ciències del Cosmos (ICC),Universitat de Barcelona,Martí i Franquès 1, 08028 Barcelona (Spain); Institució Catalana de Recerca i Estudis Avançats (ICREA),Passeig Lluís Companys 23, 08010 Barcelona (Spain); Pantelidou, Christiana [Departament de Física Quàntica i Astrofísica & Institut de Ciències del Cosmos (ICC),Universitat de Barcelona,Martí i Franquès 1, 08028 Barcelona (Spain); Tarrío, Javier [Physique Théorique et Mathématique, Université Libre de Bruxelles andInternational Solvay Institutes,ULB-Campus Plaine CP231, B-1050 Brussels (Belgium)

    2016-11-04

    We construct the gravity duals of the Higgs branches of three-dimensional (four-dimensional) super Yang-Mills theories coupled to N{sub f} quark flavors. The effect of the quarks on the color degrees of freedom is included, and corresponds on the gravity side to the backreaction of N{sub f} flavor D6-branes (D7-branes) on the background of N{sub c} color D2-branes (D3-branes). The Higgsing of the gauge group arises from the dissolution of some color branes inside the flavor branes. The dissolved color branes are represented by non-Abelian instantons whose backreaction is also included. The result is a cascading-like solution in which the effective number of color branes varies along the holographic direction. In the three-dimensional case the solution may include an arbitrary number of quasi-conformal (walking) regions.

  6. Leptoquark Flavor Patterns & B Decay Anomalies

    CERN Document Server

    Hiller, Gudrun; Schönwald, Kay

    2016-01-01

    Flavor symmetries that explain masses and mixings of the standard model fermions dictate flavor patterns for the couplings of scalar and vector leptoquarks to the standard model fermions. A generic feature is that couplings to $SU(2)$-doublet leptons are suppressed at least by one spurion of the discrete non-abelian symmetry breaking, responsible for neutrino mixing, while couplings to charged lepton singlets can be order one. We obtain testable patterns including those that predominantly couple to a single lepton flavor, or two, or in a skewed way. They induce lepton non-universality, which we contrast to current anomalies in $B$-decays. We find maximal effects in $R_{D}$ and $R_{D^*}$ at the level of $\\sim$10 percent and few percent, respectively, while leptoquark effects in $R_{K^{(*)}}$ can reach order few$\\times 10$ percent. Predictions for charm and kaon decays and $\\mu-e$ conversion are worked out.

  7. The distribution of fat in dried dairy particles determines flavor release and flavor stability.

    Science.gov (United States)

    Park, C W; Drake, M A

    2014-04-01

    Dried dairy ingredients are utilized in various food and beverage applications for their nutritional, functional, and sensory properties. Dried dairy ingredients include milk powders of varying fat content and heat treatment and buttermilk powder, along with both milk and whey proteins of varying protein contents. The flavor of these ingredients is the most important characteristic that determines consumer acceptance of the ingredient applications. Lipid oxidation is the main mechanism for off-flavor development in dried dairy ingredients. The effects of various unit operations on the flavor of dried dairy ingredients have been investigated. Recent research documented that increased surface free fat in spray dried WPC80 was associated with increased lipid oxidation and off-flavors. Surface free fat in spray-dried products is fat on the surface of the powder that is not emulsified. The most common emulsifiers present in dried dairy ingredients are proteins and phospholipids. Currently, only an association between surface free fat and lipid oxidation has been presented. The link between surface free fat in dried dairy ingredients and flavor and flavor stability has not been investigated. In this review, some hypotheses for the role of surface free fat on the flavor of dried dairy ingredients are presented along with proposed mechanisms.

  8. Flavor universal resonances and warped gravity

    Science.gov (United States)

    Agashe, Kaustubh; Du, Peizhi; Hong, Sungwoo; Sundrum, Raman

    2017-01-01

    Warped higher-dimensional compactifications with "bulk" standard model, or their AdS/CFT dual as the purely 4D scenario of Higgs compositeness and partial compositeness, offer an elegant approach to resolving the electroweak hierarchy problem as well as the origins of flavor structure. However, low-energy electroweak/flavor/CP constraints and the absence of non-standard physics at LHC Run 1 suggest that a "little hierarchy problem" remains, and that the new physics underlying naturalness may lie out of LHC reach. Assuming this to be the case, we show that there is a simple and natural extension of the minimal warped model in the Randall-Sundrum framework, in which matter, gauge and gravitational fields propagate modestly different degrees into the IR of the warped dimension, resulting in rich and striking consequences for the LHC (and beyond). The LHC-accessible part of the new physics is AdS/CFT dual to the mechanism of "vectorlike confinement", with TeV-scale Kaluza-Klein excitations of the gauge and gravitational fields dual to spin-0,1,2 composites. Unlike the minimal warped model, these low-lying excitations have predominantly flavor-blind and flavor/CP-safe interactions with the standard model. Remarkably, this scenario also predicts small deviations from flavor-blindness originating from virtual effects of Higgs/top compositeness at ˜ O(10) TeV, with subdominant resonance decays into Higgs/top-rich final states, giving the LHC an early "preview" of the nature of the resolution of the hierarchy problem. Discoveries of this type at LHC Run 2 would thereby anticipate (and set a target for) even more explicit explorations of Higgs compositeness at a 100 TeV collider, or for next-generation flavor tests.

  9. Quantum phase transition in many-flavor supersymmetric QED$_{3}$

    CERN Document Server

    Russo, Jorge G

    2016-01-01

    We study $\\mathcal{N}=4$ supersymmetric QED in three dimensions, on a three-sphere, with 2N massive hypermultiplets and a Fayet-Iliopoulos parameter. We identify the exact partition function of the theory with a conical (Mehler) function. This implies a number of analytical formulas, including a recurrence relation and a second-order differential equation, associated with an integrable system. In the large N limit, the theory undergoes a second-order phase transition on a critical line in the parameter space. We discuss the critical behavior and compute the two-point correlation function of a gauge invariant mass operator, which is shown to diverge as one approaches criticality from the subcritical phase. Finally, we comment on the asymptotic 1/N expansion and on mirror symmetry.

  10. Review of Minimal Flavor Constraints for Technicolor

    DEFF Research Database (Denmark)

    S. Fukano, Hidenori; Sannino, Francesco

    2010-01-01

    We analyze the constraints on the the vacuum polarization of the standard model gauge bosons from a minimal set of flavor observables valid for a general class of models of dynamical electroweak symmetry breaking. We will show that the constraints have a strong impact on the self-coupling and mas......We analyze the constraints on the the vacuum polarization of the standard model gauge bosons from a minimal set of flavor observables valid for a general class of models of dynamical electroweak symmetry breaking. We will show that the constraints have a strong impact on the self...

  11. Systematic model building with flavor symmetries

    Energy Technology Data Exchange (ETDEWEB)

    Plentinger, Florian

    2009-12-19

    The observation of neutrino masses and lepton mixing has highlighted the incompleteness of the Standard Model of particle physics. In conjunction with this discovery, new questions arise: why are the neutrino masses so small, which form has their mass hierarchy, why is the mixing in the quark and lepton sectors so different or what is the structure of the Higgs sector. In order to address these issues and to predict future experimental results, different approaches are considered. One particularly interesting possibility, are Grand Unified Theories such as SU(5) or SO(10). GUTs are vertical symmetries since they unify the SM particles into multiplets and usually predict new particles which can naturally explain the smallness of the neutrino masses via the seesaw mechanism. On the other hand, also horizontal symmetries, i.e., flavor symmetries, acting on the generation space of the SM particles, are promising. They can serve as an explanation for the quark and lepton mass hierarchies as well as for the different mixings in the quark and lepton sectors. In addition, flavor symmetries are significantly involved in the Higgs sector and predict certain forms of mass matrices. This high predictivity makes GUTs and flavor symmetries interesting for both, theorists and experimentalists. These extensions of the SM can be also combined with theories such as supersymmetry or extra dimensions. In addition, they usually have implications on the observed matter-antimatter asymmetry of the universe or can provide a dark matter candidate. In general, they also predict the lepton flavor violating rare decays {mu} {yields} e{gamma}, {tau} {yields} {mu}{gamma}, and {tau} {yields} e{gamma} which are strongly bounded by experiments but might be observed in the future. In this thesis, we combine all of these approaches, i.e., GUTs, the seesaw mechanism and flavor symmetries. Moreover, our request is to develop and perform a systematic model building approach with flavor symmetries and

  12. Flavor tagging with muons at SLAC

    Science.gov (United States)

    Prepost, R.

    1984-05-01

    Identification of muons in hadronic events from e+e- annihilation observed in the MAC detector at PEP at √s=29 GeV provides flavor tagging of heavy quark mesons. A sample enriched in events from bb production is obtained and the b quark fragmentation function is determined. The b quark is found to fragment predominantly with high values of z, with =0.8+/-0.1 and to have an overall semileptonic branching ratio to muons of (15.5+5.4-2.9)%. The sample also provides flavor tagged hadronic jets. Invariant mass and charged multiplicity distributions are presented.

  13. Neutrino masses and spontaneously broken flavor symmetries

    Energy Technology Data Exchange (ETDEWEB)

    Staudt, Christian

    2014-06-16

    We study the phenomenology of supersymmetric flavor models. We show how the predictions of models based on spontaneously broken non-Abelian discrete flavor symmetries are altered when we include so-called Kaehler corrections. Furthermore, we discuss anomaly-free discrete R symmetries which are compatible with SU(5) unification. We find a set of symmetries compatible with suppressed Dirac neutrino masses and a unique symmetry consistent with the Weinberg operator. We also study a pseudo-anomalous U(1){sub R} symmetry which explains the fermion mass hierarchies and, when amended with additional singlet fields, ameliorates the fine-tuning problem.

  14. Knotted strings and leptonic flavor structure

    CERN Document Server

    Kephart, Thomas W; Päs, Heinrich

    2011-01-01

    Tight knots and links arising in the infrared limit of string theories may provide an interesting alternative to flavor symmetries for explaining the observed flavor patterns in the leptonic sector. As an example we consider a type I seesaw model where the Majorana mass structure is based on the discrete length spectrum of tight knots and links. It is shown that such a model is able to provide an excellent fit to current neutrino data and that it predicts a normal neutrino mass hierarchy as well as a small mixing angle $\\theta_{13}$.

  15. Impact of fat reduction on flavor and flavor chemistry of Cheddar cheeses.

    Science.gov (United States)

    Drake, M A; Miracle, R E; McMahon, D J

    2010-11-01

    A current industry goal is to produce a 75 to 80% fat-reduced Cheddar cheese that is tasty and appealing to consumers. Despite previous studies on reduced-fat cheese, information is critically lacking in understanding the flavor and flavor chemistry of reduced-fat and nonfat Cheddar cheeses and how it differs from its full-fat counterpart. The objective of this study was to document and compare flavor development in cheeses with different fat contents so as to quantitatively characterize how flavor and flavor development in Cheddar cheese are altered with fat reduction. Cheddar cheeses with 50% reduced-fat cheese (RFC) and low-fat cheese containing 6% fat (LFC) along with 2 full-fat cheeses (FFC) were manufactured in duplicate. Cheeses were ripened at 8°C and samples were taken following 2 wk and 3, 6, and 9 mo for sensory and instrumental volatile analyses. A trained sensory panel (n=10 panelists) documented flavor attributes of cheeses. Volatile compounds were extracted by solid-phase microextraction or solvent-assisted flavor evaporation followed by separation and identification using gas chromatography-mass spectrometry and gas chromatography-olfactometry. Selected compounds were quantified using external standard curves. Sensory properties of cheeses were distinct initially but more differences were documented as cheeses aged. By 9 mo, LFC and RFC displayed distinct burnt/rosy flavors that were not present in FFC. Sulfur flavor was also lower in LFC compared with other cheeses. Forty aroma-active compounds were characterized in the cheeses by headspace or solvent extraction followed by gas chromatography-olfactometry. Compounds were largely not distinct between the cheeses at each time point, but concentration differences were evident. Higher concentrations of furanones (furaneol, homofuraneol, sotolon), phenylethanal, 1-octen-3-one, and free fatty acids, and lower concentrations of lactones were present in LFC compared with FFC after 9 mo of ripening. These

  16. Short communication: Flavor and flavor stability of cheese, rennet, and acid wheys.

    Science.gov (United States)

    Smith, S; Smith, T J; Drake, M A

    2016-05-01

    Dried whey ingredients are valuable food ingredients but potential whey sources are underutilized. Previous work has established flavor and flavor stability differences in Cheddar and Mozzarella wheys, but little work has compared these whey sources to acid or rennet wheys. The objective of this study was to characterize and compare flavor and flavor stability among cheese, rennet, and acid wheys. Full-fat and fat-free Cheddar, rennet and acid casein, cottage cheese, and Greek yogurt fluid wheys were manufactured in triplicate. Wheys were fat separated and pasteurized followed by compositional analyses and storage at 4°C for 48 h. Volatile compound analysis and descriptive sensory analysis were evaluated on all liquid wheys initially and after 24 and 48 h. Greek yogurt whey contained almost no true protein nitrogen (0.02% wt/vol) whereas other wheys contained 0.58%±0.4% (wt/vol) true protein nitrogen. Solids and fat content were not different between wheys, with the exception of Greek yogurt whey, which was also lower in solids content than the other wheys (5.6 vs. 6.5% wt/vol, respectively). Fresh wheys displayed sweet aromatic and cooked milk flavors. Cheddar wheys were distinguished by diacetyl/buttery flavors, and acid wheys (acid casein, cottage cheese, and Greek yogurt) by sour aromatic flavor. Acid casein whey had a distinct soapy flavor, and acid and Greek yogurt wheys had distinct potato flavor. Both cultured acid wheys contained acetaldehyde flavor. Cardboard flavor increased and sweet aromatic and buttery flavors decreased with storage in all wheys. Volatile compound profiles were also distinct among wheys and changed with storage, consistent with sensory results. Lipid oxidation aldehydes increased in all wheys with storage time. Fat-free Cheddar was more stable than full-fat Cheddar over 48h of storage. Uncultured rennet casein whey was the most stable whey, as exhibited by the lowest increase in lipid oxidation products over time. These results

  17. Resurrection of large lepton number asymmetries from neutrino flavor oscillations

    CERN Document Server

    Barenboim, Gabriela; Park, Wan-Il

    2016-01-01

    We numerically solve the evolution equations of neutrino three-flavor density matrices, and show that, even if neutrino oscillations mix neutrino flavors, large lepton number asymmetries are still allowed in certain limits by Big Bang Nucleosynthesis (BBN).

  18. Human flavor perception: Application of information integration theory

    Science.gov (United States)

    Marks, Lawrence E.; Elgart, Benjamin Z.; Burger, Kelly; Chakwin, Emily M.

    2008-01-01

    The perception of flavor arises from the combination of inputs from several sensory modalities, especially gustation (taste proper) and olfaction (the primary source of flavor qualities). Both the perception of intensity of suprathreshold flavorants and, notably, the detection of weak flavorants are consistent with a rule of additivity. Thus, the detectability, d′, of mixtures of the gustatory flavorant sucrose and the olfactory flavorant vanillin approximates the additive sum of detectabilities of the two components, within a model that assumes pooled noise in the flavor system that derives from both modalities. When gustatory and olfactory flavorants are presented in isolation, however, under conditions that encourage or permit selective attention to one modality or the other, it may be possible to filter out the noise associated with the unattended modality, and leading thereby to a rule of vector summation. PMID:19079746

  19. 21 CFR 172.230 - Microcapsules for flavoring substances.

    Science.gov (United States)

    2010-04-01

    ... limitations Succinylated gelatin—Not to exceed 15 percent by combined weight of the microcapsule and flavoring... percent by combined weight of the microcapsule and spice-flavoring substance. (b) The...

  20. Leptogenesis with heavy neutrino flavours: from density matrix to Boltzmann equations

    CERN Document Server

    Blanchet, Steve; Di Bari, Pasquale; Marzola, Luca

    2011-01-01

    Leptogenesis with heavy neutrino flavours is discussed within a density matrix formalism. We write the density matrix equation that describes the generation of the matter-antimatter asymmetry, for an arbitrary choice of the right-handed (RH) neutrino masses. For hierarchical RH neutrino masses lying in the fully flavoured regimes, the density matrix equation reduces to multiple-stage Boltzmann equations. In this case we recover and extend results previously derived within a quantum state collapse description. We confirm the generic existence of phantom terms, which are not washed out at production and contribute to the flavoured asymmetries proportionally to the initial RH neutrino abundances. Even in the N_1-dominated scenario they can give rise to lepton flavour asymmetries much larger than the baryon asymmetry with potential applications. We also confirm that there is a (orthogonal) component in the asymmetry produced by the heavier RH neutrinos which completely escapes the washout from the lighter RH neut...

  1. Measuring the Boltzmann constant by mid-infrared laser spectroscopy of ammonia

    CERN Document Server

    Mejri, S; Kozlova, O; Ayari, C; Tokunaga, Sean; Chardonnet, C; Briaudeau, S; Darquié, B; Rohart, F; Daussy, C

    2015-01-01

    We report on our ongoing effort to measure the Boltzmann constant, $k_B,$ using the Doppler broadening technique on ammonia. This paper presents some of the improvements made to the mid-infrared spectrometer including the use of a phase-stabilized quantum cascade laser, a lineshape analysis based on a refined physical model and an improved fitting program 2 increasing the confidence in our estimates of the relevant molecular parameters, and a first evaluation of the saturation parameter and its impact on the measurement of k B. A summary of the systematic effects contributing to the measurement is given and the optimal experimental conditions for mitigating those effects in order to reach a competitive measurement of $k_B$ at a part per million accuracy level are outlined.

  2. Lattice Boltzmann method and its applications in engineering thermophysics

    Institute of Scientific and Technical Information of China (English)

    HE YaLing; LI Qing; WANG Yong; TANG GuiHua

    2009-01-01

    The lattice Boltzmann method (LBM),a mesoscopic method between the molecular dynamics method and the conventional numerical methods,has been developed into a very efficient numerical alternative in the past two decades.Unlike conventional numerical methods,the kinetic theory based LBM simulates fluid flows by tracking the evolution of the particle distribution function,and then accumulates the distribution to obtain macroscopic averaged properties.In this article we review some work on LBM applications in engineering thermophysics:(1) brief introduction to the development of the LBM; (2)fundamental theory of LBM including the Boltzmann equation,Maxwell distribution function,Boltzmann-BGK equation,and the lattice Boltzmann-BGK equation; (3) lattice Boltzmann models for compressible flows and non-equilibrium gas flows,bounce back-specular-reflection boundary scheme for microscale gaseous flows,the mass modified outlet boundary scheme for fully developed flows,and an implicit-explicit finite-difference-based LBM; and (4) applications of the LBM to oscillating flow,compressible flow,porous media flow,non-equilibrium flow,and gas resonant oscillating flow.

  3. Lecture Notes on Quantum Brownian Motion

    CERN Document Server

    Erdos, Laszlo

    2010-01-01

    Einstein's kinetic theory of the Brownian motion, based upon light water molecules continuously bombarding a heavy pollen, provided an explanation of diffusion from the Newtonian mechanics. Since the discovery of quantum mechanics it has been a challenge to verify the emergence of diffusion from the Schr\\"odinger equation. The first step in this program is to verify the linear Boltzmann equation as a certain scaling limit of a Schr\\"odinger equation with random potential. In the second step, one considers a longer time scale that corresponds to infinitely many Boltzmann collisions. The intuition is that the Boltzmann equation then converges to a diffusive equation similarly to the central limit theorem for Markov processes with sufficient mixing. In these lecture notes (prepared for the Les Houches summer school in 2010 August) we present the mathematical tools to rigorously justify this intuition. The new material relies on joint papers with H.-T. Yau and M. Salmhofer.

  4. New Physics in Astrophysical Neutrino Flavor (NuFact 2016)

    CERN Document Server

    Salvado, Jordi; Katori, Teppei

    2016-01-01

    Astrophysical neutrinos are powerful tools to study fundamental properties of particle physics. We perform a general new physics study on ultra high energy neutrino flavor content by introducing effective operators. We find that at the current limits on these operators, new physics terms cause maximal effects on the flavor content, however, the flavor content at Earth is confined to a region related to the initial flavor content.

  5. Flavor Tagging at Tevatron incl. calibration and control

    OpenAIRE

    2007-01-01

    This report summarizes the flavor tagging techniques developed at the CDF and D{\\O}experiments. Flavor tagging involves identification of the B meson flavor atproduction, whether its constituent is a quark or an anti-quark. It is crucial for measuring the oscillation frequency of neutral B mesons, both in the B^0 and B_S system. The two experiments have developed their unique approaches to flavor tagging, using neural networks, and likelihood methods to disentangle tracks from $b$ decays from...

  6. School Nutrition Directors' Perspectives on Flavored Milk in Schools

    Science.gov (United States)

    Yon, Bethany A.; Johnson, Rachel K.; Berlin, Linda

    2013-01-01

    The offering of flavored milk in schools is a controversial topic. U.S. Department of Agriculture regulations now require that flavored milk in schools is fat-free. The perceptions, beliefs, and attitudes of 21 school nutrition directors (SNDs) about the offering and student acceptance of lower-calorie, flavored milk were explored using a focus…

  7. Radiative Corrections to the Sum Rule of Lepton Flavor Mixing

    CERN Document Server

    Zhang, Jue

    2016-01-01

    The simple correlation among three lepton flavor mixing angles $(\\theta^{}_{12}, \\theta^{}_{13}, \\theta^{}_{23})$ and the leptonic Dirac CP-violating phase $\\delta$ is conventionally called a sum rule of lepton flavor mixing, which may be derived from a class of neutrino mass models with flavor symmetries. In this paper, we consider the sum rule $\\theta^{}_{12} \\approx \\theta^{\

  8. An integrated Boltzmann+hydrodynamics approach to heavy ion collisions

    Energy Technology Data Exchange (ETDEWEB)

    Petersen, Hannah

    2009-04-22

    In this thesis the first fully integrated Boltzmann+hydrodynamics approach to relativistic heavy ion reactions has been developed. After a short introduction that motivates the study of heavy ion reactions as the tool to get insights about the QCD phase diagram, the most important theoretical approaches to describe the system are reviewed. The hadron-string transport approach that this work is based on is the Ultra-relativistic Quantum Molecular Dynamics (UrQMD) approach. Predictions for the charged particle multiplicities at LHC energies are made. The next step is the development of a new framework to calculate the baryon number density in a transport approach. Time evolutions of the net baryon number and the quark density have been calculated at AGS, SPS and RHIC energies. Studies of phase diagram trajectories using hydrodynamics are performed. The hybrid approach that has been developed as the main part of this thesis is based on the UrQMD transport approach with an intermediate hydrodynamical evolution for the hot and dense stage of the collision. The full (3+1) dimensional ideal relativistic one fluid dynamics evolution is solved using the SHASTA algorithm. Three different equations of state have been used, namely a hadron gas equation of state without a QGP phase transition, a chiral EoS and a bag model EoS including a strong first order phase transition. For the freeze-out transition from hydrodynamics to the cascade calculation two different set-ups are employed. The parameter dependences of the model are investigated and the time evolution of different quantities is explored. The hybrid model calculation is able to reproduce the experimentally measured integrated as well as transverse momentum dependent v{sub 2} values for charged particles. The multiplicity and mean transverse mass excitation function is calculated for pions, protons and kaons in the energy range from E{sub lab}=2-160 A GeV. The HBT correlation of the negatively charged pion source

  9. Associations of Volatile Compounds with Sensory Aroma and Flavor: The Complex Nature of Flavor

    Directory of Open Access Journals (Sweden)

    Edgar Chambers IV

    2013-04-01

    Full Text Available Attempts to relate sensory analysis data to specific chemicals such as volatile compounds have been frequent. Often these associations are difficult to interpret or are weak in nature. Although some difficulties may relate to the methods used, the difficulties also result from the complex nature of flavor. For example, there are multiple volatiles responsible for a flavor sensation, combinations of volatiles yield different flavors than those expected from individual compounds, and the differences in perception of volatiles in different matrices. This review identifies some of the reasons sensory analysis and instrumental measurements result in poor associations and suggests issues that need to be addressed in future research for better understanding of the relationships of flavor/aroma phenomena and chemical composition.

  10. Heavy-flavor production and medium properties in high-energy nuclear collisions. What next?

    Energy Technology Data Exchange (ETDEWEB)

    Aarts, G.; Allton, C. [Swansea University, Swansea (United Kingdom); Aichelin, J.; Gossiaux, P.B.; Nahrgang, M. [Universite de Nantes, SUBATECH, Ecole des Mines de Nantes, Nantes (France); Arnaldi, R.; Scomparin, E. [INFN, Sezione di Torino, Torino (Italy); Bass, S.A. [Duke University, Durham, NC (United States); Bedda, C.; Grelli, A.; Trzeciak, B.; Doremalen, L. van; Vermunt, L.; Vigolo, S. [Utrecht University, Institute for Subatomic Physics, Utrecht (Netherlands); Brambilla, N. [Technische Universitaet Muenchen, Physik-Department and Excellence Cluster Universe, Garching (Germany); Technische Universitaet Muenchen, Institute for Advanced Study, Munich (Germany); Bratkovskaya, E. [GSI Helmholtzzentrum fuer Schwerionenforschung, Research Division and ExtreMe Matter Institute EMMI, Darmstadt (Germany); Frankfurt University, Institute for Theoretical Physics, Frankfurt am Main (Germany); Braun-Munzinger, P. [GSI Helmholtzzentrum fuer Schwerionenforschung, Research Division and ExtreMe Matter Institute EMMI, Darmstadt (Germany); Ruprecht-Karls-Universitaet Heidelberg, Physikalisches Institut, Heidelberg (Germany); Bruno, G.E. [Dipartimento di Fisica and INFN, Bari (Italy); European Organization for Nuclear Research, Geneva (Switzerland); Dahms, T. [Technische Universitaet Muenchen, Physik-Department and Excellence Cluster Universe, Garching (Germany); Das, S.K. [University of Catania, Catania (Italy); Dembinski, H.; Schmelling, M. [Max-Planck-Institut fuer Kernphysik, Heidelberg (Germany); Djordjevic, M. [University of Belgrade, Institute of Physics, Belgrade (Serbia); Ferreiro, E. [Universidad de Santiago de Compostela, Santiago de Compostela (Spain); Frawley, A. [Florida State University, Tallahassee, FL (United States); Granier de Cassagnac, R.; Jo, M.; Nguyen, M. [Ecole Polytechnique, Laboratoire Leprince-Ringuet, Palaiseau (France); He, M. [Nanjing University of Science and Technology, Department of Applied Physics, Nanjing (China); Horowitz, W.A. [University of Cape Town, Department of Physics, Rondebosch (South Africa); Innocenti, G.M. [Massachusetts Institute of Technology, Cambridge, MA (United States); Kaczmarek, O. [Key Laboratory of Quark and Lepton Physics (MOE) and Institute of Particle Physics, Central China Normal University, Wuhan (China); University of Bielefeld, Bielefeld (Germany); Kuijer, P.G. [National Institute for Subatomic Physics, Amsterdam (Netherlands); Laine, M. [University of Bern, AEC, Institute for Theoretical Physics, Bern (Switzerland); Lombardo, M.P. [INFN - Laboratori Nazionali di Frascati, Frascati (Italy); Mischke, A. [Utrecht University, Institute for Subatomic Physics, Utrecht (Netherlands); National Institute for Subatomic Physics, Amsterdam (Netherlands); Munhoz, M.G.; Suaide, A.A.P. [Universidade de Sao Paulo (USP), Sao Paulo (Brazil); Oliveira da Silva, A.C.; Zanoli, H.J.C. [Utrecht University, Institute for Subatomic Physics, Utrecht (Netherlands); Universidade de Sao Paulo (USP), Sao Paulo (Brazil); Petreczky, P. [Brookhaven National Laboratory, Upton, NY (United States); Rothkopf, A. [Ruprecht-Karls-Universitaet Heidelberg, Institute for Theoretical Physics, Heidelberg (Germany); Song, T. [Frankfurt University, Institute for Theoretical Physics, Frankfurt am Main (Germany); Stachel, J. [Ruprecht-Karls-Universitaet Heidelberg, Physikalisches Institut, Heidelberg (Germany); Tolos, L. [Frankfurt Institute for Advanced Studies (FIAS), Frankfurt (Germany); Institut de Ciencies de l' Espai (IEEC-CSIC), Bellaterra (Spain); Uras, A. [Domaine Scientifique de la Doua, Institute of Nuclear Physics, Villeurbanne Cedex (France); Xu, N. [Lawrence Berkeley National Laboratory, Berkeley, CA (United States); Ye, Z. [University of Illinois, Chicago, IL (United States); Zhuang, P. [Tsinghua University, Beijng Shi (China)

    2017-05-15

    Open and hidden heavy-flavor physics in high-energy nuclear collisions are entering a new and exciting stage towards reaching a clearer understanding of the new experimental results with the possibility to link them directly to the advancement in lattice Quantum Chromo-Dynamics (QCD). Recent results from experiments and theoretical developments regarding open and hidden heavy-flavor dynamics have been debated at the Lorentz Workshop Tomography of the Quark-Gluon Plasma with Heavy Quarks, which was held in October 2016 in Leiden, The Netherlands. In this contribution, we summarize identified common understandings and developed strategies for the upcoming five years, which aim at achieving a profound knowledge of the dynamical properties of the quark-gluon plasma. (orig.)

  11. Bosonic And Graded Color-flavor Transformation For The Special Unitary Group

    CERN Document Server

    Wei, Y

    2005-01-01

    The color-flavor transformation is an integral identity which first appeared in the study of disordered systems in condensed matter physics. Since then it has been successfully applied to many fields of physics. In this thesis, we study its applications in lattice quantum chromodynamics (QCD), the fundamental theory to study the non-perturbative properties of strongly interacting particles. The advantage of this transformation is that it can simplify the numerical simulations as well as provide analytical insights into lattice gauge theory. We begin with an outline of the background and the motivation for this thesis. Then we briefly introduce a few general concepts of lattice gauge theory. Next we review the fermionic color-flavor transformation for SU( Nc), where Nc is the number of color degrees of freedom, and its applications in fermion- induced QCD. By studying the resulting baryon loop expansion, we recognize both the advantages of this transformation and the difficulties associated with fermion-induce...

  12. Stimulus collative properties and consumers’ flavor preferences

    DEFF Research Database (Denmark)

    Giacalone, Davide; Duerlund, Mette; Bøegh-Petersen, Jannie

    2014-01-01

    The present work investigated consumers’ hedonic response to flavor stimuli in light of Berlyne’s (1967) collative-motivational model of aesthetic preferences. According to this paradigm, sensory preferences are a function of a stimulus’ arousal potential, which is determined by its collative...

  13. Unified flavor symmetry from warped dimensions

    Directory of Open Access Journals (Sweden)

    Mariana Frank

    2015-03-01

    Full Text Available In a model of warped extra-dimensions with all matter fields in the bulk, we propose a scenario which explains all the masses and mixings of the SM fermions. In this scenario, the same flavor symmetric structure is imposed on all the fermions of the Standard Model (SM, including neutrinos. Due to the exponential sensitivity on bulk fermion masses, a small breaking of this symmetry can be greatly enhanced and produce seemingly un-symmetric hierarchical masses and small mixing angles among the charged fermion zero-modes (SM quarks and charged leptons, thus washing out visible effects of the symmetry. If the Dirac neutrinos are sufficiently localized towards the UV boundary, and the Higgs field leaking into the bulk, the neutrino mass hierarchy and flavor structure will still be largely dominated and reflect the fundamental flavor structure, whereas localization of the quark sector would reflect the effects of the flavor symmetry breaking sector. We explore these features in an example based on which a family permutation symmetry is imposed in both quark and lepton sectors.

  14. Rice aroma and flavor: a literature review.

    Science.gov (United States)

    Descriptive sensory analysis has identified over a dozen different aromas and flavors in rice. Instrumental analyses have found over 200 volatile compounds present in rice. However, after over 30 years of research, little is known about the relationships between the numerous volatile compounds and a...

  15. Flavors and Phases in Unparticle Physics

    CERN Document Server

    Chen, Chuan-Hung

    2008-01-01

    Inspired by the recent Georgi's unparticle proposal, we study the flavor structures of the standard model (SM) particles when they couple to unparticles. At a very high energy scale, we introduce $\\BZ$ charges for the SM particles, which are universal for each generation and allow $\\BZ$ fields to distinguish flavor generations. At the $\\Lambda_{\\UP}$ scale, $\\BZ$ operators and charges are matched onto unparticle operators and charges, respectively. In this scenario, we find that tree flavor changing neutral currents (FCNCs) can be induced by the rediagonalizations of the SM fermions. As an illustration, we employ the Fritzsch ansatz to the SM fermion mass matrices and we find that the FCNC effects could be simplified to be associated with the mass ratios denoted by $\\sqrt{m_{i}m_{j}/m^2_{3}}$, where $m_3$ is the mass of the heaviest particle in each type of fermion generations and $i, j$ are the flavor indices. In addition, we show that there is no new CP violating phase beside the unique one in the CKM matri...

  16. Physics of heavy flavor at CDF

    Energy Technology Data Exchange (ETDEWEB)

    Torre, Stefano; /Siena U. /INFN, Pisa

    2005-06-01

    Results on physics of heavy flavor at CDF are reported. Selected measurements of Branching Ratios and CP asymmetry in B{sup 0} and B{sub s}{sup 0}, lifetime difference of B{sub s}{sup 0} CP eigenstates and a precise measurement of the B{sub c} mass are presented.

  17. Finite Theories and the SUSY Flavor Problem

    CERN Document Server

    Babu, K S; Kubo, J; Kobayashi, Tatsuo; Kubo, Jisuke

    2003-01-01

    We study a finite SU(5) grand unified model based on the non-Abelian discrete symmetry A_4. This model leads to the democratic structure of the mass matrices for the quarks and leptons. In the soft supersymmetry breaking sector, the scalar trilinear couplings are aligned and the soft scalar masses are degenerate, thus solving the SUSY flavor problem.

  18. Signatures of Top Flavored Dark Matter

    CERN Document Server

    Kilic, Can; Yu, Jiang-Hao

    2015-01-01

    We study the experimental signatures of top flavored dark matter (top FDM) in direct detection searches and at the LHC. We show that for a dark matter mass above 200 GeV, top FDM can be consistent with current bounds from direct detection experiments and relic abundance constraints. We also show that next generation direct detection experiments will be able to exclude the entire perturbative parameter region for top FDM. For regions of parameter space where the flavor partners of top FDM are not readily produced, the LHC signatures of top FDM are similar to those of other models previously studied in the literature. For the case when the flavor partners are produced at the LHC, we study their impact on a search based on transverse mass variables and find that they diminish the signal significance. However, when the DM flavor partners are split in mass by less than 120-130 GeV, the LHC phenomenology becomes very distinctive through the appearance of displaced vertices. We also propose a strategy by which all p...

  19. Experimental Overview of Open Heavy Flavor

    CERN Document Server

    Schweda, Kai

    2016-01-01

    These are the proceedings of the experimental overview of the production of open heavy flavor at the international conference Strangeness in Quark Matter 2016. Instead of a comprehensive overview, I focus on a few topics which the reader might find particularly interesting.

  20. Testing maximality in muon neutrino flavor mixing

    CERN Document Server

    Choubey, S; Choubey, Sandhya; Roy, Probir

    2003-01-01

    The small difference between the survival probabilities of muon neutrino and antineutrino beams, traveling through earth matter in a long baseline experiment such as MINOS, is shown to be an important measure of any possible deviation from maximality in the flavor mixing of those states.

  1. Heavy flavored jet modification in CMS

    CERN Document Server

    Jung, Kurt

    2015-01-01

    The energy loss of jets in heavy-ion collisions is expected to depend on the flavor of the fragmenting parton. Thus, measurements of jet quenching as a function of flavor place powerful constraints on the thermodynamical and transport properties of the hot and dense medium. Measurements of the nuclear modification factors of the heavy-flavor-tagged jets (from charm and bottom quarks) in both PbPb and pPb collisions can quantify such energy loss effects. Specifically, pPb measurements provide crucial insights into the behavior of the cold nuclear matter effect, which is required to fully understand the hot and dense medium effects on jets in PbPb collisions. In this talk, we present the heavy flavor jet spectra and measurements of the nuclear modification factors in both PbPb and pPb as a function of transverse momentum and pseudorapidity, using the high statistics pp, pPb and PbPb data taken in 2011 and 2013. Finally, we also will present a proposal for c-jet tagging methodology to be used for the upcoming hi...

  2. Recent heavy flavor results from STAR

    NARCIS (Netherlands)

    Mischke, A.

    2007-01-01

    We report on recent heavy flavor measurements from the STAR experiment at RHIC[1]. The measured charm cross section in heavy-ion collisions scales with the number of binary collisions, which is an indication for exclusive charm production in the initial state of the collision. The observed strong su

  3. Flavor compounds of popped amaranth seeds

    NARCIS (Netherlands)

    Gamel, T.H.; Linssen, J.P.H.

    2008-01-01

    Amaranth caudatus seeds were popped and studied for optimal popping conditions and flavor compounds. The optimum popping temperature for the seeds was 180C. At this temperature, the expansion volume, flake size and unpopped kernel proportion were 9.4¿11.3 cm3/g, 0.010¿0.012 cm/g and 10¿2%, respectiv

  4. Lattice Boltzmann Model for Compressible Fluid on a Square Lattice

    Institute of Scientific and Technical Information of China (English)

    SUN Cheng-Hai

    2000-01-01

    A two-level four-direction lattice Boltzmann model is formulated on a square lattice to simulate compressible flows with a high Mach number. The particle velocities are adaptive to the mean velocity and internal energy. Therefore, the mean flow can have a high Mach number. Due to the simple form of the equilibrium distribution, the 4th order velocity tensors are not involved in the calculations. Unlike the standard lattice Boltzmann model, o special treatment is need for the homogeneity of 4th order velocity tensors on square lattices. The Navier-Stokes equations were derived by the Chapman-Enskog method from the BGK Boltzmann equation. The model can be easily extended to three-dimensional cubic lattices. Two-dimensional shock-wave propagation was simulated

  5. Navier-Stokes Dynamics by a Discrete Boltzmann Model

    Science.gov (United States)

    Rubinstein, Robet

    2010-01-01

    This work investigates the possibility of particle-based algorithms for the Navier-Stokes equations and higher order continuum approximations of the Boltzmann equation; such algorithms would generalize the well-known Pullin scheme for the Euler equations. One such method is proposed in the context of a discrete velocity model of the Boltzmann equation. Preliminary results on shock structure are consistent with the expectation that the shock should be much broader than the near discontinuity predicted by the Pullin scheme, yet narrower than the prediction of the Boltzmann equation. We discuss the extension of this essentially deterministic method to a stochastic particle method that, like DSMC, samples the distribution function rather than resolving it completely.

  6. Caveat on the Boltzmann distribution function use in biology.

    Science.gov (United States)

    Sevcik, Carlos

    2017-08-01

    Sigmoid semilogarithmic functions with shape of Boltzmann equations, have become extremely popular to describe diverse biological situations. Part of the popularity is due to the easy availability of software which fits Boltzmann functions to data, without much knowledge of the fitting procedure or the statistical properties of the parameters derived from the procedure. The purpose of this paper is to explore the plasticity of the Boltzmann function to fit data, some aspects of the optimization procedure to fit the function to data and how to use this plastic function to differentiate the effect of treatment on data and to attest the statistical significance of treatment effect on the data. Copyright © 2017. Published by Elsevier Ltd.

  7. Stabilizing the thermal lattice Boltzmann method by spatial filtering.

    Science.gov (United States)

    Gillissen, J J J

    2016-10-01

    We propose to stabilize the thermal lattice Boltzmann method by filtering the second- and third-order moments of the collision operator. By means of the Chapman-Enskog expansion, we show that the additional numerical diffusivity diminishes in the low-wavnumber limit. To demonstrate the enhanced stability, we consider a three-dimensional thermal lattice Boltzmann system involving 33 discrete velocities. Filtering extends the linear stability of this thermal lattice Boltzmann method to 10-fold smaller transport coefficients. We further demonstrate that the filtering does not compromise the accuracy of the hydrodynamics by comparing simulation results to reference solutions for a number of standardized test cases, including natural convection in two dimensions.

  8. Electrostatic forces in the Poisson-Boltzmann systems.

    Science.gov (United States)

    Xiao, Li; Cai, Qin; Ye, Xiang; Wang, Jun; Luo, Ray

    2013-09-07

    Continuum modeling of electrostatic interactions based upon numerical solutions of the Poisson-Boltzmann equation has been widely used in structural and functional analyses of biomolecules. A limitation of the numerical strategies is that it is conceptually difficult to incorporate these types of models into molecular mechanics simulations, mainly because of the issue in assigning atomic forces. In this theoretical study, we first derived the Maxwell stress tensor for molecular systems obeying the full nonlinear Poisson-Boltzmann equation. We further derived formulations of analytical electrostatic forces given the Maxwell stress tensor and discussed the relations of the formulations with those published in the literature. We showed that the formulations derived from the Maxwell stress tensor require a weaker condition for its validity, applicable to nonlinear Poisson-Boltzmann systems with a finite number of singularities such as atomic point charges and the existence of discontinuous dielectric as in the widely used classical piece-wise constant dielectric models.

  9. Lattice Boltzmann Large Eddy Simulation Model of MHD

    CERN Document Server

    Flint, Christopher

    2016-01-01

    The work of Ansumali \\textit{et al.}\\cite{Ansumali} is extended to Two Dimensional Magnetohydrodynamic (MHD) turbulence in which energy is cascaded to small spatial scales and thus requires subgrid modeling. Applying large eddy simulation (LES) modeling of the macroscopic fluid equations results in the need to apply ad-hoc closure schemes. LES is applied to a suitable mesoscopic lattice Boltzmann representation from which one can recover the MHD equations in the long wavelength, long time scale Chapman-Enskog limit (i.e., the Knudsen limit). Thus on first performing filter width expansions on the lattice Boltzmann equations followed by the standard small Knudsen expansion on the filtered lattice Boltzmann system results in a closed set of MHD turbulence equations provided we enforce the physical constraint that the subgrid effects first enter the dynamics at the transport time scales. In particular, a multi-time relaxation collision operator is considered for the density distribution function and a single rel...

  10. An integrable 3D lattice model with positive Boltzmann weights

    CERN Document Server

    Mangazeev, Vladimir V; Sergeev, Sergey M

    2013-01-01

    In this paper we construct a three-dimensional (3D) solvable lattice model with non-negative Boltzmann weights. The spin variables in the model are assigned to edges of the 3D cubic lattice and run over an infinite number of discrete states. The Boltzmann weights satisfy the tetrahedron equation, which is a 3D generalisation of the Yang-Baxter equation. The weights depend on a free parameter 0Boltzmann weights.

  11. On a Boltzmann-type price formation model

    KAUST Repository

    Burger, Martin

    2013-06-26

    In this paper, we present a Boltzmann-type price formation model, which is motivated by a parabolic free boundary model for the evolution of price presented by Lasry and Lions in 2007. We discuss the mathematical analysis of the Boltzmann-type model and show that its solutions converge to solutions of the model by Lasry and Lions as the transaction rate tends to infinity. Furthermore, we analyse the behaviour of the initial layer on the fast time scale and illustrate the price dynamics with various numerical experiments. © 2013 The Author(s) Published by the Royal Society. All rights reserved.

  12. Revisiting Boltzmann learning: parameter estimation in Markov random fields

    DEFF Research Database (Denmark)

    Hansen, Lars Kai; Andersen, Lars Nonboe; Kjems, Ulrik

    1996-01-01

    This article presents a generalization of the Boltzmann machine that allows us to use the learning rule for a much wider class of maximum likelihood and maximum a posteriori problems, including both supervised and unsupervised learning. Furthermore, the approach allows us to discuss regularization...... and generalization in the context of Boltzmann machines. We provide an illustrative example concerning parameter estimation in an inhomogeneous Markov field. The regularized adaptation produces a parameter set that closely resembles the “teacher” parameters, hence, will produce segmentations that closely reproduce...

  13. Boundary Conditions for Free Interfaces with the Lattice Boltzmann Method

    CERN Document Server

    Bogner, Simon; Rüde, Ulrich

    2014-01-01

    In this paper we analyze the boundary treatment of the Lattice Boltzmann method for simulating 3D flows with free surfaces. The widely used free surface boundary condition of K\\"orner et al. (2005) is shown to be first order accurate. The article presents new free surface boundary schemes that are suitable for the lattice Boltzmann method and that have second order spatial accuracy. The new method takes the free boundary position and orientation with respect to the computational lattice into account. Numerical experiments confirm the theoretical findings and illustrate the the difference between the old and the new method.

  14. Spinor Boltzmann Equation with Two Momenta at the Fermi Level

    Institute of Scientific and Technical Information of China (English)

    王正川

    2012-01-01

    Based on the formalism of Keldysh's nonequilibrium Green function, we establish a two momenta spinor Boltzmann equation for longitudinal scalar distribution function and transverse vector distribution function. The lon- gitudinal charge currents, transverse spin currents and the continuity equations satisfied by them are then studied, it indicates that both the charge currents and spin currents decay oscillately along with position, which is due to the momenta integral over the Fermi surface. We also compare our charge currents and spin currents with the corresponding results of one momentum spinor Boltzmann equation, the differences are obvious.

  15. The Boltzmann equation near a rotational local Maxwellian

    CERN Document Server

    Kim, Chanwoo

    2011-01-01

    In rotationally symmetric domains, the Boltzmann equation with specular reflection boundary condition has a special type of equilibrium states called the rotational local Maxwellian which, unlike the uniform Maxwellian, has an additional term related to the angular momentum of the gas. In this paper, we consider the initial boundary value problem of the Boltzmann equation near the rotational local Maxwellian. Based on the L2-L1 framework of [12], we establish the global well-posedness and the convergence toward such equilibrium states.

  16. Acoustic limit of the Boltzmann equation: classical solutions

    OpenAIRE

    Jang, Juhi; Jiang, Ning

    2009-01-01

    We study the acoustic limit from the Boltzmann equation in the framework of classical solutions. For a solution $F_\\varepsilon=\\mu +\\varepsilon \\sqrt{\\mu}f_\\varepsilon$ to the rescaled Boltzmann equation in the acoustic time scaling \\partial_t F_\\varepsilon +\\vgrad F_\\varepsilon =\\frac{1}{\\varepsilon} \\Q(F_\\varepsilon,F_\\varepsilon), inside a periodic box $\\mathbb{T}^3$, we establish the global-in-time uniform energy estimates of $f_\\varepsilon$ in $\\varepsilon$ and prove that $f_\\varepsilon$...

  17. Contact line dynamics in binary lattice Boltzmann simulations

    CERN Document Server

    Pooley, C M; Yeomans, J M; 10.1103/PhysRevE.78.056709

    2008-01-01

    We show that, when a single relaxation time lattice Boltzmann algorithm is used to solve the hydrodynamic equations of a binary fluid for which the two components have different viscosities, strong spurious velocities in the steady state lead to incorrect results for the equilibrium contact angle. We identify the origins of these spurious currents, and demonstrate how the results can be greatly improved by using a lattice Boltzmann method based on a multiple-relaxation-time algorithm. By considering capillary filling we describe the dependence of the advancing contact angle on the interface velocity.

  18. Axisymmetric multiphase Lattice Boltzmann method for generic equations of state

    CERN Document Server

    Reijers, Sten A; Toschi, Federico

    2015-01-01

    We present an axisymmetric lattice Boltzmann model based on the Kupershtokh et al. multiphase model that is capable of solving liquid-gas density ratios up to $10^3$. Appropriate source terms are added to the lattice Boltzmann evolution equation to fully recover the axisymmetric multiphase conservation equations. We validate the model by showing that a stationary droplet obeys the Young-Laplace law, comparing the second oscillation mode of a droplet with respect to an analytical solution and showing correct mass conservation of a propagating density wave.

  19. Two-dimensional lattice Boltzmann model for magnetohydrodynamics.

    Science.gov (United States)

    Schaffenberger, Werner; Hanslmeier, Arnold

    2002-10-01

    We present a lattice Boltzmann model for the simulation of two-dimensional magnetohydro dynamic (MHD) flows. The model is an extension of a hydrodynamic lattice Boltzman model with 9 velocities on a square lattice resulting in a model with 17 velocities. Earlier lattice Boltzmann models for two-dimensional MHD used a bidirectional streaming rule. However, the use of such a bidirectional streaming rule is not necessary. In our model, the standard streaming rule is used, allowing smaller viscosities. To control the viscosity and the resistivity independently, a matrix collision operator is used. The model is then applied to the Hartmann flow, giving reasonable results.

  20. CORRECTIONS TO THE COLLISION TERM IN THE BGK BOLTZMANN EQUATION

    Institute of Scientific and Technical Information of China (English)

    FENG SHI-DE; REN RONG-CAI; CUI XIAO-PENG; JI ZHONG-ZHEN

    2001-01-01

    With the discrete method of the hexagonal cell and three different velocities of particle population in each cell,a two-dimensional lattice Boltzmann model is developed in this paper.[1,2] The collision operator in the Boltzmann equation is expanded to fourth order using the Taylor expansion.[3,4] With this model, good results have been obtained from the numerical simulation of the reflection phenomenon of the shock wave on the surface of an obstacle, and the numerical stability is also good. Thus the applicability of the D2Q19 model is verified.

  1. Quantum Exclusion of Positive Cosmological Constant?

    CERN Document Server

    Dvali, Gia

    2014-01-01

    We show that a positive cosmological constant is incompatible with the quantum-corpuscular resolution of de Sitter metric in form of a coherent state. The reason is very general and is due to the quantum self-destruction of the coherent state because of the scattering of constituent graviton quanta. This process creates an irreversible quantum clock, which precludes eternal de Sitter. It also eliminates the possibility of Boltzmann brains and Poincare recurrences. This effect is expected to be part of any microscopic theory that takes into account the quantum corpuscular structure of the cosmological background. This observation puts the cosmological constant problem in a very different light, promoting it, from a naturalness problem, into a question of quantum consistency. We are learning that quantum gravity cannot tolerate exceedingly-classical sources.

  2. Flavor physics and right-handed models

    Energy Technology Data Exchange (ETDEWEB)

    Shafaq, Saba

    2010-08-20

    The Standard Model of particle physics only provides a parametrization of flavor which involves the values of the quark and lepton masses and unitary flavor mixing matrix i.e. CKM (Cabibbo-Kobayashi-Masakawa) matrix for quarks. The precise determination of elements of the CKM matrix is important for the study of the flavor sector of quarks. Here we concentrate on the matrix element vertical stroke V{sub cb} vertical stroke. In particular we consider the effects on the value of vertical stroke V{sub cb} vertical stroke from possible right-handed admixtures along with the usually left-handed weak currents. Left Right Symmetric Model provide a natural basis for right-handed current contributions and has been studied extensively in the literature but has never been discussed including flavor. In the first part of the present work an additional flavor symmetry is included in LRSM which allows a systematic study of flavor effects. The second part deals with the practical extraction of a possible right-handed contribution. Starting from the quark level transition b{yields}c we use heavy quark symmetries to relate the helicities of the quarks to experimentally accessible quantities. To this end we study the decays anti B{yields}D(D{sup *})l anti {nu} which have been extensively explored close to non recoil point. By taking into account SCET (Soft Collinear Effective Theory) formalism it has been extended to a maximum recoil point i.e. {upsilon} . {upsilon}{sup '} >>1. We derive a factorization formula, where the set of form factors is reduced to a single universal form factor {xi}({upsilon} . {upsilon}{sup '}) up to hard-scattering corrections. Symmetry relations on form factors for exclusive anti B {yields} D(D{sup *})l anti {nu} transition has been derived in terms of {xi}({upsilon} . {upsilon}{sup '}). These symmetries are then broken by perturbative effects. The perturbative corrections to symmetry-breaking corrections to first order in the strong

  3. Comparison of the flavor chemistry and flavor stability of mozzarella and cheddar wheys.

    Science.gov (United States)

    Liaw, I W; Evan Miracle, R; Jervis, S M; Listiyani, M A D; Drake, M A

    2011-10-01

    The flavor and flavor stability of fresh and stored liquid Cheddar and Mozzarella wheys were compared. Pasteurized, fat separated, and unseparated Cheddar and Mozzarella wheys were manufactured in triplicate and evaluated immediately or stored for 72 h at 3 °C. Flavor profiles were documented by descriptive sensory analysis, and volatile components were extracted and characterized by solvent extraction followed by gas chromatography-mass spectrometry and gas chromatography-olfactometry with aroma extract dilution analysis. Cheddar and Mozzarella wheys were distinct by sensory and volatile analysis (P flavors and higher cardboard flavor intensities following storage compared to Mozzarella whey. High aroma impact compounds (FD(log3) > 8) in fresh Cheddar whey included diacetyl, 1-octen-3-one, 2-phenethanol, butyric acid, and (E)-2-nonenal, while those in Mozzarella whey included diacetyl, octanal, (E)-2-nonenal, and 2-phenethanol. Fresh Cheddar whey had higher concentrations of diacetyl, 2/3-methyl butanal, (E)-2-nonenal, 2-phenethanol, and 1-octen-3-one compared to fresh Mozzarella whey. Lipid oxidation products increased in both whey types during storage but increases were more pronounced in Cheddar whey than Mozzarella whey. Increases in lipid oxidation products were also more pronounced in wheys without fat separation compared to those with fat separation. Results suggest that similar compounds in different concentrations comprise the flavor of these 2 whey sources and that steps should be taken to minimize lipid oxidation during fluid whey processing. Practical Application:  Cheddar and Mozzarella wheys are the primary sources of dried whey ingredients in the United States. An enhanced understanding of the flavor of these 2 raw product streams will enable manufacturers to identify methods to optimize quality.

  4. Determining Planetary Temperatures with the Stefan-Boltzmann Law

    Science.gov (United States)

    LoPresto, Michael C.; Hagoort, Nichole

    2011-01-01

    What follows is a description of several activities involving the Stefan-Boltzmann radiation law that can provide laboratory experience beyond what is normally found in traditional introductory thermodynamics experiments on thermal expansion, specific heat, and heats of transformation. The activities also provide more extensive coverage of and…

  5. Determining Planetary Temperatures with the Stefan-Boltzmann Law

    Science.gov (United States)

    LoPresto, Michael C.; Hagoort, Nichole

    2011-01-01

    What follows is a description of several activities involving the Stefan-Boltzmann radiation law that can provide laboratory experience beyond what is normally found in traditional introductory thermodynamics experiments on thermal expansion, specific heat, and heats of transformation. The activities also provide more extensive coverage of and…

  6. An efficient learning procedure for deep Boltzmann machines.

    Science.gov (United States)

    Salakhutdinov, Ruslan; Hinton, Geoffrey

    2012-08-01

    We present a new learning algorithm for Boltzmann machines that contain many layers of hidden variables. Data-dependent statistics are estimated using a variational approximation that tends to focus on a single mode, and data-independent statistics are estimated using persistent Markov chains. The use of two quite different techniques for estimating the two types of statistic that enter into the gradient of the log likelihood makes it practical to learn Boltzmann machines with multiple hidden layers and millions of parameters. The learning can be made more efficient by using a layer-by-layer pretraining phase that initializes the weights sensibly. The pretraining also allows the variational inference to be initialized sensibly with a single bottom-up pass. We present results on the MNIST and NORB data sets showing that deep Boltzmann machines learn very good generative models of handwritten digits and 3D objects. We also show that the features discovered by deep Boltzmann machines are a very effective way to initialize the hidden layers of feedforward neural nets, which are then discriminatively fine-tuned.

  7. Boltzmann-type control of opinion consensus through leaders.

    Science.gov (United States)

    Albi, G; Pareschi, L; Zanella, M

    2014-11-13

    The study of formations and dynamics of opinions leading to the so-called opinion consensus is one of the most important areas in mathematical modelling of social sciences. Following the Boltzmann-type control approach recently introduced by the first two authors, we consider a group of opinion leaders who modify their strategy accordingly to an objective functional with the aim of achieving opinion consensus. The main feature of the Boltzmann-type control is that, owing to an instantaneous binary control formulation, it permits the minimization of the cost functional to be embedded into the microscopic leaders' interactions of the corresponding Boltzmann equation. The related Fokker-Planck asymptotic limits are also derived, which allow one to give explicit expressions of stationary solutions. The results demonstrate the validity of the Boltzmann-type control approach and the capability of the leaders' control to strategically lead the followers' opinion. © 2014 The Author(s) Published by the Royal Society. All rights reserved.

  8. The peeling process of infinite Boltzmann planar maps

    DEFF Research Database (Denmark)

    Budd, Timothy George

    2016-01-01

    criterion has a very simple interpretation. The finite random planar maps under consideration were recently proved to possess a well-defined local limit known as the infinite Boltzmann planar map (IBPM). Inspired by recent work of Curien and Le Gall, we show that the peeling process on the IBPM can...

  9. Lattice Boltzmann method for linear oscillatory noncontinuum flows.

    Science.gov (United States)

    Shi, Yong; Yap, Ying Wan; Sader, John E

    2014-03-01

    Oscillatory gas flows are commonly generated by micro- and nanoelectromechanical systems. Due to their small size and high operating frequencies, these devices often produce noncontinuum gas flows. Theoretical analysis of such flows requires solution of the unsteady Boltzmann equation, which can present a formidable challenge. In this article, we explore the applicability of the lattice Boltzmann (LB) method to such linear oscillatory noncontinuum flows; this method is derived from the linearized Boltzmann Bhatnagar-Gross-Krook (BGK) equation. We formulate four linearized LB models in the frequency domain, based on Gaussian-Hermite quadratures of different algebraic precision (AP). The performance of each model is assessed by comparison to high-accuracy numerical solutions to the linearized Boltzmann-BGK equation for oscillatory Couette flow. The numerical results demonstrate that high even-order LB models provide superior performance over the greatest noncontinuum range. Our results also highlight intrinsic deficiencies in the current LB framework, which is incapable of capturing noncontinuum behavior at high oscillation frequencies, regardless of quadrature AP and the Knudsen number.

  10. Lattice Boltzmann method for linear oscillatory noncontinuum flows

    Science.gov (United States)

    Shi, Yong; Yap, Ying Wan; Sader, John E.

    2014-03-01

    Oscillatory gas flows are commonly generated by micro- and nanoelectromechanical systems. Due to their small size and high operating frequencies, these devices often produce noncontinuum gas flows. Theoretical analysis of such flows requires solution of the unsteady Boltzmann equation, which can present a formidable challenge. In this article, we explore the applicability of the lattice Boltzmann (LB) method to such linear oscillatory noncontinuum flows; this method is derived from the linearized Boltzmann Bhatnagar-Gross-Krook (BGK) equation. We formulate four linearized LB models in the frequency domain, based on Gaussian-Hermite quadratures of different algebraic precision (AP). The performance of each model is assessed by comparison to high-accuracy numerical solutions to the linearized Boltzmann-BGK equation for oscillatory Couette flow. The numerical results demonstrate that high even-order LB models provide superior performance over the greatest noncontinuum range. Our results also highlight intrinsic deficiencies in the current LB framework, which is incapable of capturing noncontinuum behavior at high oscillation frequencies, regardless of quadrature AP and the Knudsen number.

  11. A Parallel Lattice Boltzmann Model of a Carotid Artery

    Science.gov (United States)

    Boyd, J.; Ryan, S. J.; Buick, J. M.

    2008-11-01

    A parallel implementation of the lattice Boltzmann model is considered for a three dimensional model of the carotid artery. The computational method and its parallel implementation are described. The performance of the parallel implementation on a Beowulf cluster is presented, as are preliminary hemodynamic results.

  12. Analytical solutions of the lattice Boltzmann BGK model

    CERN Document Server

    Zou, Q; Doolen, G D; Zou, Qisu; Hou, Shuling; Doolen, Gary D.

    1995-01-01

    Abstract: Analytical solutions of the two dimensional triangular and square lattice Boltzmann BGK models have been obtained for the plain Poiseuille flow and the plain Couette flow. The analytical solutions are written in terms of the characteristic velocity of the flow, the single relaxation time representation of these two flows without any approximation.

  13. Generalized Relativistic Chapman-Enskog Solution of the Boltzmann Equation

    CERN Document Server

    García-Perciante, A L; García-Colin, L S

    2007-01-01

    The Chapman-Enskog method of solution of the relativistic Boltzmann equation is generalized in order to admit a time-derivative term associated to the thermodynamic force in its first order solution. Both existence and uniqueness of such a solution are proved based on the standard theory of integral equations. The mathematical implications of the generalization here introduced are briefly explored.

  14. Metamaterial characterization using Boltzmann's kinetic equation for electrons

    DEFF Research Database (Denmark)

    Novitsky, Andrey; Zhukovsky, Sergei; Novitsky, D.

    2013-01-01

    Statistical properties of electrons in metals are taken into consideration to describe the microscopic motion of electrons. Assuming degenerate electron gas in metal, we introduce the Boltzmann kinetic equation to supplement Maxwell's equations. The solution of these equations clearly shows the r...

  15. Numerical solution of Boltzmann's equation

    Energy Technology Data Exchange (ETDEWEB)

    Sod, G.A.

    1976-04-01

    The numerical solution of Boltzmann's equation is considered for a gas model consisting of rigid spheres by means of Hilbert's expansion. If only the first two terms of the expansion are retained, Boltzmann's equation reduces to the Boltzmann-Hilbert integral equation. Successive terms in the Hilbert expansion are obtained by solving the same integral equation with a different source term. The Boltzmann-Hilbert integral equation is solved by a new very fast numerical method. The success of the method rests upon the simultaneous use of four judiciously chosen expansions; Hilbert's expansion for the distribution function, another expansion of the distribution function in terms of Hermite polynomials, the expansion of the kernel in terms of the eigenvalues and eigenfunctions of the Hilbert operator, and an expansion involved in solving a system of linear equations through a singular value decomposition. The numerical method is applied to the study of the shock structure in one space dimension. Numerical results are presented for Mach numbers of 1.1 and 1.6. 94 refs, 7 tables, 1 fig.

  16. The lattice Boltzmann method and the problem of turbulence

    Energy Technology Data Exchange (ETDEWEB)

    Djenidi, L. [School of Engineering The University of Newcastle, Callaghan NSW 2308 (Australia)

    2015-03-10

    This paper reports a brief review of numerical simulations of homogeneous isotopic turbulence (HIT) using the lattice Boltzmann method (LBM). The LBM results shows that the details of HIT are well captured and in agreement with existing data. This clearly indicates that the LBM is as good as current Navier-Stokes solvers and is very much adequate for investigating the problem of turbulence.

  17. Measuring Boltzmann's Constant with Carbon Dioxide

    Science.gov (United States)

    Ivanov, Dragia; Nikolov, Stefan

    2013-01-01

    In this paper we present two experiments to measure Boltzmann's constant--one of the fundamental constants of modern-day physics, which lies at the base of statistical mechanics and thermodynamics. The experiments use very basic theory, simple equipment and cheap and safe materials yet provide very precise results. They are very easy and…

  18. EXTERNAL BODY FORCE IN FINITE DIFFERENCE LATTICE BOLTZMANN METHOD

    Institute of Scientific and Technical Information of China (English)

    CHEN Sheng; LIU Zhao-hui; SHI Bao-chang; ZHENG Chu-guang

    2005-01-01

    A new finite difference lattice Boltzmann scheme is developed. Because of analyzing the influence of external body force roundly, the correct Navier-Stokes equations with the external body force are recovered, without any additional unphysical terms. And some numerical results are presented. The result which close agreement with analytical data shows the good performance of the model.

  19. Lattice Boltzmann simulations of droplet formation during microchannel emulsification

    NARCIS (Netherlands)

    Zwan, van der E.A.; Sman, van der R.G.M.; Schroën, C.G.P.H.; Boom, R.M.

    2009-01-01

    In this study, we compared microchannel droplet formation in a microfluidics device with a two phase lattice Boltzmann simulation. The droplet formation was found to be qualitatively described, with a slightly smaller droplet in the simulation. This was due to the finite thickness of the interface i

  20. Performance evaluation of a parallel sparse lattice Boltzmann solver

    NARCIS (Netherlands)

    Axner, L.; Bernsdorf, J.; Zeiser, T.; Lammers, P.; Linxweiler, J.; Hoekstra, A.G.

    2008-01-01

    We develop a performance prediction model for a parallelized sparse lattice Boltzmann solver and present performance results for simulations of flow in a variety of complex geometries. A special focus is on partitioning and memory/load balancing strategy for geometries with a high solid fraction and

  1. Measuring Boltzmann's Constant with Carbon Dioxide

    Science.gov (United States)

    Ivanov, Dragia; Nikolov, Stefan

    2013-01-01

    In this paper we present two experiments to measure Boltzmann's constant--one of the fundamental constants of modern-day physics, which lies at the base of statistical mechanics and thermodynamics. The experiments use very basic theory, simple equipment and cheap and safe materials yet provide very precise results. They are very easy and…

  2. Distribution Learning in Evolutionary Strategies and Restricted Boltzmann Machines

    DEFF Research Database (Denmark)

    Krause, Oswin

    The thesis is concerned with learning distributions in the two settings of Evolutionary Strategies (ESs) and Restricted Boltzmann Machines (RBMs). In both cases, the distributions are learned from samples, albeit with different goals. Evolutionary Strategies are concerned with finding an optimum ...

  3. Thermal creep problems by the discrete Boltzmann equation

    Directory of Open Access Journals (Sweden)

    L. Preziosi

    1991-05-01

    Full Text Available This paper deals with an initial-boundary value problem for the discrete Boltzmann equation confined between two moving walls at different temperature. A model suitable for the quantitative analysis of the initial boundary value problem and the relative existence theorem are given.

  4. The transition matrix element Agq(N) of the variable flavor number scheme at O(αs3)

    Science.gov (United States)

    Ablinger, J.; Blümlein, J.; De Freitas, A.; Hasselhuhn, A.; von Manteuffel, A.; Round, M.; Schneider, C.; Wißbrock, F.

    2014-05-01

    We calculate the massive unpolarized operator matrix element Agq(3)(N) to 3-loop order in Quantum Chromodynamics at general values of the Mellin variable N. This is the first complete transition function needed in the variable flavor number scheme obtained at O(αs3). A first independent recalculation is performed for the contributions ∝NF of the 3-loop anomalous dimension γgq(2)(N).

  5. The Transition Matrix Element A_{gq}(N) of the Variable Flavor Number Scheme at O(\\alpha_s^3)

    CERN Document Server

    Ablinger, J; De Freitas, A; Hasselhuhn, A; von Manteuffel, A; Schneider, M Round C; Wissbrock, F

    2014-01-01

    We calculate the massive operator matrix element $A_{gq}^{(3)}(N)$ to 3-loop order in Quantum Chromodynamics at general values of the Mellin variable $N$. This is the first complete transition function needed in the variable flavor number scheme obtained at $O(\\alpha_s^3)$. A first independent recalculation is performed for the contributions $\\propto N_F$ of the 3-loop anomalous dimension $\\gamma_{gq}^{(2)}(N)$.

  6. Interpreting hints for lepton flavor universality violation

    Science.gov (United States)

    Altmannshofer, Wolfgang; Stangl, Peter; Straub, David M.

    2017-09-01

    We interpret the recent hints for lepton flavor universality violation in rare B meson decays. Based on a model-independent effective Hamiltonian approach, we determine regions of new physics parameter space that give a good description of the experimental data on RK and RK*, which is in tension with Standard Model predictions. We suggest further measurements that can help narrowing down viable new physics explanations. We stress that the measured values of RK and RK* are fully compatible with new physics explanations of other anomalies in rare B meson decays based on the b →s μ μ transition. If the hints for lepton flavor universality violation are the first signs of new physics, perturbative unitarity implies new phenomena below a scale of ˜100 TeV .

  7. QCD with Flavored Minimally Doubled Fermions

    CERN Document Server

    Weber, Johannes Heinrich

    2016-01-01

    I discuss minimally doubled fermions fermions as an ultra-local formulation on the lattice for sea quarks that realize a non-singlet chiral symmetry. I introduce a non-singlet mass term for Karsten-Wilczek fermions and identify the appropriate representation of the SU(2) flavor group at finite lattice spacing. I present an algebraic proof that the symmetry of the quark determinant under charge conjugation and reflections of the Euclidean axes is preserved for Karsten-Wilczek fermions as sea quarks. Finally, I discuss how the flavor components in meson correlation functions with Karsten-Wilczek fermions emerge naturally and I show how taste-breaking can be avoided without fine tuning.

  8. Lepton flavor violation with light vector bosons

    Directory of Open Access Journals (Sweden)

    Julian Heeck

    2016-07-01

    Full Text Available New sub-GeV vector bosons with couplings to muons but not electrons have been discussed in order to explain the muon's magnetic moment, the gap of high-energy neutrinos in IceCube or the proton radius puzzle. If such a light Z′ not only violates lepton universality but also lepton flavor, as expected for example from the recent hint for h→μτ at CMS, the two-body decay mode τ→μZ′ opens up and for MZ′<2mμ gives better constraints than τ→3μ already with 20-year-old ARGUS limits. We discuss the general prospects and motivation of light vector bosons with lepton-flavor-violating couplings.

  9. Electroweak baryogenesis with lepton flavor violation

    Science.gov (United States)

    Chiang, Cheng-Wei; Fuyuto, Kaori; Senaha, Eibun

    2016-11-01

    We investigate the feasibility of electroweak baryogenesis in a two-Higgs doublet model with lepton flavor violation. By scrutinizing the heavy Higgs boson mass spectrum, regions satisfying both strong first-order electroweak phase transition and the muon g - 2 anomaly are identified. We also estimate the baryon number density by exploiting extra Yukawa couplings in the μ-τ sector. It is found that a CP-violating source term can be enhanced by the μ-τ flavor-violating coupling together with the extra τ coupling. With O (1) Yukawa couplings and CP-violating phases, the observed baryon number density is marginally produced under a generous assumption for the bubble wall profile.

  10. Yukawa alignment from natural flavor conservation

    CERN Document Server

    Cree, Graham

    2011-01-01

    We study the charged Higgs couplings to fermions in the "democratic" three-Higgs-doublet model, in which one doublet couples to down-type quarks, one to up-type quarks, and one to charged leptons. Flavor-changing neutral Higgs couplings are absent because the Glashow-Weinberg-Paschos condition for natural flavor conservation is in effect. We show that this model reproduces the coupling structure of the charged Higgs boson in the recently-proposed Yukawa-aligned two-Higgs-doublet model, with two subtle constraints that arise from the unitarity of the charged Higgs mixing matrix. Adding a fourth Higgs doublet with no couplings to fermions eliminates these constraints.

  11. The QCD spectrum with three quark flavors

    CERN Document Server

    Bernard, C; DeGrand, T A; Datta, S; DeTar, C E; Gottlieb, S; Heller, U M; Orginos, K; Sugar, R; Toussaint, D; Bernard, Claude; Burch, Tom; Grand, Thomas A. De; Datta, Saumen; Tar, Carleton De; Gottlieb, Steven; Heller, Urs M.; Orginos, Kostas; Sugar, Robert; Toussaint, Doug

    2001-01-01

    We present results from a lattice hadron spectrum calculation using three flavors of dynamical quarks - two light and one strange, and quenched simulations for comparison. These simulations were done using a one-loop Symanzik improved gauge action and an improved Kogut-Susskind quark action. The lattice spacings, and hence also the physical volumes, were tuned to be the same in all the runs to better expose differences due to flavor number. Lattice spacings were tuned using the static quark potential, so as a byproduct we obtain updated results for the effect of sea quarks on the static quark potential. We find indications that the full QCD meson spectrum is in better agreement with experiment than the quenched spectrum. For the 0++ (a0) meson we see a coupling to two pseudoscalar mesons, or a meson decay on the lattice.

  12. Lepton Flavor Violation in B Decays?

    CERN Document Server

    Glashow, Sheldon L.; Lane, Kenneth

    2015-01-01

    The LHCb Collaboration's measurement of R_K = B(B+ -> K+ mu+ mu-)/B(B+ -> K+ e+e-) lies 2.6 sigma below the Standard Model prediction. Several groups suggest this deficit to result from new lepton non-universal interactions of muons. But non-universal leptonic interactions imply lepton flavor violation in B decays at rates much larger than are expected in the Standard Model. A simple model shows that these rates could lie just below current limits. An interesting consequence of our model, that B(B_s -> mu+ mu-)_{exp}/B(B_s -> mu+ mu-)_{SM} = R_K = 0.75, is compatible with recent measurements of these rates. We stress the importance of searches for lepton flavor violations, especially for B -> K mu e, K mu tau and B_s -> mu e, mu tau.

  13. Electroweak Baryogenesis with Lepton Flavor Violation

    CERN Document Server

    Chiang, Cheng-Wei; Senaha, Eibun

    2016-01-01

    We investigate feasibility of electroweak baryogenesis with lepton flavor violation in a two-Higgs doublet model. By scrutinizing heavy Higgs boson mass spectra, regions satisfying both strong first-order electroweak phase transition and the muon $g-2$ anomaly are identified. We also estimate the baryon number density by exploiting extra Yukawa couplings in the $\\mu$-$\\tau$ sector. It is found that a CP-violating source term can be enhanced by the $\\mu$-$\\tau$ flavor-violating coupling together with the extra $\\tau$ coupling. With $\\mathcal{O}(1)$ Yukawa couplings and CP-violating phases, the observed baryon number density is marginally produced under a generous assumption on a bubble wall profile.

  14. Lepton flavor violation with light vector bosons

    CERN Document Server

    Heeck, Julian

    2016-01-01

    New sub-GeV vector bosons with couplings to muons but not electrons have been discussed in order to explain the muon's magnetic moment, the gap of high-energy neutrinos in IceCube or the proton radius puzzle. If such a light Z' not only violates lepton universality but also lepton flavor, as expected for example from the recent hint for $h\\to\\mu\\tau$ at CMS, the two-body decay mode $\\tau \\to \\mu Z'$ opens up and for $M_{Z'} < 2 m_\\mu$ gives better constraints than $\\tau\\to 3\\mu$ already with 20-year-old ARGUS limits. We discuss the general prospects and motivation of light vector bosons with lepton-flavor-violating couplings.

  15. Light-flavor squark reconstruction at CLIC

    CERN Document Server

    AUTHOR|(SzGeCERN)548062; Weuste, Lars

    2015-01-01

    We present a simulation study of the prospects for the mass measurement of TeV-scale light- flavored right-handed squark at a 3 TeV e+e collider based on CLIC technology. The analysis is based on full GEANT4 simulations of the CLIC_ILD detector concept, including Standard Model physics backgrounds and beam-induced hadronic backgrounds from two- photon processes. The analysis serves as a generic benchmark for the reconstruction of highly energetic jets in events with substantial missing energy. Several jet finding algorithms were evaluated, with the longitudinally invariant kt algorithm showing a high degree of robustness towards beam-induced background while preserving the features typically found in algorithms developed for e+e- collisions. The presented study of the reconstruction of light-flavored squarks shows that for TeV-scale squark masses, sub-percent accuracy on the mass measurement can be achieved at CLIC.

  16. Quantum consciousness of warm, wet, and noisy brain

    CERN Document Server

    Sbitnev, Valeriy I

    2016-01-01

    Quantum consciousness stems from dynamical flows of the hydrogen ions within the brain liquid. These flows are described by the modified Navier-Stokes equation reducing to the Schrodinger equation. Boltzmann action parameter, $k_{B}T\\delta t$, is used here instead of the Planck constant.

  17. GRAVITATIONAL WAVES AND EMERGENCE PARAMETER OF CLASSICAL AND QUANTUM SYSTEMS

    Directory of Open Access Journals (Sweden)

    Trunev A. P.

    2014-03-01

    Full Text Available It was established that the Fermi-Dirac statistics, Bose-Einstein and Maxwell-Boltzmann distribution can be described by a single equation, which follows from Einstein's equations for systems with central symmetry. Emergence parameter of classical and quantum systems composed by the rays of gravitational waves interacting with gravitational field of the universe has been computed

  18. Neutrino flavor evolution in neutron star mergers

    Science.gov (United States)

    Tian, James Y.; Patwardhan, Amol V.; Fuller, George M.

    2017-08-01

    We examine the flavor evolution of neutrinos emitted from the disklike remnant (hereafter called "neutrino disk") of a binary neutron star (BNS) merger. We specifically follow the neutrinos emitted from the center of the disk, along the polar axis perpendicular to the equatorial plane. We carried out two-flavor simulations using a variety of different possible initial neutrino luminosities and energy spectra and, for comparison, three-flavor simulations in specific cases. In all simulations, the normal neutrino mass hierarchy was used. The flavor evolution was found to be highly dependent on the initial neutrino luminosities and energy spectra; in particular, we found two broad classes of results depending on the sign of the initial net electron neutrino lepton number (i.e., the number of neutrinos minus the number of antineutrinos). In the antineutrino-dominated case, we found that the matter-neutrino resonance effect dominates, consistent with previous results, whereas in the neutrino-dominated case, a bipolar spectral swap develops. The neutrino-dominated conditions required for this latter result have been realized, e.g., in a BNS merger simulation that employs the "DD2" equation of state for neutron star matter [Phys. Rev. D 93, 044019 (2016), 10.1103/PhysRevD.93.044019]. For this case, in addition to the swap at low energies, a collective Mikheyev-Smirnov-Wolfenstein mechanism generates a high-energy electron neutrino tail. The enhanced population of high-energy electron neutrinos in this scenario could have implications for the prospects of r -process nucleosynthesis in the material ejected outside the plane of the neutrino disk.

  19. Dynamical Flavor Origin of ZN Symmetries

    OpenAIRE

    Aristizabal Sierra, Diego; Vicente, Avelino; Fong, Sheng; Dhen, Mikael

    2015-01-01

    Discrete Abelian symmetries (ZN) are a common “artifact” of beyond the standard model physics models. They provide different avenues for constructing consistent scenarios for lepton and quark mixing patterns, radiative neutrino mass generation as well as dark matter stabilization. We argue that these symmetries can arise from the spontaneous breaking of the Abelian U(1) factors contained in the global flavor symmetry transformations of the gauge-invariant kinetic Lagrangian. This will be the ...

  20. New signatures of flavor violating Higgs couplings

    Energy Technology Data Exchange (ETDEWEB)

    Buschmann, Malte; Kopp, Joachim; Liu, Jia; Wang, Xiao-Ping [PRISMA Cluster of Excellence and Mainz Institute for Theoretical Physics,Johannes Gutenberg University, 55099 Mainz (Germany)

    2016-06-24

    We explore several novel LHC signatures arising from quark or lepton flavor violating couplings in the Higgs sector, and we constrain such couplings using LHC data. Since the largest signals are possible in channels involving top quarks or tau leptons, we consider in particular the following flavor violating processes: (1) pp→thh (top plus di-Higgs final state) arising from a dimension six coupling of up-type quarks to three insertions of the Higgs field. We develop a search strategy for this final state and demonstrate that detection is possible at the high luminosity LHC if flavor violating top-up-Higgs couplings are not too far below the current limit. (2) pp→tH{sup 0}, where H{sup 0} is the heavy neutral CP-even Higgs boson in a two Higgs doublet model (2HDM). We consider the decay channels H{sup 0}→tu,WW,ZZ,hh and use existing LHC data to constrain the first three of them. For the fourth, we adapt our search for the thh final state, and we demonstrate that in large regions of the parameter space, it is superior to other searches, including searches for flavor violating top quark decays (t→hq). (3) H{sup 0}→τμ, again in the context of a 2HDM. This channel is particularly well motivated by the recent CMS excess in h→τμ, and we use the data from this search to constrain the properties of H{sup 0}.

  1. Heavy flavor, QCD and soft physics

    CERN Document Server

    Viegas Guerreiro Leonardo, Nuno Teotonio

    2016-01-01

    Recent measurements in QCD, soft physics, and heavy flavor made with the CMS detector at the LHC are presented. A selection of first results at the new frontier collision energy of 13 TeV at LHC Run2 is shown. The collision environment is characterized by studying charged particle distributions and correlations. Inclusive jet, exclusive dimuon and b-hadron production cross-section measurements are reported.

  2. Comments on Charged Lepton Flavor Violation

    Energy Technology Data Exchange (ETDEWEB)

    Bryman, Douglas

    2014-03-01

    Charged lepton flavor violation has been of interest since the muon (and subsequently, the tau lepton) was identified as a heavy version of the electron. CLFV continues to be pursued vigorously with the hope that its observation would reveal new information relating to the generation puzzle or about physics beyond the Standard Model. Theories abound which incorporate hypothetical CLFV at potentially observable levels although the mass scales and couplings are unknown, and innovative experiments continue to push the boundaries of sensitivity.

  3. Rare Z decays and neutrino flavor universality

    Energy Technology Data Exchange (ETDEWEB)

    Durieux, Gauthier [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany); Cornell Univ. Ithaca, NY (United States). Lab. for Elementary Particle Physics; Univ. Catholique de Louvain, Louvain-la-Neuve (Belgium). Centre for Cosmology, Particle Physics and Phenomenology; Grossman, Yuval; Kuflik, Erik [Cornell Univ. Ithaca, NY (United States). Lab. for Elementary Particle Physics; Koenig, Matthias [Mainz Univ. (Germany). PRISMA Cluster of Excellence; Mainz Univ. (Germany). Mainz Inst. for Theoretical Physics; Ray, Shamayita [Cornell Univ. Ithaca, NY (United States). Lab. for Elementary Particle Physics; Calcutta Univ. (India). Dept. of Physics

    2015-12-15

    We study rare four-body decays of the Z-boson involving at least one neutrino and one charged lepton. Large destructive interferences make these decays very sensitive to the Z couplings to neutrinos. As the identified charged leptons can determine the neutrino flavors, these decays probe the universality of the Z couplings to neutrinos. The rare four-body processes could be accurately measured at future lepton colliders, leading to percent level precision.

  4. Flavor origin of R-parity

    OpenAIRE

    Morisi, S.; Peinado, E.; Vicente, Avelino(IFPA, Dep. AGO, Université de Liège, Bat B5, Sart-Tilman, 4000 , Liège 1, Belgium)

    2013-01-01

    Proton stability is guaranteed in the MSSM by assuming a discrete symmetry, R-parity. However, there are additional R-parity conserving higher dimensional operators which violate lepton and baryon numbers and induce fast proton decay. Here we study the possibility that all renormalizable, as well as the most dangerous non-renormalizable, R-parity violating operators are forbidden by a flavor symmetry, providing a common origin for fermion mixing and proton and dark matter stability. We propos...

  5. Rare Z Decays and Neutrino Flavor Universality

    CERN Document Server

    Durieux, Gauthier; König, Matthias; Kuflik, Eric; Ray, Shamayita

    2015-01-01

    We study rare four-body decays of the Z-boson involving at least one neutrino and one charged lepton. Large destructive interferences make these decays very sensitive to the Z couplings to neutrinos. As the identified charged leptons can determine the neutrino flavors, these decays probe the universality of the Z couplings to neutrinos. The rare four-body processes could be accurately measured at future lepton colliders, leading to percent level precision.

  6. Flavored bilinear R-parity violation

    CERN Document Server

    Bazzocchi, F; Peinado, E; Valle, J W F; Vicente, A

    2012-01-01

    Bilinear R-parity violation (BRPV) provides the simplest intrinsically supersymmetric neutrino mass generation scheme. While neutrino mixing parameters can be probed in high energy accelerators, they are unfortunately not predicted by the theory. Here we propose a model based on the discrete flavor symmetry $A_4$ with a single R-parity violating parameter, leading to maximal atmospheric mixing and a small but nonzero reactor angle, in agreement with experiment.

  7. Overview of flavor physics results at Belle

    Directory of Open Access Journals (Sweden)

    Yusa Yosuke

    2015-01-01

    Full Text Available We will present recent topics of the flavor physics in decays of the heavy mesons at the Belle experiment. Most of the results are based on a full data set which corresponds to 772 million BB̄ pairs collected at the ϒ(4S resonance with the Belle detector at the KEKB asymmetric energy e+e− collider. We also discuss about prospects of the studies in the future B-factory experiment.

  8. AdS-Sliced Flavor Branes and Adding Flavor to the Janus Solution

    CERN Document Server

    Clark, Adam B; Newman, George M; Rommal, Andrea

    2014-01-01

    We implement D7 flavor branes in AdS-sliced coordinates on $AdS_5\\times S^5$ with the ansatz that the brane fluctuates only in the warped ($\\mu$) direction in this slicing, which is particularly appropriate for studying the Janus solution. The natural field theory dual in this slicing is $\\mathcal{N}=4$ super Yang-Mills on two copies of $AdS_4$. Branes extending from $\\mu=\\pm\\pi/2$ can end at different locations, giving rise to quarks with piecewise constant mass on each $AdS_4$ half-space, jumping discontinuously between them. A second class of flavor brane solutions exists in this coordinate system, dubbed "continuous" flavor branes, that extend across the entire range of $\\mu$. We propose that the correct dual interpretation of "disconnected" flavor brane in this ansatz is a quark hypermultiplet with constant mass on one of the AdS$_4$ half-spaces with totally reflecting boundary conditions at the boundary of AdS$_4$; whereas the dual interpretation of a continuous flavor brane has totally transparent boun...

  9. A fast iterative scheme for the linearized Boltzmann equation

    Science.gov (United States)

    Wu, Lei; Zhang, Jun; Liu, Haihu; Zhang, Yonghao; Reese, Jason M.

    2017-06-01

    Iterative schemes to find steady-state solutions to the Boltzmann equation are efficient for highly rarefied gas flows, but can be very slow to converge in the near-continuum flow regime. In this paper, a synthetic iterative scheme is developed to speed up the solution of the linearized Boltzmann equation by penalizing the collision operator L into the form L = (L + Nδh) - Nδh, where δ is the gas rarefaction parameter, h is the velocity distribution function, and N is a tuning parameter controlling the convergence rate. The velocity distribution function is first solved by the conventional iterative scheme, then it is corrected such that the macroscopic flow velocity is governed by a diffusion-type equation that is asymptotic-preserving into the Navier-Stokes limit. The efficiency of this new scheme is assessed by calculating the eigenvalue of the iteration, as well as solving for Poiseuille and thermal transpiration flows. We find that the fastest convergence of our synthetic scheme for the linearized Boltzmann equation is achieved when Nδ is close to the average collision frequency. The synthetic iterative scheme is significantly faster than the conventional iterative scheme in both the transition and the near-continuum gas flow regimes. Moreover, due to its asymptotic-preserving properties, the synthetic iterative scheme does not need high spatial resolution in the near-continuum flow regime, which makes it even faster than the conventional iterative scheme. Using this synthetic scheme, with the fast spectral approximation of the linearized Boltzmann collision operator, Poiseuille and thermal transpiration flows between two parallel plates, through channels of circular/rectangular cross sections and various porous media are calculated over the whole range of gas rarefaction. Finally, the flow of a Ne-Ar gas mixture is solved based on the linearized Boltzmann equation with the Lennard-Jones intermolecular potential for the first time, and the difference

  10. Uncovering Mass Generation Through Higgs Flavor Violation

    CERN Document Server

    Altmannshofer, Wolfgang; Kagan, Alexander L; Silvestrini, Luca; Zupan, Jure

    2015-01-01

    If the flavor violating decay h --> tau mu is observed at the LHC, extra sources of electroweak symmetry breaking (EWSB) beyond the Higgs would be required in order to reconcile it with the bounds from tau --> mu gamma, barring fine-tuned cancellations. In fact, an h --> tau mu decay rate at a level indicated by the CMS measurement is easily realized if the muon and electron masses are due to a new source of EWSB, while the tau mass is due to the Higgs. We illustrate this with two examples: a two Higgs doublet model, and a model in which the Higgs is partially composite, with EWSB triggered by a technicolor sector. The 1st and 2nd generation quark masses and CKM mixing can also be assigned to the new EWSB source. Large deviations in the flavor diagonal lepton and quark Higgs Yukawa couplings are generic. If m_mu is due to a rank 1 mass matrix contribution, a novel Yukawa coupling sum rule holds, providing a precision test of our framework. Flavor violating quark and lepton (pseudo)scalar couplings combine to ...

  11. Experimental summary for heavy flavor production

    CERN Document Server

    Ma, Rongrong

    2016-01-01

    Measurements of heavy flavor production in heavy-ion collisions have played an important role in understanding the properties of the quark-gluon plasma created in such collision. Due to their large masses, heavy flavor quarks present unique sensitivity to the kinematics as well as the dynamics of the hot and dense medium. In this article, a selection of recent measurements on heavy flavor production in p+p, p+A and A+A collisions at both RHIC and LHC energies will be presented. The measurements in p+p collisions serve as benchmarks to fundamental theories, and as references to similar studies in A+A collisions where the hot medium effects are present. On the other hand, the measurements in p+A collisions can help to quantify the cold nuclear matter effects which are also in effect in A+A collisions and thus need to be taken into account when interpreting the measurements in heavy-ion collisions. The experimental results from A+A collisions are discussed and compared to theoretical calculations, which can shed...

  12. Flavor Mixing Democracy and Minimal CP Violation

    CERN Document Server

    Gerard, Jean-Marc

    2012-01-01

    We point out that there is a unique parametrization of quark flavor mixing in which every angle is close to the Cabibbo angle \\theta_C \\simeq 13^\\circ with the CP-violating phase \\phi_q around 1^\\circ, implying that they might all be related to the strong hierarchy among quark masses. Applying the same parametrization to lepton flavor mixing, we find that all three mixing angles are comparably large (around \\pi/4) and the Dirac CP-violating phase \\phi_l is also minimal as compared with its values in the other eight possible parametrizations. In this spirit, we propose a simple neutrino mixing ansatz which is equivalent to the tri-bimaximal flavor mixing pattern in the \\phi_l \\to 0 limit and predicts \\sin\\theta_13 = 1/\\sqrt{2} \\sin (\\phi_l/2) for reactor antineutrino oscillations. Hence the Jarlskog invariant of leptonic CP violation J_l = (\\sin\\phi_l)/12 can reach a few percent if \\theta_13 lies in the range 7^\\circ \\leq \\theta_13 \\leq 10^\\circ.

  13. Flavor mixing democracy and minimal CP violation

    Science.gov (United States)

    Gerard, Jean-Marc; Xing, Zhi-zhong

    2012-06-01

    We point out that there is a unique parametrization of quark flavor mixing in which every angle is close to the Cabibbo angle θC≃13° with the CP-violating phase ϕq around 1°, implying that they might all be related to the strong hierarchy among quark masses. Applying the same parametrization to lepton flavor mixing, we find that all three mixing angles are comparably large (around π/4) and the Dirac CP-violating phase ϕl is also minimal as compared with its values in the other eight possible parametrizations. In this spirit, we propose a simple neutrino mixing ansatz which is equivalent to the tri-bimaximal flavor mixing pattern in the ϕl→0 limit and predicts sin θ13=1/√{2}sin(ϕl/2) for reactor antineutrino oscillations. Hence the Jarlskog invariant of leptonic CP violation Jl=(sin ϕl)/12 can reach a few percent if θ13 lies in the range 7°⩽θ13⩽10°.

  14. Mild-split SUSY with flavor

    CERN Document Server

    Eliaz, Latif; Gudnason, Sven Bjarke; Tsuk, Eitan

    2013-01-01

    In the framework of a gauge mediated quiver-like model, the standard model flavor texture can be naturally generated. The model - like the MSSM - has furthermore a region in parameter space where the lightest Higgs mass is fed by heavy stop loops, which in turn sets the average squark mass scale near 10-20 TeV. We perform a careful flavor analysis to check whether this type of mild-split SUSY passes all flavor constraints as easily as envisioned in the original type of split SUSY. Interestingly, it turns out to be on the border of several constraints, in particular, the branching ratio of mu -> e gamma and, if order one complex phases are assumed, also epsilon_K neutron and electron EDM. Furthermore, we consider unification as well as dark matter candidates, especially the gravitino. Finally, we provide a closed-form formula for the soft masses of matter in arbitrary representations of any of the gauge groups in a generic quiver-like model with a general messenger sector.

  15. Flavored Universe dispatched via Axion and Neutrino

    CERN Document Server

    Ahn, Y H

    2016-01-01

    Motivated by the flavored Peccei-Quinn (PQ) symmetry for unifying flavor physics and string theory, we construct an explicit model by introducing an $U(1)$ symmetry as a fundamental one for rather recent but fast growing issues of astro-particle physics and cosmology, in a way that the $U(1)_X$-$[gravity]^2$ anomaly-free condition with the standard model (SM) flavor structure demands additional sterile neutrinos as well as no axionic domain-wall problem, encompassing several main issues connected to each other: leptonic mixings and CP violation in neutrino oscillation, high-energy neutrinos, QCD axion, axion cooling of stars, inflation, cosmological constant, leptogenesis, and dark matter (DM). The QCD axion decay constant, through its connection to the astrophysical constraints of stellar evolution and the SM fermion masses, is shown to be fixed at $F_A=1.30^{+0.66}_{-0.54}\\times10^{9}$ GeV (consequently, its mass $m_a=4.34^{+3.37}_{-1.49}$ meV and axion-photon coupling $|g_{a\\gamma\\gamma}|=1.30^{+1.01}_{-0....

  16. Heavy Flavored Jet Modification at CMS

    Science.gov (United States)

    Jung, Kurt

    2016-12-01

    The energy loss of jets in heavy-ion collisions is expected to depend on the flavor of the fragmenting parton. Thus, measurements of jet quenching as a function of flavor place powerful constraints on the thermodynamical and transport properties of the hot and dense medium. Specifically, pPb measurements provide crucial insights into the behavior of the cold nuclear matter effect, which is required to fully understand the hot and dense medium effects on jets in PbPb collisions. In these proceedings, we present the heavy flavor jet spectra and measurements of the nuclear modification factors of b jets in both PbPb and pPb as a function of transverse momentum and pseudorapidity, at √{sNN} = 2.76 and 5.02 TeV, respectively. In addition, we present the first ever measurement of charm-tagged jets in a heavy-ion environment, including cross-sections and comparisons to PYTHIA in both pPb and pp.

  17. New Signatures of Flavor Violating Higgs Couplings

    CERN Document Server

    Buschmann, Malte; Liu, Jia; Wang, Xiao-Ping

    2016-01-01

    We explore several novel LHC signatures arising from quark or lepton flavor violating couplings in the Higgs sector, and we constrain such couplings using LHC data. Since the largest signals are possible in channels involving top quarks or tau leptons, we consider in particular the following flavor violating processes: (1) $pp \\to thh$ (top plus di-Higgs final state) arising from a dimension six coupling of up-type quarks to three insertions of the Higgs field. We develop a search strategy for this final state and demonstrate that detection is possible at the high luminosity LHC if flavor violating top--up--Higgs couplings are not too far below the current limit. (2) $pp \\to tH^0$, where $H^0$ is the heavy neutral CP-even Higgs boson in a two Higgs doublet model (2HDM). We consider the decay channels $H^0 \\to tu, WW, ZZ, hh$ and use existing LHC data to constrain the first three of them. For the fourth, we adapt our search for the $thh$ final state, and we demonstrate that in large regions of the parameter sp...

  18. Human sensory preconditioning in a flavor preference paradigm.

    Science.gov (United States)

    Privitera, Gregory J; Mulcahey, Colleen P; Orlowski, Cassandra M

    2012-10-01

    This experiment adapted a sensory preconditioning (SPC) procedure using human participants to determine if conditioning (Cond) to one flavor (the conditioned flavor) will enhance liking for another flavor (the SPC flavor) associated with it prior to training. Participants in one of three groups (N=40 per group) consumed and rated plain or sweetened cherry and grape kool-aids in four phases. In baseline and SPC phase, ratings for a plain cherry, grape, and cherry-grape mixture were similar. In training, one flavor was sweetened (SPC+Cond and Cond Only groups) or unsweetened (SPC Only group) and ratings increased only for the flavor that was sweetened. In test, Group SPC+Cond rated the conditioned flavor and the SPC flavor as more liked and tasting sweeter. Group Cond Only rated only the conditioned flavor as more liked and tasting sweeter. Group SPC Only showed no change in ratings from baseline to test. These are the first data to show SPC learning using a flavor preference paradigm with human participants. Copyright © 2012 Elsevier Ltd. All rights reserved.

  19. Quantum statistical theory of semiconductor junctions in thermal equilibrium

    Science.gov (United States)

    Von Roos, O.

    1977-01-01

    Free carrier and electric field distributions of one-dimensional semiconductor junctions are evaluated using a quantum mechanical phase-space distribution and its corresponding Boltzmann equation. Attention is given to quantum and exchange corrections in cases of high doping concentrations when carrier densities become degenerate. Quantitative differences between degenerate and classical junction characteristics, e.g., maximum electric field and built-in voltage and carrier concentration within the transition region, are evaluated numerically.

  20. The Bohmian Approach to the Problems of Cosmological Quantum Fluctuations

    OpenAIRE

    Goldstein, Sheldon; Struyve, Ward; Tumulka, Roderich

    2015-01-01

    There are two kinds of quantum fluctuations relevant to cosmology that we focus on in this article: those that form the seeds for structure formation in the early universe and those giving rise to Boltzmann brains in the late universe. First, structure formation requires slight inhomogeneities in the density of matter in the early universe, which then get amplified by the effect of gravity, leading to clumping of matter into stars and galaxies. According to inflation theory, quantum fluctuati...

  1. Numerical solutions of the semiclassical Boltzmann ellipsoidal-statistical kinetic model equation

    Science.gov (United States)

    Yang, Jaw-Yen; Yan, Chin-Yuan; Huang, Juan-Chen; Li, Zhihui

    2014-01-01

    Computations of rarefied gas dynamical flows governed by the semiclassical Boltzmann ellipsoidal-statistical (ES) kinetic model equation using an accurate numerical method are presented. The semiclassical ES model was derived through the maximum entropy principle and conserves not only the mass, momentum and energy, but also contains additional higher order moments that differ from the standard quantum distributions. A different decoding procedure to obtain the necessary parameters for determining the ES distribution is also devised. The numerical method in phase space combines the discrete-ordinate method in momentum space and the high-resolution shock capturing method in physical space. Numerical solutions of two-dimensional Riemann problems for two configurations covering various degrees of rarefaction are presented and various contours of the quantities unique to this new model are illustrated. When the relaxation time becomes very small, the main flow features a display similar to that of ideal quantum gas dynamics, and the present solutions are found to be consistent with existing calculations for classical gas. The effect of a parameter that permits an adjustable Prandtl number in the flow is also studied. PMID:25104904

  2. Lepton Flavor Non-Universality in B-meson Decays from a U(2) Flavor Model

    CERN Document Server

    Falkowski, Adam; Ziegler, Robert

    2015-01-01

    We address the recent anomalies in semi-leptonic $B$-meson decays using a model of fermion masses based on the $U(2)$ flavor symmetry. The new contributions to $b \\to s \\ell \\ell$ transitions arise due to a tree-level exchange of a $Z^\\prime$ vector boson gauging a $U(1)$ subgroup of the flavor symmetry. They are controlled by a single parameter and are approximately aligned to the Standard Model prediction, with constructive interference in the $e$-channel and destructive interference in the $\\mu$-channel. The current experimental data on semi-leptonic $B$-meson decays can be very well reproduced without violating existing constraints from flavor violation in the quark and lepton sectors. Our model will be tested by new measurements of $b \\to s \\ell \\ell$ transitions and also by future electroweak precision tests, direct $Z^\\prime$ searches, and $\\mu$-$e$ conversion in nuclei.

  3. Flavor from the double tetrahedral group without supersymmetry

    CERN Document Server

    Carone, Christopher D; Vasquez, Savannah

    2016-01-01

    We consider a class of flavor models proposed by Aranda, Carone and Lebed, relaxing the assumption of supersymmetry and allowing the flavor scale to float anywhere between the weak and Planck scales. We perform global fits to the charged fermion masses and CKM angles, and consider the dependence of the results on the unknown mass scale of the flavor sector. We find that the typical Yukawa textures in these models provide a good description of the data over a wide range of flavor scales, with a preference for those that approach the lower bounds allowed by flavor-changing-neutral-current constraints. Nevertheless, the possibility that the flavor scale and Planck scale are identified remains viable. We present models that demonstrate how the assumed textures can arise most simply in a non-supersymmetric framework.

  4. Neutrino flavor ratios as diagnostic of solar WIMP annihilation

    CERN Document Server

    Lehnert, Ralf

    2007-01-01

    We consider the neutrino (and antineutrino) flavors arriving at Earth for neutrinos produced in the annihilation of weakly interacting massive particles (WIMPs) in the Sun's core. Solar-matter effects on the flavor propagation of the resulting $\\agt$ GeV neutrinos are studied analytically within a density-matrix formalism. Matter effects, including mass-state level-crossings, influence the flavor fluxes considerably. The exposition herein is somewhat pedagogical, in that it starts with adiabatic evolution of single flavors from the Sun's center, with $\\theta_{13}$ set to zero, and progresses to fully realistic processing of the flavor ratios expected in WIMP decay, from the Sun's core to the Earth. In the fully realistic calculation, non-adiabatic level-crossing is included, as are possible nonzero values for $\\theta_{13}$ and the CP-violating phase $\\delta$. Due to resonance enhancement in matter, nonzero values of $\\theta_{13}$ even smaller than a degree can noticeably affect flavor propagation. Both normal...

  5. Flavor Tagging at the Tevatron, Including Calibration and Control

    Science.gov (United States)

    Moulik, T.; DØ Collaboration; CDF Collaboration

    2007-08-01

    This report summarizes the flavor tagging techniques developed at the CDF and DØ experiments. Flavor tagging involves identification of the B meson flavor at production, whether its constituent is a b quark or an anti-quark. quark flavor content and hence the decay products do not identify the B flavor content at production. It is crucial for measuring the oscillation frequency of neutral B mesons, both in the B0 and Bs0 system. The two experiments have developed their unique approaches to flavor tagging, using neural networks and likelihood methods to disentangle tracks from b decays from other tracks. This report discusses these techniques and the measurement of B0 mixing as a means to calibrate the taggers.

  6. Resource factor in production of quality and safe flavored food

    Directory of Open Access Journals (Sweden)

    Наталія Епінетівна Фролова

    2015-07-01

    Full Text Available Research of methods for establishing authenticity of essential oil of cumin and dill based on optical isomerism of components is presented in the article.In modern food technology more often used frozen raw, concentrates fruit and vegetables, growing issue of healthy products and this all require the use of flavors. Synthetic flavors can be dangerous to the human body. Usage of counterfeit natural flavors is dangerous.

  7. Probing flavor structure in unified theory with scalar spectroscopy

    CERN Document Server

    Inoue, K; Yoshioka, K; Inoue, Kenzo; Kojima, Kentaro; Yoshioka, Koichi

    2007-01-01

    The flavor structure in unified theory is probed with superparticle mass spectrum observed in future particle experiments. A key ingredient is the generation dependence of scalar mass non-degeneracy. The observed non-degeneracy in low-energy regime is shown to provide a direct imprint of flavor structure in high-energy fundamental theory. The implication from flavor-violating rare process is also discussed.

  8. Physics Opportunities at the Next Generation of Precision Flavor Physics

    CERN Document Server

    Ciuchini, Marco

    2011-01-01

    Starting with next-generation experiments, flavor physics fully enters the era of precision measurements. The focus shifts from testing the Standard Model to finding and characterizing new physics contributions. We review the opportunities offered by future flavor experiments, discussing the expected sensitivities of the most important measurements. We also present some examples of measurable deviations from the Standard Model in the flavor sector generated in a selection of new physics models, demonstrating the major contribution that precision flavor physics could give to the effort of going beyond the Standard Model.

  9. The role of lepton flavor symmetries in leptogenesis

    CERN Document Server

    Sierra, D Aristizabal

    2012-01-01

    The presence of flavor symmetries in the lepton sector may have several consequences for the generation of the baryon asymmetry of the Universe via leptogenesis. We review the mechanism in general type-I, type-II and type-III seesaw models. We then turn to the discussion of the cases when the asymmetry is generated in the context of seesaw models extended with flavor symmetries, before or after flavor symmetry breaking. Finally we explain how the interplay between type-I and type-II seesaws can (or not) lead to viable models for leptogenesis even when there is an exact mixing pattern enforced by the flavor symmetry.

  10. Flavor Tagging with Deep Neural Networks at Belle II

    CERN Document Server

    CERN. Geneva

    2017-01-01

    The Belle II experiment is mainly designed to investigate the decay of B meson pairs from $\\Upsilon(4S)$ decays, produced by the asymmetric electron-positron collider SuperKEKB. The determination of the B meson flavor, so-called flavor tagging, plays an important role in analyses and can be inferred in many cases directly from the final state particles. In this talk a successful approach of B meson flavor tagging utilizing a Deep Neural Network is presented. Monte Carlo studies show a significant improvement with respect to the established category-based flavor tagging algorithm.

  11. Flavor Tagging at the Tevatron, including calibration and control

    CERN Document Server

    Moulik, T

    2007-01-01

    This report summarizes the flavor tagging techniques developed at the CDF and D{\\O}experiments. Flavor tagging involves identification of the B meson flavor atproduction, whether its constituent is a quark or an anti-quark. It is crucial for measuring the oscillation frequency of neutral B mesons, both in the B^0 and B_S system. The two experiments have developed their unique approaches to flavor tagging, using neural networks, and likelihood methods to disentangle tracks from $b$ decays from other tracks. This report discusses these techniques and the measurement of B^0 mixing, as a means to calibrate the taggers.

  12. Conjugate heat transfer with the entropic lattice Boltzmann method.

    Science.gov (United States)

    Pareschi, G; Frapolli, N; Chikatamarla, S S; Karlin, I V

    2016-07-01

    A conjugate heat-transfer model is presented based on the two-population entropic lattice Boltzmann method. The present approach relies on the extension of Grad's boundary conditions to the two-population model for thermal flows, as well as on the appropriate exact conjugate heat-transfer condition imposed at the fluid-solid interface. The simplicity and efficiency of the lattice Boltzmann method (LBM), and in particular of the entropic multirelaxation LBM, are retained in the present approach, thus enabling simulations of turbulent high Reynolds number flows and complex wall boundaries. The model is validated by means of two-dimensional parametric studies of various setups, including pure solid conduction, conjugate heat transfer with a backward-facing step flow, and conjugate heat transfer with the flow past a circular heated cylinder. Further validations are performed in three dimensions for the case of a turbulent flow around a heated mounted cube.

  13. Analysis of Jeans instability from the Boltzmann equation

    Science.gov (United States)

    Kremer, Gilberto M.

    2016-11-01

    The dynamics of self-gravitating fluids is analyzed within the framework of a collisionless Boltzmann equation in the presence of gravitational fields and Poisson equation. Two cases are analyzed: a system with baryonic and dark matter in a static universe and a single system in an expanding universe. The amplitudes of the perturbed distribution functions are considered as a linear combination of the collision invariants of the Boltzmann equation. For the system of baryonic and dark matter, the Jeans mass of the combined system is smaller than the one of the single system indicating that a smaller mass is needed to initiate the collapse. For the single system in an expanding universe it is not necessary to make use of Jeans "swindle"and it shown that for small wavelengths the density contrast oscillates while for large wavelengths it grows with time and the Jeans instability emerges.

  14. Lattice Boltzmann model for incompressible flows through porous media.

    Science.gov (United States)

    Guo, Zhaoli; Zhao, T S

    2002-09-01

    In this paper a lattice Boltzmann model is proposed for isothermal incompressible flow in porous media. The key point is to include the porosity into the equilibrium distribution, and add a force term to the evolution equation to account for the linear and nonlinear drag forces of the medium (the Darcy's term and the Forcheimer's term). Through the Chapman-Enskog procedure, the generalized Navier-Stokes equations for incompressible flow in porous media are derived from the present lattice Boltzmann model. The generalized two-dimensional Poiseuille flow, Couette flow, and lid-driven cavity flow are simulated using the present model. It is found the numerical results agree well with the analytical and/or the finite-difference solutions.

  15. Quadrature-based Lattice Boltzmann Model for Relativistic Flows

    CERN Document Server

    Blaga, Robert

    2016-01-01

    A quadrature-based finite-difference lattice Boltzmann model is developed that is suitable for simulating relativistic flows of massless particles. We briefly review the relativistc Boltzmann equation and present our model. The quadrature is constructed such that the stress-energy tensor is obtained as a second order moment of the distribution function. The results obtained with our model are presented for a particular instance of the Riemann problem (the Sod shock tube). We show that the model is able to accurately capture the behavior across the whole domain of relaxation times, from the hydrodynamic to the ballistic regime. The property of the model of being extendable to arbitrarily high orders is shown to be paramount for the recovery of the analytical result in the ballistic regime.

  16. Big-Bang Nucleosynthesis verifies classical Maxwell-Boltzmann distribution

    CERN Document Server

    Hou, S Q; Parikh, A; Daid, K; Bertulani, C

    2014-01-01

    We provide the most stringent constraint to date on possible deviations from the usually-assumed Maxwell-Boltzmann (MB) velocity distribution for nuclei in the Big-Bang plasma. The impact of non-extensive Tsallis statistics on thermonuclear reaction rates involved in standard models of Big-Bang Nucleosynthesis (BBN) has been investigated. We find that the non-extensive parameter $q$ may deviate by, at most, $|\\delta q|$=6$\\times$10$^{-4}$ from unity for BBN predictions to be consistent with observed primordial abundances; $q$=1 represents the classical Boltzmann-Gibbs statistics. This constraint arises primarily from the {\\em super}sensitivity of endothermic rates on the value of $q$, which is found for the first time. As such, the implications of non-extensive statistics in other astrophysical environments should be explored. This may offer new insight into the nucleosynthesis of heavy elements.

  17. Boltzmann transport calculation of collinear spin transport on short timescales

    Science.gov (United States)

    Nenno, Dennis M.; Kaltenborn, Steffen; Schneider, Hans Christian

    2016-09-01

    A spin-dependent Boltzmann transport equation is used to describe charge and spin dynamics resulting from the excitation of hot electrons in a ferromagnet/normal metal heterostructure. As the microscopic Boltzmann equation works with k -dependent distribution functions, it can describe far-from-equilibrium excitations, which are outside the scope of drift-diffusion theories. We study different scenarios for spin-dependent carrier injection into a nonmagnetic metal using an effectively two-dimensional phase space. While the charge signal is robust for various excitation schemes, the shape of the resulting spin current/density depends critically on the interplay between transport and scattering, and on the energetic distribution of the injected carriers. Our results imply that the energy dependence of the injected hot electrons has a decisive effect on the spin dynamics.

  18. CMB spectral distortions as solutions to the Boltzmann equations

    CERN Document Server

    Ota, Atsuhisa

    2016-01-01

    We newly re-interpret cosmic microwave background spectral distortions as solutions to the Boltzmann equation at second order. This approach makes it possible to solve the equation of the momentum dependent temperature perturbations explicitly. In addition, we define higher order spectral distortions systematically, assuming that the collision term is linear in the photon distribution functions. For example, we find the linear Sunyaev-Zel'dovich effect whose momentum shape is different from the usual $y$ distortion, and show that the higher order spectral distortions are also generated as a result of the diffusion process in a language of higher order Boltzmann equations. The method may be applicable to a wider class of problems and has potential to give a general prescription to non-equilibrium physics.

  19. Viscous QCD matter in a hybrid hydrodynamic+Boltzmann approach

    CERN Document Server

    Song, Huichao; Heinz, Ulrich W

    2010-01-01

    A hybrid transport approach for the bulk evolution of viscous QCD matter produced in ultra-relativistic heavy-ion collisions is presented. The expansion of the dense deconfined phase of the reaction is modeled with viscous hydrodynamics while the dilute late hadron gas stage is described microscopically by the Boltzmann equation. The advantages of such a hybrid approach lie in the improved capability of handling large dissipative corrections in the late dilute phase of the reaction, including a realistic treatment of the non-equilibrium hadronic chemistry and kinetic freeze-out. By varying the switching temperature at which the hydrodynamic output is converted to particles for further propagation with the Boltzmann cascade we test the ability of the macroscopic hydrodynamic approach to emulate the microscopic evolution during the hadronic stage and extract the temperature dependence of the effective shear viscosity of the hadron resonance gas produced in the collision. We find that the extracted values depend...

  20. Lattice Boltzmann method with the cell-population equilibrium

    Institute of Scientific and Technical Information of China (English)

    Zhou Xiao-Yang; Cheng Bing; Shi Bao-Chang

    2008-01-01

    The central problem of the lattice Boltzmann method (LBM) is to construct a discrete equilibrium.In this paper,a multi-speed 1D cell-model of Boltzmann equation is proposed,in which the cell-population equilibrium,a direct nonnegative approximation to the continuous Maxwellian distribution,plays an important part.By applying the explicit one-order Chapman-Enskog distribution,the model reduces the transportation and collision,two basic evolution steps in LBM,to the transportation of the non-equilibrium distribution.Furthermore,1D dam-break problem is performed and the numerical results agree well with the analytic solutions.