WorldWideScience

Sample records for flat-panel detector volume

  1. Flat-panel detectors in x-ray diagnosis

    International Nuclear Information System (INIS)

    Spahn, M.; Heer, V.; Freytag, R.

    2003-01-01

    For all application segments X-ray systems with flat-panel detectors increasingly enter the market. In digital radiography, mammography and cardiologic angiography flat-panel detectors are already well established while they are made ready for market introduction in general angiography and fluoroscopy. Two flat-panel detector technologies are available. One technology is based on an indirect conversion process of X-rays while the other one uses a direct conversion method.For radiography and dynamic applications the indirect method provides substantial advantages, while the direct method has some benefits for mammography. In radiography and mammography flat-panel detectors lead to clear improvements with respect to workflow, image quality and dose reduction potentials. These improvements are fostered by the immediate availability of the image, the large dynamic range and the high sensitivity to X-rays. New applications and the use of complex image processing algorithms have the potential to enlarge the present diagnostic range of applications.Up to now, image intensifiers are still the well-established technology for angiography and fluoroscopy. Nevertheless flat-panel detectors begin to enter this field, especially in cardiologic angiography.Characteristics of flat-panel detectors such as the availability of distortion-free images, the excellent contrast resolution, the large dynamic range, the high sensitivity to X-rays and the usability in magnetic fields provide the basis for improved and new diagnostic and interventional methods. (orig.) [de

  2. Digital radiography with large-area flat-panel detectors

    International Nuclear Information System (INIS)

    Kotter, E.; Langer, M.

    2002-01-01

    Large-area flat-panel detectors with active readout mechanisms have been on the market for the past 2 years. This article describes different detector technologies. An important distinction is made between detectors with direct and those with indirect conversion of X-rays into electrical charges. Detectors with indirect conversion are built with unstructured or structured scintillators, the latter resulting in less lateral diffusion of emitted light. Some important qualities of flat-panel detectors are discussed. The first phantom and clinical studies published report an image quality at least comparable to that of screen-film systems and a potential for dose reduction. The available studies are summarised in this article. (orig.)

  3. The digital flat-panel X-Ray detectors

    International Nuclear Information System (INIS)

    Risticj, S. Goran

    2013-01-01

    In a digital imaging system, the incident x-ray image must be sampled both in the spatial and intensity dimensions. In the spatial dimensions, samples are obtained as averages of the intensity over picture elements or pixels. In the intensity dimension, the signal is digitalized into one of a finite number of levels or bits. Two main types of digital flat-panel detectors are based on the direct conversion, which contains the photoconductor, and on indirect conversion, which contains phosphor. The basics of these detectors are given. Coupling traditional x-ray detection material such as photoconductors and phosphors with a large-area active-matrix readout structure forms the basis of flat panel x-ray images. Active matrix technology provides a new, highly efficient, real time method for electronically storing and measuring the product of the x-ray interaction stage whether the product is visible wavelength photons or electrical charges. The direct and indirect detectors, made as the active-matrix flat-panel detectors containing sensing/storage elements, switching elements (diodes or thin film transistors (TFTS)) and image processing module, are described. Strengths and limitations of stimulable phosphors are discussed. The main advantages and disadvantages of mentioned x-ray detectors are also analyzed. (Author)

  4. Present and future of flat panel detectors in the world

    International Nuclear Information System (INIS)

    Inamura, Kiyonari

    2002-01-01

    Present status of development of flat panel detectors and their clinical application in the world have been surveyed, and future trends are also explored especially in the field of material researches and methods of manufacturing. Also the importance of role of medical physicists on user side is described because characteristic physics measurement of a detector assembly is unavoidable and essential in quality assurance in clinical routine and acceptance test in hospitals. Even though physics measurements and clinical evaluations on flat panel detectors have shown remarkable progress and advances in these several years, future problems of cost down in manufacturing and quality assurance to prevent individual differences between detector assemblies must be resolved. Results of evaluation in mammography, chest radiography, fluoroscopy for cardiovascular examination, bone tumor examination and radiotherapy application indicate that flat panel detectors are future promising materials. Their systematic operation is contributing to heighten accuracy of image examinations and preciseness of radiation therapy. Encouragement to medical physicists relevant to flat panel detectors is also raised in this paper. (author)

  5. Reconstruction of Spectra Using X-ray Flat Panel Detector; Reconstruccion de Espectros de Rayos X Utilizando un Detector Flat Panel

    Energy Technology Data Exchange (ETDEWEB)

    Gallardo, S.; Querol, A.; Pozuelo, F.; Juste, B.; Rodenas, J.; Verdu, G.

    2013-07-01

    In this work, we used a flat panel detector with a wedge of PMMA for absorbed dose curve for given working conditions of X-ray tube The relationship between absorbed dose curve recorded by the flat panel and primary X-ray spectrum is defined by a response function that can be obtained using the Monte Carlo method, namely the MCNP5 code. However there are some problems that affect the applicability of this method such as: flat panel characteristics and the characteristics of the physical process (ill-conditioned problem). Both aspects are discussed in this paper.

  6. High-quality 3D correction of ring and radiant artifacts in flat panel detector-based cone beam volume CT imaging

    Science.gov (United States)

    Abu Anas, Emran Mohammad; Kim, Jae Gon; Lee, Soo Yeol; Kamrul Hasan, Md

    2011-10-01

    The use of an x-ray flat panel detector is increasingly becoming popular in 3D cone beam volume CT machines. Due to the deficient semiconductor array manufacturing process, the cone beam projection data are often corrupted by different types of abnormalities, which cause severe ring and radiant artifacts in a cone beam reconstruction image, and as a result, the diagnostic image quality is degraded. In this paper, a novel technique is presented for the correction of error in the 2D cone beam projections due to abnormalities often observed in 2D x-ray flat panel detectors. Template images are derived from the responses of the detector pixels using their statistical properties and then an effective non-causal derivative-based detection algorithm in 2D space is presented for the detection of defective and mis-calibrated detector elements separately. An image inpainting-based 3D correction scheme is proposed for the estimation of responses of defective detector elements, and the responses of the mis-calibrated detector elements are corrected using the normalization technique. For real-time implementation, a simplification of the proposed off-line method is also suggested. Finally, the proposed algorithms are tested using different real cone beam volume CT images and the experimental results demonstrate that the proposed methods can effectively remove ring and radiant artifacts from cone beam volume CT images compared to other reported techniques in the literature.

  7. High-quality 3D correction of ring and radiant artifacts in flat panel detector-based cone beam volume CT imaging

    International Nuclear Information System (INIS)

    Anas, Emran Mohammad Abu; Hasan, Md Kamrul; Kim, Jae Gon; Lee, Soo Yeol

    2011-01-01

    The use of an x-ray flat panel detector is increasingly becoming popular in 3D cone beam volume CT machines. Due to the deficient semiconductor array manufacturing process, the cone beam projection data are often corrupted by different types of abnormalities, which cause severe ring and radiant artifacts in a cone beam reconstruction image, and as a result, the diagnostic image quality is degraded. In this paper, a novel technique is presented for the correction of error in the 2D cone beam projections due to abnormalities often observed in 2D x-ray flat panel detectors. Template images are derived from the responses of the detector pixels using their statistical properties and then an effective non-causal derivative-based detection algorithm in 2D space is presented for the detection of defective and mis-calibrated detector elements separately. An image inpainting-based 3D correction scheme is proposed for the estimation of responses of defective detector elements, and the responses of the mis-calibrated detector elements are corrected using the normalization technique. For real-time implementation, a simplification of the proposed off-line method is also suggested. Finally, the proposed algorithms are tested using different real cone beam volume CT images and the experimental results demonstrate that the proposed methods can effectively remove ring and radiant artifacts from cone beam volume CT images compared to other reported techniques in the literature.

  8. Performance evaluation of flat panel detector in x-ray fluoroscopy

    International Nuclear Information System (INIS)

    Grewal, R.K.; Mclean, I.D.

    2004-01-01

    Full text: Flat panel detectors are currently replacing the conventional image intensifiers in R-F imaging. We evaluated the performance of a biplane cardiac imaging system (Siemens Axiom Artis dBC), the image acquisition was based on a 25 cm diagonal digital fiat panel detector. Performance characteristics included image quality, typical patient entrance dose and measurement of input to the surface of flat detector. The results were compared with conventional image intensifier systems (Siemens Hicor Unit and Toshiba DPF 2000 A Biplane Unit) used in cardiac imaging at Westmead. Image quality and dose measurements were performed following standard protocols using Westmead test object and 20 cm solid water as absorber in the beam. For measurement of input to the surface of flat detector, 2 mm copper was placed on the collimator. Radcal 3cc and 180 cc ion chambers were used for dose measurements. Image quality: Our measurements on flat panel system indicate that high contrast resolution and threshold contrast is not affected by changing field size. This is expected due to minimum loss of signal in the imaging chain of digital systems and the independence of detector pixel size with change in field of view. While low contrast resolution was found to be similar to conventional systems, high contrast resolution was significantly superior using flat detector system for large and intermediate field of view (25-28 1p/cm against 18-20). Typical patient dose as measured using flat detector system was similar to the conventional Toshiba pulsed fluoroscopy system( ∼ 3 - 8 mGy/min depending on the field size). This was 40-50 % lower than our old Siemens hicore unit. Input to the surface of flat detector was found to vary with field size as is the case with a conventional II system. As described elsewhere, although there is no necessity to increase exposure or video gain in a digital magnification, digital data interpolation process introduces noise. As a result system

  9. A semiempirical linear model of indirect, flat-panel x-ray detectors

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Shih-Ying; Yang Kai; Abbey, Craig K.; Boone, John M. [Department of Biomedical Engineering, University of California, Davis, California, One Shields Avenue, Davis, California 95616 (United States) and Department of Radiology, University of California, Davis, Medical Center, 4860 Y Street, Ambulatory Care Center Suite 0505, Sacramento, California 95817 (United States); Department of Radiology, University of California, Davis, Medical Center, 4860 Y Street, Ambulatory Care Center Suite 0505, Sacramento, California 95817 (United States); Department of Psychological and Brain Sciences, University of California, Santa Barbara, California 92106 (United States); Department of Biomedical Engineering, University of California, Davis, California, One Shields Avenue, Davis, California 95616 (United States) and Department of Radiology, University of California, Davis, Medical Center, 4860 Y Street, Ambulatory Care Center Suite 3100, Sacramento, California 95817 (United States)

    2012-04-15

    Purpose: It is important to understand signal and noise transfer in the indirect, flat-panel x-ray detector when developing and optimizing imaging systems. For optimization where simulating images is necessary, this study introduces a semiempirical model to simulate projection images with user-defined x-ray fluence interaction. Methods: The signal and noise transfer in the indirect, flat-panel x-ray detectors is characterized by statistics consistent with energy-integration of x-ray photons. For an incident x-ray spectrum, x-ray photons are attenuated and absorbed in the x-ray scintillator to produce light photons, which are coupled to photodiodes for signal readout. The signal mean and variance are linearly related to the energy-integrated x-ray spectrum by empirically determined factors. With the known first- and second-order statistics, images can be simulated by incorporating multipixel signal statistics and the modulation transfer function of the imaging system. To estimate the semiempirical input to this model, 500 projection images (using an indirect, flat-panel x-ray detector in the breast CT system) were acquired with 50-100 kilovolt (kV) x-ray spectra filtered with 0.1-mm tin (Sn), 0.2-mm copper (Cu), 1.5-mm aluminum (Al), or 0.05-mm silver (Ag). The signal mean and variance of each detector element and the noise power spectra (NPS) were calculated and incorporated into this model for accuracy. Additionally, the modulation transfer function of the detector system was physically measured and incorporated in the image simulation steps. For validation purposes, simulated and measured projection images of air scans were compared using 40 kV/0.1-mm Sn, 65 kV/0.2-mm Cu, 85 kV/1.5-mm Al, and 95 kV/0.05-mm Ag. Results: The linear relationship between the measured signal statistics and the energy-integrated x-ray spectrum was confirmed and incorporated into the model. The signal mean and variance factors were linearly related to kV for each filter material (r

  10. A semiempirical linear model of indirect, flat-panel x-ray detectors

    International Nuclear Information System (INIS)

    Huang, Shih-Ying; Yang Kai; Abbey, Craig K.; Boone, John M.

    2012-01-01

    Purpose: It is important to understand signal and noise transfer in the indirect, flat-panel x-ray detector when developing and optimizing imaging systems. For optimization where simulating images is necessary, this study introduces a semiempirical model to simulate projection images with user-defined x-ray fluence interaction. Methods: The signal and noise transfer in the indirect, flat-panel x-ray detectors is characterized by statistics consistent with energy-integration of x-ray photons. For an incident x-ray spectrum, x-ray photons are attenuated and absorbed in the x-ray scintillator to produce light photons, which are coupled to photodiodes for signal readout. The signal mean and variance are linearly related to the energy-integrated x-ray spectrum by empirically determined factors. With the known first- and second-order statistics, images can be simulated by incorporating multipixel signal statistics and the modulation transfer function of the imaging system. To estimate the semiempirical input to this model, 500 projection images (using an indirect, flat-panel x-ray detector in the breast CT system) were acquired with 50-100 kilovolt (kV) x-ray spectra filtered with 0.1-mm tin (Sn), 0.2-mm copper (Cu), 1.5-mm aluminum (Al), or 0.05-mm silver (Ag). The signal mean and variance of each detector element and the noise power spectra (NPS) were calculated and incorporated into this model for accuracy. Additionally, the modulation transfer function of the detector system was physically measured and incorporated in the image simulation steps. For validation purposes, simulated and measured projection images of air scans were compared using 40 kV/0.1-mm Sn, 65 kV/0.2-mm Cu, 85 kV/1.5-mm Al, and 95 kV/0.05-mm Ag. Results: The linear relationship between the measured signal statistics and the energy-integrated x-ray spectrum was confirmed and incorporated into the model. The signal mean and variance factors were linearly related to kV for each filter material (r 2 of

  11. A semiempirical linear model of indirect, flat-panel x-ray detectors.

    Science.gov (United States)

    Huang, Shih-Ying; Yang, Kai; Abbey, Craig K; Boone, John M

    2012-04-01

    It is important to understand signal and noise transfer in the indirect, flat-panel x-ray detector when developing and optimizing imaging systems. For optimization where simulating images is necessary, this study introduces a semiempirical model to simulate projection images with user-defined x-ray fluence interaction. The signal and noise transfer in the indirect, flat-panel x-ray detectors is characterized by statistics consistent with energy-integration of x-ray photons. For an incident x-ray spectrum, x-ray photons are attenuated and absorbed in the x-ray scintillator to produce light photons, which are coupled to photodiodes for signal readout. The signal mean and variance are linearly related to the energy-integrated x-ray spectrum by empirically determined factors. With the known first- and second-order statistics, images can be simulated by incorporating multipixel signal statistics and the modulation transfer function of the imaging system. To estimate the semiempirical input to this model, 500 projection images (using an indirect, flat-panel x-ray detector in the breast CT system) were acquired with 50-100 kilovolt (kV) x-ray spectra filtered with 0.1-mm tin (Sn), 0.2-mm copper (Cu), 1.5-mm aluminum (Al), or 0.05-mm silver (Ag). The signal mean and variance of each detector element and the noise power spectra (NPS) were calculated and incorporated into this model for accuracy. Additionally, the modulation transfer function of the detector system was physically measured and incorporated in the image simulation steps. For validation purposes, simulated and measured projection images of air scans were compared using 40 kV∕0.1-mm Sn, 65 kV∕0.2-mm Cu, 85 kV∕1.5-mm Al, and 95 kV∕0.05-mm Ag. The linear relationship between the measured signal statistics and the energy-integrated x-ray spectrum was confirmed and incorporated into the model. The signal mean and variance factors were linearly related to kV for each filter material (r(2) of signal mean to k

  12. Portable low-cost flat panel detectors for real-time digital radiography

    International Nuclear Information System (INIS)

    Iovea, Mihai; Neagu, Marian; Stefanescu, Bogdan; Mateiasi, Gabriela; Porosnicu, Ioana; Angheluta, Elena

    2015-01-01

    The X-ray inspection is one of the most common used non-destructive testing methods in industry applications, but for the portable X-ray digital solution are not so many accessible, low-cost and versatile detection devices. The efficiency of a non-destructive X-ray portable device is represented by the quality of digital images, by its low acquisition time combined with a high resolution, in condition of low noise and at an affordable cost. The paper presents two X-ray portable imaging systems developed by us, suitable also for aerospace NDT applications, which are also very versatile for being easily adapted for other fields that requires mobile solutions. The first device described in the paper represent a portable large-size (210 mm X 550 mm) and high-resolution (27/54 microns) flat panel detector based on linear translation of a X-Ray TDI detector, destined for various components/parts real-time transmission measurements. The second system it is also a flat panel detectors, with a size of 510 mm X 610 mm, with the detector size from 0.2 mm until 1.5 mm, which can operate by applying the dual-energy method, very useful for discriminating materials by evaluating their Atomic effective number. The high resolution and low-cost of this flat-panels widens their applicability by covering large requirements, from identifying unwanted materials within a structure until detection of very thin cracks in complex components.

  13. Portable low-cost flat panel detectors for real-time digital radiography

    Energy Technology Data Exchange (ETDEWEB)

    Iovea, Mihai; Neagu, Marian; Stefanescu, Bogdan; Mateiasi, Gabriela; Porosnicu, Ioana; Angheluta, Elena [Accent Pro 2000 S.R.L., Bucharest (Romania)

    2015-07-01

    The X-ray inspection is one of the most common used non-destructive testing methods in industry applications, but for the portable X-ray digital solution are not so many accessible, low-cost and versatile detection devices. The efficiency of a non-destructive X-ray portable device is represented by the quality of digital images, by its low acquisition time combined with a high resolution, in condition of low noise and at an affordable cost. The paper presents two X-ray portable imaging systems developed by us, suitable also for aerospace NDT applications, which are also very versatile for being easily adapted for other fields that requires mobile solutions. The first device described in the paper represent a portable large-size (210 mm X 550 mm) and high-resolution (27/54 microns) flat panel detector based on linear translation of a X-Ray TDI detector, destined for various components/parts real-time transmission measurements. The second system it is also a flat panel detectors, with a size of 510 mm X 610 mm, with the detector size from 0.2 mm until 1.5 mm, which can operate by applying the dual-energy method, very useful for discriminating materials by evaluating their Atomic effective number. The high resolution and low-cost of this flat-panels widens their applicability by covering large requirements, from identifying unwanted materials within a structure until detection of very thin cracks in complex components.

  14. Synchrotron applications of an amorphous silicon flat-panel detector

    International Nuclear Information System (INIS)

    Lee, J. H.; Can Aydiner, C.; Almer, J.; Bernier, J.; Chapman, K. W.; Chupas, P. J.; Haeffner, D.; Kump, K.; Lee, P. L.; Lienert, U.; Miceli, A.; Vera, G.; LANL; GE Healthcare

    2008-01-01

    A GE Revolution 41RT flat-panel detector (GE 41RT) from GE Healthcare (GE) has been in operation at the Advanced Photon Source for over two years. The detector has an active area of 41 cm x 41 cm with 200 (micro)m x 200 (micro)m pixel size. The nominal working photon energy is around 80 keV. The physical set-up and utility software of the detector system are discussed in this article. The linearity of the detector response was measured at 80.7 keV. The memory effect of the detector element, called lag, was also measured at different exposure times and gain settings. The modulation transfer function was measured in terms of the line-spread function using a 25 (micro)m x 1 cm tungsten slit. The background (dark) signal, the signal that the detector will carry without exposure to X-rays, was measured at three different gain settings and with exposure times of 1 ms to 15 s. The radial geometric flatness of the sensor panel was measured using the diffraction pattern from a CeO 2 powder standard. The large active area and fast data-capturing rate, i.e. 8 frames s -1 in radiography mode, 30 frames s -1 in fluoroscopy mode, make the GE 41RT one of a kind and very versatile in synchrotron diffraction. The loading behavior of a Cu/Nb multilayer material is used to demonstrate the use of the detector in a strain-stress experiment. Data from the measurement of various samples, amorphous SiO 2 in particular, are presented to show the detector effectiveness in pair distribution function measurements

  15. Tracking brachytherapy sources using emission imaging with one flat panel detector

    International Nuclear Information System (INIS)

    Song Haijun; Bowsher, James; Das, Shiva; Yin Fangfang

    2009-01-01

    This work proposes to use the radiation from brachytherapy sources to track their dwell positions in three-dimensional (3D) space. The prototype device uses a single flat panel detector and a BB tray. The BBs are arranged in a defined pattern. The shadow of the BBs on the flat panel is analyzed to derive the 3D coordinates of the illumination source, i.e., the dwell position of the brachytherapy source. A kilovoltage x-ray source located 3.3 m away was used to align the center BB with the center pixel on the flat panel detector. For a test plan of 11 dwell positions, with an Ir-192 high dose rate unit, one projection was taken for each dwell point, and locations of the BB shadows were manually identified on the projection images. The 3D coordinates for the 11 dwell positions were reconstructed based on two BBs. The distances between dwell points were compared with the expected values. The average difference was 0.07 cm with a standard deviation of 0.15 cm. With automated BB shadow recognition in the future, this technique possesses the potential of tracking the 3D trajectory and the dwell times of a brachytherapy source in real time, enabling real time source position verification.

  16. Clinical evaluation of digital angiographic system equipped with the Safire' flat-panel detector of a direct conversion type

    International Nuclear Information System (INIS)

    Miura, Yoshiaki; Miura, Yusuke; Goto, Keiichi

    2003-01-01

    This report presents a report on clinical evaluation of our newly developed flat-panel X-ray detector of a direct conversion type, designed to provide images of a resolution higher than, or at least equal to, that ensured by X-ray photographic films, in clinical digital X-ray cinematography. This new detector was named 'Safire' the acronym of 'Shimadzu advanced flat imaging receptor', emphasizing its high technological level, such as the capability to ensure high quality of images. The clinical evaluation of Shimadzu DIGITEX Premier digital angiography system, equipped with this new flat-panel X-ray detector of a direct conversion type, has been started in March, 2003, at the Kokura Memorial Hospital in Kyushu, Japan. (author)

  17. Radiation dose reduction using a CdZnTe-based computed tomography system: Comparison to flat-panel detectors

    Energy Technology Data Exchange (ETDEWEB)

    Le, Huy Q.; Ducote, Justin L.; Molloi, Sabee [Department of Radiological Sciences, University of California, Irvine, California 92697 (United States)

    2010-03-15

    Purpose: Although x-ray projection mammography has been very effective in early detection of breast cancer, its utility is reduced in the detection of small lesions that are occult or in dense breasts. One drawback is that the inherent superposition of parenchymal structures makes visualization of small lesions difficult. Breast computed tomography using flat-panel detectors has been developed to address this limitation by producing three-dimensional data while at the same time providing more comfort to the patients by eliminating breast compression. Flat panels are charge integrating detectors and therefore lack energy resolution capability. Recent advances in solid state semiconductor x-ray detector materials and associated electronics allow the investigation of x-ray imaging systems that use a photon counting and energy discriminating detector, which is the subject of this article. Methods: A small field-of-view computed tomography (CT) system that uses CdZnTe (CZT) photon counting detector was compared to one that uses a flat-panel detector for different imaging tasks in breast imaging. The benefits afforded by the CZT detector in the energy weighting modes were investigated. Two types of energy weighting methods were studied: Projection based and image based. Simulation and phantom studies were performed with a 2.5 cm polymethyl methacrylate (PMMA) cylinder filled with iodine and calcium contrast objects. Simulation was also performed on a 10 cm breast specimen. Results: The contrast-to-noise ratio improvements as compared to flat-panel detectors were 1.30 and 1.28 (projection based) and 1.35 and 1.25 (image based) for iodine over PMMA and hydroxylapatite over PMMA, respectively. Corresponding simulation values were 1.81 and 1.48 (projection based) and 1.85 and 1.48 (image based). Dose reductions using the CZT detector were 52.05% and 49.45% for iodine and hydroxyapatite imaging, respectively. Image-based weighting was also found to have the least beam

  18. Radiation dose reduction using a CdZnTe-based computed tomography system: Comparison to flat-panel detectors

    International Nuclear Information System (INIS)

    Le, Huy Q.; Ducote, Justin L.; Molloi, Sabee

    2010-01-01

    Purpose: Although x-ray projection mammography has been very effective in early detection of breast cancer, its utility is reduced in the detection of small lesions that are occult or in dense breasts. One drawback is that the inherent superposition of parenchymal structures makes visualization of small lesions difficult. Breast computed tomography using flat-panel detectors has been developed to address this limitation by producing three-dimensional data while at the same time providing more comfort to the patients by eliminating breast compression. Flat panels are charge integrating detectors and therefore lack energy resolution capability. Recent advances in solid state semiconductor x-ray detector materials and associated electronics allow the investigation of x-ray imaging systems that use a photon counting and energy discriminating detector, which is the subject of this article. Methods: A small field-of-view computed tomography (CT) system that uses CdZnTe (CZT) photon counting detector was compared to one that uses a flat-panel detector for different imaging tasks in breast imaging. The benefits afforded by the CZT detector in the energy weighting modes were investigated. Two types of energy weighting methods were studied: Projection based and image based. Simulation and phantom studies were performed with a 2.5 cm polymethyl methacrylate (PMMA) cylinder filled with iodine and calcium contrast objects. Simulation was also performed on a 10 cm breast specimen. Results: The contrast-to-noise ratio improvements as compared to flat-panel detectors were 1.30 and 1.28 (projection based) and 1.35 and 1.25 (image based) for iodine over PMMA and hydroxylapatite over PMMA, respectively. Corresponding simulation values were 1.81 and 1.48 (projection based) and 1.85 and 1.48 (image based). Dose reductions using the CZT detector were 52.05% and 49.45% for iodine and hydroxyapatite imaging, respectively. Image-based weighting was also found to have the least beam

  19. Resolution requirements for monitor viewing of digital flat-panel detector radiographs: a contrast detail analysis

    International Nuclear Information System (INIS)

    Peer, Siegfried; Giacomuzzi, Salvatore M.; Peer, Regina; Gassner, Eva; Steingruber, Iris; Jaschke, Werner

    2003-01-01

    With the introduction of digital flat-panel detector systems into clinical practice, the still unresolved question of resolution requirements for picture archiving communication system (PACS) workstation monitors has gained new momentum. This contrast detail analysis was thus performed to define the differences in observer performance in the detection of small low-contrast objects on clinical 1K and 2K monitor workstations. Images of the CDRAD 2.0 phantom were acquired at varying exposures on an indirect-type digital flat-panel detector. Three observers evaluated a total of 15 images each with respect to the threshold contrast for each detail size. The numbers of correctly identified objects were determined for all image subsets. No significant difference in the correct detection ratio was detected among the observers; however, the difference between the two types of workstations (1K vs 2K monitors) despite less than 3% was significant at a 95% confidence level. Slight but statistically significant differences exist in the detection of low-contrast nodular details visualized on 1K- and 2K-monitor workstations. Further work is needed to see if this result holds true also for comparison of clinical flat-panel detector images and may, for example, exert an influence on the diagnostic accuracy of chest X-ray readings. (orig.)

  20. Evaluation of a flat-panel detector system

    International Nuclear Information System (INIS)

    Sato, Masami; Eguchi, Yoichi; Yamada, Kinichi; Kaga, Yuji; Endo, Yutaka; Yamazaki, Tatsuya

    2001-01-01

    We evaluated the imaging performance of a flat-panel detector digital radiography system (CXDI-11 X-ray Digital Camera, Canon Inc.) and a computed radiography system (FCR9000C-HQ, Fuji Film). The characteristics of the two detectors and of the overall systems were compared. This included evaluation and comparison of the fundamental physical characteristics, including x-ray response curve, modulation transfer function (MTF), Wiener spectra, noise-equivalent quanta, and x-ray tube voltage-dependent detector response. Overall system performance was evaluated using receiver operating characteristic (ROC) analysis. The results of the study showed that the dynamic range of the CXDI-11 measured relative to the input x-ray flux was 10 3 , similar to that of the FCR9000C-HQ. Both systems showed similar final MTFs, although the pre-sampling MTF of the CXDI-11 was better than that of the FCR9000C-HQ. Noise analysis, based on noise-equivalent quanta and Wiener spectra, showed that for normal exposure conditions the CXDI-11 had superior performance. With both systems, x-ray response (system output/incident x-ray exposure) increased with increasing x-ray tube voltage. ROC analysis indicated that the CXDI-11 was superior in overall performance. (author)

  1. Modelling of scintillator based flat-panel detectors with Monte-Carlo simulations

    International Nuclear Information System (INIS)

    Reims, N; Sukowski, F; Uhlmann, N

    2011-01-01

    Scintillator based flat panel detectors are state of the art in the field of industrial X-ray imaging applications. Choosing the proper system and setup parameters for the vast range of different applications can be a time consuming task, especially when developing new detector systems. Since the system behaviour cannot always be foreseen easily, Monte-Carlo (MC) simulations are keys to gain further knowledge of system components and their behaviour for different imaging conditions. In this work we used two Monte-Carlo based models to examine an indirect converting flat panel detector, specifically the Hamamatsu C9312SK. We focused on the signal generation in the scintillation layer and its influence on the spatial resolution of the whole system. The models differ significantly in their level of complexity. The first model gives a global description of the detector based on different parameters characterizing the spatial resolution. With relatively small effort a simulation model can be developed which equates the real detector regarding signal transfer. The second model allows a more detailed insight of the system. It is based on the well established cascade theory, i.e. describing the detector as a cascade of elemental gain and scattering stages, which represent the built in components and their signal transfer behaviour. In comparison to the first model the influence of single components especially the important light spread behaviour in the scintillator can be analysed in a more differentiated way. Although the implementation of the second model is more time consuming both models have in common that a relatively small amount of system manufacturer parameters are needed. The results of both models were in good agreement with the measured parameters of the real system.

  2. Digital chest radiography with an amorphous silicon flat-panel-detector versus a storage-phosphor system: comparison of soft-copy images

    International Nuclear Information System (INIS)

    Lee, Hyun Ju; Im, Jung Gi; Goo, Jin Mo; Lee, Chang Hyun

    2006-01-01

    We compared the soft-copy images produced by an amorphous silicon flat-panel-detector system with the images produced by a storage-phosphor radiography system for their ability to visualize anatomic regions of the chest. Two chest radiologists independently analyzed 234 posteroanterior chest radiographs obtained from 78 patients on high-resolution liquid crystal display monitors (2560 x 2048 x 8 bits). In each patient, one radiograph was obtained with a storage-phosphor system, and two radiographs were obtained via amorphous silicon flat-panel-detector radiography with and without spatial frequency filtering. After randomizing the 234 images, the interpreters rated the visibility and radiographic quality of 11 different anatomic regions. Each image was ranked on a five-point scale (1 = not visualized, 2 = poor visualization, 3 = fair visualization, 4 = good visualization, and 5 = excellent visualization). The statistical difference between each system was determined using the Wilcoxon's signed rank test. The visibility of three anatomic regions (hilum, heart border and ribs), as determined by the chest radiologist with 14 years experience (ρ < 0.05) and the visibility of the thoracic spine, as determined by the chest radiologist with 8 years experience (ρ = 0.036), on the amorphous silicon flat-panel-detector radiography prior to spatial frequency filtering were significantly superior to that on the storage-phosphor radiography. The visibility of 11 anatomic regions, as determined by the chest radiologist with 14 years experience (ρ < 0.0001) and the visibility of five anatomic regions (unobscured lung, rib, proximal airway, thoracic spine and overall appearance), as determined by the chest radiologist with 8 years experience (ρ < 0.05), on the amorphous silicon flat-panel-detector radiography after spatial frequency filtering were significantly superior to that on the storage-phosphor radiography. The amorphous silicon flat-panel-detector system depicted the

  3. Non-destructive, preclinical evaluation of root canal anatomy of human teeth with flat-panel detector volume CT (FD-VCT)

    International Nuclear Information System (INIS)

    Heidrich, G.; Hassepass, F.; Dullin, C.; Grabbe, E.; Attin, T.; Hannig, C.

    2005-01-01

    Purpose: Successful endodontic diagnostics and therapy call for adequate depiction of the root canal anatomy with multimodal diagnostic imaging. The aim of the present study is to evaluate visualization of the endodont with flat-panel detector volume CT (FD-VCT). Materials and methods: 13 human teeth were examined with the prototype of a FD-VCT. After data acquisition and generation of volume data sets in volume rendering technology (VRT), the findings obtained were compared to conventional X-rays and cross-section preparations of the teeth. Results: The anatomical structures of the endodont such as root canals, side canals and communications between different root canals as well as dentricles could be detected precisely with FD-VCT. The length of curved root canals was also determined accurately. The spatial resolution of the system is around 140 μm. Only around 73% of the main root canals detected with FD-VCT and 87% of the roots could be visualized with conventional dental X-rays. None of the side canals, shown with FD-VCT, was detectable on conventional X-rays. In all cases the enamel and dentin of the teeth could be well delineated. No differences in image quality could be discerned between stored and freshly extracted teeth, or between primary and adult teeth. (orig.)

  4. Clinical evaluation of digital angiographic system equipped with the Safire' flat-panel detector of a direct conversion type

    Energy Technology Data Exchange (ETDEWEB)

    Miura, Yoshiaki; Miura, Yusuke; Goto, Keiichi [Shimadzu Corporation, Medical Systems Division, Research and Development, Kyoto (JP)] [and others

    2003-06-01

    This report presents a report on clinical evaluation of our newly developed flat-panel X-ray detector of a direct conversion type, designed to provide images of a resolution higher than, or at least equal to, that ensured by X-ray photographic films, in clinical digital X-ray cinematography. This new detector was named 'Safire' the acronym of 'Shimadzu advanced flat imaging receptor', emphasizing its high technological level, such as the capability to ensure high quality of images. The clinical evaluation of Shimadzu DIGITEX Premier digital angiography system, equipped with this new flat-panel X-ray detector of a direct conversion type, has been started in March, 2003, at the Kokura Memorial Hospital in Kyushu, Japan. (author)

  5. Evaluation the image obtained from X-ray flat-panel detectors utilizing a polycrystalline CdZnTe film as the conversion layer

    International Nuclear Information System (INIS)

    Tokuda, S.; Kishihara, H.; Kaino, M.; Sato, T.

    2006-01-01

    We can expect that fluoroscopic images with a high sensitivity and excellent detective efficiency can be obtained by using a semiconductor with a small W factor for the conversion layer of X-ray flat-panel detectors, which have experienced a rapid gain inpopularity for medical and non-destructive industrial inspection uses in recent years. We believe that polycrystalline CdZnTe film formed by the closed spaced sublimation (CSS) method is a promising conversion material for next-generation high efficiency X-ray flat-panel detectors, and have previously reported the results of feasibility studies. In this paper, we present an overview of X-ray flat-panel detectors and the features of CdZnTe film, then we describe the CSS method of deposition and evaluation of the physical characteristics of CdZnTe film, and finally we present the results of our fabrication and testing of proto-type detectors utilizing CdZnTe film. (author)

  6. Comparison of dose and image quality of a Flat-panel detector and an image intensifier

    International Nuclear Information System (INIS)

    Lazzaro, M.; Friedrich, B.Q.; Luz, R.M. da; Silva, A.M.M. da

    2016-01-01

    With the development of new technologies, have emerged new conversion methods of X-ray image, such as flat panel detectors. The aim of this work is the comparison of entrance surface air kerma (ESAK) and image quality between an image intensifier type of detector (A) and a flat panel (B). The ESAK was obtained by placing a ionization chamber under PMMA simulators of 10, 20 and 30 cm and the image quality was obtained by using the TOR "1"8FG simulator. The ESAK to the equipment A is higher when compared to the equipment B. The high contrast resolution is better for the equipment A for all thicknesses of simulators. The equipment A has low contrast resolution with a better viewing threshold for thicknesses of 10 and 20 cm, and a worse performance for 30 cm. It is concluded that the equipment B has ESAK smaller and despite having lower resolution, in almost all cases, have appropriate image quality for diagnosis. (author)

  7. Flat-screen detector systems in skeletal radiology

    International Nuclear Information System (INIS)

    Grampp, S.; Czerny, C.; Krestan, C.; Henk, C.; Heiner, L.; Imhof, H.

    2003-01-01

    Implementation of flat-panel detectors and digital integration of the technique instead of the use of conventional radiographs leads to a shortening of the work process. With flat-panel technology the image production process is shortened by more than 30%. Major advantages in the implementation of integrated RIS, PACS and flat-panel detector system are increases in quality because most mistakes in picture labeling can be avoided, easier handling without the need for cassettes, and the possibility of image post-processing. The diagnostic quality of the images in the field of musculoskeletal radiology is, in comparison to conventional radiographs, at least adequate and in most cases markedly improved with a marked reduction in radiation exposure of around 30-50%. With respect to the numerous advantages of the digital techniques and especially flat-panel technology there is a very high likelihood that conventional radiographs will be substituted in the coming years, even though the cost of the new technology is currently significantly higher compared to conventional systems. (orig.) [de

  8. Digital radiography with a large-scale electronic flat-panel detector vs screen-film radiography: observer preference in clinical skeletal diagnostics

    International Nuclear Information System (INIS)

    Hamers, S.; Freyschmidt, J.; Neitzel, U.

    2001-01-01

    The imaging performance of a recently developed digital flat-panel detector system was compared with conventional screen-film imaging in an observer preference study. In total, 34 image pairs of various regions of the skeleton were obtained in 24 patients; 30 image pairs were included in the study. The conventional images were acquired with 250- and 400-speed screen-film combinations, using the standard technique of our department. Within hours, the digital images were obtained using identical exposure parameters. The digital system employed a large-area (43 x 43 cm) flat-panel detector based on amorphous silicon (Trixell Pixium 4600), integrated in a Bucky table. Six radiologists independently evaluated the image pairs with respect to image latitude, soft tissue rendition, rendition of the periosteal and enosteal border of cortical bone, rendition of cancellous bone and the visibility of potentially present pathological changes, using a subjective five-point scale. The digital images were rated significantly (p=0.001) better than the screen-film images with respect to soft tissue rendition and image latitude. Also the rendition of the cancellous bone and the periosteal and enosteal border of the cortical bone was rated significantly (p=0.05) better for the flat-panel detector. The visibility of pathological lesions was equivalent; only large-area sclerotic lesions (n=2) were seen superiorly on screen-film images. The new digital flat-panel detector based on amorphous silicon appears to be at least equivalent to conventional screen-film combinations for skeletal examinations, and in most respects even superior. (orig.)

  9. Performance Characteristic of a CsI(Tl) Flat Panel Detector Radiography System

    International Nuclear Information System (INIS)

    Jeong, Hoi Woun; Min, Jung Hwan; Kim, Jung Min; Park, Min Seok; Lee, Gaung Young

    2012-01-01

    The purpose of this work was to evaluate an amorphous silicon cesium iodide based indirect flat-panel detector (FPD) in terms of their modulation transfer function (MTF), Wiener spectrum (WS, or noise power spectrum, NPS), and detective quantum efficiency (DQE). Measurements were made on flat-panel detector using the International Electrotechnical Commission (IEC) defined RQA3, RQA5, RQA7, and RQA9 radiographic technique. The MTFs of the systems were measured using an edge method. The WS(NPS) of the systems were determined for a range of exposure levels by two-dimensional (2D). Fourier analysis of uniformly exposed radiographs. The DQEs were assessed from the measured MTF, WS(NPS), exposure, and estimated ideal signal-to-noise ratios. Characteristic curve in the RQA3 showed difference in the characteristic curve from RQA5, RQA7, RQA9. MTFs were not differences according to x-ray beam quality. WS(NPS) was reduced with increasing dose, and RQA 3, RQA5, RQA7, RQA9 as the order is reduced. DQE represented the best in the 1mR, RQA 3, RQA5, RQA7, RQA9 decrease in the order. The physical imaging characteristics of FPD may also differ from input beam quality. This study gives an initial motivation that the physical imaging characteristics of FPD is an important issue for the right use of digital radiography system.

  10. Performance Characteristic of a CsI(Tl) Flat Panel Detector Radiography System

    Energy Technology Data Exchange (ETDEWEB)

    Jeong, Hoi Woun [Dept. of Radiological Science, Baekseok Culture University, Seoul (Korea, Republic of); Min, Jung Hwan [Dept. of Radiological Technology, Shingu University, Seongnam (Korea, Republic of); Kim, Jung Min [Dept. of Radiological Science, Korea University, Health Science College, Seoul (Korea, Republic of); Park, Min Seok [Korea Institue of Radiological and Medical Sicences, Research Institute of Radiologycal and Medical Sciences, Seoul (Korea, Republic of); Lee, Gaung Young [National Institute of Food and Drug Safety Evaluation, Seoul (Korea, Republic of)

    2012-06-15

    The purpose of this work was to evaluate an amorphous silicon cesium iodide based indirect flat-panel detector (FPD) in terms of their modulation transfer function (MTF), Wiener spectrum (WS, or noise power spectrum, NPS), and detective quantum efficiency (DQE). Measurements were made on flat-panel detector using the International Electrotechnical Commission (IEC) defined RQA3, RQA5, RQA7, and RQA9 radiographic technique. The MTFs of the systems were measured using an edge method. The WS(NPS) of the systems were determined for a range of exposure levels by two-dimensional (2D). Fourier analysis of uniformly exposed radiographs. The DQEs were assessed from the measured MTF, WS(NPS), exposure, and estimated ideal signal-to-noise ratios. Characteristic curve in the RQA3 showed difference in the characteristic curve from RQA5, RQA7, RQA9. MTFs were not differences according to x-ray beam quality. WS(NPS) was reduced with increasing dose, and RQA 3, RQA5, RQA7, RQA9 as the order is reduced. DQE represented the best in the 1mR, RQA 3, RQA5, RQA7, RQA9 decrease in the order. The physical imaging characteristics of FPD may also differ from input beam quality. This study gives an initial motivation that the physical imaging characteristics of FPD is an important issue for the right use of digital radiography system.

  11. Calibration model of a dual gain flat panel detector for 2D and 3D x-ray imaging

    International Nuclear Information System (INIS)

    Schmidgunst, C.; Ritter, D.; Lang, E.

    2007-01-01

    The continuing research and further development in flat panel detector technology have led to its integration into more and more medical x-ray systems for two-dimensional (2D) and three-dimensional (3D) imaging, such as fixed or mobile C arms. Besides the obvious advantages of flat panel detectors, like the slim design and the resulting optimum accessibility to the patient, their success is primarily a product of the image quality that can be achieved. The benefits in the physical and performance-related features as opposed to conventional image intensifier systems (e.g., distortion-free reproduction of imaging information or almost linear signal response over a large dynamic range) can be fully exploited, however, only if the raw detector images are correctly calibrated and postprocessed. Previous procedures for processing raw data contain idealizations that, in the real world, lead to artifacts or losses in image quality. Thus, for example, temperature dependencies or changes in beam geometry, as can occur with mobile C arm systems, have not been taken into account up to this time. Additionally, adverse characteristics such as image lag or aging effects have to be compensated to attain the best possible image quality. In this article a procedure is presented that takes into account the important dependencies of the individual pixel sensitivity of flat panel detectors used in 2D or 3D imaging and simultaneously minimizes the work required for an extensive recalibration. It is suitable for conventional detectors with only one gain mode as well as for the detectors specially developed for 3D imaging with dual gain read-out technology

  12. The effect of dose reduction on image quality in digital radiography using a flat-panel detector: experimental study in rabbits

    International Nuclear Information System (INIS)

    Jung, Sung Il; Goo, Jin Mo; Lee, Hyun Ju; Moon, Woo Kyung; Lim, Kun Young; Cho, Gyung Goo; Kim, Ji Hoon; Im, Jung Gi; Choi, Jang Yong; Nam, Sang Hee

    2005-01-01

    To evaluate the effect of dose reduction on image quality in digital radiography using a flat-panel detector. Digital radiographs of 30 rabbits were obtained at two different dose levels (33.23 μGY for the standard dose group and 20.09 μGY for the reduced dose group). The amorphous selenium-based flat-panel detector system had a panel size of 7 x 8.5 inches, a matrix of 1280 x 1536 (pixels?), and a pixel pitch of 138 μm. Four observers evaluated the soft-copy images on a high-resolution video monitor (2560 x 2048 x 8 bits) in random order. The observers rated the visibility of 13 different anatomic structures on a 5-point scale, viz, the retrocardiac lung, subdiaphragmatic lung, heart border, diaphragmatic border, proximal airway, unobscured lung, liver border, kidney border, bowel gas, flank stripe, ribs, and vertebrae in the mediastinal and abdominal regions. Statistical significance was determined using Wilcoxon's signed rank test. There was no statistically significant difference in the visibility of the anatomic structures on digital radiography between the standard and reduced dose groups. Digital radiography using an amorphous selenium-based flat-panel detector can preserve the image quality, though the dose is reduced to 40% of the standard level

  13. The effect of dose reduction on image quality in digital radiography using a flat-panel detector: experimental study in rabbits

    Energy Technology Data Exchange (ETDEWEB)

    Jung, Sung Il; Goo, Jin Mo; Lee, Hyun Ju; Moon, Woo Kyung; Lim, Kun Young; Cho, Gyung Goo; Kim, Ji Hoon; Im, Jung Gi [Seoul National College of Medicine, Seoul (Korea, Republic of); Choi, Jang Yong; Nam, Sang Hee [Inje University, Seoul (Korea, Republic of)

    2005-07-15

    To evaluate the effect of dose reduction on image quality in digital radiography using a flat-panel detector. Digital radiographs of 30 rabbits were obtained at two different dose levels (33.23 {mu}GY for the standard dose group and 20.09 {mu}GY for the reduced dose group). The amorphous selenium-based flat-panel detector system had a panel size of 7 x 8.5 inches, a matrix of 1280 x 1536 (pixels?), and a pixel pitch of 138 {mu}m. Four observers evaluated the soft-copy images on a high-resolution video monitor (2560 x 2048 x 8 bits) in random order. The observers rated the visibility of 13 different anatomic structures on a 5-point scale, viz, the retrocardiac lung, subdiaphragmatic lung, heart border, diaphragmatic border, proximal airway, unobscured lung, liver border, kidney border, bowel gas, flank stripe, ribs, and vertebrae in the mediastinal and abdominal regions. Statistical significance was determined using Wilcoxon's signed rank test. There was no statistically significant difference in the visibility of the anatomic structures on digital radiography between the standard and reduced dose groups. Digital radiography using an amorphous selenium-based flat-panel detector can preserve the image quality, though the dose is reduced to 40% of the standard level.

  14. Volumetry of human molars with flat panel-based volume CT in vitro

    NARCIS (Netherlands)

    Hannig, C.; Krieger, E.; Dullin, C.; Merten, H.A.; Attin, T.; Grabbe, E.; Heidrich, G.

    2006-01-01

    The flat panel-based volume computed tomography (fpVCT) is a new CT device applicable for experimental, three-dimensional evaluation of teeth at a resolution of about 150 microm in the high contrast region. The aim of this study was to investigate whether fpVCT was suitable for quantification of the

  15. Development of flat panel X-ray detector utilizing a CdZnTe film as conversion layer

    International Nuclear Information System (INIS)

    Tokuda, Satoshi; Kishihara, Hiroyuki; Kaino, Masatomo; Sato, Toshiyuki

    2006-01-01

    A polycrystalline CdZnTe film formed by the CSS (closed-spaced sublimation) method is one of the most promising materials as a conversion layer of next-generation highly efficient flat-panel X-ray detectors. Therefore, we have developed a prototype of a new flat-panel X-ray detector (a sensing region of 3 inches by 3 inches) with the film and evaluated its commercial feasibility. This paper describes evaluation of the physical and imaging properties of the prototype and explains the features of the CdZnTe film and the construction, specifications, and fabrication procedures of the prototype. Also included in this paper are formation of a semiconductor thin film barrier layer by the CBD (chemical bath deposition) method and conjunction of a sensor substrate and a TFT array substrate with the bump electrodes formed by screen printing, both of which we have developed during the course of the development of the prototype. (author)

  16. Flat panel detectors - closing the (digital) gap in chest and skeletal radiology

    International Nuclear Information System (INIS)

    Reiff, Kurt J.

    1999-01-01

    In the radiological department today the majority of all X-ray procedures on chest and skeletal radiography is performed with classical film-screen-systems. Using digital luminescence radiography (DLR or CR, which stands for Computed Radiography) as a technique has shown a way to replace this 100-year-old procedure of doing general radiography work by acquiring the X-rays digitally via phosphor screens, but this approach has faced criticism from lots of radiologists world wide and therefore has not been widely accepted except in the intensive care environment. A new technology is now rising based on the use of so called flat panel X-ray (FD) detectors. Semi-conducting material detects the X-rays in digital form directly and creates an instantaneous image for display, distribution and diagnosis. This ability combined with a large field of view and -- compared to existing methods -- excellent detective quantum efficiency represents a revolutionary step for chest and skeletal radiography and will put basic X-ray-work back into the focus of radiological solutions. This paper will explain the basic technology of flat panel detectors, possible system solutions based on this new technology, aspects of the user interface influencing the system utilization and versatility as well as the possibility to redefine the patient examination process for chest and skeletal radiography. Furthermore the author discusses limitations for the first released systems, upgrades for the installed base and possible scenarios for the future. e.g. fluoroscopy or angiography application

  17. On site evaluation of three flat panel detectors for digital radiography

    International Nuclear Information System (INIS)

    Borasi, Giovanni; Nitrosi, Andrea; Ferrari, Paolo; Tassoni, Davide

    2003-01-01

    During a tender we evaluated the image performance of three commercially available active matrix flat panel imagers (AMFPI) for general radiography, one based on direct detection method (Se photoconductor) the other two on indirect detection method (CsI phosphor). Basic image quality parameters (MTF, NNPS, DQE) were evaluated with particular attention to dose and energy dependence. As it is known, presampling modulation transfer function (MTF) of selenium based detector is very high (at 70 kV, 2 cycles/mm, 2.5 μGy, about 0.80). Indirect detection panels exhibit a comparable (lower) resolution (at 70 kV, 2 cycles/mm, 2.5 μGy, MTF is about 0.34 for both the systems analyzed) and a more pronounced energy and dose dependence could also be noted in one of them. As a consequence of the very high resolution, the normalized noise power spectrum (NNPS) of the direct system is substantially flat, very similar to a white noise. Considering that the sensitive layer of all detectors is the same (0.5 mm), the relatively higher NNPS values are related to selenium absorption properties (lower Z respect to CsI:Tl) and detector inherent noise. NNPSs of the other systems, at low frequencies, are comparable but the frequency dependence is significantly different. At 70 kV, 2.5 μGy, 0.5 cycles/mm detective quantum efficiency (DQE) is about 0.35 for the direct detection system, and about the same (0.6) for the indirect ones. The combined effect of additive and multiplicative noise components makes DQE dependence on dose not monotonic. DQE present a maximum for an intermediate exposure. This complex behavior may be useful to characterize the systems in terms of the monodimensional integral over the frequency of DQE (IDQE). Both visual contrast-detail experiment and the direct evaluation of the signal-to-noise ratio confirmed, at least in a qualitative way, the system performances predicted by IDQE

  18. Digital chest radiography: flat-panel detectors or conventional radiographs

    International Nuclear Information System (INIS)

    Schaefer-Prokop, C.; Uffmann, M.; Sailer, J.; Kabalan, N.; Herold, C.; Prokop, M.

    2003-01-01

    Flat panel detectors are characterized by improved handling and increased dose efficiency. This allows for increasing of work flow efficiency and for reducing the exposure dose by about 50% compared to current systems with a sensitivity of 400. Whether the increased dose efficiency should be used to reduce acquisition dose or to increase image quality in the chest, will be shown by further clinical experience and will be also determined by the subjective preference of the radiologists. The decreased level of image noise opens new perspectives for image processing that way that elaborated multifrequency processing allows for optimizing the display of very small and low contrast structures that was so far limited by overlying image noise. Specialized applications of dual energy subtraction and temporal subtraction will also profit by the new detector technology and will be further driven forward in context with applications such as computed assisted diagnosis even though this is currently not yet broadly applied. Storage phosphor radiography still represents an important alternative technique based on its larger flexibility with respect to equipment configuration, its broader application options in intensive care and emergency radiology and due to economic reasons. These facts are further underlined by the fact that image quality also in storage phosphor radiography could be constantly increased by improving detector technology and image processing and consequently has a high standard. (orig.) [de

  19. High resolution X-ray imaging of bone-implant interface by large area flat-panel detector

    International Nuclear Information System (INIS)

    Kytyr, D; Jirousek, O; Dammer, J

    2011-01-01

    The aim of the research was to investigate the cemented bone-implant interface behavior (cement layer degradation and bone-cement interface debonding) with emphasis on imaging techniques suitable to detect the early defects in the cement layer. To simulate in vivo conditions a human pelvic bone was implanted with polyurethane acetabular cup using commercial acrylic bone cement. The implanted cup was then loaded in a custom hip simulator to initiate fatigue crack propagation in the bone cement. The pelvic bone was then repetitively scanned in a micro-tomography device. Reconstructed tomography images showed failure processes that occurred in the cement layer during the first 250,000 cycles. A failure in cemented acetabular implant - debonding, crumbling and smeared cracks - has been found to be at the bone-cement interface. Use of micro-focus source and high resolution flat panel detector of large physical dimensions allowed to reconstruct the micro-structural models suitable for investigation of migration, micro-motions and consecutive loosening of the implant. The large area flat panel detector with physical dimensions 120 x 120mm with 50μm pixel size provided a superior image quality compared to clinical CT systems with 300-150μm pixel size.

  20. Practical expressions describing detective quantum efficiency in flat-panel detectors

    Science.gov (United States)

    Kim, H. K.

    2011-11-01

    In radiology, image quality excellence is a balance between system performance and patient dose, hence x-ray systems must be designed to ensure the maximum image quality is obtained for the lowest consistent dose. The concept of detective quantum efficiency (DQE) is widely used to quantify, understand, measure, and predict the performance of x-ray detectors and imaging systems. Cascaded linear-systems theory can be used to estimate DQE based on the system design parameters and this theoretical DQE can be utilized for determining the impact of various physical processes, such as secondary quantum sinks, noise aliasing, reabsorption noise, and others. However, the prediction of DQE usually requires tremendous efforts to determine each parameter consisting of the cascaded linear-systems model. In this paper, practical DQE formalisms assessing both the photoconductor- and scintillator-based flat-panel detectors under quantum-noise-limited operation are described. The developed formalisms are experimentally validated and discussed for their limits. The formalisms described in this paper would be helpful for the rapid prediction of the DQE performances of developing systems as well as the optimal design of systems.

  1. Initial experiences in clinical application of the THORAX-FD: flat-panel detector radiography in thoracic diagnosis

    International Nuclear Information System (INIS)

    Herrmann, K.A.; Staebler, A.; Bonel, H.; Kulinna, C.; Holzknecht, N.; Reiser, M.F.; Geiger, B.; Boehm, S.; Maschke, M.

    2000-01-01

    The flat-panel detector closes the gap between radiography and the digital diagnostics equipment currently in use. In addition to the dose reduction that can be expected, the availability of diagnostic information in digital form enables the user to optimize the clinical workflow and to network radiography directly with a digital archiving and communication system. (orig.)

  2. Solid-state, flat-panel, digital radiography detectors and their physical imaging characteristics

    Energy Technology Data Exchange (ETDEWEB)

    Cowen, A.R. [LXi Research, Academic Unit of Medical Physics, University of Leeds, West Yorkshire (United Kingdom)], E-mail: a.r.cowen@leeds.ac.uk; Kengyelics, S.M.; Davies, A.G. [LXi Research, Academic Unit of Medical Physics, University of Leeds, West Yorkshire (United Kingdom)

    2008-05-15

    Solid-state, digital radiography (DR) detectors, designed specifically for standard projection radiography, emerged just before the turn of the millennium. This new generation of digital image detector comprises a thin layer of x-ray absorptive material combined with an electronic active matrix array fabricated in a thin film of hydrogenated amorphous silicon (a-Si:H). DR detectors can offer both efficient (low-dose) x-ray image acquisition plus on-line readout of the latent image as electronic data. To date, solid-state, flat-panel, DR detectors have come in two principal designs, the indirect-conversion (x-ray scintillator-based) and the direct-conversion (x-ray photoconductor-based) types. This review describes the underlying principles and enabling technologies exploited by these designs of detector, and evaluates their physical imaging characteristics, comparing performance both against each other and computed radiography (CR). In standard projection radiography indirect conversion DR detectors currently offer superior physical image quality and dose efficiency compared with direct conversion DR and modern point-scan CR. These conclusions have been confirmed in the findings of clinical evaluations of DR detectors. Future trends in solid-state DR detector technologies are also briefly considered. Salient innovations include WiFi-enabled, portable DR detectors, improvements in x-ray absorber layers and developments in alternative electronic media to a-Si:H.

  3. TU-E-217BCD-06: Cone Beam Breast CT with a High Resolution Flat Panel Detector-Improvement of Calcification Visibility.

    Science.gov (United States)

    Shen, Y; Zhong, Y; Lai, C; Wang, T; Shaw, C

    2012-06-01

    To investigate the advantage of a high resolution flat panel detector for improving the visibility of microcalcifications (MCs) in cone beam breast CT Methods: A paraffin cylinder was used to simulate a 100% adipose breast. Calcium carbonate grains, ranging from 125-140 μm to 224 - 250 μm in size, were used to simulate the MCs. Groups of 25 same size MCs were embedded at the phantom center. The phantom was scanned with a bench-top CBCT system at various exposure levels. A 75μm pitch flat panel detector (Dexela 2923, Perkin Elmer) with 500μm thick CsI scintillator plate was used as the high resolution detector. A 194 μm pitch detector (Paxscan 4030CB, Varian Medical Systems) was used for reference. 300 projection images were acquired over 360° and reconstructed. The images were reviewed by 6 readers. The MC visibility was quantified as the fraction of visible MCs and averaged for comparison. The visibility was plotted as a function of the estimated dose level for various MC sizes and detectors. The MTFs and DQEs were measured and compared. For imaging small (200 μm and smaller) MCs, the visibility achieved with the 75μm pitch detector was found to be significantly higher than those achieved with the 194μm pitch detector. For imaging larger MCs, there was little advantage in using the 75μm pitch detector. Using the 75μm pitch detector, MCs as small as 180 μm could be imaged to achieve a visibility of 78% with an isocenter tissue dose of ∼20 mGys versus 62% achieved with the 194 μm pitch detector at the same dose level. It was found that a high pitch flat panel detector had the advantages of extending its imaging capability to higher frequencies thus helping improve the visibility when used to image small MCs. This work was supported in part by grants CA104759, CA13852 and CA124585 from NIH-NCI, a grant EB00117 from NIH-NIBIB, and a subcontract from NIST-ATP. © 2012 American Association of Physicists in Medicine.

  4. Indirect flat-panel detector with avalanche gain: Fundamental feasibility investigation for SHARP-AMFPI (scintillator HARP active matrix flat panel imager)

    International Nuclear Information System (INIS)

    Zhao Wei; Li Dan; Reznik, Alla; Lui, B.J.M.; Hunt, D.C.; Rowlands, J.A.; Ohkawa, Yuji; Tanioka, Kenkichi

    2005-01-01

    An indirect flat-panel imager (FPI) with avalanche gain is being investigated for low-dose x-ray imaging. It is made by optically coupling a structured x-ray scintillator CsI(Tl) to an amorphous selenium (a-Se) avalanche photoconductor called HARP (high-gain avalanche rushing photoconductor). The final electronic image is read out using an active matrix array of thin film transistors (TFT). We call the proposed detector SHARP-AMFPI (scintillator HARP active matrix flat panel imager). The advantage of the SHARP-AMFPI is its programmable gain, which can be turned on during low dose fluoroscopy to overcome electronic noise, and turned off during high dose radiography to avoid pixel saturation. The purpose of this paper is to investigate the important design considerations for SHARP-AMFPI such as avalanche gain, which depends on both the thickness d Se and the applied electric field E Se of the HARP layer. To determine the optimal design parameter and operational conditions for HARP, we measured the E Se dependence of both avalanche gain and optical quantum efficiency of an 8 μm HARP layer. The results were used in a physical model of HARP as well as a linear cascaded model of the FPI to determine the following x-ray imaging properties in both the avalanche and nonavalanche modes as a function of E Se : (1) total gain (which is the product of avalanche gain and optical quantum efficiency); (2) linearity; (3) dynamic range; (4) gain nonuniformity resulting from thickness nonuniformity; and (5) effects of direct x-ray interaction in HARP. Our results showed that a HARP layer thickness of 8 μm can provide adequate avalanche gain and sufficient dynamic range for x-ray imaging applications to permit quantum limited operation over the range of exposures needed for radiography and fluoroscopy

  5. Ultra-high resolution flat-panel volume CT: fundamental principles, design architecture, and system characterization

    International Nuclear Information System (INIS)

    Gupta, Rajiv; Brady, Tom; Grasruck, Michael; Suess, Christoph; Schmidt, Bernhard; Stierstorfer, Karl; Popescu, Stefan; Flohr, Thomas; Bartling, Soenke H.

    2006-01-01

    Digital flat-panel-based volume CT (VCT) represents a unique design capable of ultra-high spatial resolution, direct volumetric imaging, and dynamic CT scanning. This innovation, when fully developed, has the promise of opening a unique window on human anatomy and physiology. For example, the volumetric coverage offered by this technology enables us to observe the perfusion of an entire organ, such as the brain, liver, or kidney, tomographically (e.g., after a transplant or ischemic event). By virtue of its higher resolution, one can directly visualize the trabecular structure of bone. This paper describes the basic design architecture of VCT. Three key technical challenges, viz., scatter correction, dynamic range extension, and temporal resolution improvement, must be addressed for successful implementation of a VCT scanner. How these issues are solved in a VCT prototype and the modifications necessary to enable ultra-high resolution volumetric scanning are described. The fundamental principles of scatter correction and dose reduction are illustrated with the help of an actual prototype. The image quality metrics of this prototype are characterized and compared with a multi-detector CT (MDCT). (orig.)

  6. Ultra-high resolution flat-panel volume CT: fundamental principles, design architecture, and system characterization

    Energy Technology Data Exchange (ETDEWEB)

    Gupta, Rajiv; Brady, Tom [Massachusetts General Hospital, Department of Radiology, Founders House, FND-2-216, Boston, MA (United States); Grasruck, Michael; Suess, Christoph; Schmidt, Bernhard; Stierstorfer, Karl; Popescu, Stefan; Flohr, Thomas [Siemens Medical Solutions, Forchheim (Germany); Bartling, Soenke H. [Hannover Medical School, Department of Neuroradiology, Hannover (Germany)

    2006-06-15

    Digital flat-panel-based volume CT (VCT) represents a unique design capable of ultra-high spatial resolution, direct volumetric imaging, and dynamic CT scanning. This innovation, when fully developed, has the promise of opening a unique window on human anatomy and physiology. For example, the volumetric coverage offered by this technology enables us to observe the perfusion of an entire organ, such as the brain, liver, or kidney, tomographically (e.g., after a transplant or ischemic event). By virtue of its higher resolution, one can directly visualize the trabecular structure of bone. This paper describes the basic design architecture of VCT. Three key technical challenges, viz., scatter correction, dynamic range extension, and temporal resolution improvement, must be addressed for successful implementation of a VCT scanner. How these issues are solved in a VCT prototype and the modifications necessary to enable ultra-high resolution volumetric scanning are described. The fundamental principles of scatter correction and dose reduction are illustrated with the help of an actual prototype. The image quality metrics of this prototype are characterized and compared with a multi-detector CT (MDCT). (orig.)

  7. Flat panel detector-based cone beam computed tomography with a circle-plus-two-arcs data acquisition orbit: Preliminary phantom study

    International Nuclear Information System (INIS)

    Ning Ruola; Tang Xiangyang; Conover, David; Yu Rongfeng

    2003-01-01

    Cone beam computed tomography (CBCT) has been investigated in the past two decades due to its potential advantages over a fan beam CT. These advantages include (a) great improvement in data acquisition efficiency, spatial resolution, and spatial resolution uniformity, (b) substantially better utilization of x-ray photons generated by the x-ray tube compared to a fan beam CT, and (c) significant advancement in clinical three-dimensional (3D) CT applications. However, most studies of CBCT in the past are focused on cone beam data acquisition theories and reconstruction algorithms. The recent development of x-ray flat panel detectors (FPD) has made CBCT imaging feasible and practical. This paper reports a newly built flat panel detector-based CBCT prototype scanner and presents the results of the preliminary evaluation of the prototype through a phantom study. The prototype consisted of an x-ray tube, a flat panel detector, a GE 8800 CT gantry, a patient table and a computer system. The prototype was constructed by modifying a GE 8800 CT gantry such that both a single-circle cone beam acquisition orbit and a circle-plus-two-arcs orbit can be achieved. With a circle-plus-two-arcs orbit, a complete set of cone beam projection data can be obtained, consisting of a set of circle projections and a set of arc projections. Using the prototype scanner, the set of circle projections were acquired by rotating the x-ray tube and the FPD together on the gantry, and the set of arc projections were obtained by tilting the gantry while the x-ray tube and detector were at the 12 and 6 o'clock positions, respectively. A filtered backprojection exact cone beam reconstruction algorithm based on a circle-plus-two-arcs orbit was used for cone beam reconstruction from both the circle and arc projections. The system was first characterized in terms of the linearity and dynamic range of the detector. Then the uniformity, spatial resolution and low contrast resolution were assessed using

  8. Feasibility study of flexible flat-panel X-ray detectors for digital radiography

    International Nuclear Information System (INIS)

    Joe, Ok La; Yun, Seung Man; Kim, Ho Kyung

    2010-01-01

    Flexible flat-panel detectors (FPDs), which utilize both organic photodiode (OPD) and organic thin-film transistor (OTFT) technologies, are recently concerned in digital radiography. The flexible FPD has several potential advantages, such as high accessibility to patient, avoidance of geometrical burr due to the oblique angle incidence of X-ray, great reduction in manufacturing cost due to jet-printing. At once, The OPD/OTFT arrays were fabricated by jet-printing techniques, mechanical robustness due to plastic substrates, and so on. In this study, we have investigated the feasibility of flexible FPD by comparing theoretical detective quantum efficiency (DQE) with that of the conventional amorphous silicon-based FPD. We chose copper phthalocyanine-fullerene (CuPc-C60) organic materials for the construction of the flexible FPD. DQE was calculated by the linear-systems transfer theory

  9. Flat-panel detectors: how much better are they?

    International Nuclear Information System (INIS)

    Seibert, J.A.

    2006-01-01

    Interventional and fluoroscopic imaging procedures for pediatric patients are becoming more prevalent because of the less-invasive nature of these procedures compared to alternatives such as surgery. Flat-panel X-ray detectors (FPD) for fluoroscopy are a new technology alternative to the image intensifier/TV (II/TV) digital system that has been in use for more than two decades. Two major FPD technologies have been implemented, based on indirect conversion of X-rays to light (using an X-ray scintillator) and then to proportional charge (using a photodiode), or direct conversion of X-rays into charge (using a semiconductor material) for signal acquisition and digitization. These detectors have proved very successful for high-exposure interventional procedures but lack the image quality of the II/TV system at the lowest exposure levels common in fluoroscopy. The benefits for FPD image quality include lack of geometric distortion, little or no veiling glare, a uniform response across the field-of-view, and improved ergonomics with better patient access. Better detective quantum efficiency indicates the possibility of reducing the patient dose in accordance with ALARA principles. However, first-generation FPD devices have been implemented with less than adequate acquisition flexibility (e.g., lack of tableside controls/information, inability to easily change protocols) and the presence of residual signals from previous exposures, and additional cost of equipment and long-term maintenance have been serious impediments to purchase and implementation. Technological advances of second generation and future hybrid FPD systems should solve many current issues. The answer to the question ''how much better are they?'' is ''significantly better'', and they are certainly worth consideration for replacement or new implementation of an imaging suite for pediatric fluoroscopy. (orig.)

  10. Reduction of ring artifacts in CBCT: Detection and correction of pixel gain variations in flat panel detectors

    International Nuclear Information System (INIS)

    Altunbas, Cem; Lai, Chao-Jen; Zhong, Yuncheng; Shaw, Chris C.

    2014-01-01

    Purpose: In using flat panel detectors (FPD) for cone beam computed tomography (CBCT), pixel gain variations may lead to structured nonuniformities in projections and ring artifacts in CBCT images. Such gain variations can be caused by change in detector entrance exposure levels or beam hardening, and they are not accounted by conventional flat field correction methods. In this work, the authors presented a method to identify isolated pixel clusters that exhibit gain variations and proposed a pixel gain correction (PGC) method to suppress both beam hardening and exposure level dependent gain variations. Methods: To modulate both beam spectrum and entrance exposure, flood field FPD projections were acquired using beam filters with varying thicknesses. “Ideal” pixel values were estimated by performing polynomial fits in both raw and flat field corrected projections. Residuals were calculated by taking the difference between measured and ideal pixel values to identify clustered image and FPD artifacts in flat field corrected and raw images, respectively. To correct clustered image artifacts, the ratio of ideal to measured pixel values in filtered images were utilized as pixel-specific gain correction factors, referred as PGC method, and they were tabulated as a function of pixel value in a look-up table. Results: 0.035% of detector pixels lead to clustered image artifacts in flat field corrected projections, where 80% of these pixels were traced back and linked to artifacts in the FPD. The performance of PGC method was tested in variety of imaging conditions and phantoms. The PGC method reduced clustered image artifacts and fixed pattern noise in projections, and ring artifacts in CBCT images. Conclusions: Clustered projection image artifacts that lead to ring artifacts in CBCT can be better identified with our artifact detection approach. When compared to the conventional flat field correction method, the proposed PGC method enables characterization of nonlinear

  11. Does Preinterventional Flat-Panel Computer Tomography Pooled Blood Volume Mapping Predict Final Infarct Volume After Mechanical Thrombectomy in Acute Cerebral Artery Occlusion?

    International Nuclear Information System (INIS)

    Wagner, Marlies; Kyriakou, Yiannis; Mesnil de Rochemont, Richard du; Singer, Oliver C.; Berkefeld, Joachim

    2013-01-01

    PurposeDecreased cerebral blood volume is known to be a predictor for final infarct volume in acute cerebral artery occlusion. To evaluate the predictability of final infarct volume in patients with acute occlusion of the middle cerebral artery (MCA) or the distal internal carotid artery (ICA) and successful endovascular recanalization, pooled blood volume (PBV) was measured using flat-panel detector computed tomography (FPD CT).Materials and MethodsTwenty patients with acute unilateral occlusion of the MCA or distal ACI without demarcated infarction, as proven by CT at admission, and successful Thrombolysis in cerebral infarction score (TICI 2b or 3) endovascular thrombectomy were included. Cerebral PBV maps were acquired from each patient immediately before endovascular thrombectomy. Twenty-four hours after recanalization, each patient underwent multislice CT to visualize final infarct volume. Extent of the areas of decreased PBV was compared with the final infarct volume proven by follow-up CT the next day.ResultsIn 15 of 20 patients, areas of distinct PBV decrease corresponded to final infarct volume. In 5 patients, areas of decreased PBV overestimated final extension of ischemia probably due to inappropriate timing of data acquisition and misery perfusion.ConclusionPBV mapping using FPD CT is a promising tool to predict areas of irrecoverable brain parenchyma in acute thromboembolic stroke. Further validation is necessary before routine use for decision making for interventional thrombectomy

  12. Evaluation of imaging quality for flat-panel detector based low dose C-arm CT system

    International Nuclear Information System (INIS)

    Seo, Chang-Woo; Cha, Bo Kyung; Jeon, Sungchae; Huh, Young

    2015-01-01

    The image quality associated with the extent of the angle of gantry rotation, the number of projection views, and the dose of X-ray radiation was investigated in flat-panel detector (FPD) based C-arm cone-beam computed tomography (CBCT) system for medical applications. A prototype CBCT system for the projection acquisition used the X-ray tube (A-132, Varian inc.) having rhenium-tungsten molybdenum target and flat panel a-Si X-ray detector (PaxScan 4030CB, Varian inc.) having a 397 x 298 mm active area with 388 μm pixel pitch and 1024 x 768 pixels in 2 by 2 binning mode. The performance comparison of X-ray imaging quality was carried out using the Feldkamp, Davis, and Kress (FDK) reconstruction algorithm between different conditions of projection acquisition. In this work, head-and-dental (75 kVp/20 mA) and chest (90 kVp/25 mA) phantoms were used to evaluate the image quality. The 361 (30 fps x 12 s) projection data during 360 deg. gantry rotation with 1 deg. interval for the 3D reconstruction were acquired. Parke weighting function were applied to handle redundant data and improve the reconstructed image quality in a mobile C-arm system with limited rotation angles. The reconstructed 3D images were investigated for comparison of qualitative image quality in terms of scan protocols (projection views, rotation angles and exposure dose). Furthermore, the performance evaluation in image quality will be investigated regarding X-ray dose and limited projection data for a FPD based mobile C-arm CBCT system. (authors)

  13. Extra-oral dental radiography for disaster victims using a flat panel X-ray detector and a hand-held X-ray generator.

    Science.gov (United States)

    Ohtani, M; Oshima, T; Mimasaka, S

    2017-12-01

    Forensic odontologists commonly incise the skin for post-mortem dental examinations when it is difficult to open the victim's mouth. However, it is prohibited by law to incise dead bodies without permission in Japan. Therefore, we attempted using extra-oral dental radiography, using a digital X-ray equipment with rechargeable batteries, to overcome this restriction. A phantom was placed in the prone position on a table, and three plain dental radiographs were used per case: "lateral oblique radiographs" for left and right posterior teeth and a "contact radiograph" for anterior teeth were taken using a flat panel X-ray detector and a hand-held X-ray generator. The resolving power of the images was measured by a resolution test chart, and the scattered X-ray dose was measured using an ionization chamber-type survey meter. The resolving power of the flat panel X-ray detector was 3.0 lp/mm, which was less than that of intra-oral dental methods, but the three extra-oral plain dental radiographs provided the overall dental information from outside of the mouth, and this approach was less time-consuming. In addition, the higher dose of scattered X-rays was laterally distributed, but the dose per case was much less than that of intra-oral dental radiographs. Extra-oral plain dental radiography can be used for disaster victim identification by dental methods even when it is difficult to open the mouth. Portable and rechargeable devices, such as a flat panel X-ray detector and a hand-held X-ray generator, are convenient to bring and use anywhere, even at a disaster scene lacking electricity and water.

  14. A compact high resolution flat panel PET detector based on the new 4-side buttable MPPC for biomedical applications.

    Science.gov (United States)

    Wang, Qiang; Wen, Jie; Ravindranath, Bosky; O'Sullivan, Andrew W; Catherall, David; Li, Ke; Wei, Shouyi; Komarov, Sergey; Tai, Yuan-Chuan

    2015-09-11

    Compact high-resolution panel detectors using virtual pinhole (VP) PET geometry can be inserted into existing clinical or pre-clinical PET systems to improve regional spatial resolution and sensitivity. Here we describe a compact panel PET detector built using the new Though Silicon Via (TSV) multi-pixel photon counters (MPPC) detector. This insert provides high spatial resolution and good timing performance for multiple bio-medical applications. Because the TSV MPPC design eliminates wire bonding and has a package dimension which is very close to the MPPC's active area, it is 4-side buttable. The custom designed MPPC array (based on Hamamatsu S12641-PA-50(x)) used in the prototype is composed of 4 × 4 TSV-MPPC cells with a 4.46 mm pitch in both directions. The detector module has 16 × 16 lutetium yttrium oxyorthosilicate (LYSO) crystal array, with each crystal measuring 0.92 × 0.92 × 3 mm 3 with 1.0 mm pitch. The outer diameter of the detector block is 16.8 × 16.8 mm 2 . Thirty-two such blocks will be arranged in a 4 × 8 array with 1 mm gaps to form a panel detector with detection area around 7 cm × 14 cm in the full-size detector. The flood histogram acquired with Ge-68 source showed excellent crystal separation capability with all 256 crystals clearly resolved. The detector module's mean, standard deviation, minimum (best) and maximum (worst) energy resolution were 10.19%, +/-0.68%, 8.36% and 13.45% FWHM, respectively. The measured coincidence time resolution between the block detector and a fast reference detector (around 200 ps single photon timing resolution) was 0.95 ns. When tested with Siemens Cardinal electronics the performance of the detector blocks remain consistent. These results demonstrate that the TSV-MPPC is a promising photon sensor for use in a flat panel PET insert composed of many high resolution compact detector modules.

  15. Cone beam breast CT with a high pitch (75 μm), thick (500 μm) scintillator CMOS flat panel detector: visibility of simulated microcalcifications.

    Science.gov (United States)

    Shen, Youtao; Zhong, Yuncheng; Lai, Chao-Jen; Wang, Tianpeng; Shaw, Chris C

    2013-10-01

    To measure and investigate the improvement of microcalcification (MC) visibility in cone beam breast CT with a high pitch (75 μm), thick (500 μm) scintillator CMOS/CsI flat panel detector (Dexela 2923, Perkin Elmer). Aluminum wires and calcium carbonate grains of various sizes were embedded in a paraffin cylinder to simulate imaging of calcifications in a breast. Phantoms were imaged with a benchtop experimental cone beam CT system at various exposure levels. In addition to the Dexela detector, a high pitch (50 μm), thin (150 μm) scintillator CMOS/CsI flat panel detector (C7921CA-09, Hamamatsu Corporation, Hamamatsu City, Japan) and a widely used low pitch (194 μm), thick (600 μm) scintillator aSi/CsI flat panel detector (PaxScan 4030CB, Varian Medical Systems) were also used in scanning for comparison. The images were independently reviewed by six readers (imaging physicists). The MC visibility was quantified as the fraction of visible MCs and measured as a function of the estimated mean glandular dose (MGD) level for various MC sizes and detectors. The modulation transfer functions (MTFs) and detective quantum efficiencies (DQEs) were also measured and compared for the three detectors used. The authors have demonstrated that the use of a high pitch (75 μm) CMOS detector coupled with a thick (500 μm) CsI scintillator helped make the smaller 150-160, 160-180, and 180-200 μm MC groups more visible at MGDs up to 10.8, 9, and 10.8 mGy, respectively. It also made the larger 200-212 and 212-224 μm MC groups more visible at MGDs up to 7.2 mGy. No performance improvement was observed for 224-250 μm or larger size groups. With the higher spatial resolution of the Dexela detector based system, the apparent dimensions and shapes of MCs were more accurately rendered. The results show that with the aforementioned detector, a 73% visibility could be achieved in imaging 160-180 μm MCs as compared to 28% visibility achieved by the low pitch (194 μm) aSi/CsI flat

  16. Variation in X-ray dose quantity using an amorphous selenium based flat-panel detector - a study on the dose reduction rate up to the limit of diagnostical utilization

    International Nuclear Information System (INIS)

    Lehnert, T.; Wohlers, J.; Manegold, K.; Wetter, A.; Jacobi, V.; Mack, M.G.; Vogl, T.J.; Streng, W.

    2006-01-01

    Purpose: To evaluate the diagnostic quality and minimum required dose to obtain acceptable images for diagnostic purposes in the field of musculoskeletal radiology. Materials and methods: A critical comparison of the image quality produced by a novel flat panel detector and the conventional screen/film system using a contrast-detail phantom was performed in phase I. Images from both systems were obtained with the same dose and displayed with similar contrast and density. In phase II images of significant anatomical structures in cadaver extremities obtained using the digital detector system and the standard film/screen system were critically evaluated. After a successive reduction in the X-ray dose for 84 patients in phase III, eight independent radiologists compared the image quality of the screen/film system to that of the novel flat panel detector. Results: Phases I and II revealed a difference in the image quality achieved by the standard screen/film system and the digital detector system to the advantage of the digital detector system. In 77 of 84 patients (91.7%), phase III showed equal image quality after a 50% reduction in the X-ray dose. In 3 cases (3.6%) the image quality and the level of contrast were better. No unified statement could be made for 4 patients (4.7%). Conclusion: Digital imaging of skeletal disorders using the novel flat panel detector makes it possible to reduce the X-ray dose by 50% with equal or even better image quality. (orig.)

  17. Cone beam breast CT with a high pitch (75 μm), thick (500 μm) scintillator CMOS flat panel detector: Visibility of simulated microcalcifications

    OpenAIRE

    Shen, Youtao; Zhong, Yuncheng; Lai, Chao-Jen; Wang, Tianpeng; Shaw, Chris C.

    2013-01-01

    Purpose: To measure and investigate the improvement of microcalcification (MC) visibility in cone beam breast CT with a high pitch (75 μm), thick (500 μm) scintillator CMOS/CsI flat panel detector (Dexela 2923, Perkin Elmer).

  18. The Usefulness of Three-Dimensional Angiography with a Flat Panel Detector of Direct Conversion Type in a Transcatheter Arterial Chemoembolization Procedure for Hepatocellular Carcinoma: Initial Experience

    International Nuclear Information System (INIS)

    Kakeda, Shingo; Korogi, Yukunori; Hatakeyama, Yoshihisa; Ohnari, Norihiro; Oda, Nobuhiro; Nishino, Kazuyoshi; Miyamoto, Wataru

    2008-01-01

    The purpose of this study was to assess the usefulness of a three-dimensional (3D) angiography system using a flat panel detector of direct conversion type in treatments with subsegmental transcatheter arterial chemoembolization (TACE) for hepatocellular carcinomas (HCCs). Thirty-six consecutive patients who underwent hepatic angiography were prospectively examined. First, two radiologists evaluated the degree of visualization of the peripheral branches of the hepatic arteries on 3D digital subtraction angiography (DSA). Then the radiologists evaluated the visualization of tumor staining and feeding arteries in 25 patients (30 HCCs) who underwent subsegmental TACE. The two radiologists who performed the TACE assessed whether the additional information provided by 3D DSA was useful for treatments. In 34 (94.4%) of 36 patients, the subsegmental branches of the hepatic arteries were sufficiently visualized. The feeding arteries of HCCs were sufficiently visualized in 28 (93%) of 30 HCCs, whereas tumor stains were sufficiently visualized in 18 (60%). Maximum intensity projection images were significantly superior to volume recording images for visualization of the tumor staining and feeding arteries of HCCs. In 27 (90%) of 30 HCCs, 3D DSA provided additional useful information for subsegmental TACE. The high-quality 3D DSA with flat panel detector angiography system provided a precise vascular road map, which was useful for performing subsegmental TACE .of HCCs

  19. Flat panel computed tomography of human ex vivo heart and bone specimens: initial experience

    Energy Technology Data Exchange (ETDEWEB)

    Nikolaou, Konstantin; Becker, Christoph R.; Reiser, Maximilian F. [Ludwig-Maximilians-University, Department of Clinical Radiology, Munich (Germany); Flohr, Thomas; Stierstorfer, Karl [CT Division, Siemens Medical Solutions, Forchheim (Germany)

    2005-02-01

    The aim of this technical investigation was the detailed description of a prototype flat panel detector computed tomography system (FPCT) and its initial evaluation in an ex vivo setting. The prototype FPCT scanner consists of a conventional radiographic flat panel detector, mounted on a multi-slice CT scanner gantry. Explanted human ex vivo heart and foot specimens were examined. Images were reformatted with various reconstruction algorithms and were evaluated for high-resolution anatomic information. For comparison purposes, the ex vivo specimens were also scanned with a conventional 16-detector-row CT scanner (Sensation 16, Siemens Medical Solutions, Forchheim, Germany). With the FPCT prototype used, a 1,024 x 768 resolution matrix can be obtained, resulting in an isotropic voxel size of 0.25 x 0.25 x 0.25 mm at the iso-center. Due to the high spatial resolution, very small structures such as trabecular bone or third-degree, distal branches of coronary arteries could be visualized. This first evaluation showed that flat panel detector systems can be used in a cone-beam computed tomography scanner and that very high spatial resolutions can be achieved. However, there are limitations for in vivo use due to constraints in low contrast resolution and slow scan speed. (orig.)

  20. A forward bias method for lag correction of an a-Si flat panel detector

    International Nuclear Information System (INIS)

    Starman, Jared; Tognina, Carlo; Partain, Larry; Fahrig, Rebecca

    2012-01-01

    Purpose: Digital a-Si flat panel (FP) x-ray detectors can exhibit detector lag, or residual signal, of several percent that can cause ghosting in projection images or severe shading artifacts, known as the radar artifact, in cone-beam computed tomography (CBCT) reconstructions. A major contributor to detector lag is believed to be defect states, or traps, in the a-Si layer of the FP. Software methods to characterize and correct for the detector lag exist, but they may make assumptions such as system linearity and time invariance, which may not be true. The purpose of this work is to investigate a new hardware based method to reduce lag in an a-Si FP and to evaluate its effectiveness at removing shading artifacts in CBCT reconstructions. The feasibility of a novel, partially hardware based solution is also examined. Methods: The proposed hardware solution for lag reduction requires only a minor change to the FP. For pulsed irradiation, the proposed method inserts a new operation step between the readout and data collection stages. During this new stage the photodiode is operated in a forward bias mode, which fills the defect states with charge. A Varian 4030CB panel was modified to allow for operation in the forward bias mode. The contrast of residual lag ghosts was measured for lag frames 2 and 100 after irradiation ceased for standard and forward bias modes. Detector step response, lag, SNR, modulation transfer function (MTF), and detective quantum efficiency (DQE) measurements were made with standard and forward bias firmware. CBCT data of pelvic and head phantoms were also collected. Results: Overall, the 2nd and 100th detector lag frame residual signals were reduced 70%-88% using the new method. SNR, MTF, and DQE measurements show a small decrease in collected signal and a small increase in noise. The forward bias hardware successfully reduced the radar artifact in the CBCT reconstruction of the pelvic and head phantoms by 48%-81%. Conclusions: Overall, the

  1. A true minimally invasive approach for cochlear implantation: high accuracy in cranial base navigation through flat-panel-based volume computed tomography.

    Science.gov (United States)

    Majdani, Omid; Bartling, Soenke H; Leinung, Martin; Stöver, Timo; Lenarz, Minoo; Dullin, Christian; Lenarz, Thomas

    2008-02-01

    High-precision intraoperative navigation using high-resolution flat-panel volume computed tomography makes feasible the possibility of minimally invasive cochlear implant surgery, including cochleostomy. Conventional cochlear implant surgery is typically performed via mastoidectomy with facial recess to identify and avoid damage to vital anatomic landmarks. To accomplish this procedure via a minimally invasive approach--without performing mastoidectomy--in a precise fashion, image-guided technology is necessary. With such an approach, surgical time and expertise may be reduced, and hearing preservation may be improved. Flat-panel volume computed tomography was used to scan 4 human temporal bones. A drilling channel was planned preoperatively from the mastoid surface to the round window niche, providing a margin of safety to all functional important structures (e.g., facial nerve, chorda tympani, incus). Postoperatively, computed tomographic imaging and conventional surgical exploration of the drilled route to the cochlea were performed. All 4 specimens showed a cochleostomy located at the scala tympani anterior inferior to the round window. The chorda tympani was damaged in 1 specimen--this was preoperatively planned as a narrow facial recess was encountered. Using flat-panel volume computed tomography for image-guided surgical navigation, we were able to perform minimally invasive cochlear implant surgery defined as a narrow, single-channel mastoidotomy with cochleostomy. Although this finding is preliminary, it is technologically achievable.

  2. Comparison of dose and image quality of a Flat-panel detector and an image intensifier; Comparacao da dose e qualidade da imagem de um detector Flatpanel e um intensificador de imagem

    Energy Technology Data Exchange (ETDEWEB)

    Lazzaro, M.; Friedrich, B.Q.; Luz, R.M. da; Silva, A.M.M. da, E-mail: marcos.lazzaro@acad.pucrs.br [Pontificia Universidade Catolica do Rio Grande do Sul (PUC-RS), Porto Alegre, RS (Brazil)

    2016-07-01

    With the development of new technologies, have emerged new conversion methods of X-ray image, such as flat panel detectors. The aim of this work is the comparison of entrance surface air kerma (ESAK) and image quality between an image intensifier type of detector (A) and a flat panel (B). The ESAK was obtained by placing a ionization chamber under PMMA simulators of 10, 20 and 30 cm and the image quality was obtained by using the TOR {sup 18}FG simulator. The ESAK to the equipment A is higher when compared to the equipment B. The high contrast resolution is better for the equipment A for all thicknesses of simulators. The equipment A has low contrast resolution with a better viewing threshold for thicknesses of 10 and 20 cm, and a worse performance for 30 cm. It is concluded that the equipment B has ESAK smaller and despite having lower resolution, in almost all cases, have appropriate image quality for diagnosis. (author)

  3. Contrast-detail analysis of three flat panel detectors for digital radiography

    International Nuclear Information System (INIS)

    Borasi, Giovanni; Samei, Ehsan; Bertolini, Marco; Nitrosi, Andrea; Tassoni, Davide

    2006-01-01

    In this paper we performed a contrast detail analysis of three commercially available flat panel detectors, two based on the indirect detection mechanism (GE Revolution XQ/i, system A, and Trixell/Philips Pixium 4600, system B) and one based on the direct detection mechanism (Hologic DirectRay DR 1000, system C). The experiment was conducted using standard x-ray radiation quality and a widely used contrast-detail phantom. Images were evaluated using a four alternative forced choice paradigm on a diagnostic-quality softcopy monitor. At the low and intermediate exposures, systems A and B gave equivalent performances. At the high dose levels, system A performed better than system B in the entire range of target sizes, even though the pixel size of system A was about 40% larger than that of system B. At all the dose levels, the performances of the system C (direct system) were lower than those of system A and B (indirect systems). Theoretical analyses based on the Perception Statistical Model gave similar predicted SNR T values corresponding to an observer efficiency of about 0.08 for systems A and B and 0.05 for system C

  4. Aging of imaging properties of a CMOS flat-panel detector for dental cone-beam computed tomography

    Science.gov (United States)

    Kim, D. W.; Han, J. C.; Yun, S.; Kim, H. K.

    2017-01-01

    We have experimentally investigated the long-term stability of imaging properties of a flat-panel detector in conditions used for dental x-ray imaging. The detector consists of a CsI:Tl layer and CMOS photodiode pixel arrays. Aging simulations were carried out using an 80-kVp x-ray beam at an air-kerma rate of approximately 5 mGy s-1 at the entrance surface of the detector with a total air kerma of up to 0.6 kGy. Dark and flood-field images were periodically obtained during irradiation, and the mean signal and noise levels were evaluated for each image. We also evaluated the modulation-transfer function (MTF), noise-power spectrum (NPS), and detective quantum efficiency (DQE). The aging simulation showed a decrease in both the signal and noise of the gain-offset-corrected images, but there was negligible change in the signal-to-noise performance as a function of the accumulated dose. The gain-offset correction for analyzing images resulted in negligible changes in MTF, NPS, and DQE results over the total dose. Continuous x-ray exposure to a detector can cause degradation in the physical performance factors such the detector sensitivity, but linear analysis of the gain-offset-corrected images can assure integrity of the imaging properties of a detector during its lifetime.

  5. Clinical evaluation of digital radiography based on a large-area cesium iodide-amorphous silicon flat-panel detector compared with screen-film radiography for skeletal system and abdomen

    International Nuclear Information System (INIS)

    Okamura, Terue; Tanaka, Saori; Koyama, Koichi; Norihumi, Nishida; Daikokuya, Hideo; Matsuoka, Toshiyuki; Yamada, Ryusaku; Kishimoto, Kenji; Hatagawa, Masakatsu; Kudoh, Hiroaki

    2002-01-01

    The aim of this clinical study was to compare the image quality of digital radiography using the new digital Bucky system based on a flat-panel detector with that of a conventional screen-film system for the skeletal structure and the abdomen. Fifty patients were examined using digital radiography with a flat-panel detector and screen-film systems, 25 for the skeletal structures and 25 for the abdomen. Six radiologists judged each paired image acquired under the same exposure parameters concerning three observation items for the bone and six items for the abdomen. Digital radiographic images for the bone were evaluated to be similar to screen-film images at the mean of 42.2%, to be superior at 50.2%, and to be inferior at 7.6%. Digital radiographic images for the abdomen were judged to be similar to screen-film images at the mean of 43.4%, superior at 52.4%, and inferior at 4.2%; thus, digital radiographic images were estimated to be either similar as or superior to screen-film images at over 92% for the bone and abdomen. On the statistical analysis, digital radiographic images were also judged to be preferred significantly in the most items for the bone and abdomen. In conclusion, the image quality of digital radiography with a flat-panel detector was superior to that of a screen-film system under the same exposure parameters, suggesting that dose reduction is possible with digital radiography. (orig.)

  6. Non-destructive, preclinical evaluation of root canal anatomy of human teeth with flat-panel detector volume CT (FD-VCT); Zerstoerungsfreie praeklinische Evaluation der Wurzelkanalanatomie menschlicher Zaehne mittels Flaechendetektor-Volumen-CT (FD-VCT)

    Energy Technology Data Exchange (ETDEWEB)

    Heidrich, G.; Hassepass, F.; Dullin, C.; Grabbe, E. [Universitaetsklinikum Goettingen, Abt. Diagnostische Radiologie (Germany); Attin, T.; Hannig, C. [Universitaetsklinikum Goettingen, Abt. fuer Zahnerhaltung, Praeventive Zahnheilkunde und Paradontologie (Germany)

    2005-12-15

    Purpose: Successful endodontic diagnostics and therapy call for adequate depiction of the root canal anatomy with multimodal diagnostic imaging. The aim of the present study is to evaluate visualization of the endodont with flat-panel detector volume CT (FD-VCT). Materials and methods: 13 human teeth were examined with the prototype of a FD-VCT. After data acquisition and generation of volume data sets in volume rendering technology (VRT), the findings obtained were compared to conventional X-rays and cross-section preparations of the teeth. Results: The anatomical structures of the endodont such as root canals, side canals and communications between different root canals as well as dentricles could be detected precisely with FD-VCT. The length of curved root canals was also determined accurately. The spatial resolution of the system is around 140 {mu}m. Only around 73% of the main root canals detected with FD-VCT and 87% of the roots could be visualized with conventional dental X-rays. None of the side canals, shown with FD-VCT, was detectable on conventional X-rays. In all cases the enamel and dentin of the teeth could be well delineated. No differences in image quality could be discerned between stored and freshly extracted teeth, or between primary and adult teeth. (orig.)

  7. Source strength verification and quality assurance of preloaded brachytherapy needles using a CMOS flat panel detector

    Energy Technology Data Exchange (ETDEWEB)

    Golshan, Maryam, E-mail: maryam.golshan@bccancer.bc.ca [Department of Physics, University of British Columbia, Vancouver, British Columbia V6T1Z1, Canada and Department of Medical Physics, Vancouver Center, British Columbia Cancer Agency, Vancouver, British Columbia V5Z 4E6 (Canada); Spadinger, Ingrid [Department of Medical Physics, Vancouver Center, British Columbia Cancer Agency, Vancouver, British Columbia V5Z 4E6 (Canada); Chng, Nick [Department of Medical Physics, Center for the North, British Columbia Cancer Agency, Prince George, British Columbia V2M 7E9 (Canada)

    2016-06-15

    Purpose: Current methods of low dose rate brachytherapy source strength verification for sources preloaded into needles consist of either assaying a small number of seeds from a separate sample belonging to the same lot used to load the needles or performing batch assays of a subset of the preloaded seed trains. Both of these methods are cumbersome and have the limitations inherent to sampling. The purpose of this work was to investigate an alternative approach that uses an image-based, autoradiographic system capable of the rapid and complete assay of all sources without compromising sterility. Methods: The system consists of a flat panel image detector, an autoclavable needle holder, and software to analyze the detected signals. The needle holder was designed to maintain a fixed vertical spacing between the needles and the image detector, and to collimate the emissions from each seed. It also provides a sterile barrier between the needles and the imager. The image detector has a sufficiently large image capture area to allow several needles to be analyzed simultaneously.Several tests were performed to assess the accuracy and reproducibility of source strengths obtained using this system. Three different seed models (Oncura 6711 and 9011 {sup 125}I seeds, and IsoAid Advantage {sup 103}Pd seeds) were used in the evaluations. Seeds were loaded into trains with at least 1 cm spacing. Results: Using our system, it was possible to obtain linear calibration curves with coverage factor k = 1 prediction intervals of less than ±2% near the centre of their range for the three source models. The uncertainty budget calculated from a combination of type A and type B estimates of potential sources of error was somewhat larger, yielding (k = 1) combined uncertainties for individual seed readings of 6.2% for {sup 125}I 6711 seeds, 4.7% for {sup 125}I 9011 seeds, and 11.0% for Advantage {sup 103}Pd seeds. Conclusions: This study showed that a flat panel detector dosimetry system

  8. Noise, sampling, and the number of projections in cone-beam CT with a flat-panel detector

    International Nuclear Information System (INIS)

    Zhao, Z.; Gang, G. J.; Siewerdsen, J. H.

    2014-01-01

    Purpose: To investigate the effect of the number of projection views on image noise in cone-beam CT (CBCT) with a flat-panel detector. Methods: This fairly fundamental consideration in CBCT system design and operation was addressed experimentally (using a phantom presenting a uniform medium as well as statistically motivated “clutter”) and theoretically (using a cascaded systems model describing CBCT noise) to elucidate the contributing factors of quantum noise (σ Q ), electronic noise (σ E ), and view aliasing (σ view ). Analysis included investigation of the noise, noise-power spectrum, and modulation transfer function as a function of the number of projections (N proj ), dose (D tot ), and voxel size (b vox ). Results: The results reveal a nonmonotonic relationship between image noise andN proj at fixed total dose: for the CBCT system considered, noise decreased with increasing N proj due to reduction of view sampling effects in the regime N proj proj due to increased electronic noise. View sampling effects were shown to depend on the heterogeneity of the object in a direct analytical relationship to power-law anatomical clutter of the form κ/f  β —and a general model of individual noise components (σ Q , σ E , and σ view ) demonstrated agreement with measurements over a broad range in N proj , D tot , and b vox . Conclusions: The work elucidates fairly basic elements of CBCT noise in a manner that demonstrates the role of distinct noise components (viz., quantum, electronic, and view sampling noise). For configurations fairly typical of CBCT with a flat-panel detector (FPD), the analysis reveals a “sweet spot” (i.e., minimum noise) in the rangeN proj ∼ 250–350, nearly an order of magnitude lower in N proj than typical of multidetector CT, owing to the relatively high electronic noise in FPDs. The analysis explicitly relates view aliasing and quantum noise in a manner that includes aspects of the object (“clutter”) and imaging chain

  9. Flat-detector computed tomography in diagnostic and interventional neuroradiology

    International Nuclear Information System (INIS)

    Struffert, T.; Doerfler, A.

    2009-01-01

    Originally aimed at improving standard radiography by providing higher absorption efficiency and a wider dynamic range than available with film-screen and phosphor luminescence, radiography flat detector technology is now widely accepted for neuroangiographic imaging. Especially flat-detector computed tomography (FD-CT), which uses rotational C-arm mounted flat-panel detector technology, is capable of volumetric imaging with a high spatial resolution. As ''angiographic CT'' FD-CT may be helpful in many diagnostic and neurointerventional procedures, e.g. intracranial stenting for cerebrovascular stenoses, stent-assisted coil embolization of wide-necked cerebral aneurysms and embolization of arteriovenous malformations. By providing morphologic, CT-like images of the brain within the angiography suite FD-CT allows rapid visualization of periprocedural hemorrhaging and may thus improve rapid complication management without the need of patient transfer. In addition, myelography and postmyelographic FD-CT imaging can be carried out using a single modality. Spinal interventions, such as kyphoplasty or vertebroplasty might also benefit from FD-CT. Imaging of the temporal bone may also develop into an important field of FD-CT. This paper briefly reviews the technical principles of FD technology and the potential applications in diagnostic and interventional neuroradiology. (orig.) [de

  10. Comparison of imaging properties of direct-type and indirect-type of flat-panel detector

    International Nuclear Information System (INIS)

    Matsumoto, Masao; Suekane, Koji; Ichimaru, Yasunobu; Ogata, Yuji; Inamura, Kiyonari; Kanai, Kouzou; Kanamori, Hitoshi

    2002-01-01

    A Flat-Panel Detector (FPD) has many advantages such as eliminating cassette handling and being able to display a preview image immediately in addition to the digital image processing and the networking. Thus, the FPD has ability to innovate the radiology department. We measured and evaluated the digital and over-all imaging properties (characteristic curves, modulation Transfer Functions, Wiener spectra and Noise Equivalent Quanta (NEQ) for the direct-type and indirect-type of FPD. The pre-sampling and overall NEQ of the indirect-type of FPD were better than the NEQ of the direct-type of FPD at lower spatial frequencies, but were worse at higher spatial frequencies. The FPD can take image data at real-time and be easy to digitalize. From these results, Screen/Film system and Computed Radiography system will be replaced by the FPD system, together with diffusion of CAD, cone beam Computed Tomography (CT) system and open-type Magnetic Resonance Imagining (MRI) system. (T. Tanaka)

  11. Cone-Beam CT with Flat-Panel-Detector Digital Angiography System: Early Experience in Abdominal Interventional Procedures

    International Nuclear Information System (INIS)

    Hirota, Shozo; Nakao, Norio; Yamamoto, Satoshi; Kobayashi, Kaoru; Maeda, Hiroaki; Ishikura, Reiichi; Miura, Koui; Sakamoto, Kiyoshi; Ueda, Ken; Baba, Rika

    2006-01-01

    We developed a cone-beam computed tomography (CBCT) system equipped with a large flat-panel detector. Data obtained by 200 o rotation imaging are reconstructed by means of CBCT to generate three-dimensional images. We report the use of CBCT angiography using CBCT in 10 patients with 8 liver malignancies and 2 hypersplenisms during abdominal interventional procedures. CBCT was very useful for interventional radiologists to confirm a perfusion area of the artery catheter wedged on CT by injection of contrast media through the catheter tip, although the image quality was slightly degraded, scoring as 2.60 on average by streak artifacts. CBCT is space-saving because it does not require a CT system with a gantry, and it is also time-saving because it does not require the transfer of patients

  12. Flat-Panel Computed Tomography (DYNA-CT) in Neuroradiology. From High-Resolution Imaging of Implants to One-Stop-Shopping for Acute Stroke.

    Science.gov (United States)

    Doerfler, A; Gölitz, P; Engelhorn, T; Kloska, S; Struffert, T

    2015-10-01

    Originally aimed at improving standard radiography by providing higher absorption efficiency and a wider dynamic range, flat-panel detector technology has meanwhile got widely accepted in the neuroradiological community. Especially flat-panel detector computed tomography (FD-CT) using rotational C-arm mounted flat-panel detector technology is capable of volumetric imaging with a high spatial resolution. By providing CT-like images of the brain within the angio suite, FD-CT is able to rapidly visualize hemorrhage and may thus improve complication management without the need of patient transfer. As "Angiographic CT" FD-CT may be helpful during many diagnostic and neurointerventional procedures and for noninvasive monitoring and follow-up. In addition, spinal interventions and high-resolution imaging of the temporal bone might also benefit from FD-CT. Finally, using novel dynamic perfusion and angiographic protocols, FD-CT may provide functional information on brain perfusion and vasculature with the potential to replace standard imaging in selected acute stroke patients.

  13. Dynamic chest radiography: flat-panel detector (FPD) based functional X-ray imaging.

    Science.gov (United States)

    Tanaka, Rie

    2016-07-01

    Dynamic chest radiography is a flat-panel detector (FPD)-based functional X-ray imaging, which is performed as an additional examination in chest radiography. The large field of view (FOV) of FPDs permits real-time observation of the entire lungs and simultaneous right-and-left evaluation of diaphragm kinetics. Most importantly, dynamic chest radiography provides pulmonary ventilation and circulation findings as slight changes in pixel value even without the use of contrast media; the interpretation is challenging and crucial for a better understanding of pulmonary function. The basic concept was proposed in the 1980s; however, it was not realized until the 2010s because of technical limitations. Dynamic FPDs and advanced digital image processing played a key role for clinical application of dynamic chest radiography. Pulmonary ventilation and circulation can be quantified and visualized for the diagnosis of pulmonary diseases. Dynamic chest radiography can be deployed as a simple and rapid means of functional imaging in both routine and emergency medicine. Here, we focus on the evaluation of pulmonary ventilation and circulation. This review article describes the basic mechanism of imaging findings according to pulmonary/circulation physiology, followed by imaging procedures, analysis method, and diagnostic performance of dynamic chest radiography.

  14. Design scenarios for flat panel photobioreactors

    International Nuclear Information System (INIS)

    Slegers, P.M.; Wijffels, R.H.; Straten, G. van; Boxtel, A.J.B. van

    2011-01-01

    Evaluation of the potential of algae production for biofuel and other products at various locations throughout the world requires assessment of algae productivity under varying light conditions and different reactor layouts. A model was developed to predict algae biomass production in flat panel photobioreactors using the interaction between light and algae growth for the algae species Phaeodactylum tricornutum and Thalassiosira pseudonana. The effect of location, variable sunlight and reactor layout on biomass production in single standing and parallel positioned flat panels was considered. Three latitudes were studied representing the Netherlands, France and Algeria. In single standing reactors the highest yearly biomass production is achieved in Algeria. During the year biomass production fluctuates the most in the Netherlands, while it is almost constant in Algeria. Several combinations of path lengths and biomass concentrations can result in the same optimal biomass production. The productivity in parallel place flat panels is strongly influenced by shading and diffuse light penetration between the panels. Panel orientation has a large effect on productivity and at higher latitudes the difference between north-south and east-west orientation may go up to 50%.

  15. Metal artifact reduction for flat panel detector intravenous CT angiography in patients with intracranial metallic implants after endovascular and surgical treatment.

    Science.gov (United States)

    Pjontek, Rastislav; Önenköprülü, Belgin; Scholz, Bernhard; Kyriakou, Yiannis; Schubert, Gerrit A; Nikoubashman, Omid; Othman, Ahmed; Wiesmann, Martin; Brockmann, Marc A

    2016-08-01

    Flat panel detector CT angiography with intravenous contrast agent injection (IV CTA) allows high-resolution imaging of cerebrovascular structures. Artifacts caused by metallic implants like platinum coils or clips lead to degradation of image quality and are a significant problem. To evaluate the influence of a prototype metal artifact reduction (MAR) algorithm on image quality in patients with intracranial metallic implants. Flat panel detector CT after intravenous application of 80 mL contrast agent was performed with an angiography system (Artis zee; Siemens, Forchheim, Germany) using a 20 s rotation protocol (200° rotation angle, 20 s acquisition time, 496 projections). The data before and after MAR of 26 patients with a total of 34 implants (coils, clips, stents) were independently evaluated by two blinded neuroradiologists. MAR improved the assessability of the brain parenchyma and small vessels (diameter metallic implants and at a distance of 6 cm (p<0.001 each, Wilcoxon test). Furthermore, MAR significantly improved the assessability of parent vessel patency and potential aneurysm remnants (p<0.005 each, McNemar test). MAR, however, did not improve assessability of stented vessels. When an intravenous contrast protocol is used, MAR significantly ameliorates the assessability of brain parenchyma, vessels, and treated aneurysms in patients with intracranial coils or clips. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/

  16. Use and imaging performance of CMOS flat panel imager with LiF/ZnS(Ag) and Gadox scintillation screens for neutron radiography

    Science.gov (United States)

    Cha, B. K.; kim, J. Y.; Kim, T. J.; Sim, C.; Cho, G.; Lee, D. H.; Seo, C.-W.; Jeon, S.; Huh, Y.

    2011-01-01

    In digital neutron radiography system, a thermal neutron imaging detector based on neutron-sensitive scintillating screens with CMOS(complementary metal oxide semiconductor) flat panel imager is introduced for non-destructive testing (NDT) application. Recently, large area CMOS APS (active-pixel sensor) in conjunction with scintillation films has been widely used in many digital X-ray imaging applications. Instead of typical imaging detectors such as image plates, cooled-CCD cameras and amorphous silicon flat panel detectors in combination with scintillation screens, we tried to apply a scintillator-based CMOS APS to neutron imaging detection systems for high resolution neutron radiography. In this work, two major Gd2O2S:Tb and 6LiF/ZnS:Ag scintillation screens with various thickness were fabricated by a screen printing method. These neutron converter screens consist of a dispersion of Gd2O2S:Tb and 6LiF/ZnS:Ag scintillating particles in acrylic binder. These scintillating screens coupled-CMOS flat panel imager with 25x50mm2 active area and 48μm pixel pitch was used for neutron radiography. Thermal neutron flux with 6x106n/cm2/s was utilized at the NRF facility of HANARO in KAERI. The neutron imaging characterization of the used detector was investigated in terms of relative light output, linearity and spatial resolution in detail. The experimental results of scintillating screen-based CMOS flat panel detectors demonstrate possibility of high sensitive and high spatial resolution imaging in neutron radiography system.

  17. Gain and offset calibration reduces variation in exposure-dependent SNR among systems with identical digital flat-panel detectors.

    Science.gov (United States)

    Willis, Charles E; Vinogradskiy, Yevgeniy Y; Lofton, Brad K; White, R Allen

    2011-07-01

    The conditions under which vendor performance criteria for digital radiography systems are obtained do not adequately simulate the conditions of actual clinical imaging with respect to radiographic technique factors, scatter production, and scatter control. Therefore, the relationship between performance under ideal conditions and performance in clinical practice remains unclear. Using data from a large complement of systems in clinical use, the authors sought to develop a method to establish expected performance criteria for digital flat-panel radiography systems with respect to signal-to-noise ratio (SNR) versus detector exposure under clinical conditions for thoracic imaging. The authors made radiographic exposures of a patient-equivalent chest phantom at 125 kVp and 180 cm source-to-image distance. The mAs value was modified to produce exposures above and below the mAs delivered by automatic exposure control. Exposures measured free-in-air were corrected to the imaging plane by the inverse square law, by the attenuation factor of the phantom, and by the Bucky factor of the grid for the phantom, geometry, and kilovolt peak. SNR was evaluated as the ratio of the mean to the standard deviation (SD) of a region of interest automatically selected in the center of each unprocessed image. Data were acquired from 18 systems, 14 of which were tested both before and after gain and offset calibration. SNR as a function of detector exposure was interpolated using a double logarithmic function to stratify the data into groups of 0.2, 0.5, 1.0, 2.0, and 5.0 mR exposure (1.8, 4.5, 9.0, 18, and 45 microGy air KERMA) to the detector. The mean SNR at each exposure interval after calibration exhibited linear dependence on the mean SNR before calibration (r2=0.9999). The dependence was greater than unity (m = 1.101 +/- 0.006), and the difference from unity was statistically significant (p grid replacement. The nonconformant behavior of the other system was corrected by replacing

  18. Development of high quantum efficiency, flat panel, thick detectors for megavoltage x-ray imaging: An experimental study of a single-pixel prototype

    International Nuclear Information System (INIS)

    Mei, X.; Pang, G.

    2005-01-01

    Our overall goal is to develop a new generation of electronic portal imaging devices (EPIDs) with a quantum efficiency (QE) more than an order of magnitude higher and a spatial resolution equivalent to that of EPIDs currently used for portal imaging. A novel design of such a high QE flat-panel based EPID was introduced recently and its feasibility was investigated theoretically [see Pang and Rowlands, Med. Phys. 31, 3004 (2004)]. In this work, we constructed a prototype single-pixel detector based on the novel design. Some fundamental imaging properties including the QE, spatial resolution, and sensitivity of the prototype detector were measured with a 6 MV beam. It has been shown that the experimental results agree well with theoretical predictions and further development based on the novel design including the construction of a prototype area detector is warranted

  19. Rocky Flats Neutron Detector Testing at Valduc, France

    International Nuclear Information System (INIS)

    Kim, S.S.; Dulik, G.M.

    2011-01-01

    Recent program requirements of the US Department of Energy/NNSA have led to a need for a criticality accident alarm system to be installed at a newly activated facility. The Criticality Safety Group of the Lawrence Livermore National Laboratory (LLNL) was able to recover and store for possible future use approximately 200 neutron criticality detectors and 20 master alarm panels from the former Rocky Flats Plant in Golden, Colorado when the plant was closed. The Criticality Safety Group participated in a facility analysis and evaluation, the engineering design and review process, as well as the refurbishment, testing, and recalibration of the Rocky Flats criticality alarm system equipment to be used in the new facility. In order to demonstrate the functionality and survivability of the neutron detectors to the effects of an actual criticality accident, neutron detector testing was performed at the French CEA Valduc SILENE reactor from October 7 to October 19, 2010. The neutron detectors were exposed to three criticality events or pulses generated by the SILENE reactor. The first excursion was performed with a bare or unshielded reactor, and the second excursion was made with a lead shielded/reflected reactor, and the third excursion with a polyethylene reflected core. These tests of the Rocky Flats neutron detectors were performed as a part of the 2010 Criticality Accident Alarm System Benchmark Measurements at the SILENE Reactor. The principal investigators for this series of experiments were Thomas M. Miller and John C. Wagner of the Oak Ridge National Laboratory, with Nicolas Authier and Nathalie Baclet of CEA Valduc. Several other organizations were also represented, including the Y-12 National Security Complex, Lawrence Livermore National Laboratory, Los Alamos National Laboratory, CEA Saclay, and Babcock International Group.

  20. Preliminary performance of image quality for a low-dose C-arm CT system with a flat-panel detector

    Energy Technology Data Exchange (ETDEWEB)

    Kyung Cha, Bo [Advanced Medical Device Research Center, Korea Electrotechnology Research Institute, Ansan (Korea, Republic of); Seo, Chang-Woo [Department of Radiation Convergence Engineering, College of Health Science, Yonsei University, Wonju (Korea, Republic of); Yang, Keedong [Advanced Medical Device Research Center, Korea Electrotechnology Research Institute, Ansan (Korea, Republic of); Jeon, Seongchae, E-mail: sarim@keri.re.kr [Advanced Medical Device Research Center, Korea Electrotechnology Research Institute, Ansan (Korea, Republic of); Huh, Young [Advanced Medical Device Research Center, Korea Electrotechnology Research Institute, Ansan (Korea, Republic of)

    2015-06-01

    Digital flat panel imager (FPI)-based cone-beam computed tomography (CBCT) has been widely used in C-arm imaging for spine surgery and interventional procedures. The system provides real-time fluoroscopy with high spatial resolution and three-dimensional (3D) visualization of anatomical structure without the need for patient transportation in interventional suite. In this work, a prototype CBCT imaging platform with continuous single rotation about the gantry was developed by using a large-area flat-panel detector with amorphous Si-based thin film transistor matrix. The different 2D projection images were acquired during constant gantry velocity for reconstructed images at a tube voltage of 80–120 kVp, and different current (10–50 mA) conditions. Various scan protocols were applied to a chest phantom human by changing the number of projection images and scanning angles. The projections were then reconstructed into a volumetric data of sections by using a 3D reconstruction algorithm (e.g., filtered back projection). The preliminary quantitative X-ray performance of our CBCT system was investigated by using the American Association of Physicists in Medicine CT phantom in terms of spatial resolution, contrast resolution, and CT number linearity for mobile or fixed C-arm based CBCT application with limited rotational geometry. The novel results of the projection data with different scanning angles and angular increments in the orbital gantry platform were acquired and evaluated experimentally.

  1. Preliminary performance of image quality for a low-dose C-arm CT system with a flat-panel detector

    International Nuclear Information System (INIS)

    Kyung Cha, Bo; Seo, Chang-Woo; Yang, Keedong; Jeon, Seongchae; Huh, Young

    2015-01-01

    Digital flat panel imager (FPI)-based cone-beam computed tomography (CBCT) has been widely used in C-arm imaging for spine surgery and interventional procedures. The system provides real-time fluoroscopy with high spatial resolution and three-dimensional (3D) visualization of anatomical structure without the need for patient transportation in interventional suite. In this work, a prototype CBCT imaging platform with continuous single rotation about the gantry was developed by using a large-area flat-panel detector with amorphous Si-based thin film transistor matrix. The different 2D projection images were acquired during constant gantry velocity for reconstructed images at a tube voltage of 80–120 kVp, and different current (10–50 mA) conditions. Various scan protocols were applied to a chest phantom human by changing the number of projection images and scanning angles. The projections were then reconstructed into a volumetric data of sections by using a 3D reconstruction algorithm (e.g., filtered back projection). The preliminary quantitative X-ray performance of our CBCT system was investigated by using the American Association of Physicists in Medicine CT phantom in terms of spatial resolution, contrast resolution, and CT number linearity for mobile or fixed C-arm based CBCT application with limited rotational geometry. The novel results of the projection data with different scanning angles and angular increments in the orbital gantry platform were acquired and evaluated experimentally

  2. Image quality analysis of vibration effects In C-arm-flat panel X-ray imaging

    NARCIS (Netherlands)

    Snoeren, R.M.; Kroon, J.N.; With, de P.H.N.

    2011-01-01

    The motion of C-arm scanning X-ray systems may result in vibrations of the imaging sub-system. In this paper, we connect C-arm system vibrations to Image Quality (IQ) deterioration for 2D angiography and 3D cone beam X-ray imaging, using large Flat Panel detectors. Vibrations will affect the

  3. Characteristics and applications of a flat panel computer tomography system

    International Nuclear Information System (INIS)

    Knollmann, F.; Valencia, R.; Obenauer, S.; Buhk, J.H.

    2006-01-01

    Purpose: to assess a new flat panel volume computed tomography (FP-VCT) with very high isotropic spatial resolution as well as high Z-axis coverage. Materials and Methods: The prototype of an FP-VCT scanner with a detector cell size of 0.2 mm was used for numerous phantom studies, specimen examinations, and animal research projects. Results: The high spatial resolution of the new system can be used to accurately determine solid tumor volume, thus allowing for earlier assessment of the therapeutic response. In animal experimentation, whole-body perfusion mapping of mice is feasible. The high spatial resolution also improves the classification of coronary artery atherosclerotic plaques in the isolated post mortem human heart. With the depiction of intramyocardial segments of the coronary arteries, investigations of myocardial collateral circulation are feasible. In skeletal applications, an accurate analysis of the smallest bony structures, e.g., petrous bone and dental preparations, can be successfully performed, as well as investigations of repetitive studies of fracture healing and the treatment of osteoporosis. Conclusion: The introduction of FP-VCT opens up new applications for CT, including the field of molecular imaging, which are highly attractive for future clinical applications. Present limitations include limited temporal resolution and necessitate further improvement of the system. (orig.)

  4. Flat detectors and their clinical applications

    International Nuclear Information System (INIS)

    Spahn, Martin

    2005-01-01

    Diagnostic and interventional flat detector X-ray systems are penetrating the market in all application segments. First introduced in radiography and mammography, they have conquered cardiac and general angiography and are getting increasing attention in fluoroscopy. Two flat detector technologies prevail. The dominating method is based on an indirect X-ray conversion process, using cesium iodide scintillators. It offers considerable advantages in radiography, angiography and fluoroscopy. The other method employs a direct converter such as selenium which is particularly suitable for mammography. Both flat detector technologies are based on amorphous silicon active pixel matrices. Flat detectors facilitate the clinical workflow in radiographic rooms, foster improved image quality and provide the potential to reduce dose. This added value is based on their large dynamic range, their high sensitivity to X-rays and the instant availability of the image. Advanced image processing is instrumental in these improvements and expand the range of conventional diagnostic methods. In angiography and fluoroscopy the transition from image intensifiers to flat detectors is facilitated by ample advantages they offer, such as distortion-free images, excellent coarse contrast, large dynamic range and high X-ray sensitivity. These characteristics and their compatibility with strong magnetic fields are the basis for improved diagnostic methods and innovative interventional applications. (orig.)

  5. The design and imaging characteristics of dynamic, solid-state, flat-panel x-ray image detectors for digital fluoroscopy and fluorography

    International Nuclear Information System (INIS)

    Cowen, A.R.; Davies, A.G.; Sivananthan, M.U.

    2008-01-01

    Dynamic, flat-panel, solid-state, x-ray image detectors for use in digital fluoroscopy and fluorography emerged at the turn of the millennium. This new generation of dynamic detectors utilize a thin layer of x-ray absorptive material superimposed upon an electronic active matrix array fabricated in a film of hydrogenated amorphous silicon (a-Si:H). Dynamic solid-state detectors come in two basic designs, the indirect-conversion (x-ray scintillator based) and the direct-conversion (x-ray photoconductor based). This review explains the underlying principles and enabling technologies associated with these detector designs, and evaluates their physical imaging characteristics, comparing their performance against the long established x-ray image intensifier television (TV) system. Solid-state detectors afford a number of physical imaging benefits compared with the latter. These include zero geometrical distortion and vignetting, immunity from blooming at exposure highlights and negligible contrast loss (due to internal scatter). They also exhibit a wider dynamic range and maintain higher spatial resolution when imaging over larger fields of view. The detective quantum efficiency of indirect-conversion, dynamic, solid-state detectors is superior to that of both x-ray image intensifier TV systems and direct-conversion detectors. Dynamic solid-state detectors are playing a burgeoning role in fluoroscopy-guided diagnosis and intervention, leading to the displacement of x-ray image intensifier TV-based systems. Future trends in dynamic, solid-state, digital fluoroscopy detectors are also briefly considered. These include the growth in associated three-dimensional (3D) visualization techniques and potential improvements in dynamic detector design

  6. Quantitative comparison using Generalized Relative Object Detectability (G-ROD) metrics of an amorphous selenium detector with high resolution Microangiographic Fluoroscopes (MAF) and standard flat panel detectors (FPD).

    Science.gov (United States)

    Russ, M; Shankar, A; Jain, A; Setlur Nagesh, S V; Ionita, C N; Scott, C; Karim, K S; Bednarek, D R; Rudin, S

    2016-02-27

    A novel amorphous selenium (a-Se) direct detector with CMOS readout has been designed, and relative detector performance investigated. The detector features include a 25 μ m pixel pitch, and 1000 μ m thick a-Se layer operating at 10V/ μ m bias field. A simulated detector DQE was determined, and used in comparative calculations of the Relative Object Detectability (ROD) family of prewhitening matched-filter (PWMF) observer and non-prewhitening matched filter (NPWMF) observer model metrics to gauge a-Se detector performance against existing high resolution micro-angiographic fluoroscopic (MAF) detectors and a standard flat panel detector (FPD). The PWMF-ROD or ROD metric compares two x-ray imaging detectors in their relative abilities in imaging a given object by taking the integral over spatial frequencies of the Fourier transform of the detector DQE weighted by an object function, divided by the comparable integral for a different detector. The generalized-ROD (G-ROD) metric incorporates clinically relevant parameters (focal-spot size, magnification, and scatter) to show the degradation in imaging performance for detectors that are part of an imaging chain. Preliminary ROD calculations using simulated spheres as the object predicted superior imaging performance by the a-Se detector as compared to existing detectors. New PWMF-G-ROD and NPWMF-G-ROD results still indicate better performance by the a-Se detector in an imaging chain over all sphere sizes for various focal spot sizes and magnifications, although a-Se performance advantages were degraded by focal spot blurring. Nevertheless, the a-Se technology has great potential to provide breakthrough abilities such as visualization of fine details including of neuro-vascular perforator vessels and of small vascular devices.

  7. Cerebral blood volume imaging by flat detector computed tomography in comparison to conventional multislice perfusion CT

    International Nuclear Information System (INIS)

    Struffert, Tobias; Kloska, Stephan; Engelhorn, Tobias; Doerfler, Arnd; Deuerling-Zheng, Yu; Boese, Jan; Zellerhoff, Michael; Schwab, Stefan

    2011-01-01

    We tested the hypothesis that Flat Detector computed tomography (FD-CT) with intravenous contrast medium would allow the calculation of whole brain cerebral blood volume (CBV) mapping (FD-CBV) and would correlate with multislice Perfusion CT (PCT). Twenty five patients were investigated with FD-CBV and PCT. Correlation of the CBV maps of both techniques was carried out with measurements from six anatomical regions from both sides of the brain. Mean values of each region and the correlation coefficient were calculated. Bland-Altman analysis was performed to compare the two different imaging techniques. The image and data quality of both PCT and FD-CBV were suitable for evaluation in all patients. The mean CBV values of FD-CBV and PCT showed only minimal differences with overlapping standard deviation. The correlation coefficient was 0.79 (p < 0.01). Bland-Altman analysis showed a mean difference of -0.077 ± 0.48 ml/100 g between FD-CBV and PCT CBV measurements, indicating that FD-CBV values were only slightly lower than those of PCT. CBV mapping with intravenous contrast medium using Flat Detector CT compared favourably with multislice PCT. The ability to assess cerebral perfusion within the angiographic suite may improve the management of ischaemic stroke and evaluation of the efficacy of dedicated therapies. (orig.)

  8. Dynamic flat panel detector versus image intensifier in cardiac imaging: dose and image quality

    Science.gov (United States)

    Vano, E.; Geiger, B.; Schreiner, A.; Back, C.; Beissel, J.

    2005-12-01

    The practical aspects of the dosimetric and imaging performance of a digital x-ray system for cardiology procedures were evaluated. The system was configured with an image intensifier (II) and later upgraded to a dynamic flat panel detector (FD). Entrance surface air kerma (ESAK) to phantoms of 16, 20, 24 and 28 cm of polymethyl methacrylate (PMMA) and the image quality of a test object were measured. Images were evaluated directly on the monitor and with numerical methods (noise and signal-to-noise ratio). Information contained in the DICOM header for dosimetry audit purposes was also tested. ESAK values per frame (or kerma rate) for the most commonly used cine and fluoroscopy modes for different PMMA thicknesses and for field sizes of 17 and 23 cm for II, and 20 and 25 cm for FD, produced similar results in the evaluated system with both technologies, ranging between 19 and 589 µGy/frame (cine) and 5 and 95 mGy min-1 (fluoroscopy). Image quality for these dose settings was better for the FD version. The 'study dosimetric report' is comprehensive, and its numerical content is sufficiently accurate. There is potential in the future to set those systems with dynamic FD to lower doses than are possible in the current II versions, especially for digital cine runs, or to benefit from improved image quality.

  9. Development of CT and 3D-CT Using Flat Panel Detector Based Real-Time Digital Radiography System

    International Nuclear Information System (INIS)

    Ravindran, V. R.; Sreelakshmi, C.; Vibin

    2008-01-01

    The application of Digital Radiography in the Nondestructive Evaluation (NDE) of space vehicle components is a recent development in India. A Real-time DR system based on amorphous silicon Flat Panel Detector has been developed for the NDE of solid rocket motors at Rocket Propellant Plant of VSSC in a few years back. The technique has been successfully established for the nondestructive evaluation of solid rocket motors. The DR images recorded for a few solid rocket specimens are presented in the paper. The Real-time DR system is capable of generating sufficient digital X-ray image data with object rotation for the CT image reconstruction. In this paper the indigenous development of CT imaging based on the Realtime DR system for solid rocket motor is presented. Studies are also carried out to generate 3D-CT image from a set of adjacent CT images of the rocket motor. The capability of revealing the spatial location and characterisation of defect is demonstrated by the CT and 3D-CT images generated.

  10. Imaging responses of on-site CsI and Gd2O2S flat-panel detectors: Dependence on the tube voltage

    Science.gov (United States)

    Jeon, Hosang; Chung, Myung Jin; Youn, Seungman; Nam, Jiho; Lee, Jayoung; Park, Dahl; Kim, Wontaek; Ki, Yongkan; Kim, Ho Kyung

    2015-07-01

    One of the emerging issues in radiography is low-dose imaging to minimize patient's exposure. The scintillating materials employed in most indirect flat-panel detectors show a drastic change of X-ray photon absorption efficiency around their K-edge energies that consequently affects image quality. Using various tube voltages, we investigated the imaging performance of most popular scintillators: cesium iodide (CsI) and gadolinium oxysulfide (Gd2O2S). The integrated detective quantum efficiencies (iDQE) of four detectors installed in the same hospital were evaluated according to the standardized procedure IEC 62220-1 at tube voltages of 40 - 120 kVp. The iDQE values of the Gd2O2S detectors were normalized by those of CsI detectors to exclude the effects of image postprocessing. The contrast-to-noise ratios (CNR) were also evaluated by using an anthropomorphic chest phantom. The iDQE of the CsI detector outperformed that of the Gd2O2S detector over all tube voltages. Moreover, we noted that the iDQE of the Gd2O2S detectors quickly rolled off with decreasing tube voltage under 70 kVp. The CNRs of the two scintillators were similar at 120 kVp. At 60 kVp, however, the CNR of Gd2O2S was about half that of CsI. Compared to the Gd2O2S detectors, variations in the DQE performance of the CsI detectors were relatively immune to variations in the applied tube voltages. Therefore, we claim that Gd2O2S detectors are inappropriate for use in low-tube-voltage imaging (e.g., extremities and pediatrics) with low patient exposure.

  11. Quantitative image quality evaluation of pixel-binning in a flat-panel detector for x-ray fluoroscopy

    International Nuclear Information System (INIS)

    Srinivas, Yogesh; Wilson, David L.

    2004-01-01

    X-ray fluoroscopy places stringent design requirements on new flat-panel (FP) detectors, requiring both low-noise electronics and high data transfer rates. Pixel-binning, wherein data from more that one detector pixel are collected simultaneously, not only lowers the data transfer rate but also increases x-ray counts and pixel signal-to-noise ratio (SNR). In this study, we quantitatively assessed image quality of image sequences from four acquisition methods; no-binning and three types of binning; in synthetic images using a clinically relevant task of detecting an extended guidewire in a four-alternative forced-choice paradigm. Binning methods were conventional data-line (D) and gate-line (G) binning, and a novel method in which alternate frames in an image sequence used D and G binning. Two detector orientations placed the data lines either parallel or perpendicular to the guide wire. At a low exposure of 0.6 μR (1.548x10 -10 C/kg) per frame, irrespective of detector orientation, D binning with its reduced electronic noise was significantly (p -10 C/kg) per frame, with data lines parallel to the guidewire, detection with D binning was significantly (p<0.1) better than G binning. However, with data lines perpendicular to the guidewire, G binning was significantly (p<0.1) better than D binning because the partial area effect was reduced. Alternate binning was the best binning method when results were averaged over both orientations, and it was as good as the best binning method at either orientation. In addition, at low and high exposures, alternate binning gave a temporally fused image with a smooth guidewire, an important image quality feature not assessed in a detection experiment. While at high exposure, detection with no binning was as good, or better, than the best binning method, it might be impractical at fluoroscopy imaging rates. A computational observer model based on signal detection theory successfully fit data and was used to predict effects of

  12. Flat-detector computed tomography (FD-CT)

    International Nuclear Information System (INIS)

    Kalender, Willi A.; Kyriakou, Yiannis

    2007-01-01

    Flat-panel detectors or, synonymously, flat detectors (FDs) have been developed for use in radiography and fluoroscopy with the defined goal to replace standard X-ray film, film-screen combinations and image intensifiers by an advanced sensor system. FD technology in comparison to X-ray film and image intensifiers offers higher dynamic range, dose reduction, fast digital readout and the possibility for dynamic acquisitions of image series, yet keeping to a compact design. It appeared logical to employ FD designs also for computed tomography (CT) imaging. Respective efforts date back a few years only, but FD-CT has meanwhile become widely accepted for interventional and intra-operative imaging using C-arm systems. FD-CT provides a very efficient way of combining two-dimensional (2D) radiographic or fluoroscopic and 3D CT imaging. In addition, FD technology made its way into a number of dedicated CT scanner developments, such as scanners for the maxillo-facial region or for micro-CT applications. This review focuses on technical and performance issues of FD technology and its full range of applications for CT imaging. A comparison with standard clinical CT is of primary interest. It reveals that FD-CT provides higher spatial resolution, but encompasses a number of disadvantages, such as lower dose efficiency, smaller field of view and lower temporal resolution. FD-CT is not aimed at challenging standard clinical CT as regards to the typical diagnostic examinations; but it has already proven unique for a number of dedicated CT applications, offering distinct practical advantages, above all the availability of immediate CT imaging in the interventional suite or the operating room. (orig.)

  13. Flat panel display - Impurity doping technology for flat panel displays

    Energy Technology Data Exchange (ETDEWEB)

    Suzuki, Toshiharu [Advanced Technology Planning, Sumitomo Eaton Nova Corporation, SBS Tower 9F, 10-1, Yoga 4-chome, Setagaya-ku, 158-0097 Tokyo (Japan)]. E-mail: suzuki_tsh@senova.co.jp

    2005-08-01

    Features of the flat panel displays (FPDs) such as liquid crystal display (LCD) and organic light emitting diode (OLED) display, etc. using low temperature poly-Si (LTPS) thin film transistors (TFTs) are briefly reviewed comparing with other FPDs. The requirements for fabricating TFTs used for high performance FPDs and system on glass (SoG) are addressed. This paper focuses on the impurity doping technology, which is one of the key technologies together with crystallization by laser annealing, formation of high quality gate insulator and gate-insulator/poly-Si interface. The issues to be solved in impurity doping technology for state of the art and future TFTs are clarified.

  14. Flat panel display - Impurity doping technology for flat panel displays

    International Nuclear Information System (INIS)

    Suzuki, Toshiharu

    2005-01-01

    Features of the flat panel displays (FPDs) such as liquid crystal display (LCD) and organic light emitting diode (OLED) display, etc. using low temperature poly-Si (LTPS) thin film transistors (TFTs) are briefly reviewed comparing with other FPDs. The requirements for fabricating TFTs used for high performance FPDs and system on glass (SoG) are addressed. This paper focuses on the impurity doping technology, which is one of the key technologies together with crystallization by laser annealing, formation of high quality gate insulator and gate-insulator/poly-Si interface. The issues to be solved in impurity doping technology for state of the art and future TFTs are clarified

  15. Design scenarios for flat panel photobioreactors

    NARCIS (Netherlands)

    Slegers, P.M.; Wijffels, R.H.; Straten, van G.; Boxtel, van A.J.B.

    2011-01-01

    Evaluation of the potential of algae production for biofuel and other products at various locations throughout the world requires assessment of algae productivity under varying light conditions and different reactor layouts. A model was developed to predict algae biomass production in flat panel

  16. Quantitative digital radiography with two dimensional flat panels

    International Nuclear Information System (INIS)

    Dinten, J.M.; Robert-Coutant, C.; Darboux, M.

    2003-01-01

    Purpose: Attenuation law relates radiographic images to irradiated object thickness and chemical composition. Film radiography exploits qualitatively this property for diagnosis. Digital radiographic flat panels present large dynamic range, reproducibility and linearity properties which open the gate for quantification. We will present, through two applications (mammography and bone densitometry), an approach to extract quantitative information from digital 2D radiographs. Material and method: The main difficulty for quantification is X-rays scatter, which superimposes to acquisition data. Because of multiple scatterings and 3D geometry dependence, it cannot be directly exploited through an exact analytical model. Therefore we have developed an approach for its estimation and subtraction from medical radiographs, based on approximations and derivations of analytical models of scatter formation in human tissues. Results: In digital mammography, the objective is to build a map of the glandular tissue thickness. Its separation from fat tissue is based on two equations: height of compression and attenuation. This last equation needs X-Rays scatter correction. In bone densitometry, physicians look for quantitative bone mineral density. Today, clinical DEXA systems use collimated single or linear detectors to eliminate scatter. This scanning technology induces poor image quality. By applying our scatter correction approach, we have developed a bone densitometer using a digital flat panel (Lexxos, DMS). It provides with accurate and reproducible measurements while presenting radiological image quality. Conclusion: These applications show how information processing, and especially X-Rays scatter processing, enables to extract quantitative information from digital radiographs. This approach, associated to Computer Aided Diagnosis algorithms or reconstructions algorithms, gives access to useful information for diagnosis. (author)

  17. Performance Study of an aSi Flat Panel Detector for Fast Neutron Imaging of Nuclear Waste

    Energy Technology Data Exchange (ETDEWEB)

    Schumann, M.; Mauerhofer, E. [Institute of Energy and Climate Research - Nuclear Waste Management and Reactor Safety, Forschungszentrum Juelich GmbH, 52425 Juelich (Germany); Engels, R.; Kemmerling, G. [Central Institute for Engineering, Electronics and Analytics - Electronic Systems, Forschungszentrum Juelich GmbH, 52425 Juelich (Germany); Frank, M. [MATHCCES - Department of Mathematics, RWTH Aachen University, 52062 Aachen (Germany); Havenith, A.; Kettler, J.; Klapdor-Kleingrothaus, T. [Institute of Nuclear Engineering and Technology Transfer, RWTH Aachen University, 52062 Aachen (Germany); Schitthelm, O. [Corporate Technology, Siemens AG, 91058 Erlangen (Germany)

    2015-07-01

    Radioactive waste must be characterized to check its conformance for intermediate storage and final disposal according to national regulations. For the determination of radio-toxic and chemo-toxic contents of radioactive waste packages non-destructive analytical techniques are preferentially used. Fast neutron imaging is a promising technique to assay large and dense items providing, in complementarity to photon imaging, additional information on the presence of structures in radioactive waste packages. Therefore the feasibility of a compact Neutron Imaging System for Radioactive waste Analysis (NISRA) using 14 MeV neutrons is studied in a cooperation framework of Forschungszentrum Juelich GmbH, RWTH Aachen University and Siemens AG. However due to the low neutron emission of neutron generators in comparison to research reactors the challenging task resides in the development of an imaging detector with a high efficiency, a low sensitivity to gamma radiation and a resolution sufficient for the purpose. The setup is composed of a commercial D-T neutron generator (Genie16GT, Sodern) with a surrounding shielding made of polyethylene, which acts as a collimator and an amorphous silicon flat panel detector (aSi, 40 x 40 cm{sup 2}, XRD-1642, Perkin Elmer). Neutron detection is achieved using a general propose plastic scintillator (EJ-260, Eljen Technology) linked to the detector. The thermal noise of the photodiodes is reduced by employing an entrance window made of aluminium. Optimal gain and integration time for data acquisition are set by measuring the response of the detector to the radiation of a 500 MBq {sup 241}Am-source. Detector performance was studied by recording neutron radiography images of materials with various, but well known, chemical compositions, densities and dimensions (Al, C, Fe, Pb, W, concrete, polyethylene, 5 x 8 x 10 cm{sup 3}). To simulate gamma-ray emitting waste radiographs in presence of a gamma-ray sources ({sup 60}Co, {sup 137}Cs, {sup 241

  18. Driver-Array Based Flat-Panel Loudspeakers: Theoretical Background and Design Guidelines

    Science.gov (United States)

    Anderson, David Allan

    This thesis relates to the simulation and design of flat-panel loudspeakers using moving-coil driver elements. A brief history of the industry is given, including a collection of products and patents from 1925 until the present, an overview of research papers, and a discussion of current products available. The mechanics of bending flat panels are developed with respect to localized driving forces, both in the frequency domain and the time domain as an impulse response. These simulations are compared to measurements on prototype panels. Additional resonant elements influence the behavior of the system: an optional ported rear enclosure and the resonant characteristics of the drivers. The governing equations for these systems are derived and solutions are implemented using equivalent mechanical circuits and numerical methods. The idea of using driver arrays to independently actuate modes of the panel is discussed at length with respect to modal addressability, modal spillover, and experimental validation. The numerical approach to determining the optimal driver placement for a given set of modes is derived and experimentally validated. An investigation of the acoustic behavior of flat panel loudspeakers is presented, using mechanical simulation results to predict the acoustic radiation. The simulations are compared to measurements and found to accurately predict important mechanical and acoustical behaviors. It is demonstrated that a driver array, with the proper biasing, is capable of creating a flat panel loudspeaker which acts more like a piston than a "diffuse radiator" flat panel loudspeaker. The techniques of "Modal Crossover Networks" are introduced, which use multi-band filters to bias the driver array differently for different frequency bands, optimized for audio reproduction. The question of how many drivers are necessary for a modal crossover network is addressed and found to be dependent on the estimated quality factor (Q) of the panel material and edge

  19. Flat-response x-ray-diode-detector development

    International Nuclear Information System (INIS)

    Tirsell, G.

    1982-10-01

    In this report we discuss the design of an improved sub-nanosecond flat response x-ray diode detector needed for ICF diagnostics. This device consists of a high Z cathode and a complex filter tailored to flatten the response so that the total x-ray energy below 1.5 keV can be measured using a single detector. Three major problems have become evident as a result of our work with the original LLNL design including deviation from flatness due to a peak in the response below 200 eV, saturation at relatively low x-ray fluences, and long term gold cathode instability. We are investigating grazing incidence reflection to reduce the response below 200 eV, new high Z cathode materials for long term stability, and a new complex filter for improved flatness. Better saturation performance will require a modified XRD detector under development with reduced anode to cathode spacing and increased anode bias voltage

  20. Color quality management in advanced flat panel display engines

    Science.gov (United States)

    Lebowsky, Fritz; Neugebauer, Charles F.; Marnatti, David M.

    2003-01-01

    During recent years color reproduction systems for consumer needs have experienced various difficulties. In particular, flat panels and printers could not reach a satisfactory color match. The RGB image stored on an Internet server of a retailer did not show the desired colors on a consumer display device or printer device. STMicroelectronics addresses this important color reproduction issue inside their advanced display engines using novel algorithms targeted for low cost consumer flat panels. Using a new and genuine RGB color space transformation, which combines a gamma correction Look-Up-Table, tetrahedrization, and linear interpolation, we satisfy market demands.

  1. Noise variance analysis using a flat panel x-ray detector: A method for additive noise assessment with application to breast CT applications

    Energy Technology Data Exchange (ETDEWEB)

    Yang Kai; Huang, Shih-Ying; Packard, Nathan J.; Boone, John M. [Department of Radiology, University of California, Davis Medical Center, 4860 Y Street, Suite 3100 Ellison Building, Sacramento, California 95817 (United States); Department of Radiology, University of California, Davis Medical Center, 4860 Y Street, Suite 3100 Ellison Building, Sacramento, California 95817 (United States) and Department of Biomedical Engineering, University of California, Davis, Davis, California, 95616 (United States)

    2010-07-15

    Purpose: A simplified linear model approach was proposed to accurately model the response of a flat panel detector used for breast CT (bCT). Methods: Individual detector pixel mean and variance were measured from bCT projection images acquired both in air and with a polyethylene cylinder, with the detector operating in both fixed low gain and dynamic gain mode. Once the coefficients of the linear model are determined, the fractional additive noise can be used as a quantitative metric to evaluate the system's efficiency in utilizing x-ray photons, including the performance of different gain modes of the detector. Results: Fractional additive noise increases as the object thickness increases or as the radiation dose to the detector decreases. For bCT scan techniques on the UC Davis prototype scanner (80 kVp, 500 views total, 30 frames/s), in the low gain mode, additive noise contributes 21% of the total pixel noise variance for a 10 cm object and 44% for a 17 cm object. With the dynamic gain mode, additive noise only represents approximately 2.6% of the total pixel noise variance for a 10 cm object and 7.3% for a 17 cm object. Conclusions: The existence of the signal-independent additive noise is the primary cause for a quadratic relationship between bCT noise variance and the inverse of radiation dose at the detector. With the knowledge of the additive noise contribution to experimentally acquired images, system modifications can be made to reduce the impact of additive noise and improve the quantum noise efficiency of the bCT system.

  2. Performance quantification of a flat-panel imager in industrial mega-voltage X-ray imaging systems

    Energy Technology Data Exchange (ETDEWEB)

    Stritt, Carina, E-mail: carina.stritt@empa.ch [Empa, Swiss Federal Laboratories for Material Science and Technology, Center for X-ray Analytics, Ueberlandstrasse 129, 8600 Dübendorf (Switzerland); Plamondon, Mathieu; Hofmann, Jürgen; Flisch, Alexander [Empa, Swiss Federal Laboratories for Material Science and Technology, Center for X-ray Analytics, Ueberlandstrasse 129, 8600 Dübendorf (Switzerland); Sennhauser, Urs [Empa, Swiss Federal Laboratories for Material Science and Technology, Reliability Science and Technology Laboratory, Ueberlandstrasse 129, 8600 Dübendorf (Switzerland)

    2017-03-11

    Active matrix flat-panel detectors have gained popularity amongst X-ray imaging systems due to their speed, resolution and high dynamic range. With appropriate shielding modern flat-panel imagers can even be used in high energy Computed Tomography (CT) systems of energies up to several mega-electronvolt (MeV). However, the performance of a digital detector is not independent of the rest of the radiographic system but depends on all other components of the system. Signal and noise transfer properties highly depend on all parameters of an imaging chain. This work focuses on quantifying the resolution capabilities and the noise in the signals of a MeV X-ray imaging system. The performance quantification is done by computing the modulation transfer function (MTF) using the standard edge method as well as the noise power spectrum (NPS) of the imaging system. We performed Monte Carlo (MC) simulations in order to understand the influence of scattered radiation on the measurements. A comparison of the horizontal and vertical MTF showed that the imaging behaviour of the detector is isotropic. Moreover, an additional investigation of the noise performance of the system showed that there is no measurable noise correlation present in the system. It was shown that the thickness of the edge device does not have a significant influence on the resulting system MTF. A rapid drop in the visibility could be observed resulting in a value of 1.2 line pairs per mm at 50% MTF. The visibility limit of line pair patterns was found to be at 2.3 line pairs per mm given by the 10% MTF value.

  3. Performance quantification of a flat-panel imager in industrial mega-voltage X-ray imaging systems

    International Nuclear Information System (INIS)

    Stritt, Carina; Plamondon, Mathieu; Hofmann, Jürgen; Flisch, Alexander; Sennhauser, Urs

    2017-01-01

    Active matrix flat-panel detectors have gained popularity amongst X-ray imaging systems due to their speed, resolution and high dynamic range. With appropriate shielding modern flat-panel imagers can even be used in high energy Computed Tomography (CT) systems of energies up to several mega-electronvolt (MeV). However, the performance of a digital detector is not independent of the rest of the radiographic system but depends on all other components of the system. Signal and noise transfer properties highly depend on all parameters of an imaging chain. This work focuses on quantifying the resolution capabilities and the noise in the signals of a MeV X-ray imaging system. The performance quantification is done by computing the modulation transfer function (MTF) using the standard edge method as well as the noise power spectrum (NPS) of the imaging system. We performed Monte Carlo (MC) simulations in order to understand the influence of scattered radiation on the measurements. A comparison of the horizontal and vertical MTF showed that the imaging behaviour of the detector is isotropic. Moreover, an additional investigation of the noise performance of the system showed that there is no measurable noise correlation present in the system. It was shown that the thickness of the edge device does not have a significant influence on the resulting system MTF. A rapid drop in the visibility could be observed resulting in a value of 1.2 line pairs per mm at 50% MTF. The visibility limit of line pair patterns was found to be at 2.3 line pairs per mm given by the 10% MTF value.

  4. Percutaneous sacroplasty with the use of C-arm flat-panel detector CT: technical feasibility and clinical outcome

    International Nuclear Information System (INIS)

    Kang, Sung Eun; Lee, Joon Woo; Kim, Joo Hyung; Kang, Heung Sik; Park, Kun Woo; Yeom, Jin S.

    2011-01-01

    Sacroplasty for sacral insufficiency fractures (SIFs) has been performed mostly under computed tomography (CT) or fluoroscopy guidance. The purposes of this study are to describe technical tips and clinical outcomes of sacroplasty under C-arm flat panel detector CT (C-arm CT) guidance, and to compare the cement distributions shown on C-arm CT with those on multi-detector CT (MDCT). This study consisted of patients who underwent sacroplasty for SIF using C-arm CT from May 2006 to May 2009. Technical success was assessed in terms of cement filling and leakage. Clinical outcome was assessed at short-term (less than 1 month) and long-term (more than 1 month) follow-up using a four-grade patient satisfaction scale: poor, fair, good, and excellent. After sacroplasty, all patients underwent MDCT and three radiologists compared MDCT images with C-arm CT images in consensus, focusing on the cement distribution and cement leakage. Sacroplasties were performed on both sacral alae in all 8 patients (male:female = 2:6, mean age = 76.9, range = 63-82). The technical success rate was 100%. At short-term follow up, 6 patients (87.5%) reported significant improvement. Five patients (62.5%) were available for long-term follow-up and all 5 patients reported a reduced pain and an improved ability to ambulate. Using MDCT as the standard of reference, the cement distribution was visualized equally well by C-arm CT. Sacroplasty under C-arm CT showed excellent technical success and good clinical outcome. There was an excellent correlation between C-arm CT and MDCT in evaluating cement distribution and cement leakage. (orig.)

  5. Percutaneous sacroplasty with the use of C-arm flat-panel detector CT: technical feasibility and clinical outcome

    Energy Technology Data Exchange (ETDEWEB)

    Kang, Sung Eun; Lee, Joon Woo; Kim, Joo Hyung; Kang, Heung Sik [Seoul National University Bundang Hospital, Department of Radiology, Gyeonggi-do (Korea, Republic of); Park, Kun Woo; Yeom, Jin S. [Seoul National University Bundang Hospital, Department of Orthopaedic Surgery, Gyeonggi-do (Korea, Republic of)

    2011-04-15

    Sacroplasty for sacral insufficiency fractures (SIFs) has been performed mostly under computed tomography (CT) or fluoroscopy guidance. The purposes of this study are to describe technical tips and clinical outcomes of sacroplasty under C-arm flat panel detector CT (C-arm CT) guidance, and to compare the cement distributions shown on C-arm CT with those on multi-detector CT (MDCT). This study consisted of patients who underwent sacroplasty for SIF using C-arm CT from May 2006 to May 2009. Technical success was assessed in terms of cement filling and leakage. Clinical outcome was assessed at short-term (less than 1 month) and long-term (more than 1 month) follow-up using a four-grade patient satisfaction scale: poor, fair, good, and excellent. After sacroplasty, all patients underwent MDCT and three radiologists compared MDCT images with C-arm CT images in consensus, focusing on the cement distribution and cement leakage. Sacroplasties were performed on both sacral alae in all 8 patients (male:female = 2:6, mean age = 76.9, range = 63-82). The technical success rate was 100%. At short-term follow up, 6 patients (87.5%) reported significant improvement. Five patients (62.5%) were available for long-term follow-up and all 5 patients reported a reduced pain and an improved ability to ambulate. Using MDCT as the standard of reference, the cement distribution was visualized equally well by C-arm CT. Sacroplasty under C-arm CT showed excellent technical success and good clinical outcome. There was an excellent correlation between C-arm CT and MDCT in evaluating cement distribution and cement leakage. (orig.)

  6. Standard practice for radiologic examination of flat panel composites and sandwich core materials used in aerospace applications

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    2009-01-01

    1.1 This practice is intended to be used as a supplement to Practices E 1742, E 1255, and E 2033. 1.2 This practice describes procedures for radiologic examination of flat panel composites and sandwich core materials made entirely or in part from fiber-reinforced polymer matrix composites. Radiologic examination is: a) radiographic (RT) with film, b) Computed Radiography (CR) with Imaging Plate, c) Digital Radiology (DR) with Digital Detector Array’s (DDA), and d) Radioscopic (RTR) Real Time Radiology with a detection system such as an Image Intensifier. The composite materials under consideration typically contain continuous high modulus fibers (> 20 GPa), such as those listed in 1.4. 1.3 This practice describes established radiological examination methods that are currently used by industry that have demonstrated utility in quality assurance of flat panel composites and sandwich core materials during product process design and optimization, process control, after manufacture inspection, in service exami...

  7. Laser illuminated flat panel display

    Energy Technology Data Exchange (ETDEWEB)

    Veligdan, J.T.

    1995-12-31

    A 10 inch laser illuminated flat panel Planar Optic Display (POD) screen has been constructed and tested. This POD screen technology is an entirely new concept in display technology. Although the initial display is flat and made of glass, this technology lends itself to applications where a plastic display might be wrapped around the viewer. The display screen is comprised of hundreds of planar optical waveguides where each glass waveguide represents a vertical line of resolution. A black cladding layer, having a lower index of refraction, is placed between each waveguide layer. Since the cladding makes the screen surface black, the contrast is high. The prototype display is 9 inches wide by 5 inches high and approximately I inch thick. A 3 milliwatt HeNe laser is used as the illumination source and a vector scanning technique is employed.

  8. High-resolution dynamic angiography using flat-panel volume CT: feasibility demonstration for neuro and lower limb vascular applications

    International Nuclear Information System (INIS)

    Mehndiratta, Amit; Rabinov, James D.; Grasruck, Michael; Liao, Eric C.; Crandell, David; Gupta, Rajiv

    2015-01-01

    This paper evaluates a prototype flat-panel volume CT (fpVCT) for dynamic in vivo imaging in a variety of neurovascular and lower limb applications. Dynamic CTA was performed on 12 patients (neuro = 8, lower limb = 4) using an fpVCT with 120 kVp, 50 mA, rotation time varying from 8 to 19 s, and field of view of 25 x 25 x 18 cm 3 . Four-dimensional data sets (i.e. 3D images over time) were reconstructed and reviewed. Dynamic CTA demonstrated sufficient spatio-temporal resolution to elucidate first-pass and recirculation dynamics of contrast bolus through neurovasclar pathologies and phasic blood flow though lower-limb vasculature and grafts. The high spatial resolution of fpVCT resulted in reduced partial volume and metal beam-hardening artefacts. This facilitated assessment of vascular lumen in the presence of calcified plaque and evaluation of fractures, especially in the presence of fixation hardware. Evaluation of arteriovenous malformation using dynamic fpVCT angiography was of limited utility. Dynamic CTA using fpVCT can visualize time-varying phenomena in neuro and lower limb vascular applications and has sufficient diagnostic imaging quality to evaluate a number of pathologies affecting these regions. (orig.)

  9. Flat panel planar optic display

    Energy Technology Data Exchange (ETDEWEB)

    Veligdan, J.T. [Brookhaven National Lab., Upton, NY (United States). Dept. of Advanced Technology

    1994-11-01

    A prototype 10 inch flat panel Planar Optic Display, (POD), screen has been constructed and tested. This display screen is comprised of hundreds of planar optic class sheets bonded together with a cladding layer between each sheet where each glass sheet represents a vertical line of resolution. The display is 9 inches wide by 5 inches high and approximately 1 inch thick. A 3 milliwatt HeNe laser is used as the illumination source and a vector scanning technique is employed.

  10. Supersonic Panel Flutter Test Results for Flat Fiber-Glass Sandwich Panels with Foamed Cores

    Science.gov (United States)

    Tuovila, W. J.; Presnell, John G., Jr.

    1961-01-01

    Flutter tests have been made on flat panels having a 1/4 inch-thick plastic-foam core covered with thin fiber-glass laminates. The testing was done in the Langley Unitary Plan wind tunnel at Mach numbers from 1.76 t o 2.87. The flutter boundary for these panels was found to be near the flutter boundary of thin metal panels when compared on the basis of an equivalent panel stiffness. The results also demonstrated that the depth of the cavity behind the panel has a pronounced influence on flutter. Changing the cavity depth from 1 1/2 inches to 1/2 inch reduced the dynamic pressure at start of flutter by 40 percent. No flutter was obtained when the spacers on the back of the panel were against the bottom of the cavity.

  11. High-resolution dynamic angiography using flat-panel volume CT: feasibility demonstration for neuro and lower limb vascular applications

    Energy Technology Data Exchange (ETDEWEB)

    Mehndiratta, Amit [Massachusetts General Hospital, Department of Radiology, Harvard Medical School, Boston, MA (United States); University of Oxford, Institute of Biomedical Engineering and Keble College, Oxford (United Kingdom); Indian Institute of Technology Delhi and All India Institute of Medical Science, Centre for Biomedical Engineering, New Delhi (India); Rabinov, James D. [Massachusetts General Hospital, Interventional Neuroradiology, Harvard Medical School, Boston, MA (United States); Grasruck, Michael [Siemens Medical Solutions, Forchheim (Germany); Liao, Eric C. [Massachusetts General Hospital, Department of Plastic and Reconstructive Surgery and Center for Regenerative Medicine, Harvard Medical School, Boston, MA (United States); Crandell, David [Spaulding Rehabilitation Hospital, Department of Physical Medicine and Rehabilitation, Harvard Medical School, Charlestown, MA (United States); Gupta, Rajiv [Massachusetts General Hospital, Department of Radiology, Harvard Medical School, Boston, MA (United States)

    2015-07-15

    This paper evaluates a prototype flat-panel volume CT (fpVCT) for dynamic in vivo imaging in a variety of neurovascular and lower limb applications. Dynamic CTA was performed on 12 patients (neuro = 8, lower limb = 4) using an fpVCT with 120 kVp, 50 mA, rotation time varying from 8 to 19 s, and field of view of 25 x 25 x 18 cm{sup 3}. Four-dimensional data sets (i.e. 3D images over time) were reconstructed and reviewed. Dynamic CTA demonstrated sufficient spatio-temporal resolution to elucidate first-pass and recirculation dynamics of contrast bolus through neurovasclar pathologies and phasic blood flow though lower-limb vasculature and grafts. The high spatial resolution of fpVCT resulted in reduced partial volume and metal beam-hardening artefacts. This facilitated assessment of vascular lumen in the presence of calcified plaque and evaluation of fractures, especially in the presence of fixation hardware. Evaluation of arteriovenous malformation using dynamic fpVCT angiography was of limited utility. Dynamic CTA using fpVCT can visualize time-varying phenomena in neuro and lower limb vascular applications and has sufficient diagnostic imaging quality to evaluate a number of pathologies affecting these regions. (orig.)

  12. Volume CT with a flat-panel detector on a mobile, isocentric C-arm: Pre-clinical investigation in guidance of minimally invasive surgery

    International Nuclear Information System (INIS)

    Siewerdsen, J.H.; Moseley, D.J.; Burch, S.; Bisland, S.K.; Bogaards, A.; Wilson, B.C.; Jaffray, D.A.

    2005-01-01

    A mobile isocentric C-arm (Siemens PowerMobil) has been modified in our laboratory to include a large area flat-panel detector (in place of the x-ray image intensifier), providing multi-mode fluoroscopy and cone-beam computed tomography (CT) imaging capability. This platform represents a promising technology for minimally invasive, image-guided surgical procedures where precision in the placement of interventional tools with respect to bony and soft-tissue structures is critical. The image quality and performance in surgical guidance was investigated in pre-clinical evaluation in image-guided spinal surgery. The control, acquisition, and reconstruction system are described. The reproducibility of geometric calibration, essential to achieving high three-dimensional (3D) image quality, is tested over extended time scales (7 months) and across a broad range in C-arm angulation (up to 45 deg.), quantifying the effect of improper calibration on spatial resolution, soft-tissue visibility, and image artifacts. Phantom studies were performed to investigate the precision of 3D localization (viz., fiber optic probes within a vertebral body) and effect of lateral projection truncation (limited field of view) on soft-tissue detectability in image reconstructions. Pre-clinical investigation was undertaken in a specific spinal procedure (photodynamic therapy of spinal metastases) in five animal subjects (pigs). In each procedure, placement of fiber optic catheters in two vertebrae (L1 and L2) was guided by fluoroscopy and cone-beam CT. Experience across five procedures is reported, focusing on 3D image quality, the effects of respiratory motion, limited field of view, reconstruction filter, and imaging dose. Overall, the intraoperative cone-beam CT images were sufficient for guidance of needles and catheters with respect to bony anatomy and improved surgical performance and confidence through 3D visualization and verification of transpedicular trajectories and tool placement

  13. Scan equalization digital radiography (SEDR) implemented with an amorphous selenium flat-panel detector: initial experience

    Energy Technology Data Exchange (ETDEWEB)

    Liu Xinming; Lai Chaojen; Chen Lingyun; Han Tao; Zhong Yuncheng; Shen Youtao; Wang Tianpeng; Shaw, Chris C [Department of Imaging Physics, Digital Imaging Research Laboratory, University of Texas M. D. Anderson Cancer Center, Houston, TX 77030-4009 (United States)], E-mail: xliu@di.mdacc.tmc.edu

    2009-11-21

    It is well recognized in projection radiography that low-contrast detectability suffers in heavily attenuating regions due to excessively low x-ray fluence to the image receptor and higher noise levels. Exposure equalization can improve image quality by increasing the x-ray exposure to heavily attenuating regions, resulting in a more uniform distribution of exposure to the detector. Image quality is also expected to be improved by using the slot-scan geometry to reject scattered radiation effectively without degrading primary x-rays. This paper describes the design of a prototype scan equalization digital radiography (SEDR) system implemented with an amorphous silicon (a-Si) thin-film transistor (TFT) array-based flat-panel detector. With this system, slot-scan geometry with alternate line erasure and readout (ALER) technique was used to achieve scatter rejection. A seven-segment beam height modulator assembly was mounted onto the fore collimator to regulate exposure regionally for chest radiography. The beam modulator assembly, consisting of micro linear motors, lead screw cartridge with lead (Pb) beam blockers attached, position feedback sensors and motor driver circuitry, has been tested and found to have an acceptable response for exposure equalization in chest radiography. An anthropomorphic chest phantom was imaged in the posterior-anterior (PA) view under clinical conditions. Scatter component, primary x-rays, scatter-to-primary ratios (SPRs) and primary signal-to-noise ratios (PSNRs) were measured in the SEDR images to evaluate the rejection and redistribution of scattered radiation, and compared with those for conventional full-field imaging with and without anti-scatter grid methods. SPR reduction ratios (SPRRRs, defined as the differences between the non-grid full-field SPRs and the reduced SPRs divided by the former) yielded approximately 59% for the full-field imaging with grid and 82% for the SEDR technique in the lungs, and 77% for the full

  14. X-ray performance of a wafer-scale CMOS flat panel imager for applications in medical imaging and nondestructive testing

    International Nuclear Information System (INIS)

    Cha, Bo Kyung; Jeon, Seongchae; Seo, Chang-Woo

    2016-01-01

    This paper presents a wafer-scale complementary metal-oxide semiconductor (CMOS)-based X-ray flat panel detector for medical imaging and nondestructive testing applications. In this study, our proposed X-ray CMOS flat panel imager has been fabricated by using a 0.35 µm 1-poly/4-metal CMOS process. The pixel size is 100 µm×100 µm and the pixel array format is 1200×1200 pixels, which provide a field-of-view (FOV) of 120mm×120 mm. The 14.3-bit extended counting analog-to digital converter (ADC) with built-in binning mode was used to reduce the area and simultaneously improve the image resolution. The different screens such as thallium-doped CsI (CsI:Tl) and terbium gadolinium oxysulfide (Gd_2O_2S:Tb) scintillators were used as conversion materials for X-rays to visible light photons. The X-ray imaging performance such as X-ray sensitivity as a function of X-ray exposure dose, spatial resolution, image lag and X-ray images of various objects were measured under practical medical and industrial application conditions. This paper results demonstrate that our prototype CMOS-based X-ray flat panel imager has the significant potential for medical imaging and non-destructive testing (NDT) applications with high-resolution and high speed rate.

  15. X-ray performance of a wafer-scale CMOS flat panel imager for applications in medical imaging and nondestructive testing

    Energy Technology Data Exchange (ETDEWEB)

    Cha, Bo Kyung, E-mail: goldrain99@kaist.ac.kr [Advanced Medical Device Research Center, Korea Electrotechnology Research Institute, Ansan (Korea, Republic of); Jeon, Seongchae [Advanced Medical Device Research Center, Korea Electrotechnology Research Institute, Ansan (Korea, Republic of); Seo, Chang-Woo [Department of Radiological Science, Yonsei University, Gangwon-do 220-710 (Korea, Republic of)

    2016-09-21

    This paper presents a wafer-scale complementary metal-oxide semiconductor (CMOS)-based X-ray flat panel detector for medical imaging and nondestructive testing applications. In this study, our proposed X-ray CMOS flat panel imager has been fabricated by using a 0.35 µm 1-poly/4-metal CMOS process. The pixel size is 100 µm×100 µm and the pixel array format is 1200×1200 pixels, which provide a field-of-view (FOV) of 120mm×120 mm. The 14.3-bit extended counting analog-to digital converter (ADC) with built-in binning mode was used to reduce the area and simultaneously improve the image resolution. The different screens such as thallium-doped CsI (CsI:Tl) and terbium gadolinium oxysulfide (Gd{sub 2}O{sub 2}S:Tb) scintillators were used as conversion materials for X-rays to visible light photons. The X-ray imaging performance such as X-ray sensitivity as a function of X-ray exposure dose, spatial resolution, image lag and X-ray images of various objects were measured under practical medical and industrial application conditions. This paper results demonstrate that our prototype CMOS-based X-ray flat panel imager has the significant potential for medical imaging and non-destructive testing (NDT) applications with high-resolution and high speed rate.

  16. High-performance flat-panel solar thermoelectric generators with high thermal concentration

    Science.gov (United States)

    Kraemer, Daniel; Poudel, Bed; Feng, Hsien-Ping; Caylor, J. Christopher; Yu, Bo; Yan, Xiao; Ma, Yi; Wang, Xiaowei; Wang, Dezhi; Muto, Andrew; McEnaney, Kenneth; Chiesa, Matteo; Ren, Zhifeng; Chen, Gang

    2011-07-01

    The conversion of sunlight into electricity has been dominated by photovoltaic and solar thermal power generation. Photovoltaic cells are deployed widely, mostly as flat panels, whereas solar thermal electricity generation relying on optical concentrators and mechanical heat engines is only seen in large-scale power plants. Here we demonstrate a promising flat-panel solar thermal to electric power conversion technology based on the Seebeck effect and high thermal concentration, thus enabling wider applications. The developed solar thermoelectric generators (STEGs) achieved a peak efficiency of 4.6% under AM1.5G (1 kW m-2) conditions. The efficiency is 7-8 times higher than the previously reported best value for a flat-panel STEG, and is enabled by the use of high-performance nanostructured thermoelectric materials and spectrally-selective solar absorbers in an innovative design that exploits high thermal concentration in an evacuated environment. Our work opens up a promising new approach which has the potential to achieve cost-effective conversion of solar energy into electricity.

  17. High-performance flat-panel solar thermoelectric generators with high thermal concentration.

    Science.gov (United States)

    Kraemer, Daniel; Poudel, Bed; Feng, Hsien-Ping; Caylor, J Christopher; Yu, Bo; Yan, Xiao; Ma, Yi; Wang, Xiaowei; Wang, Dezhi; Muto, Andrew; McEnaney, Kenneth; Chiesa, Matteo; Ren, Zhifeng; Chen, Gang

    2011-05-01

    The conversion of sunlight into electricity has been dominated by photovoltaic and solar thermal power generation. Photovoltaic cells are deployed widely, mostly as flat panels, whereas solar thermal electricity generation relying on optical concentrators and mechanical heat engines is only seen in large-scale power plants. Here we demonstrate a promising flat-panel solar thermal to electric power conversion technology based on the Seebeck effect and high thermal concentration, thus enabling wider applications. The developed solar thermoelectric generators (STEGs) achieved a peak efficiency of 4.6% under AM1.5G (1 kW m(-2)) conditions. The efficiency is 7-8 times higher than the previously reported best value for a flat-panel STEG, and is enabled by the use of high-performance nanostructured thermoelectric materials and spectrally-selective solar absorbers in an innovative design that exploits high thermal concentration in an evacuated environment. Our work opens up a promising new approach which has the potential to achieve cost-effective conversion of solar energy into electricity. © 2011 Macmillan Publishers Limited. All rights reserved

  18. A new system for fully automatic inspection of digital flat-panel detector radiographs of aluminium castings

    International Nuclear Information System (INIS)

    Fuchs, T.; Hassler, U.; Huetten, U.; Wenzel, T.

    2006-01-01

    The aim of our work was the integration of various newly-developed methods into a system for fully automatic radioscopic inspection of arbitrary casting parts. Using a 16-bit flat-panel detector, projections in arbitrary directions through the part are acquired and analysed. The software tool for inspection can be separated into five stages: registration, calibration, image processing, fault segmentation, and quality assessment. Thereby, each step is realized with full 16-bit data processing. Within the first processing stage, information about the physical length and density of the aluminium structures is extracted from the primary projections. Next, the primary image is registered with a reference image, which was acquired previously. Afterwards, the third stage combines both reference image-based and reference-less testing. A filter is applied, which adapts automatically to the local object structure by referring to the properties of the reference. Thereby, the self-adapting filter selects its size, direction and filter method optimally according to the local situation. Similar to the reference-less procedure, a subtraction is followed by a threshold operation, resulting in a map of regions that are suspected to be faulty. The fourth step aims at an elimination of false-positive detections. Again, two methods are applied successively: evaluation of local image features at suspicious positions and a classification based on teachings independent of position and orientation of the faults. Within the last step the quality criteria are applied. These criteria may concern fault size and depth, the density of faults in critical regions and a minimum distance between two or more faults. (orig.)

  19. Optimization of dual-energy subtraction chest radiography by use of a direct-conversion flat-panel detector system.

    Science.gov (United States)

    Fukao, Mari; Kawamoto, Kiyosumi; Matsuzawa, Hiroaki; Honda, Osamu; Iwaki, Takeshi; Doi, Tsukasa

    2015-01-01

    We aimed to optimize the exposure conditions in the acquisition of soft-tissue images using dual-energy subtraction chest radiography with a direct-conversion flat-panel detector system. Two separate chest images were acquired at high- and low-energy exposures with standard or thick chest phantoms. The high-energy exposure was fixed at 120 kVp with the use of an auto-exposure control technique. For the low-energy exposure, the tube voltages and entrance surface doses ranged 40-80 kVp and 20-100 % of the dose required for high-energy exposure, respectively. Further, a repetitive processing algorithm was used for reduction of the image noise generated by the subtraction process. Seven radiology technicians ranked soft-tissue images, and these results were analyzed using the normalized-rank method. Images acquired at 60 kVp were of acceptable quality regardless of the entrance surface dose and phantom size. Using a repetitive processing algorithm, the minimum acceptable doses were reduced from 75 to 40 % for the standard phantom and to 50 % for the thick phantom. We determined that the optimum low-energy exposure was 60 kVp at 50 % of the dose required for the high-energy exposure. This allowed the simultaneous acquisition of standard radiographs and soft-tissue images at 1.5 times the dose required for a standard radiograph, which is significantly lower than the values reported previously.

  20. Method of estimating patient skin dose from dose displayed on medical X-ray equipment with flat panel detector

    International Nuclear Information System (INIS)

    Fukuda, Atsushi; Koshida, Kichiro; Togashi, Atsuhiko; Matsubara, Kousuke

    2004-01-01

    The International Electrotechnical Commission (IEC) has stipulated that medical X-ray equipment for interventional procedures must display radiation doses such as air kerma in free air at the interventional reference point and dose area product to establish radiation safety for patients (IEC 60601-2-43). However, it is necessary to estimate entrance skin dose for the patient from air kerma for an accurate risk assessment of radiation skin injury. To estimate entrance skin dose from displayed air kerma in free air at the interventional reference point, it is necessary to consider effective energy, the ratio of the mass-energy absorption coefficient for skin and air, and the backscatter factor. In addition, since automatic exposure control is installed in medical X-ray equipment with flat panel detectors, it is necessary to know the characteristics of control to estimate exposure dose. In order to calculate entrance skin dose under various conditions, we investigated clinical parameters such as tube voltage, tube current, pulse width, additional filter, and focal spot size, as functions of patient body size. We also measured the effective energy of X-ray exposure for the patient as a function of clinical parameter settings. We found that the conversion factor from air kerma in free air to entrance skin dose is about 1.4 for protection. (author)

  1. Cone-beam CT with a flat-panel detector: From image science to image-guided surgery

    International Nuclear Information System (INIS)

    Siewerdsen, Jeffrey H.

    2011-01-01

    The development of large-area flat-panel X-ray detectors (FPDs) has spurred investigation in a spectrum of advanced medical imaging applications, including tomosynthesis and cone-beam CT (CBCT). Recent research has extended image quality metrics and theoretical models to such applications, providing a quantitative foundation for the assessment of imaging performance as well as a general framework for the design, optimization, and translation of such technologies to new applications. For example, cascaded systems models of the Fourier domain metrics, such as noise-equivalent quanta (NEQ), have been extended to these modalities to describe the propagation of signal and noise through the image acquisition and reconstruction chain and to quantify the factors that govern spatial resolution, image noise, and detectability. Moreover, such models have demonstrated basic agreement with human observer performance for a broad range of imaging conditions and imaging tasks. These developments in image science have formed a foundation for the knowledgeable development and translation of CBCT to new applications in image-guided interventions-for example, CBCT implemented on a mobile surgical C-arm for intraoperative 3D imaging. The ability to acquire high-quality 3D images on demand during surgical intervention overcomes conventional limitations of surgical guidance in the context of preoperative images alone. A prototype mobile C-arm developed in academic-industry partnership demonstrates CBCT with low radiation dose, sub-mm spatial resolution, and soft-tissue visibility potentially approaching that of diagnostic CT. Integration of the 3D imaging system with real-time tracking, deformable registration, endoscopic video, and 3D visualization offers a promising addition to the surgical arsenal in interventions ranging from head-and-neck/skull base surgery to spine, orthopaedic, thoracic, and abdominal surgeries. Cadaver studies show the potential for significant boosts in surgical

  2. Cone-beam CT with a flat-panel detector: From image science to image-guided surgery

    Energy Technology Data Exchange (ETDEWEB)

    Siewerdsen, Jeffrey H., E-mail: jeff.siewerdsen@jhu.edu [Department of Biomedical Engineering, Johns Hopkins University, Traylor Building, Room 718, 720 Rutland Avenue, Baltimore, MD 21205 (United States)

    2011-08-21

    The development of large-area flat-panel X-ray detectors (FPDs) has spurred investigation in a spectrum of advanced medical imaging applications, including tomosynthesis and cone-beam CT (CBCT). Recent research has extended image quality metrics and theoretical models to such applications, providing a quantitative foundation for the assessment of imaging performance as well as a general framework for the design, optimization, and translation of such technologies to new applications. For example, cascaded systems models of the Fourier domain metrics, such as noise-equivalent quanta (NEQ), have been extended to these modalities to describe the propagation of signal and noise through the image acquisition and reconstruction chain and to quantify the factors that govern spatial resolution, image noise, and detectability. Moreover, such models have demonstrated basic agreement with human observer performance for a broad range of imaging conditions and imaging tasks. These developments in image science have formed a foundation for the knowledgeable development and translation of CBCT to new applications in image-guided interventions-for example, CBCT implemented on a mobile surgical C-arm for intraoperative 3D imaging. The ability to acquire high-quality 3D images on demand during surgical intervention overcomes conventional limitations of surgical guidance in the context of preoperative images alone. A prototype mobile C-arm developed in academic-industry partnership demonstrates CBCT with low radiation dose, sub-mm spatial resolution, and soft-tissue visibility potentially approaching that of diagnostic CT. Integration of the 3D imaging system with real-time tracking, deformable registration, endoscopic video, and 3D visualization offers a promising addition to the surgical arsenal in interventions ranging from head-and-neck/skull base surgery to spine, orthopaedic, thoracic, and abdominal surgeries. Cadaver studies show the potential for significant boosts in surgical

  3. Characteristics and applications of a flat panel computer tomography system; Eigenschaften und Anwendungen der Flaechendetektor-basierten Volumen-Computertomographie

    Energy Technology Data Exchange (ETDEWEB)

    Knollmann, F.; Valencia, R.; Obenauer, S. [Abt. Diagnostische Radiologie, Klinikum der Georg-August-Univ. Goettingen (Germany); Buhk, J.H. [Abt. Neuroradiologie, Univ. Goettingen (Germany)

    2006-09-15

    Purpose: to assess a new flat panel volume computed tomography (FP-VCT) with very high isotropic spatial resolution as well as high Z-axis coverage. Materials and Methods: The prototype of an FP-VCT scanner with a detector cell size of 0.2 mm was used for numerous phantom studies, specimen examinations, and animal research projects. Results: The high spatial resolution of the new system can be used to accurately determine solid tumor volume, thus allowing for earlier assessment of the therapeutic response. In animal experimentation, whole-body perfusion mapping of mice is feasible. The high spatial resolution also improves the classification of coronary artery atherosclerotic plaques in the isolated post mortem human heart. With the depiction of intramyocardial segments of the coronary arteries, investigations of myocardial collateral circulation are feasible. In skeletal applications, an accurate analysis of the smallest bony structures, e.g., petrous bone and dental preparations, can be successfully performed, as well as investigations of repetitive studies of fracture healing and the treatment of osteoporosis. Conclusion: The introduction of FP-VCT opens up new applications for CT, including the field of molecular imaging, which are highly attractive for future clinical applications. Present limitations include limited temporal resolution and necessitate further improvement of the system. (orig.)

  4. Planarity certification of ATLAS Micromegas detector panels

    Energy Technology Data Exchange (ETDEWEB)

    Mueller, Ralph; Biebel, Otmar; Bortfeldt, Jonathan; Flierl, Bernhard; Hertenberger, Ralf; Loesel, Philipp; Herrmann, Maximilian [LMU Muenchen (Germany); Zibell, Andre [JMU Wuerzburg (Germany)

    2016-07-01

    During the second long LHC shutdown, 2019/20, the precision tracking detectors of the ATLAS muon spectrometer in the inner end caps will be replaced using Micromegas, a planar gas-detector technology. Modules of 2 m{sup 2} area are built in quadruplets from five precisely planar sandwich panels that define the anodes and the cathodes of the four active detector planes. A panel is composed of three consecutive layers FR4 - aluminum honeycomb - FR4. Single plane spatial particle resolution below 100 μm is achievable when the deviations from planarity of the strip-anodes do not exceed 80 μm RMS over the whole active area and the parallelism of the readout strips is within 30 μm. In order to measure the dimensional accuracy of each panel, laser distance sensors combined with a coordinate measurement system have been investigated. The sensor requirements to measure the planarity of the panels are a resolution of 0.3 μm and a beam spot diameter of ∼20 μm, well below 100 μ m the size of the smallest structures. We report on achieved planarities of the panels and the performance of the laser sensor system. A panel with an RMS better than 30 μm was build and the evolution of its planarity due to humidity and temperature effects is shown.

  5. Improvement of illumination uniformity for LED flat panel light by using micro-secondary lens array.

    Science.gov (United States)

    Lee, Hsiao-Wen; Lin, Bor-Shyh

    2012-11-05

    LED flat panel light is an innovative lighting product in recent years. However, current flat panel light products still contain some drawbacks, such as narrow lighting areas and hot spots. In this study, a micro-secondary lens array technique was proposed and applied for the design of the light guide surface to improve the illumination uniformity. By using the micro-secondary lens array, the candela distribution of the LED flat panel light can be adjusted to similar to batwing distribution to improve the illumination uniformity. The experimental results show that the enhancement of the floor illumination uniformity is about 61%, and that of the wall illumination uniformity is about 20.5%.

  6. SU-E-I-53: Comparison of Kerma-Area-Product Between the Micro-Angiographic Fluoroscope (MAF) and a Flat Panel Detector (FPD) as Used in Neuro-Endovascular Procedures

    International Nuclear Information System (INIS)

    Vijayan, S; Rana, V; Nagesh, S Setlur; Xiong, Z; Rudin, S; Bednarek, D

    2015-01-01

    Purpose: To determine the reduction of integral dose to the patient when using the micro-angiographic fluoroscope (MAF) compared to when using the standard flat-panel detector (FPD) for the techniques used during neurointerventional procedures. Methods: The MAF is a small field-of-view, high resolution x-ray detector which captures 1024 x 1024 pixels with an effective pixel size of 35μm and is capable of real-time imaging up to 30 frames per second. The MAF was used in neuro-interventions during those parts of the procedure when high resolution was needed and the FPD was used otherwise. The technique parameters were recorded when each detector was used and the kerma-area-product (KAP) per image frame was determined. KAP values were calculated for seven neuro interventions using premeasured calibration files of output as a function of kVp and beam filtration and included the attenuation of the patient table for the frontal projections to be more representative of integral patient dose. The air kerma at the patient entrance was multiplied by the beam area at that point to obtain the KAP values. The ranges of KAP values per frame were determined for the range of technique parameters used during the clinical procedures. To appreciate the benefit of the higher MAF resolution in the region of interventional activity, DA technique parameters were generally used with the MAF. Results: The lowest and highest values of KAP per frame for the MAF in DA mode were 4 and 50 times lower, respectively, compared to those of the FPD in pulsed fluoroscopy mode. Conclusion: The MAF was used in those parts of the clinical procedures when high resolution and image quality was essential. The integral patient dose as represented by the KAP value was substantially lower when using the MAF than when using the FPD due to the much smaller volume of tissue irradiated. This research was supported in part by Toshiba Medical Systems Corporation and NIH Grant R01EB002873

  7. SU-E-I-53: Comparison of Kerma-Area-Product Between the Micro-Angiographic Fluoroscope (MAF) and a Flat Panel Detector (FPD) as Used in Neuro-Endovascular Procedures

    Energy Technology Data Exchange (ETDEWEB)

    Vijayan, S; Rana, V; Nagesh, S Setlur; Xiong, Z; Rudin, S; Bednarek, D [Toshiba Stroke and Vascular Research Center, University at Buffalo, Buffalo, NY (United States)

    2015-06-15

    Purpose: To determine the reduction of integral dose to the patient when using the micro-angiographic fluoroscope (MAF) compared to when using the standard flat-panel detector (FPD) for the techniques used during neurointerventional procedures. Methods: The MAF is a small field-of-view, high resolution x-ray detector which captures 1024 x 1024 pixels with an effective pixel size of 35μm and is capable of real-time imaging up to 30 frames per second. The MAF was used in neuro-interventions during those parts of the procedure when high resolution was needed and the FPD was used otherwise. The technique parameters were recorded when each detector was used and the kerma-area-product (KAP) per image frame was determined. KAP values were calculated for seven neuro interventions using premeasured calibration files of output as a function of kVp and beam filtration and included the attenuation of the patient table for the frontal projections to be more representative of integral patient dose. The air kerma at the patient entrance was multiplied by the beam area at that point to obtain the KAP values. The ranges of KAP values per frame were determined for the range of technique parameters used during the clinical procedures. To appreciate the benefit of the higher MAF resolution in the region of interventional activity, DA technique parameters were generally used with the MAF. Results: The lowest and highest values of KAP per frame for the MAF in DA mode were 4 and 50 times lower, respectively, compared to those of the FPD in pulsed fluoroscopy mode. Conclusion: The MAF was used in those parts of the clinical procedures when high resolution and image quality was essential. The integral patient dose as represented by the KAP value was substantially lower when using the MAF than when using the FPD due to the much smaller volume of tissue irradiated. This research was supported in part by Toshiba Medical Systems Corporation and NIH Grant R01EB002873.

  8. Flat-panel electronic displays: a triumph of physics, chemistry and engineering.

    Science.gov (United States)

    Hilsum, Cyril

    2010-03-13

    This paper describes the history and science behind the development of modern flat-panel displays, and assesses future trends. Electronic displays are an important feature of modern life. For many years the cathode ray tube, an engineering marvel, was universal, but its shape was cumbersome and its operating voltage too high. The need for a flat-panel display, working at a low voltage, became imperative, and much research has been applied to this need. Any versatile flat-panel display will exploit an electro-optical effect, a transparent conductor and an addressing system to deliver data locally. The first need is to convert an electrical signal into a visible change. Two methods are available, the first giving emission of light, the second modulating ambient illumination. The most useful light-emitting media are semiconductors, historically exploiting III-V or II-VI compounds, but more recently organic or polymer semiconductors. Another possible effect uses gas plasma discharges. The modulating, or subtractive, effects that have been studied include liquid crystals, electrophoresis, electrowetting and electrochromism. A transparent conductor makes it possible to apply a voltage to an extended area while observing the results. The design is a compromise, since the free electrons that carry current also absorb light. The first materials used were metals, but some semiconductors, when heavily doped, give a better balance, with high transmission for a low resistance. Delivering data unambiguously to a million or so picture elements across the display area is no easy task. The preferred solution is an amorphous silicon thin-film transistor deposited at each cross-point in an X-Y matrix. Success in these endeavours has led to many applications for flat-panel displays, including television, flexible displays, electronic paper, electronic books and advertising signs.

  9. Diffractive flat panel solar concentrators of a novel design

    NARCIS (Netherlands)

    De Jong, T.M.; de Boer, D.K.G.; Bastiaansen, C.W.M.

    2016-01-01

    A novel design for a flat panel solar concentrator is presented which is based on a light guide with a grating applied on top that diffracts light into total internal reflection. By combining geometrical and diffractive optics the geometrical concentration ratio is optimized according to the

  10. Full dynamic resolution low lower DA-Converters for flat panel displays

    Directory of Open Access Journals (Sweden)

    C. Saas

    2006-01-01

    Full Text Available It has been shown that stepwise charging can reduce the power dissipated in the source drivers of a flat panel display. However the solution presented only provided a dynamic resolution of 3 bits which is not sufficient for obtaining a full color resolution display. In this work a further development of the basic idea is presented. The stepwise charging is increased to 4 bits and supplemented by a current source to provide an output signal which represents an 8 bit value with sufficient accuracy. Within this work the application is an AM-OLED flat panel display, but the concept can easily be applied to other display technologies like TFT-LCD as well.

  11. New detectors technology for radiology imaging

    International Nuclear Information System (INIS)

    Cuzin, M.; Peyret, O.

    1998-01-01

    We summarize the main parameters which describes the radiological image at first and the advantages of pixel detectors. All detectors converts X-rays in charges either with an intermediate step with light or directly in a semi-conductor media. That is true for tomography which is the first domain where digital processing have been taken in account and for radiology where flat panel are now proposed to radiologists. Nevertheless, luminescent stimulated screens are a good way to prepare users with digital radiography. As such technique is not valuable for dynamic acquisition, we describe systems which used standard luminescent screens with CCD cameras or with IIR. Some description and comparison of flat panel independent pixel detectors are given. (authors)

  12. Development of Surfaces Optically Suitable for Flat Solar Panels

    Science.gov (United States)

    Desmet, D.; Jason, A.

    1978-01-01

    Three areas of research in the development of flat solar panels are described. (1) A reflectometer which can separately evaluate the spectral and diffuse reflectivities of surfaces was developed. The reflectometer has a phase locked detection system. (2) A coating composed of strongly bound copper oxide that is formed by an etching process performed on an aluminum alloy with high copper content was also developed. Because of this one step fabrication process, fabrication costs are expected to be small. (3) A literature search was conducted and conclusions on the required optical properties of flat plate solar collectors are presented.

  13. Large area x-ray detectors for cargo radiography

    Science.gov (United States)

    Bueno, C.; Albagli, D.; Bendahan, J.; Castleberry, D.; Gordon, C.; Hopkins, F.; Ross, W.

    2007-04-01

    Large area x-ray detectors based on phosphors coupled to flat panel amorphous silicon diode technology offer significant advances for cargo radiologic imaging. Flat panel area detectors provide large object coverage offering high throughput inspections to meet the high flow rate of container commerce. These detectors provide excellent spatial resolution when needed, and enhanced SNR through low noise electronics. If the resolution is reduced through pixel binning, further advances in SNR are achievable. Extended exposure imaging and frame averaging enables improved x-ray penetration of ultra-thick objects, or "select-your-own" contrast sensitivity at a rate many times faster than LDAs. The areal coverage of flat panel technology provides inherent volumetric imaging with the appropriate scanning methods. Flat panel area detectors have flexible designs in terms of electronic control, scintillator selection, pixel pitch, and frame rates. Their cost is becoming more competitive as production ramps up for the healthcare, nondestructive testing (NDT), and homeland protection industries. Typically used medical and industrial polycrystalline phosphor materials such as Gd2O2S:Tb (GOS) can be applied to megavolt applications if the phosphor layer is sufficiently thick to enhance x-ray absorption, and if a metal radiator is used to augment the quantum detection efficiency and reduce x-ray scatter. Phosphor layers ranging from 0.2-mm to 1-mm can be "sandwiched" between amorphous silicon flat panel diode arrays and metal radiators. Metal plates consisting of W, Pb or Cu, with thicknesses ranging from 0.25-mm to well over 1-mm can be used by covering the entire area of the phosphor plate. In some combinations of high density metal and phosphor layers, the metal plate provides an intensification of 25% in signal due to electron emission from the plate and subsequent excitation within the phosphor material. This further improves the SNR of the system.

  14. Evaluation of flat panel PMT for gamma ray imaging

    International Nuclear Information System (INIS)

    Pani, R.; Cinti, M.N.; Pellegrini, R.; Trotta, C.; Trotta, G.; Montani, L.; Ridolfi, S.; Garibaldi, F.; Scafe, R.; Belcari, N.; Del Guerra, A.

    2003-01-01

    The first position sensitive PMT, Hamamatsu R2486, developed in 1985, represented a strong technological advance for gamma-ray imaging. Hamamatsu H8500 Flat Panel PMT is the last generation position sensitive PMT: extremely compact with 2 in. active area. Its main features are: minimum peripheral dead zone (1 mm) and height of 12 mm. It was designed to be assembled in array to cover large detection area. It can represent a technical revolution for many applications in the field of gamma-ray imaging as for example nuclear medicine. This tube is based on metal channel dynode for charge multiplication and 8x8 anodes for charge collection and position calculation. In this paper we present a preliminary evaluation of the imaging performances addressed to nuclear medicine application. To this aim we have taken into account two different electronic readouts: resistive chain with Anger Camera principle and multianode readout. Flat panel PMT was coupled to CsI(Tl) and NaI(Tl) scintillation arrays. The results were also compared with the first generation PSPMT

  15. Evaluation of patient exposure with Flat Panel Detector (FPD) in X-ray TV system

    International Nuclear Information System (INIS)

    Yamada, M.; Komiya, N.; Kawaguchi, A.; Suzuki, M.; Suzuki, Shoichi; Asada, Yasuki

    2008-01-01

    The use of flat-panel detector (FPD) systems in TV equipment for gastrointestinal tract examination is increasing. The use of FPD systems is believed to reduce the exposure dose. When our institution changed its TV equipment from an image intensifier (GE; MS90Tj) system to an FPD (Shimadzu; SONIALVISION safire DAR-3500) system, we measured the doses produced and carried out a comparative examination of the extent to which exposure could be reduced. Two TV systems were used. We used an analyzer to measure output waveform, tube voltage, and half-value layer (HVL), and an ionization chamber dosimeter to carry out dose-in-air measurements. Body thickness, number of image acquisitions, and fluoroscopy time are required for the calculation of entrance skin dose (ESD). We therefore measured body thicknesses in 1000 upper gastrointestinal tract (UGI) and barium enemas and obtained average body thicknesses for males and females by age group. Values used for number of image acquisitions and fluoroscopy times were the averages in our institution over a two-year period. When an I.I. system was used, the average ESD during UGI examination were 126.8 mGy fluoroscopy dose and 11.62 mGy imaging dose, for an average total dose of 138.42 mGy per examination. ESD during barium enema averaged 201.73 mGy fluoroscopy dose and 45.2 mGy imaging dose, for an average total dose of 246.92 mGy per examination. When an FPD system was used, the average ESD during UGI examination were 58.71 mGy fluoroscopy dose and 5.72 mGy imaging dose, for an average total dose of 64.43 mGy per examination. ESD during barium enema averaged 112.21 mGy fluoroscopy dose and 24.55 mGy imaging dose, for an average total dose of 136.76 mGy per examination. The use of an FPD system reduced both fluoroscopy dose and imaging dose by 50%. The number of TV systems equipped with FPD in Japan has increased from around 1300 in 2006 to around 1700 in 2007. The use of FPD systems can be expected to increase in future. This

  16. SU-D-204-05: Quantitative Comparison of a High Resolution Micro-Angiographic Fluoroscopic (MAF) Detector with a Standard Flat Panel Detector (FPD) Using the New Metric of Generalized Measured Relative Object Detectability (GM-ROD)

    Energy Technology Data Exchange (ETDEWEB)

    Russ, M; Ionita, C; Bednarek, D; Rudin, S [Toshiba Stroke and Vascular Research Center, University at Buffalo (SUNY), Buffalo, NY (United States)

    2015-06-15

    Purpose: In endovascular image-guided neuro-interventions, visualization of fine detail is paramount. For example, the ability of the interventionist to visualize the stent struts depends heavily on the x-ray imaging detector performance. Methods: A study to examine the relative performance of the high resolution MAF-CMOS (pixel size 75µm, Nyquist frequency 6.6 cycles/mm) and a standard Flat Panel Detector (pixel size 194µm, Nyquist frequency 2.5 cycles/mm) detectors in imaging a neuro stent was done using the Generalized Measured Relative Object Detectability (GM-ROD) metric. Low quantum noise images of a deployed stent were obtained by averaging 95 frames obtained by both detectors without changing other exposure or geometric parameters. The square of the Fourier transform of each image is taken and divided by the generalized normalized noise power spectrum to give an effective measured task-specific signal-to-noise ratio. This expression is then integrated from 0 to each of the detector’s Nyquist frequencies, and the GM-ROD value is determined by taking a ratio of the integrals for the MAF-CMOS to that of the FPD. The lower bound of integration can be varied to emphasize high frequencies in the detector comparisons. Results: The MAF-CMOS detector exhibits vastly superior performance over the FPD when integrating over all frequencies, yielding a GM-ROD value of 63.1. The lower bound of integration was stepped up in increments of 0.5 cycles/mm for higher frequency comparisons. As the lower bound increased, the GM-ROD value was augmented, reflecting the superior performance of the MAF-CMOS in the high frequency regime. Conclusion: GM-ROD is a versatile metric that can provide quantitative detector and task dependent comparisons that can be used as a basis for detector selection. Supported by NIH Grant: 2R01EB002873 and an equipment grant from Toshiba Medical Systems Corporation.

  17. A performance comparison of direct- and indirect-detection flat-panel imagers

    CERN Document Server

    Partridge, M; Müller, L

    2002-01-01

    A comparison of the performance of a direct- and an indirect-detection amorphous silicon flat-panel X-ray imager is presented for a 6 MV beam. Experimental measurements of the noise characteristics, image lag, spectral response, spatial resolution and quantum efficiency are described, compared and discussed. The two systems are comprised of 512x512 pixel, 400 mu m pitch, arrays of a-Si:H p-i-n photodiodes and thin-film transistors. In the direct-detection system, X-rays interact to produce electron/hole pairs directly in the silicon photodiodes. For the indirect-detection system, a phosphor screen converts energy from the incident X-rays into visible light, which is then detected by the photodiodes. Both systems are shown to be quantum noise limited, with the total electronic noise in the detector 10-15 times smaller than the Poisson noise level in detected signal. The measured lag for both systems is 1.0+-0.1% or less in the first frame with subsequent signals decaying exponentially with frame read-out, with...

  18. Diffractive flat panel solar concentrators of a novel design.

    Science.gov (United States)

    de Jong, Ties M; de Boer, Dick K G; Bastiaansen, Cees W M

    2016-07-11

    A novel design for a flat panel solar concentrator is presented which is based on a light guide with a grating applied on top that diffracts light into total internal reflection. By combining geometrical and diffractive optics the geometrical concentration ratio is optimized according to the principles of nonimaging optics, while the thickness of the device is minimized due to the use of total internal reflection.

  19. Investigation of the dosimetric properties of an a-Si flat panel epid

    International Nuclear Information System (INIS)

    Fielding, A.L.; Jahangir, S.T.

    2004-01-01

    Full text: Electronic portal imaging devices (EPIDs) are primarily used as an electronic replacement for film to verify the set-up of radiotherapy patients based on imaged anatomy. There has recently been much interest in the use of amorphous silicon (a-Si) flat panel EPIDs for dosimetric verification in radiotherapy. The work presented here has been carried out to determine their suitability for dosimetric applications by investigating some of the basic response characteristics and the implications these might have. The measurements reported in this paper were performed using 6-MV photon beams from an Elekta Precise linear accelerator fitted with Elekta iViewGT amorphous silicon flat panel EPIDs. Measurements were performed to investigate the response of the EPID as a function of exposure and field size. Similar measurements were made with an ionisation chamber for comparison. Further measurements were carried out to investigate the response of the EPID to multiple low dose exposures (e.g. 5x2 MU) such as might be encountered in Intensity Modulated Radiotherapy (IMRT). This was compared with the response to a single high dose exposure (e.g. 10 MU) and repeated for a range of exposures. The results show the response of the EPID, to a good approximation, to be linear with dose over the range of 1 -200 MU. However, 'under-responses' in the EPID of up to 5% were seen at the lowest exposures. For multiple low dose segments the sum of the EPID responses was found to be less than the response to the same total exposure in a single large segment. This effect reduces with increase in the magnitude of the low dose segments. The variation in EPID response with field size was found to be greater than that indicated by the ionisation chamber. The results show that the a-Si detector responds to dose, to a good approximation, in a linear manner. The EPID under-response at low doses is thought to be related to the so called ghosting effect. Each image frame has a residual

  20. Flat panel planar optic display. Revision 4/95

    Energy Technology Data Exchange (ETDEWEB)

    Veligdan, J.T.

    1995-05-01

    A prototype 10 inch flat panel Planar Optic display, (POD), screen has been constructed and tested. This display screen is comprised of hundreds of planar optic glass sheets bonded together with a cladding layer between each sheet where each glass sheet represents a vertical line of resolution. The display is 9 inches wide by 5 inches high and approximately 1 inch thick. A 3 milliwatt HeNe laser is used as the illumination source and a vector scanning technique is employed.

  1. A novel method for contrast-to-noise ratio (CNR) evaluation of digital mammography detectors

    International Nuclear Information System (INIS)

    Baldelli, P.; Phelan, N.; Egan, G.

    2009-01-01

    The purpose of this study was to test a new, simple method of evaluating the contrast-to-noise ratio (CNR) over the entire image field of a digital detector and to compare different mammography systems. Images were taken under clinical exposure conditions for a range of simulated breast thicknesses using poly(methyl methacrylate) (PMMA). At each PMMA thickness, a second image which included an additional 0.2-mm Al sheet was also acquired. Image processing software was used to calculate the CNR in multiple regions of interest (ROI) covering the entire area of the detector in order to obtain a 'CNR image'. Five detector types were evaluated, two CsI-αSi (GE Healthcare) flat panel systems, one αSe (Hologic) flat panel system and a two generations of scanning photon counting digital detectors (Sectra). Flat panel detectors exhibit better CNR uniformity compared with the first-generation scanning photon counting detector in terms of mean pixel value variation. However, significant improvement in CNR uniformity was observed for the next-generation scanning detector. The method proposed produces a map of the CNR and a measurement of uniformity throughout the entire image field of the detector. The application of this method enables quality control measurement of individual detectors and a comparison of detectors using different technologies. (orig.)

  2. Implementation of a program of quality assurance of image in an imaging system of flat panel portal

    International Nuclear Information System (INIS)

    Gomez Barrado, A.; Sanchez Jimenez, E.; Benitez, J. A.; Sanchez-Reyes, A.

    2013-01-01

    (IGRT) image-guided radiation therapy is the one in which images are used to locate the area of treatment. Modern irradiation systems are equipped with different modalities for obtaining images, such as flat panel systems, systems conebeam, tomoimagen, etc. This paper describes the start-up and the experience of a quality assurance program based on a flat panel portal Imaging System. (Author)

  3. Comparison between radiation exposure levels using an image intensifier and a flat-panel detector-based system in image-guided central venous catheter placement in children weighing less than 10 kg

    Energy Technology Data Exchange (ETDEWEB)

    Miraglia, Roberto; Maruzzelli, Luigi; Cortis, Kelvin; Gerasia, Roberta; Maggio, Simona; Luca, Angelo [Diagnostic and Therapeutic Services, Mediterranean Institute for Transplantation and Advanced Specialized Therapies (ISMETT), Palermo (Italy); Piazza, Marcello [Department of Anesthesia, Mediterranean Institute for Transplantation and Advanced Specialized Therapies (ISMETT), Palermo (Italy); Tuzzolino, Fabio [Department of Information Technology, Mediterranean Institute for Transplantation and Advanced Specialized Therapies (ISMETT), Palermo (Italy)

    2014-09-10

    Ultrasound-guided central venous puncture and fluoroscopic guidance during central venous catheter (CVC) positioning optimizes technical success and lowers the complication rates in children, and is therefore considered standard practice. The purpose of this study was to compare the radiation exposure levels recorded during CVC placement in children weighing less than 10 kg in procedures performed using an image intensifier-based angiographic system (IIDS) to those performed in a flat-panel detector-based interventional suite (FPDS). A retrospective review of 96 image-guided CVC placements, between January 2008 and October 2013, in 49 children weighing less than 10 kg was performed. Mean age was 8.2 ± 4.4 months (range: 1-22 months). Mean weight was 7.1 ± 2.7 kg (range: 2.5-9.8 kg). The procedures were classified into two categories: non-tunneled and tunneled CVC placement. Thirty-five procedures were performed with the IIDS (21 non-tunneled CVC, 14 tunneled CVC); 61 procedures were performed with the FPDS (47 non-tunneled CVC, 14 tunneled CVC). For non-tunneled CVC, mean DAP was 113.5 ± 126.7 cGy cm{sup 2} with the IIDS and 15.9 ± 44.6 cGy . cm{sup 2} with the FPDS (P < 0.001). For tunneled CVC, mean DAP was 84.6 ± 81.2 cGy . cm{sup 2} with the IIDS and 37.1 ± 33.5 cGy cm{sup 2} with the FPDS (P = 0.02). The use of flat-panel angiographic equipment reduces radiation exposure in small children undergoing image-guided CVC placement. (orig.)

  4. A novel forward projection-based metal artifact reduction method for flat-detector computed tomography

    Energy Technology Data Exchange (ETDEWEB)

    Prell, Daniel; Kyriakou, Yiannis; Beister, Marcel; Kalender, Willi A [Institute of Medical Physics, University of Erlangen-Nuernberg, Henkestrasse 91, 91052 Erlangen (Germany)], E-mail: daniel.prell@imp.uni-erlangen.de

    2009-11-07

    Metallic implants generate streak-like artifacts in flat-detector computed tomography (FD-CT) reconstructed volumetric images. This study presents a novel method for reducing these disturbing artifacts by inserting discarded information into the original rawdata using a three-step correction procedure and working directly with each detector element. Computation times are minimized by completely implementing the correction process on graphics processing units (GPUs). First, the original volume is corrected using a three-dimensional interpolation scheme in the rawdata domain, followed by a second reconstruction. This metal artifact-reduced volume is then segmented into three materials, i.e. air, soft-tissue and bone, using a threshold-based algorithm. Subsequently, a forward projection of the obtained tissue-class model substitutes the missing or corrupted attenuation values directly for each flat detector element that contains attenuation values corresponding to metal parts, followed by a final reconstruction. Experiments using tissue-equivalent phantoms showed a significant reduction of metal artifacts (deviations of CT values after correction compared to measurements without metallic inserts reduced typically to below 20 HU, differences in image noise to below 5 HU) caused by the implants and no significant resolution losses even in areas close to the inserts. To cover a variety of different cases, cadaver measurements and clinical images in the knee, head and spine region were used to investigate the effectiveness and applicability of our method. A comparison to a three-dimensional interpolation correction showed that the new approach outperformed interpolation schemes. Correction times are minimized, and initial and corrected images are made available at almost the same time (12.7 s for the initial reconstruction, 46.2 s for the final corrected image compared to 114.1 s and 355.1 s on central processing units (CPUs))

  5. A novel forward projection-based metal artifact reduction method for flat-detector computed tomography

    International Nuclear Information System (INIS)

    Prell, Daniel; Kyriakou, Yiannis; Beister, Marcel; Kalender, Willi A

    2009-01-01

    Metallic implants generate streak-like artifacts in flat-detector computed tomography (FD-CT) reconstructed volumetric images. This study presents a novel method for reducing these disturbing artifacts by inserting discarded information into the original rawdata using a three-step correction procedure and working directly with each detector element. Computation times are minimized by completely implementing the correction process on graphics processing units (GPUs). First, the original volume is corrected using a three-dimensional interpolation scheme in the rawdata domain, followed by a second reconstruction. This metal artifact-reduced volume is then segmented into three materials, i.e. air, soft-tissue and bone, using a threshold-based algorithm. Subsequently, a forward projection of the obtained tissue-class model substitutes the missing or corrupted attenuation values directly for each flat detector element that contains attenuation values corresponding to metal parts, followed by a final reconstruction. Experiments using tissue-equivalent phantoms showed a significant reduction of metal artifacts (deviations of CT values after correction compared to measurements without metallic inserts reduced typically to below 20 HU, differences in image noise to below 5 HU) caused by the implants and no significant resolution losses even in areas close to the inserts. To cover a variety of different cases, cadaver measurements and clinical images in the knee, head and spine region were used to investigate the effectiveness and applicability of our method. A comparison to a three-dimensional interpolation correction showed that the new approach outperformed interpolation schemes. Correction times are minimized, and initial and corrected images are made available at almost the same time (12.7 s for the initial reconstruction, 46.2 s for the final corrected image compared to 114.1 s and 355.1 s on central processing units (CPUs)).

  6. Development of a fast multi-line x-ray CT detector for NDT

    International Nuclear Information System (INIS)

    Hofmann, T.; Nachtrab, F.; Schlechter, T.; Mühlbauer, J.; Schröpfer, S.; Firsching, M.; Uhlmann, N.; Neubauer, H.; Ernst, J.; Schweiger, T.; Oberst, M.; Meyer, A.

    2015-01-01

    Typical X-ray detectors for non-destructive testing (NDT) are line detectors or area detectors, like e.g. flat panel detectors. Multi-line detectors are currently only available in medical Computed Tomography (CT) scanners. Compared to flat panel detectors, line and multi-line detectors can achieve much higher frame rates. This allows time-resolved 3D CT scans of an object under investigation. Also, an improved image quality can be achieved due to reduced scattered radiation from object and detector themselves. Another benefit of line and multi-line detectors is that very wide detectors can be assembled easily, while flat panel detectors are usually limited to an imaging field with a size of approx. 40 × 40 cm 2 at maximum. The big disadvantage of line detectors is the limited number of object slices that can be scanned simultaneously. This leads to long scan times for large objects. Volume scans with a multi-line detector are much faster, but with almost similar image quality. Due to the promising properties of multi-line detectors their application outside of medical CT would also be very interesting for NDT. However, medical CT multi-line detectors are optimized for the scanning of human bodies. Many non-medical applications require higher spatial resolutions and/or higher X-ray energies. For those non-medical applications we are developing a fast multi-line X-ray detector.In the scope of this work, we present the current state of the development of the novel detector, which includes several outstanding properties like an adjustable curved design for variable focus-detector-distances, conserving nearly uniform perpendicular irradiation over the entire detector width. Basis of the detector is a specifically designed, radiation hard CMOS imaging sensor with a pixel pitch of 200 μ m. Each pixel has an automatic in-pixel gain adjustment, which allows for both: a very high sensitivity and a wide dynamic range. The final detector is planned to have 256 lines of

  7. Recommendations for the performance rating of flat plate terrestrial photovoltaic solar panels

    Science.gov (United States)

    Treble, F. C.

    1976-01-01

    A review of recommendations for standardizing the performance rating of flat plate terrestrial solar panels is given to develop an international standard code of practice for performance rating. Required data to characterize the performance of a solar panel are listed. Other items discussed are: (1) basic measurement procedures; (2) performance measurement in natural sunlight and simulated sunlight; (3) standard solar cells; (4) the normal incidence method; (5) global method and (6) definition of peak power.

  8. Acoustic Analysis Method for Flat Panel Speaker Driven by Giant Magnetostrictive-Material-Based Exciter(Linear Motor concerning Daily Life)

    OpenAIRE

    兪, 炳振; 平田, 勝弘; 大西, 敦郎; Byungjin, YOO; Katsuhiro, HIRATA; Atsurou, OONISHI; 大阪大学; 大阪大学; 大阪大学

    2011-01-01

    This paper presents a coupled analysis method of electromagnetic-structural-acoustic fields for flat panel speaker driven by giant magnetostrictive material (GMM) based exciter designed by using the finite element method (FEM). The acoustic field creation of the flat panel speaker driven by GMM exciter relies on the vibration of flat panel caused by magnetostrictive phenomenon of GMM when a magnetic field is applied. In this case, to predict the sound pressure level (SPL) at audio frequency r...

  9. Visual and ocular effects from the use of flat-panel displays

    Directory of Open Access Journals (Sweden)

    Esteban Porcar

    2016-06-01

    Full Text Available AIM: To evaluate the prevalence of eye symptoms in a non-presbyopic population of video display unit (VDU users with flat-panel displays. METHODS: One hundred and sixteen VDU users with flat-panel display from an urban population participated in the study; their ages ranging from 20 to 34y. There were 60 females and 56 males. An eye examination to rule out the presence of significant uncorrected refractive errors, general binocular dysfunctions and eye conditions was carried out. In order to determine and quantify the type and nature of eye symptoms, participants were asked to answer written questionnaire and the results were grouped by gender, age and number of hours a day spent using a VDU. RESULTS: Seventy-two percent of participants reported eye symptoms related to VDU use. Eye symptoms from moderate-to-severe were found in 23% of participants. The main symptom was moderate-to-severe tired eyes (14%; followed by sensitivity to bright lights (12%, blurred vision at far distances (10%, eyestrain or dry eye or irritated or burning eyes (9%, difficulty in refocusing from one distance to another or headache (8% and blurred vision at near or intermediate distances (<4%. Eye symptoms were greater among females (P=0.005 and increased with VDU use, markedly above 6h spent using a VDU in a typical day (P=0.01. CONCLUSION: Significant eye symptoms relate to VDU use often occur and should not be underestimated. The increasing use of electronic devices with flat-panel display should prompt users to take appropriate measures to prevent or to relieve the eye symptoms arising from their use.

  10. Visual and ocular effects from the use of flat-panel displays.

    Science.gov (United States)

    Porcar, Esteban; Pons, Alvaro M; Lorente, Amalia

    2016-01-01

    To evaluate the prevalence of eye symptoms in a non-presbyopic population of video display unit (VDU) users with flat-panel displays. One hundred and sixteen VDU users with flat-panel display from an urban population participated in the study; their ages ranging from 20 to 34y. There were 60 females and 56 males. An eye examination to rule out the presence of significant uncorrected refractive errors, general binocular dysfunctions and eye conditions was carried out. In order to determine and quantify the type and nature of eye symptoms, participants were asked to answer written questionnaire and the results were grouped by gender, age and number of hours a day spent using a VDU. Seventy-two percent of participants reported eye symptoms related to VDU use. Eye symptoms from moderate-to-severe were found in 23% of participants. The main symptom was moderate-to-severe tired eyes (14%); followed by sensitivity to bright lights (12%), blurred vision at far distances (10%), eyestrain or dry eye or irritated or burning eyes (9%), difficulty in refocusing from one distance to another or headache (8%) and blurred vision at near or intermediate distances (<4%). Eye symptoms were greater among females (P=0.005) and increased with VDU use, markedly above 6h spent using a VDU in a typical day (P=0.01). Significant eye symptoms relate to VDU use often occur and should not be underestimated. The increasing use of electronic devices with flat-panel display should prompt users to take appropriate measures to prevent or to relieve the eye symptoms arising from their use.

  11. Evaluation of a flat panel digital radiographic system for low-dose portable imaging of neonates

    International Nuclear Information System (INIS)

    Samei, Ehsan; Hill, Jeanne G.; Frey, G. Donald; Southgate, W. Michael; Mah, Eugene; Delong, David

    2003-01-01

    The purpose of this study was to evaluate the clinical utility of an investigational flat-panel digital radiography system for low-dose portable neonatal imaging. Thirty image-pairs from neonatal intensive care unit patients were acquired with a commercial Computed Radiography system (Agfa, ADC 70), and with the investigational system (Varian, Paxscan 2520) at one-quarter of the exposure. The images were evaluated for conspicuity and localization of the endings of ancillary catheters and tubes in two observer performance experiments with three pediatric radiologists and three neonatologists serving as observers. The results indicated no statistically significant difference in diagnostic quality between the images from the investigational system and from CR. Given the investigational system's superior resolution and noise characteristics, observer results suggest that the high detective quantum efficiency of flat-panel digital radiography systems can be utilized to decrease the radiation dose/exposure to neonatal patients, although post-processing of the images remains to be optimized. The rapid availability of flat-panel images in portable imaging was found to be an added advantage for timely clinical decision-making

  12. MO-AB-BRA-07: Low Dose Imaging with Avalanche Amorphous Selenium Flat Panel Imager

    Energy Technology Data Exchange (ETDEWEB)

    Scheuermann, J; Howansky, A; Goldan, A; Tanioka, K; Zhao, W [Stony Brook University, Stony Brook, New York (United States); Leveille, S; Tousignant, O [2Analogic Canada, Saint-laurent, Quebec (Canada)

    2016-06-15

    Purpose: We present the first active matrix flat panel imager (AMFPI) capable of producing x-ray quantum noise limited images at low doses by overcoming the electronic noise through signal amplification by photoconductive avalanche gain (gav). The indirect detector fabricated uses an optical sensing layer of amorphous selenium (a-Se) known as High-Gain Avalanche Rushing Photoconductor (HARP). The detector design is called Scintillator HARP (SHARP)-AMFPI. This is the first image sensor to utilize solid-state HARP technology. Methods: The detector’s electronic readout is a 24 × 30 cm{sup 2} array of thin film transistors (TFT) with a pixel pitch of 85 µm. The HARP structure consists of a 15 µm layer of a-Se isolated from the high voltage (HV) and signal electrode by a 2 µm thick hole blocking layer and electron blocking layer, respectively, to reduce dark current. A 150 µm thick structured CsI scintillator with reflective backing and a fiber optic faceplate (FOP) was coupled to the semi-transparent HV bias electrode of the HARP structure. Images were acquired using a 30 kVp Mo/Mo spectrum typically used in mammography. Results: Optical sensitivity measurements demonstrate that gav = 76 ± 5 can be achieved over the entire active area of the detector. At a constant dose to the detector of 6.67 µGy, image quality increases with gav until the effective electronic noise is negligible. Quantum noise limited images can be obtained with doses as low as 0.18 µGy. Conclusion: We demonstrate the feasibility of utilizing avalanche gain to overcome electronic noise. The indirect detector fabricated is the first solid-state imaging sensor to use HARP, and the largest active area HARP sensor to date. Our future work is to improve charge transport within the HARP structure and utilize a transparent HV electrode.

  13. Transparent Solar Concentrator for Flat Panel Display

    Science.gov (United States)

    Yeh, Chia-Hung; Chang, Fuh-Yu; Young, Hong-Tsu; Hsieh, Tsung-Yen; Chang, Chia-Hsiung

    2012-06-01

    A new concept of the transparent solar concentrator for flat panel display is experimentally demonstrated without adversely affecting the visual effects. The solar concentrator is based on a solar light-guide plate with micro prisms, not only increasing the absorption area of solar energy but also enhancing the conversion efficiency. The incident light is guided by the designed solar light-guide plate according to the total internal reflection (TIR), and converted into electrical power by photovoltaic solar cells. The designed transparent solar concentrator was made and measured with high transparency, namely 94.8%. The developed solar energy system for display can store energy and supply the bias voltage to light on two light-emitting diodes (LEDs) successfully.

  14. Edge-Spread Functions Expected for Several Changes in a Commercial Flat-Panel System

    International Nuclear Information System (INIS)

    Schach von Wittenau, A E

    2002-01-01

    The Bldg. 239 radiography facility uses a 9 MeV bremsstrahlung linac and a commercially available fiat-panel detector system. Ref. [1] discusses the facility in detail. Ref. [1] furthermore discusses the imaging quality of the fiat-panel system, and identifies several sources of image blur for the system in question. The maim'' contributors to the imaging blur are radiation scattered from the front cover of the detector housing, radiation scattered from the back cover of the detector housing, and radiation scattered from the aluminum plate that supports the amorphous-Si detector within the detector housing. The manufacturer of one such fiat-panel system seems willing to modify one of their products as requested, if such modifications may be made easily. Easy modifications would include making the detector housing thinner, decreasing the sizes of air gaps inside tile detector system, etc. Removing the aluminum support plate is considered to be a difficult modification. This memo reports the results of a set of Monte Carlo simulations that were performed to predict the changes in imaging quality, compared to that of the current system, if the detector is modified as suggested above. In particular, the edge-spread function (ESF) was calculated for each modification. ESFs were calculated for three photon energies: 100 keV, 450 keV, and 3 MeV. The results suggest that thinning and moving tile front and back covers of the detector housing should result in improved image quality for all of the photon energies considered. Interestingly, the results also suggest that removing the aluminum support plate would improve tim imaging performance at 100 keV and 450 keV, but that removing the plate has no additional benefit for imaging with 3 MeV photons

  15. Low-cost modular array-field designs for flat-panel and concentrator photovoltaic systems

    Science.gov (United States)

    Post, H. N.; Carmichael, D. C.; Alexander, G.; Castle, J. A.

    1982-09-01

    Described are the design and development of low-cost, modular array fields for flat-panel and concentrator photovoltaic (PV) systems. The objective of the work was to reduce substantially the cost of the array-field Balance-of-System (BOS) subsystems and site-specific design costs as compared to previous PV installations. These subsystems include site preparation, foundations, support structures, electrical writing, grounding, lightning protection, electromagnetic interference considerations, and controls. To reduce these BOS and design costs, standardized modular (building-block) designs for flat-panel and concentrator array fields have been developed that are fully integrated and optimized for lowest life-cycle costs. Using drawings and specifications now available, these building-block designs can be used in multiples to install various size array fields. The developed designs are immediately applicable (1982) and reduce the array-field BOS costs to a fraction of previous costs.

  16. On Energy Balance and Production Costs in Tubular and Flat Panel Photobioreactors

    NARCIS (Netherlands)

    Norsker, N.H.; Barbosa, M.J.; Vermue, M.H.; Wijffels, R.H.

    2012-01-01

    Reducing mixing in both flat panel and tubular photobioreactors can result in a positive net energy balance with state-of-the-art technology and Dutch weather conditions. In the tubular photobioreactor, the net energy balance becomes positive at velocities <0.3 ms-1, at which point the biomass

  17. Time-Resolved Quantitative Analysis of the Diaphragms During Tidal Breathing in a Standing Position Using Dynamic Chest Radiography with a Flat Panel Detector System ("Dynamic X-Ray Phrenicography"): Initial Experience in 172 Volunteers.

    Science.gov (United States)

    Yamada, Yoshitake; Ueyama, Masako; Abe, Takehiko; Araki, Tetsuro; Abe, Takayuki; Nishino, Mizuki; Jinzaki, Masahiro; Hatabu, Hiroto; Kudoh, Shoji

    2017-04-01

    Diaphragmatic motion in a standing position during tidal breathing remains unclear. The purpose of this observational study was to evaluate diaphragmatic motion during tidal breathing in a standing position in a health screening center cohort using dynamic chest radiography in association with participants' demographic characteristics. One hundred seventy-two subjects (103 men; aged 56.3 ± 9.8 years) underwent sequential chest radiographs during tidal breathing using dynamic chest radiography with a flat panel detector system. We evaluated the excursions of and peak motion speeds of the diaphragms. Associations between the excursions and participants' demographics (gender, height, weight, body mass index [BMI], smoking history, tidal volume, vital capacity, and forced expiratory volume) were investigated. The average excursion of the left diaphragm (14.9 ± 4.6 mm, 95% CI 14.2-15.5 mm) was significantly larger than that of the right (11.0 ± 4.0 mm, 95% CI 10.4-11.6 mm) (P <0.001). The peak motion speed of the left diaphragm (inspiratory, 16.6 ± 4.2 mm/s; expiratory, 13.7 ± 4.2 mm/s) was significantly faster than that of the right (inspiratory, 12.4 ± 4.4 mm/s; expiratory, 9.4 ± 3.8 mm/s) (both P <0.001). Both simple and multiple regression models demonstrated that higher BMI and higher tidal volume were associated with increased excursions of the bilateral diaphragm (all P <0.05). The average excursions of the diaphragms are 11.0 mm (right) and 14.9 mm (left) during tidal breathing in a standing position. The diaphragmatic motion of the left is significantly larger and faster than that of the right. Higher BMI and tidal volume are associated with increased excursions of the bilateral diaphragm. Copyright © 2017 The Association of University Radiologists. Published by Elsevier Inc. All rights reserved.

  18. Semi-automatic classification of skeletal morphology in genetically altered mice using flat-panel volume computed tomography.

    Directory of Open Access Journals (Sweden)

    Christian Dullin

    2007-07-01

    Full Text Available Rapid progress in exploring the human and mouse genome has resulted in the generation of a multitude of mouse models to study gene functions in their biological context. However, effective screening methods that allow rapid noninvasive phenotyping of transgenic and knockout mice are still lacking. To identify murine models with bone alterations in vivo, we used flat-panel volume computed tomography (fpVCT for high-resolution 3-D imaging and developed an algorithm with a computational intelligence system. First, we tested the accuracy and reliability of this approach by imaging discoidin domain receptor 2- (DDR2- deficient mice, which display distinct skull abnormalities as shown by comparative landmark-based analysis. High-contrast fpVCT data of the skull with 200 microm isotropic resolution and 8-s scan time allowed segmentation and computation of significant shape features as well as visualization of morphological differences. The application of a trained artificial neuronal network to these datasets permitted a semi-automatic and highly accurate phenotype classification of DDR2-deficient compared to C57BL/6 wild-type mice. Even heterozygous DDR2 mice with only subtle phenotypic alterations were correctly determined by fpVCT imaging and identified as a new class. In addition, we successfully applied the algorithm to classify knockout mice lacking the DDR1 gene with no apparent skull deformities. Thus, this new method seems to be a potential tool to identify novel mouse phenotypes with skull changes from transgenic and knockout mice on the basis of random mutagenesis as well as from genetic models. However for this purpose, new neuronal networks have to be created and trained. In summary, the combination of fpVCT images with artificial neuronal networks provides a reliable, novel method for rapid, cost-effective, and noninvasive primary screening tool to detect skeletal phenotypes in mice.

  19. Detection of small pulmonary nodules on chest radiographs: efficacy of dual-energy subtraction technique using flat-panel detector chest radiography

    International Nuclear Information System (INIS)

    Oda, S.; Awai, K.; Funama, Y.; Utsunomiya, D.; Yanaga, Y.; Kawanaka, K.; Nakaura, T.; Hirai, T.; Murakami, R.; Nomori, H.; Yamashita, Y.

    2010-01-01

    Aim: To investigate the effect of a double-exposure dual-energy subtraction (DES) technique on the diagnostic performance of radiologists detecting small pulmonary nodules on flat-panel detector (FPD) chest radiographs. Materials and methods: Using FPD radiography 41 sets of chest radiographs were obtained from 26 patients with pulmonary nodules measuring ≤20 mm and from 15 normal participants. Each dataset included standard and corresponding DES images. There were six non-solid, 10 part-solid, and 10 solid nodules. The mean size of the 26 nodules was 15 ± 4.8 mm. Receiver operating characteristic (ROC) analysis was performed to compare the performance of the eight board-certified radiologists. Results: For the eight radiologists, the mean value of the area under the ROC curve (AUC) without and with DES images was 0.62 ± 0.05 and 0.68 ± 0.05, respectively; the difference was statistically significant (p = 0.02). For part-solid nodules, the difference of the mean AUC value was statistically significant (AUC = 0.61 ± 0.07 versus 0.69 ± 0.05; p < 0.01); for non-solid nodules it was not (AUC = 0.62 ± 0.1 versus 0.61 ± 0.09; p = 0.73), and for solid nodules it was not (AUC = 0.75 ± 0.1 versus 0.78 ± 0.08; p = 0.23). For nodules with overlapping bone shadows, the difference of the mean AUC value was statistically significant (p = 0.03), for nodules without overlapping, it was not (p = 0.26). Conclusion: Use of a double-exposure DES technique at FPD chest radiography significantly improved the diagnostic performance of radiologists to detect small pulmonary nodules.

  20. Psychophysical evaluation of the image quality of a dynamic flat-panel digital x-ray image detector using the threshold contrast detail detectability (TCDD) technique

    Science.gov (United States)

    Davies, Andrew G.; Cowen, Arnold R.; Bruijns, Tom J. C.

    1999-05-01

    We are currently in an era of active development of the digital X-ray imaging detectors that will serve the radiological communities in the new millennium. The rigorous comparative physical evaluations of such devices are therefore becoming increasingly important from both the technical and clinical perspectives. The authors have been actively involved in the evaluation of a clinical demonstration version of a flat-panel dynamic digital X-ray image detector (or FDXD). Results of objective physical evaluation of this device have been presented elsewhere at this conference. The imaging performance of FDXD under radiographic exposure conditions have been previously reported, and in this paper a psychophysical evaluation of the FDXD detector operating under continuous fluoroscopic conditions is presented. The evaluation technique employed was the threshold contrast detail detectability (TCDD) technique, which enables image quality to be measured on devices operating in the clinical environment. This approach addresses image quality in the context of both the image acquisition and display processes, and uses human observers to measure performance. The Leeds test objects TO[10] and TO[10+] were used to obtain comparative measurements of performance on the FDXD and two digital spot fluorography (DSF) systems, one utilizing a Plumbicon camera and the other a state of the art CCD camera. Measurements were taken at a range of detector entrance exposure rates, namely 6, 12, 25 and 50 (mu) R/s. In order to facilitate comparisons between the systems, all fluoroscopic image processing such as noise reduction algorithms, were disabled during the experiments. At the highest dose rate FDXD significantly outperformed the DSF comparison systems in the TCDD comparisons. At 25 and 12 (mu) R/s all three-systems performed in an equivalent manner and at the lowest exposure rate FDXD was inferior to the two DSF systems. At standard fluoroscopic exposures, FDXD performed in an equivalent

  1. Attenuated phase-shift mask (PSM) blanks for flat panel display

    Science.gov (United States)

    Kageyama, Kagehiro; Mochizuki, Satoru; Yamakawa, Hiroyuki; Uchida, Shigeru

    2015-10-01

    The fine pattern exposure techniques are required for Flat Panel display applications as smart phone, tablet PC recently. The attenuated phase shift masks (PSM) are being used for ArF and KrF photomask lithography technique for high end pattern Semiconductor applications. We developed CrOx based large size PSM blanks that has good uniformity on optical characteristics for FPD applications. We report the basic optical characteristics and uniformity, stability data of large sized CrOx PSM blanks.

  2. Coupled Electro-Magneto-Mechanical-Acoustic Analysis Method Developed by Using 2D Finite Element Method for Flat Panel Speaker Driven by Magnetostrictive-Material-Based Actuator

    Science.gov (United States)

    Yoo, Byungjin; Hirata, Katsuhiro; Oonishi, Atsurou

    In this study, a coupled analysis method for flat panel speakers driven by giant magnetostrictive material (GMM) based actuator was developed. The sound field produced by a flat panel speaker that is driven by a GMM actuator depends on the vibration of the flat panel, this vibration is a result of magnetostriction property of the GMM. In this case, to predict the sound pressure level (SPL) in the audio-frequency range, it is necessary to take into account not only the magnetostriction property of the GMM but also the effect of eddy current and the vibration characteristics of the actuator and the flat panel. In this paper, a coupled electromagnetic-structural-acoustic analysis method is presented; this method was developed by using the finite element method (FEM). This analysis method is used to predict the performance of a flat panel speaker in the audio-frequency range. The validity of the analysis method is verified by comparing with the measurement results of a prototype speaker.

  3. Cross Talk Study to the Single Photon Response of a Flat Panel PMT for the RICH Upgrade at LHCb

    CERN Multimedia

    Arnaboldi, C; Calvi, M; Fanchini, E; Gotti, C; Maino, M; Matteuzzi, C; Perego, D L; Pessina, G; Wang, J C

    2009-01-01

    The Ring Imaging CHerenkov, RICH, detector at LHCb is now readout by Hybrid Photon Detectors. In view of its upgrade a possible option is the adoption of the flat panel Photon Multipliers Tubes, PMT. An important issue for the good determination of the rings produced in the sensitive media is a negligible level of cross talk. We have experimentally studied the cross talk from the 64x64 pixels of the H9500 PMT from Hamamatsu. Results have shown that at the single photon signal level, as expected at LHCb, the statistics applied to the small number of electrons generated at the first dynode of the PMT chain leads to a cross talk mechanism that must be interpreted in term of the percentage of the number of induced signals rather than on the amplitude of the induced signals. The threshold to suppress cross talk must be increased to a significant fraction of the single photon signal for the worst case. The number of electrons generated at the first dynode is proportional to the biasing voltage. Measurements have sh...

  4. C-arm flat detector computed tomography parenchymal blood volume imaging: the nature of parenchymal blood volume parameter and the feasibility of parenchymal blood volume imaging in aneurysmal subarachnoid haemorrhage patients

    Energy Technology Data Exchange (ETDEWEB)

    Kamran, Mudassar; Byrne, James V. [University of Oxford, Nuffield Department of Surgical Sciences, Oxford (United Kingdom)

    2015-09-15

    C-arm flat detector computed tomography (FDCT) parenchymal blood volume (PBV) measurements allow assessment of cerebral haemodynamics in the neurointerventional suite. This paper explores the feasibility of C-arm computed tomography (CT) PBV imaging and the relationship between the C-arm CT PBV and the MR-PWI-derived cerebral blood volume (CBV) and cerebral blood flow (CBF) parameters in aneurysmal subarachnoid haemorrhage (SAH) patients developing delayed cerebral ischemia (DCI). Twenty-six patients with DCI following aneurysmal SAH underwent a research C-arm CT PBV scan using a biplane angiography system and contemporaneous MR-PWI scan as part of a prospective study. Quantitative whole-brain atlas-based volume-of-interest analysis in conjunction with Pearson correlation and Bland-Altman tests was performed to explore the agreement between C-arm CT PBV and MR-derived CBV and CBF measurements. All patients received medical management, while eight patients (31 %) underwent selective intra-arterial chemical angioplasty. Colour-coded C-arm CT PBV maps were 91 % sensitive and 100 % specific in detecting the perfusion abnormalities. C-arm CT rPBV demonstrated good agreement and strong correlation with both MR-rCBV and MR-rCBF measurements; the agreement and correlation were stronger for MR-rCBF relative to MR-rCBV and improved for C-arm CT PBV versus the geometric mean of MR-rCBV and MR-rCBF. Analysis of weighted means showed that the C-arm CT PBV has a preferential blood flow weighting (∼60 % blood flow and ∼40 % blood volume weighting). C-arm CT PBV imaging is feasible in DCI following aneurysmal SAH. PBV is a composite perfusion parameter incorporating both blood flow and blood volume weightings. That PBV has preferential (∼60 %) blood flow weighting is an important finding, which is of clinical significance when interpreting the C-arm CT PBV maps, particularly in the setting of acute brain ischemia. (orig.)

  5. C-arm flat detector computed tomography parenchymal blood volume imaging: the nature of parenchymal blood volume parameter and the feasibility of parenchymal blood volume imaging in aneurysmal subarachnoid haemorrhage patients

    International Nuclear Information System (INIS)

    Kamran, Mudassar; Byrne, James V.

    2015-01-01

    C-arm flat detector computed tomography (FDCT) parenchymal blood volume (PBV) measurements allow assessment of cerebral haemodynamics in the neurointerventional suite. This paper explores the feasibility of C-arm computed tomography (CT) PBV imaging and the relationship between the C-arm CT PBV and the MR-PWI-derived cerebral blood volume (CBV) and cerebral blood flow (CBF) parameters in aneurysmal subarachnoid haemorrhage (SAH) patients developing delayed cerebral ischemia (DCI). Twenty-six patients with DCI following aneurysmal SAH underwent a research C-arm CT PBV scan using a biplane angiography system and contemporaneous MR-PWI scan as part of a prospective study. Quantitative whole-brain atlas-based volume-of-interest analysis in conjunction with Pearson correlation and Bland-Altman tests was performed to explore the agreement between C-arm CT PBV and MR-derived CBV and CBF measurements. All patients received medical management, while eight patients (31 %) underwent selective intra-arterial chemical angioplasty. Colour-coded C-arm CT PBV maps were 91 % sensitive and 100 % specific in detecting the perfusion abnormalities. C-arm CT rPBV demonstrated good agreement and strong correlation with both MR-rCBV and MR-rCBF measurements; the agreement and correlation were stronger for MR-rCBF relative to MR-rCBV and improved for C-arm CT PBV versus the geometric mean of MR-rCBV and MR-rCBF. Analysis of weighted means showed that the C-arm CT PBV has a preferential blood flow weighting (∼60 % blood flow and ∼40 % blood volume weighting). C-arm CT PBV imaging is feasible in DCI following aneurysmal SAH. PBV is a composite perfusion parameter incorporating both blood flow and blood volume weightings. That PBV has preferential (∼60 %) blood flow weighting is an important finding, which is of clinical significance when interpreting the C-arm CT PBV maps, particularly in the setting of acute brain ischemia. (orig.)

  6. Concept of a selective tumour therapy and its evaluation by near-infrared fluorescence imaging and flat-panel volume computed tomography in mice.

    Science.gov (United States)

    Alves, Frauke; Dullin, Christian; Napp, Joanna; Missbach-Guentner, Jeannine; Jannasch, Katharina; Mathejczyk, Julia; Pardo, Luis A; Stühmer, Walter; Tietze, Lutz-F

    2009-05-01

    Conventional chemotherapy of cancer has its limitations, especially in advanced and disseminated disease and suffers from lack of specificity. This results in a poor therapeutic index and considerable toxicity to normal organs. Therefore, many efforts are made to develop novel therapeutic tools against cancer with the aim of selectively targeting the drug to the tumour site. Drug delivery strategies fundamentally rely on the identification of good-quality biomarkers, allowing unequivocal discrimination between cancer and healthy tissue. At present, antibodies or antibody fragments have clearly proven their value as carrier molecules specific for a tumour-associated molecular marker. This present review draws attention to the use of near-infrared fluorescence (NIRF) imaging to investigate binding specificity and kinetics of carrier molecules such as monoclonal antibodies. In addition, flat-panel volume computed tomography (fpVCT) will be presented to monitor anatomical structures in tumour mouse models over time in a non-invasive manner. Each imaging device sheds light on a different aspect; functional imaging is applied to optimise the dose schedule and the concept of selective tumour therapies, whereas anatomical imaging assesses preclinically the efficacy of novel tumour therapies. Both imaging techniques in combination allow the visualisation of functional information obtained by NIRF imaging within an adequate anatomic framework.

  7. X-ray light valve (XLV): a novel detectors' technology for digital mammography

    Science.gov (United States)

    Marcovici, Sorin; Sukhovatkin, Vlad; Oakham, Peter

    2014-03-01

    A novel method, based on X-ray Light Valve (XLV) technology, is proposed for making good image quality yet inexpensive flat panel detectors for digital mammography. The digital mammography markets, particularly in the developing countries, demand quality machines at substantially lower prices than the ones available today. Continuous pressure is applied on x-ray detectors' manufacturers to reduce the flat panel detectors' prices. XLV presents a unique opportunity to achieve the needed price - performance characteristics for direct conversion, x-ray detectors. The XLV based detectors combine the proven, superior, spatial resolution of a-Se with the simplicity and low cost of liquid crystals and optical scanning. The x-ray quanta absorbed by a 200 μm a-Se produce electron - hole pairs that move under an electric field to the top and bottom of a-Se layer. This 2D charge distribution creates at the interface with the liquid crystals a continuous (analog) charge image corresponding to the impinging radiation's information. Under the influence of local electrical charges next to them, the liquid crystals twist proportionally to the charges and vary their light reflectivity. A scanning light source illuminates the liquid crystals while an associated, pixilated photo-detector, having a 42 μm pixel size, captures the light reflected by the liquid crystals and converts it in16 bit words that are transmitted to the machine for image processing and display. The paper will describe a novel XLV, 25 cm x 30 cm, flat panel detector structure and its underlying physics as well as its preliminary performance measured on several engineering prototypes. In particular, the paper will present the results of measuring XLV detectors' DQE, MTF, dynamic range, low contrast resolution and dynamic behavior. Finally, the paper will introduce the new, low cost, XLV detector based, digital mammography machine under development at XLV Diagnostics Inc.

  8. Performance evaluation of a direct-conversion flat-panel detector system in imaging and quality assurance for a high-dose-rate 192Ir source

    Science.gov (United States)

    Miyahara, Yoshinori; Hara, Yuki; Nakashima, Hiroto; Nishimura, Tomonori; Itakura, Kanae; Inomata, Taisuke; Kitagaki, Hajime

    2018-03-01

    In high-dose-rate (HDR) brachytherapy, a direct-conversion flat-panel detector (d-FPD) clearly depicts a 192Ir source without image halation, even under the emission of high-energy gamma rays. However, it was unknown why iridium is visible when using a d-FPD. The purpose of this study was to clarify the reasons for visibility of the source core based on physical imaging characteristics, including the modulation transfer functions (MTF), noise power spectral (NPS), contrast transfer functions, and linearity of d-FPD to high-energy gamma rays. The acquired data included: x-rays, [X]; gamma rays, [γ] dual rays (X  +  γ), [D], and subtracted data for depicting the source ([D]  -  [γ]). In the quality assurance (QA) test for the positional accuracy of a source core, the coordinates of each dwelling point were compared between the planned and actual source core positions using a CT/MR-compatible ovoid applicator and a Fletcher-Williamson applicator. The profile curves of [X] and ([D]  -  [γ]) matched well on MTF and NPS. The contrast resolutions of [D] and [X] were equivalent. A strongly positive linear correlation was found between the output data of [γ] and source strength (r 2  >  0.99). With regard to the accuracy of the source core position, the largest coordinate difference (3D distance) was noted at the maximum curvature of the CT/MR-compatible ovoid and Fletcher-Williamson applicators, showing 1.74  ±  0.02 mm and 1.01  ±  0.01 mm, respectively. A d-FPD system provides high-quality images of a source, even when high-energy gamma rays are emitted to the detector, and positional accuracy tests with clinical applicators are useful in identifying source positions (source movements) within the applicator for QA.

  9. A multi-panel direction-sensitive gamma-ray detector for low-altitude radiological searches

    Energy Technology Data Exchange (ETDEWEB)

    Becker, E.M.; Farsoni, A.T.

    2016-11-11

    A lightweight, low-cost multi-panel direction-sensitive radiation detector prototype has been developed at Oregon State University that is designed to be mounted on a small unmanned aerial system to autonomously search for radiation sources while flying close to the ground. The detection system comprises sixteen BGO-SiPM detector panels with an adjustable view angle, and signal outputs are processed in parallel in an FPGA. The minimum detectable activity was calculated to be 1.3 μCi of {sup 137}Cs at 1 m in under 60 s. The counting response of the detector panels were characterized and found to have 4.7% relative standard deviation, indicating good uniformity in overall design and assembly. The detector was also able to estimate the direction of a 12.3 μCi {sup 137}Cs source 100 cm from the device center with 2.3° accuracy in a 95% confidence width of 10.8° in 60 s.

  10. A novel heuristic for optimization aggregate production problem: Evidence from flat panel display in Malaysia

    Science.gov (United States)

    Al-Kuhali, K.; Hussain M., I.; Zain Z., M.; Mullenix, P.

    2015-05-01

    Aim: This paper contribute to the flat panel display industry it terms of aggregate production planning. Methodology: For the minimization cost of total production of LCD manufacturing, a linear programming was applied. The decision variables are general production costs, additional cost incurred for overtime production, additional cost incurred for subcontracting, inventory carrying cost, backorder costs and adjustments for changes incurred within labour levels. Model has been developed considering a manufacturer having several product types, which the maximum types are N, along a total time period of T. Results: Industrial case study based on Malaysia is presented to test and to validate the developed linear programming model for aggregate production planning. Conclusion: The model development is fit under stable environment conditions. Overall it can be recommended to adapt the proven linear programming model to production planning of Malaysian flat panel display industry.

  11. Designing, Modeling, Constructing, and Testing a Flat Panel Speaker and Sound Diffuser for a Simulator

    Science.gov (United States)

    Dillon, Christina

    2013-01-01

    The goal of this project was to design, model, build, and test a flat panel speaker and frame for a spherical dome structure being made into a simulator. The simulator will be a test bed for evaluating an immersive environment for human interfaces. This project focused on the loud speakers and a sound diffuser for the dome. The rest of the team worked on an Ambisonics 3D sound system, video projection system, and multi-direction treadmill to create the most realistic scene possible. The main programs utilized in this project, were Pro-E and COMSOL. Pro-E was used for creating detailed figures for the fabrication of a frame that held a flat panel loud speaker. The loud speaker was made from a thin sheet of Plexiglas and 4 acoustic exciters. COMSOL, a multiphysics finite analysis simulator, was used to model and evaluate all stages of the loud speaker, frame, and sound diffuser. Acoustical testing measurements were utilized to create polar plots from the working prototype which were then compared to the COMSOL simulations to select the optimal design for the dome. The final goal of the project was to install the flat panel loud speaker design in addition to a sound diffuser on to the wall of the dome. After running tests in COMSOL on various speaker configurations, including a warped Plexiglas version, the optimal speaker design included a flat piece of Plexiglas with a rounded frame to match the curvature of the dome. Eight of these loud speakers will be mounted into an inch and a half of high performance acoustic insulation, or Thinsulate, that will cover the inside of the dome. The following technical paper discusses these projects and explains the engineering processes used, knowledge gained, and the projected future goals of this project

  12. Elevated Radiation Exposure Associated With Above Surface Flat Detector Mini C-Arm Use.

    Science.gov (United States)

    Martin, Dennis P; Chapman, Talia; Williamson, Christopher; Tinsley, Brian; Ilyas, Asif M; Wang, Mark L

    2017-11-01

    This study aims to test the hypothesis that: (1) radiation exposure is increased with the intended use of Flat Surface Image Intensifier (FSII) units above the operative surface compared with the traditional below-table configuration; (2) this differential increases in a dose-dependent manner; and (3) radiation exposure varies with body part and proximity to the radiation source. A surgeon mannequin was seated at a radiolucent hand table, positioned for volar distal radius plating. Thermoluminescent dosimeters measured exposure to the eyes, thyroid, chest, hand, and groin, for 1- and 15-minute trials from a mini C-arm FSII unit positioned above and below the operating surface. Background radiation was measured by control dosimeters placed within the operating theater. At 1-minute of exposure, hand and eye dosages were significantly greater with the flat detector positioned above the table. At 15-minutes of exposure, hand radiation dosage exceeded that of all other anatomic sites with the FSII in both positions. Hand exposure was increased in a dose-dependent manner with the flat detector in either position, whereas groin exposure saw a dose-dependent only with the flat detector beneath the operating table. These findings suggest that the surgeon's hands and eyes may incur greater radiation exposure compared with other body parts, during routine mini C-arm FSII utilization in its intended position above the operating table. The clinical impact of these findings remains unclear, and future long-term radiation safety investigation is warranted. Surgeons should take precautions to protect critical body parts, particularly when using FSII technology above the operating with prolonged exposure time.

  13. Potential Applications of Flat-Panel Volumetric CT in Morphologic, Functional Small Animal Imaging

    Directory of Open Access Journals (Sweden)

    Susanne Greschus

    2005-08-01

    Full Text Available Noninvasive radiologic imaging has recently gained considerable interest in basic, preclinical research for monitoring disease progression, therapeutic efficacy. In this report, we introduce flat-panel volumetric computed tomography (fpVCT as a powerful new tool for noninvasive imaging of different organ systems in preclinical research. The three-dimensional visualization that is achieved by isotropic high-resolution datasets is illustrated for the skeleton, chest, abdominal organs, brain of mice. The high image quality of chest scans enables the visualization of small lung nodules in an orthotopic lung cancer model, the reliable imaging of therapy side effects such as lung fibrosis. Using contrast-enhanced scans, fpVCT displayed the vascular trees of the brain, liver, kidney down to the subsegmental level. Functional application of fpVCT in dynamic contrast-enhanced scans of the rat brain delivered physiologically reliable data of perfusion, tissue blood volume. Beyond scanning of small animal models as demonstrated here, fpVCT provides the ability to image animals up to the size of primates.

  14. Flat-panel video resolution LED display system

    Science.gov (United States)

    Wareberg, P. G.; Kennedy, D. I.

    The system consists of a 128 x 128 element X-Y addressable LED array fabricated from green-emitting gallium phosphide. The LED array is interfaced with a 128 x 128 matrix TV camera. Associated electronics provides for seven levels of grey scale above zero with a grey scale ratio of square root of 2. Picture elements are on 0.008 inch centers resulting in a resolution of 125 lines-per-inch and a display area of approximately 1 sq. in. The LED array concept lends itself to modular construction, permitting assembly of a flat panel screen of any desired size from 1 x 1 inch building blocks without loss of resolution. A wide range of prospective aerospace applications exist extending from helmet-mounted systems involving small dedicated arrays to multimode cockpit displays constructed as modular screens. High-resolution LED arrays are already used as CRT replacements in military film-marking reconnaissance applications.

  15. A performance comparison of flat-panel imager-based MV and kV cone-beam CT

    International Nuclear Information System (INIS)

    Groh, B.A.; Siewerdsen, J.H.; Drake, D.G.; Wong, J.W.; Jaffray, D.A.

    2002-01-01

    The use of cone-beam computed tomography (CBCT) has been proposed for guiding the delivery of radiation therapy, and investigators have examined the use of both kilovoltage (kV) and megavoltage (MV) x-ray beams in the development of such CBCT systems. In this paper, the inherent contrast and signal-to-noise ratio (SNR) performance for a variety of existing and hypothetical detectors for CBCT are investigated analytically as a function of imaging dose and object size. Theoretical predictions are compared to the results of experimental investigations employing large-area flat-panel imagers (FPIs) at kV and MV energies. Measurements were performed on two different FPI-based CBCT systems: a bench-top prototype incorporating an FPI and kV x-ray source (100 kVp x rays), and a system incorporating an FPI mounted on the gantry of a medical linear accelerator (6 MV x rays). The SNR in volume reconstructions was measured as a function of dose and found to agree reasonably with theoretical predictions. These results confirm the theoretically predicted advantages of employing kV energy x rays in imaging soft-tissue structures found in the human body. While MV CBCT may provide a valuable means of correcting 3D setup errors and may offer an advantage in terms of simplicity of mechanical integration with a linear accelerator (e.g., implementation in place of a portal imager), kV CBCT offers significant performance advantages in terms of image contrast and SNR per unit dose for visualization of soft-tissue structures. The relatively poor SNR performance at MV energies is primarily a result of the low x-ray quantum efficiencies (∼a few percent or less) that are currently achieved with FPIs at high energies. Furthermore, kV CBCT with an FPI offers the potential of combined volumetric and radiographic/fluoroscopic imaging using the same device

  16. A performance comparison of direct- and indirect-detection flat-panel imagers

    International Nuclear Information System (INIS)

    Partridge, M.; Hesse, B.-M.; Mueller, L.

    2002-01-01

    A comparison of the performance of a direct- and an indirect-detection amorphous silicon flat-panel X-ray imager is presented for a 6 MV beam. Experimental measurements of the noise characteristics, image lag, spectral response, spatial resolution and quantum efficiency are described, compared and discussed. The two systems are comprised of 512x512 pixel, 400 μm pitch, arrays of a-Si:H p-i-n photodiodes and thin-film transistors. In the direct-detection system, X-rays interact to produce electron/hole pairs directly in the silicon photodiodes. For the indirect-detection system, a phosphor screen converts energy from the incident X-rays into visible light, which is then detected by the photodiodes. Both systems are shown to be quantum noise limited, with the total electronic noise in the detector 10-15 times smaller than the Poisson noise level in detected signal. The measured lag for both systems is 1.0±0.1% or less in the first frame with subsequent signals decaying exponentially with frame read-out, with a half-life of between 3.3 and 3.8 frames. Both systems are demonstrated to have a pronounced sensitivity to low-energy multiply scattered photons, although this is shown to be effectively filtered out using a 2 mm copper build-up plate. The direct-detection system, with the 2 mm Cu build-up, shows greater sensitivity to scattered radiation than the indirect system. The spatial resolutions of both systems were effectively equal with an f 50 of 0.25 mm -1 when pixels are binned 2x2, although a slight contribution from optical scattering in the phosphor screen is seen for the indirect-detection system. The quantum efficiency of the direct-detection system is a factor of 0.45 lower than that of the indirect-detection system. The application of these detectors to megavoltage CT is discussed, with the conclusion that the indirect-detection system is to be preferred

  17. Studies of the performance of different front-end systems for flat-panel multi-anode PMTs with CsI(Tl) scintillator arrays

    International Nuclear Information System (INIS)

    Sekiya, H.; Hattori, K.; Kubo, H.; Miuchi, K.; Nagayoshi, T.; Nishimura, H.; Okada, Y.; Orito, R.; Takada, A.; Takeda, A.; Tanimori, T.; Ueno, K.

    2006-01-01

    We have studied the performance of two different types of front-end systems for our gamma camera based on Hamamatsu H8500 (flat-panel 64 channels multi-anode PSPMT) with a CsI(Tl) scintillator array. The array consists of 64 pixels of 6x6x20mm 3 which corresponds to the anode pixels of H8500. One of the system is based on commercial ASIC chips in order to read out every anode. The others are based on resistive charge divider network between anodes to reduce readout channels. In both systems, each pixel (6mm) was clearly resolved by flood field irradiation of 137 Cs. We also investigated the energy resolution of these systems and showed the performance of the cascade connection of resistive network between some PMTs for large area detectors

  18. Performance of low-cost X-ray area detectors with consumer digital cameras

    International Nuclear Information System (INIS)

    Panna, A.; Gomella, A.A.; Harmon, K.J.; Chen, P.; Miao, H.; Bennett, E.E.; Wen, H.

    2015-01-01

    We constructed X-ray detectors using consumer-grade digital cameras coupled to commercial X-ray phosphors. Several detector configurations were tested against the Varian PaxScan 3024M (Varian 3024M) digital flat panel detector. These include consumer cameras (Nikon D800, Nikon D700, and Nikon D3X) coupled to a green emission phosphor in a back-lit, normal incidence geometry, and in a front-lit, oblique incidence geometry. We used the photon transfer method to evaluate detector sensitivity and dark noise, and the edge test method to evaluate their spatial resolution. The essential specifications provided by our evaluation include discrete charge events captured per mm 2 per unit exposure surface dose, dark noise in equivalents of charge events per pixel, and spatial resolution in terms of the full width at half maximum (FWHM) of the detector's line spread function (LSF). Measurements were performed using a tungsten anode X-ray tube at 50 kVp. The results show that the home-built detectors provide better sensitivity and lower noise than the commercial flat panel detector, and some have better spatial resolution. The trade-off is substantially smaller imaging areas. Given their much lower costs, these home-built detectors are attractive options for prototype development of low-dose imaging applications

  19. Plasma Panel Detectors for MIP Detection for the SLHC and a Test Chamber Design

    CERN Document Server

    Ball, Robert; Etzion, Erez; Friedman, Peter S; Levin, Daniel S; Moshe, Meny Ben; Weaverdyck, Curtis; Zhou, Bing

    2010-01-01

    Performance demands for high and super-high luminosity at the LHC (up to 10^35 cm^(-2) sec^(-1) after the 2017 shutdown) and at future colliders demand high resolution tracking detectors with very fast time response and excellent temporal and spatial resolution. We are investigating a new radiation detector technology based on Plasma Display Panels (PDP), the underlying engine of panel plasma television displays. The design and production of PDPs is supported by four decades of industrial development. Emerging from this television technology is the Plasma Panel Sensor (PPS), a novel variant of the micropattern radiation detector. The PPS is fundamentally an array of micro-Geiger plasma discharge cells operating in a non-ageing, hermetically sealed gas mixture . We report on the PPS development program, including design of a PPS Test Cell.

  20. Large volume cryogenic silicon detectors

    International Nuclear Information System (INIS)

    Braggio, C.; Boscardin, M.; Bressi, G.; Carugno, G.; Corti, D.; Galeazzi, G.; Zorzi, N.

    2009-01-01

    We present preliminary measurements for the development of a large volume silicon detector to detect low energy and low rate energy depositions. The tested detector is a one cm-thick silicon PIN diode with an active volume of 31 cm 3 , cooled to the liquid helium temperature to obtain depletion from thermally-generated free carriers. A thorough study has been done to show that effects of charge trapping during drift disappears at a bias field value of the order of 100V/cm.

  1. Integrated radiotherapy imaging system (IRIS): design considerations of tumour tracking with linac gantry-mounted diagnostic x-ray systems with flat-panel detectors.

    Science.gov (United States)

    Berbeco, Ross I; Jiang, Steve B; Sharp, Gregory C; Chen, George T; Mostafavi, Hassan; Shirato, Hiroki

    2004-01-21

    The design of an integrated radiotherapy imaging system (IRIS), consisting of gantry mounted diagnostic (kV) x-ray tubes and fast read-out flat-panel amorphous-silicon detectors, has been studied. The system is meant to be capable of three main functions: radiographs for three-dimensional (3D) patient set-up, cone-beam CT and real-time tumour/marker tracking. The goal of the current study is to determine whether one source/panel pair is sufficient for real-time tumour/marker tracking and, if two are needed, the optimal position of each relative to other components and the isocentre. A single gantry-mounted source/imager pair is certainly capable of the first two of the three functions listed above and may also be useful for the third, if combined with prior knowledge of the target's trajectory. This would be necessary because only motion in two dimensions is visible with a single imager/source system. However, with previously collected information about the trajectory, the third coordinate may be derived from the other two with sufficient accuracy to facilitate tracking. This deduction of the third coordinate can only be made if the 3D tumour/marker trajectory is consistent from fraction to fraction. The feasibility of tumour tracking with one source/imager pair has been theoretically examined here using measured lung marker trajectory data for seven patients from multiple treatment fractions. The patients' selection criteria include minimum mean amplitudes of the tumour motions greater than 1 cm peak-to-peak. The marker trajectory for each patient was modelled using the first fraction data. Then for the rest of the data, marker positions were derived from the imager projections at various gantry angles and compared with the measured tumour positions. Our results show that, due to the three dimensionality and irregular trajectory characteristics of tumour motion, on a fraction-to-fraction basis, a 'monoscopic' system (single source/imager) is inadequate for

  2. Technical trends of large-size photomasks for flat panel displays

    Science.gov (United States)

    Yoshida, Koichiro

    2017-06-01

    Currently, flat panel displays (FPDs) are one of the main parts for information technology devices and sets. From 1990's to 2000's, liquid crystal displays (LCDs) and plasma displays had been mainstream FPDs. In the middle of 2000's, demand of plasma displays declined and organic light emitting diodes (OLEDs) newly came into FPD market. And today, major technology of FPDs are LCDs and OLEDs. Especially for mobile devices, the penetration of OLEDs is remarkable. In FPDs panel production, photolithography is the key technology as same as LSI. Photomasks for FPDs are used not only as original master of circuit pattern, but also as a tool to form other functional structures of FPDs. Photomasks for FPDs are called as "Large Size Photomasks(LSPMs)", since the remarkable feature is " Size" which reaches over 1- meter square and over 100kg. In this report, we discuss three LSPMs technical topics with FPDs technical transition and trend. The first topics is upsizing of LSPMs, the second is the challenge for higher resolution patterning, and the last is "Multi-Tone Mask" for "Half -Tone Exposure".

  3. Optimization of detector pixel size for stent visualization in x-ray fluoroscopy

    International Nuclear Information System (INIS)

    Jiang Yuhao; Wilson, David L.

    2006-01-01

    Pixel size is of great interest in the flat-panel detector design because of its potential impact on image quality. In the particular case of angiographic x-ray fluoroscopy, small pixels are required in order to adequately visualize interventional devices such as guidewires and stents which have wire diameters as small as 200 and 50 μm, respectively. We used quantitative experimental and modeling techniques to investigate the optimal pixel size for imaging stents. Image quality was evaluated by the ability of subjects to perform two tasks: detect the presence of a stent and discriminate a partially deployed stent from a fully deployed one in synthetic images. With measurements at 50, 100, 200, and 300 μm, the 100 μm pixel size gave the maximum contrast sensitivity for the detection experiment with the idealized direct detector. For an idealized indirect detector with a scintillating layer, an optimal pixel size was obtained at 200 μm pixel size. A channelized human observer model predicted a peak at 150 and 170 μm, for the idealized direct and indirect detectors, respectively. With regard to the stent deployment task for both detector types, smaller pixel sizes are favored and there is a steep drop in performance with larger pixels. In general, with the increasing exposures, the model and measurements give the enhanced contrast sensitivities and a smaller optimal pixel size. The effects of electronic noise and fill factor were investigated using the model. We believe that the experimental results and human observer model predications can help guide the flat-panel detector design. In addition, the human observer model should work on the similar images and be applicable to the future model and actual flat-panel implementations

  4. Investigation on effect of image lag in fluoroscopic images obtained with a dynamic flat-panel detector (FPD) on accuracy of target tracking in radiotherapy

    International Nuclear Information System (INIS)

    Tanaka, Rie; Ichikawa, Katsuhiro; Sanada, Sigeru; Mori, Shinichiro; Dobashi, Suguru; Kumagai, Motoki; Minohara, Shinichi; Kawashima, Hiroki

    2010-01-01

    Real-time tumor tracking in external radiotherapy can be achieved by diagnostic (kV) X-ray imaging with a dynamic flat-panel detector (FPD). The purpose of this study was to address image lag in target tracking and its influence on the accuracy of tumor tracking. Fluoroscopic images were obtained using a direct type of dynamic FPD. Image lag properties were measured without test devices according to IEC 62220-1. Modulation transfer function (MTF) and profile curves were measured on the edges of a moving tungsten plate at movement rate of 10 and 20 mm/s, covering lung tumor movement of normal breathing. A lung tumor and metal sphere with blurred edge due to image lag was simulated using the results and then superimposed on breathing chest radiographs of a patient. The moving target with and without image lag was traced using a template-matching technique. In the results, the image lag for the first frame after X-ray cutoff was 2.0% and decreased to less than 0.1% in the fifth frame. In the measurement of profile curves on the edges of static and moving tungsten material plates, the effect of image lag was seen as blurred edges of the plate. The blurred edges of a moving target were indicated as reduction of MTF. However, the target could be traced within an error of ±5 mm. The results indicated that there was no effect of image lag on target tracking in usual breathing speed in a radiotherapy situation. (author)

  5. C-arm flat detector computed tomography: the technique and its applications in interventional neuro-radiology

    International Nuclear Information System (INIS)

    Kamran, Mudassar; Nagaraja, Sanjoy; Byrne, James V.

    2010-01-01

    Flat detector computed tomography (FDCT) is an imaging tool that generates three-dimensional (3-D) volumes from data obtained during C-arm rotation using CT-like reconstruction algorithms. The technique is relatively new and, at current levels of performance, lags behind conventional CT in terms of image quality. However, the advantage of its availability in the interventional room has prompted neuro-radiologists to identify clinical settings where its role is uniquely beneficial. We performed a search of the online literature databases to identify studies reporting experience with FDCT in interventional neuro-radiology. The studies were systematically reviewed and their findings grouped according to specific clinical situation addressed. FDCT images allow detection of procedural complications, evaluation of low-radiopacity stents and assessment of endosaccular coil packing in intra-cranial aneurysms. Additional roles are 3-D angiography that provides an accurate depiction of vessel morphology with low concentrations of radiographic contrast media and a potential for perfusion imaging due to its dynamic scanning capability. A single scan combining soft tissue and angiographic examinations reduces radiation dose and examination time. Ongoing developments in flat detector technology and reconstruction algorithms are expected to further enhance its performance and increase this range of applications. FDCT images provide useful information in neuro-interventional setting. If current research confirms its potential for assessing cerebral haemodynamics by perfusion scanning, the combination would redefine it as an invaluable tool for interventional neuro-radiology procedures. This facility and its existing capabilities of parenchymal and angiographic imaging would also extend its use to the triage of acute stroke patients. (orig.)

  6. Large volume cryogenic silicon detectors

    Energy Technology Data Exchange (ETDEWEB)

    Braggio, C. [Dipartimento di Fisica, Universita di Padova, via Marzolo 8, 35131 Padova (Italy); Boscardin, M. [Fondazione Bruno Kessler (FBK), via Sommarive 18, I-38100 Povo (Italy); Bressi, G. [INFN sez. di Pavia, via Bassi 6, 27100 Pavia (Italy); Carugno, G.; Corti, D. [INFN sez. di Padova, via Marzolo 8, 35131 Padova (Italy); Galeazzi, G. [INFN lab. naz. Legnaro, viale dell' Universita 2, 35020 Legnaro (Italy); Zorzi, N. [Fondazione Bruno Kessler (FBK), via Sommarive 18, I-38100 Povo (Italy)

    2009-12-15

    We present preliminary measurements for the development of a large volume silicon detector to detect low energy and low rate energy depositions. The tested detector is a one cm-thick silicon PIN diode with an active volume of 31 cm{sup 3}, cooled to the liquid helium temperature to obtain depletion from thermally-generated free carriers. A thorough study has been done to show that effects of charge trapping during drift disappears at a bias field value of the order of 100V/cm.

  7. Automatic analysis of quality of images from X-ray digital flat detectors

    International Nuclear Information System (INIS)

    Le Meur, Y.

    2009-04-01

    Since last decade, medical imaging has grown up with the development of new digital imaging techniques. In the field of X-ray radiography, new detectors replace progressively older techniques, based on film or x-ray intensifiers. These digital detectors offer a higher sensibility and reduced overall dimensions. This work has been prepared with Trixell, the world leading company in flat detectors for medical radiography. It deals with quality control on digital images stemming from these detectors. High quality standards of medical imaging impose a close analysis of the defects that can appear on the images. This work describes a complete process for quality analysis of such images. A particular focus is given on the detection task of the defects, thanks to methods well adapted to our context of spatially correlated defects in noise background. (author)

  8. Comparison of Radiation Exposure during Endovascular Treatment of Peripheral Arterial Disease with Flat-Panel Detectors on Mobile C-arm versus Fixed Systems.

    Science.gov (United States)

    Guillou, Marie; Maurel, Blandine; Necib, Hatem; Vent, Pierre-Alexandre; Costargent, Alain; Chaillou, Philippe; Gouëffic, Yann; Kaladji, Adrien

    2018-02-01

    Flat-panel detectors on mobile C-arm (MC-arm) systems are currently challenging fixed C-arm (FC-arm) systems used in hybrid operating rooms. MC-arm systems offer an alternative to FC-arm systems in the endovascular treatment of peripheral arterial disease (PAD) but their efficiency has not been evaluated comparatively. Two series of patients undergoing arteriography with intention to treat were included. Each series consisted of 2 nonrandomized groups: an MC-arm group and an FC-arm group. Series 1 evaluated exposure to the patient (MC-arm, n = 113; FC-arm, n = 206) while series 2 evaluated exposure to patients and also health care personnel (MC-arm, n = 24; FC-arm, n = 76). The primary end points for evaluating exposure were air kerma (AK, in mGy) for patients and effective dose for health care personnel (in μSv). After adjustment for the effect of body mass index (analysis of covariance test), AK was found to be lower in the MC-arm group than in the FC-arm group (124.1 ± 142 vs. 173.3 ± 248.7, P = 0.025). There was no difference between the groups with regard to effective dose recorded for senior surgeons or for operating room nurses. However, a higher effective dose was recorded by the MC-arm group external dosimeter for the trainee resident and for nurse anesthetists. In endovascular treatment of lower limb PAD, use of an FC-arm system is associated with more radiation exposure to the patient than an MC-arm system. However, this type of imaging system does not appear to affect exposure to health care personnel. Copyright © 2017 Elsevier Inc. All rights reserved.

  9. Qualification test results for DOE solar photovoltaic flat panel procurement - PRDA 38

    Science.gov (United States)

    Griffith, J. S.

    1980-01-01

    Twelve types of prototypes modules for the DOE Photovoltaic Flat Panel Procurement (PRDA 38) were subjected to qualification tests at the Jet Propulsion Laboratory according to a new specification. Environmental exposures were carried out separately and included temperature cycling, humidity, wind simulation, and hail. The most serious problems discovered were reduced insulation resistance to ground and ground continuity of the metal frames, electrical degradation, erratic power readings, and delamination. The electrical and physical characteristics of the newly received modules are also given.

  10. Flat-Panel Detector—Based Volume Computed Tomography: A Novel 3D Imaging Technique to Monitor Osteolytic Bone Lesions in a Mouse Tumor Metastasis Model

    Directory of Open Access Journals (Sweden)

    Jeannine Missbach-Guentner

    2007-09-01

    Full Text Available Skeletal metastasis is an important cause of mortality in patients with breast cancer. Hence, animal models, in combination with various imaging techniques, are in high demand for preclinical assessment of novel therapies. We evaluated the applicability of flat-panel volume computed tomography (fpVCT to noninvasive detection of osteolytic bone metastases that develop in severe immunodeficient mice after intracardial injection of MDA-MB-231 breast cancer cells. A single fpVCT scan at 200-wm isotropic resolution was employed to detect osteolysis within the entire skeleton. Osteolytic lesions identified by fpVCT correlated with Faxitron X-ray analysis and were subsequently confirmed by histopathological examination. Isotropic three-dimensional image data sets obtained by fpVCT were the basis for the precise visualization of the extent of the lesion within the cortical bone and for the measurement of bone loss. Furthermore, fpVCT imaging allows continuous monitoring of growth kinetics for each metastatic site and visualization of lesions in more complex regions of the skeleton, such as the skull. Our findings suggest that fpVCT is a powerful tool that can be used to monitor the occurrence and progression of osteolytic lesions in vivo and can be further developed to monitor responses to antimetastatic therapies over the course of the disease.

  11. Musculoskeletal imaging with a prototype photon-counting detector.

    Science.gov (United States)

    Gruber, M; Homolka, P; Chmeissani, M; Uffmann, M; Pretterklieber, M; Kainberger, F

    2012-01-01

    To test a digital imaging X-ray device based on the direct capture of X-ray photons with pixel detectors, which are coupled with photon-counting readout electronics. The chip consists of a matrix of 256 × 256 pixels with a pixel pitch of 55 μm. A monolithic image of 11.2 cm × 7 cm was obtained by the consecutive displacement approach. Images of embalmed anatomical specimens of eight human hands were obtained at four different dose levels (skin dose 2.4, 6, 12, 25 μGy) with the new detector, as well as with a flat-panel detector. The overall rating scores for the evaluated anatomical regions ranged from 5.23 at the lowest dose level, 6.32 at approximately 6 μGy, 6.70 at 12 μGy, to 6.99 at the highest dose level with the photon-counting system. The corresponding rating scores for the flat-panel detector were 3.84, 5.39, 6.64, and 7.34. When images obtained at the same dose were compared, the new system outperformed the conventional DR system at the two lowest dose levels. At the higher dose levels, there were no significant differences between the two systems. The photon-counting detector has great potential to obtain musculoskeletal images of excellent quality at very low dose levels.

  12. Panel on accelerators and detectors in the 1950s

    International Nuclear Information System (INIS)

    Jones, L.W.; Amaldi, U.; Hofstadter, R.; Kerst, D.W.; Wilson, R.R.

    1989-01-01

    The article takes the form of a panel of famous particle physics scientists discussing accelerator design and detectors used in the 1950s. The discussion ranges over accelerator energy capacities, the invention of alternating-gradient focusing, and colliding beam machines, beam stacking and the application of digital computers to accelerator calculations. The development of particle beams using strong-focusing lenses and electrostatic separators rounded off the decade. Detectors moved from bubble chambers, the use of plastic and inorganic scintillators, to hadron calorimeters, Cherenkov counters and finally spark chambers. Various discoveries made using sodium iodide scintillation counters are noted. (UK)

  13. The value of flat-detector computed tomography during catheterisation of congenital heart disease

    International Nuclear Information System (INIS)

    Gloeckler, Martin; Koch, Andreas; Greim, Verena; Shabaiek, Amira; Dittrich, Sven; Rueffer, Andre; Cesnjevar, Robert; Achenbach, Stephan

    2011-01-01

    To analyse the diagnostic utility of flat-detector computed tomography imaging (FD-CT) in patients with congenital heart disease, including the value of image fusion to overlay three-dimensional (3D) reconstructions on fluoroscopic images during catheter-based interventions. We retrospectively analysed 62 consecutive paediatric patients in whom FD-CT was used during catheterisation of congenital heart disease. Expert operators rated the clinical value of FD-CT over conventional fluoroscopic imaging. Added radiation exposure and contrast medium volume were evaluated. During a 12-month period, FD-CT was performed in 62 out of 303 cardiac catheterisations. Median patient age was 3.5 years. In 32/62 cases, FD-CT was used for diagnostic purposes, in 30/62 cases it was used in the context of interventions. Diagnostic utility was never rated as ''misleading''. It was classified as ''not useful'' in six cases (9.7%), ''useful'' in 18 cases (29.0%), ''very useful'' in 37 cases (59.7%) and ''essential'' in one case (1.6%). The median added dose-area product was 111.0 μGym 2 , the required additional quantity of contrast medium was 1.6 ml/kg. FD-CT provides useful diagnostic information in most of the patients investigated for congenital heart disease. The added radiation exposure and contrast medium volume are reasonable. (orig.)

  14. Implementation of a program of quality assurance of image in an imaging system of flat panel portal; Puesta en marcha de un programa de garantia de calidad de imagen en un sistema de imagen portal de panel plano

    Energy Technology Data Exchange (ETDEWEB)

    Gomez Barrado, A.; Sanchez Jimenez, E.; Benitez, J. A.; Sanchez-Reyes, A.

    2013-07-01

    (IGRT) image-guided radiation therapy is the one in which images are used to locate the area of treatment. Modern irradiation systems are equipped with different modalities for obtaining images, such as flat panel systems, systems conebeam, tomoimagen, etc. This paper describes the start-up and the experience of a quality assurance program based on a flat panel portal Imaging System. (Author)

  15. Advances in infrastructure support for flat panel display manufacturing

    Science.gov (United States)

    Bardsley, James N.; Ciesinski, Michael F.; Pinnel, M. Robert

    1997-07-01

    The success of the US display industry, both in providing high-performance displays for the US Department of Defense at reasonable cost and in capturing a significant share of the global civilian market, depends on maintaining technological leadership and on building efficient manufacturing capabilities. The US Display Consortium (USDC) was set up in 1993 by the US Government and private industry to guide the development of the infrastructure needed to support the manufacturing of flat panel displays. This mainly involves the supply of equipment and materials, but also includes the formation of partnerships and the training of a skilled labor force. Examples are given of successful development projects, some involving USDC participation, others through independent efforts of its member companies. These examples show that US-based companies can achieve leadership positions in this young and rapidly growing global market.

  16. Progress toward clinical implementation of the first flat-panel amorphous silicon imager

    International Nuclear Information System (INIS)

    Antonuk, Larry E.; El-Mohri, Youcef; Weidong, Huang; Sandler, Howard; Siewerdsen, Jeffrey H.; Yorkston, John

    1995-01-01

    Purpose: Approximately 7 years after the development of the general concept, megavoltage imagers based on thin-film, flat-panel electronics will likely enter routine clinical use within the next few years. In this paper, current capabilities and anticipated development of this imaging technology as pertains to clinical use will be presented. The results of the first use of this technology with an early prototype imager in a clinical setting are reported. The development of a more advanced clinical prototype imager designed for routine clinical use is described and the clinically-relevant capabilities, advantages, and limitations of this device are described. Materials and Methods: Flat-panel amorphous silicon imagers consist of an imaging array, an x-ray converter, external data acquisition electronics, along with appropriate software and a host workstation. The array consists of a two-dimensional grid of imaging pixels with each pixel consisting of a transistor coupled to a photodiode. An initial study of patient imaging has been performed with an early prototype imager which incorporates a 512x560 array with 450 μm pixels giving an imaging surface of 23x25 cm 2 . Portal images acquired with this prototype imager and with film under similar geometric and irradiation conditions were acquired and compared. In addition, a clinical prototype imager based upon a 26x26 cm 2 array with 508 μm pixels (512x512 pixels) is under development. This prototype incorporates advanced analog and digital external electronics which will improve imaging performance thereby increasing clinical utility of the device. The imagers are interfaced to the operation of a treatment machine so as to allow both radiographic and fluoroscopic operation. Results: The image quality is limited by the presence of pixel and line defects in the array and by the presence of correlated and uncorrelated noise sources in the acquisition system. Nevertheless, the contrast and spatial resolution offered by

  17. Shimming with permanent magnets for the x-ray detector in a hybrid x-ray∕MR system

    Science.gov (United States)

    Wen, Zhifei; Fahrig, Rebecca; Williams, Scott T.; Pelc, Norbert J.

    2008-01-01

    In this x-ray∕MR hybrid system an x-ray flat panel detector is placed under the patient cradle, close to the MR volume of interest (VOI), where the magnetic field strength is ∼0.5 T. Immersed in this strong field, several electronic components inside the detector become magnetized and create an additional magnetic field that is superimposed on the original field of the MR scanner. Even after linear shimming, the field homogeneity of the MR scanner remains disrupted by the detector. The authors characterize the field due to the detector with the field of two magnetic dipoles and further show that two sets of permanent magnets (NdFeB) can withstand the main magnetic field and compensate for the nonlinear components of the additional field. The ideal number of magnets and their locations are calculated based on a field map measured with the detector in place. Experimental results demonstrate great promise for this technique, which may be useful in many settings where devices with magnetic components need to be placed inside or close to an MR scanner. PMID:18841840

  18. Should 3K zoom function be used for detection of pneumothorax in cesium iodide/amorphous silicon flat-panel detector radiographs presented on 1K-matrix soft copies?

    International Nuclear Information System (INIS)

    Herrmann, Karin A.; Zech, C.J.; Reiser, M.F.; Bonel, H.M.; Staebler, A.; Voelk, M.; Strotzer, M.

    2006-01-01

    The purpose of the study was to evaluate observer performance in the detection of pneumothorax with cesium iodide and amorphous silicon flat-panel detector radiography (CsI/a-Si FDR) presented as 1K and 3K soft-copy images. Forty patients with and 40 patients without pneumothorax diagnosed on previous and subsequent digital storage phosphor radiography (SPR, gold standard) had follow-up chest radiographs with CsI/a-Si FDR. Four observers confirmed or excluded the diagnosis of pneumothorax according to a five-point scale first on the 1K soft-copy image and then with help of 3K zoom function (1K monitor). Receiver operating characteristic (ROC) analysis was performed for each modality (1K and 3K). The area under the curve (AUC) values for each observer were 0.7815, 0.7779, 0.7946 and 0.7066 with 1K-matrix soft copies and 0.8123, 0.7997, 0.8078 and 0.7522 with 3K zoom. Overall detection of pneumothorax was better with 3K zoom. Differences between the two display methods were not statistically significant in 3 of 4 observers (p-values between 0.13 and 0.44; observer 4: p=0.02). The detection of pneumothorax with 3K zoom is better than with 1K soft copy but not at a statistically significant level. Differences between both display methods may be subtle. Still, our results indicate that 3K zoom should be employed in clinical practice. (orig.)

  19. Development of a Two-Dimensional Tracker with Plasma Panel Detector

    CERN Document Server

    AUTHOR|(CDS)2233132

    Plasma panel sensors are micropattern gaseous radiation detectors which are based on the technology of plasma display panels. This thesis summarizes the research that had been done on commercially available plasma display panels that were converted to plasma panel sensor prototypes and describes the construction of a two-dimensional tracker consisting of four of those prototypes, with one-dimensional readout on each, used to detect tracks of cosmic muons. A large amount of 2-point as well as 3 and 4-point tracks were detected. Qualitative analyses as well as Pearson’s χ2 tests are performed on the track angular distribution and on a histogram of the linearity measure of 3-point tracks to reject the hypothesis that these tracks result from completely random panel hits. Some RF noise effects contributing to false positives are ruled out, while it is shown that other effects can be ruled out only with a high-intensity minimum ionizing particle source. A significant part of the tracker construction was the dev...

  20. Dose reduction of radiographs of the pediatric pelvis for diagnosing hip dysplasia using a digital flat-panel detector system; Dosisreduktion bei Roentgenaufnahmen des kindlichen Beckenskelettes zur Diagnostik der Hueftgelenksdysplasie unter Verwendung eines digitalen Flachdetektorsystems

    Energy Technology Data Exchange (ETDEWEB)

    Ludwig, K.; Ahlers, K.; Kloska, S.; Vieth, V.; Meier, N.; Heindel, W. [Inst. fuer Klinische Radiologie, Westfaelische Wilhelms-Univ. Muenster (Germany); Sandmann, C.; Gosheger, G. [Orthopaedische Klinik, Westfaelische Wilhelms-Univ. Muenster (Germany)

    2003-01-01

    Purpose: To evaluate a possible dose reduction in pediatric pelvic radiographs in congenital hip dysplasia using a digital flat-panel system instead of a phosphor-storage system. Materials and Methods: During a six-month period, all pediatric patients referred for pelvic radiography for the evaluation of congenital hip dysplasia were randomely assigned to be examined by either a phosphor-storage system or a digital flat-panel system, whereby the latter system was operated with half the radiation dose. Thirty pairs of radiographs were assessed for the visibility of 16 anatomic details and for 5 orthopedic-radiographic measurements (5-point scale with 1 = excellent; three independent observers). The projection indices of Ball and Kommenda and of Toennis and Brunken were calculated for all radiographs. The Student's t-test was used to compare the flat-panel and the phosphor-storage radiographs for observers' assessments, patients' age and projection indices. Results: In a total of 7560 observations, the scores for the visibility of anatomic details and orthopedic-radiographic measurements were respectively 2.72 and 2.64 for the flat-panel system and 2.93 and 2.79 for the phosphor-storage system. No significant differences were found between both systems (p > 0.05) and between patient age and projection indices (p > 0.05). Conclusion: Pediatric pelvic radiographs can be obtained with a digital flat-panel system using half the radiation dose instead of a phosphor-storage system without sacrificing relevant information in the diagnosis of congenital hip dysplasia. (orig.) [German] Zielsetzung: Evaluation einer moeglichen Dosisreduktion bei kindlichen Beckenroentgenaufnahmen zur Diagnostik der Hueftgelenksdysplasie mit einem digitalen Flachdetektorsystem im Vergleich zu einem digitalen Speicherfoliensystem. Material und Methoden: Prospektiv wurden alle ueber einen Zeitraum von 6 Monaten zur Roentgenaufnahme des Beckenskelettes im Rahmen der Diagnostik der

  1. A camac based data acquisition system for flat-panel image array readout

    International Nuclear Information System (INIS)

    Morton, E.J.; Antonuk, L.E.; Berry, J.E.; Huang, W.; Mody, P.; Yorkston, J.; Longo, M.J.

    1993-01-01

    A readout system has been developed to facilitate the digitization and subsequent display of image data from two-dimensional, pixellated, flat-panel, amorphous silicon imaging arrays. These arrays have been designed specifically for medical x-ray imaging applications. The readout system is based on hardware and software developed for various experiments at CERN and Fermi National Accelerator Laboratory. Additional analog signal processing and digital control electronics were constructed specifically for this application. The authors report on the form of the resulting data acquisition system, discuss aspects of its performance, and consider the compromises which were involved in its design

  2. Optimization of a flat-panel based real time dual-energy system for cardiac imaging

    International Nuclear Information System (INIS)

    Ducote, Justin L.; Xu Tong; Molloi, Sabee

    2006-01-01

    A simulation study was conducted to evaluate the effects of high-energy beam filtration, dual-gain operation and noise reduction on dual-energy images using a digital flat-panel detector. High-energy beam filtration increases image contrast through greater beam separation and tends to reduce total radiation exposure and dose per image pair. It is also possible to reduce dual-energy image noise by acquiring low and high-energy images at two different detector gains. In addition, dual-energy noise reduction algorithms can further reduce image noise. The cumulative effect of these techniques applied in series was investigated in this study. The contrast from a small thickness of calcium was simulated over a step phantom of tissue equivalent material with a CsI phosphor as the image detector. The dual-energy contrast-to-noise ratio was calculated using values of energy absorption and energy variance. A figure-of-merit (FOM) was calculated from dual-energy contrast-to-noise ratio (CNR) and patient effective dose estimated from values of entrance exposure. Filter atomic numbers in the range of 1-100 were considered with thicknesses ranging from 0-2500 mg/cm 2 . The simulation examined combinations of the above techniques which maximized the FOM. The application of a filter increased image contrast by as much as 45%. Near maximal increases were seen for filter atomic numbers in the range of 40-60 and 85-100 with masses above 750 mg/cm 2 . Increasing filter thickness beyond 1000 mg/cm 2 increased tube loading without further significant contrast enhancement. No additional FOM improvements were seen with dual gain before or after the application of any noise reduction algorithm. Narrow beam experiments were carried out to verify predictions. The measured FOM increased by more than a factor of 3.5 for a silver filter thickness of 800 μm, equal energy weighting and application of a noise clipping algorithm. The main limitation of dynamic high-energy filtration is increased

  3. Review of flat panel display programs and defense applications

    Science.gov (United States)

    Gnade, Bruce; Schulze, Raymond; Henderson, Girardeau L.; Hopper, Darrel G.

    1997-07-01

    Flat panel display research has comprised a substantial portion of the national investment in new technology for economic and national security for the past nine years. These investments have ben made principally via several Defense Advanced Research Projects Agency (DARPA) programs, known collectively as the continuing High Definition Systems Program, and the Office of the Secretary of Defense Production Act Title III Program. Using input from the Army, Navy, and Air Force to focus research and identify insertion opportunities, DARPA and the Title III Program Office have made investments to develop the national technology base and manufacturing infrastructure necessary to meet the twin challenge of providing affordable displays in current systems and enabling the DoD strategy of winning future conflicts by getting more information to all participants during the battle. These research programs are reviewed and opportunities for applications are described. Future technology development, transfer, and transition requirements are identified. Strategy and vision are documented to assist the identification of areas meriting further consideration.

  4. Compact flat-panel gas-gap heat switch operating at 295 K

    Science.gov (United States)

    Krielaart, M. A. R.; Vermeer, C. H.; Vanapalli, S.

    2015-11-01

    Heat switches are devices that can change from a thermally conducting (on-) state to an insulating (off-) state whenever the need arises. They enable adaptive thermal management strategies in which cooling rates are altered either spatially or temporally, leading to a substantial reduction in the energy and mass budget of a large range of systems. State-of-the-art heat switches are only rarely employed in thermal system architectures, since they are rather bulky and have a limited thermal performance (expressed as the heat transfer ratio between the on- and off-state heat conductance). Using selective laser melting additive manufacturing technology, also known as 3D printing, we developed a compact flat-panel gas-gap heat switch that offers superior thermal performance, is simpler and more economic to produce and assemble, contains no moving parts, and is more reliable because it lacks welded joints. The manufactured rectangular panel heat switch has frontal device dimensions of 10 cm by 10 cm, thickness of 3.2 mm and weighs just 121 g. An off heat conductance of 0.2 W/K and on-off heat conductance ratio of 38 is observed at 295 K.

  5. Peer review panel summary report for technical determination of mixed waste incineration off-gas systems for Rocky Flats

    International Nuclear Information System (INIS)

    1992-01-01

    A Peer Review Panel was convened on September 15-17, 1992 in Boulder, Co. The members of this panel included representatives from DOE, EPA, and DOE contractors along with invited experts in the fields of air pollution control and waste incineration. The primary purpose of this review panel was to make a technical determination of a hold, test and release off gas capture system should be implemented in the proposed RF Pland mixed waste incineration system; or if a state of the art continuous air pollution control and monitoring system should be utilized as the sole off-gas control system. All of the evaluations by the panel were based upon the use of the fluidized bed unit proposed by Rocky Flats and cannot be generalized to other systems

  6. Single-layer and dual-layer contrast-enhanced mammography using amorphous selenium flat panel detectors

    Energy Technology Data Exchange (ETDEWEB)

    Allec, N; Abbaszadeh, S; Karim, K S, E-mail: nallec@uwaterloo.ca [Department of Electrical and Computer Engineering, University of Waterloo, 200 University Avenue West, Waterloo N2L 3G1 (Canada)

    2011-09-21

    The accumulation of injected contrast agents allows the image enhancement of lesions through the use of contrast-enhanced mammography. In this technique, the combination of two acquired images is used to create an enhanced image. There exist several methods to acquire the images to be combined, which include dual energy subtraction using a single detection layer that suffers from motion artifacts due to patient motion between image acquisition. To mitigate motion artifacts, a detector composed of two layers may be used to simultaneously acquire the low and high energy images. In this work, we evaluate both of these methods using amorphous selenium as the detection material to find the system parameters (tube voltage, filtration, photoconductor thickness and relative intensity ratio) leading to the optimal performance. We then compare the performance of the two detectors under the variation of contrast agent concentration, tumor size and dose. The detectability was found to be most comparable at the lower end of the evaluated factors. The single-layer detector not only led to better contrast, due to its greater spectral separation capabilities, but also had lower quantum noise. The single-layer detector was found to have a greater detectability by a factor of 2.4 for a 2.5 mm radius tumor having a contrast agent concentration of 1.5 mg ml{sup -1} in a 4.5 cm thick 50% glandular breast. The inclusion of motion artifacts in the comparison is part of ongoing research efforts.

  7. Single-layer and dual-layer contrast-enhanced mammography using amorphous selenium flat panel detectors

    Science.gov (United States)

    Allec, N.; Abbaszadeh, S.; Karim, K. S.

    2011-09-01

    The accumulation of injected contrast agents allows the image enhancement of lesions through the use of contrast-enhanced mammography. In this technique, the combination of two acquired images is used to create an enhanced image. There exist several methods to acquire the images to be combined, which include dual energy subtraction using a single detection layer that suffers from motion artifacts due to patient motion between image acquisition. To mitigate motion artifacts, a detector composed of two layers may be used to simultaneously acquire the low and high energy images. In this work, we evaluate both of these methods using amorphous selenium as the detection material to find the system parameters (tube voltage, filtration, photoconductor thickness and relative intensity ratio) leading to the optimal performance. We then compare the performance of the two detectors under the variation of contrast agent concentration, tumor size and dose. The detectability was found to be most comparable at the lower end of the evaluated factors. The single-layer detector not only led to better contrast, due to its greater spectral separation capabilities, but also had lower quantum noise. The single-layer detector was found to have a greater detectability by a factor of 2.4 for a 2.5 mm radius tumor having a contrast agent concentration of 1.5 mg ml-1 in a 4.5 cm thick 50% glandular breast. The inclusion of motion artifacts in the comparison is part of ongoing research efforts.

  8. Nitrogen incorporated ultrananocrystalline diamond based field emitter array for a flat-panel x-ray source

    International Nuclear Information System (INIS)

    Posada, Chrystian M.; Grant, Edwin J.; Lee, Hyoung K.; Castaño, Carlos H.; Divan, Ralu; Sumant, Anirudha V.; Rosenmann, Daniel; Stan, Liliana

    2014-01-01

    A field emission based flat-panel transmission x-ray source is being developed as an alternative for medical and industrial imaging. A field emitter array (FEA) prototype based on nitrogen incorporated ultrananocrystalline diamond film has been fabricated to be used as the electron source of this flat panel x-ray source. The FEA prototype was developed using conventional microfabrication techniques. The field emission characteristics of the FEA prototype were evaluated. Results indicated that emission current densities of the order of 6 mA/cm 2 could be obtained at electric fields as low as 10 V/μm to 20 V/μm. During the prototype microfabrication process, issues such as delamination of the extraction gate and poor etching of the SiO 2 insulating layer located between the emitters and the extraction layer were encountered. Consequently, alternative FEA designs were investigated. Experimental and simulation data from the first FEA prototype were compared and the results were used to evaluate the performance of alternative single and double gate designs that would yield better field emission characteristics compared to the first FEA prototype. The best simulation results are obtained for the double gate FEA design, when the diameter of the collimator gate is around 2.6 times the diameter of the extraction gate

  9. Carbon Nanotube Thin Film Transistors for Flat Panel Display Application.

    Science.gov (United States)

    Liang, Xuelei; Xia, Jiye; Dong, Guodong; Tian, Boyuan; Peng, Lianmao

    2016-12-01

    Carbon nanotubes (CNTs) are promising materials for both high performance transistors for high speed computing and thin film transistors for macroelectronics, which can provide more functions at low cost. Among macroelectronics applications, carbon nanotube thin film transistors (CNT-TFT) are expected to be used soon for backplanes in flat panel displays (FPDs) due to their superior performance. In this paper, we review the challenges of CNT-TFT technology for FPD applications. The device performance of state-of-the-art CNT-TFTs are compared with the requirements of TFTs for FPDs. Compatibility of the fabrication processes of CNT-TFTs and current TFT technologies are critically examined. Though CNT-TFT technology is not yet ready for backplane production line of FPDs, the challenges can be overcome by close collaboration between research institutes and FPD manufacturers in the short term.

  10. ILC Reference Design Report Volume 4 - Detectors

    CERN Document Server

    Behnke, Ties; Jaros, John; Miyamoto, Akiya; Aarons, Gerald; Abe, Toshinori; Abernathy, Jason; Ablikim, Medina; Abramowicz, Halina; Adey, David; Adloff, Catherine; Adolphsen, Chris; Afanaciev, Konstantin; Agapov, Ilya; Ahn, Jung-Keun; Aihara, Hiroaki; Akemoto, Mitsuo; del Carmen Alabau, Maria; Albert, Justin; Albrecht, Hartwig; Albrecht, Michael; Alesini, David; Alexander, Gideon; Alexander, Jim; Allison, Wade; Amann, John; Amirikas, Ramila; An, Qi; Anami, Shozo; Ananthanarayan, B.; Anderson, Terry; Andricek, Ladislav; Anduze, Marc; Anerella, Michael; Anfimov, Nikolai; Angal-Kalinin, Deepa; Antipov, Sergei; Antoine, Claire; Aoki, Mayumi; Aoza, Atsushi; Aplin, Steve; Appleby, Rob; Arai, Yasuo; Araki, Sakae; Arkan, Tug; Arnold, Ned; Arnold, Ray; Arnowitt, Richard; Artru, Xavier; Arya, Kunal; Aryshev, Alexander; Asakawa, Eri; Asiri, Fred; Asner, David; Atac, Muzaffer; Atoian, Grigor; Attié, David; Augustin, Jean-Eudes; Augustine, David B.; Ayres, Bradley; Aziz, Tariq; Baars, Derek; Badaud, Frederique; Baddams, Nigel; Bagger, Jonathan; Bai, Sha; Bailey, David; Bailey, Ian R.; Baker, David; Balalykin, Nikolai I.; Balbuena, Juan Pablo; Baldy, Jean-Luc; Ball, Markus; Ball, Maurice; Ballestrero, Alessandro; Ballin, Jamie; Baltay, Charles; Bambade, Philip; Ban, Syuichi; Band, Henry; Bane, Karl; Banerjee, Bakul; Barbanotti, Serena; Barbareschi, Daniele; Barbaro-Galtieri, Angela; Barber, Desmond P.; Barbi, Mauricio; Bardin, Dmitri Y.; Barish, Barry; Barklow, Timothy L.; Barlow, Roger; Barnes, Virgil E.; Barone, Maura; Bartels, Christoph; Bartsch, Valeria; Basu, Rahul; Battaglia, Marco; Batygin, Yuri; Baudot, Jerome; Baur, Ulrich; Elwyn Baynham, D.; Beard, Carl; Bebek, Chris; Bechtle, Philip; Becker, Ulrich J.; Bedeschi, Franco; Bedjidian, Marc; Behera, Prafulla; Bellantoni, Leo; Bellerive, Alain; Bellomo, Paul; Bentson, Lynn D.; Benyamna, Mustapha; Bergauer, Thomas; Berger, Edmond; Bergholz, Matthias; Beri, Suman; Berndt, Martin; Bernreuther, Werner; Bertolini, Alessandro; Besancon, Marc; Besson, Auguste; Beteille, Andre; Bettoni, Simona; Beyer, Michael; Bhandari, R.K.; Bharadwaj, Vinod; Bhatnagar, Vipin; Bhattacharya, Satyaki; Bhattacharyya, Gautam; Bhattacherjee, Biplob; Bhuyan, Ruchika; Bi, Xiao-Jun; Biagini, Marica; Bialowons, Wilhelm; Biebel, Otmar; Bieler, Thomas; Bierwagen, John; Birch, Alison; Bisset, Mike; Biswal, S.S.; Blackmore, Victoria; Blair, Grahame; Blanchard, Guillaume; Blazey, Gerald; Blue, Andrew; Blümlein, Johannes; Boffo, Christian; Bohn, Courtlandt; Boiko, V.I.; Boisvert, Veronique; Bondarchuk, Eduard N.; Boni, Roberto; Bonvicini, Giovanni; Boogert, Stewart; Boonekamp, Maarten; Boorman, Gary; Borras, Kerstin; Bortoletto, Daniela; Bosco, Alessio; Bosio, Carlo; Bosland, Pierre; Bosotti, Angelo; Boudry, Vincent; Boumediene, Djamel-Eddine; Bouquet, Bernard; Bourov, Serguei; Bowden, Gordon; Bower, Gary; Boyarski, Adam; Bozovic-Jelisavcic, Ivanka; Bozzi, Concezio; Brachmann, Axel; Bradshaw, Tom W.; Brandt, Andrew; Brasser, Hans Peter; Brau, Benjamin; Brau, James E.; Breidenbach, Martin; Bricker, Steve; Brient, Jean-Claude; Brock, Ian; Brodsky, Stanley; Brooksby, Craig; Broome, Timothy A.; Brown, David; Brown, David; Brownell, James H.; Bruchon, Mélanie; Brueck, Heiner; Brummitt, Amanda J.; Brun, Nicole; Buchholz, Peter; Budagov, Yulian A.; Bulgheroni, Antonio; Bulyak, Eugene; Bungau, Adriana; Bürger, Jochen; Burke, Dan; Burkhart, Craig; Burrows, Philip; Burt, Graeme; Burton, David; Büsser, Karsten; Butler, John; Butterworth, Jonathan; Buzulutskov, Alexei; Cabruja, Enric; Caccia, Massimo; Cai, Yunhai; Calcaterra, Alessandro; Caliier, Stephane; Camporesi, Tiziano; Cao, Jun-Jie; Cao, J.S.; Capatina, Ofelia; Cappellini, Chiara; Carcagno, Ruben; Carena, Marcela; Carloganu, Cristina; Carosi, Roberto; Stephen Carr, F.; Carrion, Francisco; Carter, Harry F.; Carter, John; Carwardine, John; Cassel, Richard; Cassell, Ronald; Cavallari, Giorgio; Cavallo, Emanuela; Cembranos, Jose A.R.; Chakraborty, Dhiman; Chandez, Frederic; Charles, Matthew; Chase, Brian; Chattopadhyay, Subhasis; Chauveau, Jacques; Chefdeville, Maximilien; Chehab, Robert; Chel, Stéphane; Chelkov, Georgy; Chen, Chiping; Chen, He Sheng; Chen, Huai Bi; Chen, Jia Er; Chen, Sen Yu; Chen, Shaomin; Chen, Shenjian; Chen, Xun; Chen, Yuan Bo; Cheng, Jian; Chevallier, M.; Chi, Yun Long; Chickering, William; Cho, Gi-Chol; Cho, Moo-Hyun; Choi, Jin-Hyuk; Choi, Jong Bum; Choi, Seong Youl; Choi, Young-Il; Choudhary, Brajesh; Choudhury, Debajyoti; Rai Choudhury, S.; Christian, David; Christian, Glenn; Christophe, Grojean; Chung, Jin-Hyuk; Church, Mike; Ciborowski, Jacek; Cihangir, Selcuk; Ciovati, Gianluigi; Clarke, Christine; Clarke, Don G.; Clarke, James A.; Clements, Elizabeth; Coca, Cornelia; Coe, Paul; Cogan, John; Colas, Paul; Collard, Caroline; Colledani, Claude; Combaret, Christophe; Comerma, Albert; Compton, Chris; Constance, Ben; Conway, John; Cook, Ed; Cooke, Peter; Cooper, William; Corcoran, Sean; Cornat, Rémi; Corner, Laura; Cortina Gil, Eduardo; Clay Corvin, W.; Cotta Ramusino, Angelo; Cowan, Ray; Crawford, Curtis; Cremaldi, Lucien M; Crittenden, James A.; Cussans, David; Cvach, Jaroslav; da Silva, Wilfrid; Dabiri Khah, Hamid; Dabrowski, Anne; Dabrowski, Wladyslaw; Dadoun, Olivier; Dai, Jian Ping; Dainton, John; Daly, Colin; Danilov, Mikhail; Daniluk, Witold; Daram, Sarojini; Datta, Anindya; Dauncey, Paul; David, Jacques; Davier, Michel; Davies, Ken P.; Dawson, Sally; De Boer, Wim; De Curtis, Stefania; De Groot, Nicolo; de la Taille, Christophe; de Lira, Antonio; De Roeck, Albert; de Sangro, Riccardo; De Santis,Stefano; Deacon, Laurence; Deandrea, Aldo; Dehmelt, Klaus; Delagnes, Eric; Delahaye, Jean-Pierre; Delebecque, Pierre; Delerue, Nicholas; Delferriere, Olivier; Demarteau, Marcel; Deng, Zhi; Denisov, Yu.N.; Densham, Christopher J.; Desch, Klaus; Deshpande, Nilendra; Devanz, Guillaume; Devetak, Erik; Dexter, Amos; Di benedetto, Vito; Diéguez, Angel; Diener, Ralf; Dinh, Nguyen Dinh; Dixit, Madhu; Dixit, Sudhir; Djouadi, Abdelhak; Dolezal, Zdenek; Dollan, Ralph; Dong, Dong; Dong, Hai Yi; Dorfan, Jonathan; Dorokhov, Andrei; Doucas, George; Downing, Robert; Doyle, Eric; Doziere, Guy; Drago, Alessandro; Dragt, Alex; Drake, Gary; Drásal, Zbynek; Dreiner, Herbert; Drell, Persis; Driouichi, Chafik; Drozhdin, Alexandr; Drugakov, Vladimir; Du, Shuxian; Dugan, Gerald; Duginov, Viktor; Dulinski, Wojciech; Dulucq, Frederic; Dutta, Sukanta; Dwivedi, Jishnu; Dychkant, Alexandre; Dzahini, Daniel; Eckerlin, Guenter; Edwards, Helen; Ehrenfeld, Wolfgang; Ehrlichman, Michael; Ehrlichmann, Heiko; Eigen, Gerald; Elagin, Andrey; Elementi, Luciano; Eliasson, Peder; Ellis, John; Ellwood, George; Elsen, Eckhard; Emery, Louis; Enami, Kazuhiro; Endo, Kuninori; Enomoto, Atsushi; Eozénou, Fabien; Erbacher, Robin; Erickson, Roger; Oleg Eyser, K.; Fadeyev, Vitaliy; Fang, Shou Xian; Fant, Karen; Fasso, Alberto; Faucci Giannelli, Michele; Fehlberg, John; Feld, Lutz; Feng, Jonathan L.; Ferguson, John; Fernandez-Garcia, Marcos; Luis Fernandez-Hernando, J.; Fiala, Pavel; Fieguth, Ted; Finch, Alexander; Finocchiaro, Giuseppe; Fischer, Peter; Fisher, Peter; Eugene Fisk, H.; Fitton, Mike D.; Fleck, Ivor; Fleischer, Manfred; Fleury, Julien; Flood, Kevin; Foley, Mike; Ford, Richard; Fortin, Dominique; Foster, Brian; Fourches, Nicolas; Francis, Kurt; Frey, Ariane; Frey, Raymond; Friedsam, Horst; Frisch, Josef; Frishman, Anatoli; Fuerst, Joel; Fujii, Keisuke; Fujimoto, Junpei; Fukuda, Masafumi; Fukuda, Shigeki; Funahashi, Yoshisato; Funk, Warren; Furletova, Julia; Furukawa, Kazuro; Furuta, Fumio; Fusayasu, Takahiro; Fuster, Juan; Gadow, Karsten; Gaede, Frank; Gaglione, Renaud; Gai, Wei; Gajewski, Jan; Galik, Richard; Galkin, Alexei; Galkin, Valery; Gallin-Martel, Laurent; Gannaway, Fred; Gao, Jian She; Gao, Jie; Gao, Yuanning; Garbincius, Peter; Garcia-Tabares, Luis; Garren, Lynn; Garrido, Luís; Garutti, Erika; Garvey, Terry; Garwin, Edward; Gascón, David; Gastal, Martin; Gatto, Corrado; Gatto, Raoul; Gay, Pascal; Ge, Lixin; Ge, Ming Qi; Ge, Rui; Geiser, Achim; Gellrich, Andreas; Genat, Jean-Francois; Geng, Zhe Qiao; Gentile, Simonetta; Gerbick, Scot; Gerig, Rod; Ghosh, Dilip Kumar; Ghosh, Kirtiman; Gibbons, Lawrence; Giganon, Arnaud; Gillespie, Allan; Gillman, Tony; Ginzburg, Ilya; Giomataris, Ioannis; Giunta, Michele; Gladkikh, Peter; Gluza, Janusz; Godbole, Rohini; Godfrey, Stephen; Goldhaber, Gerson; Goldstein, Joel; Gollin, George D.; Gonzalez-Sanchez, Francisco Javier; Goodrick, Maurice; Gornushkin, Yuri; Gostkin, Mikhail; Gottschalk, Erik; Goudket, Philippe; Gough Eschrich, Ivo; Gournaris, Filimon; Graciani, Ricardo; Graf, Norman; Grah, Christian; Grancagnolo, Francesco; Grandjean, Damien; Grannis, Paul; Grassellino, Anna; Graugés, Eugeni; Gray, Stephen; Green, Michael; Greenhalgh, Justin; Greenshaw, Timothy; Grefe, Christian; Gregor, Ingrid-Maria; Grenier, Gerald; Grimes, Mark; Grimm, Terry; Gris, Philippe; Grivaz, Jean-Francois; Groll, Marius; Gronberg, Jeffrey; Grondin, Denis; Groom, Donald; Gross, Eilam; Grunewald, Martin; Grupen, Claus; Grzelak, Grzegorz; Gu, Jun; Gu, Yun-Ting; Guchait, Monoranjan; Guiducci, Susanna; Guler, Ali Murat; Guler, Hayg; Gulmez, Erhan; Gunion, John; Guo, Zhi Yu; Gurtu, Atul; Ha, Huy Bang; Haas, Tobias; Haase, Andy; Haba, Naoyuki; Haber, Howard; Haensel, Stephan; Hagge, Lars; Hagura, Hiroyuki; Hajdu, Csaba; Haller, Gunther; Haller, Johannes; Hallermann, Lea; Halyo, Valerie; Hamaguchi, Koichi; Hammond, Larry; Han, Liang; Han, Tao; Hand, Louis; Handu, Virender K.; Hano, Hitoshi; Hansen, Christian; Hansen, Jørn Dines; Hansen, Jorgen Beck; Hara, Kazufumi; Harder, Kristian; Hartin, Anthony; Hartung, Walter; Hast, Carsten; Hauptman, John; Hauschild, Michael; Hauviller, Claude; Havranek, Miroslav; Hawkes, Chris; Hawkings, Richard; Hayano, Hitoshi; Hazumi, Masashi; He, An; He, Hong Jian; Hearty, Christopher; Heath, Helen; Hebbeker, Thomas; Hedberg, Vincent; Hedin, David; Heifets, Samuel; Heinemeyer, Sven; Heini, Sebastien; Helebrant, Christian; Helms, Richard; Heltsley, Brian; Henrot-Versille, Sophie; Henschel, Hans; Hensel, Carsten; Hermel, Richard; Herms, Atilà; Herten, Gregor; Hesselbach, Stefan; Heuer, Rolf-Dieter; Heusch, Clemens A.; Hewett, Joanne; Higashi, Norio; Higashi, Takatoshi; Higashi, Yasuo; Higo, Toshiyasu; Hildreth, Michael D.; Hiller, Karlheinz; Hillert, Sonja; Hillier, Stephen James; Himel, Thomas; Himmi, Abdelkader; Hinchliffe, Ian; Hioki, Zenro; Hirano, Koichiro; Hirose, Tachishige; Hisamatsu, Hiromi; Hisano, Junji; Hlaing, Chit Thu; Hock, Kai Meng; Hoeferkamp, Martin; Hohlfeld, Mark; Honda, Yousuke; Hong, Juho; Hong, Tae Min; Honma, Hiroyuki; Horii, Yasuyuki; Horvath, Dezso; Hosoyama, Kenji; Hostachy, Jean-Yves; Hou, Mi; Hou, Wei-Shu; Howell, David; Hronek, Maxine; Hsiung, Yee B.; Hu, Bo; Hu, Tao; Huang, Jung-Yun; Huang, Tong Ming; Huang, Wen Hui; Huedem, Emil; Huggard, Peter; Hugonie, Cyril; Hu-Guo, Christine; Huitu, Katri; Hwang, Youngseok; Idzik, Marek; Ignatenko, Alexandr; Ignatov, Fedor; Ikeda, Hirokazu; Ikematsu, Katsumasa; Ilicheva, Tatiana; Imbault, Didier; Imhof, Andreas; Incagli, Marco; Ingbir, Ronen; Inoue, Hitoshi; Inoue, Youichi; Introzzi, Gianluca; Ioakeimidi, Katerina; Ishihara, Satoshi; Ishikawa, Akimasa; Ishikawa, Tadashi; Issakov, Vladimir; Ito, Kazutoshi; Ivanov, V.V.; Ivanov, Valentin; Ivanyushenkov, Yury; Iwasaki, Masako; Iwashita, Yoshihisa; Jackson, David; Jackson, Frank; Jacobsen, Bob; Jaganathan, Ramaswamy; Jamison, Steven; Janssen, Matthias Enno; Jaramillo-Echeverria, Richard; Jauffret, Clement; Jawale, Suresh B.; Jeans, Daniel; Jedziniak, Ron; Jeffery, Ben; Jehanno, Didier; Jenner, Leo J.; Jensen, Chris; Jensen, David R.; Jiang, Hairong; Jiang, Xiao Ming; Jimbo, Masato; Jin, Shan; Keith Jobe, R.; Johnson, Anthony; Johnson, Erik; Johnson, Matt; Johnston, Michael; Joireman, Paul; Jokic, Stevan; Jones, James; Jones, Roger M.; Jongewaard, Erik; Jönsson, Leif; Joshi, Gopal; Joshi, Satish C.; Jung, Jin-Young; Junk, Thomas; Juste, Aurelio; Kado, Marumi; Kadyk, John; Käfer, Daniela; Kako, Eiji; Kalavase, Puneeth; Kalinin, Alexander; Kalinowski, Jan; Kamitani, Takuya; Kamiya, Yoshio; Kamiya, Yukihide; Kamoshita, Jun-ichi; Kananov, Sergey; Kanaya, Kazuyuki; Kanazawa, Ken-ichi; Kanemura, Shinya; Kang, Heung-Sik; Kang, Wen; Kanjial, D.; Kapusta, Frédéric; Karataev, Pavel; Karchin, Paul E.; Karlen, Dean; Karyotakis, Yannis; Kashikhin, Vladimir; Kashiwagi, Shigeru; Kasley, Paul; Katagiri, Hiroaki; Kato, Takashi; Kato, Yukihiro; Katzy, Judith; Kaukher, Alexander; Kaur, Manjit; Kawagoe, Kiyotomo; Kawamura, Hiroyuki; Kazakov, Sergei; Kekelidze, V.D.; Keller, Lewis; Kelley, Michael; Kelly, Marc; Kelly, Michael; Kennedy, Kurt; Kephart, Robert; Keung, Justin; Khainovski, Oleg; Khan, Sameen Ahmed; Khare, Prashant; Khovansky, Nikolai; Kiesling, Christian; Kikuchi, Mitsuo; Kilian, Wolfgang; Killenberg, Martin; Kim, Donghee; Kim, Eun San; Kim, Eun-Joo; Kim, Guinyun; Kim, Hongjoo; Kim, Hyoungsuk; Kim, Hyun-Chui; Kim, Jonghoon; Kim, Kwang-Je; Kim, Kyung Sook; Kim, Peter; Kim, Seunghwan; Kim, Shin-Hong; Kim, Sun Kee; Kim, Tae Jeong; Kim, Youngim; Kim, Young-Kee; Kimmitt, Maurice; Kirby, Robert; Kircher, François; Kisielewska, Danuta; Kittel, Olaf; Klanner, Robert; Klebaner, Arkadiy L.; Kleinwort, Claus; Klimkovich, Tatsiana; Klinkby, Esben; Kluth, Stefan; Knecht, Marc; Kneisel, Peter; Ko, In Soo; Ko, Kwok; Kobayashi, Makoto; Kobayashi, Nobuko; Kobel, Michael; Koch, Manuel; Kodys, Peter; Koetz, Uli; Kohrs, Robert; Kojima, Yuuji; Kolanoski, Hermann; Kolodziej, Karol; Kolomensky, Yury G.; Komamiya, Sachio; Kong, Xiang Cheng; Konigsberg, Jacobo; Korbel, Volker; Koscielniak, Shane; Kostromin, Sergey; Kowalewski, Robert; Kraml, Sabine; Krammer, Manfred; Krasnykh, Anatoly; Krautscheid, Thorsten; Krawczyk, Maria; James Krebs, H.; Krempetz, Kurt; Kribs, Graham; Krishnagopal, Srinivas; Kriske, Richard; Kronfeld, Andreas; Kroseberg, Jürgen; Kruchonak, Uladzimir; Kruecker, Dirk; Krüger, Hans; Krumpa, Nicholas A.; Krumshtein, Zinovii; Kuang, Yu Ping; Kubo, Kiyoshi; Kuchler, Vic; Kudoh, Noboru; Kulis, Szymon; Kumada, Masayuki; Kumar, Abhay; Kume, Tatsuya; Kundu, Anirban; Kurevlev, German; Kurihara, Yoshimasa; Kuriki, Masao; Kuroda, Shigeru; Kuroiwa, Hirotoshi; Kurokawa, Shin-ichi; Kusano, Tomonori; Kush, Pradeep K.; Kutschke, Robert; Kuznetsova, Ekaterina; Kvasnicka, Peter; Kwon, Youngjoon; Labarga, Luis; Lacasta, Carlos; Lackey, Sharon; Lackowski, Thomas W.; Lafaye, Remi; Lafferty, George; Lagorio, Eric; Laktineh, Imad; Lal, Shankar; Laloum, Maurice; Lam, Briant; Lancaster, Mark; Lander, Richard; Lange, Wolfgang; Langenfeld, Ulrich; Langeveld, Willem; Larbalestier, David; Larsen, Ray; Lastovicka, Tomas; Lastovicka-Medin, Gordana; Latina, Andrea; Latour, Emmanuel; Laurent, Lisa; Le, Ba Nam; Le, Duc Ninh; Le Diberder, Francois; Dû, Patrick Le; Lebbolo, Hervé; Lebrun, Paul; Lecoq, Jacques; Lee, Sung-Won; Lehner, Frank; Leibfritz, Jerry; Lenkszus, Frank; Lesiak, Tadeusz; Levy, Aharon; Lewandowski, Jim; Leyh, Greg; Li, Cheng; Li, Chong Sheng; Li, Chun Hua; Li, Da Zhang; Li, Gang; Li, Jin; Li, Shao Peng; Li, Wei Ming; Li, Weiguo; Li, Xiao Ping; Li, Xue-Qian; Li, Yuanjing; Li, Yulan; Li, Zenghai; Li, Zhong Quan; Liang, Jian Tao; Liao, Yi; Lilje, Lutz; Guilherme Lima, J.; Lintern, Andrew J.; Lipton, Ronald; List, Benno; List, Jenny; Liu, Chun; Liu, Jian Fei; Liu, Ke Xin; Liu, Li Qiang; Liu, Shao Zhen; Liu, Sheng Guang; Liu, Shubin; Liu, Wanming; Liu, Wei Bin; Liu, Ya Ping; Liu, Yu Dong; Lockyer, Nigel; Logan, Heather E.; Logatchev, Pavel V.; Lohmann, Wolfgang; Lohse, Thomas; Lola, Smaragda; Lopez-Virto, Amparo; Loveridge, Peter; Lozano, Manuel; Lu, Cai-Dian; Lu, Changguo; Lu, Gong-Lu; Lu, Wen Hui; Lubatti, Henry; Lucotte, Arnaud; Lundberg, Björn; Lundin, Tracy; Luo, Mingxing; Luong, Michel; Luth, Vera; Lutz, Benjamin; Lutz, Pierre; Lux, Thorsten; Luzniak, Pawel; Lyapin, Alexey; Lykken, Joseph; Lynch, Clare; Ma, Li; Ma, Lili; Ma, Qiang; Ma, Wen-Gan; Macfarlane, David; Maciel, Arthur; MacLeod, Allan; MacNair, David; Mader, Wolfgang; Magill, Stephen; Magnan, Anne-Marie; Maiheu, Bino; Maity, Manas; Majchrzak, Millicent; Majumder, Gobinda; Makarov, Roman; Makowski, Dariusz; Malaescu, Bogdan; Mallik, C.; Mallik, Usha; Malton, Stephen; Malyshev, Oleg B.; Malysheva, Larisa I.; Mammosser, John; Mamta; Mamuzic, Judita; Manen, Samuel; Manghisoni, Massimo; Manly, Steven; Marcellini, Fabio; Marcisovsky, Michal; Markiewicz, Thomas W.; Marks, Steve; Marone, Andrew; Marti, Felix; Martin, Jean-Pierre; Martin, Victoria; Martin-Chassard, Gisèle; Martinez, Manel; Martinez-Rivero, Celso; Martsch, Dennis; Martyn, Hans-Ulrich; Maruyama, Takashi; Masuzawa, Mika; Mathez, Hervé; Matsuda, Takeshi; Matsumoto, Hiroshi; Matsumoto, Shuji; Matsumoto, Toshihiro; Matsunaga, Hiroyuki; Mättig, Peter; Mattison, Thomas; Mavromanolakis, Georgios; Mawatari, Kentarou; Mazzacane, Anna; McBride, Patricia; McCormick, Douglas; McCormick, Jeremy; McDonald, Kirk T.; McGee, Mike; McIntosh, Peter; McKee, Bobby; McPherson, Robert A.; Meidlinger, Mandi; Meier, Karlheinz; Mele, Barbara; Meller, Bob; Melzer-Pellmann, Isabell-Alissandra; Mendez, Hector; Mercer, Adam; Merkin, Mikhail; Meshkov, I.N.; Messner, Robert; Metcalfe, Jessica; Meyer, Chris; Meyer, Hendrik; Meyer, Joachim; Meyer, Niels; Meyners, Norbert; Michelato, Paolo; Michizono, Shinichiro; Mihalcea, Daniel; Mihara, Satoshi; Mihara, Takanori; Mikami, Yoshinari; Mikhailichenko, Alexander A.; Milardi, Catia; Miller, David J.; Miller, Owen; Miller, Roger J.; Milstene, Caroline; Mimashi, Toshihiro; Minashvili, Irakli; Miquel, Ramon; Mishra, Shekhar; Mitaroff, Winfried; Mitchell, Chad; Miura, Takako; Miyata, Hitoshi; Mjörnmark, Ulf; Mnich, Joachim; Moenig, Klaus; Moffeit, Kenneth; Mokhov, Nikolai; Molloy, Stephen; Monaco, Laura; Monasterio, Paul R.; Montanari, Alessandro; Moon, Sung Ik; Moortgat-Pick, Gudrid A.; Mora de Freitas, Paulo; Morel, Federic; Moretti, Stefano; Morgunov, Vasily; Mori, Toshinori; Morin, Laurent; Morisseau, François; Morita, Yoshiyuki; Morita, Youhei; Morita, Yuichi; Morozov, Nikolai; Morozumi, Yuichi; Morse, William; Moser, Hans-Guenther; Moultaka, Gilbert; Mtingwa, Sekazi; Mudrinic, Mihajlo; Mueller, Alex; Mueller, Wolfgang; Muennich, Astrid; Muhlleitner, Milada Margarete; Mukherjee, Bhaskar; Mukhopadhyaya, Biswarup; Müller, Thomas; Munro, Morrison; Murayama, Hitoshi; Muto, Toshiya; Myneni, Ganapati Rao; Nabhiraj, P.Y.; Nagaitsev, Sergei; Nagamine, Tadashi; Nagano, Ai; Naito, Takashi; Nakai, Hirotaka; Nakajima, Hiromitsu; Nakamura, Isamu; Nakamura, Tomoya; Nakanishi, Tsutomu; Nakao, Katsumi; Nakao, Noriaki; Nakayoshi, Kazuo; Nam, Sang; Namito, Yoshihito; Namkung, Won; Nantista, Chris; Napoly, Olivier; Narain, Meenakshi; Naroska, Beate; Nauenberg, Uriel; Nayyar, Ruchika; Neal, Homer; Nelson, Charles; Nelson, Janice; Nelson, Timothy; Nemecek, Stanislav; Neubauer, Michael; Neuffer, David; Newman, Myriam Q.; Nezhevenko, Oleg; Ng, Cho-Kuen; Nguyen, Anh Ky; Nguyen, Minh; Van Nguyen Thi,Hong; Niebuhr, Carsten; Niehoff, Jim; Niezurawski, Piotr; Nishitani, Tomohiro; Nitoh, Osamu; Noguchi, Shuichi; Nomerotski, Andrei; Noonan, John; Norbeck, Edward; Nosochkov, Yuri; Notz, Dieter; Nowak, Grazyna; Nowak, Hannelies; Noy, Matthew; Nozaki, Mitsuaki; Nyffeler, Andreas; Nygren, David; Oddone, Piermaria; O'Dell, Joseph; Oh, Jong-Seok; Oh, Sun Kun; Ohkuma, Kazumasa; Ohlerich, Martin; Ohmi, Kazuhito; Ohnishi, Yukiyoshi; Ohsawa, Satoshi; Ohuchi, Norihito; Oide, Katsunobu; Okada, Nobuchika; Okada, Yasuhiro; Okamura, Takahiro; Okugi, Toshiyuki; Okumi, Shoji; Okumura, Ken-ichi; Olchevski, Alexander; Oliver, William; Olivier, Bob; Olsen, James; Olsen, Jeff; Olsen, Stephen; Olshevsky, A.G.; Olsson, Jan; Omori, Tsunehiko; Onel, Yasar; Onengut, Gulsen; Ono, Hiroaki; Onoprienko, Dmitry; Oreglia, Mark; Oren, Will; Orimoto, Toyoko J.; Oriunno, Marco; Orlandea, Marius Ciprian; Oroku, Masahiro; Orr, Lynne H.; Orr, Robert S.; Oshea, Val; Oskarsson, Anders; Osland, Per; Ossetski, Dmitri; Österman, Lennart; Ostiguy, Francois; Otono, Hidetoshi; Ottewell, Brian; Ouyang, Qun; Padamsee, Hasan; Padilla, Cristobal; Pagani, Carlo; Palmer, Mark A.; Pam, Wei Min; Pande, Manjiri; Pande, Rajni; Pandit, V.S.; Pandita, P.N.; Pandurovic, Mila; Pankov, Alexander; Panzeri, Nicola; Papandreou, Zisis; Paparella, Rocco; Para, Adam; Park, Hwanbae; Parker, Brett; Parkes, Chris; Parma, Vittorio; Parsa, Zohreh; Parsons, Justin; Partridge, Richard; Pasquinelli, Ralph; Pásztor, Gabriella; Paterson, Ewan; Patrick, Jim; Patteri, Piero; Ritchie Patterson, J.; Pauletta, Giovanni; Paver, Nello; Pavlicek, Vince; Pawlik, Bogdan; Payet, Jacques; Pchalek, Norbert; Pedersen, John; Pei, Guo Xi; Pei, Shi Lun; Pelka, Jerzy; Pellegrini, Giulio; Pellett, David; Peng, G.X.; Penn, Gregory; Penzo, Aldo; Perry, Colin; Peskin, Michael; Peters, Franz; Petersen, Troels Christian; Peterson, Daniel; Peterson, Thomas; Petterson, Maureen; Pfeffer, Howard; Pfund, Phil; Phelps, Alan; Van Phi, Quang; Phillips, Jonathan; Phinney, Nan; Piccolo, Marcello; Piemontese, Livio; Pierini, Paolo; Thomas Piggott, W.; Pike, Gary; Pillet, Nicolas; Jayawardena, Talini Pinto; Piot, Phillippe; Pitts, Kevin; Pivi, Mauro; Plate, Dave; Pleier, Marc-Andre; Poblaguev, Andrei; Poehler, Michael; Poelker, Matthew; Poffenberger, Paul; Pogorelsky, Igor; Poirier, Freddy; Poling, Ronald; Poole, Mike; Popescu, Sorina; Popielarski, John; Pöschl, Roman; Postranecky, Martin; Potukochi, Prakash N.; Prast, Julie; Prat, Serge; Preger, Miro; Prepost, Richard; Price, Michael; Proch, Dieter; Puntambekar, Avinash; Qin, Qing; Qu, Hua Min; Quadt, Arnulf; Quesnel, Jean-Pierre; Radeka, Veljko; Rahmat, Rahmat; Rai, Santosh Kumar; Raimondi, Pantaleo; Ramberg, Erik; Ranjan, Kirti; Rao, Sista V.L.S.; Raspereza, Alexei; Ratti, Alessandro; Ratti, Lodovico; Raubenheimer, Tor; Raux, Ludovic; Ravindran, V.; Raychaudhuri, Sreerup; Re, Valerio; Rease, Bill; Reece, Charles E.; Regler, Meinhard; Rehlich, Kay; Reichel, Ina; Reichold, Armin; Reid, John; Reid, Ron; Reidy, James; Reinhard, Marcel; Renz, Uwe; Repond, Jose; Resta-Lopez, Javier; Reuen, Lars; Ribnik, Jacob; Rice, Tyler; Richard, François; Riemann, Sabine; Riemann, Tord; Riles, Keith; Riley, Daniel; Rimbault, Cécile; Rindani, Saurabh; Rinolfi, Louis; Risigo, Fabio; Riu, Imma; Rizhikov, Dmitri; Rizzo, Thomas; Rochford, James H.; Rodriguez, Ponciano; Roeben, Martin; Rolandi, Gigi; Roodman, Aaron; Rosenberg, Eli; Roser, Robert; Ross, Marc; Rossel, François; Rossmanith, Robert; Roth, Stefan; Rougé, André; Rowe, Allan; Roy, Amit; Roy, Sendhunil B.; Roy, Sourov; Royer, Laurent; Royole-Degieux, Perrine; Royon, Christophe; Ruan, Manqi; Rubin, David; Ruehl, Ingo; Jimeno, Alberto Ruiz; Ruland, Robert; Rusnak, Brian; Ryu, Sun-Young; Sabbi, Gian Luca; Sadeh, Iftach; Sadygov, Ziraddin Y; Saeki, Takayuki; Sagan, David; Sahni, Vinod C.; Saini, Arun; Saito, Kenji; Saito, Kiwamu; Sajot, Gerard; Sakanaka, Shogo; Sakaue, Kazuyuki; Salata, Zen; Salih, Sabah; Salvatore, Fabrizio; Samson, Joergen; Sanami, Toshiya; Levi Sanchez, Allister; Sands, William; Santic, John; Sanuki, Tomoyuki; Sapronov, Andrey; Sarkar, Utpal; Sasao, Noboru; Satoh, Kotaro; Sauli, Fabio; Saunders, Claude; Saveliev, Valeri; Savoy-Navarro, Aurore; Sawyer, Lee; Saxton, Laura; Schäfer, Oliver; Schälicke, Andreas; Schade, Peter; Schaetzel, Sebastien; Scheitrum, Glenn; Schibler, Emilie; Schindler, Rafe; Schlösser, Markus; Schlueter, Ross D.; Schmid, Peter; Schmidt, Ringo Sebastian; Schneekloth, Uwe; Schreiber, Heinz Juergen; Schreiber, Siegfried; Schroeder, Henning; Peter Schüler, K.; Schulte, Daniel; Schultz-Coulon, Hans-Christian; Schumacher, Markus; Schumann, Steffen; Schumm, Bruce A.; Schwienhorst, Reinhard; Schwierz, Rainer; Scott, Duncan J.; Scuri, Fabrizio; Sefkow, Felix; Sefri, Rachid; Seguin-Moreau, Nathalie; Seidel, Sally; Seidman, David; Sekmen, Sezen; Seletskiy, Sergei; Senaha, Eibun; Senanayake, Rohan; Sendai, Hiroshi; Sertore, Daniele; Seryi, Andrei; Settles, Ronald; Sever, Ramazan; Shales, Nicholas; Shao, Ming; Shelkov, G.A.; Shepard, Ken; Shepherd-Themistocleous, Claire; Sheppard, John C.; Shi, Cai Tu; Shidara, Tetsuo; Shim, Yeo-Jeong; Shimizu, Hirotaka; Shimizu, Yasuhiro; Shimizu, Yuuki; Shimogawa, Tetsushi; Shin, Seunghwan; Shioden, Masaomi; Shipsey, Ian; Shirkov, Grigori; Shishido, Toshio; Shivpuri, Ram K.; Shrivastava, Purushottam; Shulga, Sergey; Shumeiko, Nikolai; Shuvalov, Sergey; Si, Zongguo; Siddiqui, Azher Majid; Siegrist, James; Simon, Claire; Simrock, Stefan; Sinev, Nikolai; Singh, Bhartendu K.; Singh, Jasbir; Singh, Pitamber; Singh, R.K.; Singh, S.K.; Singini, Monito; Sinha, Anil K.; Sinha, Nita; Sinha, Rahul; Sinram, Klaus; Sissakian, A.N.; Skachkov, N.B.; Skrinsky, Alexander; Slater, Mark; Slominski, Wojciech; Smiljanic, Ivan; Smith, A J Stewart; Smith, Alex; Smith, Brian J.; Smith, Jeff; Smith, Jonathan; Smith, Steve; Smith, Susan; Smith, Tonee; Neville Snodgrass, W.; Sobloher, Blanka; Sohn, Young-Uk; Solidum, Ruelson; Solyak, Nikolai; Son, Dongchul; Sonmez, Nasuf; Sopczak, Andre; Soskov, V.; Spencer, Cherrill M.; Spentzouris, Panagiotis; Speziali, Valeria; Spira, Michael; Sprehn, Daryl; Sridhar, K.; Srivastava, Asutosh; St. Lorant, Steve; Stahl, Achim; Stanek, Richard P.; Stanitzki, Marcel; Stanley, Jacob; Stefanov, Konstantin; Stein, Werner; Steiner, Herbert; Stenlund, Evert; Stern, Amir; Sternberg, Matt; Stockinger, Dominik; Stockton, Mark; Stoeck, Holger; Strachan, John; Strakhovenko, V.; Strauss, Michael; Striganov, Sergei I.; Strologas, John; Strom, David; Strube, Jan; Stupakov, Gennady; Su, Dong; Sudo, Yuji; Suehara, Taikan; Suehiro, Toru; Suetsugu, Yusuke; Sugahara, Ryuhei; Sugimoto, Yasuhiro; Sugiyama, Akira; Suh, Jun Suhk; Sukovic, Goran; Sun, Hong; Sun, Stephen; Sun, Werner; Sun, Yi; Sun, Yipeng; Suszycki, Leszek; Sutcliffe, Peter; Suthar, Rameshwar L.; Suwada, Tsuyoshi; Suzuki, Atsuto; Suzuki, Chihiro; Suzuki, Shiro; Suzuki, Takashi; Swent, Richard; Swientek, Krzysztof; Swinson, Christina; Syresin, Evgeny; Szleper, Michal; Tadday, Alexander; Takahashi, Rika; Takahashi, Tohru; Takano, Mikio; Takasaki, Fumihiko; Takeda, Seishi; Takenaka, Tateru; Takeshita, Tohru; Takubo, Yosuke; Tanaka, Masami; Tang, Chuan Xiang; Taniguchi, Takashi; Tantawi, Sami; Tapprogge, Stefan; Tartaglia, Michael A.; Tassielli, Giovanni Francesco; Tauchi, Toshiaki; Tavian, Laurent; Tawara, Hiroko; Taylor, Geoffrey; Telnov, Alexandre V.; Telnov, Valery; Tenenbaum, Peter; Teodorescu, Eliza; Terashima, Akio; Terracciano, Giuseppina; Terunuma, Nobuhiro; Teubner, Thomas; Teuscher, Richard; Theilacker, Jay; Thomson, Mark; Tice, Jeff; Tigner, Maury; Timmermans, Jan; Titov, Maxim; Toge, Nobukazu; Tokareva, N.A.; Tollefson, Kirsten; Tomasek, Lukas; Tomovic, Savo; Tompkins, John; Tonutti, Manfred; Topkar, Anita; Toprek, Dragan; Toral, Fernando; Torrence, Eric; Traversi, Gianluca; Trimpl, Marcel; Mani Tripathi, S.; Trischuk, William; Trodden, Mark; Trubnikov, G.V.; Tschirhart, Robert; Tskhadadze, Edisher; Tsuchiya, Kiyosumi; Tsukamoto, Toshifumi; Tsunemi, Akira; Tucker, Robin; Turchetta, Renato; Tyndel, Mike; Uekusa, Nobuhiro; Ueno, Kenji; Umemori, Kensei; Ummenhofer, Martin; Underwood, David; Uozumi, Satoru; Urakawa, Junji; Urban, Jeremy; Uriot, Didier; Urner, David; Ushakov, Andrei; Usher, Tracy; Uzunyan, Sergey; Vachon, Brigitte; Valerio, Linda; Valin, Isabelle; Valishev, Alex; Vamra, Raghava; Van der Graaf, Harry; Van Kooten, Rick; Van Zandbergen, Gary; Vanel, Jean-Charles; Variola, Alessandro; Varner, Gary; Velasco, Mayda; Velte, Ulrich; Velthuis, Jaap; Vempati, Sundir K.; Venturini, Marco; Vescovi, Christophe; Videau, Henri; Vila, Ivan; Vincent, Pascal; Virey, Jean-Marc; Visentin, Bernard; Viti, Michele; Vo, Thanh Cuong; Vogel, Adrian; Vogt, Harald; von Toerne, Eckhard; Vorozhtsov, S.B.; Vos, Marcel; Votava, Margaret; Vrba, Vaclav; Wackeroth, Doreen; Wagner, Albrecht; Wagner, Carlos E.M.; Wagner, Stephen; Wake, Masayoshi; Walczak, Roman; Walker, Nicholas J.; Walkowiak, Wolfgang; Wallon, Samuel; Walsh, Roberval; Walston, Sean; Waltenberger, Wolfgang; Walz, Dieter; Wang, Chao En; Wang, Chun Hong; Wang, Dou; Wang, Faya; Wang, Guang Wei; Wang, Haitao; Wang, Jiang; Wang, Jiu Qing; Wang, Juwen; Wang, Lanfa; Wang, Lei; Wang, Min-Zu; Wang, Qing; Wang, Shu Hong; Wang, Xiaolian; Wang, Xue-Lei; Wang, Yi Fang; Wang, Zheng; Wanzenberg, Rainer; Ward, Bennie; Ward, David; Warmbein, Barbara; Warner, David W.; Warren, Matthew; Washio, Masakazu; Watanabe, Isamu; Watanabe, Ken; Watanabe, Takashi; Watanabe, Yuichi; Watson, Nigel; Wattimena, Nanda; Wayne, Mitchell; Weber, Marc; Weerts, Harry; Weiglein, Georg; Weiland, Thomas; Weinzierl, Stefan; Weise, Hans; Weisend, John; Wendt, Manfred; Wendt, Oliver; Wenzel, Hans; Wenzel, William A.; Wermes, Norbert; Werthenbach, Ulrich; Wesseln, Steve; Wester, William; White, Andy; White, Glen R.; Wichmann, Katarzyna; Wienemann, Peter; Wierba, Wojciech; Wilksen, Tim; Willis, William; Wilson, Graham W.; Wilson, John A.; Wilson, Robert; Wing, Matthew; Winter, Marc; Wirth, Brian D.; Wolbers, Stephen A.; Wolff, Dan; Wolski, Andrzej; Woodley, Mark D.; Woods, Michael; Woodward, Michael L.; Woolliscroft, Timothy; Worm, Steven; Wormser, Guy; Wright, Dennis; Wright, Douglas; Wu, Andy; Wu, Tao; Wu, Yue Liang; Xella, Stefania; Xia, Guoxing; Xia, Lei; Xiao, Aimin; Xiao, Liling; Xie, Jia Lin; Xing, Zhi-Zhong; Xiong, Lian You; Xu, Gang; Xu, Qing Jing; Yajnik, Urjit A.; Yakimenko, Vitaly; Yamada, Ryuji; Yamaguchi, Hiroshi; Yamamoto, Akira; Yamamoto, Hitoshi; Yamamoto, Masahiro; Yamamoto, Naoto; Yamamoto, Richard; Yamamoto, Yasuchika; Yamanaka, Takashi; Yamaoka, Hiroshi; Yamashita, Satoru; Yamazaki, Hideki; Yan, Wenbiao; Yang, Hai-Jun; Yang, Jin Min; Yang, Jongmann; Yang, Zhenwei; Yano, Yoshiharu; Yazgan, Efe; Yeh, G.P.; Yilmaz, Hakan; Yock, Philip; Yoda, Hakutaro; Yoh, John; Yokoya, Kaoru; Yokoyama, Hirokazu; York, Richard C.; Yoshida, Mitsuhiro; Yoshida, Takuo; Yoshioka, Tamaki; Young, Andrew; Yu, Cheng Hui; Yu, Jaehoon; Yu, Xian Ming; Yuan, Changzheng; Yue, Chong-Xing; Yue, Jun Hui; Zacek, Josef; Zagorodnov, Igor; Zalesak, Jaroslav; Zalikhanov, Boris; Zarnecki, Aleksander Filip; Zawiejski, Leszek; Zeitnitz, Christian; Zeller, Michael; Zerwas, Dirk; Zerwas, Peter; Zeyrek, Mehmet; Zhai, Ji Yuan; Zhang, Bao Cheng; Zhang, Bin; Zhang, Chuang; Zhang, He; Zhang, Jiawen; Zhang, Jing; Zhang, Jing Ru; Zhang, Jinlong; Zhang, Liang; Zhang, X.; Zhang, Yuan; Zhang, Zhige; Zhang, Zhiqing; Zhang, Ziping; Zhao, Haiwen; Zhao, Ji Jiu; Zhao, Jing Xia; Zhao, Ming Hua; Zhao, Sheng Chu; Zhao, Tianchi; Zhao, Tong Xian; Zhao, Zhen Tang; Zhao, Zhengguo; Zhou, De Min; Zhou, Feng; Zhou, Shun; Zhu, Shou Hua; Zhu, Xiong Wei; Zhukov, Valery; Zimmermann, Frank; Ziolkowski, Michael; Zisman, Michael S.; Zomer, Fabian; Zong, Zhang Guo; Zorba, Osman; Zutshi, Vishnu

    2007-01-01

    This report, Volume IV of the International Linear Collider Reference Design Report, describes the detectors which will record and measure the charged and neutral particles produced in the ILC's high energy e+e- collisions. The physics of the ILC, and the environment of the machine-detector interface, pose new challenges for detector design. Several conceptual designs for the detector promise the needed performance, and ongoing detector R&D is addressing the outstanding technological issues. Two such detectors, operating in push-pull mode, perfectly instrument the ILC interaction region, and access the full potential of ILC physics.

  11. Using a Borated Panel to Form a Dual Neutron-Gamma Detector

    Energy Technology Data Exchange (ETDEWEB)

    Scott Wilde; Raymond Keegan

    2008-06-20

    A borated polyethylene plane placed between a neutron source and a gamma spectrometer is used to form a dual neutron-gamma detection system. The polyethylene thermalizes the source neutrons so that they are captured by {sup 10}B to produce a flux of 478 keV gamma-rays that radiate from the plane. This results in a buildup of count rate in the detector over that from a disk of the same diameter as the detector crystal (same thickness as the panel). Radiation portal systems are a potential application of this technique.

  12. Establishment of action levels for quality control of IMRT flat panel: experience with the algorithm iGRiMLO

    International Nuclear Information System (INIS)

    Gonzalez, V.; Dolores, VV. de los; Pastor, V.; Martinez, J.; Gimeno, J.; Guardino, C.; Crispin, V.

    2011-01-01

    Algorithm has been used at our institution iGRiMLO scheduled for individual verification of treatment plans for intensity modulated radiotherapy (IMRT) step and shoot through portal dosimetry pretreatment of non-transmission, triggering the plan directly to a portal imaging device (EPID) of an amorphous silicon flat panel.

  13. Detection of Cement Leakage After Vertebroplasty with a Non-Flat-Panel Angio Unit Compared to Multidetector Computed Tomography - An Ex Vivo Study

    International Nuclear Information System (INIS)

    Baumann, Clemens; Fuchs, Heiko; Westphalen, Kerstin; Hierholzer, Johannes

    2008-01-01

    The purpose of this study was to investigate the detection of cement leakages after vertebroplasty using angiographic computed tomography (ACT) in a non-flat-panel angio unit compared to multidetector computed tomography (MDCT). Vertebroplasty was performed in 19 of 33 cadaver vertebrae (23 thoracic and 10 lumbar segments). In the angio suite, ACT (190 o ; 1.5 o per image) was performed to obtain volumetric data. Another volumetric data set of the specimen was obtained by MDCT using a standard algorithm. Nine multiplanar reconstructions in standardized axial, coronal, and sagittal planes of every vertebra were generated from both data sets. Images were evaluated on the basis of a nominal scale with 18 criteria, comprising osseous properties (e.g., integrity of the end plate) and cement distribution (e.g., presence of intraspinal cement). MDCT images were regarded as gold standard and analyzed by two readers in a consensus mode. Rotational acquisitions were analyzed by six blinded readers. Results were correlated with the gold standard using Cohen's κ-coefficient analysis. Furthermore, interobserver variability was calculated. Correlation with the gold standard ranged from no correlation (osseous margins of the neuroforamen, κ = 0.008) to intermediate (trace of vertebroplasty canula; κ = 0.615) for criteria referring to osseous morphology. However, there was an excellent correlation for those criteria referring to cement distribution, with κ values ranging from 0.948 (paravertebral cement distribution) to 0.972 (intraspinal cement distribution). With a minimum of κ = 0.768 ('good correlation') and a maximum of κ = 0.91 ('excellent'), interobserver variability was low. In conclusion, ACT in an angio suite without a flat-panel detector depicts a cement leakage after vertebroplasty as well as MDCT. However, the method does not provide sufficient depiction of osseous morphology.

  14. An investigation of flat panel equipment variables on image quality with a dedicated cardiac phantom

    Energy Technology Data Exchange (ETDEWEB)

    Dragusin, O; Bosmans, H [Department of Radiology, University Hospital Gasthuisberg, 49, Herestraat, 3000-Leuven (Belgium); Pappas, C; Desmet, W [Department of Cardiology, University Hospital Gasthuisberg, 49, Herestraat, 3000-Leuven (Belgium)], E-mail: odragusin@yahoo.com

    2008-09-21

    Image quality (IQ) evaluation plays a key role in the process of optimization of new x-ray systems. Ideally, this process should be supported by real clinical images, but ethical issues and differences in anatomy and pathology of patients make it impossible. Phantom studies might overcome these issues. This paper presents the IQ evaluation of 30 cineangiographic films acquired with a cardiac flat panel system. The phantom used simulates the anatomy of the heart and allows the circulation of contrast agent boluses through coronary arteries. Variables investigated with influence on IQ and radiation dose are: tube potential, detector dose, added Copper filters, dynamic density optimization (DDO) and viewing angle. The IQ evaluation consisted of scoring 4 simulated calcified lesions located on different coronary artery segments in terms of degree of visualization. Eight cardiologists rated the lesions using a five-point scale ((1) lesion not visible to (5) very good visibility). Radiation doses associated to the angiograms are expressed in terms of incident air kerma (IAK) and effective dose that has been calculated with PCXMX software (STUK, Finland) from the exposure settings assuming a standard sized patient of 70 Kg. Mean IQ scores ranged from 1.68 to 4.88. The highest IQ scores were obtained for the angiograms acquired with tube potential 80 kVp, no added Cu filters, DDO 60%, RAO and LAO views and the highest entrance detector dose that has been used in the present study, namely 0.17 {mu}Gy/im. Radiation doses (IAK {approx}40 mGy and effective dose of 1 mSv) were estimated for angiograms acquired at 15 frames s{sup -1}, detector field-of-view 20 cm, and a length of 5 s. The following parameters improved the IQ factor significantly: a change in tube potential from 96 to 80 kVp, detector dose from 0.10 {mu}Gy/im to 0.17 {mu}Gy/im, the absence of Copper filtration. DDO variable which is a post-processing parameter should be carefully evaluated because it alters the

  15. An investigation of flat panel equipment variables on image quality with a dedicated cardiac phantom

    International Nuclear Information System (INIS)

    Dragusin, O; Bosmans, H; Pappas, C; Desmet, W

    2008-01-01

    Image quality (IQ) evaluation plays a key role in the process of optimization of new x-ray systems. Ideally, this process should be supported by real clinical images, but ethical issues and differences in anatomy and pathology of patients make it impossible. Phantom studies might overcome these issues. This paper presents the IQ evaluation of 30 cineangiographic films acquired with a cardiac flat panel system. The phantom used simulates the anatomy of the heart and allows the circulation of contrast agent boluses through coronary arteries. Variables investigated with influence on IQ and radiation dose are: tube potential, detector dose, added Copper filters, dynamic density optimization (DDO) and viewing angle. The IQ evaluation consisted of scoring 4 simulated calcified lesions located on different coronary artery segments in terms of degree of visualization. Eight cardiologists rated the lesions using a five-point scale ((1) lesion not visible to (5) very good visibility). Radiation doses associated to the angiograms are expressed in terms of incident air kerma (IAK) and effective dose that has been calculated with PCXMX software (STUK, Finland) from the exposure settings assuming a standard sized patient of 70 Kg. Mean IQ scores ranged from 1.68 to 4.88. The highest IQ scores were obtained for the angiograms acquired with tube potential 80 kVp, no added Cu filters, DDO 60%, RAO and LAO views and the highest entrance detector dose that has been used in the present study, namely 0.17 μGy/im. Radiation doses (IAK ∼40 mGy and effective dose of 1 mSv) were estimated for angiograms acquired at 15 frames s -1 , detector field-of-view 20 cm, and a length of 5 s. The following parameters improved the IQ factor significantly: a change in tube potential from 96 to 80 kVp, detector dose from 0.10 μGy/im to 0.17 μGy/im, the absence of Copper filtration. DDO variable which is a post-processing parameter should be carefully evaluated because it alters the quality of the

  16. SU-E-J-45: The Correlation Between CBCT Flat Panel Misalignment and 3D Image Guidance Accuracy

    International Nuclear Information System (INIS)

    Kenton, O; Valdes, G; Yin, L; Teo, B; Brousmiche, S; Wikler, D

    2015-01-01

    Purpose To simulate the impact of CBCT flat panel misalignment on the image quality, the calculated correction vectors in 3D image guided proton therapy and to determine if these calibration errors can be caught in our QA process. Methods The X-ray source and detector geometrical calibration (flexmap) file of the CBCT system in the AdaPTinsight software (IBA proton therapy) was edited to induce known changes in the rotational and translational calibrations of the imaging panel. Translations of up to ±10 mm in the x, y and z directions (see supplemental) and rotational errors of up to ±3° were induced. The calibration files were then used to reconstruct the CBCT image of a pancreatic patient and CatPhan phantom. Correction vectors were calculated for the patient using the software’s auto match system and compared to baseline values. The CatPhan CBCT images were used for quantitative evaluation of image quality for each type of induced error. Results Translations of 1 to 3 mm in the x and y calibration resulted in corresponding correction vector errors of equal magnitude. Similar 10mm shifts were seen in the y-direction; however, in the x-direction, the image quality was too degraded for a match. These translational errors can be identified through differences in isocenter from orthogonal kV images taken during routine QA. Errors in the z-direction had no effect on the correction vector and image quality.Rotations of the imaging panel calibration resulted in corresponding correction vector rotations of the patient images. These rotations also resulted in degraded image quality which can be identified through quantitative image quality metrics. Conclusion Misalignment of CBCT geometry can lead to incorrect translational and rotational patient correction vectors. These errors can be identified through QA of the imaging isocenter as compared to orthogonal images combined with monitoring of CBCT image quality

  17. The value of flat-detector computed tomography during catheterisation of congenital heart disease

    Energy Technology Data Exchange (ETDEWEB)

    Gloeckler, Martin [University Hospital Erlangen, Department of Pediatric Cardiology, Erlangen (Germany); Friedrich-Alexander University Erlangen-Nuernberg, Department of Pediatric Cardiology, Erlangen (Germany); Koch, Andreas; Greim, Verena; Shabaiek, Amira; Dittrich, Sven [University Hospital Erlangen, Department of Pediatric Cardiology, Erlangen (Germany); Rueffer, Andre; Cesnjevar, Robert [University Hospital Erlangen, Department of Congenital Heart Surgery, Erlangen (Germany); Achenbach, Stephan [University Hospital Erlangen, Department of Cardiology, Erlangen (Germany)

    2011-12-15

    To analyse the diagnostic utility of flat-detector computed tomography imaging (FD-CT) in patients with congenital heart disease, including the value of image fusion to overlay three-dimensional (3D) reconstructions on fluoroscopic images during catheter-based interventions. We retrospectively analysed 62 consecutive paediatric patients in whom FD-CT was used during catheterisation of congenital heart disease. Expert operators rated the clinical value of FD-CT over conventional fluoroscopic imaging. Added radiation exposure and contrast medium volume were evaluated. During a 12-month period, FD-CT was performed in 62 out of 303 cardiac catheterisations. Median patient age was 3.5 years. In 32/62 cases, FD-CT was used for diagnostic purposes, in 30/62 cases it was used in the context of interventions. Diagnostic utility was never rated as ''misleading''. It was classified as ''not useful'' in six cases (9.7%), ''useful'' in 18 cases (29.0%), ''very useful'' in 37 cases (59.7%) and ''essential'' in one case (1.6%). The median added dose-area product was 111.0 {mu}Gym{sup 2}, the required additional quantity of contrast medium was 1.6 ml/kg. FD-CT provides useful diagnostic information in most of the patients investigated for congenital heart disease. The added radiation exposure and contrast medium volume are reasonable. (orig.)

  18. Concepts for dose determination in flat-detector CT

    Science.gov (United States)

    Kyriakou, Yiannis; Deak, Paul; Langner, Oliver; Kalender, Willi A.

    2008-07-01

    Flat-detector computed tomography (FD-CT) scanners provide large irradiation fields of typically 200 mm in the cranio-caudal direction. In consequence, dose assessment according to the current definition of the computed tomography dose index CTDIL=100 mm, where L is the integration length, would demand larger ionization chambers and phantoms which do not appear practical. We investigated the usefulness of the CTDI concept and practical dosimetry approaches for FD-CT by measurements and Monte Carlo (MC) simulations. An MC simulation tool (ImpactMC, VAMP GmbH, Erlangen, Germany) was used to assess the dose characteristics and was calibrated with measurements of air kerma. For validation purposes measurements were performed on an Axiom Artis C-arm system (Siemens Medical Solutions, Forchheim, Germany) equipped with a flat detector of 40 cm × 30 cm. The dose was assessed for 70 kV and 125 kV in cylindrical PMMA phantoms of 160 mm and 320 mm diameter with a varying phantom length from 150 to 900 mm. MC simulation results were compared to the values obtained with a calibrated ionization chambers of 100 mm and 250 mm length and to thermoluminesence (TLD) dose profiles. The MCs simulations were used to calculate the efficiency of the CTDIL determination with respect to the desired CTDI∞. Both the MC simulation results and the dose distributions obtained by MC simulation were in very good agreement with the CTDI measurements and with the reference TLD profiles, respectively, to within 5%. Standard CTDI phantoms which have a z-extent of 150 mm underestimate the dose at the center by up to 55%, whereas a z-extent of >=600 mm appears to be sufficient for FD-CT; the baseline value of the respective profile was within 1% to the reference baseline. As expected, the measurements with ionization chambers of 100 mm and 250 mm offer a limited accuracy, whereas an increased integration length of >=600 mm appeared to be necessary to approximate CTDI∞ in within 1%. MC simulations

  19. Dose optimisation for intraoperative cone-beam flat-detector CT in paediatric spinal surgery

    International Nuclear Information System (INIS)

    Petersen, Asger Greval; Eiskjaer, Soeren; Kaspersen, Jon

    2012-01-01

    During surgery for spinal deformities, accurate placement of pedicle screws may be guided by intraoperative cone-beam flat-detector CT. The purpose of this study was to identify appropriate paediatric imaging protocols aiming to reduce the radiation dose in line with the ALARA principle. Using O-arm registered (Medtronic, Inc.), three paediatric phantoms were employed to measure CTDI w doses with default and lowered exposure settings. Images from 126 scans were evaluated by two spinal surgeons and scores were compared (Kappa statistics). Effective doses were calculated. The recommended new low-dose 3-D spine protocols were then used in 15 children. The lowest acceptable exposure as judged by image quality for intraoperative use was 70 kVp/40 mAs, 70 kVp/80 mAs and 80 kVp/40 mAs for the 1-, 5- and 12-year-old-equivalent phantoms respectively (kappa = 0,70). Optimised dose settings reduced CTDI w doses 89-93%. The effective dose was 0.5 mSv (91-94,5% reduction). The optimised protocols were used clinically without problems. Radiation doses for intraoperative 3-D CT using a cone-beam flat-detector scanner could be reduced at least 89% compared to manufacturer settings and still be used to safely navigate pedicle screws. (orig.)

  20. Image features for misalignment correction in medical flat-detector CT

    International Nuclear Information System (INIS)

    Wicklein, Julia; Kunze, Holger; Kalender, Willi A.; Kyriakou, Yiannis

    2012-01-01

    Purpose: Misalignment artifacts are a serious problem in medical flat-detector computed tomography. Generally, the geometrical parameters, which are essential for reconstruction, are provided by preceding calibration routines. These procedures are time consuming and the later use of stored parameters is sensitive toward external impacts or patient movement. The method of choice in a clinical environment would be a markerless online-calibration procedure that allows flexible scan trajectories and simultaneously corrects misalignment and motion artifacts during the reconstruction process. Therefore, different image features were evaluated according to their capability of quantifying misalignment. Methods: Projections of the FORBILD head and thorax phantoms were simulated. Additionally, acquisitions of a head phantom and patient data were used for evaluation. For the reconstruction different sources and magnitudes of misalignment were introduced in the geometry description. The resulting volumes were analyzed by entropy (based on the gray-level histogram), total variation, Gabor filter texture features, Haralick co-occurrence features, and Tamura texture features. The feature results were compared to the back-projection mismatch of the disturbed geometry. Results: The evaluations demonstrate the ability of several well-established image features to classify misalignment. The authors elaborated the particular suitability of the gray-level histogram-based entropy on identifying misalignment artifacts, after applying an appropriate window level (bone window). Conclusions: Some of the proposed feature extraction algorithms show a strong correlation with the misalignment level. Especially, entropy-based methods showed very good correspondence, with the best of these being the type that uses the gray-level histogram for calculation. This makes it a suitable image feature for online-calibration.

  1. Paediatric interventional cardiology: flat detector versus image intensifier using a test object

    Science.gov (United States)

    Vano, E.; Ubeda, C.; Martinez, L. C.; Leyton, F.; Miranda, P.

    2010-12-01

    Entrance surface air kerma (ESAK) values and image quality parameters were measured and compared for two biplane angiography x-ray systems dedicated to paediatric interventional cardiology, one equipped with image intensifiers (II) and the other one with dynamic flat detectors (FDs). Polymethyl methacrylate phantoms of different thicknesses, ranging from 8 to 16 cm, and a Leeds TOR 18-FG test object were used. The parameters of the image quality evaluated were noise, signal-difference-to-noise ratio (SdNR), high contrast spatial resolution (HCSR) and three figures of merit combining entrance doses and signal-to-noise ratios or HCSR. The comparisons showed a better behaviour of the II-based system in the low contrast region over the whole interval of thicknesses. The FD-based system showed a better performance in HCSR. The FD system evaluated would need around two times more dose than the II system evaluated to reach a given value of SdNR; moreover, a better spatial resolution was measured (and perceived in conventional monitors) for the system equipped with flat detectors. According to the results of this paper, the use of dynamic FD systems does not lead to an automatic reduction in ESAK or to an automatic improvement in image quality by comparison with II systems. Any improvement also depends on the setting of the x-ray systems and it should still be possible to refine these settings for some of the dynamic FDs used in paediatric cardiology.

  2. Paediatric interventional cardiology: flat detector versus image intensifier using a test object

    Energy Technology Data Exchange (ETDEWEB)

    Vano, E [Radiology Department, Medicine School, Complutense University and San Carlos University Hospital, 28040 Madrid (Spain); Ubeda, C [Clinical Sciences Department, Faculty of the Science of Health and CIHDE, Tarapaca University, 18 de Septiembre 2222, Arica (Chile); Martinez, L C [Medical Physics and Radiation Protection Service, 12 de Octubre University Hospital, Madrid (Spain); Leyton, F [Institute of Public Health of Chile, Marathon 1000, Nunoa, Santiago (Chile); Miranda, P, E-mail: eliseov@med.ucm.e [Hemodynamic Department, Cardiovascular Service, Luis Calvo Mackenna Hospital, Avenida Antonio Varaas 360, Providencia, Santiago (Chile)

    2010-12-07

    Entrance surface air kerma (ESAK) values and image quality parameters were measured and compared for two biplane angiography x-ray systems dedicated to paediatric interventional cardiology, one equipped with image intensifiers (II) and the other one with dynamic flat detectors (FDs). Polymethyl methacrylate phantoms of different thicknesses, ranging from 8 to 16 cm, and a Leeds TOR 18-FG test object were used. The parameters of the image quality evaluated were noise, signal-difference-to-noise ratio (SdNR), high contrast spatial resolution (HCSR) and three figures of merit combining entrance doses and signal-to-noise ratios or HCSR. The comparisons showed a better behaviour of the II-based system in the low contrast region over the whole interval of thicknesses. The FD-based system showed a better performance in HCSR. The FD system evaluated would need around two times more dose than the II system evaluated to reach a given value of SdNR; moreover, a better spatial resolution was measured (and perceived in conventional monitors) for the system equipped with flat detectors. According to the results of this paper, the use of dynamic FD systems does not lead to an automatic reduction in ESAK or to an automatic improvement in image quality by comparison with II systems. Any improvement also depends on the setting of the x-ray systems and it should still be possible to refine these settings for some of the dynamic FDs used in paediatric cardiology.

  3. First results with a microcavity plasma panel detector

    Energy Technology Data Exchange (ETDEWEB)

    Ball, R. [University of Michigan, Department of Physics, Ann Arbor, MI 48109 (United States); Ben-Moshe, M.; Benhammou, Y.; Bensimon, R. [Tel Aviv University, School of Physics and Astronomy, Tel Aviv (Israel); Chapman, J.W. [University of Michigan, Department of Physics, Ann Arbor, MI 48109 (United States); Davies, M.; Etzion, E. [Tel Aviv University, School of Physics and Astronomy, Tel Aviv (Israel); Ferretti, C., E-mail: claudiof@umich.edu [University of Michigan, Department of Physics, Ann Arbor, MI 48109 (United States); Friedman, P.S. [Integrated Sensors, LLC, Ottawa Hills, OH 43606 (United States); Levin, D.S. [University of Michigan, Department of Physics, Ann Arbor, MI 48109 (United States); Silver, Y. [Tel Aviv University, School of Physics and Astronomy, Tel Aviv (Israel); Varner, R.L. [Oak Ridge National Laboratory, Physics Division, Oak Ridge, TN 737831 (United States); Weaverdyck, C.; Zhou, B. [University of Michigan, Department of Physics, Ann Arbor, MI 48109 (United States)

    2015-06-01

    A new type of gaseous micropattern particle detector based on a closed-cell microcavity plasma panel sensor is reported. The first device was fabricated with 1×1×2 mm cells. It has shown very clean signals of 0.6–2.5 V amplitude, fast rise time of approximately 2 ns and FWHM of about 2 ns with very uniform signal shapes across all pixels. From initial measurements with β particles from a radioactive source, a maximum pixel efficiency greater than 95% is calculated, for operation of the detector over a 100 V wide span of high voltages (HV). Over this same HV range, the background rate per pixel was measured to be 3–4 orders of magnitude lower than the rate with which the cell was illuminated by the β source. Pixel-to-pixel count rate uniformity is within 3% and stable within 3% for many days. The time resolution is 2.4 ns, and a very low cell-to-cell crosstalk has been measured between cells separated by 2 mm.

  4. Metallic artifacts from internal scaphoid fracture fixation screws: comparison between C-arm flat-panel, cone-beam, and multidetector computed tomography.

    Science.gov (United States)

    Finkenstaedt, Tim; Morsbach, Fabian; Calcagni, Maurizio; Vich, Magdalena; Pfirrmann, Christian W A; Alkadhi, Hatem; Runge, Val M; Andreisek, Gustav; Guggenberger, Roman

    2014-08-01

    The aim of this study was to compare image quality and extent of artifacts from scaphoid fracture fixation screws using different computed tomography (CT) modalities and radiation dose protocols. Imaging of 6 cadaveric wrists with artificial scaphoid fractures and different fixation screws was performed in 2 screw positions (45° and 90° orientation in relation to the x/y-axis) using multidetector CT (MDCT) and 2 flat-panel CT modalities, C-arm flat-panel CT (FPCT) and cone-beam CT (CBCT), the latter 2 with low and standard radiation dose protocols. Mean cartilage attenuation and metal artifact-induced absolute Hounsfield unit changes (= artifact extent) were measured. Two independent radiologists evaluated different image quality criteria using a 5-point Likert-scale. Interreader agreements (Cohen κ) were calculated. Mean absolute Hounsfield unit changes and quality ratings were compared using Friedman and Wilcoxon signed-rank tests. Artifact extent was significantly smaller for MDCT and standard-dose FPCT compared with CBCT low- and standard-dose acquisitions (all P 0.05). Both MDCT and FPCT standard-dose protocols showed equal ratings for screw bone interface, fracture line, and trabecular bone evaluation (P = 0.06, 0.2, and 0.2, respectively) and performed significantly better than FPCT low- and CBCT low- and standard-dose acquisitions (all P < 0.05). Good interreader agreement was found for image quality comparisons (Cohen κ = 0.76-0.78). Both MDCT and FPCT standard-dose acquisition showed comparatively less metal-induced artifacts and better overall image quality compared with FPCT low-dose and both CBCT acquisitions. Flat-panel CT may provide sufficient image quality to serve as a versatile CT alternative for postoperative imaging of internally fixated wrist fractures.

  5. Dual-energy cone-beam CT with a flat-panel detector: Effect of reconstruction algorithm on material classification

    International Nuclear Information System (INIS)

    Zbijewski, W.; Gang, G. J.; Xu, J.; Wang, A. S.; Stayman, J. W.; Taguchi, K.; Carrino, J. A.; Siewerdsen, J. H.

    2014-01-01

    Purpose: Cone-beam CT (CBCT) with a flat-panel detector (FPD) is finding application in areas such as breast and musculoskeletal imaging, where dual-energy (DE) capabilities offer potential benefit. The authors investigate the accuracy of material classification in DE CBCT using filtered backprojection (FBP) and penalized likelihood (PL) reconstruction and optimize contrast-enhanced DE CBCT of the joints as a function of dose, material concentration, and detail size. Methods: Phantoms consisting of a 15 cm diameter water cylinder with solid calcium inserts (50–200 mg/ml, 3–28.4 mm diameter) and solid iodine inserts (2–10 mg/ml, 3–28.4 mm diameter), as well as a cadaveric knee with intra-articular injection of iodine were imaged on a CBCT bench with a Varian 4343 FPD. The low energy (LE) beam was 70 kVp (+0.2 mm Cu), and the high energy (HE) beam was 120 kVp (+0.2 mm Cu, +0.5 mm Ag). Total dose (LE+HE) was varied from 3.1 to 15.6 mGy with equal dose allocation. Image-based DE classification involved a nearest distance classifier in the space of LE versus HE attenuation values. Recognizing the differences in noise between LE and HE beams, the LE and HE data were differentially filtered (in FBP) or regularized (in PL). Both a quadratic (PLQ) and a total-variation penalty (PLTV) were investigated for PL. The performance of DE CBCT material discrimination was quantified in terms of voxelwise specificity, sensitivity, and accuracy. Results: Noise in the HE image was primarily responsible for classification errors within the contrast inserts, whereas noise in the LE image mainly influenced classification in the surrounding water. For inserts of diameter 28.4 mm, DE CBCT reconstructions were optimized to maximize the total combined accuracy across the range of calcium and iodine concentrations, yielding values of ∼88% for FBP and PLQ, and ∼95% for PLTV at 3.1 mGy total dose, increasing to ∼95% for FBP and PLQ, and ∼98% for PLTV at 15.6 mGy total dose. For a

  6. Flat Panel PMT: advances in position sensitive photodetection

    International Nuclear Information System (INIS)

    Pani, R.; Pellegrini, R.; Trotta, C.; Cinti, M.N.; Bennati, P.; Trotta, G.; Iurlaro, G.; Montani, L.; Ridolfi, S.; Cusanno, F.; Garibaldi, F.

    2003-01-01

    Over the last ten years there was being a strong advancement in photodetection. Different application fields are involved in their use in particular high energy physics, astrophysics and nuclear medicine. They usually work by coupling a scintillation crystal and more recent scintillation arrays with pixel size as small as 0.5 mm. PSPMT represents today the most ready technology for photodetection with large detection areas and very high spatial resolution. Flat panel PMT represents the last technological advancement. Its dimension is 50x50 mm 2 with a narrow peripheral dead zone (0.5 mm final goal). Its compactness allow to assemble different modules closely packed, achieving large detection areas with an effective active area of 97%. In this paper we analyze the imaging performances of PSPMT by coupling two scintillation arrays and by light spot scanning of photocathode to evaluate the linearity position response, spatial resolution and uniformity gain response as a function of light distribution spread and the number of photoelectrons generated on photocathode. The results point out a very narrow PMT intrinsic charge spread and low cross-talk between anodes. Energy resolution and spatial resolution show a good linearity with DRF variation. An unexpected intra-anode gain variation is carried out. In this paper we present the results obtained with this PSPMT regarding imaging performances principally addressed to nuclear medicine application

  7. Concepts for dose determination in flat-detector CT

    International Nuclear Information System (INIS)

    Kyriakou, Yiannis; Deak, Paul; Langner, Oliver; Kalender, Willi A

    2008-01-01

    Flat-detector computed tomography (FD-CT) scanners provide large irradiation fields of typically 200 mm in the cranio-caudal direction. In consequence, dose assessment according to the current definition of the computed tomography dose index CTDI L=100mm , where L is the integration length, would demand larger ionization chambers and phantoms which do not appear practical. We investigated the usefulness of the CTDI concept and practical dosimetry approaches for FD-CT by measurements and Monte Carlo (MC) simulations. An MC simulation tool (ImpactMC, VAMP GmbH, Erlangen, Germany) was used to assess the dose characteristics and was calibrated with measurements of air kerma. For validation purposes measurements were performed on an Axiom Artis C-arm system (Siemens Medical Solutions, Forchheim, Germany) equipped with a flat detector of 40 cm x 30 cm. The dose was assessed for 70 kV and 125 kV in cylindrical PMMA phantoms of 160 mm and 320 mm diameter with a varying phantom length from 150 to 900 mm. MC simulation results were compared to the values obtained with a calibrated ionization chambers of 100 mm and 250 mm length and to thermoluminesence (TLD) dose profiles. The MCs simulations were used to calculate the efficiency of the CTDI L determination with respect to the desired CTDI ∞ . Both the MC simulation results and the dose distributions obtained by MC simulation were in very good agreement with the CTDI measurements and with the reference TLD profiles, respectively, to within 5%. Standard CTDI phantoms which have a z-extent of 150 mm underestimate the dose at the center by up to 55%, whereas a z-extent of ≥600 mm appears to be sufficient for FD-CT; the baseline value of the respective profile was within 1% to the reference baseline. As expected, the measurements with ionization chambers of 100 mm and 250 mm offer a limited accuracy, whereas an increased integration length of ≥600 mm appeared to be necessary to approximate CTDI ∞ in within 1%. MC

  8. A novel high resolution, high sensitivity SPECT detector for molecular imaging of cardiovascular diseases

    Science.gov (United States)

    Cusanno, F.; Argentieri, A.; Baiocchi, M.; Colilli, S.; Cisbani, E.; De Vincentis, G.; Fratoni, R.; Garibaldi, F.; Giuliani, F.; Gricia, M.; Lucentini, M.; Magliozzi, M. L.; Majewski, S.; Marano, G.; Musico, P.; Musumeci, M.; Santavenere, F.; Torrioli, S.; Tsui, B. M. W.; Vitelli, L.; Wang, Y.

    2010-05-01

    Cardiovascular diseases are the most common cause of death in western countries. Understanding the rupture of vulnerable atherosclerotic plaques and monitoring the effect of innovative therapies of heart failure is of fundamental importance. A flexible, high resolution, high sensitivity detector system for molecular imaging with radionuclides on small animal models has been designed for this aim. A prototype has been built using tungsten pinhole and LaBr3(Ce) scintillator coupled to Hamamatsu Flat Panel PMTs. Compact individual-channel readout has been designed, built and tested. Measurements with phantoms as well as pilot studies on mice have been performed, the results show that the myocardial perfusion in mice can be determined with sufficient precision. The detector will be improved replacing the Hamamatsu Flat Panel with Silicon Photomultipliers (SiPMs) to allow integration of the system with MRI scanners. Application of LaBr3(Ce) scintillator coupled to photosensor with high photon detection efficiency and excellent energy resolution will allow dual-label imaging to monitor simultaneously the cardiac perfusion and the molecular targets under investigation during the heart therapy.

  9. DQE of wireless digital detectors: Comparative performance with differing filtration schemes

    International Nuclear Information System (INIS)

    Samei, Ehsan; Murphy, Simon; Christianson, Olav

    2013-01-01

    Purpose: Wireless flat panel detectors are gaining increased usage in portable medical imaging. Two such detectors were evaluated and compared with a conventional flat-panel detector using the formalism of the International Electrotechnical Commission (IEC 62220-1) for measuring modulation transfer function (MTF), normalized noise power spectrum (NNPS), and detective quantum efficiency (DQE) using two different filtration schemes.Methods: Raw images were acquired for three image receptors (DRX-1C and DRX-1, Carestream Health; Inc., Pixium 4600, Trixell) using a radiographic system with a well-characterized output (Philips Super80 CP, Philips Healthcare). Free in-air exposures were measured using a calibrated radiation meter (Unfors Mult-O-Meter Type 407, Unfors Instruments AB). Additional aluminum filtration and a new alternative combined copper-aluminum filtration were used to conform the x ray output to IEC-specified beam quality definitions RQA5 and RQA9. Using the IEC 62220-1 formalism, each detector was evaluated at X N /2, X N , and 2X N , where the normal exposure level to the detector surface (X N ) was set to 8.73 μGy (1.0 mR). The prescribed edge test device was used to evaluate the MTF, while the NNPS was measured using uniform images. The DQE was then calculated from the MTF and NNPS and compared across detectors, exposures, and filtration schemes.Results: The three DR systems had largely comparable MTFs with DRX-1 demonstrating lower values above 1.0 cycles/mm. At each exposure, DRX-1C and Pixium detectors demonstrated better noise performance than that of DRX-1. Zero-frequency DQEs for DRX-1C, Pixium, and DRX-1 detectors were approximately 74%, 63%, and 38% for RQA5 and 50%, 42%, and 28% for RQA9, respectively.Conclusions: DRX-1C detector exhibited superior DQE performance compared to Pixium and DRX-1. In terms of filtration, the alternative filtration was found to provide comparable performance in terms of rank ordering of different detectors with

  10. ISABELLE. Volume 4. Detector R and D

    International Nuclear Information System (INIS)

    1981-01-01

    Workshop participants were asked to assess the current status of detector R and D in terms of the specific needs for ISABELLE experiments: the demands of high particle rates, extremely selective triggers on complex and rare events, and the economics of large detector systems. The detailed results of working groups convened to consider specific areas of detector development are presented. The key points of this assessment, as regards the continuing R and D program for ISABELLE are summarized here. Twenty-six items from the volume were prepared separately for the data base, along with five items previously prepared

  11. ISABELLE. Volume 4. Detector R and D

    Energy Technology Data Exchange (ETDEWEB)

    1981-01-01

    Workshop participants were asked to assess the current status of detector R and D in terms of the specific needs for ISABELLE experiments: the demands of high particle rates, extremely selective triggers on complex and rare events, and the economics of large detector systems. The detailed results of working groups convened to consider specific areas of detector development are presented. The key points of this assessment, as regards the continuing R and D program for ISABELLE are summarized here. Twenty-six items from the volume were prepared separately for the data base, along with five items previously prepared. (GHT)

  12. Hydrogen production by the engineered cyanobacterial strain Nostoc PCC 7120 ΔhupW examined in a flat panel photobioreactor system.

    Science.gov (United States)

    Nyberg, Marcus; Heidorn, Thorsten; Lindblad, Peter

    2015-12-10

    Nitrogenase based hydrogen production was examined in a ΔhupW strain of the filamentous heterocystous cyanobacterium Nostoc PCC 7120, i.e., cells lacking the last step in the maturation system of the large subunit of the uptake hydrogenase and as a consequence with a non-functional uptake hydrogenase. The cells were grown in a developed flat panel photobioreactor system with 3.0L culture volume either aerobically (air) or anaerobically (Ar or 80% N2/20% Ar) and illuminated with a mixture of red and white LED. Aerobic growth of the ΔhupW strain of Nostoc PCC 7120 at 44μmolar photons m(-2)s(-1) PAR gave the highest hydrogen production of 0.7mL H2 L(-1)h(-1), 0.53mmol H2 mg chlorophyll a(-1)h(-1), and a light energy conversion efficiency of 1.2%. Anaerobic growth using 100% argon showed a maximal hydrogen production of 1.7mLL(-1)h(-1), 0.85mmol per mg chlorophyll a(-1) h(-1), and a light energy conversion efficiency of 2.7%. Altering between argon/N2 (20/80) and 100% argon phases resulted in a maximal hydrogen production at hour 128 (100% argon phase) with 6.2mL H2L(-1)h(-1), 0.71mL H2 mg chlorophyll a(-1)h(-1), and a light energy efficiency conversion of 4.0%. The highest buildup of hydrogen gas observed was 6.89% H2 (100% argon phase) of the total photobioreactor system with a maximal production of 4.85mL H2 L(-1)h(-1). The present study clearly demonstrates the potential to use purpose design cyanobacteria in developed flat panel photobioreactor systems for the direct production of the solar fuel hydrogen. Further improvements in the strain used, environmental conditions employed, and growth, production and collection systems used, are needed before a sustainable and economical cyanobacterial based hydrogen production can be realized. Copyright © 2015 Elsevier B.V. All rights reserved.

  13. Flat-panel detector volumetric CT for visualization of subarachnoid hemorrhage and ventricles: preliminary results compared to conventional CT

    International Nuclear Information System (INIS)

    Doelken, M.; Struffert, T.; Richter, G.; Engelhorn, T.; Doerfler, A.; Nimsky, C.; Ganslandt, O.; Hammen, T.

    2008-01-01

    The aim of this study was to compare flat-panel volumetric CT (VCT) to conventional CT (cCT) in the visualization of the extent of subarachnoid hemorrhage (SAH) and the width of the ventricles in patients with acute SAH. Included in the study were 22 patients with an acutely ruptured cerebral aneurysm who received VCT during coil embolization. VCT image quality, the extent of SAH (using a modified Fisher score and total slice number with SAH visible) and the width of the ventricles (Evans index) were evaluated by two experienced neuroradiologists (RAD1 and RAD2) and compared to the findings on cCT. Ten patients undergoing VCT for reasons other than SAH served as negative controls. Interobserver agreement in rating image quality was excellent for cCT (Kendall W value 0.94) and good for VCT (0.74). SAH was identified by RAD1 and RAD2 on VCT images in all patients. The modified Fisher scores underestimated the extent of SAH on VCT images in comparison with cCT images. Pearson's correlation coefficient (r) regarding the number of image slices with SAH visible on cCT images compared with the number on VCT images was 0.85 for RAD1 and 0.84 for RAD2. The r value for the degree of interobserver agreement for the number of slices with SAH visible was 0.99 for cCT, and 0.95 for VCT images (n 19), respectively. The width of the ventricles measured in terms of the Evans Index showed excellent concordance between the modalities (r = 0.81 vs. 0.82). Our preliminary results indicate that VCT is helpful in evaluating SAH in the angiography suite. Additionally, reliable evaluation of ventricle width is feasible. However, there are limitations with regard to the visibility of SAH on VCT images in comparison to cCT images. (orig.)

  14. 3D Modeling of Electric Fields in the LUX Detector

    OpenAIRE

    LUX Collaboration; Akerib, D. S.; Alsum, S.; Araújo, H. M.; Bai, X.; Bailey, A. J.; Balajthy, J.; Beltrame, P.; Bernard, E. P.; Bernstein, A.; Biesiadzinski, T. P.; Boulton, E. M.; Brás, P.; Byram, D.; Cahn, S. B.

    2017-01-01

    This work details the development of a three-dimensional (3D) electric field model for the LUX detector. The detector took data during two periods of searching for weakly interacting massive particle (WIMP) searches. After the first period completed, a time-varying non-uniform negative charge developed in the polytetrafluoroethylene (PTFE) panels that define the radial boundary of the detector's active volume. This caused electric field variations in the detector in time, depth and azimuth, g...

  15. Dynamic Modeling of the Microalgae Cultivation Phase for Energy Production in Open Raceway Ponds and Flat Panel Photobioreactors

    Energy Technology Data Exchange (ETDEWEB)

    Marsullo, Matteo [Department of Industrial Engineering, University of Padova, Padova (Italy); Mian, Alberto [Industrial Process and Energy System Engineering Group (IPESE), École Polytechnique Fédérale de Lausanne, Lausanne (Switzerland); Ensinas, Adriano Viana [Industrial Process and Energy System Engineering Group (IPESE), École Polytechnique Fédérale de Lausanne, Lausanne (Switzerland); Universidade Federal do ABC, Santo Andre (Brazil); Manente, Giovanni; Lazzaretto, Andrea, E-mail: andrea.lazzaretto@unipd.it [Department of Industrial Engineering, University of Padova, Padova (Italy); Marechal, François [Industrial Process and Energy System Engineering Group (IPESE), École Polytechnique Fédérale de Lausanne, Lausanne (Switzerland)

    2015-09-15

    A dynamic model of microalgae cultivation phase is presented in this work. Two cultivation technologies are taken into account: the open raceway pond and the flat panel photobioreactor. For each technology, the model is able to evaluate the microalgae areal and volumetric productivity and the energy production and consumption. Differently from the most common existing models in literature, which deal with a specific part of the overall cultivation process, the model presented here includes all physical and chemical quantities that mostly affect microalgae growth: the equation of the specific growth rate for the microalgae is influenced by CO{sub 2} and nutrients concentration in the water, light intensity, temperature of the water in the reactor, and by the microalgae species being considered. All these input parameters can be tuned to obtain reliable predictions. A comparison with experimental data taken from the literature shows that the predictions are consistent and slightly overestimating the productivity in the case of closed photobioreactor. The results obtained by the simulation runs are consistent with those found in literature, being the areal productivity for the open raceway pond between 50 and 70 t/(ha × year) in Southern Spain (Sevilla) and Brazil (Petrolina) and between 250 and 350 t/(ha × year) for the flat panel photobioreactor in the same locations.

  16. Dynamic modeling of the microalgae cultivation phase for energy production in open raceway ponds and flat panel photobioreactors

    Directory of Open Access Journals (Sweden)

    Matteo eMarsullo

    2015-09-01

    Full Text Available A dynamic model of microalgae cultivation phase is presented in this work. Two cultivation technologies are taken into account: the open raceway pond and the flat panel photobioreactor. For each technology, the model is able to evaluate the microalgae areal and volumetric productivity and the energy production and consumption. Differently from the most common existing models in literature, which deal with a specific part of the overall cultivation process, the model presented here includes all physical and chemical quantities that mostly affect microalgae growth: the equation of the specific growth rate for the microalgae is influenced by CO2 and nutrients concentration in the water, light intensity, temperature of the water in the reactor and by the microalgae species being considered. All these input parameters can be tuned to obtain reliable predictions. A comparison with experimental data taken from the literature shows that the predictions are consistent, slightly overestimating the productivity in case of closed photobioreactor. The results obtained by the simulation runs are consistent with those found in literature, being the areal productivity for the open raceway pond between 50 and 70 t/(ha*year in Southern Spain (Sevilla and Brazil (Petrolina and between 250 and 350 t/(ha*year for the flat panel photobioreactor in the same locations.

  17. Active volume studies with depleted and enriched BEGe detectors

    Energy Technology Data Exchange (ETDEWEB)

    Sturm, Katharina von [Eberhard Karls Universitaet Tuebingen (Germany); Universita degli Studi di Padova, Padua (Italy); Collaboration: GERDA-Collaboration

    2013-07-01

    The Gerda experiment is currently taking data for the search of the 0νββ decay in {sup 76}Ge. In 2013, 30 newly manufactured Broad Energy Germanium (BEGe) diodes will be deployed which will double the active mass within Gerda. These detectors were fabricated from high-purity germanium enriched in {sup 76}Ge and tested in the HADES underground laboratory, owned by SCK.CEN, in Mol, Belgium. As the BEGes are source and detector at the same time, one crucial parameter is their active volume which directly enters into the evaluation of the half-life. This talk illustrates the dead layer and active volume determination of prototype detectors from depleted germanium as well as the newly produced detectors from enriched material, using gamma spectroscopy methods and comparing experimental results to Monte-Carlo simulations. Recent measurements and their results are presented, and systematic effects are discussed.

  18. High resolution micro-CT of low attenuating organic materials using large area photon-counting detector

    International Nuclear Information System (INIS)

    Kumpová, I.; Jandejsek, I.; Jakůbek, J.; Vopálenský, M.; Vavřík, D.; Fíla, T.; Koudelka, P.; Kytýř, D.; Zlámal, P.; Gantar, A.

    2016-01-01

    To overcome certain limitations of contemporary materials used for bone tissue engineering, such as inflammatory response after implantation, a whole new class of materials based on polysaccharide compounds is being developed. Here, nanoparticulate bioactive glass reinforced gelan-gum (GG-BAG) has recently been proposed for the production of bone scaffolds. This material offers promising biocompatibility properties, including bioactivity and biodegradability, with the possibility of producing scaffolds with directly controlled microgeometry. However, to utilize such a scaffold with application-optimized properties, large sets of complex numerical simulations using the real microgeometry of the material have to be carried out during the development process. Because the GG-BAG is a material with intrinsically very low attenuation to X-rays, its radiographical imaging, including tomographical scanning and reconstructions, with resolution required by numerical simulations might be a very challenging task. In this paper, we present a study on X-ray imaging of GG-BAG samples. High-resolution volumetric images of investigated specimens were generated on the basis of micro-CT measurements using a large area flat-panel detector and a large area photon-counting detector. The photon-counting detector was composed of a 010× 1 matrix of Timepix edgeless silicon pixelated detectors with tiling based on overlaying rows (i.e. assembled so that no gap is present between individual rows of detectors). We compare the results from both detectors with the scanning electron microscopy on selected slices in transversal plane. It has been shown that the photon counting detector can provide approx. 3× better resolution of the details in low-attenuating materials than the integrating flat panel detectors. We demonstrate that employment of a large area photon counting detector is a good choice for imaging of low attenuating materials with the resolution sufficient for numerical

  19. High resolution micro-CT of low attenuating organic materials using large area photon-counting detector

    Science.gov (United States)

    Kumpová, I.; Vavřík, D.; Fíla, T.; Koudelka, P.; Jandejsek, I.; Jakůbek, J.; Kytýř, D.; Zlámal, P.; Vopálenský, M.; Gantar, A.

    2016-02-01

    To overcome certain limitations of contemporary materials used for bone tissue engineering, such as inflammatory response after implantation, a whole new class of materials based on polysaccharide compounds is being developed. Here, nanoparticulate bioactive glass reinforced gelan-gum (GG-BAG) has recently been proposed for the production of bone scaffolds. This material offers promising biocompatibility properties, including bioactivity and biodegradability, with the possibility of producing scaffolds with directly controlled microgeometry. However, to utilize such a scaffold with application-optimized properties, large sets of complex numerical simulations using the real microgeometry of the material have to be carried out during the development process. Because the GG-BAG is a material with intrinsically very low attenuation to X-rays, its radiographical imaging, including tomographical scanning and reconstructions, with resolution required by numerical simulations might be a very challenging task. In this paper, we present a study on X-ray imaging of GG-BAG samples. High-resolution volumetric images of investigated specimens were generated on the basis of micro-CT measurements using a large area flat-panel detector and a large area photon-counting detector. The photon-counting detector was composed of a 010× 1 matrix of Timepix edgeless silicon pixelated detectors with tiling based on overlaying rows (i.e. assembled so that no gap is present between individual rows of detectors). We compare the results from both detectors with the scanning electron microscopy on selected slices in transversal plane. It has been shown that the photon counting detector can provide approx. 3× better resolution of the details in low-attenuating materials than the integrating flat panel detectors. We demonstrate that employment of a large area photon counting detector is a good choice for imaging of low attenuating materials with the resolution sufficient for numerical simulations.

  20. Flat or curved thin optical display panel

    Science.gov (United States)

    Veligdan, J.T.

    1995-01-10

    An optical panel includes a plurality of waveguides stacked together, with each waveguide having a first end and an opposite second end. The first ends collectively define a first face, and the second ends collectively define a second face of the panel. The second face is disposed at an acute face angle relative to the waveguides to provide a panel which is relatively thin compared to the height of the second face. In an exemplary embodiment for use in a projection TV, the first face is substantially smaller in height than the second face and receives a TV image, with the second face defining a screen for viewing the image enlarged. 7 figures.

  1. Artifact reduction of different metallic implants in flat detector C-arm CT.

    Science.gov (United States)

    Hung, S-C; Wu, C-C; Lin, C-J; Guo, W-Y; Luo, C-B; Chang, F-C; Chang, C-Y

    2014-07-01

    Flat detector CT has been increasingly used as a follow-up examination after endovascular intervention. Metal artifact reduction has been successfully demonstrated in coil mass cases, but only in a small series. We attempted to objectively and subjectively evaluate the feasibility of metal artifact reduction with various metallic objects and coil lengths. We retrospectively reprocessed the flat detector CT data of 28 patients (15 men, 13 women; mean age, 55.6 years) after they underwent endovascular treatment (20 coiling ± stent placement, 6 liquid embolizers) or shunt drainage (n = 2) between January 2009 and November 2011 by using a metal artifact reduction correction algorithm. We measured CT value ranges and noise by using region-of-interest methods, and 2 experienced neuroradiologists rated the degrees of improved imaging quality and artifact reduction by comparing uncorrected and corrected images. After we applied the metal artifact reduction algorithm, the CT value ranges and the noise were substantially reduced (1815.3 ± 793.7 versus 231.7 ± 95.9 and 319.9 ± 136.6 versus 45.9 ± 14.0; both P metallic objects and various sizes of coil masses. The rater study achieved an overall improvement of imaging quality and artifact reduction (85.7% and 78.6% of cases by 2 raters, respectively), with the greatest improvement in the coiling group, moderate improvement in the liquid embolizers, and the smallest improvement in ventricular shunting (overall agreement, 0.857). The metal artifact reduction algorithm substantially reduced artifacts and improved the objective image quality in every studied case. It also allowed improved diagnostic confidence in most cases. © 2014 by American Journal of Neuroradiology.

  2. Robot arm based flat panel CT-guided electromagnetic tracked spine interventions: phantom and animal model experiments

    Energy Technology Data Exchange (ETDEWEB)

    Penzkofer, Tobias; Isfort, Peter; Bruners, Philipp; Mahnken, Andreas H. [RWTH Aachen University, Applied Medical Engineering, Helmholtz-Institute Aachen, Aachen (Germany); RWTH Aachen University, Department of Diagnostic Radiology, Aachen University Hospital, Aachen (Germany); Wiemann, Christian; Guenther, Rolf W. [RWTH Aachen University, Department of Diagnostic Radiology, Aachen University Hospital, Aachen (Germany); Kyriakou, Yiannis; Kalender, Willi A. [Friedrich-Alexander University of Erlangen-Nuremberg, Institute for Medical Physics, Erlangen (Germany); Schmitz-Rode, Thomas [RWTH Aachen University, Applied Medical Engineering, Helmholtz-Institute Aachen, Aachen (Germany)

    2010-11-15

    To evaluate accuracy and procedure times of electromagnetic tracking (EMT) in a robotic arm mounted flat panel setting using phantom and animal cadaveric models. A robotic arm mounted flat panel (RMFP) was used in combination with EMT to perform anthropomorphic phantom (n = 90) and ex vivo pig based punctures (n = 120) of lumbar facet joints (FJ, n = 120) and intervertebral discs (IVD, n = 90). Procedure accuracies and times were assessed and evaluated. FJ punctures were carried out with a spatial accuracy of 0.8 {+-} 0.9 mm (phantom) and 0.6 {+-} 0.8 mm (ex vivo) respectively. While IVD punctures showed puncture deviations of 0.6 {+-} 1.2 mm (phantom) and 0.5 {+-} 0.6 mm (ex vivo), direct and angulated phantom based punctures had accuracies of 0.8 {+-} 0.9 mm and 1.0 {+-} 1.3 mm. Planning took longer for ex vivo IVD punctures compared to phantom model interventions (39.3 {+-} 17.3 s vs. 20.8 {+-} 5.0 s, p = 0.001) and for angulated vs. direct phantom FJ punctures (19.7 {+-} 5.1 s vs. 28.6 {+-} 7.8 s, p < 0.001). Puncture times were longer for ex vivo procedures when compared to phantom model procedures in both FJ (37.9 {+-} 9.0 s vs. 23.6 {+-} 7.2 s, p = 0.001) and IVD punctures (43.9 {+-} 16.1 s vs. 31.1 {+-} 6.4 s, p = 0.026). The combination of RMFP with EMT provides an accurate method of navigation for spinal interventions such as facet joint punctures and intervertebral disc punctures. (orig.)

  3. Heel effect adaptive flat field correction of digital x-ray detectors

    Energy Technology Data Exchange (ETDEWEB)

    Yu, Yongjian [X-ray Products, Varian Medical Systems Inc., Liverpool, New York 13088 (United States); Wang, Jue [Department of Mathematics, Union College, Schenectady, New York 12308 (United States)

    2013-08-15

    Purpose: Anode heel effect renders large-scale background nonuniformities in digital radiographs. Conventional offset/gain calibration is performed at mono source-to-image distance (SID), and disregards the SID-dependent characteristic of heel effect. It results in a residual nonuniform background in the corrected radiographs when the SID settings for calibration and correction differ. In this work, the authors develop a robust and efficient computational method for digital x-ray detector gain correction adapted to SID-variant heel effect, without resorting to physical filters, phantoms, complicated heel effect models, or multiple-SID calibration and interpolation.Methods: The authors present the Duo-SID projection correction method. In our approach, conventional offset/gain calibrations are performed only twice, at the minimum and maximum SIDs of the system in typical clinical use. A fast iterative separation algorithm is devised to extract the detector gain and basis heel patterns from the min/max SID calibrations. The resultant detector gain is independent of SID, while the basis heel patterns are parameterized by the min- and max-SID. The heel pattern at any SID is obtained from the min-SID basis heel pattern via projection imaging principles. The system gain desired at a specific acquisition SID is then constructed using the projected heel pattern and detector gain map.Results: The method was evaluated for flat field and anatomical phantom image corrections. It demonstrated promising improvements over interpolation and conventional gain calibration/correction methods, lowering their correction errors by approximately 70% and 80%, respectively. The separation algorithm was able to extract the detector gain and heel patterns with less than 2% error, and the Duo-SID corrected images showed perceptually appealing uniform background across the detector.Conclusions: The Duo-SID correction method has substantially improved on conventional offset/gain corrections for

  4. Heel effect adaptive flat field correction of digital x-ray detectors

    International Nuclear Information System (INIS)

    Yu, Yongjian; Wang, Jue

    2013-01-01

    Purpose: Anode heel effect renders large-scale background nonuniformities in digital radiographs. Conventional offset/gain calibration is performed at mono source-to-image distance (SID), and disregards the SID-dependent characteristic of heel effect. It results in a residual nonuniform background in the corrected radiographs when the SID settings for calibration and correction differ. In this work, the authors develop a robust and efficient computational method for digital x-ray detector gain correction adapted to SID-variant heel effect, without resorting to physical filters, phantoms, complicated heel effect models, or multiple-SID calibration and interpolation.Methods: The authors present the Duo-SID projection correction method. In our approach, conventional offset/gain calibrations are performed only twice, at the minimum and maximum SIDs of the system in typical clinical use. A fast iterative separation algorithm is devised to extract the detector gain and basis heel patterns from the min/max SID calibrations. The resultant detector gain is independent of SID, while the basis heel patterns are parameterized by the min- and max-SID. The heel pattern at any SID is obtained from the min-SID basis heel pattern via projection imaging principles. The system gain desired at a specific acquisition SID is then constructed using the projected heel pattern and detector gain map.Results: The method was evaluated for flat field and anatomical phantom image corrections. It demonstrated promising improvements over interpolation and conventional gain calibration/correction methods, lowering their correction errors by approximately 70% and 80%, respectively. The separation algorithm was able to extract the detector gain and heel patterns with less than 2% error, and the Duo-SID corrected images showed perceptually appealing uniform background across the detector.Conclusions: The Duo-SID correction method has substantially improved on conventional offset/gain corrections for

  5. A fast and pragmatic approach for scatter correction in flat-detector CT using elliptic modeling and iterative optimization

    Science.gov (United States)

    Meyer, Michael; Kalender, Willi A.; Kyriakou, Yiannis

    2010-01-01

    Scattered radiation is a major source of artifacts in flat detector computed tomography (FDCT) due to the increased irradiated volumes. We propose a fast projection-based algorithm for correction of scatter artifacts. The presented algorithm combines a convolution method to determine the spatial distribution of the scatter intensity distribution with an object-size-dependent scaling of the scatter intensity distributions using a priori information generated by Monte Carlo simulations. A projection-based (PBSE) and an image-based (IBSE) strategy for size estimation of the scanned object are presented. Both strategies provide good correction and comparable results; the faster PBSE strategy is recommended. Even with such a fast and simple algorithm that in the PBSE variant does not rely on reconstructed volumes or scatter measurements, it is possible to provide a reasonable scatter correction even for truncated scans. For both simulations and measurements, scatter artifacts were significantly reduced and the algorithm showed stable behavior in the z-direction. For simulated voxelized head, hip and thorax phantoms, a figure of merit Q of 0.82, 0.76 and 0.77 was reached, respectively (Q = 0 for uncorrected, Q = 1 for ideal). For a water phantom with 15 cm diameter, for example, a cupping reduction from 10.8% down to 2.1% was achieved. The performance of the correction method has limitations in the case of measurements using non-ideal detectors, intensity calibration, etc. An iterative approach to overcome most of these limitations was proposed. This approach is based on root finding of a cupping metric and may be useful for other scatter correction methods as well. By this optimization, cupping of the measured water phantom was further reduced down to 0.9%. The algorithm was evaluated on a commercial system including truncated and non-homogeneous clinically relevant objects.

  6. The Department of Energy's Rocky Flats Plant: A guide to record series useful for health-related research. Volume 5: Waste management

    International Nuclear Information System (INIS)

    1995-01-01

    This is the fifth in a series of seven volumes which constitute a guide to records of the Rocky Flats Plant useful for conducting health-related research. The primary purpose of Volume 5 is to describe record series pertaining to waste management activities at the Department of Energy's (DOE) Rocky Flats Plant, now named the Rocky Flats Environmental Technology Site, near Denver, Colorado. History Associates Incorporated (HAI) prepared this guide as part of its work as the support services contractor for DOE's Epidemiologic Records Inventory Project. This introduction briefly describes the Epidemiologic Records Inventory Project and HAI's role in the project, provides a history of waste management practices at Rocky Flats, and identifies organizations contributing to waste management policies and activities. Other topics include the scope and arrangement of this volume and the organization to contact for access to these records

  7. The effect of oblique angle of sound incidence, realistic edge conditions, curvature and in-plane panel stresses on the noise reduction characteristics of general aviation type panels

    Science.gov (United States)

    Grosveld, F.; Lameris, J.; Dunn, D.

    1979-01-01

    Experiments and a theoretical analysis were conducted to predict the noise reduction of inclined and curved panels. These predictions are compared to the experimental results with reasonable agreement between theory and experiment for panels under an oblique angle of sound incidence. Theoretical as well as experimental results indicate a big increase in noise reduction when a flat test panel is curved. Further curving the panel slightly decreases the noise reduction. Riveted flat panels are shown to give a higher noise reduction in the stiffness-controlled frequency region, while bonded panels are superior in this region when the test panel is curved. Experimentally measured noise reduction characteristics of flat aluminum panels with uniaxial in-plane stresses are presented and discussed. These test results indicate an important improvement in the noise reduction of these panels in the frequency range below the fundamental panel/cavity frequency.

  8. 3D modeling of electric fields in the LUX detector

    OpenAIRE

    Akerib, DS; Alsum, S; Araújo, HM; Bai, X; Bailey, AJ; Balajthy, J; Beltrame, P; Bernard, EP; Bernstein, A; Biesiadzinski, TP; Boulton, EM; Brás, P; Byram, D; Cahn, SB; Carmona-Benitez, MC

    2017-01-01

    © 2017 IOP Publishing Ltd and Sissa Medialab. This work details the development of a three-dimensional (3D) electric field model for the LUX detector. The detector took data to search for weakly interacting massive particles (WIMPs) during two periods. After the first period completed, a time-varying non-uniform negative charge developed in the polytetrafluoroethylene (PTFE) panels that define the radial boundary of the detector's active volume. This caused electric field variations in the de...

  9. DQE of wireless digital detectors: Comparative performance with differing filtration schemes

    Energy Technology Data Exchange (ETDEWEB)

    Samei, Ehsan [Carl E. Ravin Advanced Imaging Laboratories, Departments of Radiology, Biomedical Engineering, Physics, and Electrical and Computer Engineering, Medical Physics Graduate Program, Duke University Medical Center, Durham, North Carolina 27705 (United States); Murphy, Simon; Christianson, Olav [Medical Physics Graduate Program, Duke University, Durham, North Carolina 27705 (United States)

    2013-08-15

    Purpose: Wireless flat panel detectors are gaining increased usage in portable medical imaging. Two such detectors were evaluated and compared with a conventional flat-panel detector using the formalism of the International Electrotechnical Commission (IEC 62220-1) for measuring modulation transfer function (MTF), normalized noise power spectrum (NNPS), and detective quantum efficiency (DQE) using two different filtration schemes.Methods: Raw images were acquired for three image receptors (DRX-1C and DRX-1, Carestream Health; Inc., Pixium 4600, Trixell) using a radiographic system with a well-characterized output (Philips Super80 CP, Philips Healthcare). Free in-air exposures were measured using a calibrated radiation meter (Unfors Mult-O-Meter Type 407, Unfors Instruments AB). Additional aluminum filtration and a new alternative combined copper-aluminum filtration were used to conform the x ray output to IEC-specified beam quality definitions RQA5 and RQA9. Using the IEC 62220-1 formalism, each detector was evaluated at X{sub N}/2, X{sub N}, and 2X{sub N}, where the normal exposure level to the detector surface (X{sub N}) was set to 8.73 μGy (1.0 mR). The prescribed edge test device was used to evaluate the MTF, while the NNPS was measured using uniform images. The DQE was then calculated from the MTF and NNPS and compared across detectors, exposures, and filtration schemes.Results: The three DR systems had largely comparable MTFs with DRX-1 demonstrating lower values above 1.0 cycles/mm. At each exposure, DRX-1C and Pixium detectors demonstrated better noise performance than that of DRX-1. Zero-frequency DQEs for DRX-1C, Pixium, and DRX-1 detectors were approximately 74%, 63%, and 38% for RQA5 and 50%, 42%, and 28% for RQA9, respectively.Conclusions: DRX-1C detector exhibited superior DQE performance compared to Pixium and DRX-1. In terms of filtration, the alternative filtration was found to provide comparable performance in terms of rank ordering of different

  10. C-arm flat-panel CT arthrography of the shoulder: Radiation dose considerations and preliminary data on diagnostic performance

    International Nuclear Information System (INIS)

    Guggenberger, Roman; Ulbrich, Erika J.; Kaelin, Pascal; Pfammatter, Thomas; Alkadhi, Hatem; Andreisek, Gustav; Dietrich, Tobias J.; Scholz, Rosemarie; Koehler, Christoph; Elsaesser, Thilo; Le Corroller, Thomas

    2017-01-01

    To investigate radiation dose and diagnostic performance of C-arm flat-panel CT (FPCT) versus standard multi-detector CT (MDCT) shoulder arthrography using MRI-arthrography as reference standard. Radiation dose of two different FPCT acquisitions (5 and 20 s) and standard MDCT of the shoulder were assessed using phantoms and thermoluminescence dosimetry. FPCT arthrographies were performed in 34 patients (mean age 44 ± 15 years). Different joint structures were quantitatively and qualitatively assessed by two independent radiologists. Inter-reader agreement and diagnostic performance were calculated. Effective radiation dose was markedly lower in FPCT 5 s (0.6 mSv) compared to MDCT (1.7 mSv) and FPCT 20 s (3.4 mSv). Contrast-to-noise ratios (CNRs) were significantly (p < 0.05) higher in FPCT 20-s versus 5-s protocols. Inter-reader agreements of qualitative ratings ranged between κ = 0.47-1.0. Sensitivities for cartilage and rotator cuff pathologies were low for FPCT 5-s (40 % and 20 %) and moderate for FPCT 20-s protocols (75 % and 73 %). FPCT showed high sensitivity (81-86 % and 89-99 %) for bone and acromioclavicular-joint pathologies. Using a 5-s protocol FPCT shoulder arthrography provides lower radiation dose compared to MDCT but poor sensitivity for cartilage and rotator cuff pathologies. FPCT 20-s protocol is moderately sensitive for cartilage and rotator cuff tendon pathology with markedly higher radiation dose compared to MDCT. (orig.)

  11. C-arm flat-panel CT arthrography of the shoulder: Radiation dose considerations and preliminary data on diagnostic performance

    Energy Technology Data Exchange (ETDEWEB)

    Guggenberger, Roman; Ulbrich, Erika J.; Kaelin, Pascal; Pfammatter, Thomas; Alkadhi, Hatem; Andreisek, Gustav [University Hospital Zurich, Institute of Diagnostic and Interventional Radiology, Zuerich (Switzerland); Dietrich, Tobias J. [Balgrist University Hospital, Department of Radiology, Zurich (Switzerland); Scholz, Rosemarie; Koehler, Christoph; Elsaesser, Thilo [Siemens Healthcare GmbH, Business Area Advanced Therapies, Forchheim (Germany); Le Corroller, Thomas [Aix-Marseille Universite, CNRS, ISM UMR 7287, Marseille (France); Radiology Department, APHM, Marseille (France)

    2017-02-15

    To investigate radiation dose and diagnostic performance of C-arm flat-panel CT (FPCT) versus standard multi-detector CT (MDCT) shoulder arthrography using MRI-arthrography as reference standard. Radiation dose of two different FPCT acquisitions (5 and 20 s) and standard MDCT of the shoulder were assessed using phantoms and thermoluminescence dosimetry. FPCT arthrographies were performed in 34 patients (mean age 44 ± 15 years). Different joint structures were quantitatively and qualitatively assessed by two independent radiologists. Inter-reader agreement and diagnostic performance were calculated. Effective radiation dose was markedly lower in FPCT 5 s (0.6 mSv) compared to MDCT (1.7 mSv) and FPCT 20 s (3.4 mSv). Contrast-to-noise ratios (CNRs) were significantly (p < 0.05) higher in FPCT 20-s versus 5-s protocols. Inter-reader agreements of qualitative ratings ranged between κ = 0.47-1.0. Sensitivities for cartilage and rotator cuff pathologies were low for FPCT 5-s (40 % and 20 %) and moderate for FPCT 20-s protocols (75 % and 73 %). FPCT showed high sensitivity (81-86 % and 89-99 %) for bone and acromioclavicular-joint pathologies. Using a 5-s protocol FPCT shoulder arthrography provides lower radiation dose compared to MDCT but poor sensitivity for cartilage and rotator cuff pathologies. FPCT 20-s protocol is moderately sensitive for cartilage and rotator cuff tendon pathology with markedly higher radiation dose compared to MDCT. (orig.)

  12. Basics principles of flat detector computed tomography (FD-CT)

    International Nuclear Information System (INIS)

    Kyriakou, Y.; Struffert, T.; Doerfler, A.; Kalender, W.A.

    2009-01-01

    Flat detectors (FDs) have been developed for use in radiography and fluoroscopy to replace standard X-ray film, film-screen combinations and image intensifiers (II). In comparison to X-ray film and II, FD technology offers higher dynamic range, dose reduction, fast digital readout and the possibility for dynamic acquisitions of image series, yet keeping to a compact design. It appeared logical to employ FD designs also for computed tomography (CT) imaging. FDCT has meanwhile become widely accepted for interventional and intra-operative imaging using C-arm systems. Additionally, the introduction of FD technology was a milestone for soft-tissue CT imaging in the interventional suite which was not possible with II systems in the past. This review focuses on technical and performance issues of FD technology and its wide range of applications for CT imaging. FDCT is not aimed at challenging standard clinical CT as regards to the typical diagnostic examinations, but it has already proven unique for a number of dedicated CT applications offering distinct practical advantages, above all the availability of immediate CT imaging during an intervention. (orig.) [de

  13. Robot arm based flat panel CT-guided electromagnetic tracked spine interventions: phantom and animal model experiments

    International Nuclear Information System (INIS)

    Penzkofer, Tobias; Isfort, Peter; Bruners, Philipp; Mahnken, Andreas H.; Wiemann, Christian; Guenther, Rolf W.; Kyriakou, Yiannis; Kalender, Willi A.; Schmitz-Rode, Thomas

    2010-01-01

    To evaluate accuracy and procedure times of electromagnetic tracking (EMT) in a robotic arm mounted flat panel setting using phantom and animal cadaveric models. A robotic arm mounted flat panel (RMFP) was used in combination with EMT to perform anthropomorphic phantom (n = 90) and ex vivo pig based punctures (n = 120) of lumbar facet joints (FJ, n = 120) and intervertebral discs (IVD, n = 90). Procedure accuracies and times were assessed and evaluated. FJ punctures were carried out with a spatial accuracy of 0.8 ± 0.9 mm (phantom) and 0.6 ± 0.8 mm (ex vivo) respectively. While IVD punctures showed puncture deviations of 0.6 ± 1.2 mm (phantom) and 0.5 ± 0.6 mm (ex vivo), direct and angulated phantom based punctures had accuracies of 0.8 ± 0.9 mm and 1.0 ± 1.3 mm. Planning took longer for ex vivo IVD punctures compared to phantom model interventions (39.3 ± 17.3 s vs. 20.8 ± 5.0 s, p = 0.001) and for angulated vs. direct phantom FJ punctures (19.7 ± 5.1 s vs. 28.6 ± 7.8 s, p < 0.001). Puncture times were longer for ex vivo procedures when compared to phantom model procedures in both FJ (37.9 ± 9.0 s vs. 23.6 ± 7.2 s, p = 0.001) and IVD punctures (43.9 ± 16.1 s vs. 31.1 ± 6.4 s, p = 0.026). The combination of RMFP with EMT provides an accurate method of navigation for spinal interventions such as facet joint punctures and intervertebral disc punctures. (orig.)

  14. Technical Note: Modification of the standard gain correction algorithm to compensate for the number of used reference flat frames in detector performance studies

    International Nuclear Information System (INIS)

    Konstantinidis, Anastasios C.; Olivo, Alessandro; Speller, Robert D.

    2011-01-01

    Purpose: The x-ray performance evaluation of digital x-ray detectors is based on the calculation of the modulation transfer function (MTF), the noise power spectrum (NPS), and the resultant detective quantum efficiency (DQE). The flat images used for the extraction of the NPS should not contain any fixed pattern noise (FPN) to avoid contamination from nonstochastic processes. The ''gold standard'' method used for the reduction of the FPN (i.e., the different gain between pixels) in linear x-ray detectors is based on normalization with an average reference flat-field. However, the noise in the corrected image depends on the number of flat frames used for the average flat image. The aim of this study is to modify the standard gain correction algorithm to make it independent on the used reference flat frames. Methods: Many publications suggest the use of 10-16 reference flat frames, while other studies use higher numbers (e.g., 48 frames) to reduce the propagated noise from the average flat image. This study quantifies experimentally the effect of the number of used reference flat frames on the NPS and DQE values and appropriately modifies the gain correction algorithm to compensate for this effect. Results: It is shown that using the suggested gain correction algorithm a minimum number of reference flat frames (i.e., down to one frame) can be used to eliminate the FPN from the raw flat image. This saves computer memory and time during the x-ray performance evaluation. Conclusions: The authors show that the method presented in the study (a) leads to the maximum DQE value that one would have by using the conventional method and very large number of frames and (b) has been compared to an independent gain correction method based on the subtraction of flat-field images, leading to identical DQE values. They believe this provides robust validation of the proposed method.

  15. Impact of digital imaging on radiation doses to the patient during X-ray examination of the urinary tract.

    Science.gov (United States)

    Sjöholm, B; Geijer, H; Persliden, J

    2005-10-01

    To compare radiation doses given to patients undergoing IVU (intravenous urography) before and after digitalization of our X-ray department. IVU examinations were monitored with dose area product meters before and after the X-ray department changed to digital techniques. The first step was a change from film-screen to storage phosphor plates, while the second step involved changing to a flat panel detector. Forty-two patients were included for the film-screen situation, 69 when using the storage phosphor plates, and 70 using the flat panel detector. A dose reduction from 41.8 Gycm2 to 31.5 Gycm2 was achieved with the first step when the film-screen system was replaced with storage phosphor plates. A further reduction to 12.1 Gycm2 was achieved using the flat panel detector. The introduction of the flat panel detectors made a considerable dose reduction possible.

  16. F.P.G.: Fastbus Pattern Generator and Bus Configuration detector

    International Nuclear Information System (INIS)

    Cerrito, L.; Chorowicz, V.; Lebbolo, H.; Tesseidre, A.

    1986-03-01

    This module has been developed for the DELPHI-OUTER DETECTOR read out system environment. It is a Fastbus slave designed as a tool for syncronizing and monitoring a complex Fastbus system. F.P.G. is a programmable pattern generator with front panel TTL output: six on lemo cable and 24 on flat cable. Its frequency can range between 67 KHz and 20 MHz. It can be programmed to generate a signal on occurency of a particular configuration of the crate bus

  17. Mixing volume determination in batch transfers through sonic detectors

    Energy Technology Data Exchange (ETDEWEB)

    Baptista, Renan Martins [PETROBRAS S.A., Rio de Janeiro, RJ (Brazil). Centro de Pesquisas]. E-mail: renan@cenpes.petrobras.com.br; Rachid, Felipe Bastos de Freitas [Universidade Federal Fluminense, Niteroi, RJ (Brazil). Dept. de Engenharia Mecanica]. E-mail: rachid@mec.uff.br; Araujo, Jose Henrique Carneiro de [Universidade Federal Fluminense, Niteroi, RJ (Brazil). Dept. de Ciencia da Computacao]. E-mail: jhca@dcc.ic.uff.br

    2000-07-01

    An experimental methodology to evaluate mixing volumes in batch transfers by means of sonic detectors has been reported in this paper. Mixing volumes have then been computed in a transfer of diesel/gasoline carried out through a pipeline operated by Petrobras for different interface points. It has been shown that an adequate choice of the interface points is crucial for keeping the mixing volume uncertainty within acceptable limits. (author)

  18. An asynchronous, pipelined, electronic acquisition system for Active Matrix Flat-Panel Imagers (AMFPIs)

    CERN Document Server

    Huang, W; Berry, J; Maolinbay, M; Martelli, C; Mody, P; Nassif, S; Yeakey, M

    1999-01-01

    The development of a full-custom electronic acquisition system designed for readout of large-area active matrix flat-panel imaging arrays is reported. The arrays, which comprise two-dimensional matrices of pixels utilizing amorphous silicon thin-film transistors, are themselves under development for a wide variety of X-ray imaging applications. The acquisition system was specifically designed to facilitate detailed, quantitative investigations of the properties of these novel imaging arrays and contains significant enhancements compared to a previously developed acquisition system. These enhancements include pipelined preamplifier circuits to allow faster readout speed, expanded addressing capabilities allowing a maximum of 4096 array data lines, and on-board summing of image frames. The values of many acquisition system parameters, including timings and voltages, may be specified and downloaded from a host computer. Once acquisition is enabled, the system operates asynchronously of its host computer. The sys...

  19. Experimental characterization of a direct conversion amorphous selenium detector with thicker conversion layer for dual-energy contrast-enhanced breast imaging.

    Science.gov (United States)

    Scaduto, David A; Tousignant, Olivier; Zhao, Wei

    2017-08-01

    Dual-energy contrast-enhanced imaging is being investigated as a tool to identify and localize angiogenesis in the breast, a possible indicator of malignant tumors. This imaging technique requires that x-ray images are acquired at energies above the k-shell binding energy of an appropriate radiocontrast agent. Iodinated contrast agents are commonly used for vascular imaging, and require x-ray energies greater than 33 keV. Conventional direct conversion amorphous selenium (a-Se) flat-panel imagers for digital mammography show suboptimal absorption efficiencies at these higher energies. We use spatial-frequency domain image quality metrics to evaluate the performance of a prototype direct conversion flat-panel imager with a thicker a-Se layer, specifically fabricated for dual-energy contrast-enhanced breast imaging. Imaging performance was evaluated in a prototype digital breast tomosynthesis (DBT) system. The spatial resolution, noise characteristics, detective quantum efficiency, and temporal performance of the detector were evaluated for dual-energy imaging for both conventional full-field digital mammography (FFDM) and DBT. The zero-frequency detective quantum efficiency of the prototype detector is improved by approximately 20% over the conventional detector for higher energy beams required for imaging with iodinated contrast agents. The effect of oblique entry of x-rays on spatial resolution does increase with increasing photoconductor thickness, specifically for the most oblique views of a DBT scan. Degradation of spatial resolution due to focal spot motion was also observed. Temporal performance was found to be comparable to conventional mammographic detectors. Increasing the a-Se thickness in direct conversion flat-panel imagers results in better performance for dual-energy contrast-enhanced breast imaging. The reduction in spatial resolution due to oblique entry of x-rays is appreciable in the most extreme clinically relevant cases, but may not profoundly

  20. Performance evaluation of a retrofit digital detector-based mammography system.

    Science.gov (United States)

    Marshall, Nicholas W; van Ongeval, Chantal; Bosmans, Hilde

    2016-02-01

    A retrofit flat panel detector was integrated with a GE DMR+ analog mammography system and characterized using detective quantum efficiency (DQE). Technical system performance was evaluated using the European Guidelines protocol, followed by a limited evaluation of clinical image quality for 20 cases using image quality criteria in the European Guidelines. Optimal anode/filter selections were established using signal difference-to-noise ratio measurements. Only small differences in peak DQE were seen between the three anode/filter settings, with an average value of 0.53. For poly(methyl methacrylate) (PMMA) thicknesses above 60 mm, the Rh/Rh setting was the optimal anode/filter setting. The system required a mean glandular dose of 0.54 mGy at 30 kV Rh/Rh to reach the Acceptable gold thickness limit for 0.1 mm details. Imaging performance of the retrofit unit with the GE DMR+ is notably better than of powder based computed radiography systems and is comparable to current flat panel FFDM systems. Copyright © 2016 Associazione Italiana di Fisica Medica. Published by Elsevier Ltd. All rights reserved.

  1. Physical characteristics of GE Senographe Essential and DS digital mammography detectors

    International Nuclear Information System (INIS)

    Ghetti, Caterina; Borrini, Adriano; Ortenzia, Ornella; Rossi, Raffaella; Ordonez, Pedro L.

    2008-01-01

    The purpose of this study was to investigate physical characteristics of two full field digital mammography (FFDM) systems (GE Senographe Essential and DS). Both are indirect conversion (x ray to light) a-Si flat panels coupled with a CsI(Tl) scintillator. The examined systems have the same pixel size (100 μm) but a different field of view: a conventional size 23x19.2 cm 2 and a large field 24x30.7 cm 2 , specifically designed to image large breasts. In the GE Senographe Essential model relevant improvements in flat panel design were implemented and new deposition tools for metal, a-Si, and CsI(Tl) were introduced by GE. These changes in detector design are expected to be beneficial for advanced applications such as breast tomosynthesis. The presampling modulation transfer function (MTF), normalized noise power spectrum (NNPS), and detective quantum efficiency (DQE) were measured for a wide range of exposure (25-240 μGy) with a RQA-M2 technique (28 kVp with a Mo/Mo target/filter combination and 2 mm of additional aluminum filtration). At 1, 2, and at 4 lp/mm MTF is equal to 0.9, 0.76, and 0.46 for the conventional field detector and to 0.85, 0.59, and 0.24 for the large field detector. The latter detector exhibits an improved NNPS due to a lower electronic noise and a better DQE that reaches 60%. In addition a contrast-detail analysis was performed with CDMAM 3.4 phantom and CDCOM software: GE Senographe DS showed statistically significant poorer detection ability in comparison with the GE Senographe Essential. These results could have been expected, at least qualitatively, considering the relative DQE of the two systems

  2. Impact of Digital Imaging on Radiation Doses to the Patient During X-ray Examination of the Urinary Tract

    International Nuclear Information System (INIS)

    Sjoeholm, B.; Geijer, H.; Persliden, J.

    2005-01-01

    Purpose: To compare radiation doses given to patients undergoing IVU (intravenous urography) before and after digitalization of our X-ray department. Material and Methods: IVU examinations were monitored with dose area product meters before and after the X-ray department changed to digital techniques. The first step was a change from film-screen to storage phosphor plates, while the second step involved changing to a flat panel detector. Forty-two patients were included for the film-screen situation, 69 when using the storage phosphor plates, and 70 using the flat panel detector. Results: A dose reduction from 41.8 Gycm 2 to 31.5 Gycm 2 was achieved with the first step when the film-screen system was replaced with storage phosphor plates. A further reduction to 12.1 Gycm 2 was achieved using the flat panel detector. Conclusion: The introduction of the flat panel detectors made a considerable dose reduction possible Digital radiography, dosimetry, urinary

  3. Impact of Digital Imaging on Radiation Doses to the Patient During X-ray Examination of the Urinary Tract

    Energy Technology Data Exchange (ETDEWEB)

    Sjoeholm, B. [Oerebro Univ. Hospital (Sweden). Depts. of Medical Physics and Radiology; Geijer, H. [Oerebro Univ. (Sweden). Dept. of Physics; Persliden, J. [Linkoeping Univ. (Sweden). Dept. of Radiation Physics

    2005-10-01

    Purpose: To compare radiation doses given to patients undergoing IVU (intravenous urography) before and after digitalization of our X-ray department. Material and Methods: IVU examinations were monitored with dose area product meters before and after the X-ray department changed to digital techniques. The first step was a change from film-screen to storage phosphor plates, while the second step involved changing to a flat panel detector. Forty-two patients were included for the film-screen situation, 69 when using the storage phosphor plates, and 70 using the flat panel detector. Results: A dose reduction from 41.8 Gycm{sup 2} to 31.5 Gycm{sup 2} was achieved with the first step when the film-screen system was replaced with storage phosphor plates. A further reduction to 12.1 Gycm{sup 2} was achieved using the flat panel detector. Conclusion: The introduction of the flat panel detectors made a considerable dose reduction possible Digital radiography, dosimetry, urinary.

  4. JTEC panel on display technologies in Japan

    Science.gov (United States)

    Tannas, Lawrence E., Jr.; Glenn, William E.; Credelle, Thomas; Doane, J. William; Firester, Arthur H.; Thompson, Malcolm

    1992-01-01

    This report is one in a series of reports that describes research and development efforts in Japan in the area of display technologies. The following are included in this report: flat panel displays (technical findings, liquid crystal display development and production, large flat panel displays (FPD's), electroluminescent displays and plasma panels, infrastructure in Japan's FPD industry, market and projected sales, and new a-Si active matrix liquid crystal display (AMLCD) factory); materials for flat panel displays (liquid crystal materials, and light-emissive display materials); manufacturing and infrastructure of active matrix liquid crystal displays (manufacturing logistics and equipment); passive matrix liquid crystal displays (LCD basics, twisted nematics LCD's, supertwisted nematic LCD's, ferroelectric LCD's, and a comparison of passive matrix LCD technology); active matrix technology (basic active matrix technology, investment environment, amorphous silicon, polysilicon, and commercial products and prototypes); and projection displays (comparison of Japanese and U.S. display research, and technical evaluation of work).

  5. Basic performance and stability of a CdTe solid-state detector panel.

    Science.gov (United States)

    Tsuchiya, Katsutoshi; Takahashi, Isao; Kawaguchi, Tsuneaki; Yokoi, Kazuma; Morimoto, Yuuichi; Ishitsu, Takafumi; Suzuki, Atsurou; Ueno, Yuuichirou; Kobashi, Keiji

    2010-05-01

    We have developed a prototype gamma camera system (R1-M) using a cadmium telluride (CdTe) detector panel and evaluated the basic performance and the spectral stability. The CdTe panel consists of 5-mm-thick crystals. The field of view is 134 x 268 mm comprising 18,432 pixels with a pixel pitch of 1.4 mm. Replaceable small CdTe modules are mounted on to the circuit board by dedicated zero insertion force connectors. To make the readout circuit compact, the matrix read out is processed by dedicated ASICs. The panel is equipped with a cold-air cooling system. The temperature and humidity in the panel were kept at 20 degrees C and below 70% relative humidity. CdTe polarization was suppressed by the bias refresh technique to stabilize the detector. We also produced three dedicated square pixel-matched collimators: LEGP (20 mm-thick), LEHR (27 mm-thick), and LEUHR (35 mm-thick). We evaluated their basic performance (energy resolution, system resolution, and sensitivity) and the spectral stability in terms of short-term (several hours of continuous acquisition) and long-term (infrequent measurements over more than a year) activity. The intrinsic energy resolution (FWHM) acquired with Tc-99m (140.5 keV) was 6.6%. The spatial resolutions (FWHM at a distance of 100 mm) with LEGP, LEHR, and LEUHR collimators were 5.7, 4.9, and 4.2 mm, and the sensitivities were 71, 39, and 23 cps/MBq, respectively. The energy peak position and the intrinsic energy resolution after several hours of operation were nearly the same as the values a few minutes after the system was powered on; the variation of the peak position was <0.2%, and that of the resolution was about 0.3%. Infrequent measurements conducted over a year showed that the variations of the energy peak position and the intrinsic energy resolution of the system were at a similar level to those described above. The basic performance of the CdTe-gamma camera system was evaluated, and its stability was verified. It was shown that the

  6. Robot arm based flat panel CT-guided electromagnetic tracked spine interventions: phantom and animal model experiments.

    Science.gov (United States)

    Penzkofer, Tobias; Isfort, Peter; Bruners, Philipp; Wiemann, Christian; Kyriakou, Yiannis; Kalender, Willi A; Günther, Rolf W; Schmitz-Rode, Thomas; Mahnken, Andreas H

    2010-11-01

    To evaluate accuracy and procedure times of electromagnetic tracking (EMT) in a robotic arm mounted flat panel setting using phantom and animal cadaveric models. A robotic arm mounted flat panel (RMFP) was used in combination with EMT to perform anthropomorphic phantom (n = 90) and ex vivo pig based punctures (n = 120) of lumbar facet joints (FJ, n = 120) and intervertebral discs (IVD, n = 90). Procedure accuracies and times were assessed and evaluated. FJ punctures were carried out with a spatial accuracy of 0.8 ± 0.9 mm (phantom) and 0.6 ± 0.8 mm (ex vivo) respectively. While IVD punctures showed puncture deviations of 0.6 ± 1.2 mm (phantom) and 0.5 ± 0.6 mm (ex vivo), direct and angulated phantom based punctures had accuracies of 0.8 ± 0.9 mm and 1.0 ± 1.3 mm. Planning took longer for ex vivo IVD punctures compared to phantom model interventions (39.3 ± 17.3 s vs. 20.8 ± 5.0 s, p = 0.001) and for angulated vs. direct phantom FJ punctures (19.7 ± 5.1 s vs. 28.6 ± 7.8 s, p < 0.001). Puncture times were longer for ex vivo procedures when compared to phantom model procedures in both FJ (37.9 ± 9.0 s vs. 23.6 ± 7.2 s, p = 0.001) and IVD punctures (43.9 ± 16.1 s vs. 31.1 ± 6.4 s, p = 0.026). The combination of RMFP with EMT provides an accurate method of navigation for spinal interventions such as facet joint punctures and intervertebral disc punctures.

  7. Evaluation of a prototype correction algorithm to reduce metal artefacts in flat detector computed tomography of scaphoid fixation screws.

    Science.gov (United States)

    Filli, Lukas; Marcon, Magda; Scholz, Bernhard; Calcagni, Maurizio; Finkenstädt, Tim; Andreisek, Gustav; Guggenberger, Roman

    2014-12-01

    The aim of this study was to evaluate a prototype correction algorithm to reduce metal artefacts in flat detector computed tomography (FDCT) of scaphoid fixation screws. FDCT has gained interest in imaging small anatomic structures of the appendicular skeleton. Angiographic C-arm systems with flat detectors allow fluoroscopy and FDCT imaging in a one-stop procedure emphasizing their role as an ideal intraoperative imaging tool. However, FDCT imaging can be significantly impaired by artefacts induced by fixation screws. Following ethical board approval, commercially available scaphoid fixation screws were inserted into six cadaveric specimens in order to fix artificially induced scaphoid fractures. FDCT images corrected with the algorithm were compared to uncorrected images both quantitatively and qualitatively by two independent radiologists in terms of artefacts, screw contour, fracture line visibility, bone visibility, and soft tissue definition. Normal distribution of variables was evaluated using the Kolmogorov-Smirnov test. In case of normal distribution, quantitative variables were compared using paired Student's t tests. The Wilcoxon signed-rank test was used for quantitative variables without normal distribution and all qualitative variables. A p value of < 0.05 was considered to indicate statistically significant differences. Metal artefacts were significantly reduced by the correction algorithm (p < 0.001), and the fracture line was more clearly defined (p < 0.01). The inter-observer reliability was "almost perfect" (intra-class correlation coefficient 0.85, p < 0.001). The prototype correction algorithm in FDCT for metal artefacts induced by scaphoid fixation screws may facilitate intra- and postoperative follow-up imaging. Flat detector computed tomography (FDCT) is a helpful imaging tool for scaphoid fixation. The correction algorithm significantly reduces artefacts in FDCT induced by scaphoid fixation screws. This may facilitate intra

  8. Report of the results of the fiscal 1997 regional consortium R and D project. Regional consortium energy field/R and D high performance flat panel display technology (first fiscal year); 1997 nendo chiiki consortium kenkyu kaihatsu jigyo. Chiiki consortium energy bun`ya / koseino flat panel display gijutsu no sogo kaihatsu kenkyu (daiichi nendo ) seika hokokusho

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-03-01

    One of the subjects in technology supporting the highly information-oriented society which will develop and diversify toward the 21st century is the construction of high grade man/machine interface. For it, high precision/high luminance/energy saving/thin plane displays are strongly requested. This R and D is to indicate models of systematical development in the region of element technology individually existing in the Shikoku area by forming a regional consortium in the industry/universities/government. Creation of new industries by gathering display related enterprises is a first step in a plan to realize `Display Island Shikoku.` As a concrete target, with the use of high-tech diamond semiconducting technology, a development is conducted of the high performance flat panel display using the negative electron affinity (NEA) electron emitter which drastically solves the problems such as luminance, visibility angle and response speed, the subjects on the commercialized liquid crystal flat panel display. 16 refs., 45 figs., 8 tabs.

  9. ACS/WFC Sky Flats from Frontier Fields Imaging

    Science.gov (United States)

    Mack, J.; Lucas, R. A.; Grogin, N. A.; Bohlin, R. C.; Koekemoer, A. M.

    2018-04-01

    Parallel imaging data from the HST Frontier Fields campaign (Lotz et al. 2017) have been used to compute sky flats for the ACS/WFC detector in order to verify the accuracy of the current set of flat field reference files. By masking sources and then co-adding many deep frames, the F606W and F814W filters have enough combined background signal that from Poisson statistics are efficiency tracks the thickness of the two WFC chips. Observations of blue and red calibration standards measured at various positions on the detector (Bohlin et al. 2017) confirm the fidelity of the F814W flat, with aperture photometry consistent to 1% across the FOV, regardless of spectral type. At bluer wavelengths, the total sky background is substantially lower, and the F435W sky flat shows a combination of both flat errors and detector artifacts. Aperture photometry of the red standard star shows a maximum deviation of 1.4% across the array in this filter. Larger residuals up to 2.5% are found for the blue standard, suggesting that the spatial sensitivity in F435W depends on spectral type.

  10. Current status and requirements for position-sensitive detectors in medicine

    CERN Document Server

    Speller, R

    2002-01-01

    This review considers the current status of detector developments for medical imaging using ionising radiation. This field is divided into two major areas; the use of X-rays for transmission imaging and the use of radioactive tracers in emission imaging (nuclear medicine). Until recently, most detector developments were for applications in nuclear medicine. However, in the past 5 years new developments in large area, X-ray-sensitive detectors have meant that both application domains are equally served. In X-ray imaging, work in CT and mammography are chosen as examples of sensor developments. Photodiode arrays in multi-slice spiral CT acquisitions are described and for mammography the use of amorphous silicon flat panel arrays is considered. The latter is an excellent example where new detector developments have required a re-think of traditional imaging methods. In gamma-ray imaging the recent developments in small area, task-specific cameras are described. Their limitations and current proposals to overcome...

  11. Solar panels as air Cherenkov detectors for extremely high energy cosmic rays

    International Nuclear Information System (INIS)

    Cecchini, S.; D'Antone, I.; Degli Esposti, L.; Giacomelli, G.; Guerra, M.; Lax, I.; Mandrioli, G.; Parretta, A.; Sarno, A.; Schioppo, R.; Sorel, M.; Spurio, M.

    2000-01-01

    Increasing interest towards the observation of the highest energy cosmic rays has motivated the development of new detection techniques. The properties of the Cherenkov photon pulse emitted in the atmosphere by these very rare particles indicate low-cost semiconductor detectors as good candidates for their optical read-out. The aim of this paper is to evaluate the viability of solar panels for this purpose. The experimental framework resulting from measurements performed with suitably-designed solar cells and large conventional photovoltaic areas is presented. A discussion on the obtained and achievable sensitivities follows

  12. Multiple Site Damage in Flat Panel Testing

    National Research Council Canada - National Science Library

    Shrage, Daniel

    2000-01-01

    This report aimed to experimentally verify analytical models that predict the residual strength of representative aircraft structures, such as wide panels, that are subjected to Multiple Site Damage (MSD...

  13. FY 1998 annual summary report on comprehensive development study of high-function flat panel display techniques (second year); 1998 nendo koseino flat panel display gijutsu no sogo kaihatsu kenkyu seika hokokusho. Daininendo

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-03-01

    This project is aimed at creation of the new world display industry in Shikoku by developing the high-function flat panel display techniques and thereby establishing new techniques which solve the problems involved in, e.g., LEDs, plasma-aided devices and ELs other than liquid crystal devices. For development of emitters using diamond, important results have been obtained for the morphology, and cathode luminescence, Raman and photoluminescence spectra of polycrystalline diamond, synthesized by the vapor-phase process under varying conditions, on the electron radiation characteristics of the emitters. These results have led to clarification of the optimum vapor-phase synthesis conditions for diamond for high-function emitters. The techniques utilizing focused ion beams have also advanced to develop thin polycrystalline diamond films for emitters which correspond to the image elements of quality for television. For electron emitters, a structure prepared by implantation without using a high electrical field is proposed, and the device mechanisms involved are clarified. (NEDO)

  14. Direct digital radiography versus storage phosphor radiography in the detection of wrist fractures

    Energy Technology Data Exchange (ETDEWEB)

    Peer, Siegfried; Neitzel, Ulrich; Giacomuzzi, Salvatore M.; Pechlaner, Sigurd; KUenzel, Karl Heinz; Peer, Regina; Gassner, Eva; Steingruber, Iris; Gaber, O.; Jaschke, Werner

    2002-04-01

    AIM: To define the value of digital radiography with a clinical flat panel detector system for evaluation of wrist fractures in comparison with state of the art storage phosphor radiography. MATERIAL AND METHODS: Hard copy images of 26 fractured wrist specimens were acquired with the same exposure dose on a state of the art storage phosphor radiography system and a clinical flat panel detector. Image features like cortical bone surface, trabecular bone, soft tissues and fracture delineation were independently analysed by 4 observers using a standardised protocol. Image quality ratings were evaluated with an analysis of variance (ANOVA). RESULTS: Flat panel detector radiographs were rated superior with respect to cortical and trabecular bone representation as well as fracture evaluation, while storage phosphor radiographs produced better soft tissue detail. CONCLUSION: In some of the observed image quality aspects, the performance of caesium iodide/amorphous silicon flat panel detector exceeds state of the art storage phosphor radiography. This makes it well suited for skeletal imaging particularly in trauma as seen in the detection of wrist fractures. Peer, S. et al. (2002)

  15. Direct digital radiography versus storage phosphor radiography in the detection of wrist fractures

    International Nuclear Information System (INIS)

    Peer, Siegfried; Neitzel, Ulrich; Giacomuzzi, Salvatore M.; Pechlaner, Sigurd; KUenzel, Karl Heinz; Peer, Regina; Gassner, Eva; Steingruber, Iris; Gaber, O.; Jaschke, Werner

    2002-01-01

    AIM: To define the value of digital radiography with a clinical flat panel detector system for evaluation of wrist fractures in comparison with state of the art storage phosphor radiography. MATERIAL AND METHODS: Hard copy images of 26 fractured wrist specimens were acquired with the same exposure dose on a state of the art storage phosphor radiography system and a clinical flat panel detector. Image features like cortical bone surface, trabecular bone, soft tissues and fracture delineation were independently analysed by 4 observers using a standardised protocol. Image quality ratings were evaluated with an analysis of variance (ANOVA). RESULTS: Flat panel detector radiographs were rated superior with respect to cortical and trabecular bone representation as well as fracture evaluation, while storage phosphor radiographs produced better soft tissue detail. CONCLUSION: In some of the observed image quality aspects, the performance of caesium iodide/amorphous silicon flat panel detector exceeds state of the art storage phosphor radiography. This makes it well suited for skeletal imaging particularly in trauma as seen in the detection of wrist fractures. Peer, S. et al. (2002)

  16. Impact and Penetration of Thin Aluminum 2024 Flat Panels at Oblique Angles of Incidence

    Science.gov (United States)

    Ruggeri, Charles R.; Revilock, Duane M.; Pereira, J. Michael; Emmerling, William; Queitzsch, Gilbert K., Jr.

    2015-01-01

    under more extreme conditions, using a projectile with a more complex shape and sharp contacts, impacting flat panels at oblique angles of incidence.

  17. Critical issues in enhancing brightness in thin film phosphors for flat-panel display applications

    International Nuclear Information System (INIS)

    Singh, R.K.; Chen, Z.; Kumar, D.; Cho, K.; Ollinger, M.

    2002-01-01

    Thin film phosphors have potential applications in field emission flat-panel displays. However, they are limited by the lower cathodoluminescent brightness in comparison to phosphor powders. In this paper, we have investigated the critical parameters that need to be optimized to increase the brightness of phosphor thin films. Specifically, we studied the role of surface roughness and optical properties of the substrate on the brightness of the phosphor films. Thin Y 2 O 3 :Eu phosphor films were deposited on various substrates (lanthanum aluminate, quartz, sapphire, and silicon) with thicknesses varying from 50 to 500 nm. A model that accounts for diffuse and specular or scattering effects has been developed to understand the effects of the microstructure on the emission characteristics of the cathodoluminescent films. The results from the model show that both the optical properties of the substrate and the surface roughness of the films play a critical role in controlling the brightness of laser deposited phosphor films

  18. Human health and ecological toxicity potentials due to heavy metal content in waste electronic devices with flat panel displays

    International Nuclear Information System (INIS)

    Lim, Seong-Rin; Schoenung, Julie M.

    2010-01-01

    Display devices such as cathode-ray tube (CRT) televisions and computer monitors are known to contain toxic substances and have consequently been banned from disposal in landfills in the State of California and elsewhere. New types of flat panel display (FPD) devices, millions of which are now purchased each year, also contain toxic substances, but have not previously been systematically studied and compared to assess the potential impact that could result from their ultimate disposal. In the current work, the focus is on the evaluation of end-of-life toxicity potential from the heavy metal content in select FPD devices with the intent to inform material selection and design-for-environment (DfE) decisions. Specifically, the metals antimony, arsenic, barium, beryllium, cadmium, chromium, cobalt, copper, lead, mercury, molybdenum, nickel, selenium, silver, vanadium, and zinc in plasma TVs, LCD (liquid crystal display) TVs, LCD computer monitors and laptop computers are considered. The human health and ecotoxicity potentials are evaluated through a life cycle assessment perspective by combining data on the respective heavy metal contents, the characterization factors in the U.S. EPA Tool for the Reduction and Assessment of Chemical and other environmental Impacts (TRACI), and a pathway and impact model. Principal contributors to the toxicity potentials are lead, arsenic, copper, and mercury. Although the heavy metal content in newer flat panel display devices creates less human health toxicity potential than that in CRTs, for ecological toxicity, the new devices are worse, especially because of the mercury in LCD TVs and the copper in plasma TVs.

  19. Design and image-quality performance of high resolution CMOS-based X-ray imaging detectors for digital mammography

    Science.gov (United States)

    Cha, B. K.; Kim, J. Y.; Kim, Y. J.; Yun, S.; Cho, G.; Kim, H. K.; Seo, C.-W.; Jeon, S.; Huh, Y.

    2012-04-01

    In digital X-ray imaging systems, X-ray imaging detectors based on scintillating screens with electronic devices such as charge-coupled devices (CCDs), thin-film transistors (TFT), complementary metal oxide semiconductor (CMOS) flat panel imagers have been introduced for general radiography, dental, mammography and non-destructive testing (NDT) applications. Recently, a large-area CMOS active-pixel sensor (APS) in combination with scintillation films has been widely used in a variety of digital X-ray imaging applications. We employed a scintillator-based CMOS APS image sensor for high-resolution mammography. In this work, both powder-type Gd2O2S:Tb and a columnar structured CsI:Tl scintillation screens with various thicknesses were fabricated and used as materials to convert X-ray into visible light. These scintillating screens were directly coupled to a CMOS flat panel imager with a 25 × 50 mm2 active area and a 48 μm pixel pitch for high spatial resolution acquisition. We used a W/Al mammographic X-ray source with a 30 kVp energy condition. The imaging characterization of the X-ray detector was measured and analyzed in terms of linearity in incident X-ray dose, modulation transfer function (MTF), noise-power spectrum (NPS) and detective quantum efficiency (DQE).

  20. Stereological estimates of nuclear volume in the prognostic evaluation of primary flat carcinoma in situ of the urinary bladder

    DEFF Research Database (Denmark)

    Sørensen, Flemming Brandt; Jacobsen, F

    1991-01-01

    Primary, flat carcinoma in situ of the urinary bladder is rare and its behaviour is unpredictable. The aim of this retrospective study was to obtain base-line data and investigate the prognostic value of unbiased, stereological estimates of the volume-weighted mean nuclear volume, nuclear vv, in ...

  1. No-contact method of determining average working-surface temperature of plate-type radiation-absorbing thermal exchange panels of flat solar collectors for heating heat-transfer fluid

    International Nuclear Information System (INIS)

    Avezova, N.R.; Avezov, R.R.

    2015-01-01

    A brand new no-contact method of determining the average working-surface temperature of plate-type radiation-absorbing thermal exchange panels (RATEPs) of flat solar collectors (FSCs) for heating a heat-transfer fluid (HTF) is suggested on the basis of the results of thermal tests in full-scale quasistationary conditions. (authors)

  2. Doping the 1 kton Large Volume Detector with Gd

    International Nuclear Information System (INIS)

    Bruno, Gianmarco; Fulgione, Walter; Porta, Amanda; Machado, Ana Amelia Bergamini; Mal'gin, Alexei; Molinario, Andrea; Vigorito, Carlo

    2011-01-01

    The Large Volume Detector (LVD) in the INFN Gran Sasso National Laboratory (LNGS), Italy, is a ν observatory which has been monitoring the Galaxy since June 1992 to study neutrinos from core collapse supernovae. The experiment in the present configuration is made by 840 scintillator detectors, for a total active mass of 1000 tons. The detector sensitivity to neutrino bursts due to a core collapse supernova has been already discussed in term of maximum detectable distance. In this paper we evaluate the improvements that LVD could obtain if all its active scintillator mass was doped with a small amount (0.14% in weight) of Gadolinium. We simulated neutron captures following ν-bar e inverse beta decay reactions in one LVD counter (1.2 ton) with Gd doped liquid scintillator obtaining an efficiency for the detection of this process of η n | Gd = 80% and a mean capture time τ = 25μs, in good agreement with the results obtained by the measures. This implies a gain of a factor ∼ 20 in the signal to noise ratio for neutron capture detection with respect to the undoped liquid scintillator. We discuss how the captures of neutrons from rock radioactivity on Gd modify the background conditions of the detector and we calculate the curves expressing the sensitivity to a ν-bar e burst from core collapse supernovae depending on the distance of the collapsing star. It results that doping the 1 kton Large Volume Detector with Gd would assure a 90% detection efficiency at the distance of the Large Magellanic Cloud (50 kpc), an achievement which is equivalent to that obtained by doubling the number of counters in LVD

  3. Doping the 1 kton Large Volume Detector with Gd

    Energy Technology Data Exchange (ETDEWEB)

    Bruno, Gianmarco [University of L' Aquila, Via Vetoio snc, 67100 Coppito (AQ) Italy (Italy); Fulgione, Walter; Porta, Amanda [Istituto di Fisica dello Spazio Interplanetario, INAF, Corso Fiume 4, Torino (Italy); Machado, Ana Amelia Bergamini [Laboratori Nazionali del Gran Sasso, INFN, s.s. 17bis Km 18-10, Assergi (AQ) (Italy); Mal' gin, Alexei [Institute for Nuclear Research, Russian Academy of Sciences, pr. Shestidesyatiletiya Oktyabrya 7a, Moscow, 117312 (Russian Federation); Molinario, Andrea; Vigorito, Carlo, E-mail: bruno@to.infn.it, E-mail: fulgione@to.infn.it, E-mail: ana.machado@lngs.infn.it, E-mail: malgin@lngs.infn.it, E-mail: amolinar@to.infn.it, E-mail: Amanda.Porta@subatech.in2p3.fr, E-mail: vigorito@to.infn.it [INFN, Via Pietro Giuria 1, Torino (Italy)

    2011-06-01

    The Large Volume Detector (LVD) in the INFN Gran Sasso National Laboratory (LNGS), Italy, is a ν observatory which has been monitoring the Galaxy since June 1992 to study neutrinos from core collapse supernovae. The experiment in the present configuration is made by 840 scintillator detectors, for a total active mass of 1000 tons. The detector sensitivity to neutrino bursts due to a core collapse supernova has been already discussed in term of maximum detectable distance. In this paper we evaluate the improvements that LVD could obtain if all its active scintillator mass was doped with a small amount (0.14% in weight) of Gadolinium. We simulated neutron captures following ν-bar {sub e} inverse beta decay reactions in one LVD counter (1.2 ton) with Gd doped liquid scintillator obtaining an efficiency for the detection of this process of η{sub n}|{sub Gd} = 80% and a mean capture time τ = 25μs, in good agreement with the results obtained by the measures. This implies a gain of a factor ∼ 20 in the signal to noise ratio for neutron capture detection with respect to the undoped liquid scintillator. We discuss how the captures of neutrons from rock radioactivity on Gd modify the background conditions of the detector and we calculate the curves expressing the sensitivity to a ν-bar {sub e} burst from core collapse supernovae depending on the distance of the collapsing star. It results that doping the 1 kton Large Volume Detector with Gd would assure a 90% detection efficiency at the distance of the Large Magellanic Cloud (50 kpc), an achievement which is equivalent to that obtained by doubling the number of counters in LVD.

  4. Cone-beam volume CT mammographic imaging: feasibility study

    Science.gov (United States)

    Chen, Biao; Ning, Ruola

    2001-06-01

    X-ray projection mammography, using a film/screen combination or digital techniques, has proven to be the most effective imaging modality for early detection of breast cancer currently available. However, the inherent superimposition of structures makes small carcinoma (a few millimeters in size) difficult to detect in the occultation case or in dense breasts, resulting in a high false positive biopsy rate. The cone-beam x-ray projection based volume imaging using flat panel detectors (FPDs) makes it possible to obtain three-dimensional breast images. This may benefit diagnosis of the structure and pattern of the lesion while eliminating hard compression of the breast. This paper presents a novel cone-beam volume CT mammographic imaging protocol based on the above techniques. Through computer simulation, the key issues of the system and imaging techniques, including the x-ray imaging geometry and corresponding reconstruction algorithms, x-ray characteristics of breast tissues, x-ray setting techniques, the absorbed dose estimation and the quantitative effect of x-ray scattering on image quality, are addressed. The preliminary simulation results support the proposed cone-beam volume CT mammographic imaging modality in respect to feasibility and practicability for mammography. The absorbed dose level is comparable to that of current two-view mammography and would not be a prominent problem for this imaging protocol. Compared to traditional mammography, the proposed imaging protocol with isotropic spatial resolution will potentially provide significantly better low contrast detectability of breast tumors and more accurate location of breast lesions.

  5. Development of computed tomography system and image reconstruction algorithm

    International Nuclear Information System (INIS)

    Khairiah Yazid; Mohd Ashhar Khalid; Azaman Ahmad; Khairul Anuar Mohd Salleh; Ab Razak Hamzah

    2006-01-01

    Computed tomography is one of the most advanced and powerful nondestructive inspection techniques, which is currently used in many different industries. In several CT systems, detection has been by combination of an X-ray image intensifier and charge -coupled device (CCD) camera or by using line array detector. The recent development of X-ray flat panel detector has made fast CT imaging feasible and practical. Therefore this paper explained the arrangement of a new detection system which is using the existing high resolution (127 μm pixel size) flat panel detector in MINT and the image reconstruction technique developed. The aim of the project is to develop a prototype flat panel detector based CT imaging system for NDE. The prototype consisted of an X-ray tube, a flat panel detector system, a rotation table and a computer system to control the sample motion and image acquisition. Hence this project is divided to two major tasks, firstly to develop image reconstruction algorithm and secondly to integrate X-ray imaging components into one CT system. The image reconstruction algorithm using filtered back-projection method is developed and compared to other techniques. The MATLAB program is the tools used for the simulations and computations for this project. (Author)

  6. Radiation exposure to operating staff during rotational flat-panel angiography and C-arm cone beam computed tomography (CT) applications

    Energy Technology Data Exchange (ETDEWEB)

    Schulz, Boris, E-mail: boris.schell@googlemail.com [Goethe University Hospital, Department of Diagnostic and Interventional Radiology, Theodor-Stern-Kai 7, 60590 Frankfurt (Germany); Heidenreich, Ralf, E-mail: ralf.heidenreich@roentgen-consult.de [Röntgen-Consult Company, Schulhausstrasse 37, 79199 Kirchzarten (Germany); Heidenreich, Monika, E-mail: info@roentgen-consult.de [Röntgen-Consult Company, Schulhausstrasse 37, 79199 Kirchzarten (Germany); Eichler, Katrin, E-mail: k.eichler@em.uni-frankfurt.de [Goethe University Hospital, Department of Diagnostic and Interventional Radiology, Theodor-Stern-Kai 7, 60590 Frankfurt (Germany); Thalhammer, Axel, E-mail: axel.thalhammer@kgu.de [Goethe University Hospital, Department of Diagnostic and Interventional Radiology, Theodor-Stern-Kai 7, 60590 Frankfurt (Germany); Naeem, Naguib Nagy Naguib, E-mail: nagynnn@yahoo.com [Goethe University Hospital, Department of Diagnostic and Interventional Radiology, Theodor-Stern-Kai 7, 60590 Frankfurt (Germany); Vogl, Thomas Josef, E-mail: T.Vogl@em.uni-frankfurt.de [Goethe University Hospital, Department of Diagnostic and Interventional Radiology, Theodor-Stern-Kai 7, 60590 Frankfurt (Germany); Zangos, Stefan, E-mail: Zangos@em.uni-frankfurt.de [Goethe University Hospital, Department of Diagnostic and Interventional Radiology, Theodor-Stern-Kai 7, 60590 Frankfurt (Germany)

    2012-12-15

    Purpose: To evaluate the radiation exposure for operating personel associated with rotational flat-panel angiography and C-arm cone beam CT. Materials and methods: Using a dedicated angiography-suite, 2D and 3D examinations of the liver were performed on a phantom to generate scattered radiation. Exposure was measured with a dosimeter at predefined heights (eye, thyroid, breast, gonads and knee) at the physician's location. Analysis included 3D procedures with a field of view (FOV) of 24 cm × 18 cm (8 s/rotation, 20 s/rotation and 5 s/2 rotations), and 47 cm × 18 cm (16 s/2 rotations) and standard 2D angiography (10 s, FOV 24 cm × 18 cm). Results: Measurements showed the highest radiation dose at the eye and thyroid level. In comparison to 2D-DSA (3.9 μSv eye-exposure), the 3D procedures caused an increased radiation exposure both in standard FOV (8 s/rotation: 28.0 μSv, 20 s/rotation: 79.3 μSv, 5 s/2 rotations: 32.5 μSv) and large FOV (37.6 μSv). Proportional distributions were measured for the residual heights. With the use of lead glass, irradiation of the eye lens was reduced to 0.2 μSv (2D DSA) and 10.6 μSv (3D technique with 20 s/rotation). Conclusion: Rotational flat-panel angiography and C-arm cone beam applications significantly increase radiation exposure to the attending operator in comparison to 2D angiography. Our study indicates that the physician should wear protective devices and leave the examination room when performing 3D examinations.

  7. Radiation exposure to operating staff during rotational flat-panel angiography and C-arm cone beam computed tomography (CT) applications.

    Science.gov (United States)

    Schulz, Boris; Heidenreich, Ralf; Heidenreich, Monika; Eichler, Katrin; Thalhammer, Axel; Naeem, Naguib Nagy Naguib; Vogl, Thomas Josef; Zangos, Stefan

    2012-12-01

    To evaluate the radiation exposure for operating personnel associated with rotational flat-panel angiography and C-arm cone beam CT. Using a dedicated angiography-suite, 2D and 3D examinations of the liver were performed on a phantom to generate scattered radiation. Exposure was measured with a dosimeter at predefined heights (eye, thyroid, breast, gonads and knee) at the physician's location. Analysis included 3D procedures with a field of view (FOV) of 24 cm × 18 cm (8s/rotation, 20s/rotation and 5s/2 rotations), and 47 cm×18 cm (16s/2 rotations) and standard 2D angiography (10s, FOV 24 cm×18 cm). Measurements showed the highest radiation dose at the eye and thyroid level. In comparison to 2D-DSA (3.9 μSv eye-exposure), the 3D procedures caused an increased radiation exposure both in standard FOV (8s/rotation: 28.0 μSv, 20s/rotation: 79.3 μSv, 5s/2 rotations: 32.5 μSv) and large FOV (37.6 μSv). Proportional distributions were measured for the residual heights. With the use of lead glass, irradiation of the eye lens was reduced to 0.2 μSv (2D DSA) and 10.6 μSv (3D technique with 20s/rotation). Rotational flat-panel angiography and C-arm cone beam applications significantly increase radiation exposure to the attending operator in comparison to 2D angiography. Our study indicates that the physician should wear protective devices and leave the examination room when performing 3D examinations. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.

  8. Radiation exposure to operating staff during rotational flat-panel angiography and C-arm cone beam computed tomography (CT) applications

    International Nuclear Information System (INIS)

    Schulz, Boris; Heidenreich, Ralf; Heidenreich, Monika; Eichler, Katrin; Thalhammer, Axel; Naeem, Naguib Nagy Naguib; Vogl, Thomas Josef; Zangos, Stefan

    2012-01-01

    Purpose: To evaluate the radiation exposure for operating personel associated with rotational flat-panel angiography and C-arm cone beam CT. Materials and methods: Using a dedicated angiography-suite, 2D and 3D examinations of the liver were performed on a phantom to generate scattered radiation. Exposure was measured with a dosimeter at predefined heights (eye, thyroid, breast, gonads and knee) at the physician's location. Analysis included 3D procedures with a field of view (FOV) of 24 cm × 18 cm (8 s/rotation, 20 s/rotation and 5 s/2 rotations), and 47 cm × 18 cm (16 s/2 rotations) and standard 2D angiography (10 s, FOV 24 cm × 18 cm). Results: Measurements showed the highest radiation dose at the eye and thyroid level. In comparison to 2D-DSA (3.9 μSv eye-exposure), the 3D procedures caused an increased radiation exposure both in standard FOV (8 s/rotation: 28.0 μSv, 20 s/rotation: 79.3 μSv, 5 s/2 rotations: 32.5 μSv) and large FOV (37.6 μSv). Proportional distributions were measured for the residual heights. With the use of lead glass, irradiation of the eye lens was reduced to 0.2 μSv (2D DSA) and 10.6 μSv (3D technique with 20 s/rotation). Conclusion: Rotational flat-panel angiography and C-arm cone beam applications significantly increase radiation exposure to the attending operator in comparison to 2D angiography. Our study indicates that the physician should wear protective devices and leave the examination room when performing 3D examinations.

  9. Thermo-enhanced field emission from ZnO nanowires: Role of defects and application in a diode flat panel X-ray source

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Zhipeng; Chen, Daokun; Chen, Wenqing; Chen, Yicong; Song, Xiaomeng; Zhan, Runze; Deng, Shaozhi; Xu, Ningsheng; Chen, Jun, E-mail: stscjun@mail.sysu.edu.cn

    2017-03-31

    Highlights: • A thermo-enhanced field emission phenomenon was observed from dendritic ZnO nanowires under the temperature of 323–723 K. • Defect-assisted field emission mechanism was proposed and quantitative calculation fits well with the experiment results. • The mechanism was verified by the field emission from ZnO nanowires with different defect concentrations. • A diode X-ray source making use of thermo-enhanced field emission phenomenon was proposed for separate tuning of dose and energy. - Abstract: A thermo-enhanced field emission phenomenon was observed from ZnO nanowires. The field emission current increased by almost two orders of magnitude under a constant applied electric field, and the turn-on field decreased from 6.04 MV/m to 5.0 MV/m when the temperature increased from 323 to 723 K. The Poole–Frenkel electron excitation from the defect-induced trapping centers to the conduction band under high electric fields is believed to be the primary cause of the observed phenomenon. The experimental results fit well with the proposed physical model. The field emission from ZnO nanowires with different defect concentrations further confirmed the role of defects. Using the thermo-enhanced field emission phenomenon, a diode flat panel X-ray source was demonstrated, for which the energy and dose can be separately tuned. The thermo-enhanced field emission phenomenon observed from ZnO nanowires could be an effective way to realize a large area flat panel multi-energy X-ray source.

  10. Amorphous and Polycrystalline Photoconductors for Direct Conversion Flat Panel X-Ray Image Sensors

    Directory of Open Access Journals (Sweden)

    Karim S. Karim

    2011-05-01

    Full Text Available In the last ten to fifteen years there has been much research in using amorphous and polycrystalline semiconductors as x-ray photoconductors in various x-ray image sensor applications, most notably in flat panel x-ray imagers (FPXIs. We first outline the essential requirements for an ideal large area photoconductor for use in a FPXI, and discuss how some of the current amorphous and polycrystalline semiconductors fulfill these requirements. At present, only stabilized amorphous selenium (doped and alloyed a-Se has been commercialized, and FPXIs based on a-Se are particularly suitable for mammography, operating at the ideal limit of high detective quantum efficiency (DQE. Further, these FPXIs can also be used in real-time, and have already been used in such applications as tomosynthesis. We discuss some of the important attributes of amorphous and polycrystalline x-ray photoconductors such as their large area deposition ability, charge collection efficiency, x-ray sensitivity, DQE, modulation transfer function (MTF and the importance of the dark current. We show the importance of charge trapping in limiting not only the sensitivity but also the resolution of these detectors. Limitations on the maximum acceptable dark current and the corresponding charge collection efficiency jointly impose a practical constraint that many photoconductors fail to satisfy. We discuss the case of a-Se in which the dark current was brought down by three orders of magnitude by the use of special blocking layers to satisfy the dark current constraint. There are also a number of polycrystalline photoconductors, HgI2 and PbO being good examples, that show potential for commercialization in the same way that multilayer stabilized a-Se x-ray photoconductors were developed for commercial applications. We highlight the unique nature of avalanche multiplication in a-Se and how it has led to the development of the commercial HARP video-tube. An all solid state version of the

  11. The Department of Energy`s Rocky Flats Plant: A guide to record series useful for health-related research. Volume I, introduction

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-08-01

    This guide consists of seven volumes which describe records useful for conducting health-related research at the DOE`s Rocky Flats Plant. Volume I is an introduction, and the remaining six volumes are arranged by the following categories: administrative and general, facilities and equipment, production and materials handling, waste management, workplace and environmental monitoring, and employee occupational exposure and health. Volume I briefly describes the Epidemiologic Records Project and provides information on the methodology used to inventory and describe the records series contained in subsequent volumes. Volume II describes records concerning administrative functions and general information. Volume III describes records series relating to the construction and routine maintenance of plant buildings and the purchase and installation of equipment. Volume IV describes records pertaining to the inventory and production of nuclear materials and weapon components. Records series include materials inventories, manufacturing specifications, engineering orders, transfer and shipment records, and War Reserve Bomb Books. Volume V describes records series pertaining to the storage, handling, treatment, and disposal of radioactive, chemical, or mixed materials produced or used at Rocky Flats. Volume VI describes records series pertaining to monitoring of the workplace and of the environment outside of buildings onsite and offsite. Volume VII describes records series pertaining to the health and occupational exposures of employees and visitors.

  12. An asynchronous, pipelined, electronic acquisition system for Active Matrix Flat-Panel Imagers (AMFPIs)

    Energy Technology Data Exchange (ETDEWEB)

    Huang, W.; Antonuk, L.E. E-mail: antonuk@umich.edu; Berry, J.; Maolinbay, M.; Martelli, C.; Mody, P.; Nassif, S.; Yeakey, M

    1999-07-11

    The development of a full-custom electronic acquisition system designed for readout of large-area active matrix flat-panel imaging arrays is reported. The arrays, which comprise two-dimensional matrices of pixels utilizing amorphous silicon thin-film transistors, are themselves under development for a wide variety of X-ray imaging applications. The acquisition system was specifically designed to facilitate detailed, quantitative investigations of the properties of these novel imaging arrays and contains significant enhancements compared to a previously developed acquisition system. These enhancements include pipelined preamplifier circuits to allow faster readout speed, expanded addressing capabilities allowing a maximum of 4096 array data lines, and on-board summing of image frames. The values of many acquisition system parameters, including timings and voltages, may be specified and downloaded from a host computer. Once acquisition is enabled, the system operates asynchronously of its host computer. The system allows image capture in both radiographic mode (corresponding to the capture of individual X-ray images), and fluoroscopic mode (corresponding to the capture of a continual series of X-ray images). A detailed description of the system architecture and the underlying motivations for the design is reported in this paper. (author)

  13. The Department of Energy`s Rocky Flats Plant: A guide to record series useful for health-related research. Volume VII. Employee occupational exposure and health

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-08-01

    This is the seventh in a series of seven volumes which constitute a guide to records of the Rocky Flats Plant useful for conducting health-related research. The primary purpose of Volume VII is to describe record series pertaining to employee occupational exposure and health at the Department of Energy`s (DOE) Rocky Flats Plant, now named the Rocky Flats Environmental Technology Site, near Denver, Colorado. History Associates Incorporated (HAI) prepared this guide as part of its work as the support services contractor for DOE`s Epidemiologic Records Inventory Project. This introduction briefly describes the Epidemiologic Records Inventory Project and HAI`s role in the project, provides a history of occupational exposure monitoring and health practices at Rocky Flats, and identifies organizations contributing to occupational exposure monitoring and health policies and activities. Other topics include the scope and arrangement of the guide and the organization to contact for access to these records. Comprehensive introductory and background information is available in Volume 1. Other volumes in the guide pertain to administrative and general subjects, facilities and equipment, production and materials handling, environmental and workplace monitoring, and waste management. In addition, HAI has produced a subject-specific guide, titled The September 1957 Rocky Flats Fire: A Guide to Record Series of the Department of Energy and Its Contractors, which researchers should consult for further information about records related to this incident.

  14. The Department of Energy's Rocky Flats Plant: A guide to record series useful for health related research. Volume 4: Production and materials handling

    International Nuclear Information System (INIS)

    1995-01-01

    This is the fourth in a series of seven volumes which constitute a guide to records of the Rocky Flats Plant useful for conducting health-related research. The primary purpose of Volume 4 is to describe record series pertaining to production and materials handling activities at the Department of Energy's (DOE) Rocky Flats Plant, now named the Rocky Flats Environmental Technology Site, near Denver, Colorado. History Associates Incorporated (HAI) prepared this guide as part of its work as the support services contractor for DOE's Epidemiologic Records Inventory Project. This introduction briefly describes the Epidemiologic Records Inventory Project and HAI's role in the project, provides a history of production and materials handling practices at Rocky Flats, and identifies organizations contributing to production and materials handling policies and activities. Other topics include the scope and arrangement of the guide and the organization to contact for access to these records

  15. Whole body dual X-ray absorptiometry for bone mineral density and body composition using a flat panel detector

    International Nuclear Information System (INIS)

    Dinten, J.M.; Robert-Coutant, C.; Gonon, G.; Bordy, T.

    2003-01-01

    Whole-body dual-energy X-ray absorptiometry (DXA) systems are used for the determination of bone mineral density (BMD) but also for body composition estimates (lean mass and fat mass). The calculation is based on the difference in attenuation of body tissues for a low-energy of about 50 KeV and a high-energy of about 80-100 KeV. The measurement of dual-energy projections allows first to compute to the body composition in the non-bone area, and then to extrapolate the fat / lean ratio of soft tissue into the bone area in order to compute the BMD. Since detectors have limited area, a whole body examination requires a scan of the patient and a reconstruction process in order to build up a large field image from smaller radiographs. This reconstruction process must keep the quantitative value of the radiographs, and avoid any distortion which could be a consequence of the conic acquisition geometry. The cone angle is low (6 at maximum) and the large overlap between radiographs helps to reconstruct an image equivalent with a parallel-beam geometry. Scatter is corrected from the radiographs before reconstruction, as described in a previous paper ('Dual-energy X-rays absorptiometry using a 2D digital radiography detector. Application to bone densitometry', SPIE Medical Imaging 2001, Medical Physics). We have developed an original reconstruction method dedicated to whole-body examinations which will be described. Thanks to the quasi-radiologic quality of the detector, reconstructed images are of very good quality and this makes the measurement of BMD and fat / lean masses easier. (author)

  16. A digital gain stabilizer for large volume organic scintillation detectors

    International Nuclear Information System (INIS)

    Braunsfurth, J.; Geske, K.

    1976-01-01

    A digital gain stabilizer is described, optimized for use with photomultipliers mounted on large volume organic scintillators, or other radiation detectors, which exhibit no prominent peaks in their amplitude spectra. As applications of this kind usually involve many phototubes or detectors, circuit simplicity, production reproduceability, and the possibility of computer controlled operation were major design criteria. Two versions were built, the first one using standard TTL-SSI and MSI circuitry, the second one - to reduce power requirements - using a mixture of TTL- and CMOS-LSI circuits. (Auth.)

  17. Usefulness of multi detector row computed tomography for detection of flat and depressed colorectal cancer

    International Nuclear Information System (INIS)

    Izumiya, Takashi; Hirata, Ichiro; Hamamoto, Norihiro; Matsuki, Mitsuru; Narabayashi, Isamu; Nishiguchi, Kanji; Okuda, Junji; Tanigawa, Nobuhiko; Katsu, Ken-ichi

    2005-01-01

    Recently, the clinical usefulness of colorectal cancer screening by CT colonography has been reported in Europe and the USA. However, in Japan, the diagnosis of flat or depressed colorectal cancer lesions has been emphasized, and the question of whether CT colonography facilitates visualization of these lesions remains to be answered. In the present study, we compared the visualization of flat and depressed colorectal cancer lesions by CT colonography with that of protruding lesions. We investigated 33 Dukes A colorectal cancer lesions that had been examined by 3D-CT, colonoscopy, and barium enema prior to surgery. In all patients, CT colonography was performed immediately after colonoscopy. Volume rendering was used for 3-D rearrangement, and imaging findings were examined with respect to morphology, tumor diameter, and tumor height. All (14/14) of the protruding-type lesions were visualized by CT colonography, whereas 78.9% (15/19) of the flat and depressed-type lesions were visualized. There was no significant difference in tumor diameter between protruding-type lesions and flat and depressed-type lesions. With respect to tumor height, 100% of the lesions measuring 2 mm or more in height were visualized, whereas only 42.9% of those measuring less than 2 mm in height were visualized; the difference was significant (P<0.001). These results suggest that the visualization capacity of CT colonography is associated with tumor height, but not with tumor diameter. Currently, lesions measuring 2 mm or more in height can be visualized reliably by CT colonography. (authors)

  18. Intravenous flat-detector CT angiography in acute ischemic stroke management

    Energy Technology Data Exchange (ETDEWEB)

    Blanc, Raphael; Pistocchi, Silvia; Bartolini, Bruno; Piotin, Michel [Fondation Rothschild Hospital, Department of Interventional Neuroradiology, Paris (France); Babic, Drazenko [Philips Healthcare, Best (Netherlands); Obadia, Michael [Fondation Rothschild Hospital, Department of Neurology, Paris (France); Alamowitch, Sonia [APHP Hopital Tenon, Universite Paris VI, Department of Neurology, Paris (France)

    2012-04-15

    In the settings of stroke, a non-invasive high-resolution imaging modality to visualize the arterial intracranial circulation in the interventional lab is a helpful mean to plan the endovascular recanalization procedure. We report our initial experience with intravenously enhanced flat-detector CT (IV FDCT) technology in the detection of obstructed intracranial arteries. Fourteen consecutive patients elected for endovascular stroke therapy underwent IV FDCT. The scans were intravenously enhanced and acquired in accordance with the previously calculated bolus arrival time. Images were processed on a commercially available workstation for reconstructions and 3D manipulation. Occlusion level and clot length, the quality of collateral vessels, and the patency of anterior and posterior communicating arteries were assessed. IV FDCT was performed successfully in all the cases and allowed for clot location and length visualization, assessment of communicating arteries patency, and evaluation of vessel collateral grade. Information obtained from this technique was considered useful for patients treated by endovascular approach. Retrospective review of the images by two independent readers was considered accurate and reproducible. IV FDCT technology provided accurate delineation of obstructed vessel segments in acute ischemic stroke disease. It gave a significant help in the interventional strategy. This new technology available in the operating room might provide a valuable tool in emerging endovascular stroke therapy. (orig.)

  19. Intravenous flat-detector CT angiography in acute ischemic stroke management

    International Nuclear Information System (INIS)

    Blanc, Raphael; Pistocchi, Silvia; Bartolini, Bruno; Piotin, Michel; Babic, Drazenko; Obadia, Michael; Alamowitch, Sonia

    2012-01-01

    In the settings of stroke, a non-invasive high-resolution imaging modality to visualize the arterial intracranial circulation in the interventional lab is a helpful mean to plan the endovascular recanalization procedure. We report our initial experience with intravenously enhanced flat-detector CT (IV FDCT) technology in the detection of obstructed intracranial arteries. Fourteen consecutive patients elected for endovascular stroke therapy underwent IV FDCT. The scans were intravenously enhanced and acquired in accordance with the previously calculated bolus arrival time. Images were processed on a commercially available workstation for reconstructions and 3D manipulation. Occlusion level and clot length, the quality of collateral vessels, and the patency of anterior and posterior communicating arteries were assessed. IV FDCT was performed successfully in all the cases and allowed for clot location and length visualization, assessment of communicating arteries patency, and evaluation of vessel collateral grade. Information obtained from this technique was considered useful for patients treated by endovascular approach. Retrospective review of the images by two independent readers was considered accurate and reproducible. IV FDCT technology provided accurate delineation of obstructed vessel segments in acute ischemic stroke disease. It gave a significant help in the interventional strategy. This new technology available in the operating room might provide a valuable tool in emerging endovascular stroke therapy. (orig.)

  20. Dynamic defectoscopy with flat panel and CdTe Timepix X-ray detectors combined with an optical camera

    Czech Academy of Sciences Publication Activity Database

    Vavřík, Daniel; Fauler, A.; Fiederle, M.; Jandejsek, Ivan; Jakůbek, J.; Tureček, D.; Zwerger, A.

    2013-01-01

    Roč. 8, April (2013), C04009 ISSN 1748-0221. [International Workshop on Radiation Imaging Detectors /14./. Figueira da Foz, Coimbra, 01.07.2012-05.07.2012] R&D Projects: GA ČR(CZ) GA103/09/2101 Institutional support: RVO:68378297 Keywords : X-ray digital radiography * fracture mechanics * crack path * X-ray defectoscopy Subject RIV: JM - Building Engineering Impact factor: 1.526, year: 2013 http://iopscience.iop.org/1748-0221/8/04/C04009/

  1. Effective dose to patient measurements in flat-detector and multislice computed tomography: a comparison of applications in neuroradiology

    Energy Technology Data Exchange (ETDEWEB)

    Struffert, Tobias; Hauer, Michael; Doerfler, Arnd [University of Erlangen-Nuremberg, Department of Neuroradiology, Erlangen (Germany); Banckwitz, Rosemarie; Koehler, Christoph [Siemens AG, Healthcare Sector, Forchheim (Germany); Royalty, Kevin [Siemens Medical Solutions, USA, Inc, Hoffman Estates, IL (United States); University of Wisconsin, Department of Biomedical Engineering and School of Medicine and Public Health, Madison, WI (United States)

    2014-06-15

    Flat-detector CT (FD-CT) is used for a variety of applications. Additionally, 3D rotational angiography (3D DSA) is used to supplement digital subtraction angiography (DSA) studies. The aim was to measure and compare the dose of (1) standard DSA and 3D DSA and (2) analogous FD-CT and multislice CT (MSCT) protocols. Using an anthropomorphic phantom, the effective dose to patients (according to ICRP 103) was measured on an MSCT and a flat-detector angiographic system using standard protocols as recommended by the manufacturer. (1) Evaluation of DSA and 3D DSA angiography protocols: ap.-lat. Standard/low-dose series 1/0.8 mSv, enlarged oblique projection 0.3 mSv, 3D DSA 0.9 mSv (limited coverage length 0.3 mSv). (2) Comparison of FD-CT and MSCT: brain parenchyma imaging 2.9 /1.4 mSv, perfusion imaging 2.3/4.2 mSv, temporal bone 0.2 /0.2 mSv, angiography 2.9/3.3 mSv, limited to the head using collimation 0.5/0.5 mSv. The effective dose for an FD-CT application depends on the application used. Using collimation for FD-CT applications, the dose may be reduced considerably. Due to the low dose of 3D DSA, we recommend using this technique to reduce the number of DSA series needed to identify working projections. (orig.)

  2. Effective dose to patient measurements in flat-detector and multislice computed tomography: a comparison of applications in neuroradiology

    International Nuclear Information System (INIS)

    Struffert, Tobias; Hauer, Michael; Doerfler, Arnd; Banckwitz, Rosemarie; Koehler, Christoph; Royalty, Kevin

    2014-01-01

    Flat-detector CT (FD-CT) is used for a variety of applications. Additionally, 3D rotational angiography (3D DSA) is used to supplement digital subtraction angiography (DSA) studies. The aim was to measure and compare the dose of (1) standard DSA and 3D DSA and (2) analogous FD-CT and multislice CT (MSCT) protocols. Using an anthropomorphic phantom, the effective dose to patients (according to ICRP 103) was measured on an MSCT and a flat-detector angiographic system using standard protocols as recommended by the manufacturer. (1) Evaluation of DSA and 3D DSA angiography protocols: ap.-lat. Standard/low-dose series 1/0.8 mSv, enlarged oblique projection 0.3 mSv, 3D DSA 0.9 mSv (limited coverage length 0.3 mSv). (2) Comparison of FD-CT and MSCT: brain parenchyma imaging 2.9 /1.4 mSv, perfusion imaging 2.3/4.2 mSv, temporal bone 0.2 /0.2 mSv, angiography 2.9/3.3 mSv, limited to the head using collimation 0.5/0.5 mSv. The effective dose for an FD-CT application depends on the application used. Using collimation for FD-CT applications, the dose may be reduced considerably. Due to the low dose of 3D DSA, we recommend using this technique to reduce the number of DSA series needed to identify working projections. (orig.)

  3. Dilute scintillators for large-volume tracking detectors

    Energy Technology Data Exchange (ETDEWEB)

    Reeder, R.A. (University of New Mexico, Albuquerque, NM (United States)); Dieterle, B.D. (University of New Mexico, Albuquerque, NM (United States)); Gregory, C. (University of New Mexico, Albuquerque, NM (United States)); Schaefer, F. (University of New Mexico, Albuquerque, NM (United States)); Schum, K. (University of New Mexico, Albuquerque, NM (United States)); Strossman, W. (University of California, Riverside, CA (United States)); Smith, D. (Embry-Riddle Aeronautical Univ., Prescott, AZ (United States)); Christofek, L. (Los Alamos National Lab., NM (United States)); Johnston, K. (Los Alamos National Lab., NM (United States)); Louis, W.C. (Los Alamos National Lab., NM (United States)); Schillaci, M. (Los Alamos National Lab., NM (United States)); Volta, M. (Los Alamos National Lab., NM (United States)); White, D.H. (Los Alamos National Lab., NM (United States)); Whitehouse, D. (Los Alamos National Lab., NM (United States)); Albert, M. (University of Pennsylvania, Phi

    1993-10-01

    Dilute scintillation mixtures emit isotropic light for both fast and slow particles, but retain the Cherenkov light cone from fast particles. Large volume detectors using photomultipliers to reconstruct relativistic tracks will also be sensitive to slow particles if they are filled with these mixtures. Our data show that 0.03 g/l of b-PBD in mineral oil has a 2.4:1 ratio (in the first 12 ns) of isotropic light to Cherenkov light for positron tracks. The light attenuation length is greater than 15 m for wavelength above 400 nm, and the scintillation decay time is about 2 ns for the fast component. There is also a slow isotropic light component that is larger (relative to the fast component) for protons than for electrons. This effect allows particle identification by a technique similar to pulse shape discrimination. These features will be utilized in LSND, a neutrino detector at LAMPF. (orig.)

  4. Influence of Flat-Panel Fluoroscopic Equipment Variables on Cardiac Radiation Doses

    International Nuclear Information System (INIS)

    Nickoloff, Edward L.; Lu Zhengfeng; Dutta, Ajoy; So, James; Balter, Stephen; Moses, Jeffrey

    2007-01-01

    Purpose. To assess the influence of physician-selectable equipment variables on the potential radiation dose reductions during cardiac catheterization examinations using modern imaging equipment. Materials. A modern bi-plane angiography unit with flat-panel image receptors was used. Patients were simulated with 15-30 cm of acrylic plastic. The variables studied were: patient thickness, fluoroscopy pulse rates, record mode frame rates, image receptor field-of-view (FoV), automatic dose control (ADC) mode, SID/SSD geometry setting, automatic collimation, automatic positioning, and others. Results. Patient radiation doses double for every additional 3.5-4.5 cm of soft tissue. The dose is directly related to the imaging frame rate; a decrease from 30 pps to 15 pps reduces the dose by about 50%. The dose is related to [(FoV) -N ] where 2.0 < N < 3.0. Suboptimal positioning of the patient can nearly double the dose. The ADC system provides three selections that can vary the radiation level by 50%. For pediatric studies (2-5 years old), the selection of equipment variables can result in entrance radiation doses that range between 6 and 60 cGy for diagnostic cases and between 15 and 140 cGy for interventional cases. For adult studies, the equipment variables can produce entrance radiation doses that range between 13 and 130 cGy for diagnostic cases and between 30 and 400 cGy for interventional cases. Conclusions. Overall dose reductions of 70-90% can be achieved with pediatric patients and about 90% with adult patients solely through optimal selection of equipment variables

  5. Rejecting escape events in large volume Ge detectors by a pulse shape selection procedure

    International Nuclear Information System (INIS)

    Del Zoppo, A.; Agodi, C.; Alba, R.; Bellia, G.; Coniglione, R.; Loukachine, K.; Maiolino, C.; Migneco, E.; Piattelli, P.; Santonocito, D.; Sapienza, P.

    1993-01-01

    The dependence of the response to γ-rays of a large volume Ge detector on the interval width of a selected initial rise pulse slope is investigated. The number of escape events associated with a small pulse slope is found to be greater than the corresponding number of full energy events. An escape event rejection procedure based on the observed correlation between energy deposition and pulse shape is discussed. Such a procedure seems particularly suited for the design of highly granular large volume Ge detector arrays. (orig.)

  6. Prototype of IGZO-TFT preamplifier and analog counter for pixel detector

    International Nuclear Information System (INIS)

    Shimazoe, K.; Koyama, A.; Takahashi, H.; Shindoh, T.; Miyoshi, H.

    2017-01-01

    IGZO-TFT (Indium Galium Zinc Oxide-Thin Film Transistor) is a promising technology for controlling large display areas and large area sensors because of its very low leakage current in the off state and relatively low cost. IGZO has been used as a switching gate for a large area flat-panel detector. The photon counting capability for X-ray medical imaging has been investigated and expected for low-dose exposure and material determination. Here the design and fabrication of a charge sensitive preamplifier and analog counter using IGZO-TFT processes and its performance are reported for the first time to be used for radiation photon counting applications.

  7. High Energy Performance Tests of Large Volume LaBr{sub 3}:Ce Detector

    Energy Technology Data Exchange (ETDEWEB)

    Naqvi, A.A.; Gondal, M.A.; Khiari, F.Z.; Dastageer, M.A. [Department of Physics, King Fahd University of Petroleum and Minerals, Dhahran (Saudi Arabia); Maslehuddin, M.M. [Center for Engineering Research, King Fahd University of Petroleum and Minerals, Dhahran (Saudi Arabia); Al-Amoudi, O.S.B. [Department of Civil Engineering, King Fahd University of Petroleum and Minerals, Dhahran (Saudi Arabia)

    2015-07-01

    High energy prompt gamma ray tests of a large volume cylindrical 100 mm x 100 mm (height x diameter) LaBr{sub 3}:Ce detector were carried out using a portable neutron generator-based Prompt Gamma Neutron Activation Analysis (PGNAA) setup. In this study prompt gamma-rays yield were measured from water samples contaminated with toxic elements such nickel, chromium and mercury compounds with gamma ray energies up to 10 MeV. The experimental yield of prompt gamma-rays from toxic elements were compared with the results of Monte Carlo calculations. In spite of its higher intrinsic background due to its larger volume, an excellent agreement between the experimental and calculated yields of high energy gamma-rays from Ni, Cr and Hg samples has been achieved for the large volume LaBr{sub 3}:Ce detector. (authors)

  8. Studies on a pulse shaping system for fast coincidence with very large volume HPGe detectors

    International Nuclear Information System (INIS)

    Bose, S.; Chatterjee, M.B.; Sinha, B.K.; Bhattacharya, R.

    1987-01-01

    A variant of the leading edge timing (LET) has been proposed which compensates the ''walk'' due to risetime spread in very large volume (∝100 cm 3 ) HPGe detectors. The method - shape compensated leading edge timing (SCLET) - can be used over a wide dynamic range of energies with 100% efficiency and has been compared with the LET and ARC methods. A time resolution of 10 ns fwhm and 21 ns fwtm has been obtained with 22 Na gamma rays and two HPGe detectors of 96 and 114 cm 3 volume. This circuit is easy to duplicate and use can be a low cost alternative to commercial circuits in experiments requiring a large number of detectors. (orig.)

  9. Search for Physics beyond the Standard Model with the ATLAS detector and the development of radiation detectors

    CERN Document Server

    Silver, Yiftah

    We are investigating a radiation detector based on plasma display panel technology, the principal component of plasma television displays. This Plasma Panel Sensor (PPS) technology is a variant of micro-pattern gas radiation detectors. Based on the properties of existing plasma display panels, we expect eventually to be able to build a sealed array of plasma discharge gas cells to detect ionizing radiation with fast rise time of less than 10ns and high spatial resolution using a pixel pitch of less than 100 micrometer. In this thesis I shall describe our program of testing plasma display panels as detectors, including simulations, design and the first laboratory and beam studies that demonstrate the detection of cosmic ray muons, beta rays and medium energy protons. The ATLAS detector is used to search for high-mass resonances, in particular heavy neutral gauge bosons (Z') and excited states of Kaluza-Klein γ/Z bosons decaying to an electron-positron pair or a muon-antimuon pair. Results are presented based ...

  10. UVIS Flat Field Uniformity

    Science.gov (United States)

    Quijano, Jessica Kim

    2009-07-01

    The stability and uniformity of the low-frequency flat fields {L-flat} of the UVIS detector will be assessed by using multiple-pointing observations of the globular clusters 47 Tucanae {NGC104} and Omega Centauri {NGC5139}, thus imaging moderately dense stellar fields. By placing the same star over different portions of the detector and measuring relative changes in its brightness, it will be possible to determine local variations in the response of the UVIS detector. Based on previous experience with STIS and ACS, it is deemed that a total of 9 different pointings will suffice to provide adequate characterization of the flat field stability in any given band. For each filter to be tested, the baseline consists of 9 pointings in a 3X3 box pattern with dither steps of about 25% of the FOV, or 40.5", in either the x or y direction {useful also for CTE measurements, if needed in the future}. During SMOV, the complement of filters to be tested is limited to the following 6 filters: F225W, F275W, F336W, for Omega Cen, and F438W, F606W, and F814W for 47 Tuc. Three long exposures for each target are arranged such that the initial dither position is observed with the appropriate filters for that target within one orbit at a single pointing, so that filter-to-filter differences in the observed star positions can be checked. In addition to the 9 baseline exposures, two sets of short exposures will be taken:a} one short exposure will be taken of OmegaCen with each of the visible filters {F438W, F606W and F814W} in order to check the geometric distortion solution to be obtained with the data from proposal 11444;b} for each target, a single short exposure will be taken with each filter to facilitate the study of the PSF as a function of position on the detector by providing unsaturated images of sparsely-spaced bright stars.This proposal corresponds to Activity Description ID WF39. It should execute only after the following proposal has executed:WF21 - 11434

  11. Studies on Flat Sandwich-type Self-Powered Detectors for Flux Measurements in ITER Test Blanket Modules

    Science.gov (United States)

    Raj, Prasoon; Angelone, Maurizio; Döring, Toralf; Eberhardt, Klaus; Fischer, Ulrich; Klix, Axel; Schwengner, Ronald

    2018-01-01

    Neutron and gamma flux measurements in designated positions in the test blanket modules (TBM) of ITER will be important tasks during ITER's campaigns. As part of the ongoing task on development of nuclear instrumentation for application in European ITER TBMs, experimental investigations on self-powered detectors (SPD) are undertaken. This paper reports the findings of neutron and photon irradiation tests performed with a test SPD in flat sandwich-like geometry. Whereas both neutrons and gammas can be detected with appropriate optimization of geometries, materials and sizes of the components, the present sandwich-like design is more sensitive to gammas than 14 MeV neutrons. Range of SPD current signals achievable under TBM conditions are predicted based on the SPD sensitivities measured in this work.

  12. Cone-beam volume CT breast imaging: Feasibility study

    International Nuclear Information System (INIS)

    Chen Biao; Ning Ruola

    2002-01-01

    X-ray projection mammography, using a film/screen combination, or digital techniques, has proven to be the most effective imaging modality currently available for early detection of breast cancer. However, the inherent superimposition of structures makes a small carcinoma (a few millimeters in size) difficult to detect when it is occult or in dense breasts, leading to a high false-positive biopsy rate. Cone-beam x-ray-projection-based volume imaging using flat panel detectors (FPDs) may allow obtaining three-dimensional breast images, resulting in more accurate diagnosis of structures and patterns of lesions while eliminating the hard compression of breasts. This article presents a novel cone-beam volume computed tomographic breast imaging (CBVCTBI) technique based on the above techniques. Through a variety of computer simulations, the key issues of the system and imaging techniques were addressed, including the x-ray imaging geometry and corresponding reconstruction algorithms, x-ray characteristics of breast tissue and lesions, x-ray setting techniques, the absorbed dose estimation, and the quantitative effect of x-ray scattering on image quality. The preliminary simulation results support the proposed CVBCTBI modality for breast imaging in respect to its feasibility and practicability. The absorbed dose level is comparable to that of current mammography and will not be a prominent problem for this imaging technique. Compared to conventional mammography, the proposed imaging technique with isotropic spatial resolution will potentially provide significantly better low-contrast detectability of breast tumors and more accurate location of breast lesions

  13. 3D modeling of electric fields in the LUX detector

    Science.gov (United States)

    Akerib, D. S.; Alsum, S.; Araújo, H. M.; Bai, X.; Bailey, A. J.; Balajthy, J.; Beltrame, P.; Bernard, E. P.; Bernstein, A.; Biesiadzinski, T. P.; Boulton, E. M.; Brás, P.; Byram, D.; Cahn, S. B.; Carmona-Benitez, M. C.; Chan, C.; Currie, A.; Cutter, J. E.; Davison, T. J. R.; Dobi, A.; Druszkiewicz, E.; Edwards, B. N.; Fallon, S. R.; Fan, A.; Fiorucci, S.; Gaitskell, R. J.; Genovesi, J.; Ghag, C.; Gilchriese, M. G. D.; Hall, C. R.; Hanhardt, M.; Haselschwardt, S. J.; Hertel, S. A.; Hogan, D. P.; Horn, M.; Huang, D. Q.; Ignarra, C. M.; Jacobsen, R. G.; Ji, W.; Kamdin, K.; Kazkaz, K.; Khaitan, D.; Knoche, R.; Larsen, N. A.; Lenardo, B. G.; Lesko, K. T.; Lindote, A.; Lopes, M. I.; Manalaysay, A.; Mannino, R. L.; Marzioni, M. F.; McKinsey, D. N.; Mei, D.-M.; Mock, J.; Moongweluwan, M.; Morad, J. A.; Murphy, A. St. J.; Nehrkorn, C.; Nelson, H. N.; Neves, F.; O'Sullivan, K.; Oliver-Mallory, K. C.; Palladino, K. J.; Pease, E. K.; Rhyne, C.; Shaw, S.; Shutt, T. A.; Silva, C.; Solmaz, M.; Solovov, V. N.; Sorensen, P.; Sumner, T. J.; Szydagis, M.; Taylor, D. J.; Taylor, W. C.; Tennyson, B. P.; Terman, P. A.; Tiedt, D. R.; To, W. H.; Tripathi, M.; Tvrznikova, L.; Uvarov, S.; Velan, V.; Verbus, J. R.; Webb, R. C.; White, J. T.; Whitis, T. J.; Witherell, M. S.; Wolfs, F. L. H.; Xu, J.; Yazdani, K.; Young, S. K.; Zhang, C.

    2017-11-01

    This work details the development of a three-dimensional (3D) electric field model for the LUX detector. The detector took data to search for weakly interacting massive particles (WIMPs) during two periods. After the first period completed, a time-varying non-uniform negative charge developed in the polytetrafluoroethylene (PTFE) panels that define the radial boundary of the detector's active volume. This caused electric field variations in the detector in time, depth and azimuth, generating an electrostatic radially-inward force on electrons on their way upward to the liquid surface. To map this behavior, 3D electric field maps of the detector's active volume were generated on a monthly basis. This was done by fitting a model built in COMSOL Multiphysics to the uniformly distributed calibration data that were collected on a regular basis. The modeled average PTFE charge density increased over the course of the exposure from -3.6 to -5.5 μC/m2. From our studies, we deduce that the electric field magnitude varied locally while the mean value of the field of ~200 V/cm remained constant throughout the exposure. As a result of this work the varying electric fields and their impact on event reconstruction and discrimination were successfully modeled.

  14. The physics benchmark processes for the detector performance studies used in CLIC CDR Volume 3

    CERN Document Server

    Allanach, B.J.; Desch, K.; Ellis, J.; Giudice, G.; Grefe, C.; Kraml, S.; Lastovicka, T.; Linssen, L.; Marschall, J.; Martin, S.P.; Muennich, A.; Poss, S.; Roloff, P.; Simon, F.; Strube, J.; Thomson, M.; Wells, J.D.

    2012-01-01

    This note describes the detector benchmark processes used in volume 3 of the CLIC conceptual design report (CDR), which explores a staged construction and operation of the CLIC accelerator. The goal of the detector benchmark studies is to assess the performance of the CLIC ILD and CLIC SiD detector concepts for different physics processes and at a few CLIC centre-of-mass energies.

  15. Difference in the craniocaudal gradient of the maximum pixel value change rate between chronic obstructive pulmonary disease patients and normal subjects using sub-mGy dynamic chest radiography with a flat panel detector system.

    Science.gov (United States)

    Yamada, Yoshitake; Ueyama, Masako; Abe, Takehiko; Araki, Tetsuro; Abe, Takayuki; Nishino, Mizuki; Jinzaki, Masahiro; Hatabu, Hiroto; Kudoh, Shoji

    2017-07-01

    To compare the craniocaudal gradients of the maximum pixel value change rate (MPCR) during tidal breathing between chronic obstructive pulmonary disease (COPD) patients and normal subjects using dynamic chest radiography. This prospective study was approved by the institutional review board and all participants provided written informed consent. Forty-three COPD patients (mean age, 71.6±8.7 years) and 47 normal subjects (non-smoker healthy volunteers) (mean age, 54.8±9.8 years) underwent sequential chest radiographs during tidal breathing in a standing position using dynamic chest radiography with a flat panel detector system. We evaluated the craniocaudal gradient of MPCR. The results were analyzed using an unpaired t-test and the Tukey-Kramer method. The craniocaudal gradients of MPCR in COPD patients were significantly lower than those in normal subjects (right inspiratory phase, 75.5±48.1 vs. 108.9±42.0s -1 cm -1 , P<0.001; right expiratory phase, 66.4±40.6 vs. 89.8±31.6s -1 cm -1 , P=0.003; left inspiratory phase, 75.5±48.2 vs. 108.2±47.2s -1 cm -1 , P=0.002; left expiratory phase, 60.9±38.2 vs. 84.3±29.5s -1 cm -1 , P=0.002). No significant differences in height, weight, or BMI were observed between COPD and normal groups. In the sub-analysis, the gradients in severe COPD patients (global initiative for chronic obstructive lung disease [GOLD] 3 or 4, n=26) were significantly lower than those in mild COPD patients (GOLD 1 or 2, n=17) for both right and left inspiratory/expiratory phases (all P≤0.005). A decrease of the craniocaudal gradient of MPCR was observed in COPD patients. The craniocaudal gradient was lower in severe COPD patients than in mild COPD patients. Copyright © 2017 The Author(s). Published by Elsevier B.V. All rights reserved.

  16. Comparison of different width detector on the gross tumor volume delineation of the solitary pulmonary lesion

    Directory of Open Access Journals (Sweden)

    Dongping Shang

    2017-01-01

    Conclusions: Different width detector had no impact on the volume and geometric position of GTV of SPL during 3DCT simulation. Using wide detector would save time and decrease radiation dose compared with the narrow one. 3DCT simulation using either 16 × 1.5 mm detector or 4 × 1.5 mm detector could not cover all tumor motion information that 4DCT offered under free breathing conditions.

  17. Ricci-flat branes

    International Nuclear Information System (INIS)

    Brecher, D.; Perry, M.J.

    2000-01-01

    Up to overall harmonic factors, the D8-brane solution of the massive type IIA supergravity theory is the product of nine-dimensional Minkowski space (the world-volume) with the real line (the transverse space). We show that the equations of motion allow for the world-volume metric to be generalised to an arbitrary Ricci-flat one. If this nine-dimensional Ricci-flat manifold admits Killing spinors, then the resulting solutions are supersymmetric and satisfy the usual Bogomol'nyi bound, although they preserve fewer than the usual one half of the supersymmetries. We describe the possible choices of such manifolds, elaborating on the connection between the existence of Killing spinors and the self-duality condition on the curvature two-form. Since the D8-brane is a domain wall in ten dimensions, we are led to consider the general case: domain walls in any supergravity theory. Similar considerations hold here also. Moreover, it is shown that the world-volume of any magnetic brane - of which the domain walls are a specific example - can be generalised in precisely the same way. The general class of supersymmetric solutions have gravitational instantons as their spatial sections. Some mention is made of the world-volume solitons of such branes

  18. Beyond the limits of present active matrix flat-panel imagers (AMFPIs) for diagnostic radiology

    Science.gov (United States)

    Antonuk, Larry E.; El-Mohri, Youcef; Jee, Kyung-Wook; Maolinbay, Manat; Nassif, Samer C.; Rong, Xiujiang; Siewerdsen, Jeffrey H.; Zhao, Qihua; Street, Robert A.

    1999-05-01

    A theoretical cascaded systems analysis of the performance limits of x-ray imagers based on thin-film, active matrix flat-panel technology is presented. This analysis specifically focuses upon an examination of the functional dependence of the detective quantum efficiency on exposure. While the DQE of AMFPI systems is relatively high at the large exposure levels associated with radiographic x-ray imaging, there is a significant decline in DQE with decreasing exposure over the medium and lower end of the exposure range associated with fluoroscopic imaging. This fall-off in DQE originates from the relatively large size of the additive noise of AMFPI systems compared to their overall system gain. Therefore, strategies to diminish additive noise and increase system gain should significantly improve performance. Potential strategies for noise reduction include the use of charge compensation lines while strategies for gain enhancement include continuous photodiodes, pixel amplification structures, or higher gain converters. The effect of the implementation of such strategies is examined for a variety for hypothetical imager configurations. Through the modeling of these configurations, such enhancements are shown to hold the potential of making low frequency DQE response large and essentially independent of exposure while greatly reducing the fall-off in DQE at higher spatial frequencies.

  19. Evaluation of a prototype correction algorithm to reduce metal artefacts in flat detector computed tomography of scaphoid fixation screws

    Energy Technology Data Exchange (ETDEWEB)

    Filli, Lukas; Finkenstaedt, Tim; Andreisek, Gustav; Guggenberger, Roman [University Hospital of Zurich, Department of Diagnostic and Interventional Radiology, Zurich (Switzerland); Marcon, Magda [University Hospital of Zurich, Department of Diagnostic and Interventional Radiology, Zurich (Switzerland); University of Udine, Institute of Diagnostic Radiology, Department of Medical and Biological Sciences, Udine (Italy); Scholz, Bernhard [Imaging and Therapy Division, Siemens AG, Healthcare Sector, Forchheim (Germany); Calcagni, Maurizio [University Hospital of Zurich, Division of Plastic Surgery and Hand Surgery, Zurich (Switzerland)

    2014-12-15

    The aim of this study was to evaluate a prototype correction algorithm to reduce metal artefacts in flat detector computed tomography (FDCT) of scaphoid fixation screws. FDCT has gained interest in imaging small anatomic structures of the appendicular skeleton. Angiographic C-arm systems with flat detectors allow fluoroscopy and FDCT imaging in a one-stop procedure emphasizing their role as an ideal intraoperative imaging tool. However, FDCT imaging can be significantly impaired by artefacts induced by fixation screws. Following ethical board approval, commercially available scaphoid fixation screws were inserted into six cadaveric specimens in order to fix artificially induced scaphoid fractures. FDCT images corrected with the algorithm were compared to uncorrected images both quantitatively and qualitatively by two independent radiologists in terms of artefacts, screw contour, fracture line visibility, bone visibility, and soft tissue definition. Normal distribution of variables was evaluated using the Kolmogorov-Smirnov test. In case of normal distribution, quantitative variables were compared using paired Student's t tests. The Wilcoxon signed-rank test was used for quantitative variables without normal distribution and all qualitative variables. A p value of < 0.05 was considered to indicate statistically significant differences. Metal artefacts were significantly reduced by the correction algorithm (p < 0.001), and the fracture line was more clearly defined (p < 0.01). The inter-observer reliability was ''almost perfect'' (intra-class correlation coefficient 0.85, p < 0.001). The prototype correction algorithm in FDCT for metal artefacts induced by scaphoid fixation screws may facilitate intra- and postoperative follow-up imaging. (orig.)

  20. Evaluation of a prototype correction algorithm to reduce metal artefacts in flat detector computed tomography of scaphoid fixation screws

    International Nuclear Information System (INIS)

    Filli, Lukas; Finkenstaedt, Tim; Andreisek, Gustav; Guggenberger, Roman; Marcon, Magda; Scholz, Bernhard; Calcagni, Maurizio

    2014-01-01

    The aim of this study was to evaluate a prototype correction algorithm to reduce metal artefacts in flat detector computed tomography (FDCT) of scaphoid fixation screws. FDCT has gained interest in imaging small anatomic structures of the appendicular skeleton. Angiographic C-arm systems with flat detectors allow fluoroscopy and FDCT imaging in a one-stop procedure emphasizing their role as an ideal intraoperative imaging tool. However, FDCT imaging can be significantly impaired by artefacts induced by fixation screws. Following ethical board approval, commercially available scaphoid fixation screws were inserted into six cadaveric specimens in order to fix artificially induced scaphoid fractures. FDCT images corrected with the algorithm were compared to uncorrected images both quantitatively and qualitatively by two independent radiologists in terms of artefacts, screw contour, fracture line visibility, bone visibility, and soft tissue definition. Normal distribution of variables was evaluated using the Kolmogorov-Smirnov test. In case of normal distribution, quantitative variables were compared using paired Student's t tests. The Wilcoxon signed-rank test was used for quantitative variables without normal distribution and all qualitative variables. A p value of < 0.05 was considered to indicate statistically significant differences. Metal artefacts were significantly reduced by the correction algorithm (p < 0.001), and the fracture line was more clearly defined (p < 0.01). The inter-observer reliability was ''almost perfect'' (intra-class correlation coefficient 0.85, p < 0.001). The prototype correction algorithm in FDCT for metal artefacts induced by scaphoid fixation screws may facilitate intra- and postoperative follow-up imaging. (orig.)

  1. CSC large panel R ampersand D summary for the SSC GEM muon subsystem

    International Nuclear Information System (INIS)

    Pratuch, S.M.; Clements, J.W.; Spellman, G.P.

    1994-05-01

    The GEM Detector uses 1,128 Cathode Strip Chamber (CSC) muon detectors requiring a total of approximately 10,000 precision panels in the CSC assemblies. These panels must be fabricated to extreme tolerances in order to meet the physics requirement. A fabrication technique used to produce two large panels, nominally 1 by 3 meters, is described and the resulting panel precision is reported

  2. The position response of a large-volume segmented germanium detector

    International Nuclear Information System (INIS)

    Descovich, M.; Nolan, P.J.; Boston, A.J.; Dobson, J.; Gros, S.; Cresswell, J.R.; Simpson, J.; Lazarus, I.; Regan, P.H.; Valiente-Dobon, J.J.; Sellin, P.; Pearson, C.J.

    2005-01-01

    The position response of a large-volume segmented coaxial germanium detector is reported. The detector has 24-fold segmentation on its outer contact. The output from each contact was sampled with fast digital signal processing electronics in order to determine the position of the γ-ray interaction from the signal pulse shape. The interaction position was reconstructed in a polar coordinate system by combining the radial information, contained in the rise-time of the pulse leading edge, with the azimuthal information, obtained from the magnitude of the transient charge signals induced on the neighbouring segments. With this method, a position resolution of 3-7mm is achieved in both the radial and the azimuthal directions

  3. The position response of a large-volume segmented germanium detector

    Energy Technology Data Exchange (ETDEWEB)

    Descovich, M. [Oliver Lodge Laboratory, Physics Department, University of Liverpool, Liverpool L69 7ZE (United Kingdom)]. E-mail: mdescovich@lbl.gov; Nolan, P.J. [Oliver Lodge Laboratory, Physics Department, University of Liverpool, Liverpool L69 7ZE (United Kingdom); Boston, A.J. [Oliver Lodge Laboratory, Physics Department, University of Liverpool, Liverpool L69 7ZE (United Kingdom); Dobson, J. [Oliver Lodge Laboratory, Physics Department, University of Liverpool, Liverpool L69 7ZE (United Kingdom); Gros, S. [Oliver Lodge Laboratory, Physics Department, University of Liverpool, Liverpool L69 7ZE (United Kingdom); Cresswell, J.R. [Oliver Lodge Laboratory, Physics Department, University of Liverpool, Liverpool L69 7ZE (United Kingdom); Simpson, J. [CCLRC Daresbury Laboratory, Daresbury, Warrington, Cheshire WA4 4AD (United Kingdom); Lazarus, I. [CCLRC Daresbury Laboratory, Daresbury, Warrington, Cheshire WA4 4AD (United Kingdom); Regan, P.H. [Department of Physics, University of Surrey, Guildford GU2 7XH (United Kingdom); Valiente-Dobon, J.J. [Department of Physics, University of Surrey, Guildford GU2 7XH (United Kingdom); Sellin, P. [Department of Physics, University of Surrey, Guildford GU2 7XH (United Kingdom); Pearson, C.J. [Department of Physics, University of Surrey, Guildford GU2 7XH (United Kingdom)

    2005-11-21

    The position response of a large-volume segmented coaxial germanium detector is reported. The detector has 24-fold segmentation on its outer contact. The output from each contact was sampled with fast digital signal processing electronics in order to determine the position of the {gamma}-ray interaction from the signal pulse shape. The interaction position was reconstructed in a polar coordinate system by combining the radial information, contained in the rise-time of the pulse leading edge, with the azimuthal information, obtained from the magnitude of the transient charge signals induced on the neighbouring segments. With this method, a position resolution of 3-7mm is achieved in both the radial and the azimuthal directions.

  4. X-ray detector array

    International Nuclear Information System (INIS)

    Houston, J.M.

    1980-01-01

    The object of the invention (an ionization chamber X-ray detector array for use with high speed computerised tomographic imaging apparatus) is to reduce the time required to produce a tomographic image. The detector array described determines the distribution of X-ray intensities in one or more flat, coplanar X-ray beams. It comprises three flat anode sheets parallel to the X-ray beam, a plurality of rod-like cathodes between the anodes, a detector gas between the electrodes and a means for applying a potential between the electrodes. Each of the X-ray sources is collimated to give a narrow, planar section of X-ray photons. Sets of X-ray sources in the array are pulsed simultaneously to obtain X-ray transmission data for tomographic image reconstruction. (U.K.)

  5. Normalized glandular dose (DgN) coefficients for flat-panel CT breast imaging

    International Nuclear Information System (INIS)

    Thacker, Samta C; Glick, Stephen J

    2004-01-01

    The development of new digital mammography techniques such as dual-energy imaging, tomosynthesis and CT breast imaging will require investigation of optimal camera design parameters and optimal imaging acquisition parameters. In optimizing these acquisition protocols and imaging systems it is important to have knowledge of the radiation dose to the breast. This study presents a methodology for estimating the normalized glandular dose to the uncompressed breast using the geometry proposed for flat-panel CT breast imaging. The simulation uses the GEANT 3 Monte Carlo code to model x-ray transport and absorption within the breast phantom. The Monte Carlo software was validated for breast dosimetry by comparing results of the normalized glandular dose (DgN) values of the compressed breast to those reported in the literature. The normalized glandular dose was then estimated for a range of breast diameters from 10 cm to 18 cm using an uncompressed breast model with a homogeneous composition of adipose and glandular tissue, and for monoenergetic x-rays from 10 keV to 120 keV. These data were fit providing expressions for the normalized glandular dose. Using these expressions for the DgN coefficients and input variables such as the diameter, height and composition of the breast phantom, the mean glandular dose for any spectra can be estimated. A computer program to provide normalized glandular dose values has been made available online. In addition, figures displaying energy deposition maps are presented to better understand the spatial distribution of dose in CT breast imaging

  6. Characterization of segmented large volume, high purity germanium detectors

    International Nuclear Information System (INIS)

    Bruyneel, B.

    2006-01-01

    γ-ray tracking in future HPGe arrays like AGATA will rely on pulse shape analysis (PSA) of multiple γ-interactions. For this purpose, a simple and fast procedure was developed which enabled the first full characterization of a segmented large volume HPGe detector. An analytical model for the hole mobility in a Ge crystal lattice was developed to describe the hole drift anisotropy with experimental velocity values along the crystal axis as parameters. The new model is based on the drifted Maxwellian hole distribution in Ge. It is verified by reproducing successfully experimental longitudinal hole anisotropy data. A comparison between electron and hole mobility shows large differences for the longitudinal and tangential velocity anisotropy as a function of the electrical field orientation. Measurements on a 12 fold segmented, n-type, large volume, irregular shaped HPGe detector were performed in order to determine the parameters of anisotropic mobility for electrons and holes as charge carriers created by γ-ray interactions. To characterize the electron mobility the complete outer detector surface was scanned in small steps employing photopeak interactions at 60 keV. A precise measurement of the hole drift anisotropy was performed with 356 keV rays. The drift velocity anisotropy and crystal geometry cause considerable rise time differences in pulse shapes depending on the position of the spatial charge carrier creation. Pulse shapes of direct and transient signals are reproduced by weighting potential calculations with high precision. The measured angular dependence of rise times is caused by the anisotropic mobility, crystal geometry, changing field strength and space charge effects. Preamplified signals were processed employing digital spectroscopy electronics. Response functions, crosstalk contributions and averaging procedures were taken into account implying novel methods due to the segmentation of the Ge-crystal and the digital electronics. The results are

  7. Characterization of segmented large volume, high purity germanium detectors

    Energy Technology Data Exchange (ETDEWEB)

    Bruyneel, B. [Koeln Univ. (Germany). Inst. fuer Kernphysik

    2006-07-01

    {gamma}-ray tracking in future HPGe arrays like AGATA will rely on pulse shape analysis (PSA) of multiple {gamma}-interactions. For this purpose, a simple and fast procedure was developed which enabled the first full characterization of a segmented large volume HPGe detector. An analytical model for the hole mobility in a Ge crystal lattice was developed to describe the hole drift anisotropy with experimental velocity values along the crystal axis as parameters. The new model is based on the drifted Maxwellian hole distribution in Ge. It is verified by reproducing successfully experimental longitudinal hole anisotropy data. A comparison between electron and hole mobility shows large differences for the longitudinal and tangential velocity anisotropy as a function of the electrical field orientation. Measurements on a 12 fold segmented, n-type, large volume, irregular shaped HPGe detector were performed in order to determine the parameters of anisotropic mobility for electrons and holes as charge carriers created by {gamma}-ray interactions. To characterize the electron mobility the complete outer detector surface was scanned in small steps employing photopeak interactions at 60 keV. A precise measurement of the hole drift anisotropy was performed with 356 keV rays. The drift velocity anisotropy and crystal geometry cause considerable rise time differences in pulse shapes depending on the position of the spatial charge carrier creation. Pulse shapes of direct and transient signals are reproduced by weighting potential calculations with high precision. The measured angular dependence of rise times is caused by the anisotropic mobility, crystal geometry, changing field strength and space charge effects. Preamplified signals were processed employing digital spectroscopy electronics. Response functions, crosstalk contributions and averaging procedures were taken into account implying novel methods due to the segmentation of the Ge-crystal and the digital electronics

  8. LHCb RICH Upgrade: an overview on the photon detector and the electronics system

    CERN Multimedia

    Cassina, Lorenzo

    2015-01-01

    The LHCb experiment is one of the four detectors operating at the LHC at CERN and it is mainly devoted to CP violation measurements and the search for new physics in beauty and charm hadrons rare decays. The data from the two Ring Image Cherenkov (RICH-1 and RICH-2) detectors are essential to identify particles in a wide momentum range. Up to now the luminosity has reached up to 4 . $10^{32}$ cm$^{-2}$s$^{-1}$ with 50 ns bunch spacing and 3 fb$^{-1}$ have been collected since 2010. From 2019 onwards 14 TeV collisions with luminosities reaching up to 2 . $10^{33}$ cm$^{-2}$s$^{-1}$ with 25 ns bunch spacing are planned, with the goal of collecting 5 fb$^{-1}$ of data per year. In order to avoid degradation of the RICH detectors particle identification performance at such high rate (40 MHz), a detector upgrade is necessary. The present photodetectors (HPDs equipped with encapsulated 1 MHz readout chips) will be replaced with flat panel MaPMTs read out by external chips, designed for this purpose. The 25.4x25.4 m...

  9. Difference in diaphragmatic motion during tidal breathing in a standing position between COPD patients and normal subjects: Time-resolved quantitative evaluation using dynamic chest radiography with flat panel detector system (“dynamic X-ray phrenicography”)

    International Nuclear Information System (INIS)

    Yamada, Yoshitake; Ueyama, Masako; Abe, Takehiko; Araki, Tetsuro; Abe, Takayuki; Nishino, Mizuki; Jinzaki, Masahiro; Hatabu, Hiroto

    2017-01-01

    Highlights: • Dynamic X-ray phrenicography is a useful method for the evaluation of the diaphragms. • Its radiation dose is comparable to conventional two projection chest radiography. • Diaphragm motion during tidal breathing is larger in COPD than in normal subjects. • Higher BMI is also associated with increased excursions of the bilateral diaphragm. - Abstract: Objectives: To quantitatively compare diaphragmatic motion during tidal breathing in a standing position between chronic obstructive pulmonary disease (COPD) patients and normal subjects using dynamic chest radiography. Materials and methods: Thirty-nine COPD patients (35 males; age, 71.3 ± 8.4 years) and 47 normal subjects (non-smoker healthy volunteers) (20 males; age, 54.8 ± 9.8 years) underwent sequential chest radiographs during tidal breathing using dynamic chest radiography with a flat panel detector system. We evaluated the excursions and peak motion speeds of the diaphragms. The results were analyzed using an unpaired t-test and a multiple linear regression model. Results: The excursions of the diaphragms in COPD patients were significantly larger than those in normal subjects (right, 14.7 ± 5.5 mm vs. 10.2 ± 3.7 mm, respectively, P < 0.001; left, 17.2 ± 4.9 mm vs. 14.9 ± 4.2 mm, respectively, P = 0.022). Peak motion speeds in inspiratory phase were significantly faster in COPD patients compared to normal subjects (right, 16.3 ± 5.0 mm/s vs. 11.8 ± 4.2 mm/s, respectively, P < 0.001; left, 18.9 ± 4.9 mm/s vs. 16.7 ± 4.0 mm/s, respectively, P = 0.022). The multivariate analysis demonstrated that having COPD and higher body mass index were independently associated with increased excursions of the bilateral diaphragm (all P < 0.05), after adjusting for other clinical variables. Conclusions: Time-resolved quantitative evaluation of the diaphragm using dynamic chest radiography demonstrated that the diaphragmatic motion during tidal breathing in a standing position is larger and

  10. Difference in diaphragmatic motion during tidal breathing in a standing position between COPD patients and normal subjects: Time-resolved quantitative evaluation using dynamic chest radiography with flat panel detector system (“dynamic X-ray phrenicography”)

    Energy Technology Data Exchange (ETDEWEB)

    Yamada, Yoshitake, E-mail: yamada@rad.med.keio.ac.jp [Department of Radiology, Center for Pulmonary Functional Imaging, Brigham and Women’s Hospital, Harvard Medical School, 75 Francis St., Boston, MA 02215 (United States); Department of Diagnostic Radiology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582 (Japan); Ueyama, Masako, E-mail: ueyamam@fukujuji.org [Department of Health Care, Fukujuji Hospital, Japan Anti-Tuberculosis Association, 3-1-24 Matsuyama, Kiyose, Tokyo 204-8522 (Japan); Abe, Takehiko, E-mail: takehikoabe@hotmail.com [Department of Radiology, Fukujuji Hospital, Japan Anti-Tuberculosis Association, 3-1-24 Matsuyama, Kiyose, Tokyo 204-8522 (Japan); Araki, Tetsuro, E-mail: TARAKI@partners.org [Department of Radiology, Center for Pulmonary Functional Imaging, Brigham and Women’s Hospital, Harvard Medical School, 75 Francis St., Boston, MA 02215 (United States); Abe, Takayuki, E-mail: abe.t@keio.jp [Department of Preventive Medicine and Public Health, Biostatistics Unit at Clinical and Translational Research Center, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582 (Japan); Nishino, Mizuki, E-mail: Mizuki_Nishino11@dfci.harvard.edu [Department of Radiology, Center for Pulmonary Functional Imaging, Brigham and Women’s Hospital, Harvard Medical School, 75 Francis St., Boston, MA 02215 (United States); Jinzaki, Masahiro, E-mail: jinzaki@rad.med.keio.ac.jp [Department of Diagnostic Radiology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582 (Japan); Hatabu, Hiroto, E-mail: hhatabu@partners.org [Department of Radiology, Center for Pulmonary Functional Imaging, Brigham and Women’s Hospital, Harvard Medical School, 75 Francis St., Boston, MA 02215 (United States); and others

    2017-02-15

    Highlights: • Dynamic X-ray phrenicography is a useful method for the evaluation of the diaphragms. • Its radiation dose is comparable to conventional two projection chest radiography. • Diaphragm motion during tidal breathing is larger in COPD than in normal subjects. • Higher BMI is also associated with increased excursions of the bilateral diaphragm. - Abstract: Objectives: To quantitatively compare diaphragmatic motion during tidal breathing in a standing position between chronic obstructive pulmonary disease (COPD) patients and normal subjects using dynamic chest radiography. Materials and methods: Thirty-nine COPD patients (35 males; age, 71.3 ± 8.4 years) and 47 normal subjects (non-smoker healthy volunteers) (20 males; age, 54.8 ± 9.8 years) underwent sequential chest radiographs during tidal breathing using dynamic chest radiography with a flat panel detector system. We evaluated the excursions and peak motion speeds of the diaphragms. The results were analyzed using an unpaired t-test and a multiple linear regression model. Results: The excursions of the diaphragms in COPD patients were significantly larger than those in normal subjects (right, 14.7 ± 5.5 mm vs. 10.2 ± 3.7 mm, respectively, P < 0.001; left, 17.2 ± 4.9 mm vs. 14.9 ± 4.2 mm, respectively, P = 0.022). Peak motion speeds in inspiratory phase were significantly faster in COPD patients compared to normal subjects (right, 16.3 ± 5.0 mm/s vs. 11.8 ± 4.2 mm/s, respectively, P < 0.001; left, 18.9 ± 4.9 mm/s vs. 16.7 ± 4.0 mm/s, respectively, P = 0.022). The multivariate analysis demonstrated that having COPD and higher body mass index were independently associated with increased excursions of the bilateral diaphragm (all P < 0.05), after adjusting for other clinical variables. Conclusions: Time-resolved quantitative evaluation of the diaphragm using dynamic chest radiography demonstrated that the diaphragmatic motion during tidal breathing in a standing position is larger and

  11. Focal shift and faculae dimension of focused flat beam propagating in turbulent atmosphere

    International Nuclear Information System (INIS)

    Zhang Jianzhu; Li Youkuan; Zhang Feizhou; An Jianzhu

    2011-01-01

    Through theoretic analysis and numerical simulation,the focal shift of a focused flat beam propagating in turbulent atmosphere is studied. When a focused flat beam propagates in turbulent atmosphere, the effect of turbulence will induce the focal spot to move toward the transmitter. The turbulence is stronger and the diameter of transmitter is smaller, the measure of focal shift is larger. When adjusting the focus of transmitter and letting the focal spot of beam locate on detector, the laser intensity received by detector is not the strongest. The laser intensity will be the strongest if the focus of transmitter equals to the distance from transmitter to detector. (authors)

  12. Multiple-Panel Cylindrical Solar Concentrator

    Science.gov (United States)

    Brown, E. M.

    1983-01-01

    Trough composed of many panels concentrates Sun's energy on solar cells, even when trough is not pointed directly at Sun. Tolerates deviation as great as 5 degrees from direction of sun. For terrestrial applications, multiple-flat-plate design offers potential cost reduction and ease of fabrication.

  13. Performance of a static-anode/flat-panel x-ray fluoroscopy system in a diagnostic strength magnetic field: a truly hybrid x-ray/MR imaging system.

    Science.gov (United States)

    Fahrig, R; Wen, Z; Ganguly, A; DeCrescenzo, G; Rowlands, J A; Stevens, G M; Saunders, R F; Pelc, N J

    2005-06-01

    Minimally invasive procedures are increasing in variety and frequency, facilitated by advances in imaging technology. Our hybrid imaging system (GE Apollo flat panel, custom Brand x-ray static anode x-ray tube, GE Lunar high-frequency power supply and 0.5 T Signa SP) provides both x-ray and MR imaging capability to guide complex procedures without requiring motion of the patient between two distant gantries. The performance of the x-ray tube in this closely integrated system was evaluated by modeling and measuring both the response of the filament to an externally applied field and the behavior of the electron beam for field strengths and geometries of interest. The performance of the detector was assessed by measuring the slanted-edge modulation transfer function (MTF) and when placed at zero field and at 0.5 T. Measured resonant frequencies of filaments can be approximated using a modified vibrating beam model, and were at frequencies well below the 25 kHz frequency of our generator for our filament geometry. The amplitude of vibration was not sufficient to cause shorting of the filament during operation within the magnetic field. A simple model of electrons in uniform electric and magnetic fields can be used to estimate the deflection of the electron beam on the anode for the fields of interest between 0.2 and 0.5 T. The MTF measured at the detector and the DQE showed no significant difference inside and outside of the magnetic field. With the proper modifications, an x-ray system can be fully integrated with a MR system, with minimal loss of image quality. Any x-ray tube can be assessed for compatibility when placed at a particular location within the field using the models. We have also concluded that a-Si electronics are robust against magnetic fields. Detailed knowledge of the x-ray system installation is required to provide estimates of system operation.

  14. Performance of a static-anode/flat-panel x-ray fluoroscopy system in a diagnostic strength magnetic field: A truly hybrid x-ray/MR imaging system

    International Nuclear Information System (INIS)

    Fahrig, R.; Wen, Z.; Ganguly, A.; DeCrescenzo, G.; Rowlands, J.A.; Stevens, G.M.; Saunders, R.F.; Pelc, N.J.

    2005-01-01

    Minimally invasive procedures are increasing in variety and frequency, facilitated by advances in imaging technology. Our hybrid imaging system (GE Apollo TM flat panel, custom Brand x-ray static anode x-ray tube, GE Lunar high-frequency power supply and 0.5 T Signa SP TM ) provides both x-ray and MR imaging capability to guide complex procedures without requiring motion of the patient between two distant gantries. The performance of the x-ray tube in this closely integrated system was evaluated by modeling and measuring both the response of the filament to an externally applied field and the behavior of the electron beam for field strengths and geometries of interest. The performance of the detector was assessed by measuring the slanted-edge modulation transfer function (MTF) and when placed at zero field and at 0.5 T. Measured resonant frequencies of filaments can be approximated using a modified vibrating beam model, and were at frequencies well below the 25 kHz frequency of our generator for our filament geometry. The amplitude of vibration was not sufficient to cause shorting of the filament during operation within the magnetic field. A simple model of electrons in uniform electric and magnetic fields can be used to estimate the deflection of the electron beam on the anode for the fields of interest between 0.2 and 0.5 T. The MTF measured at the detector and the DQE showed no significant difference inside and outside of the magnetic field. With the proper modifications, an x-ray system can be fully integrated with a MR system, with minimal loss of image quality. Any x-ray tube can be assessed for compatibility when placed at a particular location within the field using the models. We have also concluded that a-Si electronics are robust against magnetic fields. Detailed knowledge of the x-ray system installation is required to provide estimates of system operation

  15. The Effect of Round Window vs Cochleostomy Surgical Approaches on Cochlear Implant Electrode Position: A Flat-Panel Computed Tomography Study.

    Science.gov (United States)

    Jiam, Nicole T; Jiradejvong, Patpong; Pearl, Monica S; Limb, Charles J

    2016-09-01

    The round window insertion (RWI) and cochleostomy approaches are the 2 most common surgical techniques used in cochlear implantation (CI). However, there is no consensus on which approach is ideal for electrode array insertion, in part because visualization of intracochlear electrode position is challenging, so postoperative assessment of intracochlear electrode contact is lacking. To measure and compare electrode array position between RWI and cochleostomy approaches for CI insertion. Retrospective case-comparison study of 17 CI users with Med-El standard-length electrode arrays who underwent flat-panel computed tomography scans after CI surgery at a tertiary referral center. The data was analyzed in October 2015. Flat-panel computed tomography scans were collected between January 1 and August 31, 2013, for 22 electrode arrays. The surgical technique was identified by a combination of operative notes and imaging. Eight cochleae underwent RWI and 14 cochleae underwent cochleostomy approaches anterior and inferior to the round window. Interscalar electrode position and electrode centroid distance to the osseous spiral lamina, lateral bony wall, and central axis of the modiolus. Nine participants were men, and 8, women; the mean age was 54.4 (range, 21-64) years. Electrode position was significantly closer to cochlear neural elements with RWI than cochleostomy approaches. Between the 2 surgical approaches, the RWI technique produced shorter distances between the electrode and the modiolus (mean difference, -0.33 [95% CI, -0.29 to -0.39] mm in the apical electrode; -1.42 [95% CI, -1.24 to -1.57] mm in the basal electrode). This difference, which was most prominent in the first third and latter third of the basal turn, decreased after the basal turn. The RWI approach was associated with an increased likelihood of perimodiolar placement. Opting to use RWI over cochleostomy approaches in CI candidates may position electrodes closer to cochlear neural substrates and

  16. Characterization of large volume CdZnTe detectors with a quad-grid structure for the COBRA experiment

    Energy Technology Data Exchange (ETDEWEB)

    Rohatsch, Katja [TU Dresden, Institut fuer Kern- und Teilchenphysik, 01069 Dresden (Germany); Collaboration: COBRA-Collaboration

    2016-07-01

    The COBRA experiment uses room temperature semiconductor detectors made of Cadmium-Zinc-Telluride, which contains several double beta isotopes, to search for neutrinoless double beta-decay. To compensate for poor hole transport in CdZnTe the detectors are equipped with a coplanar grid (CPG) instead of a planar anode. Currently, a demonstrator setup consisting of 64 1 cm{sup 3} CPG-detectors is in operation at the LNGS in Italy to prove the concept and to determine the long-term stability of the detectors and the instrumentation. For a future large scale experiment it is planned to use larger CdZnTe detectors with a volume of 6 cm{sup 3}, because of the better surface-to-volume ratio and the higher full energy detection efficiency. This will also reduce the background contribution of surface contaminations. Before the installation at the LNGS the new detector design is validated and studied in detail. This talk presents a laboratory experiment for the characterization with γ-radiation of 6 cm{sup 3} CdZnTe quad-grid detectors. The anode of such a detector is divided into four sub-CPGs. The characterization routine consists of the determination of the optimal working point and two-dimensional spatially resolved scans with a highly collimated γ-source.

  17. Transparent Fingerprint Sensor System for Large Flat Panel Display.

    Science.gov (United States)

    Seo, Wonkuk; Pi, Jae-Eun; Cho, Sung Haeung; Kang, Seung-Youl; Ahn, Seong-Deok; Hwang, Chi-Sun; Jeon, Ho-Sik; Kim, Jong-Uk; Lee, Myunghee

    2018-01-19

    In this paper, we introduce a transparent fingerprint sensing system using a thin film transistor (TFT) sensor panel, based on a self-capacitive sensing scheme. An armorphousindium gallium zinc oxide (a-IGZO) TFT sensor array and associated custom Read-Out IC (ROIC) are implemented for the system. The sensor panel has a 200 × 200 pixel array and each pixel size is as small as 50 μm × 50 μm. The ROIC uses only eight analog front-end (AFE) amplifier stages along with a successive approximation analog-to-digital converter (SAR ADC). To get the fingerprint image data from the sensor array, the ROIC senses a capacitance, which is formed by a cover glass material between a human finger and an electrode of each pixel of the sensor array. Three methods are reviewed for estimating the self-capacitance. The measurement result demonstrates that the transparent fingerprint sensor system has an ability to differentiate a human finger's ridges and valleys through the fingerprint sensor array.

  18. Optimizing detector thickness in dual-shot dual-energy x-ray imaging

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Dong Woon; Kam, Soohwa; Youn, Hanbean; Kim, Ho Kyung [Pusan National University, Busan (Korea, Republic of)

    2015-05-15

    As a result, there exist apparent limitations in the conventional two-dimensional (2D) radiography: One is that the contrast between the structure of interest and the background in a radiograph is much less than the intrinsic subject contrast (i.e. the difference between their attenuation coefficients; Another is that the superimposed anatomical structures in the 2D radiograph results in an anatomical background clutter that may decrease the conspicuity of subtle underlying features. These limitations in spatial and material discrimination are important motivations for the recent development of 3D (e.g. tomosynthesis) and dual energy imaging (DEI) systems. DEI technique uses a combination of two images obtained at two different energies in successive x-ray exposures by rapidly switching the kilovolage (kV) applied to the x-ray tube. Commercial DEI systems usually employ a 'single' of flat-panel detector (FPD) to obtain two different kV images. However, we have a doubt in the use of the same detector for acquiring two different projections for the low- and high-kV setups because it is typically known that there exists an optimal detector thickness regarding specific imaging tasks or energies used.

  19. Presbycusis: a human temporal bone study of individuals with flat audiometric patterns of hearing loss using a new method to quantify stria vascularis volume.

    Science.gov (United States)

    Nelson, Erik G; Hinojosa, Raul

    2003-10-01

    The purpose of this study was to determine the prevalence of stria vascularis atrophy in individuals with presbycusis and flat audiometric patterns of hearing loss. Individuals with presbycusis have historically been categorized by the shape of their audiograms, and flat audiometric thresholds have been reported to be associated with atrophy of the stria vascularis. Stria vascularis volume was not measured in these studies. Retrospective case review. Archival human temporal bones from individuals with presbycusis were selected on the basis of strict audiometric criteria for flat audiometric thresholds. Six temporal bones that met these criteria were identified and compared with 10 temporal bones in individuals with normal hearing. A unique quantitative method was developed to measure the stria vascularis volume in these temporal bones. The hair cell and spiral ganglion cell populations also were quantitatively evaluated. Only one of the six individuals with presbycusis and flat audiometric thresholds had significant atrophy of the stria vascularis. This individual with stria vascularis atrophy also had reduced inner hair cell, outer hair cell, and ganglion cell populations. Three of the individuals with presbycusis had spiral ganglion cell loss, three individuals had inner hair cell loss, and all six individuals had outer hair cell loss. The results of this investigation suggest that individuals with presbycusis and flat audiometric patterns of hearing loss infrequently have stria vascularis atrophy. Outer hair cell loss alone or in combination with inner hair cell or ganglion cell loss may be the cause of flat audiometric thresholds in individuals with presbycusis.

  20. Flat-detector computed tomography in the assessment of intracranial stents: comparison with multi detector CT and conventional angiography in a new animal model

    International Nuclear Information System (INIS)

    Struffert, Tobias; Ott, Sabine; Adamek, Edyta; Schwarz, Marc; Engelhorn, Tobias; Kloska, Stephan; Doerfler, Arnd; Deuerling-Zheng, Yu

    2011-01-01

    Careful follow up is necessary after intracranial stenting because in-stent restenosis (ISR) or residual stenosis (RS) is not rare. A minimally invasive follow-up imaging technique is desirable. The objective was to compare the visualisation of stents in Flat Detector-CT Angiography (FD-CTA) after intravenous contrast medium injection (i.v.) with Multi Detector Computed Tomography Angiography (MD-CTA) and Digital Subtracted Angiography (DSA) in an animal model. Stents were implanted in the carotid artery of 12 rabbits. In 6 a residual stenosis (RS) was surgically created. Imaging was performed using FD-CTA, MD-CTA and DSA. Measurements of the inner and outer diameter and cross-section area of the stents were performed. Stenosis grade was calculated. In subjective evaluation FD-CTA was superior to MD-CTA. FD-CTA was more accurate compared with DSA than MD-CTA. Cross-sectional area of the stent lumen was significantly larger (p < 0.05) in FD-CTA in comparison to MD-CTA. Accurate evaluation of stenosis was impossible in MD-CTA. There was no statistically significant difference in the stenosis grade of DSA and FD-CTA. Our results show that visualisation of stent and stenosis using intravenous FD-CTA compares favourably with DSA and may replace DSA in the follow-up of patients treated with intracranial stents. (orig.)

  1. Prototype of a flat-panel photoreactor using TiO2 nanoparticles coated on transparent granules for the degradation of Methylene Blue under solar illumination

    Directory of Open Access Journals (Sweden)

    Sutisna

    2017-07-01

    Full Text Available The purpose of this work is to design a prototype of a flat-panel (FP photoreactor for wastewater treatment via solar illumination using TiO2 nano-photocatalysts. The TiO2 nanoparticles are initially coated on transparent plastic granules to avoid the difficulties associated with the recovery of nanoparticles after completing the treatment process. The coated granules were distributed in the space inside the reactor panel. The upper cover of the reactor is a transparent material that allows light penetration to activate the catalyst. Wastewater is circulated into the spaces between the coated granules. When exposed to solar illumination, photocatalytic reactions occur on nearly the entire surface of the coated granules. To test the reactor viability, we used technical grade TiO2 (for affordability and a solution of Methylene Blue (MB as a sample of wastewater. The photoreactor was tested for treating 30 L of MB solution with an initial concentration of 25 mg L−1. We observed that the reactor was able to degrade more than 98% of the MB in the solution after 48 h of solar illumination. The performance of the FP photoreactor was also improved by arranging several reactor panels in series. Using four panels, we observed that the complete decomposition of the same MB solution can be achieved within 10 h. The proposed FP photoreactor is a very promising alternative for use in decomposing recalcitrant organic pollutants in wastewater.

  2. Clinical investigation of flat panel CT following middle ear reconstruction: a study of 107 patients

    Energy Technology Data Exchange (ETDEWEB)

    Zaoui, K. [University Hospital Heidelberg, Ruprecht Karls University, Department of Otorhinolaryngology, Head and Neck Surgery, Heidelberg (Germany); Kromeier, J. [St. Josefs Hospital, RkK, Department of Radiology, Freiburg (Germany); Neudert, M.; Beleites, T.; Zahnert, T. [University Hospital Dresden, Technical University, Department of Otorhinolaryngology, Head and Neck Surgery, Dresden (Germany); Laszig, R.; Offergeld, C. [University Hospital Freiburg, Albert Ludwigs University, Department of Otorhinolaryngology, Head and Neck Surgery, Freiburg (Germany)

    2014-03-15

    After middle ear reconstruction using partial or total ossicular replacement prostheses (PORP/TORP), an air-bone gap (ABG) may persist because of prosthesis displacement or malposition. So far, CT of the temporal bone has played the main role in the diagnosis of reasons for postoperative insufficient ABG improvement. Recent experimental and clinical studies have evaluated flat panel CT (fpCT) as an alternative imaging technique that provides images with high isovolumetric resolution, fewer metal-induced artefacts and lower irradiation doses. One hundred and seven consecutive patients with chronic otitis media with or without cholesteatoma underwent reconstruction by PORP (n = 52) or TORP (n = 55). All subjects underwent preoperative and postoperative audiometric testing and postoperative fpCT. Statistical evaluation of all 107 patients as well as the sole sub-assembly groups (PORP or TORP) showed a highly significant correlation between hearing improvement and fpCT-determined prosthesis position. FpCT enables detailed postoperative information on patients with middle ear reconstruction. FpCT is a new imaging technique that provides immediate feedback on surgical results after reconstructive middle ear surgery. Specific parameters evaluated by fpCT may serve as a predictive tool for estimated postoperative hearing improvement. Therefore this imaging technique is suitable for postoperative quality control in reconstructive middle ear surgery. (orig.)

  3. Transparent Fingerprint Sensor System for Large Flat Panel Display

    Directory of Open Access Journals (Sweden)

    Wonkuk Seo

    2018-01-01

    Full Text Available In this paper, we introduce a transparent fingerprint sensing system using a thin film transistor (TFT sensor panel, based on a self-capacitive sensing scheme. An armorphousindium gallium zinc oxide (a-IGZO TFT sensor array and associated custom Read-Out IC (ROIC are implemented for the system. The sensor panel has a 200 × 200 pixel array and each pixel size is as small as 50 μm × 50 μm. The ROIC uses only eight analog front-end (AFE amplifier stages along with a successive approximation analog-to-digital converter (SAR ADC. To get the fingerprint image data from the sensor array, the ROIC senses a capacitance, which is formed by a cover glass material between a human finger and an electrode of each pixel of the sensor array. Three methods are reviewed for estimating the self-capacitance. The measurement result demonstrates that the transparent fingerprint sensor system has an ability to differentiate a human finger’s ridges and valleys through the fingerprint sensor array.

  4. Relationship between x-ray illumination field size and flat field intensity and its impacts on x-ray imaging

    International Nuclear Information System (INIS)

    Dong Xue; Niu Tianye; Jia Xun; Zhu Lei

    2012-01-01

    Purpose: X-ray cone-beam CT (CBCT) is being increasingly used for various clinical applications, while its performance is still hindered by image artifacts. This work investigates a new source of reconstruction error, which is often overlooked in the current CBCT imaging. The authors find that the x-ray flat field intensity (I 0 ) varies significantly as the illumination volume size changes at different collimator settings. A wrong I 0 value leads to inaccurate CT numbers of reconstructed images as well as wrong scatter measurements in the CBCT research. Methods: The authors argue that the finite size of x-ray focal spot together with the detector glare effect cause the I 0 variation at different illumination sizes. Although the focal spot of commercial x-ray tubes typically has a nominal size of less than 1 mm, the off-focal-spot radiation covers an area of several millimeters on the tungsten target. Due to the large magnification factor from the field collimator to the detector, the penumbra effects of the collimator blades result in different I 0 values for different illumination field sizes. Detector glare further increases the variation, since one pencil beam of incident x-ray is scattered into an area of several centimeters on the detector. In this paper, the authors study these two effects by measuring the focal spot distribution with a pinhole assembly and the detector point spread function (PSF) with an edge-spread function method. The authors then derive a formula to estimate the I 0 value for different illumination field sizes, using the measured focal spot distribution and the detector PSF. Phantom studies are carried out to investigate the accuracy of scatter measurements and CT images with and without considering the I 0 variation effects. Results: On our tabletop system with a Varian Paxscan 4030CB flat-panel detector and a Varian RAD-94 x-ray tube as used on a clinical CBCT system, the focal spot distribution has a measured full

  5. Influence of backscattering on the spatial resolution of semiconductor X-ray detectors

    International Nuclear Information System (INIS)

    Hoheisel, M.; Korn, A.; Giersch, J.

    2005-01-01

    Pixelated X-ray detectors using semiconductor layers or scintillators as absorbers are widely used in high-energy physics, medical diagnosis, or non-destructive testing. Their good spatial resolution performance makes them particularly suitable for applications where fine details have to be resolved. Intrinsic limitations of the spatial resolution have been studied in previous simulations. These simulations focused on interactions inside the conversion layer. Transmitted photons were treated as a loss. In this work, we also implemented the structure behind the conversion layer to investigate the impact of backscattering inside the detector setup. We performed Monte Carlo simulations with the program ROSI (Roentgen Simulation) which is based on the well-established EGS4 algorithm. Line-spread functions of different fully implemented detectors were simulated. In order to characterize the detectors' spatial resolution, the modulation transfer functions (MTF) were calculated. The additional broadening of the line-spread function by carrier transport has been ignored in this work. We investigated two different detector types: a directly absorbing pixel detector where a semiconductor slab is bump-bonded to a readout ASIC such as the Medipix-2 setup with Si or GaAs as an absorbing semiconductor layer, and flat-panel detectors with a Se or a CsI converter. We found a significant degradation of the MTF compared to the case without backscattering. At energies above the K-edge of the backscattering material the spatial resolution drops and can account for the observed low-frequency drop of the MTF. Ignoring this backscatter effect might lead to misinterpretations of the charge sharing effect in counting pixel detectors

  6. Flat detector computed tomography in diagnostic and interventional pediatric cardiology

    International Nuclear Information System (INIS)

    Moesler, J.; Dittrich, S.; Gloeckler, M.; Rompel, O.

    2013-01-01

    Purpose: In this study the use of flat detector computed tomography (FD-CT) in the catheterization of patients with congenital heart disease was evaluated. Application reports were created for various issues based on the achieved image quality in diverse anatomical regions. Materials and Methods: FD-CT was applied in 176 cases during catheterization between January 2010 and April 2012. A five-point Likert scale ('essential' to 'misleading') was used to evaluate image quality. All cases were analyzed retrospectively and application reports for the visualization of the aorta, pulmonary arteries, pulmonary veins, semilunar valves, cavopulmonary connections and atrial baffles were generated. Contrast dye consumption and radiation dose were evaluated. Results: During the observation period FD-CT was applied in all 176 cases. The mean patient age was 7.0 years (0.01 - 42.53 years). The clinical value of FD-CT was rated superior to conventional angiography in 96.6 % of the cases and was never rated as 'misleading'. FD-CT was rated 'essential' in 3.4 % of all cases, 'very useful' in 77.3 % of all cases, 'useful' in 15.9 % of all cases and 'not useful' in 3.4 % of all cases. The mean dose-area product was 99 μGym 2 (19.3 - 1276.6 μGym 2 ), and the used contrast dye was 1.76 ml/kg (0.9 - 5 ml/kg). Application reports for the visualization of different anatomical regions are demonstrated. Conclusion: FD-CT is a new and auxiliary procedure in diagnostic and interventional catheterization of patients with congenital heart disease. Particularly extracardiac structures can be displayed in three-dimensional high resolution and be used for diagnosis, surgical planning and 3 D navigation. (orig.)

  7. Detector to detector corrections: a comprehensive experimental study of detector specific correction factors for beam output measurements for small radiotherapy beams

    DEFF Research Database (Denmark)

    Azangwe, Godfrey; Grochowska, Paulina; Georg, Dietmar

    2014-01-01

    -doped aluminium oxide (Al2O3:C), organic plastic scintillators, diamond detectors, liquid filled ion chamber, and a range of small volume air filled ionization chambers (volumes ranging from 0.002 cm3 to 0.3 cm3). All detector measurements were corrected for volume averaging effect and compared with dose ratios...... measurements, the authors recommend the use of detectors that require relatively little correction, such as unshielded diodes, diamond detectors or microchambers, and solid state detectors such as alanine, TLD, Al2O3:C, or scintillators....

  8. Measuring and modeling exposure from environmental radiation on tidal flats

    International Nuclear Information System (INIS)

    Gould, T.J.; Hess, C.T.

    2005-01-01

    To examine the shielding effects of the tide cycle, a high pressure ion chamber was used to measure the exposure rate from environmental radiation on tidal flats. A theoretical model is derived to predict the behavior of exposure rate as a function of time for a detector placed one meter above ground on a tidal flat. The numerical integration involved in this derivation results in an empirical formula which implies exposure rate ∝tan-1(sint). We propose that calculating the total exposure incurred on a tidal flat requires measurements of only the slope of the tidal flat and the exposure rate when no shielding occurs. Experimental results are consistent with the model

  9. Dependence of the coefficient of environmental thermal losses of radiation-absorbing thermal exchange panels of flat solar collectors for heating heat-transfer fluid from their average operating and ambient temperatures

    International Nuclear Information System (INIS)

    Avezova, N.R.; Avezov, R.R.

    2015-01-01

    The approximation formula is derived for calculating the normalized coefficient of thermal losses of flat solar collectors (FSCs) for heating heat-transfer fluid (HTF). These are used in hot water supply systems in the warmer part of the year, depending on the average working surface temperature of their radiation-absorbing thermal exchange panels (RATEPs) (t"-_w_s_r) and the ambient temperature (t_a_m_b) in their realistic variation range. (author)

  10. IMac G4/800 (Flat Panel)

    CERN Multimedia

    2002-01-01

    Apple introduced the iMac G4/800 on January 7, 2002. The total cost was about $2000 (base price of $1799 plus RAM upgrade). The iMac G4/800 has an 800 MHz G4 processor. The G4/800 has the following ports: three USB 1.1 ports, two Fire Wire 400-Mbps ports, one RJ-45, 10/100BASE-T Ethernet port, one RJ-11 56K V.90 modem port, one Mini-VGA output port, one speaker jack, and one headphone jack. There is a built in microphone set on the front of the monitor in the bottom left corner. There is a single internal SuperDrive capable of reading and writing CDs and DVDs. The disk drive is on the front of the computer. It opens by pushing the disk drive button on the iMac's keyboard. The monitor size is 15 inches. The G4/800 has a NVIDIA GeForce2 MX graphics processor with AGP 2X support that provides 32 MB of dedicated Double Data Rate (DDR) video memory. Native resolution is 1024 x 768, but the built in monitor is also capable of 640 x 480 and 800 x 600. RAM can be changed by removing a panel on the bottom of the chas...

  11. Foil Panel Mirrors for Nonimaging Applications

    Science.gov (United States)

    Kuyper, D. J.; Castillo, A. A.

    1984-01-01

    Large durable, lightweight mirrors made by bonding thick aluminum foil to honeycomb panels or other rigid, flat backings. Mirrors suitable for use as infrared shields, telescope doors, solar-furnance doors, advertising displays, or other reflectors that require low thermal emissivity and high specularity but do not require precise surface figure necessary for imaging.

  12. A novel radiation detector for removing scattered radiation in chest radiography: Monte Carlo simulation-based performance evaluation

    Science.gov (United States)

    Roh, Y. H.; Yoon, Y.; Kim, K.; Kim, J.; Kim, J.; Morishita, J.

    2016-10-01

    Scattered radiation is the main reason for the degradation of image quality and the increased patient exposure dose in diagnostic radiology. In an effort to reduce scattered radiation, a novel structure of an indirect flat panel detector has been proposed. In this study, a performance evaluation of the novel system in terms of image contrast as well as an estimation of the number of photons incident on the detector and the grid exposure factor were conducted using Monte Carlo simulations. The image contrast of the proposed system was superior to that of the no-grid system but slightly inferior to that of the parallel-grid system. The number of photons incident on the detector and the grid exposure factor of the novel system were higher than those of the parallel-grid system but lower than those of the no-grid system. The proposed system exhibited the potential for reduced exposure dose without image quality degradation; additionally, can be further improved by a structural optimization considering the manufacturer's specifications of its lead contents.

  13. The impact of round window vs cochleostomy surgical approaches on interscalar excursions in the cochlea: Preliminary results from a flat-panel computed tomography study

    Directory of Open Access Journals (Sweden)

    Nicole T. Jiam

    2016-09-01

    Full Text Available Objective: To evaluate incidence of interscalar excursions between round window (RW and cochleostomy approaches for cochlear implant (CI insertion. Methods: This was a retrospective case-comparison. Flat-panel CT (FPCT scans for 8 CI users with Med-El standard length electrode arrays were collected. Surgical technique was identified by a combination of operative notes and FPCT imaging. Four cochleae underwent round window insertion and 4 cochleae underwent cochleostomy approaches anterior and inferior to the round window. Results: In our pilot study, cochleostomy approaches were associated with a higher likelihood of interscalar excursion. Within the cochleostomy group, we found 29% of electrode contacts (14 of 48 electrodes to be outside the scala tympani. On the other hand, 8.5% of the electrode contacts (4 of 47 electrodes in the round window insertion group were extra-scalar to the scala tympani. These displacements occurred at a mean angle of occurrence of 364° ± 133°, near the apex of the cochlea. Round window electrode displacements tend to localize at angle of occurrences of 400° or greater. Cochleostomy electrodes occurred at an angle of occurrence of 19°–490°. Conclusions: Currently, the optimal surgical approach for standard CI electrode insertion is highly debated, to a certain extent due to a lack of post-operative assessment of intracochlear electrode contact. Based on our preliminary findings, cochleostomy approach is associated with an increased likelihood of interscalar excursions, and these findings should be further evaluated with future prospective studies. Keywords: Cochlear implantation, Round window insertion, Cochleostomy, Interscalar excursion, Electrode position, Flat-panel computed tomography, Surgical approach

  14. Lag and ghosting in a clinical flat-panel selenium digital mammography system

    International Nuclear Information System (INIS)

    Bloomquist, Aili K.; Yaffe, Martin J.; Mawdsley, Gordon E.; Hunter, David M.; Beideck, Daniel J.

    2006-01-01

    We present measurements of lag and ghosting in a FDA-approved digital mammography system that uses a dielectric/selenium based detector structure. Lag is the carryover of signal from a previous image, whereas ghosting is the reduction of sensitivity caused by previous exposure history of the detector. Data from six selenium units were acquired. For the type of selenium detector tested, and under typical clinical usage conditions, the lag was as high as 0.15% of source signal and the ghosting could be as high as 15%. The amount of lag and ghosting varied from unit to unit. Results were compared with data acquired on a phosphor-based full-field digital mammography system. Modifications in the technology of the selenium detectors appear to have resulted in a marked decrease in both lag and ghosting effects in more recent systems

  15. Fire-induced reradiation underneath photovoltaic arrays on flat roofs

    DEFF Research Database (Denmark)

    Kristensen, Jens Steemann; Merci, Bart; Jomaas, Grunde

    2018-01-01

    The impact of the reflection of fire-induced heat from a gas burner was studied experimentally to gain knowledge on the interaction between photovoltaic (PV) panels and a fire on flat roofs. The heat flux was measured in a total of eight points at the same level as the top of the gas burner. The ...

  16. Dead layer and active volume determination for GERDA Phase II detectors

    Energy Technology Data Exchange (ETDEWEB)

    Lehnert, Bjoern [TU Dresden (Germany); Collaboration: GERDA-Collaboration

    2013-07-01

    The GERDA experiment investigates the neutrinoless double beta decay of {sup 76}Ge and is currently running Phase I of its physics program. Using the same isotope as the Heidelberg Moscow (HDM) experiment, GERDA aims to directly test the claim of observation by a subset of the HDM collaboration. For the update to Phase II of the experiment in 2013, the collaboration organized the production of 30 new Broad Energy Germanium (BEGe) type detectors from original 35 kg enriched material and tested their performance in the low background laboratory HADES in SCK.CEN, Belgium. With additional 20 kg of detectors, GERDA aims to probe the degenerated hierarchy scenario. One of the crucial detector parameters is the active volume (AV) fraction which directly enters into all physics analysis. This talk presents the methodology of dead layer and AV determination with different calibration sources such as {sup 241}Am, {sup 133}Ba, {sup 60}Co and {sup 228}Th and the results obtained for the new Phase II detectors. Furthermore, the AV fraction turned out to be the largest systematic uncertainty in the analysis of Phase I data which makes it imperative to reduce its uncertainty for Phase II. This talk addresses the major contributions to the AV uncertainty and gives an outlook for improvements in Phase II analysis.

  17. Volume-of-change cone-beam CT for image-guided surgery

    International Nuclear Information System (INIS)

    Lee, Junghoon; Stayman, J Webster; Otake, Yoshito; Schafer, Sebastian; Zbijewski, Wojciech; Khanna, A Jay; Siewerdsen, Jeffrey H; Prince, Jerry L

    2012-01-01

    C-arm cone-beam CT (CBCT) can provide intraoperative 3D imaging capability for surgical guidance, but workflow and radiation dose are the significant barriers to broad utilization. One main reason is that each 3D image acquisition requires a complete scan with a full radiation dose to present a completely new 3D image every time. In this paper, we propose to utilize patient-specific CT or CBCT as prior knowledge to accurately reconstruct the aspects of the region that have changed by the surgical procedure from only a sparse set of x-rays. The proposed methods consist of a 3D–2D registration between the prior volume and a sparse set of intraoperative x-rays, creating digitally reconstructed radiographs (DRRs) from the registered prior volume, computing difference images by subtracting DRRs from the intraoperative x-rays, a penalized likelihood reconstruction of the volume of change (VOC) from the difference images, and finally a fusion of VOC reconstruction with the prior volume to visualize the entire surgical field. When the surgical changes are local and relatively small, the VOC reconstruction involves only a small volume size and a small number of projections, allowing less computation and lower radiation dose than is needed to reconstruct the entire surgical field. We applied this approach to sacroplasty phantom data obtained from a CBCT test bench and vertebroplasty data with a fresh cadaver acquired from a C-arm CBCT system with a flat-panel detector. The VOCs were reconstructed from a varying number of images (10–66 images) and compared to the CBCT ground truth using four different metrics (mean squared error, correlation coefficient, structural similarity index and perceptual difference model). The results show promising reconstruction quality with structural similarity to the ground truth close to 1 even when only 15–20 images were used, allowing dose reduction by the factor of 10–20. (paper)

  18. Characterizing X-ray detectors for prototype digital breast tomosynthesis systems

    International Nuclear Information System (INIS)

    Kim, Y.-S.; Park, H.-S.; Park, S.-J.; Choi, S.; Lee, H.; Kim, H.-J.; Lee, D.; Choi, Y.-W.

    2016-01-01

    The digital breast tomosynthesis (DBT) system is a newly developed 3-D imaging technique that overcomes the tissue superposition problems of conventional mammography. Therefore, it produces fewer false positives. In DBT system, several parameters are involved in image acquisition, including geometric components. A series of projections should be acquired at low exposure. This makes the system strongly dependent on the detector's characteristic performance. This study compares two types of x-ray detectors developed by the Korea Electrotechnology Research Institute (KERI). The first prototype DBT system has a CsI (Tl) scintillator/CMOS based flat panel digital detector (2923 MAM, Dexela Ltd.), with a pixel size of 0.0748 mm. The second uses a-Se based direct conversion full field detector (AXS 2430, analogic) with a pixel size of 0.085 mm. The geometry of both systems is same, with a focal spot 665.8 mm from the detector, and a center of rotation 33 mm above the detector surface. The systems were compared with regard to modulation transfer function (MTF), normalized noise power spectrum (NNPS), detective quantum efficiency (DQE) and a new metric, the relative object detectability (ROD). The ROD quantifies the relative performance of each detector at detecting specified objects. The system response function demonstrated excellent linearity (R 2 >0.99). The CMOS-based detector had a high sensitivity, while the Anrad detector had a large dynamic range. The higher MTF and noise power spectrum (NPS) values were measured using an Anrad detector. The maximum DQE value of the Dexela detector was higher than that of the Anrad detector with a low exposure level, considering one projection exposure for tomosynthesis. Overall, the Dexela detector performed better than did the Anrad detector with regard to the simulated Al wires, spheres, test objects of ROD with low exposure level. In this study, we compared the newly developed prototype DBT system with two different types

  19. APPLIED ORIGAMI. Origami of thick panels.

    Science.gov (United States)

    Chen, Yan; Peng, Rui; You, Zhong

    2015-07-24

    Origami patterns, including the rigid origami patterns in which flat inflexible sheets are joined by creases, are primarily created for zero-thickness sheets. In order to apply them to fold structures such as roofs, solar panels, and space mirrors, for which thickness cannot be disregarded, various methods have been suggested. However, they generally involve adding materials to or offsetting panels away from the idealized sheet without altering the kinematic model used to simulate folding. We develop a comprehensive kinematic synthesis for rigid origami of thick panels that differs from the existing kinematic model but is capable of reproducing motions identical to that of zero-thickness origami. The approach, proven to be effective for typical origami, can be readily applied to fold real engineering structures. Copyright © 2015, American Association for the Advancement of Science.

  20. Feasibility for the Use of Flat Booster Reflectors in Various Photovoltaic Installations

    OpenAIRE

    Gelegenis, John Joachim; Axaopoulos, Petros; Misailidis, Stavros; Giannakidis, George; Samarakou, Maria; Bonaros, Bassilios

    2016-01-01

    The feasibility for the addition of flat booster reflectors to PV panels is techno-economically investigated for various applications (building attached PVs, ground installations, grid-connected or stand-alone units) and various PV types (mono-crystalline and amorphous silicon PV panels). A model developed to this aim is applied to optimize the parameters of the PV/reflector module and to evaluate its applicability according to the solar radiation data of Athens (Greece). The reflectors may l...

  1. Pin on flat wear volume prediction of UHMWPE against cp Ti for orthopedic applications

    Science.gov (United States)

    Handoko, Suyitno, Dharmastiti, Rini; Magetsari, Rahadyan

    2018-04-01

    Tribological assessment of orthopedic biomaterials requires a lot of testing time. Researchers must test the biomaterials in millions of cycles at low frequency (1 Hz) to mimic the in vivo conditions. It is a problem because product designs and developments could not wait longer for wear data to predict the lifetime of their products. The problem can be solved with the use of computation techniques to model the wear phenomena and provide predicted data. The aim of this research is to predict the wear volume of the commonly used ultra high molecular weight polyethylene (UHMWPE) sliding against commercially pure titanium (cp Ti) in the unidirectional pin on flat tests. The 9 mm diameter UHMWPE pin and cp Ti plate contact mechanics were modeled using Abaqus. Contact pressure was set at 3 MPa. Outputs of the computations (contact pressure and contact area) were used to calculate the wear volume with Archard law. A custom Python script was made to automate the process. The results were then compared with experimental data for validations. The predicted data were in a good trend with numerical errors from 0.3% up to 26%.

  2. Real-time particle volume fraction measurement in centrifuges by wireless electrical resistance detector

    International Nuclear Information System (INIS)

    Nagae, Fumiya; Okawa, Kazuya; Matsuno, Shinsuke; Takei, Masahiro; Zhao Tong; Ichijo, Noriaki

    2015-01-01

    In this study, wireless electrical resistance detector is developed as first step in order to develop electrical resistance tomography (ERT) that are attached wireless communication, and miniaturized. And the particle volume fraction measurement results appropriateness is qualitatively examined. The real-time particle volume fraction measurement is essential for centrifuges, because rotational velocity and supply should be controlled based on the results in order to obtain the effective separation, shorten process time and save energy. However, a technique for the particle volume fraction measurement in centrifuges has not existed yet. In other words, the real-time particle volume fraction measurement in centrifuges becomes innovative technologies. The experiment device reproduces centrifugation in two-phase using particle and salt solution as measuring object. The particle concentration is measured changing rotational velocity, supply and measurement section position. The measured concentration changes coincide with anticipated tendency of concentration changes. Therefore the particle volume fraction measurement results appropriateness are qualitatively indicated. (author)

  3. Rotating detectors and Mach's principle

    International Nuclear Information System (INIS)

    Paola, R.D.M. de; Svaiter, N.F.

    2000-08-01

    In this work we consider a quantum version of Newton s bucket experiment in a fl;at spacetime: we take an Unruh-DeWitt detector in interaction with a real massless scalar field. We calculate the detector's excitation rate when it is uniformly rotating around some fixed point and the field is prepared in the Minkowski vacuum and also when the detector is inertial and the field is in the Trocheries-Takeno vacuum state. These results are compared and the relations with Mach's principle are discussed. (author)

  4. High-EPA Biomass from Nannochloropsis salina Cultivated in a Flat-Panel Photo-Bioreactor on a Process Water-Enriched Growth Medium

    DEFF Research Database (Denmark)

    Safafar, Hamed; Hass, Michael Z.; Møller, Per

    2016-01-01

    salina biomass, with a focus on eicosapentaenoic acid (EPA). Variations in fatty acid composition, lipids, protein, amino acids, tocopherols and pigments were studied and results compared to algae cultivated on F/2 media as reference. Mixed growth media and process water enhanced the nutritional quality...... of Nannochloropsis salina in laboratory scale when compared to algae cultivated in standard F/2 medium. Data from laboratory scale translated to the large scaleusing a 4000 L flat panel photo-bioreactor system. The algae growth rate in winter conditions in Denmark was slow, but results revealed that large...... after 21 days of cultivation. Variations in chemical compositions of Nannochloropsis salina were studied during the course of cultivation. Nannochloropsis salina can be presented as a good candidate for winter time cultivation in Denmark.The resulting biomass is a rich source of EPA and also a good...

  5. Reference handbook: Level detectors

    International Nuclear Information System (INIS)

    1990-01-01

    The purpose of this handbook is to provide Rocky Flats personnel with the information necessary to understand level measurement and detection. Upon completion of this handbook you should be able to do the following: List three reasons for measuring level. Describe the basic operating principles of the sight glass. Demonstrate proper techniques for reading a sight glass. Describe the basic operating principles of a float level detector. Describe the basic operating principles of a bubbler level indicating system. Explain the differences between a wet and dry reference leg indicating system, and describe how each functions. This handbook is designed for use by experienced Rocky Flats operators to reinforce and improve their current knowledge level, and by entry-level operators to ensure that they possess a minimum level of fundamental knowledge. Level Detectors is applicable to many job classifications and can be used as a reference for classroom work or for self-study. Although this reference handbook is by no means all-encompassing, you will gain enough information about this subject area to assist you in contributing to the safe operation of Rocky Flats Plant

  6. Usefulness of DICOM headers in the analysis of two biplane X-ray systems setting (image intensifier and flat panel) used in pediatric interventional cardiology in Chile

    International Nuclear Information System (INIS)

    Ubeda, C.; Vergara, F.

    2009-01-01

    The setting of two biplane X ray systems were evaluated (image intensifier (II) and flat panel (PP)), through DICOM tags from 32 images created during the characterization of both systems. The technical parameters adjusted for systems were: 63,8 to 80,0 kV and 15,0 to 388,0 mA, for the system with II and 52,0 to 77,0 kV and 25,0 to 476,0 mA, for the system with PP detector. Both equipment presented a different mA adjustment, when moving from fluoroscopy modes low dose (FL), medium dose (FM) and high dose (FH) to cine mode (CI). Two dosimetric quantities were evaluated, the first one was the dose-area product (DAP) which gave as a result for FB mode, between 0,03 to 0,35 uGycm 2 /image (II) and from 0,05 a 0,69 uGycm 2 /image (PP), when the polymethyl methacrylate (PMMA) thickness was incremented from 4 to 16 cm. In cine mode the DAP quantity showed, percentage values from 24 to -1 % for the same PMMA increment. Skin cumulative dose was the second quantity evaluated and showed an increment of incident air kerma (KAI)/image in factors from 17 to 35 (II) and 15 to 28 (PP) when used in CI mode instead of FB mode, to the different PMMA thicknesses used. This dose increment for CI mode must be considered by cardiologists, to use the fluoroscopic run as an alternative to document part of the procedures when there is no need to use a high quality image (author)

  7. System architecture of Detector Control and safety for the ATLAS Inner Detector Upgrade

    International Nuclear Information System (INIS)

    Ferrere, D.; Kersten, S.

    2011-01-01

    In the current ATLAS Upgrade plan a new Inner Detector (ID) based upon silicon sensor technology is being considered. The operational monitoring and control of the ID will be very demanding. The Detector Control System (DCS) is a common tool that is essential for the operational safety of a system. Even at this early stage the DCS system architecture has to be defined such that it is well integrated and optimized for its later implementation and use. For example the DCS diagnostics for the front-end (FE) chips is a serious option being considered that needs an early requirement and specification definition. In addition one of the main constraints is the service reuse between the service patch panels of the ATLAS ID and the counting room that limits the number of electrical lines to be reused. Conceptual differences in terms of readout architecture and layout have been identified between the strip and the pixel detector that lead to two distinct architectures. Nevertheless, the limitation of available electrical lines going to the counting room as well as the low material budget requirements inside the ID volume are two major constraints that lead the ID to consider an on-detector radiation hard integrated circuitry for the slow control. At this stage of the project, the definitions of the logical actions and protocol for the ADCs of such a chip are still being specified. In addition the experience gained from the current ID will be essential for the guidance of tuning the future DCS architecture in the coming years.

  8. TU-F-18C-02: Increasing Amorphous Selenium Thickness in Direct Conversion Flat-Panel Imagers for Contrast-Enhanced Dual-Energy Breast Imaging

    International Nuclear Information System (INIS)

    Scaduto, DA; Hu, Y-H; Zhao, W

    2014-01-01

    Purpose: Contrast-enhanced (CE) breast imaging using iodinated contrast agents requires imaging with x-ray spectra at energies greater than those used in mammography. Optimizing amorphous selenium (a-Se) flat panel imagers (FPI) for this higher energy range may increase lesion conspicuity. Methods: We compare imaging performance of a conventional FPI with 200 μm a-Se conversion layer to a prototype FPI with 300 μm a-Se layer. Both detectors are evaluated in a Siemens MAMMOMAT Inspiration prototype digital breast tomosynthesis (DBT) system using low-energy (W/Rh 28 kVp) and high-energy (W/Cu 49 kVp) x-ray spectra. Detectability of iodinated lesions in dual-energy images is evaluated using an iodine contrast phantom. Effects of beam obliquity are investigated in projection and reconstructed images using different reconstruction methods. The ideal observer signal-to-noise ratio is used as a figure-of-merit to predict the optimal a-Se thickness for CE lesion detectability without compromising conventional full-field digital mammography (FFDM) and DBT performance. Results: Increasing a-Se thickness from 200 μm to 300 μm preserves imaging performance at typical mammographic energies (e.g. W/Rh 28 kVp), and improves the detective quantum efficiency (DQE) for high energy (W/Cu 49 kVp) by 30%. While the more penetrating high-energy x-ray photons increase geometric blur due to beam obliquity in the FPI with thicker a-Se layer, the effect on lesion detectability in FBP reconstructions is negligible due to the reconstruction filters employed. Ideal observer SNR for CE objects shows improvements in in-plane detectability with increasing a-Se thicknesses, though small lesion detectability begins to degrade in oblique projections for a-Se thickness above 500 μm. Conclusion: Increasing a-Se thickness in direct conversion FPI from 200 μm to 300 μm improves lesion detectability in CE breast imaging with virtually no cost to conventional FFDM and DBT. This work was partially

  9. Combined-load buckling behavior of metal-matrix composite sandwich panels under different thermal environments

    Science.gov (United States)

    Ko, William L.; Jackson, Raymond H.

    1991-01-01

    Combined compressive and shear buckling analysis was conducted on flat rectangular sandwich panels with the consideration of transverse shear effects of the core. The sandwich panel is fabricated with titanium honeycomb core and laminated metal matrix composite face sheets. The results show that the square panel has the highest combined load buckling strength, and that the buckling strength decreases sharply with the increases of both temperature and panel aspect ratio. The effect of layup (fiber orientation) on the buckling strength of the panels was studied in detail. The metal matrix composite sandwich panel was much more efficient than the sandwich panel with nonreinforced face sheets and had the same specific weight.

  10. ICFA Instrumentation Bulletin, Volume 24, Spring 2002 Issue (SLAC-J-ICFA-024)

    Energy Technology Data Exchange (ETDEWEB)

    Va' Vra, J.

    2003-10-21

    The publication of the ICFA Instrumentation Bulletin is an activity of the Panel on Future Innovation and Development of ICFA (International Committee for Future Accelerators). The Bulletin reports on research and progress in the field of instrumentation with emphasis on application in the field of high-energy physics. It encourages issues of generic instrumentation. This volume covers the following articles: (1) ''Physics and Chemistry of Aging--Early Developments; (2) ''Summary and Outlook of the International Workshop on Aging Phenomena in Gaseous Detectors (DESY, Hamburg, October 2001)''; (3) ''Studies of Aging and High Voltage Break Down Problems during Development and Operation of MSGC and GEM Detectors for the Inner Tracking System of HERA-B''; and (4) ''Aging of Gaseous Detectors: Assembly Materials and Procedures.

  11. Solar panel assembly and support pad

    Energy Technology Data Exchange (ETDEWEB)

    Hawley, W.W.

    1980-10-07

    A solar panel assembly is described comprising at least one solar panel, support means for carrying said panel, and at least one support pad having a base plate, upstanding longitudinal sides, and spaced apart flange means for connection to said support means, said upstanding sides and opposed flange means defining an interior volume for receiving and holding weighting material.

  12. A Monte-Carlo code for neutron efficiency calculations for large volume Gd-loaded liquid scintillation detectors

    Energy Technology Data Exchange (ETDEWEB)

    Trzcinski, A.; Zwieglinski, B. [Soltan Inst. for Nuclear Studies, Warsaw (Poland); Lynen, U. [Gesellschaft fuer Schwerionenforschung mbH, Darmstadt (Germany); Pochodzalla, J. [Max-Planck-Institut fuer Kernphysik, Heidelberg (Germany)

    1998-10-01

    This paper reports on a Monte-Carlo program, MSX, developed to evaluate the performance of large-volume, Gd-loaded liquid scintillation detectors used in neutron multiplicity measurements. The results of simulations are presented for the detector intended to count neutrons emitted by the excited target residue in coincidence with the charged products of the projectile fragmentation following relativistic heavy-ion collisions. The latter products could be detected with the ALADIN magnetic spectrometer at GSI-Darmstadt. (orig.) 61 refs.

  13. The International Linear Collider Technical Design Report - Volume 4: Detectors

    CERN Document Server

    Behnke, Ties; Burrows, Philip N.; Fuster, Juan; Peskin, Michael; Stanitzki, Marcel; Sugimoto, Yasuhiro; Yamada, Sakue; Yamamoto, Hitoshi

    2013-01-01

    The International Linear Collider Technical Design Report (TDR) describes in four volumes the physics case and the design of a 500 GeV centre-of-mass energy linear electron-positron collider based on superconducting radio-frequency technology using Niobium cavities as the accelerating structures. The accelerator can be extended to 1 TeV and also run as a Higgs factory at around 250 GeV and on the Z0 pole. A comprehensive value estimate of the accelerator is give, together with associated uncertainties. It is shown that no significant technical issues remain to be solved. Once a site is selected and the necessary site-dependent engineering is carried out, construction can begin immediately. The TDR also gives baseline documentation for two high-performance detectors that can share the ILC luminosity by being moved into and out of the beam line in a "push-pull" configuration. These detectors, ILD and SiD, are described in detail. They form the basis for a world-class experimental programme that promises to incr...

  14. Characterization of large volume HPGe detectors. Part II: Experimental results

    International Nuclear Information System (INIS)

    Bruyneel, Bart; Reiter, Peter; Pascovici, Gheorghe

    2006-01-01

    Measurements on a 12-fold segmented, n-type, large volume, irregular shaped HPGe detector were performed in order to determine the parameters of anisotropic mobility for electrons and holes as charge carriers created by γ-ray interactions. To characterize the electron mobility the complete outer detector surface was scanned in small steps employing photopeak interactions at 60keV. A precise measurement of the hole drift anisotropy was performed with 356keV γ-rays. The drift velocity anisotropy and crystal geometry cause considerable rise time differences in pulse shapes depending on the position of the spatial charge carrier creation. Pulse shapes of direct and transient signals are reproduced by weighting potential calculations with high precision. The measured angular dependence of rise times is caused by the anisotropic mobility, crystal geometry, changing field strength and space charge effects. Preamplified signals were processed employing digital spectroscopy electronics. Response functions, crosstalk contributions and averaging procedures were taken into account implying novel methods due to the segmentation of the Ge-crystal and digital signal processing electronics

  15. Photovoltaic systems on flat roofs. A new approach; Photovoltaique sur toits plats. Une nouvelle approche. Rapport final

    Energy Technology Data Exchange (ETDEWEB)

    Roecker, C.; Bonvin, J.; Muller, A.

    1999-06-01

    Flat roofs are among the best choices to mount photovoltaics on buildings. Nevertheless, standard solutions in use till the mid-nineties were quite poor, as far as price, aesthetics and ease of maintenance were concerned. This report presents, following a comprehensive typology study of flat roofs, a series of new and innovative solutions, fully developed and tested. There are three main system groups, differing essentially by the ballasting method used to keep the panels on the roof: (i) the SOFREL family, using concrete blocs weighting; (ii) the SOLBAC family, using existing ballast weighting; and (iii) the SOLGREEN family, using ballast and earth weighting. Some more systems, not finalised, are also described, giving some hints for possible new developments. To conclude, this project has brought three main systems, all three already or soon commercially available, allowing a simple and easy mounting of photovoltaic panels on any flat roof type. (author)

  16. A Comparative Study of the Analysis, Numerical Modelling and Experimental Test on a Sandwich Panel with Plane and Profiled Facings

    Directory of Open Access Journals (Sweden)

    Raluca Hohan

    2010-01-01

    Full Text Available Sandwich panels are remarkable products because they can be as strong as a solid material but with less weight. The analysis that is required to predict the stresses and deflections in panels with flat or lightly profiled facings is that of conventional beam theory but with the addition of shear deformation. Knowing that the profiled sheets bring an increase of the flexural stiffness, formulas showing the calculus of a panel with flat and profiled facings are established. A comparison between the results of a mathematical calculus, an experimental test and a numerical modelling is provided.

  17. Edge effects in a small pixel CdTe for X-ray imaging

    Science.gov (United States)

    Duarte, D. D.; Bell, S. J.; Lipp, J.; Schneider, A.; Seller, P.; Veale, M. C.; Wilson, M. D.; Baker, M. A.; Sellin, P. J.; Kachkanov, V.; Sawhney, K. J. S.

    2013-10-01

    Large area detectors capable of operating with high detection efficiency at energies above 30 keV are required in many contemporary X-ray imaging applications. The properties of high Z compound semiconductors, such as CdTe, make them ideally suitable to these applications. The STFC Rutherford Appleton Laboratory has developed a small pixel CdTe detector with 80 × 80 pixels on a 250 μm pitch. Historically, these detectors have included a 200 μm wide guard band around the pixelated anode to reduce the effect of defects in the crystal edge. The latest version of the detector ASIC is capable of four-side butting that allows the tiling of N × N flat panel arrays. To limit the dead space between modules to the width of one pixel, edgeless detector geometries have been developed where the active volume of the detector extends to the physical edge of the crystal. The spectroscopic performance of an edgeless CdTe detector bump bonded to the HEXITEC ASIC was tested with sealed radiation sources and compared with a monochromatic X-ray micro-beam mapping measurements made at the Diamond Light Source, U.K. The average energy resolution at 59.54 keV of bulk and edge pixels was 1.23 keV and 1.58 keV, respectively. 87% of the edge pixels present fully spectroscopic performance demonstrating that edgeless CdTe detectors are a promising technology for the production of large panel radiation detectors for X-ray imaging.

  18. Flat Surface Damage Detection System (FSDDS)

    Science.gov (United States)

    Williams, Martha; Lewis, Mark; Gibson, Tracy; Lane, John; Medelius, Pedro; Snyder, Sarah; Ciarlariello, Dan; Parks, Steve; Carrejo, Danny; Rojdev, Kristina

    2013-01-01

    The Flat Surface Damage Detection system (FSDDS} is a sensory system that is capable of detecting impact damages to surfaces utilizing a novel sensor system. This system will provide the ability to monitor the integrity of an inflatable habitat during in situ system health monitoring. The system consists of three main custom designed subsystems: the multi-layer sensing panel, the embedded monitoring system, and the graphical user interface (GUI). The GUI LABVIEW software uses a custom developed damage detection algorithm to determine the damage location based on the sequence of broken sensing lines. It estimates the damage size, the maximum depth, and plots the damage location on a graph. Successfully demonstrated as a stand alone technology during 2011 D-RATS. Software modification also allowed for communication with HDU avionics crew display which was demonstrated remotely (KSC to JSC} during 2012 integration testing. Integrated FSDDS system and stand alone multi-panel systems were demonstrated remotely and at JSC, Mission Operations Test using Space Network Research Federation (SNRF} network in 2012. FY13, FSDDS multi-panel integration with JSC and SNRF network Technology can allow for integration with other complementary damage detection systems.

  19. Measurement of effective detective quantum efficiency for a photon counting scanning mammography system and comparison with two flat panel full-field digital mammography systems

    Science.gov (United States)

    Wood, Tim J.; Moore, Craig S.; Saunderson, John R.; Beavis, Andrew W.

    2018-01-01

    Effective detective quantum efficiency (eDQE) describes the resolution and noise properties of an imaging system along with scatter and primary transmission, all measured under clinically appropriate conditions. Effective dose efficiency (eDE) is the eDQE normalised to mean glandular dose and has been proposed as a useful metric for the optimisation of clinical imaging systems. The aim of this study was to develop a methodology for measuring eDQE and eDE on a Philips microdose mammography (MDM) L30 photon counting scanning system, and to compare performance with two conventional flat panel systems. A custom made lead-blocker was manufactured to enable the accurate determination of dose measurements, and modulation transfer functions were determined free-in-air at heights of 2, 4 and 6 cm above the breast support platform. eDQE were calculated for a Philips MDM L30, Hologic Dimensions and Siemens Inspiration digital mammography system for 2, 4 and 6 cm thick poly(methyl methacrylate) (PMMA). The beam qualities (target/filter and kilovoltage) assessed were those selected by the automatic exposure control, and anti-scatter grids were used where available. Measurements of eDQE demonstrate significant differences in performance between the slit- and scan-directions for the photon counting imaging system. MTF has been shown to be the limiting factor in the scan-direction, which results in a rapid fall in eDQE at mid-to-high spatial frequencies. A comparison with two flat panel mammography systems demonstrates that this may limit image quality for small details, such as micro-calcifications, which correlates with a more conventional image quality assessment with the CDMAM phantom. eDE has shown the scanning photon counting system offers superior performance for low spatial frequencies, which will be important for the detection of large low contrast masses. Both eDQE and eDE are proposed as useful metrics that should enable optimisation of the Philips MDM L30.

  20. Spatial resolution evaluation with a pair of two four-layer DOI detectors for small animal PET scanner: jPET-RD

    Energy Technology Data Exchange (ETDEWEB)

    Nishikido, Fumihiko [National Institute of Radiological Sciences, Anagawa 4-9-1 Inage-ku, Chiba-shi, Chiba 263-8555 (Japan)], E-mail: funis@nirs.go.jp; Tsuda, Tomoaki [Shimadzu Corporation, Nishinokyo Kuwabaracho 1 Nakagyo-ku, Kyoto-shi, Kyoto 604-8511 (Japan); Yoshida, Eiji; Inadama, Naoko; Shibuya, Kengo; Yamaya, Taiga [National Institute of Radiological Sciences, Anagawa 4-9-1 Inage-ku, Chiba-shi, Chiba 263-8555 (Japan); Kitamura, Keishi [Shimadzu Corporation, Nishinokyo Kuwabaracho 1 Nakagyo-ku, Kyoto-shi, Kyoto 604-8511 (Japan); Takahashi, Kei [National Institute of Radiological Sciences, Anagawa 4-9-1 Inage-ku, Chiba-shi, Chiba 263-8555 (Japan); Graduate School of Science and Technology, Chiba University, Yayoi-cho 1-33, Inage-ku, Chiba-shi, Chiba 263-8522 (Japan); Ohmura, Atsushi [National Institute of Radiological Sciences, Anagawa 4-9-1 Inage-ku, Chiba-shi, Chiba 263-8555 (Japan); Graduate School of Advanced Science and Engineering, Waseda University, Okubo 3-4-1, Shinjuku-ku, Tokyo 169-8555 (Japan); Murayama, Hideo [National Institute of Radiological Sciences, Anagawa 4-9-1 Inage-ku, Chiba-shi, Chiba 263-8555 (Japan)

    2008-01-01

    We are developing a small animal PET scanner, 'jPET-RD' to achieve high sensitivity as well as high spatial resolution by using four-layer depth-of-interaction (DOI) detectors. The jPET-RD is designed with two detector rings. Each detector ring is composed of six DOI detectors arranged hexagonally. The diameter of the field-of-view (FOV) is 8.8 cm, which is smaller than typical small animal PET scanners on the market now. Each detector module consists of a crystal block and a 256-channel flat panel position-sensitive photomultiplier tube. The crystal block, consisting of 32x32x4 crystal (4096 crystals, each 1.46 mmx1.46 mmx4.5 mm) and a reflector, is mounted on the 256ch FP-PMT. In this study, we evaluated the spatial resolution of reconstructed images with the evaluation system of two four-layer DOI detectors which consist of 32x32x4 LYSO (Lu: 98%, Y: 2%) crystals coupled on the 256ch FP-PMT by using RTV rubber. The spatial resolution of 1.5 mm was obtained at the center of the FOV by the filtered back projection. The spatial resolution, better than 2 mm in the whole FOV, was also achieved with DOI while the spatial resolution without DOI was degraded to 3.3 mm.

  1. Spatial resolution evaluation with a pair of two four-layer DOI detectors for small animal PET scanner: jPET-RD

    International Nuclear Information System (INIS)

    Nishikido, Fumihiko; Tsuda, Tomoaki; Yoshida, Eiji; Inadama, Naoko; Shibuya, Kengo; Yamaya, Taiga; Kitamura, Keishi; Takahashi, Kei; Ohmura, Atsushi; Murayama, Hideo

    2008-01-01

    We are developing a small animal PET scanner, 'jPET-RD' to achieve high sensitivity as well as high spatial resolution by using four-layer depth-of-interaction (DOI) detectors. The jPET-RD is designed with two detector rings. Each detector ring is composed of six DOI detectors arranged hexagonally. The diameter of the field-of-view (FOV) is 8.8 cm, which is smaller than typical small animal PET scanners on the market now. Each detector module consists of a crystal block and a 256-channel flat panel position-sensitive photomultiplier tube. The crystal block, consisting of 32x32x4 crystal (4096 crystals, each 1.46 mmx1.46 mmx4.5 mm) and a reflector, is mounted on the 256ch FP-PMT. In this study, we evaluated the spatial resolution of reconstructed images with the evaluation system of two four-layer DOI detectors which consist of 32x32x4 LYSO (Lu: 98%, Y: 2%) crystals coupled on the 256ch FP-PMT by using RTV rubber. The spatial resolution of 1.5 mm was obtained at the center of the FOV by the filtered back projection. The spatial resolution, better than 2 mm in the whole FOV, was also achieved with DOI while the spatial resolution without DOI was degraded to 3.3 mm

  2. Disposal of Rocky Flats residues as waste

    International Nuclear Information System (INIS)

    Dustin, D.F.; Sendelweck, V.S.

    1993-01-01

    Work is underway at the Rocky Flats Plant to evaluate alternatives for the removal of a large inventory of plutonium-contaminated residues from the plant. One alternative under consideration is to package the residues as transuranic wastes for ultimate shipment to the Waste Isolation Pilot Plant. Current waste acceptance criteria and transportation regulations require that approximately 1000 cubic yards of residues be repackaged to produce over 20,000 cubic yards of WIPP certified waste. The major regulatory drivers leading to this increase in waste volume are the fissile gram equivalent, surface radiation dose rate, and thermal power limits. In the interest of waste minimization, analyses have been conducted to determine, for each residue type, the controlling criterion leading to the volume increase, the impact of relaxing that criterion on subsequent waste volume, and the means by which rules changes may be implemented. The results of this study have identified the most appropriate changes to be proposed in regulatory requirements in order to minimize the costs of disposing of Rocky Flats residues as transuranic wastes

  3. Optimized intravenous flat detector CT for non-invasive visualization of intracranial stents: first results

    International Nuclear Information System (INIS)

    Struffert, Tobias; Kloska, Stephan; Engelhorn, Tobias; Ott, Sabine; Doelken, Marc; Saake, Marc; Doerfler, Arnd; Deuerling-Zheng, Yu.; Koehrmann, Martin

    2011-01-01

    As stents for treating intracranial atherosclerotic stenosis may develop in-stent re-stenosis (ISR) in up to 30%, follow-up imaging is mandatory. Residual stenosis (RS) is not rare. We evaluated an optimised Flat Detector CT protocol with intravenous contrast material application (i.v. FD-CTA) for non-invasive follow-up. In 12 patients with intracranial stents, follow-up imaging was performed using i.v. FD-CTA. MPR, subtracted MIP and VRT reconstructions were used to correlate to intra-arterial angiography (DSA). Two neuroradiologists evaluated the images in anonymous consensus reading and calculated the ISR or RS. Correlation coefficients and a Wilcoxon test were used for statistical analysis. In 4 patients, no stenosis was detected. In 6 patients RS and in two cases ISR by intima hyperplasia perfectly visible on MPR reconstructions of i.v. FD-CTA were detected. Wilcoxon's test showed no significant differences between the methods (p > 0.05). We found a high correlation with coefficients of the pairs DSA/ FD-CT MIP r = 0.91, DSA/ FD-CT MPR r = 0.82 and FD-CT MIP/ FD-CT MPR r = 0.8. Intravenous FD-CTA could clearly visualise the stent and the lumen, allowing ISR or RS to be recognised. FD-CTA provides a non-invasive depiction of intracranial stents and might replace DSA for non-invasive follow-up imaging. (orig.)

  4. Properties of flat-pressed wood plastic composites containing fire retardants

    Science.gov (United States)

    Nadir Ayrilmis; Jan. T. Benthien; Heiko Thoemen; Robert H. White

    2011-01-01

    This study investigated physical, mechanical, and fire properties of the flat-pressed wood plastic composites (WPCs) incorporated with various fire retardants (FRs) [5 or 15% by weight (wt)] at 50 wt % of the wood flour (WF). The WPC panels were made from dry-blended WF, polypropylene (PP) with maleic anhydride grafted PP (2 wt %), and FR powder formulations using a...

  5. Blackbody radiation from light cone in flat space time

    International Nuclear Information System (INIS)

    Gerlach, U.H.

    1983-01-01

    Blackbody radiation in flat space-time is not necessarily associated with the flat event horizon of a single accelerated observer. The author considers a spherical bubble which expands in a uniformly accelerating fashion. Its history traces out a time-like hyperboloid. Suppose the bubble membrane has a spatially isotropic and homogeneous (surface) stress energy tensor i.e. the membrane is made out of the stiffest possible material permitted by causality considerations. It follows that this bubble membrane is in equilibrium even though it is expanding. Such an expanding bubble membrane may serve as a detector of electromagnetic radiation if the membrane can interact with the electromagnetic field. (Auth.)

  6. Digital radiography of the skeleton using a large-area detector based on amorphous silicon technology: Image quality and potential for dose reduction in comparison with screen-film radiography

    International Nuclear Information System (INIS)

    Volk, M.; Strotzer, M.; Holzkneckt, N.; Manke, C.; Lenhart, M.; Gmeinwieser, J.; Link, J.; Reiser, M.; Feuerback, S.

    2000-01-01

    AIM: The purpose of this study was to evaluate a large-area, flat-panel X-ray detector (FD), based on caesium-iodide (CsI) and amorphous silicon (a-Si) with respect to skeletal radiography. Conventional images were compared with digital radiographs using identical and reduced radiation doses. MATERIALS AND METHODS: Thirty consecutive patients were studied prospectively using conventional screen-film radiography (SFR; detector dose 2.5 μGy). Digital images were taken from the same patients with detector doses of 2.5, 1.25 and 0.625 μGy, respectively. The active-matrix detector had a panel size of 43 x 43 cm, a matrix of 3 x 3K, and a pixel size of 143 μm. All hard copies were presented in a random order to eight independent observers, who rated image quality according to subjective quality criteria. Results were assessed for significance using the Student's t -test (confidence level 95%). RESULTS: A statistically significant preference for digital over conventional images was revealed for all quality criteria, except for over-exposure (detector dose 2.5 μGy). Digital images with a 50% dose showed a small, statistically not significant, inferiority compared with SFR. The FD-technique was significantly inferior to SFR at 75% dose reduction regarding bone cortex and trabecula, contrast and overall impression. No statistically significant differences were found with regard to over- and under-exposure and soft tissue presentation. CONCLUSION: Amorphous silicon-based digital radiography yields good image quality. The potential for dose reduction depends on the clinical query. Volk, M. (2000)

  7. Novel Heterongineered Detectors for Multi-Color Infrared Sensing

    Science.gov (United States)

    2012-01-30

    a) Sequential but collocated two-color detection capabilities of type II InAsGaSb SLS detector based on an nBn design and (b) Simultaneous and...captions: Figure 1. Heterostructure Schematic of (a) PbIbN Design, (b) Dual Color Detector Design with flat band energy lineups . Figure 2. (a) Spectral

  8. The International Linear Collider Technical Design Report - Volume 4: Detectors

    Energy Technology Data Exchange (ETDEWEB)

    Behnke, Ties [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States)

    2013-06-26

    The International Linear Collider Technical Design Report (TDR) describes in four volumes the physics case and the design of a 500 GeV centre-of-mass energy linear electron-positron collider based on superconducting radio-frequency technology using Niobium cavities as the accelerating structures. The accelerator can be extended to 1 TeV and also run as a Higgs factory at around 250 GeV and on the Z0 pole. A comprehensive value estimate of the accelerator is give, together with associated uncertainties. It is shown that no significant technical issues remain to be solved. Once a site is selected and the necessary site-dependent engineering is carried out, construction can begin immediately. The TDR also gives baseline documentation for two high-performance detectors that can share the ILC luminosity by being moved into and out of the beam line in a "push-pull" configuration. These detectors, ILD and SiD, are described in detail. They form the basis for a world-class experimental programme that promises to increase significantly our understanding of the fundamental processes that govern the evolution of the Universe.

  9. Film replacement by digital x-ray detectors - the correct procedure and equipment

    International Nuclear Information System (INIS)

    Ewert, U.; Zscherpel, U.; Bavendiek, K.

    2004-01-01

    New digital detectors were developed for medical applications, which have the potential to substitute the X-ray film and revolutionise the radiological technique. Digital Detector Arrays (DDA: Flat Panel Detectors, Line Detectors) and Imaging Plates (Computed Radiography) allow a fast detection of radiographic images in a shorter time and with higher dynamic than film applications. Companies report about a reduction of exposure time down to 5 - 25% in comparison to NDT film exposures. This provides together with the reduction of consumables economical (and also ecological) benefits and short amortisation periods. But this does not always provide the same image quality as NDT film. The requirements of the European and USA standards for film radiography are analysed to derive correct requirements for the digital image quality and procedures for prediction and measurement of image quality. Basically the USA standards seem to be more tolerant for these new innovative technologies. New standard proposals use signal/noise ratio and unsharpness as dominant parameters for image quality. Specialised measurement procedures are described. The properties of the new detectors can be controlled by electronics and exposure conditions. New names appear in literature like 'direct radiography' and 'film replacement techniques'. The basic advantage of the new digital techniques is the possibility to use numeric procedures for image interpretation. Industrial radiology can be optimised for crack detection as well as for analysis of flaw depth and shape measurement. Automated flaw detection, measurement of part dimensions and detection of completeness are used for serial part inspection devices. Parallel to the development of DDA's, an extraordinary increase of Computed Tomography (CT) applications can be observed. (author)

  10. Study of noise reduction characteristics of double-wall panels

    Science.gov (United States)

    Navaneethan, R.; Quayle, B.; Stevenson, S.; Graham, M.

    1983-05-01

    The noise reduction characteristics of general aviation type, flat, double-wall structures were investigated. The experimental study was carried out on 20-by-20 inch panels with an exposed area of 18 by 18 inches. A frequency range from 20 to 5000 Hz was covered. The experimental results, in general, follow the expected trends. At low frequencies the double-wall structures are no better than the single-wall structures. However, for depths normally used in the general aviation industry, the double-wall panels are very attractive. The graphite-spoxy skin panels have higher noise reduction at very low frequencies ( 100 Hz) than the Kevlar skin panels. But the aluminum panels have higher noise reduction in the high frequency region, due to their greater mass. Use of fiberglass insulation is not effective in the low frequency region, and at times it is even negative. But the insulation is effective in the high-frequency region. The theoretical model for predicting the transmission loss of these multilayered panels is also discussed.

  11. Radiation dose of digital tomosynthesis for sinonasal examination: comparison with multi-detector CT.

    Science.gov (United States)

    Machida, Haruhiko; Yuhara, Toshiyuki; Tamura, Mieko; Numano, Tomokazu; Abe, Shinji; Sabol, John M; Suzuki, Shigeru; Ueno, Eiko

    2012-06-01

    Using an anthropomorphic phantom, we have investigated the feasibility of digital tomosynthesis (DT) of flat-panel detector (FPD) radiography to reduce radiation dose for sinonasal examination compared to multi-detector computed tomography (MDCT). A female Rando phantom was scanned covering frontal to maxillary sinus using the clinically routine protocol by both 64-detector CT (120 kV, 200 mAs, and 1.375-pitch) and DT radiography (80 kV, 1.0 mAs per projection, 60 projections, 40° sweep, and posterior-anterior projections). Glass dosimeters were used to measure the radiation dose to internal organs including the thyroid gland, brain, submandibular gland, and the surface dose at various sites including the eyes during those scans. We compared the radiation dose to those anatomies between both modalities. In DT radiography, the doses of the thyroid gland, brain, submandibular gland, skin, and eyes were 230 ± 90 μGy, 1770 ± 560 μGy, 1400 ± 80 μGy, 1160 ± 2100 μGy, and 112 ± 6 μGy, respectively. These doses were reduced to approximately 1/5, 1/8, 1/12, 1/17, and 1/290 of the respective MDCT dose. For sinonasal examinations, DT radiography enables dramatic reduction in radiation exposure and dose to the head and neck region, particularly to the lens of the eye. Copyright © 2011 Elsevier Ireland Ltd. All rights reserved.

  12. A new parameter in the electrochemical etching of polymer track detectors

    International Nuclear Information System (INIS)

    Sohrabi, M.; Katouzi, M.

    1993-01-01

    It was discovered that the pressure applied to the electrochemical etching (ECE) chamber system and in turn to washers holding the detector tight in place between two semi-chambers has a direct effect on the internal heating and time to breakdown of the polymer detector. The effect was found to be dependent on the type, material, shape and size of the washers holding the detector in place under pressure. To verify such parameters, a pressure ECE chamber (PECE) with measurable and reproducible pressure was designed and constructed. Three types of rubber washers, such as ''O'' rings, flat rings and sheets as well as polycarbonate (PC) detectors glued directly between two semi-syringes, were used. Flat rubber sheets were shown to have relatively minor effects on the internal heating rate and are recommended. The effect seems to be due to forced vibrations of the detector under an electric field, the frequency of which depends on the degree to which the detector is stretched under pressure, like winding the strings of a musical instrument. The results of the above studies are presented and discussed. (orig.)

  13. Finite Element Analysis of the SciFi-Nomex-Sandwich Panels

    CERN Document Server

    Schultz von Dratzig, Arndt

    2015-01-01

    A finite element analysis of the SciFi-Nomex-sandwich panels has been carried out in order to investigate their thermo-mechanical properties. This does not include the cooling of the silicon photomultipliers but is restricted to the panels themselves. Two kinds of panels have been considered: panels with 40 mm thickness and panels with 50 mm thickness. Both versions are equipped with mats of six layers of scintillating fibers. The analyses were carried out for a series of mechanical and thermal loads which might occur during the production or installation of the detector. For both versions the stiffnesses prove to be sufficient and no critical stresses or strains are found.

  14. Seismic hazard analysis. Review panel, ground motion panel, and feedback results

    International Nuclear Information System (INIS)

    Bernreuter, D.L.

    1981-10-01

    The Site Specific Spectra Project (SSSP) was a multi-year study funded by the U.S. Nuclear Regulatory Commission to provide estimates of the seismic hazards at a number of nuclear power plant sites in the Eastern U.S. A key element of our approach was the Peer Review Panel, which we formed in order to ensure that our use of expert opinion was reasonable. We discuss the Peer Review Panel results and provide the complete text of each member's report. In order to improve the ground motion model, an Eastern U.S. Ground Motion Model Panel was formed. In Section 4 we tabulate the responses from the panel members to our feedback questionnaire and discuss the implications of changes introduced by them. We conclude that the net difference in seismic hazard values from those presented in Volume 4 is small and does not warrant a reanalysis. (author)

  15. Pulse shape analysis and position determination in segmented HPGe detectors: The AGATA detector library

    Energy Technology Data Exchange (ETDEWEB)

    Bruyneel, B. [Universitaet zu Koeln, Institut fuer Kernphysik, Koeln (Germany); Service de Physique Nucleaire, CEA Saclay, Gif-sur-Yvette (France); Birkenbach, B.; Reiter, P. [Universitaet zu Koeln, Institut fuer Kernphysik, Koeln (Germany)

    2016-03-15

    The AGATA Detector Library (ADL) was developed for the calculation of signals from highly segmented large volume high-purity germanium (HPGe) detectors. ADL basis sets comprise a huge amount of calculated position-dependent detector pulse shapes. A basis set is needed for Pulse Shape Analysis (PSA). By means of PSA the interaction position of a γ -ray inside the active detector volume is determined. Theoretical concepts of the calculations are introduced and cover the relevant aspects of signal formation in HPGe. The approximations and the realization of the computer code with its input parameters are explained in detail. ADL is a versatile and modular computer code; new detectors can be implemented in this library. Measured position resolutions of the AGATA detectors based on ADL are discussed. (orig.)

  16. ECFA Detector R&D Panel, Review Report

    CERN Document Server

    Abramowicz, H.; Afanaciev, K.; Aguilar, J.; Alvarez, E.; Bambade, P.; Bortko, L.; Bozovic-Jelisavcic, I.; Castro, E.; Chelkov, G.; Coca, C.; Daniluk, W.; Dragone, A.; Dumitru, L.; Elsener, K.; Emeliantchik, I.; Firu, E.; Fischer, J.; Fiutowski, T.; Ghenescu, V.; Gostkin, M.; Grzelak, G.; Haller, G.; Henschel, H.; Ignatenko, A.; Idzik, M.; Ito, K.; Kananov, S.; Kielar, E.; Kollowa, S.; Kotula, J.; Krumstein, Z.; Krupa, B.; Kulis, S.; Lange, W.; Levy, A.; Levy, I.; Linssen, L.; Lohmann, W.; Lukic, S.; Moron, J.; Moszczynski, A.; Nauenberg, U.; Neagu, A.; Novgorodova, O.; Nuiry, F.X.; Ohlerich, M.; Orlandea, M.; Oleinik, G.; Oliwa, K.; Olshevski, A.; Pandurovic, M.; Pawlik, B.; Preda, T.; Przyborowski, D.; Sato, Y.; Sadeh, I.; Sailer, A.; Schumm, B.; Schuwalow, S.; Schwartz, R.; Smiljanic, I.; Swientek, K.; Takubo, Y.; Teodorescu, E.; Wierba, W.; Yamamoto, H.; Zawiejski, L.; Zgura, T.S.; Zhang, J.

    2014-01-01

    Two special calorimeters are foreseen for the instrumentation of the very forward region of an ILC or CLIC detector; a luminometer (LumiCal) designed to measure the rate of low angle Bhabha scattering events with a precision better than 10−3 at the ILC and 10−2 at CLIC, and a low polar-angle calorimeter (BeamCal). The latter will be hit by a large amount of beamstrahlung remnants. The intensity and the spatial shape of these depositions will provide a fast luminosity estimate, as well as determination of beam parameters. The sensors of this calorimeter must be radiation-hard. Both devices will improve the e.m. hermeticity of the detector in the search for new particles. Finely segmented and very compact electromagnetic calorimeters will match these requirements. Due to the high occupancy, fast front-end electronics will be needed. Monte Carlo studies were performed to investigate the impact of beam-beam interactions and physics background processes on the luminosity measurement, and of beamstrahlung on th...

  17. Industrial based volume manufacturing of lightweight aluminium alloy panel components with high-strength and complex-shape for car body and chassis structures

    Science.gov (United States)

    Anyasodor, Gerald; Koroschetz, Christian

    2017-09-01

    To achieve the high volume manufacture of lightweight passenger cars at economic cost as required in the automotive industry, low density materials and new process route will be needed. While high strength aluminium alloy grades: AA7075 and AA6082 may provide the alternative material solution, hot stamping process used for high-strength and ultrahigh strength steels such as boron steel 22mnb5 can enable the volume manufacture of panel components with high-strength and complex-shape for car body and chassis structures. These aluminium alloy grades can be used to manufacture panel components with possible yield strengths ≥ 500 MPa. Due to the differences in material behaviors, hot stamping process of 22mnb5 cannot be directly applied to high strength aluminium alloy grades. Despite recorded successes in laboratories, researches and niche hot forming processes of high strength aluminium alloy grades, not much have been achieved for adequate and efficient volume manufacturing system applicable in the automotive industry. Due to lack of such system and based on expert knowledge in hot stamping production-line, AP&T presents in this paper a hot stamping processing route for high strength aluminium alloys been suitable for production-line development and volume manufacturing.

  18. Advanced interferometric gravitational-wave detectors

    CERN Document Server

    Saulson, Peter R

    2019-01-01

    Gravitational waves are one of the most exciting and promising emerging areas of physics and astrophysics today. The detection of gravitational waves will rank among the most significant physics discoveries of the 21st century.Advanced Interferometric Gravitational-Wave Detectors brings together many of the world's top experts to deliver an authoritative and in-depth treatment on current and future detectors. Volume I is devoted to the essentials of gravitational-wave detectors, presenting the physical principles behind large-scale precision interferometry, the physics of the underlying noise sources that limit interferometer sensitivity, and an explanation of the key enabling technologies that are used in the detectors. Volume II provides an in-depth look at the Advanced LIGO and Advanced Virgo interferometers that have just finished construction, as well as examining future interferometric detector concepts. This two-volume set will provide students and researchers the comprehensive background needed to und...

  19. Technical characterization of five x-ray detectors for paediatric radiography applications

    Science.gov (United States)

    Marshall, N. W.; Smet, M.; Hofmans, M.; Pauwels, H.; De Clercq, T.; Bosmans, H.

    2017-12-01

    Physical image quality of five x-ray detectors used in the paediatric imaging department is characterized with the aim of establishing the range/scope of imaging performance provided by these detectors for neonatal imaging. Two computed radiography (CR) detectors (MD4.0 powder imaging plate (PIP) and HD5.0 needle imaging plate (NIP), Agfa HealthCare NV, B-2640 Mortsel, Belgium) and three flat panel detectors (FPD) (the Agfa DX-D35C and DX-D45C and the DRX-2530C (Carestream Health Inc., Rochester, NY 14608, USA)) were assessed. Physical image quality was characterized using the detector metrics given by the International Electrotechnical Commission (IEC 62220-1) to measure modulation transfer function (MTF), the noise power spectrum (NPS) and the detective quantum efficiency (DQE) using the IEC-specified beam qualities of RQA3 and RQA5. The DQE was evaluated at the normal operating detector air kerma (DAK) level, defined at 2.5 µGy for all detectors, and at factors of 1/3.2 and 3.2 times the normal level. MTF curves for the different detectors were similar at both RQA3 and RQA5 energies; the average spatial frequency for the 50% point (MTF0.5) at RQA3 was 1.26 mm-1, with a range from 1.20 mm-1 to 1.37 mm-1. The DQE of the NIP CR compared to the PIP CR was notably greater and similar to that for the FPD devices. At RQA3, average DQE for the FPD and NIP (at 0.5 mm-1 2.5 µGy) was 0.57 compared to 0.26 for the PIP CR. At the RQA5 energy, the DRX-2530C and the DX-D45C had the highest DQE (~0.6 at 0.5 mm-1 2.5 µGy). Noise separation analysis using the polynomial model showed higher electronic noise for the DX-D35C and DRX-2530C detectors; this explains the reduced DQE seen at 0.7 µGy/image. The NIP CR detector offers notably improved DQE performance compared to the PIP CR system and a value similar to the DQE for FPD devices at the RQA3 energy.

  20. Rotating detectors and Mach's principle

    Energy Technology Data Exchange (ETDEWEB)

    Paola, R.D.M. de; Svaiter, N.F

    2000-08-01

    In this work we consider a quantum version of Newton{sup s} bucket experiment in a fl;at spacetime: we take an Unruh-DeWitt detector in interaction with a real massless scalar field. We calculate the detector's excitation rate when it is uniformly rotating around some fixed point and the field is prepared in the Minkowski vacuum and also when the detector is inertial and the field is in the Trocheries-Takeno vacuum state. These results are compared and the relations with Mach's principle are discussed. (author)

  1. Embedded nonvolatile memory devices with various silicon nitride energy band gaps on glass used for flat panel display applications

    International Nuclear Information System (INIS)

    Son, Dang Ngoc; Van Duy, Nguyen; Jung, Sungwook; Yi, Junsin

    2010-01-01

    Nonvolatile memory (NVM) devices with a nitride–nitride–oxynitride stack structure on a rough poly-silicon (poly-Si) surface were fabricated using a low-temperature poly-Si (LTPS) thin film transistor technology on glass substrates for application of flat panel display (FPD). The plasma-assisted oxidation/nitridation method is used to form a uniform oxynitride with an ultrathin tunneling layer on a rough LTPS surface. The NVMs, using a Si-rich silicon nitride film as a charge-trapping layer, were proposed as one of the solutions for the improvement of device performance such as the program/erase speed, the memory window and the charge retention characteristics. To further improve the vertical scaling and charge retention characteristics of NVM devices, the high-κ high-density N-rich SiN x films are used as a blocking layer. The fabricated NVM devices have outstanding electrical properties, such as a low threshold voltage, a high ON/OFF current ratio, a low subthreshold swing, a low operating voltage of less than ±9 V and a large memory window of 3.7 V, which remained about 1.9 V over a period of 10 years. These characteristics are suitable for electrical switching and data storage with in FPD application

  2. Rocky Flats Plant Site, Golden, Colorado. Volume I. Draft environmental impact statement

    International Nuclear Information System (INIS)

    1977-09-01

    Two previous environmental statements have been issued for the Rocky Flats Plant site. One concerned a new plutonium recovery facility (WASH-1517, USAEC, January 1972); the second concerned land acquisition (WASH-1518, USAEC, April 1972). This document responds to those who indicated concerns and also ERDA's anticipated concerns about activities associated with the Rocky Flats Plant. Most concerns focus on two points including the Plant's involvement in the production of nuclear weapons and the Plant's handling of hazardous materials, particularly the radioactive element plutonium. The production of nuclear weapons, in which the Rocky Flats Plant maintains a vital role, will probably continue for as long as the world situation suggests that this country must have a strong defense. Operations at the Rocky Flats Plant have resulted in some plutonium being released to the environment, but evidence does not indicate that the amounts involved have presented any measurable hazard to human health. Ongoing improvements to the Plant's facilities and operational procedures are intended to preclude any recurrence of past releases. Despite these improvements, some public concern has resulted from past releases and the potential adverse effects from any possible future releases. This DEIS addresses that concern. It comments on past mishaps along with their causes and effects. It discusses current operations plus related costs and benefits to the region. Various alternatives to continuing present operations are explored, and the costs and benefits of the different options are compared

  3. Workshop on detectors for third-generation synchrotron sources: Proceedings

    International Nuclear Information System (INIS)

    1994-12-01

    The aims of the workshop were (1) to acquaint APS users with current R and D being carried out on detectors, (2) to identify new detector systems possible during the next five years, (3) to identify new detectors theoretically possible in the future, (4) to stimulate interactions between user groups and detector developers, and (5) to obtain recommendations from expert panels on technical issues needing resolution. Development of detectors at ESRF, Spring-8, BNL, CERN and LBL are included

  4. Workshop on detectors for third-generation synchrotron sources: Proceedings

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1994-12-01

    The aims of the workshop were (1) to acquaint APS users with current R and D being carried out on detectors, (2) to identify new detector systems possible during the next five years, (3) to identify new detectors theoretically possible in the future, (4) to stimulate interactions between user groups and detector developers, and (5) to obtain recommendations from expert panels on technical issues needing resolution. Development of detectors at ESRF, Spring-8, BNL, CERN and LBL are included.

  5. Brushless Cleaning of Solar Panels and Windows

    Science.gov (United States)

    Schneider, H. W.

    1982-01-01

    Machine proposed for cleaning solar panels and reflectors uses multiple vortexes of air, solvent, and water to remove dust and dirt. Uses no brushes that might abrade solar surfaces and thereby reduce efficiency. Machine can be readily automated and can be used on curved surfaces such as aparbolic reflectors as well as on flat ones. Cleaning fluids are recycled, so that large quantities of water and solvent are not needed.

  6. Calibration of a solid state nuclear track detector for the measurements of volumic activity of Radon

    International Nuclear Information System (INIS)

    HAKAM, O.K.; LFERDE, M.; BERRADA, M.

    1994-01-01

    Time - integrated measurements of environmental radiation activity are commonly carried out using solid state nuclear track detectors ( SSNTD ). These detectors should be calibrated of volumic activity of radon. This paper reports the results of experiments conducted to calibrate cellulose nitrate films LR - 115 type II used for measurements of volumic activity of radon in indoor air in dwellings and enclosed work areas in Morocco. Calibration measurements were made in laboratory using a calibration chamber and a radon source. The calibration chamber is a cylindric box ( 2613,6 cm sup 3)which we have manufactured of aluminium. The radon source is a natural sample rich of aluminium (17,29 + 0 ,12) Bq/g. The films are placed in detector holder with membrane and exposed inside the calibration chamber to varying concentrations of radon. Following the exposure, the films were chemically etched in sodium hydroxide (2,5 N) at 60 C for 120 minutes. The number of registered alpha particle tracks were counted with an optical microscope. In the used etching conditions, the removed mean thickness is in the order of 6 micro m. Therefore, we have normalized the track density to this value . We obtained a calibration factor of 0, 58 tracks . cm sup -2/ K Bq . h . m sup -3 . 1 tab.; 1 fig.; 2 refs. (author)

  7. Leaf trajectory verification during dynamic intensity modulated radiotherapy using an amorphous silicon flat panel imager

    International Nuclear Information System (INIS)

    Sonke, Jan-Jakob; Ploeger, Lennert S.; Brand, Bob; Smitsmans, Monique H.P.; Herk, Marcel van

    2004-01-01

    An independent verification of the leaf trajectories during each treatment fraction improves the safety of IMRT delivery. In order to verify dynamic IMRT with an electronic portal imaging device (EPID), the EPID response should be accurate and fast such that the effect of motion blurring on the detected moving field edge position is limited. In the past, it was shown that the errors in the detected position of a moving field edge determined by a scanning liquid-filled ionization chamber (SLIC) EPID are negligible in clinical practice. Furthermore, a method for leaf trajectory verification during dynamic IMRT was successfully applied using such an EPID. EPIDs based on amorphous silicon (a-Si) arrays are now widely available. Such a-Si flat panel imagers (FPIs) produce portal images with superior image quality compared to other portal imaging systems, but they have not yet been used for leaf trajectory verification during dynamic IMRT. The aim of this study is to quantify the effect of motion distortion and motion blurring on the detection accuracy of a moving field edge for an Elekta iViewGT a-Si FPI and to investigate its applicability for the leaf trajectory verification during dynamic IMRT. We found that the detection error for a moving field edge to be smaller than 0.025 cm at a speed of 0.8 cm/s. Hence, the effect of motion blurring on the detection accuracy of a moving field edge is negligible in clinical practice. Furthermore, the a-Si FPI was successfully applied for the verification of dynamic IMRT. The verification method revealed a delay in the control system of the experimental DMLC that was also found using a SLIC EPID, resulting in leaf positional errors of 0.7 cm at a leaf speed of 0.8 cm/s

  8. Microsonic detector (MSD)

    International Nuclear Information System (INIS)

    Bober, J.T.; Haridas, P.; Oh, S.H.; Pless, I.A.; Stoughton, T.B.

    1983-01-01

    The microsonic detector (MSD) has good spatial resolution, moderate flux capacity, moderate event rate, and small volume. The MSD is a super clean bubble chamber driven at 10-50 KHz. It would be used in experiments as a vertex detector to detect short lived particles. Its characteristics--active volume, density, absorption length, radiation length, and spatial resolution--are given. The setup is schematicized, and a photograph of a 130 MeV/C photon bremsstrahlung beam is given

  9. Design study of a high-resolution breast-dedicated PET system built from cadmium zinc telluride detectors

    International Nuclear Information System (INIS)

    Peng Hao; Levin, Craig S

    2010-01-01

    We studied the performance of a dual-panel positron emission tomography (PET) camera dedicated to breast cancer imaging using Monte Carlo simulation. The proposed system consists of two 4 cm thick 12 x 15 cm 2 area cadmium zinc telluride (CZT) panels with adjustable separation, which can be put in close proximity to the breast and/or axillary nodes. Unique characteristics distinguishing the proposed system from previous efforts in breast-dedicated PET instrumentation are the deployment of CZT detectors with superior spatial and energy resolution, using a cross-strip electrode readout scheme to enable 3D positioning of individual photon interaction coordinates in the CZT, which includes directly measured photon depth-of-interaction (DOI), and arranging the detector slabs edge-on with respect to incoming 511 keV photons for high photon sensitivity. The simulation results show that the proposed CZT dual-panel PET system is able to achieve superior performance in terms of photon sensitivity, noise equivalent count rate, spatial resolution and lesion visualization. The proposed system is expected to achieve ∼32% photon sensitivity for a point source at the center and a 4 cm panel separation. For a simplified breast phantom adjacent to heart and torso compartments, the peak noise equivalent count (NEC) rate is predicted to be ∼94.2 kcts s -1 (breast volume: 720 cm 3 and activity concentration: 3.7 kBq cm -3 ) for a ∼10% energy window around 511 keV and ∼8 ns coincidence time window. The system achieves 1 mm intrinsic spatial resolution anywhere between the two panels with a 4 cm panel separation if the detectors have DOI resolution less than 2 mm. For a 3 mm DOI resolution, the system exhibits excellent sphere resolution uniformity (σ rms /mean) ≤ 10%) across a 4 cm width FOV. Simulation results indicate that the system exhibits superior hot sphere visualization and is expected to visualize 2 mm diameter spheres with a 5:1 activity concentration ratio within

  10. Daya Bay Antineutrino Detector gas system

    Science.gov (United States)

    Band, H. R.; Cherwinka, J. J.; Chu, M.-C.; Heeger, K. M.; Kwok, M. W.; Shih, K.; Wise, T.; Xiao, Q.

    2012-11-01

    The Daya Bay Antineutrino Detector gas system is designed to protect the liquid scintillator targets of the antineutrino detectors against degradation and contamination from exposure to ambient laboratory air. The gas system is also used to monitor the leak tightness of the antineutrino detector assembly. The cover gas system constantly flushes the gas volumes above the liquid scintillator with dry nitrogen to minimize oxidation of the scintillator over the five year lifetime of the experiment. This constant flush also prevents the infiltration of radon or other contaminants into these detecting liquids keeping the internal backgrounds low. Since the Daya Bay antineutrino detectors are immersed in the large water pools of the muon veto system, other gas volumes are needed to protect vital detector cables or gas lines. These volumes are also purged with dry gas. Return gas is monitored for oxygen content and humidity to provide early warning of potentially damaging leaks. The design and performance of the Daya Bay Antineutrino Detector gas system is described.

  11. Pediatric radiation dose management in digital radiography

    International Nuclear Information System (INIS)

    Neitzel, U.

    2004-01-01

    Direct digital radiography (DR) systems based on flat-panel detectors offer improved dose management in pediatric radiography. Integration of X-ray generation and detection in one computer-controlled system provides better control and monitoring

  12. Innovative Ballasted Flat Roof Solar PV Racking System

    Energy Technology Data Exchange (ETDEWEB)

    Peek, Richard T. [Cascade Engineering, Grand Rapids, MI (United States)

    2014-12-15

    The objective of this project was to reduce the cost of racking for PV solar on flat commercial rooftops. Cost reductions would come from both labor savings and material savings related to the installation process. The rack would need to accommodate the majority of modules available on the market. Cascade Engineering has a long history of converting traditional metal type applications over to plastic. Injection molding of plastics have numerous advantages including selection of resin for the application, placing the material exactly where it is needed, designing in features that will speed up the installation process, and weight reduction of the array. A plastic rack would need to meet the requirements of UL2703, Mounting systems, mounting devices, clamping/retention devices, and ground lugs for use with flat-plate photovoltaic modules and panels. Comparing original data to the end of project racking design, racking material costs were reduced 50% and labor costs reduced 64%. The racking product accommodates all 60 and 72 cell panels on the market, meets UL2703 requirements, contributes only 1.3 pounds per square foot of weight to the array, requires little ballast to secure the array, automatically grounds the module when the module is secured, stacks/nests well for shipping/fewer lifts to the roof, provides integrated wire routing, allows water to drain on the roof, and accommodates various seismic roof connections. Project goals were achieved as noted in the original funding application.

  13. Fracture Analysis of the FAA/NASA Wide Stiffened Panels

    Science.gov (United States)

    Seshadri, B. R.; Newman, J. C., Jr.; Dawicke, D. S.; Young, R. D.

    1999-01-01

    This paper presents the fracture analyses conducted on the FAA/NASA stiffened and unstiffened panels using the STAGS (STructural Analysis of General Shells) code with the critical crack-tip-opening angle (CTOA) fracture criterion. The STAGS code with the "plane-strain" core option was used in all analyses. Previous analyses of wide, flat panels have shown that the high-constraint conditions around a crack front, like plane strain, has to be modeled in order for the critical CTOA fracture criterion to predict wide panel failures from small laboratory tests. In the present study, the critical CTOA value was determined from a wide (unstiffened) panel with anti-buckling guides. The plane-strain core size was estimated from previous fracture analyses and was equal to about the sheet thickness. Rivet flexibility and stiffener failure was based on methods and criteria, like that currently used in industry. STAGS and the CTOA criterion were used to predict load-against-crack extension for the wide panels with a single crack and multiple-site damage cracking at many adjacent rivet holes. Analyses were able to predict stable crack growth and residual strength within a few percent (5%) of stiffened panel tests results but over predicted the buckling failure load on an unstiffened panel with a single crack by 10%.

  14. Stress analyses of flat plates with attached nozzles. Vol. 2: Experimental stress analyses of a flat plate with one nozzle attached

    International Nuclear Information System (INIS)

    Battiste, R.L.; Peters, W.H.; Ranson, W.F.; Swinson, W.F.

    1975-07-01

    Vol. 1 of this report compares experimental results with theoretical stress distributions for a flat plate with one nozzle configuration and for a flat plate with two closely spaced nozzles attached. This volume contains the complete test results for a flat plate with one nozzle attached that was subjected to 1:1 and 1:2 biaxial planar loadings on the plate, to a thrust loading on the nozzle, and to a moment loading on the nozzle. The plate tested was 36 x 36 x 0.375 in., and the attached nozzle had an outer dia of 2.625 in. and a 0.250-in.-thick wall. The nozzle was located in the center of the plate and was considered to be free of weld distortions and irregularities in the junction area. (U.S.)

  15. Three dimensional volume rendering virtual endoscopy of the ossicles using a multi-row detector CT: applications and limitations

    International Nuclear Information System (INIS)

    Kim, Su Yeon; Choi, Sun Seob; Kang, Myung Jin; Shin, Tae Beom; Lee, Ki Nam; Kang, Myung Koo

    2005-01-01

    This study was conducted to know the applications and limitations of three dimensional volume rendering virtual endoscopy of the ossicles using a multi-row detector CT. This study examined 25 patients who underwent temporal bone CT using a 16-row detector CT as a result of hearing problems or trauma. The axial CT scan of the temporal bone was performed with a 0.6 mm collimation, and a reconstruction was carried out with a U70u sharp of kernel value, a 1 mm thickness and 0.5-1.0 mm increments. After observing the ossicles in the axial and coronal images, virtual endoscopy was performed using a three dimensional volume rendering technique with a threshold value of-500 HU. The intra-operative otoendoscopy was performed in 12 ears, and was compared with the virtual endoscopy findings. Virtual endoscopy of the 29 ears without hearing problems demonstrated hypoplastic or an incomplete depiction of the stapes superstructures in 25 ears and a normal depiction in 4 ears. Virtual endoscopy of 21 ears with hearing problems demonstrated no ossicles in 1 ears, no malleus in 3 ears, a malleoincudal subluxation in 6 ears, a dysplastic incus in 5 ears, an incudostapedial subluxation in 9 ears, dysplastic stapes in 2 ears, a hypoplastic or incomplete depiction of the stapes in 16 ears and no stapes in 1 ears. In contrast to the intra-operative otoendoscopy, 8 out of 12 ears showed a hypoplastic or deformed stapes in the virtual endoscopy. Volume rendering virtual endoscopy using a multi-row detector CT is an excellent method for evaluation the ossicles in three dimension, even thought the partial volume effect for the stapes superstructures needs to be considered

  16. Material inhomogeneities in Cd1-xZnxTe and their effects on large volume gamma-ray detectors

    International Nuclear Information System (INIS)

    Scyoc, J.M. Van; Lund, J.C.; Morse, D.H.

    1997-01-01

    Cadmium zinc telluride (Cd 1-x Zn x Te or CZT) has shown great promise as a material for room-temperature x-ray and gamma-ray detectors. In particular, polycrystalline material grown by the High Pressure Bridgman method with nominal Zn fraction (x) from 0.1 to 0.2 has been used to fabricate high resolution gamma-ray spectrometers with resolution approaching that of cooled high-purity Ge. For increased sensitivity, large areas (> 1 cm 2 ) are required, and for good sensitivity to high energy gamma photons, thick detectors (on the order of 1 cm) are required. Thus there has been a push for the development of CZT detectors with a volume greater than 1 cm 3 . However, nonuniformities in the material over this scale degrade the performance of the detectors. Variations in the zinc fraction, and thus the bandgap, and changes in the impurity distributions, both of which arise from the selective segregation of elements during crystal growth, result in spectral distortions. In this work several materials characterization techniques were combined with detector evaluations to determine the materials properties limiting detector performance. Materials measurements were performed on detectors found to have differing performance. Measurements conducted include infrared transmission (IR), particle induced x-ray emission (PIXE), photoluminescence (PL), and triaxial x-ray diffraction (TAXRD). To varying degrees, these measurements reveal that poor-performance detectors exhibit higher nonuniformities than spectrometer-grade detectors. This is reasonable, as regions of CZT material with different properties will give different localized spectral responses, which combine to result in a degraded spectrum for the total device

  17. Simulated hail impact testing of photovoltaic solar panels

    Science.gov (United States)

    Moore, D.; Wilson, A.; Ross, R.

    1978-01-01

    Techniques used to simulate and study the effect of hail on photovoltaic solar panels are described. Simulated hail stones (frozen ice spheres projected at terminal velocity) or steel balls were applied by air guns, gravity drop, or static loading. Tests with simulated hail and steel balls yielded different results. The impact strength of 10 commercially available flat-plate photovoltaic modules was tested. It was found that none of the six panel designs incorporating clear potting silicone material as the outermost layer remained undamaged by 1-in. simulated hailstones, while a photovoltaic module equipped with a 0.188-in.-thick acrylic cover sheet would be able to withstand the impact of a 2-in.-diameter hailstone.

  18. Scintillator high-gain avalanche rushing photoconductor active-matrix flat panel imager: zero-spatial frequency x-ray imaging properties of the solid-state SHARP sensor structure.

    Science.gov (United States)

    Wronski, M; Zhao, W; Tanioka, K; Decrescenzo, G; Rowlands, J A

    2012-11-01

    The authors are investigating the feasibility of a new type of solid-state x-ray imaging sensor with programmable avalanche gain: scintillator high-gain avalanche rushing photoconductor active matrix flat panel imager (SHARP-AMFPI). The purpose of the present work is to investigate the inherent x-ray detection properties of SHARP and demonstrate its wide dynamic range through programmable gain. A distributed resistive layer (DRL) was developed to maintain stable avalanche gain operation in a solid-state HARP. The signal and noise properties of the HARP-DRL for optical photon detection were investigated as a function of avalanche gain both theoretically and experimentally, and the results were compared with HARP tube (with electron beam readout) used in previous investigations of zero spatial frequency performance of SHARP. For this new investigation, a solid-state SHARP x-ray image sensor was formed by direct optical coupling of the HARP-DRL with a structured cesium iodide (CsI) scintillator. The x-ray sensitivity of this sensor was measured as a function of avalanche gain and the results were compared with the sensitivity of HARP-DRL measured optically. The dynamic range of HARP-DRL with variable avalanche gain was investigated for the entire exposure range encountered in radiography∕fluoroscopy (R∕F) applications. The signal from HARP-DRL as a function of electric field showed stable avalanche gain, and the noise associated with the avalanche process agrees well with theory and previous measurements from a HARP tube. This result indicates that when coupled with CsI for x-ray detection, the additional noise associated with avalanche gain in HARP-DRL is negligible. The x-ray sensitivity measurements using the SHARP sensor produced identical avalanche gain dependence on electric field as the optical measurements with HARP-DRL. Adjusting the avalanche multiplication gain in HARP-DRL enabled a very wide dynamic range which encompassed all clinically relevant

  19. Scintillator high-gain avalanche rushing photoconductor active-matrix flat panel imager: Zero-spatial frequency x-ray imaging properties of the solid-state SHARP sensor structure

    International Nuclear Information System (INIS)

    Wronski, M.; Zhao, W.; Tanioka, K.; DeCrescenzo, G.; Rowlands, J. A.

    2012-01-01

    Purpose: The authors are investigating the feasibility of a new type of solid-state x-ray imaging sensor with programmable avalanche gain: scintillator high-gain avalanche rushing photoconductor active matrix flat panel imager (SHARP-AMFPI). The purpose of the present work is to investigate the inherent x-ray detection properties of SHARP and demonstrate its wide dynamic range through programmable gain. Methods: A distributed resistive layer (DRL) was developed to maintain stable avalanche gain operation in a solid-state HARP. The signal and noise properties of the HARP-DRL for optical photon detection were investigated as a function of avalanche gain both theoretically and experimentally, and the results were compared with HARP tube (with electron beam readout) used in previous investigations of zero spatial frequency performance of SHARP. For this new investigation, a solid-state SHARP x-ray image sensor was formed by direct optical coupling of the HARP-DRL with a structured cesium iodide (CsI) scintillator. The x-ray sensitivity of this sensor was measured as a function of avalanche gain and the results were compared with the sensitivity of HARP-DRL measured optically. The dynamic range of HARP-DRL with variable avalanche gain was investigated for the entire exposure range encountered in radiography/fluoroscopy (R/F) applications. Results: The signal from HARP-DRL as a function of electric field showed stable avalanche gain, and the noise associated with the avalanche process agrees well with theory and previous measurements from a HARP tube. This result indicates that when coupled with CsI for x-ray detection, the additional noise associated with avalanche gain in HARP-DRL is negligible. The x-ray sensitivity measurements using the SHARP sensor produced identical avalanche gain dependence on electric field as the optical measurements with HARP-DRL. Adjusting the avalanche multiplication gain in HARP-DRL enabled a very wide dynamic range which encompassed all

  20. Aerodynamics of the Large-Volume, Flow-Through Detector System. Final report

    International Nuclear Information System (INIS)

    Reed, H.; Saric, W.; Laananen, D.; Martinez, C.; Carrillo, R.; Myers, J.; Clevenger, D.

    1996-03-01

    The Large-Volume Flow-Through Detector System (LVFTDS) was designed to monitor alpha radiation from Pu, U, and Am in mixed-waste incinerator offgases; however, it can be adapted to other important monitoring uses that span a number of potential markets, including site remediation, indoor air quality, radon testing, and mine shaft monitoring. Goal of this effort was to provide mechanical design information for installation of LVFTDS in an incinerator, with emphasis on ability to withstand the high temperatures and high flow rates expected. The work was successfully carried out in three stages: calculation of pressure drop through the system, materials testing to determine surrogate materials for wind-tunnel testing, and wind-tunnel testing of an actual configuration

  1. SU-E-I-40: New Method for Measurement of Task-Specific, High-Resolution Detector System Performance

    Energy Technology Data Exchange (ETDEWEB)

    Loughran, B; Singh, V; Jain, A; Bednarek, D; Rudin, S [University at Buffalo, Buffalo, NY (United States)

    2014-06-01

    Purpose: Although generalized linear system analytic metrics such as GMTF and GDQE can evaluate performance of the whole imaging system including detector, scatter and focal-spot, a simplified task-specific measured metric may help to better compare detector systems. Methods: Low quantum-noise images of a neuro-vascular stent with a modified ANSI head phantom were obtained from the average of many exposures taken with the high-resolution Micro-Angiographic Fluoroscope (MAF) and with a Flat Panel Detector (FPD). The square of the Fourier Transform of each averaged image, equivalent to the measured product of the system GMTF and the object function in spatial-frequency space, was then divided by the normalized noise power spectra (NNPS) for each respective system to obtain a task-specific generalized signal-to-noise ratio. A generalized measured relative object detectability (GM-ROD) was obtained by taking the ratio of the integral of the resulting expressions for each detector system to give an overall metric that enables a realistic systems comparison for the given detection task. Results: The GM-ROD provides comparison of relative performance of detector systems from actual measurements of the object function as imaged by those detector systems. This metric includes noise correlations and spatial frequencies relevant to the specific object. Additionally, the integration bounds for the GM-ROD can be selected to emphasis the higher frequency band of each detector if high-resolution image details are to be evaluated. Examples of this new metric are discussed with a comparison of the MAF to the FPD for neuro-vascular interventional imaging. Conclusion: The GM-ROD is a new direct-measured task-specific metric that can provide clinically relevant comparison of the relative performance of imaging systems. Supported by NIH Grant: 2R01EB002873 and an equipment grant from Toshiba Medical Systems Corporation.

  2. Collective phenomena in volume and surface barrier discharges

    Science.gov (United States)

    Kogelschatz, U.

    2010-11-01

    Barrier discharges are increasingly used as a cost-effective configuration to produce non-equilibrium plasmas at atmospheric pressure. This way, copious amounts of electrons, ions, free radicals and excited species can be generated without significant heating of the background gas. In most applications the barrier is made of dielectric material. Major applications utilizing mainly dielectric barriers include ozone generation, surface cleaning and modification, polymer and textile treatment, sterilization, pollution control, CO2 lasers, excimer lamps, plasma display panels (flat TV screens). More recent research efforts are devoted to biomedical applications and to plasma actuators for flow control. Sinusoidal feeding voltages at various frequencies as well as pulsed excitation schemes are used. Volume as well as surface barrier discharges can exist in the form of filamentary, regularly patterned or diffuse, laterally homogeneous discharges. The physical effects leading to collective phenomena in volume and surface barrier discharges are discussed in detail. Special attention is paid to self-organization of current filaments and pattern formation. Major similarities of the two types of barrier discharges are elaborated.

  3. Atomic Safety and Licensing Board Panel Biennial Report, Fiscal Years 1993--1994. Volume 6

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-08-01

    In Fiscal Year 1993, the Atomic Safety and Licensing Board Panel (``the Panel``) handled 30 proceedings. In Fiscal Year 1994, the Panel handled 36 proceedings. The cases addressed issues in the construction, operation, and maintenance of commercial nuclear power reactors and other activities requiring a license form the Nuclear Regulatory Commission. This report sets out the Panel`s caseload during the year and summarizes, highlight, and analyzes how the wide- ranging issues raised in those proceedings were addressed by the Panel`s judges and licensing boards.

  4. Kinematic tests of exotic flat cosmological models

    International Nuclear Information System (INIS)

    Charlton, J.C.; Turner, M.S.; NASA/Fermilab Astrophysics Center, Batavia, IL)

    1987-01-01

    Theoretical prejudice and inflationary models of the very early universe strongly favor the flat, Einstein-de Sitter model of the universe. At present the observational data conflict with this prejudice. This conflict can be resolved by considering flat models of the universe which posses a smooth component of energy density. The kinematics of such models, where the smooth component is relativistic particles, a cosmological term, a network of light strings, or fast-moving, light strings is studied in detail. The observational tests which can be used to discriminate between these models are also discussed. These tests include the magnitude-redshift, lookback time-redshift, angular size-redshift, and comoving volume-redshift diagrams and the growth of density fluctuations. 58 references

  5. Kinematic tests of exotic flat cosmological models

    International Nuclear Information System (INIS)

    Charlton, J.C.; Turner, M.S.

    1986-05-01

    Theoretical prejudice and inflationary models of the very early Universe strongly favor the flat, Einstein-deSitter model of the Universe. At present the observational data conflict with this prejudice. This conflict can be resolved by considering flat models of the Universe which possess a smooth component by energy density. We study in detail the kinematics of such models, where the smooth component is relativistic particles, a cosmological term, a network of light strings, or fast-moving, light strings. We also discuss the observational tests which can be used to discriminate between these models. These tests include the magnitude-redshift, lookback time-redshift, angular size-redshift, and comoving volume-redshift diagrams and the growth of density fluctuations

  6. Kinematic tests of exotic flat cosmological models

    Energy Technology Data Exchange (ETDEWEB)

    Charlton, J.C.; Turner, M.S.

    1986-05-01

    Theoretical prejudice and inflationary models of the very early Universe strongly favor the flat, Einstein-deSitter model of the Universe. At present the observational data conflict with this prejudice. This conflict can be resolved by considering flat models of the Universe which possess a smooth component by energy density. We study in detail the kinematics of such models, where the smooth component is relativistic particles, a cosmological term, a network of light strings, or fast-moving, light strings. We also discuss the observational tests which can be used to discriminate between these models. These tests include the magnitude-redshift, lookback time-redshift, angular size-redshift, and comoving volume-redshift diagrams and the growth of density fluctuations.

  7. Scintillation Detectors for Charged Particles and Photons

    CERN Document Server

    Lecoq, P

    2011-01-01

    Scintillation Detectors for Charged Particles and Photons in 'Charged Particle Detectors - Particle Detectors and Detector Systems', part of 'Landolt-Börnstein - Group I Elementary Particles, Nuclei and Atoms: Numerical Data and Functional Relationships in Science and Technology, Volume 21B1: Detectors for Particles and Radiation. Part 1: Principles and Methods'. This document is part of Part 1 'Principles and Methods' of Subvolume B 'Detectors for Particles and Radiation' of Volume 21 'Elementary Particles' of Landolt-Börnstein - Group I 'Elementary Particles, Nuclei and Atoms'. It contains the Subsection '3.1.1 Scintillation Detectors for Charged Particles and Photons' of Section '3.1 Charged Particle Detectors' of Chapter '3 Particle Detectors and Detector Systems' with the content: 3.1.1 Scintillation Detectors for Charged Particles and Photons 3.1.1.1 Basic detector principles and scintillator requirements 3.1.1.1.1 Interaction of ionizing radiation with scintillator material 3.1.1.1.2 Important scint...

  8. Detectors in Medicine and Biology: Applications of Detectors in Technology, Medicine and Other Fields

    CERN Document Server

    Lecoq, P

    2011-01-01

    Detectors in Medicine and Biology in 'Applications of Detectors in Technology, Medicine and Other Fields', part of 'Landolt-Börnstein - Group I Elementary Particles, Nuclei and Atoms: Numerical Data and Functional Relationships in Science and Technology, Volume 21B2: Detectors for Particles and Radiation. Part 2: Systems and Applications'. This document is part of Part 2 'Principles and Methods' of Subvolume B 'Detectors for Particles and Radiation' of Volume 21 'Elementary Particles' of Landolt-Börnstein - Group I 'Elementary Particles, Nuclei and Atoms'. It contains the Section '7.1 Detectors in Medicine and Biology' of Chapter '7 Applications of Detectors in Technology; Medicine and Other Fields' with the content: 7.1 Detectors in Medicine and Biology 7.1.1 Dosimetry and medical imaging 7.1.1.1 Radiotherapy and dosimetry 7.1.1.2 Status of medical imaging 7.1.1.3 Towards in-vivo molecular imaging 7.1.2 X-Ray radiography and computed tomography (CT) 7.1.2.1 Different X-Ray imaging modalities 7.1.2.2 Detec...

  9. Effects of fire retardants on physical, mechanical, and fire properties of flat-pressed WPCs

    Science.gov (United States)

    Nadir Ayrilmis; Jan T. Benthien; Heiko Thoemen; Robert H. White

    2012-01-01

    Physical, mechanical, and fire properties of the flat-pressed wood plastic composites (WPCs) incorporated with various fire retardants (10% by weight) at different levels of wood flour (WF) content, 40, 50, or 60 wt%, were investigated. The WPC panels were made from dry-blended WF, polypropylene (PP), and fire retardant (FR) powders with maleic anhydride-grafted PP (2...

  10. Digital radiography of the chest in pediatric patients

    International Nuclear Information System (INIS)

    Puig, S.

    2003-01-01

    The hopes placed in digital radiography have been fulfilled only partly in pediatric radiology. Specifically, the option of gaining reduced radiation exposure in combination with a similar or even improved image quality was hard to realize. The only portable digital system available for a long time were storage phosphors which were disadvantaged by an extremely limited dose-quantum-efficiency (DQE) in comparison to digital flat panel detectors. New developments and the introduction of the dual-reading system led to image qualities comparable to film-screen-systems with high resolution and achievable without dose increase, sometimes even with dose reduction. A study using an animal model suggests that these systems can even be used in preterm infants with very low birth weights. A new portable flat panel detector by Canon may improve digital chest radiography in pediatric patients. (orig.) [de

  11. Can Integrated Micro-Optical Concentrator Technology Revolutionize Flat-Plate Photovoltaic Solar Energy Harvesting?

    Science.gov (United States)

    Haney, Michael W.

    2015-12-01

    The economies-of-scale and enhanced performance of integrated micro-technologies have repeatedly delivered disruptive market impact. Examples range from microelectronics to displays to lighting. However, integrated micro-scale technologies have yet to be applied in a transformational way to solar photovoltaic panels. The recently announced Micro-scale Optimized Solar-cell Arrays with Integrated Concentration (MOSAIC) program aims to create a new paradigm in solar photovoltaic panel technology based on the incorporation of micro-concentrating photo-voltaic (μ-CPV) cells. As depicted in Figure 1, MOSAIC will integrate arrays of micro-optical concentrating elements and micro-scale PV elements to achieve the same aggregated collection area and high conversion efficiency of a conventional (i.e., macro-scale) CPV approach, but with the low profile and mass, and hopefully cost, of a conventional non-concentrated PV panel. The reduced size and weight, and enhanced wiring complexity, of the MOSAIC approach provide the opportunity to access the high-performance/low-cost region between the conventional CPV and flat-plate (1-sun) PV domains shown in Figure 2. Accessing this portion of the graph in Figure 2 will expand the geographic and market reach of flat-plate PV. This talk reviews the motivation and goals for the MOSAIC program. The diversity of the technical approaches to micro-concentration, embedded solar tracking, and hybrid direct/diffuse solar resource collection found in the MOSAIC portfolio of projects will also be highlighted.

  12. Software Simulates Sight: Flat Panel Mura Detection

    Science.gov (United States)

    2008-01-01

    In the increasingly sophisticated world of high-definition flat screen monitors and television screens, image clarity and the elimination of distortion are paramount concerns. As the devices that reproduce images become more and more sophisticated, so do the technologies that verify their accuracy. By simulating the manner in which a human eye perceives and interprets a visual stimulus, NASA scientists have found ways to automatically and accurately test new monitors and displays. The Spatial Standard Observer (SSO) software metric, developed by Dr. Andrew B. Watson at Ames Research Center, measures visibility and defects in screens, displays, and interfaces. In the design of such a software tool, a central challenge is determining which aspects of visual function to include while accuracy and generality are important, relative simplicity of the software module is also a key virtue. Based on data collected in ModelFest, a large cooperative multi-lab project hosted by the Optical Society of America, the SSO simulates a simplified model of human spatial vision, operating on a pair of images that are viewed at a specific viewing distance with pixels having a known relation to luminance. The SSO measures the visibility of foveal spatial patterns, or the discriminability of two patterns, by incorporating only a few essential components of vision. These components include local contrast transformation, a contrast sensitivity function, local masking, and local pooling. By this construction, the SSO provides output in units of "just noticeable differences" (JND) a unit of measure based on the assumed smallest difference of sensory input detectable by a human being. Herein is the truly amazing ability of the SSO, while conventional methods can manipulate images, the SSO models human perception. This set of equations actually defines a mathematical way of working with an image that accurately reflects the way in which the human eye and mind behold a stimulus. The SSO is

  13. Public involvement and risk communiction for the Rocky Flats health studies

    International Nuclear Information System (INIS)

    Zoda, S.M.; Lockhart, A.J.

    1993-01-01

    In 1990, the State of Colorado and the U.S. Department of Energy entered into an Agreement in Principle that provides funding for state studies and monitoring of the Rocky Flats Nuclear Weapons Plant. The Colorado Department of Health initiated a two-phase study to identify releases of radioactive and other contaminants from the year 1952, when Rocky Flats opened, through 1989, and to estimate the potential offsite exposures and health effects. Because one of the main goals for the study is to answer citizen questions about past operations and impacts from the Rocky Flats Plant, the Department of Health designed an open study process featuring a multi-faceted program for public involvement and two-way communication. To provide independent scientific oversight and increase public accountability, Governor Roy Romer appointed a 12-member Health Advisory Panel that includes local and national technical experts and community members. This paper describes the study process and the public involvement and risk communication program designed to address citizen concerns, foster understanding and build credibility

  14. Use of informatics in radiation control panels

    International Nuclear Information System (INIS)

    Cochinal, R.; Grimont, B.; Mai, V.

    1980-03-01

    Radiation control panels with programmed systems have developed at the CEA over the last few years. Each monitored location is provided with an monitoring station containing: - a radiation detector and associated electronics (the output signal is normalised calibrated pulses), - an alarm unit to warn personnal of any danger inside the detection zone covered [fr

  15. Low Energy Neutrino Astronomy in the future large-volume liquid-scintillator detector LENA

    International Nuclear Information System (INIS)

    Wurm, Michael; Feilitzsch, F V; Goeger-Neff, M; Lewke, T; Undagoitia, T Marrodan; Oberauer, L; Potzel, W; Todor, S; Winter, J

    2008-01-01

    The recent successes in neutrino physics prove that liquid-scintillator detectors allow to combine high energy resolution, efficient means of background reduction, and a large detection volume. In the planned LENA (Low Energy Neutrino Astronomy) experiment, a target mass of 50 kt will enable the investigation of a variety of terrestrial and astrophysical neutrino sources. The high-statistics spectroscopy of geoneutrinos, solar neutrinos and supernova neutrinos will provide new insights in the heat production processes of Earth and Sun, and the workings of a gravitational collapse. The same measurements will as well investigate neutrino properties as oscillation parameters and mass hierarchy. A first spectroscopic measurement of the low flux of diffuse supernova neutrino background is within the sensitivity of the LENA detector. Finally, a life-time limit of several 1034 years can be set to the proton decay into proton and anti-neutrino, testing the predictions of SUSY theory. The present contribution includes a review of the scientific studies that were performed in the last years as well as a report on currently on-going R and D activities.

  16. Low Energy Neutrino Astronomy in the future large-volume liquid-scintillator detector LENA

    Energy Technology Data Exchange (ETDEWEB)

    Wurm, Michael; Feilitzsch, F V; Goeger-Neff, M; Lewke, T; Undagoitia, T Marrodan; Oberauer, L; Potzel, W; Todor, S; Winter, J [E15 Chair for Astroparticle Physics, Technische Universitat Miinchen, Physik Department, James-Franck-Str., D-85748 Garching (Germany)

    2008-11-01

    The recent successes in neutrino physics prove that liquid-scintillator detectors allow to combine high energy resolution, efficient means of background reduction, and a large detection volume. In the planned LENA (Low Energy Neutrino Astronomy) experiment, a target mass of 50 kt will enable the investigation of a variety of terrestrial and astrophysical neutrino sources. The high-statistics spectroscopy of geoneutrinos, solar neutrinos and supernova neutrinos will provide new insights in the heat production processes of Earth and Sun, and the workings of a gravitational collapse. The same measurements will as well investigate neutrino properties as oscillation parameters and mass hierarchy. A first spectroscopic measurement of the low flux of diffuse supernova neutrino background is within the sensitivity of the LENA detector. Finally, a life-time limit of several 1034 years can be set to the proton decay into proton and anti-neutrino, testing the predictions of SUSY theory. The present contribution includes a review of the scientific studies that were performed in the last years as well as a report on currently on-going R and D activities.

  17. Inter-crystal scatter identification for a depth-sensitive detector using support vector machine for small animal positron emission tomography

    Energy Technology Data Exchange (ETDEWEB)

    Yoshida, Eiji [National Institute of Radiological Sciences, Anagawa 4-9-1 Inage-ku, Chiba-shi, Chiba 263-8555 (Japan)]. E-mail: rush@nirs.go.jp; Kitamura, Keishi [National Institute of Radiological Sciences, Anagawa 4-9-1 Inage-ku, Chiba-shi, Chiba 263-8555 (Japan); Shimadzu Corporation, Nishinokyo Kuwabaracho 1 Nakagyo-ku, Kyoto-shi, Kyoto 604-8511 (Japan); Kimura, Yuichi [Tokyo Metropolitan Institute of Gerontology, Nakamachi 1-1 Itabashi-ku, Tokyo 173-0022 (Japan); Nishikido, Fumihiko [National Institute of Radiological Sciences, Anagawa 4-9-1 Inage-ku, Chiba-shi, Chiba 263-8555 (Japan); Shibuya, Kengo [National Institute of Radiological Sciences, Anagawa 4-9-1 Inage-ku, Chiba-shi, Chiba 263-8555 (Japan); Yamaya, Taiga [National Institute of Radiological Sciences, Anagawa 4-9-1 Inage-ku, Chiba-shi, Chiba 263-8555 (Japan); Murayama, Hideo [National Institute of Radiological Sciences, Anagawa 4-9-1 Inage-ku, Chiba-shi, Chiba 263-8555 (Japan)

    2007-02-01

    In a conventional positron emission tomography (PET) detector, detected events are projected onto a 2D position histogram by an Anger calculation for crystal identification. However, the measured histogram is affected by inter-crystal scatterings (ICS) which occur in the entire detector. Peaks which are projected for each crystal in the histogram are blurred, and this causes ICS mispositioning. A depth-of-interaction (DOI) detector has been developed for the small animal PET scanner jPET-RD. This DOI detector uses 32x32 crystals with four layers and a 256-channel multi-anode flat panel photomultiplier tube (FP-PMT) which was developed by Hamamatsu Photonics K.K. Each crystal element is 1.45x1.45x4.5 mm{sup 3}. The FP-PMT has a large detective area (49x49 mm{sup 2}) and a small anode pitch (3.04 mm). Therefore, the FP-PMT can extensively trace the behavior of incident {gamma} rays in the crystals including ICS event. We, therefore, propose a novel method for ICS estimation using a statistical pattern recognition algorithm based on a support vector machine (SVM). In this study, we applied the SVM for discriminating photoelectric events from ICS events generated from multiple-anode outputs. The SVM was trained by uniform irradiation events generated from a detector simulator using a Monte Carlo calculation. The success rate for ICS event identification is about 78% for non-training data. The SVM can achieve a true subtraction of ICS events from measured events, and it is also useful for random correction in PET.

  18. Inter-crystal scatter identification for a depth-sensitive detector using support vector machine for small animal positron emission tomography

    International Nuclear Information System (INIS)

    Yoshida, Eiji; Kitamura, Keishi; Kimura, Yuichi; Nishikido, Fumihiko; Shibuya, Kengo; Yamaya, Taiga; Murayama, Hideo

    2007-01-01

    In a conventional positron emission tomography (PET) detector, detected events are projected onto a 2D position histogram by an Anger calculation for crystal identification. However, the measured histogram is affected by inter-crystal scatterings (ICS) which occur in the entire detector. Peaks which are projected for each crystal in the histogram are blurred, and this causes ICS mispositioning. A depth-of-interaction (DOI) detector has been developed for the small animal PET scanner jPET-RD. This DOI detector uses 32x32 crystals with four layers and a 256-channel multi-anode flat panel photomultiplier tube (FP-PMT) which was developed by Hamamatsu Photonics K.K. Each crystal element is 1.45x1.45x4.5 mm 3 . The FP-PMT has a large detective area (49x49 mm 2 ) and a small anode pitch (3.04 mm). Therefore, the FP-PMT can extensively trace the behavior of incident γ rays in the crystals including ICS event. We, therefore, propose a novel method for ICS estimation using a statistical pattern recognition algorithm based on a support vector machine (SVM). In this study, we applied the SVM for discriminating photoelectric events from ICS events generated from multiple-anode outputs. The SVM was trained by uniform irradiation events generated from a detector simulator using a Monte Carlo calculation. The success rate for ICS event identification is about 78% for non-training data. The SVM can achieve a true subtraction of ICS events from measured events, and it is also useful for random correction in PET

  19. Procedure for the standardized measure of the detective quantum efficiency in digital mammography; Procedimiento para la medida estandarizada de la Eficiencia Cuantica de Deteccion en un mamografo digital

    Energy Technology Data Exchange (ETDEWEB)

    Rodriguez Martin, G.; Garcia Castano, P.; Bermudez Luna, R.; Fernandez Bedoya, V.; Espana Lopez, M. L.; Miquelez Alonso, S.

    2011-07-01

    The objective of this work is to develop a simple guide for determining the DQE, according to the CEI, in those having mammography flat panel detectors, and highlight the main difficulties that may be in the process of the standardized measurement.

  20. Procedure for the standardized measure of the detective quantum efficiency in digital mammography

    International Nuclear Information System (INIS)

    Rodriguez Martin, G.; Garcia Castano, P.; Bermudez Luna, R.; Fernandez Bedoya, V.; Espana Lopez, M. L.; Miquelez Alonso, S.

    2011-01-01

    The objective of this work is to develop a simple guide for determining the DQE, according to the CEI, in those having mammography flat panel detectors, and highlight the main difficulties that may be in the process of the standardized measurement.

  1. The removal of plutonium contaminants from Rocky Flats Plant soil

    International Nuclear Information System (INIS)

    Sunderland, N.R.

    1987-01-01

    This research was undertaken to determine if the TRUclean process could effectively remove radioactive elements from soils other than derived coral. This is an interim report prior to the project report and discusses the outcome of the tests of the Rocky Flats Plant (RFP) soil. The soil tested contained plutonium particulates in the micron and submicron range. Volume reduction and activity removal were accomplished with an overall efficiency of greater than 90%. The TRUclean process is a very practical and economical solution to soil contamination problems at the Rocky Flats Plant

  2. Owhership of flats

    OpenAIRE

    Přibil, Jan

    2012-01-01

    Ownership of Flats Summary In his diploma thesis "Ownership of Flats", the author focuses on applicable law of flat ownership in the Czech Republic, especially the Flat Ownership Act 72/1994 Sb. The author puts the contemporary regulation in historical context; he describes the theoretical principles underlining the current applicable law and defines in detail the basic legal terms used by the Flat Ownership Act. Original and derivative forms of flat ownership acquisition are explained, namel...

  3. Comparative evaluations of surface contamination detectors calibration with radioactive sources - used in the Goiania accident, and standard sources

    International Nuclear Information System (INIS)

    Becker, P.H.B.; Marecha, M.H.H.

    1997-01-01

    The construction of Cs-137 standard flat sources for calibration of surface contamination detectors, used in the Goiania accident in 1987, is described and the procedures adopted are reported. At that time, standard sources were not available. Nowadays the Instituto de Radioprotecao e Dosimetria has standard sources acquired from Amersham which are used as calibration standards for surface contamination detectors. Comparative evaluations between the standard flat sources constructed for the accident and the calibrated ones are presented

  4. Atomic Safety and Licensing Board Panel Biennial Report, Fiscal Years 1993--1994. Volume 6

    International Nuclear Information System (INIS)

    1995-08-01

    In Fiscal Year 1993, the Atomic Safety and Licensing Board Panel (''the Panel'') handled 30 proceedings. In Fiscal Year 1994, the Panel handled 36 proceedings. The cases addressed issues in the construction, operation, and maintenance of commercial nuclear power reactors and other activities requiring a license form the Nuclear Regulatory Commission. This report sets out the Panel's caseload during the year and summarizes, highlight, and analyzes how the wide- ranging issues raised in those proceedings were addressed by the Panel's judges and licensing boards

  5. The x-ray time of flight method for investigation of ghosting in amorphous selenium-based flat panel medical x-ray imagers

    International Nuclear Information System (INIS)

    Rau, A.W.; Bakueva, L.; Rowlands, J.A.

    2005-01-01

    Amorphous selenium (a-Se) based real-time flat-panel imagers (FPIs) are finding their way into the digital radiology department because they offer the practical advantages of digital x-ray imaging combined with an image quality that equals or outperforms that of conventional systems. The temporal imaging characteristics of FPIs can be affected by ghosting (i.e., radiation-induced changes of sensitivity) when the dose to the detector is high (e.g., portal imaging and mammography) or the images are acquired at a high frame rate (e.g., fluoroscopy). In this paper, the x-ray time-of-flight (TOF) method is introduced as a tool for the investigation of ghosting in a-Se photoconductor layers. The method consists of irradiating layers of a-Se with short x-ray pulses. From the current generated in the a-Se layer, ghosting is quantified and the ghosting parameters (charge carrier generation rate and carrier lifetimes and mobilities) are assessed. The x-ray TOF method is novel in that (1) x-ray sensitivity (S) and ghosting parameters can be measured simultaneously (2) the transport of both holes and electrons can be isolated, and (3) the method is applicable to the practical a-Se layer structure with blocking contacts used in FPIs. The x-ray TOF method was applied to an analysis of ghosting in a-Se photoconductor layers under portal imaging conditions, i.e., 1 mm thick a-Se layers, biased at 5 V/μm, were irradiated using a 6 MV LINAC x-ray beam to a total dose (ghosting dose) of 30 Gy. The initial sensitivity (S 0 ) of the a-Se layers was 63±2 nC cm -2 cGy -1 . It was found that S decreases to 30% of S 0 after a ghosting dose of 5 Gy and to 21% after 30 Gy at which point no further change in S occurs. At an x-ray intensity of 22 Gy/s (instantaneous dose rate during a LINAC x-ray pulse), the charge carrier generation rate was 1.25±0.1x10 22 ehp m -3 s -1 and, to a first approximation, independent of the ghosting dose. However, both hole and electron transport showed a

  6. Cherenkov Water Detectors in Particle Physics and Cosmic Rays

    Science.gov (United States)

    Petrukhin, A. A.; Yashin, I. I.

    2017-12-01

    Among various types of Cherenkov detectors (solid, liquid and gaseous) created for different studies, the most impressive development was gained by water detectors: from the first detector with a volume of several liters in which the Cherenkov radiation was discovered, to the IceCube detector with a volume of one cubic kilometer. The review of the development of Cherenkov water detectors for various purposes and having different locations - ground-based, underground and underwater-is presented in the paper. The prospects of their further development are also discussed.

  7. Three-Dimensional Exact Free Vibration Analysis of Spherical, Cylindrical, and Flat One-Layered Panels

    Directory of Open Access Journals (Sweden)

    Salvatore Brischetto

    2014-01-01

    equilibrium written in orthogonal curvilinear coordinates for the free vibrations of simply supported structures. These equations consider an exact geometry for shells without simplifications. The main novelty is the possibility of a general formulation for different geometries. The equations written in general orthogonal curvilinear coordinates allow the analysis of spherical shell panels and they automatically degenerate into cylindrical shell panel, cylindrical closed shell, and plate cases. Results are proposed for isotropic and orthotropic structures. An exhaustive overview is given of the vibration modes for a number of thickness ratios, imposed wave numbers, geometries, embedded materials, and angles of orthotropy. These results can also be used as reference solutions to validate two-dimensional models for plates and shells in both analytical and numerical form (e.g., closed solutions, finite element method, differential quadrature method, and global collocation method.

  8. A Novel Volume CT With X-Ray on a Trough-Like Surface and Point Detectors on Circle-Plus-Arc Curve

    National Research Council Canada - National Science Library

    Xu, H

    2001-01-01

    A novel imaging mode of cone-beam volume CT is proposed in this paper. It adopts a raster scanning x-ray source on a trough-like surface, and a group of point detectors distributing on a large circle plus an orthogonal arc...

  9. Detecting Boosted Dark Matter from the Sun with Large Volume Neutrino Detectors

    Energy Technology Data Exchange (ETDEWEB)

    Berger, Joshua; /SLAC; Cui, Yanou; /Perimeter Inst. Theor. Phys.; Zhao, Yue; /Stanford U., ITP /Stanford U., Phys. Dept.

    2015-04-02

    We study novel scenarios where thermal dark matter (DM) can be efficiently captured in the Sun and annihilate into boosted dark matter. In models with semi-annihilating DM, where DM has a non-minimal stabilization symmetry, or in models with a multi-component DM sector, annihilations of DM can give rise to stable dark sector particles with moderate Lorentz boosts. We investigate both of these possibilities, presenting concrete models as proofs of concept. Both scenarios can yield viable thermal relic DM with masses O(1)-O(100) GeV. Taking advantage of the energetic proton recoils that arise when the boosted DM scatters off matter, we propose a detection strategy which uses large volume terrestrial detectors, such as those designed to detect neutrinos or proton decays. In particular, we propose a search for proton tracks pointing towards the Sun. We focus on signals at Cherenkov-radiation-based detectors such as Super-Kamiokande (SK) and its upgrade Hyper-Kamiokande (HK). We find that with spin-dependent scattering as the dominant DM-nucleus interaction at low energies, boosted DM can leave detectable signals at SK or HK, with sensitivity comparable to DM direct detection experiments while being consistent with current constraints. Our study provides a new search path for DM sectors with non-minimal structure.

  10. Evaluation of digital detector arrays systems for industrial radiography

    International Nuclear Information System (INIS)

    Silva, Aline S.S.; Oliveira, Davi F.; Gomes, Célio S.; Azeredo, Soraia R.; Lopes, Ricardo T.

    2017-01-01

    Digital Detector Arrays (DDA) or Flat Panel Detector (FPD) is a highly efficient technique that is used in nondestructive testing of internal features of an object. The evaluation of DDA systems for industrial radiography is important to ensure the image quality and to enables long-term stability of this system. This evaluation is specified by ASTM E2737 - 10, which describes the fundamental parameters of DDA systems to be measured. The tests require the usage of either the five-groove wedge or the duplex plate phantom with separate Image Quality Indicators (IQIs). The purpose of this work was evaluate the radiographic performance achieved using both techniques in two DDA systems manufactured by GEIT: DXR250P and DXR250V, which have thallium-doped cesium iodide (CsI:Tl) and terbium-doped gadolinium oxysulfide (Gd 2 O 2 S:Tb - GOS) scintillators, respectively. For this purpose, it was used an X-ray equipment as radiation source. The image quality parameters analyzed were Image Lag (IL), Offset Level (OL), Bad Pixel distribution, Burn In (BI), Spatial Resolution (SR), Material Thickness Range (MTR), Contrast Sensitivity (CS), Signal Level (SL) and Signal-to-Noise Ratio (SNR). As result of this study, has been observed that the use of the five-groove wedge phantom made the measurements to become easier to execute. Regarding the DDA system, the DXR250P presented more IL and BI, but produced images with better CS and SNR and needed a dose almost twice smaller than the DXR250V to achieve a similar SL. (author)

  11. Evaluation of digital detector arrays systems for industrial radiography

    Energy Technology Data Exchange (ETDEWEB)

    Silva, Aline S.S.; Oliveira, Davi F.; Gomes, Célio S.; Azeredo, Soraia R.; Lopes, Ricardo T., E-mail: aline@lin.ufrj.br, E-mail: davi@lin.ufrj.br.br, E-mail: celio@lin.ufrj.br, E-mail: soraia@lin.ufrj.br, E-mail: ricardo@lin.ufrj.br, E-mail: davi.oliveira@uerj.br [Coordenacao de Pos-Graduacao e Pesquisa de Engenharia (COPPE/UFRJ), Rio de Janeiro, RJ (Brazil). Lab. de Instrumentação Nuclear

    2017-07-01

    Digital Detector Arrays (DDA) or Flat Panel Detector (FPD) is a highly efficient technique that is used in nondestructive testing of internal features of an object. The evaluation of DDA systems for industrial radiography is important to ensure the image quality and to enables long-term stability of this system. This evaluation is specified by ASTM E2737 - 10, which describes the fundamental parameters of DDA systems to be measured. The tests require the usage of either the five-groove wedge or the duplex plate phantom with separate Image Quality Indicators (IQIs). The purpose of this work was evaluate the radiographic performance achieved using both techniques in two DDA systems manufactured by GEIT: DXR250P and DXR250V, which have thallium-doped cesium iodide (CsI:Tl) and terbium-doped gadolinium oxysulfide (Gd{sub 2}O{sub 2}S:Tb - GOS) scintillators, respectively. For this purpose, it was used an X-ray equipment as radiation source. The image quality parameters analyzed were Image Lag (IL), Offset Level (OL), Bad Pixel distribution, Burn In (BI), Spatial Resolution (SR), Material Thickness Range (MTR), Contrast Sensitivity (CS), Signal Level (SL) and Signal-to-Noise Ratio (SNR). As result of this study, has been observed that the use of the five-groove wedge phantom made the measurements to become easier to execute. Regarding the DDA system, the DXR250P presented more IL and BI, but produced images with better CS and SNR and needed a dose almost twice smaller than the DXR250V to achieve a similar SL. (author)

  12. Nine-degrees-of-freedom flexmap for a cone-beam computed tomography imaging device with independently movable source and detector.

    Science.gov (United States)

    Keuschnigg, Peter; Kellner, Daniel; Fritscher, Karl; Zechner, Andrea; Mayer, Ulrich; Huber, Philipp; Sedlmayer, Felix; Deutschmann, Heinz; Steininger, Philipp

    2017-01-01

    Couch-mounted cone-beam computed tomography (CBCT) imaging devices with independently rotatable x-ray source and flat-panel detector arms for acquisitions of arbitrary regions of interest (ROI) have recently been introduced in image-guided radiotherapy (IGRT). This work analyzes mechanical limitations and gravity-induced effects influencing the geometric accuracy of images acquired with arbitrary angular constellations of source and detector in nonisocentric trajectories, which is considered essential for IGRT. In order to compensate for geometric inaccuracies of this modality, a 9-degrees-of-freedom (9-DOF) flexmap correction approach is presented, focusing especially on the separability of the flexmap parameters of the independently movable components of the device. The 9-DOF comprise a 3D translation of the x-ray source focal spot, a 3D translation of the flat-panel's active area center and three Euler-rotations of the detector's row and column vectors. The flexmap parameters are expressed with respect to the angular position of each of the devices arms. Estimation of the parameters is performed, using a CT-based structure set of a table-mounted, cylindrical ball-bearing phantom. Digitally reconstructed radiograph (DRR) patches are derived from the structure set followed by local 2D in-plane registration and subsequent 3D transform estimation by nonlinear regression with outlier detection. Flexmap parameter evaluations for the factory-calibrated system in clockwise and counter-clockwise rotation direction have shown only minor differences for the overall set of flexmap parameters. High short-term reproducibility of the flexmap parameters has been confirmed by experiments over 10 acquisitions for both directions, resulting in standard deviation values of ≤0.183 mm for translational components and ≤0.0219 deg for rotational components, respectively. A comparison of isocentric and nonisocentric flexmap evaluations showed that the mean differences of the

  13. Whole-brain 320-detector row dynamic volume CT perfusion detected crossed cerebellar diaschisis after spontaneous intracerebral hemorrhage

    Energy Technology Data Exchange (ETDEWEB)

    Fu, Jun; Chen, Wei-jian; Wang, Mei-hao; Li, Jian-ce; Zhang, Qian; Xia, Neng-zhi; Yang, Yun-jun [Wenzhou Medical University, Department of Radiology, First Affiliated Hospital, Wenzhou (China); Wu, Gui-yun [Cleveland Clinics Foundation, Department of Nuclear Medicine, Imaging Institute, Cleveland, OH (United States); Cheng, Jing-liang; Zhang, Yong [Zhengzhou University, Department of Radiology, First Affiliated Hospital, Zhengzhou (China); Zhuge, Qichuan [Wenzhou Medical University, Department of Neurosurgery, First Affiliated Hospital, Wenzhou (China)

    2014-11-09

    The purpose of this study was to evaluate the value of 320-detector row CT used to detect crossed cerebellar diaschisis (CCD) in patients with unilateral supratentorial spontaneous intracerebral hemorrhage (SICH). We investigated 62 of 156 patients with unilateral supratentorial SICH using 320-detector row CT scanning. Regional cerebral blood flow (rCBF), cerebral blood volume (rCBV), mean transit time (rMTT), and time to peak (rTTP) levels were measured in different regions of interest (ROIs) that were manually outlined on computed tomography perfusion (CTP) for the cerebrum, including normal-appearing brain tissue that surrounded the perilesional low-density area (NA) and the perihematomal low-density area (PA) in all patients and the cerebellum (ipsilateral and contralateral) in CCD-positive patients. Of 62 cases, a total of 14 met the criteria for CCD due to cerebellar perfusion asymmetry on CTP maps. In the quantitative analysis, significant differences were found in the perfusion parameters between the contralateral and ipsilateral cerebellum in CCD-positive cases. No significant differences were found between the CCD-positive group and the CCD-negative group according to the hematoma volume, NIHSS scores, and cerebral perfusion abnormality (each P > 0.05). The correlation analysis of the degree of NA, PA perfusion abnormality, and the degree of CCD severity showed negative and significant linear correlations (R, -0.66∝-0.56; P < 0.05). 320-detector row CT is a robust and practicable method for the comprehensive primary imaging work-up of CCD in unilateral supratentorial SICH patients. (orig.)

  14. Whole-brain 320-detector row dynamic volume CT perfusion detected crossed cerebellar diaschisis after spontaneous intracerebral hemorrhage

    International Nuclear Information System (INIS)

    Fu, Jun; Chen, Wei-jian; Wang, Mei-hao; Li, Jian-ce; Zhang, Qian; Xia, Neng-zhi; Yang, Yun-jun; Wu, Gui-yun; Cheng, Jing-liang; Zhang, Yong; Zhuge, Qichuan

    2015-01-01

    The purpose of this study was to evaluate the value of 320-detector row CT used to detect crossed cerebellar diaschisis (CCD) in patients with unilateral supratentorial spontaneous intracerebral hemorrhage (SICH). We investigated 62 of 156 patients with unilateral supratentorial SICH using 320-detector row CT scanning. Regional cerebral blood flow (rCBF), cerebral blood volume (rCBV), mean transit time (rMTT), and time to peak (rTTP) levels were measured in different regions of interest (ROIs) that were manually outlined on computed tomography perfusion (CTP) for the cerebrum, including normal-appearing brain tissue that surrounded the perilesional low-density area (NA) and the perihematomal low-density area (PA) in all patients and the cerebellum (ipsilateral and contralateral) in CCD-positive patients. Of 62 cases, a total of 14 met the criteria for CCD due to cerebellar perfusion asymmetry on CTP maps. In the quantitative analysis, significant differences were found in the perfusion parameters between the contralateral and ipsilateral cerebellum in CCD-positive cases. No significant differences were found between the CCD-positive group and the CCD-negative group according to the hematoma volume, NIHSS scores, and cerebral perfusion abnormality (each P > 0.05). The correlation analysis of the degree of NA, PA perfusion abnormality, and the degree of CCD severity showed negative and significant linear correlations (R, -0.66∝-0.56; P < 0.05). 320-detector row CT is a robust and practicable method for the comprehensive primary imaging work-up of CCD in unilateral supratentorial SICH patients. (orig.)

  15. The LDC detector concept

    Indian Academy of Sciences (India)

    Abstract. In preparation of the experimental program at the international linear collider (ILC), the large detector concept (LDC) is being developed. The main points of the LDC are a large volume gaseous tracking system, combined with high precision vertex detector and an extremely granular calorimeter. The main design ...

  16. Ray Tracing modelling of reflector for vertical bifacial panel

    DEFF Research Database (Denmark)

    Jakobsen, Michael Linde; Thorsteinsson, Sune; Poulsen, Peter Behrensdorff

    2016-01-01

    Bifacial solar panels have recently become a new attractive building block for PV systems. In this work we propose a reflector system for a vertical bifacial panel, and use ray tracing modelling to model the performance. Particularly, we investigate the impact of the reflector volume being filled...... with a refractive medium, and shows the refractive medium improves the reflector performance since it directs almost all the light incident on the incoming plane into the PV panel....

  17. Silicon Drift Detectors - A Novel Technology for Vertex Detectors

    Science.gov (United States)

    Lynn, D.

    1996-10-01

    Silicon Drift Detectors (SDD) are novel position sensing silicon detectors which operate in a manner analogous to gas drift detectors. Single SDD's were shown in the CERN NA45 experiment to permit excellent spatial resolution (pseudo-rapidity. Over the last three years we undertook a concentrated R+D effort to optimize the performance of the detector by minimizing the inactive area, the operating voltage and the data volume. We will present test results from several wafer prototypes. The charge produced by the passage of ionizing particles through the bulk of the detectors is collected on segmented anodes, with a pitch of 250 μm, on the far edges of the detector. The anodes are wire-bonded to a thick film multi-chip module which contains preamplifier/shaper chips and CMOS based switched capacitor arrays used as an analog memory pipeline. The ADC is located off-detector. The complete readout chain from the wafer to the DAQ will be presented. Finally we will show physics performance simulations based on the resolution achieved by the SVT prototypes.

  18. ICFA Instrumentation Bulletin, Volume 22, Spring 2001 Issue (SLAC-J-ICFA-022)

    Energy Technology Data Exchange (ETDEWEB)

    Va' Vra, J.

    2003-10-21

    The publication of the ICFA Instrumentation Bulletin is an activity of the Panel on Future Innovation and Development of ICFA (International Committee for Future Accelerators). The Bulletin reports on research and progress in the field of instrumentation with emphasis on application in the field of high-energy physics. It encourages issues of generic instrumentation. This volume contains the following articles: (1) ''Gaseous Micropattern Detectors: High-Energy Physics and Beyond''; (2) ''DIRC Dreams Redux: Research Directions for the Next Generation of Internally Reflected Imaging Counters''; and (3) ''Corrosion of Glass Windows in DIRC PMTs''.

  19. Novel Na(+) doped Alq3 hybrid materials for organic light-emitting diode (OLED) devices and flat panel displays.

    Science.gov (United States)

    Bhagat, S A; Borghate, S V; Kalyani, N Thejo; Dhoble, S J

    2015-05-01

    Pure and Na(+) -doped Alq3 complexes were synthesized by a simple precipitation method at room temperature, maintaining a stoichiometric ratio. These complexes were characterized by X-ray diffraction, Fourier transform infrared (FTIR), UV/Vis absorption and photoluminescence (PL) spectra. The X-ray diffractogram exhibits well-resolved peaks, revealing the crystalline nature of the synthesized complexes, FTIR confirms the molecular structure and the completion of quinoline ring formation in the metal complex. UV/Vis absorption and PL spectra of sodium-doped Alq3 complexes exhibit high emission intensity in comparison with Alq3 phosphor, proving that when doped in Alq3 , Na(+) enhances PL emission intensity. The excitation spectra of the synthesized complexes lie in the range 242-457 nm when weak shoulders are also considered. Because the sharp excitation peak falls in the blue region of visible radiation, the complexes can be employed for blue chip excitation. The emission wavelength of all the synthesized complexes lies in the bluish green/green region ranging between 485 and 531 nm. The intensity of the emission wavelength was found to be elevated when Na(+) is doped into Alq3 . Because both the excitation and emission wavelengths fall in the visible region of electromagnetic radiation, these phosphors can also be employed to improve the power conversion efficiency of photovoltaic cells by using the solar spectral conversion principle. Thus, the synthesized phosphors can be used as bluish green/green light-emitting phosphors for organic light-emitting diodes, flat panel displays, solid-state lighting technology - a step towards the desire to reduce energy consumption and generate pollution free light. Copyright © 2014 John Wiley & Sons, Ltd.

  20. Modeling on the cathodoluminescence properties of the thin film phosphors for field emission flat panel displays

    Science.gov (United States)

    Cho, Kyu-Gong

    2000-12-01

    utilized to optimize the thin film phosphor properties for the application of field emission flat panel displays.

  1. Production facility for ATLAS new small wheel drift panels at JGU Mainz

    Energy Technology Data Exchange (ETDEWEB)

    Duedder, Andreas; Lin, Tai-Hua; Schott, Matthias [Johannes Gutenberg-Universitaet Mainz (Germany)

    2016-07-01

    The ATLAS Phase-I Upgrade in 2018 includes the replacement of the ATLAS Muon Small Wheel by the so-called New Small Wheel (NSW). Large-scale Micromegas detectors will serve as tracking detectors in the NSW. Parts of these detectors will be constructed at the Johannes Gutenberg University Mainz (JGU). In order to fulfill the requirements of the envisioned detector performance, a high precision detector construction is crucial. Especially the surface planarity of the produced detector panels has to better than 30 μm over an area of 2 m{sup 2}. Methods for the quality control of the raw material and the constructed parts have been developed and implemented. This talk gives an overview of the production facility at JGU Mainz which is used during the mass production of NSW components in coming years.

  2. Management of disused smoke detectors

    International Nuclear Information System (INIS)

    Lacroix, J.P.

    2001-01-01

    Full text: Smoke detectors containing radioisotopes with long half-life (such as 241 Am and 239 Pu), are widely used all over the world. Very small activities are required for this application but in each country, the smoke detectors are present by thousands. The volume of the radioactive sources being so small compared to the overall volume of the device, the volume reduction is the only responsible option for their management and storage. These sources, collected as such, require deep geological repository that so far are not operational anywhere. The conditioning and the packaging should try to meet the requirement for future repository. The National Institute for Radioelements, in Belgium, (IRE) has acquired a wide experience in the field of handling, conditioning and storage of disused smoke detectors and lightning preventers mainly based on 241 Am sources. Up to now, more than forty different types of smoke detectors were dismantled in the IRE facilities representing a total amount of more than 30,000 items. This report presents a practical management option for disused smoke detectors sources and provides an example of specific technical procedure for 241 Am sources handling and conditioning for long term storage. This management option does not request heavy infrastructure. For this reason this practical approach can be implemented in every waste treatment facility including those in the developing countries. (author)

  3. Fast brazing development for the joining of the beryllium armor layer for the ITER First Wall panels

    International Nuclear Information System (INIS)

    Buodot, C.; Boireau, B.; Lorenzetto, P.; Macel, D.

    2006-01-01

    In order to reduce cost and manufacturing time induction brazing is being developed as an alternative to Hot Isostatic Pressing for the joining of the beryllium armor onto the copper alloy heat sink material for the manufacture of First Wall panels for the ITER Blanket. The copper alloy that is currently adopted by ITER is a Copper Chromium Zirconium alloy. Its good mechanical properties are obtained by precipitation hardening by means of an ageing heat treatment at a temperature of about 480 o C. In order to avoid over-ageing and keep acceptable mechanical properties, brazing at higher temperatures must therefore be done as fast as possible. The flat geometry of a panel is not familiar for induction process; nevertheless, a development work was done validating the feasibility of joining beryllium tiles onto a copper chromium zirconium flat surface of a panel by induction brazing process. The development was done in 2 stages: validation of the capability of the induction process to realise a heat cycle on a dummy panel and in parallel, validation of the brazing parameters giving acceptable mechanical results on the beryllium CuCrZr joint. A flat pancake inductor was manufactured and tested on a dummy panel in an induction brazing vessel manufactured for this purpose. Several heating cycles were done with the aim of defining a cycle that gives uniform temperature at the interface of all the beryllium tiles on the entire panel surface. These cycles gave us a temperature range in which the brazing can be performed. A special device for brazing small mock up was also manufactured. This was for the metallurgical characterisation program. Many brazing samples where done and mechanically characterised. Unfortunately, this first metallurgical stage led to unacceptably low shear test values. A complete analysis of this non conformance put in evidence that the bad results were due to the braze material that was not adapted to this process. By changing the braze material

  4. Operational Experience with the ATLAS Pixel Detector

    CERN Document Server

    Lantzsch, Kerstin; The ATLAS collaboration

    2016-01-01

    Run 2 of the LHC is providing new challenges to track and vertex reconstruction with higher energies, denser jets and higher rates. Therefore the ATLAS experiment has constructed the first 4-layer Pixel detector in HEP, installing a new Pixel layer, also called Insertable B-Layer (IBL). In addition the Pixel detector was refurbished with new service quarter panels to recover about 3% of defective modules lost during run 1 and a new optical readout system to readout the data at higher speed while reducing the occupancy when running with increased luminosity. The commissioning, operation and performance of the 4-layer Pixel Detector will be presented.

  5. Introduction of beam flatness filter for 60Co teletherapy beam and its efficacy in clinical radiotherapy

    International Nuclear Information System (INIS)

    Sathiyan, S.; Ravichandran, R.; Ravikumar, M.

    2003-01-01

    In the western countries cobalt-60 machines have become obsolete, whereas in India we have about 250 machines operational for clinical radiotherapy. The basic differences of 6 MV x-ray beam and cobalt-60 beam are: a) build-up d max point, b) flatness of beam at depths, and c) sharpness of the beam edge. We looked at the homogeneity of delivered dose in the target volume in a 3 field SAD technique for 60 Co (80 cm, 100 cm) and 6 MV treatments. More dose variations are seen in 60 Co treated volume. The excess curvature of isodose curves of 60 Co at depths may be one of the reasons for this inhomogeneity in dose to target volume. Therefore, there is need for achieving perfect flatness in the isodose curves at desired depths. A flattening filter was fabricated using dental wax impression material to account for depths of curvature of 50% 60 Co isodose curve. The filter was fabricated for the Theratron 780C machine for necessary flatness. The beam flatness with filter was measured with a) ionization and b) TL dosimetry methods. The flattened beam profile was compared with 6 MV x-ray beam (Clinac-1800, M/s Varian, USA). Our measurements show uniform flatness of cobalt-60 isodose curve at desired depth and useful radiation field width comparable to 6 MV x-ray photon profile at full width at half maximum (FWHM). If this concept is extendable to short field widths, it appears that there is scope for use of such filter in the treatments of oesophagus, larynx, and pituitary tumours to achieve dose homogeneity. Using this flatness filter and penumbra trimmer, we may achieve better quality cobalt-60 beam for radiotherapy. (author)

  6. Detector Simulation: Data Treatment and Analysis Methods

    CERN Document Server

    Apostolakis, J

    2011-01-01

    Detector Simulation in 'Data Treatment and Analysis Methods', part of 'Landolt-Börnstein - Group I Elementary Particles, Nuclei and Atoms: Numerical Data and Functional Relationships in Science and Technology, Volume 21B1: Detectors for Particles and Radiation. Part 1: Principles and Methods'. This document is part of Part 1 'Principles and Methods' of Subvolume B 'Detectors for Particles and Radiation' of Volume 21 'Elementary Particles' of Landolt-Börnstein - Group I 'Elementary Particles, Nuclei and Atoms'. It contains the Section '4.1 Detector Simulation' of Chapter '4 Data Treatment and Analysis Methods' with the content: 4.1 Detector Simulation 4.1.1 Overview of simulation 4.1.1.1 Uses of detector simulation 4.1.2 Stages and types of simulation 4.1.2.1 Tools for event generation and detector simulation 4.1.2.2 Level of simulation and computation time 4.1.2.3 Radiation effects and background studies 4.1.3 Components of detector simulation 4.1.3.1 Geometry modeling 4.1.3.2 External fields 4.1.3.3 Intro...

  7. Development of a simple detector response function generation program: The CEARDRFs code

    International Nuclear Information System (INIS)

    Wang Jiaxin; Wang Zhijian; Peeples, Johanna; Yu Huawei; Gardner, Robin P.

    2012-01-01

    A simple Monte Carlo program named CEARDRFs has been developed to generate very accurate detector response functions (DRFs) for scintillation detectors. It utilizes relatively rigorous gamma-ray transport with simple electron transport, and accounts for two phenomena that have rarely been treated: scintillator non-linearity and the variable flat continuum part of the DRF. It has been proven that these physics and treatments work well for 3×3″ and 6×6″ cylindrical NaI detector in CEAR's previous work. Now this approach has been expanded to cover more scintillation detectors with various common shapes and sizes. Benchmark experiments of 2×2″ cylindrical BGO detector and 2×4×16″ rectangular NaI detector have been carried out at CEAR with various radiactive sources. The simulation results of CEARDRFs have also been compared with MCNP5 calculations. The benchmark and comparison show that CEARDRFs can generate very accurate DRFs (more accurate than MCNP5) at a very fast speed (hundred times faster than MCNP5). The use of this program can significantly increase the accuracy of applications relying on detector spectroscopy like prompt gamma-ray neutron activation analysis, X-ray fluorescence analysis, oil well logging and homeland security. - Highlights: ► CEARDRF has been developed to generate detector response functions (DRFs) for scintillation detectors a. ► Generated DRFs are very accurate. ► Simulation speed is hundreds of times faster than MCNP5. ► It utilizes rigorous gamma-ray transport with simple electron transport. ► It also accounts for scintillator non-linearity and the variable flat continuum part.

  8. Rietveld analysis using powder diffraction data with anomalous scattering effect obtained by focused beam flat sample method

    International Nuclear Information System (INIS)

    Tanaka, Masahiko; Katsuya, Yoshio; Sakata, Osami

    2016-01-01

    Focused-beam flat-sample method (FFM) is a new trial for synchrotron powder diffraction method, which is a combination of beam focusing optics, flat shape powder sample and area detectors. The method has advantages for X-ray diffraction experiments applying anomalous scattering effect (anomalous diffraction), because of 1. Absorption correction without approximation, 2. High intensity X-rays of focused incident beams and high signal noise ratio of diffracted X-rays 3. Rapid data collection with area detectors. We applied the FFM to anomalous diffraction experiments and collected synchrotron X-ray powder diffraction data of CoFe_2O_4 (inverse spinel structure) using X-rays near Fe K absorption edge, which can distinguish Co and Fe by anomalous scattering effect. We conducted Rietveld analyses with the obtained powder diffraction data and successfully determined the distribution of Co and Fe ions in CoFe_2O_4 crystal structure.

  9. TU-EF-207-02: Spectral Mammography Based on Photon Counting Detectors

    Energy Technology Data Exchange (ETDEWEB)

    Molloi, S. [University of California (United States)

    2015-06-15

    mode due to lower photon fluence per projection. This may require fast-frame acquisition and symmetric or asymmetric pixel binning in some systems. Recent studies investigated the performance of increased conversion layer thickness for contrast-enhanced imaging of the breast in dual-energy acquisition mode. In other direct conversion detectors operating in the avalanche mode, sensitivities close to the single photon response are also explored for mammography and breast tomosynthesis. The potential advantages and challenges of this approach are described. Dedicated breast CT brings x-ray imaging of the breast to true tomographic 3D imaging. It can eliminate the tissue superposition problem and does not require physical compression of the breast. Using cone beam geometry and a flat-panel detector, several hundred projections are acquired and reconstructed to near isotropic voxels. Multiplanar reconstruction facilitates viewing the breast volume in any desired orientation. Ongoing clinical studies, the current state-of-the art, and research to advance the technology are described. Learning Objectives: To understand the ongoing developments in x-ray imaging of the breast To understand the approaches and applications of spectral mammography To understand the potential advantages of distributed x-ray source arrays for digital breast tomosynthesis To understand the ongoing developments in detector technology for digital mammography and breast tomosynthesis To understand the current state-of-the-art for dedicated cone-beam breast CT and research to advance the technology. Research collaboration with Koning Corporation.

  10. TU-EF-207-04: Advances in Detector Technology for Breast Tomosynthesis

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, W. [SUNY Stony Brook (United States)

    2015-06-15

    mode due to lower photon fluence per projection. This may require fast-frame acquisition and symmetric or asymmetric pixel binning in some systems. Recent studies investigated the performance of increased conversion layer thickness for contrast-enhanced imaging of the breast in dual-energy acquisition mode. In other direct conversion detectors operating in the avalanche mode, sensitivities close to the single photon response are also explored for mammography and breast tomosynthesis. The potential advantages and challenges of this approach are described. Dedicated breast CT brings x-ray imaging of the breast to true tomographic 3D imaging. It can eliminate the tissue superposition problem and does not require physical compression of the breast. Using cone beam geometry and a flat-panel detector, several hundred projections are acquired and reconstructed to near isotropic voxels. Multiplanar reconstruction facilitates viewing the breast volume in any desired orientation. Ongoing clinical studies, the current state-of-the art, and research to advance the technology are described. Learning Objectives: To understand the ongoing developments in x-ray imaging of the breast To understand the approaches and applications of spectral mammography To understand the potential advantages of distributed x-ray source arrays for digital breast tomosynthesis To understand the ongoing developments in detector technology for digital mammography and breast tomosynthesis To understand the current state-of-the-art for dedicated cone-beam breast CT and research to advance the technology. Research collaboration with Koning Corporation.

  11. TU-EF-207-02: Spectral Mammography Based on Photon Counting Detectors

    International Nuclear Information System (INIS)

    Molloi, S.

    2015-01-01

    mode due to lower photon fluence per projection. This may require fast-frame acquisition and symmetric or asymmetric pixel binning in some systems. Recent studies investigated the performance of increased conversion layer thickness for contrast-enhanced imaging of the breast in dual-energy acquisition mode. In other direct conversion detectors operating in the avalanche mode, sensitivities close to the single photon response are also explored for mammography and breast tomosynthesis. The potential advantages and challenges of this approach are described. Dedicated breast CT brings x-ray imaging of the breast to true tomographic 3D imaging. It can eliminate the tissue superposition problem and does not require physical compression of the breast. Using cone beam geometry and a flat-panel detector, several hundred projections are acquired and reconstructed to near isotropic voxels. Multiplanar reconstruction facilitates viewing the breast volume in any desired orientation. Ongoing clinical studies, the current state-of-the art, and research to advance the technology are described. Learning Objectives: To understand the ongoing developments in x-ray imaging of the breast To understand the approaches and applications of spectral mammography To understand the potential advantages of distributed x-ray source arrays for digital breast tomosynthesis To understand the ongoing developments in detector technology for digital mammography and breast tomosynthesis To understand the current state-of-the-art for dedicated cone-beam breast CT and research to advance the technology. Research collaboration with Koning Corporation

  12. TU-EF-207-04: Advances in Detector Technology for Breast Tomosynthesis

    International Nuclear Information System (INIS)

    Zhao, W.

    2015-01-01

    mode due to lower photon fluence per projection. This may require fast-frame acquisition and symmetric or asymmetric pixel binning in some systems. Recent studies investigated the performance of increased conversion layer thickness for contrast-enhanced imaging of the breast in dual-energy acquisition mode. In other direct conversion detectors operating in the avalanche mode, sensitivities close to the single photon response are also explored for mammography and breast tomosynthesis. The potential advantages and challenges of this approach are described. Dedicated breast CT brings x-ray imaging of the breast to true tomographic 3D imaging. It can eliminate the tissue superposition problem and does not require physical compression of the breast. Using cone beam geometry and a flat-panel detector, several hundred projections are acquired and reconstructed to near isotropic voxels. Multiplanar reconstruction facilitates viewing the breast volume in any desired orientation. Ongoing clinical studies, the current state-of-the art, and research to advance the technology are described. Learning Objectives: To understand the ongoing developments in x-ray imaging of the breast To understand the approaches and applications of spectral mammography To understand the potential advantages of distributed x-ray source arrays for digital breast tomosynthesis To understand the ongoing developments in detector technology for digital mammography and breast tomosynthesis To understand the current state-of-the-art for dedicated cone-beam breast CT and research to advance the technology. Research collaboration with Koning Corporation

  13. Final recommendations of the Peer Review Panel on the use of seismic methods for characterizing Yucca Mountain and vicinity

    International Nuclear Information System (INIS)

    1991-01-01

    The Peer Review Panel was charged with deciding whether seismic methods, which had been utilized at Yucca Mountain with mixed results in the past, could provide useful information about the Tertiary structure in the Yucca Mountain area. The objectives of using seismic methods at Yucca Mountain are to: (a) obtain information about the structural character of the Paleozoic-Tertiary (Pz-T) contact, and (b) obtain information about the structural and volcanic details within the Tertiary and Quaternary section. The Panel recommends that a four part program be undertaken to test the utility of seismic reflection data for characterizing the structural setting of the Yucca Mountain area. The Panel feels strongly that all four parts of the program must be completed in order to provide the highest probability of success. The four parts of the program are: (a) drill or extend a deep hole in Crater Flat to provide depth control and allow for the identification of seismic reflectors in an area where good quality seismic reflection data are expected; (b) undertake a full seismic noise test in Crater Flat, test 2D receiver arrays as well as linear arrays; perform an expanding spread test using both P and S wave sources to obtain a quick look at the reflection quality in the area and see if shear wave reflections might provide structural information in areas of unsaturated rock; (c) acquire a P wave seismic reflection profile across Crater Flat through the deep control well, across Yucca Mountain, and continuing into Jackass Flats; and (d) acquire a standard VSP (vertical seismic profiling) in the deep control well to tie the seismic data into depth and to identify reflectors correctly

  14. RID-41 gamma flaw detector

    International Nuclear Information System (INIS)

    Glebov, V.N.; Zubkov, V.S.; Majorov, A.N.; Murashev, A.I.; Firstov, V.G.; Yampol'skij, V.V.; Goncharov, V.I.; Sakhanov, A.S.

    1978-01-01

    The design is described and the main characteristics are given of a universal stationary hose-type gamma flow detector with a 60 Co source from 3O to 4g0 Ci for high-productive control of thick-walled products from steel and other materials. The principal units of the instrument are a radiation head, a control panel, and a charge-exchange container. The flaw detector may be used both in shield chambers and in shop or mounting conditions on complying with due requirements of radiation protection. The high activity of the source at relatively small dimensions of its active part ensures good detection of defects. The high radioscopy rate permits to use the flaw detector in conditions of increased background radiation, e.g. during routine repairs and inspections at nuclear power plants. The instrument may also be used in radiometric complexes, and produces a considerable economic effect. This flaw-detector corresponds to ISO and IAEA requirements and may be delivered for export

  15. Simultaneous molecular and anatomical imaging of the mouse in vivo

    International Nuclear Information System (INIS)

    Goertzen, Andrew L; Meadors, A Ken; Silverman, Robert W; Cherry, Simon R

    2002-01-01

    Non-invasive imaging technologies are opening up new windows into mouse biology. We have developed a mouse imaging system that integrates positron emission tomography (PET) with x-ray computed tomography (CT), allowing simultaneous anatomic and molecular imaging in vivo with the potential for precise registration of the two image volumes. The x-ray system consists of a compact mini-focal x-ray tube and an amorphous selenium flat panel x-ray detector with a low-noise CMOS readout. The PET system uses planar arrays of lutetium oxyorthosilicate scintillator coupled to position-sensitive photomultiplier tubes. We describe the design of this dual-modality imaging system and show, for the first time, simultaneously acquired PET and CT images in a phantom and in mice

  16. Simultaneous molecular and anatomical imaging of the mouse in vivo

    Energy Technology Data Exchange (ETDEWEB)

    Goertzen, Andrew L [Crump Institute for Molecular Imaging, David Geffen School of Medicine at UCLA, Los Angeles, CA (United States); Meadors, A Ken [Crump Institute for Molecular Imaging, David Geffen School of Medicine at UCLA, Los Angeles, CA (United States); Silverman, Robert W [Crump Institute for Molecular Imaging, David Geffen School of Medicine at UCLA, Los Angeles, CA (United States); Cherry, Simon R [Department of Biomedical Engineering, University of California, Davis, Davis, CA (United States)

    2002-12-21

    Non-invasive imaging technologies are opening up new windows into mouse biology. We have developed a mouse imaging system that integrates positron emission tomography (PET) with x-ray computed tomography (CT), allowing simultaneous anatomic and molecular imaging in vivo with the potential for precise registration of the two image volumes. The x-ray system consists of a compact mini-focal x-ray tube and an amorphous selenium flat panel x-ray detector with a low-noise CMOS readout. The PET system uses planar arrays of lutetium oxyorthosilicate scintillator coupled to position-sensitive photomultiplier tubes. We describe the design of this dual-modality imaging system and show, for the first time, simultaneously acquired PET and CT images in a phantom and in mice.

  17. Effect of gold photocathode contamination on a flat spectral response X-ray diode

    Science.gov (United States)

    Wang, Kun-lun; Zhang, Si-qun; Zhou, Shao-tong; Huang, Xian-bin; Ren, Xiao-dong; Dan, Jia-kun; Xu, Qiang

    2018-03-01

    A detector with an approximately flat spectral response is important for diagnosing intense thermal X-ray flux. A flat-spectral-response X-ray diode (FSR-XRD) utilizes a gold photocathode X-ray diode and a specially configured gold filter to give rise to a nearly flat spectral response in the photon energy range of 100-4000 eV. It has been observed that the spectral responses of several FSR-XRDs changed after a few shots of z-pinch experiments on the Primary Test Stand facility. This paper presents an analysis of the changes by fitting the spectral responses of the gold photocathodes using a model with a free parameter which characterizes the thickness of the contamination. The spectral responses of FSR-XRDs were calibrated with synchrotron radiation, and several cleaning methods were tested with the calibration. Considering the results of model and cleaning, it may be anticipated that contamination was the major reason of the response changing. Contamination worsened the flatness of the spectral response of the FSR-XRD and decreased the averaged response, hence it is important to avoid contamination. Current results indicate a requirement of further study of the contamination.

  18. Device simulation and optimization of laterally-contacted-unipolar-nuclear detector

    CERN Document Server

    Lee, E Y

    1999-01-01

    Unipolar gamma-ray detectors offer the possibility of enhanced energy resolution and detection sensitivity over the conventional planar detectors. However, these detectors are difficult to understand and to fabricate, due to their three-dimensional geometry and multiple electrodes. Computer simulation offers a powerful way to design and to optimize these detectors, by giving the internal electric fields, weighting potentials, and spatially resolved detector responses. Simulation and optimization of an unipolar gamma-ray detector called laterally-contacted-unipolar-nuclear detector (LUND) are shown. For 662 keV gamma-rays from a sup 1 sup 3 sup 7 Cs source, the simulation and optimization of LUND resulted in improvement in the energy resolution from 1.6% to 1.3% and improvement in the active detector volume from 4% to 38% of the total detector volume.

  19. Infrared Illuminated CdZnTe detectors with improved performance

    International Nuclear Information System (INIS)

    Ivanov, V.; Loutchanski, A.; Dorogov, P.; Khinoverov, S.

    2013-06-01

    It was found that IR illumination of a properly chosen wavelength and intensity can significantly improve spectrometric characteristics of CdZnTe quasi-hemispherical detectors [1]. Improving of the spectrometric characteristics is due to improvement of uniformity of charge collection by the detector volume. For operation at room temperature the optimal wavelength of IR illumination is about 940 nm, but for operation at lower temperature of -20 deg. C the optimal wavelengths of IR illumination is about 1050 nm. Infrared illumination can be performed using conventional low-power IR LEDs. Application of SMD LEDs allows produce miniature detection probes with IR illuminated CdZnTe detectors. We have fabricated and tested a variety of detection probes with CdZnTe quasi-hemispherical detectors from the smallest with volumes of 1-5 mm 3 to larger with volumes of 1.5 cm 3 and 4.0 cm 3 . The use of IR illumination significantly improves spectrometric characteristics of the probes operating at room temperature, especially probes with detectors of large volumes. The probe with the detector of 4 cm 3 without IR illumination had energy resolution of 24.2 keV at 662 keV and of 12.5 keV with IR illumination. (authors)

  20. Design of a photovoltaic central power station: flat-plate array

    Energy Technology Data Exchange (ETDEWEB)

    1984-02-01

    A design for a photovoltaic central power station using fixed flat-panel arrays has been developed. The 100 MW plant is assumed to be located adjacent to the Saguaro Power Station of Arizona Public Service. The design assumes high-efficiency photovoltaic modules using dendritic web cells. The modules are arranged in 5 MW subfields, each with its own power conditioning unit. The photovoltaic output is connected to the existing 115 kV utility switchyard. The site specific design allows detailed cost estimates for engineering, site preparation, and installation. Collector and power conditioning costs have been treated parametrically.

  1. Studying the potential of point detectors in time-resolved dose verification of dynamic radiotherapy

    DEFF Research Database (Denmark)

    Beierholm, Anders Ravnsborg; Behrens, C. F.; Andersen, Claus E.

    2015-01-01

    based on fiber-coupled plastic scintillator detectors was evaluated and compared with a Farmer-type ionization chamber and a small-volume ionization chamber. An important feature of scintillator detectors is that the sensitive volume of the detector can easily be scaled, and five scintillator detectors......-volume ionization chamber and the smallest scintillators. The time-resolved RapidArc dose profiles revealed volume-dependent discrepancies between scintillator and ionization chamber response, which confirmed that correction factors for ionization chambers in high temporal and spatial dose gradients are dominated...

  2. Measurement of volumic activities of radon in air in houses and in working rooms with solid state nuclear track detectors

    International Nuclear Information System (INIS)

    Hakam, O.K.

    1993-01-01

    In this work, a new method of measuring volumic activity of radon has been developed. This method is based on using solid state nuclear track detectors LR-115 type II. It has been applied to measurement of volumic activities of radon in air in houses and in working rooms in different regions of Morocco. These measurements, carried out for the first time in the country, allowed to estimate the dose equivalents of radon received by the population of the studied regions. 59 refs., 38 figs., 38 tabs. (F.M.)

  3. Silicon-based tracking system: Mechanical engineering and design

    International Nuclear Information System (INIS)

    Miller, W.O.; Gamble, M.T.; Thompson, T.C.; Woloshun, K.A.; Reid, R.S.; Hanlon, J.A.; Michaud, F.D.; Dransfield, G.D.; Ziock, H.J.; Palounek, A.P.

    1992-01-01

    The Silicon Tracking System (STS) is composed of silicon strip detectors arranged by both in a cylindrical array and an array of flat panels about the interaction region. The cylindrical array is denoted the central region and the flat panel arrays, which are normal to the beam axis, we denoted the forward regions. The overall length of the silicon array is 5.16 m and the maximum diameter is 0.93 m. The Silicon Tracking System Conceptual Design Report, should be consulted for the body of analysis performed to quantify the present design concept. For the STS to achieve its physics goals, the mechanical structures and services must support 17 m 2 of silicon detectors and stabilize their positions to within 5 μm, uniformly cool the detector the system to O degrees C and at the same time potentially remove up to 13 kW of waste heat generated by the detector electronics, provide up to 3400 A of current to supply the 6.5 million electronics channels, and supply of control and data transmission lines for those channels. These objectives must be achieved in a high ionizing radiation environment, using virtually no structural mass and only low-Z materials. The system must be maintainable during its 10 year operating life

  4. Detailed mechanical design and manufacturing study for the ITER reference breeding blanket

    International Nuclear Information System (INIS)

    Zacchia, F.; Daenner, W.; Stefanis, L. de; Ferrari, M.; Gerber, A.; Mustoe, J.

    1998-01-01

    This papers relates on the detailed mechanical design, manufacturing feasibility and assembly analysis of a water-cooled solid breeding blanket concept, selected as the ITER reference design. This breeding blanket design is characterised by: i) pressurised water flowing inside flat steel panels for cooling of the internals; each panel is welded along its contour onto the first wall structure and to the rear shield plate after closure of the module (last assembly step). ii) Beryllium (neutronic multiplier) in the form of micro-spheres filling the volume between parallel flat coolant panels. iii) Breeder pebbles enclosed in rods, which form bundles and are themselves embedded inside the Beryllium micro-spheres. (authors)

  5. Clinical introduction of image lag correction for a cone beam CT system

    NARCIS (Netherlands)

    Stankovic, Uros; Ploeger, Lennert S.; Sonke, Jan-Jakob; van Herk, Marcel

    2016-01-01

    Image lag in the flat-panel detector used for Linac integrated cone beam computed tomography (CBCT) has a degrading effect on CBCT image quality. The most prominent visible artifact is the presence of bright semicircular structure in the transverse view of the scans, known also as radar artifact.

  6. A flat array large telescope concept for use on the moon, earth, and in space

    Science.gov (United States)

    Woodgate, Bruce E.

    1991-01-01

    An astronomical optical telescope concept is described which can provide very large collecting areas, of order 1000 sq m. This is an order of magnitude larger than the new generation of telescopes now being designed and built. Multiple gimballed flat mirrors direct the beams from a celestial source into a single telescope of the same aperture as each flat mirror. Multiple images of the same source are formed at the telescope focal plane. A beam combiner collects these images and superimposes them into a single image, onto a detector or spectrograph aperture. This telescope could be used on the earth, the moon, or in space.

  7. Impact behavior of basalt/epoxy composite: Comparison between flat and twill fabric

    Science.gov (United States)

    Papa, I.; Ricciardi, M. R.; Antonucci, V.; Langella, A.; Lopresto, V.

    2018-05-01

    Two types of basalt fibre reinforced epoxy laminates were realized by overlapping flat and twill woven basalt fabrics by resin infusion. Rectangular specimens, cut from the panels were impacted at penetration and at increasing energy values, to investigate the damage onset and propagation. A non-destructive technique, Ultrasound testing (UT), was adopted to investigate the internal damage. Despite the difficulties to obtain information by UT method due to the high amount of signal absorbed, the technique, properly calibrated, proved to be very useful in providing information about the presence, the shape and the extent of the delaminations. The results were compared at the aim to investigate the effect of the fiber architecture (textile). The experimental results indicate a similar impact behavior between basalt flat and twill composites but in the case of the twill a minor delaminated area was detected, even if a higher absorbed energy was recorded

  8. Application of focused-beam flat-sample method to synchrotron powder X-ray diffraction with anomalous scattering effect

    International Nuclear Information System (INIS)

    Tanaka, M; Katsuya, Y; Matsushita, Y

    2013-01-01

    The focused-beam flat-sample method (FFM), which is a method for high-resolution and rapid synchrotron X-ray powder diffraction measurements by combination of beam focusing optics, a flat shape sample and an area detector, was applied for diffraction experiments with anomalous scattering effect. The advantages of FFM for anomalous diffraction were absorption correction without approximation, rapid data collection by an area detector and good signal-to-noise ratio data by focusing optics. In the X-ray diffraction experiments of CoFe 2 O 4 and Fe 3 O 4 (By FFM) using X-rays near the Fe K absorption edge, the anomalous scattering effect between Fe/Co or Fe 2+ /Fe 3+ can be clearly detected, due to the change of diffraction intensity. The change of observed diffraction intensity as the incident X-ray energy was consistent with the calculation. The FFM is expected to be a method for anomalous powder diffraction.

  9. Rietveld analysis using powder diffraction data with anomalous scattering effect obtained by focused beam flat sample method

    Energy Technology Data Exchange (ETDEWEB)

    Tanaka, Masahiko, E-mail: masahiko@spring8.or.jp; Katsuya, Yoshio, E-mail: katsuya@spring8.or.jp; Sakata, Osami, E-mail: SAKATA.Osami@nims.go.jp [Synchrotron X-ray Station at SPring-8, National Institute for Materials Science 1-1-1 Kouto, Sayo, Hyogo 679-5198 (Japan)

    2016-07-27

    Focused-beam flat-sample method (FFM) is a new trial for synchrotron powder diffraction method, which is a combination of beam focusing optics, flat shape powder sample and area detectors. The method has advantages for X-ray diffraction experiments applying anomalous scattering effect (anomalous diffraction), because of 1. Absorption correction without approximation, 2. High intensity X-rays of focused incident beams and high signal noise ratio of diffracted X-rays 3. Rapid data collection with area detectors. We applied the FFM to anomalous diffraction experiments and collected synchrotron X-ray powder diffraction data of CoFe{sub 2}O{sub 4} (inverse spinel structure) using X-rays near Fe K absorption edge, which can distinguish Co and Fe by anomalous scattering effect. We conducted Rietveld analyses with the obtained powder diffraction data and successfully determined the distribution of Co and Fe ions in CoFe{sub 2}O{sub 4} crystal structure.

  10. Digital chest radiography system with amorphous selenium flat-panel detectors: qualitative and dosimetric comparison with a dedicated film-screen system

    International Nuclear Information System (INIS)

    Prato, Antonio; Fava Cesare; Ropolo, Roberto

    2005-01-01

    Purpose. To compare the quality and radiation dose of a conventional film-screen system and a digital system with amorphous selenium detectors in the study of the chest, by verifying overall performance and exposure levels for the main chest structures in patients of different sizes. Materials and methods. An analogic system (Chest Changer, Dupont, Day-light model 1000) and a digital system (Directray Rad 1000C, Hologic) were tested on a total of 1000 patients randomly assigned to one of two groups of 500 subjects.The patients were further subdivided according to BMI (Body Mass Index). Image quality was determined by two chest radiologists who evaluated eight anatomical structures. The entrance surface dose (skin-dose), calculated based on the exposure parameters, was taken as the patient dose. Results. Mean dose delivered was very similar for both techniques in the PA view (0.28 mGy), but it was greater in the LL projections obtained with the digital system (1.20 rnGy versus 0.83 mGy). The highest overall scores were assigned to 43% and 23.2% analogic radiograms and 64% and 70.2% digital radiograms, for the PA and LL projections respectively. The scores assigned to the various anatomical structures confirmed the better performance of the digital system in almost all of the regions considered. Conclusions. The mean quality of radiograms is definitely higher with the digital system, in particular in the LL projections, where the higher patient doses are counterbalanced by fewer repeated scans. The greater level of exposure in the digital system appears nonetheless tolerable on account of the greater informativeness and therefore diagnostic gain and also considering the possibilities for improving the system [it

  11. Development of a simple detector response function generation program: The CEARDRFs code

    Energy Technology Data Exchange (ETDEWEB)

    Wang Jiaxin, E-mail: jwang3@ncsu.edu [Center for Engineering Applications of Radioisotopes (CEAR), Department of Nuclear Engineering, North Carolina State University, Raleigh, NC 27695 (United States); Wang Zhijian; Peeples, Johanna [Center for Engineering Applications of Radioisotopes (CEAR), Department of Nuclear Engineering, North Carolina State University, Raleigh, NC 27695 (United States); Yu Huawei [Center for Engineering Applications of Radioisotopes (CEAR), Department of Nuclear Engineering, North Carolina State University, Raleigh, NC 27695 (United States); College of Geo-Resources and Information, China University of Petroleum, Qingdao, Shandong 266555 (China); Gardner, Robin P. [Center for Engineering Applications of Radioisotopes (CEAR), Department of Nuclear Engineering, North Carolina State University, Raleigh, NC 27695 (United States)

    2012-07-15

    A simple Monte Carlo program named CEARDRFs has been developed to generate very accurate detector response functions (DRFs) for scintillation detectors. It utilizes relatively rigorous gamma-ray transport with simple electron transport, and accounts for two phenomena that have rarely been treated: scintillator non-linearity and the variable flat continuum part of the DRF. It has been proven that these physics and treatments work well for 3 Multiplication-Sign 3 Double-Prime and 6 Multiplication-Sign 6 Double-Prime cylindrical NaI detector in CEAR's previous work. Now this approach has been expanded to cover more scintillation detectors with various common shapes and sizes. Benchmark experiments of 2 Multiplication-Sign 2 Double-Prime cylindrical BGO detector and 2 Multiplication-Sign 4 Multiplication-Sign 16 Double-Prime rectangular NaI detector have been carried out at CEAR with various radiactive sources. The simulation results of CEARDRFs have also been compared with MCNP5 calculations. The benchmark and comparison show that CEARDRFs can generate very accurate DRFs (more accurate than MCNP5) at a very fast speed (hundred times faster than MCNP5). The use of this program can significantly increase the accuracy of applications relying on detector spectroscopy like prompt gamma-ray neutron activation analysis, X-ray fluorescence analysis, oil well logging and homeland security. - Highlights: Black-Right-Pointing-Pointer CEARDRF has been developed to generate detector response functions (DRFs) for scintillation detectors a. Black-Right-Pointing-Pointer Generated DRFs are very accurate. Black-Right-Pointing-Pointer Simulation speed is hundreds of times faster than MCNP5. Black-Right-Pointing-Pointer It utilizes rigorous gamma-ray transport with simple electron transport. Black-Right-Pointing-Pointer It also accounts for scintillator non-linearity and the variable flat continuum part.

  12. 3D Energy Absorption Diagram Construction of Paper Honeycomb Sandwich Panel

    Directory of Open Access Journals (Sweden)

    Dongmei Wang

    2018-01-01

    Full Text Available Paper honeycomb sandwich panel is an environment-sensitive material. Its cushioning property is closely related to its structural factors, the temperature and humidity, random shocks, and vibration events in the logistics environment. In order to visually characterize the cushioning property of paper honeycomb sandwich panel in different logistics conditions, the energy absorption equation of per unit volume of paper honeycomb sandwich panel was constructed by piecewise function. The three-dimensional (3D energy absorption diagram of paper honeycomb sandwich panel was constructed by connecting the inflexion of energy absorption curve. It takes into account the temperature, humidity, strain rate, and characteristics of the honeycomb structure. On the one hand, this diagram breaks through the limitation of the static compression curve of paper honeycomb sandwich panel, which depends on the test specimen and is applicable only to the standard condition. On the other hand, it breaks through the limitation of the conventional 2D energy absorption diagram which has less information. Elastic modulus was used to normalize the plateau stress and energy absorption per unit volume. This makes the 3D energy absorption diagram universal for different material sandwich panels. It provides a new theoretical basis for packaging optimized design.

  13. The IMB proton decay detector

    International Nuclear Information System (INIS)

    Svoboda, R.C.; Gajewski, W.; Kropp, W.R.; Reines, F.; Schultz, J.; Smith, D.W.; Sobel, H.; Wuest, C.; Bionta, R.M.; Cortez, B.G.; Errede, S.; Foster, G.W.; Greenberg, J.; Park, H.S.; Shumard, E.; Sinclair, D.; Stone, J.L.; Sulak, L.R.; Velde, J.C. van der; Goldhaber, M.; Blewitt, G.; Lehmann, E.; LoSecco, J.M.; Bratton, C.B.; Learned, J.; Svoboda, R.; Jones, T.W.; Ramana Murthy, P.V.

    1983-01-01

    A description is given of the Irvine-Michigan-Brookhaven proton decay detector which is nearing completion in a salt mine in Cleveland, Ohio, U.S.A. The detector is a water Cerenkov one with a fiducial volume of 4,000 tons and a threshold of 24 MeV. Initial results indicate that the detector is working according to specification and has a high potential for deep underground cosmic ray applications. I will give a brief account of the IMB detector construction and operation and also its present status and possible cosmic ray applications. (orig.)

  14. Studying the potential of point detectors in time-resolved dose verification of dynamic radiotherapy

    International Nuclear Information System (INIS)

    Beierholm, A.R.; Behrens, C.F.; Andersen, C.E.

    2015-01-01

    Modern megavoltage x-ray radiotherapy with high spatial and temporal dose gradients puts high demands on the entire delivery system, including not just the linear accelerator and the multi-leaf collimator, but also algorithms used for optimization and dose calculations, and detectors used for quality assurance and dose verification. In this context, traceable in-phantom dosimetry using a well-characterized point detector is often an important supplement to 2D-based quality assurance methods based on radiochromic film or detector arrays. In this study, an in-house developed dosimetry system based on fiber-coupled plastic scintillator detectors was evaluated and compared with a Farmer-type ionization chamber and a small-volume ionization chamber. An important feature of scintillator detectors is that the sensitive volume of the detector can easily be scaled, and five scintillator detectors of different scintillator length were thus employed to quantify volume averaging effects by direct measurement. The dosimetric evaluation comprised several complex-shape static fields as well as simplified dynamic deliveries using RapidArc, a volumetric-modulated arc therapy modality often used at the participating clinic. The static field experiments showed that the smallest scintillator detectors were in the best agreement with dose calculations, while needing the smallest volume averaging corrections. Concerning total dose measured during RapidArc, all detectors agreed with dose calculations within 1.1 ± 0.7% when positioned in regions of high homogenous dose. Larger differences were observed for high dose gradient and organ at risk locations, were differences between measured and calculated dose were as large as 8.0 ± 5.5%. The smallest differences were generally seen for the small-volume ionization chamber and the smallest scintillators. The time-resolved RapidArc dose profiles revealed volume-dependent discrepancies between scintillator and ionization chamber response

  15. Batch production of microchannel plate photo-multipliers

    Energy Technology Data Exchange (ETDEWEB)

    Frisch, Henry J.; Wetstein, Matthew; Elagin, Andrey

    2018-03-06

    In-situ methods for the batch fabrication of flat-panel micro-channel plate (MCP) photomultiplier tube (PMT) detectors (MCP-PMTs), without transporting either the window or the detector assembly inside a vacuum vessel are provided. The method allows for the synthesis of a reflection-mode photocathode on the entrance to the pores of a first MCP or the synthesis of a transmission-mode photocathode on the vacuum side of a photodetector entrance window.

  16. Prediction of the niche effect for single flat panels with or without attached sound absorbing materials.

    Science.gov (United States)

    Sgard, Franck; Atalla, Noureddine; Nélisse, Hugues

    2015-01-01

    The sound transmission loss (STL) of a test sample measured in sound transmission facilities is affected by the opening in which it is located. This is called the niche effect. This paper uses a modal approach to study the STL of a rectangular plate with or without an attached porous material located inside a box-shaped niche. The porous material is modeled as a limp equivalent fluid. The proposed model is validated by comparison with finite element/boundary element computations. Using a condensation of the pressure fields in the niche, the niche effect is interpreted in terms of a modification of the modal blocked pressure fields acting on the panel induced by the front cavity and by a modification of the radiation efficiency of the panel modes due to the presence of the back cavity. The modal approach is then used to investigate the impact of (1) the presence of a porous material attached to the panel on the niche effect and (2) the niche effect on the assessment of the porous material insertion loss. A simplified model for the porous material based on a transfer matrix approach is also proposed to predict the STL of the system and its validity is discussed.

  17. Virtual point detector: On the interpolation and extrapolation of scintillation detectors counting efficiencies

    International Nuclear Information System (INIS)

    Presler, Oren; German, Uzi; Pushkarsky, Vitaly; Alfassi, Zeev B.

    2006-01-01

    The concept of transforming the detector volume to a virtual point detector, in order to facilitate efficiency evaluations for different source locations, was proposed in the past for HPGe and Ge(Li) detectors. The validity of this model for NaI(Tl) and BGO scintillation detectors was studied in the present work. It was found that for both scintillation detectors, the point detector model does not seem to fit too well to the experimental data, for the whole range of source-to-detector distances; however, for source-to-detector cap distances larger than 4 cm, the accuracy was found to be high. A two-parameter polynomial expression describing the dependence of the normalized count rate versus the source-to-detector distance was fitted to the experimental data. For this fit, the maximum deviations are up to about 12%. These deviations are much smaller than the values obtained by applying the virtual point concept, even for distances greater than 4 cm, thus the polynomial fitting is to be preferred for scintillation detectors

  18. Three-layer GSO depth-of-interaction detector for high-energy gamma camera

    International Nuclear Information System (INIS)

    Yamamoto, S.; Watabe, H.; Kawachi, N.; Fujimaki, S.; Kato, K.; Hatazawa, J.

    2014-01-01

    Using Ce-doped Gd 2 SiO 5 (GSO) of different Ce concentrations, three-layer DOI block detectors were developed to reduce the parallax error at the edges of a pinhole gamma camera for high-energy gamma photons. GSOs with Ce concentrations of 1.5 mol% (decay time ∼40 ns), 0.5 mol% crystal (∼60 ns), 0.4 mol% (∼80 ns) were selected for the depth of interaction (DOI) detectors. These three types of GSOs were optically coupled in the depth direction, arranged in a 22×22 matrix and coupled to a flat panel photomultiplier tube (FP-PMT, Hamamatsu H8500). Sizes of these GSO cells were 1.9 mm×1.9 mm×4 mm, 1.9 mm×1.9 mm×5 mm, and 1.9 mm×1.9 mm×6 mm for 1.5 mol%, 0.5 mol%, and 0.4 mol%, respectively. With these combinations of GSOs, all spots corresponding to GSO cells were clearly resolved in the position histogram. Pulse shape spectra showed three peaks for these three decay times of GSOs. The block detector was contained in a 2-cm-thick tungsten shield, and a pinhole collimator with a 0.5-mm aperture was mounted. With pulse shape discrimination, we separated the point source images of the Cs-137 for each DOI layer. The point source image of the lower layer was detected at the most central part of the field-of-view, and the distribution was the smallest. The point source image of the higher layer was detected at the most peripheral part of the field-of-view, and the distribution was widest. With this information, the spatial resolution of the pinhole gamma camera can be improved. We conclude that DOI detection is effective for pinhole gamma cameras for high energy gamma photons

  19. Investigation about semiconductor gamma ray detector - Evaluation of Ge(Li) detectors life expectation

    International Nuclear Information System (INIS)

    1980-06-01

    A list of germanium lithium gamma ray detectors has been drawn up by a working group after investigations in various laboratories. Authors analyse the historical account of each detector and try to give an answer about some questions as: - detectors life expectation, - deficiencies and death reasons, - influence of detector type and volume. Differents parameters are also collected by the working group for future works (standard geometry, low level measurements, etc.). In the list, the characteristics of 228 detectors, collected between january 1965 and december 1977 are put together. The principal conclusions of the authors are: - with a probability of 95%, half of the detectors is dead before 6.1 years, - the average age of dead population (33% of detectors) is 3.9 years, - resolution and efficiency evolution are good indicators of possible deficiency, - the fiability of vertical cryostat is better than the other systems [fr

  20. High-EPA Biomass from Nannochloropsis salina Cultivated in a Flat-Panel Photo-Bioreactor on a Process Water-Enriched Growth Medium

    Directory of Open Access Journals (Sweden)

    Hamed Safafar

    2016-07-01

    Full Text Available Nannochloropsis salina was grown on a mixture of standard growth media and pre-gasified industrial process water representing effluent from a local biogas plant. The study aimed to investigate the effects of enriched growth media and cultivation time on nutritional composition of Nannochloropsis salina biomass, with a focus on eicosapentaenoic acid (EPA. Variations in fatty acid composition, lipids, protein, amino acids, tocopherols and pigments were studied and results compared to algae cultivated on F/2 media as reference. Mixed growth media and process water enhanced the nutritional quality of Nannochloropsis salina in laboratory scale when compared to algae cultivated in standard F/2 medium. Data from laboratory scale translated to the large scale using a 4000 L flat panel photo-bioreactor system. The algae growth rate in winter conditions in Denmark was slow, but results revealed that large-scale cultivation of Nannochloropsis salina at these conditions could improve the nutritional properties such as EPA, tocopherol, protein and carotenoids compared to laboratory-scale cultivated microalgae. EPA reached 44.2% ± 2.30% of total fatty acids, and α-tocopherol reached 431 ± 28 µg/g of biomass dry weight after 21 days of cultivation. Variations in chemical compositions of Nannochloropsis salina were studied during the course of cultivation. Nannochloropsis salina can be presented as a good candidate for winter time cultivation in Denmark. The resulting biomass is a rich source of EPA and also a good source of protein (amino acids, tocopherols and carotenoids for potential use in aquaculture feed industry.