WorldWideScience

Sample records for flats closure unit

  1. RCRA closures at Rocky Flats Plant: A programmatic perspective and case study

    International Nuclear Information System (INIS)

    Ogg, Randy T.; Peterman, Bruce D.

    1992-01-01

    The Interagency Agreement (IAG) integrates a unique mechanism for remediating hazardous waste sites at the Rocky Flats Plant (RFP), which include utilizing RCRA and CERCLA technical/regulatory processes. Pursuant to the IAG signed by the Department of Energy (DOE), Environmental Protection Agency (EPA), and the Colorado Department of Health (CDH) on January 22, 1991, sixteen operable units (OUs) were defined for characterization and remediation at RFP. Of the sixteen OUs, six are classified as Resource Conservation and Recovery Act (RCRA) closure units. The six RCRA interim status closure units are: Solar Evaporation Ponds-OU 4, Present LandfUl-OU 7, Original Process Waste Lines-OU 9, Other Outside Closures-OU 10, West Spray Field-OU II, and Inside Building Closures-OU 15. The IAG will function as a technical/regulatory mechanism for managing/complying with all aspects of the RCRA interim status closure units at RFP. (author)

  2. Corrective Action Decision Document/Closure Report for Corrective Action Unit 105: Area 2 Yucca Flat Atmospheric Test Sites, Nevada National Security Site, Nevada, Revision 0

    Energy Technology Data Exchange (ETDEWEB)

    Matthews, Patrick

    2013-09-01

    This Corrective Action Decision Document/Closure Report presents information supporting the closure of Corrective Action Unit (CAU) 105: Area 2 Yucca Flat Atmospheric Test Sites, Nevada National Security Site, Nevada. CAU 105 comprises the following five corrective action sites (CASs): -02-23-04 Atmospheric Test Site - Whitney Closure In Place -02-23-05 Atmospheric Test Site T-2A Closure In Place -02-23-06 Atmospheric Test Site T-2B Clean Closure -02-23-08 Atmospheric Test Site T-2 Closure In Place -02-23-09 Atmospheric Test Site - Turk Closure In Place The purpose of this Corrective Action Decision Document/Closure Report is to provide justification and documentation supporting the recommendation that no further corrective action is needed for CAU 105 based on the implementation of the corrective actions. Corrective action investigation (CAI) activities were performed from October 22, 2012, through May 23, 2013, as set forth in the Corrective Action Investigation Plan for Corrective Action Unit 105: Area 2 Yucca Flat Atmospheric Test Sites; and in accordance with the Soils Activity Quality Assurance Plan, which establishes requirements, technical planning, and general quality practices.

  3. Underground Test Area (UGTA) Closure Report for Corrective Action Unit 98: Frenchman Flat Nevada National Security Site, Nevada, Revision 1 ROTC-1

    International Nuclear Information System (INIS)

    Farnham, Irene

    2016-01-01

    This Closure Report (CR) has been prepared for Corrective Action Unit (CAU) 98, Frenchman Flat, Nevada National Security Site (NNSS), Nevada. The Frenchman Flat CAU was the site of 10 underground nuclear tests, some of which have impacted groundwater near the tests. This work was performed as part of the U.S. Department of Energy, National Nuclear Security Administration Nevada Field Office (NNSA/NFO) Underground Test Area (UGTA) Activity in accordance with the Federal Facility Agreement and Consent Order (FFACO). This CR describes the selected corrective action to be implemented during closure to protect human health and the environment from the impacted groundwater

  4. Underground Test Area (UGTA) Closure Report for Corrective Action Unit 98: Frenchman Flat Nevada National Security Site, Nevada, Revision 1 ROTC-1

    Energy Technology Data Exchange (ETDEWEB)

    Farnham, Irene [Navarro-Intera, LLC (N-I), Las Vegas, NV (United States)

    2016-08-01

    This Closure Report (CR) has been prepared for Corrective Action Unit (CAU) 98, Frenchman Flat, Nevada National Security Site (NNSS), Nevada. The Frenchman Flat CAU was the site of 10 underground nuclear tests, some of which have impacted groundwater near the tests. This work was performed as part of the U.S. Department of Energy, National Nuclear Security Administration Nevada Field Office (NNSA/NFO) Underground Test Area (UGTA) Activity in accordance with the Federal Facility Agreement and Consent Order (FFACO). This CR describes the selected corrective action to be implemented during closure to protect human health and the environment from the impacted groundwater

  5. Tools for Closure Project and Contract Management: Development of the Rocky Flats Integrated Closure Project Baseline

    International Nuclear Information System (INIS)

    Gelles, C. M.; Sheppard, F. R.

    2002-01-01

    This paper details the development of the Rocky Flats Integrated Closure Project Baseline - an innovative project management effort undertaken to ensure proactive management of the Rocky Flats Closure Contract in support of the Department's goal for achieving the safe closure of the Rocky Flats Environmental Technology Site (RFETS) in December 2006. The accelerated closure of RFETS is one of the most prominent projects within the Department of Energy (DOE) Environmental Management program. As the first major former weapons plant to be remediated and closed, it is a first-of-kind effort requiring the resolution of multiple complex technical and institutional challenges. Most significantly, the closure of RFETS is dependent upon the shipment of all special nuclear material and wastes to other DOE sites. The Department is actively working to strengthen project management across programs, and there is increasing external interest in this progress. The development of the Rocky Flats Integrated Closure Project Baseline represents a groundbreaking and cooperative effort to formalize the management of such a complex project across multiple sites and organizations. It is original in both scope and process, however it provides a useful precedent for the other ongoing project management efforts within the Environmental Management program

  6. Rocky Flats Solar Evaporation Ponds RCRA hybrid-closure case study

    International Nuclear Information System (INIS)

    Ogg, R.T.; Everett, L.G.; Cullen, S.J.

    1994-01-01

    The Solar Evaporation Ponds (SEP)/Operable Unit 4 (OU 4), located at the Rocky Flats Plant (RFP) sixteen miles northwest of Denver, Colorado, is currently undergoing remediation/Resource Conservation and Recovery Act (RCRA) closure in accordance with the Rocky Flats Interagency Agreement (IAG) signed by the US Department of Energy (DOE), US Environmental Protection Agency (EPA) and Colorado Department of Health (CDH) on January 22, 1991. Based on the ''Phase 1'' (source and soils) RCRA Facility Investigation/Remedial Investigation (RFM data and interpretations), the DOE and EG and G Rocky Flats, Inc. (EG and G) have selected a permanent surface engineered/isolation barrier as the technological option for remediation of the SEP. The DOE and EG and G will utilize all natural materials to create an ''impermeable'' barrier/structure to isolate the waste being left in place from impacting human health and the environment for a minimum of 1,000 years. Their rationale for utilizing natural materials is two fold; (1) optimize long term performance of the barrier and; (2) design a structure which will be near maintenance free (passive remediation) for 1,000 years. The DOE and EG and G have taken a proactive approach in providing post closure performance assessment for this RCRA closure action. An integrated monitoring system has been designed which will include monitoring the engineered barrier, vadose zone and ground water systems. Rocky Flats will integrate instrumentation into the permanent engineered barrier which will provide early warning of potential liquid migration through the barrier and into the waste zone

  7. Corrective Action Decision Document/Closure Report for Corrective Action Unit 570: Area 9 Yucca Flat Atmospheric Test Sites, Nevada National Security Site, Nevada, Revision 0

    Energy Technology Data Exchange (ETDEWEB)

    Matthews, Patrick [Navarro-Intera, LLC (N-I), Las Vegas, NV (United States)

    2013-11-01

    This Corrective Action Decision Document/Closure Report presents information supporting the closure of Corrective Action Unit (CAU) 570: Area 9 Yucca Flat Atmospheric Test Sites, Nevada National Security Site, Nevada. This complies with the requirements of the Federal Facility Agreement and Consent Order (FFACO) that was agreed to by the State of Nevada; U.S. Department of Energy (DOE), Environmental Management; U.S. Department of Defense; and DOE, Legacy Management. The purpose of the CADD/CR is to provide justification and documentation supporting the recommendation that no further corrective action is needed.

  8. Corrective Action Decision Document/Closure Report for Corrective Action Unit 105: Area 2 Yucca Flat Atmospheric Test Sites, Nevada National Security Site, Nevada, Revision 1

    Energy Technology Data Exchange (ETDEWEB)

    Matthews, Patrick

    2014-01-01

    The purpose of this Corrective Action Decision Document/Closure Report is to provide justification and documentation supporting the recommendation that no further corrective action is needed for CAU 105 based on the implementation of the corrective actions. Corrective action investigation (CAI) activities were performed from October 22, 2012, through May 23, 2013, as set forth in the Corrective Action Investigation Plan for Corrective Action Unit 105: Area 2 Yucca Flat Atmospheric Test Sites; and in accordance with the Soils Activity Quality Assurance Plan, which establishes requirements, technical planning, and general quality practices.

  9. Corrective Action Decision Document/Closure Report for Corrective Action Unit 569: Area 3 Yucca Flat Atmospheric Test Sites Nevada National Security Site, Nevada with ROTC 1, Revision 0

    Energy Technology Data Exchange (ETDEWEB)

    Sloop, Christy

    2013-04-01

    This Corrective Action Decision Document/Closure Report presents information supporting the closure of Corrective Action Unit (CAU) 569: Area 3 Yucca Flat Atmospheric Test Sites, Nevada National Security Site, Nevada. CAU 569 comprises the following nine corrective action sites (CASs): • 03-23-09, T-3 Contamination Area • 03-23-10, T-3A Contamination Area • 03-23-11, T-3B Contamination Area • 03-23-12, T-3S Contamination Area • 03-23-13, T-3T Contamination Area • 03-23-14, T-3V Contamination Area • 03-23-15, S-3G Contamination Area • 03-23-16, S-3H Contamination Area • 03-23-21, Pike Contamination Area The purpose of this Corrective Action Decision Document/Closure Report is to provide justification and documentation supporting the recommendation that no further corrective action is needed for CAU 569 based on the implementation of the corrective actions listed in Table ES-2.

  10. Closure Report for Corrective Action Unit 110: Areas 3 RWMS U-3ax/bl Disposal Unit, Nevada Test Site, Nevada

    Energy Technology Data Exchange (ETDEWEB)

    J. L. Smith

    2001-08-01

    This Closure Report (CR) has been prepared for the Area 3 Radioactive Waste Management Site (RWMS) U-3ax/bl Disposal Unit Corrective Action Unit (CAU) 110 in accordance with the reissued (November 2000) Resource Conservation and Recovery Act (RCRA) Part B operational permit NEV HW009 (Nevada Division of Environmental Protection [NDEP], 2000) and the Federal Facility and Consent Order (FFACO) (NDEP et al., 1996). CAU 110 consists of one Corrective Action Site 03-23-04, described as the U-3ax/bl Subsidence Crater. Certifications of closure are located in Appendix A. The U-3ax/bl is a historic disposal unit within the Area 3 RWMS located on the Nevada Test Site (NTS). The unit, which was formed by excavating the area between two subsidence craters (U-3ax and U-3bl), was operationally closed in 1987. The U-3ax/bl disposal unit was closed under the RCRA, as a hazardous waste landfill. Existing records indicate that, from July 1968 to December 1987, U-3ax/bl received 2.3 x 10{sup 5} cubic meters (m{sup 3}) (8.12 x 10{sup 6} cubic feet [ft{sup 3}]) of waste. NTS atmospheric nuclear device testing generated approximately 95% of the total waste volume disposed of in U-3ax/bl; 80% of the total volume was generated from the Waste Consolidation Project. Area 3 is located in Yucca Flat, within the northeast quadrant of the NTS. The Yucca Flat watershed is a structurally closed basin encompassing an area of approximately 780 square kilometers (300 square miles). The structural geomorphology of Yucca Flat is typical of the Basin and Range Physiographic Province. Yucca Flat lies in one of the most arid regions of the country. Water balance calculations for Area 3 indicate that it is normally in a state of moisture deficit.

  11. Closure Plan for Corrective Action Unit 110: Area 3 RWMS U-3ax/bl Disposal Unit, Nevada Test Site, Nevada

    International Nuclear Information System (INIS)

    Fitzmaurice, T. M.

    2000-01-01

    This Closure Plan has been prepared for the Area 3 RWMS U-3ax/bl Disposal Unit Corrective Action Unit 110 in accordance with the Federal Facility and Consent Order (Nevada Division of Environmental Protection [NDEP] et al., 1996). The U-3ax/bl is a historic disposal unit within the Area 3 Radioactive Waste Management Site located on the Nevada Test Site (NTS). The unit, which was formed by excavating the area between two subsidence craters (U-3ax and U-3bl), was operationally closed in 1987. The U-3ax/bl disposal unit is scheduled for permanent closure under the Resource Conservation and Recovery Act as a hazardous waste landfill. Existing records indicate that, from July 1968 to December 1987, U-3ax/bl received 2.3 x 10 5 cubic meters (8.12 x 10 6 cubic feet) of waste. NTS nuclear device testing generated approximately 95 percent of the total volume disposed of in U-3ax/bl, the majority of which came from the Waste Consolidation Project (80 percent of the total volume) (Elletson and Johnejack, 1995). Area 3 is located in Yucca Flat, within the northeast quadrant of the NTS. The Yucca Flat watershed is a structurally closed basin encompassing an area of approximately 780 square kilometers (300 square miles). The structural geomorphology of Yucca Flat is typical of the Basin and Range Physiographic Province. Yucca Flat lies in one of the most arid regions of the country. Water balance calculations for Area 3 indicate that it is continuously in a state of moisture deficit. The U-3ax/bl Disposal Unit will be closed in place by installing a Resource Conservation and Recovery Act equivalent cover. Following cover construction a fence will be installed around the cover to prevent accidental damage to the cover. Post-closure monitoring will consist of site inspections to determine the condition of the engineered cover and cover performance monitoring using Time-Domain Reflectometry arrays to monitor moisture migration in the cover. Any identified maintenance and repair

  12. Closure Plan for Corrective Action Unit 110: Area 3 RWMS U-3ax/bl Disposal Unit, Nevada Test Site, Nevada

    Energy Technology Data Exchange (ETDEWEB)

    T. M. Fitzmaurice

    2000-08-01

    This Closure Plan has been prepared for the Area 3 RWMS U-3ax/bl Disposal Unit Corrective Action Unit 110 in accordance with the Federal Facility and Consent Order (Nevada Division of Environmental Protection [NDEP] et al., 1996). The U-3ax/bl is a historic disposal unit within the Area 3 Radioactive Waste Management Site located on the Nevada Test Site (NTS). The unit, which was formed by excavating the area between two subsidence craters (U-3ax and U-3bl), was operationally closed in 1987. The U-3ax/bl disposal unit is scheduled for permanent closure under the Resource Conservation and Recovery Act as a hazardous waste landfill. Existing records indicate that, from July 1968 to December 1987, U-3ax/bl received 2.3 x 10{sup 5} cubic meters (8.12 x 10{sup 6} cubic feet) of waste. NTS nuclear device testing generated approximately 95 percent of the total volume disposed of in U-3ax/bl, the majority of which came from the Waste Consolidation Project (80 percent of the total volume) (Elletson and Johnejack, 1995). Area 3 is located in Yucca Flat, within the northeast quadrant of the NTS. The Yucca Flat watershed is a structurally closed basin encompassing an area of approximately 780 square kilometers (300 square miles). The structural geomorphology of Yucca Flat is typical of the Basin and Range Physiographic Province. Yucca Flat lies in one of the most arid regions of the country. Water balance calculations for Area 3 indicate that it is continuously in a state of moisture deficit. The U-3ax/bl Disposal Unit will be closed in place by installing a Resource Conservation and Recovery Act equivalent cover. Following cover construction a fence will be installed around the cover to prevent accidental damage to the cover. Post-closure monitoring will consist of site inspections to determine the condition of the engineered cover and cover performance monitoring using Time-Domain Reflectometry arrays to monitor moisture migration in the cover. Any identified maintenance and

  13. Maxey Flats low-level waste disposal site closure activities

    International Nuclear Information System (INIS)

    Haight, C.P.; Mills, D.; Razor, J.E.

    1987-01-01

    The Maxey Flats Radioactive Waste Disposal Facility in Fleming County, Kentucky is in the process of being closed. The facility opened for commercial business in the spring of 1963 and received approximately 4.75 million cubic feet of radioactive waste by the time it was closed in December of 1977. During fourteen years of operation approximately 2.5 million curies of by-product material, 240,000 kilograms of source material, and 430 kilograms of special nuclear material were disposed. The Commonwealth purchased the lease hold estate and rights in May 1978 from the operating company. This action was taken to stabilize the facility and prepare it for closure consisting of passive care and monitoring. To prepare the site for closure, a number of remedial activities had to be performed. The remediation activities implemented have included erosion control, surface drainage modifications, installation of a temporary plastic surface cover, leachate removal, analysis, treatment and evaporation, US DOE funded evaporator concentrates solidification project and their on-site disposal in an improved disposal trench with enhanced cover for use in a humid environment situated in a fractured geology, performance evaluation of a grout injection demonstration, USGS subsurface geologic investigation, development of conceptual closure designs, and finally being added to the US EPA National Priority List for remediation and closure under Superfund. 13 references, 3 figures

  14. Rocky flats closure project - lessons learned in worker stakeholder engagement

    International Nuclear Information System (INIS)

    Sweeney, Laura; Mazur, Robert E.; Edelson, Martin

    2013-01-01

    The Rocky Flats Environmental Technology Site (EPA Superfund site near Denver, Colorado) produced plutonium components for nuclear weapons for the U.S. defense program. The facility shut down in 1989 and clean up began in 1992. To ensure safe remediation of inactive nuclear sites, site owners have begun to consult stakeholders more widely in recent years. The closure of Rocky Flats aimed to set the standard for stakeholder involvement in doing the work safely, complying with regulations/standards, in a cost-effective manner. We have studied, using ethnographic methods, the extent to which workers at Rocky Flats were involved in communication and decision making strategies. Our results point out that workers can have perceptions of the site remediation process that differ from management and even other workers and that a significant number of workers questioned the commitment by management to engage the worker as stakeholder. The most effective remediation efforts should involve careful consideration of the insights and observations of all workers, particularly those who face immediate and high-level health and safety risks. (authors)

  15. Rocky flats closure project - lessons learned in worker stakeholder engagement

    Energy Technology Data Exchange (ETDEWEB)

    Sweeney, Laura [Des Moines Area Community College, Ankeny, Iowa (United States); Mazur, Robert E. [Iowa State University, Ames, Iowa (United States); Edelson, Martin [Ames Laboratory-USDOE (Retired), Ames, Iowa (United States)

    2013-07-01

    The Rocky Flats Environmental Technology Site (EPA Superfund site near Denver, Colorado) produced plutonium components for nuclear weapons for the U.S. defense program. The facility shut down in 1989 and clean up began in 1992. To ensure safe remediation of inactive nuclear sites, site owners have begun to consult stakeholders more widely in recent years. The closure of Rocky Flats aimed to set the standard for stakeholder involvement in doing the work safely, complying with regulations/standards, in a cost-effective manner. We have studied, using ethnographic methods, the extent to which workers at Rocky Flats were involved in communication and decision making strategies. Our results point out that workers can have perceptions of the site remediation process that differ from management and even other workers and that a significant number of workers questioned the commitment by management to engage the worker as stakeholder. The most effective remediation efforts should involve careful consideration of the insights and observations of all workers, particularly those who face immediate and high-level health and safety risks. (authors)

  16. Transuranic Storage Area (TSA)-2 container storage unit RCRA closure plan

    International Nuclear Information System (INIS)

    Lodman, D.W.; Spry, M.J.; Nolte, E.P.; Barry, G.A.

    1992-11-01

    This document describes the proposed plans for closure of the Transuranic Storage Area (TSA)-2 container storage unit at the Idaho National Engineering Laboratory in accordance with the Resource Conservation and Recovery Act closure requirements. The location, size, capacity, history, and current status of the unit are described. Future plans for the unit include incorporating the earthen-covered portion of the TSA-2 pad into a TSA retrieval enclosure along with the TSA-1 and TSAR pads, and closure of the portion of the TSA-2 pad under the Air Support Weather Shield (ASWS-2). This plan addresses closure of the ASWS-2 by decontaminating structures and equipment that may have contacted the waste. Sufficient sampling and documentation of all closure activities will be performed to demonstrate clean closure. A tentative schedule is provided in the form of a milestone chart

  17. Closure of hazardous and mixed radioactive waste management units at DOE facilities

    International Nuclear Information System (INIS)

    1990-06-01

    This is document addresses the Federal regulations governing the closure of hazardous and mixed waste units subject to Resource Conservation and Recovery Act (RCRA) requirements. It provides a brief overview of the RCRA permitting program and the extensive RCRA facility design and operating standards. It provides detailed guidance on the procedural requirements for closure and post-closure care of hazardous and mixed waste management units, including guidance on the preparation of closure and post-closure plans that must be submitted with facility permit applications. This document also provides guidance on technical activities that must be conducted both during and after closure of each of the following hazardous waste management units regulated under RCRA

  18. Successful closure of treatment-naïve, flat edge (Type II, full-thickness macular hole using inverted internal limiting membrane flap technique

    Directory of Open Access Journals (Sweden)

    Hussain N

    2016-10-01

    Full Text Available Nazimul Hussain,1 Anjli Hussain2 1Department of Ophthalmology, Al Zahra Hospital, 2Al Zahra Medical Center, Dubai, United Arab Emirates Objective: The objective of this study was to present the outcome of the internal limiting membrane (ILM peeling flap technique for a treatment-naïve, flat edge (Type II, full-thickness macular hole (MH. Methods: A 52-year-old man presented with complaints of decreased vision and seeing black spot. He was diagnosed to have a flat edge, full-thickness MH, which was confirmed by optical coherence tomography (OCT. He underwent 23G vitrectomy with brilliant blue G-assisted inverted ILM peeling with an inverted flap over the hole followed by fluid gas exchange. Results: Postoperative follow-up until 3 months showed successful closure of the MH, which was confirmed by OCT. The best-corrected visual acuity improved from baseline 6/60 to 6/12 at the final follow-up. Conclusion: Using the inverted ILM flap technique, a treatment-naïve, flat edge (Type II, full thickness MH achieved successful anatomical and functional outcomes. Keywords: macular hole, inverted ILM, optical coherence tomography

  19. Transuranic Storage Area (TSA)-3 container storage unit RCRA closure plan

    International Nuclear Information System (INIS)

    Barry, G.A.; Lodman, D.L.; Spry, M.J.; Poor, K.J.

    1992-11-01

    This document describes the proposed plan for closure of the Transuranic Storage Area (TSA)-3 container storage unit at the Idaho National Engineering Laboratory in accordance with the Resource Conservation and Recovery Act closure requirements. The location, size, capacity, history, and current status of the unit are described. The unit will be closed by decontaminating structures and equipment that may have contacted waste. Sufficient sampling and documentation of all activities will be performed to demonstrate clean closure. A tentative schedule is provided in the form of a milestone chart

  20. RCRA closure of eight land-based units at the Y-12 plant

    International Nuclear Information System (INIS)

    Stone, J.E.; Welch, S.H.

    1988-01-01

    Eight land-based hazardous waste management units at the Oak Ridge Y-12 Plant are being closed under an integrated multi-year program. Closure plans for the units have been submitted and are in various stages of revision and regulatory review. These units will be closed by various combinations of methods, including liquid removal and treatment, sludge stabilization, contaminated sludge and/or soil removal, and capping. The closure of these sites will be funded by a new Department of Energy budget category, the Environmental Restoration Budget Category (ERBC), which is intended to provide greater flexibility in the response to closure and remedial activities. A major project, Closure and Post-Closure Activities (CAPCA), has been identified for ERBC funding to close and remediate the land units in accordance with RCRA requirements. Establishing the scope of this program has required the development of risk assessments and the preparation of an integrated schedule

  1. Corrective Action Decision Document/Closure Report for Corrective Action Unit 106: Area 5, 11 Frenchman Flat Atmospheric Sites, Nevada National Security Site, Nevada

    International Nuclear Information System (INIS)

    Matthews, Patrick; Peterson, Dawn

    2011-01-01

    Corrective Action Unit 106 comprises four corrective action sites (CASs): (1) 05-20-02, Evaporation Pond; (2) 05-23-05, Atmospheric Test Site - Able; (3) 05-45-04, 306 GZ Rad Contaminated Area; (4) 05-45-05, 307 GZ Rad Contaminated Area. The purpose of this CADD/CR is to provide justification and documentation supporting the recommendation that no further corrective action is needed for CAU 106 based on the implementation of corrective actions. The corrective action of clean closure was implemented at CASs 05-45-04 and 05-45-05, while no corrective action was necessary at CASs 05-20-02 and 05-23-05. Corrective action investigation (CAI) activities were performed from October 20, 2010, through June 1, 2011, as set forth in the Corrective Action Investigation Plan for Corrective Action Unit 106: Areas 5, 11 Frenchman Flat Atmospheric Sites. The approach for the CAI was divided into two facets: investigation of the primary release of radionuclides, and investigation of other releases (mechanical displacement and chemical releases). The purpose of the CAI was to fulfill data needs as defined during the data quality objective (DQO) process. The CAU 106 dataset of investigation results was evaluated based on a data quality assessment. This assessment demonstrated the dataset is complete and acceptable for use in fulfilling the DQO data needs. Investigation results were evaluated against final action levels (FALs) established in this document. A radiological dose FAL of 25 millirem per year was established based on the Industrial Area exposure scenario (2,250 hours of annual exposure). The only radiological dose exceeding the FAL was at CAS 05-45-05 and was associated with potential source material (PSM). It is also assumed that additional PSM in the form of depleted uranium (DU) and DU-contaminated debris at CASs 05-45-04 and 05-45-05 exceed the FAL. Therefore, corrective actions were undertaken at these CASs that consisted of removing PSM and collecting verification

  2. Closing Rocky Flats by 2006

    International Nuclear Information System (INIS)

    Tuor, N. R.; Schubert, A. L.

    2002-01-01

    Safely accelerating the closure of Rocky Flats to 2006 is a goal shared by many: the State of Colorado, the communities surrounding the site, the U.S. Congress, the Department of Energy, Kaiser-Hill and its team of subcontractors, the site's employees, and taxpayers across the country. On June 30, 2000, Kaiser-Hill (KH) submitted to the Department of Energy (DOE), KH's plan to achieve closure of Rocky Flats by December 15, 2006, for a remaining cost of $3.96 billion (February 1, 2000, to December 15, 2006). The Closure Project Baseline (CPB) is the detailed project plan for accomplishing this ambitious closure goal. This paper will provide a status report on the progress being made toward the closure goal. This paper will: provide a summary of the closure contract completion criteria; give the current cost and schedule variance of the project and the status of key activities; detail important accomplishments of the past year; and discuss the challenges ahead

  3. RCRA land unit closures at the Y-12 Plant, Oak Ridge, Tennessee

    International Nuclear Information System (INIS)

    Welch, S.H.; Kelly, B.A.; Delozier, M.F.P.; Manrod, W.E.

    1987-01-01

    Eight land-based hazardous waste management units at the Y-12 Plant are being closed under an integrated multi-year program. Closure plans for the units have been submitted and are in various stages of revision and regulatory review. These units will be closed by various combinations of methods, including liquid removal and treatment, sludge stabilization, contaminated sludge and/or soil removal, and capping. The closure of these sites will be funded by a new Department of Energy budget category, the Environmental Restoration Budget Category (ERBC), which is intended to provide greater flexibility in the response to closure and remedial activities. A major project, Closure and Post-Closure Activities (CAPCA), has been identified for ERBC funding to close and remediate the land units in accordance with RCRA requirements. Establishing the scope of this program has required the development of a detailed set of assumptions and a confirmation program for each assumption. Other significant activities in the CAPCA program include the development of risk assessments and the preparation of an integrated schedule

  4. Interim Status Closure Plan Open Burning Treatment Unit Technical Area 16-399 Burn Tray

    Energy Technology Data Exchange (ETDEWEB)

    Vigil-Holterman, Luciana R. [Los Alamos National Laboratory

    2012-05-07

    This closure plan describes the activities necessary to close one of the interim status hazardous waste open burning treatment units at Technical Area (TA) 16 at the Los Alamos National Laboratory (LANL or the Facility), hereinafter referred to as the 'TA-16-399 Burn Tray' or 'the unit'. The information provided in this closure plan addresses the closure requirements specified in the Code of Federal Regulations (CFR), Title 40, Part 265, Subparts G and P for the thermal treatment units operated at the Facility under the Resource Conservation and Recovery Act (RCRA) and the New Mexico Hazardous Waste Act. Closure of the open burning treatment unit will be completed in accordance with Section 4.1 of this closure plan.

  5. Closure Report for Corrective Action Unit 543: Liquid Disposal Units, Nevada Test Site, Nevada

    Energy Technology Data Exchange (ETDEWEB)

    NSTec Environmental Restoration

    2008-01-01

    This Closure Report (CR) documents closure activities for Corrective Action Unit (CAU) 543, Liquid Disposal Units, according to the Federal Facility Agreement and Consent Order (FFACO, 1996) and the Corrective Action Plan (CAP) for CAU 543 (U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office [NNSA/NSO], 2007). CAU 543 is located at the Nevada Test Site (NTS), Nevada (Figure 1), and consists of the following seven Corrective Action Sites (CASs): CAS 06-07-01, Decon Pad; CAS 15-01-03, Aboveground Storage Tank; CAS 15-04-01, Septic Tank; CAS 15-05-01, Leachfield; CAS 15-08-01, Liquid Manure Tank; CAS 15-23-01, Underground Radioactive Material Area; CAS 15-23-03, Contaminated Sump, Piping; and CAS 06-07-01 is located at the Decontamination Facility in Area 6, adjacent to Yucca Lake. The remaining CASs are located at the former U.S. Environmental Protection Agency (EPA) Farm in Area 15. The purpose of this CR is to provide a summary of the completed closure activities, to document waste disposal, and to present analytical data confirming that the remediation goals were met. The closure alternatives consisted of closure in place for two of the CASs, and no further action with implementation of best management practices (BMPs) for the remaining five CASs.

  6. CY2017 Annual Closure Monitoring Report for Corrective Action Unit 98, Frenchman Flat, Underground Test Area, Nevada National Security Site, Nevada: (January 2017–December 2017), Revision 0

    Energy Technology Data Exchange (ETDEWEB)

    Rehfeldt, Ken; Haight, Brian

    2018-05-01

    Corrective Action Unit (CAU) 98: Frenchman Flat on the Nevada National Security Site was the location of 10 underground nuclear tests. CAU 98 underwent a series of investigations and actions in accordance with the Federal Facility Agreement and Consent Order to assess contamination of groundwater by radionuclides from the tests. A Closure Report completed that process in 2016 and called for long-term monitoring, use restrictions (URs), and institutional controls to protect the public and environment from potential exposure to contaminated groundwater. Three types of monitoring are performed for CAU 98: water quality, water level, and institutional control. These are monitored to determine whether the URs remain protective of human health and the environment, and to ensure that the regulatory boundary objectives are being met. Monitoring data will be used in the future, once multiple years of data are available, to evaluate consistency with the groundwater flow and contaminant transport models because the contaminant boundaries calculated with the models are the primary basis of the UR boundaries.

    Six wells were sampled for water-quality monitoring in 2017. Contaminants of concern were detected only in the two source/plume wells already known to contain contamination as a result of a radionuclide migration experiment. The 86,000-picocuries-per-liter (pCi/L) tritium concentration in one of the wells is about 12 percent higher than measured in 2016 but is over an order of magnitude less than the peak value measured in the well in 1980. The concentration in the other source/plume well is lower than measured in 2016.

    The water-level monitoring network includes 16 wells. Depth to water measured in 2017 is generally consistent with recent measurements for most wells. Water-level declines differing from long-term trends were observed in four wells. Three of these (WW-4, WW-4A, and WW-5B) are water-supply wells that experienced increases in pumping during

  7. Clarification of Institutional Controls at the Rocky Flats Site Central Operable Unit and Implementation of the Soil Disturbance Review Plan - 13053

    Energy Technology Data Exchange (ETDEWEB)

    DiSalvo, Rick [Stoller LMS Team, 11025 Dover St, Suite 1000, Westminster, CO 80021 (United States); Surovchak, Scott [U.S. Department of Energy, Office of Legacy Management, 11025 Dover St, Suite 1000, Westminster, CO 80021 (United States); Spreng, Carl [Colorado Department of Public Health and Environment, 4300 Cherry Creek Dr. S, Denver, CO 80246-1530 (United States); Moritz, Vera [U.S. Environmental Protection Agency, Region 8, 1595 Wynkoop St., Denver, CO 80202-1129 (United States)

    2013-07-01

    Cleanup and closure of DOE's Rocky Flats Site in Colorado, which was placed on the CERCLA National Priority List in 1989, was accomplished under CERCLA, RCRA, and the Colorado Hazardous Waste Act (CHWA). The physical cleanup work was completed in late 2005 and all buildings and other structures that composed the Rocky Flats industrial complex were removed from the surface, but remnants remain in the subsurface. Other remaining features include two landfills closed in place with covers, four groundwater treatment systems, and surface water and groundwater monitoring systems. Under the 2006 Corrective Action Decision/Record of Decision for Rocky Flats Plant (US DOE) Peripheral Operable Unit and the Central Operable Unit (CAD/ROD), the response actions selected for the Central Operable Unit (OU) are institutional controls (ICs), physical controls, and continued monitoring and maintenance. The objectives of these ICs were to prevent unacceptable exposure to remaining subsurface contamination and to prevent contaminants from mobilizing to surface water and to prevent interfering with the proper functioning of the engineered components of the remedy. An amendment in 2011 of the 2006 CAD/ROD clarified the ICs to prevent misinterpretation that would prohibit work to manage and maintain the Central OU property. The 2011 amendment incorporated a protocol for a Soil Disturbance Review Plan for work subject to ICs that requires approval from the State and public notification by DOE prior to conducting approved soil-disturbing work. (authors)

  8. Closure Strategy Nevada Test Site Area 5 Radioactive Waste Management Site

    Energy Technology Data Exchange (ETDEWEB)

    NSTec Environmental Management

    2007-03-01

    This paper presents an overview of the strategy for closure of part of the Area 5 Radioactive Waste Management Site (RWMS) at the Nevada Test Site (NTS), which is about 65 miles northwest of Las Vegas, Nevada (Figure 1). The Area 5 RWMS is in the northern part of Frenchman Flat, approximately 14 miles north of Mercury. The Area 5 RWMS encompasses 732 acres subdivided into quadrants, and is bounded by a 1,000-foot (ft)-wide buffer zone. The northwest and southwest quadrants have not been developed. The northeast and southeast quadrants have been used for disposal of unclassified low-level radioactive waste (LLW) and indefinite storage of classified materials. This paper focuses on closure of the 38 waste disposal and classified material storage units within the southeast quadrant of the Area 5 RWMS, called the ''92-Acre Area''. The U.S Department of Energy (DOE), National Nuclear Security Administration Nevada Site Office (NNSA/NSO) is currently planning to close the 92-Acre Area by 2011. Closure planning for this site must take into account the regulatory requirements for a diversity of waste streams, disposal and storage configurations, disposal history, and site conditions. For ease of discussion, the 92-Acre Area has been subdivided into six closure units defined by waste type, location, and similarity in regulatory requirements. Each of the closure units contains one or more waste disposal units; waste disposal units are also called waste disposal cells. The paper provides a brief background of the Area 5 RWMS, identifies key closure issues for the 92-Acre Area, recommends actions to address the issues, and provides the National Security Technologies, LLC (NSTec), schedule for closure.

  9. Closure report for housekeeping category, Corrective Action Unit 348, Nevada Test Site

    International Nuclear Information System (INIS)

    1998-01-01

    This Closure Report summarizes the corrective actions which were completed at twelve Corrective Action Sites within Corrective Action Unit 348 at the Nevada Test Site. Current site descriptions, observations and identification of wastes removed are included on FFACO Corrective Action Site housekeeping closure verification forms

  10. Closure report for housekeeping category, Corrective Action Unit 347, Nevada Test Site

    International Nuclear Information System (INIS)

    1998-01-01

    This Closure Report summarizes the corrective actions which were completed at the Corrective Action Sites within Corrective Action Unit 347 at the Nevada Test Site. Current site descriptions, observations and identification of wastes removed are included on FFACO Corrective Action Site housekeeping closure verification forms

  11. Effect of strain rate on cavity closure during compression between flat platens using superplastic tin-lead alloy

    International Nuclear Information System (INIS)

    Zaid, A.I.O.; Al-Tamimi, M.M.

    2011-01-01

    Superplasticity is a feature of a material or alloy which allows the material to deform plastically to an extremely large strain at low values of stress under certain loading conditions of strain rate and temperature. Eutectic tin-lead alloy is a practical material for research investigations as it possesses a superplastic behavior at room temperature and low strain rate which makes it a useful tool in simulating the ordinary engineering materials at high strain rate and temperature. This alloy has been extensively used as a model material to simulate behavior of engineering materials at high strain rates and temperatures. In this paper, superplastic tin-lead alloy was used at room temperature to simulate the closure of cavities in steels at high temperatures in the hot region under dynamic loading (high strain rate) under the effect of compressive loads using flat platens (open dies). Hollow specimens having different values of bore diameter (D/sub b/) to outer diameter (D/sub out/), of the same height and volume were investigated under different values of height reduction percentages ranging from 20% to 80% , and the percentage of cavity closure at each reduction percentage was determined. It was found that the cavity closure percentage increases or decreases at slow rate for reduction percentage in height less than 40% and increases more rapidly for reduction percentages in height above this value. Furthermore, specimens having smaller values of ratio (D/sub b//D/sub out/) resulted in higher percentage of cavity closure than specimens having higher ratios at the same value of reduction in height percentage. Complete cavity closure has occurred in specimens having the ratios of 0.1 and 0.2 at 75% reduction in height. (author)

  12. Corrective Action Decision Document/Corrective Action Plan for Corrective Action Unit 97: Yucca Flat/Climax Mine Nevada National Security Site, Nevada, Revision 1

    Energy Technology Data Exchange (ETDEWEB)

    Farnham, Irene [Navarro, Las Vegas, NV (United States)

    2017-08-01

    This corrective action decision document (CADD)/corrective action plan (CAP) has been prepared for Corrective Action Unit (CAU) 97, Yucca Flat/Climax Mine, Nevada National Security Site (NNSS), Nevada. The Yucca Flat/Climax Mine CAU is located in the northeastern portion of the NNSS and comprises 720 corrective action sites. A total of 747 underground nuclear detonations took place within this CAU between 1957 and 1992 and resulted in the release of radionuclides (RNs) in the subsurface in the vicinity of the test cavities. The CADD portion describes the Yucca Flat/Climax Mine CAU data-collection and modeling activities completed during the corrective action investigation (CAI) stage, presents the corrective action objectives, and describes the actions recommended to meet the objectives. The CAP portion describes the corrective action implementation plan. The CAP presents CAU regulatory boundary objectives and initial use-restriction boundaries identified and negotiated by DOE and the Nevada Division of Environmental Protection (NDEP). The CAP also presents the model evaluation process designed to build confidence that the groundwater flow and contaminant transport modeling results can be used for the regulatory decisions required for CAU closure. The UGTA strategy assumes that active remediation of subsurface RN contamination is not feasible with current technology. As a result, the corrective action is based on a combination of characterization and modeling studies, monitoring, and institutional controls. The strategy is implemented through a four-stage approach that comprises the following: (1) corrective action investigation plan (CAIP), (2) CAI, (3) CADD/CAP, and (4) closure report (CR) stages.

  13. Characterization Report Operational Closure Covers for the Area 5 Radioactive Waste Management Site at the Nevada Test Site

    International Nuclear Information System (INIS)

    Bechtel Nevada Geotechnical Sciences

    2005-01-01

    Bechtel Nevada (BN) manages two low-level Radioactive Waste Management Sites (RWMSs) at the Nevada Test Site (NTS) for the U.S. Department of Energy (DOE) National Nuclear Security Administration Nevada Site Office (NNSA/NSO). The Area 3 RWMS is located in south-central Yucca Flat and the Area 5 RWMS is located about 15 miles south, in north-central Frenchman Flat. Though located in two separate topographically closed basins, they are similar in climate and hydrogeologic setting. The Area 5 RWMS uses engineered shallow-land burial cells to dispose of packaged waste, while the Area 3 RWMS uses subsidence craters formed from underground testing of nuclear weapons for the disposal of packaged and unpackaged bulk waste. Over the next several decades, most waste disposal units at both the Area 3 and Area 5 RWMSs are anticipated to be closed. Closure of the Area 3 and Area 5 RWMSs will proceed through three phases: operational closure, final closure, and institutional control. Many waste disposal units at the Area 5RWMS are operationally closed and final closure has been placed on one unit at the Area 3 RWMS (U-3ax/bl). Because of the similarities between the two sites (e.g., type of wastes, environmental factors, operational closure cover designs, etc.), many characterization studies and data collected at the Area 3 RWMS are relevant and applicable to the Area 5 RWMS. For this reason, data and closure strategies from the Area 3 RWMS are referred to as applicable. This document is an interim Characterization Report - Operational Closure Covers, for the Area 5 RWMS. The report briefly describes the Area 5 RWMS and the physical environment where it is located, identifies the regulatory requirements, reviews the approach and schedule for closing, summarizes the monitoring programs, summarizes characterization studies and results, and then presents conclusions and recommendations

  14. Resource Conservation and Recovery Act (RCRA) closure sumamry for the Uranium Treatment Unit

    International Nuclear Information System (INIS)

    1996-05-01

    This closure summary has been prepared for the Uranium Treatment Unit (UTU) located at the Y-12 Plant in Oak Ridge, Tennessee. The actions required to achieve closure of the UTU area are outlined in the Closure Plan, submitted to and approved by the Tennessee Department of Environmental and Conservation staff, respectively. The UTU was used to store and treat waste materials that are regulated by the Resource Conservation and Recovery Act. This closure summary details all steps that were performed to close the UTU in accordance with the approved plan

  15. Post-Closure Monitoring Report for Corrective Action Unit 98, Frenchman Flat, Underground Test Area, Nevada National Security Site, Nevada for Calendar Year 2016 (January 2016–December 2016), Revision 0

    Energy Technology Data Exchange (ETDEWEB)

    Farnham, Irene [Navarro, Las Vegas, NV (United States)

    2017-06-01

    Corrective Action Unit (CAU) 98: Frenchman Flat on the Nevada National Security Site was the location of 10 underground nuclear tests. CAU 98 underwent a series of investigations and actions in accordance with the Federal Facility Agreement and Consent Order to assess contamination of groundwater by radionuclides from the tests. A Closure Report completed that process in 2016 and called for long-term monitoring, use restrictions (URs), and institutional controls to protect the public and environment from potential exposure to contaminated groundwater. Three types of monitoring are performed for CAU 98: water quality, water level, and institutional control. These are evaluated to determine whether the UR boundaries remain protective of human health and the environment, and to ensure that the regulatory boundary objectives are being met. Additionally, monitoring data are used to evaluate consistency with the groundwater flow and contaminant transport models because the contaminant boundaries (CBs) calculated with the models are the primary basis of the UR boundaries. In summary, the monitoring results from 2016 indicate the regulatory controls on the closure of CAU 98 remain effective in protection of human health and the environment. Recommendations resulting from this first year of monitoring activities include formally incorporating wells UE-5 PW-1, UE-5 PW-2, and UE-5 PW-3 into the groundwater-level monitoring network given their strategic location in the basin; and early development of a basis for trigger levels for the groundwater-level monitoring given the observed trends. Additionally, it is recommended to improve the Real Estate/Operations Permit process for capturing information important for evaluating the impact of activities on groundwater resources, and to shift the reporting requirement for this annual report from the second quarter of the federal fiscal year (end of March) to the second quarter of the calendar year (end of June).

  16. Planning for closures of hazardous waste land disposal units at the Oak Ridge Y-12 plant

    International Nuclear Information System (INIS)

    Welch, S.H.; Kelly, B.A.; DeLozier, M.F.P.; Manrod, W.E.

    1988-01-01

    Eight hazardous waste land disposal units at the Oak Ridge Y-12 Plant are being closed in accordance with the Resource Conservation and Recovery Act (RCRA) under an integrated multi-year program. The units, some of which date back to the early 1950s and include five surface impoundments, two landfills and a land treatment unit, have been used for the management of a variety of types of hazardous wastes. Closure plans for the units have been submitted and are in various stages of revision and regulatory review. The units will be closed by various combinations of methods, including liquid removal and treatment, sludge stabilization, contaminated sludge and/or soil removal, and capping. Closure of all eight units must be initiated by November 8, 1988. Funding for the eight closures is being provided by a new Department of Energy budget category, the environmental Restoration Budget Category (ERBC), which is intended to allow for a more rapid response to environmental problems and regulatory requirements. A major project, Closure and Post-Closure Activities (CAPCA) has been identified for ERBC funding to close the land disposal units in accordance with RCRA requirements. Establishing the project scope has required the development of a detailed set of assumptions and a confirmation program for each assumption. Other significant activities in the CAPCA project include risk assessments and the preparation of an integrated project schedule

  17. Plutonium Finishing Plan (PFP) Treatment and Storage Unit Interim Status Closure Plan

    International Nuclear Information System (INIS)

    PRIGNANO, A.L.

    2000-01-01

    This document describes the planned activities and performance standards for closing the Plutonium Finishing Plant (PFP) Treatment and Storage Unit. The PFP Treatment and Storage Unit is located within the 234-52 Building in the 200 West Area of the Hanford Facility. Although this document is prepared based upon Title 40 Code of Federal Regulations (CFR), Part 265, Subpart G requirements, closure of the unit will comply with Washington Administrative Code (WAC) 173-303-610 regulations pursuant to Section 5.3 of the Hanford Federal Facility Agreement and Consent Order (Tri-Party Agreement) Action Plan (Ecology et al. 1996). Because the PFP Treatment and Storage Unit manages transuranic mixed (TRUM) waste, there are many controls placed on management of the waste. Based on the many controls placed on management of TRUM waste, releases of TRUM waste are not anticipated to occur in the PFP Treatment and Storage Unit. Because the intention is to clean close the PFP Treatment and Storage Unit, postclosure activities are not applicable to this closure plan. To clean close the unit, it will be demonstrated that dangerous waste has not been left onsite at levels above the closure performance standard for removal and decontamination. If it is determined that clean closure is not possible or is environmentally impractical, the closure plan will be modified to address required postclosure activities. The PFP Treatment and Storage Unit will be operated to immobilize and/or repackage plutonium-bearing waste in a glovebox process. The waste to be processed is in a solid physical state (chunks and coarse powder) and will be sealed into and out of the glovebox in closed containers. The containers of immobilized waste will be stored in the glovebox and in additional permitted storage locations at PFP. The waste will be managed to minimize the potential for spills outside the glovebox, and to preclude spills from reaching soil. Containment surfaces will be maintained to ensure

  18. 40 CFR 258.16 - Closure of existing municipal solid waste landfill units.

    Science.gov (United States)

    2010-07-01

    ... waste landfill units. 258.16 Section 258.16 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES CRITERIA FOR MUNICIPAL SOLID WASTE LANDFILLS Location Restrictions § 258.16 Closure of existing municipal solid waste landfill units. (a) Existing MSWLF units that cannot make the...

  19. Dewatering and RCRA partial closure action on solar evaporation ponds, Rocky Flats Plant, Golden, Colorado

    International Nuclear Information System (INIS)

    1991-06-01

    The Department of Energy (DOE) has prepared an Environmental Assessment (DOE/EA-0487) on its proposal to partially close five solar evaporation ponds at the Rocky Flats Plant (RFP) pursuant to the requirements of the Resource Conservation and Recovery Act (RCRA). This proposal would be known as a RCRA partial closure and would be accomplished by dewatering the ponds, where necessary, and converting any remaining sludge or evaporator concentrate to a solid wasteform (pondcrete and saltcrete). The pond sites would be stabilized to prevent erosion or other disturbance to the soil and to prevent infiltration of rain or snowmelt. The solid wasteform would be transported offsite for disposal. The five solar ponds (designated 207-A, 207-B (north, center, and south), and 207-C), are the only solar evaporation ponds that exist at the RFP. A finding of no significant impact is included

  20. Closure report for housekeeping category, Corrective Action Unit 349, Area 12, Nevada Test Site

    International Nuclear Information System (INIS)

    1998-01-01

    This Closure Report summarizes the corrective actions which were completed at the Corrective Action Sites within Corrective Action Unit 349 Area 12 at the Nevada Test Site. Current site descriptions, observations and identification of wastes removed are included on FFACO Corrective Action Site housekeeping closure verification forms

  1. Closure report for housekeeping category, Corrective Action Unit 349, Area 12, Nevada Test Site

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-01-01

    This Closure Report summarizes the corrective actions which were completed at the Corrective Action Sites within Corrective Action Unit 349 Area 12 at the Nevada Test Site. Current site descriptions, observations and identification of wastes removed are included on FFACO Corrective Action Site housekeeping closure verification forms.

  2. Closure requirements

    International Nuclear Information System (INIS)

    Hutchinson, I.P.G.; Ellison, R.D.

    1992-01-01

    Closure of a waste management unit can be either permanent or temporary. Permanent closure may be due to: economic factors which make it uneconomical to mine the remaining minerals; depletion of mineral resources; physical site constraints that preclude further mining and beneficiation; environmental, regulatory or other requirements that make it uneconomical to continue to develop the resources. Temporary closure can occur for a period of several months to several years, and may be caused by factors such as: periods of high rainfall or snowfall which prevent mining and waste disposal; economic circumstances which temporarily make it uneconomical to mine the target mineral; labor problems requiring a cessation of operations for a period of time; construction activities that are required to upgrade project components such as the process facilities and waste management units; and mine or process plant failures that require extensive repairs. Permanent closure of a mine waste management unit involves the provision of durable surface containment features to protect the waters of the State in the long-term. Temporary closure may involve activities that range from ongoing maintenance of the existing facilities to the installation of several permanent closure features in order to reduce ongoing maintenance. This paper deals with the permanent closure features

  3. Stress analysis of closure bolts for shipping casks

    International Nuclear Information System (INIS)

    Mok, G.C.; Fischer, L.E.; Hsu, S.T.

    1993-01-01

    This report specifies the requirements and criteria for stress analysis of closure bolts for shipping casks containing nuclear spent fuels or high level radioactive materials. The specification is based on existing information conceming the structural behavior, analysis, and design of bolted joints. The approach taken was to extend the ASME Boiler and Pressure Vessel Code requirements and criteria for bolting analysis of nuclear piping and pressure vessels to include the appropriate design and load characteristics of the shipping cask. The characteristics considered are large, flat, closure lids with metal-to-metal contact within the bolted joint; significant temperature and impact loads; and possible prying and bending effects. Specific formulas and procedures developed apply to the bolt stress analysis of a circular, flat, bolted closure. The report also includes critical load cases and desirable design practices for the bolted closure, an in-depth review of the structural behavior of bolted joints, and a comprehensive bibliography of current information on bolted joints

  4. Land use and beach closure 2004-2013 in the United States

    Data.gov (United States)

    U.S. Environmental Protection Agency — The dataset contains the beach closure data and land use information around each beach in 2006 and 2011 in the United States. The original data are created by EPA...

  5. Characterization of Uranium Contamination, Transport, and Remediation at Rocky Flats - Across Remediation into Post-Closure

    Science.gov (United States)

    Janecky, D. R.; Boylan, J.; Murrell, M. T.

    2009-12-01

    The Rocky Flats Site is a former nuclear weapons production facility approximately 16 miles northwest of Denver, Colorado. Built in 1952 and operated by the Atomic Energy Commission and then Department of Energy, the Site was remediated and closed in 2005, and is currently undergoing long-term surveillance and monitoring by the DOE Office of Legacy Management. Areas of contamination resulted from roughly fifty years of operation. Of greatest interest, surface soils were contaminated with plutonium, americium, and uranium; groundwater was contaminated with chlorinated solvents, uranium, and nitrates; and surface waters, as recipients of runoff and shallow groundwater discharge, have been contaminated by transport from both regimes. A region of economic mineralization that has been referred to as the Colorado Mineral Belt is nearby, and the Schwartzwalder uranium mine is approximately five miles upgradient of the Site. Background uranium concentrations are therefore elevated in many areas. Weapons-related activities included work with enriched and depleted uranium, contributing anthropogenic content to the environment. Using high-resolution isotopic analyses, Site-related contamination can be distinguished from natural uranium in water samples. This has been instrumental in defining remedy components, and long-term monitoring and surveillance strategies. Rocky Flats hydrology interlinks surface waters and shallow groundwater (which is very limited in volume and vertical and horizontal extent). Surface water transport pathways include several streams, constructed ponds, and facility surfaces. Shallow groundwater has no demonstrated connection to deep aquifers, and includes natural preferential pathways resulting primarily from porosity in the Rocky Flats alluvium, weathered bedrock, and discontinuous sandstones. In addition, building footings, drains, trenches, and remedial systems provide pathways for transport at the site. Removal of impermeable surfaces (buildings

  6. Rocky Flats Cleanup Agreement implementation successes and challenges

    International Nuclear Information System (INIS)

    Shelton, D.C.

    1997-01-01

    On July 19, 1996 the US Department of Energy (DOE), State of Colorado (CDPHE), and US Environmental Protection Agency (EPA) entered into an agreement called the Rocky Flats Cleanup Agreement (RFCA) for the cleanup and closure of the Rocky Flats Environmental Technology Site (RFETS or Rocky Flats). Major elements of the agreement include: an Integrated Site-Wide Baseline; up to twelve significant enforceable milestones per year; agreed upon soil and water action levels and standards for cleanup; open space as the likely foreseeable land use; the plutonium and TRU waste removed by 2015; streamlined regulatory process; agreement with the Defense Nuclear Facilities Safety Board (DNFSB) to coordinate activities; and a risk reduction focus. Successful implementation of RFCA requires a substantial effort by the parties to change their way of thinking about RFETS and meet the deliverables and commitments. Substantial progress toward Site closure through the implementation of RFCA has been accomplished in the short time since the signing, yet much remains to be done. Much can be learned from the Rocky Flats experience by other facilities in similar situations

  7. Partitioning of One-Carbon Units in Folate and Methionine Metabolism Is Essential for Neural Tube Closure

    Directory of Open Access Journals (Sweden)

    Kit-Yi Leung

    2017-11-01

    Full Text Available Summary: Abnormal folate one-carbon metabolism (FOCM is implicated in neural tube defects (NTDs, severe malformations of the nervous system. MTHFR mediates unidirectional transfer of methyl groups from the folate cycle to the methionine cycle and, therefore, represents a key nexus in partitioning one-carbon units between FOCM functional outputs. Methionine cycle inhibitors prevent neural tube closure in mouse embryos. Similarly, the inability to use glycine as a one-carbon donor to the folate cycle causes NTDs in glycine decarboxylase (Gldc-deficient embryos. However, analysis of Mthfr-null mouse embryos shows that neither S-adenosylmethionine abundance nor neural tube closure depend on one-carbon units derived from embryonic or maternal folate cycles. Mthfr deletion or methionine treatment prevents NTDs in Gldc-null embryos by retention of one-carbon units within the folate cycle. Overall, neural tube closure depends on the activity of both the methionine and folate cycles, but transfer of one-carbon units between the cycles is not necessary. : Leung at al. find that embryonic neural tube closure depends both on the supply of one-carbon units to the folate cycle from glycine cleavage and on the methionine cycle. In contrast, transfer of one-carbon units from the folate cycle to the methionine cycle by MTHFR is dispensable. Keywords: one-carbon metabolism, folic acid, neural tube defects, spina bifida, glycine cleavage system, non-ketotic hyperglycinemia, eye, Mthfr, Gldc

  8. Mineralogic Zonation Within the Tuff Confining Unit, Yucca Flat, Nevada Test Site

    International Nuclear Information System (INIS)

    Lance Prothro

    2005-01-01

    Recently acquired mineralogic data from drill hole samples in Yucca Flat show that the tuff confining unit (TCU) can be subdivided into three mineralogic zones based on the relative abundances of primary and secondary mineral assemblages. These zones are (1) an upper zone characterized by the abundance of the zeolite mineral clinoptilolite with lesser amounts of felsic and clay minerals; (2) a middle zone with felsic minerals dominant over clinoptilolite and clay minerals; and (3) a basal argillic zone where clay minerals are dominant over felsic minerals and clinoptilolite. Interpretation of the mineralogic data, along with lithologic, stratigraphic, and geophysical data from approximately 500 drill holes, reveals a three-layer mineralogic model for the TCU that shows all three zones are extensive beneath Yucca Flat. The mineralogic model will be used to subdivide the TCU in the Yucca Flat hydrostratigraphic framework model, resulting in a more accurate and versatile framework model. In addition, the identification of the type, quantity, and distribution of minerals within each TCU layer will permit modelers to better predict the spatial distribution and extent of contaminant transport from underground tests in Yucca Flat, at both the level of the hydrologic source term and the corrective action unit

  9. Resource Conservation and Recovery Act closure plan for the Intermediate-Level Transuranic Storage Facility mixed waste container storage units

    International Nuclear Information System (INIS)

    Nolte, E.P.; Spry, M.J.; Stanisich, S.N.

    1992-11-01

    This document describes the proposed plan for clean closure of the Intermediate-Level Transuranic Storage Facility mixed waste container storage units at the Idaho National Engineering Laboratory in accordance with the Resource Conservation and Recovery Act closure requirements. Descriptions of the location, size, capacity, history, and current status of the units are included. The units will be closed by removing waste containers in storage, and decontamination structures and equipment that may have contacted waste. Sufficient sampling and documentation of all activities will be performed to demonstrate clean closure. A tentative schedule is provided in the form of a milestone chart

  10. Corrective Action Investigation Plan for Corrective Action Unit 97: Yucca Flat/Climax Mine, Nevada National Security Site, Nevada with ROTCs 1, 2, and 3 (Revision 0, September 2000)

    Energy Technology Data Exchange (ETDEWEB)

    Andrews, Robert; Marutzky, Sam

    2000-09-01

    This Corrective Action Investigation Plan contains the U.S. Department of Energy, Nevada Operations Office's (DOE/NV's) approach to collect the data necessary to evaluate Corrective Action Alternatives (CAAs) appropriate for the closure of Corrective Action Unit (CAU) 97 under the Federal Facility Agreement and Consent Order (FFACO). Corrective Action Unit 97, collectively known as the Yucca Flat/Climax Mine CAU, consists of 720 Corrective Action Sites (CASs). The Yucca Flat/Climax Mine CAU extends over several areas of the NTS and constitutes one of several areas used for underground nuclear testing in the past. The nuclear tests resulted in groundwater contamination in the vicinity as well as downgradient of the underground test areas. Based on site history, the Yucca Flat underground nuclear tests were conducted in alluvial, volcanic, and carbonate rocks; whereas, the Climax Mine tests were conducted in an igneous intrusion located in northern Yucca Flat. Particle-tracking simulations performed during the regional evaluation indicate that the local Climax Mine groundwater flow system merges into the much larger Yucca Flat groundwater flow systems during the 1,000-year time period of interest. Addressing these two areas jointly and simultaneously investigating them as a combined CAU has been determined the best way to proceed with corrective action investigation (CAI) activities. The purpose and scope of the CAI includes characterization activities and model development conducted in five major sequential steps designed to be consistent with FFACO Underground Test Area Project's strategy to predict the location of the contaminant boundary, develop and implement a corrective action, and close each CAU. The results of this field investigation will support a defensible evaluation of CAAs in the subsequent corrective action decision document.

  11. Closure plan for the Test Area North-726 chromate water storage and Test Area North-726A chromate treatment units

    International Nuclear Information System (INIS)

    Smith, P.J.; Van Brunt, K.M.

    1992-11-01

    This document describes the proposed plan for closure of the Test Area North-726 chromate water storage and Test Area North-726A chromate treatment units at the Idaho National Engineering Laboratory in accordance with the Resource Conservation and Recovery Act interim status closure requirements. The location, size, capacity, and history of the units are described, and their current status is discussed. The units will be closed by treating remaining waste in storage, followed by thorough decontamination of the systems. Sufficient sampling and analysis, and documentation of all activities will be performed to demonstrate clean closure

  12. Post-Closure Inspection Report for Corrective Action Unit 453: Area 9 UXO Landfill Tonopah Test Range, Nevada, Calendar Year 2000; TOPICAL

    International Nuclear Information System (INIS)

    K. B. Campbell

    2001-01-01

    Post-closure monitoring requirements for the Area 9 Unexploded Ordnance Landfill (Corrective Action Unit[CAU] 453) (Figure 1) are described in Closure Report for Corrective Action Unit 453: Area 9 UXO Landfill, Tonopah Test Range, Nevada, report number DOE/NV-284. The Closure Report (CR) was submitted to the Nevada Division of Environmental Protection (NDEP) on August 5,1999. The CR (containing the Post-Closure Monitoring Plan) was approved by the NDEP on September 10,1999. Post-closure monitoring at CAU 453 consists of the following: (1) Site inspections done twice a year to evaluate the condition of the unit; (2) Verification that the site is secure; (3) Notice of any subsidence or deficiencies that may compromise the integrity of the unit; (4) Remedy of any deficiencies within 90 days of discovery; and (5) Preparation and submittal of an annual report. Site inspections were conducted on June 20, 2000 and November 21, 2000. Both site inspections were conducted after NDEP approval of the CR, and in accordance with the Post-Closure Monitoring Plan in the NDEP-approved CR. This report includes copies of the inspection checklists, photographs, recommendations, and conclusions. The Post-Closure Inspection Checklists are found in Attachment A, a copy of the field notes is found in Attachment B, and inspection photographs are found in Attachment C

  13. Closure Report for Corrective Action Unit 562: Waste Systems, Nevada National Security Site, Nevada

    Energy Technology Data Exchange (ETDEWEB)

    NSTec Environmental Restoration

    2012-08-15

    This Closure Report (CR) presents information supporting closure of Corrective Action Unit (CAU) 562, Waste Systems, and provides documentation supporting the completed corrective actions and confirmation that closure objectives for CAU 562 were met. This CR complies with the requirements of the Federal Facility Agreement and Consent Order (FFACO) that was agreed to by the State of Nevada; the U.S. Department of Energy (DOE), Environmental Management; the U.S. Department of Defense; and DOE, Legacy Management (FFACO, 1996 as amended). CAU 562 consists of the following 13 Corrective Action Sites (CASs), located in Areas 2, 23, and 25 of the Nevada National Security Site: · CAS 02-26-11, Lead Shot · CAS 02-44-02, Paint Spills and French Drain · CAS 02-59-01, Septic System · CAS 02-60-01, Concrete Drain · CAS 02-60-02, French Drain · CAS 02-60-03, Steam Cleaning Drain · CAS 02-60-04, French Drain · CAS 02-60-05, French Drain · CAS 02-60-06, French Drain · CAS 02-60-07, French Drain · CAS 23-60-01, Mud Trap Drain and Outfall · CAS 23-99-06, Grease Trap · CAS 25-60-04, Building 3123 Outfalls Closure activities began in October 2011 and were completed in April 2012. Activities were conducted according to the Corrective Action Plan for CAU 562 (U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office [NNSA/NSO], 2011). The corrective actions included No Further Action and Clean Closure. Closure activities generated sanitary waste and hazardous waste. Some wastes exceeded land disposal limits and required offsite treatment prior to disposal. Other wastes met land disposal restrictions and were disposed in appropriate onsite or offsite landfills. NNSA/NSO requests the following: · A Notice of Completion from the Nevada Division of Environmental Protection to NNSA/NSO for closure of CAU 562 · The transfer of CAU 562 from Appendix III to Appendix IV, Closed Corrective Action Units, of the FFACO

  14. Closure Report Central Nevada Test Area Subsurface Corrective Action Unit 443 January 2016

    Energy Technology Data Exchange (ETDEWEB)

    Findlay, Rick [US Department of Energy, Washington, DC (United States). Office of Legacy Management

    2015-11-01

    The U.S. Department of Energy (DOE) Office of Legacy Management (LM) prepared this Closure Report for the subsurface Corrective Action Unit (CAU) 443 at the Central Nevada Test Area (CNTA), Nevada, Site. CNTA was the site of a 0.2- to 1-megaton underground nuclear test in 1968. Responsibility for the site’s environmental restoration was transferred from the DOE, National Nuclear Security Administration, Nevada Field Office to LM on October 1, 2006. The environmental restoration process and corrective action strategy for CAU 443 are conducted in accordance with the Federal Facility Agreement and Consent Order (FFACO 1996, as amended 2011) and all applicable Nevada Division of Environmental Protection (NDEP) policies and regulations. This Closure Report provides justification for closure of CAU 443 and provides a summary of completed closure activities; describes the selected corrective action alternative; provides an implementation plan for long-term monitoring with well network maintenance and approaches/policies for institutional controls (ICs); and presents the contaminant, compliance, and use-restriction boundaries for the site.

  15. An approach for the design of closure bolts of spent fuel elements transportation packages

    International Nuclear Information System (INIS)

    Mattar Neto, Miguel; Miranda, Carlos A.J.; Fainer, Gerson

    2009-01-01

    The spent fuel elements transportation packages must be designed for severe conditions including significant fire and impact loads corresponding to hypothetical accident conditions. In general, these packages have large flat lids connected to cylindrical bodies by closure bolts that can be the weak link in the containment system. The bolted closure design depends on the geometrical characteristics of the flat lid and the cylindrical body, including their flanges, on the type of the gaskets and their dimensions, and on the number, strength, and tightness of the bolts. There are well established procedures for the closure bolts design used in pressure vessels and piping. They can not be used directly in the bolts design applied to transportation packages. Prior to the use of these procedures, it is necessary consider the differences in the main loads (pressure for the pressure vessels and piping and impact loads for the transportation packages) and in the geometry (large flat lids are not used in pressure vessels and piping). So, this paper presents an approach for the design of the closure bolts of spent fuel elements transportation packages considering the impact loads and the typical geometrical configuration of the transportation packages. (author)

  16. Resource Conservation and Recovery Act closure report: Area 2 Bitcutter and Postshot Containment Shops Injection Wells, Correction Action Unit 90

    International Nuclear Information System (INIS)

    1996-12-01

    This Closure Report provides documentation of the activities conducted during the Resource Conservation and Recovery Act (RCRA) closure of the Bitcutter and Postshot Containment Shops Injection Wells located in Area 2 of the Nevada Test Site (NTS), Oak Spring Quadrangle (USGS, 1986), Township 10 South, Range 53 East, Nye County, Nevada. This report discusses the Bitcutter Shop Inside Injection Well (CAU 90-A) closure-in-place and the Bitcutter Shop Outside Injection Well (CAU 90-B) and Postshot Containment Shop Injection Well (CAU 90-C) clean closures. This Closure Report provides background information about the unit, the results of the characterization activities and actions conducted to determine the closure design. It also provides a discussion of the drainage analysis, preliminary closure activities, final closure activities, waste management activities, and the Post-Closure Care requirements

  17. 100-D Ponds closure plan. Revision 1

    International Nuclear Information System (INIS)

    Petersen, S.W.

    1997-09-01

    The 100-D Ponds is a Treatment, Storage, and Disposal (TSD) unit on the Hanford Facility that received both dangerous and nonregulated waste. This Closure Plan (Rev. 1) for the 100-D Ponds TSD unit consists of a RCRA Part A Dangerous Waste Permit Application (Rev. 3), a RCRA Closure Plan, and supporting information contained in the appendices to the plan. The closure plan consists of eight chapters containing facility description, process information, waste characteristics, and groundwater monitoring data. There are also chapters containing the closure strategy and performance standards. The strategy for the closure of the 100-D Ponds TSD unit is clean closure. Appendices A and B of the closure plan demonstrate that soil and groundwater beneath 100-D Ponds are below cleanup limits. All dangerous wastes or dangerous waste constituents or residues associated with the operation of the ponds have been removed, therefore, human health and the environment are protected. Discharges to the 100-D Ponds, which are located in the 100-DR-1 operable unit, were discontinued in June 1994. Contaminated sediment was removed from the ponds in August 1996. Subsequent sampling and analysis demonstrated that there is no contamination remaining in the ponds, therefore, this closure plan is a demonstration of clean closure

  18. Babies born before arrival to hospital and maternity unit closures in Queensland and Australia.

    Science.gov (United States)

    Kildea, Sue; McGhie, Alexandra C; Gao, Yu; Rumbold, Alice; Rolfe, Margaret

    2015-09-01

    Evidence suggests the closure of maternity units is associated with an increase in babies born before arrival (BBA). To explore the association between the number of maternity units in Australia and Queensland by birthing numbers, BBA rate and geographic remoteness of the health district where the mother lives. A retrospective study utilised routinely collected perinatal data (1992-2011). Pearson correlation tested the relationship between BBA rate and number of maternity units. Linear regression examined this association over time. During 1992-2011, the absolute numbers (N=22,814) of women having a BBA each year in Australia increased by 47% (N=836-1233); and 206% (n=140-429) in Queensland. This coincided with a 41% reduction in maternity units in Australia (N=623-368=18 per year) and a 28% reduction in Queensland (n=129-93). BBA rates increased significantly across Australia, r=0.837, n=20 years, pmaternity units in Australia, r=-0.804, n=19 years, pmaternity units over a 20-year period across Australia and Queensland is significantly associated with increased BBA rates. The distribution is not limited to rural and remote areas. Given the high risk of adverse maternal and neonatal outcomes associated with BBA, it is time to revisit the closure of units. Copyright © 2015 Australian College of Midwives. Published by Elsevier Ltd. All rights reserved.

  19. Closure Report for Corrective Action Unit 426: Cactus Spring Waste Trenches, Tonopah Test Range, Nevada

    Energy Technology Data Exchange (ETDEWEB)

    Dave Madsen

    1998-08-01

    This Closure Report provides the documentation for closure of the Cactus Spring Waste Trenches Corrective Action Unit (CAU) 426. The site is located on the Tonopah Test Range, approximately 225 kilometers northwest of Las Vegas, NV. CAU 426 consists of one corrective action site (CAS) which is comprised of four waste trenches. The trenches were excavated to receive solid waste generated in support of Operation Roller Coaster, primary the Double Tracks Test in 1963, and were subsequently backfilled. The Double Tracks Test involved use of live animals to assess the biological hazards associated with the nonnuclear detonation of plutonium-bearing devices. The Nevada Division of Environmental Protection approved Corrective Action Plan (CAP)which proposed ''capping'' methodology. The closure activities were completed in accordance with the approved CAP and consisted of constructing an engineered cover in the area of the trenches, constructing/planting a vegetative cover, installing a perimeter fence and signs, implementing restrictions on future use, and preparing a Post-Closure Monitoring Plan.

  20. Closure Report for Corrective Action Unit 366: Area 11 Plutonium Valley Dispersion Sites, Nevada National Security Site, Nevada

    Energy Technology Data Exchange (ETDEWEB)

    None, None

    2013-12-31

    This Closure Report (CR) presents information supporting closure of Corrective Action Unit (CAU) 366, Area 11 Plutonium Valley Dispersion Sites, and provides documentation supporting the completed corrective actions and confirmation that closure objectives for CAU 366 were met. This CR complies with the requirements of the Federal Facility Agreement and Consent Order (FFACO) that was agreed to by the State of Nevada; the U.S. Department of Energy (DOE), Environmental Management; the U.S. Department of Defense; and DOE, Legacy Management (FFACO, 1996 as amended).

  1. Closure Report for Corrective Action Unit 563: Septic Systems, Nevada Test Site, Nevada

    International Nuclear Information System (INIS)

    2010-01-01

    Corrective Action Unit (CAU) 563 is identified in the Federal Facility Agreement and Consent Order (FFACO) as 'Septic Systems' and consists of the following four Corrective Action Sites (CASs), located in Areas 3 and 12 of the Nevada Test Site: (1) CAS 03-04-02, Area 3 Subdock Septic Tank; (2) CAS 03-59-05, Area 3 Subdock Cesspool; (3) CAS 12-59-01, Drilling/Welding Shop Septic Tanks; and (4) CAS 12-60-01, Drilling/Welding Shop Outfalls Closure activities were conducted from September to November 2009 in accordance with the FFACO (1996, as amended February 2008) and the Corrective Action Plan for CAU 563. The corrective action alternatives included No Further Action and Clean Closure.

  2. Closure Report for Corrective Action Unit 563: Septic Systems, Nevada Test Site, Nevada

    Energy Technology Data Exchange (ETDEWEB)

    NSTec Environmental Restoration

    2010-02-28

    Corrective Action Unit (CAU) 563 is identified in the Federal Facility Agreement and Consent Order (FFACO) as “Septic Systems” and consists of the following four Corrective Action Sites (CASs), located in Areas 3 and 12 of the Nevada Test Site: · CAS 03-04-02, Area 3 Subdock Septic Tank · CAS 03-59-05, Area 3 Subdock Cesspool · CAS 12-59-01, Drilling/Welding Shop Septic Tanks · CAS 12-60-01, Drilling/Welding Shop Outfalls Closure activities were conducted from September to November 2009 in accordance with the FFACO (1996, as amended February 2008) and the Corrective Action Plan for CAU 563. The corrective action alternatives included No Further Action and Clean Closure.

  3. Deployment of an Alternative Closure Cover and Monitoring System at the Mixed Waste Disposal Unit U-3ax/bl at the Nevada Test Site

    International Nuclear Information System (INIS)

    Levitt, D.G.; Fitzmaurice, T.M.

    2001-01-01

    In October 2000, final closure was initiated of U-3ax/bl, a mixed waste disposal unit at the Nevada Test Site (NTS). The application of approximately 30 cm of topsoil, composed of compacted native alluvium onto an operational cover, seeding of the topsoil, installation of soil water content sensors within the cover, and deployment of a drainage lysimeter facility immediately adjacent to the disposal unit initiated closure. This closure is unique in that it required the involvement of several U.S. Department of Energy (DOE) Environmental Management (EM) groups: Waste Management (WM), Environmental Restoration (ER), and Technology Development (TD). Initial site characterization of the disposal unit was conducted by WM. Regulatory approval for closure of the disposal unit was obtained by ER, closure of the disposal unit was conducted by ER, and deployment of the drainage lysimeter facility was conducted by WM and ER, with funding provided by the Accelerated Site Technology Deployment ( ASTD) program, administered under TD. In addition, this closure is unique in that a monolayer closure cover, also known as an evapotranspiration (ET) cover, consisting of native alluvium, received regulatory approval instead of a traditional Resource Conservation and Recovery Act (RCRA) multi-layered cover. Recent studies indicate that in the arid southwestern United States, monolayer covers may be more effective at isolating waste than layered covers because of the tendency of clay layers to desiccate and crack, and subsequently develop preferential pathways. The lysimeter facility deployed immediately adjacent to the closure cover consists of eight drainage lysimeters with three surface treatments: two were left bare; two were revegetated with native species; two were allowed to revegetate with invader species; and two are reserved for future studies. The lysimeters are constructed such that any drainage through the bottoms of the lysimeters can be measured. Sensors installed in the

  4. Closure Report for Corrective Action Unit 139: Waste Disposal Sites, Nevada Test Site, Nevada

    Energy Technology Data Exchange (ETDEWEB)

    NSTec Environmental Restoration

    2009-07-31

    Corrective Action Unit (CAU) 139 is identified in the Federal Facility Agreement and Consent Order (FFACO) as 'Waste Disposal Sites' and consists of the following seven Corrective Action Sites (CASs), located in Areas 3, 4, 6, and 9 of the Nevada Test Site: CAS 03-35-01, Burn Pit; CAS 04-08-02, Waste Disposal Site; CAS 04-99-01, Contaminated Surface Debris; CAS 06-19-02, Waste Disposal Site/Burn Pit; CAS 06-19-03, Waste Disposal Trenches; CAS 09-23-01, Area 9 Gravel Gertie; and CAS 09-34-01, Underground Detection Station. Closure activities were conducted from December 2008 to April 2009 according to the FFACO (1996, as amended February 2008) and the Corrective Action Plan for CAU 139 (U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office, 2007b). The corrective action alternatives included No Further Action, Clean Closure, and Closure in Place with Administrative Controls. Closure activities are summarized. CAU 139, 'Waste Disposal Sites,' consists of seven CASs in Areas 3, 4, 6, and 9 of the NTS. The closure alternatives included No Further Action, Clean Closure, and Closure in Place with Administrative Controls. This CR provides a summary of completed closure activities, documentation of waste disposal, and confirmation that remediation goals were met. The following site closure activities were performed at CAU 139 as documented in this CR: (1) At CAS 03-35-01, Burn Pit, soil and debris were removed and disposed as LLW, and debris was removed and disposed as sanitary waste. (2) At CAS 04-08-02, Waste Disposal Site, an administrative UR was implemented. No postings or post-closure monitoring are required. (3) At CAS 04-99-01, Contaminated Surface Debris, soil and debris were removed and disposed as LLW, and debris was removed and disposed as sanitary waste. (4) At CAS 06-19-02, Waste Disposal Site/Burn Pit, no work was performed. (5) At CAS 06-19-03, Waste Disposal Trenches, a native soil cover was installed

  5. Closure Report for Corrective Action Unit 139: Waste Disposal Sites, Nevada Test Site, Nevada

    International Nuclear Information System (INIS)

    2009-01-01

    Corrective Action Unit (CAU) 139 is identified in the Federal Facility Agreement and Consent Order (FFACO) as 'Waste Disposal Sites' and consists of the following seven Corrective Action Sites (CASs), located in Areas 3, 4, 6, and 9 of the Nevada Test Site: CAS 03-35-01, Burn Pit; CAS 04-08-02, Waste Disposal Site; CAS 04-99-01, Contaminated Surface Debris; CAS 06-19-02, Waste Disposal Site/Burn Pit; CAS 06-19-03, Waste Disposal Trenches; CAS 09-23-01, Area 9 Gravel Gertie; and CAS 09-34-01, Underground Detection Station. Closure activities were conducted from December 2008 to April 2009 according to the FFACO (1996, as amended February 2008) and the Corrective Action Plan for CAU 139 (U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office, 2007b). The corrective action alternatives included No Further Action, Clean Closure, and Closure in Place with Administrative Controls. Closure activities are summarized. CAU 139, 'Waste Disposal Sites,' consists of seven CASs in Areas 3, 4, 6, and 9 of the NTS. The closure alternatives included No Further Action, Clean Closure, and Closure in Place with Administrative Controls. This CR provides a summary of completed closure activities, documentation of waste disposal, and confirmation that remediation goals were met. The following site closure activities were performed at CAU 139 as documented in this CR: (1) At CAS 03-35-01, Burn Pit, soil and debris were removed and disposed as LLW, and debris was removed and disposed as sanitary waste. (2) At CAS 04-08-02, Waste Disposal Site, an administrative UR was implemented. No postings or post-closure monitoring are required. (3) At CAS 04-99-01, Contaminated Surface Debris, soil and debris were removed and disposed as LLW, and debris was removed and disposed as sanitary waste. (4) At CAS 06-19-02, Waste Disposal Site/Burn Pit, no work was performed. (5) At CAS 06-19-03, Waste Disposal Trenches, a native soil cover was installed, and a UR was

  6. Closure Report for Corrective Action Unit 547: Miscellaneous Contaminated Waste Sites, Nevada National Security Site, Nevada

    Energy Technology Data Exchange (ETDEWEB)

    NSTec Environmental Restoration

    2012-07-17

    This Closure Report (CR) presents information supporting closure of Corrective Action Unit (CAU) 547, Miscellaneous Contaminated Waste Sites, and provides documentation supporting the completed corrective actions and confirmation that closure objectives for CAU 547 were met. This CR complies with the requirements of the Federal Facility Agreement and Consent Order (FFACO) that was agreed to by the State of Nevada; the U.S. Department of Energy (DOE), Environmental Management; the U.S. Department of Defense; and DOE, Legacy Management (FFACO, 1996 as amended). CAU 547 consists of the following three Corrective Action Sites (CASs), located in Areas 2, 3, and 9 of the Nevada National Security Site: (1) CAS 02-37-02, Gas Sampling Assembly; (2) CAS 03-99-19, Gas Sampling Assembly; AND (3) CAS 09-99-06, Gas Sampling Assembly Closure activities began in August 2011 and were completed in June 2012. Activities were conducted according to the Corrective Action Decision Document/Corrective Action Plan (CADD/CAP) for CAU 547 (U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office [NNSA/NSO], 2011). The recommended corrective action for the three CASs in CAU 547 was closure in place with administrative controls. The following closure activities were performed: (1) Open holes were filled with concrete; (2) Steel casings were placed over vertical expansion joints and filled with cement; (3) Engineered soil covers were constructed over piping and exposed sections of the gas sampling system components; (4) Fencing, monuments, Jersey barriers, radiological postings, and use restriction (UR) warning signs were installed around the perimeters of the sites; (5) Housekeeping debris was picked up from around the sites and disposed; and (6) Radiological surveys were performed to confirm final radiological postings. UR documentation is included in Appendix D. The post-closure plan was presented in detail in the CADD/CAP for CAU 547 and is included as

  7. Closure Report for Corrective Action Unit 547: Miscellaneous Contaminated Waste Sites, Nevada National Security Site, Nevada

    International Nuclear Information System (INIS)

    2012-01-01

    This Closure Report (CR) presents information supporting closure of Corrective Action Unit (CAU) 547, Miscellaneous Contaminated Waste Sites, and provides documentation supporting the completed corrective actions and confirmation that closure objectives for CAU 547 were met. This CR complies with the requirements of the Federal Facility Agreement and Consent Order (FFACO) that was agreed to by the State of Nevada; the U.S. Department of Energy (DOE), Environmental Management; the U.S. Department of Defense; and DOE, Legacy Management (FFACO, 1996 as amended). CAU 547 consists of the following three Corrective Action Sites (CASs), located in Areas 2, 3, and 9 of the Nevada National Security Site: (1) CAS 02-37-02, Gas Sampling Assembly; (2) CAS 03-99-19, Gas Sampling Assembly; AND (3) CAS 09-99-06, Gas Sampling Assembly Closure activities began in August 2011 and were completed in June 2012. Activities were conducted according to the Corrective Action Decision Document/Corrective Action Plan (CADD/CAP) for CAU 547 (U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office [NNSA/NSO], 2011). The recommended corrective action for the three CASs in CAU 547 was closure in place with administrative controls. The following closure activities were performed: (1) Open holes were filled with concrete; (2) Steel casings were placed over vertical expansion joints and filled with cement; (3) Engineered soil covers were constructed over piping and exposed sections of the gas sampling system components; (4) Fencing, monuments, Jersey barriers, radiological postings, and use restriction (UR) warning signs were installed around the perimeters of the sites; (5) Housekeeping debris was picked up from around the sites and disposed; and (6) Radiological surveys were performed to confirm final radiological postings. UR documentation is included in Appendix D. The post-closure plan was presented in detail in the CADD/CAP for CAU 547 and is included as

  8. Closure Report for Corrective Action Unit 536: Area 3 Release Site, Nevada Test Site, Nevada

    International Nuclear Information System (INIS)

    NSTec Environmental Restoration

    2007-01-01

    Corrective Action Unit (CAU) 536 is located in Area 3 of the Nevada Test Site. CAU 536 is listed in the Federal Facility Agreement and Consent Order of 1996 as Area 3 Release Site, and comprises a single Corrective Action Site (CAS): (sm b ullet) CAS 03-44-02, Steam Jenny Discharge The Nevada Division of Environmental Protection (NDEP)-approved corrective action alternative for CAS 03-44-02 is clean closure. Closure activities included removing and disposing of total petroleum hydrocarbon (TPH)- and polyaromatic hydrocarbon (PAH)-impacted soil, soil impacted with plutonium (Pu)-239, and concrete pad debris. CAU 536 was closed in accordance with the NDEP-approved CAU 536 Corrective Action Plan (CAP), with minor deviations as approved by NDEP. The closure activities specified in the CAP were based on the recommendations presented in the CAU 536 Corrective Action Decision Document (U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office, 2004). This Closure Report documents CAU 536 closure activities. During closure activities, approximately 1,000 cubic yards (yd3) of hydrocarbon waste in the form of TPH- and PAH-impacted soil and debris, approximately 8 yd3 of Pu-239-impacted soil, and approximately 100 yd3 of concrete debris were generated, managed, and disposed of appropriately. Additionally, a previously uncharacterized, buried drum was excavated, removed, and disposed of as hydrocarbon waste as a best management practice. Waste minimization techniques, such as the utilization of laboratory analysis to characterize and classify waste streams, were employed during the performance of closure

  9. Closure Report for Corrective Action Unit 537: Waste Sites, Nevada Test Site, Nevada

    International Nuclear Information System (INIS)

    NSTec Environmental Restoration

    2007-01-01

    Corrective Action Unit (CAU) 537 is identified in the ''Federal Facility Agreement and Consent Order'' (FFACO) of 1996 as Waste Sites. CAU 537 is located in Areas 3 and 19 of the Nevada Test Site, approximately 65 miles northwest of Las Vegas, Nevada, and consists of the following two Corrective Action Sites (CASs): CAS 03-23-06, Bucket; Yellow Tagged Bags; and CAS 19-19-01, Trash Pit. CAU 537 closure activities were conducted in April 2007 according to the FFACO and Revision 3 of the Sectored Clean-up Work Plan for Housekeeping Category Waste Sites (U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office [NNSA/NSO], 2003). At CAS 03-23-06, closure activities included removal and disposal of a 15-foot (ft) by 15-ft by 8-ft tall wooden shed containing wood and metal debris and a 5-gallon plastic bucket containing deteriorated plastic bags with yellow radioactive contamination tape. The debris was transported to the Area 9 U10c Landfill for disposal after being screened for radiological contamination according to the ''NV/YMP Radiological Control Manual'' (NNSA/NSO, 2004). At CAS 19-19-01, closure activities included segregation, removal, and disposal of non-friable, non-regulated asbestos-containing material (ACM) and construction debris. The ACM was determined to be non-friable by waste characterization samples collected prior to closure activities. The ACM was removed and double-bagged by licensed, trained asbestos workers and transported to the Area 9 U10c Landfill for disposal. Construction debris was transported in end-dump trucks to the Area 9 U10c Landfill for disposal. Closure activities generated sanitary waste/construction debris and ACM. Waste generated during closure activities was appropriately managed and disposed. Waste characterization sample results are included as Appendix A of this report, and waste disposition documentation is included as Appendix B of this report. Copies of the Sectored Housekeeping Site Closure

  10. Closure Report for Corrective Action Unit 417: Central Nevada Test Area Surface, Nevada

    International Nuclear Information System (INIS)

    Campbell, K.B.

    2001-11-01

    This Closure Report provides the documentation for closure of the Central Nevada Test Area (CNTA) surface Corrective Action Unit (CAU) 417. The CNTA is located in Hot Creek Valley in Nye County, Nevada, approximately 22.5 kilometers (14 miles) west of U.S. State Highway 6 near the Moores Station historical site, and approximately 137 kilometers (85 miles) northeast of Tonopah, Nevada. The CNTA consists of three separate land withdrawal areas commonly referred to as UC-1, UC-3, and UC-4, all of which are accessible to the public. A nuclear device for Project Faultless was detonated approximately 975 meters (3,200 feet) below ground surface on January 19, 1968, in emplacement boring UC-1 (Department of Energy, Nevada Operation Office [DOE/NV], 1997). CAU 417 consists of 34 Corrective Action Sites (CASs). Site closure was completed using a Nevada Department of Environmental Protection (NDEP) approved Corrective Action Plan (CAP) (DOE/NV, 2000) which was based on the recommendations presented in the NDEP-approved Corrective Action Decision Document (DOE/NV, 1999). Closure of CAU 417 was completed in two phases. Phase I field activities were completed with NDEP concurrence during 1999 as outlined in the Phase I Work Plan, Appendix A of the CAP (DOE/NV, 2000), and as summarized in Section 2.1.2 of this document

  11. Sitewide risk perspectives for the Rocky Flats Environmental Technology Site

    International Nuclear Information System (INIS)

    Olinger, S.J.

    1998-05-01

    The US Department of Energy (DOE) has recently finalized a closure plan (originally called the Ten Year Plan) for closure and environmental cleanup of previous nuclear weapons facilities. The DOE Rocky Flats Field Office has established priorities for risk reduction work to Support closure activities, as well as addressing those hazards associated with storage and management of radioactive materials and hazardous chemicals. To provide information for future National Environmental Policy Act (NEPA) or other regulatory assessments of specific risk reduction projects identified in the Closure Plan, a risk assessment of normal operations and potential accidents was recently prepared to provide an updated baseline of the cumulative impacts to the worker, public and environment due to the Site's operations, activities, and environmental conditions in light of the Site's change in mission, and of future closure projects. This paper summarizes the risk assessment approach, results, and conclusions

  12. Post-Closure Inspection Report for Corrective Action Unit 404: Roller Coaster Sewage Lagoons and North Disposal Trench Tonopah Test Range, Nevada, Calendar Year 2000

    Energy Technology Data Exchange (ETDEWEB)

    K. B. Campbell

    2001-06-01

    Post-closure monitoring requirements for the Roller Coaster Sewage Lagoons and North Disposal Trench (Corrective Action Unit [CAW 404]) (Figure 1) are described in Closure Report for Corrective Action Unit 404, Roller Coaster Sewage Lagoons and North Disposal Trench, Tonopah Test Range, Nevada, report number DOE/NV--187. The Closure Report (CR) was submitted to the Nevada Division of Environmental Protection (NDEP) on September 11, 1998. Permeability results of soils adjacent to the engineered cover and a request for closure of CAU 404 were transmitted to the NDEP on April 29, 1999. The CR (containing the Post-Closure Monitoring Plan) was approved by the NDEP on May 18, 1999. Post-closure monitoring at CAU 404 consists of the following: (1) Site inspections done twice a year to evaluate the condition of the unit; (2) Verification that the site is secure; (3) Notice of any subsidence or deficiencies that may compromise the integrity of the unit; (4) Remedy of any deficiencies within 90 days of discovery; and (5) Preparation and submittal of an annual report. Site inspections were conducted on June 19, 2000, and November 21, 2000. The site inspections were conducted after completion of the revegetation activities (October 30, 1997) and NDEP approval of the CR (May 18, 1999). All site inspections were conducted in accordance with the Post-Closure Monitoring Plan in the NDEP-approved CR. This report includes copies of inspection checklists, photographs, recommendations, and conclusions. The Post-Closure Inspection Checklists are found in Attachment A, a copy of the field notes is found in Attachment B, and copies of the inspection photographs are found in Attachment C.

  13. Closure Report for Corrective Action Unit 124, Storage Tanks, Nevada Test Site, Nevada with Errata Sheet, Revision 0

    Energy Technology Data Exchange (ETDEWEB)

    Alfred Wickline

    2008-01-01

    This Closure Report (CR) presents information supporting closure of Corrective Action Unit (CAU) 124, Storage Tanks, Nevada Test Site (NTS), Nevada. This report complies with the requirements of the Federal Facility Agreement and Consent Order (FFACO) that was agreed to by the State of Nevada; U.S. Department of Energy (DOE), Environmental Management; U.S. Department of Defense; and DOE, Legacy Management (FFACO, 1996; as amended January 2007). This CR provides documentation and justification for the closure of CAU 124 without further corrective action. This justification is based on process knowledge and the results of the investigative activities conducted in accordance with the Streamlined Approach for Environmental Restoration (SAFER) Plan for Corrective Action Unit 124: Storage Tanks, Nevada Test Site, Nevada (NNSA/NSO, 2007). The SAFER Plan provides information relating to site history as well as the scope and planning of the investigation. Therefore, this information will not be repeated in this CR.

  14. WASTE PACKAGE OPERATIONS FY99 CLOSURE METHODS REPORT

    Energy Technology Data Exchange (ETDEWEB)

    M. C. Knapp

    1999-09-23

    The waste package (WP) closure weld development task is part of a larger engineering development program to develop waste package designs. The purpose of the larger waste package engineering development program is to develop nuclear waste package fabrication and closure methods that the Nuclear Regulatory Commission will find acceptable and will license for disposal of spent nuclear fuel (SNF), non-fuel components, and vitrified high-level waste within a Monitored Geologic Repository (MGR). Within the WP closure development program are several major development tasks, which, in turn, are divided into subtasks. The major tasks include: WP fabrication development, WP closure weld development, nondestructive examination (NDE) development, and remote in-service inspection development. The purpose of this report is to present the objectives, technical information, and work scope relating to the WP closure weld development.and NDE tasks and subtasks and to report results of the closure weld and NDE development programs for fiscal year 1999 (FY-99). The objective of the FY-99 WP closure weld development task was to develop requirements for closure weld surface and volumetric NDE performance demonstrations, investigate alternative NDE inspection techniques, and develop specifications for welding, NDE, and handling system integration. In addition, objectives included fabricating several flat plate mock-ups that could be used for NDE development, stress relief peening, corrosion testing, and residual stress testing.

  15. WASTE PACKAGE OPERATIONS FY-99 CLOSURE METHODS REPORT

    International Nuclear Information System (INIS)

    M. C. Knapp

    1999-01-01

    The waste package (WP) closure weld development task is part of a larger engineering development program to develop waste package designs. The purpose of the larger waste package engineering development program is to develop nuclear waste package fabrication and closure methods that the Nuclear Regulatory Commission will find acceptable and will license for disposal of spent nuclear fuel (SNF), non-fuel components, and vitrified high-level waste within a Monitored Geologic Repository (MGR). Within the WP closure development program are several major development tasks, which, in turn, are divided into subtasks. The major tasks include: WP fabrication development, WP closure weld development, nondestructive examination (NDE) development, and remote in-service inspection development. The purpose of this report is to present the objectives, technical information, and work scope relating to the WP closure weld development.and NDE tasks and subtasks and to report results of the closure weld and NDE development programs for fiscal year 1999 (FY-99). The objective of the FY-99 WP closure weld development task was to develop requirements for closure weld surface and volumetric NDE performance demonstrations, investigate alternative NDE inspection techniques, and develop specifications for welding, NDE, and handling system integration. In addition, objectives included fabricating several flat plate mock-ups that could be used for NDE development, stress relief peening, corrosion testing, and residual stress testing

  16. Post-Closure Inspection Report for Corrective Action Unit 404: Roller Coaster Sewage Lagoons and North Disposal Trench Tonopah Test Range, Nevada, Calendar Year 2000; TOPICAL

    International Nuclear Information System (INIS)

    K. B. Campbell

    2001-01-01

    Post-closure monitoring requirements for the Roller Coaster Sewage Lagoons and North Disposal Trench (Corrective Action Unit[CAW 404]) (Figure 1) are described in Closure Report for Corrective Action Unit 404, Roller Coaster Sewage Lagoons and North Disposal Trench, Tonopah Test Range, Nevada, report number DOE/NV-187. The Closure Report (CR) was submitted to the Nevada Division of Environmental Protection (NDEP) on September 11, 1998. Permeability results of soils adjacent to the engineered cover and a request for closure of CAU 404 were transmitted to the NDEP on April 29, 1999. The CR (containing the Post-Closure Monitoring Plan) was approved by the NDEP on May 18, 1999. Post-closure monitoring at CAU 404 consists of the following: (1) Site inspections done twice a year to evaluate the condition of the unit; (2) Verification that the site is secure; (3) Notice of any subsidence or deficiencies that may compromise the integrity of the unit; (4) Remedy of any deficiencies within 90 days of discovery; and (5) Preparation and submittal of an annual report. Site inspections were conducted on June 19, 2000, and November 21, 2000. The site inspections were conducted after completion of the revegetation activities (October 30, 1997) and NDEP approval of the CR (May 18, 1999). All site inspections were conducted in accordance with the Post-Closure Monitoring Plan in the NDEP-approved CR. This report includes copies of inspection checklists, photographs, recommendations, and conclusions. The Post-Closure Inspection Checklists are found in Attachment A, a copy of the field notes is found in Attachment B, and copies of the inspection photographs are found in Attachment C

  17. Closure Report for Corrective Action Unit 573: Alpha Contaminated Sites Nevada National Security Site, Nevada

    Energy Technology Data Exchange (ETDEWEB)

    Matthews, Patrick [Navarro, Las Vegas, NV (United States)

    2017-03-01

    This Closure Report (CR) presents information supporting the closure of Corrective Action Unit (CAU) 573: Alpha Contaminated Sites, Nevada National Security Site, Nevada. CAU 573 comprises the two corrective action sites (CASs): 05-23-02-GMX Alpha Contaminated Are-Closure in Place and 05-45-01-Atmospheric Test Site - Hamilton- Clean Closure. The purpose of this CR is to provide justification and documentation supporting the recommendation that no further corrective action is needed for CAU 573 based on the implementation of the corrective actions. Corrective action activities were performed at Hamilton from May 25 through June 30, 2016; and at GMX from May 25 to October 27, 2016, as set forth in the Corrective Action Decision Document (CADD)/Corrective Action Plan (CAP) for Corrective Action Unit 573: Alpha Contaminated Sites; and in accordance with the Soils Activity Quality Assurance Plan, which establishes requirements, technical planning, and general quality practices. Verification sample results were evaluated against data quality objective criteria developed by stakeholders that included representatives from the Nevada Division of Environmental Protection and the DOE, National Nuclear Security Administration Nevada Field Office (NNSA/NFO) during the corrective action alternative (CAA) meeting held on November 24, 2015. Radiological doses exceeding the final action level were assumed to be present within the high contamination areas associated with CAS 05-23-02, thus requiring corrective action. It was also assumed that radionuclides were present at levels that require corrective action within the soil/debris pile associated with CAS 05-45-01. During the CAU 573 CAA meeting, the CAA of closure in place with a use restriction (UR) was selected by the stakeholders as the preferred corrective action of the high contamination areas at CAS 05-23-02 (GMX), which contain high levels of removable contamination; and the CAA of clean closure was selected by the

  18. Factors associated with closures of emergency departments in the United States.

    Science.gov (United States)

    Hsia, Renee Y; Kellermann, Arthur L; Shen, Yu-Chu

    2011-05-18

    Between 1998 and 2008, the number of hospital-based emergency departments (EDs) in the United States declined, while the number of ED visits increased, particularly visits by patients who were publicly insured and uninsured. Little is known about the hospital, community, and market factors associated with ED closures. Federal law requiring EDs to treat all in need regardless of a patient's ability to pay may make EDs more vulnerable to the market forces that govern US health care. To determine hospital, community, and market factors associated with ED closures. Emergency department and hospital organizational information from 1990 through 2009 was acquired from the American Hospital Association (AHA) Annual Surveys (annual response rates ranging from 84%-92%) and merged with hospital financial and payer mix information available through 2007 from Medicare hospital cost reports. We evaluated 3 sets of risk factors: hospital characteristics (safety net [as defined by hospitals caring for more than double their Medicaid share of discharges compared with other hospitals within a 15-mile radius], ownership, teaching status, system membership, ED size, case mix), county population demographics (race, poverty, uninsurance, elderly), and market factors (ownership mix, profit margin, location in a competitive market, presence of other EDs). All general, acute, nonrural, short-stay hospitals in the United States with an operating ED anytime from 1990-2009. Closure of an ED during the study period. From 1990 to 2009, the number of hospitals with EDs in nonrural areas declined from 2446 to 1779, with 1041 EDs closing and 374 hospitals opening EDs. Based on analysis of 2814 urban acute-care hospitals, constituting 36,335 hospital-year observations over an 18-year study interval (1990-2007), for-profit hospitals and those with low profit margins were more likely to close than their counterparts (cumulative hazard rate based on bivariate model, 26% vs 16%; hazard ratio [HR], 1

  19. 40 CFR 264.119 - Post-closure notices.

    Science.gov (United States)

    2010-07-01

    ...) STANDARDS FOR OWNERS AND OPERATORS OF HAZARDOUS WASTE TREATMENT, STORAGE, AND DISPOSAL FACILITIES Closure... closure of each hazardous waste disposal unit, the owner or operator must submit to the local zoning... disposal unit of the facility. For hazardous wastes disposed of before January 12, 1981, the owner or...

  20. Corrective Action Decision Document/Closure Report for Corrective Action Unit 477: Area 12 N-Tunnel Muckpile, Nevada Test Site

    Energy Technology Data Exchange (ETDEWEB)

    NSTec Environmental Restoration

    2010-03-15

    This Corrective Action Decision Document (CADD)/Closure Report (CR) was prepared by the Defense Threat Reduction Agency (DTRA) for Corrective Action Unit (CAU) 477, N-Tunnel Muckpile. This CADD/CR is consistent with the requirements of the Federal Facility Agreement and Consent Order (FFACO) agreed to by the State of Nevada, the U.S. Department of Energy, and the U.S. Department of Defense. Corrective Action Unit 477 is comprised of one Corrective Action Site (CAS): • 12-06-03, Muckpile The purpose of this CADD/CR is to provide justification and documentation supporting the recommendation for closure with no further action, by placing use restrictions on CAU 477.

  1. Corrective Action Decision Document/Closure Report for Corrective Action Unit 476: Area 12 T-Tunnel Muckpile, Nevada Test Site

    Energy Technology Data Exchange (ETDEWEB)

    NSTec Environmental Restoration

    2010-03-15

    This Corrective Action Decision Document (CADD)/Closure Report (CR) was prepared by the Defense Threat Reduction Agency (DTRA) for Corrective Action Unit (CAU) 476, Area 12 T-Tunnel Muckpile. This CADD/CR is consistent with the requirements of the Federal Facility Agreement and Consent Order (FFACO) agreed to by the State of Nevada, the U.S. Department of Energy, and the U.S. Department of Defense. Corrective Action Unit 476 is comprised of one Corrective Action Site (CAS): • 12-06-02, Muckpile The purpose of this CADD/CR is to provide justification and documentation supporting the recommendation for closure in place with use restrictions for CAU 476.

  2. Corrective Action Management Unit Report of Post-Closure Care Activities Calendar Year 2017.

    Energy Technology Data Exchange (ETDEWEB)

    Ziock, Robert [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Little, Bonnie Colleen [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2018-02-01

    The Corrective Action Management Unit (CAMU) at Sandia National Laboratories, New Mexico (SNL/NM) consists of a containment cell and ancillary systems that underwent regulatory closure in 2003 in accordance with the Closure Plan in Appendix D of the Class 3 Permit Modification (SNL/NM September 1997). The containment cell was closed with wastes in place. On January 27, 2015, the New Mexico Environment Department (NMED) issued the Hazardous Waste Facility Operating Permit (Permit) for Sandia National Laboratories (NMED January 2015). The Permit became effective February 26, 2015. The CAMU is undergoing post-closure care in accordance with the Permit, as revised and updated. This CAMU Report of Post-Closure Care Activities documents all activities and results for Calendar Year (CY) 2017 as required by the Permit. The CAMU containment cell consists of engineered barriers including a cover system, a bottom liner with a leachate collection and removal system (LCRS), and a vadose zone monitoring system (VZMS). The VZMS provides information on soil conditions under the cell for early leak detection. The VZMS consists of three monitoring subsystems, which include the primary subliner (PSL), a vertical sensor array (VSA), and the Chemical Waste Landfill (CWL) sanitary sewer (CSS) line. The PSL, VSA, and CSS monitoring subsystems are monitored quarterly for soil moisture concentration, the VSA is monitored quarterly for soil temperature, and the VSA and CSS monitoring subsystems are monitored annually for volatile organic compound (VOC) concentrations in the soil vapor at various depths. Baseline data for the soil moisture, soil temperature, and soil vapor were established between October 2003 and September 2004.

  3. Corrective Action Decision Document/Closure Report for Corrective Action Unit 370: T-4 Atmospheric Test Site, Nevada Test Site, Nevada, Revision 0

    Energy Technology Data Exchange (ETDEWEB)

    Patrick Matthews

    2009-05-01

    This Corrective Action Decision Document/Closure Report has been prepared for Corrective Action Unit (CAU) 370, T-4 Atmospheric Test Site, located in Area 4 at the Nevada Test Site, Nevada, in accordance with the Federal Facility Agreement and Consent Order (FFACO). Corrective Action Unit 370 is comprised of Corrective Action Site (CAS) 04-23-01, Atmospheric Test Site T-4. The purpose of this Corrective Action Decision Document/Closure Report is to provide justification and documentation supporting the recommendation that no further corrective action is needed for CAU 370 due to the implementation of the corrective action of closure in place with administrative controls. To achieve this, corrective action investigation (CAI) activities were performed from June 25, 2008, through April 2, 2009, as set forth in the Corrective Action Investigation Plan for Corrective Action Unit 370: T-4 Atmospheric Test Site and Record of Technical Change No. 1.

  4. Post-Closure Inspection Report for Corrective Action Unit 424: Area 3 Landfill Complexes Tonopah Test Range, Nevada Calendar Year 2001; TOPICAL

    International Nuclear Information System (INIS)

    K. B. Campbell

    2002-01-01

    Corrective Action Unit (CAU) 424, the Area 3 Landfill Complexes at Tonopah Test Range, consists of eight Corrective Action Sites (CASs), seven of which are landfill cells that were closed previously by capping. (The eighth CAS, A3-7, was not used as a landfill site and was closed without taking any corrective action.) Figure 1 shows the general location of the landfill cells. Figure 2 shows in more detail the location of the eight landfill cells. CAU 424 closure activities included removing small volumes of soil containing petroleum hydrocarbons, repairing cell covers that were cracked or had subsided, and installing above-grade and at-grade monuments marking the comers of the landfill cells. Post-closure monitoring requirements for CAU 424 are detailed in Section 5.0, Post-Closure Inspection Plan, contained in the Closure Report for Corrective Action Unit 424: Area 3 Landfill Complexes, Tonopah Test Range, Nevada, report number DOE/NV-283, July 1999. The Closure Report (CR) was approved by the Nevada Division of Environmental Protection (NDEP) in July 1999. The CR includes compaction and permeability results of soils that cap the seven landfill cells. As stated in Section 5.0 of the NDEP-approved CR, post-closure monitoring at CAU 424 consists of the following: (1) Site inspections conducted twice a year to evaluate the condition of the unit. (2) Verification that landfill markers and warning signs are in-place, intact, and readable. (3) Notice of any subsidence, erosion, unauthorized use, or deficiencies that may compromise the integrity of the landfill covers. (4) Remedy of any deficiencies within 90 days of discovery. (5) Preparation and submittal of an annual report. Site inspections were conducted on May 16, 2001, and November 6, 2001. The inspections were preformed after the NDEP approval of the CR. This report includes copies of the inspection checklist, photographs, recommendations, and conclusions. The Post-Closure Inspection Checklists are found in

  5. 300 Area waste acid treatment system closure plan

    International Nuclear Information System (INIS)

    LUKE, S.N.

    1999-01-01

    The Hanford Facility Dangerous Waste Permit Application is considered to be a single application organized into a General Information Portion (document number DOERL-91-28) and a Unit-Specific Portion. The scope of the Unit-Specific Portion includes closure plan documentation submitted for individual, treatment, storage, and/or disposal units undergoing closure, such as the 300 Area Waste Acid Treatment System. Documentation contained in the General Information Portion is broader in nature and could be used by multiple treatment, storage, and/or disposal units (e.g., the glossary provided in the General Information Portion). Whenever appropriate, 300 Area Waste Acid Treatment System documentation makes cross-reference to the General Information Portion, rather than duplicating text. This 300 Area Waste Acid Treatment System Closure Plan (Revision 2) includes a Hanford Facility Dangerous Waste Permit Application, Part A, Form 3. Information provided in this closure plan is current as of April 1999

  6. 300 Area waste acid treatment system closure plan

    Energy Technology Data Exchange (ETDEWEB)

    LUKE, S.N.

    1999-05-17

    The Hanford Facility Dangerous Waste Permit Application is considered to be a single application organized into a General Information Portion (document number DOERL-91-28) and a Unit-Specific Portion. The scope of the Unit-Specific Portion includes closure plan documentation submitted for individual, treatment, storage, and/or disposal units undergoing closure, such as the 300 Area Waste Acid Treatment System. Documentation contained in the General Information Portion is broader in nature and could be used by multiple treatment, storage, and/or disposal units (e.g., the glossary provided in the General Information Portion). Whenever appropriate, 300 Area Waste Acid Treatment System documentation makes cross-reference to the General Information Portion, rather than duplicating text. This 300 Area Waste Acid Treatment System Closure Plan (Revision 2) includes a Hanford Facility Dangerous Waste Permit Application, Part A, Form 3. Information provided in this closure plan is current as of April 1999.

  7. Post-Closure Inspection Report for Corrective Action Unit 427: Septic Waste Systems 2 and 6 Tonopah Test Range, Nevada Calendar Year 2000; TOPICAL

    International Nuclear Information System (INIS)

    K. B. Campbell

    2001-01-01

    Post-closure inspection requirements for the Area 3 Septic Waste Systems 2 and 6 (Corrective Action Unit[CAU] 427) (Figure 1) are described in Closure Report for Corrective Action Unit 427. Area 3 Septic Waste Systems 2 and 6. Tonopah Test Range, Nevada, report number DOE/NV-561. The Closure Report (CR) was submitted to the Nevada Division of Environmental Protection (NDEP) on August 16, 1999. The CR (containing the Post-Closure Inspection Plan) was approved by the NDEP on August 27, 1999. The annual post-closure inspection at CAU 427 consists of the following: Verification of the presence of all leachfield and septic tank below-grade markers; Verification that the warning signs are in-place, intact, and readable; and Visual observation of the soil and asphalt cover for indications of subsidence, erosion, and unauthorized use. The site inspections were conducted on June 20, 2000, and November 21, 2000. All inspections were made after NDEP approval of the CR and were conducted in accordance with the Post-Closure Inspection Plan in the NDEP-approved CR. No maintenance or repairs were conducted at the site. This report includes copies of inspection checklists, photographs, recommendations, and conclusions. Copies of the Post-Closure Inspection Checklists are found in Attachment A, a copy of the field notes is found in Attachment B, and a copy of the inspection photographs is found in Attachments C

  8. Closure Report for Corrective Action Unit 516: Septic Systems and Discharge Points, Nevada Test Site, Nevada

    International Nuclear Information System (INIS)

    NSTec Environmental Restoration

    2007-01-01

    Corrective Action Unit (CAU) 516 is located in Areas 3, 6, and 22 of the Nevada Test Site. CAU 516 is listed in the Federal Facility Agreement and Consent Order of 1996 as Septic Systems and Discharge Points, and is comprised of six Corrective Action Sites (CASs): (sm b ullet) CAS 03-59-01, Bldg 3C-36 Septic System (sm b ullet) CAS 03-59-02, Bldg 3C-45 Septic System (sm b ullet) CAS 06-51-01, Sump and Piping (sm b ullet) CAS 06-51-02, Clay Pipe and Debris (sm b ullet) CAS 06-51-03, Clean Out Box and Piping (sm b ullet) CAS 22-19-04, Vehicle Decontamination Area The Nevada Division of Environmental Protection (NDEP)-approved corrective action alternative for CASs 06-51-02 and 22-19-04 is no further action. The NDEP-approved corrective action alternative for CASs 03-59-01, 03-59-02, 06-51-01, and 06-51-03 is clean closure. Closure activities included removing and disposing of total petroleum hydrocarbon (TPH)-impacted septic tank contents, septic tanks, distribution/clean out boxes, and piping. CAU 516 was closed in accordance with the NDEP-approved CAU 516 Corrective Action Plan (CAP). The closure activities specified in the CAP were based on the recommendations presented in the CAU 516 Corrective Action Decision Document (U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office, 2004). This Closure Report documents CAU 516 closure activities. During closure activities, approximately 186 tons of hydrocarbon waste in the form of TPH-impacted soil and debris, as well as 89 tons of construction debris, were generated and managed and disposed of appropriately. Waste minimization techniques, such as field screening of soil samples and the utilization of laboratory analysis to characterize and classify waste streams, were employed during the performance of closure work

  9. Corrective Action Decision Document/Closure Report for Corrective Action Unit 478: Area 12 T-Tunnel Ponds, Nevada Test Site

    Energy Technology Data Exchange (ETDEWEB)

    NSTec Environmental Restoration

    2010-03-15

    This Corrective Action Decision Document (CADD)/Closure Report (CR) was prepared by the Defense Threat Reduction Agency (DTRA) for Corrective Action Unit (CAU) 478, Area 12 T-Tunnel Ponds. This CADD/CR is consistent with the requirements of the Federal Facility Agreement and Consent Order (FFACO) agreed to by the State of Nevada, the U.S. Department of Energy (DOE), and the U.S. Department of Defense. Corrective Action Unit 478 is comprised of one corrective action site (CAS): • 12-23-01, Ponds (5) RAD Area The purpose of this CADD/CR is to provide justification and documentation supporting the recommendation for closure in place with use restrictions for CAU 478.

  10. Corrective Action Decision Document/Closure Report for Corrective Action Unit 559: T Tunnel Compressor/Blower Pad, Nevada Test Site

    Energy Technology Data Exchange (ETDEWEB)

    NSTec Environmental Restoration

    2010-03-15

    This Corrective Action Decision Document (CADD)/Closure Report (CR) was prepared by the Defense Threat Reduction Agency (DTRA) for Corrective Action Unit (CAU) 559, T-Tunnel Compressor/Blower Pad. This CADD/CR is consistent with the requirements of the Federal Facility Agreement and Consent Order (FFACO) agreed to by the State of Nevada, the U.S. Department of Energy, and the U.S. Department of Defense. Corrective Action Unit 559 is comprised of one Corrective Action Site (CAS): • 12-25-13, Oil Stained Soil and Concrete The purpose of this CADD/CR is to provide justification and documentation supporting the recommendation for closure in place with use restrictions for CAU 559.

  11. An analysis of fracture trace patterns in areas of flat-lying sedimentary rocks for the detection of buried geologic structure. [Kansas and Texas

    Science.gov (United States)

    Podwysocki, M. H.

    1974-01-01

    Two study areas in a cratonic platform underlain by flat-lying sedimentary rocks were analyzed to determine if a quantitative relationship exists between fracture trace patterns and their frequency distributions and subsurface structural closures which might contain petroleum. Fracture trace lengths and frequency (number of fracture traces per unit area) were analyzed by trend surface analysis and length frequency distributions also were compared to a standard Gaussian distribution. Composite rose diagrams of fracture traces were analyzed using a multivariate analysis method which grouped or clustered the rose diagrams and their respective areas on the basis of the behavior of the rays of the rose diagram. Analysis indicates that the lengths of fracture traces are log-normally distributed according to the mapping technique used. Fracture trace frequency appeared higher on the flanks of active structures and lower around passive reef structures. Fracture trace log-mean lengths were shorter over several types of structures, perhaps due to increased fracturing and subsequent erosion. Analysis of rose diagrams using a multivariate technique indicated lithology as the primary control for the lower grouping levels. Groupings at higher levels indicated that areas overlying active structures may be isolated from their neighbors by this technique while passive structures showed no differences which could be isolated.

  12. 2727-S Nonradioactive Dangerous Waste Storage Facility clean closure evaluation report

    International Nuclear Information System (INIS)

    Luke, S.N.

    1994-01-01

    This report presents the analytical results of 2727-S NRDWS facility closure verification soil sampling and compares these results to clean closure criteria. The results of this comparison will determine if clean closure of the unit is regulatorily achievable. This report also serves to notify regulators that concentrations of some analytes at the site exceed sitewide background threshold levels (DOE-RL 1993b) and/or the limits of quantitation (LOQ). This report also presents a Model Toxics Control Act Cleanup (MTCA) (WAC 173-340) regulation health-based closure standard under which the unit can clean close in lieu of closure to background levels or LOQ in accordance with WAC 173-303-610. The health-based clean closure standard will be closure to MTCA Method B residential cleanup levels. This report reconciles all analyte concentrations reported above background or LOQ to this health-based cleanup standard. Regulator acceptance of the findings presented in this report will qualify the TSD unit for clean closure in accordance with WAC 173-303-610 without further TSD unit soil sampling, or soil removal and/or decontamination. Nondetected analytes require no further evaluation

  13. Heat Transfer Reactor Experiment (HTRE)-3 Container Storage Unit Resource Conservation Recovery Act closure plan

    International Nuclear Information System (INIS)

    Spry, M.J.

    1992-11-01

    This document describes the closure of the HTRE-3 Container Storage Unit under the requirements of the Resource Conservation and Recovery Act. The unit's location, size, history, and current status are described. The document also summarizes the decontamination and decommissioning efforts performed in 1983 and provides an estimate of,waste residues remaining in the HTRE-3 assembly. A risk evaluation was performed that demonstrates that the residue does not pose a hazard to public health or the environment. Based on the risk evaluation, it is proposed that the HTRE-3 Container Storage Unit be closed in its present condition, without further decontamination or removal activities

  14. Single-shell tank closure work plan. Revision A

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-06-01

    In January 1994, the Hanford Federal Facility Agreement and Conset Order (Tri-Party Agreement) was amended to reflect a revised strategy for remediation of radioactive waste in underground storage tanks. These amendments include milestones for closure of the single-shell tank (SST) operable units, to be initiated by March 2012 and completed by September 2024. This SST-CWP has been prepared to address the principal topical areas identified in Tri-Party Agreement Milestone M-45-06 (i.e., regulatory pathway, operable unit characterization, waste retrieval, technology development, and a strategy for achieving closure). Chapter 2.0 of this SST-CWP provides a brief description of the environmental setting, SST System, the origin and characteristics of SST waste, and ancillary equipment that will be remediated as part of SST operable unit closure. Appendix 2A provides a description of the hydrogeology of the Hanford Site, including information on the unsaturated sediments (vadose zone) beneath the 200 Areas Plateau. Chapter 3.0 provides a discussion of the laws and regulations applicable to closure of the SST farm operable units. Chapter 4.0 provides a summary description of the ongoing characterization activities that best align with the proposed regulatory pathway for closure. Chapter 5.0 describes aspects of the SST waste retrieval program, including retrieval strategy, technology, and sequence, potential tank leakage during retrieval, and considerations of deployment of subsurface barriers. Chapter 6.0 outlines a proposed strategy for closure. Chapter 7.0 provides a summary of the programs underway or planned to develop technologies to support closure. Ca. 325 refs.

  15. Single-shell tank closure work plan. Revision A

    International Nuclear Information System (INIS)

    1995-06-01

    In January 1994, the Hanford Federal Facility Agreement and Conset Order (Tri-Party Agreement) was amended to reflect a revised strategy for remediation of radioactive waste in underground storage tanks. These amendments include milestones for closure of the single-shell tank (SST) operable units, to be initiated by March 2012 and completed by September 2024. This SST-CWP has been prepared to address the principal topical areas identified in Tri-Party Agreement Milestone M-45-06 (i.e., regulatory pathway, operable unit characterization, waste retrieval, technology development, and a strategy for achieving closure). Chapter 2.0 of this SST-CWP provides a brief description of the environmental setting, SST System, the origin and characteristics of SST waste, and ancillary equipment that will be remediated as part of SST operable unit closure. Appendix 2A provides a description of the hydrogeology of the Hanford Site, including information on the unsaturated sediments (vadose zone) beneath the 200 Areas Plateau. Chapter 3.0 provides a discussion of the laws and regulations applicable to closure of the SST farm operable units. Chapter 4.0 provides a summary description of the ongoing characterization activities that best align with the proposed regulatory pathway for closure. Chapter 5.0 describes aspects of the SST waste retrieval program, including retrieval strategy, technology, and sequence, potential tank leakage during retrieval, and considerations of deployment of subsurface barriers. Chapter 6.0 outlines a proposed strategy for closure. Chapter 7.0 provides a summary of the programs underway or planned to develop technologies to support closure. Ca. 325 refs

  16. Closure Report for Corrective Action Unit 553: Areas 19, 20 Mud Pits and Cellars, Nevada Test Site, Nevada, Revision 0

    International Nuclear Information System (INIS)

    Al Wickline

    2007-01-01

    This Closure Report (CR) presents information supporting the closure of Corrective Action Unit (CAU) 553: Areas 19, 20 Mud Pits and Cellars, Nevada Test Site, Nevada. This CR complies with the requirements of the Federal Facility Agreement and Consent Order that was agreed to by the State of Nevada; U.S. Department of Energy (DOE), Environmental Management; U.S. Department of Defense; and DOE, Legacy Management. The corrective action sites (CASs) within CAU 553 are located within Areas 19 and 20 of the Nevada Test Site. Corrective Action Unit 553 is comprised of the following CASs: 19-99-01, Mud Spill 19-99-11, Mud Spill 20-09-09, Mud Spill 20-99-03, Mud Spill. The purpose of this CR is to provide documentation supporting the completed corrective actions and provide data confirming that the closure objectives for CASs within CAU 553 were met. To achieve this, the following actions were or will be performed: Review the current site conditions including the concentration and extent of contamination. Implement any corrective actions necessary to protect human health and the environment. Properly dispose of corrective action and investigation wastes. Document the Notice of Completion and closure of CAU 553 to be issued by Nevada Division of Environmental Protection

  17. Petrology of tuff units from the J-13 drill site, Jackass Flats, Nevada

    International Nuclear Information System (INIS)

    Heiken, G.H.; Bevier, M.L.

    1979-01-01

    The J-13 drill hole, located in Jackass Flats, Nevada Test Site, has penetrated 125 m of alluvium and 932 m of tuff. Most of the tuff deposits consist of welded tuffs; glass phases in the tuffs have been replaced by authigenic minerals, mainly K-feldspar, silica, and zeolites. The zonation of authigenic minerals, with depth, indictes that alteration of glass phases and filling of vugs occurred during welding and compaction of tuff units soon after deposition and by interaction with groundwater. Zonation of authigenic minerals in tuff deposits at Jackass Flats is similar to mineral zonation in tuffs elsewhere at the Nevada Test Site and in tuff deposits of west Texas. All appear to have been developed by leaching of glass phases and deposition of authigenic minerals in open hydrologic systems. 10 figures, 38 tables

  18. Closure Report for Corrective Action Unit 574: Neptune, Nevada National Security Site, Nevada

    International Nuclear Information System (INIS)

    2012-01-01

    Corrective Action Unit (CAU) 574 is identified in the Federal Facility Agreement and Consent Order (FFACO) as 'Neptune' and consists of the following two Corrective Action Sites (CASs), located in Area 12 of the Nevada National Security Site: (1) CAS 12-23-10, U12c.03 Crater (Neptune); and (2) CAS 12-45-01, U12e.05 Crater (Blanca). This Closure Report presents information supporting closure of CAU 574 according to the FFACO (FFACO, 1996 [as amended March 2010]) and the Streamlined Approach for Environmental Restoration Plan for CAU 574 (U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office [NNSA/NSO], 2011). The following activities were performed to support closure of CAU 574: (1) In situ external dose rate measurements were collected using thermoluminescent dosimeters at CAS 12-45-01, U12e.05 Crater (Blanca). (2) Total effective dose rates were determined at both sites by summing the internal and external dose rate components. (3) A use restriction (UR) was implemented at CAS 12-23-10, U12c.03 Crater (Neptune). Areas that exceed the final action level (FAL) of 25 millirems per year (mrem/yr) based on the Occasional Use Area exposure scenario are within the existing use restricted area for CAU 551. The 25-mrem/yr FAL is not exceeded outside the existing CAU 551 UR for any of the exposure scenarios (Industrial Area, Remote Work Area, and Occasional Use Area). Therefore, the existing UR for CAU 551 is sufficient to bound contamination that exceeds the FAL. (4) An administrative UR was implemented at CAS 12-45-01, U12e.05 Crater (Blanca) as a best management practice (BMP). The 25-mrem/yr FAL was not exceeded for the Remote Work Area or Occasional Use Area exposure scenarios; therefore, a UR is not required. However, because the 25-mrem/yr FAL was exceeded for the Industrial Area exposure scenario, an administrative UR was established as a BMP. UR documentation is included as Appendix B. The UR at CAS 12-23-10, U12c.03 Crater (Neptune

  19. Closure Report for Corrective Action Unit 566: EMAD Compound, Nevada National Security Site, Nevada with ROTC-1, Revision 0

    Energy Technology Data Exchange (ETDEWEB)

    Mark Krauss

    2011-06-01

    This Closure Report (CR) presents information supporting the closure of Corrective Action Unit (CAU) 566: EMAD Compound, Nevada National Security Site, Nevada. Corrective Action Unit 566 comprises Corrective Action Site (CAS) 25-99-20, EMAD Compound, located within Area 25 of the Nevada National Security Site. The purpose of this CR is to provide documentation supporting the completed corrective actions and provide data confirming that the closure objectives for CAU 566 were met. To achieve this, the following actions were performed: • Review the current site conditions, including the concentration and extent of contamination. • Implement any corrective actions necessary to protect human health and the environment. • Properly dispose of corrective action and investigation wastes. • Document Notice of Completion and closure of CAU 566 issued by the Nevada Division of Environmental Protection. From October 2010 through May 2011, closure activities were performed as set forth in the Streamlined Approach for Environmental Restoration Plan for CAU 566: EMAD Compound, Nevada National Security Site, Nevada. The purposes of the activities as defined during the data quality objectives process were as follows: • Determine whether contaminants of concern (COCs) are present. • If COCs are present, determine their nature and extent, implement appropriate corrective actions, and properly dispose of wastes. Analytes detected during the closure activities were evaluated against final action levels (FALs) to determine COCs for CAU 566. Assessment of the data from collected soil samples, and from radiological and visual surveys of the site, indicates the FALs were exceeded for polychlorinated biphenyls (PCBs), semivolatile organic compounds (SVOCs), and radioactivity. Corrective actions were implemented to remove the following: • Radiologically contaminated soil assumed greater than FAL at two locations • Radiologically contaminated soil assumed greater than FAL with

  20. Closure Report for Corrective Action Unit 300: Surface Release Areas Nevada Test Site, Nevada

    Energy Technology Data Exchange (ETDEWEB)

    NSTec Environmental Restoration

    2007-07-01

    Corrective Action Unit (CAU) 300 is located in Areas 23, 25, and 26 of the Nevada Test Site, which is located approximately 65 miles northwest of Las Vegas, Nevada. CAU 300 is listed in the Federal Facility Agreement and Consent Order of 1996 as Surface Release Areas and is comprised of the following seven Corrective Action Sites (CASs), which are associated with the identified Building (Bldg): {sm_bullet} CAS 23-21-03, Bldg 750 Surface Discharge {sm_bullet} CAS 23-25-02, Bldg 750 Outfall {sm_bullet} CAS 23-25-03, Bldg 751 Outfall {sm_bullet} CAS 25-60-01, Bldg 3113A Outfall {sm_bullet} CAS 25-60-02, Bldg 3901 Outfall {sm_bullet} CAS 25-62-01, Bldg 3124 Contaminated Soil {sm_bullet} CAS 26-60-01, Bldg 2105 Outfall and Decon Pad The Nevada Division of Environmental Protection (NDEP)-approved corrective action alternative for CASs 23-21-03, 23-25-02, and 23-25-03 is no further action. As a best management practice, approximately 48 feet of metal piping was removed from CAS 23-25-02 and disposed of as sanitary waste. The NDEP-approved corrective action alternative for CASs 25-60-01, 25-60-02, 25-62-01, and 26-60-01, is clean closure. Closure activities for these CASs included removing and disposing of soil impacted with total petroleum hydrocarbons-diesel range organics (TPH-DRO), polychlorinated biphenyls (PCBs), semivolatile organic compounds (SVOCs), and cesium (Cs)-137, concrete impacted with TPH-DRO, and associated piping impacted with TPH-DRO. CAU 300 was closed in accordance with the NDEP-approved CAU 300 Corrective Action Plan (CAP) (U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office [NNSA/NSO], 2006). The closure activities specified in the CAP were based on the recommendations presented in the CAU 300 Corrective Action Decision Document (NNSA/NSO, 2005). This Closure Report documents CAU 300 closure activities. During closure activities, approximately 40 cubic yards (yd3) of low-level waste consisting of TPH-DRO-, PCB

  1. Topographical features of physiographic unit borders on reef flat in fringing reefs

    OpenAIRE

    Nakai, Tatsuo

    2007-01-01

    In coral reef ecosystem spatial structure of 10^1-10^3m scale provide very important aspect in coral reef conservation. Nakai (2007) showed that physiographic unit (PGU) could be set as well as zonation on reef flat of fringing reef. The borders of PGUs delimiting it from the open sea or an adjacent PGU are constituted by landforms such as reef crest or channels. In this article the landforms becoming the borders of PGUs were discussed and the PGU property was clarified.

  2. Efforts of the occupant to change physical quality of residential unit through the change of building material at low cost flats in Jakarta

    Science.gov (United States)

    Nurdiani, N.

    2018-03-01

    Low cost flats in Jakarta – Indonesia is provided by the government for low-income people in urban areas, in line with the program to redevelop or renew slum areas. Low cost flat is built with the minimum standard of building materials. The purpose of this study is to know efforts of the occupants to change of building materials at residential unit of low cost flats. The research was conducted by descriptive method at four of low cost housing in Jakarta: Rusuna Bendungan Hilir 1, Rusuna Tambora IIIA, Rusuna Bidara Cina, and Rusuna Sukapura. The results showed that physical changes which happened in low cost flats are aesthetic (residence paint color change), or improvement of physical quality of residential unit (change of building material), become dominant aspects done by residents in four rusuna.

  3. Post-Closure Inspection Report for Corrective Action Unit 90: Area 2 Bitcutter Containment, Nevada Test Site, Nevada

    International Nuclear Information System (INIS)

    NSTec Environmental Restoration

    2007-01-01

    Corrective Action Unit (CAU) 90, Area 2 Bitcutter Containment, is identified in the ''Federal Facility Agreement and Consent Order'' of 1996. The post-closure requirements for CAU 90 are described in Section VII.B.8.b of the Nevada Test Site ''Resource Conservation and Recovery Act'' Permit for a Hazardous Waste Management Facility Number NEV HW0021, dated November 2005. Post-closure activities consist of the following: Semiannual inspections of the site using inspection checklists; Photographic documentation; Field note documentation; and Preparation and submittal of an annual Post-Closure Inspection Report. This annual report covers the period of July 2006 to June 2007 and consists of a summary of the results of the inspections, copies of the inspection checklists and field notes, maintenance and repair records (if any), photographs, and conclusions and recommendations. The inspection checklists are provided in Appendix A, a copy of the field notes is provided in Appendix B, and copies of photographs taken during the inspections are provided in Appendix C

  4. Closure Report for Corrective Action Unit 539: Areas 25 and 26 Railroad Tracks Nevada National Security Site, Nevada, Revision 0

    International Nuclear Information System (INIS)

    Kauss, Mark

    2011-01-01

    This Closure Report (CR) presents information supporting the closure of Corrective Action Unit (CAU) 539: Areas 25 and 26 Railroad Tracks, Nevada National Security Site, Nevada. This CR complies with the requirements of the Federal Facility Agreement and Consent Order (FFACO) that was agreed to by the State of Nevada; U.S. Department of Energy (DOE), Environmental Management; U.S. Department of Defense; and DOE, Legacy Management. The corrective action sites (CASs) within CAU 539 are located within Areas 25 and 26 of the Nevada National Security Site. Corrective Action Unit 539 comprises the following CASs: (1) 25-99-21, Area 25 Railroad Tracks; and (2) 26-99-05, Area 26 Railroad Tracks The purpose of this CR is to provide documentation supporting the completed corrective actions and provide data confirming that the closure objectives for CASs within CAU 539 were met. To achieve this, the following actions were performed: (1) Reviewed documentation on historical and current site conditions, including the concentration and extent of contamination; (2) Conducted radiological walkover surveys of railroad tracks in both Areas 25 and 26; (3) Collected ballast and soil samples and calculated internal dose estimates for radiological releases; (4) Collected in situ thermoluminescent dosimeter measurements and calculated external dose estimates for radiological releases; (5) Removed lead bricks as potential source material (PSM) and collected verification samples; (6) Implemented corrective actions as necessary to protect human health and the environment; (7) Properly disposed of corrective action and investigation wastes; and (8) Implemented an FFACO use restriction (UR) for radiological contamination at CAS 25-99-21. The approved UR form and map are provided in Appendix F and will be filed in the DOE, National Nuclear Security Administration Nevada Site Office (NNSA/NSO), Facility Information Management System; the FFACO database; and the NNSA/NSO CAU/CAS files. From

  5. Closure Report for Corrective Action Unit 408: Bomblet Target Area Tonopah Test Range (TTR), Nevada, Revision 0

    Energy Technology Data Exchange (ETDEWEB)

    Mark Krauss

    2010-09-01

    This Closure Report (CR) presents information supporting the closure of Corrective Action Unit (CAU) 408: Bomblet Target Area (TTR), Tonopah Test Range, Nevada. This CR complies with the requirements of the Federal Facility Agreement and Consent Order that was agreed to by the State of Nevada; U.S. Department of Energy (DOE), Environmental Management; U.S. Department of Defense; and DOE, Legacy Management. Corrective Action Unit 408 is located at the Tonopah Test Range, Nevada, and consists of Corrective Action Site (CAS) TA-55-002-TAB2, Bomblet Target Areas. This CAS includes the following seven target areas: • Mid Target • Flightline Bomblet Location • Strategic Air Command (SAC) Target Location 1 • SAC Target Location 2 • South Antelope Lake • Tomahawk Location 1 • Tomahawk Location 2 The purpose of this CR is to provide documentation supporting the completed corrective actions and data confirming that the closure objectives for the CAS within CAU 408 were met. To achieve this, the following actions were performed: • Review the current site conditions, including the concentration and extent of contamination. • Implement any corrective actions necessary to protect human health and the environment. • Properly dispose of corrective action and investigation wastes. • Document Notice of Completion and closure of CAU 408 issued by the Nevada Division of Environmental Protection. From July 2009 through August 2010, closure activities were performed as set forth in the Streamlined Approach for Environmental Restoration Plan for CAU 408: Bomblet Target Area, Tonopah Test Range (TTR), Nevada. The purposes of the activities as defined during the data quality objectives process were as follows: • Identify and remove munitions of explosive concern (MEC) associated with DOE activities. • Investigate potential disposal pit locations. • Remove depleted uranium-contaminated fragments and soil. • Determine whether contaminants of concern (COCs) are

  6. Closure Report for Corrective Action Unit 412: Clean Slate I Plutonium Dispersion (TTR) Tonopah Test Range, Nevada, Revision 0

    International Nuclear Information System (INIS)

    Matthews, Patrick

    2016-01-01

    This Closure Report (CR) presents information supporting the clean closure of Corrective Action Unit (CAU) 412: Clean Slate I Plutonium Dispersion (TTR), located on the Tonopah Test Range, Nevada. CAU 412 consists of a release of radionuclides to the surrounding soil from a storage-transportation test conducted on May 25, 1963. Corrective action investigation (CAI) activities were performed in April and May 2015, as set forth in the Streamlined Approach for Environmental Restoration (SAFER) Plan for Corrective Action Unit 412: Clean Slate I Plutonium Dispersion (TTR), Tonopah Test Range, Nevada; and in accordance with the Soils Activity Quality Assurance Plan. The purpose of the CAI was to fulfill data needs as defined during the data quality objectives process. The CAU 412 dataset of investigation results was evaluated based on a data quality assessment. This assessment demonstrated the dataset is complete and acceptable for use in fulfilling the data needs identified by the data quality objectives process. This CR provides documentation and justification for the clean closure of CAU 412 under the FFACO without further corrective action. This justification is based on historical knowledge of the site, previous site investigations, implementation of the 1997 interim corrective action, and the results of the CAI. The corrective action of clean closure was confirmed as appropriate for closure of CAU 412 based on achievement of the following closure objectives: Radiological contamination at the site is less than the final action level using the ground troops exposure scenario (i.e., the radiological dose is less than the final action level): Removable alpha contamination is less than the high contamination area criterion: No potential source material is present at the site, and any impacted soil associated with potential source material has been removed so that remaining soil contains contaminants at concentrations less than the final action levels: and There is

  7. Closure Report for Corrective Action Unit 412: Clean Slate I Plutonium Dispersion (TTR) Tonopah Test Range, Nevada, Revision 0

    Energy Technology Data Exchange (ETDEWEB)

    Matthews, Patrick [Navarro, Las Vegas, NV (United States)

    2016-08-22

    This Closure Report (CR) presents information supporting the clean closure of Corrective Action Unit (CAU) 412: Clean Slate I Plutonium Dispersion (TTR), located on the Tonopah Test Range, Nevada. CAU 412 consists of a release of radionuclides to the surrounding soil from a storage–transportation test conducted on May 25, 1963. Corrective action investigation (CAI) activities were performed in April and May 2015, as set forth in the Streamlined Approach for Environmental Restoration (SAFER) Plan for Corrective Action Unit 412: Clean Slate I Plutonium Dispersion (TTR), Tonopah Test Range, Nevada; and in accordance with the Soils Activity Quality Assurance Plan. The purpose of the CAI was to fulfill data needs as defined during the data quality objectives process. The CAU 412 dataset of investigation results was evaluated based on a data quality assessment. This assessment demonstrated the dataset is complete and acceptable for use in fulfilling the data needs identified by the data quality objectives process. This CR provides documentation and justification for the clean closure of CAU 412 under the FFACO without further corrective action. This justification is based on historical knowledge of the site, previous site investigations, implementation of the 1997 interim corrective action, and the results of the CAI. The corrective action of clean closure was confirmed as appropriate for closure of CAU 412 based on achievement of the following closure objectives: Radiological contamination at the site is less than the final action level using the ground troops exposure scenario (i.e., the radiological dose is less than the final action level): Removable alpha contamination is less than the high contamination area criterion: No potential source material is present at the site, and any impacted soil associated with potential source material has been removed so that remaining soil contains contaminants at concentrations less than the final action levels: and There is

  8. Containment closure time following the loss of shutdown cooling event of YGN Units 3 and 4

    International Nuclear Information System (INIS)

    Seul, Kwang Won; Bang, Young Seok; Kim, Hho Jung

    1999-01-01

    The YGN Units 3 and 4 plant conditions during shutdown operation were reviewed to identify the possible event scenarios following the loss of shutdown cooling (SDC) event. For the five cases of typical reactor coolant system (RCS) configurations under the worst event sequence, such as unavailable secondary cooling and no RCS inventory makeup, the thermal hydraulic analyses were performed using the RELAP5/MOS3.2 code to investigate the plant behavior following the event. The thermal hydraulic analyses include the estimation of time to boil, time to core uncovery, and time to core heat up to determine the containment closure time to prevent the uncontrolled release of fission products to atmosphere. The result indicates that the containment closure is recommended to be achieved within 42 minutes after the loss of SDC for the steam generator (SG) inlet plenum manway open case or the large cold leg open case under the worst event sequence. The containment closure time is significantly dependent on the elevation and size of the opening and the SG secondary water level condition. It is also found that the containment closure needs to be initiated before the boiling time to ensure the survivability of the workers in the containment. These results will provide using information to operators to cope with the loss of SDC event. (Author). 15 refs., 3 tabs., 7 figs

  9. Closure Report for Corrective Action Unit 481: Area 12 T-Tunnel Conditional Release Storage Yard, Nevada Test Site, Nevada

    International Nuclear Information System (INIS)

    2008-01-01

    Corrective Action Unit (CAU) 481 is identified in the Federal Facility Agreement and Consent Order (FFACO) as Area 12 T-Tunnel Conditional Release Storage Yard. CAU 481 is located in Area 12 of the Nevada Test Site, which is approximately 65 miles northwest of Las Vegas, Nevada. This CAU consists of one Corrective Action Site (CAS), CAS 12-42-05, Housekeeping Waste. CAU 481 closure activities were conducted by the Defense Threat Reduction Agency from August 2007 through July 2008 according to the FFACO and Revision 3 of the Sectored Clean-up Work Plan for Housekeeping Category Waste Sites. Closure activities included removal and disposal of construction debris and low-level waste. Drained fluids, steel, and lead was recycled as appropriate. Waste generated during closure activities was appropriately managed and disposed.

  10. Closure Report for the 92-Acre Area and Corrective Action Unit 111: Area 5 WMD Retired Mixed Waste Pits, Nevada National Security Site, Nevada

    Energy Technology Data Exchange (ETDEWEB)

    NSTec Environmental Restoration

    2012-02-21

    This Closure Report (CR) presents information supporting closure of the 92-Acre Area, which includes Corrective Action Unit (CAU) 111, 'Area 5 WMD Retired Mixed Waste Pits.' This CR provides documentation supporting the completed corrective actions and confirmation that the closure objectives were met. This CR complies with the requirements of the Federal Facility Agreement and Consent Order (FFACO) (FFACO, 1996 [as amended March 2010]). Closure activities began in January 2011 and were completed in January 2012. Closure activities were conducted according to Revision 1 of the Corrective Action Decision Document/Corrective Action Plan (CADD/CAP) for the 92-Acre Area and CAU 111 (U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office [NNSA/NSO], 2010). The following closure activities were performed: (1) Construct an engineered evapotranspiration cover over the boreholes, trenches, and pits in the 92-Acre Area; (2) Install use restriction (UR) warning signs, concrete monuments, and subsidence survey monuments; and (3) Establish vegetation on the covers. UR documentation is included as Appendix C of this report. The post-closure plan is presented in detail in Revision 1 of the CADD/CAP for the 92-Acre Area and CAU 111, and the requirements are summarized in Section 5.2 of this document. When the next request for modification of Resource Conservation and Recovery Act Permit NEV HW0101 is submitted to the Nevada Division of Environmental Protection (NDEP), the requirements for post-closure monitoring of the 92-Acre Area will be included. NNSA/NSO requests the following: (1) A Notice of Completion from NDEP to NNSA/NSO for closure of CAU 111; and (2) The transfer of CAU 111 from Appendix III to Appendix IV, Closed Corrective Action Units, of the FFACO.

  11. Closure Report for the 92-Acre Area and Corrective Action Unit 111: Area 5 WMD Retired Mixed Waste Pits, Nevada National Security Site, Nevada

    International Nuclear Information System (INIS)

    2012-01-01

    This Closure Report (CR) presents information supporting closure of the 92-Acre Area, which includes Corrective Action Unit (CAU) 111, 'Area 5 WMD Retired Mixed Waste Pits.' This CR provides documentation supporting the completed corrective actions and confirmation that the closure objectives were met. This CR complies with the requirements of the Federal Facility Agreement and Consent Order (FFACO) (FFACO, 1996 (as amended March 2010)). Closure activities began in January 2011 and were completed in January 2012. Closure activities were conducted according to Revision 1 of the Corrective Action Decision Document/Corrective Action Plan (CADD/CAP) for the 92-Acre Area and CAU 111 (U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office (NNSA/NSO), 2010). The following closure activities were performed: (1) Construct an engineered evapotranspiration cover over the boreholes, trenches, and pits in the 92-Acre Area; (2) Install use restriction (UR) warning signs, concrete monuments, and subsidence survey monuments; and (3) Establish vegetation on the covers. UR documentation is included as Appendix C of this report. The post-closure plan is presented in detail in Revision 1 of the CADD/CAP for the 92-Acre Area and CAU 111, and the requirements are summarized in Section 5.2 of this document. When the next request for modification of Resource Conservation and Recovery Act Permit NEV HW0101 is submitted to the Nevada Division of Environmental Protection (NDEP), the requirements for post-closure monitoring of the 92-Acre Area will be included. NNSA/NSO requests the following: (1) A Notice of Completion from NDEP to NNSA/NSO for closure of CAU 111; and (2) The transfer of CAU 111 from Appendix III to Appendix IV, Closed Corrective Action Units, of the FFACO.

  12. Closure Report for Corrective Action Unit 300: Surface Release Areas Nevada Test Site, Nevada

    International Nuclear Information System (INIS)

    NSTec Environmental Restoration

    2007-01-01

    Corrective Action Unit (CAU) 300 is located in Areas 23, 25, and 26 of the Nevada Test Site, which is located approximately 65 miles northwest of Las Vegas, Nevada. CAU 300 is listed in the Federal Facility Agreement and Consent Order of 1996 as Surface Release Areas and is comprised of the following seven Corrective Action Sites (CASs), which are associated with the identified Building (Bldg): (sm b ullet) CAS 23-21-03, Bldg 750 Surface Discharge (sm b ullet) CAS 23-25-02, Bldg 750 Outfall (sm b ullet) CAS 23-25-03, Bldg 751 Outfall (sm b ullet) CAS 25-60-01, Bldg 3113A Outfall (sm b ullet) CAS 25-60-02, Bldg 3901 Outfall (sm b ullet) CAS 25-62-01, Bldg 3124 Contaminated Soil (sm b ullet) CAS 26-60-01, Bldg 2105 Outfall and Decon Pad The Nevada Division of Environmental Protection (NDEP)-approved corrective action alternative for CASs 23-21-03, 23-25-02, and 23-25-03 is no further action. As a best management practice, approximately 48 feet of metal piping was removed from CAS 23-25-02 and disposed of as sanitary waste. The NDEP-approved corrective action alternative for CASs 25-60-01, 25-60-02, 25-62-01, and 26-60-01, is clean closure. Closure activities for these CASs included removing and disposing of soil impacted with total petroleum hydrocarbons-diesel range organics (TPH-DRO), polychlorinated biphenyls (PCBs), semivolatile organic compounds (SVOCs), and cesium (Cs)-137, concrete impacted with TPH-DRO, and associated piping impacted with TPH-DRO. CAU 300 was closed in accordance with the NDEP-approved CAU 300 Corrective Action Plan (CAP) (U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office [NNSA/NSO], 2006). The closure activities specified in the CAP were based on the recommendations presented in the CAU 300 Corrective Action Decision Document (NNSA/NSO, 2005). This Closure Report documents CAU 300 closure activities. During closure activities, approximately 40 cubic yards (yd3) of low-level waste consisting of TPH

  13. Closure Report for Corrective Action Unit 151: Septic Systems and Discharge Area, Nevada Test Site, Nevada

    International Nuclear Information System (INIS)

    2008-01-01

    Corrective Action Unit (CAU) 151 is identified in the Federal Facility Agreement and Consent Order (FFACO) as Septic Systems and Discharge Area. CAU 151 consists of the following eight Corrective Action Sites (CASs), located in Areas 2, 12, and 18 of the Nevada Test Site, approximately 65 miles northwest of Las Vegas, Nevada: (1) CAS 02-05-01, UE-2ce Pond; (2) CAS 12-03-01, Sewage Lagoons (6); (3) CAS 12-04-01, Septic Tanks; (4) CAS 12-04-02, Septic Tanks; (5) CAS 12-04-03, Septic Tank; (6) CAS 12-47-01, Wastewater Pond; (7) CAS 18-03-01, Sewage Lagoon; and (8) CAS 18-99-09, Sewer Line (Exposed). CAU 151 closure activities were conducted according to the FFACO (FFACO, 1996; as amended February 2008) and the Corrective Action Plan for CAU 151 (U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office, 2007) from October 2007 to January 2008. The corrective action alternatives included no further action, clean closure, and closure in place with administrative controls. CAU 151 closure activities are summarized in Table 1. Closure activities generated liquid remediation waste, sanitary waste, hydrocarbon waste, and mixed waste. Waste generated was appropriately managed and disposed. Waste that is currently staged onsite is being appropriately managed and will be disposed under approved waste profiles in permitted landfills. Waste minimization activities included waste characterization sampling and segregation of waste streams. Some waste exceeded land disposal restriction limits and required offsite treatment prior to disposal. Other waste meeting land disposal restrictions was disposed of in appropriate onsite or offsite landfills. Waste disposition documentation is included as Appendix C

  14. Closure Report for Corrective Action Unit 151: Septic Systems and Discharge Area, Nevada Test Site, Nevada

    Energy Technology Data Exchange (ETDEWEB)

    NSTec Environmental Restoration

    2008-04-01

    Corrective Action Unit (CAU) 151 is identified in the Federal Facility Agreement and Consent Order (FFACO) as Septic Systems and Discharge Area. CAU 151 consists of the following eight Corrective Action Sites (CASs), located in Areas 2, 12, and 18 of the Nevada Test Site, approximately 65 miles northwest of Las Vegas, Nevada: (1) CAS 02-05-01, UE-2ce Pond; (2) CAS 12-03-01, Sewage Lagoons (6); (3) CAS 12-04-01, Septic Tanks; (4) CAS 12-04-02, Septic Tanks; (5) CAS 12-04-03, Septic Tank; (6) CAS 12-47-01, Wastewater Pond; (7) CAS 18-03-01, Sewage Lagoon; and (8) CAS 18-99-09, Sewer Line (Exposed). CAU 151 closure activities were conducted according to the FFACO (FFACO, 1996; as amended February 2008) and the Corrective Action Plan for CAU 151 (U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office, 2007) from October 2007 to January 2008. The corrective action alternatives included no further action, clean closure, and closure in place with administrative controls. CAU 151 closure activities are summarized in Table 1. Closure activities generated liquid remediation waste, sanitary waste, hydrocarbon waste, and mixed waste. Waste generated was appropriately managed and disposed. Waste that is currently staged onsite is being appropriately managed and will be disposed under approved waste profiles in permitted landfills. Waste minimization activities included waste characterization sampling and segregation of waste streams. Some waste exceeded land disposal restriction limits and required offsite treatment prior to disposal. Other waste meeting land disposal restrictions was disposed of in appropriate onsite or offsite landfills. Waste disposition documentation is included as Appendix C.

  15. Closure Report for Corrective Action Unit 107: Low Impact Soil Sites, Nevada Test Site, Nevada with ROTC-1

    International Nuclear Information System (INIS)

    Matthews, Patrick

    2009-01-01

    CAU 107, ''Low Impact Soil Sites'', consists of 15 CASs in Areas 1, 2, 3, 4, 5, 9, 10, and 18 of the NTS. The closure alternatives included No Further Action and Closure in Place with Administrative Controls. This CR provides a summary of completed closure activities. ROTC Justification: The FFACO UR as published in the Closure Report for Corrective Action Unit 107: Low Impact Soil Sites, Nevada Test Site, Nevada (NNSA/NSO, 2009) states that the UR for CAS 18-23-02, U-18d Crater (Sulky), was implemented for assumed radioactive contamination that could cause a dose greater that 25 millirems per year. This document further clarifies that this was based on particulate releases of radionuclides identified in Radiological Effluents Released from U.S. Continental Tests, 1961 through 1992 (DOE/NV, 1996). The radionuclides listed in this document are krypton (Kr)-85, Kr-85m, Kr-87, Kr-88, rubidium (Rb)-87, strontium (Sr)-89, Sr-91, yttrium (Y)-91, iodine (I)-131, I-132, I-133, I-134, I-135, xeon (Xe)-133, Xe-135, Xe-138, cesium (Cs)-135, Cs-138, barium (Ba)-139, and Ba-140.

  16. Impact of Different Standard Type A7A Drum Closure-Ring Practices on Gasket Contraction and Bolt Closure Distance– 15621

    Energy Technology Data Exchange (ETDEWEB)

    Ketusky, Edward [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Blanton, Paul [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Bobbitt, John H. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2015-03-11

    The Department of Energy, the Savannah River National Laboratory, several manufacturers of specification drums, and the United States Department of Transportation (DOT) are collaborating in the development of a guidance document for DOE contractors and vendors who wish to qualify containers to DOT 7A Type A requirements. Currently, the effort is focused on DOT 7A Type A 208-liter (55-gallons) drums with a standard 12-gauge bolted closure ring. The U.S. requirements, contained in Title 49, Part 178.350 “Specification 7A; general packaging, Type A specifies a competent authority review of the packaging is not required for the transport of (Class 7) radioactive material containing less than Type A quantities of radioactive material. For Type AF drums, a 4 ft. regulatory free drop must be performed, such that the drum “suffers maximum damage.” Although the actual orientation is not defined by the specification, recent studies suggest that maximum damage would result from a shallow angle top impact, where kinetic energy is transferred to the lid, ultimately causing heavy damage to the lid, or even worse, causing the lid to come off. Since each vendor develops closure recommendations/procedures for the drums they manufacture, key parameters applied to drums during closing vary based on vendor. As part of the initial phase of the collaboration, the impact of the closure variants on the ability of the drum to suffer maximum damage is investigated. Specifically, closure testing is performed varying: 1) the amount of torque applied to the closure ring bolt; and, 2) stress relief protocol, including: a) weight of hammer; and, b) orientation that the hammer hits the closure ring. After closure, the amount of drum lid gasket contraction and the distance that the closure bolt moves through the closure ring is measured.

  17. Corrective Action Decision Document/Closure Report for Corrective Action Unit 567: Miscellaneous Soil Sites - Nevada National Security Site, Nevada

    Energy Technology Data Exchange (ETDEWEB)

    Matthews, Patrick [Navarro-Intera, LLC (N-I), Las Vegas, NV (United States)

    2014-12-01

    This Corrective Action Decision Document/Closure Report presents information supporting the closure of Corrective Action Unit (CAU) 567: Miscellaneous Soil Sites, Nevada National Security Site, Nevada. The purpose of this Corrective Action Decision Document/Closure Report is to provide justification and documentation supporting the recommendation that no further corrective action is needed for CAU 567 based on the implementation of the corrective actions. The corrective actions implemented at CAU 567 were developed based on an evaluation of analytical data from the CAI, the assumed presence of COCs at specific locations, and the detailed and comparative analysis of the CAAs. The CAAs were selected on technical merit focusing on performance, reliability, feasibility, safety, and cost. The implemented corrective actions meet all requirements for the technical components evaluated. The CAAs meet all applicable federal and state regulations for closure of the site. Based on the implementation of these corrective actions, the DOE, National Nuclear Security Administration Nevada Field Office provides the following recommendations: • No further corrective actions are necessary for CAU 567. • The Nevada Division of Environmental Protection issue a Notice of Completion to the DOE, National Nuclear Security Administration Nevada Field Office for closure of CAU 567. • CAU 567 be moved from Appendix III to Appendix IV of the FFACO.

  18. Strategic Planning for Hot Cell Closure

    International Nuclear Information System (INIS)

    LANGSTAFF, D.C.

    2001-01-01

    The United States Department of Energy (DOE) and its contractor were remediating a large hot cell complex to mitigate the radiological hazard. A Resource Conservation and Recovery Act (RCRA) closure unit was determined to be located within the complex. The regulator established a challenge to develop an acceptable closure plan on a short schedule (four months). The scope of the plan was to remove all excess equipment and mixed waste from the closure unit, establish the requirements of the legally binding Closure Plan and develop an acceptable schedule. The complex has several highly radioactive tanks, tank vaults, piping, and large hot cells containing complex chemical processing equipment. Driven by a strong need to develop an effective strategy to meet cleanup commitments, three principles were followed to develop an acceptable plan: (1) Use a team approach, (2) Establish a buffer zone to support closure, and (3) Use good practice when planning the work sequence. The team was composed of DOE, contractor, and Washington State Department of Ecology (Regulator) staff. The team approach utilized member expertise and fostered member involvement and communication. The buffer zone established an area between the unregulated parts of the building and the areas that were allegedly not in compliance with environmental standards. Introduction of the buffer zone provided simplicity, clarity, and flexibility into the process. Using good practice means using the DOE Integrated Safety Management Core Functions for planning and implementing work safely. Paying adequate attention to detail when the situation required contributed to the process credibility and a successful plan

  19. Closure Plan for Corrective Action Unit 109: U-2bu Subsidence Crater Nevada Test Site, Nevada

    Energy Technology Data Exchange (ETDEWEB)

    Shannon Parsons

    1999-03-01

    The U-2bu subsidence crater, Corrective Action Unit 109, will be closed in accordance with the Resource Conservation and Recovery Act, the Nevada Division of Environmental Protection operational permit, and the Federal Facilities Agreement and Consent Order. The U-2bu subsidence crater is located in Area 2 of the Nevada Test Site. It was created in 1971 by an underground nuclear test with the name Miniata. The crater has a diameter of 288 meters (944 feet) and an approximate depth of 35 meters (115 feet). The subsidence crater was used as a land disposal unit for radioactive and hazardous waste from 1973 to 1988. Site disposal history is supported by memorandums, letters, and personnel who worked at the Nevada Test Site at the time of active disposal. Closure activities will include the excavation and disposal of impacted soil form the tip of the crater. Upon completion of excavation, verification samples will be collected to show that lead has been removed to concentrations be low regulatory action level. The area will then be backfilled and a soil flood diversion berm will be constructed, and certified by an independent professional engineer as to having followed the approved Closure Plan.

  20. Closure plan for Corrective Action Unit 109: U-2bu subsidence crater, Nevada Test Site, Nevada

    International Nuclear Information System (INIS)

    1999-03-01

    The U-2bu subsidence crater, Corrective Action Unit 109, will be closed in accordance with the Resource Conservation and Recovery Act, the Nevada Division of Environmental Protection operational permit, and the Federal Facility Agreement and Consent Order. The U-2bu subsidence crater is located in Area 2 of the Nevada Test Site. It was created in 1971 by an underground nuclear test with the name Miniata. The crater has a diameter of 288 meters (944 feet) and an approximate depth of 35 meters (115 feet). Based on the results of the analyses reported in the site characterization report, the only constituents of concern in the U-2bu subsidence crater include leachable lead and total petroleum hydrocarbons. Closure activities will include the excavation and disposal of impacted soil from the top of the crater. Upon completion of excavation, verification samples will be collected to show that the leachable lead has been removed to concentrations below the regulatory action level. After sample results show that the lead has been removed, the excavated area will be backfilled and a soil flood diversion berm will be constructed as a best management practice. An independent registered professional engineer will certify the site was closed following the approved Closure Plan. Post-closure care is not warranted for this site because closure activities will involve removal of the Resource Conservation and Recovery Act constituents of concern

  1. Closure plan for Corrective Action Unit 109: U-2bu subsidence crater, Nevada Test Site, Nevada

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-03-01

    The U-2bu subsidence crater, Corrective Action Unit 109, will be closed in accordance with the Resource Conservation and Recovery Act, the Nevada Division of Environmental Protection operational permit, and the Federal Facility Agreement and Consent Order. The U-2bu subsidence crater is located in Area 2 of the Nevada Test Site. It was created in 1971 by an underground nuclear test with the name Miniata. The crater has a diameter of 288 meters (944 feet) and an approximate depth of 35 meters (115 feet). Based on the results of the analyses reported in the site characterization report, the only constituents of concern in the U-2bu subsidence crater include leachable lead and total petroleum hydrocarbons. Closure activities will include the excavation and disposal of impacted soil from the top of the crater. Upon completion of excavation, verification samples will be collected to show that the leachable lead has been removed to concentrations below the regulatory action level. After sample results show that the lead has been removed, the excavated area will be backfilled and a soil flood diversion berm will be constructed as a best management practice. An independent registered professional engineer will certify the site was closed following the approved Closure Plan. Post-closure care is not warranted for this site because closure activities will involve removal of the Resource Conservation and Recovery Act constituents of concern.

  2. Post-Closure Inspection Report for Corrective Action Unit 90: Area 2 Bitcutter Containment, Nevada Test Site, Nevada

    International Nuclear Information System (INIS)

    NSTec Environmental Restoration

    2008-01-01

    Corrective Action Unit (CAU) 90, Area 2 Bitcutter Containment, is identified in the Federal Facility Agreement and Consent Order of 1996, as amended February 2008. The post-closure requirements for CAU 90 are described in Section VII.B.8.b of the Nevada Test Site Resource Conservation and Recovery Act Permit for a Hazardous Waste Management Facility Number NEV HW0021, dated November 2005. Post-closure activities consist of the following: (1) Semiannual inspections of the site using inspection checklists; (2) Photographic documentation; (3) Field note documentation; and (4) Preparation and submittal of an annual Post-Closure Inspection Report. This annual report covers the period of July 2007 to June 2008 and consists of a summary of the results of the inspections, copies of the inspection checklists and field notes, maintenance and repair records (if any), photographs, and conclusions and recommendations. The inspection checklists are provided in Appendix A, a copy of the field notes is provided in Appendix B, and copies of photographs taken during the inspections are provided in Appendix C

  3. Integrated Weed Control for Land Stewardship at Legacy Management's Rocky Flats Site in Colorado - 13086

    International Nuclear Information System (INIS)

    Nelson, Jody K.

    2013-01-01

    Land stewardship is one of nine sustainability programs in the U.S. Department of Energy's Environmental Management System. Land stewardship includes maintaining and improving ecosystem health. At the Rocky Flats Site near Westminster, Colorado, land stewardship is an integral component of the Office of Legacy Management's post-closure monitoring and management at the site. Nearly 263 hectares (650 acres) were disturbed and re-vegetated during site cleanup and closure operations. Proactive management of revegetation areas is critical to the successful reestablishment of native grasslands, wetlands, and riparian communities. The undisturbed native plant communities that occur at the site also require active management to maintain the high-quality wetlands and other habitats that are home to numerous species of birds and other wildlife such as elk and deer, rare plant communities, and the federally listed threatened Preble's meadow jumping mouse. Over the past several decades, an increase of Noxious weeds has impacted much of Colorado's Front Range. As a result, weed control is a key component of the land stewardship program at Rocky Flats. Thirty-three species of state-listed Noxious weeds are known to occur in the Central and Peripheral Operable Units at Rocky Flats, along with another five species that are considered invasive at the site. Early detection and rapid response to control new invasive species is crucial to the program. An integrated weed control/vegetation management approach is key to maintaining healthy, sustainable plant communities that are able to resist Noxious weed invasions. Weed mapping, field surveys, and field-staff training sessions (to learn how to identify new potential problem species) are conducted to help detect and prevent new weed problems. The integrated approach at Rocky Flats includes administrative and cultural techniques (prevention), mechanical controls, biological controls, and chemical controls. Several species of biocontrol

  4. Turbulent thermal boundary layer on a permeable flat plate

    International Nuclear Information System (INIS)

    Vigdorovich, I. I.

    2007-01-01

    Scaling laws are established for the profiles of temperature, turbulent heat flux, rms temperature fluctuation, and wall heat transfer in the turbulent boundary layer on a flat plate with transpiration. In the case of blowing, the temperature distribution represented in scaling variables outside the viscous sublayer has a universal form known from experimental data for flows over impermeable flat plates. In the case of suction, the temperature distribution is described by a one-parameter family of curves. A universal law of heat transfer having the form of a generalized Reynolds analogy provides a basis for representation of the heat flux distributions corresponding to different Reynolds numbers and transpiration velocities in terms of a function of one variable. The results are obtained without invoking any special closure hypotheses

  5. CLOSURE REPORT FOR CORRECTIVE ACTION UNIT 165: AREA 25 AND 26 DRY WELL AND WASH DOWN AREAS, NEVADA TEST SITE, NEVADA

    International Nuclear Information System (INIS)

    BECHTEL NEVADA

    2005-01-01

    This Closure Report (CR) documents the closure activities for Corrective Action Unit (CAU) 165, Area 25 and 26 Dry Well and Washdown Areas, according to the Federal Facility Agreement and Consent Order (FFACO) of 1996. CAU 165 consists of 8 Corrective Action Sites (CASs) located in Areas 25 and 26 of the Nevada Test Site (NTS). The NTS is located approximately 105 kilometers (65 miles) northwest of Las Vegas, nevada. Site closure activities were performed according to the Nevada Division of Environmental Protection (NDEP)-approved Corrective Action Plan (CAP) for CAU 165. CAU 165 consists of the following CASs: (1) CAS 25-07-06, Train Decontamination Area; (2) CAS 25-07-07, Vehicle Washdown; (3) CAS 25-20-01, Lab Drain Dry Well; (4) CAS 25-47-01, Reservoir and French Drain; (5) CAS 25-51-02, Drywell; (6) CAS 25-59-01, Septic System; (7) CAS 26-07-01, Vehicle Washdown Station; and (8) CAS 26-59-01, Septic System. CAU 165, Area 25 and 26 Dry Well and Washdown Areas, consists of eight CASs located in Areas 25 and 26 of the NTS. The approved closure alternatives included No Further Action, Clean Closure, and Closure in Place with Administrative Controls

  6. CLOSURE REPORT FOR CORRECTIVE ACTION UNIT165: AREA 25 AND 26 DRY WELL AND WASH DOWN AREAS, NEVADA TEST SITE, NEVADA

    Energy Technology Data Exchange (ETDEWEB)

    BECHTEL NEVADA

    2005-12-01

    This Closure Report (CR) documents the closure activities for Corrective Action Unit (CAU) 165, Area 25 and 26 Dry Well and Washdown Areas, according to the Federal Facility Agreement and Consent Order (FFACO) of 1996. CAU 165 consists of 8 Corrective Action Sites (CASs) located in Areas 25 and 26 of the Nevada Test Site (NTS). The NTS is located approximately 105 kilometers (65 miles) northwest of Las Vegas, nevada. Site closure activities were performed according to the Nevada Division of Environmental Protection (NDEP)-approved Corrective Action Plan (CAP) for CAU 165. CAU 165 consists of the following CASs: (1) CAS 25-07-06, Train Decontamination Area; (2) CAS 25-07-07, Vehicle Washdown; (3) CAS 25-20-01, Lab Drain Dry Well; (4) CAS 25-47-01, Reservoir and French Drain; (5) CAS 25-51-02, Drywell; (6) CAS 25-59-01, Septic System; (7) CAS 26-07-01, Vehicle Washdown Station; and (8) CAS 26-59-01, Septic System. CAU 165, Area 25 and 26 Dry Well and Washdown Areas, consists of eight CASs located in Areas 25 and 26 of the NTS. The approved closure alternatives included No Further Action, Clean Closure, and Closure in Place with Administrative Controls.

  7. The Office of Site Closure: Progress in the Face of Challenges

    International Nuclear Information System (INIS)

    Fiore, J. J.; Murphie, W. E.; Meador, S. W.

    2002-01-01

    The Office of Site Closure (OSC) was formed in November 1999 when the Department of Energy's (DOE's) Office of Environmental Management (EM) reorganized to focus specifically on site cleanup and closure. OSC's objective is to achieve safe and cost-effective cleanups and closures that are protective of our workers, the public, and the environment, now and in the future. Since its inception, OSC has focused on implementing a culture of safe closure, with emphasis in three primary areas: complete our responsibility for the Closure Sites Rocky Flats, Mound, Fernald, Ashtabula, and Weldon Spring; complete our responsibility for cleanup at sites where the DOE mission has been completed (examples include Battelle King Avenue and Battelle West Jefferson in Columbus, and General Atomics) or where other Departmental organizations have an ongoing mission (examples include the Brookhaven, Livermore, or Los Alamos National Laboratories, and the Nevada Test Site); and create a framework a nd develop specific business closure tools that will help sites close, such as guidance for and decisions on post-contract benefit liabilities, records retention, and Federal employee incentives for site closure. This paper discusses OSC's 2001 progress in achieving site cleanups, moving towards site closure, and developing specific business closure tools to support site closure. It describes the tools used to achieve progress towards cleanup and closure, such as the application of new technologies, changes in contracting approaches, and the development of agreements between sites and with host states. The paper also identifies upcoming challenges and explores options for how Headquarters and the sites can work together to address these challenges. Finally, it articulates OSC's new focus on oversight of Field Offices to ensure they have the systems in place to oversee contractor activities resulting in site cleanups and closures

  8. CLOSURE REPORT FOR CORRECTIVE ACTION UNIT 528: POLYCHLORINATED BIPHENYLS CONTAMINATION NEVADA TEST SITE, NEVADA

    Energy Technology Data Exchange (ETDEWEB)

    BECHTEL NEVADA

    2006-09-01

    This Closure Report (CR) describes the closure activities performed at CAU 528, Polychlorinated Biphenyls Contamination, as presented in the Nevada Division of Environmental Protection (NDEP)-approved Corrective Action Plan (CAP) (US. Department of Energy, National Nuclear Security Administration Nevada Site Office [NNSAINSO], 2005). The approved closure alternative was closure in place with administrative controls. This CR provides a summary of the completed closure activities, documentation of waste disposal, and analytical data to confirm that the remediation goals were met.

  9. Completion Report for Well ER-3-3 Corrective Action Unit 97: Yucca Flat/Climax Mine, Revision 0

    Energy Technology Data Exchange (ETDEWEB)

    Wurtz, Jeffrey [Navarro, Las Vegas, NV (United States); Rehfeldt, Ken [Navarro, Las Vegas, NV (United States)

    2017-04-01

    Well ER-3-3 was drilled for the U.S. Department of Energy, Nevada National Security Administration Nevada Field Office in support of the Underground Test Area (UGTA) Activity. The well was drilled and completed from February 21 to March 15, 2016, as part of the Corrective Action Investigation Plan (CAIP) for Yucca Flat/Climax Mine Corrective Action Unit (CAU) 97. The primary purpose of the well was to collect hydrogeologic data to assist in validating concepts of the flow system within the Yucca Flat/Climax Mine CAU, and to test for potential radionuclides in groundwater from the WAGTAIL (U3an) underground test.

  10. Closure Report for Corrective Action Unit 107: Low Impact Soil Sites, Nevada Test Site, Nevada

    International Nuclear Information System (INIS)

    2009-01-01

    Corrective Action Unit (CAU) 107 is identified in the Federal Facility Agreement and Consent Order (FFACO) as 'Low Impact Soil Sites' and consists of the following 15 Corrective Action Sites (CASs), located in Areas 1, 2, 3, 4, 5, 9, 10, and 18 of the Nevada Test Site: CAS 01-23-02, Atmospheric Test Site - High Alt; CAS 02-23-02, Contaminated Areas (2); CAS 02-23-03, Contaminated Berm; CAS 02-23-10, Gourd-Amber Contamination Area; CAS 02-23-11, Sappho Contamination Area; CAS 02-23-12, Scuttle Contamination Area; CAS 03-23-24, Seaweed B Contamination Area; CAS 03-23-27, Adze Contamination Area; CAS 03-23-28, Manzanas Contamination Area; CAS 03-23-29, Truchas-Chamisal Contamination Area; CAS 04-23-02, Atmospheric Test Site T4-a; CAS 05-23-06, Atmospheric Test Site; CAS 09-23-06, Mound of Contaminated Soil; CAS 10-23-04, Atmospheric Test Site M-10; and CAS 18-23-02, U-18d Crater (Sulky). Closure activities were conducted from February through April 2009 according to the FFACO (1996; as amended February 2008) and Revision 1 of the Streamlined Approach for Environmental Restoration Plan for CAU 107 (U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office, 2009). The corrective action alternatives included No Further Action and Closure in Place with Administrative Controls. Closure activities are summarized.

  11. Flat slices in Minkowski space

    Science.gov (United States)

    Murchadha, Niall Ó.; Xie, Naqing

    2015-03-01

    Minkowski space, flat spacetime, with a distance measure in natural units of d{{s}2}=-d{{t}2}+d{{x}2}+d{{y}2}+d{{z}2}, or equivalently, with spacetime metric diag(-1, +1, +1, +1), is recognized as a fundamental arena for physics. The Poincaré group, the set of all rigid spacetime rotations and translations, is the symmetry group of Minkowski space. The action of this group preserves the form of the spacetime metric. Each t = constant slice of each preferred coordinate system is flat. We show that there are also nontrivial non-singular representations of Minkowski space with complete flat slices. If the embedding of the flat slices decays appropriately at infinity, the only flat slices are the standard ones. However, if we remove the decay condition, we find non-trivial flat slices with non-vanishing extrinsic curvature. We write out explicitly the coordinate transformation to a frame with such slices.

  12. Closure Report for Corrective Action Unit 224: Decon Pad and Septic Systems, Nevada Test Site, Nevada

    International Nuclear Information System (INIS)

    NSTec Environmental Restoration

    2007-01-01

    Corrective Action Unit (CAU) 224 is located in Areas 02, 03, 05, 06, 11, and 23 of the Nevada Test Site, which is situated approximately 65 miles northwest of Las Vegas, Nevada. CAU 224 is listed in the Federal Facility Agreement and Consent Order (FFACO) of 1996 as Decon Pad and Septic Systems and is comprised of the following nine Corrective Action Sites (CASs): CAS 02-04-01, Septic Tank (Buried); CAS 03-05-01, Leachfield; CAS 05-04-01, Septic Tanks (4)/Discharge Area; CAS 06-03-01, Sewage Lagoons (3); CAS 06-05-01, Leachfield; CAS 06-17-04, Decon Pad and Wastewater Catch; CAS 06-23-01, Decon Pad Discharge Piping; CAS 11-04-01, Sewage Lagoon; and CAS 23-05-02, Leachfield. The Nevada Division of Environmental Protection (NDEP)-approved corrective action alternative for CASs 02-04-01, 03-05-01, 06-03-01, 11-04-01, and 23-05-02 is no further action. As a best management practice, the septic tanks and distribution box were removed from CASs 02-04-01 and 11-04-01 and disposed of as hydrocarbon waste. The NDEP-approved correction action alternative for CASs 05-04-01, 06-05-01, 06-17-04, and 06-23-01 is clean closure. Closure activities for these CASs included removing and disposing of radiologically and pesticide-impacted soil and debris. CAU 224 was closed in accordance with the NDEP-approved CAU 224 Corrective Action Plan (CAP). The closure activities specified in the CAP were based on the recommendations presented in the CAU 224 Corrective Action Decision Document (U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office, 2005). This Closure Report documents CAU 224 closure activities. During closure activities, approximately 60 cubic yards (yd3) of mixed waste in the form of soil and debris; approximately 70 yd 3 of sanitary waste in the form of soil, liquid from septic tanks, and concrete debris; approximately 10 yd 3 of hazardous waste in the form of pesticide-impacted soil; approximately 0.5 yd 3 of universal waste in the form of

  13. Closure Report for Corrective Action Unit 254: Area 25, R-MAD Decontamination Facility, Nevada Test Site, Nevada

    Energy Technology Data Exchange (ETDEWEB)

    G. N. Doyle

    2002-02-01

    Corrective Action Unit (CAU) 254 is located in Area 25 of the Nevada Test Site (NTS), approximately 100 kilometers (km) (62 miles) northwest of Las Vegas, Nevada. The site is located within the Reactor Maintenance, Assembly and Disassembly (R-MAD) compound and consists of Building 3126, two outdoor decontamination pads, and surrounding areas within an existing fenced area measuring approximately 50 x 37 meters (160 x 120 feet). The site was used from the early 1960s to the early 1970s as part of the Nuclear Rocket Development Station program to decontaminate test-car hardware and tooling. The site was reactivated in the early 1980s to decontaminate a radiologically contaminated military tank. This Closure Report (CR) describes the closure activities performed to allow un-restricted release of the R-MAD Decontamination Facility.

  14. First annual report RCRA post-closure monitoring and inspections for the U-3fi waste unit. Final report, July 1995--October 1996

    International Nuclear Information System (INIS)

    Emer, D.F.

    1997-01-01

    This annual Neutron Soil Moisture Monitoring report provides an analysis and summary for site inspections, meteorological information, and neutron soil moisture monitoring data obtained at the U-3fi RCRA Unit, located in Area 3 of the Nevada Site (NTS), Nye County, Nevada during the July 1995 to October 1996 period. Inspections of the U-3fi RCRA Unit are conducted to determine and document the physical condition of the covers, facilities, and any unusual conditions that could impact the proper operation of the waste unit closure. The objective of the neutron logging is to monitor the soil moisture conditions along the 420 ft ER3-3 borehole and detect changes that may be indicative of moisture movement in the regulated interval. This is the first annual report on the U-3fi closure and includes the first year baseline monitoring data as well as one quarter of compliance monitoring data

  15. Closure Report for Corrective Action Unit 356: Mud Pits and Disposal Sites, Nevada Test Site, Nevada

    International Nuclear Information System (INIS)

    2002-01-01

    This Closure Report (CR) has been prepared for Corrective Action Unit (CAU) 356, Mud Pits and Disposal Sites, in accordance with the Federal Facility Agreement and Consent Order. This CAU is located in Areas 3 and 20 of the Nevada Test Site (NTS) approximately 65 miles northwest of Las Vegas, Nevada. Corrective Action Unit 356 consists of seven Corrective Action Sites (CASs): 03-04-01, Area 3 Change House Septic System; 03-09-01, Mud Pit Spill Over; 03-09-03, Mud Pit; 03-09-04, Mud Pit; 03-09-05, Mud Pit; 20-16-01, Landfill; and 20-22-21, Drums. This CR identifies and rationalizes the U.S. Department of Energy (DOE), National Nuclear Security Administration Nevada Operations Office's (NNSA/NV's) recommendation that no further corrective action and closure in place is deemed necessary for CAU 356. This recommendation is based on the results of field investigation/closure activities conducted November 20, 2001, through January 3, 2002, and March 11 to 14, 2002. These activities were conducted in accordance with the Streamlined Approach for Environmental Restoration Plan (SAFER) for CAU 356. For CASs 03-09-01, 03-09-03, 20-16-01, and 22-20-21, analytes detected in soil during the corrective action investigation were evaluated against Preliminary Action Levels (PALs) and it was determined that no Contaminants of Concern (COCs) were present. Therefore, no further action is necessary for the soil at these CASs. For CASs 03-04-01, 03-09-04, and 03-09-05, analytes detected in soil during the corrective action investigation were evaluated against PALs and identifies total petroleum hydrocarbons (TPHs) and radionuclides (i.e., americium-241 and/or plutonium 239/240) as COCs. The nature, extent, and concentration of the TPH and radionuclide COCs were bounded by sampling and shown to be relatively immobile. Therefore, closure in place is recommended for these CASs in CAU 356. Further, use restrictions are not required at this CAU beyond the NTS use restrictions identified in

  16. Corrective Action Decision Document/Closure Report for Corrective Action Unit 383: Area E-Tunnel Sites, Nevada Test Site

    Energy Technology Data Exchange (ETDEWEB)

    NSTec Environmental Restoration

    2010-03-15

    This Corrective Action Decision Document/Closure Report (CADD/CR) was prepared by the Defense Threat Reduction Agency (DTRA) for Corrective Action Unit (CAU) 383, Area 12 E-Tunnel Sites, which is the joint responsibility of DTRA and the U.S. Department of Energy (DOE), National Nuclear Security Administration Nevada Site Office (NNSA/NSO). This CADD/CR is consistent with the requirements of the Federal Facility Agreement and Consent Order (FFACO) agreed to by the State of Nevada, the DOE, and the U.S. Department of Defense. Corrective Action Unit 383 is comprised of three Corrective Action Sites (CASs) and two adjacent areas: • CAS 12-06-06, Muckpile • CAS 12-25-02, Oil Spill • CAS 12-28-02, Radioactive Material • Drainage below the Muckpile • Ponds 1, 2, and 3 The purpose of this CADD/CR is to provide justification and documentation to support the recommendation for closure with no further corrective action, by placing use restrictions at the three CASs and two adjacent areas of CAU 383.

  17. Addendum to the Closure Report for Corrective Action Unit 411: Double Tracks Plutonium Dispersion (Nellis), Nevada Test and Training Range, Nevada, Revision 0

    Energy Technology Data Exchange (ETDEWEB)

    Burmeister, Mark [Navarro, Las Vegas, NV (United States)

    2016-11-01

    The Corrective Action Unit (CAU) 411 Closure Report (CR) was published in June 2016 (NNSA/NFO, 2016). The purpose of this addendum is to clarify language in the CR relating to the field instrument for the detection of low-energy radiation (FIDLER), provide the waste disposal documentation for waste generated during the corrective action investigation (CAI), and reference a letter from the U.S. Air Force (USAF) regarding the closure of CAU 411.

  18. Closure Report for Corrective Action Unit 407: Roller Coaster RADSAFE Area, Tonopah Test Range, Nevada

    International Nuclear Information System (INIS)

    Fitzmaurice, T. M.

    2001-01-01

    This closure report (CR) provides documentation for the closure of the Roller Coaster RADSAFE Area (RCRSA) Corrective Action Unit (CAU) 407 identified in the Federal Facility Agreement and Consent Order (FFACO) (Nevada Division of Environmental Protection [NDEP] et al., 1996). CAU 407 is located at the Tonopah Test Range (TTR), Nevada. The TTR is approximately 225 kilometers (km) (140 miles [mi]) northwest of Las Vegas, Nevada (Figure 1). The RCRSA is located on the northeast comer of the intersection of Main Road and Browne's Lake Road, which is approximately 8 km (5 mi) south of Area 3 (Figure 1). The RCRSA was used during May and June of 1963 to decontaminate vehicles, equipment, and personnel from the Double Tracks and Clean Slate tests. Investigation of the RCRSA was conducted from June through November of 1998. A Corrective Action Decision Document (CADD) (U.S. Department of Energy, Nevada Operations Office [DOEN], 1999) was approved in October of 1999. The purpose of this CR is to: Document the closure activities as proposed in the Corrective Action Plan (CAP) (DOEM, 2000). Obtain a Notice of Completion from the NDEP. Recommend the movement of CAU 407 from Appendix III to Appendix IV of the FFACO. The following is the scope of the closure actions implemented for CAU 407: Removal and disposal of surface soils which were over three times background for the area. Soils identified for removal were disposed of at the Area 5 Radioactive Waste Management Site (RWMS) at the Nevada Test Site (NTS). Excavated areas were backfilled with clean borrow soil located near the site. A soil cover was constructed over the waste disposal pit area, where subsurface constituents of concern remain. The site was fenced and posted as an ''Underground Radioactive Material'' area

  19. Closure Report for Corrective Action Unit 116: Area 25 Test Cell C Facility, Nevada National Security Site, Nevada

    Energy Technology Data Exchange (ETDEWEB)

    NSTec Environmental Restoration

    2011-09-29

    This Closure Report (CR) presents information supporting closure of Corrective Action Unit (CAU) 116, Area 25 Test Cell C Facility. This CR complies with the requirements of the Federal Facility Agreement and Consent Order (FFACO) that was agreed to by the State of Nevada; the U.S. Department of Energy (DOE), Environmental Management; the U.S. Department of Defense; and DOE, Legacy Management (FFACO, 1996 [as amended March 2010]). CAU 116 consists of the following two Corrective Action Sites (CASs), located in Area 25 of the Nevada National Security Site: (1) CAS 25-23-20, Nuclear Furnace Piping and (2) CAS 25-41-05, Test Cell C Facility. CAS 25-41-05 consisted of Building 3210 and the attached concrete shield wall. CAS 25-23-20 consisted of the nuclear furnace piping and tanks. Closure activities began in January 2007 and were completed in August 2011. Activities were conducted according to Revision 1 of the Streamlined Approach for Environmental Restoration Plan for CAU 116 (U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office [NNSA/NSO], 2008). This CR provides documentation supporting the completed corrective actions and provides data confirming that closure objectives for CAU 116 were met. Site characterization data and process knowledge indicated that surface areas were radiologically contaminated above release limits and that regulated and/or hazardous wastes were present in the facility.

  20. Integrated Weed Control for Land Stewardship at Legacy Management's Rocky Flats Site in Colorado - 13086

    Energy Technology Data Exchange (ETDEWEB)

    Nelson, Jody K. [Stoller LMS Team, Contractor to the U.S. Department of Energy Office of Legacy Management, 11025 Dover Street, Suite 1000, Westminster, Colorado 80021 (United States)

    2013-07-01

    Land stewardship is one of nine sustainability programs in the U.S. Department of Energy's Environmental Management System. Land stewardship includes maintaining and improving ecosystem health. At the Rocky Flats Site near Westminster, Colorado, land stewardship is an integral component of the Office of Legacy Management's post-closure monitoring and management at the site. Nearly 263 hectares (650 acres) were disturbed and re-vegetated during site cleanup and closure operations. Proactive management of revegetation areas is critical to the successful reestablishment of native grasslands, wetlands, and riparian communities. The undisturbed native plant communities that occur at the site also require active management to maintain the high-quality wetlands and other habitats that are home to numerous species of birds and other wildlife such as elk and deer, rare plant communities, and the federally listed threatened Preble's meadow jumping mouse. Over the past several decades, an increase of Noxious weeds has impacted much of Colorado's Front Range. As a result, weed control is a key component of the land stewardship program at Rocky Flats. Thirty-three species of state-listed Noxious weeds are known to occur in the Central and Peripheral Operable Units at Rocky Flats, along with another five species that are considered invasive at the site. Early detection and rapid response to control new invasive species is crucial to the program. An integrated weed control/vegetation management approach is key to maintaining healthy, sustainable plant communities that are able to resist Noxious weed invasions. Weed mapping, field surveys, and field-staff training sessions (to learn how to identify new potential problem species) are conducted to help detect and prevent new weed problems. The integrated approach at Rocky Flats includes administrative and cultural techniques (prevention), mechanical controls, biological controls, and chemical controls. Several

  1. Streamlined approach for environmental restoration work plan for Corrective Action Unit 126: Closure of aboveground storage tanks, Nevada Test Site, Nevada. Revision 1

    International Nuclear Information System (INIS)

    1998-07-01

    This plan addresses the closure of several aboveground storage tanks in Area 25 of the Nevada Test Site. The unit is currently identified as Corrective Action Unit 126 in the Federal Facility Agreement and Consent Order and is listed as having six Corrective Action Sites. This plan addresses the Streamlined Approach for Environmental Restoration closure for five of the six sites. Four of the CASs are located at the Engine Test Stand complex and one is located in the Central Support Area. The sites consist of aboveground tanks, two of which were used to store diesel fuel and one stored Nalcool (an antifreeze mixture). The remaining tanks were used as part of a water demineralization process and stored either sulfuric acid or sodium hydroxide, and one was used as a charcoal adsorption furnace. Closure will be completed by removal of the associated piping, tank supports and tanks using a front end loader, backhoe, and/or crane. When possible, the tanks will be salvaged as scrap metal. The piping that is not removed will be sealed using a cement grout

  2. A successful environmental remediation program closure and post-closure activities (CAPCA) Y-12 Plant, Oak Ridge, Tennessee

    International Nuclear Information System (INIS)

    Bowers, M.H.

    1991-01-01

    The Resource Conservation and Recovery Act (RCRA) closure of eleven waste management units at the Department of Energy's (DOE's) Oak Ridge Y-12 Plant is nearing completion. The Oak Ridge Y-12 Plant is managed by Martin Marietta Energy Systems, Inc. for the US Department of Energy under Contract DE-AC05-84OR21400. The Closure and Post Closure Program (CAPCA) has been accomplished on an accelerated schedule through the efforts of a dedicated team from several organizations. This paper relates experience gained from the program that can be of benefit on other DOE environmental remediation projects. Technical design and construction aspects, as well as project management considerations, are discussed

  3. Closure Report for Corrective Action Unit 539: Areas 25 and 26 Railroad Tracks Nevada National Security Site, Nevada with ROTC-1, Revision 0

    Energy Technology Data Exchange (ETDEWEB)

    Mark Kauss

    2011-06-01

    This Closure Report (CR) presents information supporting the closure of Corrective Action Unit (CAU) 539: Areas 25 and 26 Railroad Tracks, Nevada National Security Site, Nevada. This CR complies with the requirements of the Federal Facility Agreement and Consent Order (FFACO) that was agreed to by the State of Nevada; U.S. Department of Energy (DOE), Environmental Management; U.S. Department of Defense; and DOE, Legacy Management. The corrective action sites (CASs) within CAU 539 are located within Areas 25 and 26 of the Nevada National Security Site. Corrective Action Unit 539 comprises the following CASs: • 25-99-21, Area 25 Railroad Tracks • 26-99-05, Area 26 Railroad Tracks The purpose of this CR is to provide documentation supporting the completed corrective actions and provide data confirming that the closure objectives for CASs within CAU 539 were met. To achieve this, the following actions were performed: • Reviewed documentation on historical and current site conditions, including the concentration and extent of contamination. • Conducted radiological walkover surveys of railroad tracks in both Areas 25 and 26. • Collected ballast and soil samples and calculated internal dose estimates for radiological releases. • Collected in situ thermoluminescent dosimeter measurements and calculated external dose estimates for radiological releases. • Removed lead bricks as potential source material (PSM) and collected verification samples. • Implemented corrective actions as necessary to protect human health and the environment. • Properly disposed of corrective action and investigation wastes. • Implemented an FFACO use restriction (UR) for radiological contamination at CAS 25-99-21. The approved UR form and map are provided in Appendix F and will be filed in the DOE, National Nuclear Security Administration Nevada Site Office (NNSA/NSO), Facility Information Management System; the FFACO database; and the NNSA/NSO CAU/CAS files. From November 29

  4. United States of America. Status of commercial LILW site closure in the USA

    International Nuclear Information System (INIS)

    2001-01-01

    The United States has adopted the requirements of 10 CFR Part 61 for the licensing standards of all new commercial low level radioactive waste disposal facilities. In general, low level waste as addressed in 10 CFR Part 61 is that waste that is not classified as high level waste, transuranic waste, or naturally occurring or accelerator produced radioactive materials. The requirements of this regulation dictate that certain standards be met by any new licensed facility. Obviously, arid locations offer certain advantages over humid locations with regards to controlling moisture infiltration and movement, the primary mechanism for radionuclide transport. Whereas relatively simple thick vegetated caps designed for enhancing evapotranspiration may be suitable for arid locations, more humid facilities may require more elaborate means to provide for the same degree of long term isolation of wastes from the biosphere. In general, the closure systems at low level disposal facilities built in humid areas of the United States tend to have more engineering features than those in more arid locations

  5. Reliability assessment of underground shaft closure

    International Nuclear Information System (INIS)

    Fossum, A.F.; Munson, D.E.

    1994-01-01

    The intent of the WIPP, being constructed in the bedded geologic salt deposits of Southeastern New Mexico, is to provide the technological basis for the safe disposal of radioactive Transuranic (TRU) wastes generated by the defense programs of the United States. In determining this technological basis, advanced reliability and structural analysis techniques are used to determine the probability of time-to-closure of a hypothetical underground shaft located in an argillaceous salt formation and filled with compacted crushed salt. Before being filled with crushed salt for sealing, the shaft provides access to an underground facility. Reliable closure of the shaft depends upon the sealing of the shaft through creep closure and recompaction of crushed backfill. Appropriate methods are demonstrated to calculate cumulative distribution functions of the closure based on laboratory determined random variable uncertainty in salt creep properties

  6. Phase II Groundwater Flow Model of Corrective Action Unit 98: Frenchman Flat, Nevada Test Site, Nye County, Nevada, Rev. No.: 0

    International Nuclear Information System (INIS)

    John McCord

    2006-01-01

    The Phase II Frenchman Flat groundwater flow model is a key element in the ''Federal Facility Agreement and Consent Order'' (FFACO) (1996) corrective action strategy for the Underground Test Area (UGTA) Frenchman Flat corrective action unit (CAU). The objective of this integrated process is to provide an estimate of the vertical and horizontal extent of contaminant migration for each CAU to predict contaminant boundaries. A contaminant boundary is the model-predicted perimeter that defines the extent of radionuclide-contaminated groundwater from underground testing above background conditions exceeding the ''Safe Drinking Water Act'' (SDWA) standards. The contaminant boundary will be composed of both a perimeter boundary and a lower hydrostratigraphic unit (HSU) boundary. The computer model will predict the location of this boundary within 1,000 years and must do so at a 95 percent level of confidence. Additional results showing contaminant concentrations and the location of the contaminant boundary at selected times will also be presented. These times may include the verification period, the end of the five-year proof-of-concept period, as well as other times that are of specific interest. This report documents the development and implementation of the groundwater flow model for the Frenchman Flat CAU. Specific objectives of the Phase II Frenchman Flat flow model are to: (1) Incorporate pertinent information and lessons learned from the Phase I Frenchman Flat CAU models. (2) Develop a three-dimensional (3-D), mathematical flow model that incorporates the important physical features of the flow system and honors CAU-specific data and information. (3) Simulate the steady-state groundwater flow system to determine the direction and magnitude of groundwater fluxes based on calibration to Frenchman Flat hydrogeologic data. (4) Quantify the uncertainty in the direction and magnitude of groundwater flow due to uncertainty in parameter values and alternative component

  7. Unclassified Source Term and Radionuclide Data for Corrective Action Unit 98: Frenchman Flat Nevada Test Site, Nevada

    International Nuclear Information System (INIS)

    Farnham, Irene

    2005-01-01

    Frenchman Flat is one of several areas of the Nevada Test Site (NTS) used for underground nuclear testing (Figure 1-1). These nuclear tests resulted in groundwater contamination in the vicinity of the underground test areas. As a result, the U.S. Department of Energy (DOE), National Nuclear Security Administration Nevada Site Office (NNSA/NSO) is currently conducting a corrective action investigation (CAI) of the Frenchman Flat underground test areas. Since 1996, the Nevada Division of Environmental Protection (NDEP) has regulated NNSA/NSO corrective actions through the ''Federal Facility Agreement and Consent Order'' ([FFACO], 1996). Appendix VI of the FFACO agreement, ''Corrective Action Strategy'', was revised on December 7, 2000, and describes the processes that will be used to complete corrective actions, including those in the Underground Test Area (UGTA) Project. The individual locations covered by the agreement are known as corrective action sites (CASs), which are grouped into corrective action units (CAUs). The UGTA CASs are grouped geographically into five CAUs: Frenchman Flat, Central Pahute Mesa, Western Pahute Mesa, Yucca Flat/Climax Mine, and Rainier Mesa/Shoshone Mountain (Figure 1-1). These CAUs have distinctly different contaminant source, geologic, and hydrogeologic characteristics related to their location (FFACO, 1996). The Frenchman Flat CAU consists of 10 CASs located in the northern part of Area 5 and the southern part of Area 11 (Figure 1-1). This report documents the evaluation of the information and data available on the unclassified source term and radionuclide contamination for Frenchman Flat, CAU 98. The methodology used to estimate hydrologic source terms (HSTs) for the Frenchman Flat CAU is also documented. The HST of an underground nuclear test is the portion of the total inventory of radionuclides that is released over time into the groundwater following the test. The total residual inventory of radionuclides associated with one or

  8. 3718-F Alkali Metal Treatment and Storage Facility Closure Plan

    International Nuclear Information System (INIS)

    1991-12-01

    Since 1987, Westinghouse Hanford Company has been a major contractor to the U.S. Department of Energy-Richland Operations Office and has served as co-operator of the 3718-F Alkali Metal Treatment and Storage Facility, the waste management unit addressed in this closure plan. The closure plan consists of a Part A Dangerous waste Permit Application and a RCRA Closure Plan. An explanation of the Part A Revision (Revision 1) submitted with this document is provided at the beginning of the Part A section. The closure plan consists of 9 chapters and 5 appendices. The chapters cover: introduction; facility description; process information; waste characteristics; groundwater; closure strategy and performance standards; closure activities; postclosure; and references

  9. 3718-F Alkali Metal Treatment and Storage Facility Closure Plan

    Energy Technology Data Exchange (ETDEWEB)

    None

    1991-12-01

    Since 1987, Westinghouse Hanford Company has been a major contractor to the U.S. Department of Energy-Richland Operations Office and has served as co-operator of the 3718-F Alkali Metal Treatment and Storage Facility, the waste management unit addressed in this closure plan. The closure plan consists of a Part A Dangerous waste Permit Application and a RCRA Closure Plan. An explanation of the Part A Revision (Revision 1) submitted with this document is provided at the beginning of the Part A section. The closure plan consists of 9 chapters and 5 appendices. The chapters cover: introduction; facility description; process information; waste characteristics; groundwater; closure strategy and performance standards; closure activities; postclosure; and references.

  10. Corrective Action Decision Document/Closure Report for Corrective Action Unit 190: Contaminated Waste Sites, Nevada Test Site, Nevada, Revision 0

    International Nuclear Information System (INIS)

    Alfred Wickline

    2008-01-01

    This Corrective Action Decision Document/Closure Report has been prepared for Corrective Action Unit (CAU) 190, Contaminated Waste Sites, Nevada Test Site, Nevada, in accordance with the Federal Facility Agreement and Consent Order that was agreed to by the State of Nevada; U.S. Department of Energy, Environmental Management; U.S. Department of Defense; and DOE, Legacy Management (1996, as amended January 2007). Corrective Action Unit 190 is comprised of the following four corrective action sites (CASs): (1) 11-02-01, Underground Centrifuge; (2) 11-02-02, Drain Lines and Outfall; (3) 11-59-01, Tweezer Facility Septic System; (4) 14-23-01, LTU-6 Test Area The purpose of this Corrective Action Decision Document/Closure Report is to provide justification and documentation supporting the recommendation for closure of CAU 190 with no further corrective action. To achieve this, corrective action investigation (CAI) activities were performed from March 21 through June 26, 2007. All CAI activities were conducted as set forth in the Corrective Action Investigation Plan for Corrective Action Unit 190: Contaminated Waste Sites, Nevada Test Site, Nevada (NNSA/NSO, 2006). The purpose of the CAI was to fulfill the following data needs as defined during the data quality objective process: (1) Determine whether contaminants of concern (COCs) are present. (2) If COCs are present, determine their nature and extent. (3) Provide sufficient information and data to complete appropriate corrective actions. The CAU 190 dataset from the investigation results was evaluated based on the data quality indicator parameters. This evaluation demonstrated the quality and acceptability of the dataset for use in fulfilling the data quality objective data needs

  11. Closure Report for Corrective Action Unit 145: Wells and Storage Holes, Nevada Test Site, Nevada

    International Nuclear Information System (INIS)

    2008-01-01

    The purpose of this Closure Report is to provide a summary of the completed closure activities, to document waste disposal, and to present information confirming that the remediation goals were met. The closure alternatives consisted of closure in place with administrative controls for one CAS, and no further action with implementation of best management practices (BMPs) for the remaining five CASs

  12. Transcatheter Closure of Patent Foramen Ovale: Devices and Technique.

    Science.gov (United States)

    Price, Matthew J

    2017-10-01

    Transcatheter closure of a patent foramen ovale (PFO) reduces the risk of recurrent cryptogenic stroke compared with medical therapy. PFO closure is a prophylactic procedure, and will not provide the patient with symptomatic improvement, except in cases of hypoxemia due to right-to-left shunt or possibly migraine headaches. Therefore, appropriate patient selection is critical, and procedural safety is paramount. Herein, we review key characteristics of the devices currently available for transcatheter PFO closure within the United States, and highlight key technical aspects of the PFO closure procedure that will maximize procedural success. Copyright © 2017 Elsevier Inc. All rights reserved.

  13. Corrective Action Decision Document/Closure Report for Corrective Action Unit 551: Area 12 Muckpiles, Nevada Test Site, Nevada, Rev. No.: 1

    Energy Technology Data Exchange (ETDEWEB)

    Wickline, Alfred

    2006-11-01

    This Corrective Action Decision Document (CADD)/Closure Report (CR) presents information supporting closure of Corrective Action Unit (CAU) 551, Area 12 Muckpiles, Nevada Test Site (NTS), Nevada. The corrective actions proposed in this document are in accordance with the Federal Facility Agreement and Consent Order (FFACO) that was agreed to by the State of Nevada, U.S. Department of Energy (DOE), and the U.S. Department of Defense (FFACO, 1996). The NTS is approximately 65 miles (mi) northwest of Las Vegas, Nevada (Figure 1-1). Corrective Action Unit 551 is comprised of the four Corrective Action Sites (CASs) that are shown on Figure 1-2 and listed below: CAS 12-01-09, Aboveground Storage Tank and Stain; CAS 12-06-05, U-12b Muckpile; CAS 12-06-07, Muckpile; and CAS 12-06-08, Muckpile. A detailed discussion of the history of this CAU is presented in the ''Corrective Action Investigation Plan (CAIP) for Corrective Action Unit 551: Area 12 Muckpiles'' (NNSA/NSO, 2004). This CADD/CR provides justification for the closure of CAU 551 in place with administrative controls. This justification is based upon process knowledge and the results of the investigative activities conducted in accordance with the CAIP (NNSA/NSO, 2004). The CAIP provides information relating to the history, planning, and scope of the investigation; therefore, this information will not be repeated in the CADD/CR. Corrective Action Unit 551, Area 12 Muckpiles, consists of four inactive sites located in the southwestern portion of Area 12. The four CAU 551 sites consist of three muckpiles, and an aboveground storage tank (AST) and stain. The CAU 551 sites were all used during underground nuclear testing at the B-, C-, D- and F-Tunnels in the late 1950s and early 1960s and have mostly remained inactive since that period.

  14. Corrective Action Decision Document/Closure Report for Corrective Action Unit 551: Area 12 Muckpiles, Nevada Test Site, Nevada, Rev. No.: 1

    International Nuclear Information System (INIS)

    Wickline, Alfred

    2006-01-01

    This Corrective Action Decision Document (CADD)/Closure Report (CR) presents information supporting closure of Corrective Action Unit (CAU) 551, Area 12 Muckpiles, Nevada Test Site (NTS), Nevada. The corrective actions proposed in this document are in accordance with the Federal Facility Agreement and Consent Order (FFACO) that was agreed to by the State of Nevada, U.S. Department of Energy (DOE), and the U.S. Department of Defense (FFACO, 1996). The NTS is approximately 65 miles (mi) northwest of Las Vegas, Nevada (Figure 1-1). Corrective Action Unit 551 is comprised of the four Corrective Action Sites (CASs) that are shown on Figure 1-2 and listed below: CAS 12-01-09, Aboveground Storage Tank and Stain; CAS 12-06-05, U-12b Muckpile; CAS 12-06-07, Muckpile; and CAS 12-06-08, Muckpile. A detailed discussion of the history of this CAU is presented in the ''Corrective Action Investigation Plan (CAIP) for Corrective Action Unit 551: Area 12 Muckpiles'' (NNSA/NSO, 2004). This CADD/CR provides justification for the closure of CAU 551 in place with administrative controls. This justification is based upon process knowledge and the results of the investigative activities conducted in accordance with the CAIP (NNSA/NSO, 2004). The CAIP provides information relating to the history, planning, and scope of the investigation; therefore, this information will not be repeated in the CADD/CR. Corrective Action Unit 551, Area 12 Muckpiles, consists of four inactive sites located in the southwestern portion of Area 12. The four CAU 551 sites consist of three muckpiles, and an aboveground storage tank (AST) and stain. The CAU 551 sites were all used during underground nuclear testing at the B-, C-, D- and F-Tunnels in the late 1950s and early 1960s and have mostly remained inactive since that period

  15. 300 Area Process Trenches Closure Plan

    International Nuclear Information System (INIS)

    Luke, S.N.

    1994-01-01

    Since 1987, Westinghouse Hanford Company has been a major contractor to the US Department of Energy, Richland Operations Office and has served as co-operator of the 300 Area Process Trenches, the waste management unit addressed in this closure plan. For the purposes of the Resource Conservation and Recovery Act, Westinghouse Hanford Company is identified as ''co-operator.'' The 300 Area Process Trenches Closure Plan (Revision 0) consists of a Resource Conservation and Recovery Act Part A Dangerous Waste Permit Application, Form 3 and a Resource Conservation and Recovery Act Closure Plan. An explanation of the Part A Permit Application, Form 3 submitted with this document is provided at the beginning of the Part A Section. The closure plan consists of nine chapters and six appendices. The 300 Area Process Trenches received dangerous waste discharges from research and development laboratories in the 300 Area and from fuels fabrication processes. This waste consisted of state-only toxic (WT02), corrosive (D002), chromium (D007), spent halogenated solvents (F001, F002, and F003), and spent nonhalogented solvent (F005). Accurate records are unavailable concerning the amount of dangerous waste discharged to the trenches. The estimated annual quantity of waste (item IV.B) reflects the total quantity of both regulated and nonregulated waste water that was discharged to the unit

  16. Closure Report for Corrective Action Unit 240: Area 25 Vehicle Washdown Nevada Test Site, Nevada

    International Nuclear Information System (INIS)

    Gustafason, D.L.

    2001-01-01

    The Area 25 Vehicle Washdown, Corrective Action Unit (CAU) 240, was clean-closed following the approved Corrective Action Decision Document closure alternative and in accordance with the Federal Facility Agreement and Consent Order (FFACO, 1996). The CAU consists of thee Corrective Action Sites (CASs): 25-07-01 - Vehicle Washdown Area (Propellant Pad); 25-07-02 - Vehicle Washdown Area (F and J Roads Pad); and 25-07-03 - Vehicle Washdown Station (RADSAFE Pad). Characterization activities indicated that only CAS 25-07-02 (F and J Roads Pad) contained constituents of concern (COCs) above action levels and required remediation. The COCs detected were Total Petroleum Hydrocarbons (TPH) as diesel, cesium-137, and strontium-90. The F and J Roads Pad may have been used for the decontamination of vehicles and possibly disassembled engine and reactor parts from Test Cell C. Activities occurred there during the 1960s through early 1970s. The F and J Roads Pad consisted of a 9- by 5-meter (m) (30- by 15-foot [ft]) concrete pad and a 14- by 13-m (46-by 43-ft) gravel sump. The clean-closure corrective action consisted of excavation, disposal, verification sampling, backfilling, and regrading. Closure activities began on August 21, 2000, and ended on September 19, 2000. Waste disposal activities were completed on December 12, 2000. A total of 172 cubic meters (223 cubic yards) of impacted soil was excavated and disposed. The concrete pad was also removed and disposed. Verification samples were collected from the bottom and sidewalls of the excavation and analyzed for TPH diesel and 20-minute gamma spectroscopy. The sample results indicated that all impacted soil above remediation standards was removed. The closure was completed following the approved Corrective Action Plan. All impacted waste was disposed in the Area 6 Hydrocarbon Landfill. All non-impacted debris was disposed in the Area 9 Construction Landfill and the Area 23 Sanitary Landfill

  17. 200 West Ash Pit Demolition Site closure plan

    International Nuclear Information System (INIS)

    1992-11-01

    The Hanford Facility is owned by the US Government and operated by the US Department of Energy, Richland Field Office. Dangerous waste and mixed waste (containing both radioactive and dangerous components) are managed and produced on the Hanford Facility. Westinghouse Hanford Company is a major contractor to the US Department of Energy, Richland Field Office and serves as cooperator of the 200 West Ash Pit Demolition Site, the unit addressed in this closure plan. The 200 West Ash Pit Demolition Site Closure Plan consists of a Part A Permit Application (Revision 3) and a closure plan. An explanation of the Part A Permit Application revision is provided at the beginning of the Part A section. The closure plan consists of nine chapters and three appendices. This 200 West Ash Pit Demolition Site Closure Plan submittal contains information current as of October 15, 1992

  18. Corrective Action Investigation Plan for Corrective Action Unit 98: Frenchman Flat, Nevada Test Site, Nevada (Revision 1)

    Energy Technology Data Exchange (ETDEWEB)

    USDOE/NV

    1999-07-01

    This Corrective Action Investigation Plan (CAIP) has been developed for Frenchman Flat Corrective Action Unit (CAU) 98. The Frenchman Flat CAU is located along the eastern border of the Nevada Test Site (NTS) and includes portions of Areas 5 and 11. The Frenchman Flat CAU constitutes one of several areas of the Nevada Test Site used for underground nuclear testing in the past. The nuclear tests resulted in groundwater contamination in the vicinity as well as downgradient of the underground test areas. The CAIP describes the Corrective Action Investigation (CAI) to be conducted at the Frenchman Flat CAU to evaluate the extent of contamination in groundwater due to the underground nuclear testing. The Frenchman Flat CAI will be conducted by the Underground Test Area (UGTA) Project which is a part of the U.S. Department of Energy, Nevada Operations Office (DOE/NV) Environmental Restoration Project. The CAIP is a requirement of the Federal Facility Agreement and Consent Order (FFACO) (1996 ) agreed to by the U.S. Department of Energy (DOE), the Nevada Division of Environmental Protection (NDEP), and the U.S. Department of Defense (DoD). Based on the general definition of a CAI from Section IV.14 of the FFACO, the purpose of the CAI is ''...to gather data sufficient to characterize the nature, extent, and rate of migration or potential rate of migration from releases or discharges of pollutants or contaminants and/or potential releases or discharges from corrective action units identified at the facilities...'' (FFACO, 1996). However, for the Underground Test Area (UGTA) CAUs, ''...the objective of the CAI process is to define boundaries around each UGTA CAU that establish areas that contain water that may be unsafe for domestic and municipal use.'', as stated in Appendix VI of the FFACO (1996). According to the UGTA strategy (Appendix VI of the FFACO), the CAI of a given CAU starts with the evaluation of the existing data. New

  19. Handbook: Collecting Groundwater Samples from Monitoring Wells in Frenchman Flat, CAU 98

    Energy Technology Data Exchange (ETDEWEB)

    Chapman, Jenny [Desert Research Inst. (DRI), Reno, NV (United States); Lyles, Brad [Desert Research Inst. (DRI), Reno, NV (United States); Cooper, Clay [Desert Research Inst. (DRI), Reno, NV (United States); Hershey, Ron [Desert Research Inst. (DRI), Reno, NV (United States); Healey, John [Desert Research Inst. (DRI), Reno, NV (United States)

    2015-06-01

    Frenchman Flat basin on the Nevada National Security Site (NNSS) contains Corrective Action Unit (CAU) 98, which is comprised of ten underground nuclear test locations. Environmental management of these test locations is part of the Underground Test Area (UGTA) Activity conducted by the U.S. Department of Energy (DOE) under the Federal Facility Agreement and Consent Order (FFACO) (1996, as amended) with the U.S. Department of Defense (DOD) and the State of Nevada. A Corrective Action Decision Document (CADD)/Corrective Action Plan (CAP) has been approved for CAU 98 (DOE, 2011). The CADD/CAP reports on the Corrective Action Investigation that was conducted for the CAU, which included characterization and modeling. It also presents the recommended corrective actions to address the objective of protecting human health and the environment. The recommended corrective action alternative is “Closure in Place with Modeling, Monitoring, and Institutional Controls.” The role of monitoring is to verify that Contaminants of Concern (COCs) have not exceeded the Safe Drinking Water Act (SDWA) limits (Code of Federal Regulations, 2014) at the regulatory boundary, to ensure that institutional controls are adequate, and to monitor for changed conditions that could affect the closure conditions. The long-term closure monitoring program will be planned and implemented as part of the Closure Report stage after activities specified in the CADD/CAP are complete. Groundwater at the NNSS has been monitored for decades through a variety of programs. Current activities were recently consolidated in an NNSS Integrated Sampling Plan (DOE, 2014). Although monitoring directed by the plan is not intended to meet the FFACO long-term monitoring requirements for a CAU (which will be defined in the Closure Report), the objective to ensure public health protection is similar. It is expected that data collected in accordance with the plan will support the transition to long-term monitoring at each

  20. Closure Plan for the Area 3 Radioactive Waste Management Site at the Nevada Test Site

    Energy Technology Data Exchange (ETDEWEB)

    NSTec Environmental Management

    2007-09-01

    The Area 3 Radioactive Waste Management Site (RMWS) at the Nevada Test Site (NTS) is managed and operated by National Security Technologies, LLC (NSTec) for the U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office (NNSA/NSO). This document is the first update of the interim closure plan for the Area 3 RWMS, which was presented in the Integrated Closure and Monitoring Plan (ICMP) (DOE, 2005). The format and content of this plan follows the Format and Content Guide for U.S. Department of Energy Low-Level Waste Disposal Facility Closure Plans (DOE, 1999a). The major updates to the plan include a new closure date, updated closure inventory, the new institutional control policy, and the Title II engineering cover design. The plan identifies the assumptions and regulatory requirements, describes the disposal sites and the physical environment in which they are located, presents the design of the closure cover, and defines the approach and schedule for both closing and monitoring the site. The Area 3 RWMS accepts low-level waste (LLW) from across the DOE Complex in compliance with the NTS Waste Acceptance Criteria (NNSA/NSO, 2006). The Area 3 RWMS accepts both packaged and unpackaged unclassified bulk LLW for disposal in subsidence craters that resulted from deep underground tests of nuclear devices in the early 1960s. The Area 3 RWMS covers 48 hectares (119 acres) and comprises seven subsidence craters--U-3ax, U-3bl, U-3ah, U-3at, U-3bh, U-3az, and U-3bg. The area between craters U-3ax and U-3bl was excavated to form one large disposal unit (U-3ax/bl); the area between craters U-3ah and U-3at was also excavated to form another large disposal unit (U-3ah/at). Waste unit U-3ax/bl is closed; waste units U-3ah/at and U-3bh are active; and the remaining craters, although currently undeveloped, are available for disposal of waste if required. This plan specifically addresses the closure of the U-3ah/at and the U-3bh LLW units. A final closure

  1. Closure Plan for the Area 3 Radioactive Waste Management Site at the Nevada Test Site

    International Nuclear Information System (INIS)

    NSTec Environmental Management

    2007-01-01

    The Area 3 Radioactive Waste Management Site (RMWS) at the Nevada Test Site (NTS) is managed and operated by National Security Technologies, LLC (NSTec) for the U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office (NNSA/NSO). This document is the first update of the interim closure plan for the Area 3 RWMS, which was presented in the Integrated Closure and Monitoring Plan (ICMP) (DOE, 2005). The format and content of this plan follows the Format and Content Guide for U.S. Department of Energy Low-Level Waste Disposal Facility Closure Plans (DOE, 1999a). The major updates to the plan include a new closure date, updated closure inventory, the new institutional control policy, and the Title II engineering cover design. The plan identifies the assumptions and regulatory requirements, describes the disposal sites and the physical environment in which they are located, presents the design of the closure cover, and defines the approach and schedule for both closing and monitoring the site. The Area 3 RWMS accepts low-level waste (LLW) from across the DOE Complex in compliance with the NTS Waste Acceptance Criteria (NNSA/NSO, 2006). The Area 3 RWMS accepts both packaged and unpackaged unclassified bulk LLW for disposal in subsidence craters that resulted from deep underground tests of nuclear devices in the early 1960s. The Area 3 RWMS covers 48 hectares (119 acres) and comprises seven subsidence craters--U-3ax, U-3bl, U-3ah, U-3at, U-3bh, U-3az, and U-3bg. The area between craters U-3ax and U-3bl was excavated to form one large disposal unit (U-3ax/bl); the area between craters U-3ah and U-3at was also excavated to form another large disposal unit (U-3ah/at). Waste unit U-3ax/bl is closed; waste units U-3ah/at and U-3bh are active; and the remaining craters, although currently undeveloped, are available for disposal of waste if required. This plan specifically addresses the closure of the U-3ah/at and the U-3bh LLW units. A final closure

  2. Fuzzy topological digital space and their properties of flat electroencephalography in epilepsy disease

    Science.gov (United States)

    Muzafar Shah, Mazlina; Fatah Wahab, Abdul

    2017-09-01

    There are an abnormal electric activities or irregular interference in brain of epilepsy patient. Then a sensor will be put in patient’s scalp to measure and records all electric activities in brain. The result of the records known as Electroencephalography (EEG). The EEG has been transfer to flat EEG because it’s easier to analyze. In this study, the uncertainty in flat EEG data will be considered as fuzzy digital space. The purpose of this research is to show that the flat EEG is fuzzy topological digital space. Therefore, the main focus for this research is to introduce fuzzy topological digital space concepts with their properties such as neighbourhood, interior and closure by using fuzzy set digital concept and Chang’s fuzzy topology approach. The product fuzzy topology digital also will be shown. By introduce this concept, the data in flat EEG can considering having fuzzy topology digital properties and can identify the area in fuzzy digital space that has been affected by epilepsy seizure in epileptic patient’s brain.

  3. Phase II Groundwater Flow Model of Corrective Action Unit 98: Frenchman Flat, Nevada Test Site, Nye County, Nevada, Rev. No.: 0

    Energy Technology Data Exchange (ETDEWEB)

    John McCord

    2006-05-01

    The Phase II Frenchman Flat groundwater flow model is a key element in the ''Federal Facility Agreement and Consent Order'' (FFACO) (1996) corrective action strategy for the Underground Test Area (UGTA) Frenchman Flat corrective action unit (CAU). The objective of this integrated process is to provide an estimate of the vertical and horizontal extent of contaminant migration for each CAU to predict contaminant boundaries. A contaminant boundary is the model-predicted perimeter that defines the extent of radionuclide-contaminated groundwater from underground testing above background conditions exceeding the ''Safe Drinking Water Act'' (SDWA) standards. The contaminant boundary will be composed of both a perimeter boundary and a lower hydrostratigraphic unit (HSU) boundary. The computer model will predict the location of this boundary within 1,000 years and must do so at a 95 percent level of confidence. Additional results showing contaminant concentrations and the location of the contaminant boundary at selected times will also be presented. These times may include the verification period, the end of the five-year proof-of-concept period, as well as other times that are of specific interest. This report documents the development and implementation of the groundwater flow model for the Frenchman Flat CAU. Specific objectives of the Phase II Frenchman Flat flow model are to: (1) Incorporate pertinent information and lessons learned from the Phase I Frenchman Flat CAU models. (2) Develop a three-dimensional (3-D), mathematical flow model that incorporates the important physical features of the flow system and honors CAU-specific data and information. (3) Simulate the steady-state groundwater flow system to determine the direction and magnitude of groundwater fluxes based on calibration to Frenchman Flat hydrogeologic data. (4) Quantify the uncertainty in the direction and magnitude of groundwater flow due to uncertainty in

  4. Predictions of flow and heat transfer in multiple impinging jets with an elliptic-blending second-moment closure

    NARCIS (Netherlands)

    Thielen, L.; Hanjalić, K.; Jonker, H.; Manceau, R.

    2005-01-01

    We present numerical computations of flow and heat transfer in multiple jets impinging normally on a flat heated surface, obtained with a new second-moment turbulence closure combined with an elliptic blending model of non-viscous wall blocking effect. This model provides the mean velocity and

  5. Self-testing security sensor for monitoring closure of vault doors and the like

    International Nuclear Information System (INIS)

    Cawthorne, D.C.

    1997-01-01

    A self-testing device is provided for a monitoring system for monitoring whether a closure member such as a door or window is closed. The monitoring system includes a switch unit mounted on the frame of the closure member being monitored and including magnetically biased switches connected in one or more electrical monitoring circuits, and a door magnet unit mounted on the closure member being monitored. The door magnet includes one or more permanent magnets that produce a magnetic field which, when the closure member is closed, cause said switches to assume a first state. When the closure member is opened, the switches switch to a second, alarm state. The self-testing device is electrically controllable from a remote location and produces a canceling or diverting magnetic field which simulates the effect of movement of the closure member from the closed position thereof without any actual movement of the member. 5 figs

  6. Corrective Action Decision Document/Closure Report for Corrective Action Unit 367: Area 10 Sedan, Ess and Uncle Unit Craters Nevada National Security Site, Nevada, Revision 0

    Energy Technology Data Exchange (ETDEWEB)

    Patrick Matthews

    2011-06-01

    Corrective Action Unit 367 comprises four corrective action sites (CASs): • 10-09-03, Mud Pit • 10-45-01, U-10h Crater (Sedan) • 10-45-02, Ess Crater Site • 10-45-03, Uncle Crater Site The purpose of this Corrective Action Decision Document/Closure Report is to provide justification and documentation of the corrective actions and site closure activities implemented at CAU 367. A corrective action of closure in place with use restrictions was completed at each of the three crater CASs (10-45-01, 10-45-02, and 10-45-03); corrective actions were not required at CAS 10-09-03. In addition, a limited soil removal corrective action was conducted at the location of a potential source material release. Based on completion of these correction actions, no additional corrective action is required at CAU 367, and site closure is considered complete. Corrective action investigation (CAI) activities were performed from February 2010 through March 2011, as set forth in the Corrective Action Investigation Plan for Corrective Action Unit 367: Area 10 Sedan, Ess and Uncle Unit Craters, Nevada Test Site, Nevada. The approach for the CAI was divided into two facets: investigation of the primary release of radionuclides, and investigation of non-test or other releases (e.g., migration in washes and potential source material). Based on the proximity of the Uncle, Ess, and Sedan craters, the impact of the Sedan test on the fallout deposited from the two earlier tests, and aerial radiological surveys, the CAU 367 investigation was designed to study the releases from the three crater CASs as one combined release (primary release). Corrective Action Site 10-09-03, Mud Pit, consists of two mud pits identified at CAU 367. The mud pits are considered non-test releases or other releases and were investigated independent of the three crater CASs. The purpose of the CAI was to fulfill data needs as defined during the data quality objective (DQO) process. The CAU 367 dataset of

  7. New edge-centered photonic square lattices with flat bands

    Science.gov (United States)

    Zhang, Da; Zhang, Yiqi; Zhong, Hua; Li, Changbiao; Zhang, Zhaoyang; Zhang, Yanpeng; Belić, Milivoj R.

    2017-07-01

    We report a new class of edge-centered photonic square lattices with multiple flat bands, and consider in detail two examples: the Lieb-5 and Lieb-7 lattices. In these lattices, there are 5 and 7 sites in the unit cell and in general, the number is restricted to odd integers. The number of flat bands m in the new Lieb lattices is related to the number of sites N in the unit cell by a simple formula m =(N - 1) / 2. The flat bands reported here are independent of the pseudomagnetic field. The properties of lattices with even and odd number of flat bands are different. We consider the localization of light in such Lieb lattices. If the input beam excites the flat-band mode, it will not diffract during propagation, owing to the strong mode localization. In the Lieb-7 lattice, the beam will also oscillate during propagation and still not diffract. The period of oscillation is determined by the energy difference between the two flat bands. This study provides a new platform for investigating light trapping, photonic topological insulators, and pseudospin-mediated vortex generation.

  8. Corrective Action Decision Document/Closure Report for Corrective Action Unit 372: Area 20 Cabriolet/Palanquin Unit Craters, Nevada National Security Site, Nevada, Revision 0

    Energy Technology Data Exchange (ETDEWEB)

    Matthews, Patrick and Sloop, Christy

    2011-04-01

    This Corrective Action Decision Document (CADD)/Closure Report (CR) has been prepared for Corrective Action Unit (CAU) 372, Area 20 Cabriolet/Palanquin Unit Craters, located within Areas 18 and 20 at the Nevada National Security Site, Nevada, in accordance with the Federal Facility Agreement and Consent Order (FFACO). Corrective Action Unit 372 comprises four corrective action sites (CASs): • 18-45-02, Little Feller I Surface Crater • 18-45-03, Little Feller II Surface Crater • 20-23-01, U-20k Contamination Area • 20-45-01, U-20L Crater (Cabriolet) The purpose of this CADD/CR is to provide justification and documentation supporting the recommendation that no further corrective action is needed for CAU 372 based on the implementation of the corrective action of closure in place with administrative controls at all CASs. Corrective action investigation (CAI) activities were performed from November 9, 2009, through December 10, 2010, as set forth in the Corrective Action Investigation Plan for Corrective Action Unit 372: Area 20 Cabriolet/Palanquin Unit Craters. The approach for the CAI was divided into two facets: investigation of the primary release of radionuclides and investigation of other releases (migration in washes and chemical releases). The purpose of the CAI was to fulfill data needs as defined during the data quality objective (DQO) process. The CAU 372 dataset of investigation results was evaluated based on a data quality assessment. This assessment demonstrated the dataset is acceptable for use in fulfilling the DQO data needs. Investigation results were evaluated against final action levels (FALs) established in this document. A radiological dose FAL was established of 25 millirem per year based on the Remote Work Area exposure scenario (336 hours of annual exposure). Radiological doses exceeding the FAL were found to be present at all four CASs. It is assumed that radionuclide levels present within the Little Feller I and Cabriolet high

  9. Closure Report for Corrective Action Unit 415: Project 57 No. 1 Plutonium Dispersion (NTTR) Nevada Test and Training Range, Nevada, Revision 0 with ROTC-1

    Energy Technology Data Exchange (ETDEWEB)

    Sloop, Christina

    2017-12-01

    This Closure Report (CR) presents information supporting the closure of Corrective Action Unit (CAU) 415: Project 57 No. 1 Plutonium Dispersion, which is located on Range 4808A of the Nevada Test and Training Range (NTTR). This CR complies with the requirements of the Federal Facility Agreement and Consent Order (FFACO) that was agreed to by the State of Nevada; U.S. Department of Energy (DOE), Environmental Management; U.S. Department of Defense; and DOE, Legacy Management. CAU 415 comprises one corrective action site (CAS): NAFR-23-02, Pu Contaminated Soil. The purpose of this CR is to provide justification and documentation supporting the recommendation that no further corrective action is needed for CAU 415 based on the implementation of the corrective action of Closure in Place.

  10. Corrective Action Decision Document/Closure Report for Corrective Action Unit 571: Area 9 Yucca Flat Plutonium Dispersion Sites, Nevada National Security Site, Nevada, Revision 0

    Energy Technology Data Exchange (ETDEWEB)

    Matthews, Patrick

    2014-08-01

    The purpose of this CADD/CR is to provide documentation and justification that no further corrective action is needed for the closure of CAU 571 based on the implementation of corrective actions. This includes a description of investigation activities, an evaluation of the data, and a description of corrective actions that were performed. The CAIP provides information relating to the scope and planning of the investigation. Therefore, that information will not be repeated in this document.

  11. Closure Report for Corrective Action Unit 127: Areas 25 and 26 Storage Tanks, Nevada Test Site, Nevada

    Energy Technology Data Exchange (ETDEWEB)

    NSTec Environmental Restoration

    2008-02-01

    CAU 127, Areas 25 and 26 Storage Tanks, consists of twelve CASs located in Areas 25 and 26 of the NTS. The closure alternatives included no further action, clean closure, and closure in place with administrative controls. The purpose of this Closure Report is to provide a summary of the completed closure activities, documentation of waste disposal, and analytical data to confirm that the remediation goals were met.

  12. Post-Closure Inspection and Monitoring Report for Corrective Action Unit 110: Area 3 WMD U-3ax/bl Crater, Nevada Test Site, Nevada

    Energy Technology Data Exchange (ETDEWEB)

    U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office; Bechtel Nevada

    2006-08-01

    This Post-Closure Inspection and Monitoring Report provides the results and inspections and monitoring for Corrective Action Unit 110: Area 3 Waste Management Division U-3ax/bl Crater, Nevada Test Site, Nevada. This report includes an analysis and summary of the site inpsections, repairs and maintenance, meteorological information, and soil moisture monitoring data obtained at Corrective Action Unit 110, for the annual period July 2005 thrugh June 2006.

  13. Hanford Patrol Academy demolition sites closure plan

    Energy Technology Data Exchange (ETDEWEB)

    1993-09-30

    The Hanford Site is owned by the U.S. Government and operated by the U.S. Department of Energy, Richland Operations Office. Westinghouse Hanford Company is a major contractor to the U.S. Department of Energy, Richland Operations Office and serves as co-operator of the Hanford Patrol Academy Demolition Sites, the unit addressed in this paper. This document consists of a Hanford Facility Dangerous Waste Part A Permit Application, Form 3 (Revision 4), and a closure plan for the site. An explanation of the Part A Form 3 submitted with this closure plan is provided at the beginning of the Part A section. This Hanford Patrol Academy Demolition Sites Closure Plan submittal contains information current as of December 15, 1994.

  14. Hexone Storage and Treatment Facility closure plan

    International Nuclear Information System (INIS)

    1992-11-01

    The HSTF is a storage and treatment unit subject to the requirements for the storage and treatment of dangerous waste. Closure is being conducted under interim status and will be completed pursuant to the requirements of Washington State Department of Ecology (Ecology) Dangerous Waste Regulations, Washington Administrative Code (WAC) 173-303-610 and WAC 173-303-640. Because dangerous waste does not include the source, special nuclear, and by-product material components of mixed waste, radionuclides are not within the scope of WAC 173-303 or of this closure plan. The information on radionuclides is provided only for general knowledge where appropriate. The known hazardous/dangerous waste remaining at the site before commencing other closure activities consists of the still vessels, a tarry sludge in the storage tanks, and residual contamination in equipment, piping, filters, etc. The treatment and removal of waste at the HSTF are closure activities as defined in the Resource Conservation and Recovery Act (RCRA) of 1976 and WAC 173-303

  15. Special closures for steel drum shipping containers

    International Nuclear Information System (INIS)

    Bonzon, L.L.; Otts, J.V.

    1976-01-01

    The objective of this program was to develop special lid closures for typical, steel drum, radioactive material shipping containers. Previous experience and testing had shown that the existing container was adequate to withstand the required environmental tests for certification, but that the lid and closure were just marginally effective. Specifically, the lid closure failed to consistently maintain a tight seal between the container and the lid after drop tests, thus causing the package contents to be vulnerable in the subsequent fire test. Recognizing the deficiency, the United States Energy Research and Development Administration requested the development of new closure(s) which would: (1) be as strong and resistant to a drop as the bottom of the container; (2) have minimal economic impact on the overall container cost; (3) maximize the use of existing container designs; (4) consider crush loads; and (5) result in less dependence on personnel and loading procedures. Several techniques were evaluated and found to be more effective than the standard closure mechanism. Of these, three new closure techniques were designed, fabricated, and proven to be structurally adequate to provide containment when a 454-kg drum was drop tested from 9.14-m onto an unyielding surface. The three designs were: (1) a 152-mm long lid extension or skirt welded to the standard drum lid, (2) a separate inner lid, with 152-mm long skirt and (3) C-clamps used at the container-lid interface. Based upon structural integrity, economic impact, and minimal design change, the lid extension is the recommended special closure

  16. The 300 area waste acid treatment system closure plan

    International Nuclear Information System (INIS)

    Luke, S.N.

    1996-01-01

    The 300 Area Waste Acid Treatment System (WATS) is located within operable units 300-FF-2 (source) and 300-FF-5 (groundwater), as designated in the Hanford Federal Facility Agreement and Consent Order (Tri-Party Agreement) . Operable units 300-FF-2 and 300-FF-5 are scheduled to be remediated using the Comprehensive Environmental Response, Compensation and Liability Act (CERCLA) Remedial Investigation/Feasibility Study (RI/FS) process. Thus, any remediation of the 300 Area WATS with respect to contaminants not produced by those facilities and soils and groundwater will be deferred to the CERCLA RI/FS process. Final closure activities will be completed in 3 phases and certified in accordance with the 300 Area WATS closure plan by the Washington State Department of Ecology (Ecology) and the U.S. Environmental Protection Agency (EPA). It is anticipated that the 300 Area WATS closure would take 2 years to complete

  17. Value of information analysis for Corrective Action Unit 97: Yucca Flat, Nevada Test Site, Nevada

    Energy Technology Data Exchange (ETDEWEB)

    IT Corporation Las Vegas

    1999-11-19

    The value-of-information analysis evaluated data collection options for characterizing groundwater transport of contamination associated with the Yucca Flat and Climax Mine Corrective Action Units. Experts provided inputs for the evaluation of 48 characterization options, which included 27 component activities, 12 combinations of activities (subgroups), and 9 combinations of subgroups (groups). The options range from an individual study using existing data and intended to address a relatively narrow uncertainty to a 52-million dollar group of activities designed to collect and analyze new information to broadly address multiple uncertainties. A modified version of the contaminant transport component of the regional model was used to simulate contaminant transport and to estimate the maximum extent of the contaminant boundary, defined as that distance beyond which the committed effective dose equivalent from the residual radionuclides in groundwater will not exceed 4 millirem per year within 1,000 years. These simulations identified the model parameters most responsible for uncertainty over the contaminant boundary and determined weights indicating the relative importance of these parameters. Key inputs were identified through sensitivity analysis; the five selected parameters were flux for flow into Yucca Flat from the north, hydrologic source term, effective porosity and diffusion parameter for the Lower Carbonate Aquifer, and path length from the Volcanic Confining Unit to the Lower Carbonate Aquifer. Four measures were used to quantify uncertainty reduction. Using Bayesian analysis, the options were compared and ranked based on their costs and estimates of their effectiveness at reducing the key uncertainties relevant to predicting the maximum contaminant boundary.

  18. Value of information analysis for Corrective Action Unit 97: Yucca Flat, Nevada Test Site, Nevada

    International Nuclear Information System (INIS)

    1999-01-01

    The value-of-information analysis evaluated data collection options for characterizing groundwater transport of contamination associated with the Yucca Flat and Climax Mine Corrective Action Units. Experts provided inputs for the evaluation of 48 characterization options, which included 27 component activities, 12 combinations of activities (subgroups), and 9 combinations of subgroups (groups). The options range from an individual study using existing data and intended to address a relatively narrow uncertainty to a 52-million dollar group of activities designed to collect and analyze new information to broadly address multiple uncertainties. A modified version of the contaminant transport component of the regional model was used to simulate contaminant transport and to estimate the maximum extent of the contaminant boundary, defined as that distance beyond which the committed effective dose equivalent from the residual radionuclides in groundwater will not exceed 4 millirem per year within 1,000 years. These simulations identified the model parameters most responsible for uncertainty over the contaminant boundary and determined weights indicating the relative importance of these parameters. Key inputs were identified through sensitivity analysis; the five selected parameters were flux for flow into Yucca Flat from the north, hydrologic source term, effective porosity and diffusion parameter for the Lower Carbonate Aquifer, and path length from the Volcanic Confining Unit to the Lower Carbonate Aquifer. Four measures were used to quantify uncertainty reduction. Using Bayesian analysis, the options were compared and ranked based on their costs and estimates of their effectiveness at reducing the key uncertainties relevant to predicting the maximum contaminant boundary

  19. POST-CLOSURE INSPECTION REPORT FOR CORRECTIVE ACTION UNIT 92: AREA 6 DECON POND FACILITY, NEVADA TEST SITE, NEVADA FOR CALENDAR YEAR 2005

    International Nuclear Information System (INIS)

    2006-01-01

    This Post-Closure Inspection Report provides an analysis and summary of inspections for Corrective Action Unit (CAU) 92, Area 6 Decon Pond Facility, Nevada Test Site, Nevada. CAU 92 was closed in accordance with the Resource Conservation and Recovery Act (RCRA) Part B Operational Permit (Nevada Division of Environmental Protection (NDEP), 1995) and the Federal Facility Agreement and Consent Order of 1996. Closure activities were completed on February 16, 1999, and the Closure Report (U.S. Department of Energy, Nevada Operations Office, 1999) was approved and a Notice of Completion issued by the NDEP on May 11, 1999. CAU 92 consists of two Corrective Action Sites (CASs): CAS 06-04-01, Decon Pad Oil/Water Separator; and CAS 06-05-02, Decontamination Pond (RCRA). Both CASs have use restrictions; however, only CAS 06-05-02 requires post-closure inspections. Visual inspections of the cover and fencing at CAS 06-05-02 are performed quarterly. Additional inspections are conducted if precipitation occurs in excess of 1.28 centimeters (cm) (0.50 inches [in]) in a 24-hour period. This report covers calendar year 2005. Quarterly site inspections were performed in March, June, September, and December of 2005. All observations indicated the continued integrity of the unit. No issues or concerns were noted, and no corrective actions were necessary. Copies of the inspection checklists and field notes completed during each inspection are included in Appendix A. Five additional inspections were performed after precipitation events that exceeded 1.28 cm (0.50 in) within a 24-hour period during 2005. No significant changes in site conditions were noted during these inspections, and no corrective actions were necessary. Copies of the inspection checklists and field notes completed during each inspection are included in Appendix A. Precipitation records for 2005 are included in Appendix C

  20. Closure Report for Corrective Action Unit 357: Mud Pits and Waste Dump, Nevada Test Site, Nevada, Rev. No.: 0

    Energy Technology Data Exchange (ETDEWEB)

    Laura A. Pastor

    2005-04-01

    This Closure Report (CR) presents information supporting closure of Corrective Action Unit (CAU) 357: Mud Pits and Waste Dump, Nevada Test Site (NTS), Nevada. The CR complies with the requirements of the Federal Facility Agreement and Consent Order (FFACO) that was agreed to by the State of Nevada, U.S. Department of Energy (DOE), and the U.S. Department of Defense (FFACO, 1996). Corrective Action Unit 357 is comprised of 14 Corrective Action Sites (CASs) located in Areas 1, 4, 7, 8, 10, and 25 of the NTS (Figure 1-1). The NTS is located approximately 65 miles (mi) northwest of Las Vegas, Nevada. Corrective Action Unit 357 consists of 11 CASs that are mud pits located in Areas 7, 8, and 10. The mud pits were associated with drilling activities conducted on the NTS in support of the underground nuclear weapons testing. The remaining three CASs are boxes and pipes associated with Building 1-31.2el, lead bricks, and a waste dump. These CAS are located in Areas 1, 4, and 25, respectively. The following CASs are shown on Figure 1-1: CAS 07-09-02, Mud Pit; CAS 07-09-03, Mud Pit; CAS 07-09-04, Mud Pit; CAS 07-09-05, Mud Pit; CAS 08-09-01, Mud Pit; CAS 08-09-02, Mud Pit; CAS 08-09-03, Mud Pit; CAS 10-09-02, Mud Pit; CAS 10-09-04, Mud Pit; CAS 10-09-05, Mud Pit; CAS 10-09-06, Mud Pit, Stains, Material; CAS 01-99-01, Boxes, Pipes; CAS 04-26-03, Lead Bricks; and CAS 25-15-01, Waste Dump. The purpose of the corrective action activities was to obtain analytical data that supports the closure of CAU 357. Environmental samples were collected during the investigation to determine whether contaminants exist and if detected, their extent. The investigation and sampling strategy was designed to target locations and media most likely to be contaminated (biased sampling). A general site conceptual model was developed for each CAS to support and guide the investigation as outlined in the Streamlined Approach for Environmental Restoration (SAFER) Plan (NNSA/NSO, 2003b). This CR

  1. A Hydrostratigraphic Model and Alternatives for the Groundwater Flow and Contaminant Transport Model of Corrective Action Unit 97: Yucca Flat-Climax Mine, Lincoln and Nye Counties, Nevada

    Energy Technology Data Exchange (ETDEWEB)

    Geotechnical Sciences Group Bechtel Nevada

    2006-01-01

    A new three-dimensional hydrostratigraphic framework model for the Yucca Flat-Climax Mine Corrective Action Unit was completed in 2005. The model area includes Yucca Flat and Climax Mine, former nuclear testing areas at the Nevada Test Site, and proximal areas. The model area is approximately 1,250 square kilometers in size and is geologically complex. Yucca Flat is a topographically closed basin typical of many valleys in the Basin and Range province. Faulted and tilted blocks of Tertiary-age volcanic rocks and underlying Proterozoic and Paleozoic sedimentary rocks form low ranges around the structural basin. During the Cretaceous Period a granitic intrusive was emplaced at the north end of Yucca Flat. A diverse set of geological and geophysical data collected over the past 50 years was used to develop a structural model and hydrostratigraphic system for the basin. These were integrated using EarthVision? software to develop the 3-dimensional hydrostratigraphic framework model. Fifty-six stratigraphic units in the model area were grouped into 25 hydrostratigraphic units based on each unit's propensity toward aquifer or aquitard characteristics. The authors organized the alluvial section into 3 hydrostratigraphic units including 2 aquifers and 1 confining unit. The volcanic units in the model area are organized into 13 hydrostratigraphic units that include 8 aquifers and 5 confining units. The underlying pre-Tertiary rocks are divided into 7 hydrostratigraphic units, including 3 aquifers and 4 confining units. Other units include 1 Tertiary-age sedimentary confining unit and 1 Mesozoic-age granitic confining unit. The model depicts the thickness, extent, and geometric relationships of these hydrostratigraphic units (''layers'' in the model) along with the major structural features (i.e., faults). The model incorporates 178 high-angle normal faults of Tertiary age and 2 low-angle thrust faults of Mesozoic age. The complexity of the model

  2. Closure Report for Corrective Action Unit 356: Mud Pits and Disposal Sites, Nevada Test Site, Nevada with Errata Sheet

    Energy Technology Data Exchange (ETDEWEB)

    NNSA/NV

    2002-11-12

    This Closure Report (CR) has been prepared for Corrective Action Unit (CAU) 356, Mud Pits and Disposal Sites, in accordance with the Federal Facility Agreement and Consent Order. This CAU is located in Areas 3 and 20 of the Nevada Test Site (NTS) approximately 65 miles northwest of Las Vegas, Nevada. Corrective Action Unit 356 consists of seven Corrective Action Sites (CASs): 03-04-01, Area 3 Change House Septic System; 03-09-01, Mud Pit Spill Over; 03-09-03, Mud Pit; 03-09-04, Mud Pit; 03-09-05, Mud Pit; 20-16-01, Landfill; and 20-22-21, Drums. This CR identifies and rationalizes the U.S. Department of Energy (DOE), National Nuclear Security Administration Nevada Operations Office's (NNSA/NV's) recommendation that no further corrective action and closure in place is deemed necessary for CAU 356. This recommendation is based on the results of field investigation/closure activities conducted November 20, 2001, through January 3, 2002, and March 11 to 14, 2002. These activities were conducted in accordance with the Streamlined Approach for Environmental Restoration Plan (SAFER) for CAU 356. For CASs 03-09-01, 03-09-03, 20-16-01, and 22-20-21, analytes detected in soil during the corrective action investigation were evaluated against Preliminary Action Levels (PALs) and it was determined that no Contaminants of Concern (COCs) were present. Therefore, no further action is necessary for the soil at these CASs. For CASs 03-04-01, 03-09-04, and 03-09-05, analytes detected in soil during the corrective action investigation were evaluated against PALs and identifies total petroleum hydrocarbons (TPHs) and radionuclides (i.e., americium-241 and/or plutonium 239/240) as COCs. The nature, extent, and concentration of the TPH and radionuclide COCs were bounded by sampling and shown to be relatively immobile. Therefore, closure in place is recommended for these CASs in CAU 356. Further, use restrictions are not required at this CAU beyond the NTS use restrictions

  3. Reactor vessel closure head replacements in 1997

    International Nuclear Information System (INIS)

    Anon.

    1997-01-01

    The Framatome-Jeumont Industrie consortium have completed in 1997 28 reactor vessel (RV) closure head replacements, including five on 1300 MWe class PWR units. Framatome manages the operations and handles removal and reinstallation of equipment (not including the control rod drive mechanisms (CRDM)) and the requalification tests, while JI, which manufactures the CRDMs, is involved in the CRDM cutting, re-machining and welding operations, using tools of original design, in order to optimize the RV closure head operation in terms of costs, schedule and dosage

  4. Closure Report for Corrective Action Unit 417: Central Nevada Test Area Surface, Nevada; TOPICAL

    International Nuclear Information System (INIS)

    K. B. Campbell

    2001-01-01

    The following site closure activities were performed at the 34 Corrective Action Sites (CASs) comprising Corrective Action Unit (CAU) 417 and are documented in this report: (1) No closure action was taken at 13 CASs (17 sites): 58-05-01,58-07-01,58-05-04, 58-09-05 (Mud Pits C and D only), 58-35-01,58-05-02,58-09-06 (Mud Pits A, B, C, and D), 58-10-06,58-19-01,58-35-02,58-44-04,58-05-04, and 58-09-03 (Mud Pit E only). (2) Housekeeping activities, collecting scrap materials, and transporting to approved landfill sites at the NTS were used to close seven CASs: 58-44-01,58-44-02,58-44-05, 58-98-03,58-98-01,58-98-02, and 58-98-04. (3) Two CASs (58-05-03 and 58-99-01) were closed by excavation and removal of USTs. (4) Two septic tanks (CASs 58-05-05 and 58-05-06) were closed by backfilling with clean fill. (5) Site posting with above-grade monuments and attached warning signs and land-use restrictions were used to close seven CASs (nine sites): 58-09-02,58-09-05 (Mud Pit E only), 58-09-06 (Mud Pit E only), 58-10-01,58-25-01,58-09-03 (Mud Pits A, B, and D), and 58-10-05. (6) Clean closure by excavation soil with TPH levels greater than the NDEP action level of 100 mg/kg and limited regrading was used to close five CASs: 58-10-03,58-44-06, 58-44-03,58-10-02, and 58-10-04. (7) Construction of engineered covers was used to close in place two CASs: 58-09-01 and 58-09-03 (Mud Pit C only). Following construction, a fence was constructed around each cover to prevent damage to the cover or intrusion by wildlife

  5. 300 Area Process Trenches Modified Closure/Postclosure Plan

    International Nuclear Information System (INIS)

    1997-09-01

    This chapter provides a brief summary of the contents of each chapter of this plan for the closure of the 300 Area Process Trenches (300 APT) treatment, storage, and/or disposal unit. It also provides background information for this unit and discusses how its closure will be integrated with the remedial action for the Comprehensive Environmental Response, Compensation, and Liability Act of 1980 300- FF-1 Operable Unit. The 300 APT is located within the 300 Area of the Hanford Site. This area contained reactor fuel fabrication facilities and research and development laboratories. The 300 APT was constructed and began operations in 1975 as the 316-5 Process Trenches. Effluent was discharged to the trenches by way of the 300 Area process sewer system, which has been the sole source of effluent for the 300 APT. The 316-5 Process Trenches gained Resource Conservation and Recovery Act of 1976 (RCRA) interim status as the 300 APT TSD unit on November 11, 1985. The unit has been administratively closed to discharges of dangerous waste since 1985

  6. Addendum to the Closure Report for Corrective Action Unit 113: Area 25 R-MAD Facility, Nevada National Security Site, Nevada

    International Nuclear Information System (INIS)

    2011-01-01

    This addendum to the Closure Report for Corrective Action Unit 113: Area 25, Reactor Maintenance, Assembly, and Disassembly Facility, Building 3110, Nevada Test Site, Nevada, DOE/NV--891-VOL I-Rev. 1, dated July 2003, provides details of demolition, waste disposal, and use restriction (UR) modification for Corrective Action Unit 113, Area 25 R-MAD Facility. Demolition was completed on July 15, 2010, when the last of the building debris was disposed. Final field activities were concluded on August 30, 2010, after all equipment was demobilized and UR signs were posted. This work was funded by the American Recovery and Reinvestment Act.

  7. Closure Report for Corrective Action Unit 166: Storage Yards and Contaminated Materials, Nevada Test Site, Nevada

    Energy Technology Data Exchange (ETDEWEB)

    NSTec Environmental Restoration

    2009-08-01

    Corrective Action Unit (CAU) 166 is identified in the Federal Facility Agreement and Consent Order (FFACO) as 'Storage Yards and Contaminated Materials' and consists of the following seven Corrective Action Sites (CASs), located in Areas 2, 3, 5, and 18 of the Nevada Test Site: CAS 02-42-01, Condo Release Storage Yd - North; CAS 02-42-02, Condo Release Storage Yd - South; CAS 02-99-10, D-38 Storage Area; CAS 03-42-01, Conditional Release Storage Yard; CAS 05-19-02, Contaminated Soil and Drum; CAS 18-01-01, Aboveground Storage Tank; and CAS 18-99-03, Wax Piles/Oil Stain. Closure activities were conducted from March to July 2009 according to the FF ACO (1996, as amended February 2008) and the Corrective Action Plan for CAU 166 (U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office, 2007b). The corrective action alternatives included No Further Action and Clean Closure. Closure activities are summarized. CAU 166, Storage Yards and Contaminated Materials, consists of seven CASs in Areas 2, 3, 5, and 18 of the NTS. The closure alternatives included No Further Action and Clean Closure. This CR provides a summary of completed closure activities, documentation of waste disposal, and confirmation that remediation goals were met. The following site closure activities were performed at CAU 166 as documented in this CR: (1) At CAS 02-99-10, D-38 Storage Area, approximately 40 gal of lead shot were removed and are currently pending treatment and disposal as MW, and approximately 50 small pieces of DU were removed and disposed as LLW. (2) At CAS 03-42-01, Conditional Release Storage Yard, approximately 7.5 yd{sup 3} of soil impacted with lead and Am-241 were removed and disposed as LLW. As a BMP, approximately 22 ft{sup 3} of asbestos tile were removed from a portable building and disposed as ALLW, approximately 55 gal of oil were drained from accumulators and are currently pending disposal as HW, the portable building was removed and

  8. Closure Report for Corrective Action Unit 166: Storage Yards and Contaminated Materials, Nevada Test Site, Nevada

    International Nuclear Information System (INIS)

    2009-01-01

    Corrective Action Unit (CAU) 166 is identified in the Federal Facility Agreement and Consent Order (FFACO) as 'Storage Yards and Contaminated Materials' and consists of the following seven Corrective Action Sites (CASs), located in Areas 2, 3, 5, and 18 of the Nevada Test Site: CAS 02-42-01, Condo Release Storage Yd - North; CAS 02-42-02, Condo Release Storage Yd - South; CAS 02-99-10, D-38 Storage Area; CAS 03-42-01, Conditional Release Storage Yard; CAS 05-19-02, Contaminated Soil and Drum; CAS 18-01-01, Aboveground Storage Tank; and CAS 18-99-03, Wax Piles/Oil Stain. Closure activities were conducted from March to July 2009 according to the FF ACO (1996, as amended February 2008) and the Corrective Action Plan for CAU 166 (U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office, 2007b). The corrective action alternatives included No Further Action and Clean Closure. Closure activities are summarized. CAU 166, Storage Yards and Contaminated Materials, consists of seven CASs in Areas 2, 3, 5, and 18 of the NTS. The closure alternatives included No Further Action and Clean Closure. This CR provides a summary of completed closure activities, documentation of waste disposal, and confirmation that remediation goals were met. The following site closure activities were performed at CAU 166 as documented in this CR: (1) At CAS 02-99-10, D-38 Storage Area, approximately 40 gal of lead shot were removed and are currently pending treatment and disposal as MW, and approximately 50 small pieces of DU were removed and disposed as LLW. (2) At CAS 03-42-01, Conditional Release Storage Yard, approximately 7.5 yd 3 of soil impacted with lead and Am-241 were removed and disposed as LLW. As a BMP, approximately 22 ft 3 of asbestos tile were removed from a portable building and disposed as ALLW, approximately 55 gal of oil were drained from accumulators and are currently pending disposal as HW, the portable building was removed and disposed as LLW, and

  9. Modeling Approach/Strategy for Corrective Action Unit 97, Yucca Flat and Climax Mine , Revision 0

    Energy Technology Data Exchange (ETDEWEB)

    Janet Willie

    2003-08-01

    The objectives of the UGTA corrective action strategy are to predict the location of the contaminant boundary for each CAU, develop and implement a corrective action, and close each CAU. The process for achieving this strategy includes modeling to define the maximum extent of contaminant transport within a specified time frame. Modeling is a method of forecasting how the hydrogeologic system, including the underground test cavities, will behave over time with the goal of assessing the migration of radionuclides away from the cavities and chimneys. Use of flow and transport models to achieve the objectives of the corrective action strategy is specified in the FFACO. In the Yucca Flat/Climax Mine system, radionuclide migration will be governed by releases from the cavities and chimneys, and transport in alluvial aquifers, fractured and partially fractured volcanic rock aquifers and aquitards, the carbonate aquifers, and in intrusive units. Additional complexity is associated with multiple faults in Yucca Flat and the need to consider reactive transport mechanisms that both reduce and enhance the mobility of radionuclides. A summary of the data and information that form the technical basis for the model is provided in this document.

  10. Optimization of the Area 5 Radioactive Waste Management Site Closure Cover

    Energy Technology Data Exchange (ETDEWEB)

    Shott, Greg; Yucel, Vefa

    2009-04-01

    The U.S. Department of Energy Manual DOE M 435.1-1, “Radioactive Waste Management Manual,” requires that performance assessments demonstrate that releases of radionuclides to the environment are as low as reasonably achievable (ALARA). Quantitative cost benefit analysis of radiation protection options is one component of the ALARA process. This report summarizes a quantitative cost benefit analysis of closure cover thickness for the Area 5 Radioactive Waste Management Site (RWMS) on the Nevada Test Site. The optimum cover thickness that maintains doses ALARA is shown to be the thickness with the minimum total closure cost. Total closure cost is the sum of cover construction cost and the health detriment cost. Cover construction cost is estimated based on detailed cost estimates for closure of the 92-acre Low-Level Waste Management Unit (LLWMU). The health detriment cost is calculated as the product of collective dose and a constant monetary value of health detriment in units of dollars per unit collective dose. Collective dose is the sum of all individual doses in an exposed population and has units of person-sievert (Sv). Five discrete cover thickness options ranging from 2.5 to 4.5 meters (m) (8.2 to 15 feet [ft]) are evaluated. The optimization was subject to the constraints that (1) options must meet all applicable regulatory requirements and that (2) individual doses be a small fraction of background radiation dose. Total closure cost is found to be a monotonically increasing function of cover thickness for the 92-ac LLWMU, the Northern Expansion Area, and the entire Area 5 RWMS. The cover construction cost is orders of magnitude greater than the health detriment cost. Two-thousand Latin hypercube sampling realizations of the relationship between total closure cost and cover thickness are generated. In every realization, the optimum cover thickness is 2.5 m (8.2 ft) for the 92-ac Low-Level Waste Management Unit, the Northern Expansion Area, and the entire

  11. Optimization of the Area 5 Radioactive Waste Management Site Closure Cover

    International Nuclear Information System (INIS)

    Shott, Greg; Yucel, Vefa

    2009-01-01

    The U.S. Department of Energy Manual DOE M 435.1-1, 'Radioactive Waste Management Manual,' requires that performance assessments demonstrate that releases of radionuclides to the environment are as low as reasonably achievable (ALARA). Quantitative cost benefit analysis of radiation protection options is one component of the ALARA process. This report summarizes a quantitative cost benefit analysis of closure cover thickness for the Area 5 Radioactive Waste Management Site (RWMS) on the Nevada Test Site. The optimum cover thickness that maintains doses ALARA is shown to be the thickness with the minimum total closure cost. Total closure cost is the sum of cover construction cost and the health detriment cost. Cover construction cost is estimated based on detailed cost estimates for closure of the 92-acre Low-Level Waste Management Unit (LLWMU). The health detriment cost is calculated as the product of collective dose and a constant monetary value of health detriment in units of dollars per unit collective dose. Collective dose is the sum of all individual doses in an exposed population and has units of person-sievert (Sv). Five discrete cover thickness options ranging from 2.5 to 4.5 meters (m) (8.2 to 15 feet (ft)) are evaluated. The optimization was subject to the constraints that (1) options must meet all applicable regulatory requirements and that (2) individual doses be a small fraction of background radiation dose. Total closure cost is found to be a monotonically increasing function of cover thickness for the 92-ac LLWMU, the Northern Expansion Area, and the entire Area 5 RWMS. The cover construction cost is orders of magnitude greater than the health detriment cost. Two-thousand Latin hypercube sampling realizations of the relationship between total closure cost and cover thickness are generated. In every realization, the optimum cover thickness is 2.5 m (8.2 ft) for the 92-ac Low-Level Waste Management Unit, the Northern Expansion Area, and the entire Area

  12. Monitoring calculation of closure change of Extradosed Cable-stayed Bridge

    Science.gov (United States)

    Shi, Jing Xian; Ran, Zhi Hong

    2018-06-01

    During the construction of extradosed cable-stayed bridge in Yunnan province, China, the construction unit has made certain changes in the construction process of the closure section due to environmental restrictions: remove the hanging basket after the closure, the sling shall not be provided in closure section, the function of the sling is realized by the hanging basket on the 16th beam. In case of this change, the bridge has been constructed to section 15th. In order to ensure the smooth and orderly progress of each stage in the closure phase, this article is arranged according to the construction plan, appropriate adjustment of related procedures, checking the bridge safety at all stages of construction, the stress and force of the main girder are compared to ensure the safety of the construction after closure changes. Adjust the height of the beam of the 16th and 17th to adapt the new construction plan, and the bridge closure smoothly.

  13. Streamlined Approach for Environmental Restoration Closure Report for Corrective Action Unit 120: Areas 5 and 6 Aboveground Storage Tanks, Nevada Test Site, Nevada

    Energy Technology Data Exchange (ETDEWEB)

    Allison Urban

    1999-06-01

    This Closure Report provides documentation for the closure of Corrective Action Unit 120. CAU 120 consists of two Corrective Action Sites located in Areas 5 and 6 of the Nevada Test Site. CAS 05-01-01 is located in Area 5 and consists of three 45,800-liter aboveground storage tanks, piping, and debris associated with Well RNM-1. CAS 06-01-01 in Area 6 consists of two aboveground storage tanks and two tanker trailers All the CAU 120 items have been used to convey or contain radiologically contaminated fluid from post-nuclear event activities at the NTS> Closure of this CAU was completed by collecting samples to identify the appropriate method of disposal for tanks, piping, debris, and tankers in each CAS. Placing low-level radioactive waste into the appropriate containers and disposing of waste in the Area 5 Radioactive Waste Management Site, the Area 9 10C Landfill, and the Area 3 Radioactive Waste Management Site.

  14. Streamlined Approach for Environmental Restoration Closure Report for Corrective Action Unit 120: Areas 5 and 6 Aboveground Storage Tanks, Nevada Test Site, Nevada

    International Nuclear Information System (INIS)

    Allison Urban

    1999-01-01

    This Closure Report provides documentation for the closure of Corrective Action Unit 120. CAU 120 consists of two Corrective Action Sites located in Areas 5 and 6 of the Nevada Test Site. CAS 05-01-01 is located in Area 5 and consists of three 45,800-liter aboveground storage tanks, piping, and debris associated with Well RNM-1. CAS 06-01-01 in Area 6 consists of two aboveground storage tanks and two tanker trailers All the CAU 120 items have been used to convey or contain radiologically contaminated fluid from post-nuclear event activities at the NTS> Closure of this CAU was completed by collecting samples to identify the appropriate method of disposal for tanks, piping, debris, and tankers in each CAS. Placing low-level radioactive waste into the appropriate containers and disposing of waste in the Area 5 Radioactive Waste Management Site, the Area 9 10C Landfill, and the Area 3 Radioactive Waste Management Site

  15. The impact of hospital closures on geographical access: Evidence from four southeastern states of the United States

    Directory of Open Access Journals (Sweden)

    M.L. Burkey

    Full Text Available This paper examines the effects of hospital closures on geographical access by potential patients, using data from four southeastern U.S. states. Using optimization models designed to minimize the adverse effects of hospital closures, extensive computations are performed and the results are discussed. The effects of the closures on the rural areas is also investigated. Finally, the paper determines which hospitals are most likely among those to be closed assuming that up to 10% of the existing hospitals in each of the four states were to be shut down. The overall conclusion of the empirical findings is that while differences exist among the states, efficiency, coverage, and equality measures for geographical access do not suffer significantly if only a few hospitals are closed in each state, provided these closures are done optimally to minimize impact. Further, for efficiency objectives, decision makers can follow a sequential strategy for closures and still be guaranteed optimality. The paper also discusses the effects of hospital closures on equity and it examines whether or not rural areas are disproportionately affected by closures. Keywords: Health care, Access to health care, Proximity, Hospital closures, Location problems, Facility planning

  16. Cavity closure during compression between semi-closed die using superplastic tin-lead alloy

    International Nuclear Information System (INIS)

    Zaid, A. I. O.; Al-Tamimi, M. M.

    2013-01-01

    Superplasticity is a feature of a material or alloy, which allows the material to deform plastically to an extremely large strain at low values of stress under certain loading conditions of strain rate and temperature. Eutectic tin-lead alloy is a practical material for research investigations as it possesses a superplastic behavior at room temperature and low strain rate which makes it a useful tool in simulating the ordinary engineering materials at high strain rate and temperature, and has been extensively used as a model material. In this paper, superplastic tin-lead alloy was used at room temperature to simulate the closure of cavities in steels at high temperatures in the hot region under dynamic loading (high strain rate) under the effect of compressive loads using semi-closed dies (modified dies) with 45 degree inclination and compare the results from these dies with those of flat platens (open dies) published previously. Hollow specimens having different values of bore diameter (Db) to outer diameter (Dout), of the same height and volume were investigated under 40% height reduction. The cavity closure for each specimen was determined. Comparison is made between flat platens and semi-closed dies regarding cavity closure based on bore diameter, bore volume, reduction percentage in bore diameter and reduction percentage in bore volume, at the 40% reduction in height. It was found that modifying the platens (45 degree inclination) resulted in lower values of bore diameters and volume i.e. higher values of reduction in bore diameters and volumes percentages irrespective of the value of bore diameter and the ratio of Db/Dout. (author)

  17. Closure Report for Corrective Action Unit 262: Area 25 Septic Systems and Underground Discharge Point, Nevada Test Site, Nevada

    International Nuclear Information System (INIS)

    Tobiason, D. S.

    2003-01-01

    This Closure Report (CR) documents the activities undertaken to close Corrective Action Unit (CAU) 262: Area 25 Septic Systems and Underground Discharge Point, in accordance with the Federal Facility Agreement and Consent Order (FFACO) of 1996. Site closure was performed in accordance with the Nevada Division of Environmental Protection (NDEP)-approved Corrective Action Plan (CAP) for CAU 262 (U.S. Department of Energy, National Nuclear Security Administration Nevada Operations Office [NNSA/NV, 2002a]). CAU 262 is located at the Nevada Test Site (NTS) approximately 105 kilometers (65 miles) northwest of Las Vegas, Nevada. CAU 262 consists of the following nine Corrective Action Sites (CASs) located in Area 25 of the NTS: CAS 25-02-06, Underground Storage tank CAS 25-04-06, Septic Systems A and B CAS 25-04-07, Septic System CAS 25-05-03, Leachfield CAS 25-05-05, Leachfield CAS 25-05-06, Leachfield CAS 25-05-08, Radioactive Leachfield CAS 25-05-12, Leachfield CAS 25-51-01, Dry Well

  18. Unclassified Source Term and Radionuclide Data for Corrective Action Unit 98: Frenchman Flat Nevada Test Site, Nevada, Rev. No.: 0

    Energy Technology Data Exchange (ETDEWEB)

    Farnham, Irene

    2005-09-01

    Frenchman Flat is one of several areas of the Nevada Test Site (NTS) used for underground nuclear testing (Figure 1-1). These nuclear tests resulted in groundwater contamination in the vicinity of the underground test areas. As a result, the U.S. Department of Energy (DOE), National Nuclear Security Administration Nevada Site Office (NNSA/NSO) is currently conducting a corrective action investigation (CAI) of the Frenchman Flat underground test areas. Since 1996, the Nevada Division of Environmental Protection (NDEP) has regulated NNSA/NSO corrective actions through the ''Federal Facility Agreement and Consent Order'' ([FFACO], 1996). Appendix VI of the FFACO agreement, ''Corrective Action Strategy'', was revised on December 7, 2000, and describes the processes that will be used to complete corrective actions, including those in the Underground Test Area (UGTA) Project. The individual locations covered by the agreement are known as corrective action sites (CASs), which are grouped into corrective action units (CAUs). The UGTA CASs are grouped geographically into five CAUs: Frenchman Flat, Central Pahute Mesa, Western Pahute Mesa, Yucca Flat/Climax Mine, and Rainier Mesa/Shoshone Mountain (Figure 1-1). These CAUs have distinctly different contaminant source, geologic, and hydrogeologic characteristics related to their location (FFACO, 1996). The Frenchman Flat CAU consists of 10 CASs located in the northern part of Area 5 and the southern part of Area 11 (Figure 1-1). This report documents the evaluation of the information and data available on the unclassified source term and radionuclide contamination for Frenchman Flat, CAU 98. The methodology used to estimate hydrologic source terms (HSTs) for the Frenchman Flat CAU is also documented. The HST of an underground nuclear test is the portion of the total inventory of radionuclides that is released over time into the groundwater following the test. The total residual inventory

  19. Impact of Vial Capping on Residual Seal Force and Container Closure Integrity.

    Science.gov (United States)

    Mathaes, Roman; Mahler, Hanns-Christian; Roggo, Yves; Ovadia, Robert; Lam, Philippe; Stauch, Oliver; Vogt, Martin; Roehl, Holger; Huwyler, Joerg; Mohl, Silke; Streubel, Alexander

    2016-01-01

    The vial capping process is a critical unit operation during drug product manufacturing, as it could possibly generate cosmetic defects or even affect container closure integrity. Yet there is significant variability in capping equipment and processes, and their relation to potential defects or container closure integrity has not been thoroughly studied. In this study we applied several methods-residual seal force tester, a self-developed system of a piezo force sensor measurement, and computed tomography-to characterize different container closure system combinations that had been sealed using different capping process parameter settings. Additionally, container closure integrity of these samples was measured using helium leakage (physical container closure integrity) and compared to characterization data. The different capping equipment settings lead to residual seal force values from 7 to 115 N. High residual seal force values were achieved with high capping pre-compression force and a short distance between the capping plate and plunge. The choice of container closure system influenced the obtained residual seal force values. The residual seal force tester and piezoelectric measurements showed similar trends. All vials passed physical container closure integrity testing, and no stopper rupture was seen with any of the settings applied, suggesting that container closure integrity was warranted for the studied container closure system with the chosen capping setting ranges. The vial capping process is a critical unit operation during drug product manufacturing, as it could possibly generate cosmetic defects or even affect container closure integrity. Yet there is significant variability in capping equipment and processes, and their relation to potential defects or container closure integrity has not been thoroughly studied. In this study we applied several methods-residual seal force tester, a self-developed system of a piezo force sensor measurement, and

  20. Decommissioning Unit Cost Data

    International Nuclear Information System (INIS)

    Sanford, P. C.; Stevens, J. L.; Brandt, R.

    2002-01-01

    The Rocky Flats Closure Site (Site) is in the process of stabilizing residual nuclear materials, decommissioning nuclear facilities, and remediating environmental media. A number of contaminated facilities have been decommissioned, including one building, Building 779, that contained gloveboxes used for plutonium process development but did little actual plutonium processing. The actual costs incurred to decommission this facility formed much of the basis or standards used to estimate the decommissioning of the remaining plutonium-processing buildings. Recent decommissioning activities in the first actual production facility, Building 771, implemented a number of process and procedural improvements. These include methods for handling plutonium contaminated equipment, including size reduction, decontamination, and waste packaging, as well as management improvements to streamline planning and work control. These improvements resulted in a safer working environment and reduced project cost, as demonstrated in the overall project efficiency. The topic of this paper is the analysis of how this improved efficiency is reflected in recent unit costs for activities specific to the decommissioning of plutonium facilities. This analysis will allow the Site to quantify the impacts on future Rocky Flats decommissioning activities, and to develop data for planning and cost estimating the decommissioning of future facilities. The paper discusses the methods used to collect and arrange the project data from the individual work areas within Building 771. Regression and data correlation techniques were used to quantify values for different types of decommissioning activities. The discussion includes the approach to identify and allocate overall project support, waste management, and Site support costs based on the overall Site and project costs to provide a ''burdened'' unit cost. The paper ultimately provides a unit cost basis that can be used to support cost estimates for

  1. Closure Report for Corrective Action Unit 425: Area 9 Main Lake Construction Debris Disposal Area, Tonopah Test Range, Nevada

    Energy Technology Data Exchange (ETDEWEB)

    K. B. Campbell

    2003-03-01

    Corrective Action Unit (CAU) 425 is located on the Tonopah Test Range, approximately 386 kilometers (240 miles) northwest of Las Vegas, Nevada. CAU 425 is listed in the Federal Facility Agreement and Consent Order (FFACO, 1996) and is comprised of one Corrective Action Site (CAS). CAS 09-08-001-TA09 consisted of a large pile of concrete rubble from the original Hard Target and construction debris associated with the Tornado Rocket Sled Tests. CAU 425 was closed in accordance with the FFACO and the Nevada Division of Environmental Protection-approved Streamlined Approach for Environmental Restoration Plan for CAU 425: Area 9 Main Lake Construction Debris Disposal Area, Tonopah Test Range, Nevada (U.S. Department of Energy, Nevada Operations Office, 2002). CAU 425 was closed by implementing the following corrective actions: The approved corrective action for this unit was clean closure. Closure activities included: (1) Removal of all the debris from the site. (2) Weighing each load of debris leaving the job site. (3) Transporting the debris to the U.S. Air Force Construction Landfill for disposal. (4) Placing the radioactive material in a U.S. Department of Transportation approved container for proper transport and disposal. (5) Transporting the radioactive material to the Nevada Test Site for disposal. (6) Regrading the job site to its approximate original contours/elevation.

  2. Factors affecting closure of a temporary stoma.

    Science.gov (United States)

    Taylor, Claire; Varma, Sarah

    2012-01-01

    The purpose of the study was to examine time to reversal of a temporary ostomy, reasons for delayed closure, and patient satisfaction with the scheduling of their closure and related hospital care. Cross-sectional, descriptive study. The target population comprised patients who underwent creation of a temporary ostomy and reversal surgery within one National Health System Hospital Trust in the United Kingdom. The population served by this Trust are ethnically and socioeconomically diverse, predominantly living in urban areas around Greater London. Sixty-one persons who met inclusion criteria were identified. A two-step analytical process was undertaken. First, a literature review examining incidence and causes of delayed stoma closure was undertaken. Second, a postal survey of all patients who had had their stoma closed in 2009 was conducted. Respondents were allowed 2 weeks to complete and return the questionnaire. The survey instrument was developed locally and subjected to content validation using ostomy patients, surgical and nursing colleagues. It consisted of 9 questions querying time from original surgery to closure, reasons for delaying closure surgery beyond 12 weeks, and satisfaction with care. Twenty-seven patients returned their questionnaires, indicating they consented to participate; a response rate of 44%. Half of the respondents (n = 14 [52%]) underwent closure surgery within 6 months of stoma formation; the remaining 48% waited more than 6 months (median: 6.5 months, range: 1.5-26 months). Thirteen patients (48%) reported a delay in receiving their stoma closure; the main reason cited was the need for a course of adjuvant postoperative chemotherapy. Three quarters of respondents (22 [74%]) were satisfied with the overall care they received. Findings from this study suggest that stoma closure may be associated with fewest complications if performed before 12 weeks.

  3. Sub-crop geologic map of pre-Tertiary rocks in the Yucca Flat and northern Frenchman Flat areas, Nevada Test Site, southern Nevada

    Energy Technology Data Exchange (ETDEWEB)

    Cole, J.C.; Harris, A.G.; Wahl, R.R.

    1997-10-02

    This map displays interpreted structural and stratigraphic relations among the Paleozoic and older rocks of the Nevada Test Site region beneath the Miocene volcanic rocks and younger alluvium in the Yucca Flat and northern Frenchman Flat basins. These interpretations are based on a comprehensive examination and review of data for more than 77 drillholes that penetrated part of the pre-Tertiary basement beneath these post-middle Miocene structural basins. Biostratigraphic data from conodont fossils were newly obtained for 31 of these holes, and a thorough review of all prior microfossil paleontologic data is incorporated in the analysis. Subsurface relationships are interpreted in light of a revised regional geologic framework synthesized from detailed geologic mapping in the ranges surrounding Yucca Flat, from comprehensive stratigraphic studies in the region, and from additional detailed field studies on and around the Nevada Test Site. All available data indicate the subsurface geology of Yucca Flat is considerably more complicated than previous interpretations have suggested. The western part of the basin, in particular, is underlain by relics of the eastward-vergent Belted Range thrust system that are folded back toward the west and thrust by local, west-vergent contractional structures of the CP thrust system. Field evidence from the ranges surrounding the north end of Yucca Flat indicate that two significant strike-slip faults track southward beneath the post-middle Miocene basin fill, but their subsurface traces cannot be closely defined from the available evidence. In contrast, the eastern part of the Yucca Flat basin is interpreted to be underlain by a fairly simple north-trending, broad syncline in the pre-Tertiary units. Far fewer data are available for the northern Frenchman Flat basin, but regional analysis indicates the pre-Tertiary structure there should also be relatively simple and not affected by thrusting. This new interpretation has implications

  4. Sub-crop geologic map of pre-Tertiary rocks in the Yucca Flat and northern Frenchman Flat areas, Nevada Test Site, southern Nevada

    International Nuclear Information System (INIS)

    Cole, J.C.; Harris, A.G.; Wahl, R.R.

    1997-01-01

    This map displays interpreted structural and stratigraphic relations among the Paleozoic and older rocks of the Nevada Test Site region beneath the Miocene volcanic rocks and younger alluvium in the Yucca Flat and northern Frenchman Flat basins. These interpretations are based on a comprehensive examination and review of data for more than 77 drillholes that penetrated part of the pre-Tertiary basement beneath these post-middle Miocene structural basins. Biostratigraphic data from conodont fossils were newly obtained for 31 of these holes, and a thorough review of all prior microfossil paleontologic data is incorporated in the analysis. Subsurface relationships are interpreted in light of a revised regional geologic framework synthesized from detailed geologic mapping in the ranges surrounding Yucca Flat, from comprehensive stratigraphic studies in the region, and from additional detailed field studies on and around the Nevada Test Site. All available data indicate the subsurface geology of Yucca Flat is considerably more complicated than previous interpretations have suggested. The western part of the basin, in particular, is underlain by relics of the eastward-vergent Belted Range thrust system that are folded back toward the west and thrust by local, west-vergent contractional structures of the CP thrust system. Field evidence from the ranges surrounding the north end of Yucca Flat indicate that two significant strike-slip faults track southward beneath the post-middle Miocene basin fill, but their subsurface traces cannot be closely defined from the available evidence. In contrast, the eastern part of the Yucca Flat basin is interpreted to be underlain by a fairly simple north-trending, broad syncline in the pre-Tertiary units. Far fewer data are available for the northern Frenchman Flat basin, but regional analysis indicates the pre-Tertiary structure there should also be relatively simple and not affected by thrusting. This new interpretation has implications

  5. Closure Report for Corrective Action Unit 135: Areas 25 Underground Storage Tanks, Nevada Test Site, Nevada

    Energy Technology Data Exchange (ETDEWEB)

    D. H. Cox

    2001-06-01

    Corrective Action Unit (CAU) 135, Area 25 Underground Storage Tanks, was closed in accordance with the approved Corrective Action Plan (DOE/NV, 2000). CAU 135 consists of three Corrective Action Sites (CAS). Two of these CAS's were identified in the Corrective Action Investigation Data Quality Objective meeting as being improperly identified as underground storage tanks. CAS 25-02-03 identified as the Deluge Valve Pit was actually an underground electrical vault and CAS 25-02-10 identified as an Underground Storage Tank was actually a former above ground storage tank filled with demineralized water. Both of these CAS's are recommended for a no further action closure. CAS 25-02-01 the Underground Storage Tanks commonly referred to as the Engine Maintenance Assembly and Disassembly Waste Holdup Tanks and Vault was closed by decontaminating the vault structure and conducting a radiological verification survey to document compliance with the Nevada Test Site unrestricted use release criteria. The Area 25 Underground Storage Tanks, (CAS 25-02-01), referred to as the Engine Maintenance, Assembly, and Disassembly (E-MAD) Waste Holdup Tanks and Vault, were used to receive liquid waste from all of the radioactive and cell service area drains at the E-MAD Facility. Based on the results of the Corrective Action Investigation conducted in June 1999, discussed in ''The Corrective Action Investigation Plan for Corrective Action Unit 135: Area 25 Underground Storage Tanks, Nevada Test Site, Nevada'' (DOE/NV, 199a), one sample from the radiological survey of the concrete vault interior exceeded radionuclide preliminary action levels. The analytes from the sediment samples exceeded the preliminary action levels for polychlorinated biphenyls, Resource Conservation and Recovery Act metals, total petroleum hydrocarbons as diesel-range organics, and radionuclides. The CAU 135 closure activities consisted of scabbling radiological ''hot spots

  6. 324 Building radiochemical engineering cells, high-level vault, low-level vault, and associated areas closure plan

    International Nuclear Information System (INIS)

    Barnett, J.M.

    1998-01-01

    The Hanford Site, located adjacent to and north of Richland, Washington, is operated by the US Department of Energy, Richland Operations Office (RL). The 324 Building is located in the 300 Area of the Hanford Site. The 324 Building was constructed in the 1960s to support materials and chemical process research and development activities ranging from laboratory/bench-scale studies to full engineering-scale pilot plant demonstrations. In the mid-1990s, it was determined that dangerous waste and waste residues were being stored for greater than 90 days in the 324 Building Radiochemical Engineering Cells (REC) and in the High-Level Vault/Low-Level Vault (HLV/LLV) tanks. [These areas are not Resource Conservation and Recovery Act of 1976 (RCRA) permitted portions of the 324 Building.] Through the Hanford Federal Facility Agreement and Consent Order (Tri-Party Agreement) Milestone M-89, agreement was reached to close the nonpermitted RCRA unit in the 324 Building. This closure plan, managed under TPA Milestone M-20-55, addresses the identified building areas targeted by the Tri-Party Agreement and provides commitments to achieve the highest degree of compliance practicable, given the special technical difficulties of managing mixed waste that contains high-activity radioactive materials, and the physical limitations of working remotely in the areas within the subject closure unit. This closure plan is divided into nine chapters. Chapter 1.0 provides the introduction, historical perspective, 324 Building history and current mission, and the regulatory basis and strategy for managing the closure unit. Chapters 2.0, 3.0, 4.0, and 5.0 discuss the detailed facility description, process information, waste characteristics, and groundwater monitoring respectively. Chapter 6.0 deals with the closure strategy and performance standard, including the closure activities for the B-Cell, D-Cell, HLV, LLV; piping and miscellaneous associated building areas. Chapter 7.0 addresses the

  7. Corrective Action Decision Document/Closure Report for Corrective Action Unit 375: Area 30 Buggy Unit Craters, Nevada National Security Site, Nevada, Revision 0

    Energy Technology Data Exchange (ETDEWEB)

    Patrick Matthews

    2011-08-01

    Corrective Action Unit 375 comprises three corrective action sites (CASs): (1) 25-23-22, Contaminated Soils Site; (2) 25-34-06, Test Cell A Bunker; and (3) 30-45-01, U-30a, b, c, d, e Craters. The purpose of this CADD/CR is to provide justification and documentation supporting the recommendation that no further corrective action is needed for CAU 375 based on the implementation of corrective action of closure in place with administrative controls at CAS 25-23-22, no further action at CAS 25-34-06, and closure in place with administrative controls and removal of potential source material (PSM) at CAS 30-45-01. Corrective action investigation (CAI) activities were performed from July 28, 2010, through April 4, 2011, as set forth in the Corrective Action Investigation Plan for Corrective Action Unit 375: Area 30 Buggy Unit Craters. The approach for the CAI was divided into two facets: investigation of the primary release of radionuclides, and investigation of other releases (migration in washes and chemical releases). The purpose of the CAI was to fulfill data needs as defined during the data quality objective (DQO) process. The CAU 375 dataset of investigation results was evaluated based on the data quality assessment. This assessment demonstrated the dataset is acceptable for use in fulfilling the DQO data needs. Investigation results were evaluated against final action levels (FALs) established in this document. A radiological dose FAL of 25 millirem per year was established based on the Remote Work Area exposure scenario (336 hours of annual exposure). Radiological doses exceeding the FAL were assumed to be present within the default contamination boundaries at CASs 25-23-22 and 30-45-01. No contaminants were identified at CAS 25-34-06, and no corrective action is necessary. Potential source material in the form of lead plate, lead-acid batteries, and oil within an abandoned transformer were identified at CAS 30-45-01, and corrective actions were undertaken that

  8. Post-Closure Inspection Report for Corrective Action Unit 92: Area 6 Decon Pond Facility, Nevada Test Site, Nevada, for Calendar Year 2006

    International Nuclear Information System (INIS)

    NSTec Environmental Restoration

    2007-01-01

    This Post-Closure Inspection Report provides an analysis and summary of inspections for Corrective Action Unit (CAU) 92, Area 6 Decon Pond Facility. CAU 92 was closed according to the ''Resource Conservation and Recovery Act'' (RCRA) Part B Operational Permit (Nevada Division of Environmental Protection [NDEP], 1995) and the ''Federal Facility Agreement and Consent Order'' (FFACO) of 1996 (FFACO, 1996). Closure activities were completed on February 16, 1999, and the Closure Report (U.S. Department of Energy, Nevada Operations Office, 1999) was approved and a Notice of Completion issued by NDEP on May 11, 1999. CAU 92 consists of two Corrective Action Sites (CASs), CAS 06-04-01, Decon Pad Oil/Water Separator; and CAS 06-05-02, Decontamination Pond (RCRA). Both CASs have use restrictions; however, only CAS 06-05-02 requires post-closure inspections. Visual inspections of the cover and fencing at CAS 06-05-02 are performed quarterly. Additional inspections are conducted if precipitation occurs in excess of 1.28 centimeters (cm) (0.50 inches [in.]) in a 24-hour period. This report covers calendar year 2006. Quarterly site inspections were performed in March, June, September, and December of 2006. All observations indicated the continued integrity of the unit. No issues or concerns were noted, and no corrective actions were necessary. Copies of the inspection checklists and field notes completed during each inspection are included in Appendix A of this report, and photographs taken during the site inspections are included in Appendix B of this report. One additional inspection was performed after a precipitation event that exceeded 1.28 cm (0.50 in.) within a 24-hour period during 2006. No significant changes in site conditions were noted during this inspection, and no corrective actions were necessary. A copy of the inspection checklist and field notes completed during this additional inspection is included in Appendix A of this report. Precipitation records for 2006

  9. Containment closure time following loss of cooling under shutdown conditions of YGN units 3 and 4

    International Nuclear Information System (INIS)

    Seul, Kwang Won; Bang, Young Seok; Kim, Se Won; Kim, Hho Jung

    1998-01-01

    The YGN Units 3 and 4 plant conditions during shutdown operation were reviewed to identify the possible event scenarios following the loss of shutdown cooling. The thermal hydraulic analyses were performed for the five cases of RCS configurations under the worst event scenario, unavailable secondary cooling and no RCS inventory makeup, using the RELAP5/MOD3.2 code to investigate the plant behavior. From the analyses results, times to boil, times to core uncovery and times to core heat up were estimated to determine the containment closure time to prevent the uncontrolled release of fission products to atmosphere. These data provide useful information to the abnormal procedure to cope with the event

  10. Phase II Transport Model of Corrective Action Unit 98: Frenchman Flat, Nevada Test Site, Nye County, Nevada, Revision 1

    Energy Technology Data Exchange (ETDEWEB)

    Gregg Ruskuaff

    2010-01-01

    This document, the Phase II Frenchman Flat transport report, presents the results of radionuclide transport simulations that incorporate groundwater radionuclide transport model statistical and structural uncertainty, and lead to forecasts of the contaminant boundary (CB) for a set of representative models from an ensemble of possible models. This work, as described in the Federal Facility Agreement and Consent Order (FFACO) Underground Test Area (UGTA) strategy (FFACO, 1996; amended 2010), forms an essential part of the technical basis for subsequent negotiation of the compliance boundary of the Frenchman Flat corrective action unit (CAU) by Nevada Division of Environmental Protection (NDEP) and National Nuclear Security Administration Nevada Site Office (NNSA/NSO). Underground nuclear testing via deep vertical shafts was conducted at the Nevada Test Site (NTS) from 1951 until 1992. The Frenchman Flat area, the subject of this report, was used for seven years, with 10 underground nuclear tests being conducted. The U.S. Department of Energy (DOE), NNSA/NSO initiated the UGTA Project to assess and evaluate the effects of underground nuclear tests on groundwater at the NTS and vicinity through the FFACO (1996, amended 2010). The processes that will be used to complete UGTA corrective actions are described in the “Corrective Action Strategy” in the FFACO Appendix VI, Revision No. 2 (February 20, 2008).

  11. Corrective Action Decision Document/Closure Report for Corrective Action Unit 371: Johnnie Boy Crater and Pin Stripe Nevada Test Site, Nevada, Revision 0

    Energy Technology Data Exchange (ETDEWEB)

    Patrick Matthews

    2010-07-01

    This Corrective Action Decision Document/Closure Report has been prepared for Corrective Action Unit 371, Johnnie Boy Crater and Pin Stripe, located within Areas 11 and 18 at the Nevada Test Site, Nevada, in accordance with the Federal Facility Agreement and Consent Order (FFACO). Corrective Action Unit (CAU) 371 comprises two corrective action sites (CASs): • 11-23-05, Pin Stripe Contamination Area • 18-45-01, U-18j-2 Crater (Johnnie Boy) The purpose of this Corrective Action Decision Document/Closure Report is to provide justification and documentation supporting the recommendation that no further corrective action is needed for CAU 371 based on the implementation of corrective actions. The corrective action of closure in place with administrative controls was implemented at both CASs. Corrective action investigation (CAI) activities were performed from January 8, 2009, through February 16, 2010, as set forth in the Corrective Action Investigation Plan for Corrective Action Unit 371: Johnnie Boy Crater and Pin Stripe. The approach for the CAI was divided into two facets: investigation of the primary release of radionuclides and investigation of other releases (migration in washes and chemical releases). The purpose of the CAI was to fulfill data needs as defined during the data quality objective (DQO) process. The CAU 371 dataset of investigation results was evaluated based on the data quality indicator parameters. This evaluation demonstrated the dataset is acceptable for use in fulfilling the DQO data needs. Analytes detected during the CAI were evaluated against final action levels (FALs) established in this document. Radiological doses exceeding the FAL of 25 millirem per year were not found to be present in the surface soil. However, it was assumed that radionuclides are present in subsurface media within the Johnnie Boy crater and the fissure at Pin Stripe. Due to the assumption of radiological dose exceeding the FAL, corrective actions were undertaken

  12. CLOSURE REPORT FOR CORRECTIVE ACTION UNIT 115: AREA 25 TEST CELL A FACILITY, NEVADA TEST SITE, NEVADA

    International Nuclear Information System (INIS)

    2006-01-01

    This Closure Report (CR) describes the activities performed to close CAU 115, Area 25 Test Cell A Facility, as presented in the NDEP-approved SAFER Plan (NNSA/NSO, 2004). The SAFER Plan includes a summary of the site history, process knowledge, and closure standards. This CR provides a summary of the completed closure activities, documentation of waste disposal, and analytical and radiological data to confirm that the remediation goals were met and to document final site conditions. The approved closure alternative as presented in the SAFER Plan for CAU 115 (NNSA/NSO, 2004) was clean closure; however, closure in place was implemented under a Record of Technical Change (ROTC) to the SAFER Plan when radiological surveys indicated that the concrete reactor pad was radiologically activated and could not be decontaminated to meet free release levels. The ROTC is included as Appendix G of this report. The objectives of closure were to remove any trapped residual liquids and gases, dispose regulated and hazardous waste, decontaminate removable radiological contamination, demolish and dispose aboveground structures, remove the dewar as a best management practice (BMP), and characterize and restrict access to all remaining radiological contamination. Radiological contaminants of concern (COCs) included cobalt-60, cesium-137, strontium-90, uranium-234/235/236/238, and plutonium-239/240. Additional COCs included Resource Conservation and Recovery Act (RCRA) metals, polychlorinated biphenyls (PCBs), and asbestos

  13. Analysis on influence of guide vanes closure laws of pump-turbine on load rejection transient process

    Science.gov (United States)

    Yao, Z.; Bi, H. L.; Huang, Q. S.; Li, Z. J.; Wang, Z. W.

    2013-12-01

    In load rejection transient process, the sudden shut down of guide vanes may cause units speed rise and a sharp increase in water hammer pressure of diversion system, which endangers the safety operation of the power plant. Adopting reasonable guide vane closure law is a kind of economic and effective measurement to reduce the water hammer pressure and limit rotational speed increases. In this paper, combined with Guangzhou Pumped Storage Power Station plant A, the load rejection condition under different guide vanes closure laws is calculated and the key factor of guide vanes closure laws on the impact of the load rejection transition process is analyzed. The different inflection points, which are the closure modes, on the impact of unit speed change, water level fluctuation of surge tank, and the pressure fluctuation of volute inlet and draft tube inlet are further discussed. By compared with the calculation results, a reasonable guide vanes inflection point position can be determined according to security requirements and a reasonable guide vanes closure law can be attained to effectively coordinate the unit speed rise and the rapid pressure change in the load rejection transient process.

  14. Corrective Action Decision Document/Closure Report for Corrective Action Unit 500: Test Cell A Septic System, Nevada Test Site, Nevada, Rev. 0

    International Nuclear Information System (INIS)

    2000-01-01

    This Corrective Action Decision Document/Closure Report (CADD/CR) has been prepared for Corrective Action Unit (CAU) 500: Test Cell A Septic System, in accordance with the Federal Facility Agreement and Consent Order. Located in Area 25 at the Nevada Test Site in Nevada, CAU 500 is comprised of one Corrective Action Site, CAS 25-04-05. This CADD/CR identifies and rationalizes the U.S. Department of Energy, Nevada Operations Office's (DOE/NV's) recommendation that no corrective action is deemed necessary for CAU 500. The Corrective Action Decision Document and Closure Report have been combined into one report based on sample data collected during the field investigation performed between February and May 1999, which showed no evidence of soil contamination at this site. The clean closure justification for CAU 500 is based on these results. Analytes detected were evaluated against preliminary action levels (PALs) to determine contaminants of concern (COCs) for CAU 500, and it was determined that the PALs were not exceeded for total volatile organic compounds, total semivolatile organic compounds, total petroleum hydrocarbons, polychlorinated biphenyls, total Resource Conservation and Recovery Act metals, gamma-emitting radionuclides, isotopic uranium, and strontium-90 for any of the soil samples collected. COCs were identified only within the septic tank and distribution box at the CAU. No COCs were identified outside these two areas; therefore, no corrective action was necessary for the soil. Closure activities were performed to address the COCs identified within the septic tank and distribution box. The DOE/NV recommended that neither corrective action nor a corrective action plan was required at CAU 500. Further, no use restrictions were required to be placed on CAU 500, and the septic tank and distribution box have been closed in accordance with all applicable state and federal regulations for closure of the site

  15. Value of information analysis for corrective action unit No. 98: Frenchman Flat

    International Nuclear Information System (INIS)

    1997-06-01

    A value of information analysis has been completed as part of the corrective action process for Frenchman Flat, the first Nevada Test Site underground test area to be scheduled for the corrective action process. A value of information analysis is a cost-benefit analysis applied to the acquisition of new information which is needed to reduce the uncertainty in the prediction of a contaminant boundary surrounding underground nuclear tests in Frenchman Flat. The boundary location will be established to protect human health and the environment from the consequences of using contaminated groundwater on the Nevada Test Site. Uncertainties in the boundary predictions are assumed to be the result of data gaps. The value of information analysis in this document compares the cost of acquiring new information with the benefit of acquiring that information during the corrective action investigation at Frenchman Flat. Methodologies incorporated into the value of information analysis include previous geological modeling, groundwater flow modeling, contaminant transport modeling, statistics, sensitivity analysis, uncertainty analysis, and decision analysis

  16. DISPOSITION PATHS FOR ROCKY FLATS GLOVEBOXES: EVALUATING OPTIONS

    International Nuclear Information System (INIS)

    Lobdell, D.; Geimer, R.; Larsen, P.; Loveland, K.

    2003-01-01

    The Kaiser-Hill Company, LLC has the responsibility for closure activities at the Rocky Flats Environmental Technology Site (RFETS). One of the challenges faced for closure is the disposition of radiologically contaminated gloveboxes. Evaluation of the disposition options for gloveboxes included a detailed analysis of available treatment capabilities, disposal facilities, and lifecycle costs. The Kaiser-Hill Company, LLC followed several processes in determining how the gloveboxes would be managed for disposition. Currently, multiple disposition paths have been chosen to accommodate the needs of the varying styles and conditions of the gloveboxes, meet the needs of the decommissioning team, and to best manage lifecycle costs. Several challenges associated with developing a disposition path that addresses both the radiological and RCRA concerns as well as offering the most cost-effective solution were encountered. These challenges included meeting the radiological waste acceptance criteria of available disposal facilities, making a RCRA determination, evaluating treatment options and costs, addressing void requirements associated with disposal, and identifying packaging and transportation options. The varying disposal facility requirements affected disposition choices. Facility conditions that impacted decisions included radiological and chemical waste acceptance criteria, physical requirements, and measurement for payment options. The facility requirements also impacted onsite activities including management strategies, decontamination activities, and life-cycle cost

  17. Map of mixed prairie grassland vegetation, Rocky Flats, Colorado

    Energy Technology Data Exchange (ETDEWEB)

    Clark, S J.V.; Webber, P J; Komarkova, V; Weber, W A

    1980-01-01

    A color vegetation map at the scale of 1:12,000 of the area surrounding the Rocky Flats, Rockwell International Plant near Boulder, Colorado, provides a permanent record of baseline data which can be used to monitor changes in both vegetation and environment and thus to contribute to future land management and land-use policies. Sixteen mapping units based on species composition were identified, and characterized by two 10-m/sup 2/ vegetation stands each. These were grouped into prairie, pasture, and valley side on the basis of their species composition. Both the mapping units and these major groups were later confirmed by agglomerative clustering analysis of the 32 vegetation stands on the basis of species composition. A modified Bray and Curtis ordination was used to determine the environmental factor complexes controlling the distribution of vegetation at Rocky flats. Recommendations are made for future policies of environmental management and predictions of the response to environmental change of the present vegetation at the Rocky Flats site.

  18. Autonomic Closure for Turbulent Flows Using Approximate Bayesian Computation

    Science.gov (United States)

    Doronina, Olga; Christopher, Jason; Hamlington, Peter; Dahm, Werner

    2017-11-01

    Autonomic closure is a new technique for achieving fully adaptive and physically accurate closure of coarse-grained turbulent flow governing equations, such as those solved in large eddy simulations (LES). Although autonomic closure has been shown in recent a priori tests to more accurately represent unclosed terms than do dynamic versions of traditional LES models, the computational cost of the approach makes it challenging to implement for simulations of practical turbulent flows at realistically high Reynolds numbers. The optimization step used in the approach introduces large matrices that must be inverted and is highly memory intensive. In order to reduce memory requirements, here we propose to use approximate Bayesian computation (ABC) in place of the optimization step, thereby yielding a computationally-efficient implementation of autonomic closure that trades memory-intensive for processor-intensive computations. The latter challenge can be overcome as co-processors such as general purpose graphical processing units become increasingly available on current generation petascale and exascale supercomputers. In this work, we outline the formulation of ABC-enabled autonomic closure and present initial results demonstrating the accuracy and computational cost of the approach.

  19. Containment closure time following loss of cooling under shutdown conditions of YGN units 3 and 4

    Energy Technology Data Exchange (ETDEWEB)

    Seul, Kwang Won; Bang, Young Seok; Kim, Se Won; Kim, Hho Jung [Korea Institute of Nuclear Safety, Taejon (Korea, Republic of)

    1998-12-31

    The YGN Units 3 and 4 plant conditions during shutdown operation were reviewed to identify the possible event scenarios following the loss of shutdown cooling. The thermal hydraulic analyses were performed for the five cases of RCS configurations under the worst event scenario, unavailable secondary cooling and no RCS inventory makeup, using the RELAP5/MOD3.2 code to investigate the plant behavior. From the analyses results, times to boil, times to core uncovery and times to core heat up were estimated to determine the containment closure time to prevent the uncontrolled release of fission products to atmosphere. These data provide useful information to the abnormal procedure to cope with the event. 6 refs., 7 figs., 2 tabs. (Author)

  20. Closure Report for Corrective Action Unit 143: Area 25 Contaminated Waste Dumps, Nevada Test Site, Nevada

    International Nuclear Information System (INIS)

    Tobiason, D. S.

    2002-01-01

    This Closure Report (CR) has been prepared for the Area 25 Contaminated Waste Dumps (CWD), Corrective Action Unit (CAU) 143 in accordance with the Federal Facility Agreement and Consent Order [FFACO] (FFACO, 1996) and the Nevada Division of Environmental Protection (NDEP)-approved Corrective Action Plan (CAP) for CAU 143: Area 25, Contaminated Waste Dumps, Nevada Test Site, Nevada. CAU 143 consists of two Corrective Action Sites (CASs): 25-23-09 CWD No.1, and 25-23-03 CWD No.2. The Area 25 CWDs are historic disposal units within the Area 25 Reactor Maintenance, Assembly, and Disassembly (R-MAD), and Engine Maintenance, Assembly, and Disassembly (E-MAD) compounds located on the Nevada Test Site (NTS). The R-MAD and E-MAD facilities originally supported a portion of the Nuclear Rocket Development Station in Area 25 of the NTS. CWD No.1 CAS 25-23-09 received solid radioactive waste from the R-MAD Compound (East Trestle and West Trench Berms) and 25-23-03 CWD No.2 received solid radioactive waste from the E-MAD Compound (E-MAD Trench)

  1. Corrective Action Decision Document/Closure Report for Corrective Action Unit 511: Waste Dumps (Piles and Debris) Nevada Test Site, Nevada, Rev. No.: 0

    Energy Technology Data Exchange (ETDEWEB)

    Pastor, Laura

    2005-12-01

    This Corrective Action Decision Document/Closure Report has been prepared for Corrective Action Unit (CAU) 511, Waste Dumps (Piles & Debris). The CAU is comprised of nine corrective action sites (CASs) located in Areas 3, 4, 6, 7, 18, and 19 of the Nevada Test Site, Nevada, in accordance with the ''Federal Facility Agreement and Consent Order'' (1996). Corrective Action Unit 511 is comprised of nine CASs: (1) 03-08-02, Waste Dump (Piles & Debris); (2) 03-99-11, Waste Dump (Piles); (3) 03-99-12, Waste Dump (Piles & Debris); (4) 04-99-04, Contaminated Trench/Berm; (5) 06-16-01, Waste Dump (Piles & Debris); (6) 06-17-02, Scattered Ordnance/Automatic Weapons Range; (7) 07-08-01, Contaminated Mound; (8) 18-99-10, Ammunition Dump; and (9) 19-19-03, Waste Dump (Piles & Debris). The purpose of this Corrective Action Decision Document/Closure Report is to provide justification and documentation supporting the recommendation for closure of CAU 511 with no further corrective action. To achieve this, corrective action investigation (CAI) and closure activities were performed from January 2005 through August 2005, as set forth in the ''Corrective Action Investigation Plan for Corrective Action Unit 511: Waste Dumps (Piles & Debris)'' (NNSA/NSO, 2004) and Record of Technical Change No. 1. The purpose of the CAI was to fulfill the following data needs as defined during the data quality objective process: (1) Determine whether contaminants of concern (COCs) are present. (2) If COCs are present, determine their nature and extent. (3) Provide sufficient information and data to complete appropriate corrective actions. The CAU 511 dataset from the investigation results was evaluated based on the data quality indicator parameters. This evaluation demonstrated the quality and acceptability of the dataset for use in fulfilling the data quality objective data needs. Analytes detected during the CAI were evaluated against appropriate preliminary

  2. Integrated wastewater management planning for DOE's Rocky Flats Environmental Technology Site

    International Nuclear Information System (INIS)

    Hopkins, J.; Barthel, J.; Wheeler, M.; Conroy, K.

    1996-01-01

    Rocky Mountain Remediation Services, L.L.C. (RMRS), jointly formed by Morrison Knudsen Corporation and BNFL Inc., provides international experience in the nuclear, environmental, waste management, decontamination and decommissioning (D ampersand D) , and project management industry. The company is currently the environmental restoration, waste management, and D ampersand D subcontractor for Kaiser-Hill Company at the Rocky Flats Environmental Technology Site (RFETS). RMRS offers unique solutions and state-of-the-art technology to assist in resolving the issues that face industries today. RMRS has been working on methods to improve cost savings recognized at RFETS, through application of unique technologies and process engineering. RMRS prepared and is implementing a strategy that focused on identifying an approach to improve cost savings in current wastewater treatment systems and to define a low-cost, safe and versatile wastewater treatment system for the future. Development of this strategy, was targeted by Department of Energy (DOE) Headquarters, DOE Rocky Flats Field Office and Kaiser-Hill as a ''Project Breakthrough'' where old concepts were thrown out the door and the project goals and objectives were developed from the groundup. The objectives of the strategy developed in a project break through session with DOE included lower lifecycle costs, shutdown of one of two buildings at RFETS, Building 374 or Building 774, reduced government capital investment, and support of site closure program goals, identified as the site's Accelerated Site Action Plan (ASAP). The recommended option allows for removal of water treatment functions from Building 374, the existing process wastewater treatment facility. This option affords the lowest capital cost, lowest unit operating cost, lowest technical management risk, greatest support of ASAP phasing and provides the greatest flexibility for design with unforeseen future needs

  3. Association of land use and its change with beach closure in the United States, 2004-2013

    Science.gov (United States)

    Land use and its change have great influences on water quality. However, their impacts on microbial contamination of beach water have been rarely investigated and their relationship with beach closure is still unknown. Here, we analyzed beach closure data obtained from 2004 to 20...

  4. Performance characteristics of a novel blood bag in-line closure device and subsequent product quality assessment

    Science.gov (United States)

    Serrano, Katherine; Levin, Elena; Culibrk, Brankica; Weiss, Sandra; Scammell, Ken; Boecker, Wolfgang F; Devine, Dana V

    2010-01-01

    BACKGROUND In high-volume processing environments, manual breakage of in-line closures can result in repetitive strain injury (RSI). Furthermore, these closures may be incorrectly opened causing shear-induced hemolysis. To overcome the variability of in-line closure use and minimize RSI, Fresenius Kabi developed a new in-line closure, the CompoFlow, with mechanical openers. STUDY DESIGN AND METHODS The consistency of the performance of the CompoFlow closure device was assessed, as was its effect on component quality. A total of 188 RBC units using CompoFlow blood bag systems and 43 using the standard bag systems were produced using the buffy coat manufacturing method. Twenty-six CompoFlow platelet (PLT) concentrates and 10 control concentrates were prepared from pools of four buffy coats. RBCs were assessed on Days 1, 21, and 42 for cellular variables and hemolysis. PLTs were assessed on Days 1, 3, and 7 for morphology, CD62P expression, glucose, lactate, and pH. A total of 308 closures were excised after processing and the apertures were measured using digital image analysis. RESULTS The use of the CompoFlow device significantly improved the mean extraction time with 0.46 ± 0.11 sec/mL for the CompoFlow units and 0.52 ± 0.13 sec/mL for the control units. The CompoFlow closures showed a highly reproducible aperture after opening (coefficient of variation, 15%) and the device always remained opened. PLT and RBC products showed acceptable storage variables with no differences between CompoFlow and control. CONCLUSIONS The CompoFlow closure devices improved the level of process control and processing time of blood component production with no negative effects on product quality. PMID:20529007

  5. Completion Report for the Well ER-6-2 Site Corrective Action Unit 97: Yucca Flat - Climax Mine

    International Nuclear Information System (INIS)

    2008-01-01

    Well ER-6-2 and its satellite hole, Well ER-6-2 No.1, were drilled for the U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office in support of the Nevada Environmental Restoration Project at the Nevada Test Site, Nye County, Nevada. Well ER-6-2 was drilled in two stages in 1993 and 1994; the satellite hole, Well ER-6-2 No.1 was drilled nearby in 1993 but was abandoned. The wells were drilled as part of a hydrogeologic investigation program for the Yucca Flat-Climax Mine Corrective Action Unit Number 97, in the northeastern portion of the Nevada Test Site. The wells are located in Yucca Flat, within Area 6 of the Nevada Test Site. The wells provided information regarding the radiological and hydrogeological environment in a potentially down-gradient position from tests conducted in northern and central Yucca Flat. Construction of Well ER-6-2 began with a 1.2-meter-diameter surface conductor hole, which was drilled and cased off to a depth of 30.8 meters below the surface. A 50.8-centimeter diameter surface hole was then rotary drilled to the depth of 578.5 meters and cased off to the depth of 530.4 meters. The hole diameter was then reduced to 27.0 centimeters, and the borehole was advanced to a temporary depth of 611.4 meters. The borehole was conventionally cored to a total depth of 1,045 meters with a diameter of 14.0 centimeters. Borehole sloughing required cementing and re-drilling of several zones. The open-hole completion accesses the lower carbonate aquifer, the CP thrust fault, and the upper clastic confining unit. A fluid level depth of 543.2 meters was most recently measured in the open borehole in September 2007. No radionuclides were encountered during drilling. The satellite hole Well ER-6-2 No.1 was drilled approximately 15.2 meters north of Well ER-6-2 on the same drill pad. This was planned to be used as an observation well during future hydrologic testing at Well ER-6-2; however, the satellite hole was abandoned at

  6. Framework for a Risk-Informed Groundwater Compliance Strategy for Corrective Action Unit 98: Frenchman Flat, Nevada National Security Site, Nye County, Nevada, Revision 1

    Energy Technology Data Exchange (ETDEWEB)

    Marutzky, Sam

    2010-09-01

    Note: This document was prepared before the NTS was renamed the Nevada National Security Site (August 23, 2010); thus, all references to the site herein remain NTS. Corrective Action Unit (CAU) 98, Frenchman Flat, at the Nevada Test Site (NTS) was the location of ten underground nuclear tests between 1965 and 1971. As a result, radionuclides were released in the subsurface in the vicinity of the test cavities. Corrective Action Unit 98 and other CAUs at the NTS and offsite locations are being investigated. The Frenchman Flat CAU is one of five Underground Test Area (UGTA) CAUs at the NTS that are being evaluated as potential sources of local or regional impact to groundwater resources. For UGTA sites, including Frenchman Flat, contamination in and around the test cavities will not be remediated because it is technologically infeasible due to the depth of the test cavities (150 to 2,000 feet [ft] below ground surface) and the volume of contaminated groundwater at widely dispersed locations on the NTS. Instead, the compliance strategy for these sites is to model contaminant flow and transport, estimate the maximum spatial extent and volume of contaminated groundwater (over a period of 1,000 years), maintain institutional controls, and restrict access to potentially contaminated groundwater at areas where contaminants could migrate beyond the NTS boundaries.

  7. Owhership of flats

    OpenAIRE

    Přibil, Jan

    2012-01-01

    Ownership of Flats Summary In his diploma thesis "Ownership of Flats", the author focuses on applicable law of flat ownership in the Czech Republic, especially the Flat Ownership Act 72/1994 Sb. The author puts the contemporary regulation in historical context; he describes the theoretical principles underlining the current applicable law and defines in detail the basic legal terms used by the Flat Ownership Act. Original and derivative forms of flat ownership acquisition are explained, namel...

  8. Road Closures

    Data.gov (United States)

    Montgomery County of Maryland — This is an up to date map of current road closures in Montgomery County.This dataset is updated every few minutes from the Department of Transportation road closure...

  9. Performance evaluation of flat panel detector in x-ray fluoroscopy

    International Nuclear Information System (INIS)

    Grewal, R.K.; Mclean, I.D.

    2004-01-01

    Full text: Flat panel detectors are currently replacing the conventional image intensifiers in R-F imaging. We evaluated the performance of a biplane cardiac imaging system (Siemens Axiom Artis dBC), the image acquisition was based on a 25 cm diagonal digital fiat panel detector. Performance characteristics included image quality, typical patient entrance dose and measurement of input to the surface of flat detector. The results were compared with conventional image intensifier systems (Siemens Hicor Unit and Toshiba DPF 2000 A Biplane Unit) used in cardiac imaging at Westmead. Image quality and dose measurements were performed following standard protocols using Westmead test object and 20 cm solid water as absorber in the beam. For measurement of input to the surface of flat detector, 2 mm copper was placed on the collimator. Radcal 3cc and 180 cc ion chambers were used for dose measurements. Image quality: Our measurements on flat panel system indicate that high contrast resolution and threshold contrast is not affected by changing field size. This is expected due to minimum loss of signal in the imaging chain of digital systems and the independence of detector pixel size with change in field of view. While low contrast resolution was found to be similar to conventional systems, high contrast resolution was significantly superior using flat detector system for large and intermediate field of view (25-28 1p/cm against 18-20). Typical patient dose as measured using flat detector system was similar to the conventional Toshiba pulsed fluoroscopy system( ∼ 3 - 8 mGy/min depending on the field size). This was 40-50 % lower than our old Siemens hicore unit. Input to the surface of flat detector was found to vary with field size as is the case with a conventional II system. As described elsewhere, although there is no necessity to increase exposure or video gain in a digital magnification, digital data interpolation process introduces noise. As a result system

  10. Interferometric Imaging Directly with Closure Phases and Closure Amplitudes

    Science.gov (United States)

    Chael, Andrew A.; Johnson, Michael D.; Bouman, Katherine L.; Blackburn, Lindy L.; Akiyama, Kazunori; Narayan, Ramesh

    2018-04-01

    Interferometric imaging now achieves angular resolutions as fine as ∼10 μas, probing scales that are inaccessible to single telescopes. Traditional synthesis imaging methods require calibrated visibilities; however, interferometric calibration is challenging, especially at high frequencies. Nevertheless, most studies present only a single image of their data after a process of “self-calibration,” an iterative procedure where the initial image and calibration assumptions can significantly influence the final image. We present a method for efficient interferometric imaging directly using only closure amplitudes and closure phases, which are immune to station-based calibration errors. Closure-only imaging provides results that are as noncommittal as possible and allows for reconstructing an image independently from separate amplitude and phase self-calibration. While closure-only imaging eliminates some image information (e.g., the total image flux density and the image centroid), this information can be recovered through a small number of additional constraints. We demonstrate that closure-only imaging can produce high-fidelity results, even for sparse arrays such as the Event Horizon Telescope, and that the resulting images are independent of the level of systematic amplitude error. We apply closure imaging to VLBA and ALMA data and show that it is capable of matching or exceeding the performance of traditional self-calibration and CLEAN for these data sets.

  11. Housekeeping Closure Report for Corrective Action Unit 119: Storage Tanks, Nevada Test Site, Nevada

    International Nuclear Information System (INIS)

    2000-01-01

    The Federal Facility Agreement and Consent Order was entered into by the State of Nevada, US Department of Energy, and US Department of Defense to identify sites of potential historical contamination and implement corrective actions based on public health and environmental considerations. The facilities subject to this agreement include the Nevada Test Site (NTS), parts of the Tonopah Test Range, parts to the Nellis Air Force Range, the Central Nevada Test Area, and the Project Shoal Area. Corrective Action Sites (CASs) are areas potentially requiring corrective actions and may include solid waste management units, individual disposal, or release sites. Based on geography, technical similarity, agency responsibility, or other appropriate reasons, CASs are grouped together into Corrective Action Units (CAUs) for the purpose of determining appropriate corrective actions. This report contains the Closure Verification Forms for cleanup activities that were performed at 19 CASs with in CAU 119 on the NTS. The form for each CAS provides the location, directions to the site, general description, and photographs of the site before and after cleanup activities. Activities included verification of the prior removal of both aboveground and underground gas/oil storage tanks, gas sampling tanks, pressure fuel tanks, tank stands, trailers, debris, and other material. Based on these former activities, no further action is required at these CASs

  12. Closure Report for Corrective Action Unit 404: Roller Coaster Sewage Lagoons and North Disposal Trench, Tonopah Test Range, Nevada with ROTC 1, Revision 0

    Energy Technology Data Exchange (ETDEWEB)

    Lynn Kidman

    1998-09-01

    This Closure Report provides the documentation for closure of the Roller Coaster Sewage Lagoons and North Disposal Trench Comective Action Unit (CAU) 404. CAU 404 consists of the Roller Coaster Sewage Lagoons (Corrective Action Site [CAS] TA-03-O01-TA-RC) and the North Disposal Trench (CAS TA-21-001-TA-RC). The site is located on the Tonopah Test Range, approximately 225 kilometers (km) (140 miles [mi]) northwest ofLas Vegas, Nevada. . The sewage lagoons received ~quid sanitary waste horn the Operation Roller Coaster Man Camp in 1963 and debris from subsequent range and construction cleanup activities. The debris and ordnance was subsequently removed and properly dispos~, however, pesticides were detected in soil samples born the bottom of the lagoons above the U,S. Environmental Protection Agency Region IX Prelimimuy Remediation Goals (EPA 1996). . The North Disposal Trench was excavated in 1963. Debris from the man camp and subsequent range and construction cleanup activities was placed in the trench. Investigation results indicated that no constituents of concern were detected in soil samples collected from the trench. Remedial alternative proposed in the Comctive Action Decision Document (CADD) fm the site was “Covering” (DOE, 1997a). The Nevada Division of”Enviromnental Protection (NDEP)-approved Correction Action Plan (CAP) proposed the “Covering” niethodology (1997b). The closure activities were completed in accorhce with the approwil CAP and consisted of baclctllling the sewage lagoons and disposal trench, constructing/planting an engineered/vegetative cover in the area of the sewage lagoons and dikposal trencQ installing a perimeter fence and signs, implementing restrictions on fi~e use, and preparing a Post-Closure Monitoring Plan. “ Since closure activities. for CAU 404 have been completed in accordance with the Nevada Division of Environmental Protection-approved CAP (DOE, 1997b) as documented in this Closure Report, the U.S. Department of

  13. Corrective Action Decision Document/Corrective Action Plan for Corrective Action Unit 98: Frenchman Flat, Nevada National Security Site, Nevada, Revision 1

    Energy Technology Data Exchange (ETDEWEB)

    Irene Farnham and Sam Marutzky

    2011-07-01

    This CADD/CAP follows the Corrective Action Investigation (CAI) stage, which results in development of a set of contaminant boundary forecasts produced from groundwater flow and contaminant transport modeling of the Frenchman Flat CAU. The Frenchman Flat CAU is located in the southeastern portion of the NNSS and comprises 10 underground nuclear tests. The tests were conducted between 1965 and 1971 and resulted in the release of radionuclides in the subsurface in the vicinity of the test cavities. Two important aspects of the corrective action process are presented within this CADD/CAP. The CADD portion describes the results of the Frenchman Flat CAU data-collection and modeling activities completed during the CAI stage. The corrective action objectives and the actions recommended to meet the objectives are also described. The CAP portion describes the corrective action implementation plan. The CAP begins with the presentation of CAU regulatory boundary objectives and initial use restriction boundaries that are identified and negotiated by NNSA/NSO and the Nevada Division of Environmental Protection (NDEP). The CAP also presents the model evaluation process designed to build confidence that the flow and contaminant transport modeling results can be used for the regulatory decisions required for CAU closure. The first two stages of the strategy have been completed for the Frenchman Flat CAU. A value of information analysis and a CAIP were developed during the CAIP stage. During the CAI stage, a CAIP addendum was developed, and the activities proposed in the CAIP and addendum were completed. These activities included hydrogeologic investigation of the underground testing areas, aquifer testing, isotopic and geochemistry-based investigations, and integrated geophysical investigations. After these investigations, a groundwater flow and contaminant transport model was developed to forecast contaminant boundaries that enclose areas potentially exceeding the Safe Drinking

  14. Corrective Action Decision Document/Closure Report for Corrective Action Unit 374: Area 20 Schooner Unit Crater, Nevada National Security Site, Nevada with ROTC 1 and 2, Revision 0

    Energy Technology Data Exchange (ETDEWEB)

    Matthews, Patrick

    2011-07-01

    Corrective Action Unit 374 comprises five corrective action sites (CASs): • 18-22-05, Drum • 18-22-06, Drums (20) • 18-22-08, Drum • 18-23-01, Danny Boy Contamination Area • 20-45-03, U-20u Crater (Schooner) The purpose of this Corrective Action Decision Document/Closure Report is to provide justification and documentation supporting the recommendation that no further corrective action is needed for CAU 374 based on the implementation of corrective actions. The corrective action of closure in place with administrative controls was implemented at CASs 18-23-01 and 20-45-03, and a corrective action of removing potential source material (PSM) was conducted at CAS 20-45-03. The other CASs require no further action; however, best management practices of removing PSM and drums at CAS 18-22-06, and removing drums at CAS 18-22-08 were performed. Corrective action investigation (CAI) activities were performed from May 4 through October 6, 2010, as set forth in the Corrective Action Investigation Plan for Corrective Action Unit 374: Area 20 Schooner Unit Crater, Nevada Test Site, Nevada. The approach for the CAI was divided into two facets: investigating the primary release of radionuclides and investigating other releases (migration in washes and chemical releases). The purpose of the CAI was to fulfill data needs as defined during the data quality objective (DQO) process. The CAU 374 dataset of investigation results was evaluated based on the data quality indicator parameters. This evaluation demonstrated the dataset is acceptable for use in fulfilling the DQO data needs. Analytes detected during the CAI were evaluated against final action levels (FALs) established in this document. Radiological doses exceeding the FAL of 25 millirem per year were found to be present in the surface soil that was sampled. It is assumed that radionuclide levels present in subsurface media within the craters and ejecta fields (default contamination boundaries) at the Danny Boy and

  15. Closure report for CAU 93: Area 6 steam cleaning effluent ponds, Nevada Test Site. Volume 1

    International Nuclear Information System (INIS)

    1997-12-01

    The Steam Cleaning Effluent Ponds (SCEP) waste unit is located in Area 6 at the Nevada Test Site. The SCEPs are evaporation basins formerly used for the disposal of untreated liquid effluent discharged from steam cleaning activities associated with Buildings 6-623 and 6-800. This closure report documents the strategy and analytical results that support the clean closure or closure in place of each of the components within CAU 93. In addition, the report documents all deviations from the approved closure plan and provides rationale for all deviations

  16. Corrective Action Decision Document/Closure Report for Corrective Action Unit 504: 16a-Tunnel Muckpile, Nevada Test Site

    Energy Technology Data Exchange (ETDEWEB)

    NSTec Environmental Restoration

    2010-03-15

    This Corrective Action Decision Document (CADD)/Closure Report (CR) was prepared by the Defense Threat Reduction Agency (DTRA) for Corrective Action Unit (CAU) 504, 16a-Tunnel Muckpile. This CADD/CR is consistent with the requirements of the Federal Facility Agreement and Consent Order (FFACO) agreed to by the State of Nevada; U.S. Department of Energy (DOE), Environmental Management; U.S. Department of Defense; and DOE, Legacy Management. Corrective Action Unit 504 is comprised of four Corrective Action Sites (CASs): • 16-06-01, Muckpile • 16-23-01, Contaminated Burial Pit • 16-23-02, Contaminated Area • 16-99-01, Concrete Construction Waste Corrective Action Site 16-23-01 is not a burial pit; it is part of CAS 16-06-01. Therefore, there is not a separate data analysis and assessment for CAS 16-23-01; it is included as part of the assessment for CAS 16-06-01. In addition to these CASs, the channel between CAS 16-23-02 (Contaminated Area) and Mid Valley Road was investigated with walk-over radiological surveys and soil sampling using hand tools. The purpose of this CADD/CR is to provide justification and documentation supporting the recommendation for closure in place with use restrictions for CAU 504. A CADD was originally submitted for CAU 504 and approved by the Nevada Division of Environmental Protection (NDEP). However, following an agreement between NDEP, DTRA, and the DOE, National Nuclear Security Administration Nevada Site Office to change to a risk-based approach for assessing the corrective action investigation (CAI) data, NDEP agreed that the CAU could be re-evaluated using the risk-based approach and a CADD/CR prepared to close the site.

  17. Completion Report for Model Evaluation Well ER-11-2: Corrective Action Unit 98: Frenchman Flat

    Energy Technology Data Exchange (ETDEWEB)

    NSTec Underground Test Area and Boreholes Programs and Operations

    2013-01-22

    Model Evaluation Well ER-11-2 was drilled for the U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office in support of Nevada Environmental Management Operations at the Nevada National Security Site (formerly known as the Nevada Test Site). The well was drilled in August 2012 as part of a model evaluation program in the Frenchman Flat area of Nye County, Nevada. The primary purpose of the well was to provide detailed geologic, hydrogeologic, chemical, and radionuclide data that can be used to test and build confidence in the applicability of the Frenchman Flat Corrective Action Unit flow and transport models for their intended purpose. In particular, this well was designed to provide data to evaluate the uncertainty in model forecasts of contaminant migration from the upgradient underground nuclear test PIN STRIPE, conducted in borehole U-11b in 1966. Well ER-11-2 will provide information that can be used to refine the Phase II Frenchman Flat hydrostratigraphic framework model if necessary, as well as to support future groundwater flow and transport modeling. The main 31.1-centimeter (cm) hole was drilled to a total depth of 399.6 meters (m). A completion casing string was not set in Well ER-11-2. However, a piezometer string was installed in the 31.1-cm open hole. The piezometer is composed of 7.3-cm stainless-steel tubing hung on 6.0-cm carbon-steel tubing via a crossover sub. The piezometer string was landed at 394.5 m, for monitoring the lower tuff confining unit. Data collected during and shortly after hole construction include composite drill cuttings samples collected every 3.0 m, various geophysical logs, water quality (including tritium and other test-related radionuclides) measurements, and water level measurements. The well penetrated 42.7 m of Quaternary and Tertiary alluvium and 356.9 m of Tertiary volcanic rock. The water-level measured in the piezometer string on September 25, 2012, was 353.8 m below ground surface. No

  18. Nevada test site underground storage tank number 12-13-1: Nevada division of emergency management case number H931130E corrective action unit 450. Closure report

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-01-01

    The project site was identified as an abandoned Underground Storage Tank (UST) to be closed under the Department of Energy/Nevada Operations Office (DOE/NV) Environmental Restoration Division (ERD) Program during Fiscal Year 1993. The United States Environmental Protection Agency (EPA) requires that before permanent closure is completed an assessment of the site must take place. The Nevada Division of Environmental Protection (NDEP) requires assessment and corrective actions for a petroleum substance in the soil which exceeds 100 milligrams per kilogram (mg/kg). Subsequent to the tank removal, a hydrocarbon release was identified at the site. The release was reported to the NDEP by DOE/NV on November 30, 1993. Nevada Division of Environmental Management (NDEM) Case Number H931130E was assigned. This final closure report documents the assessment and corrective actions taken for the hydrocarbon release identified at the site. The Notification of Closure, EPA Form 7530-1 dated March 22, 1994, is provided in Appendix A. A 45-day report documenting the notification for a hydrocarbon release was submitted to NDEP on April 6, 1994.

  19. Multidisciplinary Assessment in Optimising Results of Percutaneous Patent Foramen Ovale Closure.

    Science.gov (United States)

    Davies, Allan; Ekmejian, Avedis; Collins, Nicholas; Bhagwandeen, Rohan

    2017-03-01

    Percutaneous patent foramen ovale (PFO) closure is a therapeutic option to prevent recurrent cerebral ischaemia in patients with cryptogenic stroke and transient cerebral ischaemia (TIA). The apparent lack of benefit seen in previous randomised trials has, in part, reflected inclusion of patients with alternate mechanisms of stroke. The role of formal neurology involvement in accurately delineating the likely aetiology of stroke or TIA is crucial in appropriate identification of patients for device closure. Furthermore, as the benefits of device closure may accrue over time, long-term follow-up is essential to define the role of device closure in management of presumed cryptogenic stroke. We retrospectively reviewed our experience with percutaneous PFO device closure since 2005. All subjects who underwent PFO closure at John Hunter and Lake Macquarie Private Hospitals were included in the study. All patients referred for device closure following cryptogenic stroke or TIA had first undergone formal neurology review with appropriate imaging and exclusion of paroxysmal atrial arrhythmia. Patients with a history of transient ischaemic attack (TIA) are frequently referred to a specialised clinic, aimed to identify patients with conditions not referable to cerebral ischaemia, with investigations initiated by the specialist clinic to elucidate an underlying aetiology. Outcome data was derived from the Hunter New England Area Local Health District Cardiac and Stroke Outcomes Unit, in addition to review of the medical record. The Cardiac and Stroke Outcomes Unit prospectively identified all patients presenting with stroke, TIA and atrial fibrillation. One hundred and twelve consecutive patients undergoing percutaneous patent foramen ovale closure between 2005 and 2015 were identified. The average age was 42.7 years and 57 (50.9%) patients were male. Cryptogenic stroke (68.8%) and transient cerebral ischaemia (23.2%) were the most common indications for PFO closure, with the

  20. Waste Encapsulation and Storage Facility (WESF) Interim Status Closure Plan

    International Nuclear Information System (INIS)

    SIMMONS, F.M.

    2000-01-01

    This document describes the planned activities and performance standards for closing the Waste Encapsulation and Storage Facility (WESF). WESF is located within the 225B Facility in the 200 East Area on the Hanford Facility. Although this document is prepared based on Title 40 Code of Federal Regulations (CFR), Part 265, Subpart G requirements, closure of the storage unit will comply with Washington Administrative Code (WAC) 173-303-610 regulations pursuant to Section 5.3 of the Hanford Federal Facility Agreement and Consent Order (Tri-Party Agreement) Action Plan (Ecology et al. 1996). Because the intention is to clean close WESF, postclosure activities are not applicable to this interim status closure plan. To clean close the storage unit, it will be demonstrated that dangerous waste has not been left onsite at levels above the closure performance standard for removal and decontamination. If it is determined that clean closure is not possible or environmentally is impracticable, the interim status closure plan will be modified to address required postclosure activities. WESF stores cesium and strontium encapsulated salts. The encapsulated salts are stored in the pool cells or process cells located within 225B Facility. The dangerous waste is contained within a double containment system to preclude spills to the environment. In the unlikely event that a waste spill does occur outside the capsules, operating methods and administrative controls require that waste spills be cleaned up promptly and completely, and a notation made in the operating record. Because dangerous waste does not include source, special nuclear, and by-product material components of mixed waste, radionuclides are not within the scope of this documentation. The information on radionuclides is provided only for general knowledge

  1. Corrective Action Decision Document/Closure Report for Corrective Action Unit 550: Smoky Contamination Area Nevada National Security Site, Nevada, Revision 0

    Energy Technology Data Exchange (ETDEWEB)

    Matthews, Patrick K. [Navarro-Intera, LLC (N-I), Las Vegas, NV (United States)

    2015-02-01

    This Corrective Action Decision Document/Closure Report presents information supporting the closure of Corrective Action Unit (CAU) 550: Smoky Contamination Area, Nevada National Security Site, Nevada. CAU 550 includes 19 corrective action sites (CASs), which consist of one weapons-related atmospheric test (Smoky), three safety experiments (Ceres, Oberon, Titania), and 15 debris sites (Table ES-1). The CASs were sorted into the following study groups based on release potential and technical similarities: • Study Group 1, Atmospheric Test • Study Group 2, Safety Experiments • Study Group 3, Washes • Study Group 4, Debris The purpose of this document is to provide justification and documentation supporting the conclusion that no further corrective action is needed for CAU 550 based on implementation of the corrective actions listed in Table ES-1. Corrective action investigation (CAI) activities were performed between August 2012 and October 2013 as set forth in the Corrective Action Investigation Plan for Corrective Action Unit 550: Smoky Contamination Area; and in accordance with the Soils Activity Quality Assurance Plan. The approach for the CAI was to investigate and make data quality objective (DQO) decisions based on the types of releases present. The purpose of the CAI was to fulfill data needs as defined during the DQO process. The CAU 550 dataset of investigation results was evaluated based on a data quality assessment. This assessment demonstrated the dataset is complete and acceptable for use in fulfilling the DQO data needs.

  2. Housekeeping Closure Report for Corrective Action Unit 463: Areas 2, 3, 9, and 25 Housekeeping Waste Sites, Nevada Test Site, Nevada

    International Nuclear Information System (INIS)

    1999-01-01

    The Federal Facility Agreement and Consent Order was entered into by the State of Nevada, U.S. Department of Energy, and U.S. Department of Defense to identify sites of potential historical contamination and implement corrective actions based on public health and environmental considerations. The facilities subject to this agreement include the Nevada Test Site (NTS), parts of the Tonopah Test Range, parts of the Nellis Air Force Range, the Central Nevada Test Area, and the Project Shoal Area. Corrective Action Sites (CASs) are areas potentially requiring corrective actions and may include solid waste management units, individual disposal, or release sites. Based on geography, technical similarity, agency responsibility, or other appropriate reasons, CASs are grouped together into Corrective Action Units (CAUs) for the purposes of determining corrective actions. This report contains the Closure Verification Forms for cleanup activities that were performed at 13 CASs within CAU 463 on the NTS. The Housekeeping Closure Verification Form for each CAS provides the location, directions to the site, general description, and photographs of the site before and after cleanup activities. Housekeeping activities at these sites included removal of debris (e.g., wooden pallets, metal, glass, and trash) and other material. In addition, these forms confirm prior removal of other contaminated materials such as metal drums or buckets, transformers, lead bricks, batteries, and gas cylinders. Based on these activities, no further action is required at these CASs

  3. Closure The Definitive Guide

    CERN Document Server

    Bolin, Michael

    2010-01-01

    If you're ready to use Closure to build rich web applications with JavaScript, this hands-on guide has precisely what you need to learn this suite of tools in depth. Closure makes it easy for experienced JavaScript developers to write and maintain large and complex codebases -- as Google has demonstrated by using Closure with Gmail, Google Docs, and Google Maps. Author and Closure contributor Michael Bolin has included numerous code examples and best practices, as well as valuable information not available publicly until now. You'll learn all about Closure's Library, Compiler, Templates, tes

  4. Streamlined approach for environmental restoration closure report for Corrective Action Unit 120: Areas 5 and 6 aboveground storage tanks, Nevada Test Site, Nevada

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-06-01

    This Closure Report provides documentation for the closure of Corrective Action Unit (CAU) 120 of the Federal Facilities Agreement and Consent Order (FFACO). CAU 120 consists of two Corrective Action Sites (CASs) located in Areas 5 and 6 of the Nevada Test Site (NTS), which are approximately 130 kilometers (80 miles) northwest of Las Vegas, Nevada. CAS 05-01-01 is located in Area 5 and consists of three 45,800-liter (12,100-gallon) aboveground storage tanks (ASTs), piping, and debris associated with Well RNM-1. CAS 06-01-01 consists of two ASTs and two tanker trailers (all portable) that were originally located at the Area 6 Cp-50 Hot Park and which had been moved to the Area 6 Waste Handling Facility. All of the items in CAU 120 have been used to contain or convey radiologically contaminated fluid that was generated during post-nuclear event activities at the NTS.

  5. Streamlined approach for environmental restoration closure report for Corrective Action Unit 120: Areas 5 and 6 aboveground storage tanks Nevada Test Site, Nevada

    International Nuclear Information System (INIS)

    1999-06-01

    This Closure Report provides documentation for the closure of Corrective Action Unit (CAU) 120 of the Federal Facilities Agreement and Consent Order (FFACO). CAU 120 consists of two Corrective Action Sites (CASs) located in Areas 5 and 6 of the Nevada Test Site (NTS), which are approximately 130 kilometers (80 miles) northwest of Las Vegas, Nevada. CAS 05-01-01 is located in Area 5 and consists of three 45,800-liter (12,100-gallon) aboveground storage tanks (ASTs), piping, and debris associated with Well RNM-1. CAS 06-01-01 consists of two ASTs and two tanker trailers (all portable) that were originally located at the Area 6 Cp-50 Hot Park and which had been moved to the Area 6 Waste Handling Facility. All of the items in CAU 120 have been used to contain or convey radiologically contaminated fluid that was generated during post-nuclear event activities at the NTS

  6. Post-Closure Report for Closed Resource Conservation and Recovery Act Corrective Action Units, Nevada National Security Site, Nevada, for Fiscal Year 2014

    Energy Technology Data Exchange (ETDEWEB)

    Silvas, Alissa J. [Nevada Field Office, Las Vegas, NV (United States)

    2015-01-01

    This report serves as the combined annual report for post-closure activities for several Corrective Action Units (CAUs). The locations of the sites are shown in Figure 1. This report covers fiscal year 2014 (October 2013–September 2014). The post-closure requirements for these sites are described in Resource Conservation and Recovery Act Permit Number NEV HW0101 and summarized in each CAU-specific section in Section 1.0 of this report. The results of the inspections, a summary of maintenance activities, and an evaluation of monitoring data are presented in this report. Site inspections are conducted semiannually at CAUs 90 and 91 and quarterly at CAUs 92, 110, 111, and 112. Additional inspections are conducted at CAU 92 if precipitation occurs in excess of 0.50 inches (in.) in a 24-hour period and at CAU 111 if precipitation occurs in excess of 1.0 in. in a 24-hour period. Inspections include an evaluation of the condition of the units, including covers, fences, signs, gates, and locks. In addition to visual inspections, soil moisture monitoring, vegetation evaluations, and subsidence surveys are conducted at CAU 110. At CAU 111, soil moisture monitoring, vegetation evaluations, subsidence surveys, direct radiation monitoring, air monitoring, radon flux monitoring, and groundwater monitoring are conducted. The results of the vegetation surveys and an analysis of the soil moisture monitoring data at CAU 110 are presented in this report. Results of additional monitoring at CAU 111 are documented annually in the Nevada National Security Site Waste Management Monitoring Report Area 3 and Area 5 Radioactive Waste Management Sites and in the Nevada National Security Site Data Report: Groundwater Monitoring Program Area 5 Radioactive Waste Management Site, which will be prepared in approximately June 2015. All required inspections, maintenance, and monitoring were conducted in accordance with the post-closure requirements of the permit. It is recommended to continue

  7. Soil sampling and analysis plan for the 3718-F Alkali Metal Treatment and Storage Facility closure activities

    Energy Technology Data Exchange (ETDEWEB)

    Sonnichsen, J.C.

    1997-05-01

    Amendment V.13.B.b to the approved closure plan (DOE-RL 1995a) requires that a soil sampling and analysis plan be prepared and submitted to the Washington State Department of Ecology (Ecology) for review and approval. Amendment V.13.B.c requires that a diagram of the 3718-F Alkali Metal Treatment and Storage Facility unit (the treatment, storage, and disposal [TSD] unit) boundary that is to be closed, including the maximum extent of operation, be prepared and submitted as part is of the soil sampling and analysis plan. This document describes the sampling and analysis that is to be performed in response to these requirements and amends the closure plan. Specifically, this document supersedes Section 6.2, lines 43--46, and Section 7.3.6 of the closure plan. Results from the analysis will be compared to cleanup levels identified in the closure plan. These cleanup levels will be established using residential exposure assumptions in accordance with the Model Toxics Control Act (MTCA) Cleanup Regulation (Washington Administrative Code [WAC] 173-340) as required in Amendment V.13.B.I. Results of all sampling, including the raw analytical data, a summary of analytical results, a data validation package, and a narrative summary with conclusions will be provided to Ecology as specified in Amendment V.13.B.e. The results and process used to collect and analyze the soil samples will be certified by a licensed professional engineer. These results and a certificate of closure for the balance of the TSD unit, as outlined in Chapter 7.0 of the approved closure plan (storage shed, concrete pad, burn building, scrubber, and reaction tanks), will provide the basis for a closure determination.

  8. Soil sampling and analysis plan for the 3718-F Alkali Metal Treatment and Storage Facility closure activities

    International Nuclear Information System (INIS)

    Sonnichsen, J.C.

    1997-01-01

    Amendment V.13.B.b to the approved closure plan (DOE-RL 1995a) requires that a soil sampling and analysis plan be prepared and submitted to the Washington State Department of Ecology (Ecology) for review and approval. Amendment V.13.B.c requires that a diagram of the 3718-F Alkali Metal Treatment and Storage Facility unit (the treatment, storage, and disposal [TSD] unit) boundary that is to be closed, including the maximum extent of operation, be prepared and submitted as part is of the soil sampling and analysis plan. This document describes the sampling and analysis that is to be performed in response to these requirements and amends the closure plan. Specifically, this document supersedes Section 6.2, lines 43--46, and Section 7.3.6 of the closure plan. Results from the analysis will be compared to cleanup levels identified in the closure plan. These cleanup levels will be established using residential exposure assumptions in accordance with the Model Toxics Control Act (MTCA) Cleanup Regulation (Washington Administrative Code [WAC] 173-340) as required in Amendment V.13.B.I. Results of all sampling, including the raw analytical data, a summary of analytical results, a data validation package, and a narrative summary with conclusions will be provided to Ecology as specified in Amendment V.13.B.e. The results and process used to collect and analyze the soil samples will be certified by a licensed professional engineer. These results and a certificate of closure for the balance of the TSD unit, as outlined in Chapter 7.0 of the approved closure plan (storage shed, concrete pad, burn building, scrubber, and reaction tanks), will provide the basis for a closure determination

  9. Positive Catch & Economic Benefits of Periodic Octopus Fishery Closures: Do Effective, Narrowly Targeted Actions 'Catalyze' Broader Management?

    Science.gov (United States)

    Oliver, Thomas A; Oleson, Kirsten L L; Ratsimbazafy, Hajanaina; Raberinary, Daniel; Benbow, Sophie; Harris, Alasdair

    2015-01-01

    Eight years of octopus fishery records from southwest Madagascar reveal significant positive impacts from 36 periodic closures on: (a) fishery catches and (b) village fishery income, such that (c) economic benefits from increased landings outweigh costs of foregone catch. Closures covered ~20% of a village's fished area and lasted 2-7 months. Octopus landings and catch per unit effort (CPUE) significantly increased in the 30 days following a closure's reopening, relative to the 30 days before a closure (landings: +718%, poctopus fishery income doubled in the 30 days after a closure, relative to 30 days before (+132%, p<0.001, n = 28). Control villages not implementing a closure showed no increase in income after "no ban" closures and modest increases after "ban" closures. Villages did not show a significant decline in income during closure events. Landings in closure sites generated more revenue than simulated landings assuming continued open-access fishing at that site (27/36 show positive net earnings; mean +$305/closure; mean +57.7% monthly). Benefits accrued faster than local fishers' time preferences during 17-27 of the 36 closures. High reported rates of illegal fishing during closures correlated with poor economic performance. We discuss the implications of our findings for broader co-management arrangements, particularly for catalyzing more comprehensive management.

  10. POST-CLOSURE INSPECTION REPORT FOR CORRECTIVE ACTION UNIT 92: AREA 6 DECON PAD FACILITY, NEVADA. TEST SITE NEVADA, FOR THE PERIOD JANUARY 2004 - DECEMBER 2004

    International Nuclear Information System (INIS)

    BECHTEL NEVADA

    2005-01-01

    This Post-Closure Inspection Report provides an analysis and summary of inspections for Corrective Action Unit (CAU) 92, Area 6 Decon Pond Facility, Nevada Test Site, Nevada. CAU 92 was closed in accordance with the Resource Conservation and Recovery Act (RCRA) Part B Operational Permit (Nevada Division of Environmental Protection, 1995) and the Federal Facility Agreement and Consent Order of 1996 on May 11, 1999. CAU 92 consists of two Corrective Action Sites (CASs): CAS 06-04-01, Decon Pad oil/Water Separator; and CAS 06-05-02, Decontamination Pond (RCRA). Both CASs have use restrictions; however, only CAS 06-05-02, Decontamination Pond (RCRA), requires post-closure inspections. CAS 06-04-01, Decon Pad Oil/Water Separator, is located inside the fence at the Building 6-605 compound. This report covers the annual period January 2004 through December 2004

  11. Professional Closure Beyond State Authorization

    Directory of Open Access Journals (Sweden)

    Gitte Sommer Harrits

    2014-03-01

    Full Text Available For decades, the Weberian approach to the study of professions has been strong, emphasizing state authorization and market monopolies as constituting what is considered a profession. Originally, however, the Weberian conception of closure, or the ways in which a profession is constituted and made separate, was broader. This article suggests a revision of the closure concept, integrating insights from Pierre Bourdieu, and conceptualizing professional closure as the intersection of social, symbolic and legal closure. Based on this revision, this article demonstrates how to apply such a concept in empirical studies. This is done by exploring social, symbolic and legal closure across sixteen professional degree programs. The analyses show a tendency for some overlap between different forms of closure, with a somewhat divergent pattern for legal closure. Results support the argument that we need to study these processes as an intersection of different sources of closure, including capital, lifestyles and discourse

  12. Closure Report (CR) for Corrective Action Unit (CAU) 91: Area 3 U-3fi Injection Well with Errata Sheet and Certification, Revision 0

    Energy Technology Data Exchange (ETDEWEB)

    Navarro Nevada Environmental Services

    2010-08-10

    The closure report for CAU 91 has no Use Restriction Form or drawing/map included in the document to describe the use restricted area, however, Section 3.3.3 states that the site will be fenced and signage placed indicating the area as a Resource Conservation and Recovery Act (RCRA) Unit. The drawing that was placed in the FFACO indicating the use restricted area lists the coordinates for the RCRA Unit in Nevada State Plan Coordinates - North American Datum of 1983. In the ensuing years the reporting of coordinates has been standardized so that all coordinates are reported in the same manner, which is: NAD 27 UTM Zone 11 N, meters. This Errata Sheet updates the coordinate reporting to the currently accepted method and includes an aerial photo showing the RCRA Unit with the coordinates listed showing the use restricted area.

  13. Tight closure and vanishing theorems

    International Nuclear Information System (INIS)

    Smith, K.E.

    2001-01-01

    Tight closure has become a thriving branch of commutative algebra since it was first introduced by Mel Hochster and Craig Huneke in 1986. Over the past few years, it has become increasingly clear that tight closure has deep connections with complex algebraic geometry as well, especially with those areas of algebraic geometry where vanishing theorems play a starring role. The purpose of these lectures is to introduce tight closure and to explain some of these connections with algebraic geometry. Tight closure is basically a technique for harnessing the power of the Frobenius map. The use of the Frobenius map to prove theorems about complex algebraic varieties is a familiar technique in algebraic geometry, so it should perhaps come as no surprise that tight closure is applicable to algebraic geometry. On the other hand, it seems that so far we are only seeing the tip of a large and very beautiful iceberg in terms of tight closure's interpretation and applications to algebraic geometry. Interestingly, although tight closure is a 'characteristic p' tool, many of the problems where tight closure has proved useful have also yielded to analytic (L2) techniques. Despite some striking parallels, there had been no specific result directly linking tight closure and L∼ techniques. Recently, however, the equivalence of an ideal central to the theory of tight closure was shown to be equivalent to a certain 'multiplier ideal' first defined using L2 methods. Presumably, deeper connections will continue to emerge. There are two main types of problems for which tight closure has been helpful: in identifying nice structure and in establishing uniform behavior. The original algebraic applications of tight closure include, for example, a quick proof of the Hochster-Roberts theorem on the Cohen-Macaulayness of rings of invariants, and also a refined version of the Brianqon-Skoda theorem on the uniform behaviour of integral closures of powers of ideals. More recent, geometric

  14. 40 CFR 264.228 - Closure and post-closure care.

    Science.gov (United States)

    2010-07-01

    ... remaining wastes to a bearing capacity sufficient to support final cover; and (iii) Cover the surface....112 must include both a plan for complying with paragraph (a)(1) of this section and a contingent plan... practicably removed at closure; and (ii) The owner or operator must prepare a contingent post-closure plan...

  15. 303-K Storage Facility closure plan

    International Nuclear Information System (INIS)

    1993-01-01

    Recyclable scrap uranium with zircaloy-2 and copper silicon alloy, uranium-titanium alloy, beryllium/zircaloy-2 alloy, and zircaloy-2 chips and fines were secured in concrete billets (7.5-gallon containers) in the 303-K Storage Facility, located in the 300 Area. The beryllium/zircaloy-2 alloy and zircaloy-2 chips and fines are designated as mixed waste with the characteristic of ignitability. The concretion process reduced the ignitability of the fines and chips for safe storage and shipment. This process has been discontinued and the 303-K Storage Facility is now undergoing closure as defined in the Resource Conservation and Recovery Act (RCRA) of 1976 and the Washington Administrative Code (WAC) Dangerous Waste Regulations, WAC 173-303-040. This closure plan presents a description of the 303-K Storage Facility, the history of materials and waste managed, and the procedures that will be followed to close the 303-K Storage Facility. The 303-K Storage Facility is located within the 300-FF-3 (source) and 300-FF-5 (groundwater) operable units, as designated in the Hanford Federal Facility Agreement and Consent Order (Tri-Party Agreement) (Ecology et al. 1992). Contamination in the operable units 300-FF-3 and 300-FF-5 is scheduled to be addressed through the Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA) of 1980 remedial action process. Therefore, all soil remedial action at the 304 Facility will be conducted as part of the CERCLA remedial action of operable units 300-FF-3 and 300-FF-5

  16. RCRA corrective action and closure

    International Nuclear Information System (INIS)

    1995-02-01

    This information brief explains how RCRA corrective action and closure processes affect one another. It examines the similarities and differences between corrective action and closure, regulators' interests in RCRA facilities undergoing closure, and how the need to perform corrective action affects the closure of DOE's permitted facilities and interim status facilities

  17. Post-operative analgesic requirement in non-closure and closure of peritoneum during open appendectomy

    International Nuclear Information System (INIS)

    Khan, A.W.; Maqsood, R.; Saleem, M.M.

    2017-01-01

    To compare the mean post-operative analgesic requirement in non-closure and closure of peritoneum during open appendectomy. Study Design: Randomized controlled trial. Place and Duration of Study: Department of General Surgery Combined Military Hospital Quetta, from 1st August 2014 to 30th April 2015. Material and Methods: A total of 60 patients were included in this study and were divided into two groups of 30 each. Patients in group A underwent open appendectomy with closure of peritoneum while patients in group B had non-closure of peritoneum during the same procedure. Post-operatively, pain severity was assessed on visual analogue scale (VAS) numeric pain distress scale. On presence of VAS numeric pain distress scale between 5 to 7, intramuscular (IM) diclofenac sodium was given and on score >7, intravascular (IV) tramadol was given. The final outcome was measured at day 0 and day 1. Results: Pain score and analgesic requirements were significantly less in non-closure group than closure group on day 0 and day 1, showing statistically significant difference between the two groups. Conclusion: Mean post-operative analgesic requirement is significantly less in non-closure group as compared to closure group during open appendectomy. (author)

  18. Primary closure after carotid endarterectomy is not inferior to other closure techniques.

    Science.gov (United States)

    Avgerinos, Efthymios D; Chaer, Rabih A; Naddaf, Abdallah; El-Shazly, Omar M; Marone, Luke; Makaroun, Michel S

    2016-09-01

    Primary closure after carotid endarterectomy (CEA) has been much maligned as an inferior technique with worse outcomes than in patch closure. Our purpose was to compare perioperative and long-term results of different CEA closure techniques in a large institutional experience. A consecutive cohort of CEAs between January 1, 2000, and December 31, 2010, was retrospectively analyzed. Closure technique was used to divide patients into three groups: primary longitudinal arteriotomy closure (PRC), patch closure (PAC), and eversion closure (EVC). End points were perioperative events, long-term strokes, and restenosis ≥70%. Multivariate regression models were used to assess the effect of baseline predictors. There were 1737 CEA cases (bilateral, 143; mean age, 71.4 ± 9.3 years; 56.2% men; 35.3% symptomatic) performed during the study period with a mean clinical follow-up of 49.8 ± 36.4 months (range, 0-155 months). More men had primary closure, but other demographic and baseline symptoms were similar between groups. Half the patients had PAC, with the rest evenly distributed between PRC and EVC. The rate of nerve injury was 2.7%, the rate of reintervention for hematoma was 1.5%, and the length of hospital stay was 2.4 ± 3.0 days, with no significant differences among groups. The combined stroke and death rate was 2.5% overall and 3.9% and 1.7% in the symptomatic and asymptomatic cohort, respectively. Stroke and death rates were similar between groups: PRC, 11 (2.7%); PAC, 19 (2.2%); EVC, 13 (2.9%). Multivariate analysis showed baseline symptomatic disease (odds ratio, 2.4; P = .007) and heart failure (odds ratio, 3.1; P = .003) as predictors of perioperative stroke and death, but not the type of closure. Cox regression analysis demonstrated, among other risk factors, no statin use (hazard ratio, 2.1; P = .008) as a predictor of ipsilateral stroke and severe (glomerular filtration rate <30 mL/min/1.73 m(2)) renal insufficiency (hazard ratio, 2.6; P

  19. Phase II Hydrologic Data for the Groundwater Flow and Contaminant Transport Model of Corrective Action Unit 98: Frenchman Flat, Nye County, Nevada, Rev. No.: 0

    Energy Technology Data Exchange (ETDEWEB)

    John McCord

    2004-12-01

    This report documents pertinent hydrologic data and data analyses as part of the Phase II Corrective Action Investigation (CAI) for Frenchman Flat (FF) Corrective Action Unit (CAU): CAU 98. The purpose of this data compilation and related analyses is to provide the primary reference to support the development of the Phase II FF CAU groundwater flow model.

  20. Closure Report for Corrective Action Unit 330: Areas 6, 22, and 23 Tanks and Spill Sites, Nevada Test Site, Nevada

    Energy Technology Data Exchange (ETDEWEB)

    A. T. Urbon

    2003-07-01

    This Closure Report (CR) documents the activities performed to close Corrective Action Unit (CAU) 330: Areas 6, 22, and 23 Tanks and Spill Sites, in accordance with the Federal Facility Agreement and Consent Order (FFACO of 1996), and the Nevada Division of Environmental Protection (NDEP)-approved Streamlined Approach for Environmental Restoration (SAFER) Plan for CAU 330: Areas 6, 22, and 23 Tanks and Spill Sites, Nevada Test Site (NTS), Nevada (U.S. Department of Energy, National Nuclear Security Administration Nevada Operation Office [NNSA/NV], 2001). CAU 330 consists of the following four Corrective Action Sites (CASs): 06-02-04, 22-99-06, 23-01-02, and 23-25-05 (Figure 1).

  1. Geomorphic Surface Maps of Northern Frenchman Flat, Nevada Test Site, Southern Nevada

    International Nuclear Information System (INIS)

    Bechtel Nevada

    2005-01-01

    Large-scale (1:6000) surficial geology maps of northern Frenchman Flat were developed in 1995 as part of comprehensive site characterization required to operate a low-level radioactive waste disposal facility in that area. Seven surficial geology maps provide fundamental data on natural processes and are the platform needed to reconstruct the Quaternary history of northern Frenchman Flat. Reconstruction of the Quaternary history provides an understanding of the natural processes that act to develop the landscape, and the time-frames involved in landscape development. The mapping was conducted using color and color-infrared aerial photographs and field verification of map unit composition and boundaries. Criteria for defining the map unit composition of geomorphic surface units are based on relative geomorphic position, landform morphology, and degree of preservation of surface morphology. Seven geomorphic surfaces (Units 1 through 7) are recognized, spanning from the early Quaternary to present time

  2. 2727-S Nonradioactive Dangerous Waste Storage Facility Closure Plan

    International Nuclear Information System (INIS)

    Wilczek, T.A.; Laws, J.R.; Izatt, R.D.

    1992-01-01

    This closure plan describes the activities for final closure of the 2727-S Nonradioactive Dangerous Waste Storage (NRDWS) Facility at the Hanford Site. The 2727-S NRDWS Facility provided container storage for nonradioactive dangerous and extremely hazardous wastes generated in the research and development laboratories, process operations, and maintenance and transportation functions throughout the Hanford Site. Storage operations began at the 2727-S NRDWS Facility March 14, 1983, and continued until December 30, 1986, when the last shipment of materials from the facility took place. These storage operations have been moved to the new 616 NRDWS Facility, which is an interim status unit located between the 200 East and 200 West Areas of the Hanford Site

  3. Eocene lake basins in Wyoming and Nevada record rollback of the Farallon flat-slab beneath western North America

    Science.gov (United States)

    Smith, M. E.; Cassel, E. J.; Jicha, B. R.; Singer, B. S.; Carroll, A.

    2014-12-01

    Numerical and conceptual models of flat-slab rollback predict broad initial dynamic subsidence above the slab hinge then uplift and volcanism triggered by the advection of asthenosphere beneath the overriding plate. These predicted surface effects provide a viable but largely untested explanation for lake basin formation in Cordilleran-type orogenies. We argue that the hydrologic closure of both the foreland (early Eocene) and hinterland (late Eocene) of the North American Cordillera were caused by a trenchward-migrating wave of dynamic and thermal topography resulting from progressive removal of the Farallon flat-slab. Two major episodes of hydrologic drainage closure are recorded by Eocene terrestrial strata in the western United States. The first occurred in the retroarc foreland during the early Eocene, and resulted in the deposition of the Green River Fm. The second occurred in the hinterland during the late Eocene and resulted in accumulation of the Elko Fm. In both regions, lake strata overlie fluvial strata and become progressively more evaporative up-section, and are overlain by volcaniclastic strata. Both successions were then truncated by regional unconformities that extend until the Oligocene. We interpret these stratigraphic successions to record trenchward propagation of a regional topographic wave, caused by slab rollback. Migration of the slab-hinge initially caused dynamic subsidence and initiation of lacustrine deposition. Regional surface uplift followed, and was associated with scattered volcanism. Uplift promoted formation of endorheic basins and ultimately the development of regional unconformities. The height of the uplift can be roughly approximated by the preserved thickness of lacustrine and other nonmarine deposits at both locations (0.2-1.0 km). The 40Ar/39Ar and U-Pb geochronology of Green River Fm ash beds indicate that this surface topographic wave migrated trenchward (SW) across the foreland from 53 to 47 Ma at a velocity of ~6 cm

  4. Decontamination and inspection plan for Phase 3 closure of the 300 area waste acid treatment system

    International Nuclear Information System (INIS)

    LUKE, S.N.

    1999-01-01

    This decontamination and inspection plan (DIP) describes decontamination and verification activities in support of Phase 3 closure of the 300 Area Waste Acid Treatment System (WATS). Phase 3 is the third phase of three WATS closure phases. Phase 3 attains clean closure conditions for WATS portions of the 334 and 311 Tank Farms (TF) and the 333 and 303-F Buildings. This DIP also describes designation and management of waste and debris generated during Phase 3 closure activities. Information regarding Phase 1 and Phase 2 for decontamination and verification activities closure can be found in WHC-SD-ENV-AP-001 and HNF-1784, respectively. This DIP is provided as a supplement to the closure plan (DOE/RL-90-11). This DIP provides the documentation for Ecology concurrence with Phase 3 closure methods and activities. This DIP is intended to provide greater detail than is contained in the closure plan to satisfy Ecology Dangerous Waste Regulations, Washington Administrative Code (WAC) 173-303-610 requirement that closure documents describe the methods for removing, transporting, storing, and disposing of all dangerous waste at the unit. The decontamination and verification activities described in this DIP are based on the closure plan and on agreements reached between Ecology and the U.S. Department of Energy, Richland Operations Office (DOE-RL) during Phase 3 closure activity workshops and/or project manager meetings (PMMs)

  5. Corrective Action Decision Document/Closure Report for Corrective Action Unit 266: Area 25 Building 3124 Leachfield, Nevada Test Site, Nevada

    Energy Technology Data Exchange (ETDEWEB)

    NNSA/NV

    2000-02-17

    This Corrective Action Decision Document/Closure Report (CADD/CR) was prepared for Corrective Action Unit (CAU) 266, Area 25 Building 3124 Leachfield, in accordance with the Federal Facility Agreement and Consent Order. Located in Area 25 at the Nevada Test Site in Nevada, CAU 266 includes Corrective Action Site (CAS) 25-05-09. The Corrective Action Decision Document and Closure Report were combined into one report because sample data collected during the corrective action investigation (CAI) indicated that contaminants of concern (COCs) were either not present in the soil, or present at concentrations not requiring corrective action. This CADD/CR identifies and rationalizes the U.S. Department of Energy, Nevada Operations Office's recommendation that no corrective action was necessary for CAU 266. From February through May 1999, CAI activities were performed as set forth in the related Corrective Action Investigation Plan. Analytes detected during the three-stage CAI of CAU 266 were evaluated against preliminary action levels (PALs) to determine COCs, and the analysis of the data generated from soil collection activities indicated the PALs were not exceeded for total volatile/semivolatile organic compounds, total petroleum hydrocarbons, polychlorinated biphenyls, total Resource Conservation and Recovery Act metals, gamma-emitting radionuclides, isotopic uranium/plutonium, and strontium-90 for any of the samples. However, COCs were identified in samples from within the septic tank and distribution box; and the isotopic americium concentrations in the two soil samples did exceed PALs. Closure activities were performed at the site to address the COCs identified in the septic tank and distribution box. Further, no use restrictions were required to be placed on CAU 266 because the CAI revealed soil contamination to be less than the 100 millirems per year limit established by DOE Order 5400.5.

  6. Corrective Action Decision Document/Closure Report for Corrective Action Unit 266: Area 25 Building 3124 Leachfield, Nevada Test Site, Nevada

    International Nuclear Information System (INIS)

    2000-01-01

    This Corrective Action Decision Document/Closure Report (CADD/CR) was prepared for Corrective Action Unit (CAU) 266, Area 25 Building 3124 Leachfield, in accordance with the Federal Facility Agreement and Consent Order. Located in Area 25 at the Nevada Test Site in Nevada, CAU 266 includes Corrective Action Site (CAS) 25-05-09. The Corrective Action Decision Document and Closure Report were combined into one report because sample data collected during the corrective action investigation (CAI) indicated that contaminants of concern (COCs) were either not present in the soil, or present at concentrations not requiring corrective action. This CADD/CR identifies and rationalizes the U.S. Department of Energy, Nevada Operations Office's recommendation that no corrective action was necessary for CAU 266. From February through May 1999, CAI activities were performed as set forth in the related Corrective Action Investigation Plan. Analytes detected during the three-stage CAI of CAU 266 were evaluated against preliminary action levels (PALs) to determine COCs, and the analysis of the data generated from soil collection activities indicated the PALs were not exceeded for total volatile/semivolatile organic compounds, total petroleum hydrocarbons, polychlorinated biphenyls, total Resource Conservation and Recovery Act metals, gamma-emitting radionuclides, isotopic uranium/plutonium, and strontium-90 for any of the samples. However, COCs were identified in samples from within the septic tank and distribution box; and the isotopic americium concentrations in the two soil samples did exceed PALs. Closure activities were performed at the site to address the COCs identified in the septic tank and distribution box. Further, no use restrictions were required to be placed on CAU 266 because the CAI revealed soil contamination to be less than the 100 millirems per year limit established by DOE Order 5400.5

  7. Phase II Contaminant Transport Parameters for the Groundwater Flow and Contaminant Transport Model of Corrective Action Unit 98: Frenchman Flat, Nye County, Nevada, Rev. No.: 0

    Energy Technology Data Exchange (ETDEWEB)

    DeNovio, Nicole M.; Bryant, Nathan; King, Chrissi B.; Bhark, Eric; Drellack, Sigmund L.; Pickens, John F.; Farnham, Irene; Brooks, Keely M.; Reimus, Paul; Aly, Alaa

    2005-04-01

    This report documents pertinent transport data and data analyses as part of the Phase II Corrective Action Investigation (CAI) for Frenchman Flat (FF) Corrective Action Unit (CAU) 98. The purpose of this data compilation and related analyses is to provide the primary reference to support parameterization of the Phase II FF CAU transport model.

  8. Ring closure in actin polymers

    Energy Technology Data Exchange (ETDEWEB)

    Sinha, Supurna, E-mail: supurna@rri.res.in [Raman Research Institute, Bangalore 560080 (India); Chattopadhyay, Sebanti [Doon University, Dehradun 248001 (India)

    2017-03-18

    We present an analysis for the ring closure probability of semiflexible polymers within the pure bend Worm Like Chain (WLC) model. The ring closure probability predicted from our analysis can be tested against fluorescent actin cyclization experiments. We also discuss the effect of ring closure on bend angle fluctuations in actin polymers. - Highlights: • Ring closure of biopolymers. • Worm like chain model. • Predictions for experiments.

  9. The safety and efficacy of the Angio-Seal closure device in diagnostic and interventional neuroangiography setting: a single-center experience with 1,443 closures

    Energy Technology Data Exchange (ETDEWEB)

    Geyik, Serdar; Yavuz, Kivilcim; Akgoz, Ayca; Koc, Osman; Peynircioglu, Bora; Cil, Barbaros; Cekirge, Saruhan; Saatci, Isil [Hacettepe University Hospitals, Radiology Department, Ankara (Turkey)

    2007-09-15

    We evaluated the safety and efficacy of the Angio-Seal closure device used to close arterial puncture sites in patients who had undergone diagnostic cerebral angiography and neurointerventional procedures. A total of 1,443 Angio-Seal devices were placed in 1,099 patients in the Interventional Neuroradiology Unit between May 2005 and August 2006. Of these, 670 were interventional and 745 were diagnostic cerebral angiographic procedures. In 28 patients bilateral puncture of the femoral arteries was performed for endovascular treatment. In 167 patients 286 repeat diagnostic procedures were performed and 30 interventional procedures were followed by re-closure with an Angio-Seal device at the time of repeat puncture. The procedural success rate for antegrade closures was 99.7% for all procedures. The device failed in 5 of 745 diagnostic procedures (0.7%). Major complication occurred in one patient only (0.13%) in the diagnostic group. No minor complications were observed in this group. In the interventional group, the major complication rate was 1.4% (10 of 698 closures) and the minor complication rate was 2.4% (17 of 698 closures). However, in the subgroup of patients with cerebral aneurysms who received heparin in combination with antiplatelet agents after the procedure, the major complication rate was 5.3%, but in the carotid/vertebral stenting group it was 0.8%. Our experience in a relatively large series of patients shows that the use of the Angio-Seal STS vascular closure device is safe and effective in patients undergoing cerebral diagnostic angiography and neurointerventional procedures with an acceptable rate of complications, although the complication rate was higher in the group of patients who received heparin and/or antiplatelet medication. (orig.)

  10. The urethral closure function in continent and stress urinary incontinent women assessed by urethral pressure reflectometry.

    Science.gov (United States)

    Saaby, Marie-Louise

    2014-02-01

    Stress urinary incontinence (SUI) occurs when the bladder pressure exceeds the urethral pressure in connection with physical effort or exertion or when sneezing or coughing and depends both on the strength of the urethral closure function and the abdominal pressure to which it is subjected. The urethral closure function in continent women and the dysfunction causing SUI are not known in details. The currently accepted view is based on the concept of a sphincteric unit and a support system. Our incomplete knowledge relates to the complexity of the closure apparatus and to inadequate assessment methods which so far have not provided robust urodynamic diagnostic tools, severity measures, or parameters to assess outcome after intervention. Urethral Pressure Reflectometry (UPR) is a novel method that measures the urethral pressure and cross-sectional area (by use of sound waves) simultaneously. The technique involves insertion of only a small, light and flexible polyurethane bag in the urethra and therefore avoids the common artifacts encountered with conventional methods. The UPR parameters can be obtained at a specific site of the urethra, e.g. the high pressure zone, and during various circumstances, i.e. resting and squeezing. During the study period, we advanced the UPR technique to enable faster measurement (within 7 seconds by the continuous technique) which allowed assessment during increased intra-abdominal pressure induced by physical straining. We investigated the urethral closure function in continent and SUI women during resting and straining by the "fast" UPR technique. Thereby new promising urethral parameters were provided that allowed characterization of the closure function based on the permanent closure forces (primarily generated by the sphincteric unit, measured by the Po-rest) and the adjunctive closure forces (primarily generated by the support system, measured by the abdominal to urethral pressure impact ratio (APIR)). The new parameters enabled

  11. 200-BP-11 operable unit and 216-B-3 main pond work/closure plan, Hanford Site, Richland, Washington. Volume 1: Field investigation and sampling strategy

    International Nuclear Information System (INIS)

    1994-09-01

    This document coordinates a Resource Conservation and Recovery Act (RCRA) past-practice work plan for the 200-BP-11 Operable Unit and a RCRA closure/postclosure plan for the 216-B-3 Main Pond and 216-B-3-3 Ditch [treatment, storage, and/or disposal (TSD) unit]. Both RCRA TSD and past-practice waste management units are contained within the 200-BP-11 Operable Unit. The 200-BP-11 Operable Unit is a source operable unit located on the east side of the B Plant Source Aggregate Area in the 200 East Area of the Hanford Site. The operable unit lies just east of the 200 East Area perimeter fence and encompass approximately 476 hectares (1,175 acres). Source operable units include waste management units that are potential sources of radioactive and/or hazardous substance contamination. Source waste management units are categorized in the Hanford Federal Facility Agreement and Consent Order as either RCRA TSD, RCRA past-practice, or Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA) past-practice. As listed below and in the Tri-Party Agreement, the 200-BP-11 Operable Unit contains five RCRA past-practice and five RCRA TSD waste management units. Additionally, for RCRA TSD permitting purposes, the RCRA TSD waste management units are subdivided into two RCRA TSD units

  12. Successful completion of a RCRA closure for the Fernald Environmental Management Project

    International Nuclear Information System (INIS)

    Lippitt, J.M.; Kolthoff, K.

    1995-01-01

    This paper discusses the successful completion of a RCRA (Resource Conservation and Recovery Act) closure of a HF (hydrofluoric acid) tank car at FEMP, which is on the national priorities list of hazardous waste sites and is undergoing CERCLA remediation. The HF tank car closure was conducted by FERMCO. Through a combination of sound planning and team work, the HF tank car was closed safely and ahead of schedule. During > 22,000 hr field work required for construction modifications and neutralization of 9,600 gallons of HF and decontamination rinseates, there were no OSHA recordable incidents. The system design avoided additional costs by maximizing use of existing equipment and facilities. This successful closure of the HF tank car demonstrates FEMP's commitment to reducing risks and cleaning up the facility in a manner consistent with objectives of RCRA regulations and the Ohio EPA hazardous waste rules. This in turn facilitated ongoing negotiations with Ohio EPA to integrate RCRA closure and the ongoing CERCLA remediation activities. This paper addresses why the unit was clean closed under an approved RCRA Closure Plan. Integration of EPA regulations for RCRA and CERCLA programs and the DOE-Orders impacting design, construction and operation of an acid neutralization system is also reviewed. The paper concludes with a discussion of lessons learned in the process in preparing the closure plant and through final project close out

  13. POST-CLOSURE INSPECTION AND MONITORING REPORT FOR CORRECTIVE ACTION UNIT 112: AREA 23 HAZARDOUS WASTE TRENCHES, NEVADA TEST SITE, NEVADA; FOR THE PERIOD OCTOBER 2003 - SEPTEMBER 2004

    International Nuclear Information System (INIS)

    BECHTEL NEVADA

    2004-01-01

    Corrective Action Unit (CAU) 112, Area 23 Hazardous Waste Trenches, Nevada Test Site (NTS), Nevada, is a Resource Conservation and Recovery Act (RCRA) unit located in Area 23 of the NTS. This annual Post-Closure Inspection and Monitoring Report provides the results of inspections and monitoring for CAU 112. This report includes a summary and analysis of the site inspections, repair and maintenance, meteorological information, and neutron soil moisture monitoring data obtained at CAU 112 for the current monitoring period, October 2003 through September 2004. Inspections of the CAU 112 RCRA unit were performed quarterly to identify any significant physical changes to the site that could impact the proper operation of the waste unit. The overall condition of the covers and facility was good, and no significant findings were observed. The annual subsidence survey of the elevation markers was conducted on August 23, 2004, and the results indicated that no cover subsidence4 has occurred at any of the markers. The elevations of the markers have been consistent for the past 11 years. The total precipitation for the current reporting period, october 2003 to September 2004, was 14.0 centimeters (cm) (5.5 inches [in]) (National Oceanographic and Atmospheric Administration, Air Resources Laboratory, Special Operations and Research Division, 2004). This is slightly below the average rainfall of 14.7 cm (5.79 in) over the same period from 1972 to 2004. Post-closure monitoring verifies that the CAU 112 trench covers are performing properly and that no water is infiltrating into or out of the waste trenches. Sail moisture measurements are obtained in the soil directly beneath the trenches and compared to baseline conditions for the first year of post-closure monitoring, which began in october 1993. neutron logging was performed twice during this monitoring period along 30 neutron access tubes to obtain soil moisture data and detect any changes that may indicate moisture movement

  14. Post-Closure Report for Closed Resource Conservation and Recovery Act Corrective Action Units, Nevada National Security Site, Nevada, for fiscal year 2013 (October 2012 - September 2013)

    International Nuclear Information System (INIS)

    2014-01-01

    This report serves as the combined annual report for post-closure activities for the following closed Corrective Action Units (CAUs): CAU 90, Area 2 Bitcutter Containment; CAU 91, Area 3 U-3fi Injection Well; CAU 92, Area 6 Decon Pond Facility; CAU 110, Area 3 WMD U-3ax/bl Crater; CAU 111, Area 5 WMD Retired Mixed Waste Pits; and, CAU 112, Area 23 Hazardous Waste Trenches

  15. Post-Closure Report for Closed Resource Conservation and Recovery Act Corrective Action Units, Nevada National Security Site, Nevada for fiscal year 2013 (October 2012 - September 2013)

    Energy Technology Data Exchange (ETDEWEB)

    None, None

    2014-01-31

    This report serves as the combined annual report for post-closure activities for the following closed Corrective Action Units (CAUs): CAU 90, Area 2 Bitcutter Containment; CAU 91, Area 3 U-3fi Injection Well; CAU 92, Area 6 Decon Pond Facility; CAU 110, Area 3 WMD U-3ax/bl Crater; CAU 111, Area 5 WMD Retired Mixed Waste Pits; and, CAU 112, Area 23 Hazardous Waste Trenches.

  16. Tubular closure device

    International Nuclear Information System (INIS)

    Klahn, F.C.; Nolan, J.H.; Wills, C.

    1982-01-01

    This invention relates to a closure mechanism for closing openings such as the bore of a conduit and for releasably securing members within the bore. More particularly, this invention relates to a closure mechanism for tubular irradiation surveillance specimen assembly holders used in nuclear reactors

  17. Corrective Action Decision Document/Closure Report for Corrective Action Unit 137: Waste Disposal Sites, Nevada Test Site, Nevada (Revision 0) with ROTC 1 and 2

    Energy Technology Data Exchange (ETDEWEB)

    Krauss, Mark J

    2007-03-01

    The purpose of this Corrective Action Decision Document/Closure Report is to provide justification and documentation supporting the recommendation for closure of CAU 137 with no further corrective action. To achieve this, corrective action investigation (CAI) activities were performed from February 28 through August 17, 2006, as set forth in the Corrective Action Investigation Plan for Corrective Action Unit 137: Waste Disposal Sites. The purpose of the CAI was to fulfill the following data needs as defined during the data quality objective process: • Determine whether contaminants of concern (COCs) are present. • If COCs are present, determine their nature and extent. • Provide sufficient information and data to complete appropriate corrective actions. ROTC-1: Downgrade FFACO UR at CAU 137, CAS 07-23-02, Radioactive Waste Disposal Site to an Administrative UR. ROTC-2: Downgrade FFACO UR at CAU 137, CAS 01-08-01, Waste Disposal Site to an Administrative UR.

  18. CIRSE Vascular Closure Device Registry

    NARCIS (Netherlands)

    Reekers, Jim A.; Müller-Hülsbeck, Stefan; Libicher, Martin; Atar, Eli; Trentmann, Jens; Goffette, Pierre; Borggrefe, Jan; Zeleňák, Kamil; Hooijboer, Pieter; Belli, Anna-Maria

    2011-01-01

    Vascular closure devices are routinely used after many vascular interventional radiology procedures. However, there have been no major multicenter studies to assess the safety and effectiveness of the routine use of closure devices in interventional radiology. The CIRSE registry of closure devices

  19. Closure Report for Corrective Action Units 530, 531, 532, 533, 534, 535: NTS Mud Pits, Nevada Test Site, Nevada, Rev. No.: 0

    Energy Technology Data Exchange (ETDEWEB)

    Alfred Wickline

    2006-07-01

    This Closure Report (CR) presents information supporting the recommendation of no further action for the following six Corrective Action Units (CAUs): (1) CAU 530 - LANL Preshot Mud Pits; (2) CAU 531 - LANL Postshot Mud Pits; (3) CAU 532 - LLNL Preshot Mud Pits; (4) CAU 533 - LLNL Postshot Mud Pits; (5) CAU 534 - Exploratory/Instrumentation Mud Pits; and (6) CAU 535 - Mud Pits/Disposal Areas. This CR complies with the requirements of the ''Federal Facility Agreement and Consent Order'' (FFACO) (1996) that was agreed to by the State of Nevada, the U.S. Department of Energy, and the U.S. Department of Defense. CAUs 530-535 are located in Areas 1-10, 14, 17, 19, and 20 of the Nevada Test Site and are comprised of 268 Corrective Action Sites (CASs) listed in Table 1-1. The purpose of this CR is to validate the risk-based closure strategy presented in the ''Mud Pit Risk-Based Closure Strategy Report'' (RBCSR) (NNSA/NSO, 2004) and the CAUs 530-535 SAFER Plan (NNSA/NSO, 2005b). This strategy uses 52 CASs as a statistical representation of CAUs 530-535 to confirm the proposed closure alternative, no further action, is sufficient to protect human health and the environment. This was accomplished with the following activities: A field investigation following a probabilistic sampling design to collect data that were used in a non-carcinogenic risk assessment for human receptors; Visual habitat surveys to confirm the lack of habitat for threatened and endangered species; Disposal of debris and waste generated during field activities; and Document Notice of Completion and closure of CAUs 530-535 issued by Nevada Division of Environmental Protection. The field investigation and site visits were conducted between August 31, 2005 and February 21, 2006. As stated in the RBCSR and Streamlined Approach for Environmental Restoration (SAFER) Plan, total petroleum hydrocarbons-diesel-range organics (TPH-DRO) was the only contaminant of potential

  20. Spontaneous Closure of Patent Ductus Arteriosus in Infants ≤1500 g.

    Science.gov (United States)

    Semberova, Jana; Sirc, Jan; Miletin, Jan; Kucera, Jachym; Berka, Ivan; Sebkova, Sylva; O'Sullivan, Sinead; Franklin, Orla; Stranak, Zbynek

    2017-08-01

    Patent ductus arteriosus (PDA) remains a challenging issue in very low birth weight (VLBW) infants, and its management varies widely. Our aim in this study was to document the natural course of ductus arteriosus in a cohort of VLBW infants who underwent conservative PDA management with no medical or surgical intervention. A retrospective cohort study conducted in 2 European level-3 neonatal units. A total of 368 VLBW infants were born within the study period. Two hundred and ninety-seven infants were free of congenital malformations or heart defects and survived to hospital discharge. Out of those, 280 infants received truly conservative PDA management. In 237 (85%) of nontreated infants, the PDA closed before hospital discharge. The Kaplan-Meier model was used to document the incidence proportion of PDA closure over time for different gestational age groups. The median time to ductal closure was 71, 13, 8, and 6 days in closure before hospital discharge and neonatal morbidities. The likelihood of PDA spontaneous closure in VLBW infants is extremely high. We provide in our findings a platform for future placebo-controlled trials focused on the smallest and youngest infants. Copyright © 2017 by the American Academy of Pediatrics.

  1. Closure simulation of the MSIV of Unit 1 of the Laguna Verde nuclear power plant using the Simulate 3K code

    International Nuclear Information System (INIS)

    Alegria A, A.

    2015-09-01

    In this paper the simulation of closure transient of all main steam isolation valves (MSIV) was performed with the Simulate-3K (S-3K) code for the Unit 1 of the Laguna Verde nuclear power plant (NPP-LV), which operates to thermal power of 2317 MWt, corresponding to the cycle 15 of operation. The set points for the performance of systems correspond to those set out in transient analysis: 3 seconds for the closure of all MSIV; the start of Scram when 121% of the neutron flux is reached, respect from baseline before the transient; the opening by peer of safety relief valves (SRV) in relief mode when the set point of the pressure is reached, the shoot of the feedwater flow seconds after the start of closing of the MSIV and the shoot of the recirculation water pumps when the pressure is reached in the dome of 1048 psig. The simulation time was of 57 seconds, with the top 50 to reach the steady state, from which the closure of all MSIV starts. In this paper the behavior of the pressure in the dome are analyzed, thermal power, neutron flux, the collapsed water level, the flow at the entrance of core, the steam flow coming out of vessel and the flow through of the SRV; the fuel temperature, the minimal critical power ratio, the readings in the instrumentation systems and reactivities. Instrumentation systems were implemented to analyze the neutron flux, these consist of 96 local power range monitors (LPRM) located in different radial and axial positions of the core and 4 channels of average power range monitors, which grouped at 24 LPRM each one. LPRM response to the change of neutron flux in the center of the core, at different axial positions is also shown. Finally, the results show that the safety limit MCPR is not exceeded. (Author)

  2. The impact of public hospital closure on medical and residency education: implications and recommendations.

    Science.gov (United States)

    Walker, Kara Odom; Calmes, Daphne; Hanna, Nancy; Baker, Richard

    2008-12-01

    Challenges around safety-net hospital closure have impacted medical student and resident exposure to urban public healthcare sites that may influence their future practice choices. To assess the impact of the closure of a public safety-net teaching hospital for the clinical medical education of Charles Drew University medical students and residents. Retrospective cohort study of medical students' and residents' and clinical placement into safety-net experiences after the closure of the primary teaching hospital. The hospital closure impacted both medical student and residency training experiences. Only 71% (17/24) of medical student rotations and 13% (23/180) of residents were maintained at public safety-net clinical sittings. The closure of the public safety-net hospital resulted in the loss of 36% of residency training spots sponsored by historically black medical schools in the United States and an even larger negative impact on the number of physicians training in underserved urban areas of Los Angeles County. While the medical educational program changes undertaken in the wake of hospital closure have negatively affected the immediate clinical educational experiences of medical students and residents, it remains to be seen whether the training site location changes will alter their long-term preferences in specialty choice and practice location.

  3. Observations on early and delayed colostomy closure.

    Science.gov (United States)

    Tade, A O; Salami, B A; Ayoade, B A

    2011-06-01

    Traditional treatment of a variety of colorectal pathologies had included a diverting colostomy that was closed eight or more weeks later during a readmission. The aim of this retrospective study was to determine the outcomes of early colostomy closure and delayed colostomy closure in patients with temporary colostomies following traumatic and non-traumatic colorectal pathologies. In this study early colostomy closure was the closure of a colostomy within three weeks of its construction, while delayed colostomy closure referred to closure after 3 weeks. Complete records of the 37 adult patients who had temporary colostomy constructed and closed between Jan. 1997 December 2003 for various colorectal pathologies were studied. Fourteen patients had early colostomy closure while 23 had delayed closure. In the early colostomy closure group there were 10 men and 4 women. The mean age of the patients was 28yr with a range of 18-65yr. Colostomies were closed 9-18 days after initial colostomy construction. There was no mortality. Morbidity rate 28.6% (4 out of 14). There were two faecal fistulas (14.3%). Twenty-three patients had delayed colostomy closure 8 weeks to 18 months after initial colostomy construction. These were patients unfit for early surgery after initial colostomy construction because of carcinoma, significant weight loss, or sepsis. There was no mortality. Morbidity rate was 26.1%. There were 3 faecal fistulas (13.2%). Outcomes following early colostomy closure and delayed closure were comparable. Patients fit for surgery should have early closure whilst patients who may have compromised health should have delayed closure.

  4. THERMAL PERFORMANCE OF FLAT PLATE SOLAR COLLECTOR

    Directory of Open Access Journals (Sweden)

    TABET I.

    2017-06-01

    Full Text Available In this paper, a theoretical and experimental studyof flat platesolar water collector with reflectors.A mathematical model based on energy balance equations saw the thermal behavior of the collector is investigated. The experimental test was made at the unit research applies in renewable energy (URAER located in southern Algeria.An increase of 23% for solar radiation incident on the collector surface with the addition of the planers reflectors in the day of May, this increase causes an improvement of the performance of the collector,the fluid temperature increases with an average of 5%. Thetests conducted on the flat plate solar water collector in open circuit enabled the determination of thermal performance of the collector by estimating the daily output The thermal efficiency of the collector ranges from 1% -63% during the day, a mean value of 36%obtained.

  5. Closure Report for Corrective Action Unit 118: Area 27 Super Kukla Facility, Nevada Test Site, Nevada, Revision 0

    International Nuclear Information System (INIS)

    Mark Burmeister

    2007-01-01

    This CR provides documentation and justification for the closure of CAU 118 without further corrective action. This justification is based on process knowledge and the results of the investigative and closure activities conducted in accordance with the CAU 118 SAFER Plan: Streamlined Approach for Environmental Restoration (SAFER) Plan for CAU 118: Area 27 Super Kukla Facility, Nevada Test Site, Nevada (NNSA/NSO, 2006). The SAFER Plan provides information relating to site history as well as the scope and planning of the investigation. This CR also provides the analytical and radiological survey data to confirm that the remediation goals were met as specified in the CAU 118 SAFER Plan (NNSA/NSO, 2006). The Nevada Division of Environmental Protection (NDEP) approved the CAU 118 SAFER Plan (Murphy, 2006), which recommends closure in place with use restrictions (URs)

  6. Closure report for CAU No. 416: Project Shoal Area

    International Nuclear Information System (INIS)

    1998-01-01

    This Closure Report provides the documentation for closure of the US Department of Energy/Nevada Operations Office (DOE/NV) Project Shoal Area (PSA) Surface Corrective Action Unit (CAU) 416. CAU 416 consists of a mud pit, muckpile, and housekeeping site. The PSA is located approximately 48.3 kilometers (30 miles) southeast of Fallon, Nevada. The mud pit was the result of drilling activities at the PSA in 1963. Investigation activities completed in 1996 determined drilling mud in the mud pit was impacted with petroleum hydrocarbons in excess of the State of Nevada 100 milligram per kilogram (mg/kg). The muckpile consists of broken granite from emplacement shaft and drift (tunnel) mining activities at the PSA in 1963. The housekeeping site consisted of approximately 20 used, empty, rusted, steel 0.9 liter (1 quart) oil cans

  7. Sternal exploration or closure

    Science.gov (United States)

    VAC - vacuum-assisted closure - sternal wound; Sternal dehiscence; Sternal infection ... in the wound to look for signs of infection Remove dead or infected ... use a VAC (vacuum-assisted closure) dressing. It is a negative ...

  8. Understanding the basis of space closure in Orthodontics for a more efficient orthodontic treatment.

    Science.gov (United States)

    Ribeiro, Gerson Luiz Ulema; Jacob, Helder B

    2016-01-01

    Space closure is one of the most challenging processes in Orthodontics and requires a solid comprehension of biomechanics in order to avoid undesirable side effects. Understanding the biomechanical basis of space closure better enables clinicians to determine anchorage and treatment options. In spite of the variety of appliance designs, space closure can be performed by means of friction or frictionless mechanics, and each technique has its advantages and disadvantages. Friction mechanics or sliding mechanics is attractive because of its simplicity; the space site is closed by means of elastics or coil springs to provide force, and the brackets slide on the orthodontic archwire. On the other hand, frictionless mechanics uses loop bends to generate force to close the space site, allowing differential moments in the active and reactive units, leading to a less or more anchorage control, depending on the situation. This article will discuss various theoretical aspects and methods of space closure based on biomechanical concepts.

  9. Understanding the basis of space closure in Orthodontics for a more efficient orthodontic treatment

    Directory of Open Access Journals (Sweden)

    Gerson Luiz Ulema Ribeiro

    2016-04-01

    Full Text Available ABSTRACT Introduction: Space closure is one of the most challenging processes in Orthodontics and requires a solid comprehension of biomechanics in order to avoid undesirable side effects. Understanding the biomechanical basis of space closure better enables clinicians to determine anchorage and treatment options. In spite of the variety of appliance designs, space closure can be performed by means of friction or frictionless mechanics, and each technique has its advantages and disadvantages. Friction mechanics or sliding mechanics is attractive because of its simplicity; the space site is closed by means of elastics or coil springs to provide force, and the brackets slide on the orthodontic archwire. On the other hand, frictionless mechanics uses loop bends to generate force to close the space site, allowing differential moments in the active and reactive units, leading to a less or more anchorage control, depending on the situation. Objective: This article will discuss various theoretical aspects and methods of space closure based on biomechanical concepts.

  10. Positive Catch & Economic Benefits of Periodic Octopus Fishery Closures: Do Effective, Narrowly Targeted Actions ‘Catalyze’ Broader Management?

    Science.gov (United States)

    Oliver, Thomas A.; Oleson, Kirsten L. L.; Ratsimbazafy, Hajanaina; Raberinary, Daniel; Benbow, Sophie; Harris, Alasdair

    2015-01-01

    Overview Eight years of octopus fishery records from southwest Madagascar reveal significant positive impacts from 36 periodic closures on: (a) fishery catches and (b) village fishery income, such that (c) economic benefits from increased landings outweigh costs of foregone catch. Closures covered ~20% of a village’s fished area and lasted 2-7 months. Fishery Catches from Each Closed Site Octopus landings and catch per unit effort (CPUE) significantly increased in the 30 days following a closure’s reopening, relative to the 30 days before a closure (landings: +718%, poctopus fishery income doubled in the 30 days after a closure, relative to 30 days before (+132%, p<0.001, n = 28). Control villages not implementing a closure showed no increase in income after “no ban” closures and modest increases after “ban” closures. Villages did not show a significant decline in income during closure events. Net Economic Benefits from Each Closed Site Landings in closure sites generated more revenue than simulated landings assuming continued open-access fishing at that site (27/36 show positive net earnings; mean +$305/closure; mean +57.7% monthly). Benefits accrued faster than local fishers’ time preferences during 17-27 of the 36 closures. High reported rates of illegal fishing during closures correlated with poor economic performance. Broader Co-Management We discuss the implications of our findings for broader co-management arrangements, particularly for catalyzing more comprehensive management. PMID:26083862

  11. Full closure strategic analysis.

    Science.gov (United States)

    2014-07-01

    The full closure strategic analysis was conducted to create a decision process whereby full roadway : closures for construction and maintenance activities can be evaluated and approved or denied by CDOT : Traffic personnel. The study reviewed current...

  12. Post-Closure Report for Closed Resource Conservation and Recovery Act Corrective Action Units, Nevada National Security Site, Nevada: For Fiscal Year 2015 (October 2014-September 2015), Revision 0

    International Nuclear Information System (INIS)

    Matthews, Patrick

    2016-01-01

    This report serves as the combined annual report for post-closure activities for the following closed corrective action units (CAUs); CAU 90, Area 2 Bitcutter Containment; CAU 91, Area 3 U-3fi Injection Well; CAU 92, Area 6 Decon Pond Facility; CAU 110, Area 3 WMD U-3ax/bl Crater; CAU 111, Area 5 WMD Retired Mixed Waste Pits; and CAU 112, Area 23 Hazardous Waste Trenches. This report covers fiscal year 2015 (October 2014 through September 2015). The post-closure requirements for these sites are described in Resource Conservation and Recovery Act Permit Number NEV HW0101 and are summarized in each CAU-specific section in Section 1.0 of this report. The results of the inspections, a summary of maintenance activities, and an evaluation of monitoring data are presented in this report.

  13. Crack closure, a literature study

    Science.gov (United States)

    Holmgren, M.

    1993-08-01

    In this report crack closure is treated. The state of the art is reviewed. Different empirical formulas for determining the crack closure are compared with each other, and their benefits are discussed. Experimental techniques for determining the crack closure stress are discussed, and some results from fatigue tests are also reported. Experimental data from the literature are reported.

  14. Scalp Wound Closure with K wires: An alternative easier method to scalp wound closure.

    Science.gov (United States)

    Ramesh, S; Ajik, S

    2012-12-01

    Scalp defects and lacerations present a reconstructive challenge to plastic surgeons. Many methods have been described from the use of skin grafting to rotation flaps. Here we present a method of closure of a contaminated scalp wound with the use of Kirschner wires. In our case, closure of scalp laceration was made possible with the use of 1.4 Kirschner wires and cable tie/ zip tie fasteners. The duration to closure of wound was 10 days. In reconstructing the scalp defect, this method was found to adhere to principles of scalp reconstruction. There were no post operative complications found from the procedure. On initial application on the edge of the wound, tension applied caused the K wires to cut through the wound edge. On replacement of K wires 1cm away from wound edge the procedure was not plagued by any further complication. In conclusion we find scalp closure with Kirschner wires are a simple and effective method for scalp wound closure.

  15. Revisit to Grad's Closure and Development of Physically Motivated Closure for Phenomenological High-Order Moment Model

    International Nuclear Information System (INIS)

    Myong, R. S.; Nagdewe, S. P.

    2011-01-01

    The Grad's closure for the high-order moment equation is revisited and, by extending his theory, a physically motivated closure is developed for the one-dimensional velocity shear gas flow. The closure is based on the physical argument of the relative importance of various terms appearing in the moment equation. Also, the closure is derived such that the resulting theory may be inclusive of the well established linear theory (Navier-Stokes-Fourier) as limiting case near local thermal equilibrium.

  16. Post-Closure Inspection Report for the Tonopah Test Range, Nevada, for Calendar Year 2014

    Energy Technology Data Exchange (ETDEWEB)

    Silvas, A. J. [National Security Technologies, LLC, Las Vegas, NV (United States). Nevada Test Site; Lantow, Tiffany A. [National Security Technologies, LLC, Las Vegas, NV (United States). Nevada Test Site

    2015-03-25

    This report provides the results of the annual post-closure inspections conducted at the closed Corrective Action Units (CAUs) located on the Tonopah Test Range (TTR), Nevada. This report covers calendar year 2014 and includes inspection and repair activities completed at the following CAUs; CAU 400: Bomblet Pit and Five Points Landfill (TTR); CAU 407: Roller Coaster RadSafe Area (TTR); CAU 424: Area 3 Landfill Complexes (TTR); CAU 453: Area 9 UXO Landfill (TTR); and CAU 487: Thunderwell Site (TTR) Inspections were conducted according to the post-closure plans in the approved Closure Reports and subsequent correspondence with the Nevada Division of Environmental Protection. The post-closure inspection plans and subsequent correspondence modifying the requirements for each CAU are included in Appendix B. The inspection checklists are included in Appendix C. Photographs taken during inspections are included in Appendix D. The annual post-closure inspections were conducted on May 28, 2014. Maintenance was required at CAU 407. Animal burrows were backfilled and erosion repairs were performed. Vegetation monitoring was performed at CAU 407 in June 2014. The vegetation monitoring report is included in Appendix E.

  17. POST-CLOSURE INSPECTION REPORT FOR THE TONOPAH TEST RANGE, NEVADA FOR CALENDAR YEAR 2005

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2006-06-01

    This post-closure inspection report includes the results of inspections, maintenance and repair activities, and conclusions and recommendations for Calendar Year 2005 for nine Corrective Action Units located on the Tonopah Test Range , Nevada.

  18. Area 2 Photo Skid Wastewater Pit corrective action decision document Corrective Action Unit Number 332: Part 1, and Closure report: Part 2

    International Nuclear Information System (INIS)

    1997-01-01

    The Area 2 Photo Skid Wastewater Pit, Corrective Action Site (CAS) Number 02-42-03, the only CAS in Corrective Action Unit (CAU) Number 332, has been identified as a source of unquantified, uncontrolled, and unpermitted wastewater discharge. The Photo Skid was used for photographic processing of film for projects related to weapons testing, using Kodak RA4 and GPX film processing facilities for black and white and color photographs. The CAU is located in Area 2 of the Nevada Test Site, Nye County, Nevada. The CAS consists of one unlined pit which received discharged photographic process wastewater from 1984 to 1991. The Corrective Action Decision Document (CADD) and the Closure Report (CR) have been developed to meet the requirements of the Federal Facility Agreement and Consent Order (FFACO, 1996). The CADD and the CR for this CAS have been combined because sample data collected during the site investigation do not exceed regulatory limits established during the Data Quality Objectives (DQO) process. The purpose of the CADD and the CR is to justify why no corrective action is necessary at the CAU based on process knowledge and the results of the corrective action investigation and to request closure of the CAU. This document contains Part 1 of the CADD and Part 2 of the CR

  19. The urethral closure function in continent and stress urinary incontinent women assessed by urethral pressure reflectometry

    DEFF Research Database (Denmark)

    Saaby, Marie-Louise

    2014-01-01

    , the parameters showed highly significant negative correlation with ICIQ-SF, pad test and the number of incontinence episodes per week and are therefore valid as urodynamic severity measures. UPR in SUI women before and after TVT demonstrated a more efficient urethral closure function after the operation. The Po......-rest was unchanged suggesting that the sphincteric unit was virtually unaltered and hence the permanent closure forces unchanged. However, the resting opening elastance increased by 18% indicating that at the resting state the TVT somewhat improves the closure function by providing increased resistance against...... the dilation of the urethra, which probably explains the decreased maximum urine flow rate found after TVT in this and previous studies. The APIR increased in all patients after TVT suggesting that the support system was re-established and thus the adjunctive closure forces improved, regardless of the type...

  20. Preliminary Correlation Map of Geomorphic Surfaces in North-Central Frenchman Flat, Nevada Test Site

    International Nuclear Information System (INIS)

    Bechtel Nevada

    2005-01-01

    This correlation map (scale = 1:12,000) presents the results of a mapping initiative that was part of the comprehensive site characterization required to operate the Area 5 Radioactive Waste Management Site, a low-level radioactive waste disposal facility located in northern Frenchman Flat at the Nevada Test Site. Eight primary map units are recognized for Quaternary surfaces: remnants of six alluvial fan or terrace surfaces, one unit that includes colluvial aprons associated with hill slopes, and one unit for anthropogenically disturbed surfaces. This surficial geology map provides fundamental data on natural processes for reconstruction of the Quaternary history of northern Frenchman Flat, which in turn will aid in the understanding of the natural processes that act to develop the landscape, and the time-frames involved in landscape development. The mapping was conducted using color and color-infrared aerial photographs and field verification of map unit composition and boundaries. Criteria for defining the map unit composition of geomorphic surface units are based on relative geomorphic position, landform morphology, and degree of preservation of surface morphology. The bedrock units identified on this map were derived from previous published mapping efforts and are included for completeness

  1. Nevada Test Site closure program

    International Nuclear Information System (INIS)

    Shenk, D.P.

    1994-08-01

    This report is a summary of the history, design and development, procurement, fabrication, installation and operation of the closures used as containment devices on underground nuclear tests at the Nevada Test Site. It also addresses the closure program mothball and start-up procedures. The Closure Program Document Index and equipment inventories, included as appendices, serve as location directories for future document reference and equipment use

  2. Area 6 Decontamination Pond Corrective Action Unit 92 Post-Closure Inspection Annual Report for the Period January 2000-December 2000

    International Nuclear Information System (INIS)

    Traynor, J. L.

    2001-01-01

    The Area 6 Decontamination Pond, Corrective Action Unit 92, was closed in accordance with the Resource Conservation and Recovery Act (RCRA) Part B Operational Permit (Nevada Division of Environmental Protection [NDEP, 1995]) and the Federal Facility Agreement and Consent Order (NDEP, 1996) on May 11, 1999. Historically the Decontamination Pond was used for the disposal of partially treated liquid effluent discharged from the Decontamination Facility (Building 6-05) and the Industrial Laundry (Building 6-07) (U.S. Department of Energy, Nevada Operations Office [DOE/NV], 1996). The Decontamination Pond was constructed and became operational in 1979. Releases of RCRA-regulated hazardous waste or hazardous waste constituents have not been discharged to the Decontamination Pond since 1988 (DOE/NV, 1996). The pipe connecting the Decontamination Pond and Decontamination Facility and Industrial Laundry were cut and sealed at the Decontamination Pad Oil/Water Separator in 1992. The Decontamination Pond was closed in place by installing a RCRA cover. Fencing was installed around the periphery to prevent accidental damage to the cover. Post-closure monitoring at the site consists of quarterly inspections of the RCRA cover and fencing, and a subsidence survey. Additional inspections are conducted if: Precipitation occurs in excess of 1.28 centimeters (cm) (0.50 inches [in]) in a 24-hour period, or An earthquake occurs with a magnitude exceeding 4.5 on the Richter scale within 100 kilometers (km) (62 miles [mi]) of the closure

  3. Area 6 Decontamination Pond Corrective Action Unit 92 Post-Closure Inspection Annual Report for the Period January 2000-December 2000

    Energy Technology Data Exchange (ETDEWEB)

    J. L. Traynor

    2001-03-01

    The Area 6 Decontamination Pond, Corrective Action Unit 92, was closed in accordance with the Resource Conservation and Recovery Act (RCRA) Part B Operational Permit (Nevada Division of Environmental Protection [NDEP, 1995]) and the Federal Facility Agreement and Consent Order (NDEP, 1996) on May 11, 1999. Historically the Decontamination Pond was used for the disposal of partially treated liquid effluent discharged from the Decontamination Facility (Building 6-05) and the Industrial Laundry (Building 6-07) (U.S. Department of Energy, Nevada Operations Office [DOE/NV], 1996). The Decontamination Pond was constructed and became operational in 1979. Releases of RCRA-regulated hazardous waste or hazardous waste constituents have not been discharged to the Decontamination Pond since 1988 (DOE/NV, 1996). The pipe connecting the Decontamination Pond and Decontamination Facility and Industrial Laundry were cut and sealed at the Decontamination Pad Oil/Water Separator in 1992. The Decontamination Pond was closed in place by installing a RCRA cover. Fencing was installed around the periphery to prevent accidental damage to the cover. Post-closure monitoring at the site consists of quarterly inspections of the RCRA cover and fencing, and a subsidence survey. Additional inspections are conducted if: Precipitation occurs in excess of 1.28 centimeters (cm) (0.50 inches [in]) in a 24-hour period, or An earthquake occurs with a magnitude exceeding 4.5 on the Richter scale within 100 kilometers (km) (62 miles [mi]) of the closure.

  4. Corrective Action Decision Document/Closure Report for Corrective Action Unit 365: Baneberry Contamination Area, Nevada National Security Site, Nevada, Revision 0

    Energy Technology Data Exchange (ETDEWEB)

    Patrick Matthews

    2011-09-01

    Corrective Action Unit 365 comprises one corrective action site (CAS), CAS 08-23-02, U-8d Contamination Area. The purpose of this CADD/CR is to provide justification and documentation supporting the recommendation that no further corrective action is needed for CAU 365 based on the implementation of the corrective action of closure in place with a use restriction (UR). Corrective action investigation (CAI) activities were performed from January 18, 2011, through August 2, 2011, as set forth in the Corrective Action Investigation Plan for Corrective Action Unit 365: Baneberry Contamination Area. The purpose of the CAI was to fulfill data needs as defined during the data quality objective (DQO) process. The CAU 365 dataset of investigation results was evaluated based on a data quality assessment. This assessment demonstrated the dataset is complete and acceptable for use in supporting the DQO decisions. Investigation results were evaluated against final action levels (FALs) established in this document. A radiological dose FAL of 25 millirem per year was established based on the Remote Work Area exposure scenario (336 hours of annual exposure). Radiological doses exceeding the FAL were found to be present to the southwest of the Baneberry crater. It was also assumed that radionuclide levels present within the crater and fissure exceed the FAL. Corrective actions were undertaken that consisted of establishing a UR and posting warning signs for the crater, fissure, and the area located to the southwest of the crater where soil concentrations exceeded the FAL. These URs were recorded in the FFACO database; the U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office (NNSA/NSO) Facility Information Management System; and the NNSA/NSO CAU/CAS files. Therefore, NNSA/NSO provides the following recommendations: (1) No further corrective actions beyond what are described in this document are necessary for CAU 365. (2) A Notice of Completion to

  5. POST-CLOSURE INSPECTION AND MONITORING REPORT FOR CORRECTIVE ACTION UNIT 91: AREA 3 U3 fi INJECTION WELL, NEVADA TEST SITE, NEVADA FOR THE PERIOD NOVEMBER 2003 - OCTOBER 2004

    International Nuclear Information System (INIS)

    2005-01-01

    This Post-Closure Inspection and Monitoring report provides an analysis and summary of inspections, meteorological information, and neutron soil moisture monitoring for Corrective Action Unit (CAU) 91: Area 3 U-3fi Injection Well, Nevada Test Site (NTS), Nevada. This report covers the annual period November 2003 through October 2004. Site inspections of CAU 91 are performed every six months to identify any significant changes that could impact the proper operation of the waste disposal unit. Inspection results for the current period indicate that the overall condition of the concrete pad, perimeter fence, and warning signs is good

  6. Evaluation of a novel trocar-site closure and comparison with a standard Carter-Thomason closure device.

    Science.gov (United States)

    del Junco, Michael; Okhunov, Zhamshid; Juncal, Samuel; Yoon, Renai; Landman, Jaime

    2014-07-01

    The aim of this study was to evaluate and compare a novel trocars-site closure device, the WECK EFx™ Endo Fascial Closure System (EFx) with the Carter-Thomason CloseSure System® (CT) for the closure of laparoscopic trocar site defects created by a 12-mm dilating trocar. We created standardized laparoscopic trocars-site abdominal wall defects in cadaver models using a standard 12-mm laparoscopic dilating trocar. Trocar defects were closed in a randomized fashion using one of the two closure systems. We recorded time and number of attempts needed for complete defect closure. In addition, we recorded the ability to maintain pneumoperitoneum, endoscopic visualization, safety, security, and facility based on the surgeon's subjective evaluations. We compared outcomes for the EFx and CT closure systems. We created 72 standardized laparoscopic trocars-site abdominal wall defects. The mean time needed for complete defect closure was 98.53 seconds (±28.9) for the EFx compared with 133.61 seconds (±54.61) for the CT (Psafety were 2.92 for EFx vs 2.19 for CT (Pvs 1.83 for EFx and CT, respectively (Pvs 2.33 for CT (P=0.022). No significant difference was observed between the EFx and the CT systems for endoscopic visualization (2.28 vs 2.50, P=0.080). In this in vitro cadaver trial, the EFx was superior in terms of time needed to complete defect closure, safety, and facility. CT was superior in terms of maintenance of pneumoperitoneum. Both systems were equal in the number of attempts needed to complete the defect closure and endoscopic visualization.

  7. Radiographic prognostic factors determining spontaneous space closure after loss of the permanent first molar.

    Science.gov (United States)

    Patel, Sameer; Ashley, Paul; Noar, Joseph

    2017-04-01

    Permanent first molars (PFM) with a poor prognosis are routinely extracted in children throughout the United Kingdom. National guidelines suggest that to achieve spontaneous closure for the mandibular arch, the PFM should be extracted at 8 to 10 years of age, during bifurcation formation of the second molar. The literature is of limited quality and has suggested alternative variables that may be associated with successful space closure. Our aim was to investigate the radiographic prognostic factors associated with space closure after extraction of PFM. Two objectives of the research are reported in this article: to determine factors that might predict space closure of the second molar after extraction of the PFM, and to develop a tool kit to aid clinical decision making. We assessed 148 maxillary and 153 mandibular PFM extracted from 81 participants retrospectively. Dental age, second molar developmental stage, second premolar and second molar angulations, and presence or absence of the third molar were assessed on the preextraction orthopantomograms. Outcome was assessed via visual examination, study models, or radiographs. Closure occurred in 89.9% of the maxillary and 49.0% of the mandibular quadrants. Dental age was statistically, but not clinically, significant in the maxillary arch (P space closure. The developed tool kit requires further validity testing. Copyright © 2016 American Association of Orthodontists. Published by Elsevier Inc. All rights reserved.

  8. 303-K Storage Facility closure plan. Revision 2

    Energy Technology Data Exchange (ETDEWEB)

    1993-12-15

    Recyclable scrap uranium with zircaloy-2 and copper silicon alloy, uranium-titanium alloy, beryllium/zircaloy-2 alloy, and zircaloy-2 chips and fines were secured in concrete billets (7.5-gallon containers) in the 303-K Storage Facility, located in the 300 Area. The beryllium/zircaloy-2 alloy and zircaloy-2 chips and fines are designated as mixed waste with the characteristic of ignitability. The concretion process reduced the ignitability of the fines and chips for safe storage and shipment. This process has been discontinued and the 303-K Storage Facility is now undergoing closure as defined in the Resource Conservation and Recovery Act (RCRA) of 1976 and the Washington Administrative Code (WAC) Dangerous Waste Regulations, WAC 173-303-040. This closure plan presents a description of the 303-K Storage Facility, the history of materials and waste managed, and the procedures that will be followed to close the 303-K Storage Facility. The 303-K Storage Facility is located within the 300-FF-3 (source) and 300-FF-5 (groundwater) operable units, as designated in the Hanford Federal Facility Agreement and Consent Order (Tri-Party Agreement) (Ecology et al. 1992). Contamination in the operable units 300-FF-3 and 300-FF-5 is scheduled to be addressed through the Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA) of 1980 remedial action process. Therefore, all soil remedial action at the 304 Facility will be conducted as part of the CERCLA remedial action of operable units 300-FF-3 and 300-FF-5.

  9. Cost Estimating for Decommissioning of a Plutonium Facility--Lessons Learned From The Rocky Flats Building 771 Project

    International Nuclear Information System (INIS)

    Stevens, J. L.; Titus, R.; Sanford, P. C.

    2002-01-01

    The Rocky Flats Closure Site is implementing an aggressive approach in an attempt to complete Site closure by 2006. The replanning effort to meet this goal required that the life-cycle decommissioning effort for the Site and for the major individual facilities be reexamined in detail. As part of the overall effort, the cost estimate for the Building 771 decommissioning project was revised to incorporate both actual cost data from a recently-completed similar project and detailed planning for all activities. This paper provides a brief overview of the replanning process and the original estimate, and then discusses the modifications to that estimate to reflect new data, methods, and planning rigor. It provides the new work breakdown structure and discusses the reasons for the final arrangement chosen. It follows with the process used to assign scope, cost, and schedule elements within the new structure, and development of the new code of accounts. Finally, it describes the project control methodology used to track the project, and provides lessons learned on cost tracking in the decommissioning environment

  10. Solidification Tests Conducted on Transuranic Mixed Oil Waste (TRUM) at the Rocky Flats Environmental Technology Site (RFETS)

    International Nuclear Information System (INIS)

    Brunkow, W. G.; Campbell, D.; Geimer, R.; Gilbreath, C.; Rivera, M.

    2002-01-01

    Rocky Flats Environmental Technology Site (RFETS) near Golden, Colorado is the first major nuclear weapons site within the DOE complex that has been declared a full closure site. RFETS has been given the challenge of closing the site by 2006. Key to meeting this challenge is the removal of all waste from the site followed by site restoration. Crucial to meeting this challenge is Kaiser-Hill's (RFETS Operating Contractor) ability to dispose of significant quantities of ''orphan'' wastes. Orphan wastes are those with no current disposition for treatment or disposal. Once such waste stream, generically referred to as Transuranic oils, poses a significant threat to meeting the closure schedule. Historically, this waste stream, which consist of a variety of oil contaminated with a range of organic solvents were treated by simply mixing with Environstone. This treatment method rendered a solidified waste form, but unfortunately not a TRUPACT-II transportable waste. So for the last ten years, RFETS has been accumulating these TRU oils while searching for a non-controversial treatment option

  11. Protecting Oak Flat: Narratives Of Survivance As Observed Through Digital Activism

    Directory of Open Access Journals (Sweden)

    Nicholet Deschine Parkhurst

    2017-07-01

    Full Text Available American Indians are increasingly using social media/social network platforms as a tool to influence policy through social change. The activist group Apache Stronghold represents a case of American Indians utilising social media tools to protect Oak Flat and influence federal Indian policy. Oak Flat is sacred Apache land located in Superior, Arizona. United States legislators transferred Oak Flat to the mining company Resolution Copper as part of the omnibus National Defense Authorization Act of 2015. Qualitative analysis of social media content and advocacy tactics – specifically through use of timeline and digital ethnography – of Apache Stronghold from 2015-2016 reveal the interrelated nature of on-the-ground efforts, online efforts, solidarity efforts, and legislative support efforts. In sum, these efforts express narratives of survivance, healing, and a future orientation, as a unique dimension of social change.

  12. Geochemical and Isotopic Evaluation of Groundwater Movement in Corrective Action Unit 97: Yucca Flat/Climax Mine, Nevada Test Site, Nevada, Rev. No.: 0

    Energy Technology Data Exchange (ETDEWEB)

    Farnham, Irene

    2006-02-01

    This report describes the results of a comprehensive geochemical evaluation of the groundwater flow system in the Yucca Flat/Climax Mine Corrective Action Unit (CAU). The main objectives of this study are to identify probable pathways for groundwater flow within the study area and to develop constraints on groundwater transit times between selected data collection sites. This work provides an independent means of testing and verifying predictive flow models being developed for this CAU using finite element methods. The Yucca Flat/Climax Mine CAU constitutes the largest of six underground test areas on the Nevada Test Site (NTS) specified for remedial action in the ''Federal Facility Agreement and Consent Order''. A total of 747 underground nuclear detonations were conducted in this CAU. Approximately 23 percent of these detonations were conducted below or near the water table, resulting in groundwater contamination in the vicinity and possibly downgradient of these underground test locations. Therefore, a rigorous evaluation of the groundwater flow system in this CAU is necessary to assess potential long-term risks to the public water supply at downgradient locations.

  13. Occupancy estimation and the closure assumption

    Science.gov (United States)

    Rota, Christopher T.; Fletcher, Robert J.; Dorazio, Robert M.; Betts, Matthew G.

    2009-01-01

    1. Recent advances in occupancy estimation that adjust for imperfect detection have provided substantial improvements over traditional approaches and are receiving considerable use in applied ecology. To estimate and adjust for detectability, occupancy modelling requires multiple surveys at a site and requires the assumption of 'closure' between surveys, i.e. no changes in occupancy between surveys. Violations of this assumption could bias parameter estimates; however, little work has assessed model sensitivity to violations of this assumption or how commonly such violations occur in nature. 2. We apply a modelling procedure that can test for closure to two avian point-count data sets in Montana and New Hampshire, USA, that exemplify time-scales at which closure is often assumed. These data sets illustrate different sampling designs that allow testing for closure but are currently rarely employed in field investigations. Using a simulation study, we then evaluate the sensitivity of parameter estimates to changes in site occupancy and evaluate a power analysis developed for sampling designs that is aimed at limiting the likelihood of closure. 3. Application of our approach to point-count data indicates that habitats may frequently be open to changes in site occupancy at time-scales typical of many occupancy investigations, with 71% and 100% of species investigated in Montana and New Hampshire respectively, showing violation of closure across time periods of 3 weeks and 8 days respectively. 4. Simulations suggest that models assuming closure are sensitive to changes in occupancy. Power analyses further suggest that the modelling procedure we apply can effectively test for closure. 5. Synthesis and applications. Our demonstration that sites may be open to changes in site occupancy over time-scales typical of many occupancy investigations, combined with the sensitivity of models to violations of the closure assumption, highlights the importance of properly addressing

  14. Eyelid closure at death

    Directory of Open Access Journals (Sweden)

    A D Macleod

    2009-01-01

    Full Text Available Aim: To observe the incidence of full or partial eyelid closure at death. Materials and Methods: The presence of ptosis was recorded in 100 consecutive hospice patient deaths. Results: Majority (63% of the patients died with their eyes fully closed, however, 37% had bilateral ptosis at death, with incomplete eye closure. In this study, central nervous system tumor involvement and/or acute hepatic encephalopathy appeared to be pre-mortem risk factors of bilateral ptosis at death. Conclusion: Organicity and not psychogenicity is, therefore, the likely etiology of failure of full eyelid closure at death.

  15. Post-Closure Report for Closed Resource Conservation and Recovery Act Corrective Action Units, Nevada National Security Site, Nevada: For Fiscal Year 2015 (October 2014–September 2015), Revision 0

    Energy Technology Data Exchange (ETDEWEB)

    Matthews, Patrick [Navarro, Las Vegas, NV (United States)

    2016-03-01

    This report serves as the combined annual report for post-closure activities for the following closed corrective action units (CAUs); CAU 90, Area 2 Bitcutter Containment; CAU 91, Area 3 U-3fi Injection Well; CAU 92, Area 6 Decon Pond Facility; CAU 110, Area 3 WMD U-3ax/bl Crater; CAU 111, Area 5 WMD Retired Mixed Waste Pits; and CAU 112, Area 23 Hazardous Waste Trenches. This report covers fiscal year 2015 (October 2014 through September 2015). The post-closure requirements for these sites are described in Resource Conservation and Recovery Act Permit Number NEV HW0101 and are summarized in each CAU-specific section in Section 1.0 of this report. The results of the inspections, a summary of maintenance activities, and an evaluation of monitoring data are presented in this report.

  16. Closure and Sealing Design Calculation

    International Nuclear Information System (INIS)

    T. Lahnalampi; J. Case

    2005-01-01

    The purpose of the ''Closure and Sealing Design Calculation'' is to illustrate closure and sealing methods for sealing shafts, ramps, and identify boreholes that require sealing in order to limit the potential of water infiltration. In addition, this calculation will provide a description of the magma that can reduce the consequences of an igneous event intersecting the repository. This calculation will also include a listing of the project requirements related to closure and sealing. The scope of this calculation is to: summarize applicable project requirements and codes relating to backfilling nonemplacement openings, removal of uncommitted materials from the subsurface, installation of drip shields, and erecting monuments; compile an inventory of boreholes that are found in the area of the subsurface repository; describe the magma bulkhead feature and location; and include figures for the proposed shaft and ramp seals. The objective of this calculation is to: categorize the boreholes for sealing by depth and proximity to the subsurface repository; develop drawing figures which show the location and geometry for the magma bulkhead; include the shaft seal figures and a proposed construction sequence; and include the ramp seal figure and a proposed construction sequence. The intent of this closure and sealing calculation is to support the License Application by providing a description of the closure and sealing methods for the Safety Analysis Report. The closure and sealing calculation will also provide input for Post Closure Activities by describing the location of the magma bulkhead. This calculation is limited to describing the final configuration of the sealing and backfill systems for the underground area. The methods and procedures used to place the backfill and remove uncommitted materials (such as concrete) from the repository and detailed design of the magma bulkhead will be the subject of separate analyses or calculations. Post-closure monitoring will not

  17. United Kingdom. Development plan for the eventual closure of the UK Drigg nuclear surface low level waste disposal facility

    International Nuclear Information System (INIS)

    2001-01-01

    The Drigg site, owned and operated by BNFL, is the UK's principal site for the disposal of low level radioactive waste. The site has operated since 1959 and receives wastes from a wide range of sources including nuclear power stations, nuclear fuel cycle facilities, isotope manufacturing sites, universities, general industry and cleanup of historically contaminated sites. Disposals until the late 1980s were solely by tipping essentially loose wastes into excavated trenches. More recently, trench disposals have been phased out in preference to emplacement of containerised, conditioned wastes in concrete vaults. The standardised wasteform consists of high force compacted (or non-compactable) waste immobilised within 20 m 3 steel overpack containers by the addition of cementitious grout. Larger items of wastes are grouted directly, in situ in the vault. The disposal trenches have been completed with an interim cap, as will the vaults when filled. It is currently estimated that sufficient capacity remains at Drigg for disposals to continue until at least 2050. Post-operations it is planned that the site will enter a phase including shut down of operational facilities, emplacement of long term site closure features including a final closure cap and then to an institutional management phase. Planning has therefore been carried out as to the strategy for eventual closure of the site. This closure strategy is also underpinned by an engineering evaluation studies programme to develop and evaluate appropriate closure measures including assessment of the long term performance of such measures. This appendix summarizes some of this work

  18. Scope and closures

    CERN Document Server

    Simpson, Kyle

    2014-01-01

    No matter how much experience you have with JavaScript, odds are you don’t fully understand the language. This concise yet in-depth guide takes you inside scope and closures, two core concepts you need to know to become a more efficient and effective JavaScript programmer. You’ll learn how and why they work, and how an understanding of closures can be a powerful part of your development skillset.

  19. 50 CFR 36.16 - Closure to subsistence uses of fish and wildlife.

    Science.gov (United States)

    2010-10-01

    ... 50 Wildlife and Fisheries 6 2010-10-01 2010-10-01 false Closure to subsistence uses of fish and wildlife. 36.16 Section 36.16 Wildlife and Fisheries UNITED STATES FISH AND WILDLIFE SERVICE, DEPARTMENT OF THE INTERIOR (CONTINUED) THE NATIONAL WILDLIFE REFUGE SYSTEM ALASKA NATIONAL WILDLIFE REFUGES...

  20. Creating flat design websites

    CERN Document Server

    Pratas, Antonio

    2014-01-01

    This book contains practical, step-by-step tutorials along with plenty of explanation about designing your flat website. Each section is introduced sequentially, building up your web design skills and completing your website.Creating Flat Design Websites is ideal for you if you are starting on your web development journey, but this book will also benefit seasoned developers wanting to start developing in flat.

  1. 40 CFR 230.42 - Mud flats.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 24 2010-07-01 2010-07-01 false Mud flats. 230.42 Section 230.42... Aquatic Sites § 230.42 Mud flats. (a) Mud flats are broad flat areas along the sea coast and in coastal rivers to the head of tidal influence and in inland lakes, ponds, and riverine systems. When mud flats...

  2. Flat-port connectors

    KAUST Repository

    Alrashed, Mohammed

    2017-05-26

    Disclosed are various embodiments for connectors used with electronic devices, such as input and/or output ports to connect peripheral equipment or accessories. More specifically, various flat-port are provided that can be used in place of standard connectors including, but not limited to, audio jacks and Universal Serial Bus (USB) ports. The flat-port connectors are an alternate connection design to replace the traditional receptacle port (female-port), making the device more sealed creation more dust and water resistant. It is unique in the way of using the outer surfaces of the device for the electrical connection between the ports. Flat-port design can allow the manufacture of extremely thin devices by eliminating the side ports slots that take a lot of space and contribute to the increase thickness of the device. The flat-port receptacle improves the overall appearance of the device and makes it more resistant to dust and water.

  3. Flat-space singletons

    International Nuclear Information System (INIS)

    Fronsdal, C.

    1987-01-01

    Singletons exist, as particles and as local fields, only in 3+2 de Sitter space. Their kinematical properties make them natural candidates for constituents of massless fields, and perhaps for quarks. It is interesting to find out how to describe this type of compositeness in flat space. A theory of interacting singleton fields in de Sitter space is now available, and in this paper we study the flat-space limit of the Green's functions of that theory. The flat-space limit is an autonomous theory of Green's functions, but is not an operator field theory. The three-point function is calculated and its flat-space limit is found to reveal glimpses of a physical interpretation. Causal and spectral properties are in accord with the tenets of axiomatic field theory. The theory is a generalization of local field theory, in which photons appear as composite objects although the physical S matrix is the same as in conventional QED

  4. Closure for spent-fuel transport and storage containers

    International Nuclear Information System (INIS)

    Ahner, S.; Knackstedt, H.G.; Srostlik, P.

    1980-01-01

    The container has a transport closure and a shielding closure. This shielding closure consists of two pieces (double closure system), which can be fartened to one another like a bayonet fixing. A central motion of rotation is enough to open the closure. It can be done remote-controlled as well as manually. (DG) [de

  5. Echocardiographic predictors of coil vs device closure in patients undergoing percutaneous patent ductus arteriosus closure.

    Science.gov (United States)

    Roushdy, Alaa; Abd El Razek, Yasmeen; Mamdouh Tawfik, Ahmed

    2018-01-01

    To determine anatomic and hemodynamic echocardiographic predictors for patent ductus arteriosus (PDA) device vs coil closure. Seventy-six patients who were referred for elective transcatheter PDA closure were enrolled in the study. All patients underwent full echocardiogram including measurement of the PDA pulmonary end diameter, color flow width and extent, peak and end-diastolic Doppler gradients across the duct, diastolic flow reversal, left atrial dimensions and volume, left ventricular sphericity index, and volumes. The study group was subdivided into 2 subgroups based on the mode of PDA closure whether by coil (n = 42) or device (n = 34). Using univariate analysis there was a highly significant difference between the 2 groups as regard the pulmonary end diameter measured in both the suprasternal and parasternal short-axis views as well as the color flow width and color flow extent (P closure group had statistically significant higher end-systolic and end-diastolic volumes indexed, left atrial volume, and diastolic flow reversal. Receiver operating characteristic curve analysis showed a pulmonary end diameter cutoff point from the suprasternal view > 2.5 mm and from parasternal short-axis view > 2.61 mm to have the highest balanced sensitivity and specificity to predict the likelihood for device closure (AUC 0.971 and 0.979 respectively). The pulmonary end diameter measured from the suprasternal view was the most independent predictor of device closure. The selection between PDA coil or device closure can be done on the basis of multiple anatomic and hemodynamic echocardiographic variables. © 2017 Wiley Periodicals, Inc.

  6. Full Thickness Macular Hole Closure after Exchanging Silicone-Oil Tamponade with C3F8 without Posturing

    Directory of Open Access Journals (Sweden)

    Tina Xirou

    2011-05-01

    Full Text Available Purpose: To report a case of macular hole closure after the exchange of a silicone-oil tamponade with gas C3F8 14%. Method: A 64-year-old female patient with a stage IV macular hole underwent a three-port pars-plana vitrectomy and internal limiting membrane peeling. Due to the patient’s chronic illness (respiratory problems, a silicone-oil tamponade was preferred. However, the macula hole was still flat opened four months postoperatively. Therefore, the patient underwent an exchange of silicone oil with gas C3F8 14%. No face-down position was advised postoperatively due to her health problems. Results: Macular hole closure was confirmed with optical coherence tomography six weeks after exchanging the silicone oil with gas. Conclusions: Macular hole surgery using a silicone-oil tamponade has been proposed as treatment of choice for patients unable to posture. In our case, the use of a long-acting gas (C3F8 14%, even without posturing, proved to be more effective.

  7. Comparison of Outcomes between Early Fascial Closure and Delayed Abdominal Closure in Patients with Open Abdomen: A Systematic Review and Meta-Analysis

    Directory of Open Access Journals (Sweden)

    Yu Chen

    2014-01-01

    Full Text Available Up to the present, the optimal time to close an open abdomen remains controversial. This study was designed to evaluate whether early fascial abdominal closure had advantages over delayed approach for open abdomen populations. Medline, Embase, and Cochrane Library were searched until April 2013. Search terms included “open abdomen,” “abdominal compartment syndrome,” “laparostomy,” “celiotomy,” “abdominal closure,” “primary,” “delayed,” “permanent,” “fascial closure,” and “definitive closure.” Open abdomen was defined as “fail to close abdominal fascia after a laparotomy.” Mortality, complications, and length of stay were compared between early and delayed fascial closure. In total, 3125 patients were included for final analysis, and 1942 (62% patients successfully achieved early fascial closure. Vacuum assisted fascial closure had no impact on pooled fascial closure rate. Compared with delayed abdominal closure, early fascial closure significantly reduced mortality (12.3% versus 24.8%, RR, 0.53, P<0.0001 and complication incidence (RR, 0.68, P<0.0001. The mean interval from open abdomen to definitive closure ranged from 2.2 to 14.6 days in early fascial closure groups, but from 32.5 to 300 days in delayed closure groups. This study confirmed clinical advantages of early fascial closure over delayed approach in treatment of patients with open abdomen.

  8. Corrective Action Decision Document/Closure Report for Corrective Action Unit 232: Area 25 Sewage Lagoons, Nevada Test Site, Nevada

    International Nuclear Information System (INIS)

    US Department of Energy Nevada Operations Office

    1999-01-01

    This Corrective Action Decision Document/Closure Report (CADD/CR) has been prepared for Corrective Action Unit (CAU) 232, Area 25 Sewage Lagoons, in accordance with the Federal Facility Agreement and Consent Order. Located at the Nevada Test Site in Nevada, approximately 65 miles northwest of Las Vegas, CAU 232 is comprised of Corrective Action Site 25-03-01, Sewage Lagoon. This CADD/CR identifies and rationalizes the U.S. Department of Energy, Nevada Operations Office's (DOE/NV's) recommendation that no corrective action is deemed necessary for CAU 232. The Corrective Action Decision Document and Closure Report have been combined into one report because sample data collected during the July 1999 corrective action investigation (CAI) activities disclosed no evidence of contamination at the site. Contaminants of potential concern (COPCs) addressed during the CAI included total volatile organic compounds, total semivolatile organic compounds, total Resource Conservation and Recovery Act metals, total pesticides, total herbicides, total petroleum hydrocarbons (gasoline and diesel/oil range), polychlorinated biphenyls, isotopic uranium, isotopic plutonium, strontium-90, and gamma-emitting radionuclides. The data confirmed that none of the COPCs identified exceeded preliminary action levels outlined in the CAIP; therefore, no corrective actions were necessary for CAU 232. After the CAI, best management practice activities were completed and included installation of a fence and signs to limit access to the lagoons, cementing Manhole No. 2 and the diverter box, and closing off influent and effluent ends of the sewage lagoon piping. As a result of the CAI, the DOE/NV recommended that: (1) no further actions were required; (2) no Corrective Action Plan would be required; and (3) no use restrictions were required to be placed on the CAU

  9. 50 CFR 648.161 - Closures.

    Science.gov (United States)

    2010-10-01

    ... Bluefish Fishery § 648.161 Closures. (a) EEZ closure. NMFS shall close the EEZ to fishing for bluefish by... dealer permit holders that no commercial quota is available for landing bluefish in that state. ...

  10. Tonopah Test Range Post-Closure Inspection Annual Report, Tonopah Test Range, Nevada, Calendar Year 2003

    Energy Technology Data Exchange (ETDEWEB)

    U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office; Bechtel Nevada

    2004-04-01

    This post-closure inspection report provides documentation of the semiannual inspection activities, maintenance and repair activities, and conclusions and recommendations for calendar year 2003 for eight corrective action units located on the Tonopah Test Range, Nevada.

  11. Closure Report for Corrective Action Unit 465: Hydronuclear Nevada National Security Site, Nevada, Revision 0

    Energy Technology Data Exchange (ETDEWEB)

    Mark Burmeister and Patrick Matthews

    2012-11-01

    The corrective action sites (CASs) within CAU 465 are located within Areas 6 and 27 of the NNSS. CAU 465 comprises the following CASs: • 00-23-01, Hydronuclear Experiment, located in Area 27 of the NNSS and known as the Charlie site. • 00-23-02, Hydronuclear Experiment, located in Area 27 of the NNSS and known as the Dog site. • 00-23-03, Hydronuclear Experiment, located in Area 27 of the NNSS and known as the Charlie Prime and Anja sites. • 06-99-01, Hydronuclear, located in Area 6 of the NNSS and known as the Trailer 13 site. The purpose of this CR is to provide documentation supporting the completed corrective actions and provide data confirming that the closure objectives for CASs within CAU 465 were met. From September 2011 through July 2012, closure activities were performed as set forth in the Streamlined Approach for Environmental Restoration Plan for CAU 465: Hydronuclear, Nevada National Security Site, Nevada.

  12. Roles of Historical Photography in Waste Site Characterization, Closure, and Remediation

    International Nuclear Information System (INIS)

    Mackey, H.

    1998-07-01

    Over 40,000 frames of vertical historical photography from 1938 to 1996 and over 10,000 frames of oblique photography from 1981 to 1991 of the 777-square kilometer Savannah River Site in south central South Carolina were reviewed, cataloged, and referenced utilizing ARCView and associated ArcInfo tools. This allows environmental reviews of over 400 potential waste units on the SRS to be conducted in a rapid fashion to support preparation of work plans, characterization, risk assessments, and closure of the waste units in a more cost effective manner

  13. Comparison of fasciotomy wound closures using traditional dressing changes and the vacuum-assisted closure device.

    Science.gov (United States)

    Zannis, John; Angobaldo, Jeff; Marks, Malcolm; DeFranzo, Anthony; David, Lisa; Molnar, Joseph; Argenta, Louis

    2009-04-01

    Fasciotomy wounds can be a major contributor to length of stay for patients as well as a difficult reconstructive challenge. Once the compartment pressure has been relieved and stabilized, the wound should be closed as quickly and early as possible to avoid later complications. Skin grafting can lead to morbidity and scarring at both the donor and fasciotomy site. Primary closure results in a more functional and esthetic outcome with less morbidity for the patient, but can often be difficult to achieve secondary to edema, skin retraction, and skin edge necrosis. Our objective was to examine fasciotomy wound outcomes, including time to definitive closure, comparing traditional wet-to-dry dressings, and the vacuum-assisted closure (VAC) device. This retrospective chart review included a consecutive series of patients over a 10-year period. This series included 458 patients who underwent 804 fasciotomies. Of these fasciotomy wounds, 438 received exclusively VAC. dressings, 270 received only normal saline wet-to-dry dressings, and 96 were treated with a combination of both. Of the sample, 408 patients were treated with exclusively VAC therapy or wet-to-dry dressings and 50 patients were treated with a combination of both. In comparing all wounds, there was a statistically significant higher rate of primary closure using the VAC versus traditional wet-to-dry dressings (P lower extremities and P extremities). The time to primary closure of wounds was shorter in the VAC. group in comparison with the non-VAC group. This study has shown that the use of the VAC for fasciotomy wound closure results in a higher rate of primary closure versus traditional wet-to-dry dressings. In addition, the time to primary closure of wounds or time to skin grafting is shorter when the VAC was employed. The VAC used in the described settings decreases hospitalization time, allows for earlier rehabilitation, and ultimately leads to increased patient satisfaction.

  14. Experimental study on the thermal performance of a new type of thermal energy storage based on flat micro-heat pipe array

    International Nuclear Information System (INIS)

    Li, Feng-fei; Diao, Yan-hua; Zhao, Yao-hua; Zhu, Ting-ting; Liu, Jing

    2016-01-01

    Highlights: • A novel thermal energy storage based on flat micro-heat pipe array is proposed. • The thermal storage shows excellent thermal performance in the working process. • The novel thermal storage has the advantage of low flow resistance. - Abstract: The thermal performance of an air-based phase change storage unit is analyzed and discussed in this study. The thermal energy storage uses flat micro-heat pipe array (FMHPA) as the core heat transfer component and lauric acid as phase change material (PCM). An experimental system is devised to test the heat storage–release property of the storage unit under different inlet temperatures and flow rates of the heat transfer medium. The performance of the storage unit and the melting/solidification curves of the phase change material are obtained based on extensive experimental data. Experimental results indicate that the flat micro-heat pipe array exhibits excellent temperature uniformity in the heat storage–release process, and the performance of the storage unit is efficient and steady.

  15. Transportable Vitrification System RCRA Closure Practical Waste Disposition Saves Time And Money

    International Nuclear Information System (INIS)

    Brill, Angie; Boles, Roger; Byars, Woody

    2003-01-01

    The Transportable Vitrification System (TVS) was a large-scale vitrification system for the treatment of mixed wastes. The wastes contained both hazardous and radioactive materials in the form of sludge, soil, and ash. The TVS was developed to be moved to various United States Department of Energy (DOE) facilities to vitrify mixed waste as needed. The TVS consists of four primary modules: (1) Waste and Additive Materials Processing Module; (2) Melter Module; (3) Emissions Control Module; and (4) Control and Services Module. The TVS was demonstrated at the East Tennessee Technology Park (ETTP) during September and October of 1997. During this period, approximately 16,000 pounds of actual mixed waste was processed, producing over 17,000 pounds of glass. After the demonstration was complete it was determined that it was more expensive to use the TVS unit to treat and dispose of mixed waste than to direct bury this waste in Utah permitted facility. Thus, DOE had to perform a Resource Conservation and Recovery Act (RCRA) closure of the facility and find a reuse for as much of the equipment as possible. This paper will focus on the following items associated with this successful RCRA closure project: TVS site closure design and implementation; characterization activities focused on waste disposition; pollution prevention through reuse; waste minimization efforts to reduce mixed waste to be disposed; and lessons learned that would be integrated in future projects of this magnitude

  16. Hanford Patrol Academy Demolition Sites Closure Plan

    International Nuclear Information System (INIS)

    1992-11-01

    From 1975 to 1991 the Hanford Patrol Academy Demolition Sites (HPADS) were used for demolition events. These demolition events were a form of thermal treatment for spent or abandoned chemical waste. Because the HPADS will no longer be used for this thermal activity, the sites will be closed. Closure will be conducted pursuant to the requirements of the Washington State Department of Ecology (Ecology) Dangerous Waste Regulations, Washington Administrative Code (WAC) 173-303-610 and 40 CFR 270.1. Closure also will satisfy closure requirements of WAC 173-303-680 and for the thermal treatment closure requirements of 40 CFR 265.381. This closure plan presents a description of the HPADS, the history of the waste treated, and the approach that will be followed to close the HPADS. Because dangerous waste does not include the source, special nuclear, and by-product material components of mixed waste, radionuclides are not within the scope of WAC 173-303 or of this closure plan. The information on radionuclides is provided only for general knowledge where appropriate. Only dangerous constituents derived from HPADS operations will be addressed in this closure plan in accordance with WAC 173-303-610(2)(b)(i). The HPADS are actually two distinct soil closure areas within the Hanford Patrol Academy training area

  17. Post-Closure Inspection and Monitoring Report for Corrective Action Unit 417: Central Nevada Test Area Surface, Hot Creek Valley, Nevada, for Calendar Year 2007

    Energy Technology Data Exchange (ETDEWEB)

    None

    2008-09-01

    This report presents data collected during the annual post-closure site inspection conducted at the Central Nevada Test Area Surface Corrective Action Unit (CAU) 417 in May 2007. The annual post-closure site inspection included inspections of the UC-1, UC-3, and UC-4 sites in accordance with the Post-Closure Monitoring Plan provided in the CAU 417 Closure Report (NNSA/NV 2001). The annual inspection conducted at the UC-1 Central Mud Pit (CMP) indicated the site and soil cover were in good condition. No new cracks or fractures were observed in the soil cover during the annual inspection. A crack on the west portion of the cover was observed during the last quarterly inspection in December 2006. This crack was filled with bentonite as part of the maintenance activities conducted in February 2007 and will be monitored during subsequent annual inspections. The vegetation on the soil cover was adequate but showing signs of the area's ongoing drought. No issues were identified with the CMP fence, gate, or subsidence monuments. New DOE Office of Legacy Management signs with updated emergency phone numbers were installed as part of this annual inspection, no issues were identified with the warning signs and monuments at the other two UC-1 locations. The annual subsidence survey was conducted at UC-1 CMP and UC-4 Mud Pit C as part of the maintenance activities conducted in February 2007. The results of the subsidence surveys indicate that the covers are performing as expected, and no unusual subsidence was observed. A vegetation survey of the UC-1 CMP cover and adjacent areas was conducted as part of the annual inspection in May 2007. The vegetation survey indicated that revegetation continues to be successful, although stressed due to the area's prevailing drought conditions. The vegetation should continue to be monitored to document any changes in the plant community and to identify conditions that could potentially require remedial action to maintain a viable

  18. Satisfaction Perception of Indoor Environment of Low-cost Housing: A case study of Flat Taman Desa Sentosa

    Directory of Open Access Journals (Sweden)

    Mohamed Mohd Farid

    2014-01-01

    Full Text Available Low-Cost Flat Housing is the housing for low income group.. It began with a flat which has two bedrooms in each unit, then it was increased three bedrooms. The three bedrooms flat has to fit the floor area of 650 square feet, in which was later revised to 700 square feet. Small overall floor area which comes with small budget allocated for its construction, could lead to poor indoor environmental quality (IEQ in low-cost flat, if not properly designed. This paper discusses on the occupants’ satisfaction perception of IEQ of a low cost flat in Kampung Teras Jernang, Selangor. The methodologies used in this study are site observation and questionnaire survey. This study concludes that the IEQ in the selected low-cost flat has acceptably fulfilled the needs and quality required by the occupants. However, there is a factor that the building occupants have expressed poor perception, which is the noise pollution.

  19. ASD Closure in Structural Heart Disease.

    Science.gov (United States)

    Wiktor, Dominik M; Carroll, John D

    2018-04-17

    While the safety and efficacy of percutaneous ASD closure has been established, new data have recently emerged regarding the negative impact of residual iatrogenic ASD (iASD) following left heart structural interventions. Additionally, new devices with potential advantages have recently been studied. We will review here the potential indications for closure of iASD along with new generation closure devices and potential late complications requiring long-term follow-up. With the expansion of left-heart structural interventions and large-bore transseptal access, there has been growing experience gained with management of residual iASD. Some recently published reports have implicated residual iASD after these procedures as a potential source of diminished clinical outcomes and mortality. Additionally, recent trials investigating new generation closure devices as well as expanding knowledge regarding late complications of percutaneous ASD closure have been published. While percutaneous ASD closure is no longer a novel approach to managing septal defects, there are several contemporary issues related to residual iASD following large-bore transseptal access and new generation devices which serve as an impetus for this review. Ongoing attention to potential late complications and decreasing their incidence with ongoing study is clearly needed.

  20. 32 CFR 989.25 - Base closure and realignment.

    Science.gov (United States)

    2010-07-01

    ... 32 National Defense 6 2010-07-01 2010-07-01 false Base closure and realignment. 989.25 Section 989... PROTECTION ENVIRONMENTAL IMPACT ANALYSIS PROCESS (EIAP) § 989.25 Base closure and realignment. Base closure or realignment may entail special requirements for environmental analysis. The permanent base closure...

  1. Progression of pectinate ligament dysplasia over time in two populations of Flat-Coated Retrievers.

    Science.gov (United States)

    Pearl, Rose; Gould, David; Spiess, Bernhard

    2015-01-01

    Two of the authors (DG, BS) independently observed that a number of Flat-Coated Retrievers (FCRs) previously unaffected by pectinate ligament dysplasia (PLD) appeared to develop the condition later in life. This study was instigated to investigate progression of PLD within individual dogs over time. Flat-Coated Retrievers that had previously undergone gonioscopy under the UK/ECVO hereditary eye schemes were included in the study. A second gonioscopic examination was performed 1.92-12.58 years later (mean 6, median 5.75 years) and the results compared. 39 FCR (17 males, 22 females) in the UK and 57 FCR (27 males, 30 females) in Switzerland were included. Slit-lamp biomicroscopy, indirect ophthalmoscopy, and gonioscopy were performed in all dogs. Gonioscopy allowed classification as either unaffected or affected; percentage of the iridocorneal drainage angle (ICA) affected by PLD was determined, before calculating progression observed as mild, moderate, or severe. 39 of 96 (40.6%) dogs demonstrated progression of PLD (P 90% ICA affected, consistent with a high risk of glaucoma. To the authors' knowledge, this is the first report describing progression of PLD in individual dogs over time, in a breed affected by primary, angle closure glaucoma. © 2013 American College of Veterinary Ophthalmologists.

  2. Patent ductus arteriosus closure using an Amplatzer™ ventricular septal defect closure device

    Science.gov (United States)

    Fernando, Rajeev; Koranne, Ketan; Loyalka, Pranav; Kar, Biswajit; Gregoric, Igor

    2013-01-01

    The ductus arteriosus originates from the persistence of the distal portion of the left sixth aortic arch. It connects the descending aorta (immediately distal to the left subclavian artery) to the roof of the main pulmonary artery, near the origin of the left pulmonary artery. Persistence of the duct beyond 48 h after birth is abnormal and results in patent ductus arteriosus (PDA). PDA is rare in adults because it is usually discovered and treated in childhood. Mechanical closure remains the definitive therapy because the patency of ductus arteriosus may lead to multiple complications, depending on the size and flow through the ductus. PDA closure is indicated in patients with symptoms and evidence of left heart enlargement, and in patients with elevated pulmonary pressures when reversal is possible. Transcatheter closure is the preferred technique in adults because it avoids sternotomy, reduces the length of hospital stay and is associated with fewer complications compared with surgery. First demonstrated in 1967, both the technique and the occluder devices used have since evolved. However, designing an ideal PDA occluder has been a challenge due to the variability in size, shape and orientation of PDAs. The present article describes a case involving a 35-year-old woman who presented to the Center for Advanced Heart Failure (Houston, USA) with congestive heart failure due to a large PDA, which was successfully occluded using an Amplatzer (St Jude Medical, USA) muscular ventricular septal defect closure device. The wider waist and dual-retention discs of these ventricular septal defect closure devices may be important factors to consider in the future development of devices for the occlusion of large PDAs. PMID:24294051

  3. POST CLOSURE INSPECTION AND MONITORING REPORT FOR CORRECTIVE ACTION UNIT 417: CENTRAL NEVADA TEST AREA - SURFACE, HOT CREEK VALLEY, NEVADA, FOR CALENDAR YEAR 2004

    Energy Technology Data Exchange (ETDEWEB)

    BECHTEL NEVADA; NNSA NEVADA SITE OFFICE

    2005-04-01

    This post-closure inspection and monitoring report has been prepared according to the stipulations laid out in the Closure Report (CR) for Corrective Action Unit (CAU) 417, Central Nevada Test Area (CNTA)--Surface (U.S. Department of Energy, National Nuclear Security Administration Nevada Operations Office [NNSA/NV], 2001), and the Federal Facility Agreement and Consent Order (FFACO, 1996). This report provides an analysis and summary of site inspections, subsidence surveys, meteorological information, and soil moisture monitoring data for CAU 417, which is located in Hot Creek Valley, Nye County, Nevada. This report covers Calendar Year 2004. Inspections at CAU 417 are conducted quarterly to document the physical condition of the UC-1, UC-3, and UC-4 soil covers, monuments, signs, fencing, and use restricted areas. The physical condition of fencing, monuments, and signs is noted, and any unusual conditions that could impact the integrity of the covers are reported. The objective of the soil moisture monitoring program is to monitor the stability of soil moisture conditions within the upper 1.2 meters (m) (4 feet [ft]) of the UC-1 Central Mud Pit (CMP) cover and detect changes that may be indicative of moisture movement exceeding the cover design performance expectations.

  4. Evaluation of the Momentum Closure Schemes in MPAS-Ocean

    Science.gov (United States)

    Zhao, Shimei; Liu, Yudi; Liu, Wei

    2018-04-01

    In order to compare and evaluate the performances of the Laplacian viscosity closure, the biharmonic viscosity closure, and the Leith closure momentum schemes in the MPAS-Ocean model, a variety of physical quantities, such as the relative reference potential energy (RPE) change, the RPE time change rate (RPETCR), the grid Reynolds number, the root mean square (RMS) of kinetic energy, and the spectra of kinetic energy and enstrophy, are calculated on the basis of results of a 3D baroclinic periodic channel. Results indicate that: 1) The RPETCR demonstrates a saturation phenomenon in baroclinic eddy tests. The critical grid Reynolds number corresponding to RPETCR saturation differs between the three closures: the largest value is in the biharmonic viscosity closure, followed by that in the Laplacian viscosity closure, and that in the Leith closure is the smallest. 2) All three closures can effectively suppress spurious dianeutral mixing by reducing the grid Reynolds number under sub-saturation conditions of the RPETCR, but they can also damage certain physical processes. Generally, the damage to the rotation process is greater than that to the advection process. 3) The dissipation in the biharmonic viscosity closure is strongly dependent on scales. Most dissipation concentrates on small scales, and the energy of small-scale eddies is often transferred to large-scale kinetic energy. The viscous dissipation in the Laplacian viscosity closure is the strongest on various scales, followed by that in the Leith closure. Note that part of the small-scale kinetic energy is also transferred to large-scale kinetic energy in the Leith closure. 4) The characteristic length scale L and the dimensionless parameter D in the Leith closure are inherently coupled. The RPETCR is inversely proportional to the product of D and L. When the product of D and L is constant, both the simulated RPETCR and the inhibition of spurious dianeutral mixing are the same in all tests using the Leith

  5. Post-Closure Inspection Report for the Tonopah Test Range, Nevada

    International Nuclear Information System (INIS)

    NSTec Environmental Restoration

    2007-01-01

    This report provides the results of the semiannual post-closure inspections conducted at the closed Corrective Action Unit (CAU) sites located on the Tonopah Test Range (TTR), Nevada. This report covers calendar year 2006 and includes inspection and repair activities completed at the following nine CAUs: CAU 400: Bomblet Pit and Five Points Landfill (TTR); CAU 404: Roller Coaster Lagoons and Trench (TTR); CAU 407: Roller Coaster RadSafe Area (TTR); CAU 423: Area 3 Underground Discharge Point, Building 0360 (TTR); CAU 424: Area 3 Landfill Complexes (TTR); CAU 426: Cactus Spring Waste Trenches (TTR); CAU 427: Area 3 Septic Waste Systems 2, 6 (TTR); CAU 453: Area 9 UXO Landfill (TTR); and CAU 487: Thunderwell Site (TTR). Post-closure inspections were conducted on May 9, 2006, May 31, 2006, and November 15, 2006. All inspections were conducted according to the post-closure plans in the approved Closure Reports. The post-closure inspection plan for each CAU is included in Attachment B, with the exception of CAU 400. CAU 400 does not require post-closure inspections, but inspections of the vegetation and fencing are conducted as a best management practice. The inspection checklists for each site inspection are included in Attachment C, the field notes are included in Attachment D, and the site photographs are included in Attachment E. Vegetation monitoring of CAU 400, CAU 404, CAU 407, and CAU 426 was performed in June 2006, and the vegetation monitoring report is included in Attachment F. Maintenance and/or repairs were performed at CAU 400, CAU 407, CAU 426, CAU 453, and CAU 487 in 2006. During the May inspection of CAU 400, it was identified that the east and west sections of chickenwire fencing beyond the standard fencing were damaged; they were repaired in June 2006. Also in June 2006, the southeast corner fence post and one warning sign at CAU 407 were reinforced and reattached, the perimeter fencing adjacent to the gate at CAU 426 was tightened, and large animal

  6. Post-Closure Inspection Report for the Tonopah Test Range, Nevada

    Energy Technology Data Exchange (ETDEWEB)

    NSTec Environmental Restoration

    2007-06-01

    This report provides the results of the semiannual post-closure inspections conducted at the closed Corrective Action Unit (CAU) sites located on the Tonopah Test Range (TTR), Nevada. This report covers calendar year 2006 and includes inspection and repair activities completed at the following nine CAUs: CAU 400: Bomblet Pit and Five Points Landfill (TTR); CAU 404: Roller Coaster Lagoons and Trench (TTR); CAU 407: Roller Coaster RadSafe Area (TTR); CAU 423: Area 3 Underground Discharge Point, Building 0360 (TTR); CAU 424: Area 3 Landfill Complexes (TTR); CAU 426: Cactus Spring Waste Trenches (TTR); CAU 427: Area 3 Septic Waste Systems 2, 6 (TTR); CAU 453: Area 9 UXO Landfill (TTR); and CAU 487: Thunderwell Site (TTR). Post-closure inspections were conducted on May 9, 2006, May 31, 2006, and November 15, 2006. All inspections were conducted according to the post-closure plans in the approved Closure Reports. The post-closure inspection plan for each CAU is included in Attachment B, with the exception of CAU 400. CAU 400 does not require post-closure inspections, but inspections of the vegetation and fencing are conducted as a best management practice. The inspection checklists for each site inspection are included in Attachment C, the field notes are included in Attachment D, and the site photographs are included in Attachment E. Vegetation monitoring of CAU 400, CAU 404, CAU 407, and CAU 426 was performed in June 2006, and the vegetation monitoring report is included in Attachment F. Maintenance and/or repairs were performed at CAU 400, CAU 407, CAU 426, CAU 453, and CAU 487 in 2006. During the May inspection of CAU 400, it was identified that the east and west sections of chickenwire fencing beyond the standard fencing were damaged; they were repaired in June 2006. Also in June 2006, the southeast corner fence post and one warning sign at CAU 407 were reinforced and reattached, the perimeter fencing adjacent to the gate at CAU 426 was tightened, and large animal

  7. Completion Report for Well ER-2-2 Corrective Action Unit 97: Yucca Flat/Climax Mine

    International Nuclear Information System (INIS)

    Wurtz, Jeffrey; Rehfeldt, Ken

    2017-01-01

    Well ER-2-2 was drilled for the U.S. Department of Energy, Nevada National Security Administration Nevada Field Office in support of the Underground Test Area (UGTA) Activity. The well was drilled from January 17 to February 8, 2016, as part of the Corrective Action Investigation Plan (CAIP) for Corrective Action Unit 97: Yucca Flat/Climax Mine, Nevada Test Site, Nevada. The primary purpose of the well was to collect hydrogeologic data to evaluate uncertainty in the flow and transport conceptual model and its contamination boundary forecasts, and to detect radionuclides in groundwater from the CALABASH (U2av) underground test. Well ER-2-2 was not completed as planned due to borehole stability problems. As completed, the well includes a piezometer (p1) to 582 meters (m) (1,909 feet [ft]) below ground surface (bgs) installed in the Timber Mountain lower vitric-tuff aquifer (TMLVTA) and a 12.25-inch (in.) diameter open borehole to 836 m (2,743 ft) bgs in the Lower tuff confining unit (LTCU). A 13.375-in. diameter carbon-steel casing is installed from the surface to a depth of 607 m (1,990 ft) bgs. Data collected during borehole construction include composite drill cutting samples collected every 3.0 m (10 ft), geophysical logs to a depth of 672.4 m (2,206 ft) bgs, water-quality measurements (including tritium), water-level measurements, and slug test data. The well penetrated 384.05 m (1,260 ft) of Quaternary alluvium, 541.93 m (1,778 ft) of Tertiary Volcanics (Tv) rocks, and 127.71 m (419 ft) of Paleozoic carbonates. The stratigraphy and lithology were generally as expected. However, several of the stratigraphic units were significantly thicker then predicted - principally, the Tunnel formation (Tn), which had been predicted to be 30 m (100 ft) thick; the actual thickness of this unit was 268.22 m (880 ft). Fluid depths were measured in the borehole during drilling as follows: (1) in the piezometer (p1) at 552.15 m (1,811.53 ft) bgs and (2) in the main casing (m1) at

  8. Completion Report for Well ER-2-2 Corrective Action Unit 97: Yucca Flat/Climax Mine

    Energy Technology Data Exchange (ETDEWEB)

    Wurtz, Jeffrey [Navarro, Las Vegas, NV (United States); Rehfeldt, Ken [Navarro, Las Vegas, NV (United States)

    2017-01-01

    Well ER-2-2 was drilled for the U.S. Department of Energy, Nevada National Security Administration Nevada Field Office in support of the Underground Test Area (UGTA) Activity. The well was drilled from January 17 to February 8, 2016, as part of the Corrective Action Investigation Plan (CAIP) for Corrective Action Unit 97: Yucca Flat/Climax Mine, Nevada Test Site, Nevada. The primary purpose of the well was to collect hydrogeologic data to evaluate uncertainty in the flow and transport conceptual model and its contamination boundary forecasts, and to detect radionuclides in groundwater from the CALABASH (U2av) underground test. Well ER-2-2 was not completed as planned due to borehole stability problems. As completed, the well includes a piezometer (p1) to 582 meters (m) (1,909 feet [ft]) below ground surface (bgs) installed in the Timber Mountain lower vitric-tuff aquifer (TMLVTA) and a 12.25-inch (in.) diameter open borehole to 836 m (2,743 ft) bgs in the Lower tuff confining unit (LTCU). A 13.375-in. diameter carbon-steel casing is installed from the surface to a depth of 607 m (1,990 ft) bgs. Data collected during borehole construction include composite drill cutting samples collected every 3.0 m (10 ft), geophysical logs to a depth of 672.4 m (2,206 ft) bgs, water-quality measurements (including tritium), water-level measurements, and slug test data. The well penetrated 384.05 m (1,260 ft) of Quaternary alluvium, 541.93 m (1,778 ft) of Tertiary Volcanics (Tv) rocks, and 127.71 m (419 ft) of Paleozoic carbonates. The stratigraphy and lithology were generally as expected. However, several of the stratigraphic units were significantly thicker then predicted—principally, the Tunnel formation (Tn), which had been predicted to be 30 m (100 ft) thick; the actual thickness of this unit was 268.22 m (880 ft). Fluid depths were measured in the borehole during drilling as follows: (1) in the piezometer (p1) at 552.15 m (1,811.53 ft) bgs and (2) in the main casing (m1) at

  9. TECHNICAL PEER REVIEW REPORT - YUCCA MOUNTAIN: WASTE PACKAGE CLOSURE CONTROL SYSTEM

    Energy Technology Data Exchange (ETDEWEB)

    NA

    2005-10-25

    The objective of the Waste Package Closure System (WPCS) project is to assist in the disposal of spent nuclear fuel (SNF) and associated high-level wastes (HLW) at the Yucca Mountain site in Nevada. Materials will be transferred from the casks into a waste package (WP), sealed, and placed into the underground facility. The SNF/HLW transfer and closure operations will be performed in an aboveground facility. The objective of the Control System is to bring together major components of the entire WPCS ensuring that unit operations correctly receive, and respond to, commands and requests for data. Integrated control systems will be provided to ensure that all operations can be performed remotely. Maintenance on equipment may be done using hands-on or remote methods, depending on complexity, exposure, and ease of access. Operating parameters and nondestructive examination results will be collected and stored as permanent electronic records. Minor weld repairs must be performed within the closure cell if the welds do not meet the inspection acceptance requirements. Any WP with extensive weld defects that require lids to be removed will be moved to the remediation facility for repair.

  10. TECHNICAL PEER REVIEW REPORT - YUCCA MOUNTAIN: WASTE PACKAGE CLOSURE CONTROL SYSTEM

    International Nuclear Information System (INIS)

    2005-01-01

    The objective of the Waste Package Closure System (WPCS) project is to assist in the disposal of spent nuclear fuel (SNF) and associated high-level wastes (HLW) at the Yucca Mountain site in Nevada. Materials will be transferred from the casks into a waste package (WP), sealed, and placed into the underground facility. The SNF/HLW transfer and closure operations will be performed in an aboveground facility. The objective of the Control System is to bring together major components of the entire WPCS ensuring that unit operations correctly receive, and respond to, commands and requests for data. Integrated control systems will be provided to ensure that all operations can be performed remotely. Maintenance on equipment may be done using hands-on or remote methods, depending on complexity, exposure, and ease of access. Operating parameters and nondestructive examination results will be collected and stored as permanent electronic records. Minor weld repairs must be performed within the closure cell if the welds do not meet the inspection acceptance requirements. Any WP with extensive weld defects that require lids to be removed will be moved to the remediation facility for repair

  11. Phacoemulsification with intraocular lens implantation in primary angle-closure suspect, primary angle-closure and primary angle-closure glaucoma with cataract

    Directory of Open Access Journals (Sweden)

    Kun Zeng

    2013-08-01

    Full Text Available AIM: To evaluate the features and clinical outcomes of cataract extraction by phacoemulsification with intraocular lens implantation in primary angle-closure suspect(PACS, primary angle-closure(PACand primary angle-closure glaucoma(PACGwith cataract.METHODS:Phacoemulsification with intraocular lens implantation was performed on 86 cases(86 eyesdiagnosed as PACS, PAC and PACG co-existing cataract from January to December 2012. All cases were followed up for 3 months to 1 year. Pre-operative and post-operative visual acuity, intraocular pressure(IOP, gonioscopy, ultrasound biomicroscopy(UBM, visual field and usage of anti-glaucomaous eye drops were recorded.RESULTS:Zonular dialysis existed in 19 eyes(22%. The post-operative visual acuity improved in 84 eyes(98%. The post-operative visual acuity was CONCLUSION: PACS, PAC and PACG co-existing zonular dialysis is common. Phacoemulsification with IOL implantation can reduce IOP, deepen anterior chamber and open angle.

  12. 40 CFR 264.178 - Closure.

    Science.gov (United States)

    2010-07-01

    ... Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES (CONTINUED) STANDARDS FOR OWNERS AND OPERATORS OF HAZARDOUS WASTE TREATMENT, STORAGE, AND DISPOSAL FACILITIES Use and Management of Containers § 264.178 Closure. At closure, all hazardous waste and hazardous waste residues must be removed...

  13. Closure report for N Reactor

    International Nuclear Information System (INIS)

    1994-01-01

    This report has been prepared to satisfy Section 3156(b) of Public Law 101-189 (Reports in Connection with Permanent Closures of Department of Energy Defense Nuclear Facilities), which requires submittal of a Closure Report to Congress by the Secretary of Energy upon the permanent cessation of production operations at a US Department of Energy (DOE) defense nuclear facility (Watkins 1991). This closure report provides: (1) A complete survey of the environmental problems at the facility; (2) Budget quality data indicating the cost of environmental restoration and other remediation and cleanup efforts at the facility; (3) A proposed cleanup schedule

  14. Closure report for N Reactor

    Energy Technology Data Exchange (ETDEWEB)

    1994-01-01

    This report has been prepared to satisfy Section 3156(b) of Public Law 101-189 (Reports in Connection with Permanent Closures of Department of Energy Defense Nuclear Facilities), which requires submittal of a Closure Report to Congress by the Secretary of Energy upon the permanent cessation of production operations at a US Department of Energy (DOE) defense nuclear facility (Watkins 1991). This closure report provides: (1) A complete survey of the environmental problems at the facility; (2) Budget quality data indicating the cost of environmental restoration and other remediation and cleanup efforts at the facility; (3) A proposed cleanup schedule.

  15. Near-field flat focusing mirrors

    Science.gov (United States)

    Cheng, Yu-Chieh; Staliunas, Kestutis

    2018-03-01

    This article reviews recent progress towards the design of near-field flat focusing mirrors, focusing/imaging light patterns in reflection. An important feature of such flat focusing mirrors is their transverse invariance, as they do not possess any optical axis. We start with a review of the physical background to the different focusing mechanisms of near- and far-field focusing. These near-field focusing devices like flat lenses and the reviewed near-field focusing mirrors can implement planar focusing devices without any optical axis. In contrast, various types of far-field planar focusing devices, such as high-contrast gratings and metasurfaces, unavoidably break the transverse invariance due to their radially symmetrical structures. The particular realizations of near-field flat focusing mirrors including Bragg-like dielectric mirrors and dielectric subwavelength gratings are the main subjects of the review. The first flat focusing mirror was demonstrated with a chirped mirror and was shown to manage an angular dispersion for beam focusing, similar to the management of chromatic dispersion for pulse compression. Furthermore, the reviewed optimized chirped mirror demonstrated a long near-field focal length, hardly achieved by a flat lens or a planar hyperlens. Two more different configurations of dielectric subwavelength gratings that focus a light beam at normal or oblique incidence are also reviewed. We also summarize and compare focusing performance, limitations, and future perspectives between the reviewed flat focusing mirrors and other planar focusing devices including a flat lens with a negative-index material, a planar hyperlens, a high-contrast grating, and a metasurface.

  16. The closure of the Barsebaeck nuclear power plant. What is the experience so far?

    International Nuclear Information System (INIS)

    Palmqvist, R.

    2000-01-01

    On 30 November 1999, Unit 1 of the Barsebaeck Nuclear power plant was closed down due to the political decision. This was a disaster not only for all those employed at the plant but also for the Municipality of Kavlinge and the entire region. The government has given the employees five-year job security and the Municipality of Kavlinge a study showing the consequences of the closure and nothing else. The municipalities with Nuclear power plants in Sweden are quite isolated in their demands for help and compensation for the losses caused by closure of NPPs, although 80% of the Swedish population opposes premature phasing out of nuclear power

  17. Femoral Artery Stenosis Following Percutaneous Closure Using a Starclose Closure Device

    International Nuclear Information System (INIS)

    Bent, Clare Louise; Kyriakides, Constantinos; Matson, Matthew

    2008-01-01

    Starclose (Abbott Vascular Devices, Redwood City, CA) is a new arterial closure device that seals a femoral puncture site with an extravascular star-shaped nitinol clip. The clip projects small tines into the arterial wall which fold inward, causing the arterial wall to pucker, producing a purse-string-like seal closing the puncture site. The case history is that of a 76-year-old female patient who underwent day-case percutaneous diagnostic coronary angiography. A Starclose femoral artery closure device was used to achieve hemostasis with subsequent femoral artery stenosis.

  18. Preliminary hydrogeologic investigation of the Maxey Flats radioactive waste burial site, Fleming County, Kentucky

    Science.gov (United States)

    Zehner, Harold H.

    1979-01-01

    Burial trenches at the Maxey Flats radioactive waste burial site , Fleming County, Ky., cover an area of about 0.03 square mile, and are located on a plateau, about 300 to 400 feet above surrounding valleys. Although surface-water characteristics are known, little information is available regarding the ground-water hydrology of the Maxey Flats area. If transport of radionuclides from the burial site were to occur, water would probably be the principal mechanism of transport by natural means. Most base flow in streams around the burial site is from valley alluvium, and from the mantle of regolith, colluvium, and soil partially covering adjacent hills. Very little base flow is due to ground-water flow from bedrock. Most water in springs is from the mantle, rather than from bedrock. Rock units underlying the Maxey Flats area are, in descending order, the Nancy and Farmers Members of the Borden Formation, Sunbury, Bedford, and Ohio Shales, and upper part of the Crab Orchard Formation. These units are mostly shales, except for the Farmers Member, which is mostly sandstone. Total thickness of the rocks is about 320 feet. All radioactive wastes are buried in the Nancy Member. Most ground-water movement in bedrock probably occurs in fractures. The ground-water system at Maxey Flats is probably unconfined, and recharge occurs by (a) infiltration of rainfall into the mantle, and (b) vertical, unsaturated flow from the saturated regolith on hilltops to saturated zones in the Farmers Member and Ohio Shale. Data are insufficient to determine if saturated zones exist in other rock units. The upper part of the Crab Orchard Formation is probably a hydrologic boundary, with little ground-water flow through the formation. (USGS)

  19. Streamlined approach for environmental restoration closure report for Corrective Action Unit 452: Historical underground storage tank release sites, Nevada Test Site, Nevada

    International Nuclear Information System (INIS)

    1998-04-01

    This report addresses the site characterization of three historical underground storage tank (UST) petroleum hydrocarbon release sites identified as 25-3101-1, 25-3102-3, and 25-3152-1. The sites are located within the Nevada Test Site in Area 25 at Buildings 3101, 3102, and 3152. The characterization was completed to support administrative closure of the sites. Characterization was completed using drilling equipment to delineate the extent of hydrocarbon impact. Clean closure had been previously attempted at each of these sites using backhoe equipment without success due to adjacent structures, buried utilities, or depth restrictions associated with each site. Although the depth and extent of hydrocarbon impact was determined to be too extensive for clean closure, it was verified through drilling that the sites should be closed through an administrative closure. The Nevada Administrative Code ''A Through K'' evaluation completed for each site supports that there is no significant risk to human health or the environment from the impacted soils remaining at each site

  20. 9 CFR 318.301 - Containers and closures.

    Science.gov (United States)

    2010-01-01

    ... 9 Animals and Animal Products 2 2010-01-01 2010-01-01 false Containers and closures. 318.301... Canning and Canned Products § 318.301 Containers and closures. (a) Examination and cleaning of empty containers. (1) Empty containers, closures, and flexible pouch roll stock shall be evaluated by the...

  1. 75 FR 29322 - Base Closure and Realignment

    Science.gov (United States)

    2010-05-25

    ... DEPARTMENT OF DEFENSE Office of the Secretary Base Closure and Realignment AGENCY: Office of...)(ii) of the Defense Base Closure and Realignment Act of 1990. It provides a partial list of military installations closing or realigning pursuant to the 2005 Base Closure and Realignment (BRAC) Report. It also...

  2. Elevated Radiation Exposure Associated With Above Surface Flat Detector Mini C-Arm Use.

    Science.gov (United States)

    Martin, Dennis P; Chapman, Talia; Williamson, Christopher; Tinsley, Brian; Ilyas, Asif M; Wang, Mark L

    2017-11-01

    This study aims to test the hypothesis that: (1) radiation exposure is increased with the intended use of Flat Surface Image Intensifier (FSII) units above the operative surface compared with the traditional below-table configuration; (2) this differential increases in a dose-dependent manner; and (3) radiation exposure varies with body part and proximity to the radiation source. A surgeon mannequin was seated at a radiolucent hand table, positioned for volar distal radius plating. Thermoluminescent dosimeters measured exposure to the eyes, thyroid, chest, hand, and groin, for 1- and 15-minute trials from a mini C-arm FSII unit positioned above and below the operating surface. Background radiation was measured by control dosimeters placed within the operating theater. At 1-minute of exposure, hand and eye dosages were significantly greater with the flat detector positioned above the table. At 15-minutes of exposure, hand radiation dosage exceeded that of all other anatomic sites with the FSII in both positions. Hand exposure was increased in a dose-dependent manner with the flat detector in either position, whereas groin exposure saw a dose-dependent only with the flat detector beneath the operating table. These findings suggest that the surgeon's hands and eyes may incur greater radiation exposure compared with other body parts, during routine mini C-arm FSII utilization in its intended position above the operating table. The clinical impact of these findings remains unclear, and future long-term radiation safety investigation is warranted. Surgeons should take precautions to protect critical body parts, particularly when using FSII technology above the operating with prolonged exposure time.

  3. Post-Closure Inspection Report for the Tonopah Test Range, Nevada, for Calendar Year 2009

    International Nuclear Information System (INIS)

    2010-01-01

    This report provides the results of the annual post-closure inspections conducted at the closed Corrective Action Unit (CAU) sites located on the Tonopah Test Range (TTR), Nevada. This report covers calendar year 2009 and includes inspection and repair activities completed at the following seven CAUs: (1) CAU 400: Bomblet Pit and Five Points Landfill (TTR); (2) CAU 407: Roller Coaster RadSafe Area (TTR); (3) CAU 424: Area 3 Landfill Complexes (TTR); (4) CAU 426: Cactus Spring Waste Trenches (TTR); (5) CAU 453: Area 9 UXO Landfill (TTR); (6) CAU 484: Surface Debris, Waste Sites, and Burn Area (TTR); and (7) CAU 487: Thunderwell Site (TTR). The annual post-closure inspections were conducted May 5-6, 2009. All inspections were conducted according to the post-closure plans in the approved Closure Reports. The post-closure inspection plan for each CAU is included in Attachment B, with the exception of CAU 400. CAU 400 does not require post-closure inspections, but inspections of the vegetation and fencing are conducted as a best management practice. The inspection checklists for each site inspection are included in Attachment C, the field notes are included in Attachment D, and the site photographs are included in Attachment E. Vegetation monitoring of CAU 400, CAU 404, CAU 407, and CAU 426 was performed in June 2009, and the vegetation monitoring report is included in Attachment F. Maintenance was performed at CAU 453. Animal burrows observed during the annual inspection were backfilled, and a depression was restored to grade on June 25, 2009. Post-closure site inspections should continue as scheduled. Vegetation survey inspections have been conducted annually at CAUs 400, 404, 407, and 426. Discontinuation of vegetation surveys is recommended at the CAU 400 Bomblet Pit and CAU 426, which have been successfully revegetated. Discontinuation of vegetation surveys is also recommended at CAU 404, which has been changed to an administrative closure with no inspections

  4. Post-Closure Inspection Report for the Tonopah Test Range, Nevada, for Calendar Year 2009

    Energy Technology Data Exchange (ETDEWEB)

    NSTec Environmental Restoration

    2010-05-28

    This report provides the results of the annual post-closure inspections conducted at the closed Corrective Action Unit (CAU) sites located on the Tonopah Test Range (TTR), Nevada. This report covers calendar year 2009 and includes inspection and repair activities completed at the following seven CAUs: · CAU 400: Bomblet Pit and Five Points Landfill (TTR) · CAU 407: Roller Coaster RadSafe Area (TTR) · CAU 424: Area 3 Landfill Complexes (TTR) · CAU 426: Cactus Spring Waste Trenches (TTR) · CAU 453: Area 9 UXO Landfill (TTR) · CAU 484: Surface Debris, Waste Sites, and Burn Area (TTR) · CAU 487: Thunderwell Site (TTR) The annual post-closure inspections were conducted May 5–6, 2009. All inspections were conducted according to the post-closure plans in the approved Closure Reports. The post-closure inspection plan for each CAU is included in Attachment B, with the exception of CAU 400. CAU 400 does not require post-closure inspections, but inspections of the vegetation and fencing are conducted as a best management practice. The inspection checklists for each site inspection are included in Attachment C, the field notes are included in Attachment D, and the site photographs are included in Attachment E. Vegetation monitoring of CAU 400, CAU 404, CAU 407, and CAU 426 was performed in June 2009, and the vegetation monitoring report is included in Attachment F. Maintenance was performed at CAU 453. Animal burrows observed during the annual inspection were backfilled, and a depression was restored to grade on June 25, 2009. Post-closure site inspections should continue as scheduled. Vegetation survey inspections have been conducted annually at CAUs 400, 404, 407, and 426. Discontinuation of vegetation surveys is recommended at the CAU 400 Bomblet Pit and CAU 426, which have been successfully revegetated. Discontinuation of vegetation surveys is also recommended at CAU 404, which has been changed to an administrative closure with no inspections required. Vegetation

  5. Closure Welding of Plutonium Bearing Storage Containers

    International Nuclear Information System (INIS)

    Cannell, G.R.

    2002-01-01

    A key element in the Department of Energy (DOE) strategy for the stabilization, packaging and storage of plutonium-bearing materials involves closure welding of DOE-STD-3013 Outer Containers (3013 container). The 3013 container provides the primary barrier and pressure boundary preventing release of plutonium-bearing materials to the environment. The final closure (closure weld) of the 3013 container must be leaktight, structurally sound and meet DOE STD 3013 specified criteria. This paper focuses on the development, qualification and demonstration of the welding process for the closure welding of Hanford PFP 3013 outer containers

  6. Blower door tests of a group of identical flats in a new student accommodation in the Arctic

    DEFF Research Database (Denmark)

    Kotol, Martin; Rode, Carsten; Vahala, Jan

    is as high as 400%. This result is without consideration of one particular flat which had the extreme result of being 940% as leaky as the unit with the highest air tightness. The reasons for such poor air tightness are lack of the installation gap between the vapour barrier and the inner wall......, and insufficient connections of the vapour barrier to the interior walls as explained in the paper. The large variation in results can be attributed to insufficient consideration of the importance of airtighness during construction of some parts of the building – despite of an intent to make a rather air tight...... air quality (IAQ) as well as performance of some single components. In summer 2012 a blower door test was performed on all 37 living units out of which 33 are identical single room flats and 4 are larger double room flats. The purpose was to evaluate the air tightness of the envelope and to find out...

  7. Treatment of Fournier's Gangrene with Combination of Vacuum-Assisted Closure Therapy, Hyperbaric Oxygen Therapy, and Protective Colostomy

    Directory of Open Access Journals (Sweden)

    Giovanni Zagli

    2011-01-01

    Full Text Available Fournier's gangrene is a rare process which affects soft tissue in the genital and perirectal area. It can also progress to all different stages of sepsis, and abdominal compartment syndrome can be one of its complications. Two patients in septic shock due to Fournier gangrene were admitted to the Intensive Care Unit of Emergency Department. In both cases, infection started from the scrotum and the necrosis quickly involved genitals, perineal, and inguinal regions. Patients were treated with surgical debridement, protective colostomy, hyperbaric oxygen therapy, and broad-spectrum antibacterial chemotherapy. Vacuum-assisted closure (VAC therapy was applied to the wound with the aim to clean, decontaminate, and avoid abdominal compartmental syndrome development. Both patients survived and were discharged from Intensive Care Unit after hyperbaric oxygen therapy cycles and abdominal closure.

  8. Fuel channel closure and adapter

    International Nuclear Information System (INIS)

    Cashen, W.S.

    1985-01-01

    This invention provides a mechanical closure/actuating ram combination particularly suited for use in sealing the ends of the pressure tubes when a CANDU-type reactor is refueled. It provides a cluster that may be inserted into a fuel channel end fitting to provide at least partial closing off of a pressure tube while permitting the disengagement of the fueling machine and its withdrawal from the closure for other purposes. The invention also provides a ram/closure combination wherein the application of loading force to a deformable sealing disk is regulated by a massive load bar component forming part of the fueling machine and being therefore accessible for maintenance or replacement

  9. Restaurant closures

    CERN Document Server

    Novae Restauration

    2012-01-01

    Christmas Restaurant closures Please note that the Restaurant 1 and Restaurant 3 will be closed from Friday, 21 December at 5 p.m. to Sunday, 6 January, inclusive. They will reopen on Monday, 7 January 2013.   Restaurant 2 closure for renovation To meet greater demand and to modernize its infrastructure, Restaurant 2 will be closed from Monday, 17 December. On Monday, 14 January 2013, Sophie Vuetaz’s team will welcome you to a renovated self-service area on the 1st floor. The selections on the ground floor will also be expanded to include pasta and pizza, as well as snacks to eat in or take away. To ensure a continuity of service, we suggest you take your break at Restaurant 1 or Restaurant 3 (Prévessin).

  10. Anterior Segment Imaging Predicts Incident Gonioscopic Angle Closure.

    Science.gov (United States)

    Baskaran, Mani; Iyer, Jayant V; Narayanaswamy, Arun K; He, Yingke; Sakata, Lisandro M; Wu, Renyi; Liu, Dianna; Nongpiur, Monisha E; Friedman, David S; Aung, Tin

    2015-12-01

    To investigate the incidence of gonioscopic angle closure after 4 years in subjects with gonioscopically open angles but varying degrees of angle closure detected on anterior segment optical coherence tomography (AS OCT; Visante; Carl Zeiss Meditec, Dublin, CA) at baseline. Prospective, observational study. Three hundred forty-two subjects, mostly Chinese, 50 years of age or older, were recruited, of whom 65 were controls with open angles on gonioscopy and AS OCT at baseline, and 277 were cases with baseline open angles on gonioscopy but closed angles (1-4 quadrants) on AS OCT scans. All subjects underwent gonioscopy and AS OCT at baseline (horizontal and vertical single scans) and after 4 years. The examiner performing gonioscopy was masked to the baseline and AS OCT data. Angle closure in a quadrant was defined as nonvisibility of the posterior trabecular meshwork by gonioscopy and visible iridotrabecular contact beyond the scleral spur in AS OCT scans. Gonioscopic angle closure in 2 or 3 quadrants after 4 years. There were no statistically significant differences in age, ethnicity, or gender between cases and controls. None of the control subjects demonstrated gonioscopic angle closure after 4 years. Forty-eight of the 277 subjects (17.3%; 95% confidence interval [CI], 12.8-23; P < 0.0001) with at least 1 quadrant of angle closure on AS OCT at baseline demonstrated gonioscopic angle closure in 2 or more quadrants, whereas 28 subjects (10.1%; 95% CI, 6.7-14.6; P < 0.004) demonstrated gonioscopic angle closure in 3 or more quadrants after 4 years. Individuals with more quadrants of angle closure on baseline AS OCT scans had a greater likelihood of gonioscopic angle closure developing after 4 years (P < 0.0001, chi-square test for trend for both definitions of angle closure). Anterior segment OCT imaging at baseline predicts incident gonioscopic angle closure after 4 years among subjects who have gonioscopically open angles and iridotrabecular contact on AS OCT at

  11. Randomized clinical trial of intestinal ostomy takedown comparing pursestring wound closure vs conventional closure to eliminate the risk of wound infection.

    Science.gov (United States)

    Camacho-Mauries, Daniel; Rodriguez-Díaz, José Luis; Salgado-Nesme, Noel; González, Quintín H; Vergara-Fernández, Omar

    2013-02-01

    The use of temporary stomas has been demonstrated to reduce septic complications, especially in high-risk anastomosis; therefore, it is necessary to reduce the number of complications secondary to ostomy takedowns, namely wound infection, anastomotic leaks, and intestinal obstruction. To compare the rates of superficial wound infection and patient satisfaction after pursestring closure of ostomy wound vs conventional linear closure. Patients undergoing colostomy or ileostomy closure between January 2010 and February 2011 were randomly assigned to linear closure (n = 30) or pursestring closure (n = 31) of their ostomy wound. Wound infection within 30 days of surgery was defined as the presence of purulent discharge, pain, erythema, warmth, or positive culture for bacteria. Patient satisfaction, healing time, difficulty managing the wound, and limitation of activities were analyzed with the Likert questionnaire. The infection rate for the control group was 36.6% (n = 11) vs 0% in the pursestring closure group (p ostomy wound closure (shorter healing time and improved patient satisfaction).

  12. Incorporating Sustainability into Site Closure - A Field Example

    Science.gov (United States)

    Austrins, L. M.; West, J.

    2013-12-01

    Long term management of former chemical production facilities can be a costly and time consuming element of site closure, however, implementation of creative measures to introduce sustainability and reduce the need for onsite presence can be successfully incorporated into the site closure process. A case study demonstrating this involves a facility located in Sarnia, Ontario, which was an active multi chemical production facility from the 1940s, until it was decommissioned and sold between 2005 and 2010. The facility consisted of 322 acres of production areas. Several elements which allowed for reduced onsite presence and lower management costs were incorporated into the site decommissioning plan, including; phased remediation planning, and selection of sustainable components as part of remediation, surface water management, and groundwater management. The sustainability and management modifications were successfully negotiated and approved by the local regulatory agency. Due to the size and complexity of the site, a holistic approach for the facility was needed and included the development of a comprehensive decision matrix. Each remediation alternative incorporated sustainable practices. Ex-situ remediation consisted of excavation of contaminated subsurface medium and consolidation at a 4.7 acre onsite soil treatment area designed specifically for the site closure process. In-situ remediation consisted of injection of amendment into the native soils using hydraulic fracture and injection. When the plant was an active operating facility, groundwater management required active pumping and groundwater treatment through a series of carbon treatment units. Active pumping has been replaced by passive hydraulic control through the use of tree plantations.

  13. Patent ductus arteriosus closure using an Amplatzer(™) ventricular septal defect closure device.

    Science.gov (United States)

    Fernando, Rajeev; Koranne, Ketan; Loyalka, Pranav; Kar, Biswajit; Gregoric, Igor

    2013-01-01

    The ductus arteriosus originates from the persistence of the distal portion of the left sixth aortic arch. It connects the descending aorta (immediately distal to the left subclavian artery) to the roof of the main pulmonary artery, near the origin of the left pulmonary artery. Persistence of the duct beyond 48 h after birth is abnormal and results in patent ductus arteriosus (PDA). PDA is rare in adults because it is usually discovered and treated in childhood. Mechanical closure remains the definitive therapy because the patency of ductus arteriosus may lead to multiple complications, depending on the size and flow through the ductus. PDA closure is indicated in patients with symptoms and evidence of left heart enlargement, and in patients with elevated pulmonary pressures when reversal is possible. Transcatheter closure is the preferred technique in adults because it avoids sternotomy, reduces the length of hospital stay and is associated with fewer complications compared with surgery. First demonstrated in 1967, both the technique and the occluder devices used have since evolved. However, designing an ideal PDA occluder has been a challenge due to the variability in size, shape and orientation of PDAs. The present article describes a case involving a 35-year-old woman who presented to the Center for Advanced Heart Failure (Houston, USA) with congestive heart failure due to a large PDA, which was successfully occluded using an Amplatzer (St Jude Medical, USA) muscular ventricular septal defect closure device. The wider waist and dual-retention discs of these ventricular septal defect closure devices may be important factors to consider in the future development of devices for the occlusion of large PDAs.

  14. Temporary Closure of the Open Abdomen: A Systematic Review on Delayed Primary Fascial Closure in Patients with an Open Abdomen

    NARCIS (Netherlands)

    Boele van Hensbroek, Pieter; Wind, Jan; Dijkgraaf, Marcel G. W.; Busch, Olivier R. C.; Goslings, J. Carel

    2009-01-01

    Background This study was designed to systematically review the literature to assess which temporary abdominal closure (TAC) technique is associated with the highest delayed primary fascial closure (FC) rate. In some cases of abdominal trauma or infection, edema or packing precludes fascial closure

  15. Completion Report for Model Evaluation Well ER-5-5: Corrective Action Unit 98: Frenchman Flat

    Energy Technology Data Exchange (ETDEWEB)

    NSTec Underground Test Area and Boreholes Programs and Operations

    2013-01-18

    Model Evaluation Well ER-5-5 was drilled for the U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office in support of Nevada Environmental Management Operations at the Nevada National Security Site (formerly known as the Nevada Test Site). The well was drilled in July and August 2012 as part of a model evaluation well program in the Frenchman Flat area of Nye County, Nevada. The primary purpose of the well was to provide detailed geologic, hydrogeologic, chemical, and radiological data that can be used to test and build confidence in the applicability of the Frenchman Flat Corrective Action Unit flow and transport models for their intended purpose. In particular, this well was designed to obtain data to evaluate the uncertainty in model forecasts of contaminant migration from the upgradient underground nuclear test MILK SHAKE, conducted in Emplacement Hole U-5k in 1968, which were considered to be uncertain due to the unknown extent of a basalt lava-flow aquifer present in this area. Well ER-5-5 is expected to provide information to refine the Phase II Frenchman Flat hydrostratigraphic framework model, if necessary, as well as to support future groundwater flow and transport modeling. The 31.1-centimeter (cm) diameter hole was drilled to a total depth of 331.3 meters (m). The completion string, set at the depth of 317.2 m, consists of 16.8-cm stainless-steel casing hanging from 19.4-cm carbon-steel casing. The 16.8-cm stainless-steel casing has one slotted interval open to the basalt lava-flow aquifer and limited intervals of the overlying and underlying alluvial aquifer. A piezometer string was also installed in the annulus between the completion string and the borehole wall. The piezometer is composed of 7.3-cm stainless-steel tubing suspended from 6.0-cm carbon-steel tubing. The piezometer string was landed at 319.2 m, to monitor the basalt lava-flow aquifer. Data collected during and shortly after hole construction include

  16. Closure Report for Corrective Action Unit 568: Area 3 Plutonium Dispersion Sites Nevada National Security Site, Nevada, Revision 1

    Energy Technology Data Exchange (ETDEWEB)

    Matthews, Patrick [Navarro, Las Vegas, NV (United States)

    2017-06-01

    The purpose of this CR is to provide documentation and justification that no further corrective action is needed for the closure of CAU 568 based on the implementation of corrective actions. This includes a description of closure activities that were performed and an evaluation of the verification data. The CAP (NNSA/NFO, 2016a) and ROTC-1 (NNSA/NFO, 2016c) provide information relating to the selection of CAAs and the reasoning behind their selection. The CADD (NNSA/NFO, 2015) identifies the release sites that require additional corrective action and presents information supporting the selection of CAAs.

  17. Some Recent Developments in Turbulence Closure Modeling

    Science.gov (United States)

    Durbin, Paul A.

    2018-01-01

    Turbulence closure models are central to a good deal of applied computational fluid dynamical analysis. Closure modeling endures as a productive area of research. This review covers recent developments in elliptic relaxation and elliptic blending models, unified rotation and curvature corrections, transition prediction, hybrid simulation, and data-driven methods. The focus is on closure models in which transport equations are solved for scalar variables, such as the turbulent kinetic energy, a timescale, or a measure of anisotropy. Algebraic constitutive representations are reviewed for their role in relating scalar closures to the Reynolds stress tensor. Seamless and nonzonal methods, which invoke a single closure model, are reviewed, especially detached eddy simulation (DES) and adaptive DES. Other topics surveyed include data-driven modeling and intermittency and laminar fluctuation models for transition prediction. The review concludes with an outlook.

  18. Concrete characterization for the 300 Area Solvent Evaporator Closure Site

    International Nuclear Information System (INIS)

    Prignano, A.L.

    1995-01-01

    This report summarizes the sampling activities undertaken and the analytical results obtained in a concrete sampling and analyses study performed for the 300 Area Solvent Evaporator (300 ASE) closure site. The 300 ASE is identified as a Resource Conservation and Recovery Act (RCRA) treatment, storage, or disposal (TSD) unit that will be closed in accordance with the applicable laws and regulations. No constituents of concern were found in concentrations indicating contamination of the concrete by 300 ASE operations

  19. Analysis of Mining-induced Valley Closure Movements

    Science.gov (United States)

    Zhang, C.; Mitra, R.; Oh, J.; Hebblewhite, B.

    2016-05-01

    Valley closure movements have been observed for decades in Australia and overseas when underground mining occurred beneath or in close proximity to valleys and other forms of irregular topographies. Valley closure is defined as the inward movements of the valley sides towards the valley centreline. Due to the complexity of the local geology and the interplay between several geological, topographical and mining factors, the underlying mechanisms that actually cause this behaviour are not completely understood. A comprehensive programme of numerical modelling investigations has been carried out to further evaluate and quantify the influence of a number of these mining and geological factors and their inter-relationships. The factors investigated in this paper include longwall positional factors, horizontal stress, panel width, depth of cover and geological structures around the valley. It is found that mining in a series passing beneath the valley dramatically increases valley closure, and mining parallel to valley induces much more closure than other mining orientations. The redistribution of horizontal stress and influence of mining activity have also been recognised as important factors promoting valley closure, and the effect of geological structure around the valley is found to be relatively small. This paper provides further insight into both the valley closure mechanisms and how these mechanisms should be considered in valley closure prediction models.

  20. Biomechanics Strategies for Space Closure in Deep Overbite

    Directory of Open Access Journals (Sweden)

    Harryanto Wijaya

    2013-07-01

    Full Text Available Space closure is an interesting aspect of orthodontic treatment related to principles of biomechanics. It should be tailored individually based on patient’s diagnosis and treatment plan. Understanding the space closure biomechanics basis leads to achieve the desired treatment objective. Overbite deepening and losing posterior anchorage are the two most common unwanted side effects in space closure. Conventionally, correction of overbite must be done before space closure resulted in longer treatment. Application of proper space closure biomechanics strategies is necessary to achieve the desired treatment outcome. This cases report aimed to show the space closure biomechanics strategies that effectively control the overbite as well as posterior anchorage in deep overbite patients without increasing treatment time. Two patients who presented with class II division 1 malocclusion were treated with fixed orthodontic appliance. The primary strategies included extraction space closure on segmented arch that employed two-step space closure, namely single canine retraction simultaneously with incisors intrusion followed by enmasse retraction of four incisors by using differential moment concept. These strategies successfully closed the space, corrected deep overbite and controlled posterior anchorage simultaneously so that the treatment time was shortened. Biomechanics strategies that utilized were effective to achieve the desired treatment outcome.

  1. Establishing bounding internal dose estimates for thorium activities at Rocky Flats.

    Science.gov (United States)

    Ulsh, Brant A; Rich, Bryce L; Chew, Melton H; Morris, Robert L; Sharfi, Mutty; Rolfes, Mark R

    2008-07-01

    As part of an evaluation of a Special Exposure Cohort petition filed on behalf of workers at the Rocky Flats Plant, the National Institute for Occupational Safety and Health (NIOSH) was required to demonstrate that bounding values could be established for radiation doses due to the potential intake of all radionuclides present at the facility. The main radioactive elements of interest at Rocky Flats were plutonium and uranium, but much smaller quantities of several other elements, including thorium, were occasionally handled at the site. Bounding potential doses from thorium has proven challenging at other sites due to the early historical difficulty in detecting this element through urinalysis methods and the relatively high internal dose delivered per unit intake. This paper reports the results of NIOSH's investigation of the uses of thorium at Rocky Flats and provides bounding dose reconstructions for these operations. During this investigation, NIOSH reviewed unclassified reports, unclassified extracts of classified materials, material balance and inventory ledgers, monthly progress reports from various groups, and health physics field logbooks, and conducted interviews with former Rocky Flats workers. Thorium operations included: (1) an experimental metal forming project with 240 kg of thorium in 1960; (2) the use of pre-formed parts in weapons mockups; (3) the removal of Th from U; (4) numerous analytical procedures involving trace quantities of thorium; and (5) the possible experimental use of thorium as a mold coating compound. The thorium handling operations at Rocky Flats were limited in scope, well-monitored and documented, and potential doses can be bounded.

  2. Magnetisable container closure and means for its removal

    International Nuclear Information System (INIS)

    Barrett, W.I.

    1984-01-01

    A container has a closed lower end and an open upper end, is made of a non-magnetic material such as aluminium, and has a peripheral groove spaced from the open end. A disc-like closure is of magnetic material such as ferritic steel, has a pair of spring jaws joined to the disc by a joining member such that when the disc of the closure is in position closing the open end of the container, the jaws engage in groove and hold the closure in position. To remove the closure, it is engaged by magnetic means mounted for example on a wall and having a step such that when the container is moved laterally away the closure is retained by the magnetic means aided by the step and thereby the closure becomes removed from the container. (author)

  3. Near-field modeling in Frenchman Flat, Nevada Test Site

    International Nuclear Information System (INIS)

    Pohlmann, K.; Shirley, C.; Andricevic, R.

    1996-12-01

    The US Department of Energy (DOE) is investigating the effects of nuclear testing in underground test areas (the UGTA program) at the Nevada Test Site. The principal focus of the UGTA program is to better understand and define subsurface radionuclide migration. The study described in this report focuses on the development of tools for generating maps of hydrogeologic characteristics of subsurface Tertiary volcanic units at the Frenchman Flat corrective Action Unit (CAU). The process includes three steps. The first step involves generation of three-dimensional maps of the geologic structure of subsurface volcanic units using geophysical logs to distinguish between two classes: densely welded tuff and nonwelded tuff. The second step generates three-dimensional maps of hydraulic conductivity utilizing the spatial distribution of the two geologic classes obtained in the first step. Each class is described by a correlation structure based on existing data on hydraulic conductivity, and conditioned on the generated spatial location of each class. The final step demonstrates the use of the maps of hydraulic conductivity for modeling groundwater flow and radionuclide transport in volcanic tuffs from an underground nuclear test at the Frenchman Flat CAU. The results indicate that the majority of groundwater flow through the volcanic section occurs through zones of densely welded tuff where connected fractures provide the transport pathway. Migration rates range between near zero to approximately four m/yr, with a mean rate of 0.68 m/yr. This report presents the results of work under the FY96 Near-Field Modeling task of the UGTA program

  4. Urethrovaginal fistula closure.

    Science.gov (United States)

    Clifton, Marisa M; Goldman, Howard B

    2017-01-01

    In the developed world, urethrovaginal fistulas are most the likely the result of iatrogenic injury. These fistulas are quite rare. Proper surgical repair requires careful dissection and tension-free closure. The objective of this video is to demonstrate the identification and surgical correction of an urethrovaginal fistula. The case presented is of a 59-year-old woman with a history of pelvic organ prolapse and symptomatic stress urinary incontinence who underwent vaginal hysterectomy, anterior colporrhaphy, posterior colporrhaphy, and synthetic sling placement. Postoperatively, she developed a mesh extrusion and underwent sling excision. After removal of her synthetic sling, she began to experience continuous urinary incontinence. Physical examination and cystourethroscopy demonstrated an urethrovaginal fistula at the midurethra. Options were discussed and the patient wished to undergo transvaginal fistula repair. The urethrovaginal fistula was intubated with a Foley catheter. The fistula tract was isolated and removed. The urethra was then closed with multiple tension-free layers. This video demonstrates several techniques for identifying and subsequently repairing an urethrovaginal fistula. Additionally, it demonstrates the importance of tension-free closure. Urethrovaginal fistulas are rare. They should be repaired with careful dissection and tension-free closure.

  5. Long-range Rocky Flats utilization study

    International Nuclear Information System (INIS)

    1983-02-01

    The purpose of this Study was to provide information concerning the Rocky Flats Plant and its operations that will be useful to the Nation's decision-makers in determining the long-range future of the Plant. This Study was conducted under the premise that national defense policy must be supported and, accordingly, the capabilities at Rocky Flats must be maintained there or at some other location(s). The Study, therefore, makes no attempt to speculate on how possible future changes in national defense policy might affect decisions regarding the utilization of Rocky Flats. Factors pertinent to decisions regarding Rocky Flats, which are included in the Study, are: physical condition of the Plant and its vulnerabilities to natural phenomena; risks associated with plutonium to Plant workers and the public posed by postulated natural phenomena and operational accidents; identification of alternative actions regarding the future use of the Rocky Flats Plant with associated costs and time scales; local socioeconomic impacts if Rocky Flats operations were relocated; and potential for other uses if Rocky Flats facilities were vacated. The results of the tasks performed in support of this Study are summarized in the context of these five factors

  6. Closure of shallow underground injection wells

    International Nuclear Information System (INIS)

    Veil, J.A.; Grunewald, B.

    1993-01-01

    Shallow injection wells have long been used for disposing liquid wastes. Some of these wells have received hazardous or radioactive wastes. According to US Environmental Protection Agency (EPA) regulations, Class IV wells are those injection wells through which hazardous or radioactive wastes are injected into or above an underground source of drinking water (USDW). These wells must be closed. Generally Class V wells are injection wells through which fluids that do not contain hazardous or radioactive wastes are injected into or above a USDW. Class V wells that are responsible for violations of drinking water regulations or that pose a threat to human health must also be closed. Although EPA regulations require closure of certain types of shallow injection wells, they do not provide specific details on the closure process. This paper describes the regulatory background, DOE requirements, and the steps in a shallow injection well closure process: Identification of wells needing closure; monitoring and disposal of accumulated substances; filling and sealing of wells; and remediation. In addition, the paper describes a major national EPA shallow injection well enforcement initiative, including closure plan guidance for wells used to dispose of wastes from service station operations

  7. An investigation on the performance characteristics of solar flat plate collector with different selective surface coatings

    Energy Technology Data Exchange (ETDEWEB)

    Madhukeshwara, N. [Department of Mechanical Engineering, B.I.E.T, Davanagere, Karnataka (India); Prakash, E.S. [Department of Studies in Mechanical Engineering, U.B.D.T.C.E, Davanagere, Karnataka (India)

    2012-07-01

    In the present work, investigations are made to study performance characteristics of solar flat plate collector with different selective surface coatings. Flat plate collector is one of the important solar energy trapping device which uses air or water as working fluid. Of the many solar collector concepts presently being developed, the relative simple flat plate solar collector has found the widest application so far. Its characteristics are known, and compared with other collector types, it is the easiest and least expensive to fabricate, install, and maintain. Moreover, it is capable of using both the diffuse and the direct beam solar radiation. For residential and commercial use, flat plate collectors can produce heat at sufficiently high temperatures to heat swimming pools, domestic hot water, and buildings; they also can operate a cooling unit, particularly if the incident sunlight is increased by the use of reflector. Temperatures up to 70 C are easily attained by flat plate collectors. With very careful engineering using special surfaces, reflectors to increase the incident radiation and heat resistant materials, higher operating temperatures are feasible.

  8. Self-corrective T-loop design for differential space closure.

    Science.gov (United States)

    Viecilli, Rodrigo F

    2006-01-01

    The current approach to measuring T-loop force systems in patients requiring differential anchorage does not consider active unit angulations and steps during space closure. The angulations and steps during movement introduced by rotation can considerably modify the force system acting on the teeth. In this study, geometric modifications were determined during controlled tipping of the 6 anterior teeth, where there was no movement of the posterior teeth, thus configuring a type A anchorage situation. An optimal beta-titanium alloy 0.017 x 0.025-in T-loop spring was designed by using a simulation performed with LOOP software (dHAL Orthodontic Software, Athens, Greece) to allow compensation for anterior unit-position effect on the final force system. The force systems produced by this T-loop spring with and without geometric correction of the brackets have significant differences that should be considered in the segmented arch approach to space closure. The effects of steps, angles, and vertical forces were combined to produce an ideal T-loop design that would provide a more determinate force system. The effects and force systems are estimates based on simplified locations of the centers of resistance, assuming relatively constant behavior of the centers of rotation. These simplifications might differ slightly from what happens in vivo. The finite element method or an accurate spring tester capable of reproducing the geometric corrections should be used to ensure a precise force system.

  9. Exact solution of thermal energy storage system using PCM flat slabs configuration

    International Nuclear Information System (INIS)

    Bechiri, Mohammed; Mansouri, Kacem

    2013-01-01

    Highlights: • An exact solution of a latent heat storage unit (LHSU) consisting of several flat slabs was obtained. • The working fluid (HTF) circulating by forced convection between the slabs charges and discharges the storage unit. • The charging/discharging process is investigated for various HTF working conditions and different design parameters. - Abstract: An analytical investigation of thermal energy storage system (TESS) consisting of several flat slabs of phase change material (PCM) is presented. The working fluid (HTF) circulating on laminar forced convection between the slabs charges and discharges the storage unit. The melting and solidification of the PCM was treated as a radial one dimensional conduction problem. The forced convective heat transfer inside the channels is analyzed by solving the energy equation, which is coupled with the heat conduction equation in the PCM container. The comparison between the present exact solution with the numerical predictions and experimental data available in literature shows good agreement. The charging/discharging process is investigated in terms of liquid–solid interface position, liquid fraction, total heat transmitted to the PCM and thermal storage efficiency for various HTF working conditions and different design parameters such as PCM slab length, fluid passage gap and thickness of PCM duct container

  10. Comparison of cost-effectiveness and postoperative outcome of device closure and open surgery closure techniques for treatment of patent ductus arteriosus

    Directory of Open Access Journals (Sweden)

    Alireza Ahmadi

    2014-01-01

    Full Text Available BACKGROUND: Various devices have been recently employed for percutaneous closure of the patent ductus arteriosus (PDA. Although the high effectiveness of device closure techniques has been clearly determined, a few studies have focused on the cost-effectiveness and also postoperative complications of these procedures in comparison with open surgery. The present study aimed to evaluate the clinical outcome and cost-effectiveness of PDA occlusion by Amplatzer and coil device in comparisong with open surgery. METHODS: In this cross-sectional study, a randomized sample of 201 patients aged 1 month to 16 years (105 patients with device closure and 96 patients with surgical closure was selected. The ratio of total pulmonary blood flow to total systemic blood flow, the Qp/Qs ratio, was measured using a pulmonary artery catheter. The cost analysis included direct medical care costs associated with device implantation and open surgery, as well as professional fees. All costs were calculated in Iranian Rials and then converted to US dollars. RESULTS: There was no statistical difference in mean Qp/Qs ratio before the procedure between the device closure group and the open surgery group (2.1 ± 0.7 versus 1.7 ± 0.6, P = 0.090. The mean measured costs were overall higher in the device closure group than in open closure group (948.87 ± 548.76 US$ versus 743.70 ± 696.91 US$, P < 0.001. This difference remained significant after adjustment for age and gender (Standardized Beta = 0.160, P = 0.031. PDA closure with the Amplatzer ductal occluder (1053.05 ± 525.73 US$ or with Nit-Occlud coils (PFM (912.73 ± 565.94 US$, P < 0.001 was more expensive than that via open surgery. However, the Cook detachable spring coils device closure (605.65 ± 194.62 US$, P = 0.650 had a non-significant cost difference with open surgery. No event was observed in the device closure group regarding in-hospital mortality or morbidity; however, in another group, 2 in-hospital deaths

  11. Phase II Documentation Overview of Corrective Action Unit 98: Frenchman Flat, Nevada Test Site, Nye County, Nevada, Revision 1

    Energy Technology Data Exchange (ETDEWEB)

    Greg Ruskauff

    2010-04-01

    The U.S. Department of Energy (DOE), National Nuclear Security Administration Nevada Site Office (NNSA/NSO) initiated the Underground Test Area (UGTA) Subproject to assess and evaluate radiologic groundwater contamination resulting from underground nuclear testing at the NTS. These activities are overseen by the Federal Facility Agreement and Consent Order (FFACO) (1996, as amended March 2010). For Frenchman Flat, the UGTA Subproject addresses media contaminated by the underground nuclear tests, which is limited to geologic formations within the saturated zone or 100 meters (m) or less above the water table. Transport in groundwater is judged to be the primary mechanism of migration for the subsurface contamination away from the Frenchman Flat underground nuclear tests. The intent of the UGTA Subproject is to assess the risk to the public from the groundwater contamination produced as a result of nuclear testing. The primary method used to assess this risk is the development of models of flow and contaminant transport to forecast the extent of potentially contaminated groundwater for the next 1,000 years, establish restrictions to groundwater usage, and implement a monitoring program to verify protectiveness. For the UGTA Subproject, contaminated groundwater is that which exceeds the radiological standards of the Safe Drinking Water Act (CFR, 2009) the State of Nevada’s groundwater quality standard to protect human health and the environment. Contaminant forecasts are expected to be uncertain, and groundwater monitoring will be used in combination with land-use control to build confidence in model results and reduce risk to the public. Modeling forecasts of contaminant transport will provide the basis for negotiating a compliance boundary for the Frenchman Flat Corrective Action Unit (CAU). This compliance boundary represents a regulatory-based distinction between groundwater contaminated or not contaminated by underground testing. Transport modeling simulations

  12. Numerical approximation of the Boltzmann equation : moment closure

    NARCIS (Netherlands)

    Abdel Malik, M.R.A.; Brummelen, van E.H.

    2012-01-01

    This work applies the moment method onto a generic form of kinetic equations to simplify kinetic models of particle systems. This leads to the moment closure problem which is addressed using entropy-based moment closure techniques utilizing entropy minimization. The resulting moment closure system

  13. T-tube vs Primary Common Bile Duct Closure

    Directory of Open Access Journals (Sweden)

    M R Joshi

    2010-09-01

    Full Text Available INTRODUCTION: Closure of the common bile duct over T-tube after exploration is a widely practiced traditional method. However, its use may give rise to many complications. We do primary closure of common bile duct after exploration. Aim of the study is to see the efficacy and safety of the primary closure. METHODS: Study was carried out to compare the results of both the techniques from 2006 to 2009 in the cases proven to have common bile duct stone with or without the features of obstructive jaundice. Post operative hospital stay and morbidities related to both the groups were recorded and analyzed. RESULTS: There were total 71 cases included in the study. Thirty one in T-tube group and 40 in primary closure group. T-tube was removed in most of the cases after three weeks where as average time of drain removal in primary closure group is 5.79 +/-1.79 days. Incidence of retained stone was equal in each group. Major complication in T-tube group is biliary peritonitis in four patients at the time of T-tube removal whereas none of the patient from primary closure group suffered from such major complication. CONCLUSIONS: Primary closure after the common bile duct exploration is safe and it helps to avoid the morbidities related to T-tube. Keywords: Choledocholithiasis, Primary closure, retained stone, T-tube, Ureterorenoscope.

  14. Remediating and Monitoring White Phosphorus Contamination at Eagle River Flats (Operable Unit C), Fort Richardson, Alaska

    National Research Council Canada - National Science Library

    Walsh, M. E; Racine, C. H; Collins, C. M; Walsh, M. R; Bailey, R. N

    2001-01-01

    .... Army Engineer District, Alaska, and U.S. Army Alaska, Public Works, describing the results of research, monitoring, and remediation efforts addressing the white phosphorus contamination in Eagle River Flats, an 865-ha estuarine salt marsh...

  15. Techniques for Abdominal Wall Closure after Damage Control Laparotomy: From Temporary Abdominal Closure to Early/Delayed Fascial Closure—A Review

    Directory of Open Access Journals (Sweden)

    Qian Huang

    2016-01-01

    Full Text Available Open abdomen (OA has been an effective treatment for abdominal catastrophes in traumatic and general surgery. However, management of patients with OA remains a formidable task for surgeons. The central goal of OA is closure of fascial defect as early as is clinically feasible without precipitating abdominal compartment syndrome. Historically, techniques such as packing, mesh, and vacuum-assisted closure have been developed to assist temporary abdominal closure, and techniques such as components separation, mesh-mediated traction, bridging fascial defect with permanent synthetic mesh, or biologic mesh have also been attempted to achieve early primary fascial closure, either alone or in combined use. The objective of this review is to present the challenges of these techniques for OA with a goal of early primary fascial closure, when the patient’s physiological condition allows.

  16. Uncertainty Quantification of Multi-Phase Closures

    Energy Technology Data Exchange (ETDEWEB)

    Nadiga, Balasubramanya T. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Baglietto, Emilio [Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States)

    2017-10-27

    In the ensemble-averaged dispersed phase formulation used for CFD of multiphase ows in nuclear reactor thermohydraulics, closures of interphase transfer of mass, momentum, and energy constitute, by far, the biggest source of error and uncertainty. Reliable estimators of this source of error and uncertainty are currently non-existent. Here, we report on how modern Validation and Uncertainty Quanti cation (VUQ) techniques can be leveraged to not only quantify such errors and uncertainties, but also to uncover (unintended) interactions between closures of di erent phenomena. As such this approach serves as a valuable aide in the research and development of multiphase closures. The joint modeling of lift, drag, wall lubrication, and turbulent dispersion|forces that lead to tranfer of momentum between the liquid and gas phases|is examined in the frame- work of validation of the adiabatic but turbulent experiments of Liu and Banko , 1993. An extensive calibration study is undertaken with a popular combination of closure relations and the popular k-ϵ turbulence model in a Bayesian framework. When a wide range of super cial liquid and gas velocities and void fractions is considered, it is found that this set of closures can be validated against the experimental data only by allowing large variations in the coe cients associated with the closures. We argue that such an extent of variation is a measure of uncertainty induced by the chosen set of closures. We also nd that while mean uid velocity and void fraction pro les are properly t, uctuating uid velocity may or may not be properly t. This aspect needs to be investigated further. The popular set of closures considered contains ad-hoc components and are undesirable from a predictive modeling point of view. Consequently, we next consider improvements that are being developed by the MIT group under CASL and which remove the ad-hoc elements. We use non-intrusive methodologies for sensitivity analysis and calibration (using

  17. Trajectory Optimization for Differential Flat Systems

    OpenAIRE

    Kahina Louadj; Benjamas Panomruttanarug; Alexandre Carlos Brandao Ramos; Felix Mora-Camino

    2016-01-01

    International audience; The purpose of this communication is to investigate the applicability of Variational Calculus to the optimization of the operation of differentially flat systems. After introducingcharacteristic properties of differentially flat systems, the applicability of variational calculus to the optimization of flat output trajectories is displayed. Two illustrative examples are also presented.

  18. Efficacy of Paracetamol in Closure of Ductus Arteriosus in Infants under 32 Weeks of Gestation

    Directory of Open Access Journals (Sweden)

    Ines Tofe

    2018-02-01

    Full Text Available BackgroundStandard medical treatment for patent ductus arteriosus (PDA closure has been indomethacin/ibuprofen or surgical ligation. Up to date, new strategies have been reported with paracetamol. The aim of this study was to present our experience with intravenous paracetamol for closing PDA in preterm neonates presenting contraindication to ibuprofen or ibuprofen had failed and no candidates for surgical ligation because of huge instability.Materials and methodsWe conducted a retrospective case series study in a neonatal intensive care unit from a tertiary hospital. 9 preterm infants ≤32 weeks of gestational age with hemodynamically significant PDA (hsPDA were enrolled. They received 15 mg/kg/6h intravenous paracetamol for ductal closure. Demographic data and transaminase levels before and after treatment were collected.Results30 preterm babies were diagnosed of hsPDA. 11/30 received ibuprofen with closure in 81.1%. 9 received intravenous paracetamol mainly due to bleeding disorders or thrombocytopenia. Successful closure on paracetamol was achieved in seven of nine babies (77.7%. There was a significant increase in transaminase levels in two patients. They required no treatment for normalization.ConclusionParacetamol is an effective option in closure PDA. It should be a first-line therapeutic option when there are contraindications for ibuprofen treatment. Transaminases must be checked during treatment.

  19. Post-Closure Inspection Report for the Tonopah Test Range, Nevada, For Calendar Year 2007

    International Nuclear Information System (INIS)

    NSTec Environmental Restoration

    2008-01-01

    This report provides the results of the semiannual post-closure inspections conducted at the closed Corrective Action Unit (CAU) sites located on the Tonopah Test Range (TTR), Nevada. This report covers calendar year 2007 and includes inspection and repair activities completed at the following nine CAUs: (1) CAU 400: Bomblet Pit and Five Points Landfill (TTR); (2) CAU 404: Roller Coaster Lagoons and Trench (TTR); (3) CAU 407: Roller Coaster RadSafe Area (TTR); (4) CAU 423: Area 3 Underground Discharge Point, Building 0360 (TTR); (5) CAU 424: Area 3 Landfill Complexes (TTR); (6) CAU 426: Cactus Spring Waste Trenches (TTR); (7) CAU 427: Area 3 Septic Waste Systems 2, 6 (TTR); (8) CAU 453: Area 9 UXO Landfill (TTR); and (9) CAU 487: Thunderwell Site (TTR). In a letter from the Nevada Division of Environmental Protection (NDEP) dated December 5, 2006, NDEP concurred with the request to reduce the frequency of post-closure inspections of CAUs at TTR to an annual frequency. This letter is included in Attachment B. Post-closure inspections were conducted on May 15-16, 2007. All inspections were conducted according to the post-closure plans in the approved Closure Reports. The post-closure inspection plan for each CAU is included in Attachment B, with the exception of CAU 400. CAU 400 does not require post-closure inspections, but inspections of the vegetation and fencing are conducted as a best management practice. The inspection checklists for each site inspection are included in Attachment C, the field notes are included in Attachment D, and the site photographs are included in Attachment E. Vegetation monitoring of CAU 400, CAU 404, CAU 407, and CAU 426 was performed in May 2007, and the vegetation monitoring report is included in Attachment F. Maintenance and/or repairs were performed at CAU 453. Animal burrows observed during the annual inspection at CAU 453 were backfilled on August 1, 2007. At this time, the TTR post-closure site inspections should continue as

  20. Post-Closure Inspection Report for the Tonopah Test Range, Nevada, For Calendar Year 2007

    Energy Technology Data Exchange (ETDEWEB)

    NSTec Environmental Restoration

    2008-06-01

    This report provides the results of the semiannual post-closure inspections conducted at the closed Corrective Action Unit (CAU) sites located on the Tonopah Test Range (TTR), Nevada. This report covers calendar year 2007 and includes inspection and repair activities completed at the following nine CAUs: (1) CAU 400: Bomblet Pit and Five Points Landfill (TTR); (2) CAU 404: Roller Coaster Lagoons and Trench (TTR); (3) CAU 407: Roller Coaster RadSafe Area (TTR); (4) CAU 423: Area 3 Underground Discharge Point, Building 0360 (TTR); (5) CAU 424: Area 3 Landfill Complexes (TTR); (6) CAU 426: Cactus Spring Waste Trenches (TTR); (7) CAU 427: Area 3 Septic Waste Systems 2, 6 (TTR); (8) CAU 453: Area 9 UXO Landfill (TTR); and (9) CAU 487: Thunderwell Site (TTR). In a letter from the Nevada Division of Environmental Protection (NDEP) dated December 5, 2006, NDEP concurred with the request to reduce the frequency of post-closure inspections of CAUs at TTR to an annual frequency. This letter is included in Attachment B. Post-closure inspections were conducted on May 15-16, 2007. All inspections were conducted according to the post-closure plans in the approved Closure Reports. The post-closure inspection plan for each CAU is included in Attachment B, with the exception of CAU 400. CAU 400 does not require post-closure inspections, but inspections of the vegetation and fencing are conducted as a best management practice. The inspection checklists for each site inspection are included in Attachment C, the field notes are included in Attachment D, and the site photographs are included in Attachment E. Vegetation monitoring of CAU 400, CAU 404, CAU 407, and CAU 426 was performed in May 2007, and the vegetation monitoring report is included in Attachment F. Maintenance and/or repairs were performed at CAU 453. Animal burrows observed during the annual inspection at CAU 453 were backfilled on August 1, 2007. At this time, the TTR post-closure site inspections should continue as

  1. Rocky Flats Compliance Program

    International Nuclear Information System (INIS)

    1994-02-01

    The Department of Energy (DOE) established the Office of Technology Development (EM-50) (OTD) as an element of Environmental Restoration and Waste Management (EM) in November 1989. The primary objective of the Office of Technology Development, Rocky Flats Compliance Program (RFCP), is to develop altemative treatment technologies for mixed low-level waste (wastes containing both hazardous and radioactive components) to use in bringing the Rocky Flats Plant (RFP) into compliance with Federal and state regulations and agreements. Approximately 48,000 cubic feet of untreated low-level mixed waste, for which treatment has not been specified, are stored at the RFP. The cleanup of the Rocky Flats site is driven by agreements between DOE, the Environmental Protection Agency (EPA), and the Colorado Department of Health (CDH). Under these agreements, a Comprehensive Treatment and Management Plan (CTMP) was drafted to outline the mechanisms by which RFP will achieve compliance with the regulations and agreements. This document describes DOE's strategy to treat low-level mixed waste to meet Land Disposal Restrictions and sets specific milestones related to the regulatory aspects of technology development. These milestones detail schedules for the development of technologies to treat all of the mixed wastes at the RFP. Under the Federal Facilities Compliance Act (FFCA), the CTMP has been incorporated into Rocky Flats Plant Conceptual Site Treatment Plan (CSTP). The CSTP will become the Rocky Flats Plant site Treatment Plan in 1995 and will supersede the CTMP

  2. CIRSE Vascular Closure Device Registry

    International Nuclear Information System (INIS)

    Reekers, Jim A.; Müller-Hülsbeck, Stefan; Libicher, Martin; Atar, Eli; Trentmann, Jens; Goffette, Pierre; Borggrefe, Jan; Zeleňák, Kamil; Hooijboer, Pieter; Belli, Anna-Maria

    2011-01-01

    Purpose: Vascular closure devices are routinely used after many vascular interventional radiology procedures. However, there have been no major multicenter studies to assess the safety and effectiveness of the routine use of closure devices in interventional radiology. Methods: The CIRSE registry of closure devices with an anchor and a plug started in January 2009 and ended in August 2009. A total of 1,107 patients were included in the registry. Results: Deployment success was 97.2%. Deployment failure specified to access type was 8.8% [95% confidence interval (95% CI) 5.0–14.5] for antegrade access and 1.8% (95% CI 1.1–2.9) for retrograde access (P = 0.001). There was no difference in deployment failure related to local PVD at the access site. Calcification was a reason for deployment failure in only 5.9 cm, and two vessel occlusions. Conclusion: The conclusion of this registry of closure devices with an anchor and a plug is that the use of this device in interventional radiology procedures is safe, with a low incidence of serious access site complications. There seems to be no difference in complications between antegrade and retrograde access and other parameters.

  3. 40 CFR 267.143 - Financial assurance for closure.

    Science.gov (United States)

    2010-07-01

    ...), utilizing the certificate of insurance for closure specified at 40 CFR 264.151(e). (f) Corporate financial... 40 Protection of Environment 26 2010-07-01 2010-07-01 false Financial assurance for closure. 267... PERMIT Financial Requirements § 267.143 Financial assurance for closure. The owner or operator must...

  4. Tubular closure mechanism

    International Nuclear Information System (INIS)

    Kalen, D.D.; Mitchem, J.W.

    1982-01-01

    This invention relates to a closure mechanism for tubular irradiation surveillance specimen assembly holder used in nuclear reactors. The closure mechanism is composed of a latching member which includes a generally circular chamber with a plurality of elongated latches depending therefrom. The latching member circumscribes part of an actuator member which is disposed within the latching member so as to be axially movable. The axial movement of the actuator actuates positioning of the latches between positions in which the latches are locked and secured within the actuator member. Means, capable of being remotely manipulated, are provided to move the actuator in order to position the latches and load the articles within the tube

  5. Design and analysis of PCRV core cavity closure

    International Nuclear Information System (INIS)

    Lee, T.T.; Schwartz, A.A.; Koopman, D.C.A.

    1980-05-01

    Design requirements and considerations for a core cavity closure which led to the choice of a concrete closure with a toggle hold-down as the design for the Gas-Cooled Fast Breeder Reactor (GCFR) plant are discussed. A procedure for preliminary stress analysis of the closure by means of a three-dimensional finite element method is described. A limited parametric study using this procedure indicates the adequacy of the present closure design and the significance of radial compression developed as a result of inclined support reaction

  6. 49 CFR 231.6 - Flat cars.

    Science.gov (United States)

    2010-10-01

    ... 49 Transportation 4 2010-10-01 2010-10-01 false Flat cars. 231.6 Section 231.6 Transportation... TRANSPORTATION RAILROAD SAFETY APPLIANCE STANDARDS § 231.6 Flat cars. (Cars with sides 12 inches or less above the floor may be equipped the same as flat cars.) (a) Hand brakes—(1) Number. Same as specified for...

  7. 40 CFR 265.280 - Closure and post-closure.

    Science.gov (United States)

    2010-07-01

    ... contaminants caused by wind erosion; and (4) Compliance with § 265.276 concerning the growth of food-chain... and post-closure care objectives of paragraph (a) of this section: (1) Type and amount of hazardous..., including amount, frequency, and pH of precipitation; (5) Geological and soil profiles and surface and...

  8. Generation of flat wideband chaos with suppressed time delay signature by using optical time lens.

    Science.gov (United States)

    Jiang, Ning; Wang, Chao; Xue, Chenpeng; Li, Guilan; Lin, Shuqing; Qiu, Kun

    2017-06-26

    We propose a flat wideband chaos generation scheme that shows excellent time delay signature suppression effect, by injecting the chaotic output of general external cavity semiconductor laser into an optical time lens module composed of a phase modulator and two dispersive units. The numerical results demonstrate that by properly setting the parameters of the driving signal of phase modulator and the accumulated dispersion of dispersive units, the relaxation oscillation in chaos can be eliminated, wideband chaos generation with an efficient bandwidth up to several tens of GHz can be achieved, and the RF spectrum of generated chaotic signal is nearly as flat as uniform distribution. Moreover, the periodicity of chaos induced by the external cavity modes can be simultaneously destructed by the optical time lens module, based on this the time delay signature can be completely suppressed.

  9. Exact Riemann solutions of the Ripa model for flat and non-flat bottom topographies

    Science.gov (United States)

    Rehman, Asad; Ali, Ishtiaq; Qamar, Shamsul

    2018-03-01

    This article is concerned with the derivation of exact Riemann solutions for Ripa model considering flat and non-flat bottom topographies. The Ripa model is a system of shallow water equations accounting for horizontal temperature gradients. In the case of non-flat bottom topography, the mass, momentum and energy conservation principles are utilized to relate the left and right states across the step-type bottom topography. The resulting system of algebraic equations is solved iteratively. Different numerical case studies of physical interest are considered. The solutions obtained from developed exact Riemann solvers are compared with the approximate solutions of central upwind scheme.

  10. Airport Movement Area Closure Planner, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — This SBIR research develops an automation tool improving temporary and permanent runway closure management. The Movement Area Closure Planner (MACP) provides airport...

  11. Resource Conservation and Recovery Act (RCRA) Part B permit application for Production Associated Units at the Oak Ridge Y-12 Plant

    International Nuclear Information System (INIS)

    1995-05-01

    Attention is focused on permit applications for the following units: Building 9206 Container Storage Unit; Building 9212 Container Storage Unit; Building 9720-12 Container Storage Unit; and Cyanide Treatment Unit. This report addresses the following areas: facility description; waste characteristics; process information; ground water monitoring; procedures to prevent hazards; contingency plan; personnel training; closure plan, post closure plant, and financial requirements; record keeping; other federal laws; organic air emissions; solid waste management units; and certification

  12. Resource Conservation and Recovery Act (RCRA) Part B permit application for Production Associated Units at the Oak Ridge Y-12 Plant

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-05-01

    Attention is focused on permit applications for the following units: Building 9206 Container Storage Unit; Building 9212 Container Storage Unit; Building 9720-12 Container Storage Unit; and Cyanide Treatment Unit. This report addresses the following areas: facility description; waste characteristics; process information; ground water monitoring; procedures to prevent hazards; contingency plan; personnel training; closure plan, post closure plant, and financial requirements; record keeping; other federal laws; organic air emissions; solid waste management units; and certification.

  13. 77 FR 73957 - Fisheries of the Northeastern United States; Atlantic Sea Scallop Fishery; Closure of the...

    Science.gov (United States)

    2012-12-12

    ... than 75 mm (3 in) shell height in the ETA was 994, compared to 24 in 2011. Most of the scallop biomass... fishing effort in this area, which could reduce long-term scallop biomass and optimum yield from the ETA... them to grow. Following closure of the ETA, scallop biomass increased steadily in the area. When the...

  14. Left ventricular remodeling and change of systolic function after closure of patent ductus arteriosus in adults: device and surgical closure.

    Science.gov (United States)

    Jeong, Young-Hoon; Yun, Tae-Jin; Song, Jong-Min; Park, Jung-Jun; Seo, Dong-Man; Koh, Jae-Kon; Lee, Se-Whan; Kim, Mi-Jeong; Kang, Duk-Hyun; Song, Jae-Kwan

    2007-09-01

    Left ventricular (LV) remodeling and predictors of LV systolic function late after closure of patent ductus arteriosus (PDA) in adults remain to be clearly demonstrated. In 45 patients with PDA, including 28 patients who received successful occlusion using the Amplatzer device (AD group) (AGA, Golden Valley, MN) and 17 patients who received surgical closure (OP group), echocardiography studies were performed before closure and 1 day (AD group) or within 7 days (OP group) after closure, and then were repeated at > or = 6 months (17 +/- 13 months). In both groups, LV ejection fraction (EF) and end-diastolic volume index were significantly decreased immediately after closure, whereas end-systolic volume index did not change. During the long-term follow-up period, end-systolic as well as end-diastolic volume indices decreased significantly in both groups and LV EF recovered compared to the immediate postclosure state. However, LV EF remained low compared to the preclosure state. Five patients (11.1%) including 3 patients in the AD group and 2 patients in the OP group showed persistent late LV systolic dysfunction (EF or = 62% had a sensitivity of 72% and a specificity of 83% for predicting late normal LV EF after closure. Left ventricular EF remains low late after PDA closure compared with preclosure state in adults. Preclosure LV EF is the best index to predict late postclosure LV EF.

  15. Single-site neural tube closure in human embryos revisited.

    Science.gov (United States)

    de Bakker, Bernadette S; Driessen, Stan; Boukens, Bastiaan J D; van den Hoff, Maurice J B; Oostra, Roelof-Jan

    2017-10-01

    Since the multi-site closure theory was first proposed in 1991 as explanation for the preferential localizations of neural tube defects, the closure of the neural tube has been debated. Although the multi-site closure theory is much cited in clinical literature, single-site closure is most apparent in literature concerning embryology. Inspired by Victor Hamburgers (1900-2001) statement that "our real teacher has been and still is the embryo, who is, incidentally, the only teacher who is always right", we decided to critically review both theories of neural tube closure. To verify the theories of closure, we studied serial histological sections of 10 mouse embryos between 8.5 and 9.5 days of gestation and 18 human embryos of the Carnegie collection between Carnegie stage 9 (19-21 days) and 13 (28-32 days). Neural tube closure was histologically defined by the neuroepithelial remodeling of the two adjoining neural fold tips in the midline. We did not observe multiple fusion sites in neither mouse nor human embryos. A meta-analysis of case reports on neural tube defects showed that defects can occur at any level of the neural axis. Our data indicate that the human neural tube fuses at a single site and, therefore, we propose to reinstate the single-site closure theory for neural tube closure. We showed that neural tube defects are not restricted to a specific location, thereby refuting the reasoning underlying the multi-site closure theory. Clin. Anat. 30:988-999, 2017. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  16. Moment Closure for the Stochastic Logistic Model

    National Research Council Canada - National Science Library

    Singh, Abhyudai; Hespanha, Joao P

    2006-01-01

    ..., which we refer to as the moment closure function. In this paper, a systematic procedure for constructing moment closure functions of arbitrary order is presented for the stochastic logistic model...

  17. Comparison of cost-effectiveness and postoperative outcome of device closure and open surgery closure techniques for treatment of patent ductus arteriosus.

    Science.gov (United States)

    Ahmadi, Alireza; Sabri, Mohammadreza; Bigdelian, Hamid; Dehghan, Bahar; Gharipour, Mojgan

    2014-01-01

    Various devices have been recently employed for percutaneous closure of the patent ductus arteriosus (PDA). Although the high effectiveness of device closure techniques has been clearly determined, a few studies have focused on the cost-effectiveness and also postoperative complications of these procedures in comparison with open surgery. The present study aimed to evaluate the clinical outcome and cost-effectiveness of PDA occlusion by Amplatzer and coil device in comparisong with open surgery. In this cross-sectional study, a randomized sample of 201 patients aged 1 month to 16 years (105 patients with device closure and 96 patients with surgical closure) was selected. The ratio of total pulmonary blood flow to total systemic blood flow, the Qp/Qs ratio, was measured using a pulmonary artery catheter. The cost analysis included direct medical care costs associated with device implantation and open surgery, as well as professional fees. All costs were calculated in Iranian Rials and then converted to US dollars. There was no statistical difference in mean Qp/Qs ratio before the procedure between the device closure group and the open surgery group (2.1 ± 0.7 versus 1.7 ± 0.6, P = 0.090). The mean measured costs were overall higher in the device closure group than in open closure group (948.87 ± 548.76 US$ versus 743.70 ± 696.91 US$, P gender (Standardized Beta = 0.160, P = 0.031). PDA closure with the Amplatzer ductal occluder (1053.05 ± 525.73 US$) or with Nit-Occlud coils (PFM) (912.73 ± 565.94 US$, P < 0.001) was more expensive than that via open surgery. However, the Cook detachable spring coils device closure (605.65 ± 194.62 US$, P = 0.650) had a non-significant cost difference with open surgery. No event was observed in the device closure group regarding in-hospital mortality or morbidity; however, in another group, 2 in-hospital deaths occurred, two patients experienced pneumonia and seizure, and one suffered electrolyte abnormalities including

  18. Mass extraction container closure integrity physical testing method development for parenteral container closure systems.

    Science.gov (United States)

    Yoon, Seung-Yil; Sagi, Hemi; Goldhammer, Craig; Li, Lei

    2012-01-01

    Container closure integrity (CCI) is a critical factor to ensure that product sterility is maintained over its entire shelf life. Assuring the CCI during container closure (C/C) system qualification, routine manufacturing and stability is important. FDA guidance also encourages industry to develop a CCI physical testing method in lieu of sterility testing in a stability program. A mass extraction system has been developed to check CCI for a variety of container closure systems such as vials, syringes, and cartridges. Various types of defects (e.g., glass micropipette, laser drill, wire) were created and used to demonstrate a detection limit. Leakage, detected as mass flow in this study, changes as a function of defect length and diameter. Therefore, the morphology of defects has been examined in detail with fluid theories. This study demonstrated that a mass extraction system was able to distinguish between intact samples and samples with 2 μm defects reliably when the defect was exposed to air, water, placebo, or drug product (3 mg/mL concentration) solution. Also, it has been verified that the method was robust, and capable of determining the acceptance limit using 3σ for syringes and 6σ for vials. Sterile products must maintain their sterility over their entire shelf life. Container closure systems such as those found in syringes and vials provide a seal between rubber and glass containers. This seal must be ensured to maintain product sterility. A mass extraction system has been developed to check container closure integrity for a variety of container closure systems such as vials, syringes, and cartridges. In order to demonstrate the method's capability, various types of defects (e.g., glass micropipette, laser drill, wire) were created in syringes and vials and were tested. This study demonstrated that a mass extraction system was able to distinguish between intact samples and samples with 2 μm defects reliably when the defect was exposed to air, water

  19. 105-DR Large Sodium Fire Facility closure activities evaluation report

    International Nuclear Information System (INIS)

    Adler, J.G.

    1996-01-01

    This report evaluates the closure activities at the 105-DR Large Sodium Fire Facility. The closure activities discussed include: the closure activities for the structures, equipment, soil, and gravel scrubber; decontamination methods; materials made available for recycling or reuse; and waste management. The evaluation compares these activities to the regulatory requirements and closure plan requirements. The report concludes that the areas identified in the closure plan can be clean closed

  20. Storage shaft definitive closure plug and method

    International Nuclear Information System (INIS)

    Dardaine, M.

    1992-01-01

    A definitive closure plug system for radioactive waste storage at any deepness, is presented. The inherent weight of the closure materials is used to set in the plug: these materials display an inclined sliding surface in such a way that when the closure material rests on a stable surface of the shaft storage materials, the relative sliding of the different materials tends to spread them towards the shaft internal wall so as to completely occlude the shaft

  1. Unclassified Sources Term and Radionuclide Data for Corrective Action Unit 97: Yucca Flat/Climax Mine, Nevada Test Site, Nevada, Revision 2

    Energy Technology Data Exchange (ETDEWEB)

    Peter Martian

    2009-08-01

    This report documents the evaluation of the information and data available on the unclassified source term and radionuclide contamination for CAU 97: Yucca Flat/Climax Mine. The total residual inventory of radionuclides associated with one or more tests is known as the radiologic source term (RST). The RST is comprised of radionuclides in water, glass, or other phases or mineralogic forms. The hydrologic source term (HST) of an underground nuclear test is the portion of the total RST that is released into the groundwater over time following the test. In this report, the HST represents radionuclide release some time after the explosion and does not include the rapidly evolving mechanical, thermal, and chemical processes during the explosion. The CAU 97: Yucca Flat/Climax Mine has many more detonations and a wider variety of settings to consider compared to other CAUs. For instance, the source term analysis and evaluation performed for CAUs 101 and 102: Central and Western Pahute Mesa and CAU 98: Frenchman Flat did not consider vadose zone attenuation because many detonations were located near or below the water table. However, the large number of Yucca Flat/Climax Mine tests and the location of many tests above the water table warrant a more robust analysis of the unsaturated zone. The purpose of this report is to develop and document conceptual models of the Yucca Flat/Climax Mine HST for use in implementing source terms for the Yucca Flat/Climax Mine models. This document presents future plans to incorporate the radionuclide attenuation mechanisms due to unsaturated/multiphase flow and transport within the Yucca Flat CAU scale modeling. The important processes that influence radionuclide migration for the unsaturated and saturated tests in alluvial, volcanic, and carbonate settings are identified. Many different flow and transport models developed by Lawrence Livermore National Laboratory (LLNL) and Los Alamos National Laboratory (LANL), including original

  2. Laser peripheral iridoplasty for angle-closure.

    Science.gov (United States)

    Ng, Wai Siene; Ang, Ghee Soon; Azuara-Blanco, Augusto

    2012-02-15

    Angle-closure glaucoma is a leading cause of irreversible blindness in the world. Treatment is aimed at opening the anterior chamber angle and lowering the IOP with medical and/or surgical treatment (e.g. trabeculectomy, lens extraction). Laser iridotomy works by eliminating pupillary block and widens the anterior chamber angle in the majority of patients. When laser iridotomy fails to open the anterior chamber angle, laser iridoplasty may be recommended as one of the options in current standard treatment for angle-closure. Laser peripheral iridoplasty works by shrinking and pulling the peripheral iris tissue away from the trabecular meshwork. Laser peripheral iridoplasty can be used for crisis of acute angle-closure and also in non-acute situations.   To assess the effectiveness of laser peripheral iridoplasty in the treatment of narrow angles (i.e. primary angle-closure suspect), primary angle-closure (PAC) or primary angle-closure glaucoma (PACG) in non-acute situations when compared with any other intervention. In this review, angle-closure will refer to patients with narrow angles (PACs), PAC and PACG. We searched CENTRAL (which contains the Cochrane Eyes and Vision Group Trials Register) (The Cochrane Library 2011, Issue 12), MEDLINE (January 1950 to January 2012), EMBASE (January 1980 to January 2012), Latin American and Caribbean Literature on Health Sciences (LILACS) (January 1982 to January 2012), the metaRegister of Controlled Trials (mRCT) (www.controlled-trials.com), ClinicalTrials.gov (www.clinicaltrials.gov) and the WHO International Clinical Trials Registry Platform (ICTRP) (www.who.int/ictrp/search/en). There were no date or language restrictions in the electronic searches for trials. The electronic databases were last searched on 5 January 2012. We included only randomised controlled trials (RCTs) in this review. Patients with narrow angles, PAC or PACG were eligible. We excluded studies that included only patients with acute presentations

  3. Choice in maternity care: associations with unit supply, geographic accessibility and user characteristics

    Science.gov (United States)

    2012-01-01

    Background Despite national policies to promote user choice for health services in many European countries, current trends in maternity unit closures create a context in which user choice may be reduced, not expanded. Little attention has been paid to the potential impact of closures on pregnant women’s choice of maternity unit. We study here how pregnant women’s choices interact with the distance they must travel to give birth, individual socioeconomic characteristics and the supply of maternity units in France in 2003. Results Overall, about one-third of women chose their maternity units based on proximity. This proportion increased steeply as supply was constrained. Greater distances between the first and second closest maternity unit were strongly associated with increasing preferences for proximity; when these distances were ≥ 30 km, over 85% of women selected the closest unit (revealed preference) and over 70% reported that proximity was the reason for their choice (expressed preference). Women living at a short distance to the closest maternity unit appeared to be more sensitive to increases in distance between their first and second closest available maternity units. The preference for proximity, expressed and revealed, was related to demographic and social characteristics: women from households in the manual worker class chose a maternity unit based on its proximity more often and also went to the nearest unit when compared with women from professional and managerial households. These sociodemographic associations held true after adjusting for supply factors, maternal age and socioeconomic status. Conclusions Choice seems to be arbitrated in both absolute and relative terms. Taking changes in supply into consideration and how these affect choice is an important element for assessing the real impact of maternity unit closures on pregnant women’s experiences. An indicator measuring the proportion of women for whom the distance between the first

  4. The potential migration effect of rural hospital closures

    DEFF Research Database (Denmark)

    Sørensen, Jens Fyhn Lykke

    2008-01-01

    to out-migration, although the hypothetical way of questioning leaves uncertainty about the actual scale of out-migration. Child families appear to be the most likely out-migrants. Elderly people may be hardest hit by a hospital closure, being most reliant on health care and least inclined to move away.......Rural hospital closures are high on the current health care agenda in Denmark. One raised concern is that rural hospital closures may further decrease population numbers in rural areas, as closures may induce some residents to move away from affected areas, i.e. closer to health care services...

  5. Accelerating cleanup: Paths to closure

    International Nuclear Information System (INIS)

    1998-06-01

    This report describes the status of Environmental Management's (EM's) cleanup program and a direction forward to complete achievement of the 2006 vision. Achieving the 2006 vision results in significant benefits related to accomplishing EM program objectives. As DOE sites accelerate cleanup activities, risks to public health, the environment, and worker safety and health are all reduced. Finding more efficient ways to conduct work can result in making compliance with applicable environmental requirements easier to achieve. Finally, as cleanup activities at sites are completed, the EM program can focus attention and resources on the small number of sites with more complex cleanup challenges. Chapter 1 describes the process by which this report has been developed and what it hopes to accomplish, its relationship to the EM decision-making process, and a general background of the EM mission and program. Chapter 2 describes how the site-by-site projections were constructed, and summarizes, for each of DOE's 11 Operations/Field Offices, the projected costs and schedules for completing the cleanup mission. Chapter 3 presents summaries of the detailed cleanup projections from three of the 11 Operations/Field Offices: Rocky Flats (Colorado), Richland (Washington), and Savannah River (South Carolina). The remaining eight Operations/Field Office summaries are in Appendix E. Chapter 4 reviews the cost drivers, budgetary constraints, and performance enhancements underlying the detailed analysis of the 353 projects that comprise EM's accelerated cleanup and closure effort. Chapter 5 describes a management system to support the EM program. Chapter 6 provides responses to the general comments received on the February draft of this document

  6. HWMA/RCRA Closure Plan for the Basin Facility Basin Water Treatment System - Voluntary Consent Order NEW-CPP-016 Action Plan

    International Nuclear Information System (INIS)

    Evans, S. K.

    2007-01-01

    This Hazardous Waste Management Act/Resource Conservation and Recovery Act closure plan for the Basin Water Treatment System located in the Basin Facility (CPP-603), Idaho Nuclear Technology and Engineering Center (INTEC), Idaho National Laboratory Site, was developed to meet future milestones established under the Voluntary Consent Order. The system to be closed includes units and associated ancillary equipment included in the Voluntary Consent Order NEW-CPP-016 Action Plan and Voluntary Consent Order SITE-TANK-005 Tank Systems INTEC-077 and INTEC-078 that were determined to have managed hazardous waste. The Basin Water Treatment System will be closed in accordance with the requirements of the Hazardous Waste Management Act/Resource Conservation and Recovery Act, as implemented by the Idaho Administrative Procedures Act 58.01.05.009 and 40 Code of Federal Regulations 265, to achieve 'clean closure' of the tank system. This closure plan presents the closure performance standards and methods of achieving those standards for the Basin Water Treatment Systems

  7. HWMA/RCRA Closure Plan for the Basin Facility Basin Water Treatment System - Voluntary Consent Order NEW-CPP-016 Action Plan

    Energy Technology Data Exchange (ETDEWEB)

    Evans, S. K.

    2007-11-07

    This Hazardous Waste Management Act/Resource Conservation and Recovery Act closure plan for the Basin Water Treatment System located in the Basin Facility (CPP-603), Idaho Nuclear Technology and Engineering Center (INTEC), Idaho National Laboratory Site, was developed to meet future milestones established under the Voluntary Consent Order. The system to be closed includes units and associated ancillary equipment included in the Voluntary Consent Order NEW-CPP-016 Action Plan and Voluntary Consent Order SITE-TANK-005 Tank Systems INTEC-077 and INTEC-078 that were determined to have managed hazardous waste. The Basin Water Treatment System will be closed in accordance with the requirements of the Hazardous Waste Management Act/Resource Conservation and Recovery Act, as implemented by the Idaho Administrative Procedures Act 58.01.05.009 and 40 Code of Federal Regulations 265, to achieve "clean closure" of the tank system. This closure plan presents the closure performance standards and methods of achieving those standards for the Basin Water Treatment Systems.

  8. 304 Concretion facility closure plan

    International Nuclear Information System (INIS)

    1990-04-01

    The Hanford Site, located northwest of Richland, Washington, houses reactors, chemical-separation systems, and related facilities used for the production of special nuclear materials. The 300 Area of the Hanford Site contains reactor fuel manufacturing facilities and several research and development laboratories. Recyclable scrap uranium Zircaloy-2 and copper silicon alloy, uranium-titanium alloy, beryllium/Zircaloy-2 alloy, and Zircaloy-2 chips and fines were secured in concrete billets in the 304 Concretion Facility, located in the 300 Area. The beryllium/Zircaloy-2 alloy and Zircaloy-2 chips and fines are designated as low-level radioactive mixed waste (LLRMW) with the characteristic of ignitability. The concretion process reduced the ignitability of the fines and chips for safe storage and shipment. This process has been discontinued and the 304 Concretion Facility is now undergoing closure as defined in the Resource Conservation and Recovery Act of 1976 (RCRA). This closure plan presents a description of the facility, the history of materials and wastes managed, and the procedures that will be followed to close the 304 Concretion Facility (304 Facility). Clean closure of the 304 Facility is the proposed method for closure of the facility. Justification for this proposal is presented. 15 refs., 22 figs., 4 tabs

  9. CIRSE Vascular Closure Device Registry

    Science.gov (United States)

    Müller-Hülsbeck, Stefan; Libicher, Martin; Atar, Eli; Trentmann, Jens; Goffette, Pierre; Borggrefe, Jan; Zeleňák, Kamil; Hooijboer, Pieter; Belli, Anna-Maria

    2010-01-01

    Purpose Vascular closure devices are routinely used after many vascular interventional radiology procedures. However, there have been no major multicenter studies to assess the safety and effectiveness of the routine use of closure devices in interventional radiology. Methods The CIRSE registry of closure devices with an anchor and a plug started in January 2009 and ended in August 2009. A total of 1,107 patients were included in the registry. Results Deployment success was 97.2%. Deployment failure specified to access type was 8.8% [95% confidence interval (95% CI) 5.0–14.5] for antegrade access and 1.8% (95% CI 1.1–2.9) for retrograde access (P = 0.001). There was no difference in deployment failure related to local PVD at the access site. Calcification was a reason for deployment failure in only 5.9 cm, and two vessel occlusions. Conclusion The conclusion of this registry of closure devices with an anchor and a plug is that the use of this device in interventional radiology procedures is safe, with a low incidence of serious access site complications. There seems to be no difference in complications between antegrade and retrograde access and other parameters. PMID:20981425

  10. Assessment of consistent two-equation closure for forest flows

    DEFF Research Database (Denmark)

    Sogachev, Andrey; Cavar, Dalibor; Bechmann, Andreas

    of grid turbulence and wall-bounded flow, the closure suggested is also valid for homogeneous shear flows commonly observed inside tall vegetative canopies. The present work assess the plant drag closure by comparing results of two different CFD models against observations derived over the forested area...... and can be applied for any twoequation closure. Results derived by different CFD models with k-epsilon and k-omega closure are similar and in good comparison with observations. Overall, numerical results show that the closure performs well, opening new possibilities for application to tasks related...... to the atmospheric boundary layer—where it is important to adequately account for the influences of vegetation....

  11. Use of a furosemide drip does not improve earlier primary fascial closure in the open abdomen

    Directory of Open Access Journals (Sweden)

    Leland H Webb

    2012-01-01

    Full Text Available Background: The furosemide drip (FD, in addition to improving volume overload respiratory failure, has been used to decrease fluid in attempts to decrease intra-abdominal and abdominal wall volumes to facilitate fascial closure. The purpose of this study is to evaluate the FD and the associated rate of primary fascial closure following trauma damage control laparotomy (DCL. Materials and Methods: From January 2004 to September 2008, a retrospective review from a single institution Trauma Registry of the American College of Surgeons dataset was performed. All DCLs greater than 24 h who had a length of stay for 3 or more days were identified. The study group (FD+ and control group (FD- were compared. Demographic data including age, sex, probability of survival, red blood cell transfusions, initial lactate, and mortality were collected. Primary outcomes included primary fascial closure and primary fascial closure within 7 days. Secondary outcomes included total ventilator days and LOS. Results: A total of 139 patients met inclusion criteria: 25 FD+ and 114 FD-. The 25 FD+ patients received the drug at a median 4 days post DCL. Demographic differences between the groups were not significantly different, except that initial lactate was higher for FD- (1.7 vs 4.0; P=0.03. No differences were noted between groups regarding successful primary fascial closure (FD+ 68.4% vs FD- 64.0%; P=0.669, or closure within 7 days (FD+13.2% vs FD- 28.0%; P=0.066 of original DCL. FD+ patients suffered more open abdomen days (4 [2-7] vs 2 [1-4]; P=0.001. FD+ did not demonstrate an association with primary fascial closure [Odds ratio (OR 1.5, 95% confidence interval (CI 0.260-8.307; P=0.663]. FD+ patients had more ventilator days and longer Intensive Care Unit (ICU/hospital LOS (P<0.01. Conclusion: FD use may remove excess volume; however, forced diuresis with an FD is not associated with an increased rate of primary closure after DCL. Further studies are warranted to

  12. A Module Experimental Process System Development Unit (MEPSDU). [flat plate solar arrays

    Science.gov (United States)

    1981-01-01

    The development of a cost effective process sequence that has the potential for the production of flat plate photovoltaic modules which meet the price goal in 1986 of 70 cents or less per Watt peak is described. The major accomplishments include (1) an improved AR coating technique; (2) the use of sand blast back clean-up to reduce clean up costs and to allow much of the Al paste to serve as a back conductor; and (3) the development of wave soldering for use with solar cells. Cells were processed to evaluate different process steps, a cell and minimodule test plan was prepared and data were collected for preliminary Samics cost analysis.

  13. Design of flat pneumatic artificial muscles

    Science.gov (United States)

    Wirekoh, Jackson; Park, Yong-Lae

    2017-03-01

    Pneumatic artificial muscles (PAMs) have gained wide use in the field of robotics due to their ability to generate linear forces and motions with a simple mechanism, while remaining lightweight and compact. However, PAMs are limited by their traditional cylindrical form factors, which must increase radially to improve contraction force generation. Additionally, this form factor results in overly complicated fabrication processes when embedded fibers and sensor elements are required to provide efficient actuation and control of the PAMs while minimizing the bulkiness of the overall robotic system. In order to overcome these limitations, a flat two-dimensional PAM capable of being fabricated using a simple layered manufacturing process was created. Furthermore, a theoretical model was developed using Von Karman’s formulation for large deformations and the energy methods. Experimental characterizations of two different types of PAMs, a single-cell unit and a multi-cell unit, were performed to measure the maximum contraction lengths and forces at input pressures ranging from 0 to 150 kPa. Experimental data were then used to verify the fidelity of the theoretical model.

  14. Post-Closure Inspection and Monitoring Report for Corrective Action Unit 342: Area 23 Mercury Fire Training Pit, Nevada Test Site, Nevada

    International Nuclear Information System (INIS)

    NSTec Environmental Restoration

    2006-01-01

    This report provides a summary and analysis of visual site inspections and soil gas sampling results for Corrective Action Unit (CAU) 342, Area 23 Mercury Fire Training Pit. CAU 342 is identified in the Federal Facility Agreement and Consent Order of 1996 and consists of Corrective Action Site 23-56-01, Former Mercury Fire Training Pit. This report covers calendar years 2004 and 2005. Visual site inspections were conducted on May 20 and November 14, 2004, and May 17 and November 15, 2005. No significant findings were observed during these inspections. The site was in good condition, and no repair activities were required. Soil gas samples were collected on November 29, 2005, for analysis of volatile organic compounds (VOCs) and semivolatile organic compounds (SVOCs), and samples were collected on December 1, 2005, for analysis of base gases. Base gas concentrations in the monitoring well show a high concentration of carbon dioxide and a low concentration of oxygen, which is an indication of biodegradation of total petroleum hydrocarbons (TPH) in the soil. Results for VOCs and SVOCs are unchanged, with VOCs below or near laboratory method detection limits and no SVOCs detected above laboratory method detection limits. Post-closure monitoring was required for six years after closure of the site. Therefore, since 2005 was the sixth year of monitoring, the effectiveness of natural attenuation of the TPH-impacted soil by biodegradation was evaluated. The base gas concentrations indicate that biodegradation of TPH in the soil is occurring; therefore, it is recommended that monitoring be discontinued. Visual site inspections should continue to be performed biannually to ensure that the signs are in place and readable and that the use restriction has been maintained. The results of the site inspections will be documented in a letter report and submitted annually

  15. Exact piecewise flat gravitational waves

    NARCIS (Netherlands)

    van de Meent, M.

    2011-01-01

    We generalize our previous linear result (van de Meent 2011 Class. Quantum Grav 28 075005) in obtaining gravitational waves from our piecewise flat model for gravity in 3+1 dimensions to exact piecewise flat configurations describing exact planar gravitational waves. We show explicitly how to

  16. Evaluation of Container Closure System Integrity for Frozen Storage Drug Products.

    Science.gov (United States)

    Nieto, Alejandra; Roehl, Holger; Brown, Helen; Nikoloff, Jonas; Adler, Michael; Mahler, Hanns-Christian

    2016-01-01

    Sometimes, drug product for parenteral administration is stored in a frozen state (e.g., -20 °C or -80 °C), particularly during early stages of development of some biotech molecules in order to provide sufficient stability. Shipment of frozen product could potentially be performed in the frozen state, yet possibly at different temperatures, for example, using dry ice (-80 °C). Container closure systems of drug products usually consist of a glass vial, rubber stopper, and an aluminum crimped cap. In the frozen state, the glass transition temperature (Tg) of commonly used rubber stoppers is between -55 and -65 °C. Below their Tg, rubber stoppers are known to lose their elastic properties and become brittle, and thus potentially fail to maintain container closure integrity in the frozen state. Leaks during frozen temperature storage and transportation are likely to be transient, yet, can possibly risk container closure integrity and lead to microbial contamination. After thawing, the rubber stopper is supposed to re-seal the container closure system. Given the transient nature of the possible impact on container closure integrity in the frozen state, typical container closure integrity testing methods (used at room temperature conditions) are unable to evaluate and thus confirm container closure integrity in the frozen state. Here we present the development of a novel method (thermal physical container closure integrity) for direct assessment of container closure integrity by a physical method (physical container closure integrity) at frozen conditions, using a modified He leakage test. In this study, different container closure systems were evaluated with regard to physical container closure integrity in the frozen state to assess the suitability of vial/stopper combinations and were compared to a gas headspace method. In summary, the thermal physical container closure integrity He leakage method was more sensitive in detecting physical container closure

  17. Closure Report for Corrective Action Unit 261: Area 25 Test Cell A Leachfield System, Nevada Test Site, Nevada

    Energy Technology Data Exchange (ETDEWEB)

    T. M. Fitzmaurice

    2001-04-01

    The purpose of this Closure Report (CR) is to provide documentation of the completed corrective action at the Test Cell A Leachfield System and to provide data confirming the corrective action. The Test Cell A Leachfield System is identified in the Federal Facility Agreement and Consent Order (FFACO) of 1996 as Corrective Action Unit (CAU) 261. Remediation of CAU 261 is required under the FFACO (1996). CAU 261 is located in Area 25 of the Nevada Test Site (NTS) which is approximately 140 kilometers (87 miles) northwest of Las Vegas, Nevada (Figure 1). CAU 261 consists of two Corrective Action Sites (CASS): CAS 25-05-01, Leachfield; and CAS 25-05-07, Acid Waste Leach Pit (AWLP) (Figures 2 and 3). Test Cell A was operated during the 1960s and 1970s to support the Nuclear Rocket Development Station. Various operations within Building 3124 at Test Cell A resulted in liquid waste releases to the Leachfield and the AWLP. The following existing site conditions were reported in the Corrective Action Decision Document (CADD) (U.S. Department of Energy, Nevada Operations Office [DOE/NV], 1999): Soil in the leachfield was found to exceed the Nevada Division of Environmental Protection (NDEP) Action Level for petroleum hydrocarbons, the U.S. Environmental Protection Agency (EPA) preliminary remediation goals for semi volatile organic compounds, and background concentrations for strontium-90; Soil below the sewer pipe and approximately 4.5 meters (m) (15 feet [ft]) downstream of the initial outfall was found to exceed background concentrations for cesium-137 and strontium-90; Sludge in the leachfield septic tank was found to exceed the NDEP Action Level for petroleum hydrocarbons and to contain americium-241, cesium-137, uranium-234, uranium-238, potassium-40, and strontium-90; No constituents of concern (COC) were identified at the AWLP. The NDEP-approved CADD (DOWNV, 1999) recommended Corrective Action Alternative 2, ''Closure of the Septic Tank and Distribution Box

  18. Considerations for closure of low-level radioactive waste engineered disposal facilities

    International Nuclear Information System (INIS)

    1992-01-01

    Proper stabilization and closure of low-level radioactive waste disposal facilities require detailed planning during the early stages of facility development. This report provides considerations for host States, compact regions, and unaffiliated States on stabilization and closure of engineered low-level radioactive waste and mixed waste disposal facilities. A time line for planning closure activities, which identifies closure considerations to be addressed during various stages of a facility's development, is presented. Current Federal regulatory requirements and guidance for closure and post-closure are outlined. Significant differences between host State and Federal closure requirements are identified. Design features used as stabilization measures that support closure, such as waste forms and containers, backfill materials, engineered barrier systems, and site drainage systems, are described. These design features are identified and evaluated in terms of how they promote long-term site stability by minimizing water infiltration, controlling subsidence and surface erosion, and deterring intrusion. Design and construction features critical to successful closure are presented for covers and site drainage. General considerations for stabilization and closure operations are introduced. The role of performance and environmental monitoring during closure is described

  19. Tank closure reducing grout

    International Nuclear Information System (INIS)

    Caldwell, T.B.

    1997-01-01

    A reducing grout has been developed for closing high level waste tanks at the Savannah River Site in Aiken, South Carolina. The grout has a low redox potential, which minimizes the mobility of Sr 90 , the radionuclide with the highest dose potential after closure. The grout also has a high pH which reduces the solubility of the plutonium isotopes. The grout has a high compressive strength and low permeability, which enhances its ability to limit the migration of contaminants after closure. The grout was designed and tested by Construction Technology Laboratories, Inc. Placement methods were developed by the Savannah River Site personnel

  20. Nickel titanium springs versus stainless steel springs: A randomized clinical trial of two methods of space closure.

    Science.gov (United States)

    Norman, Noraina Hafizan; Worthington, Helen; Chadwick, Stephen Mark

    2016-09-01

    To compare the clinical performance of nickel titanium (NiTi) versus stainless steel (SS) springs during orthodontic space closure. Two-centre parallel group randomized clinical trial. Orthodontic Department University of Manchester Dental Hospital and Orthodontic Department Countess of Chester Hospital, United Kingdom. Forty orthodontic patients requiring fixed appliance treatment were enrolled, each being randomly allocated into either NiTi (n = 19) or SS groups (n = 21). Study models were constructed at the start of the space closure phase (T0) and following the completion of space closure (T1). The rate of space closure achieved for each patient was calculated by taking an average measurement from the tip of the canine to the mesiobuccal groove on the first permanent molar of each quadrant. The study was terminated early due to time constraints. Only 30 patients completed, 15 in each study group. There was no statistically significant difference between the amounts of space closed (mean difference 0.17 mm (95%CI -0.99 to 1.34; P = 0.76)). The mean rate of space closure for NiTi coil springs was 0.58 mm/4 weeks (SD 0.24) and 0.85 mm/4 weeks (SD 0.36) for the stainless steel springs. There was a statistically significant difference between the two groups (P = 0.024), in favour of the stainless steel springs, when the mean values per patient were compared. Our study shows that stainless steel springs are clinically effective; these springs produce as much space closure as their more expensive rivals, the NiTi springs.

  1. Post-Closure Inspection Report for the Tonopah Test Range, Nevada, for Calendar Year 2013

    Energy Technology Data Exchange (ETDEWEB)

    Silvas, A. J.

    2014-03-03

    This report provides the results of the annual post-closure inspections conducted at the closed Corrective Action Units (CAUs) located on the Tonopah Test Range (TTR), Nevada. This report covers calendar year 2013 and includes inspection and repair activities completed at the following CAUs: • CAU 400: Bomblet Pit and Five Points Landfill (TTR) • CAU 407: Roller Coaster RadSafe Area (TTR) • CAU 424: Area 3 Landfill Complexes (TTR) • CAU 453: Area 9 UXO Landfill (TTR) • CAU 487: Thunderwell Site (TTR) Inspections were conducted according to the post-closure plans in the approved Closure Reports and subsequent correspondence with the Nevada Division of Environmental Protection. The post-closure inspection plans and subsequent correspondence modifying the requirements for each CAU are included in Appendix B. The inspection checklists are included in Appendix C. Field notes are included in Appendix D. Photographs taken during inspections are included in Appendix E. The annual post-closure inspections were conducted on May 14, 2013. Maintenance was performed at CAU 400, CAU 424, and CAU 453. At CAU 400, animal burrows were backfilled. At CAU 424, erosion repairs were completed at Landfill Cell A3-3, subsidence was repaired at Landfill Cell A3-4, and additional lava rock was placed in high-traffic areas to mark the locations of the surface grade monuments at Landfill Cell A3-3 and Landfill Cell A3-8. At CAU 453, two areas of subsidence were repaired and animal burrows were backfilled. Vegetation monitoring was performed at the CAU 400 Five Points Landfill and CAU 407 in June 2013. The vegetation monitoring report is included in Appendix F.

  2. Rigidity of generalized Bach-flat vacuum static spaces

    Science.gov (United States)

    Yun, Gabjin; Hwang, Seungsu

    2017-11-01

    In this paper, we study the structure of generalized Bach-flat vacuum static spaces. Generalized Bach-flat metrics are considered as extensions of both Einstein and Bach-flat metrics. First, we prove that a compact Riemannian n-manifold with n ≥ 4 which is a generalized Bach-flat vacuum static space is Einstein. A generalized Bach-flat vacuum static space with the potential function f having compact level sets is either Ricci-flat or a warped product with zero scalar curvature when n ≥ 5, and when n = 4, it is Einstein if f has its minimum. Secondly, we consider critical metrics for another quadratic curvature functional involving the Ricci tensor, and prove similar results. Lastly, by applying the technique developed above, we prove Besse conjecture when the manifold is generalized Bach-flat.

  3. A kinematic view of loop closure.

    Science.gov (United States)

    Coutsias, Evangelos A; Seok, Chaok; Jacobson, Matthew P; Dill, Ken A

    2004-03-01

    We consider the problem of loop closure, i.e., of finding the ensemble of possible backbone structures of a chain segment of a protein molecule that is geometrically consistent with preceding and following parts of the chain whose structures are given. We reduce this problem of determining the loop conformations of six torsions to finding the real roots of a 16th degree polynomial in one variable, based on the robotics literature on the kinematics of the equivalent rotator linkage in the most general case of oblique rotators. We provide a simple intuitive view and derivation of the polynomial for the case in which each of the three pair of torsional axes has a common point. Our method generalizes previous work on analytical loop closure in that the torsion angles need not be consecutive, and any rigid intervening segments are allowed between the free torsions. Our approach also allows for a small degree of flexibility in the bond angles and the peptide torsion angles; this substantially enlarges the space of solvable configurations as is demonstrated by an application of the method to the modeling of cyclic pentapeptides. We give further applications to two important problems. First, we show that this analytical loop closure algorithm can be efficiently combined with an existing loop-construction algorithm to sample loops longer than three residues. Second, we show that Monte Carlo minimization is made severalfold more efficient by employing the local moves generated by the loop closure algorithm, when applied to the global minimization of an eight-residue loop. Our loop closure algorithm is freely available at http://dillgroup. ucsf.edu/loop_closure/. Copyright 2004 Wiley Periodicals, Inc. J Comput Chem 25: 510-528, 2004

  4. Socket sclerosis--an obstacle for orthodontic space closure?

    Science.gov (United States)

    Baumgaertel, Sebastian

    2009-07-01

    Socket sclerosis is a rare reaction to tooth extraction resulting in high-density bone in the center of the alveolar process, where, under normal circumstances, cancellous bone is to be expected. In an adult orthodontic patient, routine extractions of the mandibular first permanent bicuspids were performed, resulting in socket sclerosis and unsuccessful orthodontic space closure. Orthodontic mini-implants were inserted to augment anchorage and aid in space closure. In the presence of socket sclerosis, conventional orthodontic mechanics failed to close the extraction spaces. However, with absolute anchorage in place, space closure occurred at a nearly normal rate. After treatment, no signs of socket sclerosis were discernible on the periapical radiographs. Socket sclerosis can be an obstacle for orthodontic space closure if traditional mechanics are employed. However, mini-implant-reinforced anchorage can lead to successful space closure, resulting in complete resolution of the sclerotic sites.

  5. Primary closure of equine laryngotomy incisions

    DEFF Research Database (Denmark)

    Lindegaard, C.; Karlsson, L.; Ekstrøm, Claus Thorn

    2016-01-01

    incision between January 1995 and June 2012 were reviewed. Horses with a laryngotomy incision closed in three layers for primary healing were included. Descriptive data on healing characteristics and complications of laryngotomy wounds were collected from the medical records and via follow......The objective was to report healing characteristics and complications after primary closure of equine laryngotomies and analyse factors potentially associated with complications. This retrospective case series of the medical records of horses (n = 180) undergoing laryngoplasty and laryngotomy...... after primary closure of equine laryngotomy incisions are infrequent and considered of minimal severity and can be performed safely when paying careful attention to the closure of the cricothyroid membrane....

  6. Effects of supplemental vibrational force on space closure, treatment duration, and occlusal outcome: A multicenter randomized clinical trial.

    Science.gov (United States)

    DiBiase, Andrew T; Woodhouse, Neil R; Papageorgiou, Spyridon N; Johnson, Nicola; Slipper, Carmel; Grant, James; Alsaleh, Maryam; Khaja, Yousef; Cobourne, Martyn T

    2018-04-01

    A multicenter parallel 3-arm randomized clinical trial was carried out in 3 university hospitals in the United Kingdom to investigate the effect of supplemental vibratory force on space closure and treatment outcome with fixed appliances. Eighty-one subjects less than 20 years of age with mandibular incisor irregularity undergoing extraction-based fixed appliance treatment were randomly allocated to supplementary (20 minutes/day) use of an intraoral vibrational device (AcceleDent; OrthoAccel Technologies, Houston, Tex) (n = 29), an identical nonfunctional (sham) device (n = 25), or fixed-appliance only (n = 27). Space closure in the mandibular arch was measured from dental study casts taken at the start of space closure, at the next appointment, and at completion of space closure. Final records were taken at completion of treatment. Data were analyzed blindly on a per-protocol basis with descriptive statistics, 1-way analysis of variance, and linear regression modeling with 95% confidence intervals. Sixty-one subjects remained in the trial at start of space closure, with all 3 groups comparable for baseline characteristics. The overall median rate of initial mandibular arch space closure (primary outcome) was 0.89 mm per month with no difference for either the AcceleDent group (difference, -0.09 mm/month; 95% CI, -0.39 to 0.22 mm/month; P = 0.57) or the sham group (difference, -0.02 mm/month; 95% CI, -0.32 to 0.29 mm/month; P = 0.91) compared with the fixed only group. Similarly, no significant differences were identified between groups for secondary outcomes, including overall treatment duration (median, 18.6 months; P >0.05), number of visits (median, 12; P >0.05), and percentage of improvement in the Peer Assessment Rating (median, 90.0%; P >0.05). Supplemental vibratory force during orthodontic treatment with fixed appliances does not affect space closure, treatment duration, total number of visits, or final occlusal outcome. NCT02314975

  7. Detailed design report for an operational phase panel-closure system

    International Nuclear Information System (INIS)

    1996-01-01

    Under contract to Westinghouse Electric Corporation (Westinghouse), Waste Isolation Division (WID), IT Corporation has prepared a detailed design of a panel-closure system for the Waste Isolation Pilot Plant (WIPP). Preparation of this detailed design of an operational-phase closure system is required to support a Resource Conservation and Recovery Act (RCRA) Part B permit application and a non-migration variance petition. This report describes the detailed design for a panel-closure system specific to the WIPP site. The recommended panel-closure system will adequately isolate the waste-emplacement panels for at least 35 years. This report provides detailed design and material engineering specifications for the construction, emplacement, and interface-grouting associated with a panel-closure system at the WIPP repository, which would ensure that an effective panel-closure system is in place for at least 35 years. The panel-closure system provides assurance that the limit for the migration of volatile organic compounds (VOC) will be met at the point of compliance, the WIPP site boundary. This assurance is obtained through the inherent flexibility of the panel-closure system

  8. Defense Base Realignment and Closure Budget Data for Realignment of Construction Battalion Unit 416 from Naval Air Station Alameda, California, to Naval Air Station Fallon, Nevada

    National Research Council Canada - National Science Library

    1995-01-01

    ... requested for each military construction project associated with Defense base realignment and closure does not exceed the original estimated cost provided to the Commission on Defense Base Closure and Realignment (the Commission...

  9. Percutaneous Transcatheter PDA Device Closure in Infancy

    International Nuclear Information System (INIS)

    Ullah, M.; Sultan, M.; Akhtar, K.; Sadiq, N.; Akbar, H.

    2014-01-01

    Objective: To evaluate the results and complications associated with transcatheter closure of patent ductus arteriosus (PDA) in infants. Study Design: Quasi-experimental study. Place and Duration of Study: Paediatric Cardiology Department of Armed Forces Institute of Cardiology / National Institute of Heart Diseases (AFIC/NIHD), Rawalpindi, from December 2010 to June 2012. Methodology: Infants undergoing transcatheter device closure of PDA were included. All patients were evaluated by experienced Paediatric Cardiologists with 2-D echocardiography and Doppler before the procedure. Success of closure and complications were recorded. Results: The age of patients varied from 05 - 12 months and 31 (56.4%) were females. Out of the 55 infants, 3 (5.4%) were not offered device closure after aortogram (two large tubular type ducts and one tiny duct, considered unsuitable for device closure); while in 50 (96.1%) patients out of remaining 52, the duct was successfully closed with transcatheter PDA device or coil. In one infant, device deployment resulted in acquired coarctation, necessitating device retrieval by Snare followed by surgical duct interruption and another patient had non-fatal cardiac arrest during device deployment leading to abandonment of procedure and subsequent successful surgical interruption. Local vascular complications occurred in 12 (21.8%) of cases and all were satisfactorily treated. Conclusion: Transcatheter device closure of PDA in infants was an effective procedure in the majority of cases; however, here were considerable number of local access site vascular complications. (author)

  10. Individual energy savings for individual flats in blocks of flats

    DEFF Research Database (Denmark)

    Nielsen, Anker; Rose, Jørgen

    2014-01-01

    and 1980. Normally, we expect the reduction in energy consumption to be around 20% for a 2 °C lower temperature, but for an inner flat the reduction can be up to 71%. The owners of the adjoining flats get an increase in energy demand of 10 to 20% each. They will not be able to figure out whether...... this is because the neighbour maintains a low temperature or the fact that they maintain a higher temperature. The best solution is to keep your own indoor temperature low. We can also turn the problem around: if you maintain a higher temperature than your neighbours, then you will pay part of their heating bill....

  11. ASSESSMENT OF LENS THICKNESS IN ANGLE CLOSURE DISEASE

    Directory of Open Access Journals (Sweden)

    Nishat Sultana Khayoom

    2016-08-01

    Full Text Available BACKGROUND Anterior chamber depth and lens thickness have been considered as important biometric determinants in primary angle-closure glaucoma. Patients with primary narrow angle may be classified as a primary angle closure suspect (PACS, or as having primary angle closure (PAC or primary angle closure glaucoma (PACG. 23.9% of patients with primary angle closure disease are in India, which highlights the importance of understanding the disease, its natural history, and its underlying pathophysiology, so that we may try to establish effective methods of treatment and preventative measures to delay, or even arrest, disease progression, thereby reducing visual morbidity. AIM To determine the lens thickness using A-scan biometry and its significance in various stages of angle closure disease. MATERIALS AND METHODS Patients attending outpatient department at Minto Ophthalmic Hospital between October 2013 to May 2015 were screened for angle closure disease and subsequently evaluated at glaucoma department. In our study, lens thickness showed a direct correlation with shallowing of the anterior chamber by determining the LT/ ACD ratio. A decrease in anterior chamber depth is proportional to the narrowing of the angle which contributes to the progression of the angle closure disease from just apposition to occlusion enhancing the risk for optic nerve damage and visual field loss. Hence, if the lens thickness values are assessed earlier in the disease process, appropriate intervention can be planned. CONCLUSION Determination of lens changes along with anterior chamber depth and axial length morphometrically can aid in early detection of angle closure. The role of lens extraction for PACG is a subject of increased interest. Lens extraction promotes the benefits of anatomical opening of the angle, IOP reduction and improved vision. This potential intervention may be one among the armamentarium of approaches for PACG. Among the current treatment modalities

  12. Transcatheter closure of patent ductus arteriosus: past, present and future.

    Science.gov (United States)

    Baruteau, Alban-Elouen; Hascoët, Sébastien; Baruteau, Julien; Boudjemline, Younes; Lambert, Virginie; Angel, Claude-Yves; Belli, Emre; Petit, Jérôme; Pass, Robert

    2014-02-01

    This review aims to describe the past history, present techniques and future directions in transcatheter treatment of patent ductus arteriosus (PDA). Transcatheter PDA closure is the standard of care in most cases and PDA closure is indicated in any patient with signs of left ventricular volume overload due to a ductus. In cases of left-to-right PDA with severe pulmonary arterial hypertension, closure may be performed under specific conditions. The management of clinically silent or very tiny PDAs remains highly controversial. Techniques have evolved and the transcatheter approach to PDA closure is now feasible and safe with current devices. Coils and the Amplatzer Duct Occluder are used most frequently for PDA closure worldwide, with a high occlusion rate and few complications. Transcatheter PDA closure in preterm or low-bodyweight infants remains a highly challenging procedure and further device and catheter design development is indicated before transcatheter closure is the treatment of choice in this delicate patient population. The evolution of transcatheter PDA closure from just 40 years ago with 18F sheaths to device delivery via a 3F sheath is remarkable and it is anticipated that further improvements will result in better safety and efficacy of transcatheter PDA closure techniques. Copyright © 2014 Elsevier Masson SAS. All rights reserved.

  13. Patent foramen ovale closure using a bioabsorbable closure device: safety and efficacy at 6-month follow-up.

    Science.gov (United States)

    Van den Branden, Ben J; Post, Martijn C; Plokker, Herbert W; ten Berg, Jurriën M; Suttorp, Maarten J

    2010-09-01

    The aim of this study was to assess the mid-term safety and efficacy of percutaneous patent foramen ovale (PFO) closure using a bioabsorbable device (BioSTAR, NMT Medical, Boston, Massachusetts). Closure of PFO in patients with cryptogenic stroke has proven to be safe and effective using different types of permanent devices. All consecutive patients who underwent percutaneous PFO closure with the bioabsorbable closure device between November 2007 and January 2009 were included. Residual shunt was assessed using contrast transthoracic echocardiography. Sixty-two patients (55% women, mean age 47.7 ± 11.8 years) underwent PFO closure. The in-hospital complications were a surgical device retrieval in 2 patients (3.2%), device reposition in 1 (1.6%), and a minimal groin hematoma in 6 patients (9.7%). The short-term complications at 1-month follow-up (n = 60) were a transient ischemic attack in the presence of a residual shunt in 1 patient and new supraventricular tachycardia in 7 patients (11.3%). At 6-month follow-up (n = 60), 1 patient without residual shunt developed a transient ischemic attack and 1 developed atrial fibrillation. A mild or moderate residual shunt was noted in 51.7%, 33.9%, and 23.7% after 1-day, 1-month, and 6-month follow-up, respectively. A large shunt was present in 8.3%, 3.4%, and 0% after 1-day, 1-month, and 6-month follow-up. Closure of PFO using the bioabsorbable device is associated with a low complication rate and a low recurrence rate of embolic events. However, a relatively high percentage of mild or moderate residual shunting is still present at 6-month follow-up. Copyright © 2010 American College of Cardiology Foundation. Published by Elsevier Inc. All rights reserved.

  14. Closure Report for Corrective Action Unit 230: Area 22 Sewage Lagoons and Corrective Action Unit 320: Area 22 Desert Rock Airport Strainer Box Nevada Test Site, Nevada

    Energy Technology Data Exchange (ETDEWEB)

    D. S. Tobiason

    2001-07-01

    This Closure Report (CR) describes the remediation activities performed and the results of verification sampling conducted at Corrective Action Unit (CAU) 230, Area 22 Sewage Lagoons and CAU 320, Area 22 Desert Rock Airport Strainer Box. The CAU is currently listed in Appendix III of the Federal Facility Agreement and Consent Order (FFACO, 1996). The CAU is located in Area 22 of the Nevada Test Site (NTS) (Figure 1) and consists of the following Corrective Action Sites (CASs): 22-03-01- Sewage Lagoon (CAU 230); and 22-99-01- Strainer Box (CAU 320). Included with CAS 22-99-01 is a buried Imhoff tank and a sludge bed. These CAUs will be collectively referred to in this plan as the Area 22 Sewage Lagoons site. Site characterization activities were done during September 1999. Characterization of the manholes associated with the septic system leading to the Imhoff tank was done during March 2000. The results of the characterization presented in the Corrective Action Decision Document (CADD) indicated that only the sludge bed (CAS 22-99-01) contained constituents of concern (COC) above action levels and required remediation (U.S. Department of Energy, Nevada Operations Office [DOE/NV], 2000a).

  15. CLOSURE REPORT FOR CORRECTIVE ACTION UNIT 390: AREAS 9, 10, AND 12 SPILL SITES, NEVADA TEST SITE, NEVADA

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2005-10-01

    Corrective Action Unit (CAU) 390 consists four Corrective Action Sites (CASs) located in Areas 9, 10, and 12 of the Nevada Test Site. The closure activities performed at the CASs include: (1) CAS 09-99-03, Wax, Paraffin: 2 cubic yards of drilling polymer was removed on June 20,2005, and transported to the Area 9 Landfill for disposal. (2) CAS 10-99-01, Epoxy Tar Spill: 2 cubic feet of asphalt waste was removed on June 20,2005, and transported to the Area 9 Landfill for disposal. (3) CAS 10-99-03, Tar Spills: 3 cubic yards of deteriorated asphalt waste was removed on June 20,2005, and transported to the Area 9 Landfill for disposal. (4) CAS 12-25-03, Oil Stains (2); Container: Approximately 16 ounces of used oil were removed from ventilation equipment on June 28,2005, and recycled. One CAS 10-22-19, Drums, Stains, was originally part of CAU 390 but was transferred out of CAU 390 and into CAU 550, Drums, Batteries, and Lead Materials. The transfer was approved by the Nevada Division of Environmental Protection on August 19,2005, and a copy of the approval letter is included in Appendix D of this report.

  16. Emergent properties during dorsal closure in Drosophila morphogenesis

    International Nuclear Information System (INIS)

    Peralta, X G; Toyama, Y; Edwards, G S; Kiehart, D P

    2008-01-01

    Dorsal closure is an essential stage of Drosophila development that is a model system for research in morphogenesis and biological physics. Dorsal closure involves an orchestrated interplay between gene expression and cell activities that produce shape changes, exert forces and mediate tissue dynamics. We investigate the dynamics of dorsal closure based on confocal microscopic measurements of cell shortening in living embryos. During the mid-stages of dorsal closure we find that there are fluctuations in the width of the leading edge cells but the time-averaged analysis of measurements indicate that there is essentially no net shortening of cells in the bulk of the leading edge, that contraction predominantly occurs at the canthi as part of the process for zipping together the two leading edges of epidermis and that the rate constant for zipping correlates with the rate of movement of the leading edges. We characterize emergent properties that regulate dorsal closure, i.e., a velocity governor and the coordination and synchronization of tissue dynamics

  17. Post-Closure Report for Closed Resource Conservation and Recovery Act Corrective Action Units, Nevada National Security Site, Nevada for Fiscal Year 2011 (October 2010-September 2011)

    International Nuclear Information System (INIS)

    2012-01-01

    This report serves as the combined annual report for post-closure activities for the following closed Corrective Action Units (CAUs): (1) CAU 90, Area 2 Bitcutter Containment; (2) CAU 91, Area 3 U-3fi Injection Well; (3) CAU 92, Area 6 Decon Pond Facility; (4) CAU 110, Area 3 WMD U-3ax/bl Crater; and (5) CAU 112, Area 23 Hazardous Waste Trenches. This report covers fiscal year 2011 (October 2010-September 2011). The post-closure requirements for these sites are described in Resource Conservation and Recovery Act Permit Number NEV HW0101 and summarized in each CAU-specific section in Section 1.0 of this report. Site inspections are conducted semiannually at CAUs 90 and 91 and quarterly at CAUs 92, 110, and 112. Additional inspections are conducted at CAU 92 if precipitation occurs in excess of 0.50 inches in a 24-hour period. Inspections include an evaluation of the condition of the units and identification of any deficiencies that may compromise the integrity of the units. The condition of covers, fencing, signs, gates, and locks is documented. In addition, soil moisture monitoring and subsidence surveys are conducted at CAU 110. The results of the inspections, summary of maintenance activities, results of vegetations surveys, and analysis of monitoring data are presented in this report. Copies of the inspection checklists are included as Appendix A. Field notes completed during each inspection are included in Appendix B. Photographs taken during the inspections are included in Appendix C. It is recommended to continue semiannual inspections at CAUs 90 and 91; quarterly inspections at CAUs 92, 110, and 112; and additional inspections at CAU 92 if precipitation occurs in excess of 0.50 inches in a 24-hour period. At CAU 92, it is recommended to remove the wave barriers, as they have not proven to be necessary to protect the cover. At CAU 110, it is recommended to continue annual vegetation monitoring and soil moisture monitoring, and to reduce the frequency of

  18. Economic and financial aspects of mine closure

    International Nuclear Information System (INIS)

    Kahn, James R.; Franceschi, Dina; Curi, Adilson; Vale, Eduardo

    2001-01-01

    Today, mine reclamation is a key component to a successful mine plan. Most of the industrialized nations have recognized the need to make mining activities relatively environmentally friendly, if they want to continue to benefit from the economic gains from mineral resource development. Countries such as the United States, Canada, Australia and South Africa are leaders in the field and have implemented relatively sophisticated legislation to ensure environmentally correct mine closure. These countries rely on a combination of strict control strategies and economic penalties to ensure compliance. Yet, from the firm's perspective, reclamation activities are counterproductive as they cut into properties. In order to attract economic development and earn much needed economic capital, most of the rest of the world, particularly the developing countries, lack effective mine closure legislation. The traditional command and control type of legislation that is sometimes used is either vague and therefore avoided, or not enforced appropriately, resulting in an undesirable level of environmental degradation. With the use of case studies from Brazil, this article shows that direct controls are effective in some instances and not in others. It proposes that economic and financial tools may be more effective than the traditional direct controls in getting firms to comply with environmental standards, particularly in developing countries where environmental compliance is more difficult to achieve. It explains the use of performance bonding as one type of economic incentive that has proven to be an effective environmental policy in mine planning and closure. The authors additionally push beyond the typical style of performance bonds to introduce a flexible bonding and insurance system that allows governments to maintain strict environmental standards but limits firms financial exposure during the mining process. Such a system learns from the successes of the industrialized

  19. Body mass index affects time to definitive closure after damage control surgery.

    Science.gov (United States)

    Haricharan, Ramanath N; Dooley, Adam C; Weinberg, Jordan A; McGwin, Gerald; MacLennan, Paul A; Griffin, Russell L; Rue, Loring W; Reiff, Donald A

    2009-06-01

    A growing body of literature demonstrates that irrespective of the mechanism of injury, obesity is associated with significantly worse morbidity and mortality after trauma. Among patients requiring damage control laparotomy (DCL), clinical experience suggests that obesity affects time to definitive closure though this association has never been demonstrated quantitatively. All patients at an academic Level I trauma center requiring a DCL between January 2002 and December 2006 (N = 148) were included. Information pertaining to demographic, injury, and clinical characteristics was abstracted from patient medical records. The risk of specific complications including pneumonia, renal failure, and sepsis was compared between normal and overweight/obese patients, as measured by body mass index (BMI). The lengths of intensive care unit (ICU) stay and mechanical ventilation as well as time to abdominal closure were also compared. The risk of pneumonia, sepsis, and renal failure was 2.05-times, 1.77-times, and 2.84-times higher among overweight patients compared with patients with a normal BMI. The risk of pneumonia, sepsis, and renal failure was 2.01-times, 4.24-times, and 1.85-times higher among obese patients compared with those with a normal BMI. Obese patients also had a significantly longer ICU length of stay (28.7 days vs. 15.1 days; p < 0.0001), longer hospitalization (39.3 days vs. 27.0 days; p = 0.008), and time to definitive closure (8.4 days vs. 3.9 days; p = 0.03) compared with patients with a normal BMI. Among patients requiring DCL, those who are overweight or obese have a prolonged time to definitive closure. These patients also experience a significantly longer ICU course and a higher risk of pneumonia.

  20. Closure End States for Facilities, Waste Sites, and Subsurface Contamination - 12543

    Energy Technology Data Exchange (ETDEWEB)

    Gerdes, Kurt; Chamberlain, Grover; Whitehurst, Latrincy; Marble, Justin [Office of Groundwater and Soil Remediation, U.S. Department of Energy, Washington, DC 20585 (United States); Wellman, Dawn [Pacific Northwest National Laboratory, Richland, Washington 99352 (United States); Deeb, Rula; Hawley, Elisabeth [ARCADIS U.S., Inc., Emeryville, CA 94608 (United States)

    2012-07-01

    The United States (U.S.) Department of Energy (DOE) manages the largest groundwater and soil cleanup effort in the world. DOE's Office of Environmental Management (EM) has made significant progress in its restoration efforts at sites such as Fernald and Rocky Flats. However, remaining sites, such as Savannah River Site, Oak Ridge Site, Hanford Site, Los Alamos, Paducah Gaseous Diffusion Plant, Portsmouth Gaseous Diffusion Plant, and West Valley Demonstration Project possess the most complex challenges ever encountered by the technical community and represent a challenge that will face DOE for the next decade. Closure of the remaining 18 sites in the DOE EM Program requires remediation of 75 million cubic yards of contaminated soil and 1.7 trillion gallons of contaminated groundwater, deactivation and decommissioning (D and D) of over 3000 contaminated facilities and thousands of miles of contaminated piping, removal and disposition of millions of cubic yards of legacy materials, treatment of millions of gallons of high level tank waste and disposition of hundreds of contaminated tanks. The financial obligation required to remediate this volume of contaminated environment is estimated to cost more than 7% of the to-go life-cycle cost. Critical in meeting this goal within the current life-cycle cost projections is defining technically achievable end states that formally acknowledge that remedial goals will not be achieved for a long time and that residual contamination will be managed in the interim in ways that are protective of human health and environment. Formally acknowledging the long timeframe needed for remediation can be a basis for establishing common expectations for remedy performance, thereby minimizing the risk of re-evaluating the selected remedy at a later time. Once the expectations for long-term management are in place, remedial efforts can be directed towards near-term objectives (e.g., reducing the risk of exposure to residual contamination

  1. Economic evaluation of closure cap barrier materials study

    Energy Technology Data Exchange (ETDEWEB)

    Serrato, M.G.; Bhutani, J.S.; Mead, S.M.

    1993-09-01

    Volume II of the Economic Evaluation of the Closure Cap Barrier Materials, Revision I contains detailed cost estimates for closure cap barrier materials. The cost estimates incorporate the life cycle costs for a generic hazardous waste seepage basin closure cap under the RCRA Post Closure Period of thirty years. The economic evaluation assessed six barrier material categories. Each of these categories consists of several composite cover system configurations, which were used to develop individual cost estimates. The information contained in this report is not intended to be used as a cost estimating manual. This information provides the decision makers with the ability to screen barrier materials, cover system configurations, and identify cost-effective materials for further consideration.

  2. Economic evaluation of closure cap barrier materials study

    International Nuclear Information System (INIS)

    Serrato, M.G.; Bhutani, J.S.; Mead, S.M.

    1993-09-01

    Volume II of the Economic Evaluation of the Closure Cap Barrier Materials, Revision I contains detailed cost estimates for closure cap barrier materials. The cost estimates incorporate the life cycle costs for a generic hazardous waste seepage basin closure cap under the RCRA Post Closure Period of thirty years. The economic evaluation assessed six barrier material categories. Each of these categories consists of several composite cover system configurations, which were used to develop individual cost estimates. The information contained in this report is not intended to be used as a cost estimating manual. This information provides the decision makers with the ability to screen barrier materials, cover system configurations, and identify cost-effective materials for further consideration

  3. Key financial ratios can foretell hospital closures.

    Science.gov (United States)

    Lynn, M L; Wertheim, P

    1993-11-01

    An analysis of various financial ratios sampled from open and closed hospitals shows that certain leverage, liquidity, capital efficiency, and resource availability ratios can predict hospital closure up to two years in advance of the closure with an accuracy of nearly 75 percent.

  4. Streamlined Approach for Environmental Restoration Work Plan for Corrective Action Unit 461: Joint Test Assembly Sites and Corrective Action Unit 495: Unconfirmed Joint Test Assembly Sites Tonopah Test Range, Nevada

    Energy Technology Data Exchange (ETDEWEB)

    Jeff Smith

    1998-08-01

    This Streamlined Approach for Environmental Restoration plan addresses the action necessary for the clean closure of Corrective Action Unit 461 (Test Area Joint Test Assembly Sites) and Corrective Action Unit 495 (Unconfirmed Joint Test Assembly Sites). The Corrective Action Units are located at the Tonopah Test Range in south central Nevada. Closure for these sites will be completed by excavating and evaluating the condition of each artillery round (if found); detonating the rounds (if necessary); excavating the impacted soil and debris; collecting verification samples; backfilling the excavations; disposing of the impacted soil and debris at an approved low-level waste repository at the Nevada Test Site

  5. Hospital closure: Phoenix, Hydra or Titanic?

    Science.gov (United States)

    Dunne, T; Davis, S

    1996-01-01

    Very little has been published about the effects of hospital closure in terms of the service, financial or management issues of the process. Attempts through a case-study format to redress the balance and as such represents the reflections of practitioners who have recently undergone the experience of hospital closure and the often neglected issues arising both during and after the process.

  6. Harmonic manifolds with minimal horospheres are flat

    Indian Academy of Sciences (India)

    Abstract. In this note we reprove the known theorem: Harmonic manifolds with minimal horospheres are flat. It turns out that our proof is simpler and more direct than the original one. We also reprove the theorem: Ricci flat harmonic manifolds are flat, which is generally affirmed by appealing to Cheeger–Gromov splitting ...

  7. Harmonic Manifolds with Minimal Horospheres are Flat

    Indian Academy of Sciences (India)

    In this note we reprove the known theorem: Harmonic manifolds with minimal horospheres are flat. It turns out that our proof is simpler and more direct than the original one. We also reprove the theorem: Ricci flat harmonic manifolds are flat, which is generally affirmed by appealing to Cheeger–Gromov splitting theorem.

  8. Occupational closure in nursing work reconsidered

    DEFF Research Database (Denmark)

    Traynor, Michael; Nissen, Nina; Lincoln, Carol

    2015-01-01

    In healthcare, occupational groups have adopted tactics to maintain autonomy and control over their areas of work. Witz described a credentialist approach to occupational closure adopted by nursing in the United Kingdom during the 19th and early 20th centuries. However, the recent advancement...... boundaries and a usurpatory stance towards these boundaries. Participants had usually been handpicked by managers and some were ambitious and confident in their abilities. Many aspired to train to be nurses claiming that they will gain recognition that they do not currently get but which they deserve....... Their scope of practice is based upon their managers' or supervisors' perception of their individual aptitude rather than on a credentialist claim. They 'usurp' nurses claim to be the healthcare worker with privileged access to patients, saying they have taken over what nursing has considered its core work...

  9. Simulating school closure policies for cost effective pandemic decision making

    Directory of Open Access Journals (Sweden)

    Araz Ozgur M

    2012-06-01

    Full Text Available Abstract Background Around the globe, school closures were used sporadically to mitigate the 2009 H1N1 influenza pandemic. However, such closures can detrimentally impact economic and social life. Methods Here, we couple a decision analytic approach with a mathematical model of influenza transmission to estimate the impact of school closures in terms of epidemiological and cost effectiveness. Our method assumes that the transmissibility and the severity of the disease are uncertain, and evaluates several closure and reopening strategies that cover a range of thresholds in school-aged prevalence (SAP and closure durations. Results Assuming a willingness to pay per quality adjusted life-year (QALY threshold equal to the US per capita GDP ($46,000, we found that the cost effectiveness of these strategies is highly dependent on the severity and on a willingness to pay per QALY. For severe pandemics, the preferred strategy couples the earliest closure trigger (0.5% SAP with the longest duration closure (24 weeks considered. For milder pandemics, the preferred strategies also involve the earliest closure trigger, but are shorter duration (12 weeks for low transmission rates and variable length for high transmission rates. Conclusions These findings highlight the importance of obtaining early estimates of pandemic severity and provide guidance to public health decision-makers for effectively tailoring school closures strategies in response to a newly emergent influenza pandemic.

  10. Standard test method for measurement of roll wave optical distortion in heat-treated flat glass

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    2008-01-01

    1.1 This test method is applicable to the determination of the peak-to-valley depth and peak-to-peak distances of the out-of-plane deformation referred to as roll wave which occurs in flat, heat-treated architectural glass substrates processed in a heat processing continuous or oscillating conveyance oven. 1.2 The values stated in inch-pound units are to be regarded as standard. The values given in parentheses are mathematical conversions to SI units that are provided for information only and are not considered standard. 1.3 This test method does not address other flatness issues like edge kink, ream, pocket distortion, bow, or other distortions outside of roll wave as defined in this test method. 1.4 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety and health practices and determine the applicability of regulatory limitations prior to use.

  11. Potential socio-economic consequences of mine closure

    Directory of Open Access Journals (Sweden)

    Marietjie Ackermann

    2018-01-01

    Full Text Available Background: Mine closures generally reveal negligence on the part of mining houses, not only in terms of the environment, but also the surrounding mining communities. Aim: This article reflects on the findings of research into the socio-economic consequences of mine closure. The research specifically explored how mineworkers’ dependency on their employment at a mine affects their ability to sustain their livelihood. Setting: The research was conducted at the Orkney Mine and the Grootvlei Mine (Springs. Methods: The research was conducted within a naturalistic domain, guided by a relativist orientation, a constructivist ontology and an interpretivist epistemology. Data were collected by means of document analysis, semi-structured interviews, focus group discussion and unstructured observation. Results: From the research findings, it is evident that mine closures, in general, have a devastating effect on the surrounding mining communities as well as on the employees. Mine closures in the case studies gradually depleted the mining communities’ livelihood assets and resulted in the collapse of their coping strategies and livelihood outcomes. It generally affected the communities’ nutrition, health, education, food security, water, shelter, levels of community participation and personal safety. Conclusion: If not managed efficiently and effectively, mine closures may pose significant challenges to the mining industry, government, the environment, national and local economic prosperity and communities in the peripheral areas of mines. This truly amplifies that mine closure, whether temporary or permanent, is an issue that needs to be addressed with responsibility towards all stakeholders, including the mining community and the labour force.

  12. Top closure for control rod drive for nuclear reactor

    International Nuclear Information System (INIS)

    Raas, J.H.; Schwartz, J.I.

    1978-01-01

    A removable top closure and venting assembly for the tubular housing of a control rod drive includes a mounting ring threadably inserted in the upper end of the housing, a fluid-sealing closure member beneath the mounting ring and which is mounted in and coupled to the mounting ring by means of a ball and socket joint, a gas vent defined by interconnecting passages extending through the closure and through the ball and socket joint, and a vent valve accessible from the top of the closure assembly. 3 claims, 2 figures

  13. Transcatheter closure of ventricular septal defect with Occlutech Duct Occluder.

    Science.gov (United States)

    Atik-Ugan, Sezen; Saltik, Irfan Levent

    2018-04-01

    Patent ductus arteriosus occluders are used for transcatheter closure of ventricular septal defects, as well as for closure of patent ductus arteriosus. The Occlutech Duct Occluder is a newly introduced device for transcatheter closure of patent ductus arteriosus. Here, we present a case in which the Occlutech Duct Occluder was successfully used on a patient for the closure of a perimembraneous ventricular septal defect.

  14. Geochemical evidence for waning magmatism and polycyclic volcanism at Crater Flat, Nevada

    International Nuclear Information System (INIS)

    Perry, F.V.; Crowe, B.M.

    1992-01-01

    This paper reports that petrologic and geochemical studies of basaltic rocks in the Yucca Mountain region are currently focused on understanding the evolution of volcanism in the Crater Flat volcanic field and the mechanisms of polycyclic volcanic field and the mechanisms of polycyclic volcanism at the Lathrop Wells volcanic center, the youngest center in the Crater Flat volcanic field. Geochemical and petrologic data indicate that the magma chambers which supplied the volcanic centers at Crater Flat became situated at greater crustal depths as the field evolved. Deep magma chambers may be related to a waning magma flux that was unable to sustain upper crustal magma conduits and chambers. Geochemical data from the Lathrop Wells volcanic center indicate that eruptive units identified from field and geomorphic relationships are geochemically distinct. The geochemical variations cannot be explained by fractional crystallization of a single magma batch, indicating that several magma batches were involved in the formation of the Lathrop Wells center. Considering the low magma flux in the Yucca Mountain region in the Quaternary, the probability of several magma batches erupting essentially simultaneously at Lathrop Wells is considered remote

  15. Seven-year follow-up of percutaneous closure of patent foramen ovale.

    Science.gov (United States)

    Mirzada, Naqibullah; Ladenvall, Per; Hansson, Per-Olof; Johansson, Magnus Carl; Furenäs, Eva; Eriksson, Peter; Dellborg, Mikael

    2013-12-01

    Observational studies favor percutaneous closure of patent foramen ovale (PFO) over medical treatment to reduce recurrent stroke while randomized trials fail to demonstrate significant superiority of percutaneous PFO closure. Few long-term studies are available post PFO closure. This study reports long-term clinical outcomes after percutaneous PFO closure. Between 1997 and 2006, 86 consecutive eligible patients with cerebrovascular events, presumably related to PFO, underwent percutaneous PFO closure. All 86 patients were invited to a long-term follow-up, which was carried out during 2011 and 2012. Percutaneous PFO closure was successfully performed in 85 of 86 patients. The follow-up rate was 100%. No cardiovascular or cerebrovascular deaths occurred. Two patients (both women) died from lung cancer during follow-up. Follow-up visits were conducted for 64 patients and the remaining 20 patients were followed up by phone. The mean follow-up time was 7.3 years (5 to 12.4 years). Mean age at PFO closure was 49 years. One patient had a minor stroke one month after PFO closure and a transient ischemic attack (TIA) two years afterwards. One other patient suffered from a TIA six years after closure. No long-term device-related complications were observed. Percutaneous PFO closure was associated with very low risk of recurrent stroke and is suitable in most patients. We observed no mortality and no long-term device-related complications related to PFO closure, indicating that percutaneous PFO closure is a safe and efficient treatment even in the long term.

  16. Tracking brachytherapy sources using emission imaging with one flat panel detector

    International Nuclear Information System (INIS)

    Song Haijun; Bowsher, James; Das, Shiva; Yin Fangfang

    2009-01-01

    This work proposes to use the radiation from brachytherapy sources to track their dwell positions in three-dimensional (3D) space. The prototype device uses a single flat panel detector and a BB tray. The BBs are arranged in a defined pattern. The shadow of the BBs on the flat panel is analyzed to derive the 3D coordinates of the illumination source, i.e., the dwell position of the brachytherapy source. A kilovoltage x-ray source located 3.3 m away was used to align the center BB with the center pixel on the flat panel detector. For a test plan of 11 dwell positions, with an Ir-192 high dose rate unit, one projection was taken for each dwell point, and locations of the BB shadows were manually identified on the projection images. The 3D coordinates for the 11 dwell positions were reconstructed based on two BBs. The distances between dwell points were compared with the expected values. The average difference was 0.07 cm with a standard deviation of 0.15 cm. With automated BB shadow recognition in the future, this technique possesses the potential of tracking the 3D trajectory and the dwell times of a brachytherapy source in real time, enabling real time source position verification.

  17. Permanent Closure of the TAN-664 Underground Storage Tank

    Energy Technology Data Exchange (ETDEWEB)

    Bradley K. Griffith

    2011-12-01

    This closure package documents the site assessment and permanent closure of the TAN-664 gasoline underground storage tank in accordance with the regulatory requirements established in 40 CFR 280.71, 'Technical Standards and Corrective Action Requirements for Owners and Operators of Underground Storage Tanks: Out-of-Service UST Systems and Closure.'

  18. Social and macro economic impact of closure

    International Nuclear Information System (INIS)

    Medeliene, D.

    1999-01-01

    The social consequences of closure of Ignalina NPP will largely depend on the actions the Government takes. If it puts in place the conditions which enable the International Financial Institutions to assist Lithuania, both in providing loans and grants for decommissioning and (in the case of the EU) providing Structural Adjustment Funds for the regional economic development of the Visaginas area, then solutions to the problems of closure can be found. But if the Government delays putting into place the necessary conditions, then Lithuania will be left to solve the problems of - inter alia necessary - closure of Ignalina NPP on its own. (author)

  19. Angle closure glaucoma in congenital ectropion uvea

    Directory of Open Access Journals (Sweden)

    Grace M. Wang

    2018-06-01

    Full Text Available Purpose: Congenital ectropion uvea is a rare anomaly, which is associated with open, but dysplastic iridocorneal angles that cause childhood glaucoma. Herein, we present 3 cases of angle-closure glaucoma in children with congenital ectropion uvea. Observations: Three children were initially diagnosed with unilateral glaucoma secondary to congenital ectropion uvea at 7, 8 and 13 years of age. The three cases showed 360° of ectropion uvea and iris stromal atrophy in the affected eye. In one case, we have photographic documentation of progression to complete angle closure, which necessitated placement of a glaucoma drainage device 3 years after combined trabeculotomy and trabeculectomy. The 2 other cases, which presented as complete angle closure, also underwent glaucoma drainage device implantation. All three cases had early glaucoma drainage device encapsulation (within 4 months and required additional surgery (cycloablation or trabeculectomy. Conclusions and importance: Congenital ectropion uvea can be associated with angle-closure glaucoma, and placement of glaucoma drainage devices in all 3 of our cases showed early failure due to plate encapsulation. Glaucoma in congenital ectropion uvea requires attention to angle configuration and often requires multiple surgeries to obtain intraocular pressure control. Keywords: Congenital ectropion uvea, Juvenile glaucoma, Angle-closure glaucoma, Glaucoma drainage device

  20. The 4843 Alkali Metal Storage Facility Closure Plan

    International Nuclear Information System (INIS)

    1991-06-01

    The 4843 AMSF has been used primarily to provide a centralized building to receive and store dangerous and mixed alkali metal waste, including sodium and lithium, which has been generated at the Fast Flux Test Facility and at various other Hanford Site operations that used alkali metals. Most of the dangerous and mixed alkali metal waste received consists of retired equipment from liquid sodium processes. The unit continues to store material. In general, only solid alkali metal waste that is water reactive is stored at the 4843 AMSF. The 4843 AMSF will be closed in a manner consistent with Ecology guidelines and regulations (WAC 173-303-610). The general closure procedure is detailed as follows

  1. Online Work Force Analyzes Social Media to Identify Consequences of an Unplanned School Closure - Using Technology to Prepare for the Next Pandemic.

    Science.gov (United States)

    Rainey, Jeanette J; Kenney, Jasmine; Wilburn, Ben; Putman, Ami; Zheteyeva, Yenlik; O'Sullivan, Megan

    During an influenza pandemic, the United States Centers for Disease Control and Prevention (CDC) may recommend school closures. These closures could have unintended consequences for students and their families. Publicly available social media could be analyzed to identify the consequences of an unplanned school closure. As a proxy for an unplanned, pandemic-related school closure, we used the district-wide school closure due to the September 10-18, 2012 teachers' strike in Chicago, Illinois. We captured social media posts about the school closure using the Radian6 social media-monitoring platform. An online workforce from Amazon Mechanical Turk categorized each post into one of two groups. The first group included relevant posts that described the impact of the closure on students and their families. The second group included irrelevant posts that described the political aspects of the strike or topics unrelated to the school closure. All relevant posts were further categorized as expressing a positive, negative, or neutral sentiment. We analyzed patterns of relevant posts and sentiment over time and compared our findings to household surveys conducted after other unplanned school closures. We captured 4,546 social media posts about the district-wide school closure using our search criteria. Of these, 930 (20%) were categorized as relevant by the online workforce. Of the relevant posts, 619 (67%) expressed a negative sentiment, 51 (5%) expressed a positive sentiment, and 260 (28%) were neutral. The number of relevant posts, and especially those with a negative sentiment, peaked on day 1 of the strike. Negative sentiment expressed concerns about childcare, missed school lunches, and the lack of class time for students. This was consistent with findings from previously conducted household surveys. Social media are publicly available and can readily provide information on the impact of an unplanned school closure on students and their families. Using social media to

  2. Internal (Annular) and Compressible External (Flat Plate) Turbulent Flow Heat Transfer Correlations.

    Energy Technology Data Exchange (ETDEWEB)

    Dechant, Lawrence [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Smith, Justin [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2016-01-01

    Here we provide a discussion regarding the applicability of a family of traditional heat transfer correlation based models for several (unit level) heat transfer problems associated with flight heat transfer estimates and internal flow heat transfer associated with an experimental simulation design (Dobranich 2014). Variability between semi-empirical free-flight models suggests relative differences for heat transfer coefficients on the order of 10%, while the internal annular flow behavior is larger with differences on the order of 20%. We emphasize that these expressions are strictly valid only for the geometries they have been derived for e.g. the fully developed annular flow or simple external flow problems. Though, the application of flat plate skin friction estimate to cylindrical bodies is a traditional procedure to estimate skin friction and heat transfer, an over-prediction bias is often observed using these approximations for missile type bodies. As a correction for this over-estimate trend, we discuss a simple scaling reduction factor for flat plate turbulent skin friction and heat transfer solutions (correlations) applied to blunt bodies of revolution at zero angle of attack. The method estimates the ratio between axisymmetric and 2-d stagnation point heat transfer skin friction and Stanton number solution expressions for sub-turbulent Reynolds numbers %3C1x10 4 . This factor is assumed to also directly influence the flat plate results applied to the cylindrical portion of the flow and the flat plate correlations are modified by

  3. Post-Closure Inspection Report for the Tonopah Test Range, Nevada, For Calendar Year 2011

    International Nuclear Information System (INIS)

    2012-01-01

    This report provides the results of the annual post-closure inspections conducted at the closed Corrective Action Units (CAUs) located on the Tonopah Test Range (TTR), Nevada. This report covers calendar year 2011 and includes inspection and repair activities completed at the following CAUs: (1) CAU 400: Bomblet Pit and Five Points Landfill (TTR); (2) CAU 407: Roller Coaster RadSafe Area (TTR); (3) CAU 424: Area 3 Landfill Complexes (TTR); (4) CAU 453: Area 9 UXO Landfill (TTR); and (5) CAU 487: Thunderwell Site (TTR) Inspections were conducted according to the post-closure plans in the approved Closure Reports. The post-closure inspection plan for each CAU is included in Appendix B. The inspection checklists are included in Appendix C, field notes are included in Appendix D, and photographs taken during inspections are included in Appendix E. The annual post-closure inspections were conducted May 3 and 4, 2011. Maintenance was performed at CAU 424, CAU 453, and CAU 487. At CAU 424, two surface grade monuments at Landfill Cell A3-3 could not be located during the inspection. The two monuments were located and marked with lava rock on July 13, 2011. At CAU 453, there was evidence of animal burrowing. Animal burrows were backfilled on July 13, 2011. At CAU 487, one use restriction warning sign was missing, and wording was faded on the remaining signs. A large animal burrow was also present. The signs were replaced, and the animal burrow was backfilled on July 12, 2011. As a best management practice, the use restriction warning signs at CAU 407 were replaced with standard Federal Facility Agreement and Consent Order signs on July 13, 2011. Vegetation monitoring was performed at the CAU 400 Five Points Landfill and CAU 407 in June 2011, and the vegetation monitoring report is included in Appendix F.

  4. Post-Closure Inspection Report for the Tonopah Test Range, Nevada, For Calendar Year 2011

    Energy Technology Data Exchange (ETDEWEB)

    NSTec Environmental Restoration

    2012-02-21

    This report provides the results of the annual post-closure inspections conducted at the closed Corrective Action Units (CAUs) located on the Tonopah Test Range (TTR), Nevada. This report covers calendar year 2011 and includes inspection and repair activities completed at the following CAUs: (1) CAU 400: Bomblet Pit and Five Points Landfill (TTR); (2) CAU 407: Roller Coaster RadSafe Area (TTR); (3) CAU 424: Area 3 Landfill Complexes (TTR); (4) CAU 453: Area 9 UXO Landfill (TTR); and (5) CAU 487: Thunderwell Site (TTR) Inspections were conducted according to the post-closure plans in the approved Closure Reports. The post-closure inspection plan for each CAU is included in Appendix B. The inspection checklists are included in Appendix C, field notes are included in Appendix D, and photographs taken during inspections are included in Appendix E. The annual post-closure inspections were conducted May 3 and 4, 2011. Maintenance was performed at CAU 424, CAU 453, and CAU 487. At CAU 424, two surface grade monuments at Landfill Cell A3-3 could not be located during the inspection. The two monuments were located and marked with lava rock on July 13, 2011. At CAU 453, there was evidence of animal burrowing. Animal burrows were backfilled on July 13, 2011. At CAU 487, one use restriction warning sign was missing, and wording was faded on the remaining signs. A large animal burrow was also present. The signs were replaced, and the animal burrow was backfilled on July 12, 2011. As a best management practice, the use restriction warning signs at CAU 407 were replaced with standard Federal Facility Agreement and Consent Order signs on July 13, 2011. Vegetation monitoring was performed at the CAU 400 Five Points Landfill and CAU 407 in June 2011, and the vegetation monitoring report is included in Appendix F.

  5. Subcostal closure technique for prevention of postthoracotomy pain syndrome.

    Science.gov (United States)

    Hong, Kipyo; Bae, Mikyung; Han, Sora

    2016-09-01

    The purpose of this study was to evaluate the efficacy of our subcostal closure technique in prevention of postthoracotomy pain syndrome. From July 2012 to March 2015, 29 patients in whom a lobectomy was indicated underwent a thoracotomy. The thoracotomy wounds were closed using a subcostal closure technique (subcostal closure group) and outcomes were compared with 31 patients who underwent video-assisted thoracoscopic surgery (thoracoscopy group). The duration of oral opioid consumption was evaluated from medical records, and postoperative pain was evaluated by telephone interview conducted by a trained nurse practitioner who was unaware of the patient's group. Pain scores were higher in the thoracoscopy group compared to the subcostal closure group, reaching statistical significance (Numeric Rating Scale 0.55 ± 0.948 in the subcostal closure group vs. 1.84 ± 1.614 in the thoracoscopy group; p Pain Scale 0.24 ± 0.435 in the subcostal closure group vs. 0.81 ± 0.703 in the thoracoscopy group; p pain syndrome. © The Author(s) 2016.

  6. Comparing over-the-scope clip versus endoloop and clips (KING closure) for access site closure: a randomized experimental study

    Czech Academy of Sciences Publication Activity Database

    Martínek, J.; Ryska, O.; Tučková, I.; Filípková, T.; Doležel, R.; Juhás, Štefan; Motlík, Jan; Zavoral, M.; Ryska, M.

    2013-01-01

    Roč. 27, č. 4 (2013), s. 1203-1210 ISSN 0930-2794 R&D Projects: GA MZd NS9994 Institutional research plan: CEZ:AV0Z50450515 Keywords : NOTES * gastrotomy closure * rectotomy closure Subject RIV: FJ - Surgery incl. Transplants Impact factor: 3.313, year: 2013

  7. Transcatheter closure of patent foramen ovale for secondary prevention of ischemic stroke: Quantitative synthesis of pooled randomized trial data.

    Science.gov (United States)

    Hakeem, Abdul; Cilingiroglu, Mehmet; Katramados, Angelos; Boudoulas, Konstantinos Dean; Iliescu, Cezar; Gundogdu, Betul; Marmagkiolis, Konstantinos

    2018-01-14

    To evaluate the safety and efficacy of percutaneous device closure of patent foramen ovale (PFO) for secondary prevention of ischemic stroke BACKGROUND: Stroke remains the leading cause of serious long-term disability in the United States. The effectiveness of a percutaneous PFO closure in the prevention of recurrent cryptogenic strokes has not been established. We performed a literature search using PubMed, EMBASE, Cochrane Central Register of Controlled Trials, Google Scholar, and Internet-based sources from January 2003 to September 2017. Randomized controlled trails (RCTs) comparing percutaneous PFO closure to medical therapy alone. Five RCTs (CLOSURE I, PC Trial, REDUCE, RESPECT, and CLOSE) with 1,829 patients in the device group and 1,611 patients in the medical group met inclusion criteria. The cumulative incidence of recurrent stroke was 2.02% in the PFO closure arm and 4.4% in the medical therapy group (RR 0.42, 95%CI 0.20, 0.91; P = 0.03). There was no difference in the incidence of death [0.7% vs. 0.9%; RR 0.76 (95% CI 0.35, 1.64), P = 0.49] or adverse events during the follow-up period [24.6% vs. 23.7% (RR 1.03; 95% CI 0.91, 1.16), P = 0.65] between the closure and medical therapy groups. Incidence of atrial fibrillation was significantly higher in closure group compared to medical therapy [4% vs. 0.6% (RR 4.73; 95% CI 2.09, 10.70), P = 0.0002]. The comparative effectiveness of PFO closure (compared to medical therapy) was significantly more pronounced in those younger than 45 years, males, larger shunts and disc design platforms (P < 0.05). Based on the results of this analysis of randomized trial data, percutaneous PFO closure appears to be a safe and effective therapeutic option for the secondary prevention of ischemic stroke in patients with PFO and cryptogenic stroke. © 2018 Wiley Periodicals, Inc.

  8. Cyanoacrylate for Intraoral Wound Closure: A Possibility?

    Directory of Open Access Journals (Sweden)

    Parimala Sagar

    2015-01-01

    Full Text Available Wound closure is a part of any surgical procedure and the objective of laceration repair or incision closure is to approximate the edges of a wound so that natural healing process may occur. Over the years new biomaterials have been discovered as an alternate to conventional suture materials. Cyanoacrylate bioadhesives are one among them. They carry the advantages of rapid application, patient comfort, resistance to infection, hemostatic properties, and no suture removal anxiety. Hence this study was undertaken to study the effect of long chain cyanoacrylate as an adhesive for intraoral wound closure and also to explore its hemostatic and antibacterial effects. Isoamyl-2-cyanoacrylate (AMCRYLATE was used as the adhesive in the study. In conclusion isoamyl cyanoacrylate can be used for intraoral wound closure, as an alternative to sutures for gluing the mucoperiosteum to bone, for example, after impaction removal, periapical surgeries, and cleft repair. Its hemostatic and antibacterial activity has to be further evaluated.

  9. Project Management Approach to Transition of the Miamisburg Closure Project From Environmental Cleanup to Post-Closure Operations

    International Nuclear Information System (INIS)

    Carpenter, C.P.; Marks, M.L.; Smiley, S.L.; Gallaher, D.M.; Williams, K.D.

    2006-01-01

    The U.S. Department of Energy (DOE) used a project management approach to transition the Miamisburg Closure Project from cleanup by the Office of Environmental Management (EM) to post-closure operations by the Office of Legacy Management (LM). Two primary DOE orders were used to guide the site transition: DOE Order 430.1B, Real Property Asset Management, for assessment and disposition of real property assets and DOE Order 413.3, Program and Project Management for Acquisition of Capital Assets, for project closeout of environmental cleanup activities and project transition of post-closure activities. To effectively manage these multiple policy requirements, DOE chose to manage the Miamisburg Closure Project as a project under a cross-member transitional team using representatives from four principal organizations: DOE-LM, the LM contractor S.M. Stoller Corporation, DOE-EM, and the EM contractor CH2M Hill Mound Inc. The mission of LM is to manage the Department's post-transition responsibilities and long-term care of legacy liabilities and to ensure the future protection of human health and the environment for cleanup sites after the EM has completed its cleanup activities. (authors)

  10. Design, production and initial state of the closure

    International Nuclear Information System (INIS)

    2010-12-01

    The report is included in a set of Production reports, presenting how the KBS-3 repository is designed, produced and inspected. The production reports are included in the safety report for the KBS-3 repository and repository facility. The report provides input on the initial state of the closure and plugs in underground openings other than deposition tunnels for the assessment of the long-term safety, SR-Site. The initial state refers to the properties of the engineered barriers once they have been finally placed in the KBS-3 repository and will not be further handled within the repository facility. In addition, the report provides some input to the operational safety report, SR-Operation, on how the closure and plugs shall be handled and installed. The report presents the design premises and reference designs of the closure and plugs and verifies their conformity to the design premises. It also briefly deals with the production of the closure and plugs. Finally, the initial state of the closure and plugs and their conformity to the reference designs and design premises are presented

  11. Design, production and initial state of the closure

    Energy Technology Data Exchange (ETDEWEB)

    2010-12-15

    The report is included in a set of Production reports, presenting how the KBS-3 repository is designed, produced and inspected. The production reports are included in the safety report for the KBS-3 repository and repository facility. The report provides input on the initial state of the closure and plugs in underground openings other than deposition tunnels for the assessment of the long-term safety, SR-Site. The initial state refers to the properties of the engineered barriers once they have been finally placed in the KBS-3 repository and will not be further handled within the repository facility. In addition, the report provides some input to the operational safety report, SR-Operation, on how the closure and plugs shall be handled and installed. The report presents the design premises and reference designs of the closure and plugs and verifies their conformity to the design premises. It also briefly deals with the production of the closure and plugs. Finally, the initial state of the closure and plugs and their conformity to the reference designs and design premises are presented

  12. Transport processes in intertidal sand flats

    Science.gov (United States)

    Wu, Christy

    2010-05-01

    Methane rich sulfate depleted seeps are observed along the low water line of the intertidal sand flat Janssand in the Wadden Sea. It is unclear where in the flat the methane is formed, and how it is transported to the edge of the sand flat where the sulfidic water seeps out. Methane and sulfate distributions in pore water were determined along transects from low water line toward the central area of the sand flat. The resulting profiles showed a zone of methane-rich and sulfate-depleted pore water below 2 m sediment depth. Methane production and sulfate reduction are monitored over time for surface sediments collected from the upper flat and seeping area. Both activities were at 22 C twice as high as at 15 C. The rates in sediments from the central area were higher than in sediments from the methane seeps. Methanogenesis occurred in the presence of sulfate, and was not significantly accelerated when sulfate was depleted. The observations show a rapid anaerobic degradation of organic matter in the Janssand. The methane rich pore water is obviously transported with a unidirectional flow from the central area of the intertidal sand flat toward the low water line. This pore water flow is driven by the pressure head caused by elevation of the pore water relative to the sea surface at low tide (Billerbeck et al. 2006a). The high methane concentration at the low water line accumulates due to a continuous outflow of pore water at the seepage site that prevents penetration of electron acceptors such as oxygen and sulfate to reoxidize the reduced products of anaerobic degradation (de Beer et al. 2006). It is, however, not clear why no methane accumulates or sulfate is depleted in the upper 2 m of the flats.

  13. Corrective Action Decision Document/ Closure Report for Corrective Action Unit 556: Dry Wells and Surface Release Points, Nevada Test Site, Nevada with Errata Sheet, Revision 0

    Energy Technology Data Exchange (ETDEWEB)

    Grant Evenson

    2008-09-01

    This Corrective Action Decision Document (CADD)/Closure Report (CR) has been prepared for Corrective Action Unit 556, Dry Wells and Surface Release Points, located at the Nevada Test Site, Nevada, in accordance with the Federal Facility Agreement and Consent Order (FFACO, 1996; as amended February 2008). Corrective Action Unit (CAU) 556 is comprised of four corrective action sites (CASs): • 06-20-04, National Cementers Dry Well • 06-99-09, Birdwell Test Hole • 25-60-03, E-MAD Stormwater Discharge and Piping • 25-64-01, Vehicle Washdown and Drainage Pit The purpose of this CADD/CR is to provide justification and documentation supporting the recommendation for closure of CAU 556 with no further corrective action. To achieve this, corrective action investigation (CAI) activities began on February 7 and were completed on June 19, 2008, as set forth in the Corrective Action Investigation Plan for Corrective Action Unit 556: Dry Wells and Surface Release Points, Nevada Test Site, Nevada (NNSA/NSO, 2007). The purpose of the CAI was to fulfill the following data needs as defined during the data quality objective (DQO) process: • Determine whether contaminants of concern (COCs) are present. • If COCs are present, determine their nature and extent. • Provide sufficient information and data to complete appropriate corrective actions. The CAU 556 data were evaluated based on the data quality assessment process, which demonstrated the quality and acceptability of the data for use in fulfilling the DQO data needs. Analytes detected during the CAI were evaluated against appropriate final action levels (FALs) to identify the COCs for each CAS. The results of the CAI identified COCs at one of the four CASs in CAU 556 that required the completion of a corrective action. Assessment of the data generated from investigation activities conducted at CAU 556 revealed the following: • Corrective Action Sites 06-20-04, 06-99-09, and 25-64-01 do not contain contamination at

  14. Digital signal processing of data from borehole creep closure

    International Nuclear Information System (INIS)

    Chakrabarti, S.; Patrick, W.C.; Duplancic, N.

    1987-01-01

    Digital signal processing, a technique commonly used in the fields of electrical engineering and communication technology, has been successfully used to analyze creep closure data obtained from a 0.91 m diameter by 5.13 deep borehole in bedded salt. By filtering the ''noise'' component of the closure data from a test borehole, important data trends were made more evident and average creep closure rates were able to be calculated. This process provided accurate estimates of closure rates that are used in the design of lined boreholes in which heat-generating transuranic nuclear wastes are emplaced at the Waste Isolation Pilot Plant

  15. A closure test for time-specific capture-recapture data

    Science.gov (United States)

    Stanley, T.R.; Burnham, K.P.

    1999-01-01

    The assumption of demographic closure in the analysis of capture-recapture data under closed-population models is of fundamental importance. Yet, little progress has been made in the development of omnibus tests of the closure assumption. We present a closure test for time-specific data that, in principle, tests the null hypothesis of closed-population model M(t) against the open-population Jolly-Seber model as a specific alternative. This test is chi-square, and can be decomposed into informative components that can be interpreted to determine the nature of closure violations. The test is most sensitive to permanent emigration and least sensitive to temporary emigration, and is of intermediate sensitivity to permanent or temporary immigration. This test is a versatile tool for testing the assumption of demographic closure in the analysis of capture-recapture data.

  16. Reliability in maintenance and design of elastomer sealed closures

    International Nuclear Information System (INIS)

    Lake, W.H.

    1978-01-01

    The methods of reliability are considered for maintenance and design of elastomer sealed containment closures. Component reliability is used to establish a replacement schedule for system maintenance. Reliability data on elastomer seals is used to evaluate the common practice of annual replacement, and to calculate component reliability values for several typical shipment time periods. System reliability methods are used to examine the relative merits of typical closure designs. These include single component and redundant seal closure, with and without closure verification testing. The paper presents a general method of quantifying the merits of closure designs through the use of reliability analysis, which is a probabilistic technique. The reference list offers a general source of information in the field of reliability, and should offer the opportunity to extend the procedures discussed in this paper to other design safety applications

  17. Closure Report for Corrective Action Unit 230: Area 22 Sewage Lagoons and Corrective Action Unit 320: Area 22 Desert Rock Airport Strainer Box Nevada Test Site, Nevada; TOPICAL

    International Nuclear Information System (INIS)

    D. S. Tobiason

    2001-01-01

    This Closure Report (CR) describes the remediation activities performed and the results of verification sampling conducted at Corrective Action Unit (CAU) 230, Area 22 Sewage Lagoons and CAU 320, Area 22 Desert Rock Airport Strainer Box. The CAU is currently listed in Appendix III of the Federal Facility Agreement and Consent Order (FFACO, 1996). The CAU is located in Area 22 of the Nevada Test Site (NTS) (Figure 1) and consists of the following Corrective Action Sites (CASs): 22-03-01- Sewage Lagoon (CAU 230); and 22-99-01- Strainer Box (CAU 320). Included with CAS 22-99-01 is a buried Imhoff tank and a sludge bed. These CAUs will be collectively referred to in this plan as the Area 22 Sewage Lagoons site. Site characterization activities were done during September 1999. Characterization of the manholes associated with the septic system leading to the Imhoff tank was done during March 2000. The results of the characterization presented in the Corrective Action Decision Document (CADD) indicated that only the sludge bed (CAS 22-99-01) contained constituents of concern (COC) above action levels and required remediation (U.S. Department of Energy, Nevada Operations Office[DOE/NV], 2000a)

  18. RELAP-7 Closure Correlations

    Energy Technology Data Exchange (ETDEWEB)

    Zou, Ling [Idaho National Lab. (INL), Idaho Falls, ID (United States); Berry, R. A. [Idaho National Lab. (INL), Idaho Falls, ID (United States); Martineau, R. C. [Idaho National Lab. (INL), Idaho Falls, ID (United States); Andrs, D. [Idaho National Lab. (INL), Idaho Falls, ID (United States); Zhang, H. [Idaho National Lab. (INL), Idaho Falls, ID (United States); Hansel, J. E. [Idaho National Lab. (INL), Idaho Falls, ID (United States); Sharpe, J. P. [Idaho National Lab. (INL), Idaho Falls, ID (United States); Johns, Russell C. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2017-04-01

    The RELAP-7 code is the next generation nuclear reactor system safety analysis code being developed at the Idaho National Laboratory (INL). The code is based on the INL’s modern scientific software development framework, MOOSE (Multi-Physics Object Oriented Simulation Environment). The overall design goal of RELAP-7 is to take advantage of the previous thirty years of advancements in computer architecture, software design, numerical integration methods, and physical models. The end result will be a reactor systems analysis capability that retains and improves upon RELAP5’s and TRACE’s capabilities and extends their analysis capabilities for all reactor system simulation scenarios. The RELAP-7 code utilizes the well-posed 7-equation two-phase flow model for compressible two-phase flow. Closure models used in the TRACE code has been reviewed and selected to reflect the progress made during the past decades and provide a basis for the colure correlations implemented in the RELAP-7 code. This document provides a summary on the closure correlations that are currently implemented in the RELAP-7 code. The closure correlations include sub-grid models that describe interactions between the fluids and the flow channel, and interactions between the two phases.

  19. Closure Report for Corrective Action Unit 428: Area 3 Septic Waste Systems 1 and 5 Tonopah Test Range, Nevada; TOPICAL

    International Nuclear Information System (INIS)

    D. H. Cox

    2001-01-01

    The following site closure activities were performed at the CAU 428 site located at the TTR and are documented in this report: Preplanning and site preparation; Excavating and removing impacted soil; Removing septic tank contents; Closing septic tanks by filling them with clean soil; Collecting verification samples to verify that COCs have been removed to approved levels; Backfilling the excavations to surface grade with clean soil; Disposal of excavated materials following applicable federal, state, and DOE/NV regulations in accordance with Section 2.3 of the CAP (DOE/NV, 2000); and Decontamination of equipment as necessary. Closure was accomplished following the approved CAP (DOE/NV, 2000). Verification sample data demonstrate that all COCs were removed to the remediation standards. Therefore, the site is clean-closed

  20. The effectiveness of eye-closure in repeated interviews

    OpenAIRE

    Vredeveldt, A.; Baddeley, A.D.; Hitch, G.J.

    2014-01-01

    Purpose Closing the eyes during recall can help witnesses remember more about a witnessed event. This study examined the effectiveness of eye-closure in a repeated recall paradigm with immediate free recall followed 1 week later by both free and cued recall. We examined whether eye-closure was more or less effective during the second free-recall attempt compared with the first, whether eye-closure during the first recall attempt had an impact on subsequent free- and cued-recall performance, a...