WorldWideScience

Sample records for flat plate photovoltaic

  1. Designing Flat-Plate Photovoltaic Arrays

    Science.gov (United States)

    Ross, R. G., Jr.

    1984-01-01

    Report presents overview of state of art in design techniques for flat-plate solar photovoltaic modules and arrays. Paper discusses design requirements, design analyses, and test methods identified and developed for this technology over past several years in effort to reduce cost and improve utility and reliability for broad spectrum of terrestrial applications.

  2. Qualification testing of flat-plate photovoltaic modules

    Science.gov (United States)

    Hoffman, A. R.; Griffith, J. S.; Ross, R. G., Jr.

    1982-01-01

    The placement of photovoltaic modules in various applications, in climates and locations throughout the world, results in different degrees and combinations of environmental and electrical stress. Early detection of module reliability deficiencies via laboratory testing is necessary for achieving long, satisfactory field service. This overview paper describes qualification testing techniques being used in the US Department of Energy's flat-plate terrestrial photovoltaic development program in terms of their significance, rationale for specified levels and durations, and test results.

  3. Recent advances in flat plate photovoltaic/thermal (PV/T) solar collectors

    Energy Technology Data Exchange (ETDEWEB)

    Ibrahim, Adnan; Othman, Mohd Yusof; Ruslan, Mohd Hafidz; Mat, Sohif; Sopian, Kamaruzzaman [Solar Energy Research Institute Universiti Kebangsaan Malaysia, 43600 Bangi, Selangor (Malaysia)

    2011-01-15

    Flat plate photovoltaic/thermal (PV/T) solar collector produces both thermal energy and electricity simultaneously. This paper presents the state-of-the-art on flat plate PV/T collector classification, design and performance evaluation of water, air and combination of water and/or air based. This review also covers the future development of flat plate PV/T solar collector on building integrated photovoltaic (BIPV) and building integrated photovoltaic/thermal (BIPVT) applications. Different designs feature and performance of flat plate PV/T solar collectors have been compared and discussed. Future research and development (R and D) works have been elaborated. The tube and sheet design is the simplest and easiest to be manufactured, even though, the efficiency is 2% lower compared to other types of collectors such as, channel, free flow and two-absorber. It is clear from the review that for both air and water based PV/T solar collectors, the important key factors that influenced the efficiency of the system are the area where the collector covered, the number of passes and the gap between the absorber collector and solar cells. From the literature review, it is obvious that the flat plate PV/T solar collector is an alternative promising system for low-energy applications in residential, industrial and commercial buildings. Other possible areas for the future works of BIPVT are also mentioned. (author)

  4. Relative potentials of concentrating and two-axis tracking flat-plate photovoltaic arrays for central-station applications

    Science.gov (United States)

    Borden, C. S.; Schwartz, D. L.

    1984-01-01

    The purpose of this study is to assess the relative economic potentials of concenrating and two-axis tracking flat-plate photovoltaic arrays for central-station applications in the mid-1990's. Specific objectives of this study are to provide information on concentrator photovoltaic collector probabilistic price and efficiency levels to illustrate critical areas of R&D for concentrator cells and collectors, and to compare concentrator and flat-plate PV price and efficiency alternatives for several locations, based on their implied costs of energy. To deal with the uncertainties surrounding research and development activities in general, a probabilistic assessment of commercially achievable concentrator photovoltaic collector efficiencies and prices (at the factory loading dock) is performed. The results of this projection of concentrator photovoltaic technology are then compared with a previous flat-plate module price analysis (performed early in 1983). To focus this analysis on specific collector alternatives and their implied energy costs for different locations, similar two-axis tracking designs are assumed for both concentrator and flat-plate options.

  5. Testing flat plate photovoltaic modules for terrestrial environment

    Science.gov (United States)

    Hoffman, A. R.; Arnett, J. C.; Ross, R. G., Jr.

    1979-01-01

    New qualification tests have been developed for flat plate photovoltaic modules. Temperature cycling, cyclic pressure load, and humidity exposure are especially useful for detecting design and fabrication deficiencies. There is positive correlation between many of the observed field effects, such as power loss, and qualification test induced degradation. The status of research efforts for the development of test methodology for field-related problems is reviewed.

  6. Proceedings of the Flat-Plate Solar Array Project Research Forum on the Design of Flat-Plate Photovoltaic Arrays for Central Stations

    Science.gov (United States)

    1983-01-01

    The Flat Plate Solar Array Project, focuses on advancing technologies relevant to the design and construction of megawatt level central station systems. Photovoltaic modules and arrays for flat plate central station or other large scale electric power production facilities require the establishment of a technical base that resolves design issues and results in practical and cost effective configurations. Design, qualification and maintenance issues related to central station arrays derived from the engineering and operating experiences of early applications and parallel laboratory reserch activities are investigated. Technical issues are examined from the viewpoint of the utility engineer, architect/engineer and laboratory researcher. Topics on optimum source circuit designs, module insulation design for high system voltages, array safety, structural interface design, measurements, and array operation and maintenance are discussed.

  7. Flat plate vs. concentrator solar photovoltaic cells - A manufacturing cost analysis

    Science.gov (United States)

    Granon, L. A.; Coleman, M. G.

    1980-01-01

    The choice of which photovoltaic system (flat plate or concentrator) to use for utilizing solar cells to generate electricity depends mainly on the cost. A detailed, comparative manufacturing cost analysis of the two types of systems is presented. Several common assumptions, i.e., cell thickness, interest rate, power rate, factory production life, polysilicon cost, and direct labor rate are utilized in this analysis. Process sequences, cost variables, and sensitivity analyses have been studied, and results of the latter show that the most important parameters which determine manufacturing costs are concentration ratio, manufacturing volume, and cell efficiency. The total cost per watt of the flat plate solar cell is $1.45, and that of the concentrator solar cell is $1.85, the higher cost being due to the increased process complexity and material costs.

  8. Environmental testing of terrestrial flat plate photovoltaic modules

    Science.gov (United States)

    Hoffman, A.; Griffith, J.

    1979-01-01

    The Low-Cost Solar Array (LSA) Project at the Jet Propulsion Laboratory has as one objective: the development and implementation of environmental tests for flat plate photovoltaic modules as part of the Department of Energy's terrestrial photovoltaic program. Modules procured under this program have been subjected to a variety of laboratory tests intended to simulate service environments, and the results of these tests have been compared to available data from actual field service. This comparison indicates that certain tests (notably temperature cycling, humidity cycling, and cyclic pressure loading) are effective indicators of some forms of field failures. Other tests have yielded results useful in formulating module design guidelines. Not all effects noted in field service have been successfully reproduced in the laboratory, however, and work is continuing in order to improve the value of the test program as a tool for evaluating module design and workmanship. This paper contains a review of these ongoing efforts and an assessment of significant test results to date.

  9. Effects of design on cost of flat-plate solar photovoltaic arrays for terrestrial central station power applications

    Science.gov (United States)

    Tsou, P.; Stolte, W.

    1978-01-01

    The paper examines the impact of module and array designs on the balance-of-plant costs for flat-plate terrestrial central station power applications. Consideration is given to the following types of arrays: horizontal, tandem, augmented, tilt adjusted, and E-W tracking. The life-cycle cost of a 20-year plant life serves as the costing criteria for making design and cost tradeoffs. A tailored code of accounts is developed for determining consistent photovoltaic power plant costs and providing credible photovoltaic system cost baselines for flat-plate module and array designs by costing several varying array design approaches.

  10. Proceedings of the Flat-Plate Solar Array Project Research Forum on Photovoltaic Metallization Systems

    Science.gov (United States)

    1983-01-01

    A photovoltaic Metallization Research forum, under the sponsorship of the Flat-Plate Solar Array Project consisted of five sessions, covering: (1) the current status of metallization systems, (2) system design, (3) thick-film metallization, (4) advanced techniques, and (5) future metallization challenges.

  11. Can Integrated Micro-Optical Concentrator Technology Revolutionize Flat-Plate Photovoltaic Solar Energy Harvesting?

    Science.gov (United States)

    Haney, Michael W.

    2015-12-01

    The economies-of-scale and enhanced performance of integrated micro-technologies have repeatedly delivered disruptive market impact. Examples range from microelectronics to displays to lighting. However, integrated micro-scale technologies have yet to be applied in a transformational way to solar photovoltaic panels. The recently announced Micro-scale Optimized Solar-cell Arrays with Integrated Concentration (MOSAIC) program aims to create a new paradigm in solar photovoltaic panel technology based on the incorporation of micro-concentrating photo-voltaic (μ-CPV) cells. As depicted in Figure 1, MOSAIC will integrate arrays of micro-optical concentrating elements and micro-scale PV elements to achieve the same aggregated collection area and high conversion efficiency of a conventional (i.e., macro-scale) CPV approach, but with the low profile and mass, and hopefully cost, of a conventional non-concentrated PV panel. The reduced size and weight, and enhanced wiring complexity, of the MOSAIC approach provide the opportunity to access the high-performance/low-cost region between the conventional CPV and flat-plate (1-sun) PV domains shown in Figure 2. Accessing this portion of the graph in Figure 2 will expand the geographic and market reach of flat-plate PV. This talk reviews the motivation and goals for the MOSAIC program. The diversity of the technical approaches to micro-concentration, embedded solar tracking, and hybrid direct/diffuse solar resource collection found in the MOSAIC portfolio of projects will also be highlighted.

  12. Proceedings of the flat-plate solar array project research forum on photovoltaic metallization systems

    Energy Technology Data Exchange (ETDEWEB)

    None

    1983-11-15

    A Photovoltaic Metallization Research Forum, under the sponsorship of the Jet Propulsion Laboratory's Flat-Plate Solar Array Project and the US Department of Energy, was held March 16-18, 1983 at Pine Mountain, Georgia. The Forum consisted of five sessions, covering (1) the current status of metallization systems, (2) system design, (3) thick-film metallization, (4) advanced techniques and (5) future metallization challenges. Twenty-three papers were presented.

  13. Stand-alone flat-plate photovoltaic power systems: System sizing and life-cycle costing methodology for Federal agencies

    Science.gov (United States)

    Borden, C. S.; Volkmer, K.; Cochrane, E. H.; Lawson, A. C.

    1984-01-01

    A simple methodology to estimate photovoltaic system size and life-cycle costs in stand-alone applications is presented. It is designed to assist engineers at Government agencies in determining the feasibility of using small stand-alone photovoltaic systems to supply ac or dc power to the load. Photovoltaic system design considerations are presented as well as the equations for sizing the flat-plate array and the battery storage to meet the required load. Cost effectiveness of a candidate photovoltaic system is based on comparison with the life-cycle cost of alternative systems. Examples of alternative systems addressed are batteries, diesel generators, the utility grid, and other renewable energy systems.

  14. Characterization of the electrical output of flat-plate photovoltaic arrays

    Science.gov (United States)

    Gonzalez, C. C.; Hill, G. M.; Ross, R. G., Jr.

    1982-01-01

    The electric output of flat-plate photovoltaic arrays changes constantly, due primarily to changes in cell temperature and irradiance level. As a result, array loads such as direct-current to alternating-current power conditioners must be able to accommodate widely varying input levels, while maintaining operation at or near the array maximum power point.The results of an extensive computer simulation study that was used to define the parameters necessary for the systematic design of array/power-conditioner interfaces are presented as normalized ratios of power-conditioner parameters to array parameters, to make the results universally applicable to a wide variety of system sizes, sites, and operating modes. The advantages of maximum power tracking and a technique for computing average annual power-conditioner efficiency are discussed.

  15. Modeling the effect of the inclination angle on natural convection from a flat plate: The case of a photovoltaic module

    OpenAIRE

    Perović Bojan D.; Klimenta Jelena Lj.; Tasić Dragan S.; Peuteman Joan L.G.; Klimenta Dardan O.; Anđelković Ljiljana N.

    2017-01-01

    The main purpose of this paper is to show how the inclination angle affects natural convection from a flat-plate photovoltaic module which is mounted on the ground surface. In order to model this effect, novel correlations for natural convection from isothermal flat plates are developed by using the fundamental dimensionless number. On the basis of the available experimental and numerical results, it is shown that the natural convection correlations correspond well with the existing empirical...

  16. System Advisor Model: Flat Plate Photovoltaic Performance Modeling Validation Report

    Energy Technology Data Exchange (ETDEWEB)

    Freeman, Janine [National Renewable Energy Lab. (NREL), Golden, CO (United States); Whitmore, Jonathan [National Renewable Energy Lab. (NREL), Golden, CO (United States); Kaffine, Leah [National Renewable Energy Lab. (NREL), Golden, CO (United States); Blair, Nate [National Renewable Energy Lab. (NREL), Golden, CO (United States); Dobos, Aron P. [National Renewable Energy Lab. (NREL), Golden, CO (United States)

    2013-12-01

    The System Advisor Model (SAM) is a free software tool that performs detailed analysis of both system performance and system financing for a variety of renewable energy technologies. This report provides detailed validation of the SAM flat plate photovoltaic performance model by comparing SAM-modeled PV system generation data to actual measured production data for nine PV systems ranging from 75 kW to greater than 25 MW in size. The results show strong agreement between SAM predictions and field data, with annualized prediction error below 3% for all fixed tilt cases and below 8% for all one axis tracked cases. The analysis concludes that snow cover and system outages are the primary sources of disagreement, and other deviations resulting from seasonal biases in the irradiation models and one axis tracking issues are discussed in detail.

  17. Wind loads on flat plate photovoltaic array fields

    Science.gov (United States)

    Miller, R. D.; Zimmerman, D. K.

    1981-01-01

    The results of an experimental analysis (boundary layer wind tunnel test) of the aerodynamic forces resulting from winds acting on flat plate photovoltaic arrays are presented. Local pressure coefficient distributions and normal force coefficients on the arrays are shown and compared to theoretical results. Parameters that were varied when determining the aerodynamic forces included tilt angle, array separation, ground clearance, protective wind barriers, and the effect of the wind velocity profile. Recommended design wind forces and pressures are presented, which envelop the test results for winds perpendicular to the array's longitudinal axis. This wind direction produces the maximum wind loads on the arrays except at the array edge where oblique winds produce larger edge pressure loads. The arrays located at the outer boundary of an array field have a protective influence on the interior arrays of the field. A significant decrease of the array wind loads were recorded in the wind tunnel test on array panels located behind a fence and/or interior to the array field compared to the arrays on the boundary and unprotected from the wind. The magnitude of this decrease was the same whether caused by a fence or upwind arrays.

  18. Wind loads on flat plate photovoltaic array fields (nonsteady winds)

    Science.gov (United States)

    Miller, R. D.; Zimmerman, D. K.

    1981-01-01

    Techniques to predict the dynamic response and the structural dynamic loads of flat plate photovoltaic arrays due to wind turbulence were analyzed. Guidelines for use in predicting the turbulent portion of the wind loading on future similar arrays are presented. The dynamic response and the loads dynamic magnification factor of the two array configurations are similar. The magnification factors at a mid chord and outer chord location on the array illustrated and at four points on the chord are shown. The wind tunnel test experimental rms pressure coefficient on which magnification factors are based is shown. It is found that the largest response and dynamic magnification factor occur at a mid chord location on an array and near the trailing edge. A technique employing these magnification factors and the wind tunnel test rms fluctuating pressure coefficients to calculate design pressure loads due to wind turbulence is presented.

  19. Environmental requirements for flat plate photovoltaic modules for terrestrial applications

    Science.gov (United States)

    Hoffman, A. R.; Ross, R. G., Jr.

    1979-01-01

    The environmental test requirements that have been developed for flat plate modules purchased through Department of Energy funding are described. Concurrent with the selection of the initial qualification tests from space program experience - temperature cycling and humidity - surveys of existing photovoltaic systems in the field revealed that arrays were experiencing the following failure modes: interconnect breakage, delamination, and electrical termination corrosion. These coupled with application-dependent considerations led to the development of additional qualification tests, such as cyclic pressure loading, warped mounting surface, and hail. Rationale for the selection of tests, their levels and durations is described. Comparisons between field-observed degradation and test-induced degradation show a positive correlation with some of the observed field effects. Also, the tests are proving useful for detecting design, process, and workmanship deficiencies. The status of study efforts for the development of environmental requirements for field-related problems is reviewed.

  20. Design of a photovoltaic central power station: flat-plate array

    Energy Technology Data Exchange (ETDEWEB)

    1984-02-01

    A design for a photovoltaic central power station using fixed flat-panel arrays has been developed. The 100 MW plant is assumed to be located adjacent to the Saguaro Power Station of Arizona Public Service. The design assumes high-efficiency photovoltaic modules using dendritic web cells. The modules are arranged in 5 MW subfields, each with its own power conditioning unit. The photovoltaic output is connected to the existing 115 kV utility switchyard. The site specific design allows detailed cost estimates for engineering, site preparation, and installation. Collector and power conditioning costs have been treated parametrically.

  1. Electricity from photovoltaic solar cells: Flat-Plate Solar Array Project final Report. Volume II: Silicon material

    OpenAIRE

    Lutwack, R.

    1986-01-01

    The Flat-Plate Solar Array (FSA) Project, funded by the U.S. Government and managed by the Jet Propulsion Laboratory, was formed in 1975 to develop the module/array technology needed to attain widespread terrestrial use of photovoltaics by 1985. To accomplish this, the FSA Project established and managed an Industry, University, and Federal Government Team to perform the needed research and development. The goal of the Silicon Material Task, a part of the FSA Project, was to develop and ...

  2. Electricity from photovoltaic solar cells. Flat-Plate Solar Array Project of the US Department of Energy's National Photovoltaics Program: 10 years of progress

    Science.gov (United States)

    Christensen, Elmer

    1985-01-01

    The objectives were to develop the flat-plate photovoltaic (PV) array technologies required for large-scale terrestrial use late in the 1980s and in the 1990s; advance crystalline silicon PV technologies; develop the technologies required to convert thin-film PV research results into viable module and array technology; and to stimulate transfer of knowledge of advanced PV materials, solar cells, modules, and arrays to the PV community. Progress reached on attaining these goals, along with future recommendations are discussed.

  3. Modeling the effect of the inclination angle on natural convection from a flat plate: The case of a photovoltaic module

    Directory of Open Access Journals (Sweden)

    Perović Bojan D.

    2017-01-01

    Full Text Available The main purpose of this paper is to show how the inclination angle affects natural convection from a flat-plate photovoltaic module which is mounted on the ground surface. In order to model this effect, novel correlations for natural convection from isothermal flat plates are developed by using the fundamental dimensionless number. On the basis of the available experimental and numerical results, it is shown that the natural convection correlations correspond well with the existing empirical correlations for vertical, inclined, and horizontal plates. Five additional correlations for the critical Grashof number are derived from the available data, three indicating the onset of transitional flow regime and two indicating the onset of flow separation. The proposed correlations cover the entire range of inclination angles and the entire range of Prandtl numbers. This paper also provides two worked examples, one for natural convection combined with radiation and one for natural convection combined with forced convection and radiation. [Project of the Serbian Ministry of Education, Science and Technological Development, Grant no. TR33046

  4. Energy and exergy analyses of Photovoltaic/Thermal flat transpired collectors: Experimental and theoretical study

    International Nuclear Information System (INIS)

    Gholampour, Maysam; Ameri, Mehran

    2016-01-01

    Highlights: • A Photovoltaic/Thermal flat transpired collector was theoretically and experimentally studied. • Performance of PV/Thermal flat transpired plate was evaluated using equivalent thermal, first, and second law efficiencies. • According to the actual exergy gain, a critical radiation level was defined and its effect was investigated. • As an appropriate tool, equivalent thermal efficiency was used to find optimum suction velocity and PV coverage percent. - Abstract: PV/Thermal flat transpired plate is a kind of air-based hybrid Photovoltaic/Thermal (PV/T) system concurrently producing both thermal and electrical energy. In order to develop a predictive model, validate, and investigate the PV/Thermal flat transpired plate capabilities, a prototype was fabricated and tested under outdoor conditions at Shahid Bahonar University of Kerman in Kerman, Iran. In order to develop a mathematical model, correlations for Nusselt numbers for PV panel and transpired plate were derived using CFD technique. Good agreement was obtained between measured and simulated values, with the maximum relative root mean square percent deviation (RMSE) being 9.13% and minimum correlation coefficient (R-squared) 0.92. Based on the critical radiation level defined in terms of the actual exergy gain, it was found that with proper fan and MPPT devices, there is no concern about the critical radiation level. To provide a guideline for designers, using equivalent thermal efficiency as an appropriate tool, optimum values for suction velocity and PV coverage percent under different conditions were obtained.

  5. Flat-plate solar array project. Volume 1: Executive summary

    Science.gov (United States)

    Callaghan, W.; Mcdonald, R.

    1986-01-01

    In 1975, the U.S. Government contracted the Jet Propulsion Lab. to develop, by 1985, in conjunction with industry, the photovoltaics (PV) module and array technology required for widespread use of photovoltaics as a significant terrestrial energy source. As a result, a project that eventually became known as the Flat Plate Solar Array (FSA) Project was formed to manage an industry, university, and Government team to perform the necessary research and development. The original goals were to achieve widespread commercial use of PV modules and arrays through the development of technology that would allow them to be profitably sold for $1.07/peak watts (1985 dollars). A 10% module conversion efficiency and a 20 year lifetime were also goals. It is intended that the executive summary provide the means by which one can gain a perspective on 11 years of terrestrial photovoltaic research and development conducted by the FSA Project.

  6. Flat-plate photovoltaic array design optimization

    Science.gov (United States)

    Ross, R. G., Jr.

    1980-01-01

    An analysis is presented which integrates the results of specific studies in the areas of photovoltaic structural design optimization, optimization of array series/parallel circuit design, thermal design optimization, and optimization of environmental protection features. The analysis is based on minimizing the total photovoltaic system life-cycle energy cost including repair and replacement of failed cells and modules. This approach is shown to be a useful technique for array optimization, particularly when time-dependent parameters such as array degradation and maintenance are involved.

  7. Cost estimates for flat plate and concentrator collector arrays

    Science.gov (United States)

    Shimada, K.

    1982-01-01

    The current module and installation costs for the U.S. National Photovoltaic Program's grid-connected systems are significantly higher than required for economic viability of this alternative. Attention is accordingly given to the prospects for installed module cost reductions in flat plate, linear focus Fresnel concentrator, and point focus Fresnel concentrator candidate systems. Cost projections indicate that all three systems would meet near-term and midterm goals, provided that module costs of $2.80/W(p) and $0.70/W(p), respectively, are met. The point focus Fresnel system emerges as the most viable for the near term.

  8. Recommendations for the performance rating of flat plate terrestrial photovoltaic solar panels

    Science.gov (United States)

    Treble, F. C.

    1976-01-01

    A review of recommendations for standardizing the performance rating of flat plate terrestrial solar panels is given to develop an international standard code of practice for performance rating. Required data to characterize the performance of a solar panel are listed. Other items discussed are: (1) basic measurement procedures; (2) performance measurement in natural sunlight and simulated sunlight; (3) standard solar cells; (4) the normal incidence method; (5) global method and (6) definition of peak power.

  9. The effect of using sun tracking systems on the voltage-current characteristics and power generation of flat plate photovoltaics

    International Nuclear Information System (INIS)

    Abdallah, Salah

    2004-01-01

    An experimental study was performed to investigate the effect of using different types of sun tracking systems on the voltage-current characteristics and electrical power generation at the output of flat plate photovoltaics (FPPV). Four electromechanical sun tracking systems, two axes, one axis vertical, one axis east-west and one axis north-south, were designed and constructed for the purpose of investigating the effect of tracking on the electrical values, current, voltage and power, according to the different loads (variable resistance). The above mentioned variables were measured at the output of the FPPV and compared with those on a fixed surface. The results indicated that the volt-ampere characteristics on the tracking surfaces were significantly greater than that on a fixed surface. There were increases of electrical power gain up to 43.87%, 37.53%, 34.43% and 15.69% for the two axes, east-west, vertical and north-south tracking, respectively, as compared with the fixed surface inclined 32 deg. to the south in Amman, Jordan

  10. Performance Characterisation of a Hybrid Flat-Plate Vacuum Insulated Photovoltaic/Thermal Solar Power Module in Subtropical Climate

    Directory of Open Access Journals (Sweden)

    Andrew Y. A. Oyieke

    2016-01-01

    Full Text Available A flat-plate Vacuum Insulated Photovoltaic and Thermal (VIPV/T system has been thermodynamically simulated and experimentally evaluated to assess the thermal and electrical performance as well as energy conversion efficiencies under a subtropical climate. A simulation model made of specified components is developed in Transient Systems (TRNSYS environment into which numerical energy balance equations are implemented. The influence of vacuum insulation on the system’s electrical and thermal yields has been evaluated using temperatures, current, voltage, and power flows over daily and annual cycles under local meteorological conditions. The results from an experiment conducted under steady-state conditions in Durban, South Africa, are compared with the simulation based on the actual daily weather data. The VIPV/T has shown improved overall and thermal efficiencies of 9.5% and 16.8%, respectively, while electrical efficiency marginally reduced by 0.02% compared to the conventional PV/T. The simulated annual overall efficiency of 29% (i.e., 18% thermal and 11% electrical has been realised, in addition to the solar fraction, overall exergy, and primary energy saving efficiencies of 39%, 29%, and 27%, respectively.

  11. Stress analyses of flat plates with attached nozzles. Vol. 2: Experimental stress analyses of a flat plate with one nozzle attached

    International Nuclear Information System (INIS)

    Battiste, R.L.; Peters, W.H.; Ranson, W.F.; Swinson, W.F.

    1975-07-01

    Vol. 1 of this report compares experimental results with theoretical stress distributions for a flat plate with one nozzle configuration and for a flat plate with two closely spaced nozzles attached. This volume contains the complete test results for a flat plate with one nozzle attached that was subjected to 1:1 and 1:2 biaxial planar loadings on the plate, to a thrust loading on the nozzle, and to a moment loading on the nozzle. The plate tested was 36 x 36 x 0.375 in., and the attached nozzle had an outer dia of 2.625 in. and a 0.250-in.-thick wall. The nozzle was located in the center of the plate and was considered to be free of weld distortions and irregularities in the junction area. (U.S.)

  12. Flat-plate solar array progress and plans

    Science.gov (United States)

    Callaghan, W. T.; Henry, P. K.

    1984-01-01

    The Flat-Plate Solar Array Project (FSA), sponsored by the U.S. Department of Energy (DOE) and managed by the Jet Propulsion Laboratory (JPL), has achieved progress in a broad range of technical activities since that reported at the Fourth European Communities Conference. A particularly important analysis has been completed recently which confirms the adoption into practice by the U.S. Photovoltaic (PV Industry, of all the low-cost module technology elements proposed at the 16th Project Integration Meeting for a $2.80/Wp (1980 U.S. Dollars) design approach in the fall of 1980. This work presents along with a projection, using the same techniques, for what is believed to be a very credible ribbon-based module design for less that $0.55/Wp (1980 U.S. Dollars). Other areas to be reported upon include low-cost Si feedstock refinement; ribbon growth; process sequence development for cells; environmental isolation; engineering science investigations; and module testing progress.

  13. Cost effective flat plate photovoltaic modules using light trapping

    Science.gov (United States)

    Bain, C. N.; Gordon, B. A.; Knasel, T. M.; Malinowski, R. L.

    1981-01-01

    Work in optical trapping in 'thick films' is described to form a design guide for photovoltaic engineers. A thick optical film can trap light by diffusive reflection and total internal reflection. Light can be propagated reasonably long distances compared with layer thicknesses by this technique. This makes it possible to conduct light from inter-cell and intra-cell areas now not used in photovoltaic modules onto active cell areas.

  14. Array elements for a DBS flat-plate antenna

    Science.gov (United States)

    Maddocks, M. C. D.

    1988-07-01

    The introduction of a direct broadcast by satellite (DBS) television service requires suitable receiving antennas to be available. An alternative to the parabolic dish antenna is a flat-plate antenna. The overall design of a circularly-polarized flat-plate antenna which can be mounted flat on the wall of a building has been considered in a companion Report. In this Report various types of elements are investigated and their advantages and disadvantages discussed. The most suitable element for use in a flat-plate array is identified as a linearly-polarized folded-dipole element; its performance is reported here. Linearly-polarized elements are found to perform better than circularly-polarized elements and could be used with a polarization converter to receive the circularly-polarized radiation that would be transmitted by DBS.

  15. Comparison of Thermal Performances between Low Porosity Perforate Plate and Flat Plate Solar Air Collector

    Science.gov (United States)

    Chan, Hoy-Yen; Vinson, A. A.; Baljit, S. S. S.; Ruslan, M. H.

    2018-04-01

    Flat plate solar air collector is the most common collector design, which is relatively simpler to fabricate and lower cost. In the present study, perforated plate solar collector was developed to improve the system thermal performance. A glazed perforated plate of 6mm holes diameter with square geometry was designed and installed as the absorber of the collector. The influences of solar radiation intensity and mass flow rate on the thermal performance were investigated. The perforated collector was compared with the flat plate solar collector under the same operating conditions. The highest values of thermal efficiency in this study for the perforated plate (PP) and the flat plate (FP) solar collectors were 59% and 36% respectively, at solar radiation intensity of 846 Wm-2 and mass flow rate of 0.02 kgs-1. Furthermore, PP collector gave better thermal performance compared to FP collector; and compared to previous studies, the present perforated design was compatible with the flat plate with double pass designs.

  16. Improved ATIR concentrator photovoltaic module

    Science.gov (United States)

    Adriani, Paul M.; Mao, Erwang

    2013-09-01

    Novel aggregated total internal reflection (ATIR) concentrator photovoltaic module design comprises 2-D shaped primary and secondary optics that effectively combine optical efficiency, low profile, convenient range of acceptance angles, reliability, and manufacturability. This novel optical design builds upon previous investigations by improving the shapes of primary and secondary optics to enable improved long-term reliability and manufacturability. This low profile, low concentration (5x to 10x) design fits well with one-axis trackers that are often used for flat plate crystalline silicon photovoltaic modules in large scale ground mount installations. Standard mounting points, materials, and procedures apply without changes from flat plate modules.

  17. Flat-plate solar array project. Volume 8: Project analysis and integration

    Science.gov (United States)

    Mcguire, P.; Henry, P.

    1986-01-01

    Project Analysis and Integration (PA&I) performed planning and integration activities to support management of the various Flat-Plate Solar Array (FSA) Project R&D activities. Technical and economic goals were established by PA&I for each R&D task within the project to coordinate the thrust toward the National Photovoltaic Program goals. A sophisticated computer modeling capability was developed to assess technical progress toward meeting the economic goals. These models included a manufacturing facility simulation, a photovoltaic power station simulation and a decision aid model incorporating uncertainty. This family of analysis tools was used to track the progress of the technology and to explore the effects of alternative technical paths. Numerous studies conducted by PA&I signaled the achievement of milestones or were the foundation of major FSA project and national program decisions. The most important PA&I activities during the project history are summarized. The PA&I planning function is discussed and how it relates to project direction and important analytical models developed by PA&I for its analytical and assessment activities are reviewed.

  18. A Module Experimental Process System Development Unit (MEPSDU). [flat plate solar arrays

    Science.gov (United States)

    1981-01-01

    The development of a cost effective process sequence that has the potential for the production of flat plate photovoltaic modules which meet the price goal in 1986 of 70 cents or less per Watt peak is described. The major accomplishments include (1) an improved AR coating technique; (2) the use of sand blast back clean-up to reduce clean up costs and to allow much of the Al paste to serve as a back conductor; and (3) the development of wave soldering for use with solar cells. Cells were processed to evaluate different process steps, a cell and minimodule test plan was prepared and data were collected for preliminary Samics cost analysis.

  19. Forces and Moments on Flat Plates of Small Aspect Ratio with Application to PV Wind Loads and Small Wind Turbine Blades

    OpenAIRE

    Xavier Ortiz; David Rival; David Wood

    2015-01-01

    To improve knowledge of the wind loads on photovoltaic structures mounted on flat roofs at the high angles required in high latitudes, and to study starting flow on low aspect ratio wind turbine blades, a series of wind tunnel tests were undertaken. Thin flat plates of aspect ratios between 0.4 and 9.0 were mounted on a sensitive three-component instantaneous force and moment sensor. The Reynolds numbers varied from 6 × 10 4 to 2 × 10 5 . Measurements were made for angles of attack between 0°...

  20. Flat-plate solar array project. Volume 6: Engineering sciences and reliability

    Science.gov (United States)

    Ross, R. G., Jr.; Smokler, M. I.

    1986-01-01

    The Flat-Plate Solar Array (FSA) Project activities directed at developing the engineering technology base required to achieve modules that meet the functional, safety, and reliability requirements of large scale terrestrial photovoltaic systems applications are reported. These activities included: (1) development of functional, safety, and reliability requirements for such applications; (2) development of the engineering analytical approaches, test techniques, and design solutions required to meet the requirements; (3) synthesis and procurement of candidate designs for test and evaluation; and (4) performance of extensive testing, evaluation, and failure analysis of define design shortfalls and, thus, areas requiring additional research and development. A summary of the approach and technical outcome of these activities are provided along with a complete bibliography of the published documentation covering the detailed accomplishments and technologies developed.

  1. Flat-plate solar array project. Volume 7: Module encapsulation

    Science.gov (United States)

    Cuddihy, E.; Coulbert, C.; Gupta, A.; Liang, R.

    1986-01-01

    The objective of the Encapsulation Task was to develop, demonstrate, and qualify photovoltaic (PV) module encapsulation systems that would provide 20 year (later decreased to 30 year) life expectancies in terrestrial environments, and which would be compatible with the cost and performance goals of the Flat-Plate Solar Array (FSA) Project. The scope of the Encapsulation Task included the identification, development, and evaluation of material systems and configurations required to support and protect the optically and electrically active solar cell circuit components in the PV module operating environment. Encapsulation material technologies summarized include the development of low cost ultraviolet protection techniques, stable low cost pottants, soiling resistant coatings, electrical isolation criteria, processes for optimum interface bonding, and analytical and experimental tools for evaluating the long term durability and structural adequacy of encapsulated modules. Field testing, accelerated stress testing, and design studies have demonstrated that encapsulation materials, processes, and configurations are available that meet the FSA cost and performance goals.

  2. Technology developments toward 30-year-life of photovoltaic modules

    Science.gov (United States)

    Ross, R. G., Jr.

    1984-01-01

    As part of the United States National Photovoltaics Program, the Jet Propulsion Laboratory's Flat-Plate Solar Array Project (FSA) has maintained a comprehensive reliability and engineering sciences activity addressed toward understanding the reliability attributes of terrestrial flat-plate photovoltaic arrays and to deriving analysis and design tools necessary to achieve module designs with a 30-year useful life. The considerable progress to date stemming from the ongoing reliability research is discussed, and the major areas requiring continued research are highlighted. The result is an overview of the total array reliability problem and of available means of achieving high reliability at minimum cost.

  3. A sensitivity analysis of central flat-plate photovoltaic systems and implications for national photovoltaics program planning

    Science.gov (United States)

    Crosetti, M. R.

    1985-01-01

    The sensitivity of the National Photovoltaic Research Program goals to changes in individual photovoltaic system parameters is explored. Using the relationship between lifetime cost and system performance parameters, tests were made to see how overall photovoltaic system energy costs are affected by changes in the goals set for module cost and efficiency, system component costs and efficiencies, operation and maintenance costs, and indirect costs. The results are presented in tables and figures for easy reference.

  4. Solar photovoltaic/thermal residential experiment. Phase I. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Darkazalli, G.

    1980-07-01

    Month-by-month energy transfer data between an occupied residence and its energy supply systems are presented. The data were obtained during the first phase of photovoltaic/thermal residential research conducted at the University of Texas at Arlington/Solar Energy Research Facility. This research was part of the US Department of Energy Photovoltaic/Thermal Project managed by the M.I.T. Lincoln Laboratory. Energy transfer data are divided into different categories depending on how the energy is consumed. Energy transfers between some system components are also categorized. These components include a flat-plate thermal collector array, a flat-plate photovoltaic array, a dc-to-ac inverter, thermal storage tanks, and a series heat pump. System operations included directing surplus electrical energy (generated by the photovoltaic array) into the local utility grid. The heat pump used off-peak utility power to chill water during the cooling season.

  5. Flow over a traveling wavy foil with a passively flapping flat plate

    Science.gov (United States)

    Liu, Nansheng; Peng, Yan; Liang, Youwen; Lu, Xiyun

    2012-05-01

    Flow over a traveling wavy foil with a passively flapping flat plate has been investigated using a multiblock lattice Boltzmann equation and the immersed boundary method. The foil undergoes prescribed undulations in the lateral direction and the rigid flat plate has passive motion determined by the fluid structure interaction. This simplified model is used to study the effect of the fish caudal fin and its flexibility on the locomotion of swimming animals. The flexibility of the caudal fin is modeled by a torsion spring acting about the pivot at the conjuncture of the wavy foil and the flat plate. The study reveals that the passively oscillating flat plate contributes half of the propulsive force. The flexibility, represented by the nondimensional natural frequency F, plays a very important role in the movement and propulsive force generation of the whole body. When the plate is too flexible, the drag force is observed. As the flat plate becomes more rigid, the propulsive force that is generated when the undulation is confined to last part of the wavy foil becomes larger. The steady movement occurs at F=5. These results are consistent with the observations of some swimming animals in nature.

  6. Flat-plate solar array project. Volume 2: Silicon material

    Science.gov (United States)

    Lutwack, R.

    1986-10-01

    The goal of the Silicon Material Task, a part of the Flat Plate Solar Array (FSA) Project, was to develop and demonstate the technology for the low cost production of silicon of suitable purity to be used as the basic material for the manufacture of terrestrial photovoltaic solar cells. Summarized are 11 different processes for the production of silicon that were investigated and developed to varying extent by industrial, university, and Government researchers. The silane production section of the Union Carbide Corp. (UCC) silane process was developed completely in this program. Coupled with Siemens-type chemical vapor deposition reactors, the process was carried through the pilot stage. The overall UCC process involves the conversion of metallurgical-grade silicon to silane followed by decomposition of the silane to purified silicon. The other process developments are described to varying extents. Studies are reported on the effects of impurities in silicon on both silicon-material properties and on solar cell performance. These studies on the effects of impurities yielded extensive information and models for relating specific elemental concentrations to levels of deleterious effects.

  7. Flat-plate solar array project. Volume 2: Silicon material

    Science.gov (United States)

    Lutwack, R.

    1986-01-01

    The goal of the Silicon Material Task, a part of the Flat Plate Solar Array (FSA) Project, was to develop and demonstate the technology for the low cost production of silicon of suitable purity to be used as the basic material for the manufacture of terrestrial photovoltaic solar cells. Summarized are 11 different processes for the production of silicon that were investigated and developed to varying extent by industrial, university, and Government researchers. The silane production section of the Union Carbide Corp. (UCC) silane process was developed completely in this program. Coupled with Siemens-type chemical vapor deposition reactors, the process was carried through the pilot stage. The overall UCC process involves the conversion of metallurgical-grade silicon to silane followed by decomposition of the silane to purified silicon. The other process developments are described to varying extents. Studies are reported on the effects of impurities in silicon on both silicon-material properties and on solar cell performance. These studies on the effects of impurities yielded extensive information and models for relating specific elemental concentrations to levels of deleterious effects.

  8. Fire-induced reradiation underneath photovoltaic arrays on flat roofs

    DEFF Research Database (Denmark)

    Kristensen, Jens Steemann; Merci, Bart; Jomaas, Grunde

    2018-01-01

    The impact of the reflection of fire-induced heat from a gas burner was studied experimentally to gain knowledge on the interaction between photovoltaic (PV) panels and a fire on flat roofs. The heat flux was measured in a total of eight points at the same level as the top of the gas burner. The ...

  9. Buckling of Flat Thin Plates under Combined Loading

    Directory of Open Access Journals (Sweden)

    Ion DIMA

    2015-03-01

    Full Text Available This article aims to provide a quick methodology to determine the critical values of the forces applied to the central plane of a flat isotropic plate at which a change to the stable configuration of equilibrium occurs. Considering the variety of shapes, boundary conditions and loading combinations, the article does not intend to make an exhaustive presentation of the plate buckling. As an alternative, there will be presented only the most used configurations such as: rectangular flat thin plates, boundary conditions with simply supported (hinged or clamped (fixed edges, combined loadings with single compression or single shear or combination between them, compression and shear, with or without transverse loading, encountered at wings and control surfaces shell of fin and rudder or stabilizer and elevator. The reserve factor and the critical stresses will be calculated using comparatively two methods, namely the methodology proposed by the present article and ASSIST 6.6.2.0 – AIRBUS France software, a dedicated software to local calculations, for a simply supported plate under combined loading, compression on the both sides and shear.

  10. Outdoor Performance Comparison of Concentrator Photovoltaic and Flat Plate Photovoltaic Systems

    Directory of Open Access Journals (Sweden)

    Hidaka Yoshihide

    2016-01-01

    Full Text Available Output characteristics of tracking type concentrator photovoltaic (CPV system, multi-crystalline silicon (mc-Si PV system, CIGS PV system, and amorphous silicon (a-Si PV system were analyzed in the data period of a year from August 2013 to July 2014. In this study, we analyzed the influence of environmental factors using average photon energy (APE and temperature of solar cell (Tcell. The characteristics of 14 kW CPV system, 50 kW mc-Si PV system, 60 kW CIGS PV system, 1.35 kW a-Si PV system were evaluated and compared. As a result, the output performance of CPV was highest between the four systems at the most frequent conditions in the outdoor environment.

  11. Flat plate collector. Solarflachkollektor

    Energy Technology Data Exchange (ETDEWEB)

    Raab, N

    1979-03-29

    The invention refers to a flat solar collector with an absorber plate, which is arranged on a support and is covered by a transparent window, between which and the plate there is an air space. The previously known structures of this type had the disadvantage that the thermal expansion of the enclosed air caused considerable difficulties. The purpose of the invention is therefore to create a collector, which can be used on the modular system, retains its properties and is safe in spite of the great temperature variations. According to the invention this problem is solved by providing a compensating space in the collector, which is separated by a diaphragm from the airspace between the plate and the covering window. The airspace therefore remains sealed against the atmosphere, so that no dirt, corrosion of the inside and no condensation can reduce the efficiency of the collector. A rise in pressure due to an increase in temperature is immediately reduced by expansion of the diaphragm, which enters the compensation space. In order to increase the pressure in the airspace above the plate for increases in temperature, the compensation space is connected to the atmosphere. The diaphragm can be mirrored on the side towards the absorber, which makes the diaphragm into an insulating element, as it reflects radiated heat from the absorber.

  12. Experimental Evaluation of a Flat Plate Solar Collector Under Hail City Climate

    Directory of Open Access Journals (Sweden)

    N. Ben Khedher

    2018-04-01

    Full Text Available Flat plate solar water heaters are widely used for water heating in low-temperature residential applications. In this paper the thermal performance of a solar flat plate water heater under Hail weather conditions (latitude 27°52΄N longitude ‎41°69΄E was experimentally investigated. Fluid was circulated through the imbedded copper tubes in the flat plate collector and inlet and outlet temperatures of the fluid were noted at five minute intervals. The experimental-time was between 9:00AM-15:00PM. A study was carried out experimentally to present the efficiency curves of a flat plate solar collector at different flow rates. ASHRAE standard 93-2003 was followed for calculation of instantaneous efficiency of solar collector. Result shows that the flow rate of the circulating fluid highly influence the thermal efficiency of the solar collector. Optimum flow rate of 2.5L/min leads to maximum collector efficiency.

  13. Photovoltaic module encapsulation design and materials selection, volume 1

    Science.gov (United States)

    Cuddihy, E.; Carroll, W.; Coulbert, C.; Gupta, A.; Liang, R. H.

    1982-01-01

    Encapsulation material system requirements, material selection criteria, and the status and properties of encapsulation materials and processes available are presented. Technical and economic goals established for photovoltaic modules and encapsulation systems and their status are described. Available encapsulation technology and data are presented to facilitate design and material selection for silicon flat plate photovoltaic modules, using the best materials available and processes optimized for specific power applications and geographic sites. The operational and environmental loads that encapsulation system functional requirements and candidate design concepts and materials that are identified to have the best potential to meet the cost and performance goals for the flat plate solar array project are described. Available data on encapsulant material properties, fabrication processing, and module life and durability characteristics are presented.

  14. Photovoltaic power - An important new energy option

    Science.gov (United States)

    Ferber, R. R.

    1983-01-01

    A review of photovoltaic (PV) power technology is presented with an emphasis of PV as an economical and technically feasible alternative source of energy. The successful completion of the development and transfer of emerging low-cost technologies into a fully commercialized status are identified as the means to the realization of this option's full potential. The DOE National Photovoltaics Program, a significant sponsor of PV R&D, expects both flat-plate and concentrator collectors to meet established cost targets. Citing the DOE large flat-plate grid-connected system project of the Sacramento Municipal Utility District, current technology modules priced at near $5/Wp (1983 dollars) are steadily reducing costs. A recent DOE study suggests that PV-generated electricity produced at a 30-year levelized cost of 15 cents per kWh would represent a viable energy supply alternative for the nation.

  15. Operating Cell Temperature Determination in Flat-Plate Photovoltaic Modules

    International Nuclear Information System (INIS)

    Chenlo, F.

    2002-01-01

    Two procedures (simplified and complete) to determine me operating cell temperature in photovoltaic modules operating in real conditions assuming isothermal stationary modules are presented in this work. Some examples are included that show me dependence of this temperature on several environmental (sky, ground and ambient temperatures, solar irradiance, wind speed, etc.) and structural (module geometry and size, encapsulating materials, anti reflexive optical coatings, etc.) factors and also on electrical module performance. In a further step temperature profiles for non-isothermal modules are analysed besides transitory effects due to variable irradiance and wind gusts. (Author) 27 refs

  16. Dynamic Modeling of Natural Convection Solar Energy Flat Plate ...

    African Journals Online (AJOL)

    The analytical solutions to the dynamic model of an air-heating flat plate solar energy thermal collector were validated by direct measurement from a physical model constructed for that purpose, of the temperatures of the cover and absorber plates, the inlet and outlet fluids, and the ambient air from morning to evening for ...

  17. Investigation of Heat Transfer to a Flat Plate in a Shock Tube.

    Science.gov (United States)

    1987-12-01

    2 Objectives and Scope . . . . . .. .. .. .... 5 11. Theory ............... ....... 7 Shock Tube Principles........... 7 Boundary Layer Theory ...in *excess of theory , but the rounded edge flat plate exhibited data which matched or was less than what theory predicted for each Mach number tested...normal shock advancing along an infinite flat plate. For x< Ugt there is a region of interaction between the downstream influence of the leading edge

  18. An experimental study of an explosively driven flat plate launcher

    Science.gov (United States)

    Rae, Philip; Haroz, Erik; Armstrong, Chris; Perry, Lee; M Division Team

    2017-06-01

    For some upcoming experiments it is desired to impact a large explosive assembly with one or more moderate diameter flat metal plates traveling at high velocity (2-3 km s-1). The time of arrival of these plates will need to carefully controlled and delayed (i.e. the time(s) of arrival known to approximately a microsecond). For this reason, producing a flyer plate from more traditional gun assemblies is not possible. Previous researchers have demonstrated the ability to throw reasonably flat metal flyers from the so-called Forest flyer geometry. The defining characteristics of this design are a carefully controlled reduction in explosive area from a larger explosive plane-wave-lens and booster pad to a smaller flyer plate to improve the planarity of the drive available and an air gap between the explosive booster and the plate to reduce the peak tensile stresses generated in the plate to suppress spalling. This experimental series comprised a number of different design variants and plate and explosive drive materials. The aim was to calibrate a predictive computational modeling capability on this kind of system in preparation for later more radical design ideas best tested in a computer before undertaking the expensive business of construction.

  19. Asymptotics and Numerics for Laminar Flow over Finite Flat Plate

    NARCIS (Netherlands)

    Dijkstra, D.; Kuerten, J.G.M.; Kaper, Hans G.; Garbey, Mare; Pieper, Gail W.

    1992-01-01

    A compilation of theoretical results from the literature on the finite flat-plate flow at zero incidence is presented. This includes the Blasius solution, the Triple Deck at the trailing edge, asymptotics in the wake, and properties near the edges of the plate. In addition, new formulas for skin

  20. Turbulent thermal boundary layer on a permeable flat plate

    International Nuclear Information System (INIS)

    Vigdorovich, I. I.

    2007-01-01

    Scaling laws are established for the profiles of temperature, turbulent heat flux, rms temperature fluctuation, and wall heat transfer in the turbulent boundary layer on a flat plate with transpiration. In the case of blowing, the temperature distribution represented in scaling variables outside the viscous sublayer has a universal form known from experimental data for flows over impermeable flat plates. In the case of suction, the temperature distribution is described by a one-parameter family of curves. A universal law of heat transfer having the form of a generalized Reynolds analogy provides a basis for representation of the heat flux distributions corresponding to different Reynolds numbers and transpiration velocities in terms of a function of one variable. The results are obtained without invoking any special closure hypotheses

  1. New practical method for evaluation of a conventional flat plate continuous pistachio dryer

    Energy Technology Data Exchange (ETDEWEB)

    Kouchakzadeh, Ahmad [Agri Machinery Engineering, Ilam University, Ilam (Iran, Islamic Republic of); Tavakoli, Teymur [Agri Machinery Engineering, Tarbyat Modares University, Tehran (Iran, Islamic Republic of)

    2011-07-15

    Highlights: {yields} Evaluation of a conventional flat plate continuous pistachio dryer with a new feasible method. {yields} Using thermophysical properties of air and matter. {yields} This manner could be utilized in similar dryer for other agricultural products. {yields} Method shows the heat loss and power separately. -- Abstract: Testing a dryer is necessary to evaluate its absolute and comparative performance with other dryers. A conventional flat plate continuous pistachio dryer was tested by a new practical method of mass and energy equilibrium. Results showed that the average power consumption and heat loss in three tests are 62.13 and 18.99 kW, respectively. The ratio of heat loss on power consumption showed that the efficiency of practical pistachios flat plate dryer is about 69.4%.

  2. New practical method for evaluation of a conventional flat plate continuous pistachio dryer

    International Nuclear Information System (INIS)

    Kouchakzadeh, Ahmad; Tavakoli, Teymur

    2011-01-01

    Highlights: → Evaluation of a conventional flat plate continuous pistachio dryer with a new feasible method. → Using thermophysical properties of air and matter. → This manner could be utilized in similar dryer for other agricultural products. → Method shows the heat loss and power separately. -- Abstract: Testing a dryer is necessary to evaluate its absolute and comparative performance with other dryers. A conventional flat plate continuous pistachio dryer was tested by a new practical method of mass and energy equilibrium. Results showed that the average power consumption and heat loss in three tests are 62.13 and 18.99 kW, respectively. The ratio of heat loss on power consumption showed that the efficiency of practical pistachios flat plate dryer is about 69.4%.

  3. Summary of flat-plate solar array project documentation: Abstracts of published documents, 1975-1986, revision 1

    Science.gov (United States)

    Phillips, M. J.

    1986-01-01

    Abstracts of final reports, or the latest quarterly or annual, of the Flat-Plate Solar Array (FSA) Project Contractor of Jet Propulsion Laboratory (JPL) in-house activities are presented. Also presented is a list of proceedings and publications, by author, of work connected with the project. The aim of the program has been to stimulate the development of technology that will enable the private sector to manufacture and widely use photovoltaic systems for the generation of electricity in residential, commercial, industrial, and Government applications at a cost per watt that is competitive with utility generated power. FSA Project activities have included the sponsoring of research and development efforts in silicon refinement processes, advanced silicon sheet growth techniques, higher efficiency solar cells, solar cell/module fabrication processes, encapsulation, module/array engineering and reliability, and economic analyses.

  4. Streamwise counter-rotating vortices generated by triangular leading edge pattern in flat plate boundary layer

    KAUST Repository

    Hasheminejad, S. M.; Mitsudharmadi, Hatsari; Winoto, S. H.; Lua, K. B.; Low, H. T.

    2016-01-01

    A series of flow visualizations were conducted to qualitatively study the development of streamwise counter-rotating vortices over a flat plate induced by triangular patterns at the leading edge of a flat plate. The experiments were carried out

  5. The interference between two flat plates normal to a stream in staggered arrangement, 1

    International Nuclear Information System (INIS)

    Hirano, Kimitaka; Kawashima, Akira; Ohsako, Hideyuki.

    1983-01-01

    The clarification of the mutual interference characteristics between the bodies with sharp corners, such as flat plates and rectangular prisms placed perpendicularly to flow, is a fundamental and important problem. But it has not yet been sufficiently clarified. In flat plates, the points of breaking away do not move, a large breaking away region is in the wake, and the thickness is very thin in the direction of main flow. Moreover, a moment arises around the center of flat plates. In this study, a new parameter expressing the influence of channel walls on a single flat plate in the measuring part of two-dimensional wind tunnel experiment was proposed. The change of steady drag coefficient and Strouhal number corresponding to the series and parallel arrangements of two plates was clarified, and the patterns of the mutual interference were classified by using the results of visualizing flow in a circulation tank together. By the experimental results in the widely changed staggered arrangements, the isodrag contour diagram and isomoment contour diagram were drawn, and the general characteristics of mutual interference related to steady drag and moment were clarified. The experimental setup and method and the results are reported. (Kako, I.)

  6. An investigation on the performance characteristics of solar flat plate collector with different selective surface coatings

    Energy Technology Data Exchange (ETDEWEB)

    Madhukeshwara, N. [Department of Mechanical Engineering, B.I.E.T, Davanagere, Karnataka (India); Prakash, E.S. [Department of Studies in Mechanical Engineering, U.B.D.T.C.E, Davanagere, Karnataka (India)

    2012-07-01

    In the present work, investigations are made to study performance characteristics of solar flat plate collector with different selective surface coatings. Flat plate collector is one of the important solar energy trapping device which uses air or water as working fluid. Of the many solar collector concepts presently being developed, the relative simple flat plate solar collector has found the widest application so far. Its characteristics are known, and compared with other collector types, it is the easiest and least expensive to fabricate, install, and maintain. Moreover, it is capable of using both the diffuse and the direct beam solar radiation. For residential and commercial use, flat plate collectors can produce heat at sufficiently high temperatures to heat swimming pools, domestic hot water, and buildings; they also can operate a cooling unit, particularly if the incident sunlight is increased by the use of reflector. Temperatures up to 70 C are easily attained by flat plate collectors. With very careful engineering using special surfaces, reflectors to increase the incident radiation and heat resistant materials, higher operating temperatures are feasible.

  7. Streamwise counter-rotating vortices generated by triangular leading edge pattern in flat plate boundary layer

    KAUST Repository

    Hasheminejad, S. M.

    2016-01-05

    A series of flow visualizations were conducted to qualitatively study the development of streamwise counter-rotating vortices over a flat plate induced by triangular patterns at the leading edge of a flat plate. The experiments were carried out for a Reynolds number based on the pattern wavelength (λ) of 3080. The results depict the onset, development and breakdown of the vortical structures within the flat plate boundary layer. Moreover, the effect of one spanwise array of holes with diameter of 0.2λ (=3 mm) was examined. This investigation was done on two different flat plates with holes placed at the location x/λ = 2 downstream of the troughs and peaks. The presence of holes after troughs does not show any significant effect on the vortical structures. However, the plate with holes after peaks noticeably delays the vortex breakdown. In this case, the “mushroom-like” vortices move away from the wall and propagate downstream with stable vortical structures. The vortex growth is halted further downstream but start to tilt aside.

  8. MOD silver metallization for photovoltaics

    Science.gov (United States)

    Vest, G. M.; Vest, R. W.

    1984-01-01

    The development of flat plate solar arrays is reported. Photovoltaic cells require back side metallization and a collector grid system on the front surface. Metallo-organic decomposition (MOD) silver films can eliminate most of the present problems with silver conductors. The objectives are to: (1) identify and characterize suitable MO compounds; (2) develop generic synthesis procedures for the MO compounds; (3) develop generic fabrication procedures to screen printable MOD silver inks; (4) optimize processing conditions to produce grid patterns and photovoltaic cells; and (5) develop a model which describes the adhesion between the fired silver film and the silicon surface.

  9. Internal (Annular) and Compressible External (Flat Plate) Turbulent Flow Heat Transfer Correlations.

    Energy Technology Data Exchange (ETDEWEB)

    Dechant, Lawrence [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Smith, Justin [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2016-01-01

    Here we provide a discussion regarding the applicability of a family of traditional heat transfer correlation based models for several (unit level) heat transfer problems associated with flight heat transfer estimates and internal flow heat transfer associated with an experimental simulation design (Dobranich 2014). Variability between semi-empirical free-flight models suggests relative differences for heat transfer coefficients on the order of 10%, while the internal annular flow behavior is larger with differences on the order of 20%. We emphasize that these expressions are strictly valid only for the geometries they have been derived for e.g. the fully developed annular flow or simple external flow problems. Though, the application of flat plate skin friction estimate to cylindrical bodies is a traditional procedure to estimate skin friction and heat transfer, an over-prediction bias is often observed using these approximations for missile type bodies. As a correction for this over-estimate trend, we discuss a simple scaling reduction factor for flat plate turbulent skin friction and heat transfer solutions (correlations) applied to blunt bodies of revolution at zero angle of attack. The method estimates the ratio between axisymmetric and 2-d stagnation point heat transfer skin friction and Stanton number solution expressions for sub-turbulent Reynolds numbers %3C1x10 4 . This factor is assumed to also directly influence the flat plate results applied to the cylindrical portion of the flow and the flat plate correlations are modified by

  10. Development of photovoltaic array and module safety requirements

    Science.gov (United States)

    1982-01-01

    Safety requirements for photovoltaic module and panel designs and configurations likely to be used in residential, intermediate, and large-scale applications were identified and developed. The National Electrical Code and Building Codes were reviewed with respect to present provisions which may be considered to affect the design of photovoltaic modules. Limited testing, primarily in the roof fire resistance field was conducted. Additional studies and further investigations led to the development of a proposed standard for safety for flat-plate photovoltaic modules and panels. Additional work covered the initial investigation of conceptual approaches and temporary deployment, for concept verification purposes, of a differential dc ground-fault detection circuit suitable as a part of a photovoltaic array safety system.

  11. Transient convective heat transfer to laminar flow from a flat plate with constant heat capacity

    International Nuclear Information System (INIS)

    Hanawa, Juichi

    1980-01-01

    Most basic transient heat transfer problem is the transient response characteristics of forced convection heat transfer in the flow along a flat plate or in a tube. In case of the laminar flow along a flat plate, the profile method using steady temperature distribution has been mostly adopted, but its propriety has not been clarified yet. About the unsteady heat transfer in the laminar flow along a flat plate, the analysis or experiment evaluating the heat capacity of the flat plate exactly was never carried out. The purpose of this study is to determine by numerical calculation the unsteady characteristics of the boundary layer in laminar flow and to confirm them by experiment concerning the unsteady heat transfer when a flat plate with a certain heat capacity is placed in parallel in uniform flow and given a certain quantity of heat generation suddenly. The basic equation and the solution are given, and the method of numerical calculation and the result are explained. The experimental setup and method, and the experimental results are shown. Both results were in good agreement, and the response of wall temperature, the response of Nusselt number and the change of temperature distribution in course of time were able to be determined by applying Laplace transformation and numerical Laplace inverse transformation to the equation. (Kako, I.)

  12. Review of Consensus Standard Spectra for Flat Plate and Concentrating Photovoltaic Performance

    Energy Technology Data Exchange (ETDEWEB)

    Myers, D.

    2011-09-01

    Consensus standard reference terrestrial solar spectra are used to establish nameplate ratings for photovoltaic device performance at standard reporting conditions. This report describes reference solar spectra developed in the United States and international consensus standards community which are widely accepted as of this writing (June 2011).

  13. Optimal design of sandwich ribbed flat baffle plates of a circular cylindrical tank

    International Nuclear Information System (INIS)

    Malinowski, Marek; Magnucki, Krzysztof

    2005-01-01

    The subject of this paper is a sandwich ribbed flat baffle plate of a circular cylindrical tank. The paper deals with a problem of optimal thickness of this construction with a soft core. The construction is distinguished by a local axisymmetric pre-springing. The mathematical description is based on the theory of shells with analysis of disturbance of the stress membrane state. The sandwich ribbed flat baffle plate divides the tank into two chambers. One of them is loaded by uniform pressure, while the other is empty and unloaded. Dimensions of ribs, faces and the entire baffle plate have been determined with a view to minimize the mass under strength constraints. The effect of optimal thickness of this sandwich plate has been examined by means of the finite element method

  14. Development of electromagnetic welding facility of flat plates for nuclear industry

    Science.gov (United States)

    Kumar, Rajesh; Sahoo, Subhanarayan; Sarkar, Biswanath; Shyam, Anurag

    2017-04-01

    Electromagnetic pulse welding (EMPW) process, one of high speed welding process uses electromagnetic force from discharged current through working coil, which develops a repulsive force between the induced current flowing parallel and in opposite direction. For achieving the successful weldment using this process the design of working coil is the most important factor due to high magnetic field on surface of work piece. In case of high quality flat plate welding factors such as impact velocity, angle of impact standoff distance, thickness of flyer and overlap length have to be chosen carefully. EMPW has wide applications in nuclear industry, automotive industry, aerospace, electrical industries. However formability and weldability still remain major issues. Due to ease in controlling the magnetic field enveloped inside tubes, the EMPW has been widely used for tube welding. In case of flat components control of magnetic field is difficult. Hence the application of EMPW gets restricted. The present work attempts to make a novel contribution by investigating the effect of process parameters on welding quality of flat plates. The work emphasizes the approaches and engineering calculations required to effectively use of actuator in EMPW of flat components.

  15. Recent progress in terrestrial photovoltaic collector technology

    Science.gov (United States)

    Ferber, R. R.

    1982-01-01

    The U.S. Photovoltaic Research and Development Program has the objective to develop the technology necessary to foster widespread grid-competitive electric power generation by the late 1980s. The flat-plate and the concentrator collector activities form the nucleus of the program. The project is concerned with the refining of silicon, silicon sheet production, solar cell processing and fabrication, encapsulation materials development, and collector design and production. The Large-Area Silicon Sheet Task has the objective to develop and demonstrate the feasibility of several methods for producing large area silicon sheet material suitable for fabricating low-cost, high-efficiency solar cells. It is expected that a variety of economic flat-plate and concentrator collectors will become commercially available for grid-connected applications.

  16. Electrical research on solar cells and photovoltaic materials

    Science.gov (United States)

    Orehotsky, J.

    1984-01-01

    The flat-plate solar cell array program which increases the service lifetime of the photovoltaic modules used for terrestrial energy applications is discussed. The current-voltage response characteristics of the solar cells encapsulated in the modules degrade with service time and this degradation places a limitation on the useful lifetime of the modules. The most desirable flat-plate array system involves solar cells consisting of highly polarizable materials with similar electrochemical potentials where the cells are encapsulated in polymers in which ionic concentrations and mobilities are negligibly small. Another possible mechanism limiting the service lifetime of the photovoltaic modules is the gradual loss of the electrical insulation characteristics of the polymer pottant due to water absorption or due to polymer degradation from light or heat effects. The mechanical properties of various polymer pottant materials and of electrochemical corrosion mechanisms in solar cell material are as follows: (1) electrical and ionic resistivity; (2) water absorption kinetics and water solubility limits; and (3) corrosion characterization of various metallization systems used in solar cell construction.

  17. Photovoltaic systems on flat roofs. A new approach; Photovoltaique sur toits plats. Une nouvelle approche. Rapport final

    Energy Technology Data Exchange (ETDEWEB)

    Roecker, C.; Bonvin, J.; Muller, A.

    1999-06-01

    Flat roofs are among the best choices to mount photovoltaics on buildings. Nevertheless, standard solutions in use till the mid-nineties were quite poor, as far as price, aesthetics and ease of maintenance were concerned. This report presents, following a comprehensive typology study of flat roofs, a series of new and innovative solutions, fully developed and tested. There are three main system groups, differing essentially by the ballasting method used to keep the panels on the roof: (i) the SOFREL family, using concrete blocs weighting; (ii) the SOLBAC family, using existing ballast weighting; and (iii) the SOLGREEN family, using ballast and earth weighting. Some more systems, not finalised, are also described, giving some hints for possible new developments. To conclude, this project has brought three main systems, all three already or soon commercially available, allowing a simple and easy mounting of photovoltaic panels on any flat roof type. (author)

  18. Forces and Moments on Flat Plates of Small Aspect Ratio with Application to PV Wind Loads and Small Wind Turbine Blades

    Directory of Open Access Journals (Sweden)

    Xavier Ortiz

    2015-03-01

    Full Text Available To improve knowledge of the wind loads on photovoltaic structures mounted on flat roofs at the high angles required in high latitudes, and to study starting flow on low aspect ratio wind turbine blades, a series of wind tunnel tests were undertaken. Thin flat plates of aspect ratios between 0.4 and 9.0 were mounted on a sensitive three-component instantaneous force and moment sensor. The Reynolds numbers varied from 6 × 104 to 2 × 105. Measurements were made for angles of attack between 0° and 90° both in the free stream and in wall proximity with increased turbulence and mean shear. The ratio of drag to lift closely follows the inverse tangent of the angle of incidence for virtually all measurements. This implies that the forces of interest are due largely to the instantaneous pressure distribution around the plate and are not significantly influenced by shear stresses. The instantaneous forces appear most complex for the smaller aspect ratios but the intensity of the normal force fluctuations is between 10% and 20% in the free-steam but can exceed 30% near the wall. As the wind tunnel floor is approached, the lift and drag reduce with increasing aspect ratio, and there is a reduction in the high frequency components of the forces. It is shown that the centre of pressure is closer to the centre of the plates than the quarter-chord position for nearly all cases.

  19. Evaluation of a tracking flat-plate solar collector in Brazil

    International Nuclear Information System (INIS)

    Maia, Cristiana B.; Ferreira, André G.; Hanriot, Sérgio M.

    2014-01-01

    The continuing research for an alternative power source due to the perceived scarcity of fuel fossils has, in recent years, given solar energy a remarkable edge. Nevertheless, the Earth's daily and seasonal movement affects the intensity of the incident solar radiation. Devices can track the sun in order to ensure optimum positions with regard to incident solar radiation, maximizing the absorbed solar energy, and the useful energy gain. In this paper, a mathematical model is developed to estimate the solar radiation absorbed, the useful energy gain, and the efficiency of a flat-plate solar collector in Brazil. The results for a sun tracking flat-plate solar collector were compared to fixed devices. The full tracking system with rotation about two axes presented higher absorbed energy, when compared to the rotation about a single axe and to a fixed collector. Also, it was shown that the tilt angle for a fixed solar collector does not cause significant variations in the useful energy gain or in the absorbed solar radiation, for the same azimuth angle. - Highlights: • A model was developed for solar radiation based on experimental data for K T . • Useful energy gain and efficiency of a flat-plate solar collector were evaluated for a one-year period. • Several sun tracking systems were compared to fixed devices. • Tilt angle for a fixed device does not significantly affect the useful energy gain

  20. Reliability and performance experience with flat-plate photovoltaic modules

    Science.gov (United States)

    Ross, R. G., Jr.

    1982-01-01

    Statistical models developed to define the most likely sources of photovoltaic (PV) array failures and the optimum method of allowing for the defects in order to achieve a 20 yr lifetime with acceptable performance degradation are summarized. Significant parameters were the cost of energy, annual power output, initial cost, replacement cost, rate of module replacement, the discount rate, and the plant lifetime. Acceptable degradation allocations were calculated to be 0.0001 cell failures/yr, 0.005 module failures/yr, 0.05 power loss/yr, a 0.01 rate of power loss/yr, and a 25 yr module wear-out length. Circuit redundancy techniques were determined to offset cell failures using fault tolerant designs such as series/parallel and bypass diode arrangements. Screening processes have been devised to eliminate cells that will crack in operation, and multiple electrical contacts at each cell compensate for the cells which escape the screening test and then crack when installed. The 20 yr array lifetime is expected to be achieved in the near-term.

  1. THERMAL PERFORMANCE OF FLAT PLATE SOLAR COLLECTOR

    Directory of Open Access Journals (Sweden)

    TABET I.

    2017-06-01

    Full Text Available In this paper, a theoretical and experimental studyof flat platesolar water collector with reflectors.A mathematical model based on energy balance equations saw the thermal behavior of the collector is investigated. The experimental test was made at the unit research applies in renewable energy (URAER located in southern Algeria.An increase of 23% for solar radiation incident on the collector surface with the addition of the planers reflectors in the day of May, this increase causes an improvement of the performance of the collector,the fluid temperature increases with an average of 5%. Thetests conducted on the flat plate solar water collector in open circuit enabled the determination of thermal performance of the collector by estimating the daily output The thermal efficiency of the collector ranges from 1% -63% during the day, a mean value of 36%obtained.

  2. Buckling analysis for axially compressed flat plates, structural sections, and stiffened plates reinforced with laminated composites

    Science.gov (United States)

    Viswanathan, A. V.; Soong, T.; Miller, R. E., Jr.

    1971-01-01

    A classical buckling analysis is developed for stiffened, flat plates composed of a series of linked plate and beam elements. Plates are idealized as multilayered orthotropic elements. Structural beads and lips are idealized as beams. The loaded edges of the stiffened plate are simply-supported and the conditions at the unloaded edges can be prescribed arbitrarily. The plate and beam elements are matched along their common junctions for displacement continuity and force equilibrium in an exact manner. Offsets between elements are considered in the analysis. Buckling under uniaxial compressive load for plates, sections, and stiffened plates is investigated. Buckling loads are the lowest of all possible general and local failure modes, and the mode shape is used to determine whether buckling is a local or general instability. Numerical correlations with existing analysis and test data for plates, sections, and stiffened plates including boron-reinforced structures are discussed. In general correlations are reasonably good.

  3. An experimental study of the supersonic, dual, coaxial jets impinging on an inclined flat plate

    International Nuclear Information System (INIS)

    Kim, Jung Bae; Lee, Jun Hee; Woo, Sun Hoon; Kim, Heuy Dong

    2002-01-01

    The impinging supersonic jets have been applied for rocket launching system, thrust control, gas turbine blade cooling, etc. Recently the supersonic, dual, coaxial jets are being extensively used in many diverse fields of industrial processes since they lead to more improved performance, compared with the conventional supersonic jets impinging on an object. In the present study, experimentation is carried out to investigate the supersonic, dual, coaxial jets impinging on an inclined flat plate. A convergent-divergent nozzle with a design Mach number of 2.0 and annular sonic nozzle are used to make the dual, coaxial jet flows. The angle of the impinging flat plate is varied from 30 .deg. to 60 .deg. and the distance between the dual coaxial nozzle and flat plate is also varied. Detailed pressures on the impinging plate are measured to analyze the flow fields, which are also visualized using Schlieren optical method

  4. Selectively coated high efficiency glazing for solar-thermal flat-plate collectors

    International Nuclear Information System (INIS)

    Ehrmann, N.; Reineke-Koch, R.

    2012-01-01

    In order to increase the efficiency of solar-thermal flat-plate collectors at temperatures above 100 °C or with low solar irradiation, we implement a double glazing with a low-emitting (low-e) coating on the inner pane to improve the insulation of the transparent cover. Since commercially available low-e glazing provides only insufficient solar transmittance for the application in thermal flat-plate collectors we are developing a sputter-deposited low e-coating system based on transparent conductive oxides which provides a high solar transmittance of 85% due to additional antireflective coatings and the use of low-iron glass substrates. Durability tests of the developed coating system show that our low e-coating system is well suitable even at high temperatures, humidity and condensation.

  5. An Irrotational Flow Field That Approximates Flat Plate Boundary Conditions

    OpenAIRE

    Ruffa, Anthony A.

    2004-01-01

    An irrotational solution is derived for the steady-state Navier-Stokes equations that approximately satisfies the boundary conditions for flow over a finite flat plate. The nature of the flow differs substantially from boundary layer flow, with severe numerical difficulties in some regions.

  6. Design, performance and cost of energy from high concentration and flat-plate utility-scale PV systems

    International Nuclear Information System (INIS)

    Stolte, W.J.; Whisnant, R.A.; McGowin, C.R.

    1993-01-01

    This paper presents the results of a recent study to assess the near-term cost of power in central station applications. Three PV technologies were evaluated: Fresnel-lens high-concentration photovoltaic (HCPV), central receiver HCPV, and flat-plate PV using thin-film copper indium diselenide (CIS) cell technology. Baseline assumptions included PV cell designs and performances projected for the 1995 timeframe, 25 and 100 MW/year cell manufacturing rates, 50 MW power plant size, and mature technology cost and performance estimates. The plant design characteristics are highlighted. Potential sites were evaluated and selected for the PV power plants (Carrisa Plains, CA and Apalachicola, FL) and cell manufacturing plants (Dallas-Fort Worth, TX). Conceptual designs and cost estimates were developed for the plants and their components. Plant performance was modeled and the designs were optimized to minimize levelized energy costs. Overall, the flat plate design exhibited the lowest energy costs among the designs evaluated. Its levelized energy costs at the Carrisa Plains site were estimated to be 11.8 and 10.8 cents/kWh (1990 $) for 25 and 100 MW/year module production rates, respectively. This meets the 12 cents/kWh DOE near-term goal. The energy cost of the Fresnel lens plant (at Carrisa Plains and a 100 MW/year cell production rate) was estimated to be 12.4 cents/kWh and the corresponding central receiver energy cost was estimated to be 13.1 cents/kWh, both of which are very close to the DOE goal. Further design optimization efforts are still warranted and can be expected to reduce plant capital costs

  7. Simulated hail impact testing of photovoltaic solar panels

    Science.gov (United States)

    Moore, D.; Wilson, A.; Ross, R.

    1978-01-01

    Techniques used to simulate and study the effect of hail on photovoltaic solar panels are described. Simulated hail stones (frozen ice spheres projected at terminal velocity) or steel balls were applied by air guns, gravity drop, or static loading. Tests with simulated hail and steel balls yielded different results. The impact strength of 10 commercially available flat-plate photovoltaic modules was tested. It was found that none of the six panel designs incorporating clear potting silicone material as the outermost layer remained undamaged by 1-in. simulated hailstones, while a photovoltaic module equipped with a 0.188-in.-thick acrylic cover sheet would be able to withstand the impact of a 2-in.-diameter hailstone.

  8. Proceedings of the Flat-Plate Solar Array Project Workshop on Crystal Gowth for High-Efficiency Silicon Solar Cells

    Science.gov (United States)

    Dumas, K. A. (Editor)

    1985-01-01

    A Workshop on Crystal Growth for High-Efficiency Silicon Solar Cells was held December 3 and 4, 1984, in San Diego, California. The Workshop offered a day and a half of technical presentations and discussions and an afternoon session that involved a panel discussion and general discussion of areas of research that are necessary to the development of materials for high-efficiency solar cells. Topics included the theoretical and experimental aspects of growing high-quality silicon crystals, the effects of growth-process-related defects on photovoltaic devices, and the suitability of various growth technologies as cost-effective processes. Fifteen invited papers were presented, with a discussion period following each presentation. The meeting was organized by the Flat-Plate Solar Array Project of the Jet Propulsion Laboratory. These Proceedings are a record of the presentations and discussions, edited for clarity and continuity.

  9. Hybrid heat recovery - flat plate Stirling engine system

    International Nuclear Information System (INIS)

    Bogdanizh, A.M.; Budin, R.; Sutlovizh, I.

    2000-01-01

    In this paper, the possibility of process condensate heat recovery for boiler water preheating as well as for combined heat and power production for chosen process in textile industry has been investigated. The garment industry requires low pressure process steam or hot water for which production expensive fossil fuel should be used. Fuel usage can be reduced by various energy conservation methods. During the process a great quantity of hot condensate or waste hot water is rejected in the sewage system. To reduce heat wastes and improve technological process this condensate could be returned to the boiler for feed water preheating. When 60% condensate is returned to the steam generator about 8 % natural gas is saved. The rest of the condensate should be used for driving low temperature flat plate Stirling motor the advantage of the flat plate Stirling engine is ability to work at low temperatures. This engine produces electrical energy which can put in motion an electrogenerator in the same plant. While Stirling engine can be used electrical power and economical effect could be much greater using such a hybrid system the process waste heat is not only converted into useful work but at the same time thermal pollution is greatly diminished. (Author)

  10. Experimental simulation of the bubble membrane radiator using a rotating flat plate

    International Nuclear Information System (INIS)

    Al-Baroudi, H.; Klein, A.C.; Pauley, K.A.

    1991-01-01

    The Bubble Membrane Radiator (BMR), to be used in space reactor systems, uses artificial gravity imposed on the working fluid by means of the centrifugal force to pump the fluid from the radiator. Experimental and analytical studies have been initiated to understand the nature of fluid and heat transport under the conditions of rotation. An experiment is described which measures the condensation of vapor on a rotating flat plate which is oriented normal to the earth's gravity vector to simulate the BMR physics. The relationship between vapor flow rates and rotation speed of the flat plate and a number of physical parameters including amount of condensate, overall heat transfer coefficient, and condensate film thickness are studied experimentally

  11. Massive use of photovoltaic systems on flat roofs in the utility sector

    International Nuclear Information System (INIS)

    Boomsma, H.; Borsboom, W.

    2000-09-01

    The aim of the study on the title subject is to give insight into the development of the market for photovoltaic power systems on flat roofs, as well as technical developments and building engineering aspects of such systems. The result of the study is an overview of the most successful product-market combinations to stimulate and introduce the use of solar energy in the fore-mentioned sector in the Netherlands. 11 refs

  12. Performance enhancement studies in a thermosyphon flat plate solar water heater with CuO nanofluid

    Directory of Open Access Journals (Sweden)

    Dasaien Anin Vincely

    2017-01-01

    Full Text Available Experiments were conducted on a thermosyphon type flat plate collector, inclined at 45°, for water heating application. Water and water based nanofluids were used as absorber fluid to gain heat from solar rays incident on the flat plate col-lector. Nanofluids were prepared by adding CuO nanoparticles of 40-50 nm size to the base fluid at 0.1, 0.2, 0.3, and 0.5 wt% (ζ. The hot absorber fluid was made to circulate in the shell side of a heat exchanger, placed at the top of the flat plate collector, where utility water was circulated inside a helically coiled Cu tube. Temperatures at strategic locations in the flat plate collector, working fluid, utility water inlet and outlet were measured. The nanofluid increases the collector efficiency with increasing ζ. A highest efficiency enhancement of 5.7% was observed for the nanofluid with ζ = 0.2 having a mass flow rate of 0.0033 kg/s. The 3-D, steady-state, conjugate heat transfer CFD analyses were carried out using the ANSYS FLUENT 15.0 software. Theoretically estimated buoyancy induced fluid flow rates were close with the CFD predictions and thus validates the computational methodology.

  13. Design and performance of tubular flat-plate solid oxide fuel cell

    Energy Technology Data Exchange (ETDEWEB)

    Matsushima, T.; Ikeda, D.; Kanagawa, H. [NTT Integrated Information & Energy Systems Labs., Tokyo (Japan)] [and others

    1996-12-31

    With the growing interest in conserving the environmental conditions, much attention is being paid to Solid Oxide Fuel Cell (SOFC), which has high energy-conversion efficiency. Many organizations have conducted studies on tubular and flat type SOFCs. Nippon Telegraph and Telephone Corporation (NTT) has studied a combined tubular flat-plate SOFC, and already presented the I-V characteristics of a single cell. Here, we report the construction of a stack of this SOFC cell and successful generation tests results.

  14. An Experimental and Analytical Study of a Radiative Cooling System with Unglazed Flat Plate Collectors

    DEFF Research Database (Denmark)

    Hosseinzadeh, Elham; Taherian, Hessam

    2012-01-01

    plate solar collectors in a humid area, Babol, Iran, is assessed both experimentally and numerically. Different methods available in the literature are reviewed and by using a widely accepted model, the sky temperature is determined. The mathematical model for a flat plate solar collector is used...... as a guideline to derive the governing equations of a night sky radiator. Then, a cooling loop, including a storage tank, pump, connecting pipes, and a radiator has been studied experimentally. The water is circulated through the unglazed flat-plate radiator having 4 m2 of collector area at night to be cooled...

  15. Improved Thermal-Vacuum Compatible Flat Plate Radiometric Source For System-Level Testing Of Optical Sensors

    Science.gov (United States)

    Schwarz, Mark A.; Kent, Craig J.; Bousquet, Robert; Brown, Steven W.

    2016-01-01

    In this work, we describe an improved thermal-vacuum compatible flat plate radiometric source which has been developed and utilized for the characterization and calibration of remote optical sensors. This source is unique in that it can be used in situ, in both ambient and thermal-vacuum environments, allowing it to follow the sensor throughout its testing cycle. The performance of the original flat plate radiometric source was presented at the 2009 SPIE1. Following the original efforts, design upgrades were incorporated into the source to improve both radiometric throughput and uniformity. The pre-thermal-vacuum (pre-TVAC) testing results of a spacecraft-level optical sensor with the improved flat plate illumination source, both in ambient and vacuum environments, are presented. We also briefly discuss potential FPI configuration changes in order to improve its radiometric performance.

  16. Design and experimental investigation of a Multi-segment plate concentrated photovoltaic solar energy system

    International Nuclear Information System (INIS)

    Wang, Gang; Chen, Zeshao; Hu, Peng

    2017-01-01

    Highlights: • A multi-segment plate concentrated photovoltaic solar energy system was proposed. • A prototype of this new concentrator was developed for experimental investigation. • Experimental investigation results showed a good concentrating uniformity. - Abstract: Solar energy is one of the most promising renewable energies and meaningful for the sustainable development of energy source. A multi-segment plate concentrated photovoltaic (CPV) solar power system was proposed in this paper, the design principle of the multi-segment plate concentrator of this solar power system was given, which could provide uniform solar radiation flux density distribution on solar cells. A prototype of this multi-segment plate CPV solar power system was developed for the experimental study, aiming at the investigations of solar radiation flux density distribution and PV performances under this concentrator design. The experimental results showed that the solar radiation flux density distribution provided by the multi-segment plate concentrator had a good uniformity, and the number and temperature of solar cells both influence the photoelectric transformation efficiency of the CPV solar power system.

  17. Towards a flat 45%-efficient concentrator module

    Energy Technology Data Exchange (ETDEWEB)

    Mohedano, Rubén, E-mail: rmohedano@lpi-europe.com; Hernandez, Maikel; Vilaplana, Juan; Chaves, Julio; Sorgato, S.; Falicoff, Waqidi [LPI, Altadena, CA, USA and Madrid (Spain); Miñano, Juan C.; Benitez, Pablo [LPI, Altadena, CA, USA and Madrid (Spain); Universidad Politécnica de Madrid (UPM), Campus de Montegancedo, Madrid (Spain)

    2015-09-28

    The so-called CCS{sup 4}FK is an ultra-flat photovoltaic system of high concentration and high efficiency, with potential to convert, ideally, the equivalent of a 45% of direct solar radiation into electricity by optimizing the usage of sun spectrum and by collecting part of the diffuse radiation, as a flat plate does. LPI has recently finished a design based on this concept and is now developing a prototype based on this technology, thanks to the support of FUNDACION REPSOL-Fondo de Emprendedores, which promotes entrepreneur projects in different areas linked to energy. This works shows some details of the actual design and preliminary potential performance expected, according to accurate spectral simulations.

  18. Towards a flat 45%-efficient concentrator module

    Science.gov (United States)

    Mohedano, Rubén; Hernandez, Maikel; Vilaplana, Juan; Chaves, Julio; Miñano, Juan C.; Benitez, Pablo; Sorgato, S.; Falicoff, Waqidi

    2015-09-01

    The so-called CCS4FK is an ultra-flat photovoltaic system of high concentration and high efficiency, with potential to convert, ideally, the equivalent of a 45% of direct solar radiation into electricity by optimizing the usage of sun spectrum and by collecting part of the diffuse radiation, as a flat plate does. LPI has recently finished a design based on this concept and is now developing a prototype based on this technology, thanks to the support of FUNDACION REPSOL-Fondo de Emprendedores, which promotes entrepreneur projects in different areas linked to energy. This works shows some details of the actual design and preliminary potential performance expected, according to accurate spectral simulations.

  19. Towards a flat 45%-efficient concentrator module

    International Nuclear Information System (INIS)

    Mohedano, Rubén; Hernandez, Maikel; Vilaplana, Juan; Chaves, Julio; Sorgato, S.; Falicoff, Waqidi; Miñano, Juan C.; Benitez, Pablo

    2015-01-01

    The so-called CCS 4 FK is an ultra-flat photovoltaic system of high concentration and high efficiency, with potential to convert, ideally, the equivalent of a 45% of direct solar radiation into electricity by optimizing the usage of sun spectrum and by collecting part of the diffuse radiation, as a flat plate does. LPI has recently finished a design based on this concept and is now developing a prototype based on this technology, thanks to the support of FUNDACION REPSOL-Fondo de Emprendedores, which promotes entrepreneur projects in different areas linked to energy. This works shows some details of the actual design and preliminary potential performance expected, according to accurate spectral simulations

  20. Flat Plate Boundary Layer Stimulation Using Trip Wires and Hama Strips

    Science.gov (United States)

    Peguero, Charles; Henoch, Charles; Hrubes, James; Fredette, Albert; Roberts, Raymond; Huyer, Stephen

    2017-11-01

    Water tunnel experiments on a flat plate at zero angle of attack were performed to investigate the effect of single roughness elements, i.e., trip wires and Hama strips, on the transition to turbulence. Boundary layer trips are traditionally used in scale model testing to force a boundary layer to transition from laminar to turbulent flow at a single location to aid in scaling of flow characteristics. Several investigations of trip wire effects exist in the literature, but there is a dearth of information regarding the influence of Hama strips on the flat plate boundary layer. The intent of this investigation is to better understand the effects of boundary layer trips, particularly Hama strips, and to investigate the pressure-induced drag of both styles of boundary layer trips. Untripped and tripped boundary layers along a flat plate at a range of flow speeds were characterized with multiple diagnostic measurements in the NUWC/Newport 12-inch water tunnel. A wide range of Hama strip and wire trip thicknesses were used. Measurements included dye flow visualization, direct skin friction and parasitic drag force, boundary layer profiles using LDV, wall shear stress fluctuations using hot film anemometry, and streamwise pressure gradients. Test results will be compared to the CFD and boundary layer model results as well as the existing body of work. Conclusions, resulting in guidance for application of Hama strips in model scale experiments and non-dimensional predictions of pressure drag will be presented.

  1. Studies of flat-plate solar air collectors with absorber plates made of amorphous silicon photovoltaic modules; Amorphous taiyo denchi module wo shunetsuban to shita heibangata kukishiki shunetsuki no kenkyu

    Energy Technology Data Exchange (ETDEWEB)

    Sato, K; Ito, S; Miura, N [Kanagawa Institute of Technology, Kanagawa (Japan)

    1996-10-27

    A light/heat hybrid air type heat collector has been developed in which heat is collected by solar cell panels. In Type 1 heat collector provided with a glass cover, two modules are connected in series and placed under a glass cover to serve as a heat collecting plate, each module built of a steel plate and two thin-film amorphous solar cells bonded to the steel plate. Air runs under the heat collecting plate. Type 2 heat collector is a Type 1 heat collector minus the glass cover. Air is taken in by a fan, runs in a vinyl chloride tube, and then through the heat collector where it is heated by the sun, and goes out at the exit. Heat collecting performance was subjected to theoretical analysis. This heat collector approximated in point of heat collection a model using a board painted black, which means that the new type functions effectively as an air-type heat collector. Operating as a photovoltaic power generator, the covered type generated approximately 20% less than the uncovered type under 800W/m{sup 2} insolation conditions. Type 1 has been in service for five months, and Type 2 for 2 months. At present, both are free of troubles such as deformation and the amorphous solar cell modules have deteriorated but a little. 4 refs., 9 figs.

  2. Unsteady heat-flux measurements of second-mode instability waves in a hypersonic flat-plate boundary layer

    Science.gov (United States)

    Kegerise, Michael A.; Rufer, Shann J.

    2016-08-01

    In this paper, we report on the application of the atomic layer thermopile (ALTP) heat-flux sensor to the measurement of laminar-to-turbulent transition in a hypersonic flat-plate boundary layer. The centerline of the flat-plate model was instrumented with a streamwise array of ALTP sensors, and the flat-plate model was exposed to a Mach 6 freestream over a range of unit Reynolds numbers. Here, we observed an unstable band of frequencies that are associated with second-mode instability waves in the laminar boundary layer that forms on the flat-plate surface. The measured frequencies, group velocities, phase speeds, and wavelengths of these instability waves are consistent with data previously reported in the literature. Heat flux time series, and the Morlet wavelet transforms of them, revealed the wave-packet nature of the second-mode instability waves. In addition, a laser-based radiative heating system was used to measure the frequency response functions (FRF) of the ALTP sensors used in the wind tunnel test. These measurements were used to assess the stability of the sensor FRFs over time and to correct spectral estimates for any attenuation caused by the finite sensor bandwidth.

  3. Hot air impingement on a flat plate using Large Eddy Simulation (LES) technique

    Science.gov (United States)

    Plengsa-ard, C.; Kaewbumrung, M.

    2018-01-01

    Impinging hot gas jets to a flat plate generate very high heat transfer coefficients in the impingement zone. The magnitude of heat transfer prediction near the stagnation point is important and accurate heat flux distribution are needed. This research studies on heat transfer and flow field resulting from a single hot air impinging wall. The simulation is carried out using computational fluid dynamics (CFD) commercial code FLUENT. Large Eddy Simulation (LES) approach with a subgrid-scale Smagorinsky-Lilly model is present. The classical Werner-Wengle wall model is used to compute the predicted results of velocity and temperature near walls. The Smagorinsky constant in the turbulence model is set to 0.1 and is kept constant throughout the investigation. The hot gas jet impingement on the flat plate with a constant surface temperature is chosen to validate the predicted heat flux results with experimental data. The jet Reynolds number is equal to 20,000 and a fixed jet-to-plate spacing of H/D = 2.0. Nusselt number on the impingement surface is calculated. As predicted by the wall model, the instantaneous computed Nusselt number agree fairly well with experimental data. The largest values of calculated Nusselt number are near the stagnation point and decrease monotonically in the wall jet region. Also, the contour plots of instantaneous values of wall heat flux on a flat plate are captured by LES simulation.

  4. Sodium vapor deposition onto a horizontal flat plate above liquid sodium surface, 2

    International Nuclear Information System (INIS)

    Kudo, Kazuhiko; Hirata, Masaru.

    1977-01-01

    The sodium vapor deposition onto a horizontal flat plate above liquid sodium surface was studied. The analysis was performed by assuming that the sodium mist is emitted into the main flow without condensation and then grows up in the main flow and drops on the sodium surface. The effects of growth of sodium mist to the system were investigated. The model of the phenomena is the sodium deposition onto a horizontal flat plate which is placed above the sodium surface with the medium cover gas. One-dimensional analysis can be done. The rate of deposition is greatly reduced when the temperature of the flat plate is lowered. For the analysis of this phenomena, it is assumed that the sodium mist grows by condensation. One of results is that the real state may be the state between the state that the condensation of mist is made in the boundary layer and the state that the mist is condensed in the main flow. Others are that there is no effect of sodium mist condensation on the rate of deposition, and that the rate of the vaporization of sodium is given by the original and the modified model. (Kato, T.)

  5. Development of a selective thin film and of a hermetically sealed flat plate solar collector with gas filling

    Science.gov (United States)

    Zernial, W.

    1982-12-01

    The industrial productibility of a selective absorbing thin film was investigated on the basis of reactive cathodic sputtering of Ni. On substrates of 1.8 sq m of Al, Cu, steel and stainless steel, solar absorption values up to 97% were achieved at emissivities of 5 to 10%. A prototype flat plate collector for high temperatures with two covers and hermetical sealing was developed. The technical data of the collector were measured, dependent on the selectivity of the absorber, gas fillings of dry air, argon or SF6 and the geometry and were compared with those of an evacuated flat plate collector. A hermetical sealed double flat plate collector for low temperatures was developed which has the advantage of lower no load temperatures and higher energy gain for heating swimming pool water compared with a conventional flat plate collector. The insolation values on collectors were measured and were used for a calculation of the energy gains of different collector types.

  6. Transparent Solar Concentrator for Flat Panel Display

    Science.gov (United States)

    Yeh, Chia-Hung; Chang, Fuh-Yu; Young, Hong-Tsu; Hsieh, Tsung-Yen; Chang, Chia-Hsiung

    2012-06-01

    A new concept of the transparent solar concentrator for flat panel display is experimentally demonstrated without adversely affecting the visual effects. The solar concentrator is based on a solar light-guide plate with micro prisms, not only increasing the absorption area of solar energy but also enhancing the conversion efficiency. The incident light is guided by the designed solar light-guide plate according to the total internal reflection (TIR), and converted into electrical power by photovoltaic solar cells. The designed transparent solar concentrator was made and measured with high transparency, namely 94.8%. The developed solar energy system for display can store energy and supply the bias voltage to light on two light-emitting diodes (LEDs) successfully.

  7. Qualification test results for DOE solar photovoltaic flat panel procurement - PRDA 38

    Science.gov (United States)

    Griffith, J. S.

    1980-01-01

    Twelve types of prototypes modules for the DOE Photovoltaic Flat Panel Procurement (PRDA 38) were subjected to qualification tests at the Jet Propulsion Laboratory according to a new specification. Environmental exposures were carried out separately and included temperature cycling, humidity, wind simulation, and hail. The most serious problems discovered were reduced insulation resistance to ground and ground continuity of the metal frames, electrical degradation, erratic power readings, and delamination. The electrical and physical characteristics of the newly received modules are also given.

  8. The Photovoltaic Higher Education National Exemplar Facility (PHENEF)

    Science.gov (United States)

    Podbielski, V.; Shaff, D.

    1994-04-01

    In August 1980, the US Department of Energy awarded the proposed grant to Georgetown University. The grant covered the following tasks: Task 1, The Department of Energy would participate in the building of an academic facility that would facilitate the integration of flat plate photovoltaic roof modules with an optimally oriented solar architecture. The completion of the facility to be built on the Georgetown University Campus and known as the Georgetown University Intercultural Center was to be a jointly funded endeavor with the Department of Education funding $9.2M through a grant and a loan, Department of Energy funding a maximum of $4M and Georgetown University funding the residual costs. Task 2, Georgetown University would provide the necessary skills, services, materials, equipment and facilities to design, furnish, install and make operational the Georgetown University Intercultural Center Photovoltaic System. The specific objective of this effort would be to build an exemplar flat plate electrical grid connected photovoltaic (PV) system which would demonstrate integration of PV modules into a watertight roofing surface. The system capability, measured at the input to the inverter, would be a 300 kilowatt peak power system as measured at the normal cell operating temperature and an isolation of 100 milliwatts per square centimeter at the collector surface. DOE funding under the grant for the PV system would be limited to a system cost of $20.00 per peak watt up to maximum of six million dollars.

  9. Investigation of Shear Stud Performance in Flat Plate Using Finite Element Analysis

    Directory of Open Access Journals (Sweden)

    T.S. Viswanathan

    2014-09-01

    Full Text Available Three types of shear stud arrangement, respectively featuring an orthogonal, a radial and a critical perimeter pattern, were evaluated numerically. A numerical investigation was conducted using the finite element software ABAQUS to evaluate their ability to resist punching shear in a flat plate. The finite element analysis here is an application of the nonlinear analysis of reinforced concrete structures using three-dimensional solid finite elements. The nonlinear characteristics of concrete were achieved by employing the concrete damaged plasticity model in the finite element program. Transverse shear stress was evaluated using finite element analysis in terms of shear stress distribution for flat plate with and without shear stud reinforcement. The model predicted that shear studs placed along the critical perimeter are more effective compared to orthogonal and radial patterns.

  10. Accuracy of Surface Plate Measurements - General Purpose Software for Flatness Measurement

    NARCIS (Netherlands)

    Meijer, J.; Heuvelman, C.J.

    1990-01-01

    Flatness departures of surface plates are generally obtained from straightness measurements of lines on the surface. A computer program has been developed for on-line measurement and evaluation, based on the simultaneous coupling of measurements in all grid points. Statistical methods are used to

  11. Thermal and optical performance of encapsulation systems for flat-plate photovoltaic modules

    Science.gov (United States)

    Minning, C. P.; Coakley, J. F.; Perrygo, C. M.; Garcia, A., III; Cuddihy, E. F.

    1981-01-01

    The electrical power output from a photovoltaic module is strongly influenced by the thermal and optical characteristics of the module encapsulation system. Described are the methodology and computer model for performing fast and accurate thermal and optical evaluations of different encapsulation systems. The computer model is used to evaluate cell temperature, solar energy transmittance through the encapsulation system, and electric power output for operation in a terrestrial environment. Extensive results are presented for both superstrate-module and substrate-module design schemes which include different types of silicon cell materials, pottants, and antireflection coatings.

  12. Two-media boundary layer on a flat plate

    OpenAIRE

    Nikolay Ilyich Klyuev; Asgat Gatyatovich Gimadiev; Yuriy Alekseevich Kryukov

    2014-01-01

    The present paper provides a solution to the problem of a flow over a flat semi-infinite plate set at an angle to the horizon, and having a thin liquid film on its surface by external airflow. The film is formed by extrusion of liquid from the porous wall. The paper proposes a mathematical model of a two-media boundary layer flow. The main characteristics of the flow to a zero and a first approximation are determined. A drop of frictional stress is obtained.

  13. Theoretical and experimental investigation of wickless heat pipes flat plate solar collector with cross flow heat exchanger

    International Nuclear Information System (INIS)

    Hussein, H.M.S.

    2007-01-01

    In this work, a wickless heat pipes flat plate solar collector with a cross flow heat exchanger was investigated theoretically and experimentally under the meteorological conditions of Cairo, Egypt. The author's earlier simulation program of wickless heat pipes flat plate solar water heaters was modified to be valid for the present type of wickless heat pipes solar collector by including the solution of the dimensionless governing equations of the present analysis. For verifying the modified simulation program, a wickless heat pipes flat plate solar collector with a cross flow heat exchanger was designed, constructed, and tested at different meteorological conditions and operating parameters. These parameters include different cooling water mass flow rates and different inlet cooling water temperatures. The comparison between the experimental results and their corresponding simulated ones showed considerable agreement. Under different climatic conditions, the experimental and theoretical results showed that the optimal mass flow rate is very close to the ASHRAE standard mass flow rate for testing conventional flat plate solar collectors. Also, the experimental and theoretical results indicated that the number of wickless heat pipes has a significant effect on the collector efficiency

  14. Magnetohydrodynamic unsteady flow of a Maxwell fluid past a flat plate

    International Nuclear Information System (INIS)

    Khandpur, S.L.; Ravi Kant

    1979-01-01

    A study of the equations describing the flow pattern set up in a linear electrically conducting viscoelastic fluid past an infinite flat plate in the presence of a transverse magnetic field has been made, when the plate is moving parallel to itself with an arbitrary time dependent velocity. The pressure is assumed to be uniform with initial velocity distribution in an exponential form. Operational methods are used to obtain the exact solutions for the velocity profiles. The effects of relaxation parameter of the fluid and magnetic field have been studied. Several particular cases are easily deduced of which two cases: (i) when the plate is moving in its own plane harmonically with time, and (ii) when the velocity of the plate is decaying exponentially with time, are discussed. (auth.)

  15. High Performance Flat Plate Solar Thermal Collector Evaluation

    Energy Technology Data Exchange (ETDEWEB)

    Rockenbaugh, Caleb [National Renewable Energy Lab. (NREL), Golden, CO (United States); Dean, Jesse [National Renewable Energy Lab. (NREL), Golden, CO (United States); Lovullo, David [National Renewable Energy Lab. (NREL), Golden, CO (United States); Lisell, Lars [National Renewable Energy Lab. (NREL), Golden, CO (United States); Barker, Greg [National Renewable Energy Lab. (NREL), Golden, CO (United States); Hanckock, Ed [National Renewable Energy Lab. (NREL), Golden, CO (United States); Norton, Paul [National Renewable Energy Lab. (NREL), Golden, CO (United States)

    2016-09-01

    This report was prepared for the General Services Administration by the National Renewable Energy Laboratory. The Honeycomb Solar Thermal Collector (HSTC) is a flat plate solar thermal collector that shows promising high efficiencies over a wide range of climate zones. The technical objectives of this study are to: 1) verify collector performance, 2) compare that performance to other market-available collectors, 3) verify overheat protection, and 4) analyze the economic performance of the HSTC both at the demonstration sites and across a matrix of climate zones and utility markets.

  16. Environmental testing of flat plate solar cell modules

    Science.gov (United States)

    Griffith, J.; Dumas, L.; Hoffman, A.

    1978-01-01

    Commercially available flat-plate solar cell modules have been subjected to a variety of environmental tests designed to simulate service conditions. Among the tests are those simulating heat and rain, wind-driven rains, humidity and freezing, humidity and heat, humidity with a voltage bias, salt fog, hail impact, and fungus infestation. Tests for optical surface soiling and the combined effects of temperature, humidity and UV irradiation are under development. A correlation has been demonstrated between degradation caused by the qualification tests and such observed field effects as power loss.

  17. Experimental study of a water-mist jet issuing normal to a heated flat plate

    Directory of Open Access Journals (Sweden)

    Vouros Andreas

    2016-01-01

    Full Text Available A parametric experimental study on the development of a round jet spray impacting a smooth, heated, flat plate has been accomplished. The main objective of this effort was to provide information characterizing the flow structure of a developing mist jet, issuing vertically towards an upward facing, horizontal heated plate, by means of simultaneous droplet size and velocity measurements. Phase Doppler Anemometry was used, providing also information on liquid volume flux. The fine spray of small atomized droplets (0.5-5.0 μm, was generated using a medical nebulizer. Two low Reynolds number jets (Re=2952, 3773 issuing from a cylindrical pipe have been tested. The distance between the jets’ exit and the plate was 50 cm. A stainless steel non-magnetic flat plate of dimensions 1000x500x12mm3 was used as target wall. Constant heat flux boundary conditions were established during measurements. Results indicate that the heat flux from the plate is influencing the evolution of the spray jet, diminishing its velocity and turbulence. Average droplet sizes are affected little by the heat flux, although for the non-heated sprays, droplet sizes increase at locations very close to the plate. A significant effect on droplet volume flow rate is also reported.

  18. Transitional and turbulent flat-plate boundary layers with heat transfer

    Science.gov (United States)

    Wu, Xiaohua; Moin, Parviz

    2010-11-01

    We report on our direct numerical simulation of two incompressible, nominally zero-pressure-gradient flat-plate boundary layers from momentum thickness Reynolds number 80 to 1950. Heat transfer between the constant-temperature solid surface and the free-stream is also simulated with molecular Prandtl number=1. Throughout the entire flat-plate, the ratio of Stanton number and skin-friction St/Cfdeviates from the exact Reynolds analogy value of 0.5 by less than 1.5%. Turbulent Prandtl number t peaks at the wall. Preponderance of hairpin vortices is observed in both the transitional and turbulent regions of the boundary layers. In particular, the internal structure of merged turbulent spots is hairpin forest; the internal structure of infant turbulent spots is hairpin packet. Numerous hairpin vortices are readily detected in both the near-wall and outer regions of the boundary layers up to momentum thickness Reynolds number 1950. This suggests that the hairpin vortices in the turbulent region are not simply the aged hairpin forests convected from the upstream transitional region. Temperature iso-surfaces in the companion thermal boundary layers are found to be a useful tracer in identifying hairpin vortex structures.

  19. Annual measured and simulated thermal performance analysis of a hybrid solar district heating plant with flat plate collectors and parabolic trough collectors in series

    DEFF Research Database (Denmark)

    Tian, Zhiyong; Perers, Bengt; Furbo, Simon

    2017-01-01

    Flat plate collectors have relatively low efficiency at the typical supply temperatures of district heating networks (70–95 °C). Parabolic trough collectors retain their high efficiency at these temperatures. To maximize the advantages of flat plate collectors and parabolic trough collectors in l...... for this type of hybrid solar district heating plants with flat plate collectors and parabolic trough collectors in the Nordic region, but also introduce a novel design concept of solar district heating plants to other high solar radiation areas....... in large solar heating plants for a district heating network, a hybrid solar collector field with 5960 m2 flat plate collectors and 4039 m2 parabolic trough collectors in series was constructed in Taars, Denmark. The design principle is that the flat plate collectors preheat the return water from...

  20. Performance of Partially Covered N Number of Photovoltaic Thermal (PVT) - Compound Parabolic Concentrator (CPC) Series Connected Water Heating System

    OpenAIRE

    Rohit Tripathi; Sumit Tiwari; G. N. Tiwari

    2016-01-01

    In present study, an approach is adopted where photovoltaic thermal flat plate collector is integrated with compound parabolic concentrator. Analytical expression of temperature dependent electrical efficiency of N number of partially covered Photovoltaic Thermal (PVT) - Compound Parabolic Concentrator (CPC) water collector connected in series has been derived with the help of basic thermal energy balance equations. Analysis has been carried for winter weather condition at Delhi location, Ind...

  1. Research on mechanism of the large-amplitude and narrow-band vibration of a flexible flat plate in the rectangular channel

    Energy Technology Data Exchange (ETDEWEB)

    Liu Lifang, E-mail: liu_lifang1106@yahoo.cn [School of Nuclear Science and Engineering, North China Electric Power University, Zhuxinzhuang, Dewai, Beijing 102206 (China); State Nuclear Power Software Development Center, Building 1, Compound No. 29, North Third Ring Road, Xicheng District, Beijing 100029 (China); Lu Daogang [School of Nuclear Science and Engineering, North China Electric Power University, Zhuxinzhuang, Dewai, Beijing 102206 (China)

    2012-09-15

    Highlights: Black-Right-Pointing-Pointer The large amplitude and narrow-band vibration experiment was performed. Black-Right-Pointing-Pointer The added mass theory was used to analyze the test plates' natural vibration characteristics in static water. Black-Right-Pointing-Pointer The occurring condition of the large amplitude and narrow band vibration was investigated. Black-Right-Pointing-Pointer The large amplitude and narrow-band vibration mechanism was investigated. - Abstract: Further experiments and theoretical analysis were performed to investigate mechanism of the large-amplitude and narrow-band vibration behavior of a flexible flat plate in a rectangular channel. Test plates with different thicknesses were adopted in the FIV experiments. The natural vibration characteristics of the flexible flat plates in air were tested, and the added mass theory of column was used to analyze the flexible flat plates' natural vibration characteristics in static water. It was found that the natural vibration frequency of a certain test plate in static water is approximately within the main vibration frequency band of the plate when it was induced to vibrate with the large-amplitude and narrow-band in the rectangular channel. It can be concluded that the harmonic between the flowing fluid and the vibrating plate is one of the key reasons to induce the large-amplitude and narrow-band vibration phenomenon. The occurring condition of the phenomenon and some important narrow-band vibration characteristics of a foursquare fix-supported flexible flat plate were investigated.

  2. Modification of parabolic dish antenna pattern using two symmetrically placed circular flat plates

    Science.gov (United States)

    Thorpe, Glen C.

    1987-12-01

    This study aims to formulate a method of predicting the far field pattern of a parabolic dish antenna with two moveable flat plates mounted symmetrically on either side of the feed horn. The approach taken has been to first analyze the radiation pattern of the antenna with the disks at certain heights out from the surface of the dish. To do this the near-field radiation in amplitude and phase was measured over a plane surface in the near-field and the values were then transformed into the far field using a Fast Fourier Transform. Far field pattern values of the antenna were directly measured for each setting of the plates. The results obtained from the Fast Fourier Transform of the near field data were in good agreement with the values obtained by measurement. Finally, an approximate model of the antenna was developed and implemented as a computer program. This model, while relatively unsophisticated, provided some insights into the changes in the near field phase distribution caused by the moveable circular flat plates.

  3. Exergy analysis of integrated photovoltaic thermal solar water heater under constant flow rate and constant collection temperature modes

    NARCIS (Netherlands)

    Tiwari, A.; Dubey, Swapnil; Sandhu, G.S.; Sodha, M.S.; Anwar, S.I.

    2009-01-01

    In this communication, an analytical expression for the water temperature of an integrated photovoltaic thermal solar (IPVTS) water heater under constant flow rate hot water withdrawal has been obtained. Analysis is based on basic energy balance for hybrid flat plate collector and storage tank,

  4. Low-cost modular array-field designs for flat-panel and concentrator photovoltaic systems

    Science.gov (United States)

    Post, H. N.; Carmichael, D. C.; Alexander, G.; Castle, J. A.

    1982-09-01

    Described are the design and development of low-cost, modular array fields for flat-panel and concentrator photovoltaic (PV) systems. The objective of the work was to reduce substantially the cost of the array-field Balance-of-System (BOS) subsystems and site-specific design costs as compared to previous PV installations. These subsystems include site preparation, foundations, support structures, electrical writing, grounding, lightning protection, electromagnetic interference considerations, and controls. To reduce these BOS and design costs, standardized modular (building-block) designs for flat-panel and concentrator array fields have been developed that are fully integrated and optimized for lowest life-cycle costs. Using drawings and specifications now available, these building-block designs can be used in multiples to install various size array fields. The developed designs are immediately applicable (1982) and reduce the array-field BOS costs to a fraction of previous costs.

  5. Performance Analysis of a Self-Propelling Flat Plate Fin with Joint Compliance

    Science.gov (United States)

    Reddy, N. Srinivasa; Sen, Soumen; Pal, Sumit; Shome, Sankar Nath

    2017-12-01

    Fish fin muscles are compliant and they regulate the stiffness to suit different swimming conditions. This article attempts to understand the significance of presence of compliance in fin muscle with help of a flexible joint flat plate fin model. Blade element method is employed to model hydrodynamics and to compute the forces of interaction during motion of the plate within fluid. The dynamic model of self-propelling fin is developed through multi-body dynamics approach considering the hydrodynamic forces as external forces acting on the fin. The derived hydrodynamic model is validated with experiments on rigid flat plate fin. The effect of the joint stiffness and flapping frequency on the propulsion speed and efficiency is investigated through simulations using the derived and validated model. The propulsion efficiency is found to be highly influenced by the joint stiffness at a given flapping frequency. The fin attained maximum propulsion efficiency when the joint stiffness is tuned to a value at which flapping frequency matches near natural frequency of the fin. At this tuned joint stiffness and flapping frequency, the resulted Strouhal numbers are observed to fall within the optimum range (0.2 to 0.4) for maximized propulsion efficiency of flying birds and swimming aquatic animals reported in literature.

  6. Some tests of flat plate photovoltaic module cell temperatures in simulated field conditions

    Science.gov (United States)

    Griffith, J. S.; Rathod, M. S.; Paslaski, J.

    1981-01-01

    The nominal operating cell temperature (NOCT) of solar photovoltaic (PV) modules is an important characteristic. Typically, the power output of a PV module decreases 0.5% per deg C rise in cell temperature. Several tests were run with artificial sun and wind to study the parametric dependencies of cell temperature on wind speed and direction and ambient temperature. It was found that the cell temperature is extremely sensitive to wind speed, moderately so to wind direction and rather insensitive to ambient temperature. Several suggestions are made to obtain data more typical of field conditions.

  7. Investigating wake patterns and propulsive frequencies of a flat plate under pitching motion

    Science.gov (United States)

    Moubogha Moubogha, Joseph; Astolfi, Jacques Andre

    Fundamental mechanisms of swimming are explored using a simple geometry device - flat plate - in pure-pitching motion in a hydrodynamic tunnel. The experiments are carried out at different Reynolds numbers based on the plate length c. Pitching motion is generated for reduced frequencies k between 0 and 2 and for an angular amplitude of 10 deg. Velocity fields are obtained in the wake of the plate using Particle Image Velocimetry and measurements of drag coefficients are estimated from mean velocity profiles. This study confirms the occurrence of a threshold oscillation frequency beyond which the plate enters a propulsive regime and the wake features organized structures. In this case an inversion of the typical Karman vortex street is observed. The evolution of mean transverse velocity profiles in the wake of the plate shows that the usual wake profile with velocity deficit - plate with drag - can be transformed into a jet - plate with thrust - above a certain reduced frequency. Phd Student Mechanical Engineering Departement.

  8. An experimental study towards the practical application of closed-loop flat-plate pulsating heat pipes

    NARCIS (Netherlands)

    Groeneveld, Gerben; Van Gerner, Henk Jan; Wits, Wessel W.

    2017-01-01

    The thermal performance of a flat-plate closed-loop pulsating heat pipe (PHP) is experimentally obtained. The PHP is manufactured by means of CNC-milling and vacuum brazing of a stainless steel 316L bottom plate and lid. Each channel of the PHP has a 2×2 mm2 square cross section. In total 12

  9. Simulation techniques for spatially evolving instabilities in compressible flow over a flat plate

    NARCIS (Netherlands)

    Wasistho, B.; Geurts, Bernardus J.; Kuerten, Johannes G.M.

    1997-01-01

    In this paper we present numerical techniques suitable for a direct numerical simulation in the spatial setting. We demonstrate the application to the simulation of compressible flat plate flow instabilities. We compare second and fourth order accurate spatial discretization schemes in combination

  10. A figure of merit for selective absorbers in flat plate solar water heaters

    CSIR Research Space (South Africa)

    Roberts, DE

    2013-12-01

    Full Text Available We derive from first principles an analytical expression for a figure of merit (FM) for a selective solar absorber in a single glazed flat plate water heater. We first show that the efficiency of a collector with an absorber with absorptance α...

  11. Design, construction and testing of a low-cost flat plate solar energy ...

    African Journals Online (AJOL)

    A low-cost flat plate solar energy collector has been designed and constructed with locally available materials such as mild steel and black paint of absorptance 0.94. On testing, an average daily efficiency of 55.6% was obtained. The methods are simple and illustrate the fact that construction of efficient collectors are ...

  12. Flow patterns and heat transfer characteristics of flat plate pulsating heat pipes with various asymmetric and aspect ratios of the channels

    International Nuclear Information System (INIS)

    Jang, Dong Soo; Lee, Joo Seong; Ahn, Jae Hwan; Kim, Dongwoo; Kim, Yongchan

    2017-01-01

    Highlights: • Flat plate pulsating heat pipes with asymmetric and aspect ratios were tested. • Flow patterns were investigated according to channel geometry and flow condition. • Heat transfer characteristics were analyzed with various heat inputs. • Optimum asymmetric and aspect ratios were suggested for maximum thermal performance. - Abstract: The thermal performance of flat plate pulsating heat pipes (PHPs) in compact electronic devices can be improved by adopting asymmetric channels with increased pressure differences and an unbalanced driving force. The objective of this study is to investigate the heat transfer characteristics of flat plate PHPs with various asymmetric ratios and aspect ratios in the channels. The thermal performance and flow pattern of the flat plate PHPs were measured by varying the asymmetric ratio from 1.0 to 4.0, aspect ratio from 2.5 to 5.0, and heat input from 2 to 28 W. The effects of the asymmetric ratio and aspect ratio on the thermal resistance were analyzed with the measured evaporator temperature and flow patterns at various heat inputs. With heat inputs of 6 W and 12 W, the optimum asymmetric ratio and aspect ratio for the flat plate PHPs were determined to be 4.0 and 2.5, respectively. With the heat input of 18 W, the optimum asymmetric ratio and aspect ratio were determined to be 1.5 and 2.5, respectively.

  13. Bistatic radar cross section of a perfectly conducting rhombus-shaped flat plate

    Science.gov (United States)

    Fenn, Alan J.

    1990-05-01

    The bistatic radar cross section of a perfectly conducting flat plate that has a rhombus shape (equilateral parallelogram) is investigated. The Ohio State University electromagnetic surface patch code (ESP version 4) is used to compute the theoretical bistatic radar cross section of a 35- x 27-in rhombus plate at 1.3 GHz over the bistatic angles 15 deg to 142 deg. The ESP-4 computer code is a method of moments FORTRAN-77 program which can analyze general configurations of plates and wires. This code has been installed and modified at Lincoln Laboratory on a SUN 3 computer network. Details of the code modifications are described. Comparisons of the method of moments simulations and measurements of the rhombus plate are made. It is shown that the ESP-4 computer code provides a high degree of accuracy in the calculation of copolarized and cross-polarized bistatic radar cross section patterns.

  14. MHD Boundary Layer Slip Flow and Heat Transfer over a Flat Plate

    International Nuclear Information System (INIS)

    Bhattacharyya, Krishnendu; Mukhopadhyay, Swati; Layek, G. C.

    2011-01-01

    An analysis of magnetohydrodynamic (MHD) boundary layer flow and heat transfer over a flat plate with slip condition at the boundary is presented. A complete self-similar set of equations are obtained from the governing equations using similarity transformations and are solved by a shooting method. In the boundary slip condition no local similarity occurs. Velocity and temperature distributions within the boundary layer are presented. Our analysis reveals that the increase of magnetic and slip parameters reduce the boundary layer thickness and also enhance the heat transfer from the plate. (fundamental areas of phenomenology(including applications))

  15. Performance Evaluation of Various Flat Plate Photovoltaic Modules in Hot and Arid Environment

    International Nuclear Information System (INIS)

    Alamoud, A. R. M.

    2000-01-01

    The present paper reports the results of a simplified methods for evaluating the performance of selected photovoltaic (PV?) modules in use in Saudi Arabia and makes a comparative assessment at standard reporting conditions. Experimental results, normalized to standard reporting conditions using the two-axis translation I-V model have revealed that all PV module parameters, except Isc decreased during the period the modules were exposed to outdoor environment. The degradation resulted in a decrease in the module efficiency of 0.22% to 11% depending on the make of the module. Moreover, the measured PV module parameters were found to differ from manufacturer's specified values yielding a decrease in efficiency (Author)

  16. Numerical Study on the Effect of Distribution Plates in the Manifolds on the Flow Distribution and Thermal Performance of a Flat Plate Solar Collector

    Directory of Open Access Journals (Sweden)

    Juan Manuel García-Guendulain

    2018-04-01

    Full Text Available Flow maldistribution represents a problem of particular interest in the engineering field for several thermal systems. In flat plate solar collectors, the thermal efficiency strongly depends on the flow distribution through the riser tubes, where a uniform distribution causes a uniform temperature distribution and therefore a higher efficiency. In this work, a Computational Fluid Dynamics (CFD numerical analysis has been carried out using the commercial software FLUENT®, in order to determine the flow distribution, pressure drop and hence the thermal efficiency of a solar collector with distribution flow plates inside the manifolds. The obtained numerical solution for this type of thermal systems has been validated with experimental results available in literature for laminar and turbulent flow. Four distribution plate configurations were analyzed. Results show that using two distribution plates in each of both manifolds improves the flow uniformity up to 40% under the same operating conditions when distribution plates are not used. Besides, it is shown that there exists an increase in the overall pressure drop which is practically negligible for the tilt angles commonly employed in the installation of flat plate solar collectors in Mexico. The use of closed end distribution plates on the dividing and combining manifolds allows the thermal efficiency to become close to the ideal thermal efficiency which is obtained with a uniform flow distribution.

  17. Three-beam interferogram analysis method for surface flatness testing of glass plates and wedges

    Science.gov (United States)

    Sunderland, Zofia; Patorski, Krzysztof

    2015-09-01

    When testing transparent plates with high quality flat surfaces and a small angle between them the three-beam interference phenomenon is observed. Since the reference beam and the object beams reflected from both the front and back surface of a sample are detected, the recorded intensity distribution may be regarded as a sum of three fringe patterns. Images of that type cannot be succesfully analyzed with standard interferogram analysis methods. They contain, however, useful information on the tested plate surface flatness and its optical thickness variations. Several methods were elaborated to decode the plate parameters. Our technique represents a competitive solution which allows for retrieval of phase components of the three-beam interferogram. It requires recording two images: a three-beam interferogram and the two-beam one with the reference beam blocked. Mutually subtracting these images leads to the intensity distribution which, under some assumptions, provides access to the two component fringe sets which encode surfaces flatness. At various stages of processing we take advantage of nonlinear operations as well as single-frame interferogram analysis methods. Two-dimensional continuous wavelet transform (2D CWT) is used to separate a particular fringe family from the overall interferogram intensity distribution as well as to estimate the phase distribution from a pattern. We distinguish two processing paths depending on the relative density of fringe sets which is connected with geometry of a sample and optical setup. The proposed method is tested on simulated data.

  18. An Analysis of CFD and Flat Plate Predictions of Friction Drag for the TCA W/B at Supersonic Cruise

    Science.gov (United States)

    Lawrence, Scott L.

    1999-01-01

    This paper presents results of a study which attempted to provide some understanding of the relationship between skin friction drag estimates produced by flat plate methods and those produced by Navier-Stokes computations. A brief introduction is followed by analysis, including a flat plate grid study, analysis of the wing flow, an analysis of the fuselage flow. Other results of interest are then presented, including turbulence model sensitivities, and brief analysis of other configurations.

  19. Kinetics of inorganic carbon utilization by microalgal biofilm in a flat plate photoreactor

    Energy Technology Data Exchange (ETDEWEB)

    Lin, Y.H.; Leu, J.Y.; Lan, C.R.; Lin, P.H.P.; Chang, F.L. [Development Center for Biotechnology, Taipei (Taiwan). Dept. for Environmental Program

    2003-11-01

    A kinetic model was developed to describe inorganic carbon utilization by microalgae biofilm in a flat plate photoreactor. The model incorporates the fundamental mechanisms of diffusive mass transport and biological reaction of inorganic carbon by microalgal biofilm. An advanced numerical technique, the orthogonal collocation method and Gear's method, was employed to solve this kinetic model. The model solutions included the concentration profiles of inorganic carbon in the microalgal biofilm, the growths of suspended microalgae and microalgal biofilm, the effluent concentrations of inorganic carbon, and the flux of inorganic carbon from bulk liquid into biofilm. The batch kinetic test was independently conducted to determine biokinetic parameters used in the microalgal biofilm model simulation while initial thickness of microalgal biofilm were assumed. A laboratory-scale flat plate photoreactor with a high recycle flow rate was set up and conducted to verify the model. The volume of photoreactor is 60 l which yields a hydraulic retention time of 1.67 days. The model-generated inorganic carbon and the suspended microalgae concentration curves agreed well with those obtained in the laboratory-scale test. The fixation efficiencies of HCO{sub 3}{sup -} and CO{sub 2} are 98.5% and 90% at a steady-state condition, respectively. The concentration of suspended microalgal cell reached up to 12 mg/l at a maximum growth rate while the thickness of microalgal biofilm was estimated to be 104 pm at a steady-state condition. The approaches of experiments and model simulation presented in this study could be employed for the design of a flat plate photoreactor to treat CO{sub 2} by microalgal biofilm in a fossil-fuel power plant.

  20. Performance of wickless heat pipe flat plate solar collectors having different pipes cross sections geometries and filling ratios

    International Nuclear Information System (INIS)

    Hussein, H.M.S.; El-Ghetany, H.H.; Nada, S.A.

    2006-01-01

    In the present study, the effect of wickless heat pipe cross section geometry and its working fluid filling ratio on the performance of flat plate solar collectors has been investigated experimentally. Three groups of wickless heat pipes having three different cross section geometries (namely, circular, elliptical and semi-circular cross sections) were designed and manufactured. Each group of three wickless heat pipes was charged with three different distilled water filling ratios of 10%, 20% and 35%. Each wickless heat pipe was then incorporated into a prototype flat plate solar collector developed for the purpose of the present study. The prototypes wickless heat pipe flat plate solar collectors have been investigated experimentally at different inlet cooling water temperatures, two different cooling water mass flow rates and under the meteorological conditions of Cairo, Egypt. The experimental results indicate that the elliptical cross section wickless heat pipe flat plate solar collectors have better performance than the circular cross section ones at low water filling ratios. The optimum water filling ratio of the elliptical cross section wickless heat pipe solar collector is about 10%, while it is very close to 20% for the circular cross section one. Also, the water filling ratio corresponding to the flooding limit of the elliptical wickless heat pipe solar collector is lower than that of the circular one. At 20% water filling ratio, the semi-circular cross section wickless heat pipe solar collector has bad performance compared with that of the other cross sections

  1. Model-supported phototrophic growth studies with Scenedesmus obtusiusculus in a flat-plate photobioreactor.

    Science.gov (United States)

    Koller, Anja Pia; Löwe, Hannes; Schmid, Verena; Mundt, Sabine; Weuster-Botz, Dirk

    2017-02-01

    Light-dependent growth of microalgae can vary remarkably depending on the cultivation system and microalgal strain. Cell size and the pigmentation of each strain, as well as reactor geometry have a great impact on absorption and scattering behavior within a photobioreactor. In this study, the light-dependent, cell-specific growth kinetics of a novel green algae isolate, Scenedesmus obtusiusculus, was studied in a LED-illuminated flat-plate photobioreactor on a lab-scale (1.8 L, 0.09 m 2 ). First, pH-controlled batch processes were performed with S. obtusiusculus at different constant incident photon flux densities. The best performance was achieved by illuminating S. obtusiusculus with 1400 μmol photons m -2  s -1 at the surface of the flat-plate photobioreactor, resulting in the highest biomass concentration (4.95 ± 0.16 g CDW  L -1 within 3.5 d) and the highest specific growth rate (0.22 h -1 ). The experimental data were used to identify the kinetic parameters of different growth models considering light inhibition for S. obtusiusculus. Light attenuation within the flat-plate photobioreactor was considered by varying light transfer models. Based on the identified kinetic growth model of S. obtusiusculus, an optimum growth rate of 0.22 h -1 was estimated at a mean integral photon flux density of 1072 μmol photons m -2  s -1 with the Beer-Lambert law and 1590 μmol photons m -2  s -1 with Schuster's light transfer model in the flat-plate photobioreactor. LED illumination was, thus, increased to keep the identified optimum mean integral photon flux density constant in the batch process assuming Schuster's light transfer model. Compared to the same constant incident photon flux density (1590 μmol photons m -2  s -1 ), biomass concentration was up to 24% higher using the lighting profile until a dry cell mass concentration of 14.4 ± 1.4 g CDW  L -1 was reached. Afterward, the biomass concentration remained constant

  2. Automated ultrasonic scanning of flat plate nuclear fuel

    International Nuclear Information System (INIS)

    Barna, B.A.

    1979-01-01

    One of the most challenging problems in Non-Destructive Testing lies in making the inspection as rapid, precise, cost effective and operator independent as possible. Only by optimizing these four factors can a technology take full advantage of the quality control possible with NDT. This paper describes a highly complex application of high frequency ultrasonics to image extremely small and difficult to detect flaws in a production line environment. The objects of interest are flat plate nuclear fuel used in the Advanced Test Reactor at the Idaho National Engineering Laboratory. The plates are fabricated by hot rolling a sandwich of alloyed uranium fuel and aluminum cladding. After rolling, the block is flattened to a long thin plate approximately 1.27 m (55 inches) long, 102 mm (4 inches) wide and 1.25 mm (0.050 inches) thick. The core, or fuel area is nominally 0.75 mm (0.030 inches) thick with 0.25 mm (0.010 inches) of aluminum bonded to both sides. As might be expected the fabrication is a sensitive process which can introduce several flaws detrimental to the reactor operation if they are undetected. Two of the characteristics that must be examined are the cladding thickness of the aluminum left over the fuel and the quality of bond between the cladding and the fuel. If either the cladding is too thin or the bonding inadequate thermal and/or corrosive activity can crack the protective cladding

  3. A quantitative method for photovoltaic encapsulation system optimization

    Science.gov (United States)

    Garcia, A., III; Minning, C. P.; Cuddihy, E. F.

    1981-01-01

    It is pointed out that the design of encapsulation systems for flat plate photovoltaic modules requires the fulfillment of conflicting design requirements. An investigation was conducted with the objective to find an approach which will make it possible to determine a system with optimum characteristics. The results of the thermal, optical, structural, and electrical isolation analyses performed in the investigation indicate the major factors in the design of terrestrial photovoltaic modules. For defect-free materials, minimum encapsulation thicknesses are determined primarily by structural considerations. Cell temperature is not strongly affected by encapsulant thickness or thermal conductivity. The emissivity of module surfaces exerts a significant influence on cell temperature. Encapsulants should be elastomeric, and ribs are required on substrate modules. Aluminum is unsuitable as a substrate material. Antireflection coating is required on cell surfaces.

  4. Characterization of a low concentrator photovoltaics module

    Energy Technology Data Exchange (ETDEWEB)

    Butler, B.A. [Department of Physics, Nelson Mandela Metropolitan University, P. O. Box 77000, Port Elizabeth 6031 (South Africa); Dyk, E.E. van, E-mail: ernest.vandyk@nmmu.ac.za [Department of Physics, Nelson Mandela Metropolitan University, P. O. Box 77000, Port Elizabeth 6031 (South Africa); Vorster, F.J.; Okullo, W.; Munji, M.K. [Department of Physics, Nelson Mandela Metropolitan University, P. O. Box 77000, Port Elizabeth 6031 (South Africa); Booysen, P. [Setsolar, P. O. Box 15934, Panorama 7506 (South Africa)

    2012-05-15

    Low concentration photovoltaic (LCPV) systems have the potential to reduce the cost per kWh of electricity compared to conventional flat-plate photovoltaics (PV) by up to 50%. The cost-savings are realised by replacing expensive PV cells with relatively cheaper optical components to concentrate incident solar irradiance onto a receiver and by tracking the sun along either 1 axis or 2 axes. A LCPV module consists of three interrelated subsystems, viz., the optical, electrical and the thermal subsystems, which must be considered for optimal module design and performance. Successful integration of these subsystems requires the balancing of cost, performance and reliability. In this study LCPV experimental prototype modules were designed, built and evaluated with respect to optimisation of the three subsystems and overall performance. This paper reports on the optical and electrical evaluation of a prototype LCPV module.

  5. Characterization of a low concentrator photovoltaics module

    International Nuclear Information System (INIS)

    Butler, B.A.; Dyk, E.E. van; Vorster, F.J.; Okullo, W.; Munji, M.K.; Booysen, P.

    2012-01-01

    Low concentration photovoltaic (LCPV) systems have the potential to reduce the cost per kWh of electricity compared to conventional flat-plate photovoltaics (PV) by up to 50%. The cost-savings are realised by replacing expensive PV cells with relatively cheaper optical components to concentrate incident solar irradiance onto a receiver and by tracking the sun along either 1 axis or 2 axes. A LCPV module consists of three interrelated subsystems, viz., the optical, electrical and the thermal subsystems, which must be considered for optimal module design and performance. Successful integration of these subsystems requires the balancing of cost, performance and reliability. In this study LCPV experimental prototype modules were designed, built and evaluated with respect to optimisation of the three subsystems and overall performance. This paper reports on the optical and electrical evaluation of a prototype LCPV module.

  6. Characterization of a low concentrator photovoltaics module

    Science.gov (United States)

    Butler, B. A.; van Dyk, E. E.; Vorster, F. J.; Okullo, W.; Munji, M. K.; Booysen, P.

    2012-05-01

    Low concentration photovoltaic (LCPV) systems have the potential to reduce the cost per kWh of electricity compared to conventional flat-plate photovoltaics (PV) by up to 50%. The cost-savings are realised by replacing expensive PV cells with relatively cheaper optical components to concentrate incident solar irradiance onto a receiver and by tracking the sun along either 1 axis or 2 axes. A LCPV module consists of three interrelated subsystems, viz., the optical, electrical and the thermal subsystems, which must be considered for optimal module design and performance. Successful integration of these subsystems requires the balancing of cost, performance and reliability. In this study LCPV experimental prototype modules were designed, built and evaluated with respect to optimisation of the three subsystems and overall performance. This paper reports on the optical and electrical evaluation of a prototype LCPV module.

  7. Study Effect of Central Rectangular Perforation on the Natural Convection Heat Transfer in an Inclined Heated Flat Plate

    Directory of Open Access Journals (Sweden)

    Kadhum Audaa Jehhef

    2015-09-01

    Full Text Available Anumerical solutions is presented to investigate the effect of inclination angle (θ , perforation ratio (m and wall temperature of the plate (Tw on the heat transfer in natural convection from isothermal square flat plate up surface heated (with and without concentrated hole. The flat plate with dimensions of (128 mm length × (64 mm width has been used five with square models of the flat plate that gave a rectangular perforation of (m=0.03, 0.06, 0.13, 0.25, 0.5. The values of angle of inclination were (0o, 15o 30o 45o 60o from horizontal position and the values of wall temperature (50oC, 60 oC, 70 oC, 90 oC, 100oC. To investigate the temperature, boundary layer thickness and heat flux distributions; the numerical computation is carried out using a very efficient integral method to solve the governing equation. The results show increase in the temperature gradient with increase in the angle of inclination and the high gradient and high heat transfer coefficients located in the external edges of the plate, for both cases: with and without holed plate. There are two separation regions of heat transfer in the external edge and the internal edges. The boundary layer thickness is small in the external edge and high in the center of the plate and it decreases as the inclination angle of plate increases. Theoretical results are compared with previous result and it is found that the Nusslet numbers in the present study are higher by (22 % than that in the previous studies. And the results show good agreement in range of Raleigh number from 105 to 106.

  8. Drag Induced by Flat-Plate Imperfections in Compressible Turbulent Flow Regimes

    OpenAIRE

    Molton , Pascal; Hue , David; Bur , Reynald

    2014-01-01

    International audience; This paper presents the results of a coupled experimental and numerical study aimed at evaluating the influence of typical aircraft surface imperfections on the flat-plate drag production in fully turbulent conditions. A test campaign involving high-level measurement techniques, such as microdrag evaluation, near-wall laser Doppler velocimetry, and oil-film interferometry, has been carried out at several Mach numbers from 0.5 to 1.3 to quantify the impact of a large ra...

  9. Circulation shedding in viscous starting flow past a flat plate

    International Nuclear Information System (INIS)

    Nitsche, Monika; Xu, Ling

    2014-01-01

    Numerical simulations of viscous flow past a flat plate moving in the direction normal to itself reveal details of the vortical structure of the flow. At early times, most of the vorticity is attached to the plate. This paper introduces a definition of the shed circulation at all times and shows that it indeed represents vorticity that separates and remains separated from the plate. During a large initial time period, the shed circulation satisfies the scaling laws predicted for self-similar inviscid separation. Various contributions to the circulation shedding rate are presented. The results show that during this initial time period, viscous diffusion of vorticity out of the vortex is significant but appears to be independent of the value of the Reynolds number. At later times, the departure of the shed circulation from its large Reynolds number behaviour is significantly affected by diffusive loss of vorticity through the symmetry axis. A timescale is proposed that describes when the viscous loss through the axis becomes relevant. The simulations provide benchmark results to evaluate simpler separation models such as point vortex and vortex sheet models. A comparison with vortex sheet results is included. (paper)

  10. Forced convection on a heated horizontal flat plate with finite thermal conductivity in a non-Darcian porous medium

    Energy Technology Data Exchange (ETDEWEB)

    Luna, N. [Direccion de Operacion Petrolera, Direccion General de Exploracion y Explotacion de Hidrocarburos, Secretaria de Energia, 03100 Mexico DF (Mexico); Mendez, F. [Facultad de Ingenieria, UNAM, 04510 Mexico DF (Mexico)

    2005-07-01

    The steady-state analysis of conjugated heat transfer process for the hydrodynamically developed forced convection flow on a heated flat plate embedded in a porous medium is studied. The governing equations for the fluid-saturated porous medium are solved analytically using the integral boundary layer approximation. This integral solution is coupled to the energy equation for the flat plate, where the longitudinal heat conduction effects are taken into account. The resulting equations are then reduced to an integro-differential equation which is solved by regular perturbation techniques and numerical methods. The analytical and numerical predictions for the temperature profile of the plate and appropriate local and average Nusselt numbers are plotted for finite values of the conduction parameter, {alpha}, which represents the presence of the longitudinal heat conduction effects. (authors)

  11. Photovoltaic applications of Compound Parabolic Concentrator (CPC)

    Science.gov (United States)

    Winston, R.

    1975-01-01

    The use of a compound parabolic concentrator as field collector, in conjunction with a primary focusing concentrator for photovoltaic applications is studied. The primary focusing concentrator can be a parabolic reflector, an array of Fresnel mirrors, a Fresnel lens or some other lens. Silicon solar cell grid structures are proposed that increase efficiency with concentration up to 10 suns. A ray tracing program has been developed to determine energy distribution at the exit of a compound parabolic concentrator. Projected total cost of a CPC/solar cell system will be between 4 and 5 times lower than for flat plate silicon cell arrays.

  12. Large-eddy simulation of separation and reattachment of a flat plate turbulent boundary layer

    KAUST Repository

    Cheng, W.; Pullin, D. I.; Samtaney, Ravi

    2015-01-01

    © 2015 Cambridge University Press. We present large-eddy simulations (LES) of separation and reattachment of a flat-plate turbulent boundary-layer flow. Instead of resolving the near wall region, we develop a two-dimensional virtual wall model which

  13. Elastic stability of laminated, flat and curved, long rectangular plates subjected to combined inplane loads

    Science.gov (United States)

    Viswanathan, A. V.; Tamekuni, M.; Baker, L. L.

    1974-01-01

    A method is presented to predict theoretical buckling loads of long, rectangular flat and curved laminated plates with arbitrary orientation of orthotropic axes each lamina. The plate is subjected to combined inplane normal and shear loads. Arbitrary boundary conditions may be stipulated along the longitudinal sides of the plate. In the absence of inplane shear loads and extensional-shear coupling, the analysis is also applicable to finite length plates. Numerical results are presented for curved laminated composite plates with boundary conditions and subjected to various loadings. These results indicate some of the complexities involved in the numerical solution of the analysis for general laminates. The results also show that the reduced bending stiffness approximation when applied to buckling problems could lead to considerable error in some cases and therefore must be used with caution.

  14. Hole-thru-laminate mounting supports for photovoltaic modules

    Science.gov (United States)

    Wexler, Jason; Botkin, Jonathan; Culligan, Matthew; Detrick, Adam

    2015-02-17

    A mounting support for a photovoltaic module is described. The mounting support includes a pedestal having a surface adaptable to receive a flat side of a photovoltaic module laminate. A hole is disposed in the pedestal, the hole adaptable to receive a bolt or a pin used to couple the pedestal to the flat side of the photovoltaic module laminate.

  15. Numerical Investigation of an Oscillating Flat Plate Airfoil

    Science.gov (United States)

    Mohaghegh, Fazlolah; Janechek, Matthew; Buchholz, James; Udaykumar, Hs

    2017-11-01

    This research investigates the vortex dynamics of a plunging flat plate airfoil by analyzing the vorticity transport in 2D simulations. A horizontal airfoil is subject to a freestream flow at Re =10000. A prescribed vertical sinusoidal motion is applied to the airfoil. Smoothed Profile Method (SPM) models the fluid-structure interaction. SPM as a diffuse interface model considers a thickness for the interface and applies a smooth transition from solid to fluid. As the forces on the airfoil are highly affected by the interaction of the generated vortices from the surface, it is very important to find out whether a diffuse interface solver can model a flow dominated by vorticities. The results show that variation of lift coefficient with time agrees well with the experiment. Study of vortex evolution shows that similar to experiments, when the plate starts moving downward from top, the boundary layer is attached to the surface and the leading-edge vortex (LEV) is very small. By time, LEV grows and rolls up and a secondary vortex emerges. Meanwhile, the boundary layer starts to separate and finally LEV detaches from the surface. In overall, SPM as a diffuse interface model can predict the lift force and vortex pattern accurately.

  16. Development of electromagnetic welding facility of flat plates for nuclear industry

    International Nuclear Information System (INIS)

    Kumar, Rajesh; Sahoo, Subhanarayan; Sarkar, Biswanath; Shyam, Anurag

    2015-01-01

    Electromagnetic pulse welding (EMPW) process, one of high speed welding process uses electromagnetic force from discharged current through working coil, which develops a repulsive force between the induced current flowing parallel and in opposite direction. For achieving the successful weldment using this process the design of working coil is the most important factor due to high magnetic field on surface of work piece. In case of high quality flat plate welding factors such as impact velocity, angle of impact standoff distance, thickness of flyer and overlap length have to be chosen carefully. All the parameters should be optimized because above or below the optimized value, it is impossible to get high quality welding of flat components. Electromagnetic pulse welding of flat components has been studied in detail by many researches due to its advantages of increased formability and reduced spring back than other welding methods. The feasibility of electromagnetic welding of sheets has been established, but the effect of process parameters on the weld quality has not been justified properly. The present study investigates the effect of parameters on welding quality of flat sheets, which has wide applications in nuclear industry, automotive industry, aerospace, electrical industries. However formability and weld ability still remain major issues. The EMPW process for flat sheets and axi-symmetric components has been studied in details by many researchers. Due to ease in controlling the magnetic field enveloped inside tubes, the EMPW has been widely used for tube welding. In case of flat components control of magnetic field is difficult. Hence the application of EMPW gets restricted. The present work attempts to make a novel contribution by investigating the effect of process parameters on welding quality. The work emphasizes the approaches and engineering calculations required to effectively use of actuator in EMPW. (author)

  17. Wafer integrated micro-scale concentrating photovoltaics

    Science.gov (United States)

    Gu, Tian; Li, Duanhui; Li, Lan; Jared, Bradley; Keeler, Gordon; Miller, Bill; Sweatt, William; Paap, Scott; Saavedra, Michael; Das, Ujjwal; Hegedus, Steve; Tauke-Pedretti, Anna; Hu, Juejun

    2017-09-01

    Recent development of a novel micro-scale PV/CPV technology is presented. The Wafer Integrated Micro-scale PV approach (WPV) seamlessly integrates multijunction micro-cells with a multi-functional silicon platform that provides optical micro-concentration, hybrid photovoltaic, and mechanical micro-assembly. The wafer-embedded micro-concentrating elements is shown to considerably improve the concentration-acceptance-angle product, potentially leading to dramatically reduced module materials and fabrication costs, sufficient angular tolerance for low-cost trackers, and an ultra-compact optical architecture, which makes the WPV module compatible with commercial flat panel infrastructures. The PV/CPV hybrid architecture further allows the collection of both direct and diffuse sunlight, thus extending the geographic and market domains for cost-effective PV system deployment. The WPV approach can potentially benefits from both the high performance of multijunction cells and the low cost of flat plate Si PV systems.

  18. Photovoltaic Degradation Rates -- An Analytical Review

    Energy Technology Data Exchange (ETDEWEB)

    Jordan, D. C.; Kurtz, S. R.

    2012-06-01

    As photovoltaic penetration of the power grid increases, accurate predictions of return on investment require accurate prediction of decreased power output over time. Degradation rates must be known in order to predict power delivery. This article reviews degradation rates of flat-plate terrestrial modules and systems reported in published literature from field testing throughout the last 40 years. Nearly 2000 degradation rates, measured on individual modules or entire systems, have been assembled from the literature, showing a median value of 0.5%/year. The review consists of three parts: a brief historical outline, an analytical summary of degradation rates, and a detailed bibliography partitioned by technology.

  19. Efficiencies of flat plate solar collectors at different flow rates

    DEFF Research Database (Denmark)

    Chen, Ziqian; Furbo, Simon; Perers, Bengt

    2012-01-01

    Two flat plate solar collectors for solar heating plants from Arcon Solvarme A/S are tested in a laboratory test facility for solar collectors at Technical University of Denmark (DTU). The collectors are designed in the same way. However, one collector is equipped with an ETFE foil between...... the absorber and the cover glass and the other is without ETFE foil. The efficiencies for the collectors are tested at different flow rates. On the basis of the measured efficiencies, the efficiencies for the collectors as functions of flow rate are obtained. The calculated efficiencies are in good agreement...

  20. The addition of red lead to flat plate and tubular valve regulated miners cap lamp lead-acid batteries

    Energy Technology Data Exchange (ETDEWEB)

    Ferg, E.E.; Loyson, P. [Department of Chemistry, Nelson Mandela Metropolitan University, P.O. Box 77000, Port Elizabeth 6031 (South Africa); Poorun, A. [Willard Batteries, P.O. Box 1844, Port Elizabeth 6000 (South Africa)

    2006-04-21

    The study looked at the use of red lead in the manufacturing of valve regulated lead acid (VRLA) miners cap lamp (MCL) batteries that were made with either flat plate or tubular positive electrodes. A problem with using only grey oxide in the manufacture of thick flat plate or tubular electrodes is the poor conversion of the active material to the desired lead dioxide. The addition of red lead to the initial starting material improves the formation efficiency but is considerably more expensive thereby increasing the cost of manufacturing. The study showed that by carefully controlling the formation conditions in terms of the voltage and temperature of a battery, good capacity performance can be achieved for cells made with flat plate electrodes that contain up to 25% red lead. The small amount of red lead in the active cured material reduces the effect of electrode surface sulphate formation and allows the battery to achieve its rated capacity within the first few cycles. Batteries made with flat plate positive electrodes that contained more that 50% red lead showed good initial capacity but had poor structural active material bonding. The study showed that MCL batteries made with tubular positive electrodes that contained less than 75% red lead resulted in a poorly formed electrode with limited capacity utilization. Pickling and soaking times of the tubular electrodes should be kept at a minimum thereby allowing higher active material utilization during subsequent capacity cycling. The study further showed that it is beneficial to use higher formation rates in order to reduce manufacturing time and to improve the active material characteristics. (author)

  1. Qualification standard for photovoltaic concentrator modules

    Energy Technology Data Exchange (ETDEWEB)

    McConnell, R.; Kurtz, S.; Bottenberg, W. R.; Hammond, R.; Jochums, S. W.; McDanal, A. J.; Roubideaux, D.; Whitaker, C.; Wohlgemuth, J.

    2000-05-05

    The paper describes a proposed qualification standard for photovoltaic concentrator modules. The standard's purpose is to provide stress tests and procedures to identify any component weakness in photovoltaic concentrator modules intended for power generation applications. If no weaknesses are identified during qualification, both the manufacturer and the customer can expect a more reliable product. The qualification test program for the standard includes thermal cycles, humidity-freeze cycles, water spray, off-axis beam damage, hail impact, hot-spot endurance, as well as electrical tests for performance, ground continuity, isolation, wet insulation resistance, and bypass diodes. Because concentrator module performance can not be verified using solar simulator and reference cell procedures suitable for flat-plate modules, the standard specifies an outdoor I-V test analysis allowing a performance comparison before and after a test procedure. Two options to this complex analysis are the use of a reference concentrator module for side-by-side outdoor comparison with modules undergoing various tests and a dark I-V performance check.

  2. Time dependent shear stress and temperature distribution over an insulated flat plate moving at hypersonic speed.

    Science.gov (United States)

    Rodkiewicz, C. M.; Gupta, R. N.

    1971-01-01

    The laminar two-dimensional flow over a stepwise accelerated flat plate moving with hypersonic speed at zero angle of attack is analysed. The governing equations in the self-similar form are linearized and solved numerically for small times. The solutions obtained are the deviations of the velocity and the temperature profiles from those of steady state. The presented results may be used to find the first order boundary layer induced pressure on the plate.

  3. Tandem photovoltaic solar cells and increased solar energy conversion efficiency

    Science.gov (United States)

    Loferski, J. J.

    1976-01-01

    Tandem photovoltaic cells, as proposed by Jackson (1955) to increase the efficiency of solar energy conversion, involve the construction of a system of stacked p/n homojunction photovoltaic cells composed of different semiconductors. It had been pointed out by critics, however, that the total power which could be extracted from the cells in the stack placed side by side was substantially greater than the power obtained from the stacked cells. A reexamination of the tandem cell concept in view of the development of the past few years is conducted. It is concluded that the use of tandem cell systems in flat plate collectors, as originally envisioned by Jackson, may yet become feasible as a result of the development of economically acceptable solar cells for large scale terrestrial power generation.

  4. The impact force acting on a flat plate exposed normally to a rarefied plasma plume issuing from an annular or circular nozzle

    Energy Technology Data Exchange (ETDEWEB)

    Chen Xi, E-mail: cx-dem@mail.tsinghua.edu.c [Department of Engineering Mechanics, Tsinghua University, Beijing 100084 (China)

    2010-08-11

    With the indirect thrust measurement of electric thrusters working at a low vacuum chamber pressure as the research background, this paper analyses the impact force acting on a flat plate exposed normally to a rarefied plasma plume issuing from a thruster with an annular or circular exit section for the free-molecule flow regime (at large Knudsen numbers). The constraint relation proposed by Cai and Boyd (2007 J. Spacecr. Rockets 44 619, 1326) about the velocity components of gas particles leaving a location on the nozzle exit section and arriving at a given spatial point outside the nozzle has been employed here to derive the analytical expressions for calculating the impact force. Sample calculation results show that if the flat plate is sufficiently large, the impact force acting on the flat plate calculated for the case without accounting for gas particle reflection at the plate surface agrees well with the axial momentum flux calculated at the thruster exit or the theoretical thrust force of the studied thruster, while accounting for the contribution of gas particles reflected from the plate surface to the impact force production may significantly increase the calculated impact force acting on the flat plate. For a Hall-effect thruster in which the thrust force is dominantly produced by the ions with high directional kinetic energy and the ions are not directly reflected from the plate surface, the contribution to the impact force production of atom species and of gas particles reflected from the plate surface is negligibly small and thus the measured axial impact force acting on a sufficiently large plate can well represent the thrust force of the thruster. On the other hand, if the contribution of the gas particles reflected from the plate surface to the impact force production cannot be neglected (e.g. for the electric thrusters with comparatively low thruster exit temperatures), appreciable error would appear in the indirect thrust measurement.

  5. Examples of the Re-number effect on the transitional flat plate boundary layers

    Czech Academy of Sciences Publication Activity Database

    Antoš, Pavel; Jonáš, Pavel; Procházka, Pavel P.; Uruba, Václav

    2014-01-01

    Roč. 14, č. 1 (2014), s. 605-606 ISSN 1617-7061. [Annual Meeting of the International Association of Applied Mathematics and Mechanics /85./. Erlangen, 10.03.2014-14.03.2014] R&D Projects: GA ČR GAP101/12/1271 Institutional support: RVO:61388998 Keywords : transition * flat plate * boundary layer Subject RIV: BK - Fluid Dynamics http://dx.doi.org/10.1002/pamm.201410290

  6. Flat plate bonded fuel elements. Quarterly report No. 3, October 11, 1953--December 10, 1953

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1953-12-31

    This document is Report No. 3 (covering the period 10/11/53 to 12/10/53) on Flat Plate Bonded Fuel Elements at the Savannah River Plant. It contains information on the fabrication and testing of the uranium components as well as the structural components (aluminium).

  7. PERFORMANCE DETERIORATION OF THERMOSIPHON SOLAR FLAT PLATE WATER HEATER DUE TO SCALING

    OpenAIRE

    arunachala umesh chandavar

    2011-01-01

    The performance of Flat plate Solar Water Heater deteriorates within five to twelve years of their installation due to factors related to manufacturing, operating conditions, lack of maintenance etc. Especially, problem due to scaling is significant as it is based on quality of water used. The remaining factors are system dependent and could be overcome by quality production. Software is developed by incorporating Hottel Whillier Bliss (H-W-B) equation to ascertain the effect of scaling o...

  8. Investigation of Three-Dimensional Axisymmetric Unsteady Stagnation-Point Flow and Heat Transfer Impinging on an Accelerated Flat Plate

    OpenAIRE

    ali shokrgozar abbasi; Asghar Baradaran Rahimi; Hamidreza Mozayeni

    2016-01-01

    General formulation and solution of Navier-Stokes and energy equations are sought in the study of threedimensional axisymmetric unsteady stagnation-point flow and heat transfer impinging on a flat plate when the plate is moving with variable velocity and acceleration towards the main stream or away from it. As an application, among others, this accelerated plate can be assumed as a solidification front which is being formed with variable velocity. An external fluid, along z - directi...

  9. Development of Streamwise Counter-Rotating Vortices in Flat Plate Boundary Layer Pre-set by Leading Edge Patterns

    KAUST Repository

    Hasheminejad, S.M.; Mitsudharmadi, Hatsari; Winoto, S.H.; Low, H.T.; Lua, K.B.

    2017-01-01

    Development of streamwise counter-rotating vortices induced by leading edge patterns with different pattern shape is investigated using hot-wire anemometry in the boundary layer of a flat plate. A triangular, sinusoidal and notched patterns

  10. Concentration of solar radiation by white painted transparent plates.

    Science.gov (United States)

    Smestad, G; Hamill, P

    1982-04-01

    A simple flat-plate solar concentrator is described in this paper. The device is composed of a white painted transparent plate with a photovoltaic cell fixed to an unpainted area on the bottom of the plate. Light scattering off the white material is either lost or directed to the solar cell. Experimental concentrations of up to 1.9 times the incident solar flux have been achieved using white clays. These values are close to those predicted by theory for the experimental parameters investigated. A theory of the device operation is developed. Using this theory suggestions are made for optimizing the concentrator system. For reasonable choices of cell and plate size and reflectivities of 80% concentrations of over 2x are possible. The concentrator has the advantage over other systems in that the concentration is independent of incidence angle and the concentrator is easy to produce. The device needs no tracking system and will concentrate on a cloudy day.

  11. Field installation versus local integration of photovoltaic systems and their effect on energy evaluation metrics

    International Nuclear Information System (INIS)

    Halasah, Suleiman A.; Pearlmutter, David; Feuermann, Daniel

    2013-01-01

    In this study we employ Life-Cycle Assessment to evaluate the energy-related impacts of photovoltaic systems at different scales of integration, in an arid region with especially high solar irradiation. Based on the electrical output and embodied energy of a selection of fixed and tracking systems and including concentrator photovoltaic (CPV) and varying cell technology, we calculate a number of energy evaluation metrics, including the energy payback time (EPBT), energy return factor (ERF), and life-cycle CO 2 emissions offset per unit aperture and land area. Studying these metrics in the context of a regionally limited setting, it was found that utilizing existing infrastructure such as existing building roofs and shade structures does significantly reduce the embodied energy requirements (by 20–40%) and in turn the EPBT of flat-plate PV systems due to the avoidance of energy-intensive balance of systems (BOS) components like foundations. Still, high-efficiency CPV field installations were found to yield the shortest EPBT, the highest ERF and the largest life-cycle CO 2 offsets—under the condition that land availability is not a limitation. A greater life-cycle energy return and carbon offset per unit land area is yielded by locally-integrated non-concentrating systems, despite their lower efficiency per unit module area. - Highlights: ► We evaluate life-cycle energy impacts of PV systems at different scales. ► We calculate the energy payback time, return factor and CO 2 emissions offset. ► Utilizing existing structures significantly improves metrics of flat-plate PV. ► High-efficiency CPV installations yield best return and offset per aperture area. ► Locally-integrated flat-plate systems yield best return and offset per land area.

  12. Deflection and trapping of a counter-rotating vortex pair by a flat plate

    Science.gov (United States)

    Nitsche, Monika

    2017-12-01

    The interaction of a counter-rotating vortex pair (dipole) with a flat plate in its path is studied numerically. The vortices are initially separated by a distance D (dipole size) and placed far upstream of a plate of length L . The plate is centered on the dipole path and inclined relative to it at an incident angle βi. At first, the plate is held fixed in place. The vortices approach the plate, travel around it, and then leave as a dipole with unchanged velocity but generally a different travel direction, measured by a transmitted angle βt. For certain plate angles the transmitted angle is highly sensitive to changes in the incident angle. The sensitivity increases as the dipole size decreases relative to the plate length. In fact, for sufficiently small values of D /L , singularities appear: near critical values of βi, the dipole trajectory undergoes a topological discontinuity under changes of βi or D /L . The discontinuity is characterized by a jump in the winding number of one vortex around the plate, and in the time that the vortices take to leave the plate. The jumps occur repeatedly in a self-similar, fractal fashion, within a region near the critical values of βi, showing the existence of incident angles that trap the vortices, which never leave the plate. The number of these trapping regions increases as the parameter D /L decreases, and the dependence of the motion on βi becomes increasingly complex. The simulations thus show that even in this apparently simple scenario, the inviscid dynamics of a two-point-vortex system interacting with a stationary wall is surprisingly rich. The results are then applied to separate an incoming stream of dipoles by an oscillating plate.

  13. Heat transfer enhancement in a turbulent natural convection boundary layer along a vertical flat plate

    International Nuclear Information System (INIS)

    Tsuji, Toshihiro; Kajitani, Tsuyoshi; Nishino, Tatsuhiko

    2007-01-01

    An experimental study on heat transfer enhancement for a turbulent natural convection boundary layer in air along a vertical flat plate has been performed by inserting a long flat plate in the spanwise direction (simple heat transfer promoter) and short flat plates aligned in the spanwise direction (split heat transfer promoter) with clearances into the near-wall region of the boundary layer. For a simple heat transfer promoter, the heat transfer coefficients increase by a peak value of approximately 37% in the downstream region of the promoter compared with those in the usual turbulent natural convection boundary layer. It is found from flow visualization and simultaneous measurements of the flow and thermal fields with hot- and cold-wires that such increase of heat transfer coefficients is mainly caused by the deflection of flows toward the outer region of the boundary layer and the invasion of low-temperature fluids from the outer region to the near-wall region with large-scale vortex motions riding out the promoter. However, heat transfer coefficients for a split heat transfer promoter exhibit an increase in peak value of approximately 60% in the downstream region of the promoter. Flow visualization and PIV measurements show that such remarkable heat transfer enhancement is attributed to longitudinal vortices generated by flows passing through the clearances of the promoter in addition to large-scale vortex motions riding out the promoter. Consequently, it is concluded that heat transfer enhancement of the turbulent natural convection boundary layer can be substantially achieved in a wide area of the turbulent natural convection boundary layer by employing multiple column split heat transfer promoters. It may be expected that the heat transfer enhancement in excess of approximately 40% can be accomplished by inserting such promoters

  14. A Flat Solar Collector Built from Galvanized Steel Plate, Working by Thermosyphonic Flow, Optimized for Mexican Conditions

    OpenAIRE

    Marroquín de Jesús, Á.; Olivares-Ramírez, J.M.; Ramos-López, G.A.; Pless, R.C.

    2009-01-01

    Design, construction, and testing of the thermal performance of a flat solar collector for domestic water heating are described. The absorbing plate is built from readily available materials: two sheets of galvanized steel, one of the channelled type, the other one flat, which are joined by electric welding. The absorber is connected to a 198-L thermotank, insulated with polyurethane foam. In terms of receiving surface, the prototype tested here has an area of 1.35 m², about 20% smaller than ...

  15. A Flat Solar Collector Built from Galvanized Steel Plate, Working by Thermosyphonic Flow, Optimized for Mexican Conditions

    OpenAIRE

    Á. Marroquín de Jesús; J.M. Olivares–Ramírez; G.A. Ramos–López; R.C. Pless

    2009-01-01

    Design, construction, and testing of the thermal performance of a flat solar collector for domestic water heating are described. The absorbing plate is built from readily available materials: two sheets of galvanized steel, one of the channelled type, the other one flat, which are joined by electric welding. The absorber is connected to a 198–L thermotank, insulated with polyurethane foam. In terms of receiving surface, the prototype tested here has an area of 1.35 m2, about 20% smaller than ...

  16. Historical Evidence of Importance to the Industrialization of Flat-plate Silicon Photovoltaic Systems, Volume 2

    Science.gov (United States)

    Smith, J. L.; Gates, W. R.; Lee, T.

    1978-01-01

    Problems which may arise as the low cost silicon solar array (LSSA) project attempts to industrialize the production technologies are defined. The charge to insure an annual production capability of 500 MW peak for the photovoltaic supply industry by 1986 was critically examined, and focused on one of the motivations behind this goal-concern over the timely development of industrial capacity to supply anticipated demand. Conclusions from the analysis are utilized in a discussion of LSSA's industrialization plans, particularly the plans for pilot, demonstration and commercial scale production plants. Specific recommendations for the implementation of an industrialization task and the disposition of the project quantity goal were derived.

  17. Vortex Shedding Characteristics of the Wake of a Thin Flat Plate with a Circular Trailing Edge

    Science.gov (United States)

    Rai, Man Mohan

    2018-01-01

    The near and very near wake of a thin flat plate with a circular trailing edge are investigated with direct numerical simulations (DNS). Data obtained for two different Reynolds numbers (based on plate thickness, D) are the main focus of this study. The separating boundary layers are turbulent in both cases. An earlier investigation of one of the cases (Case F) showed shed vortices in the wake that were about 1.0 D to 4.0 D in spanwise length. Considerable variation in both the strength and frequency of these shed vortices was observed. One objective of the present investigation is to determine the important contributors to this variability in strength and frequency of shed vortices and their finite spanwise extent. Analysis of the data shows that streamwise vortices in the separating boundary layer play an important role in strengthening/weakening of the shed vortices and that high/low-speed streaks in the boundary layer are important contributors to variability in shedding frequency. Both these features of the boundary layer contribute to the finite extent of the vortices in the spanwise direction. The second plate DNS (Case G, with 40 percent of the plate thickness of Case F) shows that while shedding intensity is weaker than obtained in Case F, many of the wake features are similar to that of Case F. This is important in understanding the path to the wake of the thin plate with a sharp trailing edge where shedding is absent. Here we also test the efficacy of a functional relationship between the shedding frequency and the Reynolds numbers based on the boundary layer momentum thickness (Re (sub theta) and D (Re (sub D)); data for developing this behavioral model is from Cases F & G and five earlier DNSs of the flat plate wake.

  18. An experimental investigation of laminar free convection from a vertical flat plate at general boundary condition

    International Nuclear Information System (INIS)

    Aharon, J.; Lahav, C.; Kalman, H.; Shai, I.

    1996-01-01

    The present work deals with natural convection on a vertical flat plate, where one side of the plate is exposed to an environment of constant temperature - T a , with which heat is exchanged at an effective heat transfer coefficient, Glen. The other side of the plate is exposed to a fluid at a different temperature -T ∞ . The temperature gradient induces a natural convection in the fluid. The present investigation treats the heat transfer problem in the laminar cone in air (P r =1). An experimental apparatus has been constructed to confirm the heat transfer features predicted analytically in previous work. The local experimental Nusselt number was correlated with the modified Rayleigh number, for the laminar range. (authors)

  19. DNS of heat transfer in transitional, accelerated boundary layer flow over a flat plate affected by free-stream fluctuations

    International Nuclear Information System (INIS)

    Wissink, Jan G.; Rodi, Wolfgang

    2009-01-01

    Direct numerical simulations (DNS) of flow over and heat transfer from a flat plate affected by free-stream fluctuations were performed. A contoured upper wall was employed to generate a favourable streamwise pressure gradient along a large portion of the flat plate. The free-stream fluctuations originated from a separate LES of isotropic turbulence in a box. In the laminar portions of the accelerating boundary layer flow the formation of streaks was observed to induce an increase in heat transfer by the exchange of hot fluid near the surface of the plate and cold fluid from the free-stream. In the regions where the streamwise pressure gradient was only mildly favourable, intermittent turbulent spots were detected which relaminarised downstream as the streamwise pressure gradient became stronger. The relaminarisation of the turbulent spots was reflected by a slight decrease in the friction coefficient, which converged to its laminar value in the region where the streamwise pressure gradient was strongest.

  20. Drying of fruits and vegetables using a flat plate solar collector with convective air flow

    International Nuclear Information System (INIS)

    Mansoor, K.K.; Hanif, M.

    2011-01-01

    This paper presents the analysis of drying of different fruits and vegetables dried by a flat plate solar collector developed at the Department of Agricultural Mechanization, Khyber PukhtunKhwa Agricultural University Peshawar, Pakistan. A small flat plate solar collector is designed and tested for its maximum performance in terms of efficiency with different convective flow rates. The collector assembly is divided into two parts. The flat plate solar collector and the drying chamber. The materials used for flat plate solar collector are wood, steel sheet, Insulation materials, and glass sheet as covering material. The insulation box (0.9 x 1.8 x 0.3 meter) is made up of wood of popular and deodar, to be fully isolated with the help of polystyrene. The absorber is black painted v-corrugated steel sheet. Collector has a tilt angle of 34 deg. (Equivalent to the latitude of Peshawar). The covering material is (0.9 x 1.8 meter) and 5 mm thick glass sheet placed at the top of the wooden box. The collector is supported and tilted with the help of a frame made up of iron angled arms. While the drying chamber is a (1 X 0.5 x 0.3 meter) wooden box connected to the outlet duct of the collector with the help of polyvinylchloride pipe. Experiments were conducted different fruits and vegetables and different parameters like moisture lost by the products in each hour, drying rate at each hour of drying, humidity and temperature of the drying chamber. It was observed that the products such as bitter guard and onion were dried in 10 to 2 hours up to moisture content less then 8%. These two product lost 8% to 10% moisture during each hour of drying. While grapes and Green chili are dried in 24 to 25 hours up to moisture content less then 8%. These two products lost 4% to 5% moisture in each hour of drying. The drying rate of all the products dried was very much consistent. It was observed that onion and bitter guard showed a good drying rate of 0.03[g(H/sub 2/O)/g(d.m).cm/ 2 hr] to

  1. Coupling of conduction with laminar free convection from a vertical flat plate - an experimental study

    International Nuclear Information System (INIS)

    Aharon, J.; Lahav, C.; Kalman, H.; Shai, I.

    1996-01-01

    The present work deals with natural convection on a vertical flat plate, where one side of the plate is maintained at a uniform temperature - T a , and the other side of the plate is exposed to an environment of constant temperature -T∞. The plate is consisted of several layers of conductive and non-conductive materials such that the series thermal resistance can be expressed as an equivalent heat transfer coefficient h eq 1/Σ(k i /d i ). It is also assumed a negligible axial conduction, which can be neglected. The present investigation treats the heat transfer problem in the laminar zone in air (P r ∼1). The wall effective heat transfer coefficient is in the range of 4.3 to 11.5 W/m 2 - deg C. An experimental apparatus was constructed to confirm the heat transfer features predicted analytically in a previous work. The local experimental Nusselt number was correlated with the modified Rayleigh number, for the laminar range (authors)

  2. Concentrator photovoltaic module architectures with capabilities for capture and conversion of full global solar radiation

    KAUST Repository

    Lee, Kyu Tae; Yao, Yuan; He, Junwen; Fisher, Brent; Sheng, Xing; Lumb, Matthew; Xu, Lu; Anderson, Mikayla A.; Scheiman, David; Han, Seungyong; Kang, Yongseon; Gumus, Abdurrahman; Bahabry, Rabab R.; Lee, Jung Woo; Paik, Ungyu; Bronstein, Noah D.; Alivisatos, A. Paul; Meitl, Matthew; Burroughs, Scott; Hussain, Muhammad Mustafa; Lee, Jeong Chul; Nuzzo, Ralph G.; Rogers, John A.

    2016-01-01

    Emerging classes ofconcentrator photovoltaic (CPV) modules reach efficiencies that are far greater than those of even the highest performance flat-plate PV technologies, with architectures that have the potential to provide the lowest cost of energy in locations with high direct normal irradiance (DNI). A disadvantage is their inability to effectively use diffuse sunlight, thereby constraining widespread geographic deployment and limiting performance even under the most favorable DNI conditions. This study introduces a module design that integrates capabilities in flat-plate PV directly with the most sophisticated CPV technologies, for capture of both direct and diffuse sunlight, thereby achieving efficiency in PV conversion of the global solar radiation. Specific examples of this scheme exploit commodity silicon (Si) cells integrated with two different CPV module designs, where they capture light that is not efficiently directed by the concentrator optics onto large-scale arrays of miniature multijunction (MJ) solar cells that use advanced III-V semiconductor technologies. In this CPV scheme (

  3. Concentrator photovoltaic module architectures with capabilities for capture and conversion of full global solar radiation

    KAUST Repository

    Lee, Kyu Tae

    2016-12-06

    Emerging classes ofconcentrator photovoltaic (CPV) modules reach efficiencies that are far greater than those of even the highest performance flat-plate PV technologies, with architectures that have the potential to provide the lowest cost of energy in locations with high direct normal irradiance (DNI). A disadvantage is their inability to effectively use diffuse sunlight, thereby constraining widespread geographic deployment and limiting performance even under the most favorable DNI conditions. This study introduces a module design that integrates capabilities in flat-plate PV directly with the most sophisticated CPV technologies, for capture of both direct and diffuse sunlight, thereby achieving efficiency in PV conversion of the global solar radiation. Specific examples of this scheme exploit commodity silicon (Si) cells integrated with two different CPV module designs, where they capture light that is not efficiently directed by the concentrator optics onto large-scale arrays of miniature multijunction (MJ) solar cells that use advanced III-V semiconductor technologies. In this CPV scheme (

  4. Increasing efficiency of a 33 MW OTEC in Indonesia using flat-plate solar collector for the seawater heater

    Directory of Open Access Journals (Sweden)

    Iwan Rohman Setiawan

    2017-07-01

    Full Text Available This paper presents a design concept of Ocean Thermal Energy Conversion (OTEC plant built in Mamuju, West Sulawesi, with 33 MWe and 7.1% of the power capacity and efficiency, respectively. The generated electrical power and the efficiency of OTEC plant are enhanced by a simulation of a number of derived formulas. Enhancement of efficiency is performed by increasing the temperature of the warm seawater toward the evaporator from 26˚C up to 33.5˚C using a flat-plate solar collector. The simulation results show that by increasing these a water temperature up to 33.5˚C, the generated power will increase up to 144.155 MWe with the OTEC efficiency up to 9.54%, respectively. The required area of flat-plate solar collector to achieve the results is around 6.023 x 106 m2.

  5. Value of solar thermal and photovoltaic power plants to Arizona Public Service Company

    International Nuclear Information System (INIS)

    Smith, P.A.

    1994-01-01

    Arizona Public Service Company has performed a study using historical solar radiation and system load data to (1) estimate the effects of six types of solar generation on system reliability, (2) estimate the central station value of each to its system, (3) and to assess the potential of each of those technologies to provide bulk power to its system in the 2000 time frame. Technologies included three solar thermal (central receiver, dish Stirling, and parabolic trough) and three flat plate photovoltaic plants (fixed position, one axis, and two axis tracking)

  6. Cost of photovoltaic energy systems as determined by balance-of-system costs

    Science.gov (United States)

    Rosenblum, L.

    1978-01-01

    The effect of the balance-of-system (BOS), i.e., the total system less the modules, on photo-voltaic energy system costs is discussed for multikilowatt, flat-plate systems. Present BOS costs are in the range of 10 to 16 dollars per peak watt (1978 dollars). BOS costs represent approximately 50% of total system cost. The possibility of future BOS cost reduction is examined. It is concluded that, given the nature of BOS costs and the lack of comprehensive national effort focussed on cost reduction, it is unlikely that BOS costs will decline greatly in the next several years. This prognosis is contrasted with the expectations of the Department of Energy National Photovoltaic Program goals and pending legislation in the Congress which require a BOS cost reduction of an order of magnitude or more by the mid-1980s.

  7. Flat plate approximation in the three-dimensional slamming; Heiban kinji ni yoru sanjigen suimen shogeki keisanho ni tsuite

    Energy Technology Data Exchange (ETDEWEB)

    Toyama, Y. [Mitsui Engineering and Shipbuilding Co. Ltd., Tokyo (Japan)

    1996-12-31

    A slamming load generated by interactive motions between a ship body and water face is an important load in ensuring safety of the ship. A flat plate approximation developed by Wagner is used as a two-dimensional slamming theory, but it has a drawback in handling edges of a flat plate. Therefore, an attempt was made to expand the two-dimensional Wagner`s theory to three dimensions. This paper first shows a method to calculate water face slamming of an arbitrary axisymmetric body by using circular plate approximation. The paper then proposes a method to calculate slamming pressure distribution and slamming force for the case when shape of the water contacting surface may be approximated by an elliptic shape. Expansion to the three dimensions made clear to some extent the characteristics of the three-dimensional slamming. In the case of two dimensions or a circular column for example, the water contacting area increases rapidly in the initial stage generating large slamming force. However, in the case of three dimensions, since the water contacting area expands longitudinally and laterally, the slamming force tends to increase gradually. Maximum slamming pressure was found proportional to square of moving velocity in a water contacting boundary in the case of three dimensions, and similar to stagnation pressure on a gliding plate. 12 refs., 17 figs., 1 tab.

  8. Flat plate approximation in the three-dimensional slamming; Heiban kinji ni yoru sanjigen suimen shogeki keisanho ni tsuite

    Energy Technology Data Exchange (ETDEWEB)

    Toyama, Y [Mitsui Engineering and Shipbuilding Co. Ltd., Tokyo (Japan)

    1997-12-31

    A slamming load generated by interactive motions between a ship body and water face is an important load in ensuring safety of the ship. A flat plate approximation developed by Wagner is used as a two-dimensional slamming theory, but it has a drawback in handling edges of a flat plate. Therefore, an attempt was made to expand the two-dimensional Wagner`s theory to three dimensions. This paper first shows a method to calculate water face slamming of an arbitrary axisymmetric body by using circular plate approximation. The paper then proposes a method to calculate slamming pressure distribution and slamming force for the case when shape of the water contacting surface may be approximated by an elliptic shape. Expansion to the three dimensions made clear to some extent the characteristics of the three-dimensional slamming. In the case of two dimensions or a circular column for example, the water contacting area increases rapidly in the initial stage generating large slamming force. However, in the case of three dimensions, since the water contacting area expands longitudinally and laterally, the slamming force tends to increase gradually. Maximum slamming pressure was found proportional to square of moving velocity in a water contacting boundary in the case of three dimensions, and similar to stagnation pressure on a gliding plate. 12 refs., 17 figs., 1 tab.

  9. Heat transfer in flow past a continuously moving semi-infinite flat plate in transverse magnetic field with heat flux

    Digital Repository Service at National Institute of Oceanography (India)

    Murty, T.V.R.

    Thermal boundary layer on a continuously moving semi-infinite flat plate in the presence of transverse magnetic field with heat flux has been examined. Similarity solutions have been derived and the resulting equations are integrated numerically...

  10. Coupling of conduction with laminar free convection from a vertical flat plate - an experimental study

    Energy Technology Data Exchange (ETDEWEB)

    Aharon, J; Lahav, C [Israel Atomic Energy Commission, Beersheba (Israel). Nuclear Research Center-Negev; Kalman, H; Shai, I [Ben-Gurion Univ. of the Negev, Beersheba (Israel) Dept, of Mechanical engineering, Pearlstone Center for Aeronautical Engineering Studies

    1996-12-01

    The present work deals with natural convection on a vertical flat plate, where one side of the plate is maintained at a uniform temperature - T{sub a}, and the other side of the plate is exposed to an environment of constant temperature -T{infinity}. The plate is consisted of several layers of conductive and non-conductive materials such that the series thermal resistance can be expressed as an equivalent heat transfer coefficient h{sub eq} 1/{Sigma}(k{sub i}/d{sub i}). It is also assumed a negligible axial conduction, which can be neglected. The present investigation treats the heat transfer problem in the laminar zone in air (P{sub r}{approx}1). The wall effective heat transfer coefficient is in the range of 4.3 to 11.5 W/m{sup 2} - deg C. An experimental apparatus was constructed to confirm the heat transfer features predicted analytically in a previous work. The local experimental Nusselt number was correlated with the modified Rayleigh number, for the laminar range (authors).

  11. Development of an economic solar heating system with cost efficient flat plate collectors

    Science.gov (United States)

    Eder-Milchgeisser, W.; Burkart, R.

    1980-10-01

    Mass produced flat plate solar collectors were worked into the design of a system for heating a swimming pool and/or providing domestic hot water. The collector characteristics, including physical and mechanical data as well as theoretical energy conversion efficiency, are presented. The collector was tested and service life efficiency was determined. The mounting of the collector, depending on roof type, is explained. Both in service and laboratory test results demonstrate the cost effectiveness of the system. Further improvement of efficiency is envisaged with automatic flow control in the solar collector and hot water circuits.

  12. A Numerical Study on Laminar Free Convection between Vertical Flat Plates with Symmetric Heating

    Directory of Open Access Journals (Sweden)

    Ameer A. Jadoaa

    2012-06-01

    Full Text Available The development of free convection in a viscous fluid between heated plates is investigated. The basic governing continuity, momentum, and energy equations are solved numerically by finite difference method. Results are obtained for the variations of Nusselt number, velocity, temperature, and pressure throughout the flow field assuming the fluid to enter the channel with ambient temperature and a flat velocity profile. The flow and heat-transfer characteristics of the channel are studied and a development height established. Heating plate condition is (C.W.T and C.H.F. An correlation equation has been deduced for the average Nusselt number as a function of Rayligt number. A comparison is made between the results of this theoretical investigation and theoretical work of (Bodoia, J.R 1962[1].

  13. Photovoltaic-thermal (PV/T) solar collectors: Features and performance modelling

    International Nuclear Information System (INIS)

    Atienza-Márquez, Antonio; Bruno, Joan Carles; Coronas, Alberto; Korolija, Ivan; Greenough, Richard; Wright, Andy

    2017-01-01

    Currently, the electrical efficiency of photovoltaic (PV) solar cells ranges between 5–25%. One of the most important parameters that affects the electrical efficiency of a PV collector is the temperature of its cells: the higher temperature, the lower is the efficiency. Photovoltaic/thermal (PV/T) technology is a potential solution to ensure an acceptable solar energy conversion. The PV/T technology produces both electrical and thermal energy simultaneously. It is suitable for low temperature applications (25–40 o C) and overall efficiency increases compared to individual collectors. This paper describes an installation in a single-family house where PV/T collectors are coupled with a ground heat exchanger and a heat pump for domestic hot water and space heating purposes. The aim of this work is twofold. First, the features of the PV/T technology are analyzed. Second, a model of a flat-plate PV/T water collector was developed in TRNSYS in order to analyze collectors performance. (author)

  14. Flate-plate photovoltaic power systems handbook for Federal agencies

    Science.gov (United States)

    Cochrane, E. H.; Lawson, A. C.; Savage, C. H.

    1984-01-01

    The primary purpose is to provide a tool for personnel in Federal agencies to evaluate the viability of potential photovoltaic applications. A second objective is to provide descriptions of various photovoltaic systems installed by different Federal agencies under the Federal Photovoltaic Utilization Program so that other agencies may consider similar applications. A third objective is to share lessons learned to enable more effective procurement, design, installation, and operation of future photovoltaic systems. The intent is not to provide a complete handbook, but rather to provide a guide for Federal agency personnel with additional information incorporated by references. The steps to be followed in selecting, procuring, and installing a photovoltaic application are given.

  15. Standardized performance tests of collectors of solar thermal energy - A flat-plate copper collector with parallel mylar striping

    Science.gov (United States)

    Johnson, S. M.

    1976-01-01

    Basic test results are reported for a flat plate solar collector whose performance was determined in a solar simulator. The collector was tested over ranges of inlet temperatures, fluxes and one coolant flow rate. Collector efficiency is correlated in terms of inlet temperature and flux level.

  16. Experimental study on the heat transfer characteristics in corrugated and flat plate type heat exchanger

    Energy Technology Data Exchange (ETDEWEB)

    Park, Jung Hun; Jeong, Yong Ki; Jeon, Chung Hwan; Chang, Young June [Busan National Univ., Busan (Korea, Republic of); Lim, Hyeok [DHT, Busan (Korea, Republic of)

    2003-07-01

    An experiment was performed to study heat transfer characteristics between corrugated heat exchanger and flat plate type one. While heat capacity(13.86kW) was provided constantly and the flow speed was varied from 2.8 to 17.9m/s, the temperature and the pressure drop were measured. Furthermore, heat transfer coefficient, Colburn factor and Nusselt number were calculated using them. With increase of the flow speed for both exchangers, the coefficient and the pressure drop increased, but Colburn factor decreased. The coefficient, pressure drop and Colburn factor of the corrugated type were all higher than those of the flat one, which is due to the flow interruption with recirculation and reattachment of the corrugated type. The empirical correlations of Nusselt number were suggested for the tested two heat exchangers.

  17. Receptivity to free stream acoustic disturbances due to a roughness element on a flat plate

    OpenAIRE

    Ashour, Osama Naim

    1993-01-01

    The boundary-layer receptivity resulting from acoustic forcing over a flat plate with a surface irregularity is investigated. The unsteady free-stream disturbances couple with the steady perturbations resulting from the surface irregularity to form a traveling-wave mode. The resonance condition necessary for receptivity requires a forcing at a wave number equal to that of the Tollmien-Schlichting (TS) eigenmode and a frequency equal to that of the free-stream acoustic disturban...

  18. Reliability and Engineering of Thin-Film Photovoltaic Modules. Research forum proceedings

    Science.gov (United States)

    Ross, R. G., Jr. (Editor); Royal, E. L. (Editor)

    1985-01-01

    A Research Forum on Reliability and Engineering of Thin Film Photovoltaic Modules, under sponsorship of the Jet Propulsion Laboratory's Flat Plate Solar Array (FSA) Project and the U.S. Department of Energy, was held in Washington, D.C., on March 20, 1985. Reliability attribute investigations of amorphous silicon cells, submodules, and modules were the subjects addressed by most of the Forum presentations. Included among the reliability research investigations reported were: Arrhenius-modeled accelerated stress tests on a Si cells, electrochemical corrosion, light induced effects and their potential effects on stability and reliability measurement methods, laser scribing considerations, and determination of degradation rates and mechanisms from both laboratory and outdoor exposure tests.

  19. Boiling heat transfer in a flat slot between heating surface and perforated plate

    International Nuclear Information System (INIS)

    Kirichenko, Yu.A.; Rusanov, K.V.; Tyurina, E.G.

    1987-01-01

    The results are presented of the experimental study of heat transfer and crisis at nitrogen boiling in a flat gap between the horizontal heating surface and perforated plate. The gap width is 1.0 to 5.6 mm, diameter of holes is 1.0 to 2.0 mm, their spacing being 3.0 to 12.0 mm. The geometrical parameters dependence of the heat transfer coefficient and crisis characteristics is invesigated, the experimental data are compared with the results reported by other authors and calculations by some well-known formulas. 12 refs.; 3 figs.; 4 tabs

  20. Impact of Balance Of System (BOS) costs on photovoltaic power systems

    Science.gov (United States)

    Hein, G. F.; Cusick, J. P.; Poley, W. A.

    1978-01-01

    The Department of Energy has developed a program to effect a large reduction in the price of photovoltaic modules, with significant progress already achieved toward the 1986 goal of 50 cents/watt (1975 dollars). Remaining elements of a P/V power system (structure, battery storage, regulation, control, and wiring) are also significant cost items. The costs of these remaining elements are commonly referred to as Balance-of-System (BOS) costs. The BOS costs are less well defined and documented than module costs. The Lewis Research Center (LeRC) in 1976/77 and with two village power experiments that will be installed in 1978. The costs were divided into five categories and analyzed. A regression analysis was performed to determine correlations of BOS Costs per peak watt, with power size for these photovoltaic systems. The statistical relationship may be used for flat-plate, DC systems ranging from 100 to 4,000 peak watts. A survey of suppliers was conducted for comparison with the predicted BOS cost relationship.

  1. Experimental Results from a Flat Plate, Turbulent Boundary Layer Modified for the Purpose of Drag Reduction

    Science.gov (United States)

    Elbing, Brian R.

    2006-11-01

    Recent experiments on a flat plate, turbulent boundary layer at high Reynolds numbers (>10^7) were performed to investigate various methods of reducing skin friction drag. The methods used involved injecting either air or a polymer solution into the boundary layer through a slot injector. Two slot injectors were mounted on the model with one located 1.4 meters downstream of the nose and the second located 3.75 meters downstream. This allowed for some synergetic experiments to be performed by varying the injections from each slot and comparing the skin friction along the plate. Skin friction measurements were made with 6 shear stress sensors flush mounted along the stream-wise direction of the model.

  2. Study of the influence of water properties dependency with the temperature in a laminar downward flow between parallel flat plates

    International Nuclear Information System (INIS)

    Delmastro, Dario F.; Chasseur, A.F.; Garcia, Juan C.

    2007-01-01

    In this work we develop a model that contemplates stationary completely developed laminar downward flow between flat parallel plates with uniform and constant heat fluxes. The Boussinesq approach is used in the momentum equation, taking into account the change of the density with the temperature only in the gravitational term. The system is at atmospheric pressure and the dependencies of the density and the thermal conductivity with the temperature are also considered. The velocity and temperature profiles, the friction factor, the heat transfer coefficient and the Nusselt Number are calculated, for different flow rates and heating powers. The results allow to obtain some conclusions that can be of interest in the study of research reactors with forced downward refrigeration and flat plate fuels, although these calculations do not exactly represent the real behavior inside these channels. (author) [es

  3. Energy and exergy analysis of a new flat-plate solar air heater having different obstacles on absorber plates

    International Nuclear Information System (INIS)

    Akpinar, Ebru Kavak; Kocyigit, Fatih

    2010-01-01

    This study experimentally investigates performance analysis of a new flat-plate solar air heater (SAH) with several obstacles (Type I, Type II, Type III) and without obstacles (Type IV). Experiments were performed for two air mass flow rates of 0.0074 and 0.0052 kg/s. The first and second laws of efficiencies were determined for SAHs and comparisons were made among them. The values of first law efficiency varied between 20% and 82%. The values of second law efficiency changed from 8.32% to 44.00%. The highest efficiency were determined for the SAH with Type II absorbent plate in flow channel duct for all operating conditions, whereas the lowest values were obtained for the SAH without obstacles (Type IV). The results showed that the efficiency of the solar air collectors depends significantly on the solar radiation, surface geometry of the collectors and extension of the air flow line. The largest irreversibility was occurring at the SAH without obstacles (Type IV) collector in which collector efficiency is smallest. At the end of this study, the energy and exergy relationships are delivered for different SAHs.

  4. HEAT AND MASS TRANSFER FOR VISCO-ELASTIC MHD BOUNDARY LAYER FLOW PAST A VERTICAL FLAT PLATE

    OpenAIRE

    Rita Choudhury; Hridi Ranjan Deb

    2012-01-01

    The two-dimensional free convection flow of visco-elastic and electrically conducting fluid past a vertical impermeable flat plate is considered in presence of a uniform transverse magnetic field. The governing equations are reduced to ordinary differential equation by introducing appropriate co-ordinate transformation. The analytical expressions for the velocity, temperature and species concentration fields have been obtained. The corresponding expressions for the non-dimensional rates of he...

  5. Design, construction and evaluation of solar flat-plate collector simulator based on the thermohydraulic coefficient

    Directory of Open Access Journals (Sweden)

    H Rahmati Aidinlou

    2017-05-01

    Full Text Available Introduction Increasing the area of absorber plate between the flowed air through the duct can be accomplished by corrugating the absorber plate or by using the artificial roughness underside of the absorber plate as the commercial methods for enhancing the thermohydraulic performance of the flat plate solar air heaters. Evaluation of this requires the construction of separated solar air heater which is costly and time consuming. The constructed solar flat-plate collector simulator can be a sufficient solution for obtaining the heat transfer and thermodynamic parameters for evaluating the absorber plate. The inclined broken roughness was chosen as the optimum roughness which is surrounded by three aluminum smooth walls. Materials and Methods The duct for both smooth and roughened plate have been constructed based on the ASHRAE 93-2010 standard. In order to achieve a fully thermal and hydraulic developed flow, the plenum is constructed. The centrifugal fan is considered by applying the required air volume at the pressure drop obtained by the duct, plenum and the orifice meter. The TSI velocity-meter 8355 is used to measure the velocity of air crossing through the pipe connected to the centrifugal fan. The micro manometer Kimo CPE310-s with the resolution of 0.1 Pa is used to measure the pressure drop across the test section of the smooth and roughened duct. The LM35 sensors are used to measure the absorber plate and air temperature through the test section. Obtained parameters are used to calculate the Nusselt number and friction factor across the test section for smooth and roughened absorber plate. The Nusselt number and friction factor parameters which is obtained for smooth absorber plate based on experimental set-up, is compared with Dittus-Bolter and Blasius equations, respectively, for validating the simulator. By calculating the Nusselt number and friction factor, Stanton number is obtained based on the equation (6, and thermohydraulic

  6. Experimental Investigation of a Solar Greenhouse Heating System Equipped with a Parabolic Trough Solar Concentrator and a Double-Purpose Flat Plate Solar Collector

    Directory of Open Access Journals (Sweden)

    M Jafari

    2017-10-01

    Full Text Available Introduction Greenhouses provide a suitable environment in which all the parameters required for growing the plants can be controlled throughout the year. Greenhouse heating is one of the most important issues in productivity of a greenhouse. In many countries, heating costs in the greenhouses are very high, having almost 60-80% of the total production costs. In recent years, several studies have attempted to reduce the heating costs of the greenhouses by applying more energy efficient equipment and using the renewable energy sources as alternatives or supplementary to the fossil fuels. In the present study a novel solar greenhouse heating system equipped with a parabolic trough solar concentrator (PTC and a flat-plate solar collector has been developed. Therefore, the aim of this paper is to investigate the performance of the proposed heating system at different working conditions. Materials and Methods The presented solar greenhouse heating system was comprised of a parabolic trough solar concentrator (PTC, a heat storage tank, a pump and a flat plate solar collector. The PTC was constructed from a polished stainless steel sheet (as the reflector and a vacuum tube receiver. The PTC was connected to the tank by using insulated tubes and a water pump was utilized to circulate the working fluid trough the PTC and the heat exchanger installed between walls of the tank. The uncovered solar collector was located inside the greenhouse. During the sunshine time, a fraction of the total solar radiation received inside the greenhouse is absorbed by the solar collector. This rises the temperature of the working fluid inside the collector which led to density reduction and natural flow of the fluid. In other words, the collector works as a natural flow flat plate solar collector during the sunshine time. At night, when the greenhouse temperature is lower than tank temperature, the fluid flows in a reverse direction through the solar collector and the

  7. Numerical calculation of velocity distribution near a vertical flat plate immersed in bubble flow

    International Nuclear Information System (INIS)

    Matsuura, Akihiro; Nakamura, Hajime; Horihata, Hideyuki; Hiraoka, Setsuro; Aragaki, Tsutomu; Yamada, Ikuho; Isoda, Shinji.

    1992-01-01

    Liquid and gas velocity distributions for bubble flow near a vertical flat plate were calculated numerically by using the SIMPLER method, where the flow was assumed to be laminar, two-dimensional, and at steady state. The two-fluid flow model was used in the numerical analysis. To calculate the drag force on a small bubble, Stokes' law for a rigid sphere is applicable. The dimensionless velocity distributions which were arranged with characteristic boundary layer thickness and maximum liquid velocity were adjusted with a single line and their forms were similar to that for single-phase wall-jet flow. The average wall shear stress derived from the velocity gradient at the plate wall was strongly affected by bubble diameter but not by inlet liquid velocity. The present dimensionless velocity distributions obtained numerically agreed well with previous experimental results, and the proposed numerical algorithm was validated. (author)

  8. Particle deposition on face-up flat plates in parallel airflow under the combined influences of thermophoresis and electrophoresis

    International Nuclear Information System (INIS)

    Lee, Handol; Yook, Sejin; Han, Seogyoung

    2012-01-01

    The deposition velocity is used to assess the degree of particulate contamination of wafers or photomasks. A numerical model was developed to predict the deposition velocity under the combined influences of thermophoresis and electrophoresis. The deposition velocity onto a face-up flat plate in parallel airflow was simulated by varying the temperature difference between the plate's surface and ambient air or by changing the strength of the electric field established above the plate. Both attraction and repulsion by thermophoresis or electrophoresis were considered. When the plate's surface was colder than ambient air, the surface of the face-up plate could be at risk of contamination by charged particles even with a repulsive applied electric force. When the temperature of the plate's surface was higher than the ambient temperature, the degree of particulate contamination on the surface of the face-up plate could be remarkably reduced in the presence of an electric field. The effect of repulsive thermophoresis, however, is expected to be reduced for very fine particles of high electric mobility or for micrometer-sized particles with large gravitational settling speed when the charged particles are influenced by an attractive electric force.

  9. Fluid flow and heat transfer of carbon nanotubes along a flat plate with Navier slip boundary

    Science.gov (United States)

    Khan, W. A.; Khan, Z. H.; Rahi, M.

    2014-06-01

    Homogeneous flow model is used to study the flow and heat transfer of carbon nanotubes (CNTs) along a flat plate subjected to Navier slip and uniform heat flux boundary conditions. This is the first paper on the flow and heat transfer of CNTs along a flat plate. Two types of CNTs, namely, single- and multi-wall CNTs are used with water, kerosene or engine oil as base fluids. The empirical correlations are used for the thermophysical properties of CNTs in terms of the solid volume fraction of CNTs. For the effective thermal conductivity of CNTs, Xue (Phys B Condens Matter 368:302-307, 2005) model has been used and the results are compared with the existing theoretical models. The governing partial differential equations and boundary conditions are converted into a set of nonlinear ordinary differential equations using suitable similarity transformations. These equations are solved numerically using a very efficient finite difference method with shooting scheme. The effects of the governing parameters on the dimensionless velocity, temperature, skin friction, and Nusselt numbers are investigated and presented in graphical and tabular forms. The numerical results of skin friction and Nusselt numbers are compared with the available data for special cases and are found in good agreement.

  10. Numerical study on the effects of absorptivity on performance of flat plate solar collector of a water heater

    Science.gov (United States)

    Tambunan, D. R. S.; Sibagariang, Y. P.; Ambarita, H.; Napitupulu, F. H.; Kawai, H.

    2018-03-01

    The characteristics of absorber plate of a flat plate solar collector play an important role in the improvement of the performance. In this work, a numerical analysis is carried out to explore the effect of absorptivity and emissivity of absorber plate to the performance of the solar collector of a solar water heater. For a results comparison, a simple a simple solar box cooker with absorber area of 0.835 m × 0.835 m is designed and fabricated. It is employed to heat water in a container by exposing to the solar radiation in Medan city of Indonesia. The transient governing equations are developed. The governing equations are discretized and solved using the forward time step marching technique. The results reveal that the experimental and numerical results show good agreement. The absorptivity of the plate absorber and emissivity of the glass cover strongly affect the performance of the solar collector.

  11. Optimization and modeling of a photovoltaic solar integrated system by neural networks

    International Nuclear Information System (INIS)

    Ashhab, Moh'd Sami S.

    2008-01-01

    A photovoltaic solar integrated system is modeled with artificial neural networks (ANN's). Data relevant to the system performance was collected on April, 4th 1993 and every 15 min during the day. This input-output data is used to train the ANN. The ANN approximates the data well and therefore can be relied on in predicting the system performance, namely, system efficiencies. The solar system consists of a solar trainer which contains a photovoltaic panel, a DC centrifugal pump, flat plate collectors, storage tank, a flowmeter for measuring the water mass flow rate, pipes, pyranometer for measuring the solar intensity, thermocouples for measuring various system temperatures and wind speed meter. The complex method constrained optimization is applied to the solar system ANN model to find the operating conditions of the system that will produce the maximum system efficiencies. This information will be very hard to obtain by just looking at the available historical input-output data

  12. Optimization and modeling of a photovoltaic solar integrated system by neural networks

    Energy Technology Data Exchange (ETDEWEB)

    Ashhab, Moh' d Sami S. [Department of Mechanical Engineering, The Hashemite University, Zarqa 13115 (Jordan)

    2008-11-15

    A photovoltaic solar integrated system is modeled with artificial neural networks (ANN's). Data relevant to the system performance was collected on April, 4th 1993 and every 15 min during the day. This input-output data is used to train the ANN. The ANN approximates the data well and therefore can be relied on in predicting the system performance, namely, system efficiencies. The solar system consists of a solar trainer which contains a photovoltaic panel, a DC centrifugal pump, flat plate collectors, storage tank, a flowmeter for measuring the water mass flow rate, pipes, pyranometer for measuring the solar intensity, thermocouples for measuring various system temperatures and wind speed meter. The complex method constrained optimization is applied to the solar system ANN model to find the operating conditions of the system that will produce the maximum system efficiencies. This information will be very hard to obtain by just looking at the available historical input-output data. (author)

  13. Influence of nanofluids on the efficiency of Flat-Plate Solar Collectors (FPSC)

    Science.gov (United States)

    Nejad, Marjan B.; Mohammed, H. A.; Sadeghi, O.; Zubeer, Swar A.

    2017-11-01

    A numerical investigation is performed using finite volume method to study the laminar heat transfer in a three-dimensional flat-plate solar collector using different nanofluids as working fluids. Three nanofluids with different types of nanoparticles (Ag, MWCNT and Al2O3 dispersed in water) with 1-2 wt% volume fractions are analyzed. A constant heat flux, equivalent to solar radiation absorbed by the collector, is applied at the top surface of the absorber plate. In this study, several parameters including boundary conditions (different volume flow rates, different fluid inlet temperatures and different solar irradiance at Skudai, Malaysia), different types of nanoparticles, and different solar collector tilt angles are investigated to identify their effects on the heat transfer performance of FPSC. The numerical results reveal that the three types of nanofluid enhance the thermal performance of solar collector compared to pure water and FPSC with Ag nanofluid has the best thermal performance enhancement. For all the cases, the collector efficiency increased with the increase of volume flow rate while fluid outlet temperature decreased. It is found that FPSC with tilt angle of 10° and fluid inlet temperature of 301.15 K has the best thermal performance.

  14. Application of solar flat plate collector in automobile industry

    Energy Technology Data Exchange (ETDEWEB)

    Wawge, P. [Peenya Alloys Pvt. Ltd., Parvati, Pune (India)

    2004-07-01

    In any industry, heating, cooling and compressed air the costliest part, which affects the production cost of any product. There are three types of indirect heat requirement or the requirement of heat can be divided in the three main categories. (1) low temp. 40 - 60 Deg. (2) Medium temp. 80 - 150 deg. (3) High Temp applications - above 150. Solar Flat Collectors have been proven for the use of solar energy for medium temp. application in hotels, boiler feed water preheating, dairy for pasteurization and some other indirect heating applications. There is another neglected area of application of Solar Flat Plate collector is heat treatment for powder coating plants where heat requirement is bet 50 Deg C - 70 Deg C. In any automobile industry the aesthetic or look of the vehicle place a very important role as far as the sale is concern (after the mechanical performance). The aesthetic means the body and colour of the vehicle. To get a long lasting good quality color, the powder coating procedure plays a major role. Before powder coating there is requirement of different chemical treatment for the removal of rust, grease and other cleaning of the specific sheet metal body parts. The time duration and chemical composition is depends on the selection of body material. A proven method of a chemical treatment is seven / eight tank process. The common system of heating chemicals is by way of electrical heaters, by diesel or other fuel fired boilers. This increases the cost of heat treatment process due the high cost of electricity (for industries rate of electricity is 1.5 to 2 times than the domestic rate) or oils. This can be replaced by Solar water heating system which can efficiently generate the temp of liquid upto 85 Deg C. (orig.)

  15. Parallel DSMC Solution of Three-Dimensional Flow Over a Finite Flat Plate

    Science.gov (United States)

    Nance, Robert P.; Wilmoth, Richard G.; Moon, Bongki; Hassan, H. A.; Saltz, Joel

    1994-01-01

    This paper describes a parallel implementation of the direct simulation Monte Carlo (DSMC) method. Runtime library support is used for scheduling and execution of communication between nodes, and domain decomposition is performed dynamically to maintain a good load balance. Performance tests are conducted using the code to evaluate various remapping and remapping-interval policies, and it is shown that a one-dimensional chain-partitioning method works best for the problems considered. The parallel code is then used to simulate the Mach 20 nitrogen flow over a finite-thickness flat plate. It is shown that the parallel algorithm produces results which compare well with experimental data. Moreover, it yields significantly faster execution times than the scalar code, as well as very good load-balance characteristics.

  16. Slip effects on MHD flow and heat transfer of ferrofluids over a moving flat plate

    Science.gov (United States)

    Ramli, Norshafira; Ahmad, Syakila; Pop, Ioan

    2017-08-01

    In this study, the problem of MHD flow and heat transfer of ferrofluids over a moving flat plate with slip effect and uniform heat flux is considered. The governing ordinary differential equations are solved via shooting method. The effect of slip parameter on the dimensionless velocity, temperature, skin friction and Nusselt numbers are numerically studied for the three selected ferroparticles; magnetite (Fe3O4), cobalt ferrite (CoFe2O4) and Mn-Zn ferrite (Mn-ZnFe2O4) with water-based fluid. The results indicate that dual solutions exist for a plate moving towards the origin. It is found that the slip process delays the boundary layer separation. Moreover, the velocity and thermal boundary-layer thicknesses decrease in the first solution while increase with the increase of the value of slip parameters in second solution.

  17. Experimental and numerical investigation of a linear Fresnel solar collector with flat plate receiver

    International Nuclear Information System (INIS)

    Bellos, Evangelos; Mathioulakis, Emmanouil; Tzivanidis, Christos; Belessiotis, Vassilis; Antonopoulos, Kimon A.

    2016-01-01

    Highlights: • A linear Fresnel solar collector with flat plate receiver is investigated. • The collector is investigated experimentally in energetic and exergetic terms. • The developed numerical model is validated with the experimental results. • The operation with thermal oil is also examined with the developed model. • The final results prove satisfying performance for medium temperature levels. - Abstract: In this study a linear Fresnel solar collector with flat plate receiver is investigated experimentally and numerically with Solidworks Flow Simulation. The developed model combines optical, thermal and flow analysis; something innovative and demanding which leads to accurate results. The main objective of this study is to determine the thermal, the optical and the exergetic performance of this collector in various operating conditions. For these reasons, the developed model is validated with the respective experimental data and after this step, the solar collector model is examined parametrically for various fluid temperature levels and solar incident angles. The use of thermal oil is also analyzed with the simulation tool in order to examine the collector performance in medium temperature levels. The experiments are performed with water as working fluid and for low temperature levels up to 100 °C. The final results proved that this solar collector is able to produce about 8.5 kW useful heat in summer, 5.3 kW in spring and 2.9 kW in winter. Moreover, the operation of this collector with thermal oil can lead to satisfying results up to 250 °C.

  18. Standarized performance tests of collectors of solar thermal energy: A steel flat-plate collector with two transparent covers and a proprietary coating

    Science.gov (United States)

    1976-01-01

    Basic test results of a flat-plate solar collector whose performance was determined in the NASA-Lewis solar simulator are given. The collector was tested over ranges of inlet temperature and flux level.

  19. Efficient solar energy conversion in a low cost flat-plate solar cooker fabricated for use in rural areas of the south asian countries

    International Nuclear Information System (INIS)

    Jamil, Y.; Raza, M.; Muhammad, N.

    2008-01-01

    Solar flat plate cooker has been designed and fabricated for use in the rural areas of the South Asian countries. Indigenous low cost materials have been utilized for the fabrication of the cooker. The manufacturing cost of the cooker is less than US$ 150. The aim of this work is to utilize direct solar energy for cooking purpose. A flat plate absorber made of copper is used to absorb the heat energy from the sun. The maximum recorded plate temperature of the cooker was 110 degree C at an ambient temperature of 37 degree C. At this temperature sufficient steam is produced which is channeled to the cooking region though copper pipes. The cooker is found to be effective for cooking traditional food items like pulses, vegetables, meat, eggs, etc. It may be used as an alternative of fossil fuels in the rural areas of the South Asian countries, particularly by the rural women. (author)

  20. Estimation of spatially varying heat transfer coefficient from a flat plate with flush mounted heat sources using Bayesian inference

    Science.gov (United States)

    Jakkareddy, Pradeep S.; Balaji, C.

    2016-09-01

    This paper employs the Bayesian based Metropolis Hasting - Markov Chain Monte Carlo algorithm to solve inverse heat transfer problem of determining the spatially varying heat transfer coefficient from a flat plate with flush mounted discrete heat sources with measured temperatures at the bottom of the plate. The Nusselt number is assumed to be of the form Nu = aReb(x/l)c . To input reasonable values of ’a’ and ‘b’ into the inverse problem, first limited two dimensional conjugate convection simulations were done with Comsol. Based on the guidance from this different values of ‘a’ and ‘b’ are input to a computationally less complex problem of conjugate conduction in the flat plate (15mm thickness) and temperature distributions at the bottom of the plate which is a more convenient location for measuring the temperatures without disturbing the flow were obtained. Since the goal of this work is to demonstrate the eficiacy of the Bayesian approach to accurately retrieve ‘a’ and ‘b’, numerically generated temperatures with known values of ‘a’ and ‘b’ are treated as ‘surrogate’ experimental data. The inverse problem is then solved by repeatedly using the forward solutions together with the MH-MCMC aprroach. To speed up the estimation, the forward model is replaced by an artificial neural network. The mean, maximum-a-posteriori and standard deviation of the estimated parameters ‘a’ and ‘b’ are reported. The robustness of the proposed method is examined, by synthetically adding noise to the temperatures.

  1. Transition due to streamwise streaks in a supersonic flat plate boundary layer

    Science.gov (United States)

    Paredes, Pedro; Choudhari, Meelan M.; Li, Fei

    2016-12-01

    Transition induced by stationary streaks undergoing transient growth in a supersonic flat plate boundary layer flow is studied using numerical computations. While the possibility of strong transient growth of small-amplitude stationary perturbations in supersonic boundary layer flows has been demonstrated in previous works, its relation to laminar-turbulent transition cannot be established within the framework of linear disturbances. Therefore, this paper investigates the nonlinear evolution of initially linear optimal disturbances that evolve into finite amplitude streaks in the downstream region, and then studies the modal instability of those streaks as a likely cause for the onset of bypass transition. The nonmodal evolution of linearly optimal stationary perturbations in a supersonic, Mach 3 flat plate boundary layer is computed via the nonlinear plane-marching parabolized stability equations (PSE) for stationary perturbations, or equivalently, the perturbation form of parabolized Navier-Stokes equations. To assess the effect of the nonlinear finite-amplitude streaks on transition, the linear form of plane-marching PSE is used to investigate the instability of the boundary layer flow modified by the spanwise periodic streaks. The onset of transition is estimated using an N -factor criterion based on modal amplification of the secondary instabilities of the streaks. In the absence of transient growth disturbances, first mode instabilities in a Mach 3, zero pressure gradient boundary layer reach N =10 at Rex≈107 . However, secondary instability modes of the stationary streaks undergoing transient growth are able to achieve the same N -factor at Rex<2 ×106 when the initial streak amplitude is sufficiently large. In contrast to the streak instabilities in incompressible flows, subharmonic instability modes with twice the fundamental spanwise wavelength of the streaks are found to have higher amplification ratios than the streak instabilities at fundamental

  2. Effect of evaporation section and condensation section length on thermal performance of flat plate heat pipe

    International Nuclear Information System (INIS)

    Wang Shuangfeng; Chen Jinjian; Hu Yanxin; Zhang Wei

    2011-01-01

    Flat plate heat pipes (FPHPs) are one of the available technologies to deal with the high density electronic cooling problem due to their high thermal conductivity, reliability, and low weight penalty. A series of experiments were performed to investigate the effect of evaporation and condensation length on thermal performance of flat plate heat pipes. In the experiments, the FPHP had heat transfer length of 255 mm and width of 25 mm, and pure water was used as the working fluid. The results show that comparing to vapor chamber, the FPHP could realize long-distance heat transfer; comparing to the traditional heat pipe, the FPHP has large area contact with heat sources; the thermal resistance decreased and the heat transfer limit increased with the increase of evaporation section length; the FPHP would dry out at a lower heating power with the increase of condensation section length, which indicated that the heat transfer limit decreased, but the evaporator temperature also decreased; when the condensation section length approached to evaporation section length, the FPHP had a better thermal performance. - Highlights: → A strip sintered FPHP is proposed and tested. → The total heat transfer length reaches 255 mm → The efficiency of heat transport reaches 94.4%. → When the condensation section length approached to evaporation section length, the FPHP has better overall performance.

  3. Performance Study of Photovoltaic-Thermal (Pv/T) Solar Collector with ·-Grooved Absorber Plate

    International Nuclear Information System (INIS)

    Mohd Yusof Othman; Hafidz Ruslan; Kamaruzzaman Sopian; Jin, G.L.

    2009-01-01

    A hybrid photovoltaic-thermal solar collector has been designed, built and its performance has been studied. The advantage of the collector is that it can generate electricity and heat simultaneously. Photovoltaic module SHARP NE-80E2EA with maximum output power of 80 W was used to generate electricity. The module also acts as heat absorber of the collector. Single pass ·-groove collector made of aluminium sheet with 0.7 mm thickness has been used to collect heat generated. Study was conducted under a designed halogen lamps solar simulator with intensities set at 386 ± 8 Wm -2 and 817 ± 8 Wm -2 . The speed of air passing through the collector was set between (69.6 ± 2.2) x 10 -4 kg/s to (695.8 ± 2.2) x 10 -4 kg/s. The objective of the study is to compare the performance of PV/T collector with and without ·-groove absorber. The study found that the PV/T collector with ·-groove absorber plate has higher efficiency than the PV/T without ·-groove absorber. The electrical and thermal efficiencies are also increased when radiation intensity and speed of air increase. (author)

  4. Optimum solar flat-plate collector slope: Case study for Helwan, Egypt

    International Nuclear Information System (INIS)

    Elminir, Hamdy K.; Ghitas, Ahmed E.; El-Hussainy, F.; Hamid, R.; Beheary, M.M.; Abdel-Moneim, Khaled M.

    2006-01-01

    This article examines the theoretical aspects of choosing a tilt angle for the solar flat-plate collectors used in Egypt and make recommendations on how the collected energy can be increased by varying the tilt angle. The first objective in this investigation is to perform a statistical comparison of three specific anisotropic models (Tamps-Coulson, Perez and Bugler) to recommend one that is general and is most accurate for estimating the solar radiation arriving on an inclined surface. Then, the anisotropic model that provides the most accurate estimation of the total solar radiation has been used to determine the optimum collector slope based on the maximum solar energy availability. This result has been compared with the results provided by other models that use declination, daily clearness index and ground reflectivity. The study revealed that Perez's model shows the best overall calculated performance, followed by the Tamps-Coulson then Bugler models

  5. Optimization of thermal performance of a smooth flat-plate solar air heater using teaching–learning-based optimization algorithm

    Directory of Open Access Journals (Sweden)

    R. Venkata Rao

    2015-12-01

    Full Text Available This paper presents the performance of teaching–learning-based optimization (TLBO algorithm to obtain the optimum set of design and operating parameters for a smooth flat plate solar air heater (SFPSAH. The TLBO algorithm is a recently proposed population-based algorithm, which simulates the teaching–learning process of the classroom. Maximization of thermal efficiency is considered as an objective function for the thermal performance of SFPSAH. The number of glass plates, irradiance, and the Reynolds number are considered as the design parameters and wind velocity, tilt angle, ambient temperature, and emissivity of the plate are considered as the operating parameters to obtain the thermal performance of the SFPSAH using the TLBO algorithm. The computational results have shown that the TLBO algorithm is better or competitive to other optimization algorithms recently reported in the literature for the considered problem.

  6. Performance comparison of four kinds of flat nonimaging Fresnel lenses made of polycarbonates and polymethyl methacrylate for concentrated photovoltaics.

    Science.gov (United States)

    Languy, Fabian; Habraken, Serge

    2011-07-15

    Solar concentrators made of a single refractive primary optics are limited to a concentration ratio of about 1000× [Opt. Express 19, A280 (2011)], due only to longitudinal chromatic aberration, while mirrors are limited to ∼46,000× by the angular size of the Sun. To reduce the chromatic aberration while keeping cost-effective systems for concentrated photovoltaics, a study of four different kinds of flat Fresnel doublets made of polycarbonates and polymethyl methacrylate is presented. It reveals that Fresnel doublets may have fewer optical losses than non-Fresnel doublets, with a lower lateral chromatic split allowing for even higher concentration ratio. © 2011 Optical Society of America

  7. Earth Reflected Solar Radiation Incident upon an Arbitrarily Oriented Spinning Flat Plate

    Science.gov (United States)

    Cunningham, Fred G.

    1963-01-01

    A general derivation is given for the earth reflected solar radiation input to a flat plate--a solar cell paddle, for example--which is spinning about an axis coincident with the axis of symmetry of the satellite to which it is affixed. The resulting equations are written for the general case so that arbitrary orientations of the spin axis with respect to the earth-satellite line and arbitrary orientations of the normal to the plate with respect to the spin axis can be treated. No attempt is made to perform the resulting integrations because of the complexity of the equations; nor is there any attempt to delineate the integration limits for the general case. However, the equations governing these limits are given. The appendixes contain: the results, in graphical form, of two representative examples; the general computer program for the calculation is given in Fortran notation; and the results of a calculation of the distribution of albedo energy on the proposed Echo II satellite. The value of the mean solar constant used is 1.395 times 10 (sup 4) ergs per centimeters-squared per second; the mean albedo of the earth is assumed to be 0.34; and the earth is assumed to be a diffuse reflector.

  8. Standardized performance tests of collectors of solar thermal energy-a flat-plate collector with a single-tube serpentine flow distribution

    Science.gov (United States)

    Johnson, S.

    1976-01-01

    This preliminary data report gives basic test results of a flat-plate solar collector whose performance was determined in the NASA-Lewis solar simulator. The collector was tested over ranges of inlet temperatures, fluxes and coolant flow rates. Collector efficienty is correlated in terms of inlet temperature and flux level.

  9. Modeling and experimental verification of a flat-plate solar photoreactor

    International Nuclear Information System (INIS)

    Rossetti, G.H.; Consejo Nacional de Investigaciones Cientificas y Tecnicas, Santa Fe; Albizzati, E.D.; Alfano, O.M.

    1998-01-01

    The utilization of the ultraviolet (UV) portion of the solar spectrum to drive the chemical destruction of organic pollutants in contaminated air and wastewaters has gained an increasing interest in the last two decades. A nonconcentrating, flat-plate solar photoreactor has been modeled and experimentally verified. The mathematical model considers that the reactor glass window receives direct and diffuse (isotropic) solar radiation. The model was solved numerically and predictions were compared with photodecomposition rate data, employing the uranyl oxalate actinometer. The reaction was conducted in an isothermal, perfectly mixed reactor placed inside a batch recycling system. The experimental values were compared with theoretical predictions and good agreement was obtained, the maximum deviation being 12%. The effect of the actinometer concentration and of the solar zenith angles (for horizontal and tilted reactors) on the actinometer decomposition rate was investigated. Results indicated that the uranyl oxalate reaction rate increases when (1) the initial actinometer concentration increases at almost constant solar zenith angle and (2) the zenith angle decreases at the same initial actinometer concentration

  10. Fatigue test results of flat plate specimens with surface cracks and evaluation of crack growth in structural components

    International Nuclear Information System (INIS)

    Shibata, Katsuyuki; Yokoyama, Norio; Ohba, Toshihiro; Kawamura, Takaichi; Miyazono, Shohachiro

    1982-12-01

    Part-through surface cracks are most frequently observed in the inspection of structural components, and it is one of the important subjects in the assessment of safety to evaluate appropriately the growth of such cracks during the service life of structural components. Due to the complexity of the stress at the front free surface, the crack growth at the surface shows a different behavior from the other part. Besides, an effect of interaction is caused in the growth of multiple surface cracks. These effects should be included in the growth analysis of surface part-through cracks. Authors have carried out a series of fatigue tests on some kinds of pipes with multiple cracks in the inner surface, and subsequently the fatigue test of flat plate specimens, made of Type 304L stainless steel, with a single or double surface cracks was carried out to study the basic characteristics in the growth of multiple surface cracks. Based on the results of the flat plate test. the correction factors for the front free surface (Cs) and interaction (Ci) of surface cracks were derived quantitatively by the following empirical expressions; Cs = 0.824. Ci = (0.227(a/b) 2 (sec(PI X/2) - 1) + 1)sup(1/m). Using these two correction factors, a procedure to predict the growth of surface cracks was developed by applying the crack growth formula to both the thickness and surface directions. Besides, the crack growth predictions based on the procedure of ASME Code Sex. XI, and the above procedure without the correction of the free surface and interactions on the crack growth behaviors were compared with the test results of flat plate specimens. The crack growth behavior predicted by the procedure described in this report showed the best agreement with the test results in respects of the crack growth life and the change in the crack shape. The criteria of the ASME Code did not agree with the test results. (author)

  11. Numerical Investigation of Jet Impingement Heat Transfer on a Flat plate

    Directory of Open Access Journals (Sweden)

    Asem Nabadavis

    2016-12-01

    Full Text Available The numerical investigation emphasizes on studying the heat transfer characteristics when a high velocity air jet impinges upon a flat plate having constant heat flux. Numerical analysis has been conducted by solving conservation equations of momentum, mass and energy with two equations based k- ε turbulence model to determine the wall temperature and Nu of the plate considering the flow to be incompressible. It was found from the investigation that the heat transfer rate increases with the increase of Reynolds number of the jet (Rej. It was also found that there is an optimum value for jet distance to nozzle diameter ratio (H/d for maximum heat transfer when all the other parameters were kept fixed. Similar results as above were found when two jets of air were used instead of one jet keeping the mass flow rate constant. For a two jets case it was also found that heat transfer rate over the surface increases when the jets are inclined outward compared to vertical and inward jets and also there exists an optimum angle of jet for maximum heat transfer. Further investigation was carried out for different jetto-jet separation distance for a twin jet impingement model where it was noted that heat transfer is more distributed in case of larger values of L and the rate of heat transfer increases as the separation between the jet increases till a certain point after which the rate of heat transfer decreases.

  12. Flat-plate solar array project. Volume 3: Silicon sheet: Wafers and ribbons

    Science.gov (United States)

    Briglio, A.; Dumas, K.; Leipold, M.; Morrison, A.

    1986-01-01

    The primary objective of the Silicon Sheet Task of the Flat-Plate Solar Array (FSA) Project was the development of one or more low cost technologies for producing silicon sheet suitable for processing into cost-competitive solar cells. Silicon sheet refers to high purity crystalline silicon of size and thickness for fabrication into solar cells. Areas covered in the project were ingot growth and casting, wafering, ribbon growth, and other sheet technologies. The task made and fostered significant improvements in silicon sheet including processing of both ingot and ribbon technologies. An additional important outcome was the vastly improved understanding of the characteristics associated with high quality sheet, and the control of the parameters required for higher efficiency solar cells. Although significant sheet cost reductions were made, the technology advancements required to meet the task cost goals were not achieved.

  13. Active control of noise amplification in the flow over a square leading-edge flat plate utilizing DBD plasma actuator

    Science.gov (United States)

    Yadong, HUANG; Benmou, ZHOU

    2018-05-01

    Perturbation is generally considered as the flow noise, and its energy can gain transient growth in the separation bubble. The amplified perturbations may cause unstable Kelvin–Helmohltz vortices which induce the three-dimensional transition. Active control of noise amplification via dielectric barrier discharge plasma actuator in the flow over a square leading-edge flat plate is numerically studied. The actuator is installed near the plate leading-edge where the separation bubble is formed. The maximum energy amplification of perturbations is positively correlated with the separation bubble scale which decreases with the increasing control parameters. As the magnitude of noise amplification is reduced, the laminar-turbulent transition is successfully suppressed.

  14. Solution for Improve the Efficiency of Solar Photovoltaic Installation

    OpenAIRE

    Petru Chioncel; Cristian Paul Chioncel; Nicoleta Gillich

    2013-01-01

    This paper present a solution for improving efficiency of solar photovoltaic installation, realized with fixed solar photovoltaic modules, placed in solar parks or individual installations. The proposed solution to increase the radiation on the solar photovoltaic panels is to use some thin plates covered with a reflective blanket, mounted in front of the solar photovoltaic modules, with the possibility of their adjustment.

  15. A study on the effect of flat plate friction resistance on speed performance prediction of full scale

    Directory of Open Access Journals (Sweden)

    Park Dong-Woo

    2015-01-01

    Full Text Available Flat plate friction lines hare been used in the process to estimate speed performance of full-scale ships in model tests. The results of the previous studies showed considerable differences in determining form factors depending on changes in plate friction lines and Reynolds numbers. These differences had a great influence on estimation of speed performance of full-scale ships. This study- was conducted in two parts. In the first part, the scale effect of the form factor depending on change in the Reynolds number was studied based on CFD, in connection with three kinds of friction resistance curves: the ITTC-1957, the curve proposed by Grigson (1993; 1996, and the curve developed by Katsui et al (2005. In the second part, change in the form factor by three kinds of

  16. Historical evidence of importance to the industrialization of flat-plate silicon photovoltaic systems. Volume 1: Executive summary

    Science.gov (United States)

    Smith, J. L.

    1978-01-01

    An analysis is given of the Low-Cost Silicon Solar Array Project plans for the industrialization of new production technologies expected to be forthcoming as a result of the project's technology development efforts. In particular, LSSA's mandate to insure an annual production capability of 500 MW peak for the photovoltaic supply industry by 1986 is critically examined. The examination focuses on one of the concerns behind this goal -- timely development of industrial capacity to supply anticipated demand. Some of the conclusions include: (1) construction of small-scale pilot plants should be undertaken only for purposes of technology development; (2) large-scale demonstrations should be undertaken only when the technology is well in hand; (3) commercial-scale production should be left to the private sector; (4) the 500-MW annual output goal should be shifted to Program Headquarters.

  17. Solution for Improve the Efficiency of Solar Photovoltaic Installation

    Directory of Open Access Journals (Sweden)

    Petru Chioncel

    2013-01-01

    Full Text Available This paper present a solution for improving efficiency of solar photovoltaic installation, realized with fixed solar photovoltaic modules, placed in solar parks or individual installations. The proposed solution to increase the radiation on the solar photovoltaic panels is to use some thin plates covered with a reflective blanket, mounted in front of the solar photovoltaic modules, with the possibility of their adjustment.

  18. Objective Method for Selecting Outdoor Reporting Conditions for Photovoltaic Performance

    International Nuclear Information System (INIS)

    Maish, A.

    1999-01-01

    Outdoor performance of photovoltaic modules and systems depends on prevailing conditions at the time of measurement. Outdoor test conditions must be relevant to device performance and readily attainable. Flat-plate, nonconcentrator PV device performance is reported with respect to fixed conditions referred to as Standard Reporting Conditions (SRC) of 1 kW/m plane of array total irradiance, 25 C device temperature, and a reference spectral distribution at air mass 1.5 under certain atmospheric conditions. We report a method of analyzing historical meteorological and irradiance data to determine the range of outdoor environmental parameters and solar irradiance components that affect solar collector performance when the SRC 1 kW/m total irradiance value occurs outdoors. We used data from the 30 year U.S. National Solar Radiation Data Base (NSRDB) , restricting irradiance conditions to within +/- 25 W/m of 1 kW/m on a solar tracking flat-plate collector. The distributions of environmental parameter values under these conditions are non-Gaussian and site dependent. Therefore the median, as opposed to the mean, of the observed distributions is chosen to represent appropriate outdoor reporting conditions. We found the average medians for the direct beam component (834 W/m), ambient temperature (24.4 C), total column water vapor (1.4 cm), and air mass (1.43) are near commonly used SRC values. Average median wind speed (4.4 m/s) and broadband aerosol optical depth (0.08) were significantly different from commonly used values

  19. Molecular dynamics simulations of ultrathin water film confined between flat diamond plates

    Directory of Open Access Journals (Sweden)

    A.V. Khomenko

    2008-12-01

    Full Text Available Molecular dynamics simulations of ultrathin water film confined between atomically flat rigid diamond plates are described. Films with thickness of one and two molecular diameters are concerned and TIP4P model is used for water molecules. Dynamical and equilibrium characteristics of the system for different values of the external load and shear force are investigated. An increase of the external load causes the transition of the film to a solidlike state. This is manifested in a decrease of the diffusion constant and in the ordering of the liquid molecules into quasidiscrete layers. For two-layer film under high loads, the molecules also become ordered parallel to the surfaces. Time dependencies of the friction force and the changes of its average value with the load are obtained. In general, the behaviour of the studied model is consistent with the experimental results obtained for simple liquids with spherical molecules.

  20. A comparison of performance of flat and bent photovoltaic luminescent solar concentrators

    NARCIS (Netherlands)

    Vishwanathan, B.; Reinders, A. H.M.E.; de Boer, D.K.G.; Desmet, L.; Ras, A. J.M.; Zahn, F. H.; Debije, M.G.

    2015-01-01

    To employ new solar photovoltaic technologies in products and buildings, many systems need to be adapted. Inspired by the cylindrical shape, in this work we have evaluated the performance of luminescent solar concentrator photovoltaic (LSC-PV) elements with narrow PV cell strips that could be

  1. Transmission of heat from a flat plate to a fluid flowing at a high velocity

    Science.gov (United States)

    Crocco, Luigi

    1932-01-01

    The writer, starting with the consideration of the hydrodynamic and thermodynamic equations for the turbulent boundary layer of a flat plate when it is necessary to take into account the heat produced by friction, arrives at the conclusion that the transmission of the heat follows the same law that is valid when the frictional heat is negligible, provided the temperature of the fluid is considered to be that which the fluid would reach if arrested adiabatically. It is then shown how the same law holds good for faired bodies, and some applications of the law are made to the problems of flight at very high speeds.

  2. Variation of reflected radiation from all reflectors of a flat plate solar collector during a year

    International Nuclear Information System (INIS)

    Pavlović, Zoran T.; Kostić, Ljiljana T.

    2015-01-01

    In this paper the impact of flat plate reflectors (bottom, top, left and right reflectors) made of Al, on total solar radiation on a solar collector during a day time over a whole year is analyzed. An analytical model for determining optimum tilt angles of a collector and reflectors for any point on the Earth is proposed. Variations of reflectors' optimal inclination angles with changes of the collector's optimal tilt angle during the year are also calculated. Optimal inclination angles of the reflectors for the South directed solar collector are calculated and compared to experimental data. It is shown that optimal inclination of the bottom reflector is the lowest in December and the highest in June, while for the top reflector the lowest value is in June and the highest value is in December. On the other hand, optimal inclination of the left and right side reflectors for optimum tilt angle of the collector does not change during the year and it is 66°. It is found that intensity of the solar radiation on the collector increases for about 80% in the summer period (June–September) by using optimally inclined reflectors, in comparison to the collector without reflectors. - Highlights: • The impacts of flat plate reflectors on solar radiation on the collector are given. • The results of the optimal inclinations of reflectors during the year are shown. • The solar radiation on the collector with reflectors is 80% higher in the summer. • This model may be applied on thermal, PV, PV/T and energy harvesting systems

  3. FLOW VISUALIZATION OF RECTANGULAR SLOT AIR JET IMPINGEMENT ON FLAT SURFACES

    OpenAIRE

    Satheesha V *1, B. K. Muralidhra2, Abhilash N3, C. K. Umesh4

    2018-01-01

    Jet impingement near the mid-chord of the gas turbine blade is treated as a flat plate. Experimental and numerical investigations are carried out for a single slot air jet impinging on flat surface for two different rectangular slots of dimension (3mm x 65 mm) and (5mm x 65 mm). Experimentation is done to study the flow pattern topography on the flat target plate, with varying the flow rate from 20 LPM to 50 LPM by varying the nozzle to plate distance from 9 mm to 24 mm for slot jet of 3mm an...

  4. Design, fabrication and performance of a hybrid photovoltaic/thermal (PV/T) active solar still

    International Nuclear Information System (INIS)

    Kumar, Shiv; Tiwari, Arvind

    2010-01-01

    Two solar stills (single slope passive and single slope photovoltaic/thermal (PV/T) active solar still) were fabricated and tested at solar energy park, IIT New Delhi (India) for composite climate. Photovoltaic operated DC water pump was used between solar still and photovoltaic (PV) integrated flat plate collector to re-circulate the water through the collectors and transfer it to the solar still. The newly designed hybrid (PV/T) active solar still is self-sustainable and can be used in remote areas, need to transport distilled water from a distance and not connected to grid, but blessed with ample solar energy. Experiments were performed for 0.05, 0.10, and 0.15 m water depth, round the year 2006-2007 for both the stills. It has been observed that maximum daily yield of 2.26 kg and 7.22 kg were obtained from passive and hybrid active solar still, respectively at 0.05 m water depth. The daily yield from hybrid active solar still is around 3.2 and 5.5 times higher than the passive solar still in summer and winter month, respectively. The study has shown that this design of the hybrid active solar still also provides higher electrical and overall thermal efficiency, which is about 20% higher than the passive solar still.

  5. Solar radiation on Mars: Stationary photovoltaic array

    Science.gov (United States)

    Appelbaum, J.; Sherman, I.; Landis, G. A.

    1993-01-01

    Solar energy is likely to be an important power source for surface-based operation on Mars. Photovoltaic cells offer many advantages. In this article we have presented analytical expressions and solar radiation data for stationary flat surfaces (horizontal and inclined) as a function of latitude, season and atmospheric dust load (optical depth). The diffuse component of the solar radiation on Mars can be significant, thus greatly affecting the optimal inclination angle of the photovoltaic surface.

  6. Surface flatness measurement of quasi-parallel plates employing three-beam interference with strong reference beam

    Science.gov (United States)

    Sunderland, Zofia; Patorski, Krzysztof

    2016-12-01

    A big challenge for standard interferogram analysis methods such as Temporal Phase Shifting or Fourier Transform is a parasitic set of fringes which might occur in the analyzed fringe pattern intensity distribution. It is encountered, for example, when transparent glass plates with quasi-parallel surfaces are tested in Fizeau or Twyman-Green interferometers. Besides the beams reflected from the plate front surface and the interferometer reference the beam reflected from the plate rear surface also plays important role; its amplitude is comparable with the amplitude of other beams. In result we face three families of fringes of high contrast which cannot be easily separated. Earlier we proposed a competitive solution for flatness measurements which relies on eliminating one of those fringe sets from the three-beam interferogram and separating two remaining ones with the use of 2D Continuous Wavelet Transform. In this work we cover the case when the intensity of the reference beam is significantly higher than the intensities of two object beams. The main advantage of differentiating beam intensities is the change in contrast of individual fringe families. Processing of such three-beam interferograms is modified but also takes advantage of 2D CWT. We show how to implement this method in Twyman-Green and Fizeau setups and compare this processing path and measurement procedures with previously proposed solutions.

  7. Photovoltaic programme - edition 2003

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2003-07-01

    This publication issued by the Swiss Federal Office of Energy's Photovoltaics (PV) Programme presents an overview (in English) of activities and projects in the photovoltaics research and pilot and demonstration area in Switzerland. Progress in the area of future solar cell technologies, modules and building integration, system technologies, planning and operating aids is summarised. Also, PV for applications in developing countries, thermo-photovoltaics and international co-operation are commented on. In the area of pilot and demonstration projects, component development, PV integration in sloping roofs, on flat roofs and noise barriers as well as further PV plant are looked at. Also, measurement campaigns, studies, statistics and further PV-related topics are summarised. This volume also presents the abstracts of reports made by the project managers of 73 research and pilot and demonstration projects in these areas for 2002.

  8. Photovoltaic programme - edition 2003

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2003-07-01

    This publication issued by the Swiss Federal Office of Energy's Photovoltaics (PV) Programme presents an overview (in English) of activities and projects in the photovoltaics research and pilot and demonstration area in Switzerland. Progress in the area of future solar cell technologies, modules and building integration, system technologies, planning and operating aids is summarised. Also, PV for applications in developing countries, thermo-photovoltaics and international co-operation are commented on. In the area of pilot and demonstration projects, component development, PV integration in sloping roofs, on flat roofs and noise barriers as well as further PV plant are looked at. Also, measurement campaigns, studies, statistics and further PV-related topics are summarised. This volume also presents the abstracts of reports made by the project managers of 73 research and pilot and demonstration projects in these areas for 2002.

  9. Effects of Thermal Radiation and Chemical Reaction on MHD Free Convection Flow past a Flat Plate with Heat Source and Convective Surface Boundary Condition

    OpenAIRE

    E.Hemalatha; N. Bhaskar Reddy

    2015-01-01

    This paper analyzes the radiation and chemical reaction effects on MHD steady two-dimensional laminar viscous incompressible radiating boundary layer flow over a flat plate in the presence of internal heat generation and convective boundary condition. It is assumed that lower surface of the plate is in contact with a hot fluid while a stream of cold fluid flows steadily over the upper surface with a heat source that decays exponentially. The Rosseland approximation is used to desc...

  10. An eddy-viscosity treatment of the unsteady turbulent boundary layer on a flat plate in an expansion tube

    Science.gov (United States)

    Gupta, R. N.; Trimpi, R. L.

    1974-01-01

    An analysis is presented for the relaxation of a turbulent boundary layer on a semiinfinite flat plate after passage of a shock wave and a trailing driver gas-driven gas interface. The problem has special application to expansion tube flows. The flow-governing equations have been transformed into the Lamcrocco variables. The numerical results indicate that a fully turbulent boundary layer relaxes faster to the final steady-state values of heat transfer and skin-friction than a fully laminar boundary layer.

  11. Large-eddy simulation of separation and reattachment of a flat plate turbulent boundary layer

    KAUST Repository

    Cheng, W.

    2015-11-11

    © 2015 Cambridge University Press. We present large-eddy simulations (LES) of separation and reattachment of a flat-plate turbulent boundary-layer flow. Instead of resolving the near wall region, we develop a two-dimensional virtual wall model which can calculate the time- and space-dependent skin-friction vector field at the wall, at the resolved scale. By combining the virtual-wall model with the stretched-vortex subgrid-scale (SGS) model, we construct a self-consistent framework for the LES of separating and reattaching turbulent wall-bounded flows at large Reynolds numbers. The present LES methodology is applied to two different experimental flows designed to produce separation/reattachment of a flat-plate turbulent boundary layer at medium Reynolds number Reθ based on the momentum boundary-layer thickness θ. Comparison with data from the first case at demonstrates the present capability for accurate calculation of the variation, with the streamwise co-ordinate up to separation, of the skin friction coefficient, Reθ, the boundary-layer shape factor and a non-dimensional pressure-gradient parameter. Additionally the main large-scale features of the separation bubble, including the mean streamwise velocity profiles, show good agreement with experiment. At the larger Reθ = 11000 of the second case, the LES provides good postdiction of the measured skin-friction variation along the whole streamwise extent of the experiment, consisting of a very strong adverse pressure gradient leading to separation within the separation bubble itself, and in the recovering or reattachment region of strongly-favourable pressure gradient. Overall, the present two-dimensional wall model used in LES appears to be capable of capturing the quantitative features of a separation-reattachment turbulent boundary-layer flow at low to moderately large Reynolds numbers.

  12. Shed vortex structure and phase-averaged velocity statistics in symmetric/asymmetric turbulent flat plate wakes

    Science.gov (United States)

    Rai, Man Mohan

    2018-05-01

    The near wake of a flat plate is investigated via direct numerical simulations. Many earlier experimental investigations have used thin plates with sharp trailing edges and turbulent boundary layers to create the wake. This results in large θ/DTE values (θ is the boundary layer momentum thickness toward the end of the plate and DTE is the trailing edge thickness). In the present study, the emphasis is on relatively thick plates with circular trailing edges (CTEs) resulting in θ/D values less than one (D is the plate thickness and the diameter of the CTE) and vigorous vortex shedding. The Reynolds numbers based on the plate length and D are 1.255 × 106 and 10 000, respectively. Two cases are computed: one with turbulent boundary layers on both the upper and lower surfaces of the plate (statistically the same, symmetric wake, Case TT) and the other with turbulent and laminar boundary layers on the upper and lower surfaces, respectively (asymmetric case, Case TL). The data and understanding obtained are of considerable engineering interest, particularly in turbomachinery where the pressure side of an airfoil can remain laminar or transitional because of a favorable pressure gradient and the suction side is turbulent. Shed-vortex structure and phase-averaged velocity statistics obtained in the two cases are compared here. The upper negative shed vortices in Case TL (turbulent separating boundary layer) are weaker than the lower positive ones (laminar separating boundary layer) at inception (a factor of 1.27 weaker in terms of peak phase-averaged spanwise vorticity at the first appearance of a peak). The upper vortices weaken rapidly as they travel downstream. A second feature of interest in Case TL is a considerable increase in the peak phase-averaged, streamwise normal intensity (random component) with increasing streamwise distance (x/D) that occurs near the positive vortex cores. This behavior is observed for a few diameters in the near wake. This is counter to

  13. Flat plate solar collector for water pre-heating using concentrated solar power (CSP)

    Science.gov (United States)

    Peris, Leonard Sunny; Shekh, Md. Al Amin; Sarker, Imran

    2017-12-01

    Numerous attempt and experimental conduction on different methods to harness energy from renewable sources are being conducted. This study is a contribution to the purpose of harnessing solar energy as a renewable source by using flat plate solar collector medium to preheat water. Basic theory of solar radiation and heat convection in water (working fluid) has been combined with heat conduction process by using copper tubes and aluminum absorber plate in a closed conduit, covered with a glazed through glass medium. By this experimental conduction, a temperature elevation of 35°C in 10 minutes duration which is of 61.58% efficiency range (maximum) has been achieved. The obtained data and experimental findings are validated with the theoretical formulation and an experimental demonstration model. A cost effective and simple form of heat energy extraction method for space heating/power generation has been thoroughly discussed with possible industrial implementation possibilities. Under-developed and developing countries can take this work as an illustration for renewable energy utilization for sustainable energy prospect. Also a full structure based data to derive concentrated solar energy in any geographical location of Bangladesh has been outlined in this study. These research findings can contribute to a large extent for setting up any solar based power plant in Bangladesh irrespective of its installation type.

  14. Building integrated concentrating photovoltaics: A review

    International Nuclear Information System (INIS)

    Chemisana, Daniel

    2011-01-01

    For building integration, Concentrating Photovoltaic (CPV) systems can offer a host of advantages over conventional flat panel devices, the most notable being: a higher electrical conversion efficiency in the PV cells, better use of space, ease of recycling of constituent materials, and reduced use of toxic products involved in the PV cells' production process. However, the viability of Building-Integrated Concentrating PV (BICPV) systems is dependent on their ability to offer a comparative economic advantage over flat panel photovoltaic technologies whose market prices are decreasing from day to day and which offer other advantages such as ease of replacement of structural elements. A comparative analysis is presented of the main existing CPV systems' suitability for use in buildings, in which the different challenges specific to integration of each system are discussed. The systems are categorized by type of concentration technology and concentration factor. (author)

  15. Sound Radiation of Aerodynamically Excited Flat Plates into Cavities

    Directory of Open Access Journals (Sweden)

    Johannes Osterziel

    2017-10-01

    Full Text Available Flow-induced vibrations and the sound radiation of flexible plate structures of different thickness mounted in a rigid plate are experimentally investigated. Therefore, flow properties and turbulent boundary layer parameters are determined through measurements with a hot-wire anemometer in an aeroacoustic wind tunnel. Furthermore, the excitation of the vibrating plate is examined by laser scanning vibrometry. To describe the sound radiation and the sound transmission of the flexible aluminium plates into cavities, a cuboid-shaped room with adjustable volume and 34 flush-mounted microphones is installed at the non flow-excited side of the aluminium plates. Results showed that the sound field inside the cavity is on the one hand dependent on the flow parameters and the plate thickness and on the other hand on the cavity volume which indirectly influences the level and the distribution of the sound pressure behind the flexible plate through different excited modes.

  16. Innovative Ballasted Flat Roof Solar PV Racking System

    Energy Technology Data Exchange (ETDEWEB)

    Peek, Richard T. [Cascade Engineering, Grand Rapids, MI (United States)

    2014-12-15

    The objective of this project was to reduce the cost of racking for PV solar on flat commercial rooftops. Cost reductions would come from both labor savings and material savings related to the installation process. The rack would need to accommodate the majority of modules available on the market. Cascade Engineering has a long history of converting traditional metal type applications over to plastic. Injection molding of plastics have numerous advantages including selection of resin for the application, placing the material exactly where it is needed, designing in features that will speed up the installation process, and weight reduction of the array. A plastic rack would need to meet the requirements of UL2703, Mounting systems, mounting devices, clamping/retention devices, and ground lugs for use with flat-plate photovoltaic modules and panels. Comparing original data to the end of project racking design, racking material costs were reduced 50% and labor costs reduced 64%. The racking product accommodates all 60 and 72 cell panels on the market, meets UL2703 requirements, contributes only 1.3 pounds per square foot of weight to the array, requires little ballast to secure the array, automatically grounds the module when the module is secured, stacks/nests well for shipping/fewer lifts to the roof, provides integrated wire routing, allows water to drain on the roof, and accommodates various seismic roof connections. Project goals were achieved as noted in the original funding application.

  17. Natural conditions and administrative settings for concentrating photovoltaics in China

    Science.gov (United States)

    Fu, Ling; Chen, Xiaoyuan; Leutz, Ralf

    2012-10-01

    It is an inevitable trend for China to develop green technologies to help the country to produce cleaner energy and to consume it more efficiently, under the pressure of energy security concern, the nation's emissions trajectory and sustainable economic development. The abundant solar resources in West China provide a big potential to utilize the solar energy. Under the promotion of key incentive policies including both feed-in-tariff (FIT) mechanisms and government rebate programs, China has become a major global solar force in photovoltaic (PV) industry both in manufacturing and in the installation of flat-plate products, with 16 GW production and 2.75 GW installation achieved in the year 2011. As a branch of PV technology, concentrating photovoltaics (CPV) technology with several years' development history in China is presently moving from pilot facilities to commercial-scale applications. Several MW-CPV power plants have been installed by both domestic and western companies in China, factories with several hundred-MW production capacity are being planned or built. Sustainable performance and reliability improvement of CPV modules, a vertical integration of supply chain in CPV industry aiming at a cost reduction, a sufficient grid infrastructure for facilitating the West-East and North-South electricity transmission will promote Chinese CPV market to actually initiate, develop and mature.

  18. Effect of rotation on the formation of longitudinal vortices in mixed convection flow over a flat plate

    Energy Technology Data Exchange (ETDEWEB)

    Lin, Ming-Han [Ta-Hwa Institute of Technology, Department of Automation Engineering, Hsinchu (Taiwan); Chen, Chin-Tai [Ta-Hwa Institute of Technology, Department of Industrial Engineering and Management, Hsinchu (Taiwan)

    2006-01-01

    This paper presents a numerical study of the effect of rotation on the formation of longitudinal vortices in mixed convection flow over a flat plate. The criterion on the position of marking the onset of longitudinal vortices is defined in this paper. The onset position characterized by the Goertler number G{sub {delta}} depends on the Grashof number, the rotation number Ro, the Prandtl number Pr and the wave number. The results show that negative rotation stabilizes the boundary layer flow on the surface. On the contrary, positive rotation destabilizes the flow. The numerical data are compared with the experimental results. (orig.)

  19. Tårs 10000 m2 CSP + Flat Plate Solar Collector Plant - Cost-Performance Optimization of the Design

    DEFF Research Database (Denmark)

    Perers, Bengt; Furbo, Simon; Tian, Zhiyong

    2016-01-01

    , was established. The optimization showed that there was a synergy in combining CSP and FP collectors. Even though the present cost per m² of the CSP collectors is high, the total energy cost is minimized by installing a combination of collectors in such solar heating plant. It was also found that the CSP......A novel solar heating plant with Concentrating Solar Power (CSP) collectors and Flat Plate (FP) collectors has been put into operation in Tårs since July 2015. To investigate economic performance of the plant, a TRNSYS-Genopt model, including a solar collector field and thermal storage tank...

  20. Boundary Layer Flow and Heat Transfer with Variable Fluid Properties on a Moving Flat Plate in a Parallel Free Stream

    Directory of Open Access Journals (Sweden)

    Norfifah Bachok

    2012-01-01

    Full Text Available The steady boundary layer flow and heat transfer of a viscous fluid on a moving flat plate in a parallel free stream with variable fluid properties are studied. Two special cases, namely, constant fluid properties and variable fluid viscosity, are considered. The transformed boundary layer equations are solved numerically by a finite-difference scheme known as Keller-box method. Numerical results for the flow and the thermal fields for both cases are obtained for various values of the free stream parameter and the Prandtl number. It is found that dual solutions exist for both cases when the fluid and the plate move in the opposite directions. Moreover, fluid with constant properties shows drag reduction characteristics compared to fluid with variable viscosity.

  1. Generalized wall function and its application to compressible turbulent boundary layer over a flat plate

    Science.gov (United States)

    Liu, J.; Wu, S. P.

    2017-04-01

    Wall function boundary conditions including the effects of compressibility and heat transfer are improved for compressible turbulent boundary flows. Generalized wall function formulation at zero-pressure gradient is proposed based on coupled velocity and temperature profiles in the entire near-wall region. The parameters in the generalized wall function are well revised. The proposed boundary conditions are integrated into Navier-Stokes computational fluid dynamics code that includes the shear stress transport turbulence model. Numerical results are presented for a compressible boundary layer over a flat plate at zero-pressure gradient. Compared with experimental data, the computational results show that the generalized wall function reduces the first grid spacing in the directed normal to the wall and proves the feasibility and effectivity of the generalized wall function method.

  2. Analysis of absorbed energy and efficiency of a solar flat plate collector

    Directory of Open Access Journals (Sweden)

    Anderson Miguel Lenz

    2017-07-01

    Full Text Available The highest percentage in home electricity demands in Brazil lies with the water heating systems, where the electric shower has a great contribution in consumption. The use of solar thermal panels is an alternative to minimize the strain on the electrical system by heating water. Current study evaluates a water heating system built with materials commonly used in home constructions. The tested collector is a 1 m² flat plate. Experiments were conducted at the State University of Western Paraná (UNIOESTE, campus Cascavel, Paraná State, Brazil. Temperature data were collected by PT100 sensors and solar radiation was measured with a pyranometer, coupled to a CR-1000 datalogger, with readings and collection every 5 minutes for 1 year. Data collection and analysis showed that the system presented monthly efficiency ranging between 33.7 and 53.54%, and energy absorbed between 30.79 and 75.29 kWh m-².month. Results show the system is a good option for use in residential or rural water heating due to decrease in the electric bill.

  3. Photovoltaic thermal module concepts and their performance analysis: A review

    International Nuclear Information System (INIS)

    Hasan, M. Arif; Sumathy, K.

    2010-01-01

    This paper presents a review of the available literature covering the latest module aspects of different photovoltaic/thermal (PV/T) collectors and their performances in terms of electrical as well as thermal output. The review covers detailed description of flat-plate and concentrating PV/T systems, using liquid or air as the working fluid, numerical model analysis, experimental work and qualitative evaluation of thermal and electrical output. Also an in-depth review on the performance parameters such as, optimum mass flow rate, PV/T dimensions, air channel geometry is presented in this study. Based on the thorough review, it is clear that PV/T modules are very promising devices and there exists lot of scope to further improve their performances. Appropriate recommendations are made which will aid PV/T systems to improve their efficiency and reducing their cost, making them more competitive in the present market. (author)

  4. Photovoltaic thermal module concepts and their performance analysis: A review

    Energy Technology Data Exchange (ETDEWEB)

    Hasan, M. Arif; Sumathy, K. [Department of Mechanical Engineering, North Dakota State University, Fargo, ND (United States)

    2010-09-15

    This paper presents a review of the available literature covering the latest module aspects of different photovoltaic/thermal (PV/T) collectors and their performances in terms of electrical as well as thermal output. The review covers detailed description of flat-plate and concentrating PV/T systems, using liquid or air as the working fluid, numerical model analysis, experimental work and qualitative evaluation of thermal and electrical output. Also an in-depth review on the performance parameters such as, optimum mass flow rate, PV/T dimensions, air channel geometry is presented in this study. Based on the thorough review, it is clear that PV/T modules are very promising devices and there exists lot of scope to further improve their performances. Appropriate recommendations are made which will aid PV/T systems to improve their efficiency and reducing their cost, making them more competitive in the present market. (author)

  5. Energy and exergy analysis of photovoltaic-thermal collector with and without glass cover

    International Nuclear Information System (INIS)

    Chow, T.T.; Pei, G.; Fong, K.F.; Lin, Z.; Chan, A.L.S.; Ji, J.

    2009-01-01

    In photovoltaic-thermal (PV/T) technology, the use of glass cover on the flat-plate hybrid solar collector is favorable to the photothermic process but not to the photovoltaic process. Because of the difference in the usefulness of electricity and thermal energy, there is often no straight forward answer on whether a glazed or unglazed collector system is more suitable for a specific application. This glazing issue was tackled in this paper from the viewpoint of thermodynamics. Based on experimental data and validated numerical models, a study of the appropriateness of glass cover on a thermosyphon-based water-heating PV/T system was carried out. The influences of six selected operating parameters were evaluated. From the first law point of view, a glazed PV/T system is found always suitable if we are to maximize the quantity of either the thermal or the overall energy output. From the exergy analysis point of view however, the increase of PV cell efficiency, packing factor, water mass to collector area ratio, and wind velocity are found favorable to go for an unglazed system, whereas the increase of on-site solar radiation and ambient temperature are favorable for a glazed system

  6. Boundary Layer Flow and Heat Transfer of FMWCNT/Water Nanofluids over a Flat Plate

    Directory of Open Access Journals (Sweden)

    Mohammad Reza Safaei

    2016-09-01

    Full Text Available In the present study, the heat transfer and flow of water/FMWCNT (functionalized multi-walled carbon nanotube nanofluids over a flat plate was investigated using a finite volume method. Simulations were performed for velocity ranging from 0.17 mm/s to 1.7 mm/s under laminar regime and nanotube concentrations up to 0.2%. The 2-D governing equations were solved using an in-house FORTRAN code. For a specific free stream velocity, the presented results showed that increasing the weight percentage of nanotubes increased the Nusselt number. However, an increase in the solid weight percentage had a negligible effect on the wall shear stress. The results also indicated that increasing the free stream velocity for all cases leads to thinner boundary layer thickness, while increasing the FMWCNT concentration causes an increase in the boundary layer thickness.

  7. Boundary layer on a flat plate with suction

    International Nuclear Information System (INIS)

    Favre, A.; Dumas, R.; Verollet, E.

    1961-01-01

    This research done in wind tunnel concerns the turbulent boundary layer of a porous flat plate with suction. The porous wall is 1 m long and begins 1 m downstream of the leading edge. The Reynolds number based on the boundary layer thickness is of the order of 16.300. The suction rate defined as the ratio of the velocity perpendicular to the wall to the external flow velocity ranges from 0 to 2 per cent. The pressure gradient can be controlled. The mean velocity profiles have been determined for various positions and suction rates by means of total pressure probes together with the intensities of the turbulent velocity fluctuations components, energy spectra and correlations by means of hot wire anemometers, spectral analyser and correlator. The stream lines, the values of the viscous and turbulent shear stresses, of the local wall friction, of the turbulent energy production term, with some information on the dissipation of the energy have been derived from these measurements. For these data the integral of equation of continuity in boundary layer have been drawn. The suction effects on the boundary layer are important. The suction thoroughly alters the mean velocity profiles by increasing the viscous shear stresses near the wall and decreasing them far from the wall, it diminishes the longitudinal and transversal turbulence intensities, the turbulent shear stresses, and the production of energy of turbulence. These effects are much stressed in the inner part of the boundary layer. On the other hand the energy spectra show that the turbulence scale is little modified, the boundary layer thickness being not much diminished by the suction. The suction effects can be appreciated by comparing twice the suction rate to the wall friction coefficient (assumed airtight), quite noticeable as soon as the rate is about unity, they become very important when it reaches ten. (author) [fr

  8. A flat triangular shell element with Loof nodes

    DEFF Research Database (Denmark)

    Poulsen, Peter Noe; Damkilde, Lars

    1996-01-01

    In the formulation of flat shell elements it is difficult to achieve inter-element compatibility between membrane and transverse displacements for non-coplanar elements. Many elements lack proper nodal degrees of freedom to model intersections making the assembly of elements troublesome. A flat...... triangular shell element is established by a combination of a new plate bending element DKTL and the well-known linear membrane strain element LST, and for this element the above-mentioned deficiences are avoided. The plate bending element DKTL is based on Discrete Kirchhoff Theory and Loof nodes. The nodal...

  9. Free Convection over a Permeable Horizontal Flat Plate Embedded in a Porous Medium with Radiation Effects and Mixed Thermal Boundary Conditions

    OpenAIRE

    Najiyah S. Khasi'ie; Roziena Khairuddin; Najihah Mohamed; Mohd Zuki Salleh; Roslinda Nazar; Ioan Pop

    2012-01-01

    Problem statement: In this study, the mathematical modeling of free convection boundary layer flow over a permeable horizontal flat plate embedded in a porous medium under mixed thermal boundary conditions and radiation effects is considered. Approach: The transformed boundary layer equations are solved numerically using the shooting method. Results: Numerical solutions are obtained for the wall temperature, the heat transfer coefficient, as well as the velocity and temperature profiles. The ...

  10. High-performance flat-panel solar thermoelectric generators with high thermal concentration

    Science.gov (United States)

    Kraemer, Daniel; Poudel, Bed; Feng, Hsien-Ping; Caylor, J. Christopher; Yu, Bo; Yan, Xiao; Ma, Yi; Wang, Xiaowei; Wang, Dezhi; Muto, Andrew; McEnaney, Kenneth; Chiesa, Matteo; Ren, Zhifeng; Chen, Gang

    2011-07-01

    The conversion of sunlight into electricity has been dominated by photovoltaic and solar thermal power generation. Photovoltaic cells are deployed widely, mostly as flat panels, whereas solar thermal electricity generation relying on optical concentrators and mechanical heat engines is only seen in large-scale power plants. Here we demonstrate a promising flat-panel solar thermal to electric power conversion technology based on the Seebeck effect and high thermal concentration, thus enabling wider applications. The developed solar thermoelectric generators (STEGs) achieved a peak efficiency of 4.6% under AM1.5G (1 kW m-2) conditions. The efficiency is 7-8 times higher than the previously reported best value for a flat-panel STEG, and is enabled by the use of high-performance nanostructured thermoelectric materials and spectrally-selective solar absorbers in an innovative design that exploits high thermal concentration in an evacuated environment. Our work opens up a promising new approach which has the potential to achieve cost-effective conversion of solar energy into electricity.

  11. High-performance flat-panel solar thermoelectric generators with high thermal concentration.

    Science.gov (United States)

    Kraemer, Daniel; Poudel, Bed; Feng, Hsien-Ping; Caylor, J Christopher; Yu, Bo; Yan, Xiao; Ma, Yi; Wang, Xiaowei; Wang, Dezhi; Muto, Andrew; McEnaney, Kenneth; Chiesa, Matteo; Ren, Zhifeng; Chen, Gang

    2011-05-01

    The conversion of sunlight into electricity has been dominated by photovoltaic and solar thermal power generation. Photovoltaic cells are deployed widely, mostly as flat panels, whereas solar thermal electricity generation relying on optical concentrators and mechanical heat engines is only seen in large-scale power plants. Here we demonstrate a promising flat-panel solar thermal to electric power conversion technology based on the Seebeck effect and high thermal concentration, thus enabling wider applications. The developed solar thermoelectric generators (STEGs) achieved a peak efficiency of 4.6% under AM1.5G (1 kW m(-2)) conditions. The efficiency is 7-8 times higher than the previously reported best value for a flat-panel STEG, and is enabled by the use of high-performance nanostructured thermoelectric materials and spectrally-selective solar absorbers in an innovative design that exploits high thermal concentration in an evacuated environment. Our work opens up a promising new approach which has the potential to achieve cost-effective conversion of solar energy into electricity. © 2011 Macmillan Publishers Limited. All rights reserved

  12. Suitability of x-ray paper as an inspection tool for flat plate nuclear fuel

    International Nuclear Information System (INIS)

    Barna, B.A.

    1979-01-01

    The flat plate nuclear fuel used in the Advanced Test Reactor (ATR) has several attributes which are best examined by radiography. These are fuel core dimensions and location, homogeneity of the uranium aluminide alloy that composes the core, and the location and sizing of fuel particles in the fuel free edge borders of the plates. The most economiccal approach is to inspect for all three attributes from a single radiograph which requires accommodation of a large contrast range. Currently radiography is conducted using Kodak type M double emulsion film which provides a high quality image for evaluation. A promising alternative to film exists however in paper radiography. The two media are very similar except that paper uses a single emulsion which is deposited on an opaque diffuse reflecting surface. This requires that the image be viewed with reflected rather than transmitted light. This type of physical structure results in lower materials and processing costs. For example, Kodak Industrex 600 paper is approximately 50% the cost of type M film. In addition the image can be developed and viewed (although not fixed) in as little as 10 seconds. The results of test to ascertain the suitability of paper radiography for these purposes are described. Whole there was some degradation of the image with the use of paper, the paper was judged suitable for identification of edge border location, homogeneity, and floking

  13. Experimental and Statistical Analysis of MgO Nanofluids for Thermal Enhancement in a Novel Flat Plate Heat Pipes

    Science.gov (United States)

    Pandiaraj, P.; Gnanavelbabu, A.; Saravanan, P.

    Metallic fluids like CuO, Al2O3, ZnO, SiO2 and TiO2 nanofluids were widely used for the development of working fluids in flat plate heat pipes except magnesium oxide (MgO). So, we initiate our idea to use MgO nanofluids in flat plate heat pipe as a working fluid material. MgO nanopowders were synthesized by wet chemical method. Solid state characterizations of synthesized nanopowders were carried out by Ultraviolet Spectroscopy (UV), Fourier Transform Infrared Spectroscopy (FTIR), Scanning Electron Microscopy (SEM) and X-ray Diffraction (XRD) techniques. Synthesized nanopowders were prepared as nanofluids by adding water and as well as water/ethylene glycol as a binary mixture. Thermal conductivity measurements of prepared nanofluids were studied using transient hot-wire apparatus. Response surface methodology based on the Box-Behnken design was implemented to investigate the influence of temperature (30-60∘C), particle fraction (1.5-4.5 vol.%), and solution pH (4-12) of nanofluids as the independent variables. A total of 17 experiments were accomplished for the construction of second-order polynomial equations for target output. All the influential factors, their mutual effects and their quadratic terms were statistically validated by analysis of variance (ANOVA). The optimum stability and thermal conductivity of MgO nanofluids with various temperature, volume fraction and solution pH were predicted and compared with experimental results. The results revealed that increase in particle fraction and pH of MgO nanofluids at certain points would increase thermal conductivity and become stable at nominal temperature.

  14. Encapsulation of polymer photovoltaic prototypes

    DEFF Research Database (Denmark)

    Krebs, Frederik C

    2006-01-01

    A simple and efficient method for the encapsulation of polymer and organic photovoltaic prototypes is presented. The method employs device preparation on glass substrates with subsequent sealing using glass fiber reinforced thermosetting epoxy (prepreg) against a back plate. The method allows...

  15. Determination of hot-spot susceptibility of multistring photovoltaic modules in a central-station application

    Science.gov (United States)

    Gonzalez, C. C.; Weaver, R. W.; Ross, R. G., Jr.; Spencer, R.; Arnett, J. C.

    1984-01-01

    Part of the effort of the Jet Propulsion Laboratory (JPL) Flat-Plate Solar Array Project (FSA) includes a program to improve module and array reliability. A collaborative activity with industry dealing with the problem of hot-spot heating due to the shadowing of photovoltaic cells in modules and arrays containing several paralleled cell strings is described. The use of multiparallel strings in large central-station arrays introduces the likelihood of unequal current sharing and increased heating levels. Test results that relate power dissipated, current imbalance, cross-strapping frequency, and shadow configuration to hot-spot heating levels are presented. Recommendations for circuit design configurations appropriate to central-station applications that reduce the risk of hot-spot problems are offered. Guidelines are provided for developing hot-spot tests for arrays when current imbalance is a threat.

  16. Daily efficiency of flat-plate solar air collectors for grain drying

    Energy Technology Data Exchange (ETDEWEB)

    Ting, K.C.; Shove, G.C.

    1983-01-01

    Single cover flat-plate solar collectors incorporated into walls and roofs of farm buildings have been used to heat ambient air for low temperature grain drying systems. Large surface area and high airflow rate are common features of these collectors. The drying period may range from several days to several weeks. Therefore, a knowledge of the variations of the collectors' daily efficiencies with respect to their design parameters would be helpful in applying solar collectors to grain drying. The objective of this study was to develop a simpler means of direct calculation of a collector's daily efficiency based on its design parameters. Many factors, such as configuration of the collector, airflow rate, weather conditions, etc. will affect the performance of solar collectors. A large number of varied conditions need to be tested in order to investigate the effect of different parameters on the collector performance. To facilitate this investigation, a computer simulation model developed by Ting was used to calculate the daily efficiencies of collectors under different operating conditions. The computer model was verified by Morrison's experimental data. Based on the simulation results, a functional relationship was developed between the daily efficiencies of collectors and their design parameters.

  17. Study of Boundary Layer Convective Heat Transfer with Low Pressure Gradient Over a Flat Plate Via He's Homotopy Perturbation Method

    International Nuclear Information System (INIS)

    Fathizadeh, M.; Aroujalian, A.

    2012-01-01

    The boundary layer convective heat transfer equations with low pressure gradient over a flat plate are solved using Homotopy Perturbation Method, which is one of the semi-exact methods. The nonlinear equations of momentum and energy solved simultaneously via Homotopy Perturbation Method are in good agreement with results obtained from numerical methods. Using this method, a general equation in terms of Pr number and pressure gradient (λ) is derived which can be used to investigate velocity and temperature profiles in the boundary layer.

  18. Effect of Hall current and chemical reaction on MHD flow along an exponentially accelerated porous flat plate with internal heat absorption/generation

    International Nuclear Information System (INIS)

    Rath, Pravat Kumar; Dash, G.C.; Patra, Ajit Kumar

    2010-01-01

    Effect of Hall current on the unsteady free convection flow of an electrically conducting incompressible viscous fluid past an exponentially accelerated vertical porous flat plate with internal heat absorption/generation in the presence of foreign gases (such as H 2 , CO 2 , H 2 O, NH 3 ) and chemical reaction has been investigated. An uniform magnetic field transverse to the plate has been applied. The effects of the Hall current m, the hydromagnetic parameter Mt, the chemical reaction parameter K c the Grashof number for heat transfer G r , the Grashof number for mass transfer G c , the Schmidt number S c , the Prandtl number P r and the transpiration parameter α are discussed in detail. (author)

  19. Solar thermal–photovoltaic powered potato cold storage – Conceptual design and performance analyses

    International Nuclear Information System (INIS)

    Basu, Dipankar N.; Ganguly, A.

    2016-01-01

    Highlights: • Loss of food crop is a huge problem in India due to the shortage of cold storage. • Conceptual design of a power system using solar energy for a potato cold storage. • Integration of flat plate collector and SPV module with suitable operating strategy. • System provides a net energy surplus of about 36 MW h over a calendar year. • Rudimentary economic analysis found payback period of less than four years. - Abstract: Wastage of food crops due to the dearth of proper cold storage facilities is a huge problem in underdeveloped and developing countries of the world. Conceptual design of a potato cold storage is presented here, along with performance appraisal over a calendar year. The microclimate inside the cold storage is regulated using a water–lithium bromide absorption system. Proposed system utilizes both solar thermal and photovoltaic generated electrical energy for its operation. A suitable operation strategy is devised and the performance of the integrated system is analyzed from energy and exergy point of view to identify the required numbers of thermal collectors and photovoltaic modules. The proposed system is found to provide a net surplus of about 36 MW h energy over a calendar year, after meeting the in-house requirements. A rudimentary economic analysis is also performed to check the financial viability of the proposed system. Both the thermal and photovoltaic components are found to have payback periods less than four years.

  20. A new concept of hybrid photovoltaic thermal (PVT) collector with natural circulation

    Science.gov (United States)

    Lu, Longsheng; Wang, Xiaowu; Wang, Shuai; Liu, Xiaokang

    2017-07-01

    Hybrid photovoltaic thermal (PVT) technology refers to the integration of a photovoltaic module into a conventional solar thermal collector. Generally, the traditional design of a PVT collector has solar cells fixed on the top surface of an absorber in a flat-plate solar thermal collector. In this work, we presented a new concept of water-based PVT collector in which solar cells were directly placed on the bottom surface of its glass cover. A dynamic numerical model of this new PVT is developed and validated by experimental tests. With numerical analysis, it is found that at same covering factor, the electricity conversion efficiency of solar cells of the new PVT exceed that of the traditional PVT by nearly 10% while its thermal efficiency is approximately 30% lower than that of the traditional PVT. When the covering factor changes from 0.05 to 1, the thermal efficiency of the new PVT drops nearly 70%. The thermal efficiency of both the new PVT and the traditional PVT rise up as the water mass in tank increases. Meanwhile, the final water temperature in tank of the traditional PVT collector declines more than 17 °C, whereas that of the new PVT declines less than 6 °C, when the water mass increases from 100 to 300 kg.

  1. Photovoltaic performance models - A report card

    Science.gov (United States)

    Smith, J. H.; Reiter, L. R.

    1985-01-01

    Models for the analysis of photovoltaic (PV) systems' designs, implementation policies, and economic performance, have proliferated while keeping pace with rapid changes in basic PV technology and extensive empirical data compiled for such systems' performance. Attention is presently given to the results of a comparative assessment of ten well documented and widely used models, which range in complexity from first-order approximations of PV system performance to in-depth, circuit-level characterizations. The comparisons were made on the basis of the performance of their subsystem, as well as system, elements. The models fall into three categories in light of their degree of aggregation into subsystems: (1) simplified models for first-order calculation of system performance, with easily met input requirements but limited capability to address more than a small variety of design considerations; (2) models simulating PV systems in greater detail, encompassing types primarily intended for either concentrator-incorporating or flat plate collector PV systems; and (3) models not specifically designed for PV system performance modeling, but applicable to aspects of electrical system design. Models ignoring subsystem failure or degradation are noted to exclude operating and maintenance characteristics as well.

  2. Dual Solutions in a Boundary Layer Flow of a Power Law Fluid over a Moving Permeable Flat Plate with Thermal Radiation, Viscous Dissipation and Heat Generation/Absorption

    Directory of Open Access Journals (Sweden)

    Aftab Ahmed

    2018-01-01

    Full Text Available The aim of the present study is to investigate the combined effects of the thermal radiation, viscous dissipation, suction/injection and internal heat generation/absorption on the boundary layer flow of a non-Newtonian power law fluid over a semi infinite permeable flat plate moving in parallel or reversely to a free stream. The resulting system of partial differential equations (PDEs is first transformed into a system of coupled nonlinear ordinary differential equations (ODEs which are then solved numerically by using the shooting technique. It is found that the dual solutions exist when the flat plate and the free stream move in the opposite directions. Dimensionless boundary layer velocity and temperature distributions are plotted and discussed for various values of the emerging physical parameters. Finally, the tables of the relevant boundary derivatives are presented for some values of the governing physical parameters.

  3. Development of Streamwise Counter-Rotating Vortices in Flat Plate Boundary Layer Pre-set by Leading Edge Patterns

    KAUST Repository

    Hasheminejad, S.M.

    2017-04-03

    Development of streamwise counter-rotating vortices induced by leading edge patterns with different pattern shape is investigated using hot-wire anemometry in the boundary layer of a flat plate. A triangular, sinusoidal and notched patterns with the same pattern wavelength λ of 15mm and the same pattern amplitude A of 7.5mm were examined for free-stream velocity of 3m/s. The results show a good agreement with earlier studies. The inflection point on the velocity profile downstream of the trough of the patterns at the beginning of the vortex formation indicates that the vortices non-linearly propagate downstream. An additional vortex structure was also observed between the troughs of the notched pattern.

  4. Local distribution of wall static pressure and heat transfer on a rough flat plate impinged by a slot air jet

    Science.gov (United States)

    Meda, Adimurthy; Katti, Vadiraj V.

    2017-08-01

    The present work experimentally investigates the local distribution of wall static pressure and the heat transfer coefficient on a rough flat plate impinged by a slot air jet. The experimental parameters include, nozzle-to-plate spacing (Z /D h = 0.5-10.0), axial distance from stagnation point ( x/D h ), size of detached rib ( b = 4-12 mm) and Reynolds number ( Re = 2500-20,000). The wall static pressure on the surface is recorded using a Pitot tube and a differential pressure transmitter. Infrared thermal imaging technique is used to capture the temperature distribution on the target surface. It is observed that, the maximum wall static pressure occurs at the stagnation point ( x/D h = 0) for all nozzle-to-plate spacing ( Z/D h ) and rib dimensions studied. Coefficient of wall static pressure ( C p ) decreases monotonically with x/D h . Sub atmospheric pressure is evident in the detached rib configurations for jet to plate spacing up to 6.0 for all ribs studied. Sub atmospheric region is stronger at Z/D h = 0.5 due to the fluid accelerating under the rib. As nozzle to plate spacing ( Z/D h ) increases, the sub-atmospheric region becomes weak and vanishes gradually. Reasonable enhancement in both C p as well as Nu is observed for the detached rib configuration. Enhancement is found to decrease with the increase in the rib width. The results of the study can be used in optimizing the cooling system design.

  5. Experimental investigation on performance of lithium-ion battery thermal management system using flat plate loop heat pipe for electric vehicle application

    International Nuclear Information System (INIS)

    Putra, Nandy; Ariantara, Bambang; Pamungkas, Rangga Aji

    2016-01-01

    Highlights: • Flat plate loop heat pipe (FPLHP) is studied in the thermal management system for electric vehicle. • Distilled water, alcohol, and acetone on thermal performances of FPLHP were tested. • The FPLHP can start up at fairly low heat load. • Temperature overshoot phenomena were observed during the start-up period. - Abstract: The development of electric vehicle batteries has resulted in very high energy density lithium-ion batteries. However, this growth is accompanied by the risk of thermal runaway, which can cause serious accidents. Heat pipes are heat exchangers that are suitable to be applied in electric vehicle battery thermal management for their lightweight and compact size, and they do not require external power supply. This study examined experimentally a flat plate loop heat pipe (FPLHP) performance as a heat exchanger in the thermal management system of the lithium-ion battery for electric vehicle application. The heat generation of the battery was simulated using a cartridge heater. Stainless steel screen mesh was used as the capillary wick. Distilled water, alcohol, and acetone were used as working fluids with a filling ratio of 60%. It was found that acetone gave the best performance that produces a thermal resistance of 0.22 W/°C with 50 °C evaporator temperature at heat flux load of 1.61 W/cm"2.

  6. Application of He's homotopy perturbation method to boundary layer flow and convection heat transfer over a flat plate

    International Nuclear Information System (INIS)

    Esmaeilpour, M.; Ganji, D.D.

    2007-01-01

    In this Letter, the problem of forced convection over a horizontal flat plate is presented and the homotopy perturbation method (HPM) is employed to compute an approximation to the solution of the system of nonlinear differential equations governing on the problem. It has been attempted to show the capabilities and wide-range applications of the homotopy perturbation method in comparison with the previous ones in solving heat transfer problems. The obtained solutions, in comparison with the exact solutions admit a remarkable accuracy. A clear conclusion can be drawn from the numerical results that the HPM provides highly accurate numerical solutions for nonlinear differential equations

  7. System engineering and design of LSC-PV for outdoor lighting applications

    NARCIS (Netherlands)

    Viswanathan, B.; Reinders, A.H.M.E.; De Boer, D.K.G.; Ras, A.; Zahn, H.; Desmet, L.

    2012-01-01

    Solar photovoltaic outdoor lighting applications usually comprise flat plate PV modules mounted on top of a light pole. In our paper instead, it is thought of to design the light pole as a luminescent solar concentrator photovoltaic (LSC-PV) module with solar cell strips and hence reduce costs of

  8. No-contact method of determining average working-surface temperature of plate-type radiation-absorbing thermal exchange panels of flat solar collectors for heating heat-transfer fluid

    International Nuclear Information System (INIS)

    Avezova, N.R.; Avezov, R.R.

    2015-01-01

    A brand new no-contact method of determining the average working-surface temperature of plate-type radiation-absorbing thermal exchange panels (RATEPs) of flat solar collectors (FSCs) for heating a heat-transfer fluid (HTF) is suggested on the basis of the results of thermal tests in full-scale quasistationary conditions. (authors)

  9. Experimental determination of new statistical correlations for the calculation of the heat transfer coefficient by convection for flat plates, cylinders and tube banks

    Directory of Open Access Journals (Sweden)

    Ismael Fernando Meza Castro

    2017-07-01

    Full Text Available Introduction: This project carried out an experimental research with the design, assembly, and commissioning of a convection heat transfer test bench. Objective: To determine new statistical correlations that allow knowing the heat transfer coefficients by air convection with greater accuracy in applications with different heating geometry configurations. Methodology: Three geometric configurations, such as flat plate, cylinders and tube banks were studied according to their physical properties through Reynolds and Prandtl numbers, using a data transmission interface using Arduino® controllers Measured the air temperature through the duct to obtain real-time data and to relate the heat transferred from the heating element to the fluid and to perform mathematical modeling in specialized statistical software. The study was made for the three geometries mentioned, one power per heating element and two air velocities with 10 repetitions. Results: Three mathematical correlations were obtained with regression coefficients greater than 0.972, one for each heating element, obtaining prediction errors in the heat transfer convective coefficients of 7.50% for the flat plate, 2.85% for the plate Cylindrical and 1.57% for the tube bank. Conclusions: It was observed that in geometries constituted by several individual elements, a much more accurate statistical adjustment was obtained to predict the behavior of the convection heat coefficients, since each unit reaches a stability in the surface temperature profile with Greater speed, giving the geometry in general, a more precise measurement of the parameters that govern the transfer of heat, as it is in the case of the geometry of the tube bank.

  10. Direct numerical simulation of laminar-turbulent flow over a flat plate at hypersonic flow speeds

    Science.gov (United States)

    Egorov, I. V.; Novikov, A. V.

    2016-06-01

    A method for direct numerical simulation of a laminar-turbulent flow around bodies at hypersonic flow speeds is proposed. The simulation is performed by solving the full three-dimensional unsteady Navier-Stokes equations. The method of calculation is oriented to application of supercomputers and is based on implicit monotonic approximation schemes and a modified Newton-Raphson method for solving nonlinear difference equations. By this method, the development of three-dimensional perturbations in the boundary layer over a flat plate and in a near-wall flow in a compression corner is studied at the Mach numbers of the free-stream of M = 5.37. In addition to pulsation characteristic, distributions of the mean coefficients of the viscous flow in the transient section of the streamlined surface are obtained, which enables one to determine the beginning of the laminar-turbulent transition and estimate the characteristics of the turbulent flow in the boundary layer.

  11. Measurements of Conversion Efficiency for a Flat Plate Thermophotovoltaic System Using a Photonic Cavity Test System

    International Nuclear Information System (INIS)

    Brown, E.J.; Ballinger, C.T.; Burger, S.R.; Charache, G.W.; Danielson, L.R.; DePoy, D.M.; Donovan, T.J.; LoCascio, M.

    2000-01-01

    The performance of a 1 cm 2 thermophotovoltaic (TPV) module was recently measured in a photonic cavity test system. A conversion efficiency of 11.7% was measured at a radiator temperature of 1076 C and a module temperature of 29.9 C. This experiment achieved the highest direct measurement of efficiency for an integrated TPV system. Efficiency was calculated from the ratio of the peak (load matched) electrical power output and the heat absorption rate. Measurements of these two parameters were made simultaneously to assure the validity of the measured efficiency value. This test was conducted in a photonic cavity which mimicked a typical flat-plate TPV system. The radiator was a large, flat graphite surface. The module was affixed to the top of a copper pedestal for heat absorption measurements. The heat absorption rate was proportional to the axial temperature gradient in the pedestal under steady-state conditions. The test was run in a vacuum to eliminate conductive and convective heat transfer mechanisms. The photonic cavity provides the optimal test environment for TPV efficiency measurements because it incorporates all important physical phenomena found in an integrated TPV system: high radiator emissivity and blackbody spectral shape, photon recycling, Lambertian distribution of incident radiation and complex geometric effects. Furthermore, the large aspect ratio between radiating surface area and radiator/module spacing produces a view factor approaching unity with minimal photon leakage

  12. Analysis of Heat Transfer and Pressure Drop for a Gas Flowing Through a set of Multiple Parallel Flat Plates at High Temperatures

    Science.gov (United States)

    Einstein, Thomas H.

    1961-01-01

    Equations were derived representing heat transfer and pressure drop for a gas flowing in the passages of a heater composed of a series of parallel flat plates. The plates generated heat which was transferred to the flowing gas by convection. The relatively high temperature level of this system necessitated the consideration of heat transfer between the plates by radiation. The equations were solved on an IBM 704 computer, and results were obtained for hydrogen as the working fluid for a series of cases with a gas inlet temperature of 200 R, an exit temperature of 5000 0 R, and exit Mach numbers ranging from 0.2 to O.8. The length of the heater composed of the plates ranged from 2 to 4 feet, and the spacing between the plates was varied from 0.003 to 0.01 foot. Most of the results were for a five- plate heater, but results are also given for nine plates to show the effect of increasing the number of plates. The heat generation was assumed to be identical for each plate but was varied along the length of the plates. The axial variation of power used to obtain the results presented is the so-called "2/3-cosine variation." The boundaries surrounding the set of plates, and parallel to it, were assumed adiabatic, so that all the power generated in the plates went into heating the gas. The results are presented in plots of maximum plate and maximum adiabatic wall temperatures as functions of parameters proportional to f(L/D), for the case of both laminar and turbulent flow. Here f is the Fanning friction factor and (L/D) is the length to equivalent diameter ratio of the passages in the heater. The pressure drop through the heater is presented as a function of these same parameters, the exit Mach number, and the pressure at the exit of the heater.

  13. A thermoeconomic model of a photovoltaic heat pump

    International Nuclear Information System (INIS)

    Mastrullo, R.; Renno, C.

    2010-01-01

    In this paper the model of a heat pump whose evaporator operates as a photovoltaic collector, is studied. The energy balance equations have been used for some heat pump components, and for each layer of the photovoltaic evaporator: covering glaze, photovoltaic modules, thermal absorber plate, refrigerant tube and insulator. The model has been solved by means of a program using proper simplifications. The system input is represented by the solar radiation intensity and the environment temperature, that influence the output electric power of the photovoltaic modules and the evaporation power. The model results have been obtained referring to the photovoltaic evaporator and the plant operating as heat pump, in terms of the photovoltaic evaporator layers temperatures, the refrigerant fluid properties values in the cycle fundamental points, the thermal and mechanical powers, the efficiencies that characterize the plant performances from the energy, exergy and economic point of view. This study allows to realize a thermoeconomic comparison between a photovoltaic heat pump and a traditional heat pump under the same working conditions.

  14. Characteristics of heat transfer and fluid flow in a channel with single-row plates array oblique to flow direction for photovoltaic/thermal system

    International Nuclear Information System (INIS)

    Ali, Ahmed Hamza H.; Ahmed, Mahmoud; Youssef, M.S.

    2010-01-01

    This study has been carried out to investigate the characteristics of convective heat transfer and fluid flow for a single row of oblique plates array to the flow direction inside a channel. The flow inside the channel is laminar and the plates array have spanwise distance between the plates and heated by radiation. This configuration has been designed to be used for Photovoltaic/Thermal system (PV/T) applications. The theoretical results are validated with measured values, and a good agreement prevailed. The results show that an increase in the plate oblique angle (γ) in the range from 0 to 15 degrees, leads to an increase in the Nusselt number (Nu) up to a maximum value and then decreases. The oblique angle at the maximum value of Nu depends on the flow Reynolds Number (Re), and (l w /l pl ), where (l w /l pl ) is defined as the ratio of the plates' spacing at zero oblique angle to the plate length. Furthermore, increasing (l w /l pl ) results in a significant increase in the heat transfer coefficient depending on the values of Re, and plate oblique angle (γ). In addition, increasing (γ) from 0 to 15 degrees results in a decrease in the friction factor up to a certain value, after which the friction value approaches a constant value depending on Re value and (l w /l pl ). It was found that for any value of the plate oblique angle (γ), the friction factor decreases with the increase of the values of (l w /l pl ) and Re, respectively.

  15. A Flat Solar Collector Built from Galvanized Steel Plate, Working by Thermosyphonic Flow, Optimized for Mexican Conditions

    Directory of Open Access Journals (Sweden)

    Á. Marroquín de Jesús

    2009-07-01

    Full Text Available Design, construction, and testing of the thermal performance of a flat solar collector for domestic water heating are described. The absorbing plate is built from readily available materials: two sheets of galvanized steel, one of the channelled type, the other one flat, which are joined by electric welding. The absorber is connected to a 198–L thermotank, insulated with polyurethane foam. In terms of receiving surface, the prototype tested here has an area of 1.35 m2, about 20% smaller than comparable copper–tube–based collectors offered in the market. Temperature measurements conducted over a 30–day period gave values which were a few degrees lower than the theoretically calculated water temperatures. Momentary thermal efficiency values between 35% and 77% were observed. The water temperature achieved in the tank at the end of the day aver ages 65°C in winter weather conditions in the central Mexican highland. This design of solar water heater is well suited to Mexican conditions, as it makes use of the high local intensity of the solar radiation, and as the channel shape of the ducts minimizes bursting during the rare occurrences of freezing temperatures in the region; it also has the advantage of being manufacturable at low cost from simple materials.

  16. Visualization of the contact line during the water exit of flat plates

    Science.gov (United States)

    Tassin, A.; Breton, T.; Forest, B.; Ohana, J.; Chalony, S.; Le Roux, D.; Tancray, A.

    2017-08-01

    We investigate experimentally the time evolution of the wetted surface during the lifting of a body initially floating at the water surface. This phenomenon is referred to as the water exit problem. The water exit experiments were conducted with transparent (PMMA) mock-ups of two different shapes: a circular disc and a square flat plate. Two different lighting systems were used to diffuse light in the mock-up material: a central high-power LED light normal to the surface and an edge-lighting system featuring an array of LED lights. These setups make it possible to illuminate the contact line, which delimits the surface of contact between the mock-up and the water. The characteristic size of the mock-ups is about 20 cm and the acceleration of the mock-up oscillates between 0 and 25 m/s^2. We show that the central light setup gives satisfactory results for the circular disc and that the edge lighting technique makes it possible to follow a contact line with a time-evolving complex shape (strong changes of convexity) up to 1000 fps. The observations presented in the paper support the possibility of extending this promising technique to more general three-dimensional bodies with arbitrary motion (e.g., including pitch motion).

  17. Long-term performance potential of concentrated photovoltaic (CPV) systems

    KAUST Repository

    Burhan, Muhammad

    2017-07-17

    Owing to the diverse photovoltaic (PV) systems’ design and technology, as well as the dynamic nature of insolation data received on the aperture surfaces, the instantaneous output from a PV system fluctuates greatly. For accurate performance estimation of a large PV field, the long term performance as electrical output is a more rational approach over the conventional testing methods, such as at Standard Testing Conditions (STC) and at the Nominal Operating Cell Temperature (NOCT) available hitherto. In this paper, the long-term performances of concentrated PVs (Cassegrain reflectors and Fresnel lens) with 2-axes tracking and a variety of PV systems, namely the stationary flat-plate PV (mono-crystalline, poly-crystalline and thin-films CIS types), is presented over a period of one year for the merit comparison of system design, under the tropical weather conditions of Singapore. From the measured field performances, the total energy output of 240.2 kW h/m/year is recorded for CPV operation in Singapore, which is nearly two folds higher than the stationary PV panels.

  18. Solar photovoltaic water pumping system using a new linear actuator

    OpenAIRE

    Andrada Gascón, Pedro; Castro, Javier

    2007-01-01

    In this paper a photovoltaic solar pumping system using a new linear actuator is presented. This linear actuator is a double-sided flat two-phase variable-reluctance linear stepper motor that moves a piston-type water pump with the help of a rope, a pulley and a counterweight. The entire actuator pump ensemble is controlled by a simple electronic unit that manages the electric power generated by a photovoltaic array. The proposed system is suitable for rural communities in developing...

  19. Active Deformation in the Overriding Plate Associated with Temporal Changes of the Philippine Sea Plate Motion

    Science.gov (United States)

    Ishiyama, T.; Sato, H.; Van Horne, A.

    2015-12-01

    We present detailed geologic evidence linking changes over time in Philippine Sea plate (PHS) motion and intracontinental deformation in central and southwest (SW) Japan during the Pliocene and after. In the early Pliocene, subduction of the PHS plate under SW Japan restarted in a northerly direction after period of deceleration or cessation. Later, motion changed to a more westerly direction. Corresponding geological changes found in the overriding plate include unconformities in the forearc basins, changes in slip sense on faults, depocenter migration, re-organization of drainage systems and volcanism. Quaternary intraplate deformation is prominent north of the Median Tectonic Line (MTL) inactive segment, above a shallow flat slab. In contrast, less Quaternary tectonic activity is found north of the MTL active segment which lies over a steadily-slipping portion of the subducting slab that behaves as a less-deformed rigid block. Depocenters and active thrusting have migrated north/northwestward over the past 5 My above the shallow flat slab segment of the PHS. We reconstructed the Plio-Pleistocene migration history using Neogene stratigraphy and shallow seismic reflection profiles. We see shallow PHS slab contact with the lower continental crust in our deep seismic reflection profiles, which may explain its enhanced downward drag of the overriding plate and synchronous strong compression in the crust. We find evidence of more westerly PHS plate subduction since the middle Pleistocene in (1) unconformities in the Kumano forearc basin deposits in SW Japan, (2) drastic stream captures in Shikoku, and (3) concordant changes in fault slip sense from thrust to dextral slip along the MTL. Oblique subduction could have induced stronger horizontal stress in the overriding plate above the shallow flat slab which could account for the increasing geologic slip rate observed on active structures. During four repetitions of megathrust earthquake sequences since the 17th century

  20. Using thermal and compositional modeling to assess the role of water in Alaskan flat slab subduction

    Science.gov (United States)

    Robinson, S. E.; Porter, R. C.; Hoisch, T. D.

    2017-12-01

    Although plate tectonic theory is well established in the geosciences, the mechanisms and details of various plate-tectonics related phenomena are not always well understood. In some ( 10%) convergent plate boundaries, subduction of downgoing oceanic plates is characterized by low angle geometries and is termed "flat slab subduction." The mechanism(s) driving this form of subduction are not well understood. The goal of this study is to explore the role that water plays in these flat slab subduction settings. This is important for a better understanding of the behavior of these systems and for assessing volcanic hazards associated with subduction and slab rollback. In southern Alaska, the Pacific Plate is subducting beneath the North American plate at a shallow angle. This low-angle subduction within the region is often attributed to the subduction of the Yakutat block, a terrane accreting to the south-central coast of Alaska. This flat slab region is bounded by the Aleution arc to the west and the strike-slip Queen Charlotte fault to the east. Temperature and compositional models for a 500-km transect across this subduction zone in Alaska were run for ten million years (the length of time that flat slab subduction has been ongoing in Alaska) and allow for interpretation of present-day conditions at depth. This allows for an evaluation of two hypotheses regarding the role of water in flat-slab regions: (1) slab hydration and dehydration help control slab buoyancy which influences whether flat slab subduction will be maintained or ended. (2) slab hydration/dehydration of the overlying lithosphere impacts deformation within the upper plate as water encourages plate deformation. Preliminary results from thermal modeling using Thermod8 show that cooling of the mantle to 500 °C is predicted down to 100 km depth at 10 million years after the onset of low-angle subduction (representing present-day). Results from compositional modeling in Perple_X show the maximum amount

  1. Flat plate bonded fuel elements: Report number 2, 11 August--10 October 1953

    Energy Technology Data Exchange (ETDEWEB)

    1953-12-31

    Attention has continued to be concentrated on routes employing either wrought uranium or powder metallurgy product for the making of flat plate fuel elements of approximately 0.180-inch uranium metal core thickness bonded to either ribbed or ribless aluminum sheaths. Intermediate goals of the program are to have elements 18 inches long for MTR irradiation tests this fall and to make sufficient advance in the overall program in 1954 so that an initial reactor charge of 15-foot long fuels can be provided as early as possible in 1955. The development of a satisfactory process tube for retaining an assembly of several fuel elements is also required. Uranium of satisfactory quality for fabrication into fuel elements appears to have been produced by the August high alpha rolling at Superior Steel, and it seems likely from the electroplating results that the metal can be employed for electroplating and bonding without such surface preparation as vapor blasting, grinding, or machining. Difficulty in obtaining aluminum components, both sheaths and process tubes, remains a bottleneck in the development program and specifically has delayed work on the wrought metal samples for MTR tests.

  2. Reaction engineering analysis of Scenedesmus ovalternus in a flat-plate gas-lift photobioreactor.

    Science.gov (United States)

    Koller, Anja Pia; Wolf, Lara; Weuster-Botz, Dirk

    2017-02-01

    Microalgal strains of the genus Scenedesmus are a promising resource for commercial biotechnological applications. The temperature-, pH- and light-dependent growth of Scenedesmus ovalternus has been investigated on a laboratory scale. Best batch process performance was obtained at 30°C, pH 8.0 and an incident photon flux density of 1300μmolphotonsm -2 s -1 using a flat-plate gas-lift photobioreactor. Highest growth rate (0.11h -1 ) and space-time yield (1.7±0.1g CDW L -1 d -1 ) were observed when applying these reaction conditions. Biomass concentrations of up to 7.5±0.1g CDW L -1 were achieved within six days (25.0±0.5g CDW m -2 d -1 ). The light-dependent growth kinetics of S. ovalternus was identified using Schuster's light transfer model and Andrews' light inhibition model (K S =545μmolphotonsm -2 s -1 ; K I =2744μmolphotonsm -2 s -1 ; μ max =0.21h -1 ). The optimal mean integral photon flux density for growth of S. ovalternus was estimated to be 1223μmolphotonsm -2 s -1 . Copyright © 2016 Elsevier Ltd. All rights reserved.

  3. Safety-related requirements for photovoltaic modules and arrays

    Science.gov (United States)

    Levins, A.; Smoot, A.; Wagner, R.

    1984-01-01

    Safety requirements for photovoltaic module and panel designs and configurations for residential, intermediate, and large scale applications are investigated. Concepts for safety systems, where each system is a collection of subsystems which together address the total anticipated hazard situation, are described. Descriptions of hardware, and system usefulness and viability are included. A comparison of these systems, as against the provisions of the 1984 National Electrical Code covering photovoltaic systems is made. A discussion of the Underwriters Laboratory UL investigation of the photovoltaic module evaluated to the provisions of the proposed UL standard for plat plate photovoltaic modules and panels is included. Grounding systems, their basis and nature, and the advantages and disadvantages of each are described. The meaning of frame grounding, circuit groundings, and the type of circuit ground are covered.

  4. White Light Photorefractive Phase Zone Plates

    International Nuclear Information System (INIS)

    Yuan-Mei, Gao; Si-Min, Liu

    2008-01-01

    Incoherent white light from an incandescent source is employed to fabricate volume phase zone plates in LiNbO 3 : Fe, for the first time to our knowledge, which can guide and modulate the input white light or laser light. The diffractive efficiency of the white light volume phase zone plates fabricated can reach as high as 12%. In addition, we test the volume phase zone plates by a probe beam and find that the volume phase zone plate is present in the direction perpendicular to the c-axis and absent in the direction parallel to the c-axis. This directly proves the existence of photovoltaic photorefractive anisotropy of white light

  5. The performance analysis of the Trough Concentrating Solar Photovoltaic/Thermal system

    Energy Technology Data Exchange (ETDEWEB)

    Li, M., E-mail: liming@ynnu.edu.c [Solar Energy Research Institute, Yunnan Normal University, 650092 Kunming (China); Li, G.L. [School of Physics and Electronic Information, Yunnan Normal University, Kunming 650092 (China); Ji, X.; Yin, F.; Xu, L. [Solar Energy Research Institute, Yunnan Normal University, 650092 Kunming (China)

    2011-06-15

    Research highlights: {yields} A 2 m{sup 2} Trough Concentrating Photovoltaic/Thermal (TCPV/T) system is built, a single crystalline silicon solar cell array, a polycrystalline silicon cell array, a Super cell array and a GaAs cell array are respectively used in the experiments. {yields} Another 10 m{sup 2} TCPV/T system using the GaAs cell array and a concentrating silicon cell array are also constructed and characterized. {yields} The economic performance analysis show the electricity generating cost of the TCPV/T system with the concentrating silicon cell array can catch up with flat-plate PV system. -- Abstract: The electrical and thermal performance of a 2 m{sup 2} Trough Concentrating Photovoltaic/Thermal (TCPV/T) system with an energy flux ratio 10.27 are characterized by experiments. A single crystalline silicon solar cell array, a polycrystalline silicon cell array, a Super cell array and a GaAs cell array are respectively used in the experiments. The experimental results show that the electrical performance of the system with the GaAs cell array is better than that of crystal silicon solar cell arrays. The superior output performance of the GaAs cell array mainly benefits from its lower series resistance. But the thermal performances of the system using the single crystal silicon solar cell array and the polycrystalline silicon solar cell array are better. It results from the widths of the two types of cells in the system close to that of the focal line. Another 10 m{sup 2} TCPV/T system with an energy flux ratio of 20 using the GaAs cell array and a concentrating silicon cell array are also constructed and characterized. The experimental results indicate that the photoelectric efficiency of the GaAs cell array is 23.83%, and the instantaneous electrical efficiency and thermal efficiency of the system are 9.88% and 49.84% respectively. While the instantaneous electrical efficiency and thermal efficiency of the system using the low-cost concentrating

  6. The performance analysis of the Trough Concentrating Solar Photovoltaic/Thermal system

    International Nuclear Information System (INIS)

    Li, M.; Li, G.L.; Ji, X.; Yin, F.; Xu, L.

    2011-01-01

    Research highlights: → A 2 m 2 Trough Concentrating Photovoltaic/Thermal (TCPV/T) system is built, a single crystalline silicon solar cell array, a polycrystalline silicon cell array, a Super cell array and a GaAs cell array are respectively used in the experiments. → Another 10 m 2 TCPV/T system using the GaAs cell array and a concentrating silicon cell array are also constructed and characterized. → The economic performance analysis show the electricity generating cost of the TCPV/T system with the concentrating silicon cell array can catch up with flat-plate PV system. -- Abstract: The electrical and thermal performance of a 2 m 2 Trough Concentrating Photovoltaic/Thermal (TCPV/T) system with an energy flux ratio 10.27 are characterized by experiments. A single crystalline silicon solar cell array, a polycrystalline silicon cell array, a Super cell array and a GaAs cell array are respectively used in the experiments. The experimental results show that the electrical performance of the system with the GaAs cell array is better than that of crystal silicon solar cell arrays. The superior output performance of the GaAs cell array mainly benefits from its lower series resistance. But the thermal performances of the system using the single crystal silicon solar cell array and the polycrystalline silicon solar cell array are better. It results from the widths of the two types of cells in the system close to that of the focal line. Another 10 m 2 TCPV/T system with an energy flux ratio of 20 using the GaAs cell array and a concentrating silicon cell array are also constructed and characterized. The experimental results indicate that the photoelectric efficiency of the GaAs cell array is 23.83%, and the instantaneous electrical efficiency and thermal efficiency of the system are 9.88% and 49.84% respectively. While the instantaneous electrical efficiency and thermal efficiency of the system using the low-cost concentrating silicon cell array are 7.51% and 42

  7. Charts Adapted from Van Driest's Turbulent Flat-plate Theory for Determining Values of Turbulent Aerodynamic Friction and Heat-transfer Coefficients

    Science.gov (United States)

    Lee, Dorothy B; Faget, Maxime A

    1956-01-01

    A modified method of Van Driest's flat-plate theory for turbulent boundary layer has been found to simplify the calculation of local skin-friction coefficients which, in turn, have made it possible to obtain through Reynolds analogy theoretical turbulent heat-transfer coefficients in the form of Stanton number. A general formula is given and charts are presented from which the modified method can be solved for Mach numbers 1.0 to 12.0, temperature ratios 0.2 to 6.0, and Reynolds numbers 0.2 times 10 to the 6th power to 200 times 10 to the 6th power.

  8. Validation of a simple dynamic thermal performance characterization model based on the piston flow concept for flat-plate solar collectors

    DEFF Research Database (Denmark)

    Deng, Jie; Yang, Ming; Ma, Rongjiang

    2016-01-01

    dynamic model based on the first-order difference method is compared to that of the numerical solution of the collector ordinary differential equation (ODE) model using the fourth-order Runge-Kutta method. The improved thermal inertia model (TIM) on the basis of closed-form solution presented by Deng et....... (2012) for the model turns out to be the collector static response time constant τC by analytical derivation. The nonlinear least squares method is applied to determine the characteristic parameters of a flat-plate solar air collector previously tested by the authors. Then the obtained parameters...

  9. A preliminary investigation of boundary-layer transition along a flat plate with adverse pressure gradient

    Science.gov (United States)

    Von Doenhoff, Albert E

    1938-01-01

    Boundary-layer surveys were made throughout the transition region along a smooth flat plate placed in an airstream of practically zero turbulence and with an adverse pressure gradient. The boundary-layer Reynolds number at the laminar separation point was varied from 1,800 to 2,600. The test data, when considered in the light of certain theoretical deductions, indicated that transition probably began with separation of the laminar boundary layer. The extent of the transition region, defined as the distance from a calculated laminar separation point to the position of the first fully developed turbulent boundary-layer profile, could be expressed as a constant Reynolds number run of approximately 70,000. Some speculations are presented concerning the application of the foregoing concepts, after certain assumptions have been made, to the problem of the connection between transition on the upper surface of an airfoil at high angles of attack and the maximum lift.

  10. A Study of Chemically Reactive Species and Thermal Radiation Effects on an Unsteady MHD Free Convection Flow Through a Porous Medium Past a Flat Plate with Ramped Wall Temperature

    Science.gov (United States)

    Pandit, K. K.; Sarma, D.; Singh, S. I.

    2017-12-01

    An investigation of the effects of a chemical reaction and thermal radiation on unsteady MHD free convection heat and mass transfer flow of an electrically conducting, viscous, incompressible fluid past a vertical infinite flat plate embedded in a porous medium is carried out. The flow is induced by a general time-dependent movement of the vertical plate, and the cases of ramped temperature and isothermal plates are studied. An exact solution of the governing equations is obtained in closed form by the Laplace Transform technique. Some applications of practical interest for different types of plate motions are discussed. The numerical values of fluid velocity, temperature and species concentration are displayed graphically whereas the numerical values of skin friction, Nusselt number and Sherwood number are presented in a tabular form for various values of pertinent flow parameters for both ramped temperature and isothermal plates.

  11. Field test analysis of concentrator photovoltaic system focusing on average photon energy and temperature

    Science.gov (United States)

    Husna, Husyira Al; Ota, Yasuyuki; Minemoto, Takashi; Nishioka, Kensuke

    2015-08-01

    The concentrator photovoltaic (CPV) system is unique and different from the common flat-plate PV system. It uses a multi-junction solar cell and a Fresnel lens to concentrate direct solar radiation onto the cell while tracking the sun throughout the day. The cell efficiency could reach over 40% under high concentration ratio. In this study, we analyzed a one year set of environmental condition data of the University of Miyazaki, Japan, where the CPV system was installed. Performance ratio (PR) was discussed to describe the system’s performance. Meanwhile, the average photon energy (APE) was used to describe the spectrum distribution at the site where the CPV system was installed. A circuit simulator network was used to simulate the CPV system electrical characteristics under various environmental conditions. As for the result, we found that the PR of the CPV systems depends on the APE level rather than the cell temperature.

  12. Concentrator photovoltaic module architectures with capabilities for capture and conversion of full global solar radiation

    Science.gov (United States)

    Lee, Kyu-Tae; Yao, Yuan; He, Junwen; Fisher, Brent; Sheng, Xing; Lumb, Matthew; Xu, Lu; Anderson, Mikayla A.; Scheiman, David; Han, Seungyong; Kang, Yongseon; Gumus, Abdurrahman; Bahabry, Rabab R.; Lee, Jung Woo; Paik, Ungyu; Bronstein, Noah D.; Alivisatos, A. Paul; Meitl, Matthew; Burroughs, Scott; Mustafa Hussain, Muhammad; Lee, Jeong Chul; Nuzzo, Ralph G.; Rogers, John A.

    2016-12-01

    Emerging classes of concentrator photovoltaic (CPV) modules reach efficiencies that are far greater than those of even the highest performance flat-plate PV technologies, with architectures that have the potential to provide the lowest cost of energy in locations with high direct normal irradiance (DNI). A disadvantage is their inability to effectively use diffuse sunlight, thereby constraining widespread geographic deployment and limiting performance even under the most favorable DNI conditions. This study introduces a module design that integrates capabilities in flat-plate PV directly with the most sophisticated CPV technologies, for capture of both direct and diffuse sunlight, thereby achieving efficiency in PV conversion of the global solar radiation. Specific examples of this scheme exploit commodity silicon (Si) cells integrated with two different CPV module designs, where they capture light that is not efficiently directed by the concentrator optics onto large-scale arrays of miniature multijunction (MJ) solar cells that use advanced III-V semiconductor technologies. In this CPV+ scheme (“+” denotes the addition of diffuse collector), the Si and MJ cells operate independently on indirect and direct solar radiation, respectively. On-sun experimental studies of CPV+ modules at latitudes of 35.9886° N (Durham, NC), 40.1125° N (Bondville, IL), and 38.9072° N (Washington, DC) show improvements in absolute module efficiencies of between 1.02% and 8.45% over values obtained using otherwise similar CPV modules, depending on weather conditions. These concepts have the potential to expand the geographic reach and improve the cost-effectiveness of the highest efficiency forms of PV power generation.

  13. Characteristics of heat transfer and fluid flow in a channel with single-row plates array oblique to flow direction for photovoltaic/thermal system

    Energy Technology Data Exchange (ETDEWEB)

    Ali, Ahmed Hamza H. [Department of Energy Resources and Environmental Engineering, Egypt-Japan University of Science and Technology (E-JUST), P.O. Box 179, New Borg El-Arab City, Alexandria 21934 (Egypt); Ahmed, Mahmoud; Youssef, M.S. [Department of Mechanical Engineering, Faculty of Engineering, Assiut University, Assiut 71516 (Egypt)

    2010-09-15

    This study has been carried out to investigate the characteristics of convective heat transfer and fluid flow for a single row of oblique plates array to the flow direction inside a channel. The flow inside the channel is laminar and the plates array have spanwise distance between the plates and heated by radiation. This configuration has been designed to be used for Photovoltaic/Thermal system (PV/T) applications. The theoretical results are validated with measured values, and a good agreement prevailed. The results show that an increase in the plate oblique angle ({gamma}) in the range from 0 to 15 degrees, leads to an increase in the Nusselt number (Nu) up to a maximum value and then decreases. The oblique angle at the maximum value of Nu depends on the flow Reynolds Number (Re), and (l{sub w}/l{sub pl}), where (l{sub w}/l{sub pl}) is defined as the ratio of the plates' spacing at zero oblique angle to the plate length. Furthermore, increasing (l{sub w}/l{sub pl}) results in a significant increase in the heat transfer coefficient depending on the values of Re, and plate oblique angle ({gamma}). In addition, increasing ({gamma}) from 0 to 15 degrees results in a decrease in the friction factor up to a certain value, after which the friction value approaches a constant value depending on Re value and (l{sub w}/l{sub pl}). It was found that for any value of the plate oblique angle ({gamma}), the friction factor decreases with the increase of the values of (l{sub w}/l{sub pl}) and Re, respectively. (author)

  14. Experimental and numerical results from hybrid retrofitted photovoltaic panels

    International Nuclear Information System (INIS)

    Rossi, Cecilia; Tagliafico, Luca A.; Scarpa, Federico; Bianco, Vincenzo

    2013-01-01

    Highlights: • The experimental study focuses on the feasibility of hybrid PV/T panels retrofitting. • The critical role of a thin layer of air between PV panel and back plate is evidenced. • The benefit of the addition of a conductive paste layer is analyzed via FEM simulations. • The use of wood ribs to stick the back plate represents a cheap effective solution. - Abstract: The aim of present study is to investigate different methodologies to achieve a better contact between a photovoltaic panel and a thermal plate, in order to cool the PV panel by means of water in the perspective of coupling it with a heat pump. It is believed that this kind of system allows to obtain a higher energy efficiency. The analysis is developed both experimentally and numerically, testing different kinds of configurations in different operating conditions. Simulations are employed to analyze the effect of the variations of the contact resistance between the panel and the thermal plates, demonstrating that the use of a conductive paste increases the overall performance of the panel. Results show interesting possibilities in terms of retrofitting of existing photovoltaic panels by employing very simple solutions, such as to fix the thermal plate on the rear of the panel by means of wood ribs

  15. Operating Cell Temperature Determination in Flat-Plate Photovoltaic Modules; Calculo de la Temperature de Operacion de Celulas Solares en un Panel Fotovoltaico Plano

    Energy Technology Data Exchange (ETDEWEB)

    Chenlo, F.

    2002-07-01

    Two procedures (simplified and complete) to determine the operating cell temperature in photovoltaic modules operating in real conditions assuming isothermal stationary modules are presented in this work. Some examples are included that show the dependence of this temperature on several environment (sky, ground and ambient temperatures, solar irradiance, wind speed, etc.) and structural (module geometry and size, encapsulating materials, antirreflexive optical coatings, etc) factors and also on electrical module performance. In a further step temperature profiles for non-isothermal modules are analysed besides transitory effects due to variable irradiance and wind gusts. (Author)

  16. Technologic Information about Photovoltaic Applied in Urban Residences

    OpenAIRE

    Stephanie Fabris Russo; Daiane Costa Guimarães; Jonas Pedro Fabris; Maria Emilia Camargo; Suzana Leitão Russo; José Augusto Andrade Filho

    2016-01-01

    Among renewable energy sources, solar energy is the one that has stood out. Solar radiation can be used as a thermal energy source and can also be converted into electricity by means of effects on certain materials, such as thermoelectric and photovoltaic panels. These panels are often used to generate energy in homes, buildings, arenas, etc., and have low pollution emissions. Thus, a technological prospecting was performed to find patents related to the use of photovoltaic plates in urban re...

  17. Thermal analysis and performance optimization of a solar water heater flat plate collector: Application to Tetouan (Morocco)

    International Nuclear Information System (INIS)

    Dagdougui, Hanane; Ouammi, Ahmed; Robba, Michela; Sacile, Roberto

    2011-01-01

    The development of sustainable energy services like the supply of heating water may face a trade-off with a comfortable quality of life, especially in the winter season where suitable strategies to deliver an effective service are required. This paper investigates the heat transfer process as well as the thermal behavior of a flat plate collector evaluating different cover configurations. This investigation is performed according to a two-folded approach. Firstly, a complete model is formulated and implemented taking into account various modes of heat transfer in the collector. The goal is to investigate the impact of the number and types of covers on the top heat loss and the related thermal performance in order to support decision makers about the most cost-effective design. The proposed model can also be used to investigate the effect of the different parameters which may affect the performance of the collector. Secondly, a two objective constrained optimization model has been formulated and implemented to evaluate the optimality of different design approaches. The goal is to support decision makers in the definition of the optimal water flow and of the optimal collector flat area in order to give a good compromise between the collector efficiency and the output water temperature. The overall methodology has been tested on environmental data (temperature and irradiation) which are characteristic of Tetouan (Morocco). (author)

  18. Application of flat plate cavitation data to the analysis of limited cavitation from an isolated triangular surface protrusion

    International Nuclear Information System (INIS)

    Holl, J.W.

    1985-01-01

    Isolated surface roughness can cause significant localized pressure reductions which can lead to premature cavitation and degradation of the cavitation performance of a marine vehicle. The characteristic velocity theory was developed to analyze the limited cavitation characteristics of isolated surface protrusions. This theory is dependent upon knowing the boundary layer velocity profile in the vicinity of the roughness and the limited cavitation number for the roughness in a uniform stream. In the investigation described in this paper, the equation for triangular surface protrusions was determined experimentally by testing sharpedged flat plates in a water tunnel. These data were then employed in the characteristic velocity theory to calculate the cavitation characteristics of a triangular protrusion in a turbulent boundary layer for comparison with experimental data

  19. Entransy analysis on the thermal performance of flat plate solar air collectors

    Institute of Scientific and Technical Information of China (English)

    Jie Deng; Xudong Yang; Yupeng Xu; Ming Yang

    2017-01-01

    Based on the thermo-electric analogy (the so-called thermal entransy analysis), the unified airside convective heat transfer coefficient for different sorts of flat plate solar air collectors (FPSACs) is identified in terms of colector aperture area. In addition, the colector thermodynamic characteristic matching coefficient is defined to depict the matching property of collector thermal performance between the collector airside heat transfer and the total heat losses. It is found that the airside convective heat transfer coefficient can be experimentally determined by collector thermal performance test method to compare the airside thermal performances of FPSACs with different types of airflow structures. Moreover, the smaler the colector thermodynamic characteristic matching coefficient is, the better the thermodynamic perfect degree of a FPSAC is. The minimum limit value of the collector thermodynamic matching coefficient is close to zero but it can not vanish in practical engineering. Parameter sensitivity analysis on the total entransy dissipation and the entransy increment of a general FPSAC is also undertaken. The results indicate that the effective way of decreasing total entransy dissipation and enhancing the useful entransy increment is improving the efficiency intercept of the FPSAC. This is equivalent to the cognition result of thermal analysis. However, the evaluation indices identified by the thermal entransy analysis can not be extracted by singular thermal analysis.

  20. Efficiency of liquid flat-plate solar energy collector with solar tracking system

    Directory of Open Access Journals (Sweden)

    Chekerovska Marija

    2015-01-01

    Full Text Available An extensive testing programme is performed on a solar collector experimental set-up, installed on a location in Shtip (Republic of Macedonia, latitude 41º 45’ and longitude 22º 12’, in order to investigate the effect of the sun tracking system implementation on the collector efficiency. The set-up consists of two flat plate solar collectors, one with a fixed surface tilted at 30о towards the South, and the other one equipped with dual-axis rotation system. The study includes development of a 3-D mathematical model of the collectors system and a numerical simulation programme, based on the computational fluid dynamics (CFD approach. The main aim of the mathematical modelling is to provide information on conduction, convection and radiation heat transfer, so as to simulate the heat transfer performances and the energy capture capabilities of the fixed and moving collectors in various operating modes. The feasibility of the proposed method was confirmed by experimental verification, showing significant increase of the daily energy capture by the moving collector, compared to the immobile collector unit. The comparative analysis demonstrates a good agreement between the experimental and numerically predicted results at different running conditions, which is a proof that the presented CFD modelling approach can be used for further investigations of different solar collectors configurations and flow schemes.

  1. Direct simulation of flat-plate boundary layer with mild free-stream turbulence

    Science.gov (United States)

    Wu, Xiaohua; Moin, Parviz

    2014-11-01

    Spatially evolving direct numerical simulation of the flat-plate boundary layer has been performed. The momentum thickness Reynolds number develops from 80 to 3000 with a free-stream turbulence intensity decaying from 3 percent to 0.8 percent. Predicted skin-friction is in agreement with the Blasius solution prior to breakdown, follows the well-known T3A bypass transition data during transition, and agrees with the Erm and Joubert Melbourne wind-tunnel data after the completion of transition. We introduce the concept of bypass transition in the narrow sense. Streaks, although present, do not appear to be dynamically important during the present bypass transition as they occur downstream of infant turbulent spots. For the turbulent boundary layer, viscous scaling collapses the rate of dissipation profiles in the logarithmic region at different Reynolds numbers. The ratio of Taylor microscale and the Kolmogorov length scale is nearly constant over a large portion of the outer layer. The ratio of large-eddy characteristic length and the boundary layer thickness scales very well with Reynolds number. The turbulent boundary layer is also statistically analyzed using frequency spectra, conditional-sampling, and two-point correlations. Near momentum thickness Reynolds number of 2900, three layers of coherent vortices are observed: the upper and lower layers are distinct hairpin forests of large and small sizes respectively; the middle layer consists of mostly fragmented hairpin elements.

  2. A Study of Chemically Reactive Species and Thermal Radiation Effects on an Unsteady MHD Free Convection Flow Through a Porous Medium Past a Flat Plate with Ramped Wall Temperature

    Directory of Open Access Journals (Sweden)

    Pandit K. K.

    2017-12-01

    Full Text Available An investigation of the effects of a chemical reaction and thermal radiation on unsteady MHD free convection heat and mass transfer flow of an electrically conducting, viscous, incompressible fluid past a vertical infinite flat plate embedded in a porous medium is carried out. The flow is induced by a general time-dependent movement of the vertical plate, and the cases of ramped temperature and isothermal plates are studied. An exact solution of the governing equations is obtained in closed form by the Laplace Transform technique. Some applications of practical interest for different types of plate motions are discussed. The numerical values of fluid velocity, temperature and species concentration are displayed graphically whereas the numerical values of skin friction, Nusselt number and Sherwood number are presented in a tabular form for various values of pertinent flow parameters for both ramped temperature and isothermal plates.

  3. Experimental evaluation of flat plate solar collector using nanofluids

    International Nuclear Information System (INIS)

    Verma, Sujit Kumar; Tiwari, Arun Kumar; Chauhan, Durg Singh

    2017-01-01

    Highlights: • Solar collectors are special kind of heat exchangers. • Particle concentration is important parameter for thermal conductivity of nanofluid. • Rise of Bejan number indicates systems qualitative response. • Multi walled carbon nanotube is best performing. - Abstract: The present analysis focuses on a wide variety of nanofluids for evaluating performance of flat plate solar collector in terms of various parameters as well as in respect of energy and exergy efficiency. Also, based on our experimental findings on varying mass flow rate, the present investigation has been conducted with optimum particle volume concentration. Experiments indicate that for ∼0.75% particle volume concentration at a mass flow rate of 0.025 kg/s, exergy efficiency for Multi walled carbon nanotube/water nanofluid is enhanced by 29.32% followed by 21.46%, 16.67%, 10.86%, 6.97% and 5.74%, respectively for Graphene/water, Copper Oxide water, Aluminum Oxide/water, Titanium oxide/water, and Silicon Oxide/water respectively instead of water as the base fluid. Entropy generation, which is a drawback, is also minimum in Multiwalled carbon nanotube/water nanofluids. Under the same thermophysical parameters, the maximum drop in entropy generation can be observed in Multiwalled carbon nanotube/water, which is 65.55%, followed by 57.89%, 48.32%, 36.84%, 24.49% and 10.04%, respectively for graphene/water, copper oxide/water, Aluminum/water, Titanium Oxide /water, and Silicon oxide /water instead of water as the base fluid. Rise of Bejan number towards unity emphasizes improved system performance in terms of efficient conversion of the available energy into useful functions. The highest rise in energy efficiency of a collector has been recorded in Multiwalled carbon nanotube/water, which is 23.47%, followed by 16.97%, 12.64%, 8.28%, 5.09% and 4.08%, respectively for graphene/water, Copper oxide/water, Aluminum oxide/water, Titanium oxide /water, and Silicon oxide/water instead of

  4. Investigation of Thermal Performance of Flat Plate and Evacuated Tubular Solar Collectors According to a New Dynamic Test Method

    DEFF Research Database (Denmark)

    Kong, Weiqiang; Wang, Zhifeng; Fan, Jianhua

    2012-01-01

    obtain fluid thermal capacitance in data processing. Then theoretical analysis and experimental verification are carried out to investigate influencing factors of obtaining accurate and stable second order term. A flat plate and ETC solar collector are compared using both the new dynamic method......A new dynamic test method is introduced. This so called improved transfer function method features on two new collector parameters. One is time term which can indicate solar collector's inner heat transfer ability and the other is a second order term of collector mean fluid temperature which can...... and a standard method. The results show that the improved function method can accurately and robustly estimate these two kinds of solar collectors....

  5. Finite element analysis of inclined nozzle-plate junctions

    International Nuclear Information System (INIS)

    Dixit, K.B.; Seth, V.K.; Krishnan, A.; Ramamurthy, T.S.; Dattaguru, B.; Rao, A.K.

    1979-01-01

    Estimation of stress concentration at nozzle to plate or shell junctions is a significant problem in the stress analysis of nuclear reactors. The topic is a subject matter of extensive investigations and earlier considerable success has been reported on analysis for the cases when the nozzle is perpendicular to the plate or is radial to the shell. Analytical methods for the estimation of stress concentrations for the practical situations when the intersecting nozzle is inclined to the plate or is non-radial to the shell is rather scanty. Specific complications arise in dealing with the junction region when the nozzle with circular cross-section meets the non-circular cut-out on the plate or shell. In this paper a finite element analysis is developed for inclined nozzles and results are presented for nozzle-plate junctions. A method of analysis is developed with a view to achieving simultaneously accuracy of results and simplicity in the choice of elements and their connectivity. The circular nozzle is treated by axisymmetric conical shell elements. The nozzle portion in the region around the junction and the flat plate is dealt with by triangular flat shell elements. Special transition elements are developed for joining the flat shell elements with the axisymmetric elements under non-axisymmetric loading. A substructure method of analysis is adopted which achieves considerable economy in handling the structure and also conveniently combines the different types of elements in the structure. (orig.)

  6. A New Triangular Flat Shell Element With Drilling Rotations

    DEFF Research Database (Denmark)

    Damkilde, Lars

    2008-01-01

    A new flat triangular shell element has been developed based on a newly developed triangular plate bending element by the author and a new triangular membrane element with drilling degrees of freedom. The advantage of the drilling degree of freedom is that no special precautions have to be made...... in connecting with assembly of elements. Due to the drilling rotations all nodal degrees of freedom have stiffness, and therefore no artificial suppression of degrees of freedom are needed for flat or almost flat parts of the shell structure....

  7. Efficiencies and improvement potential of building integrated photovoltaic thermal (BIPVT) system

    International Nuclear Information System (INIS)

    Ibrahim, Adnan; Fudholi, Ahmad; Sopian, Kamaruzzaman; Othman, Mohd Yusof; Ruslan, Mohd Hafidz

    2014-01-01

    Highlights: • Performances analysis of BIPVT solar collector based on energy and exergy analyses. • A new absorber design of BIPVT solar collector is presented. • BIPVT solar collector is produced primary-energy saving efficiency from about 73% to 81%. • PVT energy efficiency varies between 55% and 62% where as the variation in the PVT exergy efficiency is from 12% to 14%. • The improvement potential is between 98 and 404 W. - Abstract: Building integrated photovoltaic thermal (BIPVT) system has been designed to produce both electricity and hot water and later integrated to building. The hot water is produced at the useful temperatures for the applications in Malaysia such as building integrated heating system and domestic hot water system as well as many industrial including agricultural and commercial applications. The photovoltaic thermal (PVT) system comprises of a high efficiency multicrystal photovoltaic (PV) module and spiral flow absorber for BIPVT application, have been performed and investigated. In this study, it was assumed that the absorber was attached underneath the flat plate single glazing sheet of polycrystalline silicon PV module and water has been used as a heat transfer medium in absorber. Performances analysis of BIPVT system based on energy and exergy analyses. It was based on efficiencies including energy and exergy, and exergetic improvement potential (IP) based on the metrological condition of Malaysia has been carried out. Results show that the hourly variation for BIPVT system, the PVT energy efficiency of 55–62% is higher than the PVT exergy efficiency of 12–14%. The improvement potential increases with increasing solar radiation, it is between 98 and 404 W. On the other hand, BIPVT system was produced primary-energy saving efficiency from about 73% to 81%

  8. Design and simulation of a low concentrating photovoltaic/thermal system

    International Nuclear Information System (INIS)

    Rosell, J.I.; Vallverdu, X.; Lechon, M.A.; Ibanez, M.

    2005-01-01

    The advantages of photovoltaic/thermal (PV/T) collectors and low solar concentration technologies are combined into a photovoltaic/thermal system to increase the solar energy conversion efficiency. This paper presents a prototype 11X concentration rate and two axis tracking system. The main novelty is the coupling of a linear Fresnel concentrator with a channel photovoltaic/thermal collector. An analytical model to simulate the thermal behaviour of the prototype is proposed and validated. Measured thermal performance of the solar system gives values above 60%. Theoretical analysis confirms that thermal conduction between the PV cells and the absorber plate is a critical parameter

  9. Theoretical and Field Experimental Investigation of an Arrayed Solar Thermoelectric Flat-Plate Generator

    Science.gov (United States)

    Rehman, Naveed ur; Siddiqui, Mubashir Ali

    2018-05-01

    This work theoretically and experimentally investigated the performance of an arrayed solar flat-plate thermoelectric generator (ASFTEG). An analytical model, based on energy balances, was established for determining load voltage, power output and overall efficiency of ASFTEGs. An array consists of TEG devices (or modules) connected electrically in series and operating in closed-circuit mode with a load. The model takes into account the distinct temperature difference across each module, which is a major feature of this model. Parasitic losses have also been included in the model for realistic results. With the given set of simulation parameters, an ASFTEG consisting of four commercially available Bi2Te3 modules had a predicted load voltage of 200 mV and generated 3546 μW of electric power output. Predictions from the model were in good agreement with field experimental outcomes from a prototype ASFTEG, which was developed for validation purposes. Later, the model was simulated to maximize the performance of the ASFTEG by adjusting the thermal and electrical design of the system. Optimum values of design parameters were evaluated and discussed in detail. Beyond the current limitations associated with improvements in thermoelectric materials, this study will eventually lead to the successful development of portable roof-top renewable TEGs.

  10. Flows around a moving flat plate simulated by the method of cellular automata. Seru outoman ho ni yoru ido heiban mawari no nagare

    Energy Technology Data Exchange (ETDEWEB)

    Tsutahara, M; Tomiyama, A; Kimura, T; Murata, H [Kobe University, Kobe (Japan). Faculty of Engineering

    1993-08-25

    In order to analyze the field of flow containing a moving boundary by the method of cellular automaton, the method of giving the boundary conditions in the case where a wall is moving at a constant velocity in the normal direction was examined. This method is used to simulate the movement of continuous fluid by statistically treating the movement of many discrete particles which repeat translation and collision. The collision law of particles at grid points is formulated so as to conserve mass(number of particles) and momentum for the purpose of satisfying the governing equation of flow. The object is the flow in the case where a flat plate moves in the normal direction inside the fluid enclosed by rectangular walls and the plate was assumed that it is first in a standing condition, then starts to move from left to right at a speed of V and stops in front of the right wall. Three boundary conditions, surrounding wall, plate in the standing condition and moving plate, were considered. Flow rates were calculated concerning the translation and collision and each divided mean-field-approximation region(space having a magnitude of capable of averaging operation of particles). Effectiveness of proposed boundary conditions was confirmed by a visualization experiment. 3 refs., 14 figs.

  11. Photovoltaic programme, edition 2004

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2004-07-01

    This comprehensive publication issued by the Swiss Federal Office of Energy's Photovoltaics (PV) Programme presents an overview (in English) of activities and projects in the photovoltaics research and pilot and demonstration areas in Switzerland for the year 2003. Progress in future solar cell technologies as well as in the area of modules, building integration and system technologies is summarised. Also, national and international co-operation and multi-national pilot and demonstration projects are commented on. Associated projects such as eco-balances for PV systems, forecasting and modelling tools as well as system monitoring tools are discussed. In the area of pilot and demonstration projects, component development, PV integration in sloping roofs, on flat roofs and on facades as well as further PV plant are looked at. Also, measurement campaigns, studies, statistics and other PV-related topics are summarised. This volume presents a list of 92 projects in the PV area including the appropriate Internet links and is completed with a collection of project abstracts.

  12. Photovoltaic programme, edition 2004

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2004-07-01

    This comprehensive publication issued by the Swiss Federal Office of Energy's Photovoltaics (PV) Programme presents an overview (in English) of activities and projects in the photovoltaics research and pilot and demonstration areas in Switzerland for the year 2003. Progress in future solar cell technologies as well as in the area of modules, building integration and system technologies is summarised. Also, national and international co-operation and multi-national pilot and demonstration projects are commented on. Associated projects such as eco-balances for PV systems, forecasting and modelling tools as well as system monitoring tools are discussed. In the area of pilot and demonstration projects, component development, PV integration in sloping roofs, on flat roofs and on facades as well as further PV plant are looked at. Also, measurement campaigns, studies, statistics and other PV-related topics are summarised. This volume presents a list of 92 projects in the PV area including the appropriate Internet links and is completed with a collection of project abstracts.

  13. Spectral assessment of the turbulent convection velocity in a spatially developing flat plate turbulent boundary layer at Reynolds numbers up to Re θ = 13000

    OpenAIRE

    Renard , N.; Deck , S.; Sagaut , P.

    2014-01-01

    International audience; A method inspired by del Alamo et al. [1] is derived to assess the wavelength-dependent convection velocity in a zero pressure gradient spatially developing flat plate turbulent boundary layer at Retheta = 13 000 for all wavelengths and all wall distances, using only estimates of the time power spectral density of the streamwise velocity and of its local spatial derivative. The resulting global convection velocity has a least-squares interpretation and is easily relate...

  14. Root-Contact/Pressure-Plate Assembly For Hydroponic System

    Science.gov (United States)

    Morris, Carlton E.; Loretan, Philip A.; Bonsi, Conrad K.; Hill, Walter A.

    1994-01-01

    Hydroponic system includes growth channels equipped with rootcontact/pressure-plate assemblies. Pump and associated plumbing circulate nutrient liquid from reservoir, along bottom of growth channels, and back to reservoir. Root-contact/pressure-plate assembly in each growth channel stimulates growth of roots by applying mild contact pressure. Flat plate and plate connectors, together constitute pressure plate, free to move upward to accommodate growth of roots. System used for growing sweetpotatoes and possibly other tuber and root crops.

  15. Investigation of thermal behaviour, pressure drop, and pumping power in a Cu nanofluid-filled solar flat-plate collector

    Directory of Open Access Journals (Sweden)

    Shamshirgaran S. Reza

    2017-01-01

    Full Text Available The evaluations of the performance of solar flat-plate collectors are reported in the literature. A computer program developed by MATLAB has been applied for modelling the performance of a solar collector under steady state laminar conditions. Results demonstrate that Cu-water nanofluid would be capable of boosting the thermal efficiency of the collector by 2.4% at 4% volume concentration in the case of using Cunanofluid instead of just water as the working fluid. It is noteworthy that, dispersing the nanoparticles into the water results in a higher pressure drop and, therefore, a higher power consumption for pumping the nanofluid within the collector. It has been estimated for the collector understudy, that the increase in the pressure drop and pumping power to be around 30%.

  16. Relaxation of an unsteady turbulent boundary layer on a flat plate in an expansion tube

    Science.gov (United States)

    Gurta, R. N.; Trimpi, R. L.

    1974-01-01

    An analysis is presented for the relaxation of a turbulent boundary layer on a semi-infinite flat plate after passage of a shock wave and a trailing driver gas-driven gas interface. The problem has special application to expansion-tube flows. The flow-governing equations have been transformed into the Crocco variables, and a time-similar solution is presented in terms of the dimensionless distance-time variable alpha and the dimensionless velocity variable beta. An eddy-viscosity model, similar to that of time-steady boundary layers, is applied to the inner and outer regions of the boundary layer. A turbulent Prandtl number equal to the molecular Prandtl number is used to relate the turbulent heat flux to the eddy viscosity. The numerical results, obtained by using the Gauss-Seidel line-relaxation method, indicate that a fully turbulent boundary layer relaxes faster to the final steady-state values of heat transfer and skin friction than a laminar boundary layer. The results also give a fairly good estimate of the local skin friction and heat transfer for near steady-flow conditions.

  17. Numerical investigation of hypersonic flat-plate boundary layer transition mechanism induced by different roughness shapes

    Science.gov (United States)

    Zhou, Yunlong; Zhao, Yunfei; Xu, Dan; Chai, Zhenxia; Liu, Wei

    2016-10-01

    The roughness-induced laminar-turbulent boundary layer transition is significant for high-speed aerospace applications. The transition mechanism is closely related to the roughness shape. In this paper, high-order numerical method is used to investigate the effect of roughness shape on the flat-plate laminar-to-turbulent boundary layer transition. Computations are performed in both the supersonic and hypersonic regimes (free-stream Mach number from 3.37 up to 6.63) for the square, cylinder, diamond and hemisphere roughness elements. It is observed that the square and diamond roughness elements are more effective in inducing transition compared with the cylinder and hemisphere ones. The square roughness element has the longest separated region in which strong unsteadiness exists and the absolute instability is formed, thus resulting in the earliest transition. The diamond roughness element has a maximum width of the separated region leading to the widest turbulent wake region far downstream. Furthermore, transition location moves backward as the Mach number increases, which indicates that the compressibility significantly suppresses the roughness-induced boundary layer transition.

  18. Selenium plating of aluminium and nickel surfaces

    International Nuclear Information System (INIS)

    Qureshi, N.; Shams, N.; Kamal, A.; Ashraf, A.

    1993-01-01

    Selenium exhibits photovoltaic and photoconductive properties. This makes selenium useful in the production of photocells, exposure meters for photographic use, in solar cells, etc. In commerce, selenium coated surfaces are extensively used as photo receptive drums in the xerography machines for reproducing documents. Laboratory experiments were designed to obtain selenium plating on different materials. Of the various electrodes tested for cathodic deposition, anodized aluminum and nickel plated copper were found to give good results. (author)

  19. Experimental Study of an SWH System with V-Shaped Plate

    Directory of Open Access Journals (Sweden)

    Jalaluddin

    2016-05-01

    Full Text Available Solar energy is known as an environmentally friendly energy source with a wide range of applications. This energy can be utilized in various applications such as domestic and industrial water heating using solar water heating (SWH systems. The thermal performance of an SWH system using a V-shaped absorber plate is presented in this study. Two SWH systems with different absorber plates, i.e. a flat-plate and a V-shaped plate, have been investigated experimentally. First, the absorptivity of the absorber plates was calculated analytically. The optimum V-shaped configuration with angle at β = 21° (V-shaped dimensions t = 4 cm and l = 4 cm was determined from various V-shaped plate absorbers based on their absorptivity and applied in the experimental study. Two SWH systems were installed and tested at a low flowrate of 0.5 L/min and at a high flowrate of 2 L/min. The results showed that the SWH system with V-shaped plate absorber had a 3.6-4.4% better performance compared with that of the system with flat-plate absorber.

  20. Optimization of flat-plate solar energy heat pipe collector parameters

    Energy Technology Data Exchange (ETDEWEB)

    Vasiliev, L L; Garakovich, L P; Khrustalev, D K

    1984-01-01

    Performance characteristics of flat solar energy collectors with heat pipes have been analysed with regard to various parameters. Their advantages are discussed. The use of heat pipes in solar energy collectors is proved to be efficient.

  1. Buckling analysis for structural sections and stiffened plates reinforced with laminated composites.

    Science.gov (United States)

    Viswanathan, A. V.; Soong, T.-C.; Miller, R. E., Jr.

    1972-01-01

    A classical buckling analysis is developed for stiffened, flat plates composed of a series of linked flat plate and beam elements. Plates are idealized as multilayered orthotropic elements; structural beads and lips are idealized as beams. The loaded edges of the stiffened plate are simply supported and the conditions at the unloaded edges can be prescribed arbitrarily. The plate and beam elements are matched along their common junctions for displacement continuity and force equilibrium in an exact manner. Offsets between elements are considered in the analysis. Buckling under uniaxial compressive load for plates, sections and stiffened plates is investigated. Buckling loads are found as the lowest of all possible general and local failure modes and the mode shape is used to determine whether buckling is a local or general instability. Numerical correlations with existing analysis and test data for plates, sections and stiffened plates including boron-reinforced structures are discussed. In general, correlations are reasonably good.

  2. A synthetic layout optimization of discrete heat sources flush mounted on a laminar flow cooled flat plate based on the constructal law

    International Nuclear Information System (INIS)

    Shi, Zhongyuan; Dong, Tao

    2015-01-01

    Highlights: • A constructal thermohydraulic optimization was carried out. • The effect of manufacturing limit on the Pareto solution set was discussed. • The suitable constraints may differ from those on a quasi-continuous basis. - Abstract: A synthetic optimization is presented for the Pareto layouts of discrete heat sources (with uniform heat flux) flush mounted on a flat plate over which laminar flow serves for cooling purpose. The peak temperatures and the flow drag loss are minimizing simultaneously provided that the total heat dissipation rate and the plate length are held constant. The impact of the manufacturing limit, i.e. the minimum length of the heated or the adiabatic patch, on the optimum layout is discussed. The results in general comply with analytical deduction based on the constructal theory. However in a finite length scenario, geometric constraints on the adiabatic spacing differ from that fits the situation in which maximum heat transfer performance alone is to be achieved.

  3. Standard performance tests of collectors of solar thermal energy: A selectively coated, flat-plate copper collector with one transparent cover and a tube-to-tube spacing of 3-7/8 inches

    Science.gov (United States)

    1976-01-01

    Basic test results are given of a flat-plate solar collector whose performance was determined in the NASA-Lewis solar simulator. The collector was tested over ranges of inlet temperatures, fluxes, and coolant flow rates. Collector efficiency is correlated in terms of inlet temperature and flux level.

  4. Experimental and numerical study of water-filled vessel impacted by flat projectiles

    Science.gov (United States)

    Zhang, Wei; Ren, Peng; Huang, Wei; Gao, Yu Bo

    2014-05-01

    To understand the failure modes and impact resistance of double-layer plates separated by water, a flat-nosed projectile was accelerated by a two-stage light gas gun against a water-filled vessel which was placed in an air-filled tank. Targets consisted of a tank made of two flat 5A06 aluminum alloy plates held by a high strength steel frame. The penetration process was recorded by a digital high-speed camera. The same projectile-target system was also used to fire the targets placed directly in air for comparison. Parallel numerical tests were also carried out. The result indicated that experimental and numerical results were in good agreement. Numerical simulations were able to capture the main physical behavior. It was also found that the impact resistance of double layer plates separated by water was lager than that of the target plates in air. Tearing was the main failure models of the water-filled vessel targets which was different from that of the target plates in air where the shear plugging was in dominate.

  5. Cost Estimates Of Concentrated Photovoltaic Heat Sink Production

    Science.gov (United States)

    2016-06-01

    PV), return on investment (ROI) 15. NUMBER OF PAGES 59 16. PRICE CODE 17. SECURITY CLASSIFICATION OF REPORT Unclassified 18. SECURITY...improvements increase overall system returns on investment and 11 provide pathways for further reduction in system costs (Phillips et al., 2015). Phillips...generation. As the CPV market has matured, production costs have come down to near flat-panel photovoltaic (PV) production costs. CPV units

  6. Design of a novel flat-plate photobioreactor system for green algal hydrogen production

    Energy Technology Data Exchange (ETDEWEB)

    Tamburic, B.; Zemichael, F.W.; Maitland, G.C.; Hellgardt, K. [Imperial College London (United Kingdom)

    2010-07-01

    Some unicellular green algae have the ability to photosynthetically produce molecular hydrogen using sunlight and water. This renewable, carbon-neutral process has the additional benefit of sequestering carbon dioxide during the algal growth phase. The main costs associated with this process result from building and operating a photobioreactor system. The challenge is to design an innovative and cost effective photobioreactor that meets the requirements of algal growth and sustainable hydrogen production. We document the details of a novel 1 litre vertical flat-plate photobioreactor that has been designed to accommodate green algal hydrogen production at the laboratory scale. Coherent, non-heating illumination is provided by a panel of cool white LEDs. The reactor body consists of two compartments constructed from transparent Perspex sheets. The primary compartment holds the algal culture, which is agitated by means of a recirculating gas flow. A secondary compartment is filled with water and used to control the temperature and wavelength of the system. The reactor is fitted with instruments that monitor the pH, pO{sub 2}, temperature and optical density of the culture. A membrane-inlet mass spectrometry system has been developed for hydrogen collection and in situ monitoring. The reactor is fully autoclaveable and the possibility of hydrogen leaks has been minimised. The modular nature of the reactor allows efficient cleaning and maintenance. (orig.)

  7. Evaluation of the 2013 Southeast Asian Haze on Solar Generation Performance.

    Science.gov (United States)

    Maghami, Mohammadreza; Hizam, Hashim; Gomes, Chandima; Hajighorbani, Shahrooz; Rezaei, Nima

    2015-01-01

    Pollution in Southeast Asia is a major public energy problem and the cause of energy losses. A significant problem with respect to this type of pollution is that it decreases energy yield. In this study, two types of photovoltaic (PV) solar arrays were used to evaluate the effect of air pollution. The performance of two types of solar arrays were analysed in this research, namely, two units of a 1 kWp tracking flat photovoltaic (TFP) and two units of a 1 kWp fixed flat photovoltaic arrays (FFP). Data analysis was conducted on 2,190 samples at 30 min intervals from 01st June 2013, when both arrays were washed, until 30th June 2013. The performance was evaluated by using environmental data (irradiation, temperature, dust thickness, and air pollution index), power output, and energy yield. Multiple regression models were predicted in view of the environmental data and PV array output. Results showed that the fixed flat system was more affected by air pollution than the tracking flat plate. The contribution of this work is that it considers two types of photovoltaic arrays under the Southeast Asian pollution 2013.

  8. Evaluation of the 2013 Southeast Asian Haze on Solar Generation Performance

    Science.gov (United States)

    Maghami, Mohammadreza; Hizam, Hashim; Gomes, Chandima; Hajighorbani, Shahrooz; Rezaei, Nima

    2015-01-01

    Pollution in Southeast Asia is a major public energy problem and the cause of energy losses. A significant problem with respect to this type of pollution is that it decreases energy yield. In this study, two types of photovoltaic (PV) solar arrays were used to evaluate the effect of air pollution. The performance of two types of solar arrays were analysed in this research, namely, two units of a 1 kWp tracking flat photovoltaic (TFP) and two units of a 1 kWp fixed flat photovoltaic arrays (FFP). Data analysis was conducted on 2,190 samples at 30 min intervals from 01st June 2013, when both arrays were washed, until 30th June 2013. The performance was evaluated by using environmental data (irradiation, temperature, dust thickness, and air pollution index), power output, and energy yield. Multiple regression models were predicted in view of the environmental data and PV array output. Results showed that the fixed flat system was more affected by air pollution than the tracking flat plate. The contribution of this work is that it considers two types of photovoltaic arrays under the Southeast Asian pollution 2013. PMID:26275303

  9. Three-dimensional flat shell-to-shell coupling: numerical challenges

    Science.gov (United States)

    Guo, Kuo; Haikal, Ghadir

    2017-11-01

    The node-to-surface formulation is widely used in contact simulations with finite elements because it is relatively easy to implement using different types of element discretizations. This approach, however, has a number of well-known drawbacks, including locking due to over-constraint when this formulation is used as a twopass method. Most studies on the node-to-surface contact formulation, however, have been conducted using solid elements and little has been done to investigate the effectiveness of this approach for beam or shell elements. In this paper we show that locking can also be observed with the node-to-surface contact formulation when applied to plate and flat shell elements even with a singlepass implementation with distinct master/slave designations, which is the standard solution to locking with solid elements. In our study, we use the quadrilateral four node flat shell element for thin (Kirchhoff-Love) plate and thick (Reissner-Mindlin) plate theory, both in their standard forms and with improved formulations such as the linked interpolation [1] and the Discrete Kirchhoff [2] elements for thick and thin plates, respectively. The Lagrange multiplier method is used to enforce the node-to-surface constraints for all elements. The results show clear locking when compared to those obtained using a conforming mesh configuration.

  10. Three-dimensional flat shell-to-shell coupling: numerical challenges

    Directory of Open Access Journals (Sweden)

    Guo Kuo

    2017-11-01

    Full Text Available The node-to-surface formulation is widely used in contact simulations with finite elements because it is relatively easy to implement using different types of element discretizations. This approach, however, has a number of well-known drawbacks, including locking due to over-constraint when this formulation is used as a twopass method. Most studies on the node-to-surface contact formulation, however, have been conducted using solid elements and little has been done to investigate the effectiveness of this approach for beam or shell elements. In this paper we show that locking can also be observed with the node-to-surface contact formulation when applied to plate and flat shell elements even with a singlepass implementation with distinct master/slave designations, which is the standard solution to locking with solid elements. In our study, we use the quadrilateral four node flat shell element for thin (Kirchhoff-Love plate and thick (Reissner-Mindlin plate theory, both in their standard forms and with improved formulations such as the linked interpolation [1] and the Discrete Kirchhoff [2] elements for thick and thin plates, respectively. The Lagrange multiplier method is used to enforce the node-to-surface constraints for all elements. The results show clear locking when compared to those obtained using a conforming mesh configuration.

  11. Standardized performance tests of collectors of solar thermal energy: A selectively coated, flat-plate copper collector with one transparent cover and a tube-to-tube spacing of 5 5/8 inches

    Science.gov (United States)

    1976-01-01

    This preliminary data report gives basic test results of a flat-plate solar collector whose performance was determined in the NASA-Lewis solar simulator. The collector was tested over ranges of inlet temperatures, fluxes and coolant flow rates. Collector efficiency is correlated in terms of inlet temperature and flux level.

  12. Skin friction drag reduction on a flat plate turbulent boundary layer using synthetic jets

    Science.gov (United States)

    Belanger, Randy; Boom, Pieter D.; Hanson, Ronald E.; Lavoie, Philippe; Zingg, David W.

    2017-11-01

    In these studies, we investigate the effect of mild synthetic jet actuation on a flat plate turbulent boundary layer with the goal of interacting with the large scales in the log region of the boundary layer and manipulating the overall skin friction. Results will be presented from both large eddy simulations (LES) and wind tunnel experiments. In the experiments, a large parameter space of synthetic jet frequency and amplitude was studied with hot film sensors at select locations behind a pair of synthetic jets to identify the parameters that produce the greatest changes in the skin friction. The LES simulations were performed for a selected set of parameters and provide a more complete evaluation of the interaction between the boundary layer and synthetic jets. Five boundary layer thicknesses downstream, the skin friction between the actuators is generally found to increase, while regions of reduced skin friction persist downstream of the actuators. This pattern is reversed for forcing at low frequency. Overall, the spanwise-averaged skin friction is increased by the forcing, except when forcing at high frequency and low amplitude, for which a net skin friction reduction persists downstream. The physical interpretation of these results will be discussed. The financial support of Airbus is gratefully acknowledged.

  13. Proceedings of the US DOE Photovoltaics Technology Development and Applications Program Review

    Energy Technology Data Exchange (ETDEWEB)

    None

    1978-01-01

    The proceedings include summaries of thirty-eight presentations under the following sections: overview and project status reports; standards performance criteria; cost/economics; concentrator and flat panel technology alternative for 50 cents/watt; balance of system technology; and experience gained from the design and operation of photovoltaic systems.

  14. The effect of coupling a flat-plat collector on the solar still productivity

    International Nuclear Information System (INIS)

    Badran, O. O.; Al-Tahaineh, H. A.

    2006-01-01

    Experimental investigation to study the effect of coupling a flat plate solar collector on the productivity of solar stills was carried out. Other different parameters (i.e. water depth, direction of still, solar radiation) to enhance the productivity were also studied. Single slope solar still with mirrors fixed to its interior sides was coupled with a flat plate collector. It has been found that coupling of a solar collector with a still has increased the productivity by 56%. Also the increase of water depth has decreased the productivity, while the still productivity is found to be proportional to the solar radiation intensity.(Author)

  15. A pathway for sustainable conversion of sunlight to hydrogen using proposed compact CPV system

    KAUST Repository

    Burhan, Muhammad; Shahzad, Muhammad Wakil; Oh, Seung Jin; Ng, Kim Choon

    2018-01-01

    Solar energy being intermittent in nature, can provide a sustainable, steady and high density energy source when converted into electrolytic hydrogen. However, in current photovoltaic market trend with 99% conventional single junction PV panels, this cannot be achieved efficiently and economically. The advent of the multi-junction solar cells (MJCs), with cell-efficiency exceeding 46%, has yet to receive wide spread acceptance in the current PV market in form of concentrated photovoltaic (CPV) system, because of its system design complexity, limiting its application scope and customers. The objective of this paper is to develop a low cost compact CPV system that will not only eliminate its application and installation related restrictions but it is also introducing a highly efficient and sustainable photovoltaic system for common consumer, to convert intermittent sunlight into green hydrogen. The developed CPV system negates the common conviction by showing two times more power output than the flat plate PV, in tropical region. In addition, sunlight to hydrogen conversion efficiency of 18% is recorded for CPV, which is two times higher than alone electricity production efficiency of flat plate PV.

  16. A pathway for sustainable conversion of sunlight to hydrogen using proposed compact CPV system

    KAUST Repository

    Burhan, Muhammad

    2018-03-22

    Solar energy being intermittent in nature, can provide a sustainable, steady and high density energy source when converted into electrolytic hydrogen. However, in current photovoltaic market trend with 99% conventional single junction PV panels, this cannot be achieved efficiently and economically. The advent of the multi-junction solar cells (MJCs), with cell-efficiency exceeding 46%, has yet to receive wide spread acceptance in the current PV market in form of concentrated photovoltaic (CPV) system, because of its system design complexity, limiting its application scope and customers. The objective of this paper is to develop a low cost compact CPV system that will not only eliminate its application and installation related restrictions but it is also introducing a highly efficient and sustainable photovoltaic system for common consumer, to convert intermittent sunlight into green hydrogen. The developed CPV system negates the common conviction by showing two times more power output than the flat plate PV, in tropical region. In addition, sunlight to hydrogen conversion efficiency of 18% is recorded for CPV, which is two times higher than alone electricity production efficiency of flat plate PV.

  17. Encapsulation of polymer photovoltaic prototypes

    Energy Technology Data Exchange (ETDEWEB)

    Krebs, Frederik C. [The Danish Polymer Centre, RISOE National Laboratory, P.O. Box 49, DK-4000 Roskilde (Denmark)

    2006-12-15

    A simple and efficient method for the encapsulation of polymer and organic photovoltaic prototypes is presented. The method employs device preparation on glass substrates with subsequent sealing using glass fiber reinforced thermosetting epoxy (prepreg) against a back plate. The method allows for transporting oxygen and water sensitive devices outside a glove box environment after sealing and enables sharing of devices between research groups such that efficiency and stability can be evaluated in different laboratories. (author)

  18. An analysis of the relaxation of laminar boundary layer on a flat plate after passage of an interface with application to expansion-tube flows

    Science.gov (United States)

    Gupta, R. N.

    1972-01-01

    The relaxation of the accelerating-gas boundary layer to the test-gas boundary layer over a flat plate in an expansion tube is analyzed. Several combinations of test gas and acceleration gas are considered. The problem is treated in two conically similar limits: (1) when the time lag between the arrival of the shock and the interface at the leading edge of the plate is very large, and (2) when this lag is negligible. The time-dependent laminar-boundary-layer equations of a binary mixture of perfect gases are taken as the flow-governing equations. This coupled set of differential equations, written in terms of the Lam-Crocco variables, has been solved by a line-relaxation finite-difference techniques. The results presented include the Stanton number and the local skin-friction coefficient as functions of shock Mach number and the nondimensional distance-time variable. The results indicate that more than 95 percent of the test-gas boundary layer exists over a length, measured from the leading edge of the plate, equal to about three-tenths of the distance traversed by the interface in the free stream.

  19. Process intensification and integration of solar heat generation in the Chinese condiment sector – A case study of a medium sized Beijing based factory

    International Nuclear Information System (INIS)

    Sturm, Barbara; Meyers, Steven; Zhang, Yongjie; Law, Richard; Siqueiros Valencia, Eric J.; Bao, Huashan; Wang, Yaodong; Chen, Haisheng

    2015-01-01

    Highlights: • Solar energy was investigated as a renewable source of process heat. • Photovoltaic and/or solar thermal were considered for process heat generation. • Flat plate collectors were the most economical solution for hot water generation. • Steam generation was most economical with a cascade of photovoltaic and flat plate collectors. • Implementing both technologies leads to a reduction in utility import of 14%. - Abstract: Over the last decade, energy prices in China have risen dramatically. At the same time, extensive use of coal fired energy provision systems in industry has led to serious environmental and economic problems translating to an economic damage of an estimated 10% of the Gross Domestic Product. This has led to increasing awareness in the process industries of the need to save energy whilst replacing conventional energy sources with renewable ones. An energy audit was conducted for a soy sauce production facility in Beijing, which aimed to reduce its thermal energy demand through process intensification and to integrate renewable energy. Their current supply of thermal energy came directly from a district steam network, which was both directly consumed and downgraded via heat exchangers. It was determined that the best two solar integration locations would be in the pre-heating/mixing of raw ingredients to 60 °C and the subsequent direct steaming of the mixture to 120 °C. Three different systems for supplementing steam were investigated: (1) a traditional solar thermal heating system; (2) a system consisting of mono crystalline photovoltaic panels coupled with either a resistance heater or electric steam generator; and (3) a cascading system consisting of two types of solar thermal collectors, photovoltaic panels, and an electric steam generator. Comparisons of systems 1 and 2 were made for the heating of mixing water, and systems 1, 2, and 3 for saturated steam generation. Results showed that for the heating of process water

  20. Behavior of the potential-induced degradation of photovoltaic modules fabricated using flat mono-crystalline silicon cells with different surface orientations

    Science.gov (United States)

    Yamaguchi, Seira; Masuda, Atsushi; Ohdaira, Keisuke

    2016-04-01

    This paper deals with the dependence of the potential-induced degradation (PID) of flat, p-type mono-crystalline silicon solar cell modules on the surface orientation of solar cells. The investigated modules were fabricated from p-type mono-crystalline silicon cells with a (100) or (111) surface orientation using a module laminator. PID tests were performed by applying a voltage of -1000 V to shorted module interconnector ribbons with respect to an Al plate placed on the cover glass of the modules at 85 °C. A decrease in the parallel resistance of the (100)-oriented cell modules is more significant than that of the (111)-oriented cell modules. Hence, the performance of the (100)-oriented-cell modules drastically deteriorates, compared with that of the (111)-oriented-cell modules. This implies that (111)-oriented cells offer a higher PID resistance.

  1. Photovoltaic Programme Edition 2007. Summary Report, Project List, Annual Project Reports 2006 (Abstracts)

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2007-07-01

    interdepartmental platform for renewable energy promotion in international co-operation REPIC are reported on, as is standardisation work and the networking and integration of national and regional programs. Further, mounting system for thin-film modules in facades, roof-integration of amorphous thin-film cells, a zero-energy schoolhouse, the installation of thin-film modules on the flat roof at the Swiss Federal Institute of Technology, a further flat roof integration project and the Solgreen 'Kraftwerk 1' installation in Zurich are reported on. Further reports deal with an autonomous power supply using photovoltaics and fuel cells, a measurement campaign in Wittigkofen, the Swiss Photovoltaic Internet Portal, the Swiss Solar ElectriCity Guide and Swiss photovoltaic energy statistics for 2006. The report is also available in German and French.

  2. Photovoltaic Programme Edition 2007. Summary Report, Project List, Annual Project Reports 2006 (Abstracts)

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2007-07-01

    renewable energy promotion in international co-operation REPIC are reported on, as is standardisation work and the networking and integration of national and regional programs. Further, mounting system for thin-film modules in facades, roof-integration of amorphous thin-film cells, a zero-energy schoolhouse, the installation of thin-film modules on the flat roof at the Swiss Federal Institute of Technology, a further flat roof integration project and the Solgreen 'Kraftwerk 1' installation in Zurich are reported on. Further reports deal with an autonomous power supply using photovoltaics and fuel cells, a measurement campaign in Wittigkofen, the Swiss Photovoltaic Internet Portal, the Swiss Solar ElectriCity Guide and Swiss photovoltaic energy statistics for 2006. The report is also available in German and French.

  3. Concentration of solar radiation by white backed photovoltaic panels.

    Science.gov (United States)

    Smestad, G; Hamill, P

    1984-12-01

    In this paper, we present an analysis of the concentration achieved by white backed photovoltaic panels. Concentration is due to the trapping by light scattered in the refractive plate to which the solar cell is bonded. Using the reciprocity relation and assuming the ideal case of a Lambertian distribution, a detailed model is formulated that includes the effects of the thickness and walls of the concentrator. This model converges to the thermodynamic limit and is found to be consistent with experimental results for a wide range of cell sizes. Finally, the model is generalized to multiple-cell photovoltaic panels.

  4. Practical aspects of photovoltaic technology, applications and cost (revised)

    Science.gov (United States)

    Rosenblum, L.

    1985-01-01

    The purpose of this text is to provide the reader with the background, understanding, and computational tools needed to master the practical aspects of photovoltaic (PV) technology, application, and cost. The focus is on stand-alone, silicon solar cell, flat-plate systems in the range of 1 to 25 kWh/day output. Technology topics covered include operation and performance of each of the major system components (e.g., modules, array, battery, regulators, controls, and instrumentation), safety, installation, operation and maintenance, and electrical loads. Application experience and trends are presented. Indices of electrical service performance - reliability, availability, and voltage control - are discussed, and the known service performance of central station electric grid, diesel-generator, and PV stand-alone systems are compared. PV system sizing methods are reviewed and compared, and a procedure for rapid sizing is described and illustrated by the use of several sample cases. The rapid sizing procedure yields an array and battery size that corresponds to a minimum cost system for a given load requirement, insulation condition, and desired level of service performance. PV system capital cost and levelized energy cost are derived as functions of service performance and insulation. Estimates of future trends in PV system costs are made.

  5. CFD simulation of estimating critical shear stress for cleaning flat ...

    Indian Academy of Sciences (India)

    Sumit Kawale

    2017-11-22

    Nov 22, 2017 ... Jet impingement; wall shear stress; cleaning of flat plate; turbulence model; critical shear stress; ... On comparing the theoretical predictions with wall shear ... distance and Reynolds number on peak value of local shear stress ...

  6. Effect of Glass Thickness on Performance of Flat Plate Solar Collectors for Fruits Drying

    Directory of Open Access Journals (Sweden)

    Ramadhani Bakari

    2014-01-01

    Full Text Available This study aimed at investigating the effect of thickness of glazing material on the performance of flat plate solar collectors. Performance of solar collector is affected by glaze transmittance, absorptance, and reflectance which results into major heat losses in the system. Four solar collector models with different glass thicknesses were designed, constructed, and experimentally tested for their performances. Collectors were both oriented to northsouth direction and tilted to an angle of 10° with the ground toward north direction. The area of each collector model was 0.72 m2 with a depth of 0.15 m. Low iron (extra clear glass of thicknesses 3 mm, 4 mm, 5 mm, and 6 mm was used as glazing materials. As a control, all collector performances were analysed and compared using a glass of 5 mm thickness and then with glass of different thickness. The results showed that change in glass thickness results into variation in collector efficiency. Collector with 4 mm glass thick gave the best efficiency of 35.4% compared to 27.8% for 6 mm glass thick. However, the use of glass of 4 mm thick needs precautions in handling and during placement to the collector to avoid extra costs due to breakage.

  7. Boundary Layer of Photon Absorption Applied to Heterogeneous Photocatalytic Solar Flat Plate Reactor Design

    Directory of Open Access Journals (Sweden)

    Héctor L. Otálvaro-Marín

    2014-01-01

    Full Text Available This study provides information to design heterogeneous photocatalytic solar reactors with flat plate geometry used in treatment of effluents and conversion of biomass to hydrogen. The concept of boundary layer of photon absorption taking into account the efficient absorption of radiant energy was introduced; this concept can be understood as the reactor thickness measured from the irradiated surface where 99% of total energy is absorbed. Its thickness and the volumetric rate of photons absorption (VRPA were used as design parameters to determine (i reactor thickness, (ii maximum absorbed radiant energy, and (iii the optimal catalyst concentration. Six different commercial brands of titanium dioxide were studied: Evonik-Degussa P-25, Aldrich, Merck, Hombikat, Fluka, and Fisher. The local volumetric rate of photon absorption (LVRPA inside the reactor was described using six-flux absorption-scattering model (SFM applied to solar radiation. The radiation field and the boundary layer thickness of photon absorption were simulated with absorption and dispersion effects of catalysts in water at different catalyst loadings. The relationship between catalyst loading and reactor thickness that maximizes the absorption of radiant energy was obtained for each catalyst by apparent optical thickness. The optimum concentration of photocatalyst Degussa P-25 was 0.2 g/l in 0.86 cm of thickness, and for photocatalyst Aldrich it was 0.3 g/l in 0.80 cm of thickness.

  8. Low-cost solar array progress and plans

    Science.gov (United States)

    Callaghan, W. T.

    It is pointed out that significant redirection has occurred in the U.S. Department of Energy (DOE) Photovoltaics Program, and thus in the Flat-Plate Solar Array Project (FSA), since the 3rd European Communities Conference. The Silicon Materials Task has now the objective to sponsor theoretical and experimental research on silicon material refinement technology suitable for photovoltaic flat-plate solar arrays. With respect to the hydrochlorination reaction, a process proof of concept was completed through definition of reaction kinetics, catalyst, and reaction characteristics. In connection with the dichlorosilane chemical vapor desposition process, a preliminary design was completed of an experimental process system development unit with a capacity of 100 to 200 MT/yr of Si.Attention is also given to the silicon-sheet formation research area, environmental isolation research, the cell and module formation task, the engineering sciences area, and the module performance and failure analysis area.

  9. Experimental analysis of a Flat Plate Pulsating Heat Pipe with Self-ReWetting Fluids during a parabolic flight campaign

    Science.gov (United States)

    Cecere, Anselmo; De Cristofaro, Davide; Savino, Raffaele; Ayel, Vincent; Sole-Agostinelli, Thibaud; Marengo, Marco; Romestant, Cyril; Bertin, Yves

    2018-06-01

    A Flat Plate Pulsating Heat Pipe (FPPHP) filled with an ordinary liquid (water) and a self-rewetting mixture (dilutes aqueous solutions of long-chain alcohols with unusual surface tension behavior) is investigated under variable gravity conditions on board a 'Zero-g' plane during the 65th Parabolic Flight Campaign of the European Space Agency. The FPPHP thermal performance in terms of evaporator and condenser temperatures, start-up levels and flow regimes is characterized for the two working fluids and a power input ranging from 0 to 200 W (up to 17 W/cm2 at the heater/evaporator wall interface). The experimental set-up also includes a transparent plate enabling the visualization of the oscillating flow patterns during the experiments. For a low power input (4 W/cm2), the pulsating heat pipe filled with pure water is not able to work under low-g conditions, because the evaporator immediately exhibits dry-out conditions and the fluid oscillations stops, preventing heat transfer between the hot and cold side and resulting in a global increase of the temperatures. On the other hand, the FPPHP filled with the self-rewetting fluid runs also during the microgravity phase. The liquid rewets several times the evaporator zone triggering the oscillatory regime. The self-rewetting fluid helps both the start-up and the thermal performance of the FPPHP in microgravity conditions.

  10. Study on Effect of Number of Transparent Covers and Refractive Index on Performance of Solar Water Heater

    Directory of Open Access Journals (Sweden)

    B. Kalidasan

    2014-01-01

    Full Text Available Liquid flat plate collector (solar flat plate collector is one of the important applications in solar thermal system. The development in solar photovoltaic is an emerging challenge for the solar thermal system. In the current work an attempt has been made to optimize the number of transparent covers and refractive index to improve the optical efficiency and thermal efficiency for the collector. Performance of the liquid flat plate collector at VIT University Vellore has been simulated numerically for January 21st at an interval of half an hour with different numbers of transparent covers (0–3 and different refractive index values ranging from 1.1 to 1.7. The formulation and solutions are developed with simple software Microsoft Office Excel to result the performance characteristics. The result shows that the efficiency of the flat plate collector increases with an increase in number of covers and decreases after an optimum number of covers. It also decreases with an increase in refractive index. The combination of optimum number (two and lower refractive index (1.1 results improved useful heat.

  11. Free convection boundary layer flow past a horizontal flat plate embedded in porous medium filled by nano-fluid containing gyro-tactic microorganisms

    Energy Technology Data Exchange (ETDEWEB)

    Aziz, A. [Department of Mechanical Engineering, School of Engineering and Applied Science, Gonzaga University, Spokane, WA 99258 (United States); Khan, W.A. [Department of Engineering Sciences, National University of Sciences and Technology, Karachi 75350 (Pakistan); Pop, I. [Department of Applied Mathematics, Babes-Bolyai University, Cluj-Napoca (Romania)

    2012-06-15

    The steady boundary layer free convection flow past a horizontal flat plate embedded in a porous medium filled by a water-based nano-fluid containing gyro-tactic microorganisms is investigated. The Oberbeck-Boussinesq approximation is assumed in the analysis. The effects of bio-convection parameters on the dimensionless velocity, temperature, nano-particle concentration and density of motile microorganisms as well as on the local Nusselt, Sherwood and motile microorganism numbers are investigated and presented graphically. In the absence of bio-convection, the results are compared with the existing data in the open literature and found to be in good agreement. The bio-convection parameters strongly influence the heat, mass, and motile microorganism transport rates. (authors)

  12. Experimental and numerical study of heat transfer phenomena, inside a flat-plate integrated collector storage solar water heater (ICSSWH), with indirect heat withdrawal

    International Nuclear Information System (INIS)

    Gertzos, K.P.; Pnevmatikakis, S.E.; Caouris, Y.G.

    2008-01-01

    The thermal behavior of a particular flat-plate integrated collector storage solar water heater (ICSSWH) is examined, experimentally and numerically. The particularity consists of the indirect heating of the service hot water, through a heat exchanger incorporated into front and back major surfaces of the ICSSWH. Natural and forced convection mechanisms are both examined. A prototype tank was fabricated and experimental data of temperature profiles are extracted, during various energy withdrawals. A 3D computational fluid dynamics (CFD) model was developed and validated against experimental results. Numerical predictions are found highly accurate, providing thus the use of the 3D CFD model for the optimization of this and similar devices

  13. Lamb wave band gaps in a double-sided phononic plate

    Science.gov (United States)

    Wang, Peng; Chen, Tian-Ning; Yu, Kun-Peng; Wang, Xiao-Peng

    2013-02-01

    In this paper, we report on the theoretical investigation of the propagation characteristics of Lamb wave in a phononic crystal structure constituted by a square array of cylindrical stubs deposited on both sides of a thin homogeneous plate. The dispersion relations, the power transmission spectra, and the displacement fields of the eigenmodes are studied by using the finite-element method. We investigate the evolution of band gaps in the double-sided phononic plate with stub height on both sides arranged from an asymmetrical distribution to a symmetrical distribution gradually. Numerical results show that as the double stubs in a unit cell arranged more symmetrically on both sides, band width shifts, new band gaps appear, and the bands become flat due to localized resonant modes which couple with plate modes. Specially, more band gaps and flat bands can be found in the symmetrical system as a result of local resonances of the stubs which interact in a stronger way with the plate modes. Moreover, the symmetrical double-sided plate exhibits lower and smaller band gap than that of the asymmetrical plate. These propagation properties of elastic or acoustic waves in the double-sided plate can potentially be utilized to generate filters, slow the group velocity, low-frequency sound insulation, and design acoustic sensors.

  14. Mixed convection boundary layer flow over a moving vertical flat plate in an external fluid flow with viscous dissipation effect.

    Directory of Open Access Journals (Sweden)

    Norfifah Bachok

    Full Text Available The steady boundary layer flow of a viscous and incompressible fluid over a moving vertical flat plate in an external moving fluid with viscous dissipation is theoretically investigated. Using appropriate similarity variables, the governing system of partial differential equations is transformed into a system of ordinary (similarity differential equations, which is then solved numerically using a Maple software. Results for the skin friction or shear stress coefficient, local Nusselt number, velocity and temperature profiles are presented for different values of the governing parameters. It is found that the set of the similarity equations has unique solutions, dual solutions or no solutions, depending on the values of the mixed convection parameter, the velocity ratio parameter and the Eckert number. The Eckert number significantly affects the surface shear stress as well as the heat transfer rate at the surface.

  15. Effects of freestream on the characteristics of thermally-driven boundary layers along a heated vertical flat plate

    International Nuclear Information System (INIS)

    Abedin, Mohammad Zoynal; Tsuji, Toshihiro; Lee, Jinho

    2012-01-01

    Highlights: ► A time-developing direct numerical simulations are done for water along a heated vertical plate. ► The objective is to see the effects of free streams on the combined-convection boundary layers. ► There are no reports for water with direct numerical simulation in this regards. ► An experiment is also conducted on the transitional and turbulent boundary layer in water. ► This is to collect informations on the integral thickness of the velocity boundary layer. - Abstract: Time-developing thermally-driven boundary layers created by imposing aiding and opposing freestreams on the natural-convection boundary layer in water along a heated vertical flat plate have been examined with a direct numerical simulation to clarify their transition and turbulence behaviors. The numerical results for aiding flow reveal that the transition begins at a thick laminar boundary layer due to the delay of the transition and large-scale vortexes centering on the spanwise direction are followed, while, for opposing flow, the transition begins at a thin laminar boundary layer due to the quickening of the transition and relatively small-scale vortexes are generated with the progress of transition. To improve the significance of the present numerical results, the association of turbulence statistics between time- and space-developing flows has been investigated. Consequently, the numerical results for time-developing flow are converted to those for space-developing flow through the integral thickness of the velocity boundary layer for pure natural convection, and thus the regimes of boundary layer flows can be quantitatively assessed. Moreover, the turbulence statistics and the flow structures in the thermally-driven boundary layers are also presented.

  16. Distribution of absorbed heat in luminescent solar concentrator lightguides and effect of temperatures of mounted photovoltaic cells

    NARCIS (Netherlands)

    Rajkumar, V.A.; Weijers, C.; Debije, M.G.

    2015-01-01

    Polymer plates containing fluorescent dyes with photovoltaic cells attached to one or more edges have the potential to be used for solar light collection in the built environment. The heating of the polymer plates and the resulting effects this may have on the operating temperatures of the attached

  17. Development of a correlation for parameter controlling using exergy efficiency optimization of an Al_2O_3/water nanofluid based flat-plate solar collector

    International Nuclear Information System (INIS)

    Shojaeizadeh, Ehsan; Veysi, Farzad

    2016-01-01

    Highlights: • Exergy efficiency optimization of a flat-plate collector with Al_2O_3 nanofluid is studied. • Solar radiation and ambient temperature are assumed to be uncontrollable. • Solar collector inlet temperature is influenced by the presence of reservoir tank. • A suitable exponential correlation is proposed for the optimized exergy efficiency. • This exponential correlation also is used for controlling independent parameters. - Abstract: The current study deals with the exergy efficiency optimization of an Al_2O_3/water nanofluid-based flat-plate solar collector according to a mathematical optimization (Sequential Quadratic Programming (SQP) method). This study takes into account exergy efficiency optimization when solar radiation and ambient temperature parameters are assumed to be uncontrollable and presented to a wide range of transient data of climatic conditions where these might take place during spring and summer seasons of Kermanshah (Iran), and perform two main cases as follows: (1) the fluid temperature at the inlet of solar collector, T_i, is independent of storage tank (open loop); (2) the fluid temperature at the inlet of solar collector, T_i, is influenced by the presence of storage tank (closed loop). In any conditions of each case studies (working fluid with and without nanoparticles), a suitable decreasing exponential correlation as function of T_a/G_t values (i.e. ambient temperature to solar radiation ratio) is developed for the optimized exergy efficiency and also well controlling independent parameters values (mass flow rate of fluid, nanoparticle volume concentration and collector inlet temperature). Also, it is concluded that each of optimized parameters and the optimum exergy efficiency is of a linear relation with each other.

  18. Effect of openings collectors and solar irradiance on the thermal efficiency of flat plate-finned collector for indirect-type passive solar dryer

    Science.gov (United States)

    Batubara, Fatimah; Dina, Sari Farah; Klaudia Kathryn Y., M.; Turmuzi, M.; Siregar, Fitri; Panjaitan, Nora

    2017-06-01

    Research on the effect of openings solar collector and solar irradiance to thermal efficiency has been done. Solar collector by flat plate-finned type consists of 3 ply insulator namely wood, Styrofoam and Rockwool with thickness respectively are 10 mm, 25 mm and 50 mm. Absorber plate made of aluminum sheet with thickness of 0.30 mm, painted by black-doff. Installation of 19 units fins (length x height x thickness: 1000x20x10 mm) on the collector will increase surface area of absorber so it can receive much more solar energy. The solar collector cover is made of glass (thickness of 5 mm). During the research, the solar irradiance and temperature of collector are measured and recorded every five minutes. Temperature measurement performed on the surface of the absorber plate, inside of collector, surface cover and the outer side insulator (plywood). This data is used to calculate the heat loss due to conduction, convection and radiation on the collector. Openings of collectors vary as follows: 100%, 75%, 15% and 0% (total enclosed). The data collecting was conducted from 09.00 am to 17.00 pm and triplicates. The collector thermal efficiency calculated based on the ratio of the amount of heat received to the solar irradiance absorbed. The results show that each of openings solar collector has different solar irradiance (because it was done on a different day) which is in units of W/m2: 390 (100% open), 376 (75% open), 429 (15% open), and 359 (totally enclosed). The highest thermal efficiency is in openings variation of 15% opened. These results indicate that the efficiency of the collector is influenced by the solar irradiance received by the collector and the temperature on the collector plate. The highest thermal efficiency is in variation of openings 15%. These indicate that the efficiency of the collector was influenced by solar irradiance received by the collector and openings of the collector plate.

  19. Influence of VB group doped TiO2 on photovoltaic performance of dye-sensitized solar cells

    International Nuclear Information System (INIS)

    Liu, Jia; Duan, Yandong; Zhou, Xiaowen; Lin, Yuan

    2013-01-01

    Dye-sensitized solar cell with V B group (vanadium (V), niobium (Nb) and tantalum (Ta)) doped TiO 2 prepared by hydrothermal method shows a higher photovoltaic efficiency compared with the undoped TiO 2 . All the V B doping shift the flat band potential positively and increase the doping density which is investigated by Mott–Schottky plot. The positive shift of flat band potential improves the driving force of injecting electron from the LUMO of dye to the conduction band of TiO 2 and the photocurrent. On the other hand, the increase of doping density accelerates transfer rate of electrons in TiO 2 than the un-doped, which is confirmed by intensity-modulated photocurrent. V-, Nb-, Ta-doped TiO 2 exhibited photovoltaic performance with 7.80%, 8.33%, 8.18%, respectively, compared with that of the cells based on pure TiO 2 (7.42%).

  20. Development of Surfaces Optically Suitable for Flat Solar Panels

    Science.gov (United States)

    Desmet, D.; Jason, A.

    1978-01-01

    Three areas of research in the development of flat solar panels are described. (1) A reflectometer which can separately evaluate the spectral and diffuse reflectivities of surfaces was developed. The reflectometer has a phase locked detection system. (2) A coating composed of strongly bound copper oxide that is formed by an etching process performed on an aluminum alloy with high copper content was also developed. Because of this one step fabrication process, fabrication costs are expected to be small. (3) A literature search was conducted and conclusions on the required optical properties of flat plate solar collectors are presented.

  1. A criterion of contamination of the glass surface of photovoltaic batteries

    International Nuclear Information System (INIS)

    Tursunov, M.N.; Dyskin, V.G.; Yuldashev, I.A. et al.; Park Jeong Hwoan

    2015-01-01

    The relative change in the coefficient of efficiency is chosen as a criterion for contamination of the glass surface of a photovoltaic battery. Using the formula obtained, the results of measurements of the transmission coefficient of a contaminated glass plate after its exposure to open air in the center of Tashkent for 80 and 110 days are processed. It is shown that the contamination of the glass plate reduces the coefficient of efficiency of the PVB by 50.0%. (authors)

  2. Experiences with the ASDEX neutralizer plates and construction of water-cooled plates for long-pulse heating

    International Nuclear Information System (INIS)

    Rapp, H.; Niedermeyer, H.; Kornherr, M.

    1987-01-01

    After dismantling of the titanium neutralizer plates inspection yielded satisfactory status of flat areas whereas edges and curved shapes were heavily melted. At the inner plates of the lower divertor strongly focused melting and cutting was found which is caused by fast electrons. These electrons are continuously produced. The production mechanism is not yet clear but runaway processes can be excluded. With long-pulse additional heating of 6 MW/10s as planned for ASDEX in 1987, the total energy delivered to the plasma will increase by a factor of 30. Therefore new water-cooled neutralizer plates have been constructed which consist of a copper-steel compound. The construction principle and the topology of the cooling circuits is presented

  3. On-Line Flatness Measurement in the Steelmaking Industry

    Directory of Open Access Journals (Sweden)

    Rubén Usamentiaga

    2013-08-01

    Full Text Available Shape is a key characteristic to determine the quality of outgoing flat-rolled products in the steel industry. It is greatly influenced by flatness, a feature to describe how the surface of a rolled product approaches a plane. Flatness is of the utmost importance in steelmaking, since it is used by most downstream processes and customers for the acceptance or rejection of rolled products. Flatness sensors compute flatness measurements based on comparing the length of several longitudinal fibers of the surface of the product under inspection. Two main different approaches are commonly used. On the one hand, most mechanical sensors measure the tensile stress across the width of the rolled product, while manufacturing and estimating the fiber lengths from this stress. On the other hand, optical sensors measure the length of the fibers by means of light patterns projected onto the product surface. In this paper, we review the techniques and the main sensors used in the steelmaking industry to measure and quantify flatness defects in steel plates, sheets and strips. Most of these techniques and sensors can be used in other industries involving rolling mills or continuous production lines, such as aluminum, copper and paper, to name a few. Encompassed in the special issue, State-of-the-Art Sensors Technology in Spain 2013, this paper also reviews the most important flatness sensors designed and developed for the steelmaking industry in Spain.

  4. On-Line Flatness Measurement in the Steelmaking Industry

    Science.gov (United States)

    Molleda, Julio; Usamentiaga, Rubén; Garcίa, Daniel F.

    2013-01-01

    Shape is a key characteristic to determine the quality of outgoing flat-rolled products in the steel industry. It is greatly influenced by flatness, a feature to describe how the surface of a rolled product approaches a plane. Flatness is of the utmost importance in steelmaking, since it is used by most downstream processes and customers for the acceptance or rejection of rolled products. Flatness sensors compute flatness measurements based on comparing the length of several longitudinal fibers of the surface of the product under inspection. Two main different approaches are commonly used. On the one hand, most mechanical sensors measure the tensile stress across the width of the rolled product, while manufacturing and estimating the fiber lengths from this stress. On the other hand, optical sensors measure the length of the fibers by means of light patterns projected onto the product surface. In this paper, we review the techniques and the main sensors used in the steelmaking industry to measure and quantify flatness defects in steel plates, sheets and strips. Most of these techniques and sensors can be used in other industries involving rolling mills or continuous production lines, such as aluminum, copper and paper, to name a few. Encompassed in the special issue, State-of-the-Art Sensors Technology in Spain 2013, this paper also reviews the most important flatness sensors designed and developed for the steelmaking industry in Spain. PMID:23939583

  5. Estimation of effective elastic constants for grid plate

    International Nuclear Information System (INIS)

    Shibanuma, Kiyoshi; Kuriyama, Masaaki; Okumura, Yoshikazu

    1980-07-01

    This article contains a method of estimation for the effective elastic constants of a grid plate, which is a flat perforated plate with pipes for cooling. The elastic constants of the grid plate are formulated for two symmetric axes. In the case of using OFCu(E 0 = 12500 kg/mm 2 , ν 0 = 0.34) as the material of the grid, the results are given as follows. E sub(L) = 3180 kg/mm 2 , E sub(T) = 3860 kg/mm 2 upsilon sub(LT) = 0.12, upsilon sub(TL) = 0.15 (author)

  6. Development of a Surface Micromachined On-Chip Flat Disk Micropump

    Directory of Open Access Journals (Sweden)

    M. I. KILANI

    2009-08-01

    Full Text Available The paper presents research progress in the development of a surface micromachined flat disk micropump which employs the viscous and centrifugal effects acting on a layer of fluid sandwiched between a rotating flat disk and a stationary plate. The pump is fabricated monolithically on-chip using Sandia’s Ultraplanar Multilevel MEMS Technology (SUMMiT™ where an electrostatic comb-drive Torsional Ratcheting Actuator (TRA drives the flat disk through a geared transmission. The paper reviews available analytical models for flow geometries similar to that of the described pump, and presents a set of experiments which depict its performance and possible failure modes. Those experiments highlight future research directions in the development of electrostatically-actuated, CMOS-compatible, surface micromachined pumps.

  7. Environmental assessment of batteries for photovoltaic systems

    International Nuclear Information System (INIS)

    Brouwer, J.M.; Lindeijer, E.W.

    1993-10-01

    A life cycle analysis (LCA) on 4 types of batteries for PV systems has been performed. in order to assess the environmental impacts of the various battery types, leading to recommendations for improvements in the production and use of batteries. The different battery types are compared on the basis of a functional unit: 240 kWh electric energy from PV modules delivered for household applications by one flat-plate lead-acid battery. An important product characteristic is the performance; in the study a Ni-Cd battery is taken to deliver 4 times as much energy as a flat plate battery (Pb-flat), a rod plate battery (Pb-rod) 3.4 times as much and a tubular plate battery (Pb-tube) 2.8 times as much. Environmental data was gathered from recent primary and secondary data in a database under internal quality control. Calculations were performed with an updated version of SIMAKOZA, a programme developed by the Centre of Environmental Science (CML), University of Leiden, Leiden, Netherlands. Of the types investigated, the Pb tube battery is to be preferred environmentally. Using one allocation method for recycling, the NiCd battery scores best on ozone depletion since no PVC is used (PVC production demands cooling with CFCs), on non-toxic waste and on disruption of ecosystems. The lead-bearing batteries score better on other aspects due to lower energy consumption during production and no emissions of cadmium. Using another allocation method for recycling the NiCd battery scores best on almost all environmental topics. Both allocation methods supplement each other. For resource depletion, regarding cadmium as an unavoidable by-product of zinc production renders NiCd batteries as much less problematic than lead/acid batteries, but taking account of the physical resources available would make the use of cadmium much more problematic than the use of lead. 37 figs., 20 tabs., 8 appendices, 109 refs

  8. Photovoltaic subsystem optimization and design tradeoff study. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Stolte, W.J.

    1982-03-01

    Tradeoffs and subsystem choices are examined in photovoltaic array subfield design, power-conditioning sizing and selection, roof- and ground-mounted structure installation, energy loss, operating voltage, power conditioning cost, and subfield size. Line- and self-commutated power conditioning options are analyzed to determine the most cost-effective technology in the megawatt power range. Methods for reducing field installation of flat panels and roof mounting of intermediate load centers are discussed, including the cost of retrofit installations.

  9. Intermediate photovoltaic system application experiment operational performance. Executive summary. Volume 6 for Beverly High School, Beverly, MA

    Energy Technology Data Exchange (ETDEWEB)

    None

    1982-04-01

    Performance data are given for a 95 kW-peak grid connected flat panel photovoltaic power supply at a Massachusetts high school for the month of March 1982. Data presented include daily and monthly electrical energy produced by the photovoltaic system, daily and monthly solar energy incident in the plane of the array, efficiency of the solar cell array and of the power conditioner and of the system overall, the capacity factor, solar insolation, and the data acquisition mode and recording interval plot. (LEW)

  10. Systematic Study of Separators in Air-Breathing Flat-Plate Microbial Fuel Cells—Part 2: Numerical Modeling

    Directory of Open Access Journals (Sweden)

    Sona Kazemi

    2016-01-01

    Full Text Available The separator plays a key role on the performance of passive air-breathing flat-plate MFCs (FPMFC as it isolates the anaerobic anode from the air-breathing cathode. The goal of the present work was to study the separator characteristics and its effect on the performance of passive air-breathing FPMFCs. This was performed partially through characterization of structure, properties, and performance correlations of eight separators presented in Part 1. Current work (Part 2 presents a numerical model developed based on the mixed potential theory to investigate the sensitivity of the electrode potentials and the power output to the separator characteristics. According to this numerical model, the decreased peak power results from an increase in the mass transfer coefficients of oxygen and ethanol, but mainly increasing mixed potentials at the anode by oxygen crossover. The model also indicates that the peak power is affected by the proton transport number of the separator, which affects the cathode pH. Anode pH, on the other hand, remains constant due to application of phosphate buffer solution as the electrolyte. Also according to this model, the peak power is not sensitive to the resistivity of the separator because of the overshadowing effect of the oxygen crossover.

  11. Flow Phenomena in the Very Near Wake of a Flat Plate with a Circular Trailing Edge

    Science.gov (United States)

    Rai, Man Mohan

    2014-01-01

    The very near wake of a flat plate with a circular trailing edge, exhibiting pronounced shedding of wake vortices, is investigated with data from a direct numerical simulation. The separating boundary layers are turbulent and statistically identical thus resulting in a wake that is symmetric in the mean. The focus here is on the instability of the detached shear layers, the evolution of rib-vortex induced localized regions of reverse flow that detach from the main body of reverse flow in the trailing edge region and convect downstream, and phaseaveraged velocity statistics in the very near wake. The detached shear layers are found to exhibit unstable behavior intermittently, including the development of shear layer vortices as in earlier cylinder flow investigations with laminar separating boundary layers. Only a small fraction of the separated turbulent boundary layers undergo this instability, and form the initial shed vortices. Pressure spectra within the shear layers show a broadband peak at a multiple of shedding frequency. Phase-averaged intensity and shear stress distributions of the randomly fluctuating component of velocity are compared with those obtained in the near wake. The distributions of the production terms in the transport equations for the turbulent stresses are also provided.

  12. SIMULATION OF SOLAR LITHIUM BROMIDE–WATER ABSORPTION COOLING SYSTEM WITH DOUBLE GLAZED FLAT PLATE COLLECTOR FOR ADRAR

    Directory of Open Access Journals (Sweden)

    ML CHOUGUI

    2014-12-01

    Full Text Available Adrar is a city in the Sahara desert, in southern Algeria known for its hot and dry climate, where a huge amount of energy is used for air conditioning. The aim of this research is to simulate a single effect lithium bromide–water absorption chiller coupled to a double-glazed flat plate collector to supply the cooling loads for a house of 200m2 in Adrar. The thermal energy is stored in an insulated thermal storage tank. The system was designed to cover a cooling load of 10.39KW for design day of July. Thermodynamic model was established to simulate the absorption cycle. The results have shown that the collector mass flow rate has a negligible effect on the minimum required collector area, but it has a significant effect on the optimum capacity of the storage tank. The minimum required collector area was about 65.3 m2, which could supply the cooling loads for the sunshine hours of the design day for July. The operation of the system has also been considered after sunset by saving solar energy.

  13. Flow-induced plastic collapse of stacked fuel plates

    Energy Technology Data Exchange (ETDEWEB)

    Davis, D C; Scarton, H A

    1985-03-01

    Flow-induced plastic collapse of stacked fuel plate assemblies was first noted in experimental reactors such as the ORNL High Flux Reactor Assembly and the Engineering Test Reactor (ETR). The ETR assembly is a stack of 19 thin flat rectangular fuel plates separated by narrow channels through which a coolant flows to remove the heat generated by fission of the fuel within the plates. The uranium alloyed plates have been noted to buckle laterally and plastically collapse at the system design coolant flow rate of 10.7 m/s, thus restricting the coolant flow through adjacent channels. A methodology and criterion are developed for predicting the plastic collapse of ETR fuel plates. The criterion is compared to some experimental results and the Miller critical velocity theory.

  14. Design of a holographic micro-scale spectrum-splitting photovoltaic system

    Science.gov (United States)

    Wu, Yuechen; Vorndran, Shelby; Ayala Pelaez, Silvana; Russo, Juan M.; Kostuk, Raymond K.

    2015-09-01

    Micro-scale PV technology combines the high conversion efficiency of concentrated photovoltaics (CPV) with the low costs and the simple form of flat panel PV. Some of the benefits of micro-scale PV include: reduced semiconductor material usage; improved heat rejection capacity; and more versatile PV cell interconnect configurations. Spectrumsplitting is also a beneficial technique to increase the efficiency and reduce the cost of photovoltaic systems. It spatially separates the incident solar spectrum into spectral components and directs them to PV cells with matching bandgaps. This approach avoids the current and lattice matching problems that exist in tandem multi-junction systems. In this paper, we applied the ideas of spectrum-splitting in a micro-scale PV system, and demonstrated a holographic micro-scale spectrum-splitting photovoltaic system. This system consists of a volume transmission hologram in combination with a micro-lens array. An analysis methodology was developed to design the system and determine the performance of the resulting system. The spatial characteristics of the dispersed spectrum, the overall system conversion efficiency, and the improvement over best bandgap will be discussed.

  15. Small-Scale Flat Plate Collectors for Solar Thermal Scavenging in Low Conductivity Environments

    Directory of Open Access Journals (Sweden)

    Emmanuel Ogbonnaya

    2017-01-01

    Full Text Available There is great opportunity to develop power supplies for autonomous application on the small scale. For example, remote environmental sensors may be powered through the harvesting of ambient thermal energy and heating of a thermoelectric generator. This work investigates a small-scale (centimeters solar thermal collector designed for this application. The absorber is coated with a unique selective coating and then studied in a low pressure environment to increase performance. A numerical model that is used to predict the performance of the collector plate is developed. This is validated based on benchtop testing of a fabricated collector plate in a low-pressure enclosure. Model results indicate that simulated solar input of about 800 W/m2 results in a collector plate temperature of 298 K in ambient conditions and up to 388 K in vacuum. The model also predicts the various losses in W/m2 K from the plate to the surroundings. Plate temperature is validated through the experimental work showing that the model is useful to the future design of these small-scale solar thermal energy collectors.

  16. Thin Film Photovoltaic/Thermal Solar Panels

    Institute of Scientific and Technical Information of China (English)

    David JOHNSTON

    2008-01-01

    A solar panel is described.in which thin films of semiconductor are deposited onto a metal substrate.The semiconductor-metal combination forms a thin film photovoltaic cell,and also acts as a reflector,absorber tandem, which acts as a solar selective surface,thus enhancing the solar thermal performance of the collector plate.The use of thin films reduces the distance heat is required to flow from the absorbing surface to the metal plate and heat exchange conduits.Computer modelling demonstrated that,by suitable choice of materials,photovohaic efficiency call be maintained,with thermal performance slishtly reduced,compared to that for thermal-only panels.By grading the absorber layer-to reduce the band gap in the lower region-the thermal performance can be improved,approaching that for a thermal-only solar panel.

  17. Long term hydrogen production potential of concentrated photovoltaic (CPV) system in tropical weather of Singapore

    KAUST Repository

    Burhan, Muhammad

    2016-08-23

    Concentrated photovoltaic (CPV) system provides highest solar energy conversion efficiency among all the photovoltaic technologies and provides the most suitable option to convert solar energy into hydrogen, as future sustainable energy carrier. So far, only conventional flat plate PV systems are being used for almost all of the commercial applications. However, most of the studies have only shown the maximum efficiency of hydrogen production using CPV. In actual field conditions, the performance of CPV-Hydrogen system is affected by many parameter and it changes continuously during whole day operation. In this paper, the daily average and long term performances are proposed to analyze the real field potential of the CPV-Hydrogen system, which is of main interest for designers and consumers. An experimental setup is developed and a performance model is proposed to investigate the average and long term production potential of CPV-Hydrogen system. The study is carried out in tropical weather of Singapore. The maximum CPV efficiency of 27-28% and solar to hydrogen (STH) efficiency of 18%, were recorded. In addition, the CPV-Hydrogen system showed the long term average efficiency of 15.5%, for period of one year (12-months), with electrolyser rating of 47 kWh/kg and STH production potential of 218 kWh/kg. Based upon the DNI availability, the system showed hydrogen production potential of 0.153-0.553 kg/m/month, with average production of 0.43 kg/m/month. However, CPV-Hydrogen system has shown annual hydrogen production potential of 5.162 kg/m/year in tropical weather of Singapore.

  18. Modelling acceptance of sunlight in high and low photovoltaic concentration

    Energy Technology Data Exchange (ETDEWEB)

    Leutz, Ralf, E-mail: ralf.leutz@leopil.com [Leutz Optics and Illumination UG (haftungsbeschränkt), Marburg (Germany)

    2014-09-26

    A simple model incorporating linear radiation characteristics, along with the optical trains and geometrical concentration ratios of solar concentrators is presented with performance examples for optical trains of HCPV, LCPV and benchmark flat-plate PV.

  19. Modelling acceptance of sunlight in high and low photovoltaic concentration

    Science.gov (United States)

    Leutz, Ralf

    2014-09-01

    A simple model incorporating linear radiation characteristics, along with the optical trains and geometrical concentration ratios of solar concentrators is presented with performance examples for optical trains of HCPV, LCPV and benchmark flat-plate PV.

  20. Modelling acceptance of sunlight in high and low photovoltaic concentration

    International Nuclear Information System (INIS)

    Leutz, Ralf

    2014-01-01

    A simple model incorporating linear radiation characteristics, along with the optical trains and geometrical concentration ratios of solar concentrators is presented with performance examples for optical trains of HCPV, LCPV and benchmark flat-plate PV

  1. Enhanced Freshwater Production Using Finned-Plate Air Gap Membrane Distillation (AGMD

    Directory of Open Access Journals (Sweden)

    Perves Bappy Mohammad Jabed

    2017-01-01

    Full Text Available Air Gap membrane distillation (AGMD, a special type of energy efficient membrane distillation process, is a technology for producing freshwater from waste water. Having some benefits over other traditional processes, this method has been able to draw attention of researchers working in the field of freshwater production technologies. In this study, a basic AGMD system with flat coolant plate has been modified using a specially designed channelled coolant plate of portable size to observe its effect over the production rate and performance of the system. Attempt has been made to increase the amount of distillate flux by using the “fin effect” of the channelled coolant plate. A finned plate have been used instead of a flat coolant plate and experiments were conducted to compare the effect. Coolant temperature and feed temperature of the system have been varied from 10°C to 25°C and 40°C to 70°C respectively. Comparing the data, around 50% to 58% distillate enhancement has been observed for channelled coolant plate. Also, it was seen that the enhancement was higher for higher feed temperatures and coolant temperatures. With these findings, a better performing AGMD module has been introduced to mitigate the scarcity of freshwater.

  2. Craft-Joule Project: Stagnation proof transparently insulated flat plate solar collector (static)

    Energy Technology Data Exchange (ETDEWEB)

    Oliva, A; Cadafalch, J; Perez-Segarra, C.D. [Universitat Politecnica de Catalunya, Barcelona (Spain)] (and others)

    2000-07-01

    The STATIC (STAgnation proof Transparently Insulated flat plate Solar Collector) project is a Craft-Joule Project within the framework of the Non Nuclear Energy Programme Joule III coordinated by the Centre Technologic de Transferencia de Calor (CTTC). The core group of SMEs involved in the project has its main economical activity in the field of solar thermal systems at low temperature level (domestic hot water, solar heating, etc.). Beyond this, a large application potential exists for solar heating at medium temperature level (from 80 to 160 Celsius degrees) : industrial process heat, solar cooling and air conditioning, solar drying , distillation and desalination. Three of the four SME proposers are located in Southern Europe and in the Caribean, where a continuos increase of the demand for air conditioning and cooling has been demonstrated in the last years. The recent development of flat plate solar collectors with honeycomb-type transparent insulation cover has shown that this type of collectors can become a low cost alternative to evacuated tube and high concentrating CPC collectors in the medium temperature range from 80 to 160 Celsius degrees. With the expected reduction of collector cost, that forms 30%-50% of total system cost, a decisive break-through of solar thermal systems using heat in the medium temperature range can be achieved. The feasibility and good performance of these solar collectors has been proved in several prototypes. Nevertheless, up to now no commercial products are available. In order to reach this, the following developments of new concepts are necessary and are being carried out within this project: solution of the problem of overheating: development of collector versions for different working temperatures: optimization of the design with the support of high level numerical simulation. Several prototypes of the new solar collectors are being tested. System tests will also be carried or for two test arrays of optimized collector

  3. Photovoltaic power generation system with photovoltaic cells as bypass diodes

    Science.gov (United States)

    Lentine, Anthony L.; Nielson, Gregory N.; Tauke-Pedretti, Anna; Cruz-Campa, Jose Luis; Okandan, Murat

    2017-11-28

    A photovoltaic power generation system that includes a solar panel is described herein. The solar panel includes a photovoltaic sub-module, which includes a group of microsystem enabled photovoltaic cells. The group includes a first string of photovoltaic cells, a second string of photovoltaic cells, and a differing photovoltaic cell. Photovoltaic cells in the first string are electrically connected in series, and photovoltaic cells in the second string are electrically connected in series. Further, the first string of photovoltaic cells, the second string of photovoltaic cells, and the differing photovoltaic cell are electrically connected in parallel. Moreover, the differing photovoltaic cell is used as a bypass diode for the first string of photovoltaic cells and the second string of photovoltaic cells.

  4. A bubble column evaporator with basic flat-plate condenser for brackish and seawater desalination.

    Science.gov (United States)

    Schmack, Mario; Ho, Goen; Anda, Martin

    2016-01-01

    This paper describes the development and experimental evaluation of a novel bubble column-based humidification-dehumidification system, for small-scale desalination of saline groundwater or seawater in remote regions. A bubble evaporator prototype was built and matched with a simple flat-plate type condenser for concept assessment. Consistent bubble evaporation rates of between 80 and 88 ml per hour were demonstrated. Particular focus was on the performance of the simple condenser prototype, manufactured from rectangular polyvinylchlorid plastic pipe and copper sheet, a material with a high thermal conductivity that quickly allows for conduction of the heat energy. Under laboratory conditions, a long narrow condenser model of 1500 mm length and 100 mm width achieved condensate recovery rates of around 73%, without the need for external cooling. The condenser prototype was assessed under a range of different physical conditions, that is, external water cooling, partial insulation and aspects of air circulation, via implementing an internal honeycomb screen structure. Estimated by extrapolation, an up-scaled bubble desalination system with a 1 m2 condenser may produce around 19 l of distilled water per day. Sodium chloride salt removal was found to be highly effective with condensate salt concentrations between 70 and 135 µS. Based on findings and with the intent to reduce material cost of the system, a shorter condenser length of 750 mm for the non-cooled (passive) condenser and of 500 mm for the water-cooled condenser was considered to be equally efficient as the experimentally evaluated prototype of 1500 mm length.

  5. Flow Structure and Heat Transfer of Jet Impingement on a Rib-Roughened Flat Plate

    Directory of Open Access Journals (Sweden)

    Abdulrahman H. Alenezi

    2018-06-01

    Full Text Available The jet impingement technique is an effective method to achieve a high heat transfer rate and is widely used in industry. Enhancing the heat transfer rate even minimally will improve the performance of many engineering systems and applications. In this numerical study, the convective heat transfer process between orthogonal air jet impingement on a smooth, horizontal surface and a roughened uniformly heated flat plate is studied. The roughness element takes the form of a circular rib of square cross-section positioned at different radii around the stagnation point. At each location, the effect of the roughness element on heat transfer rate was simulated for six different heights and the optimum rib location and rib dimension determined. The average Nusselt number has been evaluated within and beyond the stagnation region to better quantify the heat transfer advantages of ribbed surfaces over smooth surfaces. The results showed both flow and heat transfer features vary significantly with rib dimension and location on the heated surface. This variation in the streamwise direction included both augmentation and decrease in heat transfer rate when compared to the baseline no-rib case. The enhancement in normalized averaged Nusselt number obtained by placing the rib at the most optimum radial location R/D = 2 was 15.6% compared to the baseline case. It was also found that the maximum average Nusselt number for each location was achieved when the rib height was close to the corresponding boundary layer thickness of the smooth surface at the same rib position.

  6. Large-area smart glass and integrated photovoltaics

    Energy Technology Data Exchange (ETDEWEB)

    Lampert, C.M. [Star Science, 8730 Water Road, Cotati, CA 94931-4252 (United States)

    2003-04-01

    Several companies throughout the world are developing dynamic glazing and large-area flat panel displays. University and National Laboratory groups are researching new materials and processes to improve these products. The concept of a switchable glazing for building and vehicle application is very attractive. Conventional glazing only offers fixed transmittance and control of energy passing through it. Given the wide range of illumination conditions and glare, a dynamic glazing with adjustable transmittance offers the best solution. Photovoltaics can be integrated as power sources for smart windows. In this way a switchable window could be a completely stand alone smart system. A new range of large-area flat panel display including light-weight and flexible displays are being developed. These displays can be used for banner advertising, dynamic pricing in stores, electronic paper, and electronic books, to name only a few applications. This study covers selected switching technologies including electrochromism, suspended particles, and encapsulated liquid crystals.

  7. Frost Growth and Densification on a Flat Surface in Laminar Flow with Variable Humidity

    Science.gov (United States)

    Kandula, M.

    2012-01-01

    Experiments are performed concerning frost growth and densification in laminar flow over a flat surface under conditions of constant and variable humidity. The flat plate test specimen is made of aluminum-6031, and has dimensions of 0.3 mx0.3 mx6.35 mm. Results for the first variable humidity case are obtained for a plate temperature of 255.4 K, air velocity of 1.77 m/s, air temperature of 295.1 K, and a relative humidity continuously ranging from 81 to 54%. The second variable humidity test case corresponds to plate temperature of 255.4 K, air velocity of 2.44 m/s, air temperature of 291.8 K, and a relative humidity ranging from 66 to 59%. Results for the constant humidity case are obtained for a plate temperature of 263.7 K, air velocity of 1.7 m/s, air temperature of 295 K, and a relative humidity of 71.6 %. Comparisons of the data with the author's frost model extended to accommodate variable humidity suggest satisfactory agreement between the theory and the data for both constant and variable humidity.

  8. Gradient nanostructured surface of a Cu plate processed by incremental frictional sliding

    DEFF Research Database (Denmark)

    Hong, Chuanshi; Huang, Xiaoxu; Hansen, Niels

    2015-01-01

    The flat surface of a Cu plate was processed by incremental frictional sliding at liquid nitrogen temperature. The surface treatment results in a hardened gradient surface layer as thick as 1 mm in the Cu plate, which contains a nanostructured layer on the top with a boundary spacing of the order...

  9. Modelling and analysis of a heating system for industrial application, using flat-plate solar-collectors with single and double cover glasses

    International Nuclear Information System (INIS)

    Maraslis, A.A.

    1987-01-01

    A calculational methodology for dimensioning a flat-plate solar-collector arrangement, which fulfils the energy requirement of a heat transfer system in one of the steps of the uranium recovery process, from the uranium-phosphorus ore at Itataia, Ceara, in Brazil. The PROSOL-1 and PROSOL-2 computer codes for determining the total area required by collector arrangement-with single and double cover glasses, respectively- taking into account the system design and meteorological conditions of the regions, were used. These codes optimize the series/parallel arranges of collectors in the whole complex and, determine the water flow in each system and the average efficiency of the collector arrangement. The technical and economical feasibility for both collector arrangement with single and double cover glasses, were verified. It was concluded that, the last one is more advantageous, allowing a reduction of 30% in the total collector area. (M.C.K.) [pt

  10. Flat H Redundant Frangible Joint Development

    Science.gov (United States)

    Brown, Chris

    2016-01-01

    Orion and Commercial Crew Program (CCP) Partners have chosen to use frangible joints for certain separation events. The joints currently available are zero failure tolerant and will be used in mission safety applications. The goal is to further develop a NASA designed redundant frangible joint that will lower flight risk and increase reliability. FY16 testing revealed a successful design in subscale straight test specimens that gained efficiency and supports Orion load requirements. Approach / Innovation A design constraint is that the redundant joint must fit within the current Orion architecture, without the need for additional vehicle modification. This limitation required a design that changed the orientation of the expanding tube assemblies (XTAs), by rotating them 90deg from the standard joint configuration. The change is not trivial and affects the fracture mechanism and structural load paths. To address these changes, the design incorporates cantilevered arms on the break plate. The shock transmission and expansion of the XTA applies force to these arms and creates a prying motion to push the plate walls outward to the point of structural failure at the notched section. The 2014 test design revealed that parts could slip during functioning wasting valuable energy needed to separate the structure with only a single XTA functioning. Dual XTA functioning fully separated the assembly showing a discrepancy can be backed up with redundancy. Work on other fully redundant systems outside NASA is limited to a few patents that have not been subjected to functionality testing Design changes to prevent unwanted slippage (with ICA funding in 2015) showed success with a single XTA. The main goal for FY 2016 was to send the new Flat H RFJ to WSTF where single XTA test failures occurred back in 2014. The plan was to gain efficiency in this design by separating the Flat H RFJ with thicker ligaments with dimensions baselined in 2014. Other modifications included geometry

  11. Numerical Investigation of Wall Cooling and Suction Effects on Supersonic Flat-Plate Boundary Layer Transition Using Large Eddy Simulation

    Directory of Open Access Journals (Sweden)

    Suozhu Wang

    2015-02-01

    Full Text Available Reducing friction resistance and aerodynamic heating has important engineering significance to improve the performances of super/hypersonic aircraft, so the purpose of transition control and turbulent drag reduction becomes one of the cutting edges in turbulence research. In order to investigate the influences of wall cooling and suction on the transition process and fully developed turbulence, the large eddy simulation of spatially evolving supersonic boundary layer transition over a flat-plate with freestream Mach number 4.5 at different wall temperature and suction intensity is performed in the present work. It is found that the wall cooling and suction are capable of changing the mean velocity profile within the boundary layer and improving the stability of the flow field, thus delaying the onset of the spatial transition process. The transition control will become more effective as the wall temperature decreases, while there is an optimal wall suction intensity under the given conditions. Moreover, the development of large-scale coherent structures can be suppressed effectively via wall cooling, but wall suction has no influence.

  12. Photovoltaic module and interlocked stack of photovoltaic modules

    Science.gov (United States)

    Wares, Brian S.

    2014-09-02

    One embodiment relates to an arrangement of photovoltaic modules configured for transportation. The arrangement includes a plurality of photovoltaic modules, each photovoltaic module including a frame. A plurality of individual male alignment features and a plurality of individual female alignment features are included on each frame. Adjacent photovoltaic modules are interlocked by multiple individual male alignment features on a first module of the adjacent photovoltaic modules fitting into and being surrounded by corresponding individual female alignment features on a second module of the adjacent photovoltaic modules. Other embodiments, features and aspects are also disclosed.

  13. Large Eddy Simulation of Supersonic Boundary Layer Transition over a Flat-Plate Based on the Spatial Mode

    Directory of Open Access Journals (Sweden)

    Suozhu Wang

    2014-02-01

    Full Text Available The large eddy simulation (LES of spatially evolving supersonic boundary layer transition over a flat-plate with freestream Mach number 4.5 is performed in the present work. The Favre-filtered Navier-Stokes equations are used to simulate large scales, while a dynamic mixed subgrid-scale (SGS model is used to simulate subgrid stress. The convective terms are discretized with a fifth-order upwind compact difference scheme, while a sixth-order symmetric compact difference scheme is employed for the diffusive terms. The basic mean flow is obtained from the similarity solution of the compressible laminar boundary layer. In order to ensure the transition from the initial laminar flow to fully developed turbulence, a pair of oblique first-mode perturbation is imposed on the inflow boundary. The whole process of the spatial transition is obtained from the simulation. Through the space-time average, the variations of typical statistical quantities are analyzed. It is found that the distributions of turbulent Mach number, root-mean-square (rms fluctuation quantities, and Reynolds stresses along the wall-normal direction at different streamwise locations exhibit self-similarity in fully developed turbulent region. Finally, the onset and development of large-scale coherent structures through the transition process are depicted.

  14. Parametric Studies of Flat Plate Trajectories Using VIC and Penalization

    Directory of Open Access Journals (Sweden)

    François Morency

    2018-01-01

    Full Text Available Flying debris is generated in several situations: when a roof is exposed to a storm, when ice accretes on rotating wind turbines, or during inflight aircraft deicing. Four dimensionless parameters play a role in the motion of flying debris. The goal of the present paper is to investigate the relative importance of four dimensionless parameters: the Reynolds number, the Froude number, the Tachikawa number, and the mass moment of inertia parameters. Flying debris trajectories are computed with a fluid-solid interaction model formulated for an incompressible 2D laminar flow. The rigid moving solid effects are modelled in the Navier-Stokes equations using penalization. A VIC scheme is used to solve the flow equations. The aerodynamic forces and moments are used to compute the acceleration and the velocity of the solid. A database of 64 trajectories is built using a two-level full factorial design for the four factors. The dispersion of the plate position at a given horizontal position decreases with the Froude number. Moreover, the Tachikawa number has a significant effect on the median plate position.

  15. Photovoltaic solar cell

    Science.gov (United States)

    Nielson, Gregory N.; Gupta, Vipin P.; Okandan, Murat; Watts, Michael R.

    2015-09-08

    A photovoltaic solar concentrator is disclosed with one or more transverse-junction solar cells (also termed point contact solar cells) and a lens located above each solar cell to concentrate sunlight onto the solar cell to generate electricity. Piezoelectric actuators tilt or translate each lens to track the sun using a feedback-control circuit which senses the electricity generated by one or more of the solar cells. The piezoelectric actuators can be coupled through a displacement-multiplier linkage to provide an increased range of movement of each lens. Each lens in the solar concentrator can be supported on a frame (also termed a tilt plate) having three legs, with the movement of the legs being controlled by the piezoelectric actuators.

  16. Photovoltaic solar concentrator

    Science.gov (United States)

    Nielson, Gregory N.; Gupta, Vipin P.; Okandan, Murat; Watts, Michael R.

    2016-03-15

    A photovoltaic solar concentrator is disclosed with one or more transverse-junction solar cells (also termed point contact solar cells) and a lens located above each solar cell to concentrate sunlight onto the solar cell to generate electricity. Piezoelectric actuators tilt or translate each lens to track the sun using a feedback-control circuit which senses the electricity generated by one or more of the solar cells. The piezoelectric actuators can be coupled through a displacement-multiplier linkage to provide an increased range of movement of each lens. Each lens in the solar concentrator can be supported on a frame (also termed a tilt plate) having three legs, with the movement of the legs being controlled by the piezoelectric actuators.

  17. Effect of Plate Curvature on Blast Response of Structural Steel Plates

    Science.gov (United States)

    Veeredhi, Lakshmi Shireen Banu; Ramana Rao, N. V.; Veeredhi, Vasudeva Rao

    2018-04-01

    In the present work an attempt is made, through simulation studies, to determine the effect of plate curvature on the blast response of a door structure made of ASTM A515 grade 50 steel plates. A door structure with dimensions of 5.142 m × 2.56 m × 10 mm having six different radii of curvatures is analyzed which is subjected to blast load. The radii of curvature investigated are infinity (flat plate), 16.63, 10.81, 8.26, 6.61 and 5.56 m. In the present study, a stand-off distance of 11 m is considered for all the cases. Results showed that the door structure with smallest radius of curvature experienced least plastic deformation and yielding when compared to a door with larger radius of curvature with same projected area. From the present Investigation, it is observed that, as the radius of curvature of the plate increases, the deformation mode gradually shifts from indentation mode to flexural mode. The plates with infinity and 16.63 m radius of curvature have undergone flexural mode of deformation and plates with 6.61 and 5.56 m radius of curvature undergo indentation mode of deformation. Whereas, mixed mode of deformation that consists of both flexural and indentation mode of deformations are seen in the plates with radius of curvature 10.81 and 8.26 m. As the radius of curvature of the plate decreases the ability of the plate to mitigate the effect the blast loads increased. It is observed that the plate with smaller radius of curvature deflects most of the blast energy and results in least indentation mode of deformation. The most significant observation made in the present investigation is that the strain energy absorbed by the steel plate gets reduced to 1/3 rd when the radius of curvature is approximately equal to the stand-off distance which could be the critical radius of curvature.

  18. Velocity Profiles and Skin Friction on a Ribletted Flat Plate in Adverse Pressure Gradient

    National Research Council Canada - National Science Library

    Branam, Richard

    1997-01-01

    .... The skin friction drag coefficients were calculated using a numerical integration technique to determine an average value and scaled to the platform area of the plate to compare results with smooth plate values...

  19. Unsteady MHD free convective flow past a vertical porous plate ...

    African Journals Online (AJOL)

    user

    International Journal of Engineering, Science and Technology .... dimensional MHD boundary layer on the body with time varying temperature. ... flow of an electrically conducting fluid past an infinite vertical porous flat plate coinciding with.

  20. Determining passive cooling limits in CPV using an analytical thermal model

    Science.gov (United States)

    Gualdi, Federico; Arenas, Osvaldo; Vossier, Alexis; Dollet, Alain; Aimez, Vincent; Arès, Richard

    2013-09-01

    We propose an original thermal analytical model aiming to predict the practical limits of passive cooling systems for high concentration photovoltaic modules. The analytical model is described and validated by comparison with a commercial 3D finite element model. The limiting performances of flat plate cooling systems in natural convection are then derived and discussed.

  1. Parallelized FDTD simulation for flat-plate bounded wave EMP simulator with lumped terminator

    International Nuclear Information System (INIS)

    Zhu Xiangqin; Chen Weiqing; Chen Zaigao; Cai Libing; Wang Jianguo

    2013-01-01

    A parallelized finite-difference time-domain(FDTD) method for simulating the bounded wave electromagnetic pulse (EMP) simulator with lumped terminator and parallel plate is presented. The effects of several model-parameters on the simulator to the fields in the working volume are simulated and analyzed. The results show that if the width of the lower PEC plate is(or is bigger than)1.5 times that of the upper plate of working volume, the projection length of front transitional section does not have a significant effect on the rise-times of electric fields at the points near the front transitional section, and the rise-times of electric fields at the points near the working volume center decrease as the projection length increases, but the decrement of rise-time decreases. The rise-times of E z at all points also decrease as the lower PEC plate's width increases, but the decrements of rise-time decreases. If the projection length of the front transitional section is fixed, the good results can not be obtained by increasing or decreasing the height of the simulator only, however, which has an optimal value. (authors)

  2. General Observations of the Time-Dependent Flow Field Around Flat Plates in Free Fall

    DEFF Research Database (Denmark)

    Hærvig, Jakob; Jensen, Anna Lyhne; Pedersen, Marie Cecilie

    2015-01-01

    a six degrees of freedom (6DOF) solver and a dynamic mesh. To validate the simulation, the trajectories of aluminium plates falling in water are recorded by digital camera recordings and compared to the simulation. The simulation is able to calculate the motion of the plate within each time step...... with high accuracy, and thereby allowing the whole trajectory to be predicted with fair accuracy. With the numerical model able to predict the free fall and the complex plate fluid interactions, fluids forces can be extracted for model development in future studies....

  3. Commercial/industrial photovoltaic module and array requirement study. Low-cost solar array project engineering area

    Science.gov (United States)

    1981-01-01

    Design requirements for photovoltaic modules and arrays used in commercial and industrial applications were identified. Building codes and referenced standards were reviewed for their applicability to commercial and industrial photovoltaic array installation. Four general installation types were identified - integral (replaces roofing), direct (mounted on top of roofing), stand-off (mounted away from roofing), and rack (for flat or low slope roofs, or ground mounted). Each of the generic mounting types can be used in vertical wall mounting systems. This implies eight mounting types exist in the commercial/industrial sector. Installation costs were developed for these mounting types as a function of panel/module size. Cost drivers were identified. Studies were performed to identify optimum module shapes and sizes and operating voltage cost drivers. The general conclusion is that there are no perceived major obstacles to the use of photovoltaic modules in commercial/industrial arrays.

  4. Results of ITER toroidal field coil cover plate welding test

    International Nuclear Information System (INIS)

    Koizumi, Norikiyo; Matsui, Kunihiro; Shimizu, Tatsuya; Nakajima, Hideo; Iijima, Ami; Makino, Yoshinobu

    2012-01-01

    In ITER Toroidal Field (TF) coils, cover plates (CP) are welded to the teeth of the radial plate (RP) to fix conductors in the grooves of the RP. Though the total length of the welds is approximately 1.5 km and the height and width of the RP are 14 and 9 m, respectively, welding deformation of smaller than 1 mm for local out-of-plane distortion and smaller than several millimeters for in-plane deformation is required. Therefore, laser welding is used for CP welding to reduce welding deformation as much as possible. However, the gap in welding joints is expected to be a maximum of 0.5 mm. Thus, a laser welding technique to enable welding of joints with a gap of 0.5 mm in width has been developed. Applying this technology, a CP welding trial using an RP mock-up was successfully performed. The achieved local flatness, that is, the flatness of the cross-section of the RP mock-up, is 0.6 mm. The analysis using inherent strains, which are derived from the welding test using flat plates, also indicates that better local flatness can be achieved if the initial distortion is zero. In addition, the welding deformation of a full-scale RP is evaluated via analysis using the inherent strain. The analytical results show that in-plane deformation is approximately 5 mm and large out-of-plane deformation, consisting of approximately 5 mm-long wave distortion and a twist of approximately 1.5 mm in the RP cross-section, is generated. It is expected that the required profile can be achieved by determining the original geometry of an RP by simulating deformation during welding. It is also expected that the required local flatness of a DP can be achieved, since out-of-plane deformation can be reduced by increasing the number of RPs turned over during CP welding. A more detailed study is required. (author)

  5. Feasibility for the Use of Flat Booster Reflectors in Various Photovoltaic Installations

    OpenAIRE

    Gelegenis, John Joachim; Axaopoulos, Petros; Misailidis, Stavros; Giannakidis, George; Samarakou, Maria; Bonaros, Bassilios

    2016-01-01

    The feasibility for the addition of flat booster reflectors to PV panels is techno-economically investigated for various applications (building attached PVs, ground installations, grid-connected or stand-alone units) and various PV types (mono-crystalline and amorphous silicon PV panels). A model developed to this aim is applied to optimize the parameters of the PV/reflector module and to evaluate its applicability according to the solar radiation data of Athens (Greece). The reflectors may l...

  6. Mass transfer, fluid flow and membrane properties in flat and corrugated plate hyperfiltration modules

    NARCIS (Netherlands)

    Racz, I.G.; Groot Wassink, J.; Klaassen, R.

    1986-01-01

    Concentration polarisation, decreasing the efficiency in membrane separation processes, can be reduced by increasing mass transfer between membrane surface and bulk of the feed stream. Analogous to techniques used in plate heat exchangers efforts have been made to enhance mass transfer in a plate

  7. A minimum achievable PV electrical generating cost

    International Nuclear Information System (INIS)

    Sabisky, E.S.

    1996-01-01

    The role and share of photovoltaic (PV) generated electricity in our nation's future energy arsenal is primarily dependent on its future production cost. This paper provides a framework for obtaining a minimum achievable electrical generating cost (a lower bound) for fixed, flat-plate photovoltaic systems. A cost of 2.8 $cent/kWh (1990$) was derived for a plant located in Southwestern USA sunshine using a cost of money of 8%. In addition, a value of 22 $cent/Wp (1990$) was estimated as a minimum module manufacturing cost/price

  8. Experimental analysis of solar thermal integrated MD system for cogeneration of drinking water and hot water for single family villa in dubai using flat plate and evacuated tube solar collectors

    DEFF Research Database (Denmark)

    Asim, Muhammad; Imran, Muhammad; Leung, Michael K.H.

    2017-01-01

    This paper presents the experimental analysis performed on solar thermal integrated membrane distillation (MD) system using flat plate and evacuated tube collectors. The system will be utilized for cogeneration of drinking water and domestic hot water for single family in Dubai comprising of four...... to five members. Experiments have been performed in Ras Al Khaimah Research and Innovation Centre (RAKRIC) facility. The experimental setup has been installed to achieve the required production of 15–25 L/d of drinking water and 250 L/d of hot water for domestic purposes. Experiments have been performed...

  9. Results of convective heating tests of a longitudinal gap on the Rockwell flat plate model (15-0, insert 7) in the NASA/Ames Research Center

    Science.gov (United States)

    Quan, M.; Lockman, W. K.

    1975-01-01

    Results are presented which were obtained from tests in a hypersonic wind tunnel to determine aerodynamic heating rates in a gap running parallel or slightly askew to the flow direction. The model used was a flat plate instrumented in thin-skin sections with chromelconstantan thermocouples. Heating rate profiles lengthwise along and down into the gap were obtained, and additional data were obtained from a total temperature probe and rake fabricated during the test to investigate an apparent aerodynamic cooling trend in the gap. Model variables were width, depth, length, and orientation of the gap relative to the flow direction. The tests were conducted at Mach 5.1 and Reynolds numbers per foot of 500,000, 1,000,000, and 2,000,000.

  10. On the aeroacoustic properties of a beveled plate

    NARCIS (Netherlands)

    Van der Velden, W.C.P.; Van Zuijlen, A.H.; De Jong, A.T.; Bijl, H.

    2015-01-01

    The flow around a beveled flat plate model with an asymmetric 25 degrees trailing edge with three rounding radii is analyzed using a Navier-Stokes based open source software package OpenFOAM in order to predict the aeroacoustic properties of the models. A Large Eddy Simulation with a dynamic

  11. Reflective photovoltaics

    Energy Technology Data Exchange (ETDEWEB)

    Lentine, Anthony L.; Nielson, Gregory N.; Cruz-Campa, Jose Luis; Okandan, Murat; Goeke, Ronald S.

    2018-03-06

    A photovoltaic module includes colorized reflective photovoltaic cells that act as pixels. The colorized reflective photovoltaic cells are arranged so that reflections from the photovoltaic cells or pixels visually combine into an image on the photovoltaic module. The colorized photovoltaic cell or pixel is composed of a set of 100 to 256 base color sub-pixel reflective segments or sub-pixels. The color of each pixel is determined by the combination of base color sub-pixels forming the pixel. As a result, each pixel can have a wide variety of colors using a set of base colors, which are created, from sub-pixel reflective segments having standard film thicknesses.

  12. On wall pressure fluctuations and their coupling with vortex dynamics in a separated–reattached turbulent flow over a blunt flat plate

    International Nuclear Information System (INIS)

    Tenaud, C.; Podvin, B.; Fraigneau, Y.; Daru, V.

    2016-01-01

    Highlights: • Study devoted to the compressible LES of the separated/reattached turbulent flow over a blunt flat plate with a right-angled leading edge. • Original contribution using a compressible approach to analyze main coherent structure features and their relation to the unsteady pressure field in the separated/reattached turbulent flow. • The present study provides a well resolved LES reference data-basis that is compared to incompressible results for validation. • It contributes to a better understanding of the coupling between the vortex dynamics and the wall pressure fluctuations, especially in connection with either the vortex shedding or the low frequency shear-layer flapping. - Abstract: This study deals with the numerical predictions through Large-Eddy Simulation (LES) of the separated–reattached turbulent flow over a blunt flat plate for analyzing main coherent structure features and their relation to the unsteady pressure field. A compressible approach that inherently includes acoustic propagation is here followed to describe the relationship between pressure fluctuations and vortex dynamics around the separation bubble. The objective of the present work is then to contribute to a better understanding of the coupling between the vortex dynamics and the wall pressure fluctuations. The filtered compressible Navier–Stokes equations are then solved with a numerical method that follows a Lax–Wendroff approach to recover a high accuracy in both time and space. For validations, the present numerical results are compared to experimental measurements, coming from both the Pprime laboratory (Sicot el al., 2012) and the literature (Cherry et al., 1984; Kiya and Sasaki, 1985; Tafti and Vanka,1991; Sicot et al., 2012). Our numerical results very well predict mean and fluctuating pressure and velocity fields. Flapping, shedding as well as Kelvin–Helmholtz characteristic frequencies educed by present simulations are in very good agreement with the

  13. Photovoltaic solar concentrator

    Science.gov (United States)

    Nielson, Gregory N.; Cruz-Campa, Jose Luis; Okandan, Murat; Resnick, Paul J.; Sanchez, Carlos Anthony; Clews, Peggy J.; Gupta, Vipin P.

    2015-09-08

    A process including forming a photovoltaic solar cell on a substrate, the photovoltaic solar cell comprising an anchor positioned between the photovoltaic solar cell and the substrate to suspend the photovoltaic solar cell from the substrate. A surface of the photovoltaic solar cell opposite the substrate is attached to a receiving substrate. The receiving substrate may be bonded to the photovoltaic solar cell using an adhesive force or a metal connecting member. The photovoltaic solar cell is then detached from the substrate by lifting the receiving substrate having the photovoltaic solar cell attached thereto and severing the anchor connecting the photovoltaic solar cell to the substrate. Depending upon the type of receiving substrate used, the photovoltaic solar cell may be removed from the receiving substrate or remain on the receiving substrate for use in the final product.

  14. Influence of epoxy resin as encapsulation material of silicon photovoltaic cells on maximum current

    Directory of Open Access Journals (Sweden)

    Acevedo-Gómez David

    2017-01-01

    Full Text Available This work presents an analysis about how the performance of silicon photovoltaic cells is influenced by the use of epoxy resin as encapsulation material with flat roughness. The effect of encapsulation on current at maximum power of mono-crystalline cell was tested indoor in a solar simulator bench at 1000 w/m² and AM1.5G. The results show that implementation of flat roughness layer onto cell surface reduces the maximum current inducing on average 2.7% less power with respect to a cell before any encapsulation. The losses of power and, in consequence, the less production of energy are explained by resin light absorption, reflection and partially neutralization of non-reflective coating.

  15. Lightning Surge Analysis on a Large Scale Grid-Connected Solar Photovoltaic System

    OpenAIRE

    Nur Hazirah Zaini; Mohd Zainal Abidin Ab. Kadir; Mohd Amran Mohd Radzi; Mahdi Izadi; Norhafiz Azis; Nor Izzati Ahmad; Mohd Solehin Mohd Nasir

    2017-01-01

    Solar photovoltaic (PV) farms currently play a vital role in the generation of electrical power in different countries, such as Malaysia, which is moving toward the use of renewable energy. Malaysia is one of the countries with abundant sunlight and thus can use solar PV farms as alternative sources for electricity generation. However, lightning strikes frequently occur in the country. Being installed in open and flat areas, solar PV farms, especially their electronic components, are at great...

  16. Friction of hydrogels with controlled surface roughness on solid flat substrates.

    Science.gov (United States)

    Yashima, Shintaro; Takase, Natsuko; Kurokawa, Takayuki; Gong, Jian Ping

    2014-05-14

    This study investigated the effect of hydrogel surface roughness on its sliding friction against a solid substrate having modestly adhesive interaction with hydrogels under small normal pressure in water. The friction test was performed between bulk polyacrylamide hydrogels of varied surface roughness and a smooth glass substrate by using a strain-controlled rheometer with parallel-plates geometry. At small pressure (normal strain 1.4-3.6%), the flat surface gel showed a poor reproducibility in friction. In contrast, the gels with a surface roughness of 1-10 μm order showed well reproducible friction behaviors and their frictional stress was larger than that of the flat surface hydrogel. Furthermore, the flat gel showed an elasto-hydrodynamic transition while the rough gels showed a monotonous decrease of friction with velocity. The difference between the flat surface and the rough surface diminished with the increase of the normal pressure. These phenomena are associated with the different contact behaviors of these soft hydrogels in liquid, as revealed by the observation of the interface using a confocal laser microscope.

  17. Annual performance of building-integrated photovoltaic/water-heating system for warm climate application

    International Nuclear Information System (INIS)

    Chow, T.T.; Chan, A.L.S.; Fong, K.F.; Lin, Z.; He, W.; Ji, J.

    2009-01-01

    A building-integrated photovoltaic/water-heating (BiPVW) system is able to generate higher energy output per unit collector area than the conventional solar systems. Through computer simulation with energy models developed for this integrative solar system in Hong Kong, the results showed that the photovoltaic/water-heating (PVW) system has economic advantages over the conventional photovoltaic (PV) installation. The system thermal performance under natural water circulation was found better than the pump-circulation mode. For a specific BiPVW system at a vertical wall of a fully air-conditioned building and with collectors equipped with flat-box-type thermal absorber and polycrystalline silicon cells, the year-round thermal and cell conversion efficiencies were found respectively 37.5% and 9.39% under typical Hong Kong weather conditions. The overall heat transmission through the PVW wall is reduced to 38% of the normal building facade. When serving as a water pre-heating system, the economical payback period was estimated around 14 years. This greatly enhances the PV market opportunities. (author)

  18. Performance of an anisotropic Allman/DKT 3-node thin triangular flat shell element

    Science.gov (United States)

    Ertas, A.; Krafcik, J. T.; Ekwaro-Osire, S.

    1992-05-01

    A simple, explicit formulation of the stiffness matrix for an anisotropic, 3-node, thin triangular flat shell element in global coordinates is presented. An Allman triangle (AT) is used for membrane stiffness. The membrane stiffness matrix is explicitly derived by applying an Allman transformation to a Felippa 6-node linear strain triangle (LST). Bending stiffness is incorporated by the use of a discrete Kirchhoff triangle (DKT) bending element. Stiffness terms resulting from anisotropic membrane-bending coupling are included by integrating, in area coordinates, the membrane and bending strain-displacement matrices. Using the aforementioned approach, the objective of this study is to develop and test the performance of a practical 3-node flat shell element that could be used in plate problems with unsymmetrically stacked composite laminates. The performance of the latter element is tested on plates of varying aspect ratios. The developed 3-node shell element should simplify the programming task and have the potential of reducing the computational time.

  19. MATLAB Simulation of Photovoltaic and Photovoltaic/Thermal Systems Performance

    Science.gov (United States)

    Nasir, Farah H. M.; Husaini, Yusnira

    2018-03-01

    The efficiency of the photovoltaic reduces when the photovoltaic cell temperature increased due to solar irradiance. One solution is come up with the cooling system photovoltaic system. This combination is forming the photovoltaic-thermal (PV/T) system. Not only will it generate electricity also heat at the same time. The aim of this research is to focus on the modeling and simulation of photovoltaic (PV) and photovoltaic-thermal (PV/T) electrical performance by using single-diode equivalent circuit model. Both PV and PV/T models are developed in Matlab/Simulink. By providing the cooling system in PV/T, the efficiency of the system can be increased by decreasing the PV cell temperature. The maximum thermal, electrical and total efficiency values of PV/T in the present research are 35.18%, 15.56% and 50.74% at solar irradiance of 400 W/m2, mass flow rate of 0.05kgs-1 and inlet temperature of 25 °C respectively has been obtained. The photovoltaic-thermal shows that the higher efficiency performance compared to the photovoltaic system.

  20. Massive ordering and alignment of cylindrical micro-objects by photovoltaic optoelectronic tweezers.

    Science.gov (United States)

    Elvira, Iris; Muñoz-Martínez, Juan F; Barroso, Álvaro; Denz, Cornelia; Ramiro, José B; García-Cabañes, Angel; Agulló-López, Fernando; Carrascosa, Mercedes

    2018-01-01

    Optical tools for manipulation and trapping of micro- and nano-objects are a fundamental issue for many applications in nano- and biotechnology. This work reports on the use of one such method, known as photovoltaic optoelectronics tweezers, to orientate and organize cylindrical microcrystals, specifically elongated zeolite L, on the surface of Fe-doped LiNbO 3 crystal plates. Patterns of aligned zeolites have been achieved through the forces and torques generated by the bulk photovoltaic effect. The alignment patterns with zeolites parallel or perpendicular to the substrate surface are highly dependent on the features of light distribution and crystal configuration. Moreover, dielectrophoretic chains of zeolites with lengths up to 100 μm have often been observed. The experimental results of zeolite trapping and alignment have been discussed and compared together with theoretical simulations of the evanescent photovoltaic electric field and the dielectrophoretic potential. They demonstrate the remarkable capabilities of the optoelectronic photovoltaic method to orientate and pattern anisotropic microcrystals. The combined action of patterning and alignment offers a unique tool to prepare functional nanostructures with potential applications in a variety of fields such as nonlinear optics or plasmonics.

  1. Development of Surfaces Optically Suitable for Flat Solar Panels. [using a reflectometer which separately evaluates spectral and diffuse reflectivities of surfaces

    Science.gov (United States)

    1979-01-01

    A reflectometer which can separately evaluate the spectral and diffuse reflectivities of surfaces is described. A phase locked detection system for the reflectometer is also described. A selective coating on aluminum potentially useful for flat plate solar collector applications is presented. The coating is composed of strongly bound copper oxide (divalent) and is formed by an etching process performed on an aluminum alloy with high copper content. Fabrication costs are expected to be small due to the one stop fabrication process. A number of conclusions gathered from the literature as to the required optical properties of flat plate solar collectors are discussed.

  2. An experimental study of the mass flow rates effect on flat-plate solar water heater performance using Al2O3/water nanofluid

    Directory of Open Access Journals (Sweden)

    Prakasam Michael Joseph Stalin

    2017-01-01

    Full Text Available In the present work, flat plate solar water heating system has been designed and fabricated accommodating 2 m2 area of solar collector and 0.12 m2 surface area of the heat exchanger using Al2O3/water nanofluid as the working fluid in order to evaluate the performance efficiency in the forced circulation mode. The instantaneous efficiency of solar collector is calculated by taking lower volume fraction of 0.01% with average particle size of 25 nm with and without Triton X-100 surfactant and varying the flow rate from 1 L per minute to 3 L per minute, as per ASHRAE standard. The experimental results show that utilizing Al2O3/water nanofluid with mass flow rate at 2 L per minute increases the collector efficiency by 14.3% when compared to distilled water as the working medium.

  3. The acoustic response of burner-stabilised flat flames : a two-dimensional numerical analysis

    NARCIS (Netherlands)

    Rook, R.; Goey, de L.P.H.

    2003-01-01

    The response of burner-stabilized flat flames to acoustic perturbations is studied numerically. So far, one-dimensional models have been used to study this system. However, in most practical surface burners, the scale of the perforations in the burner plate is of the order of the flame thickness.

  4. Chemical reaction in MHD flow past a vertical plate with mass ...

    African Journals Online (AJOL)

    flow in a vertical double passage channel using Robin boundary conditions. ... the diffusion of a chemically reactive species in a laminar boundary layer flow. ...... hydrodynamic flow past a flat plate will Hall effects, Journal of the Physical.

  5. Parametric Study on the Thermal Performance and Optimal Design Elements of Solar Air Heater Enhanced with Jet Impingement on a Corrugated Absorber Plate

    Directory of Open Access Journals (Sweden)

    Alsanossi M. Aboghrara

    2018-01-01

    Full Text Available Previous works revealed that cross-corrugated absorber plate design and jet impingement on a flat absorber plate resulted in a significant increase in the performance of a solar air heater (SAH. Involving these two designs into one continuous design to improve the SAH performance remains absent in the literature. This study aimed to evaluate the achieved enhancement on performance parameters of a SAH with jet impingement on a corrugated absorber plate. An energy balance model was developed to compare the performance parameters of the proposed SAH with the other two SAHs. At a clear sky day and a mass flow rate of 0.04 kg/s, the hourly results revealed that the max fluid outlet temperatures for the proposed SAH, jet-to-flat plate SAH, and cross-corrugated plate SAH are 321, 317, and 313 K, respectively; the max absorber plate temperatures are 323.5, 326.5, and 328 K, respectively; the maximum temperature differences between the absorber plate and fluid outlet are ~3, 9, and 15 K, respectively; the max efficiencies are 65.7, 64.8, and 60%, respectively. Statistical t-test results confirmed significant differences between the mean efficiency of the proposed SAH and SAH with jet-to-flat plate. Hence, the proposed design is considered superior in improving the performance parameters of SAH compared to other designs.

  6. Thin Film Photovoltaic Partnership Project | Photovoltaic Research | NREL

    Science.gov (United States)

    Thin Film Photovoltaic Partnership Project Thin Film Photovoltaic Partnership Project NREL's Thin Film Photovoltaic (PV) Partnership Project led R&D on emerging thin-film solar technologies in the United States from 1994 to 2009. The project made many advances in thin-film PV technologies that allowed

  7. A novel approach to modeling plate deformations in fluid–structure interactions

    Energy Technology Data Exchange (ETDEWEB)

    Howard, T.K., E-mail: howartre@onid.oregonstate.edu [Oregon State University, Department of Nuclear Engineering & Radiation Health Physics, 116 Radiation Center, Corvallis, OR 97331 (United States); Marcum, W.R., E-mail: marcumw@engr.orst.edu [Oregon State University, Department of Nuclear Engineering & Radiation Health Physics, 116 Radiation Center, Corvallis, OR 97331 (United States); Jones, W.F. [Idaho National Laboratory, Nuclear Fuels & Materials Department, 2525 Fremont Ave., Idaho Falls, ID 83415 (United States)

    2015-11-15

    Highlights: • A new method for computing fluid structure interactions of flat plates is presented herein. • The method is validated through consideration of a single plate subject to hydraulic loading. • The model is compared against solution forms computed via ABAQUS and experimental data. • The model compares well against experimental data and the commercial computational code. - Abstract: As computational power increases, so does the desire to use computational simulations while designing fuel plates. The downside is multi-physics simulations – or more specifically, fluid–structure interactions (FSI) as addressed herein – require a larger amount of computational resources. Current simulations of a single plate can take weeks on a desktop computer, thus requiring the use of multiple servers or a cluster for FSI simulations. While computational fluid dynamic (CFD) codes coupled to computational structural mechanics (CSM) codes can provide a wealth of information regarding flow patterns, there should be some skepticism in whether or not they are the only means of achieving the desired solution. When the parameters of interest are the onset of plate collapse and the associated fluid channel velocities, coupled CFD–CSM simulations provide superfluous information. The paper provides an alternative approach to solving FSI problems using a 1-D, semi-analytical model derived from first principles. The results are compared and contrasted to the numerical and experimental work performed by Kennedy et al. (2014. Experimental Investigation of Deflection of Flat Aluminium Plates Under Variable Velocity Parallel Flow, Columbia: University of Missouri TherMec Research Group).

  8. A novel approach to modeling plate deformations in fluid–structure interactions

    International Nuclear Information System (INIS)

    Howard, T.K.; Marcum, W.R.; Jones, W.F.

    2015-01-01

    Highlights: • A new method for computing fluid structure interactions of flat plates is presented herein. • The method is validated through consideration of a single plate subject to hydraulic loading. • The model is compared against solution forms computed via ABAQUS and experimental data. • The model compares well against experimental data and the commercial computational code. - Abstract: As computational power increases, so does the desire to use computational simulations while designing fuel plates. The downside is multi-physics simulations – or more specifically, fluid–structure interactions (FSI) as addressed herein – require a larger amount of computational resources. Current simulations of a single plate can take weeks on a desktop computer, thus requiring the use of multiple servers or a cluster for FSI simulations. While computational fluid dynamic (CFD) codes coupled to computational structural mechanics (CSM) codes can provide a wealth of information regarding flow patterns, there should be some skepticism in whether or not they are the only means of achieving the desired solution. When the parameters of interest are the onset of plate collapse and the associated fluid channel velocities, coupled CFD–CSM simulations provide superfluous information. The paper provides an alternative approach to solving FSI problems using a 1-D, semi-analytical model derived from first principles. The results are compared and contrasted to the numerical and experimental work performed by Kennedy et al. (2014. Experimental Investigation of Deflection of Flat Aluminium Plates Under Variable Velocity Parallel Flow, Columbia: University of Missouri TherMec Research Group).

  9. Life cycle assessment of crystalline photovoltaics in the Swiss ecoinvent database

    Energy Technology Data Exchange (ETDEWEB)

    Jungbluth, Niels [ESU-services, Environmental Consultancy for Business and Authorities, Uster (Switzerland)

    2005-07-01

    This paper describes the life cycle assessment (LCA) for photovoltaic (PV) power plants in the new ecoinvent database. Twelve different, grid-connected photovoltaic systems were studied for the situation in Switzerland in the year 2000. They are manufactured as panels or laminates, from monocrystalline or polycrystalline silicon, installed on facades, slanted or flat roofs, and have 3 kW{sub p} capacity. The process data include quartz reduction, silicon purification, wafer, panel and laminate production, mounting structure, 30 years operation and dismantling. In contrast to existing LCA studies, country-specific electricity mixes have been considered in the life cycle inventory (LCI) in order to reflect the present market situation. The new approach for the allocation procedure in the inventory of silicon purification, as a critical issue of former studies, is discussed in detail. The LCI for photovoltaic electricity shows that each production stage is important for certain elementary flows. A life cycle impact assessment (LCIA) shows that there are important environmental impacts not directly related to the energy use (e.g., process emissions of NO{sub x} from wafer etching). The assumption for the used supply energy mixes is important for the overall LCIA results of different production stages. The presented life cycle inventories for photovoltaic power plants are representative for newly constructed plants and for the average photovoltaic mix in Switzerland in the year 2000. A scenario for a future technology (until 2010) helps to assess the relative influence of technology improvements for some processes. The very detailed ecoinvent database forms a good basis for similar studies in other European countries or for other types of solar cells. (Author)

  10. Evolution of disturbances in the shock layer on a flat plate in the flow of a mixture of vibrationally excited gases

    Science.gov (United States)

    Kirilovskiy, S. V.; Poplavskaya, T. V.; Tsyryulnikov, I. S.; Maslov, A. A.

    2017-05-01

    The results of the numerical and experimental investigations of the evolution of the disturbances in a hypersonic shock layer on a flat plate streamlined by a flow of the mixture of vibrationally excited gases are presented. The experimental study was conducted in the hot-shot high-enthalpy wind tunnel IT-302 of the ITAM SB RAS. The numerical simulation was carried out with the aid of the ANSYS Fluent package using the solution of the unsteady two-dimensional Navier-Stokes equations with the incorporation of the user-created modules and enabling the consideration of the vibrational non-equilibrium of the carbon dioxide molecules within the framework of the model of the two-temperature aerodynamics. It was obtained that an increase in the carbon dioxide concentration in the mixture with air leads to a reduction of the intensity of pressure disturbances on the surface. The efficiency (up to 20 %) of the method of sound absorbing coatings in the vibrationally excited flows of the mixture of the carbon dioxide and air has been shown.

  11. Forced and free convection hydromagnetic flow past a vertical flat plate

    International Nuclear Information System (INIS)

    Abdelkhalek, M.M.

    2004-01-01

    The effects of magnetic field and temperature heat source on the free and forced convection flow past an infinite vertical plate is studied analytically. Solutions of the reduced equation appropriate in the forced convection and free convection regime are obtained using perturbation technique. The expression for the velocity field, skin friction and Nusselt number have been obtained

  12. Intermediate Photovoltaic System Application Experiment operational performance: executive summary. Volume for Beverly High School, Beverly, MA

    Energy Technology Data Exchange (ETDEWEB)

    1981-09-01

    For the momth of July 1981, performance data are given for a grid-connected 100 kW photovoltaic flat panel power system at a high school in Massachusetts. The total electrical energy produced solar energy incident on the solar cells, array and system efficiency, capacity factor and insolation are given for the month and the daily energy production and incident solar energy are graphed. (LEW)

  13. Development and applications of a flat triangular element for thin laminated shells

    Science.gov (United States)

    Mohan, P.

    Finite element analysis of thin laminated shells using a three-noded flat triangular shell element is presented. The flat shell element is obtained by combining the Discrete Kirchhoff Theory (DKT) plate bending element and a membrane element similar to the Allman element, but derived from the Linear Strain Triangular (LST) element. The major drawback of the DKT plate bending element is that the transverse displacement is not explicitly defined within the interior of the element. In the present research, free vibration analysis is performed both by using a lumped mass matrix and a so called consistent mass matrix, obtained by borrowing shape functions from an existing element, in order to compare the performance of the two methods. Several numerical examples are solved to demonstrate the accuracy of the formulation for both small and large rotation analysis of laminated plates and shells. The results are compared with those available in the existing literature and those obtained using the commercial finite element package ABAQUS and are found to be in good agreement. The element is employed for two main applications involving large flexible structures. The first application is the control of thermal deformations of a spherical mirror segment, which is a segment of a multi-segmented primary mirror used in a space telescope. The feasibility of controlling the surface distortions of the mirror segment due to arbitrary thermal fields, using discrete and distributed actuators, is studied. The second application is the analysis of an inflatable structure, being considered by the US Army for housing vehicles and personnel. The updated Lagrangian formulation of the flat shell element has been developed primarily for the nonlinear analysis of the tent structure, since such a structure is expected to undergo large deformations and rotations under the action of environmental loads like the wind and snow loads. The follower effects of the pressure load have been included in the

  14. Performance of double -pass solar collector with CPC and fins for heat transfer enhancement

    Science.gov (United States)

    Alfegi, Ebrahim M. A.; Abosbaia, Alhadi A. S.; Mezughi, Khaled M. A.; Sopian, Kamaruzzaman

    2013-06-01

    The temperature of photovoltaic modules increases when it absorbs solar radiation, causing a decrease in efficiency. This undesirable effect can be partially avoided by applying a heat recovery unit with fluid circulation (air or water) with the photovoltaic module. Such unit is called photovoltaic / thermal collector (pv/t) or hybrid (pv/t). In this unit, photovoltaic cells were pasted directly on the flat plate absorber. An experimental study of a solar air heater with photovoltaic cell located at the absorber with fins and compound parabolic collector for heat transfer enhancement and increasing the number of reflection on the cells have been conducted. The performance of the photovoltaic, thermal, and combined pv/t collector over range of operating conditions and the results was discussed. Results at solar irradiance of 500 W/m2 show that the combined pv/t efficiency is increasing from 37.28 % to 81.41 % at mass flow rates various from 0.029 to 0.436 kg/s.

  15. Performance of double –pass solar collector with CPC and fins for heat transfer enhancement

    International Nuclear Information System (INIS)

    Alfegi, Ebrahim M A; Abosbaia, Alhadi A S; Mezughi, Khaled M A; Sopian, Kamaruzzaman

    2013-01-01

    The temperature of photovoltaic modules increases when it absorbs solar radiation, causing a decrease in efficiency. This undesirable effect can be partially avoided by applying a heat recovery unit with fluid circulation (air or water) with the photovoltaic module. Such unit is called photovoltaic / thermal collector (pv/t) or hybrid (pv/t). In this unit, photovoltaic cells were pasted directly on the flat plate absorber. An experimental study of a solar air heater with photovoltaic cell located at the absorber with fins and compound parabolic collector for heat transfer enhancement and increasing the number of reflection on the cells have been conducted. The performance of the photovoltaic, thermal, and combined pv/t collector over range of operating conditions and the results was discussed. Results at solar irradiance of 500 W/m 2 show that the combined pv/t efficiency is increasing from 37.28 % to 81.41 % at mass flow rates various from 0.029 to 0.436 kg/s.

  16. Buckling transition and boundary layer in non-Euclidean plates.

    Science.gov (United States)

    Efrati, Efi; Sharon, Eran; Kupferman, Raz

    2009-07-01

    Non-Euclidean plates are thin elastic bodies having no stress-free configuration, hence exhibiting residual stresses in the absence of external constraints. These bodies are endowed with a three-dimensional reference metric, which may not necessarily be immersible in physical space. Here, based on a recently developed theory for such bodies, we characterize the transition from flat to buckled equilibrium configurations at a critical value of the plate thickness. Depending on the reference metric, the buckling transition may be either continuous or discontinuous. In the infinitely thin plate limit, under the assumption that a limiting configuration exists, we show that the limit is a configuration that minimizes the bending content, among all configurations with zero stretching content (isometric immersions of the midsurface). For small but finite plate thickness, we show the formation of a boundary layer, whose size scales with the square root of the plate thickness and whose shape is determined by a balance between stretching and bending energies.

  17. Photovoltaic module and laminate

    Science.gov (United States)

    Bunea, Gabriela E.; Kim, Sung Dug; Kavulak, David F.J.

    2018-04-10

    A photovoltaic module is disclosed. The photovoltaic module has a first side directed toward the sun during normal operation and a second, lower side. The photovoltaic module comprises a perimeter frame and a photovoltaic laminate at least partially enclosed by and supported by the perimeter frame. The photovoltaic laminate comprises a transparent cover layer positioned toward the first side of the photovoltaic module, an upper encapsulant layer beneath and adhering to the cover layer, a plurality of photovoltaic solar cells beneath the upper encapsulant layer, the photovoltaic solar cells electrically interconnected, a lower encapsulant layer beneath the plurality of photovoltaic solar cells, the upper and lower encapsulant layers enclosing the plurality of photovoltaic solar cells, and a homogenous rear environmental protection layer, the rear environmental protection layer adhering to the lower encapsulant layer, the rear environmental protection layer exposed to the ambient environment on the second side of the photovoltaic module.

  18. Open fibre reinforced plastic (FRP) flat plate collector (FPC) and spray network systems for augmenting the evaporation rate of tannery effluent (soak liquor)

    International Nuclear Information System (INIS)

    Srithar, K.; Mani, A.

    2007-01-01

    Presently, tanneries in Tamilnadu, India are required to segregate the effluent of soaking and pickling sections from other wastewater streams and send it to shallow solar pans for evaporation to avoid land pollution. A large area of solar pans is required for evaporating the water in the effluent at salt concentration in the range of 4-5%. An experimental study has been made by using fibre reinforced plastic flat plate collector (FRP-FPC) and spray system in a pilot plant with a capacity to handle 5000 l per day, which increases the evaporation rate. After increasing the salt concentration level to near saturation limit, the concentrated liquid was sent to conventional solar pans for its continued evaporation and recovery of salt. In this improved system, the rate of evaporation was found to be 30-40% more than that in the conventional solar pans. The performance is compared with the theoretically simulated performance. (author)

  19. The Transition from Thick to Thin Plate Wake Physics: Whither Vortex Shedding?

    Science.gov (United States)

    Rai, Man Mohan

    2016-01-01

    The near and very near wake of a flat plate with a circular trailing edge is investigated with data from direct numerical simulations. Computations were performed for six different combinations of the Reynolds numbers based on plate thickness (D) and boundary layer momentum thickness upstream of the trailing edge (theta). Unlike the case of the cylinder, these Reynolds numbers are independent parameters for the flat plate. The separating boundary layers are turbulent in all the cases investigated. One objective of the study is to understand the changes in the wake vortex shedding process as the plate thickness is reduced (increasing theta/D). The value of D varies by a factor of 16 and that of theta by approximately 5 in the computations. Vortex shedding is vigorous in the low theta/D cases with a substantial decrease in shedding intensity in the large theta/D cases. Other shedding characteristics are also significantly altered with increasing theta/D. A visualization of the shedding process in the different cases is provided and discussed. The basic shedding mechanism is explored in depth. The effect of changing theta/D on the time-averaged, near-wake velocity statistics is also discussed. A functional relationship between the shedding frequency and the Reynolds numbers mentioned above is obtained.

  20. Improve photovoltaic performance of titanium dioxide nanorods based dye-sensitized solar cells by Ca-doping

    International Nuclear Information System (INIS)

    Li, Weixin; Yang, Junyou; Zhang, Jiaqi; Gao, Sheng; Luo, Yubo; Liu, Ming

    2014-01-01

    Highlights: • TiO 2 nanorods doped with Ca ions were synthesized by one-step hydrothermal method. • The flat band edge of rutile TiO 2 shifted positively via Ca-doping. • The photoelectric conversion efficiency of dye-sensitized solar cells (DSSCs) based on TiO 2 electrode was much enhanced by Ca-doping. • A relatively high open circuit voltage was obtained by adopting Ca-doped TiO 2 nanorods electrode. - Abstract: Ca-doped TiO 2 nanorod arrays were prepared via the one-step hydrothermal method successfully, and the effect of Ca ions content on the photovoltaic conversion efficiency of dye-sensitized solar cells has been fully discussed in the paper. Although no obvious change on the microstructure and morphology was observed by field emission scanning electron microscope and transmission electron microscope for the Ca-doped samples, the results of X-ray diffraction and X-ray photoelectron spectroscopy confirmed that Ti 4+ was substituted with Ca 2+ successfully. UV–vis spectroscopy results revealed that the flat band edge shifted positively by Ca ions doping. The photovoltaic conversion efficiency of the dye-sensitized solar cells based on the 2 mol% Ca-doped TiO 2 electrode was 43% higher than that of the undoped one due to the less recombination possibility

  1. Thermal conductivity of a graphite bipolar plate (BPP) and its thermal contact resistance with fuel cell gas diffusion layers: Effect of compression, PTFE, micro porous layer (MPL), BPP out-of-flatness and cyclic load

    Science.gov (United States)

    Sadeghifar, Hamidreza; Djilali, Ned; Bahrami, Majid

    2015-01-01

    This paper reports on measurements of thermal conductivity of a graphite bipolar plate (BPP) as a function of temperature and its thermal contact resistance (TCR) with treated and untreated gas diffusion layers (GDLs). The thermal conductivity of the BPP decreases with temperature and its thermal contact resistance with GDLs, which has been overlooked in the literature, is found to be dominant over a relatively wide range of compression. The effects of PTFE loading, micro porous layer (MPL), compression, and BPP out-of-flatness are also investigated experimentally. It is found that high PTFE loadings, MPL and even small BPP out-of-flatness increase the BPP-GDL thermal contact resistance dramatically. The paper also presents the effect of cyclic load on the total resistance of a GDL-BPP assembly, which sheds light on the behavior of these materials under operating conditions in polymer electrolyte membrane fuel cells.

  2. Photovoltaic module and interlocked stack of photovoltaic modules

    Science.gov (United States)

    Wares, Brian S.

    2012-09-04

    One embodiment relates to an arrangement of photovoltaic modules configured for transportation. The arrangement includes a plurality of photovoltaic modules, each photovoltaic module including a frame having at least a top member and a bottom member. A plurality of alignment features are included on the top member of each frame, and a plurality of alignment features are included on the bottom member of each frame. Adjacent photovoltaic modules are interlocked by the alignment features on the top member of a lower module fitting together with the alignment features on the bottom member of an upper module. Other embodiments, features and aspects are also disclosed.

  3. A photovoltaic module

    DEFF Research Database (Denmark)

    2013-01-01

    The present invention relates to a photovoltaic module comprising a carrier substrate, said carrier substrate carrying a purely printed structure comprising printed positive and negative module terminals, a plurality of printed photovoltaic cell units each comprising one or more printed...... photovoltaic cells, wherein the plurality of printed photovoltaic cell units are electrically connected in series between the positive and the negative module terminals such that any two neighbouring photovoltaic cell units are electrically connected by a printed interconnecting electrical conductor....... The carrier substrate comprises a foil and the total thickness of the photovoltaic module is below 500 [mu]m. Moreover, the nominal voltage level between the positive and the negative terminals is at least 5 kV DC....

  4. Photovoltaic device

    Energy Technology Data Exchange (ETDEWEB)

    Reese, Jason A; Keenihan, James R; Gaston, Ryan S; Kauffmann, Keith L; Langmaid, Joseph A; Lopez, Leonardo; Maak, Kevin D; Mills, Michael E; Ramesh, Narayan; Teli, Samar R

    2017-03-21

    The present invention is premised upon an improved photovoltaic device ("PV device"), more particularly to an improved photovoltaic device with a multilayered photovoltaic cell assembly and a body portion joined at an interface region and including an intermediate layer, at least one interconnecting structural member, relieving feature, unique component geometry, or any combination thereof.

  5. Photovoltaic device

    Science.gov (United States)

    Reese, Jason A.; Keenihan, James R.; Gaston, Ryan S.; Kauffmann, Keith L.; Langmaid, Joseph A.; Lopez, Leonardo C.; Maak, Kevin D.; Mills, Michael E.; Ramesh, Narayan; Teli, Samar R.

    2015-06-02

    The present invention is premised upon an improved photovoltaic device ("PV device"), more particularly to an improved photovoltaic device with a multilayered photovoltaic cell assembly and a body portion joined at an interface region and including an intermediate layer, at least one interconnecting structural member, relieving feature, unique component geometry, or any combination thereof.

  6. Correlation of Water Frost Porosity in Laminar Flow over Flat Surfaces

    Science.gov (United States)

    Kandula, Max

    2011-01-01

    A dimensionless correlation has been proposed for water frost porosity expressing its dependence on frost surface temperature and Reynolds number for laminar forced flow over a flat surface. The correlation is presented in terms of a dimensionless frost surface temperature scaled with the cold plate temperature, and the freezing temperature. The flow Reynolds number is scaled with reference to the critical Reynolds number for laminar-turbulent transition. The proposed correlation agrees satisfactorily with the simultaneous measurements of frost density and frost surface temperature covering a range of plate temperature, ambient air velocity, humidity, and temperature. It is revealed that the frost porosity depends primarily on the frost surface and the plate temperatures and the flow Reynolds number, and is only weakly dependent on the relative humidity. The results also point out the general character of frost porosity displaying a decrease with an increase in flow Reynolds number.

  7. Characterizing cycle-to-cycle variations of the shedding cycle in the turbulent wake of a normal flat plate using generalized phase averages

    Science.gov (United States)

    Martinuzzi, Robert

    2016-11-01

    Quasi-periodic vortex shedding in the turbulent wake of a thin-flat plate placed normal to a uniform stream at Reynolds number of 6700 is investigated based on Particle Image Velocimetry experiments. The wake structure and vortex formation are characterized using a generalized phase average (GPA), a refinement of the triple decomposition of Reynolds and Hussain (1970) incorporating elements of mean-field theory (Stuart, 1958). The resulting analysis highlights the importance of cycle-to-cycle variations in characterizing vortex formation, wake topology and the residual turbulent Reynolds Stresses. For example, it is shown that during high-amplitude cycles vorticity is strongly concentrated within the well-organized shed vortices, whereas during low-amplitude cycles the shed vortices are highly distorted resulting in significant modulation of the shedding frequency. It is found that high-amplitude cycles contribute more to the coherent Reynolds stress field while the low-amplitude cycles contribute to the residual stress field. It is further shown that traditional phase-averaging techniques lead to an over-estimation of the residual stress field. Natural Sciences and Engineering Research Council of Canada.

  8. Prediction of an internal boundary layer on a flat plate after a step change in roughness using a near-wall RANS model

    Science.gov (United States)

    Chu, Minghan; Meng, Fanxiao; Bergstrom, Donald J.

    2017-11-01

    An in-house computational fluid dynamics code was used to simulate turbulent flow over a flat plate with a step change in roughness, exhibiting a smooth-rough-smooth configuration. An internal boundary layer (IBL) is formed at the transition from the smooth to rough (SR) and then the rough to smooth (RS) surfaces. For an IBL the flow far above the surface has experienced a wall shear stress that is different from the local value. Within a Reynolds-Averaged-Navier-Stokes (RANS) formulation, the two-layer k- ɛ model of Durbin et al. (2001) was implemented to analyze the response of the flow to the change in surface condition. The numerical results are compared to experimental data, including some in-house measurements and the seminal work of Antonia and Luxton (1971,72). This problem captures some aspects of roughness in industrial and environmental applications, such as corrosion and the earth's surface heterogeneity, where the roughness is often encountered as discrete distributions. It illustrates the challenge of incorporating roughness models in RANS that are capable of responding to complex surface roughness profiles.

  9. The Impact of Reduced Gravity on Free Convective Heat Transfer from a Finite, Flat, Vertical Plate

    Science.gov (United States)

    Lotto, Michael A.; Johnson, Kirstyn M.; Nie, Christopher W.; Klaus, David M.

    2017-10-01

    Convective heat transfer is governed by a number of factors including various fluid properties, the presence of a thermal gradient, geometric configuration, flow condition, and gravity. Empirically-derived analytical relationships can be used to estimate convection as a function of these governing parameters. Although it is relatively straightforward to experimentally quantify the contributions of the majority of these variables, it is logistically difficult to assess the influence of reduced-gravity due to practical limitations of establishing this environment. Therefore, in order to explore this regime, a series of tests was conducted to evaluate convection under reduced-gravity conditions averaging 0.45 m/sec2 (0.05 g) achieved aboard a parabolic aircraft. The results showed a reduction in net heat transfer of approximately 61% in flight relative to a 1 g terrestrial baseline using the same setup. The average experimental Nusselt Number of 19.05 ± 1.41 statistically correlated with the predicted value of 18.90 ± 0.63 (N = 13), estimated using the Churchill-Chu correlation for free convective heat transfer from a finite, flat, vertical plate. Extrapolating this to similar performance in true microgravity (10-6 g) indicates that these conditions should yield a Nusselt Number of 1.27, which is 2.6% the magnitude of free convection at 1 g, or a reduction of 97.4%. With advection essentially eliminated, heat transfer becomes limited to diffusion and radiation, which are gravity-independent and nearly equivalent in magnitude in this case. These results offer a general guideline for integrating components that utilize natural (free) convective gas cooling in a spacecraft habitat and properly sizing the thermal control system.

  10. Optimum tilt angle for flat plate collectors all over the World – A declination dependence formula and comparisons of three solar radiation models

    International Nuclear Information System (INIS)

    Stanciu, Camelia; Stanciu, Dorin

    2014-01-01

    Highlights: • Monthly optimum tilt angle is predicted for North latitudes between 0° and 80°. • From practical considerations, an optimum fixed value all along the year is derived. • Three solar radiation models are compared from the point of view of total incident solar radiation density prediction. - Abstract: The paper presents a theoretical study on the optimum tilt angle for flat plate collectors at different geographical locations and different time moments over a year. The solar radiation density is estimated based on three analysis models, namely Hottel and Woertz model (the simplest), Isotropic diffuse model (Liu and Jordan model) and HDKR model (Hay–Davis–Klucker–Reindl), passing from the simplest to the most complex one. Further, the absorbed solar radiation density is computed and the optimum tilt angle is found for different geographical locations (covering the Globe latitudes). The optimum value for the tilt angle is researched for maximum incident solar radiation and also for maximum absorbed one. The results indicate that the same angle is obtained when looking for maximum incident and for maximum absorbed solar radiation. When comparing the three above mentioned models, different tilt angles are supplied by applying the Hottel and Woertz model and respectively the others two (both of them providing the same angle). Although, the predicted absorbed solar radiation is the same in the summertime for all three models, and probably overestimated by the last model in the springtime. The obtained results give an overview over the whole year operation at different geographical latitudes. When using the Hottel and Woertz model for estimating the incident solar radiation, the optimum tilt angle for a flat plate collector should be computed as simplest as β opt = φ − δ function on the latitude and declination. If a fixed value is easier to be used over a specific operation period, an optimum value is provided by this research. The novelty

  11. Apparatus for mounting photovoltaic power generating systems on buildings

    Science.gov (United States)

    Russell, Miles C [Lincoln, MA

    2009-08-18

    Rectangular photovoltaic (PV) modules are mounted on a building roof by mounting stands that are distributed in rows and columns. Each stand comprises a base plate and first and second different height brackets attached to opposite ends of the base plate. Each first and second bracket comprises two module-support members. One end of each module is pivotally attached to and supported by a first module-support member of a first bracket and a second module-support member of another first bracket. At its other end each module rests on but is connected by flexible tethers to module-support members of two different second brackets. The tethers are sized to allow the modules to pivot up away from the module-support members on which they rest to a substantially horizontal position in response to wind uplift forces.

  12. Organic photovoltaics

    DEFF Research Database (Denmark)

    Demming, Anna; Krebs, Frederik C; Chen, Hongzheng

    2013-01-01

    's supply, even at our increasingly ravenous rate of global energy consumption [1]. But it's not what you have got it's what you do with it. Hence the intense focus on photovoltaic research to find more efficient ways to harness energy from the Sun. Recently much of this research has centred on organic...... solar cells since they offer simple, low-cost, light-weight and large-area flexible photovoltaic structures. This issue with guest editors Frederik C Krebs and Hongzheng Chen focuses on some of the developments at the frontier of organic photovoltaic technology. Improving the power conversion efficiency...... of organic photovoltaic systems, while maintaining the inherent material, economic and fabrication benefits, has absorbed a great deal of research attention in recent years. Here significant progress has been made with reports now of organic photovoltaic devices with efficiencies of around 10%. Yet operating...

  13. Viscous dissipation effects on heat transfer in flow past a continuous moving plate

    Digital Repository Service at National Institute of Oceanography (India)

    Soundalgekar, V.M.; Murty, T.V.R.

    The study of thermal boundary layer on taking into account the viscous dissipative heat, on a continuously moving semi-infinite flat plate is presented here.Similarity solutions are derived and the resulting equations are integrated numerically...

  14. Swiss Photovoltaics Programme, 2004 Edition - Overview (German) for 2003; Programm Photovoltaik, Ausgabe 2004

    Energy Technology Data Exchange (ETDEWEB)

    Nowak, S

    2004-07-01

    This publication issued by the Swiss Federal Office of Energy's Photovoltaics (PV) Programme presents an overview (in German) of activities and projects in the photovoltaics research and pilot and demonstration area in Switzerland for the year 2003. Progress in the area of future solar cell technologies, modules, building integration and system technologies is summarised. Also, national and international co-operation and multi-national pilot and demonstration projects are commented on. Associated projects such as eco-balances for PV systems, forecasting and modelling tools as well as system monitoring tools are discussed. In the area of pilot and demonstration projects, component development, PV integration in sloping roofs, on flat roofs and on facades as well as further PV plant are looked at. Also, measurement campaigns, studies, statistics and other PV-related topics are summarised. This volume also presents a list of 92 projects in the PV area including the appropriate Internet links.

  15. Double-pass photovoltaic / thermal (PV/T) solar collector with advanced heat transfer features

    International Nuclear Information System (INIS)

    Mohd Nazari Abu Bakar; Baharudin Yatim; Mohd Yusof Othman; Kamaruzzaman Sopian

    2006-01-01

    The use of PV/T in combination with concentrating reflectors has a potential to significantly increase power production from a given solar cell area. A prototype double-pass photovoltaic-thermal solar air collector with CPR and fins has been designed and fabricated and its performance over a range of operating conditions was studied. The absorber of the hybrid photovoltaic / thermal (PV/T) collector under investigation consists of an array of solar cells for generating electricity, compound parabolic concentrator (CPR) to increase the radiation intensity falling on the solar cells and fins attached to the back side of the absorber plate to improve heat transfer to the flowing air. The thermal, electrical and combined electrical and thermal efficiencies of the collector are presented and discussed

  16. Photovoltaic barometer

    International Nuclear Information System (INIS)

    2014-01-01

    The global solar photovoltaic market enjoyed a strong revival in 2013. Preliminary estimates put it in excess of 37 GWp, compared to 30 GWp in 2012 and 2011. The solar photovoltaic sector led the annual installed capacity ratings for renewable energies, taking worldwide capacity up to 137 GWp by the end of the year which means a 35% year-on-year increase. At global level the high growth markets - China, Japan and America - contrast sharply with the contracting European Union market. The strong recovery of the global photovoltaic market is due to the drop in module prices which in some zones has dropped below the conventional electricity price. In the E.U, in 2013 the photovoltaic electricity reached 80.2 TWh while the capacity connected during this year was 9922.2 MWp. Concerning the capacity connected in 2013 the 2 main contributors in Europe are Germany (3310.0 MWc) and Italy (1462.0 MWc). These 2 countries represent also 68% of the cumulated and connected capacity in Europe. All along the article various charts and tables give the figures of the photovoltaic capacity per inhabitant for each E.U country in 2013, the electricity production from photovoltaic power for each E.U country, and the main photovoltaic module manufacturers in 2013 worldwide reporting production and turnover

  17. Photovoltaic device

    Science.gov (United States)

    Reese, Jason A.; Keenihan, James R.; Gaston, Ryan S.; Kauffmann, Keith L.; Langmaid, Joseph A.; Lopez, Leonardo C.; Maak, Kevin D.; Mills, Michael E.; Ramesh, Narayan; Teli, Samar R.

    2015-09-01

    The present invention is premised upon an improved photovoltaic device ("PV device"), more particularly to an improved photovoltaic device (10) with a multilayered photovoltaic cell assembly (100) and a body portion (200) joined at an interface region (410) and including an intermediate layer (500), at least one interconnecting structural member (1500), relieving feature (2500), unique component geometry, or any combination thereof.

  18. Pyrolysis and Boundary Layer Combustion of a Non-Charring Solid Plate Under Forced Flow

    National Research Council Canada - National Science Library

    Ananth, Ramagopal

    2003-01-01

    Solutions of Navier-Stokes (NS) equations were obtained for burning rate Nu and temperature distributions for a flat PMMA plate using an iterative method to impose steady-state, pyrolysis kinetics at the surface...

  19. Production of monodispersed Oil-in Water Emulsion Using Crossflow-Type Silicon Microchannel Plate

    Energy Technology Data Exchange (ETDEWEB)

    Kawakatsu, Takahiro.; Komori, Hideaki.; Yonemoto, Toshikuni. [Tohoku University, Miyagi (Japan). Chemical Engineering Department; Nakajima, Mitsutoshi.; Kikuchi, Yuji. [National Food Research Institute, Ibaraki (Japan)

    1999-04-01

    A novel method for continuous productin of monodispersed oil-in-water (O/W) emulsion is developed using acrossflow-type silicaon microchannel plate. On the single crystal silicon plate, a liquid flow path for continuous phase was made, and at each side of th wall of the path an array of regular-sized slits was precisely fabricated. A flat glass plate was tightly attached on the microchannel plate to cover the top of the slits to form the array of microchannels. Regular-sized oil (triolein) droplets were generated by squeezing the oil through the microchannels into the continuous-phase water (0.3 wt% sodium lauryl sulfate solutin) flowing in the liquid path. Oil droplet size is significantly dependent on the microchannel structure, which is identified with the microchannel width, height, and the length of the terrace (a flat area at the microchannel outlet). Three types of microchannel plates having different microchannel structures generate monodispersed emulsions of different average droplet sizes, 16,20, and 48 {mu}m at the watr flow rate of 1.4x10{sup -2}mL{center_dot}min{sup -1}. For the microchannel plate which generates large droplets of 48 {mu}m, increasing the flow rate causes decreasing droplet size. However, for the microchannel plate which generates small droplets of 16 or 20 {mu}m, the size is not affected by the flow rate within the range from 1.4x10{sup -2}to 2.4 mL{center_dot}min{sup -1}. In every case, the droplet size distribution is narrow, and the geometric standard deviation is 1.03 or less. (author)

  20. Report on achievements in technological development in fiscal 1999. Development of technology to put photovoltaic power generation system into practical use (Research and development of high reliability storage batteries for photovoltaic power generation use); 1999 nendo taiyoko hatsuden system jitsuyoka gijutsu kaihatsu. Kenkyu kaihatsu kanri (taiyoko hatsuden'yo chikudenchi kaihatsu bukai)

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2000-05-01

    Storage batteries used in household photovoltaic systems must be free of electrolyte leakage and maintenance, and be readily installable in residential houses. Lead-acid batteries that can meet these requirements and have been put into practical use may include the sealed storage batteries. However, these batteries currently in use have drawbacks in life performance and price. Therefore, development is under way on lead-acid batteries for household photovoltaic systems by improving said sealed lead-acid batteries. The targeted batteries should have as long life as passing 3,000 cycles under a condition of 0.1 to 1 CA discharge (at depth of discharge of 50%), energy density of more than 70 Wh per liter, and cost of 12 yen or lower per watt-hour. A prototype battery as the final candidate was fabricated, that uses silica powder as the electrolyte retainer (silica powder filled between plates, and into clearance between plate groups), pasted plates made of expanded metal grids for positive plates, and micro conductive network plates with increased addition amount of carbon to micro active material (PbO{sub 2}) as negative plates. Life performance testes thereon are being performed. This lead-acid battery is estimated to be capable of satisfying the intended performance based on the result of discussions having been made so far. (NEDO)

  1. A 194 kilowatt solar photovoltaic flat panel power system for the combined Beverly High School/C. H. Patten Vocational High School, Beverly, Massachusetts

    Science.gov (United States)

    Addiss, R. R., Jr.; Lawson, P. A.

    1980-06-01

    The design and performance of a photovoltaic power system is discussed. The 194 kW system consists of the photovoltaic array, the inverter/control subsystem, the building and utility interface, and the monitoring subsystem. The photovoltaic array consists of 56 separate subarrays of 112 photovoltaic modules each, deployed in rows on the southerly facing slope north of the school building. The wiring scheme permits individual modules to be disconnected without a radical change in subarray output current. Power is transmitted at 4160 V from the inverters and a step up transformer to the main 4160 V utility feed line in the school. Separate metering measures power bought and sold. At the optimum tilt angle of 40 deg, the array provides 232 MWH of AC energy annually, or 17 percent of the school load. The immediate impact is an $8000 saving in the annual utility bill. Levelized busbar energy costs are reduced from $2/kWH to $1/kWH when site specific parameters are used in the analysis instead of the JPL specified nominal values. A fault detection and isolation scheme which can find a single modulus failure is incorporated into the monitoring subsystem.

  2. Owhership of flats

    OpenAIRE

    Přibil, Jan

    2012-01-01

    Ownership of Flats Summary In his diploma thesis "Ownership of Flats", the author focuses on applicable law of flat ownership in the Czech Republic, especially the Flat Ownership Act 72/1994 Sb. The author puts the contemporary regulation in historical context; he describes the theoretical principles underlining the current applicable law and defines in detail the basic legal terms used by the Flat Ownership Act. Original and derivative forms of flat ownership acquisition are explained, namel...

  3. 78 FR 69371 - Diffusion-Annealed, Nickel-Plated Flat-Rolled Steel Products From Japan: Preliminary...

    Science.gov (United States)

    2013-11-19

    ... this investigation are flat-rolled, cold-reduced steel products, regardless of chemistry; whether or... 7210.70.6090, 7212.40.1000, 7212.40.5000, 7219.90.0020, 7219.90.0025, 7219.90.0060, 7219.90.0080, 7220.... Results of the DP Analysis f. Export Price g. Normal Value h. Level of Trade i. Affiliated Party...

  4. Analysis and validation of a quasi-dynamic model for a solar collector field with flat plate collectors and parabolic trough collectors in series for district heating

    DEFF Research Database (Denmark)

    Tian, Zhiyong; Perers, Bengt; Furbo, Simon

    2018-01-01

    performance of the hybrid solar district heating plants is also presented. The measured and simulated results show that the integration of parabolic trough collectors in solar district heating plants can guarantee that the system produces hot water with relatively constant outlet temperature. The daily energy......A quasi-dynamic TRNSYS simulation model for a solar collector field with flat plate collectors and parabolic trough collectors in series was described and validated. A simplified method was implemented in TRNSYS in order to carry out long-term energy production analyses of the whole solar heating...... plant. The advantages of the model include faster computation with fewer resources, flexibility of different collector types in solar heating plant configuration and satisfactory accuracy in both dynamic and long-term analyses. In situ measurements were taken from a pilot solar heating plant with 5960 m...

  5. Intermediate photovoltaic system application experiment operational performance. Volume 5, for Beverly High School, Beverly, MA. Executive summary

    Energy Technology Data Exchange (ETDEWEB)

    None,

    1982-03-01

    Performance data are given for a grid-connected, 100 kW, flat panel photovoltaic power system at a Massachusetts high school for the month of February 1982. Data include daily and monthly electrical energy produced, daily and monthly plane-of-array incident solar energy, array efficiency, power conditioner efficiency, system efficiency, capacity factor, and monthly average insolation. Also included is the data acquisition mode and recording interval plot. (LEW)

  6. A Systematic Study of Separators in Air-Breathing Flat-Plate Microbial Fuel Cells—Part 1: Structure, Properties, and Performance Correlations

    Directory of Open Access Journals (Sweden)

    Sona Kazemi

    2016-01-01

    Full Text Available Passive air-breathing microbial fuel cells (MFCs are a promising technology for energy recovery from wastewater and their performance is highly dependent on characteristics of the separator that isolates the anaerobic anode from the air-breathing cathode. The goal of the present work is to systematically study the separator characteristics and its effect on the performance of passive air-breathing flat-plate MFCs (FPMFCs. This was performed through characterization of structure, properties, and performance correlations of eight separators in Part 1 of this work. Eight commercial separators were characterized, in non-inoculated and inoculated setups, and were examined in passive air-breathing FPMFCs with different electrode spacing. The results showed a decrease in the peak power density as the oxygen and ethanol mass transfer coefficients in the separators increased, due to the increase of mixed potentials especially at smaller electrode spacing. Increasing the electrode spacing was therefore desirable for the application of diaphragms. The highest peak power density was measured using Nafion®117 with minimal electrode spacing, whereas using Nafion®117 or Celgard® with larger electrode spacing resulted in similar peak powers. Part 2 of this work focuses on numerical modelling of the FPMFCs based on mixed potential theory, implementing the experimental data from Part 1.

  7. Photovoltaic Cells

    OpenAIRE

    Karolis Kiela

    2012-01-01

    The article deals with an overview of photovoltaic cells that are currently manufactured and those being developed, including one or several p-n junction, organic and dye-sensitized cells using quantum dots. The paper describes the advantages and disadvantages of various photovoltaic cells, identifies the main parameters, explains the main reasons for the losses that may occur in photovoltaic cells and looks at the ways to minimize them.Article in Lithuanian

  8. Batch production of microchannel plate photo-multipliers

    Energy Technology Data Exchange (ETDEWEB)

    Frisch, Henry J.; Wetstein, Matthew; Elagin, Andrey

    2018-03-06

    In-situ methods for the batch fabrication of flat-panel micro-channel plate (MCP) photomultiplier tube (PMT) detectors (MCP-PMTs), without transporting either the window or the detector assembly inside a vacuum vessel are provided. The method allows for the synthesis of a reflection-mode photocathode on the entrance to the pores of a first MCP or the synthesis of a transmission-mode photocathode on the vacuum side of a photodetector entrance window.

  9. Optical damage in reduced Z-cut LiNbO3 crystals caused by longitudinal photovoltaic and pyroelectric effects

    International Nuclear Information System (INIS)

    Kostritskii, S. M.; Aillerie, M.

    2012-01-01

    The marked optical damage was observed in thin Z-cut plates of the deeply reduced nominally pure LiNbO 3 crystals, when a 514.5-nm-laser beam with ordinary polarization was focused on the ±Z face. The longitudinal photovoltaic and pyroelectric effects are shown to be responsible for most of the important peculiarities of the optical damage dynamics. The anisotropy in the behavior between the +Z and -Z faces has been explained by interference of the different kinds of pyroelectric and photovoltaic effects to the space-charge field with an altering relative sign.

  10. Photovoltaic barometer

    International Nuclear Information System (INIS)

    2013-01-01

    After the euphoria of 2011, the European Union's photovoltaic market slowed right down in 2012. EurObserv'ER puts newly connected capacity in 2012 at 16.5 GWp compared to 22 GWp in 2011, which is a 25% drop. At global level the market generally held up, with just over 30 GWp installed, bolstered by the build-up of the American and Asian markets. The photovoltaic electricity generated in the EU reached 68.1 TWh in 2012. The article begins with the description of the worldwide situation of photovoltaic electricity, then details the situation for each EU member with the help of tables and charts and ends with the state of photovoltaic industry at the world scale

  11. Long term hydrogen production potential of concentrated photovoltaic (CPV) system in tropical weather of Singapore

    KAUST Repository

    Burhan, Muhammad; Chua, Kian Jon Ernest; Ng, Kim Choon

    2016-01-01

    far, only conventional flat plate PV systems are being used for almost all of the commercial applications. However, most of the studies have only shown the maximum efficiency of hydrogen production using CPV. In actual field conditions, the performance

  12. Photovoltaic mounting/demounting unit

    DEFF Research Database (Denmark)

    2014-01-01

    The present invention relates to a photovoltaic arrangement comprising a photovoltaic assembly comprising a support structure defining a mounting surface onto which a photovoltaic module is detachably mounted; and a mounting/demounting unit comprising at least one mounting/demounting apparatus...... which when the mounting/demounting unit is moved along the mounting surface, causes the photovoltaic module to be mounted or demounted to the support structure; wherein the photovoltaic module comprises a carrier foil and wherein a total thickness of the photo voltaic module is below 500 muiotaeta....... The present invention further relates to an associated method for mounting/demounting photovoltaic modules....

  13. Performance Analysis of a Shallow Duct Flat Plate Solar Air Heater with and without Porous Media

    Directory of Open Access Journals (Sweden)

    Haroun A.K. Shahad

    2016-12-01

    Full Text Available In this study a flat plate solar air heater with a shallow duct is analyzed experimentally. The collector consists of a 4.5m long air duct with a (20×5cm cross-sectional area. The air duct consists of four channels so that the collector becomes more compact. The collector is studied under the weather conditions of Hilla city – Iraq with latitude and longitude equal 32.3° N and 44.25° E respectively and it is tilted by 45° with the horizontal plane. The effect of the air mass flow rate on the collector performance is also studied.The performance of the collector is analyzed with and without porous media stuffing. The measured parameters are the air and absorber temperatures, air speed and pressure drop. The temperatures are measured by means of type (K thermocouples as this type covers the temperature range of the studied system. The values of the temperature are displayed by temperature data logger devices. The air speed and pressure drop are measured by digital anemometer and manometer devices respectively. The results of the studied system show that as the air mass flow rate increases, the temperature of both the flowing air and the absorber decrease, whilst the efficiency of the collector increases. The results also show that the addition of the steel wool porous material inside the air duct increases the temperature of both the flowing air and the absorber, and by that increases the efficiency of the collector. The porous media also caused an increase in the pressure drop between the outlet air and the atmosphere. This pressure drop increased with the increase in the air mass flow rate

  14. Project analysis and integration economic analyses summary

    Science.gov (United States)

    Macomber, H. L.

    1986-01-01

    An economic-analysis summary was presented for the manufacture of crystalline-silicon modules involving silicon ingot/sheet, growth, slicing, cell manufacture, and module assembly. Economic analyses provided: useful quantitative aspects for complex decision-making to the Flat-plate Solar Array (FSA) Project; yardsticks for design and performance to industry; and demonstration of how to evaluate and understand the worth of research and development both to JPL and other government agencies and programs. It was concluded that future research and development funds for photovoltaics must be provided by the Federal Government because the solar industry today does not reap enough profits from its present-day sales of photovoltaic equipment.

  15. Porous Nanomaterials for Ultrabroadband Omnidirectional Anti-Reflection Surfaces with Applications in High Concentration Photovoltaics

    KAUST Repository

    Yao, Yuan

    2016-12-06

    Materials for nanoporous coatings that exploit optimized chemistries and self-assembly processes offer capabilities to reach ≈98% transmission efficiency and negligible scattering losses over the broad wavelength range of the solar spectrum from 350 nm to 1.5 μm, on both flat and curved glass substrates. These nanomaterial anti-reflection coatings also offer wide acceptance angles, up to ±40°, for both s- and p-polarization states of incident light. Carefully controlled bilayer films have allowed for the fabrication of dual-sided, gradient index profiles on plano-convex lens elements. In concentration photovoltaics platforms, the resultant enhancements in the photovoltaics efficiencies are ≈8%, as defined by experimental measurements on systems that use microscale triple-junction solar cells. These materials and their applications in technologies that require control over interface reflections have the potential for broad utility in imaging systems, photolithography, light-emitting diodes, and display technologies.

  16. Swiss Photovoltaics Programme, 2004 Edition - Overview (French) for 2003; Programme photovoltaique, edition 2004

    Energy Technology Data Exchange (ETDEWEB)

    Nowak, S.

    2004-07-01

    This publication issued by the Swiss Federal Office of Energy's Photovoltaics (PV) Programme presents an overview (in French) of activities and projects in the photovoltaics research and pilot and demonstration area in Switzerland for the year 2003. Progress in future solar cell technologies and in the area of modules, building integration and system technologies is summarised. Also, national and international co-operation and multi-national pilot and demonstration projects are commented on. Associated projects such as eco-balances for PV systems, forecasting and modelling tools as well as system monitoring tools are discussed. In the area of pilot and demonstration projects, component development, PV integration in sloping roofs, on flat roofs and on facades as well as further PV plant are looked at. Also, measurement campaigns, studies, statistics and other PV-related topics are summarised. This volume also presents a list of 92 projects in the PV area including the appropriate Internet links.

  17. Swiss Photovoltaics Programme, 2004 Edition - Overview (French) for 2003; Programme photovoltaique, edition 2004

    Energy Technology Data Exchange (ETDEWEB)

    Nowak, S

    2004-07-01

    This publication issued by the Swiss Federal Office of Energy's Photovoltaics (PV) Programme presents an overview (in French) of activities and projects in the photovoltaics research and pilot and demonstration area in Switzerland for the year 2003. Progress in future solar cell technologies and in the area of modules, building integration and system technologies is summarised. Also, national and international co-operation and multi-national pilot and demonstration projects are commented on. Associated projects such as eco-balances for PV systems, forecasting and modelling tools as well as system monitoring tools are discussed. In the area of pilot and demonstration projects, component development, PV integration in sloping roofs, on flat roofs and on facades as well as further PV plant are looked at. Also, measurement campaigns, studies, statistics and other PV-related topics are summarised. This volume also presents a list of 92 projects in the PV area including the appropriate Internet links.

  18. Swiss Photovoltaics Programme, 2004 Edition - Overview (German) for 2003; Programm Photovoltaik, Ausgabe 2004

    Energy Technology Data Exchange (ETDEWEB)

    Nowak, S.

    2004-07-01

    This publication issued by the Swiss Federal Office of Energy's Photovoltaics (PV) Programme presents an overview (in German) of activities and projects in the photovoltaics research and pilot and demonstration area in Switzerland for the year 2003. Progress in the area of future solar cell technologies, modules, building integration and system technologies is summarised. Also, national and international co-operation and multi-national pilot and demonstration projects are commented on. Associated projects such as eco-balances for PV systems, forecasting and modelling tools as well as system monitoring tools are discussed. In the area of pilot and demonstration projects, component development, PV integration in sloping roofs, on flat roofs and on facades as well as further PV plant are looked at. Also, measurement campaigns, studies, statistics and other PV-related topics are summarised. This volume also presents a list of 92 projects in the PV area including the appropriate Internet links.

  19. Analysis of the internal shading in a photovoltaic greenhouse tunnel

    Directory of Open Access Journals (Sweden)

    Alvaro Marucci

    2017-09-01

    Full Text Available In recent years, the increasing interest in energy production from renewable energy sources has led to photovoltaic elements being placed on greenhouse coverings. The shading of crops by these elements can, however, cause problems regarding the normal course of agricultural activity. All studies thus far on the application of photovoltaic (PV panels as a greenhouse covering material have focused on flat roof structures. Tunnel greenhouses, due to their curved shape, do not lend themselves easily to accommodating PV panels on even part of the cover. In this study, we analysed the shading variation inside a tunnel greenhouse that was produced by applying flexible and transparent PV panels in a checkerboard arrangement. The transparent flexible PV panels are manufactured using monocrystalline silicon cells, with an efficiency of 18%, incorporated into polymers with high resistance. The PV panel dimensions are 1.116×0.165 m. The simulation software Autodesk® Autocad2010® was used for this study. The variation and distribution of the shading percentage of PV panels were analysed in relation to the surface area affected by the photovoltaic roof, the total area of the greenhouse and the section of the greenhouse. In particular, we studied the variations in the percentage of shading and the size of the shaded area on the twenty-first day of each month of the year. The results show some regularity in the shading percentage, mainly due to the curvilinear shape of the section of the greenhouse. From mid-March to mid- September, the shading in the middle of the day is almost always inside the greenhouse. In the other months of the year, it is partly inside and partly outside the tunnel greenhouse. With the photovoltaic arrangement adopted, the percentage of shading during the year never exceeds 40%.

  20. Use of PZT's for adaptive control of Fabry-Perot etalon plate figure

    Science.gov (United States)

    Skinner, WIlbert; Niciejewski, R.

    2005-01-01

    A Fabry Perot etalon, consisting of two spaced and reflective glass flats, provides the mechanism by which high resolution spectroscopy may be performed over narrow spectral regions. Space based applications include direct measurements of Doppler shifts of airglow absorption and emission features and the Doppler broadening of spectral lines. The technique requires a high degree of parallelism between the two flats to be maintained through harsh launch conditions. Monitoring and adjusting the plate figure by illuminating the Fabry Perot interferometer with a suitable monochromatic source may be performed on orbit to actively control of the parallelism of the flats. This report describes the use of such a technique in a laboratory environment applied to a piezo-electric stack attached to the center of a Fabry Perot etalon.