WorldWideScience

Sample records for flat plate embedded

  1. Enhancement of microalgae production by embedding hollow light guides to a flat-plate photobioreactor.

    Science.gov (United States)

    Sun, Yahui; Huang, Yun; Liao, Qiang; Fu, Qian; Zhu, Xun

    2016-05-01

    To offset the adverse effects of light attenuation on microalgae growth, hollow polymethyl methacrylate (PMMA) tubes were embedded into a flat-plate photobioreactor (PBR) as light guides. In this way, a fraction of incident light could be transmitted and emitted to the interior of the PBR, providing a secondary light source for cells in light-deficient regions. The average light intensity of interior regions 3-6cm from surfaces with 70μmolm(-2)s(-1) incident light was enhanced 2-6.5 times after 3.5days cultivation, resulting in a 23.42% increase in biomass production to that cultivated in PBR without PMMA tubes. The photosynthetic efficiency of microalgae in the proposed PBR was increased to 12.52%. Moreover, the installation of hollow PMMA tubes induced turbulent flow in the microalgae suspension, promoting microalgae suspension mixing. However, the enhanced biomass production was mainly attributed to the optimized light distribution in the PBR. Copyright © 2016 Elsevier Ltd. All rights reserved.

  2. Combined of magnetic field and thermophoresis particle deposition in free convection boundary layer from a vertical flat plate embedded in a porous medium

    Directory of Open Access Journals (Sweden)

    Bakier Yousof Ahmed

    2007-01-01

    Full Text Available Deals with heat and mass transfer by steady laminar boundary layer flow of Newtonian, viscous fluid over a vertical flat plate embedded in a fluid-saturated porous medium in the presence of thermophoretic and magnetic field. The resulting similarity equation are solved by finite difference marching technique. The nature of variation of particle concentration profile and magnetic field with respect to buoyancy force, Fw, and Prandtl number is found to be similar. Comparisons with previous published work are performed and the results are found to be in excellent agreement. .

  3. Evaluation of Shear Strength of Concrete Flat Plates Reinforced with GFRP Plates

    OpenAIRE

    Min Sook Kim; Young Hak Lee

    2017-01-01

    The shear performance of concrete flat plates with glass fiber-reinforced polymer (GFRP) plate shear reinforcement was investigated through punching shear tests. Each GFRP plate was embedded in the concrete and included openings to permit the flow of concrete during fabrication. Punching shear tests were conducted on a total of 8 specimens, and the resulting crack and fracture formations, strains, and load-displacement curves were analyzed and compared. The experimental variables considered w...

  4. Evaluation of Shear Strength of Concrete Flat Plates Reinforced with GFRP Plates

    Directory of Open Access Journals (Sweden)

    Min Sook Kim

    2017-01-01

    Full Text Available The shear performance of concrete flat plates with glass fiber-reinforced polymer (GFRP plate shear reinforcement was investigated through punching shear tests. Each GFRP plate was embedded in the concrete and included openings to permit the flow of concrete during fabrication. Punching shear tests were conducted on a total of 8 specimens, and the resulting crack and fracture formations, strains, and load-displacement curves were analyzed and compared. The experimental variables considered were the types of shear reinforcement, including steel stirrups or GFRP plates, and the shear reinforcement spacing. The experimental results show that the GFRP shear reinforcement effectively increased the shear strengths of flat plates. Furthermore, the applicability of two formulas was investigated: a modified version of a shear strength formula from ACI 318-14 and the ACI 318-14 fracture prediction formula.

  5. Designing Flat-Plate Photovoltaic Arrays

    Science.gov (United States)

    Ross, R. G., Jr.

    1984-01-01

    Report presents overview of state of art in design techniques for flat-plate solar photovoltaic modules and arrays. Paper discusses design requirements, design analyses, and test methods identified and developed for this technology over past several years in effort to reduce cost and improve utility and reliability for broad spectrum of terrestrial applications.

  6. Embedded adhesive connection for laminated glass plates

    DEFF Research Database (Denmark)

    Hansen, Jens Zangenberg; Poulsen, S.H.; Bagger, A.

    2012-01-01

    The structural behavior of a new connection design, the embedded adhesive connection, used for laminated glass plates is investigated. The connection consists of an aluminum plate encapsulated in-between two adjacent triple layered laminated glass plates. Fastening between glass and aluminum...... is ensured using a structural adhesive. At first, the elastic and viscoelastic material properties of the adhesive are identified where the influence of load-rate and failure properties are also examined. Through an inverse analysis using the finite element method, the experimental observations...... usage in a design situation. The embedded connection shows promising potential as a future fastening system for load-carrying laminated glass plates....

  7. Embedding and Knotting of Flat Surfaces

    DEFF Research Database (Denmark)

    Røgen, Peter

    1999-01-01

    In 3-space, any compact surface with nonempty boundary is isotopic to a flat (zero Gaussian curvature) surface and two such flat surfaces are isotopic through flat surfaces if and only if they are isotopic through ordinary surfaces. Hereby the isotopy classes of flat surfaces are in one-to-one co......In 3-space, any compact surface with nonempty boundary is isotopic to a flat (zero Gaussian curvature) surface and two such flat surfaces are isotopic through flat surfaces if and only if they are isotopic through ordinary surfaces. Hereby the isotopy classes of flat surfaces are in one......-to-one correspondence with the isotopy classes of ordinary surfaces which have no constraint on their curvature. Applied to Seifert surfaces we get: Any simple closed space curve can be deformed until it bounds a flat orientable surface....

  8. Measurements of Flat-Plate Milk Coolers

    Directory of Open Access Journals (Sweden)

    Vlastimil Nejtek

    2014-01-01

    Full Text Available Measuring in laboratory conditions was performed with the aim to collect a sufficient quantity of measured data for the qualified application of flat-plate coolers in measuring under real operating conditions. The cooling water tank was filled with tap water; the second tank was filled with water at a temperature equivalent to freshly milked milk. At the same time, pumps were activated that delivered the liquids into the flat-plate cooler where heat energy was exchanged between the two media. Two containers for receiving the run-out liquid were placed on the outputs from the cooler; here, temperature was measured with electronic thermometer and volume was measured with calibrated graduated cylinder. Flow rate was regulated both on the side of the cooling fluid and on the side of the cooled liquid by means of a throttle valve. The measurements of regulated flow-rates were repeated several times and the final values were calculated using arithmetic average. To calculate the temperature coefficient and the amount of brought-in and let-out heat, the volume measured in litres was converted to weight unit. The measured values show that the volume of exchanged heat per weight unit increases with the decreasing flow-rate. With the increasing flow-rate on the throttled side, the flow-rate increases on the side without the throttle valve. This phenomenon is caused by pressure increase during throttling and by the consequent increase of the diameter of channels in the cooler at the expense of the opposite channels of the non-throttled part of the circuit. If the pressure is reduced, there is a pressure decrease on the external walls of opposite channels and the flow-rate increases again. This feature could be utilised in practice: a pressure regulator on one side could regulate the flow-rate on the other side. The operating measurement was carried out on the basis of the results of laboratory measurements. The objective was to determine to what extent the

  9. Surgical treatment of intraarticular fractures of the calcaneus: comparison between flat plate and calcaneal plate

    Directory of Open Access Journals (Sweden)

    Luiz Carlos Almeida da Silva

    Full Text Available ABSTRACT OBJECTIVE: To evaluate the clinical results of surgical treatment of intraarticular fractures of the calcaneus, comparing the use of calcaneal plate and flat plate. METHODS: This was a retrospective study assessing the postoperative results of 25 patients between 2013 and 2015. Patients undergoing surgical treatment of intraarticular fractures of the calcaneus without concomitant surgical lesions were included. Patients who did not complete appropriate follow-up after surgery were excluded from the study. RESULTS: The unavailability of calcaneal plates at resource-limited settings, associated with the availability and lower cost of flat plates, may have been a confounding factor in the present study. However, there was no statistical difference between the outcomes of fractures treated with calcaneal plates or flat plates. CONCLUSION: Statistical inference shows that, when calcaneal plates are not available, it is possible to use flat plates with similar clinical outcomes.

  10. Analysis of Flat-Plate Solar Array and Solar Lantern

    OpenAIRE

    P. L. N. V. Aashrith; M. Sameera Sarma

    2014-01-01

    A very detailed theortical analysis of a solar array has been carried out based on established values of solar radiation data to predict the performance of solar lamp . The analysis is based on established theory about flat-plate collectors. Top heat loss coefficient (Ut), Bottom heat loss coefficient (Ub), Overall heat loss coefficient (Ul), Useful energy (Qu), efficiency (hp) of the flat-plate solar array and efficiency (hl) of the solar lantern has been calculated.

  11. dynamic modeling of natural convection solar energy flat plate ...

    African Journals Online (AJOL)

    NIJOTECH

    ABSTRACT. The analytical solutions to the dynamic model of an air-heating flat plate solar energy thermal collector were validated by direct measurement from a physical model constructed for that purpose, of the temperatures of the cover and absorber plates, the inlet and outlet fluids, and the ambient air from morning to ...

  12. Dynamic Modeling of Natural Convection Solar Energy Flat Plate ...

    African Journals Online (AJOL)

    The analytical solutions to the dynamic model of an air-heating flat plate solar energy thermal collector were validated by direct measurement from a physical model constructed for that purpose, of the temperatures of the cover and absorber plates, the inlet and outlet fluids, and the ambient air from morning to evening for ...

  13. Array elements for a DBS flat-plate antenna

    Science.gov (United States)

    Maddocks, M. C. D.

    1988-07-01

    The introduction of a direct broadcast by satellite (DBS) television service requires suitable receiving antennas to be available. An alternative to the parabolic dish antenna is a flat-plate antenna. The overall design of a circularly-polarized flat-plate antenna which can be mounted flat on the wall of a building has been considered in a companion Report. In this Report various types of elements are investigated and their advantages and disadvantages discussed. The most suitable element for use in a flat-plate array is identified as a linearly-polarized folded-dipole element; its performance is reported here. Linearly-polarized elements are found to perform better than circularly-polarized elements and could be used with a polarization converter to receive the circularly-polarized radiation that would be transmitted by DBS.

  14. Dielectrically embedded flat mesh lens for millimeter waves applications.

    Science.gov (United States)

    Pisano, Giampaolo; Ng, Ming Wah; Ozturk, Fahri; Maffei, Bruno; Haynes, Vic

    2013-04-10

    A flat lens based on subwavelength periodic metal meshes has been developed using photolithographic techniques. These mesh grids are stacked at specific distances and embedded in polypropylene. A code was developed to optimize more than 1000 transmission line circuits required to vary the device phase shift across the lens flat surface, mimicking the behavior of a classical lens. A W-band mesh-lens prototype was successfully manufactured and its RF performance characterized using a vector network analyzer coupled to corrugated horn antennas. Co-polarization far-field beam patterns were measured and compared with finite-element method models. The excellent agreement between data and simulations validated our designing tools and manufacturing procedures. This mesh lens is a low-loss, robust, light, and compact device that has many potential applications including millimeter wave quasi-optical systems for future cosmic microwave background polarization instruments.

  15. Parallel beam scanning system for flatness measurements of thin plates

    Science.gov (United States)

    Fan, Kuang-Chao; Wu, John H.

    1993-09-01

    This paper describes the work to develop a Parallel Beam Scanning System (PBSS) for the non-contact measurement of surface flatness of thin plates. The PBSS consists of a He-Ne laser source having good pointing stability a scanner to create divergent scanning beams a large aplanatic meniscus lens to convert the divergent beams to parallel beams a linear stage to drive the testpiece to each sampling position a screen for the projection of reflected beams from the tested surface and an image processing unit to analyze the projected image. Due to the out-of-flatness of the surface the straight line formed by the incident parallel beams will be distorted and magnified on the screen as it is reflected from the tested surface. The stage then positions the testpiece step-by-step to carry out measurements in the line-by-line sequence. A CCD camera is employed to capture the image of the distorted line on the screen each time. With the proposed mathematical model the flatness data of the testpiece can be computed from the input image data. Experimental results by the use of this system have shown in good agreement with the results obtained from the coordinate measuring machine. This system can be applied to the flatness measurements of thin plates such as sheet metals sheet moulding compound (SMC) plates glass plates etc. which are difficult to measure by traditional methods.

  16. An experimental study of an explosively driven flat plate launcher

    Science.gov (United States)

    Rae, Philip; Haroz, Erik; Armstrong, Chris; Perry, Lee; M Division Team

    2017-06-01

    For some upcoming experiments it is desired to impact a large explosive assembly with one or more moderate diameter flat metal plates traveling at high velocity (2-3 km s-1). The time of arrival of these plates will need to carefully controlled and delayed (i.e. the time(s) of arrival known to approximately a microsecond). For this reason, producing a flyer plate from more traditional gun assemblies is not possible. Previous researchers have demonstrated the ability to throw reasonably flat metal flyers from the so-called Forest flyer geometry. The defining characteristics of this design are a carefully controlled reduction in explosive area from a larger explosive plane-wave-lens and booster pad to a smaller flyer plate to improve the planarity of the drive available and an air gap between the explosive booster and the plate to reduce the peak tensile stresses generated in the plate to suppress spalling. This experimental series comprised a number of different design variants and plate and explosive drive materials. The aim was to calibrate a predictive computational modeling capability on this kind of system in preparation for later more radical design ideas best tested in a computer before undertaking the expensive business of construction.

  17. Energy distribution of proton microbeam transmitted through two flat plates

    Energy Technology Data Exchange (ETDEWEB)

    Nagy, G.U.L.; Rajta, I.; Bereczky, R.J.; Tőkési, K.

    2015-07-01

    The transmission of 1 MeV proton microbeam passing between two parallel flat plates was investigated. Three different materials were used in our experiments. As insulators we used Polytetrafluoroethylene and borosilicate glass plates and glass with gold layer on the surface as conductor. The surface of the plates was parallel to the beam axis and one of the plates was moved towards the beam. The energy distribution and the deflection of the transmitted beam were measured as the function of the sample distance relative to the beam. We found systematic differences between the behaviour of the metallic and insulator samples. The proton microbeam suffered significant deflection towards the sample surface due to the image acceleration when using conductor material. In case of the glass and Polytetrafluoroethylene plates the beam was deflected into the opposite direction, and the incident protons did not suffer significant energy loss, which is the consequence of the guiding effect.

  18. Experimental Investigation on Flutter Similitude of Thin-Flat Plates

    Directory of Open Access Journals (Sweden)

    I. P. G. Sopan Rahtika

    2017-01-01

    Full Text Available This paper shows the experimental results of the flutter speed of thin-flat plates with free leading edge in axial flow as a function of plates’ geometry, fluid densities, and viscosities, as well as natural frequencies of the plates. The experiment was developed based on similitude theory using dimensional analysis and Buckingham Pi Theorem. Dimensional analysis generates four dimensionless numbers. Experiment was conducted by placing the thin-flat plates in a laminar flow wind tunnel in order to obtain the relationship among those dimensionless numbers. The flutter speed was measured by varying the flow velocity until the instability occurred. The dimensional analysis gives a map of the flutter Reynolds number as a function of a new type of dimensionless number that is hereby called flutter fluid structure interaction number, thickness-to-length, and aspect ratios as the correcting factors. This map is a very useful tool for predicting the flutter speed of thin-flat plates in general. This investigation found that the flutter Reynolds number is very high at the region of high flutter fluid structure and thickness-to-length ratios numbers; however, it is very sensitive to the change of those two dimensionless numbers. The sensitivity is higher at lower aspect ratio.

  19. Sweeping jet for convective heat transfer of a flat plate

    Science.gov (United States)

    Park, Tongil; Kara, Kursat; Kim, Daegyoum

    2017-11-01

    A fluidic oscillator, which generates unsteady sweeping jet without any actuator and moving parts, has received much attention due to its attractive features: high durability to shock and vibration and no electromagnetic interference. In this work, we apply the fluidic oscillator to improve the performance of convective heat transfer. The sweeping jet impinges vertically on a heated flat plate. By varying Reynolds number and nozzle-to-plate spacing, we experimentally investigate the characteristics of a heat transfer rate of the plate and examine flow fields to find the flow characteristics responsible for enhancing heat transfer. Temperature on the plate was measured with thermocouples, and flow fields were obtained with planar particle image velocimetry. From the flow fields, dominant flow structure is extracted using proper orthogonal decomposition.

  20. Experimental study on productivity of modified single-basin solar still with a flat plate absorber

    Science.gov (United States)

    Ramanathan, V.; Kanimozhi, B.; Bhojwani, V. K.

    2017-05-01

    Solar still is an apparatus which uses solar energyto producedistilled water from saline water. This can be used in remote areas effectively wherein electricity is not available. The output from a conventional single basin solar still is found to be very low. Hence research is required to increase the productivity of the conventional solar still. This work is an attempt to increase the productivity of solar still. A flat mica plate is embedded in the conventional solar still to augment evaporation of the water from the input saline water. The flat plate absorber is placed in such a way that it is parallel to the glass cover of the solar still so as to maximize the absorption of solar radiations. By this modification, the maximum temperature of the absorber plate achieved was 95°C in comparison to 67°C of the conventional solar still. Experimental results of modified solar still were compared with conventional solar still. It was found that distillate output increased by 25% with a flat plate absorber when compared to conventional still.

  1. Testing flat plate photovoltaic modules for terrestrial environment

    Science.gov (United States)

    Hoffman, A. R.; Arnett, J. C.; Ross, R. G., Jr.

    1979-01-01

    New qualification tests have been developed for flat plate photovoltaic modules. Temperature cycling, cyclic pressure load, and humidity exposure are especially useful for detecting design and fabrication deficiencies. There is positive correlation between many of the observed field effects, such as power loss, and qualification test induced degradation. The status of research efforts for the development of test methodology for field-related problems is reviewed.

  2. Qualification testing of flat-plate photovoltaic modules

    Science.gov (United States)

    Hoffman, A. R.; Griffith, J. S.; Ross, R. G., Jr.

    1982-01-01

    The placement of photovoltaic modules in various applications, in climates and locations throughout the world, results in different degrees and combinations of environmental and electrical stress. Early detection of module reliability deficiencies via laboratory testing is necessary for achieving long, satisfactory field service. This overview paper describes qualification testing techniques being used in the US Department of Energy's flat-plate terrestrial photovoltaic development program in terms of their significance, rationale for specified levels and durations, and test results.

  3. [A novel flat plate photobioreactor for microalgae cultivation].

    Science.gov (United States)

    Zhang, Qinghua; Yan, Chenghu; Xue, Shengzhang; Wu, Xia; Wang, Zhihui; Cong, Wei

    2015-02-01

    Flashing light effect on microalgae could significantly improve the light efficiency and biomass productivity of microalgae. In this paper, the baffles were introduced into the traditional flat plate photobioreactor so as to enhance the flashing light effect of microalgae. Making Chlorella sp. as the model microalgae, the effect of light intensity and inlet velocity on the biomass concentration of Chlorella sp. and light efficiency were evaluated. The results showed that, when the inlet velocity was 0.16 m/s, with the increase of light intensity, the cell dry weight of Chlorella sp. increased and light efficiency decreased. With increasing the inlet velocity, the cell dry weight of Chlorella sp. and light efficiency both increased under the condition of 500 μmol/(m2 x s) light intensity. The cell dry weight of Chlorella sp. cultivated in the novel flat plate photobioreactor was 39.23% higher than that of the traditional one, which showed that the flashing light effect of microalgae could be improved in the flat plate photobioreactor with inclined baffles built-in.

  4. 78 FR 31577 - Diffusion-Annealed, Nickel-Plated Flat-Rolled Steel Products From Japan

    Science.gov (United States)

    2013-05-24

    ...)] Diffusion-Annealed, Nickel-Plated Flat-Rolled Steel Products From Japan Determination On the basis of the... reason of imports from Japan of diffusion-annealed, nickel-plated flat-rolled steel products, provided... diffusion-annealed, nickel-plated flat-rolled steel products from Japan. Accordingly, effective March 27...

  5. Buckling of Flat Thin Plates under Combined Loading

    Directory of Open Access Journals (Sweden)

    Ion DIMA

    2015-03-01

    Full Text Available This article aims to provide a quick methodology to determine the critical values of the forces applied to the central plane of a flat isotropic plate at which a change to the stable configuration of equilibrium occurs. Considering the variety of shapes, boundary conditions and loading combinations, the article does not intend to make an exhaustive presentation of the plate buckling. As an alternative, there will be presented only the most used configurations such as: rectangular flat thin plates, boundary conditions with simply supported (hinged or clamped (fixed edges, combined loadings with single compression or single shear or combination between them, compression and shear, with or without transverse loading, encountered at wings and control surfaces shell of fin and rudder or stabilizer and elevator. The reserve factor and the critical stresses will be calculated using comparatively two methods, namely the methodology proposed by the present article and ASSIST 6.6.2.0 – AIRBUS France software, a dedicated software to local calculations, for a simply supported plate under combined loading, compression on the both sides and shear.

  6. Scattering and trapping of vortex pairs by a flat plate

    Science.gov (United States)

    Nitsche, Monika

    2017-11-01

    The interaction of a counter-rotating vortex pair with a flat plate in its path is studied numerically. The vortices are initially separated by a distance D and placed far upstream of a plate of length L. The plate is stationary, inclined relative to the incoming vortex trajectory, at an incident angle βi. Generally, the vortices surround the plate and then leave as a dipole with unchanged velocity, but with a large change in the transmitted travel direction. This transmitted angle depends sensitively on changes in the incident angle, with increasing sensitivity as D / L decreases. In fact, for sufficiently small D / L , the dependence on βi is highly singular. We show that there are intervals of incident angles in which the vortex trajectory undergoes repeated topological discontinuities, characterized by jumps in the vortex winding number and in the time they take to leave the plate. The discontinuities occur in a fractal self-similar fashion within the whole interval. These intervals furthermore contain incident angles that trap the vortices, which never leave the plate. The number of such trapping intervals increases as the parameter D / L decreases, and the dependence of the motion on βi becomes increasing complex.

  7. Heat transfer in porous medium embedded with vertical plate: Non-equilibrium approach - Part A

    Energy Technology Data Exchange (ETDEWEB)

    Badruddin, Irfan Anjum [Dept. of Mechanical Engineering, University of Malaya, Kuala Lumpur, 50603 (Malaysia); Quadir, G. A. [School of Mechatronic Engineering, University Malaysia Perlis, Pauh Putra, 02600 Arau, Perlis (Malaysia)

    2016-06-08

    Heat transfer in a porous medium embedded with vertical flat plate is investigated by using thermal non-equilibrium model. Darcy model is employed to simulate the flow inside porous medium. It is assumed that the heat transfer takes place by natural convection and radiation. The vertical plate is maintained at isothermal temperature. The governing partial differential equations are converted into non-dimensional form and solved numerically using finite element method. Results are presented in terms of isotherms and streamlines for various parameters such as heat transfer coefficient parameter, thermal conductivity ratio, and radiation parameter.

  8. Efficiencies of flat plate solar collectors at different flow rates

    DEFF Research Database (Denmark)

    Chen, Ziqian; Furbo, Simon; Perers, Bengt

    2012-01-01

    Two flat plate solar collectors for solar heating plants from Arcon Solvarme A/S are tested in a laboratory test facility for solar collectors at Technical University of Denmark (DTU). The collectors are designed in the same way. However, one collector is equipped with an ETFE foil between...... the absorber and the cover glass and the other is without ETFE foil. The efficiencies for the collectors are tested at different flow rates. On the basis of the measured efficiencies, the efficiencies for the collectors as functions of flow rate are obtained. The calculated efficiencies are in good agreement...... with the measured efficiencies....

  9. High Performance Flat Plate Solar Thermal Collector Evaluation

    Energy Technology Data Exchange (ETDEWEB)

    Rockenbaugh, Caleb [National Renewable Energy Lab. (NREL), Golden, CO (United States); Dean, Jesse [National Renewable Energy Lab. (NREL), Golden, CO (United States); Lovullo, David [National Renewable Energy Lab. (NREL), Golden, CO (United States); Lisell, Lars [National Renewable Energy Lab. (NREL), Golden, CO (United States); Barker, Greg [National Renewable Energy Lab. (NREL), Golden, CO (United States); Hanckock, Ed [National Renewable Energy Lab. (NREL), Golden, CO (United States); Norton, Paul [National Renewable Energy Lab. (NREL), Golden, CO (United States)

    2016-09-01

    This report was prepared for the General Services Administration by the National Renewable Energy Laboratory. The Honeycomb Solar Thermal Collector (HSTC) is a flat plate solar thermal collector that shows promising high efficiencies over a wide range of climate zones. The technical objectives of this study are to: 1) verify collector performance, 2) compare that performance to other market-available collectors, 3) verify overheat protection, and 4) analyze the economic performance of the HSTC both at the demonstration sites and across a matrix of climate zones and utility markets.

  10. Hybrid heat recovery - flat plate Stirling engine system

    International Nuclear Information System (INIS)

    Bogdanizh, A.M.; Budin, R.; Sutlovizh, I.

    2000-01-01

    In this paper, the possibility of process condensate heat recovery for boiler water preheating as well as for combined heat and power production for chosen process in textile industry has been investigated. The garment industry requires low pressure process steam or hot water for which production expensive fossil fuel should be used. Fuel usage can be reduced by various energy conservation methods. During the process a great quantity of hot condensate or waste hot water is rejected in the sewage system. To reduce heat wastes and improve technological process this condensate could be returned to the boiler for feed water preheating. When 60% condensate is returned to the steam generator about 8 % natural gas is saved. The rest of the condensate should be used for driving low temperature flat plate Stirling motor the advantage of the flat plate Stirling engine is ability to work at low temperatures. This engine produces electrical energy which can put in motion an electrogenerator in the same plant. While Stirling engine can be used electrical power and economical effect could be much greater using such a hybrid system the process waste heat is not only converted into useful work but at the same time thermal pollution is greatly diminished. (Author)

  11. Modal characterization of composite flat plate models using piezoelectric transducers

    Science.gov (United States)

    Oliveira, É. L.; Maia, N. M. M.; Marto, A. G.; da Silva, R. G. A.; Afonso, F. J.; Suleman, A.

    2016-10-01

    This paper aims to estimate the modal parameters of composite flat plate models through Experimental Modal Analysis (EMA) using piezoelectric transducers. The flat plates are composed of three ply carbon-epoxy fibers oriented in the same direction. Five specimens with different unidirectional fiber nominal orientations θk (0o, 30o, 45o, 60o and 90o) were tested. These models were instrumented with one PZT (Lead Zirconate Titanate) actuator and one PVDF (Polyvinylidene Fluoride) sensor and an EMA was performed. The natural frequencies and damping factors estimated using only a single PVDF response were compared with the estimated results using twelve measurement points acquired by laser doppler vibrometry. For comparison purposes, the percentage error of each natural frequency estimation and the percentage error of the damping factor estimations were computed, as well as their averages. Even though the comparison was made between a SISO (Single-Input, Single-Output) and a SIMO (Single-Input, Multiple-Output) techniques, both results are very close. The vibration modes were estimated by means of laser measurements and were used in the modal validation. In order to verify the accuracy of the modal parameters, the Modal Assurance Criterion (MAC) was employed and a high correlation among mode shapes was observed.

  12. DESIGN AND THERMAL ANALYSIS OF FIXED AND TRACKING FLAT PLATE COLLECTORS

    OpenAIRE

    *Sudarshan T A

    2016-01-01

    This paper focuses on Thermal efficiency analysis of flat plate collectors. The instantaneous efficiency for a collector over a day is calculated. Application of solar energy for domestic and industrial heating purposes has been become very popular. However the effectiveness of presently used fixed flat plate collectors is low due to the moving nature of the energy source. In the present work, an attempt has been made to compare the performance of fixed flat plate water heater with that of he...

  13. Wind loads on flat plate photovoltaic array fields (nonsteady winds)

    Science.gov (United States)

    Miller, R. D.; Zimmerman, D. K.

    1981-01-01

    Techniques to predict the dynamic response and the structural dynamic loads of flat plate photovoltaic arrays due to wind turbulence were analyzed. Guidelines for use in predicting the turbulent portion of the wind loading on future similar arrays are presented. The dynamic response and the loads dynamic magnification factor of the two array configurations are similar. The magnification factors at a mid chord and outer chord location on the array illustrated and at four points on the chord are shown. The wind tunnel test experimental rms pressure coefficient on which magnification factors are based is shown. It is found that the largest response and dynamic magnification factor occur at a mid chord location on an array and near the trailing edge. A technique employing these magnification factors and the wind tunnel test rms fluctuating pressure coefficients to calculate design pressure loads due to wind turbulence is presented.

  14. System Advisor Model: Flat Plate Photovoltaic Performance Modeling Validation Report

    Energy Technology Data Exchange (ETDEWEB)

    Freeman, Janine [National Renewable Energy Lab. (NREL), Golden, CO (United States); Whitmore, Jonathan [National Renewable Energy Lab. (NREL), Golden, CO (United States); Kaffine, Leah [National Renewable Energy Lab. (NREL), Golden, CO (United States); Blair, Nate [National Renewable Energy Lab. (NREL), Golden, CO (United States); Dobos, Aron P. [National Renewable Energy Lab. (NREL), Golden, CO (United States)

    2013-12-01

    The System Advisor Model (SAM) is a free software tool that performs detailed analysis of both system performance and system financing for a variety of renewable energy technologies. This report provides detailed validation of the SAM flat plate photovoltaic performance model by comparing SAM-modeled PV system generation data to actual measured production data for nine PV systems ranging from 75 kW to greater than 25 MW in size. The results show strong agreement between SAM predictions and field data, with annualized prediction error below 3% for all fixed tilt cases and below 8% for all one axis tracked cases. The analysis concludes that snow cover and system outages are the primary sources of disagreement, and other deviations resulting from seasonal biases in the irradiation models and one axis tracking issues are discussed in detail.

  15. Environmental requirements for flat plate photovoltaic modules for terrestrial applications

    Science.gov (United States)

    Hoffman, A. R.; Ross, R. G., Jr.

    1979-01-01

    The environmental test requirements that have been developed for flat plate modules purchased through Department of Energy funding are described. Concurrent with the selection of the initial qualification tests from space program experience - temperature cycling and humidity - surveys of existing photovoltaic systems in the field revealed that arrays were experiencing the following failure modes: interconnect breakage, delamination, and electrical termination corrosion. These coupled with application-dependent considerations led to the development of additional qualification tests, such as cyclic pressure loading, warped mounting surface, and hail. Rationale for the selection of tests, their levels and durations is described. Comparisons between field-observed degradation and test-induced degradation show a positive correlation with some of the observed field effects. Also, the tests are proving useful for detecting design, process, and workmanship deficiencies. The status of study efforts for the development of environmental requirements for field-related problems is reviewed.

  16. Exploratory loading techniques. [in holographic nondestructive testing of flat metal plates

    Science.gov (United States)

    Martin, A. M., III

    1976-01-01

    Interferometric holographic nondestructive testing of aluminum, copper, and steel flat plates is reported. Structural weaknesses under positive pressure, negative pressure, heating, and cooling are discussed.

  17. Forced convection on a heated horizontal flat plate with finite thermal conductivity in a non-Darcian porous medium

    Energy Technology Data Exchange (ETDEWEB)

    Luna, N. [Direccion de Operacion Petrolera, Direccion General de Exploracion y Explotacion de Hidrocarburos, Secretaria de Energia, 03100 Mexico DF (Mexico); Mendez, F. [Facultad de Ingenieria, UNAM, 04510 Mexico DF (Mexico)

    2005-07-01

    The steady-state analysis of conjugated heat transfer process for the hydrodynamically developed forced convection flow on a heated flat plate embedded in a porous medium is studied. The governing equations for the fluid-saturated porous medium are solved analytically using the integral boundary layer approximation. This integral solution is coupled to the energy equation for the flat plate, where the longitudinal heat conduction effects are taken into account. The resulting equations are then reduced to an integro-differential equation which is solved by regular perturbation techniques and numerical methods. The analytical and numerical predictions for the temperature profile of the plate and appropriate local and average Nusselt numbers are plotted for finite values of the conduction parameter, {alpha}, which represents the presence of the longitudinal heat conduction effects. (authors)

  18. Can Integrated Micro-Optical Concentrator Technology Revolutionize Flat-Plate Photovoltaic Solar Energy Harvesting?

    Science.gov (United States)

    Haney, Michael W.

    2015-12-01

    The economies-of-scale and enhanced performance of integrated micro-technologies have repeatedly delivered disruptive market impact. Examples range from microelectronics to displays to lighting. However, integrated micro-scale technologies have yet to be applied in a transformational way to solar photovoltaic panels. The recently announced Micro-scale Optimized Solar-cell Arrays with Integrated Concentration (MOSAIC) program aims to create a new paradigm in solar photovoltaic panel technology based on the incorporation of micro-concentrating photo-voltaic (μ-CPV) cells. As depicted in Figure 1, MOSAIC will integrate arrays of micro-optical concentrating elements and micro-scale PV elements to achieve the same aggregated collection area and high conversion efficiency of a conventional (i.e., macro-scale) CPV approach, but with the low profile and mass, and hopefully cost, of a conventional non-concentrated PV panel. The reduced size and weight, and enhanced wiring complexity, of the MOSAIC approach provide the opportunity to access the high-performance/low-cost region between the conventional CPV and flat-plate (1-sun) PV domains shown in Figure 2. Accessing this portion of the graph in Figure 2 will expand the geographic and market reach of flat-plate PV. This talk reviews the motivation and goals for the MOSAIC program. The diversity of the technical approaches to micro-concentration, embedded solar tracking, and hybrid direct/diffuse solar resource collection found in the MOSAIC portfolio of projects will also be highlighted.

  19. Progressive phase trends in plates with embedded acoustic black holes.

    Science.gov (United States)

    Conlon, Stephen C; Feurtado, Philip A

    2018-02-01

    Acoustic black holes (ABHs) have been explored and demonstrated to be effective passive treatments for broadband noise and vibration control. Performance metrics for assessing damping concepts are often focused on maximizing structural damping loss factors. Optimally performing damping treatments can reduce the resonant response of a driven system well below the direct field response. This results in a finite structure whose vibration input-output response follows that of an infinite structure. The vibration mobility transfer functions between locations on a structure can be used to assess the structure's vibration response phase, and compare its phase response characteristics to those of idealized systems. This work experimentally explores the phase accumulation in finite plates, with and without embedded grids of ABHs. The measured results are compared and contrasted with theoretical results for finite and infinite uniform plates. Accumulated phase characteristics, their spatial dependence and limits, are examined for the plates and compared to theoretical estimates. The phase accumulation results show that the embedded acoustic black hole treatments can significantly enhance the damping of the plates to the point that their phase accumulation follows that of an infinite plate.

  20. Wind loads on flat plate photovoltaic array fields

    Science.gov (United States)

    Miller, R. D.; Zimmerman, D. K.

    1981-01-01

    The results of an experimental analysis (boundary layer wind tunnel test) of the aerodynamic forces resulting from winds acting on flat plate photovoltaic arrays are presented. Local pressure coefficient distributions and normal force coefficients on the arrays are shown and compared to theoretical results. Parameters that were varied when determining the aerodynamic forces included tilt angle, array separation, ground clearance, protective wind barriers, and the effect of the wind velocity profile. Recommended design wind forces and pressures are presented, which envelop the test results for winds perpendicular to the array's longitudinal axis. This wind direction produces the maximum wind loads on the arrays except at the array edge where oblique winds produce larger edge pressure loads. The arrays located at the outer boundary of an array field have a protective influence on the interior arrays of the field. A significant decrease of the array wind loads were recorded in the wind tunnel test on array panels located behind a fence and/or interior to the array field compared to the arrays on the boundary and unprotected from the wind. The magnitude of this decrease was the same whether caused by a fence or upwind arrays.

  1. Environmental testing of terrestrial flat plate photovoltaic modules

    Science.gov (United States)

    Hoffman, A.; Griffith, J.

    1979-01-01

    The Low-Cost Solar Array (LSA) Project at the Jet Propulsion Laboratory has as one objective: the development and implementation of environmental tests for flat plate photovoltaic modules as part of the Department of Energy's terrestrial photovoltaic program. Modules procured under this program have been subjected to a variety of laboratory tests intended to simulate service environments, and the results of these tests have been compared to available data from actual field service. This comparison indicates that certain tests (notably temperature cycling, humidity cycling, and cyclic pressure loading) are effective indicators of some forms of field failures. Other tests have yielded results useful in formulating module design guidelines. Not all effects noted in field service have been successfully reproduced in the laboratory, however, and work is continuing in order to improve the value of the test program as a tool for evaluating module design and workmanship. This paper contains a review of these ongoing efforts and an assessment of significant test results to date.

  2. An Experimental Study of Flow Separation over a Flat Plate with 2D Transverse Grooves

    Science.gov (United States)

    Jones, Emily; Lang, Amy; Afroz, Farhana; Wheelus, Jennifer; Smith, Drew

    2010-11-01

    It has been hypothesized that flexible shark scales may aid in controlling boundary layer separation in that the scales bristle when encountering a localized flow reversal, thereby forming cavities within the skin that trap vortices between the scales. The formation of the embedded vortices can lead to the creation of a partial slip condition over the surface as well as turbulence augmentation in the boundary layer. In an attempt to replicate and study these effects on flow separation, a simplified model of the shark skin consisting of a plate with square 2D transverse grooves was utilized. Separation over the plate was induced via the placement of a rotating cylinder above the surface, and the experiments were carried out in a water tunnel with a tripped turbulent boundary layer. Using DPIV to analyze the flow, the results were compared to separation occurring over a flat plate. The effects on the location of separation and length of the separated flow region were all analyzed as a function of the Reynolds number and strength of the adverse pressure gradient induced by the rotating cylinder.

  3. Nuclear reactor fuel structure containing uranium alloy wires embedded in a metallic matrix plate

    Science.gov (United States)

    Travelli, A.

    1985-10-25

    A flat or curved plate structure, to be used as fuel in a nuclear reactor, comprises elongated fissionable wires or strips embedded in a metallic continuous non-fissionable matrix plate. The wires or strips are made predominantly of a malleable uranium alloy, such as uranium silicide, uranium gallide or uranium germanide. The matrix plate is made predominantly of aluminum or an aluminum alloy. The wires or strips are located in a single row at the midsurface of the plate, parallel with one another and with the length dimension of the plate. The wires or strips are separated from each other, and from the surface of the plate, by sufficient thicknesses of matrix material, to provide structural integrity and effective fission product retention, under neutron irradiation. This construction makes it safely feasible to provide a high uranium density, so that the uranium enrichment with uranium 235 may be reduced below about 20%, to deter the reprocessing of the uranium for use in nuclear weapons.

  4. Experimental evaluation of flat plate solar collector using nanofluids

    International Nuclear Information System (INIS)

    Verma, Sujit Kumar; Tiwari, Arun Kumar; Chauhan, Durg Singh

    2017-01-01

    Highlights: • Solar collectors are special kind of heat exchangers. • Particle concentration is important parameter for thermal conductivity of nanofluid. • Rise of Bejan number indicates systems qualitative response. • Multi walled carbon nanotube is best performing. - Abstract: The present analysis focuses on a wide variety of nanofluids for evaluating performance of flat plate solar collector in terms of various parameters as well as in respect of energy and exergy efficiency. Also, based on our experimental findings on varying mass flow rate, the present investigation has been conducted with optimum particle volume concentration. Experiments indicate that for ∼0.75% particle volume concentration at a mass flow rate of 0.025 kg/s, exergy efficiency for Multi walled carbon nanotube/water nanofluid is enhanced by 29.32% followed by 21.46%, 16.67%, 10.86%, 6.97% and 5.74%, respectively for Graphene/water, Copper Oxide water, Aluminum Oxide/water, Titanium oxide/water, and Silicon Oxide/water respectively instead of water as the base fluid. Entropy generation, which is a drawback, is also minimum in Multiwalled carbon nanotube/water nanofluids. Under the same thermophysical parameters, the maximum drop in entropy generation can be observed in Multiwalled carbon nanotube/water, which is 65.55%, followed by 57.89%, 48.32%, 36.84%, 24.49% and 10.04%, respectively for graphene/water, copper oxide/water, Aluminum/water, Titanium Oxide /water, and Silicon oxide /water instead of water as the base fluid. Rise of Bejan number towards unity emphasizes improved system performance in terms of efficient conversion of the available energy into useful functions. The highest rise in energy efficiency of a collector has been recorded in Multiwalled carbon nanotube/water, which is 23.47%, followed by 16.97%, 12.64%, 8.28%, 5.09% and 4.08%, respectively for graphene/water, Copper oxide/water, Aluminum oxide/water, Titanium oxide /water, and Silicon oxide/water instead of

  5. Sound Radiation of Aerodynamically Excited Flat Plates into Cavities

    Directory of Open Access Journals (Sweden)

    Johannes Osterziel

    2017-10-01

    Full Text Available Flow-induced vibrations and the sound radiation of flexible plate structures of different thickness mounted in a rigid plate are experimentally investigated. Therefore, flow properties and turbulent boundary layer parameters are determined through measurements with a hot-wire anemometer in an aeroacoustic wind tunnel. Furthermore, the excitation of the vibrating plate is examined by laser scanning vibrometry. To describe the sound radiation and the sound transmission of the flexible aluminium plates into cavities, a cuboid-shaped room with adjustable volume and 34 flush-mounted microphones is installed at the non flow-excited side of the aluminium plates. Results showed that the sound field inside the cavity is on the one hand dependent on the flow parameters and the plate thickness and on the other hand on the cavity volume which indirectly influences the level and the distribution of the sound pressure behind the flexible plate through different excited modes.

  6. Performance of streamlined bridge decks in relation to the aerodynamics of a flat plate

    DEFF Research Database (Denmark)

    Larose, Guy; Livesey, Flora M.

    1997-01-01

    The aerodynamics of three modern bridge decks are compared to the aerodynamics of a 16:1 flat plate. The comparisons are made on the basis of the analytical evaluation of the performance of each cross-section to the buffeting action of the wind. In general, the closed-box girders studied...... in this paper showed buffeting responses similar to a flat plate with the exception of the multi-box girder which performed much better aerodynamically....

  7. Noncommutative spaces and matrix embeddings on flat ℝ{sup 2n+1}

    Energy Technology Data Exchange (ETDEWEB)

    Karczmarek, Joanna L.; Yeh, Ken Huai-Che [Department of Physics and Astronomy, University of British Columbia,6224 Agricultural Road, Vancouver (Canada)

    2015-11-23

    We conjecture an embedding operator which assigns, to any 2n+1 hermitian matrices, a 2n-dimensional hypersurface in flat (2n+1)-dimensional Euclidean space. This corresponds to precisely defining a fuzzy D(2n)-brane corresponding to N D0-branes. Points on the emergent hypersurface correspond to zero eigenstates of the embedding operator, which have an interpretation as coherent states underlying the emergent noncommutative geometry. Using this correspondence, all physical properties of the emergent D(2n)-brane can be computed. We apply our conjecture to noncommutative flat and spherical spaces. As a by-product, we obtain a construction of a rotationally symmetric flat noncommutative space in 4 dimensions.

  8. Comparison of flat plate and cylindrical parabolic focusing solar energy collectors for Oak Ridge

    Energy Technology Data Exchange (ETDEWEB)

    Kronenberger, E.J.; Newman, J.S.; Demetriou, C.V.; Orlandi, R.D.

    1974-05-22

    Experimental and theoretical comparisons were made of the performance of cylindrical parabolic and flat plate solar energy collectors operating under Oak Ridge weather conditions. The flat plate collector was observed to consistently out-perform the parabolic collector under the design and operating (135 to 185/sup 0/F) conditions used (parabolic cylindrical collector - one glass cover plate, refocused hourly, receiver absorptivity of 0.87; flat plate collector - two glass cover plates oriented at latitude minus declination, absorptivity 0.98). Other factors contributed to the difference including poorer insulation (1.25 in. fiberglass) for the focusing collector (versus 5 in. fiberglass for the flat plate) and a poor fin efficiency for the receiver tube of the focusing collector. Observed efficiencies were as high as 47% for the cylindrical parabolic collector operating with one glass plate at 185/sup 0/F and as high as 62% for the flat plate collector operating with two glass plates at 165/sup 0/F. Performance models were developed for both collectors and the model used for the flat plate collector was extended to predict month-to-month operation under Oak Ridge weather conditions (based on the average of 16 years of weather data). A temperature distribution model was developed for optimization of the finned tube receiver used in the cylinderical parabolic collector. Further experimentation should be conducted at higher temperatures (approx. 250/sup 0/F) with selective receiver coatings (..cap alpha../epsilon >> 1) and also runs under conditions of broken cloud cover are suggested. In addition, the performance models should be extended and the finned tube design optimization continued.

  9. Transmission loss of plates with embedded acoustic black holes.

    Science.gov (United States)

    Feurtado, Philip A; Conlon, Stephen C

    2017-09-01

    In recent years acoustic black holes (ABHs) have been developed and demonstrated as an effective method for developing lightweight, high loss structures for noise and vibration control. ABHs employ a local thickness change to tailor the speed and amplitude of flexural bending waves and create concentrated regions of high strain energy which can be effectively dissipated through conventional damping treatments. These regions act as energy sinks which allow for effective broadband vibration absorption with minimal use of applied damping material. This, combined with the reduced mass from the thickness tailoring, results in a treated structure with higher loss and less mass than the original. In this work, the transmission loss (TL) of plates with embedded ABHs was investigated using experimental and numerical methods in order to assess the usefulness of ABH systems for TL applications. The results demonstrated that damped ABH plates offer improved performance compared to a uniform plate despite having less mass. The result will be useful for applying ABHs and ABH systems to practical noise and vibration control problems.

  10. Flow over a traveling wavy foil with a passively flapping flat plate.

    Science.gov (United States)

    Liu, Nansheng; Peng, Yan; Liang, Youwen; Lu, Xiyun

    2012-05-01

    Flow over a traveling wavy foil with a passively flapping flat plate has been investigated using a multiblock lattice Boltzmann equation and the immersed boundary method. The foil undergoes prescribed undulations in the lateral direction and the rigid flat plate has passive motion determined by the fluid structure interaction. This simplified model is used to study the effect of the fish caudal fin and its flexibility on the locomotion of swimming animals. The flexibility of the caudal fin is modeled by a torsion spring acting about the pivot at the conjuncture of the wavy foil and the flat plate. The study reveals that the passively oscillating flat plate contributes half of the propulsive force. The flexibility, represented by the nondimensional natural frequency F, plays a very important role in the movement and propulsive force generation of the whole body. When the plate is too flexible, the drag force is observed. As the flat plate becomes more rigid, the propulsive force that is generated when the undulation is confined to last part of the wavy foil becomes larger. The steady movement occurs at F=5. These results are consistent with the observations of some swimming animals in nature.

  11. Proceedings of the Flat-Plate Solar Array Project Research Forum on the Design of Flat-Plate Photovoltaic Arrays for Central Stations

    Science.gov (United States)

    1983-01-01

    The Flat Plate Solar Array Project, focuses on advancing technologies relevant to the design and construction of megawatt level central station systems. Photovoltaic modules and arrays for flat plate central station or other large scale electric power production facilities require the establishment of a technical base that resolves design issues and results in practical and cost effective configurations. Design, qualification and maintenance issues related to central station arrays derived from the engineering and operating experiences of early applications and parallel laboratory reserch activities are investigated. Technical issues are examined from the viewpoint of the utility engineer, architect/engineer and laboratory researcher. Topics on optimum source circuit designs, module insulation design for high system voltages, array safety, structural interface design, measurements, and array operation and maintenance are discussed.

  12. A diagram for defined solar radiation absorbed per unit area of flat plate solar collectors

    Energy Technology Data Exchange (ETDEWEB)

    Tekin, Y.; Altuntop, N. [Erciyes University, Dept. of Mechanical Engineering (Turkey); Cengel, Y.A. [Nevada Reno University, Dept. of Mechanical Engineering, NV (United States); Cengel, Y.A. [Nevada University, Dept. Mechanical Engineering, Reno, NV (United States)

    2000-07-01

    In Erciyes University, the Solar House (28.75 m{sup 2}) is heated from the floor by using flat plate liquid solar collectors. Required solar radiation for heating and heat losses are calculated. In this work, the required calculations for Erciyes Solar House were generalized and required calculation were done to evaluate absorbed solar radiation per unit surface of the flat plate liquid collector. At the end, three generalized diagrams for nine different months are obtained using obtained numerical values. The goal of preparing diagrams is to determine absorbed solar radiation per unit surface area of flat plate liquid collector at any instant at any latitude, In this work, the diagram is explained by means of sample calculations for November. This diagram was prepared to find out absorbed solar radiation per unit area of black surface collector by means obtained equations. With this diagram, all instant solar radiation can be evaluated in 19 steps. (authors)

  13. Design and performance of tubular flat-plate solid oxide fuel cell

    Energy Technology Data Exchange (ETDEWEB)

    Matsushima, T.; Ikeda, D.; Kanagawa, H. [NTT Integrated Information & Energy Systems Labs., Tokyo (Japan)] [and others

    1996-12-31

    With the growing interest in conserving the environmental conditions, much attention is being paid to Solid Oxide Fuel Cell (SOFC), which has high energy-conversion efficiency. Many organizations have conducted studies on tubular and flat type SOFCs. Nippon Telegraph and Telephone Corporation (NTT) has studied a combined tubular flat-plate SOFC, and already presented the I-V characteristics of a single cell. Here, we report the construction of a stack of this SOFC cell and successful generation tests results.

  14. Streamwise counter-rotating vortices generated by triangular leading edge pattern in flat plate boundary layer

    KAUST Repository

    Hasheminejad, S. M.

    2016-01-05

    A series of flow visualizations were conducted to qualitatively study the development of streamwise counter-rotating vortices over a flat plate induced by triangular patterns at the leading edge of a flat plate. The experiments were carried out for a Reynolds number based on the pattern wavelength (λ) of 3080. The results depict the onset, development and breakdown of the vortical structures within the flat plate boundary layer. Moreover, the effect of one spanwise array of holes with diameter of 0.2λ (=3 mm) was examined. This investigation was done on two different flat plates with holes placed at the location x/λ = 2 downstream of the troughs and peaks. The presence of holes after troughs does not show any significant effect on the vortical structures. However, the plate with holes after peaks noticeably delays the vortex breakdown. In this case, the “mushroom-like” vortices move away from the wall and propagate downstream with stable vortical structures. The vortex growth is halted further downstream but start to tilt aside.

  15. The interference between two flat plates normal to a stream in staggered arrangement, 1

    International Nuclear Information System (INIS)

    Hirano, Kimitaka; Kawashima, Akira; Ohsako, Hideyuki.

    1983-01-01

    The clarification of the mutual interference characteristics between the bodies with sharp corners, such as flat plates and rectangular prisms placed perpendicularly to flow, is a fundamental and important problem. But it has not yet been sufficiently clarified. In flat plates, the points of breaking away do not move, a large breaking away region is in the wake, and the thickness is very thin in the direction of main flow. Moreover, a moment arises around the center of flat plates. In this study, a new parameter expressing the influence of channel walls on a single flat plate in the measuring part of two-dimensional wind tunnel experiment was proposed. The change of steady drag coefficient and Strouhal number corresponding to the series and parallel arrangements of two plates was clarified, and the patterns of the mutual interference were classified by using the results of visualizing flow in a circulation tank together. By the experimental results in the widely changed staggered arrangements, the isodrag contour diagram and isomoment contour diagram were drawn, and the general characteristics of mutual interference related to steady drag and moment were clarified. The experimental setup and method and the results are reported. (Kako, I.)

  16. Optimal design of sandwich ribbed flat baffle plates of a circular cylindrical tank

    International Nuclear Information System (INIS)

    Malinowski, Marek; Magnucki, Krzysztof

    2005-01-01

    The subject of this paper is a sandwich ribbed flat baffle plate of a circular cylindrical tank. The paper deals with a problem of optimal thickness of this construction with a soft core. The construction is distinguished by a local axisymmetric pre-springing. The mathematical description is based on the theory of shells with analysis of disturbance of the stress membrane state. The sandwich ribbed flat baffle plate divides the tank into two chambers. One of them is loaded by uniform pressure, while the other is empty and unloaded. Dimensions of ribs, faces and the entire baffle plate have been determined with a view to minimize the mass under strength constraints. The effect of optimal thickness of this sandwich plate has been examined by means of the finite element method

  17. Parametric Studies of Flat Plate Trajectories Using VIC and Penalization

    Directory of Open Access Journals (Sweden)

    François Morency

    2018-01-01

    Full Text Available Flying debris is generated in several situations: when a roof is exposed to a storm, when ice accretes on rotating wind turbines, or during inflight aircraft deicing. Four dimensionless parameters play a role in the motion of flying debris. The goal of the present paper is to investigate the relative importance of four dimensionless parameters: the Reynolds number, the Froude number, the Tachikawa number, and the mass moment of inertia parameters. Flying debris trajectories are computed with a fluid-solid interaction model formulated for an incompressible 2D laminar flow. The rigid moving solid effects are modelled in the Navier-Stokes equations using penalization. A VIC scheme is used to solve the flow equations. The aerodynamic forces and moments are used to compute the acceleration and the velocity of the solid. A database of 64 trajectories is built using a two-level full factorial design for the four factors. The dispersion of the plate position at a given horizontal position decreases with the Froude number. Moreover, the Tachikawa number has a significant effect on the median plate position.

  18. COMPARATIVE FIELD EXPERIMENTAL INVESTIGATIONS OF DIFFERENT FLAT PLATE SOLAR COLLECTORS

    Directory of Open Access Journals (Sweden)

    Guangming Chen

    2015-12-01

    Full Text Available Full-scale traditional metal solar collectors and solar collector specimens fabricated from polymeric materials were investigated in the present study. A polymeric collector is 67.8% lighter than a traditional metal solar collector, and a metal solar collector with transparent plastic covering is 40.3% lighter than a traditional metal solar collector. Honeycomb multichannel plates made from polycarbonate were chosen to create a polymeric solar collector. A test rig for the natural circulation of the working fluid in a solar collector was built for a comparative experimental investigation of various solar collectors operating at ambient conditions. It was shown experimentally that the efficiency of a polymeric collector is 8–15% lower than the efficiency of a traditional collector.

  19. Production of fatty acids and protein by nannochloropsis in flat-plate photobioreactors

    NARCIS (Netherlands)

    Hulatt, Chris J.; Wijffels, René H.; Bolla, Sylvie; Kiron, Viswanath

    2017-01-01

    Nannochloropsis is an industrially-promising microalga that may be cultivated for alternative sources of nutrition due to its high productivity, protein content and lipid composition. We studied the growth and biochemical profile of Nannochloropsis 211/78 (CCAP) in optimized flat-plate

  20. An investigation on thermo-hydraulic performance of a flat-plate channel with pyramidal protrusions

    NARCIS (Netherlands)

    Ebrahimi, Amin; Naranjani, Benyamin

    2016-01-01

    In this study, a flat-plate channel configured with pyramidal protrusions are numerically analysed for the first time. Simulations of laminar single-phase fluid flow and heat transfer characteristics are developed using a finite-volume approach under steady-state condition. Pure water is selected

  1. Internal (Annular) and Compressible External (Flat Plate) Turbulent Flow Heat Transfer Correlations.

    Energy Technology Data Exchange (ETDEWEB)

    Dechant, Lawrence [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Smith, Justin [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2016-01-01

    Here we provide a discussion regarding the applicability of a family of traditional heat transfer correlation based models for several (unit level) heat transfer problems associated with flight heat transfer estimates and internal flow heat transfer associated with an experimental simulation design (Dobranich 2014). Variability between semi-empirical free-flight models suggests relative differences for heat transfer coefficients on the order of 10%, while the internal annular flow behavior is larger with differences on the order of 20%. We emphasize that these expressions are strictly valid only for the geometries they have been derived for e.g. the fully developed annular flow or simple external flow problems. Though, the application of flat plate skin friction estimate to cylindrical bodies is a traditional procedure to estimate skin friction and heat transfer, an over-prediction bias is often observed using these approximations for missile type bodies. As a correction for this over-estimate trend, we discuss a simple scaling reduction factor for flat plate turbulent skin friction and heat transfer solutions (correlations) applied to blunt bodies of revolution at zero angle of attack. The method estimates the ratio between axisymmetric and 2-d stagnation point heat transfer skin friction and Stanton number solution expressions for sub-turbulent Reynolds numbers %3C1x10 4 . This factor is assumed to also directly influence the flat plate results applied to the cylindrical portion of the flow and the flat plate correlations are modified by

  2. 46 CFR 154.1320 - Sighting ports, tubular gauge glasses, and flat plate type gauge glasses.

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 5 2010-10-01 2010-10-01 false Sighting ports, tubular gauge glasses, and flat plate type gauge glasses. 154.1320 Section 154.1320 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY... LIQUEFIED GASES Design, Construction and Equipment Instrumentation § 154.1320 Sighting ports, tubular gauge...

  3. Accuracy of Surface Plate Measurements - General Purpose Software for Flatness Measurement

    NARCIS (Netherlands)

    Meijer, J.; Heuvelman, C.J.

    1990-01-01

    Flatness departures of surface plates are generally obtained from straightness measurements of lines on the surface. A computer program has been developed for on-line measurement and evaluation, based on the simultaneous coupling of measurements in all grid points. Statistical methods are used to

  4. Safety review package for University of Central Florida flat-plate heat pipe experiment

    Science.gov (United States)

    Chow, Louis C.

    1998-01-01

    A flat-plate heat pipe (FPHP) experiment has been set up for micro-gravity tests on a NASA supplied aircraft. This report presents an analysis on various components of the experimental setup to certify that it will satisfy the flight safety and operation requirements.

  5. Simulation techniques for spatially evolving instabilities in compressible flow over a flat plate

    NARCIS (Netherlands)

    Wasistho, B.; Geurts, Bernardus J.; Kuerten, Johannes G.M.

    1997-01-01

    In this paper we present numerical techniques suitable for a direct numerical simulation in the spatial setting. We demonstrate the application to the simulation of compressible flat plate flow instabilities. We compare second and fourth order accurate spatial discretization schemes in combination

  6. Design, construction and testing of a low-cost flat plate solar energy ...

    African Journals Online (AJOL)

    A low-cost flat plate solar energy collector has been designed and constructed with locally available materials such as mild steel and black paint of absorptance 0.94. On testing, an average daily efficiency of 55.6% was obtained. The methods are simple and illustrate the fact that construction of efficient collectors are ...

  7. Analytical Solution of Forced-Convective Boundary-Layer Flow over a Flat Plate

    DEFF Research Database (Denmark)

    Mirgolbabaei, H.; Barari, Amin; Ibsen, Lars Bo

    2010-01-01

    In this letter, the problem of forced convection heat transfer over a horizontal flat plate is investigated by employing the Adomian Decomposition Method (ADM). The series solution of the nonlinear differential equations governing on the problem is developed. Comparison between results obtained...

  8. Design and installation package for the Sunmat Flat Plate Solar Collector

    Energy Technology Data Exchange (ETDEWEB)

    1978-03-01

    The information used in evaluating the design of the Sunmat Liquid Flat Plat Plate Solar Collector developed by Calmac Manufacturing Company is presented. Included in this package are the Subsystem Performance Specification, Installation, Operation and Maintenance Manuals, collector sizing guides, and detailed drawings of the single-glazed collector.

  9. A figure of merit for selective absorbers in flat plate solar water heaters

    CSIR Research Space (South Africa)

    Roberts, DE

    2013-12-01

    Full Text Available We derive from first principles an analytical expression for a figure of merit (FM) for a selective solar absorber in a single glazed flat plate water heater. We first show that the efficiency of a collector with an absorber with absorptance α...

  10. Proceedings of the Flat-Plate Solar Array Project Research Forum on Photovoltaic Metallization Systems

    Science.gov (United States)

    1983-01-01

    A photovoltaic Metallization Research forum, under the sponsorship of the Flat-Plate Solar Array Project consisted of five sessions, covering: (1) the current status of metallization systems, (2) system design, (3) thick-film metallization, (4) advanced techniques, and (5) future metallization challenges.

  11. Preliminary design review package on air flat plate collector for solar heating and cooling system

    Science.gov (United States)

    1977-01-01

    Guidelines to be used in the development and fabrication of a prototype air flat plate collector subsystem containing 320 square feet (10-4 ft x 8 ft panels) of collector area are presented. Topics discussed include: (1) verification plan; (2) thermal analysis; (3) safety hazard analysis; (4) drawing list; (5) special handling, installation and maintenance tools; (6) structural analysis; and (7) selected drawings.

  12. Flat plate bonded fuel elements. Quarterly report No. 3, October 11, 1953--December 10, 1953

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1953-12-31

    This document is Report No. 3 (covering the period 10/11/53 to 12/10/53) on Flat Plate Bonded Fuel Elements at the Savannah River Plant. It contains information on the fabrication and testing of the uranium components as well as the structural components (aluminium).

  13. Theoretical Calculation of Inductance of Flat Type Fault Current Limiter with High Tc Superconducting Plate

    International Nuclear Information System (INIS)

    Matsumura, Toshiro; Mutsuura, Keita; Yokomizu, Yasunobu; Iioka, Daisuke; Shimizu, Hirotaka; Shibuya, Masatoyo; Kado, Hiroyuki; Ichikawa, Michiharu

    2006-01-01

    A flat type fault current limiter (FCL) proposed by us consists of a spiral primary winding and high T c superconducting (HTS) plate. In order to clarify the static current-limiting performance of the flat type FCL, the magnetic field analyses were carried out for small modules of the FCL. The inductance of the FCL was calculated by analyzing the magnetic field. The magnetic field analysis suggested that a high inductance ratio might be realized by radically enlarging both the primary winding and the HTS plate, installing the high permeability material such as an iron on the FCL and stacking the FCL modules vertically in layers. It is also pointed out that the volume of the flat type FCL is smaller than that of the cylinder type FCL with same magnitude of the limiting inductance

  14. Flat plate solar air heater with latent heat storage

    Science.gov (United States)

    Touati, B.; Kerroumi, N.; Virgone, J.

    2017-02-01

    Our work contains two parts, first is an experimental study of the solar air heater with a simple flow and forced convection, we can use thatlaste oneit in many engineering's sectors as solardrying, space heating in particular. The second part is a numerical study with ansys fluent 15 of the storage of part of this solar thermal energy produced,using latent heat by using phase change materials (PCM). In the experimental parts, we realize and tested our solar air heater in URER.MS ADRAR, locate in southwest Algeria. Where we measured the solarradiation, ambient temperature, air flow, thetemperature of the absorber, glasses and the outlet temperature of the solar air heater from the Sunrise to the sunset. In the second part, we added a PCM at outlet part of the solar air heater. This PCM store a part of the energy produced in the day to be used in peak period at evening by using the latent heat where the PCMs present a grateful storagesystem.A numerical study of the fusion or also named the charging of the PCM using ANSYS Fluent 15, this code use the method of enthalpies to solve the fusion and solidification formulations. Furthermore, to improve the conjugate heat transfer between the heat transfer fluid (Air heated in solar plate air heater) and the PCM, we simulate the effect of adding fins to our geometry. Also, four user define are write in C code to describe the thermophysicalpropriety of the PCM, and the inlet temperature of our geometry which is the temperature at the outflow of the solar heater.

  15. The presence of embedded bacterial pure cultures in agar plates stimulate the culturability of soil bacteria

    DEFF Research Database (Denmark)

    Burmølle, Mette; Johnsen, Kaare; Abu Al-Soud, Waleed Mohamad Abdel F

    2009-01-01

    cultures in between two layers of agar. Plates containing either embedded Pseudomonas putida or Arthrobacter globiformis resulted in higher numbers of CFUs of soil bacteria (21% and 38%, respectively) after 833 h of incubation, compared to plates with no embedded strain. This indicates a stimulatory effect...... homology to known sequenced isolates in GenBank were recovered from plates with embedded strains than from those without, which indicate a higher number of potential novel soil isolates. This approach for cultivation is therefore a feasible alternative or supplement to traditional cultivation on agar...

  16. Hot air impingement on a flat plate using Large Eddy Simulation (LES) technique

    Science.gov (United States)

    Plengsa-ard, C.; Kaewbumrung, M.

    2018-01-01

    Impinging hot gas jets to a flat plate generate very high heat transfer coefficients in the impingement zone. The magnitude of heat transfer prediction near the stagnation point is important and accurate heat flux distribution are needed. This research studies on heat transfer and flow field resulting from a single hot air impinging wall. The simulation is carried out using computational fluid dynamics (CFD) commercial code FLUENT. Large Eddy Simulation (LES) approach with a subgrid-scale Smagorinsky-Lilly model is present. The classical Werner-Wengle wall model is used to compute the predicted results of velocity and temperature near walls. The Smagorinsky constant in the turbulence model is set to 0.1 and is kept constant throughout the investigation. The hot gas jet impingement on the flat plate with a constant surface temperature is chosen to validate the predicted heat flux results with experimental data. The jet Reynolds number is equal to 20,000 and a fixed jet-to-plate spacing of H/D = 2.0. Nusselt number on the impingement surface is calculated. As predicted by the wall model, the instantaneous computed Nusselt number agree fairly well with experimental data. The largest values of calculated Nusselt number are near the stagnation point and decrease monotonically in the wall jet region. Also, the contour plots of instantaneous values of wall heat flux on a flat plate are captured by LES simulation.

  17. Proceedings of the Flat-Plate Solar Array Project Research Forum on the design of flat-plate photovoltaic arrays for central stations

    Energy Technology Data Exchange (ETDEWEB)

    None

    1983-01-01

    The Flat-Plate Solar Array Project, managed by the Jet Propulsion Laboratory for the US Department of Energy, has focused on advancing technologies relevant to the design and construction of megawatt-level central-station systems. Photovoltaic modules and arrays for flat-plate central-station or other large-scale electric power production facilities require the establishment of a technical base that resolves design issues and results in practical and cost-effective configurations. The Central Station Research Forum addressed design, qualification and maintenance issues related to central-station arrays derived from the engineering and operating experiences of early applications and parallel laboratory research activities. Technical issues were examined from the viewpoint of the utility engineer, architect-engineer and laboratory researcher. The forum included presentations on optimum source-circuit designs, module insulation design for high system voltages, array safety, structural interface design, measurements and array operation and maintenance. The Research Forum focused on current capabilities as well as design difficulties requiring additional technological thrusts and/or continued research emphasis. Session topic summaries highlighting major points during group discussions, identifying promising technical approaches or areas of future research, are presented.

  18. Flatness-based embedded adaptive fuzzy control of turbocharged diesel engines

    Science.gov (United States)

    Rigatos, Gerasimos; Siano, Pierluigi; Arsie, Ivan

    2014-10-01

    In this paper nonlinear embedded control for turbocharged Diesel engines is developed with the use of Differential flatness theory and adaptive fuzzy control. It is shown that the dynamic model of the turbocharged Diesel engine is differentially flat and admits dynamic feedback linearization. It is also shown that the dynamic model can be written in the linear Brunovsky canonical form for which a state feedback controller can be easily designed. To compensate for modeling errors and external disturbances an adaptive fuzzy control scheme is implemanted making use of the transformed dynamical system of the diesel engine that is obtained through the application of differential flatness theory. Since only the system's output is measurable the complete state vector has to be reconstructed with the use of a state observer. It is shown that a suitable learning law can be defined for neuro-fuzzy approximators, which are part of the controller, so as to preserve the closed-loop system stability. With the use of Lyapunov stability analysis it is proven that the proposed observer-based adaptive fuzzy control scheme results in H∞ tracking performance.

  19. Spray formation during the vertical impact of a flat plate on a quiescent water surface

    Science.gov (United States)

    Wang, An; Duncan, James H.

    2017-11-01

    Spay formation during the impact of a rigid flat plate (122 cm by 38 cm) on a quiescent water surface is studied experimentally. The plate is mounted on a carriage that is driven by an electric servo motor that can slam the plate vertically into the water surface under feedback-controlled motions at various speeds. The long edges of the plate are kept horizontal and the short edges are set at various angles (roll angles) with respect to the quiescent water surface. A laser light sheet is created in a vertical plane at the middle of the long edges of the plate. The evolution of the spray within the light sheet is measured with a cinematic laser induced fluorescence technique. Two types of spray are found with nonzero roll angles. The first type is a cloud of high-speed droplets and ligaments that are generated when the plate's leading edge impacts the free surface. The second type is a thin water sheet that is connected to the trailing edge of the plate via a crater and is formed after the trailing edge moves below the local water level. In a reference frame moving with the plate, the profiles of the crater collapse when scaled with a power law function of time. The characteristics of the two types of spray are found to be affected by both the roll angle and the impact velocity. The support of the Office of Naval Research is gratefully acknowledged.

  20. Deflection and trapping of a counter-rotating vortex pair by a flat plate

    Science.gov (United States)

    Nitsche, Monika

    2017-12-01

    The interaction of a counter-rotating vortex pair (dipole) with a flat plate in its path is studied numerically. The vortices are initially separated by a distance D (dipole size) and placed far upstream of a plate of length L . The plate is centered on the dipole path and inclined relative to it at an incident angle βi. At first, the plate is held fixed in place. The vortices approach the plate, travel around it, and then leave as a dipole with unchanged velocity but generally a different travel direction, measured by a transmitted angle βt. For certain plate angles the transmitted angle is highly sensitive to changes in the incident angle. The sensitivity increases as the dipole size decreases relative to the plate length. In fact, for sufficiently small values of D /L , singularities appear: near critical values of βi, the dipole trajectory undergoes a topological discontinuity under changes of βi or D /L . The discontinuity is characterized by a jump in the winding number of one vortex around the plate, and in the time that the vortices take to leave the plate. The jumps occur repeatedly in a self-similar, fractal fashion, within a region near the critical values of βi, showing the existence of incident angles that trap the vortices, which never leave the plate. The number of these trapping regions increases as the parameter D /L decreases, and the dependence of the motion on βi becomes increasingly complex. The simulations thus show that even in this apparently simple scenario, the inviscid dynamics of a two-point-vortex system interacting with a stationary wall is surprisingly rich. The results are then applied to separate an incoming stream of dipoles by an oscillating plate.

  1. An Experimental Study of Flow Separation over a Flat Plate with Transverse Grooves

    Science.gov (United States)

    Jones, Emily; Lang, Amy

    2012-11-01

    A shark's scales help to reduce drag over its body by controlling boundary layer separation over its skin. It is theorized that the scales bristle when encountering a reversing flow, thereby trapping vortices between the scales, creating a partial slip condition over the surface and inducing turbulence augmentation in the boundary layer. In an attempt to replicate and study these effects, a spinning cylinder was used in a water tunnel to induce separation over a flat plate with 2 mm, square 2-D transverse grooves and sinusoidal grooves of the same size. The results were compared to tripped, turbulent boundary layer separation occurring over a flat plate without grooves using DPIV. The strength of the adverse pressure gradient was varied, and the observed delay in flow separation and other effects upon the boundary layer are discussed. Funding received by NSF REU grant 1062611.

  2. Experimental simulation of the bubble membrane radiator using a rotating flat plate

    International Nuclear Information System (INIS)

    Al-Baroudi, H.; Klein, A.C.; Pauley, K.A.

    1991-01-01

    The Bubble Membrane Radiator (BMR), to be used in space reactor systems, uses artificial gravity imposed on the working fluid by means of the centrifugal force to pump the fluid from the radiator. Experimental and analytical studies have been initiated to understand the nature of fluid and heat transport under the conditions of rotation. An experiment is described which measures the condensation of vapor on a rotating flat plate which is oriented normal to the earth's gravity vector to simulate the BMR physics. The relationship between vapor flow rates and rotation speed of the flat plate and a number of physical parameters including amount of condensate, overall heat transfer coefficient, and condensate film thickness are studied experimentally

  3. An Experimental and Analytical Study of a Radiative Cooling System with Unglazed Flat Plate Collectors

    DEFF Research Database (Denmark)

    Hosseinzadeh, Elham; Taherian, Hessam

    2012-01-01

    On an average about 40% of world energy is used in residential buildings and the largest energy consumption is allocated to the cooling and air-conditioning systems. So every attempt to economize energy consumption is very valuable. In this research a nocturnal radiative cooling system with flat...... plate solar collectors in a humid area, Babol, Iran, is assessed both experimentally and numerically. Different methods available in the literature are reviewed and by using a widely accepted model, the sky temperature is determined. The mathematical model for a flat plate solar collector is used...... by convection and radiation to sky. The experiments were carried out at various mass flow rates and in different weather conditions and the results have been compared to those of the theoretical model. The results indicate that water temperature decreases 7–8◦C and the average net cooling will be ranged from 23...

  4. Flat plate vs. concentrator solar photovoltaic cells - A manufacturing cost analysis

    Science.gov (United States)

    Granon, L. A.; Coleman, M. G.

    1980-01-01

    The choice of which photovoltaic system (flat plate or concentrator) to use for utilizing solar cells to generate electricity depends mainly on the cost. A detailed, comparative manufacturing cost analysis of the two types of systems is presented. Several common assumptions, i.e., cell thickness, interest rate, power rate, factory production life, polysilicon cost, and direct labor rate are utilized in this analysis. Process sequences, cost variables, and sensitivity analyses have been studied, and results of the latter show that the most important parameters which determine manufacturing costs are concentration ratio, manufacturing volume, and cell efficiency. The total cost per watt of the flat plate solar cell is $1.45, and that of the concentrator solar cell is $1.85, the higher cost being due to the increased process complexity and material costs.

  5. Investigation of Shear Stud Performance in Flat Plate Using Finite Element Analysis

    Directory of Open Access Journals (Sweden)

    T.S. Viswanathan

    2014-09-01

    Full Text Available Three types of shear stud arrangement, respectively featuring an orthogonal, a radial and a critical perimeter pattern, were evaluated numerically. A numerical investigation was conducted using the finite element software ABAQUS to evaluate their ability to resist punching shear in a flat plate. The finite element analysis here is an application of the nonlinear analysis of reinforced concrete structures using three-dimensional solid finite elements. The nonlinear characteristics of concrete were achieved by employing the concrete damaged plasticity model in the finite element program. Transverse shear stress was evaluated using finite element analysis in terms of shear stress distribution for flat plate with and without shear stud reinforcement. The model predicted that shear studs placed along the critical perimeter are more effective compared to orthogonal and radial patterns.

  6. Recommendations for the performance rating of flat plate terrestrial photovoltaic solar panels

    Science.gov (United States)

    Treble, F. C.

    1976-01-01

    A review of recommendations for standardizing the performance rating of flat plate terrestrial solar panels is given to develop an international standard code of practice for performance rating. Required data to characterize the performance of a solar panel are listed. Other items discussed are: (1) basic measurement procedures; (2) performance measurement in natural sunlight and simulated sunlight; (3) standard solar cells; (4) the normal incidence method; (5) global method and (6) definition of peak power.

  7. Analysis of Cooling and Heating of Water with Flat-plate Solar Radiators

    OpenAIRE

    Balen, Igor; Soldo, Vladimir; Kennedy, David

    2003-01-01

    Extensive analysis of flat-plate radiative panels operation using average hourly weather data for a maritime climate region was performed. The panels are integrated in the space ventilation system with air-cooling by means of a cold-water coil. Their primary function is to prepare sufficient quantity of cold water, integrating radiative and convective cooling, that is collected in the cold-water tank during the nighttime operation. That cold water is used for cooling of the air during daytime...

  8. Examples of the Re-number effect on the transitional flat plate boundary layers

    Czech Academy of Sciences Publication Activity Database

    Antoš, Pavel; Jonáš, Pavel; Procházka, Pavel P.; Uruba, Václav

    2014-01-01

    Roč. 14, č. 1 (2014), s. 605-606 ISSN 1617-7061. [Annual Meeting of the International Association of Applied Mathematics and Mechanics /85./. Erlangen, 10.03.2014-14.03.2014] R&D Projects: GA ČR GAP101/12/1271 Institutional support: RVO:61388998 Keywords : transition * flat plate * boundary layer Subject RIV: BK - Fluid Dynamics http://dx.doi.org/10.1002/pamm.201410290

  9. Proceedings of the flat-plate solar array project research forum on photovoltaic metallization systems

    Energy Technology Data Exchange (ETDEWEB)

    None

    1983-11-15

    A Photovoltaic Metallization Research Forum, under the sponsorship of the Jet Propulsion Laboratory's Flat-Plate Solar Array Project and the US Department of Energy, was held March 16-18, 1983 at Pine Mountain, Georgia. The Forum consisted of five sessions, covering (1) the current status of metallization systems, (2) system design, (3) thick-film metallization, (4) advanced techniques and (5) future metallization challenges. Twenty-three papers were presented.

  10. Modeling of frost crystal growth over a flat plate using artificial neural networks and fractal geometries

    Science.gov (United States)

    Tahavvor, Ali Reza

    2017-03-01

    In the present study artificial neural network and fractal geometry are used to predict frost thickness and density on a cold flat plate having constant surface temperature under forced convection for different ambient conditions. These methods are very applicable in this area because phase changes such as melting and solidification are simulated by conventional methods but frost formation is a most complicated phase change phenomenon consists of coupled heat and mass transfer. Therefore conventional mathematical techniques cannot capture the effects of all parameters on its growth and development because this process influenced by many factors and it is a time dependent process. Therefore, in this work soft computing method such as artificial neural network and fractal geometry are used to do this manner. The databases for modeling are generated from the experimental measurements. First, multilayer perceptron network is used and it is found that the back-propagation algorithm with Levenberg-Marquardt learning rule is the best choice to estimate frost growth properties due to accurate and faster training procedure. Second, fractal geometry based on the Von-Koch curve is used to model frost growth procedure especially in frost thickness and density. Comparison is performed between experimental measurements and soft computing methods. Results show that soft computing methods can be used more efficiently to determine frost properties over a flat plate. Based on the developed models, wide range of frost formation over flat plates can be determined for various conditions.

  11. Flat Plate Boundary Layer Stimulation Using Trip Wires and Hama Strips

    Science.gov (United States)

    Peguero, Charles; Henoch, Charles; Hrubes, James; Fredette, Albert; Roberts, Raymond; Huyer, Stephen

    2017-11-01

    Water tunnel experiments on a flat plate at zero angle of attack were performed to investigate the effect of single roughness elements, i.e., trip wires and Hama strips, on the transition to turbulence. Boundary layer trips are traditionally used in scale model testing to force a boundary layer to transition from laminar to turbulent flow at a single location to aid in scaling of flow characteristics. Several investigations of trip wire effects exist in the literature, but there is a dearth of information regarding the influence of Hama strips on the flat plate boundary layer. The intent of this investigation is to better understand the effects of boundary layer trips, particularly Hama strips, and to investigate the pressure-induced drag of both styles of boundary layer trips. Untripped and tripped boundary layers along a flat plate at a range of flow speeds were characterized with multiple diagnostic measurements in the NUWC/Newport 12-inch water tunnel. A wide range of Hama strip and wire trip thicknesses were used. Measurements included dye flow visualization, direct skin friction and parasitic drag force, boundary layer profiles using LDV, wall shear stress fluctuations using hot film anemometry, and streamwise pressure gradients. Test results will be compared to the CFD and boundary layer model results as well as the existing body of work. Conclusions, resulting in guidance for application of Hama strips in model scale experiments and non-dimensional predictions of pressure drag will be presented.

  12. [Myoelectricity study on wearing flat bite plate under different raised distances in deep overbite therapy].

    Science.gov (United States)

    Xu, Jian-Guang; Wang, Xu-Xia; Ren, Xu-Sheng; Zhang, Jun; Li, Na

    2009-06-01

    To analyze changes of myoelectrical activity of anterior funicle of temporal muscle (TA) and masseter muscle (MM) after raising vertical distance of occlusion by flat bite plate during treatment of deep overbite in order to approach an optimal raised vertical distance. A total of 70 persons were selected and divided into two groups: Experiment group (36 patients) with deep overbite and control group (34 persons) with individual normal occlusion. The experiment group was subdivided into three groups that were respectively raised D, D+2 mm and D+4 mm (D means free way space, mm). Electromyologram (EMG) was utilized to measure the average peak potential of TA and MM on quiescent condition before treatment and two weeks after wearing flat bite plate. 1) Before treatment, the average peak potential of experiment group was obviously higher than that of the control group (P<0.05). 2) After two weeks the potential of TA and MM of all persons in experiment group was obviously lower than before (P<0.05), the degree between the group D+2 mm and the group D+4 mm was not manifestly different, but both of the two groups were more obvious than the group D. The raised vertical distance of occlusion by flat bite plate, which exceeded free way space, was favourable to the functional recovery of masticatory muscles.

  13. Evaluation of a tracking flat-plate solar collector in Brazil

    International Nuclear Information System (INIS)

    Maia, Cristiana B.; Ferreira, André G.; Hanriot, Sérgio M.

    2014-01-01

    The continuing research for an alternative power source due to the perceived scarcity of fuel fossils has, in recent years, given solar energy a remarkable edge. Nevertheless, the Earth's daily and seasonal movement affects the intensity of the incident solar radiation. Devices can track the sun in order to ensure optimum positions with regard to incident solar radiation, maximizing the absorbed solar energy, and the useful energy gain. In this paper, a mathematical model is developed to estimate the solar radiation absorbed, the useful energy gain, and the efficiency of a flat-plate solar collector in Brazil. The results for a sun tracking flat-plate solar collector were compared to fixed devices. The full tracking system with rotation about two axes presented higher absorbed energy, when compared to the rotation about a single axe and to a fixed collector. Also, it was shown that the tilt angle for a fixed solar collector does not cause significant variations in the useful energy gain or in the absorbed solar radiation, for the same azimuth angle. - Highlights: • A model was developed for solar radiation based on experimental data for K T . • Useful energy gain and efficiency of a flat-plate solar collector were evaluated for a one-year period. • Several sun tracking systems were compared to fixed devices. • Tilt angle for a fixed device does not significantly affect the useful energy gain

  14. Underwater sound radiation from an elastically coated plate with an embedded and distributed inhomogeneity.

    Science.gov (United States)

    Zhang, Yanni; Pan, Jie

    2015-05-01

    This paper studies the effects of an embedded and distributed inhomogeneity on the underwater sound radiation from an elastically coated plate. Embedding a signal conditioning plate (SCP) in the coating material provides an extra parameter for controlling the sound radiation of the plate, as compared with the previous design with an SCP on the coating surface [Y. Zhang and J. Pan, J. Acoust. Soc. Am. 133(1), 173-185 (2013)]. For such a configuration, the vibration and sound responses of the coated plate to a point force excitation are described by three coupled Fredholm integral equations of the second kind. Its acoustical properties are examined by comparing the radiation powers from plates without an SCP, with a surface SCP, and with an embedded SCP. The differences in the sound powers are explained through resonance and scattering caused by the interaction of the embedded SCP with structural waves. The effects of the depth of the embedded SCP in the coating material on the sound radiation properties of the plate are discussed in detail.

  15. Simulation and Experimental Investigation of Thermal Performance of a Miniature Flat Plate Heat Pipe

    Directory of Open Access Journals (Sweden)

    R. Boukhanouf

    2013-01-01

    Full Text Available This paper presents the results of a CFD analysis and experimental tests of two identical miniature flat plate heat pipes (FPHP using sintered and screen mesh wicks and a comparative analysis and measurement of two solid copper base plates 1 mm and 3 mm thick. It was shown that the design of the miniature FPHP with sintered wick would achieve the specific temperature gradients threshold for heat dissipation rates of up to 80 W. The experimental results also revealed that for localised heat sources of up to 40 W, a solid copper base plate 3 mm thick would have comparable heat transfer performances to that of the sintered wick FPHP. In addition, a marginal effect on the thermal performance of the sintered wick FPHP was recorded when its orientation was held at 0°, 90°, and 180° and for heat dissipation rates ranging from 0 to 100 W.

  16. Vortex Shedding Characteristics of the Wake of a Thin Flat Plate with a Circular Trailing Edge

    Science.gov (United States)

    Rai, Man Mohan

    2018-01-01

    The near and very near wake of a thin flat plate with a circular trailing edge are investigated with direct numerical simulations (DNS). Data obtained for two different Reynolds numbers (based on plate thickness, D) are the main focus of this study. The separating boundary layers are turbulent in both cases. An earlier investigation of one of the cases (Case F) showed shed vortices in the wake that were about 1.0 D to 4.0 D in spanwise length. Considerable variation in both the strength and frequency of these shed vortices was observed. One objective of the present investigation is to determine the important contributors to this variability in strength and frequency of shed vortices and their finite spanwise extent. Analysis of the data shows that streamwise vortices in the separating boundary layer play an important role in strengthening/weakening of the shed vortices and that high/low-speed streaks in the boundary layer are important contributors to variability in shedding frequency. Both these features of the boundary layer contribute to the finite extent of the vortices in the spanwise direction. The second plate DNS (Case G, with 40 percent of the plate thickness of Case F) shows that while shedding intensity is weaker than obtained in Case F, many of the wake features are similar to that of Case F. This is important in understanding the path to the wake of the thin plate with a sharp trailing edge where shedding is absent. Here we also test the efficacy of a functional relationship between the shedding frequency and the Reynolds numbers based on the boundary layer momentum thickness (Re (sub theta) and D (Re (sub D)); data for developing this behavioral model is from Cases F & G and five earlier DNSs of the flat plate wake.

  17. Heat transfer in flow past a continuously moving semi-infinite flat plate in transverse magnetic field with heat flux

    Digital Repository Service at National Institute of Oceanography (India)

    Murty, T.V.R.

    Thermal boundary layer on a continuously moving semi-infinite flat plate in the presence of transverse magnetic field with heat flux has been examined. Similarity solutions have been derived and the resulting equations are integrated numerically...

  18. An Analysis of CFD and Flat Plate Predictions of Friction Drag for the TCA W/B at Supersonic Cruise

    Science.gov (United States)

    Lawrence, Scott L.

    1999-01-01

    This paper presents results of a study which attempted to provide some understanding of the relationship between skin friction drag estimates produced by flat plate methods and those produced by Navier-Stokes computations. A brief introduction is followed by analysis, including a flat plate grid study, analysis of the wing flow, an analysis of the fuselage flow. Other results of interest are then presented, including turbulence model sensitivities, and brief analysis of other configurations.

  19. Improved Thermal-Vacuum Compatible Flat Plate Radiometric Souce for System-Level Testing of Optical Sensors

    Science.gov (United States)

    Schwarz, Mark A.; Kent, Craig J.; Bousquet, Robert; Brown, Steven W.

    2015-01-01

    This work describes the development of an improved vacuum compatible flat plate radiometric source used for characterizing and calibrating remote optical sensors, in situ, throughout their testing period. The original flat plate radiometric source was developed for use by the VIIRS instrument during the NPOESS Preparatory Project (NPP). Following this effort, the FPI has had significant upgrades in order to improve both the radiometric throughput and uniformity. Results of the VIIRS testing with the reconfigured FPI are reported and discussed.

  20. Effects of design parameters on enrichment of heavy water in batch-type flat-plate thermal diffusion columns

    International Nuclear Information System (INIS)

    Yeh, H.-M.

    2008-01-01

    The influences of inclination angle, plate-spacing and plate aspect-ratio changes on the performance of batch-type flat-plate thermal diffusion columns that are used for the enrichment of heavy water from water-isotope mixtures have been investigated, while the total expense was kept unchanged. Considerable improvement in the performance is achievable if operation is carried out by increasing plate aspect ratio, and/or properly increasing the inclination angle and/or properly decreasing plate spacing. The temperature differences between hot and cold plates, needed for keeping the operating expense unchanged, are also described

  1. Prediction of vortex-shedding noise from the blunt trailing edge of a flat plate

    Science.gov (United States)

    Wu, Long; Jing, Xiaodong; Sun, Xiaofeng

    2017-11-01

    A time-domain hybrid approach for aerodynamic noise prediction is developed based on a discrete vortex model (DVM) for the unsteady incompressible flow simulation and the acoustic perturbation equations (APE) for the acoustical field computation. The aim is to assess the applicability of the present DVM-APE method to the problems where sound is generated by the large-scale coherent flow structures. The hybrid DVM-APE approach is employed to predict the vortex-shedding noise from the blunt trailing edge of a flat plate. Simulations are implemented on flat plates with different thicknesses in a certain range of low Mach numbers, in order to identify the scaling dependence of the vortex-shedding noise on the freestream speed as well as the plate thickness. Acoustical directivity patterns at different Helmholtz numbers are presented, and agreements are achieved when compared with previous studies. A comparison of the sound pressure level spectrum between the present DVM-APE simulation and the published experimental results is also presented, showing good agreements for both the peak frequencies and the sound pressure levels.

  2. Performance Analysis of a Self-Propelling Flat Plate Fin with Joint Compliance

    Science.gov (United States)

    Reddy, N. Srinivasa; Sen, Soumen; Pal, Sumit; Shome, Sankar Nath

    2017-12-01

    Fish fin muscles are compliant and they regulate the stiffness to suit different swimming conditions. This article attempts to understand the significance of presence of compliance in fin muscle with help of a flexible joint flat plate fin model. Blade element method is employed to model hydrodynamics and to compute the forces of interaction during motion of the plate within fluid. The dynamic model of self-propelling fin is developed through multi-body dynamics approach considering the hydrodynamic forces as external forces acting on the fin. The derived hydrodynamic model is validated with experiments on rigid flat plate fin. The effect of the joint stiffness and flapping frequency on the propulsion speed and efficiency is investigated through simulations using the derived and validated model. The propulsion efficiency is found to be highly influenced by the joint stiffness at a given flapping frequency. The fin attained maximum propulsion efficiency when the joint stiffness is tuned to a value at which flapping frequency matches near natural frequency of the fin. At this tuned joint stiffness and flapping frequency, the resulted Strouhal numbers are observed to fall within the optimum range (0.2 to 0.4) for maximized propulsion efficiency of flying birds and swimming aquatic animals reported in literature.

  3. Modification of parabolic dish antenna pattern using two symmetrically placed circular flat plates

    Science.gov (United States)

    Thorpe, Glen C.

    1987-12-01

    This study aims to formulate a method of predicting the far field pattern of a parabolic dish antenna with two moveable flat plates mounted symmetrically on either side of the feed horn. The approach taken has been to first analyze the radiation pattern of the antenna with the disks at certain heights out from the surface of the dish. To do this the near-field radiation in amplitude and phase was measured over a plane surface in the near-field and the values were then transformed into the far field using a Fast Fourier Transform. Far field pattern values of the antenna were directly measured for each setting of the plates. The results obtained from the Fast Fourier Transform of the near field data were in good agreement with the values obtained by measurement. Finally, an approximate model of the antenna was developed and implemented as a computer program. This model, while relatively unsophisticated, provided some insights into the changes in the near field phase distribution caused by the moveable circular flat plates.

  4. Optimization of a natural circulation two phase closed thermosyphon flat plate solar water heater

    International Nuclear Information System (INIS)

    Hussein, H.M.S.

    2003-01-01

    In the present study, a natural circulation two phase closed thermosyphon flat plate solar water heater has been investigated theoretically under the actual field conditions of Cairo, Egypt. Also, the heater design parameters are optimized by means of the author's simulation program that was verified experimentally in a previous paper. These parameters include the ratio of storage tank volume to collector area, storage tank dimensions ratios and height between the heater storage tank and collector. The computational results indicate that the storage tank volume to collector area ratio and the storage tank dimensions ratios have significant effects on the heater performance, while the height between the heater tank and collector has little effect

  5. Numerical Analysis of Noise Generation from a Protuberance on a Flat Plate

    OpenAIRE

    古川, 拓; 中村, 佳朗; 小池, 勝; 片岡, 拓也; Taku, Furukawa; Yoshiaki, Nakamura; Masaru, Koike; Takuya, Kataoka; 名大工; 名大工; 三菱自工; 三菱自工; Graduate School of Eng., Nagoya University; Dept. of Aerospace Eng., Nagoya University; Mitsubishi Motors Co.

    2000-01-01

    Aerodynamic noise generated from a small protuberance on a flat plate are numerically simulated. The flow speed is a low Mach number (U_∞=40m/s), and two shapes of protuberance : a forward facing step and a fence are calculated. Noise generation and its propergation are examined by solving the 2D N-S equations to see small pressure fluctuations in the far-field. These protuberance shapes affect the flow patterns near the wall, such as vortices or the area of separation. The analysis of FFT sh...

  6. MHD Natural Convection with Convective Surface Boundary Condition over a Flat Plate

    Directory of Open Access Journals (Sweden)

    Mohammad M. Rashidi

    2014-01-01

    Full Text Available We apply the one parameter continuous group method to investigate similarity solutions of magnetohydrodynamic (MHD heat and mass transfer flow of a steady viscous incompressible fluid over a flat plate. By using the one parameter group method, similarity transformations and corresponding similarity representations are presented. A convective boundary condition is applied instead of the usual boundary conditions of constant surface temperature or constant heat flux. In addition it is assumed that viscosity, thermal conductivity, and concentration diffusivity vary linearly. Our study indicates that a similarity solution is possible if the convective heat transfer related to the hot fluid on the lower surface of the plate is directly proportional to (x--1/2 where x- is the distance from the leading edge of the solid surface. Numerical solutions of the ordinary differential equations are obtained by the Keller Box method for different values of the controlling parameters associated with the problem.

  7. Slip effects on MHD flow and heat transfer of ferrofluids over a moving flat plate

    Science.gov (United States)

    Ramli, Norshafira; Ahmad, Syakila; Pop, Ioan

    2017-08-01

    In this study, the problem of MHD flow and heat transfer of ferrofluids over a moving flat plate with slip effect and uniform heat flux is considered. The governing ordinary differential equations are solved via shooting method. The effect of slip parameter on the dimensionless velocity, temperature, skin friction and Nusselt numbers are numerically studied for the three selected ferroparticles; magnetite (Fe3O4), cobalt ferrite (CoFe2O4) and Mn-Zn ferrite (Mn-ZnFe2O4) with water-based fluid. The results indicate that dual solutions exist for a plate moving towards the origin. It is found that the slip process delays the boundary layer separation. Moreover, the velocity and thermal boundary-layer thicknesses decrease in the first solution while increase with the increase of the value of slip parameters in second solution.

  8. Experimental studies on the tripping behavior of narrow T-stiffened flat plates subjected to hydrostatic pressure and underwater shock

    Science.gov (United States)

    Budweg, H. L.; Shin, Y. S.

    1987-01-01

    An experimental investigation was conducted to determine the static and dynamic responses of a specific stiffened flat plate design. The air-backed rectangular flat plates of 6061-T6 aluminum with an externally machined longitudinal narrow-flanged T-stiffener and clamped boundary conditions were subjected to static loading by water hydropump pressure and shock loading from an eight pound TNT charge detonated underwater. The dynamic test plate was instrumented to measure transient strains and free field pressure. The static test plate was instrumented to measure transient strains, plate deflection, and pressure. Emphasis was placed upon forcing static and dynamic stiffener tripping, obtaining relevant strain and pressure data, and studying the associated plate-stiffener behavior.

  9. Parametric sensitivity studies on the performance of a flat plate solar collector in transient behavior

    International Nuclear Information System (INIS)

    Hamed, Mouna; Fellah, Ali; Ben Brahim, Ammar

    2014-01-01

    Highlights: • Parametric studies of a flat plate solar collector is developed. • The model predicts the temperature profile of all the components of the collector and of the working fluid. • A simulation program was constructed to study the effect parameters. • The optimal performance and design of solar collector system was carried out. - Abstract: In this paper, a numerical investigation of flat plate solar collectors is developed to determine the optimal performance and design parameters of these solar to thermal energy conversion systems. The collector is used to supply hot water. It consists of three main components, namely a transparent cover, an absorber and a transfer fluid. A transient simulation method has been developed to characterize the dynamic behavior. The model was established regarding the energy balance analysis. A set of equations representing the model was simultaneously solved. The results are used to investigate the effect of various parameters on the performance of the collector such as outlet water temperature and overall heat loss coefficient. The overall methodology has been developed on environmental data which are characteristic of the city of Gabes in Tunisia

  10. Mixed convective heat transfer from a vertical plate embedded in a ...

    Indian Academy of Sciences (India)

    Home; Journals; Sadhana; Volume 40; Issue 2. Mixed convective heat transfer from a vertical plate embedded in a saturated non-Darcy porous medium with concentration and melting effect. K Hemalatha Peri K Kameswaran M V D N S Madhavi. Mechanical Sciences Volume 40 Issue 2 April 2015 pp 455-465 ...

  11. Numerical analysis of the vibroacoustic properties of plates with embedded grids of acoustic black holes.

    Science.gov (United States)

    Conlon, Stephen C; Fahnline, John B; Semperlotti, Fabio

    2015-01-01

    The concept of an Acoustic Black Hole (ABH) has been developed and exploited as an approach for passively attenuating structural vibration. The basic principle of the ABH relies on proper tailoring of the structure geometrical properties in order to produce a gradual reduction of the flexural wave speed, theoretically approaching zero. For practical systems the idealized "zero" wave speed condition cannot be achieved so the structural areas of low wave speed are treated with surface damping layers to allow the ABH to approach the idealized dissipation level. In this work, an investigation was conducted to assess the effects that distributions of ABHs embedded in plate-like structures have on both vibration and structure radiated sound, focusing on characterizing and improving low frequency performance. Finite Element and Boundary Element models were used to assess the vibration response and radiated sound power performance of several plate configurations, comparing baseline uniform plates with embedded periodic ABH designs. The computed modal loss factors showed the importance of the ABH unit cell low order modes in the overall vibration reduction effectiveness of the embedded ABH plates at low frequencies where the free plate bending wavelengths are longer than the scale of the ABH.

  12. A formal derivation for the Blasius similarity solution for flat-plate boundary layer

    Science.gov (United States)

    Lin, Hao

    2015-11-01

    The Blasius solution is a classical solution for a laminar boundary layer attached to a semi-infinite flat plate. The key of the solution strategy is to reduce the boundary layer equations, which are PDEs, to a set of ODEs, using a similarity variable transform. Conceptually, the similarity suggests that the velocity profile in each transverse cross-section appears ``self-similar''. In many classical text books and typical classroom lectures on fluid mechanics, the existence of the similarity solution is argued heuristically. The similarity variable is defined a priori so as to collapse the PDEs. It appears somewhat mystical that the PDEs can be perfectly reduced via such an approach. Here we present a rigorous derivation for the existence of a similarity solution, which naturally arises from the fact that there is no apparent streamwise length scale for a semi-infinite plate. Conversely, a similarity solution cannot exist if the plate size is finite. This derivation can be useful in fluids education, in topics including similarity, scaling arguments, and boundary layer theory.

  13. Improved Thermal-Vacuum Compatible Flat Plate Radiometric Source For System-Level Testing Of Optical Sensors

    Science.gov (United States)

    Schwarz, Mark A.; Kent, Craig J.; Bousquet, Robert; Brown, Steven W.

    2016-01-01

    In this work, we describe an improved thermal-vacuum compatible flat plate radiometric source which has been developed and utilized for the characterization and calibration of remote optical sensors. This source is unique in that it can be used in situ, in both ambient and thermal-vacuum environments, allowing it to follow the sensor throughout its testing cycle. The performance of the original flat plate radiometric source was presented at the 2009 SPIE1. Following the original efforts, design upgrades were incorporated into the source to improve both radiometric throughput and uniformity. The pre-thermal-vacuum (pre-TVAC) testing results of a spacecraft-level optical sensor with the improved flat plate illumination source, both in ambient and vacuum environments, are presented. We also briefly discuss potential FPI configuration changes in order to improve its radiometric performance.

  14. Status of flat-plate photovoltaic systems for applications in developing countries

    Science.gov (United States)

    Rosenblum, L.

    1983-01-01

    The development of photovoltaic-powered service packages relevant to Third World rural needs, such as refrigeration and water pumping, is still in an early stage. This situation is seen as an opportunity for developing countries to enter into photovoltaic (PV) commercialization by encouraging and supporting the design, fabrication, and assembly of PV-powered service packages for rural development. Flat-plate PV systems, diesel-generator, and central station electric grid systems are compared with respect to availability and voltage control. A survey of obtainable information suggests that, in rural areas of developing countries, the service performance of PV systems is generally superior to the performance of competitor systems. An analysis of economic trends suggests that developing countries might reap greater financial and economic benefits by concentrating on the in-country manufacture of components and assembly and installation of PV systems rather than by manufacturing their own modules.

  15. Optimum solar flat-plate collector slope: Case study for Helwan, Egypt

    International Nuclear Information System (INIS)

    Elminir, Hamdy K.; Ghitas, Ahmed E.; El-Hussainy, F.; Hamid, R.; Beheary, M.M.; Abdel-Moneim, Khaled M.

    2006-01-01

    This article examines the theoretical aspects of choosing a tilt angle for the solar flat-plate collectors used in Egypt and make recommendations on how the collected energy can be increased by varying the tilt angle. The first objective in this investigation is to perform a statistical comparison of three specific anisotropic models (Tamps-Coulson, Perez and Bugler) to recommend one that is general and is most accurate for estimating the solar radiation arriving on an inclined surface. Then, the anisotropic model that provides the most accurate estimation of the total solar radiation has been used to determine the optimum collector slope based on the maximum solar energy availability. This result has been compared with the results provided by other models that use declination, daily clearness index and ground reflectivity. The study revealed that Perez's model shows the best overall calculated performance, followed by the Tamps-Coulson then Bugler models

  16. Analysis of Blasius Equation for Flat-Plate Flow with Infinite Boundary Value

    DEFF Research Database (Denmark)

    Miansari, M. O.; Miansari, M. E.; Barari, Amin

    2010-01-01

    This paper applies the homotopy perturbation method (HPM) to determine the well-known Blasius equation with infinite boundary value for Flat-plate Flow. We study here the possibility of reducing the momentum and continuity equations to ordinary differential equations by a similarity transformation...... and write the nonlinear differential equation in the state space format, and then solve the initial value problem instead of boundary value problem. The significance of linear part is a key factor in convergence. A first seen linear part may lead to an unstable solution, therefore an extra term is added...... to the linear part and deduced from the nonlinear section. The results reveal that HPM is very effective, convenient, and quite accurate to both linear and nonlinear problems. It is predicted that HPM can be widely applied in engineering. Some plots and numerical results are presented to show the reliability...

  17. Analysis of a flat plate collector with fluid undergoing phase change

    Science.gov (United States)

    Kaushika, N. D.; Bharadwaj, S. C.; Kaushik, S. C.

    1982-07-01

    This paper presents a theoretical analysis of the performance of a flat plate solar collector with the heat removal fluid undergoing a phase change. The resultant efficiency expression is a modified Hottel-Whillier-Bliss equation. Numerical computations are made to investigate the effect of vaporization and operational parameters on the collector's performance. The collector's efficiency increases with the increase in liquid length until a point is reached when the region of superheating the vapor disappears. The efficiency is higher when a heat removal fluid of high latent heat of vaporization is used in the collector. An increase in the saturation temperature of the working fluid (with increase of pressure) in the collector reduces its efficiency.

  18. Catalyzed combustion in a flat plate boundary layer. I. Experimental measurements and comparison with numerical calculations

    Energy Technology Data Exchange (ETDEWEB)

    Robben, R.; Schefer, R.; Agrawal, V.; Namer, I.

    1977-09-01

    A classic fluid mechanics boundary layer problem, flow over a sharp leading edge flat plate, was used to study the effect of a heated surface on combustion in lean hydrogen-air mixtures. The velocity and density profiles of the boundary layer have been measured with laser Doppler velocimetry and Rayleigh scattering, respectively. Preliminary measurements on a silicon dioxide ''non-catalytic'' surface indicate neither boundary layer nor surface combustion for wall temperatures up to 1250/sup 0/K. Measurements on a platinum catalytic surface indicate that, at a surface temperature of 1000/sup 0/K, not only is there significant surface combustion but that homogeneous combustion in the boundary layer is induced by active species generated at the catalytic surface.

  19. Characterization of the electrical output of flat-plate photovoltaic arrays

    Science.gov (United States)

    Gonzalez, C. C.; Hill, G. M.; Ross, R. G., Jr.

    1982-01-01

    The electric output of flat-plate photovoltaic arrays changes constantly, due primarily to changes in cell temperature and irradiance level. As a result, array loads such as direct-current to alternating-current power conditioners must be able to accommodate widely varying input levels, while maintaining operation at or near the array maximum power point.The results of an extensive computer simulation study that was used to define the parameters necessary for the systematic design of array/power-conditioner interfaces are presented as normalized ratios of power-conditioner parameters to array parameters, to make the results universally applicable to a wide variety of system sizes, sites, and operating modes. The advantages of maximum power tracking and a technique for computing average annual power-conditioner efficiency are discussed.

  20. Boundary Layer Flow and Heat Transfer of FMWCNT/Water Nanofluids over a Flat Plate

    Directory of Open Access Journals (Sweden)

    Mohammad Reza Safaei

    2016-09-01

    Full Text Available In the present study, the heat transfer and flow of water/FMWCNT (functionalized multi-walled carbon nanotube nanofluids over a flat plate was investigated using a finite volume method. Simulations were performed for velocity ranging from 0.17 mm/s to 1.7 mm/s under laminar regime and nanotube concentrations up to 0.2%. The 2-D governing equations were solved using an in-house FORTRAN code. For a specific free stream velocity, the presented results showed that increasing the weight percentage of nanotubes increased the Nusselt number. However, an increase in the solid weight percentage had a negligible effect on the wall shear stress. The results also indicated that increasing the free stream velocity for all cases leads to thinner boundary layer thickness, while increasing the FMWCNT concentration causes an increase in the boundary layer thickness.

  1. Effects of design on cost of flat-plate solar photovoltaic arrays for terrestrial central station power applications

    Science.gov (United States)

    Tsou, P.; Stolte, W.

    1978-01-01

    The paper examines the impact of module and array designs on the balance-of-plant costs for flat-plate terrestrial central station power applications. Consideration is given to the following types of arrays: horizontal, tandem, augmented, tilt adjusted, and E-W tracking. The life-cycle cost of a 20-year plant life serves as the costing criteria for making design and cost tradeoffs. A tailored code of accounts is developed for determining consistent photovoltaic power plant costs and providing credible photovoltaic system cost baselines for flat-plate module and array designs by costing several varying array design approaches.

  2. Transition due to streamwise streaks in a supersonic flat plate boundary layer

    Science.gov (United States)

    Paredes, Pedro; Choudhari, Meelan M.; Li, Fei

    2016-12-01

    Transition induced by stationary streaks undergoing transient growth in a supersonic flat plate boundary layer flow is studied using numerical computations. While the possibility of strong transient growth of small-amplitude stationary perturbations in supersonic boundary layer flows has been demonstrated in previous works, its relation to laminar-turbulent transition cannot be established within the framework of linear disturbances. Therefore, this paper investigates the nonlinear evolution of initially linear optimal disturbances that evolve into finite amplitude streaks in the downstream region, and then studies the modal instability of those streaks as a likely cause for the onset of bypass transition. The nonmodal evolution of linearly optimal stationary perturbations in a supersonic, Mach 3 flat plate boundary layer is computed via the nonlinear plane-marching parabolized stability equations (PSE) for stationary perturbations, or equivalently, the perturbation form of parabolized Navier-Stokes equations. To assess the effect of the nonlinear finite-amplitude streaks on transition, the linear form of plane-marching PSE is used to investigate the instability of the boundary layer flow modified by the spanwise periodic streaks. The onset of transition is estimated using an N -factor criterion based on modal amplification of the secondary instabilities of the streaks. In the absence of transient growth disturbances, first mode instabilities in a Mach 3, zero pressure gradient boundary layer reach N =10 at Rex≈107 . However, secondary instability modes of the stationary streaks undergoing transient growth are able to achieve the same N -factor at Rex<2 ×106 when the initial streak amplitude is sufficiently large. In contrast to the streak instabilities in incompressible flows, subharmonic instability modes with twice the fundamental spanwise wavelength of the streaks are found to have higher amplification ratios than the streak instabilities at fundamental

  3. Measurements of Conversion Efficiency for a Flat Plate Thermophotovoltaic System Using a Photonic Cavity Test System

    International Nuclear Information System (INIS)

    Brown, E.J.; Ballinger, C.T.; Burger, S.R.; Charache, G.W.; Danielson, L.R.; DePoy, D.M.; Donovan, T.J.; LoCascio, M.

    2000-01-01

    The performance of a 1 cm 2 thermophotovoltaic (TPV) module was recently measured in a photonic cavity test system. A conversion efficiency of 11.7% was measured at a radiator temperature of 1076 C and a module temperature of 29.9 C. This experiment achieved the highest direct measurement of efficiency for an integrated TPV system. Efficiency was calculated from the ratio of the peak (load matched) electrical power output and the heat absorption rate. Measurements of these two parameters were made simultaneously to assure the validity of the measured efficiency value. This test was conducted in a photonic cavity which mimicked a typical flat-plate TPV system. The radiator was a large, flat graphite surface. The module was affixed to the top of a copper pedestal for heat absorption measurements. The heat absorption rate was proportional to the axial temperature gradient in the pedestal under steady-state conditions. The test was run in a vacuum to eliminate conductive and convective heat transfer mechanisms. The photonic cavity provides the optimal test environment for TPV efficiency measurements because it incorporates all important physical phenomena found in an integrated TPV system: high radiator emissivity and blackbody spectral shape, photon recycling, Lambertian distribution of incident radiation and complex geometric effects. Furthermore, the large aspect ratio between radiating surface area and radiator/module spacing produces a view factor approaching unity with minimal photon leakage

  4. Design, construction and evaluation of solar flat-plate collector simulator based on the thermohydraulic coefficient

    Directory of Open Access Journals (Sweden)

    H Rahmati Aidinlou

    2017-05-01

    Full Text Available Introduction Increasing the area of absorber plate between the flowed air through the duct can be accomplished by corrugating the absorber plate or by using the artificial roughness underside of the absorber plate as the commercial methods for enhancing the thermohydraulic performance of the flat plate solar air heaters. Evaluation of this requires the construction of separated solar air heater which is costly and time consuming. The constructed solar flat-plate collector simulator can be a sufficient solution for obtaining the heat transfer and thermodynamic parameters for evaluating the absorber plate. The inclined broken roughness was chosen as the optimum roughness which is surrounded by three aluminum smooth walls. Materials and Methods The duct for both smooth and roughened plate have been constructed based on the ASHRAE 93-2010 standard. In order to achieve a fully thermal and hydraulic developed flow, the plenum is constructed. The centrifugal fan is considered by applying the required air volume at the pressure drop obtained by the duct, plenum and the orifice meter. The TSI velocity-meter 8355 is used to measure the velocity of air crossing through the pipe connected to the centrifugal fan. The micro manometer Kimo CPE310-s with the resolution of 0.1 Pa is used to measure the pressure drop across the test section of the smooth and roughened duct. The LM35 sensors are used to measure the absorber plate and air temperature through the test section. Obtained parameters are used to calculate the Nusselt number and friction factor across the test section for smooth and roughened absorber plate. The Nusselt number and friction factor parameters which is obtained for smooth absorber plate based on experimental set-up, is compared with Dittus-Bolter and Blasius equations, respectively, for validating the simulator. By calculating the Nusselt number and friction factor, Stanton number is obtained based on the equation (6, and thermohydraulic

  5. Numerical and Experimental Study of the Rotational Behaviour of Flat Plates Falling Freely with Periodic Oscillating Motion

    DEFF Research Database (Denmark)

    Hærvig, Jakob; Jensen, Anna Lyhne; Pedersen, Marie Cecilie

    2017-01-01

    -dimensional flow with Reynolds number Re ≈ 10,000 and non-dimensional moment of inertia I* = 0.115. To validate the free fall trajectory obtained by computational fluid dynamics, video recordings are used. Based on the validated free fall computational fluid dynamics simulation, the instantaneous fluid forces......When a flat plate falls freely in periodic oscillating motion regime, unsteady fluid forces create additional lift force contributions due to the rotational behaviour. Computational fluid dynamics is used to simulate the free fall behaviour of a flat plate with aspect ratio β = 20 falling in two...... and torques on the plate are obtained. The validated simulations show significant deviations in per-pendicular and tangential force coefficients at the same angle of attack depending on the trajectory history of the plate. At low angles of attack below 5 deg, the tangential force differs significantly...

  6. Experimental Study on Performance of a Box Solar Cooker with Flat Plate Collector to Boil Water

    Science.gov (United States)

    Sitepu, T.; Gunawan, S.; Nasution, D. M.; Ambarita, H.; Siregar, R. E. T.; Ronowikarto, A. D.

    2017-03-01

    In this study, a flat plate type solar cooker is tested by exposing in solar irradiation. The objective is to examine the performance of solar cooker in boiling water. The solar cooker is a box type with collector area and height are 100 × 100 cm and 40 cm, respectively. Vessel for water is made of aluminum plate with diameter and height of 22 cm and 15 cm. The experiments are performed by varying mass of the water. It is 2 kg and 4 kg, respectively. Every experiment starts from 10:00 AM until the boiling temperature is reached. The parameters measured are radiance intensity, ambient and solar box cooker temperatures, and wind speed. The results show that the duration of water heating up to 100°C with water mass 2 kg within 2 hours 45 minutes and water mass 4 kg within 3 hours 17 minutes. The maximum temperatur of solar box cooker is 117°C at 12:56 PM and maximum efficiency is 46.30%. The main conclusion can be drawn here is that a simple solar box cooker can be used to boil water.

  7. A diagram for defined flat plate solar collector area for solar floor heating

    Energy Technology Data Exchange (ETDEWEB)

    Altuntop, N.; Tekin, Y. [Erciyes University, Dept. of Mechanical Engineering (Turkey); Cengel, Y.A. [Nevada Reno University, Dept. of Mechanical Engineering, NV (United States)

    2000-07-01

    In winters, one of the best ways to heat living areas by using the low- temperature - water obtained from flat-plate solar collectors is the floor heating. In floor heating, low temperature-water (30 + 60 deg C) can be used and heat can be stored in water when solar radiation is not possible. In this study, it is aimed to define collector surface needed to supply heat for floor heating. It is also aimed to define and explain the diagram developed for every heating months. The calculations about the sun geometry are used to define the amount of radiation coming in to the collectors. Formulations are made about the definition of solar radiation absorbed by the collectors, the total heat loss coefficient, and the collector plate surface temperature. These formulations are transformed in to the diagram. In addition, the studies, heat transfer calculations and design parameters about the floor of the heating areas are used. A combined collector floor heating diagram is obtained. This diagram is used to define collector surface area necessary to supply heat for floor heated places. In this diagram, the collector surface area is obtained by giving the heat capacity of the place area, floor surface temperature, approximate modulation distance of the floor, the elevation of city, collector slope angle, wind speed, sun shine lime and the amount of the solar radiation obtained from the solar radiation diagram. (authors)

  8. Flat plate solar collector for water pre-heating using concentrated solar power (CSP)

    Science.gov (United States)

    Peris, Leonard Sunny; Shekh, Md. Al Amin; Sarker, Imran

    2017-12-01

    Numerous attempt and experimental conduction on different methods to harness energy from renewable sources are being conducted. This study is a contribution to the purpose of harnessing solar energy as a renewable source by using flat plate solar collector medium to preheat water. Basic theory of solar radiation and heat convection in water (working fluid) has been combined with heat conduction process by using copper tubes and aluminum absorber plate in a closed conduit, covered with a glazed through glass medium. By this experimental conduction, a temperature elevation of 35°C in 10 minutes duration which is of 61.58% efficiency range (maximum) has been achieved. The obtained data and experimental findings are validated with the theoretical formulation and an experimental demonstration model. A cost effective and simple form of heat energy extraction method for space heating/power generation has been thoroughly discussed with possible industrial implementation possibilities. Under-developed and developing countries can take this work as an illustration for renewable energy utilization for sustainable energy prospect. Also a full structure based data to derive concentrated solar energy in any geographical location of Bangladesh has been outlined in this study. These research findings can contribute to a large extent for setting up any solar based power plant in Bangladesh irrespective of its installation type.

  9. Earth Reflected Solar Radiation Incident upon an Arbitrarily Oriented Spinning Flat Plate

    Science.gov (United States)

    Cunningham, Fred G.

    1963-01-01

    A general derivation is given for the earth reflected solar radiation input to a flat plate--a solar cell paddle, for example--which is spinning about an axis coincident with the axis of symmetry of the satellite to which it is affixed. The resulting equations are written for the general case so that arbitrary orientations of the spin axis with respect to the earth-satellite line and arbitrary orientations of the normal to the plate with respect to the spin axis can be treated. No attempt is made to perform the resulting integrations because of the complexity of the equations; nor is there any attempt to delineate the integration limits for the general case. However, the equations governing these limits are given. The appendixes contain: the results, in graphical form, of two representative examples; the general computer program for the calculation is given in Fortran notation; and the results of a calculation of the distribution of albedo energy on the proposed Echo II satellite. The value of the mean solar constant used is 1.395 times 10 (sup 4) ergs per centimeters-squared per second; the mean albedo of the earth is assumed to be 0.34; and the earth is assumed to be a diffuse reflector.

  10. Numerical Investigation of Jet Impingement Heat Transfer on a Flat plate

    Directory of Open Access Journals (Sweden)

    Asem Nabadavis

    2016-12-01

    Full Text Available The numerical investigation emphasizes on studying the heat transfer characteristics when a high velocity air jet impinges upon a flat plate having constant heat flux. Numerical analysis has been conducted by solving conservation equations of momentum, mass and energy with two equations based k- ε turbulence model to determine the wall temperature and Nu of the plate considering the flow to be incompressible. It was found from the investigation that the heat transfer rate increases with the increase of Reynolds number of the jet (Rej. It was also found that there is an optimum value for jet distance to nozzle diameter ratio (H/d for maximum heat transfer when all the other parameters were kept fixed. Similar results as above were found when two jets of air were used instead of one jet keeping the mass flow rate constant. For a two jets case it was also found that heat transfer rate over the surface increases when the jets are inclined outward compared to vertical and inward jets and also there exists an optimum angle of jet for maximum heat transfer. Further investigation was carried out for different jetto-jet separation distance for a twin jet impingement model where it was noted that heat transfer is more distributed in case of larger values of L and the rate of heat transfer increases as the separation between the jet increases till a certain point after which the rate of heat transfer decreases.

  11. Experimental validation data for CFD of steady and transient mixed convection on a vertical flat plate

    Science.gov (United States)

    Lance, Blake W.

    Simulations are becoming increasingly popular in science and engineering. One type of simulation is Computation Fluid Dynamics (CFD) that is used when closed forms solutions are impractical. The field of Verification & Validation emerged from the need to assess simulation accuracy as they often contain approximations and calibrations. Validation involves the comparison of experimental data with simulation outputs and is the focus of this work. Errors in simulation predictions may be assessed in this way. Validation requires highly-detailed data and description to accompany these data, and uncertainties are very important. The purpose of this work is to provide highly complete validation data to assess the accuracy of CFD simulations. This aim is fundamentally different from the typical discovery experiments common in research. The measurement of these physics was not necessarily original but performed with modern, high-fidelity methods. Data were tabulated through an online database for direct use in Reynolds-Averaged Navier-Stokes simulations. Detailed instrumentation and documentation were used to make the data more useful for validation. This work fills the validation data gap for steady and transient mixed convection. The physics in this study included mixed convection on a vertical flat plate. Mixed convection is a condition where both forced and natural convection influence fluid momentum and heat transfer phenomena. Flow was forced over a vertical flat plate in a facility built for validation experiments. Thermal and velocity data were acquired for steady and transient flow conditions. The steady case included both buoyancy-aided and buoyancy-opposed mixed convection while the transient case was for buoyancy-opposed flow. The transient was a ramp-down flow transient, and results were ensemble-averaged for improved statistics. Uncertainty quantification was performed on all results with bias and random sources. An independent method of measuring heat flux was

  12. Modelling and solution of contact problem for infinite plate and cross-shaped embedment

    Directory of Open Access Journals (Sweden)

    O.B. Kozin

    2016-09-01

    Full Text Available Development of efficient methods of determination of an intense-strained state of thin-walled constructional designs with inclusions, reinforcements and other stress raisers is an important problem both with theoretical, and from the practical point of view, considering their wide practical application. Aim: The aim of this research is to develop the analytical mathematical method of studying of an intense-strained state of infinite plate with cross-shaped embedment at a bend. Materials and Methods: The method of boundary elements is an efficient way of the boundary value problems solution for systems of differential equations. The methods based on boundary integral equations get wide application in many branches of science and technique, calculation of plates and shells. One of methods of solution of a numerous class of the integral equations and systems arising on the basis of a method of boundary integral equations is the analytical method of construction of these equations and systems to Riemann problems with their forthcoming decision. Results: The integral equation for the analysis of deflections and the analysis of an intense-strained state of a thin rigid plate with rigid cross-shaped embedment is received. The precise solution of this boundary value problem is received by reduction to a Riemann problem and its forthcoming solution. An asymptotical behavior of contact efforts at the ends of embedment is investigated.

  13. 78 FR 50378 - Diffusion-Annealed, Nickel-Plated Flat-Rolled Steel Products From Japan: Postponement of...

    Science.gov (United States)

    2013-08-19

    ...'s recent allegation that Toyo Kohan made sales in the Japanese market below the fully allocated cost... From the Federal Register Online via the Government Publishing Office DEPARTMENT OF COMMERCE International Trade Administration Diffusion-Annealed, Nickel-Plated Flat-Rolled Steel Products From Japan...

  14. Relative potentials of concentrating and two-axis tracking flat-plate photovoltaic arrays for central-station applications

    Science.gov (United States)

    Borden, C. S.; Schwartz, D. L.

    1984-01-01

    The purpose of this study is to assess the relative economic potentials of concenrating and two-axis tracking flat-plate photovoltaic arrays for central-station applications in the mid-1990's. Specific objectives of this study are to provide information on concentrator photovoltaic collector probabilistic price and efficiency levels to illustrate critical areas of R&D for concentrator cells and collectors, and to compare concentrator and flat-plate PV price and efficiency alternatives for several locations, based on their implied costs of energy. To deal with the uncertainties surrounding research and development activities in general, a probabilistic assessment of commercially achievable concentrator photovoltaic collector efficiencies and prices (at the factory loading dock) is performed. The results of this projection of concentrator photovoltaic technology are then compared with a previous flat-plate module price analysis (performed early in 1983). To focus this analysis on specific collector alternatives and their implied energy costs for different locations, similar two-axis tracking designs are assumed for both concentrator and flat-plate options.

  15. 78 FR 69371 - Diffusion-Annealed, Nickel-Plated Flat-Rolled Steel Products From Japan: Preliminary...

    Science.gov (United States)

    2013-11-19

    ...-Plated Flat-Rolled Steel Products From Japan: Preliminary Determination of Sales at Less Than Fair Value... United States at less than fair value, as provided in section 733(b) of the Tariff Act of 1930, as... preliminary affirmative determination of sales at less than fair value. Because the preliminary determination...

  16. Standardized performance tests of collectors of solar thermal energy - A flat-plate copper collector with parallel mylar striping

    Science.gov (United States)

    Johnson, S. M.

    1976-01-01

    Basic test results are reported for a flat plate solar collector whose performance was determined in a solar simulator. The collector was tested over ranges of inlet temperatures, fluxes and one coolant flow rate. Collector efficiency is correlated in terms of inlet temperature and flux level.

  17. Dynamic Buckling of Embedded Laminated Nanocomposite Plates Based on Sinusoidal Shear Deformation Theory

    Directory of Open Access Journals (Sweden)

    Mohammd Sharif Zarei

    2016-12-01

    Full Text Available In this study, the dynamic buckling of the embedded laminated nanocomposite plates is investigated. The plates are reinforced with the single-walled carbon nanotubes (SWCNTs, and the Mori-Tanaka model is applied to obtain the equivalent material properties of them. Based on the sinusoidal shear deformation theory (SSDT, the motion equations are derived using the energy method and Hamilton's principle. The Navier’s method is used in conjunction with the Bolotin's method for obtaining the dynamic instability region (DIR of the structure. The effects of different parameters such as the volume percentage of SWCNTs, the number and orientation angle of the layers, the elastic medium, and the geometrical parameters of the plates are shown on DIR of the structure. Results indicate that by increasing the volume percentage of SWCNTs the resonance frequency increases, and DIR shifts to right. Moreover, it is found that the present results are in good agreement with the previous researches.

  18. An Investigation of Aircraft Heaters. 37. Experimental Determination of Thermal and Hydrodynamical Behavior of Air Flowing Along a Flat Plate Containing Turbulence Promoters

    National Research Council Canada - National Science Library

    Boelter, L

    1951-01-01

    ... along the test section, the values of the unit thermal conductance are the same for flow over a flat plate alone, over a flat plate with either 1/8- or 3/8-inch interrupter strips, or with wooden "pin fins."

  19. Production of Fatty Acids and Protein by Nannochloropsis in Flat-Plate Photobioreactors.

    Science.gov (United States)

    Hulatt, Chris J; Wijffels, René H; Bolla, Sylvie; Kiron, Viswanath

    2017-01-01

    Nannochloropsis is an industrially-promising microalga that may be cultivated for alternative sources of nutrition due to its high productivity, protein content and lipid composition. We studied the growth and biochemical profile of Nannochloropsis 211/78 (CCAP) in optimized flat-plate photobioreactors. Eighteen cultivations were performed at two nutrient concentrations. The fatty acid, protein content and calorific values were analyzed after 8, 12 and 16 days. Neutral lipids were separated and the changes in fatty acids in triglycerides (TAGs) during nutrient depletion were recorded. The maximum cell density reached 4.7 g∙L-1 and the maximum productivity was 0.51 g∙L-1∙d-1. During nutrient-replete conditions, eicosapentaneoic acid (EPA) and total protein concentrations measured 4.2-4.9% and 50-55% of the dry mass, respectively. Nutrient starvation induced the accumulation of fatty acids up to 28.3% of the cell dry weight, largely due to the incorporation of C16:0 and C16:1n-7 fatty acyl chains into neutral lipids. During nutrient starvation the total EPA content did not detectibly change, but up to 37% was transferred from polar membrane lipids to the neutral lipid fraction.

  20. Production of Fatty Acids and Protein by Nannochloropsis in Flat-Plate Photobioreactors.

    Directory of Open Access Journals (Sweden)

    Chris J Hulatt

    Full Text Available Nannochloropsis is an industrially-promising microalga that may be cultivated for alternative sources of nutrition due to its high productivity, protein content and lipid composition. We studied the growth and biochemical profile of Nannochloropsis 211/78 (CCAP in optimized flat-plate photobioreactors. Eighteen cultivations were performed at two nutrient concentrations. The fatty acid, protein content and calorific values were analyzed after 8, 12 and 16 days. Neutral lipids were separated and the changes in fatty acids in triglycerides (TAGs during nutrient depletion were recorded. The maximum cell density reached 4.7 g∙L-1 and the maximum productivity was 0.51 g∙L-1∙d-1. During nutrient-replete conditions, eicosapentaneoic acid (EPA and total protein concentrations measured 4.2-4.9% and 50-55% of the dry mass, respectively. Nutrient starvation induced the accumulation of fatty acids up to 28.3% of the cell dry weight, largely due to the incorporation of C16:0 and C16:1n-7 fatty acyl chains into neutral lipids. During nutrient starvation the total EPA content did not detectibly change, but up to 37% was transferred from polar membrane lipids to the neutral lipid fraction.

  1. Lipid accumulation and growth of Chlorella zofingiensis in flat plate photobioreactors outdoors.

    Science.gov (United States)

    Feng, Pingzhong; Deng, Zhongyang; Hu, Zhengyu; Fan, Lu

    2011-11-01

    Culturing microalgae using natural sunlight is an effective way to reduce the cost of microalgae-based biodiesel production. In order to evaluate the feasibility of culturing Chlorella zofingiensis outdoors for biodiesel production, effects of nitrogen limitation and initial cell concentration on growth and lipid accumulation of this alga were investigated in 60 L flat plate photobioreactors outdoors. The highest μmax and biomass productivity obtained was 0.994 day(-1) and 58.4 mg L(-1)day(-1), respectively. The lipid content was much higher (54.5% of dry weight) under nitrogen limiting condition than under nitrogen sufficient condition (27.3%). With the increasing initial cell concentrations, the lipid contents declined, while lipid concentrations and productivities increased. The highest lipid content, lipid concentration, and lipid productivity obtained was 54.5%, 536 mg L(-1) and 22.3 mg L(-1)day(-1), respectively. This study demonstrated that it was possible to culture C. zofingiensis under outdoor conditions for producing biodiesel feedstock. Copyright © 2011 Elsevier Ltd. All rights reserved.

  2. EVALUATION OF FLAT-PLATE PHOTOVOLTAIC THERMAL HYBRID SYSTEMS FOR SOLAR ENERGY UTILIZATION.

    Energy Technology Data Exchange (ETDEWEB)

    ANDREWS,J.W.

    1981-06-01

    The technical and economic attractiveness of combined photovoltaic/thermal (PV/T) solar energy collectors was evaluated. The study was limited to flat-plate collectors since concentrating photovoltaic collectors require active cooling and thus are inherently PV/T collectors, the only decision being whether to use the thermal energy or to dump it. it was also specified at the outset that reduction in required roof area was not to be used as an argument for combining the collection of thermal and electrical energy into one module. Three tests of economic viability were identified, all of which PV/T must pass if it is to be considered a promising alternative: PV/T must prove to be competitive with photovoltaic-only, thermal-only, and side-by-side photovoltaic-plus-thermal collectors and systems. These three tests were applied to systems using low-temperature (unglazed) collectors and to systems using medium-temperature (glazed) collectors in Los Angeles, New York, and Tampa. For photovoltaics, the 1986 DOE cost goals were assumed to have been realized, and for thermal energy collection two technologies were considered: a current technology based on metal and glass, and a future technology based on thin-film plastics. The study showed that for medium-temperature applications PV/T is not an attractive option in any of the locations studied. For low-temperature applications, PV/T appears to be marginally attractive.

  3. Effect of Glass Thickness on Performance of Flat Plate Solar Collectors for Fruits Drying

    Directory of Open Access Journals (Sweden)

    Ramadhani Bakari

    2014-01-01

    Full Text Available This study aimed at investigating the effect of thickness of glazing material on the performance of flat plate solar collectors. Performance of solar collector is affected by glaze transmittance, absorptance, and reflectance which results into major heat losses in the system. Four solar collector models with different glass thicknesses were designed, constructed, and experimentally tested for their performances. Collectors were both oriented to northsouth direction and tilted to an angle of 10° with the ground toward north direction. The area of each collector model was 0.72 m2 with a depth of 0.15 m. Low iron (extra clear glass of thicknesses 3 mm, 4 mm, 5 mm, and 6 mm was used as glazing materials. As a control, all collector performances were analysed and compared using a glass of 5 mm thickness and then with glass of different thickness. The results showed that change in glass thickness results into variation in collector efficiency. Collector with 4 mm glass thick gave the best efficiency of 35.4% compared to 27.8% for 6 mm glass thick. However, the use of glass of 4 mm thick needs precautions in handling and during placement to the collector to avoid extra costs due to breakage.

  4. Hydrodynamic characteristics and microalgae cultivation in a novel flat-plate photobioreactor.

    Science.gov (United States)

    Zhang, Qing H; Wu, Xia; Xue, Sheng Z; Wang, Zhi H; Yan, Cheng H; Cong, Wei

    2013-01-01

    Flat-plate photobioreactors (FPPBRs) are widely reported for cultivation of microalgae. In this work, a novel FPPBR mounted with inclined baffles was developed, which can make the fluid produce a "spirality" flow. The flow field and cell trajectory in the photobioreactor were investigated by using computational fluid dynamics. In addition, the cell trajectory was analyzed using a Fast Fourier transformation. The influence of height of the baffles, the angle α between the inclined baffle and fluid inlet flow direction (z), and the fluid inlet velocity on the frequency of flashing light effect and pressure drop were examined to optimize the structure parameters of the inclined baffles and operating conditions of the photobioreactor. The results showed that with inclined baffles built-in, significant swirl flow could be generated in the FPPBR. In this way, the flashing light effect for microalgal cell could also be achieved and the photosynthesis efficiency of microalgae could be promoted. In outdoor cultivation of freshwater Chlorella sp., the maximum biomass productivity of Chlorella sp. cultivated in the photobioreactor with inclined baffles was 29.94% higher than that of the photobioreactor without inclined baffles. Copyright © 2012 American Institute of Chemical Engineers (AIChE).

  5. Analysis of absorbed energy and efficiency of a solar flat plate collector

    Directory of Open Access Journals (Sweden)

    Anderson Miguel Lenz

    2017-07-01

    Full Text Available The highest percentage in home electricity demands in Brazil lies with the water heating systems, where the electric shower has a great contribution in consumption. The use of solar thermal panels is an alternative to minimize the strain on the electrical system by heating water. Current study evaluates a water heating system built with materials commonly used in home constructions. The tested collector is a 1 m² flat plate. Experiments were conducted at the State University of Western Paraná (UNIOESTE, campus Cascavel, Paraná State, Brazil. Temperature data were collected by PT100 sensors and solar radiation was measured with a pyranometer, coupled to a CR-1000 datalogger, with readings and collection every 5 minutes for 1 year. Data collection and analysis showed that the system presented monthly efficiency ranging between 33.7 and 53.54%, and energy absorbed between 30.79 and 75.29 kWh m-².month. Results show the system is a good option for use in residential or rural water heating due to decrease in the electric bill.

  6. Skin friction drag reduction on a flat plate turbulent boundary layer using synthetic jets

    Science.gov (United States)

    Belanger, Randy; Boom, Pieter D.; Hanson, Ronald E.; Lavoie, Philippe; Zingg, David W.

    2017-11-01

    In these studies, we investigate the effect of mild synthetic jet actuation on a flat plate turbulent boundary layer with the goal of interacting with the large scales in the log region of the boundary layer and manipulating the overall skin friction. Results will be presented from both large eddy simulations (LES) and wind tunnel experiments. In the experiments, a large parameter space of synthetic jet frequency and amplitude was studied with hot film sensors at select locations behind a pair of synthetic jets to identify the parameters that produce the greatest changes in the skin friction. The LES simulations were performed for a selected set of parameters and provide a more complete evaluation of the interaction between the boundary layer and synthetic jets. Five boundary layer thicknesses downstream, the skin friction between the actuators is generally found to increase, while regions of reduced skin friction persist downstream of the actuators. This pattern is reversed for forcing at low frequency. Overall, the spanwise-averaged skin friction is increased by the forcing, except when forcing at high frequency and low amplitude, for which a net skin friction reduction persists downstream. The physical interpretation of these results will be discussed. The financial support of Airbus is gratefully acknowledged.

  7. Flat plate bonded fuel elements: Report number 2, 11 August--10 October 1953

    Energy Technology Data Exchange (ETDEWEB)

    1953-12-31

    Attention has continued to be concentrated on routes employing either wrought uranium or powder metallurgy product for the making of flat plate fuel elements of approximately 0.180-inch uranium metal core thickness bonded to either ribbed or ribless aluminum sheaths. Intermediate goals of the program are to have elements 18 inches long for MTR irradiation tests this fall and to make sufficient advance in the overall program in 1954 so that an initial reactor charge of 15-foot long fuels can be provided as early as possible in 1955. The development of a satisfactory process tube for retaining an assembly of several fuel elements is also required. Uranium of satisfactory quality for fabrication into fuel elements appears to have been produced by the August high alpha rolling at Superior Steel, and it seems likely from the electroplating results that the metal can be employed for electroplating and bonding without such surface preparation as vapor blasting, grinding, or machining. Difficulty in obtaining aluminum components, both sheaths and process tubes, remains a bottleneck in the development program and specifically has delayed work on the wrought metal samples for MTR tests.

  8. Efficiency of liquid flat-plate solar energy collector with solar tracking system

    Directory of Open Access Journals (Sweden)

    Chekerovska Marija

    2015-01-01

    Full Text Available An extensive testing programme is performed on a solar collector experimental set-up, installed on a location in Shtip (Republic of Macedonia, latitude 41º 45’ and longitude 22º 12’, in order to investigate the effect of the sun tracking system implementation on the collector efficiency. The set-up consists of two flat plate solar collectors, one with a fixed surface tilted at 30о towards the South, and the other one equipped with dual-axis rotation system. The study includes development of a 3-D mathematical model of the collectors system and a numerical simulation programme, based on the computational fluid dynamics (CFD approach. The main aim of the mathematical modelling is to provide information on conduction, convection and radiation heat transfer, so as to simulate the heat transfer performances and the energy capture capabilities of the fixed and moving collectors in various operating modes. The feasibility of the proposed method was confirmed by experimental verification, showing significant increase of the daily energy capture by the moving collector, compared to the immobile collector unit. The comparative analysis demonstrates a good agreement between the experimental and numerically predicted results at different running conditions, which is a proof that the presented CFD modelling approach can be used for further investigations of different solar collectors configurations and flow schemes.

  9. Boundary Layer of Photon Absorption Applied to Heterogeneous Photocatalytic Solar Flat Plate Reactor Design

    Directory of Open Access Journals (Sweden)

    Héctor L. Otálvaro-Marín

    2014-01-01

    Full Text Available This study provides information to design heterogeneous photocatalytic solar reactors with flat plate geometry used in treatment of effluents and conversion of biomass to hydrogen. The concept of boundary layer of photon absorption taking into account the efficient absorption of radiant energy was introduced; this concept can be understood as the reactor thickness measured from the irradiated surface where 99% of total energy is absorbed. Its thickness and the volumetric rate of photons absorption (VRPA were used as design parameters to determine (i reactor thickness, (ii maximum absorbed radiant energy, and (iii the optimal catalyst concentration. Six different commercial brands of titanium dioxide were studied: Evonik-Degussa P-25, Aldrich, Merck, Hombikat, Fluka, and Fisher. The local volumetric rate of photon absorption (LVRPA inside the reactor was described using six-flux absorption-scattering model (SFM applied to solar radiation. The radiation field and the boundary layer thickness of photon absorption were simulated with absorption and dispersion effects of catalysts in water at different catalyst loadings. The relationship between catalyst loading and reactor thickness that maximizes the absorption of radiant energy was obtained for each catalyst by apparent optical thickness. The optimum concentration of photocatalyst Degussa P-25 was 0.2 g/l in 0.86 cm of thickness, and for photocatalyst Aldrich it was 0.3 g/l in 0.80 cm of thickness.

  10. Flat-plate solar array project. Volume 8: Project analysis and integration

    Science.gov (United States)

    McGuire, P.; Henry, P.

    1986-10-01

    Project Analysis and Integration (PA&I) performed planning and integration activities to support management of the various Flat-Plate Solar Array (FSA) Project R&D activities. Technical and economic goals were established by PA&I for each R&D task within the project to coordinate the thrust toward the National Photovoltaic Program goals. A sophisticated computer modeling capability was developed to assess technical progress toward meeting the economic goals. These models included a manufacturing facility simulation, a photovoltaic power station simulation and a decision aid model incorporating uncertainty. This family of analysis tools was used to track the progress of the technology and to explore the effects of alternative technical paths. Numerous studies conducted by PA&I signaled the achievement of milestones or were the foundation of major FSA project and national program decisions. The most important PA&I activities during the project history are summarized. The PA&I planning function is discussed and how it relates to project direction and important analytical models developed by PA&I for its analytical and assessment activities are reviewed.

  11. Flutter-Limited Reconfiguration of a Flat Plate Bending in a Fluid Flow

    Science.gov (United States)

    Gosselin, Frederick; Sansas, Fabien; Prakash, Aviral; Bhati, Awan; Laurendeau, Eric

    Plants rely on their flexibility to change form and reduce their drag when subjected to fluid flow. Flexibility allows plants to reconfigure and reduce their drag, however it is well known that flexibility can also lead to a loss of stability and thus increased dynamical loads. Fluttering flags are a good example. In the present work, we consider the limitation to reconfiguration brought by a dynamic loss of stability in constant uniform flow. To understand the trade-off that flexibility brings to real plants in terms of drag reduction and loss of stability, we study an idealised two-dimensional system: a beam clamped at its centre and subjected to a normal flow. We combine wind tunnel experiments and numerical simulations to study how the beam bends in the flow statically when the flow velocity is increased until a critical value is reached and the beam starts fluttering. We observe the competition between reconfiguration and flutter in flat plates in a wind tunnel. We also adopt a computational approach coupling an ALE finite volume aerodynamics code to a finite difference solution of the large deformation beam equation. We find that for a lighter structure in a heavier fluid, the critical velocity is higher and more reconfiguration is possible without reaching an instability. NSERC.

  12. Natural Convection Flow along an Isothermal Vertical Flat Plate with Temperature Dependent Viscosity and Heat Generation

    Directory of Open Access Journals (Sweden)

    Md. Mamun Molla

    2014-01-01

    Full Text Available The purpose of this study is to investigate the natural convection laminar flow along an isothermal vertical flat plate immersed in a fluid with viscosity which is the exponential function of fluid temperature in presence of internal heat generation. The governing boundary layer equations are transformed into a nondimensional form and the resulting nonlinear system of partial differential equations is reduced to a convenient form which are solved numerically using an efficient marching order implicit finite difference method with double sweep technique. Numerical results are presented in terms of the velocity and temperature distribution of the fluid as well as the heat transfer characteristics, namely, the wall shear stress and the local and average rate of heat transfer in terms of the local skin-friction coefficient, the local and average Nusselt number for a wide range of the viscosity-variation parameter, heat generation parameter, and the Rayleigh number. Increasing viscosity variation parameter and Rayleigh number lead to increasing the local and average Nusselt number and decreasing the wall shear stress. Wall shear stress and the rate of heat transfer decreased due to the increase of heat generation.

  13. CMUT With Substrate-Embedded Springs For Non-Flexural Plate Movement.

    Science.gov (United States)

    Nikoozadeh, Amin; Khuri-Yakub, Pierre T

    2010-01-01

    A conventional capacitive micromachined ultrasonic transducer (CMUT) is composed of many cells connected in parallel. Since the plate in each CMUT cell is anchored at its perimeter, the average displacement is several times smaller than the displacement of an equivalent ideal piston transducer. In addition, the post areas, where the plates are anchored to, are non-active and, thus, do not contribute to the transduction. We propose a CMUT structure that resembles an ideal capacitive piston transducer, where the movable top plate only undergoes translation rather than deflection. Our proposed CMUT structure is composed of a rigid plate connected to a substrate using relatively long and narrow posts, providing the spring constant for the movement of the plate. Rather than the flexure of the plate as in a conventional CMUT, this device operates based on the compression of the compliant posts. For a capacitive transducer, a thin electrostatic gap is provided under the top plate. We used finite element analysis (FEA) to design and verify the structure's functionality. The simulation results show a fractional bandwidth of over 100% in immersion for all the designs. They also confirm that the average displacement of the top plate is above 90% of its peak displacement. We fabricated the first prototype based on this idea, which only requires a simple 3-mask fabrication process. In addition to 128-element 1-D arrays, we fabricated a variety of 240 μm × 240 μm, single-element transducers with different post configurations. We successfully measured the electrical input impedance of the fabricated devices and confirmed their resonant behavior in air. Further, we measured the acoustic pressure using a calibrated hydrophone at a known distance. Using this measurement, we calculated a peak-to-peak pressure of 1.5 MPa at the face of the transducer. Our results show that it is possible to fabricate CMUTs that exhibit ideal piston-like plate movement. Because of the substrate-embedded

  14. Unsteady Hydromagnetic Rotating Flow through an Oscillating Porous Plate Embedded in a Porous Medium

    Directory of Open Access Journals (Sweden)

    I. Khan

    2013-01-01

    Full Text Available This paper investigates unsteady hydromagnetic flow of a viscous fluid in a rotating frame. The fluid is bounded by an oscillating porous plate embedded in a porous medium. The Laplace transform and Fourier sine transform methods are employed to find the exact solutions. They satisfy all imposed initial and boundary conditions and as special cases are reduced to some published results from the literature. The graphical results are plotted for different values of pertinent parameters and some interesting conclusions are made.

  15. Study of the influence of water properties dependency with the temperature in a laminar downward flow between parallel flat plates

    International Nuclear Information System (INIS)

    Delmastro, Dario F.; Chasseur, A.F.; Garcia, Juan C.

    2007-01-01

    In this work we develop a model that contemplates stationary completely developed laminar downward flow between flat parallel plates with uniform and constant heat fluxes. The Boussinesq approach is used in the momentum equation, taking into account the change of the density with the temperature only in the gravitational term. The system is at atmospheric pressure and the dependencies of the density and the thermal conductivity with the temperature are also considered. The velocity and temperature profiles, the friction factor, the heat transfer coefficient and the Nusselt Number are calculated, for different flow rates and heating powers. The results allow to obtain some conclusions that can be of interest in the study of research reactors with forced downward refrigeration and flat plate fuels, although these calculations do not exactly represent the real behavior inside these channels. (author) [es

  16. Experimental investigation on thermal performance of flat plate collectors at night

    International Nuclear Information System (INIS)

    Tang Runsheng; Sun Zhiguo; Li Zhimin; Yu Yamei; Zhong Hao; Xia Chaofeng

    2008-01-01

    To perform this work, two sets of solar water heaters, each set consisting of two flat plate collectors and a storage tank, were tested. The collectors in one system consist of aluminium absorbers painted matte black, and those in the other system consist of copper-aluminium composite absorbers with anode oxidized coating. For each of the systems, one collector is glazed and the other is unglazed. The experimental results showed that, if thermosyphonic reverse flow in the solar systems was not allowed, the stagnant absorber temperatures of all the collectors were 6-8 deg. C and about 1 deg. C lower than the ambient temperature at clear and overcast nights, respectively, the glazing and absorber coating of a collector had insignificant effects on the stagnant temperature depression of the collector absorbers (defined as the temperature difference between ambient air and absorbers), but the weather conditions had considerable effects. These results implied that the collector might be damaged by freezing at clear nights even when the air temperature was above 0 deg. C, such as 2-3 deg. C, and the possibility of freeze damage at clear nights was much higher than that at overcast nights for a given ambient air temperature slightly above the freezing temperature. Experimental results also indicated that if reverse flow in the solar systems were allowed, the absorber temperature of the collectors was stable all night at both clear and overcast nights and even higher than the ambient air temperature at overcast night as a result of the fact that the heat lost by the collectors at night was offset by the hot water inside the storage tank of the systems through the thermosyphonic reverse flow. This indicated that the reverse flow was very effective for preventing freezing of the collectors, and the freeze damage could be, theoretically, avoided by keeping the water temperature inside the storage tank of a solar thermosyphonic system at a certain level

  17. Performance Analysis of a Shallow Duct Flat Plate Solar Air Heater with and without Porous Media

    Directory of Open Access Journals (Sweden)

    Haroun A.K. Shahad

    2016-12-01

    Full Text Available In this study a flat plate solar air heater with a shallow duct is analyzed experimentally. The collector consists of a 4.5m long air duct with a (20×5cm cross-sectional area. The air duct consists of four channels so that the collector becomes more compact. The collector is studied under the weather conditions of Hilla city – Iraq with latitude and longitude equal 32.3° N and 44.25° E respectively and it is tilted by 45° with the horizontal plane. The effect of the air mass flow rate on the collector performance is also studied.The performance of the collector is analyzed with and without porous media stuffing. The measured parameters are the air and absorber temperatures, air speed and pressure drop. The temperatures are measured by means of type (K thermocouples as this type covers the temperature range of the studied system. The values of the temperature are displayed by temperature data logger devices. The air speed and pressure drop are measured by digital anemometer and manometer devices respectively. The results of the studied system show that as the air mass flow rate increases, the temperature of both the flowing air and the absorber decrease, whilst the efficiency of the collector increases. The results also show that the addition of the steel wool porous material inside the air duct increases the temperature of both the flowing air and the absorber, and by that increases the efficiency of the collector. The porous media also caused an increase in the pressure drop between the outlet air and the atmosphere. This pressure drop increased with the increase in the air mass flow rate

  18. A bubble column evaporator with basic flat-plate condenser for brackish and seawater desalination.

    Science.gov (United States)

    Schmack, Mario; Ho, Goen; Anda, Martin

    2016-01-01

    This paper describes the development and experimental evaluation of a novel bubble column-based humidification-dehumidification system, for small-scale desalination of saline groundwater or seawater in remote regions. A bubble evaporator prototype was built and matched with a simple flat-plate type condenser for concept assessment. Consistent bubble evaporation rates of between 80 and 88 ml per hour were demonstrated. Particular focus was on the performance of the simple condenser prototype, manufactured from rectangular polyvinylchlorid plastic pipe and copper sheet, a material with a high thermal conductivity that quickly allows for conduction of the heat energy. Under laboratory conditions, a long narrow condenser model of 1500 mm length and 100 mm width achieved condensate recovery rates of around 73%, without the need for external cooling. The condenser prototype was assessed under a range of different physical conditions, that is, external water cooling, partial insulation and aspects of air circulation, via implementing an internal honeycomb screen structure. Estimated by extrapolation, an up-scaled bubble desalination system with a 1 m2 condenser may produce around 19 l of distilled water per day. Sodium chloride salt removal was found to be highly effective with condensate salt concentrations between 70 and 135 µS. Based on findings and with the intent to reduce material cost of the system, a shorter condenser length of 750 mm for the non-cooled (passive) condenser and of 500 mm for the water-cooled condenser was considered to be equally efficient as the experimentally evaluated prototype of 1500 mm length.

  19. The Impact of Reduced Gravity on Free Convective Heat Transfer from a Finite, Flat, Vertical Plate

    Science.gov (United States)

    Lotto, Michael A.; Johnson, Kirstyn M.; Nie, Christopher W.; Klaus, David M.

    2017-10-01

    Convective heat transfer is governed by a number of factors including various fluid properties, the presence of a thermal gradient, geometric configuration, flow condition, and gravity. Empirically-derived analytical relationships can be used to estimate convection as a function of these governing parameters. Although it is relatively straightforward to experimentally quantify the contributions of the majority of these variables, it is logistically difficult to assess the influence of reduced-gravity due to practical limitations of establishing this environment. Therefore, in order to explore this regime, a series of tests was conducted to evaluate convection under reduced-gravity conditions averaging 0.45 m/sec2 (0.05 g) achieved aboard a parabolic aircraft. The results showed a reduction in net heat transfer of approximately 61% in flight relative to a 1 g terrestrial baseline using the same setup. The average experimental Nusselt Number of 19.05 ± 1.41 statistically correlated with the predicted value of 18.90 ± 0.63 (N = 13), estimated using the Churchill-Chu correlation for free convective heat transfer from a finite, flat, vertical plate. Extrapolating this to similar performance in true microgravity (10-6 g) indicates that these conditions should yield a Nusselt Number of 1.27, which is 2.6% the magnitude of free convection at 1 g, or a reduction of 97.4%. With advection essentially eliminated, heat transfer becomes limited to diffusion and radiation, which are gravity-independent and nearly equivalent in magnitude in this case. These results offer a general guideline for integrating components that utilize natural (free) convective gas cooling in a spacecraft habitat and properly sizing the thermal control system.

  20. The addition of red lead to flat plate and tubular valve regulated miners cap lamp lead-acid batteries

    Energy Technology Data Exchange (ETDEWEB)

    Ferg, E.E.; Loyson, P. [Department of Chemistry, Nelson Mandela Metropolitan University, P.O. Box 77000, Port Elizabeth 6031 (South Africa); Poorun, A. [Willard Batteries, P.O. Box 1844, Port Elizabeth 6000 (South Africa)

    2006-04-21

    The study looked at the use of red lead in the manufacturing of valve regulated lead acid (VRLA) miners cap lamp (MCL) batteries that were made with either flat plate or tubular positive electrodes. A problem with using only grey oxide in the manufacture of thick flat plate or tubular electrodes is the poor conversion of the active material to the desired lead dioxide. The addition of red lead to the initial starting material improves the formation efficiency but is considerably more expensive thereby increasing the cost of manufacturing. The study showed that by carefully controlling the formation conditions in terms of the voltage and temperature of a battery, good capacity performance can be achieved for cells made with flat plate electrodes that contain up to 25% red lead. The small amount of red lead in the active cured material reduces the effect of electrode surface sulphate formation and allows the battery to achieve its rated capacity within the first few cycles. Batteries made with flat plate positive electrodes that contained more that 50% red lead showed good initial capacity but had poor structural active material bonding. The study showed that MCL batteries made with tubular positive electrodes that contained less than 75% red lead resulted in a poorly formed electrode with limited capacity utilization. Pickling and soaking times of the tubular electrodes should be kept at a minimum thereby allowing higher active material utilization during subsequent capacity cycling. The study further showed that it is beneficial to use higher formation rates in order to reduce manufacturing time and to improve the active material characteristics. (author)

  1. A Study of the Hazardous Glare Potential to Aviators from Utility-Scale Flat-Plate Photovoltaic Systems

    OpenAIRE

    Scott Olson; Evan Riley

    2011-01-01

    The potential flash glare a pilot could experience from a proposed 25-degree fixed-tilt flat-plate polycrystalline PV system located outside of Las Vegas, Nevada, was modeled for the purpose of hazard quantification. Hourly insolation data measured via satellite for the years 1998 to 2004 was used to perform the modeling. The theoretical glare was estimated using published ocular safety metrics which quantify the potential for a postflash glare after-image. This was then compared to the postf...

  2. Effect of jet-mainstream velocity ratio on flow characteristics and heat transfer enhancement of jet on flat plate flow

    Science.gov (United States)

    Puzu, N.; Prasertsan, S.; Nuntadusit, C.

    2017-09-01

    The aim of this research was to study the effect of jet-mainstream velocity ratio on flow and heat transfer characteristics of jet on flat plate flow. The jet from pipe nozzle with inner diameter of D=14 mm was injected perpendicularly to mainstream on flat plate. The flat plate was blown by mainstream with uniform velocity profile at 10 m/s. The velocity ratio (jet to mainstream velociy) was varied at VR=0.25 and 3.5 by adjusting velocity of jet flow. For heat transfer measurement, a thin foil technique was used to evaluate the heat transfer coefficient by measuring temperature distributions on heat transfer surface with constant heat flux by using infrared camera. Flow characteristics were simulated by using a computational fluid dynamics (CFD) with commercial software ANSYS Fluent (Ver.15.0). The results showed that the enhancement of heat transfer along downstream direction for the case of VR=0.25 was from the effect of jet stream whereas for the case of VR=3.5 was from the effect of mainstream.

  3. Flat plate approximation in the three-dimensional slamming; Heiban kinji ni yoru sanjigen suimen shogeki keisanho ni tsuite

    Energy Technology Data Exchange (ETDEWEB)

    Toyama, Y. [Mitsui Engineering and Shipbuilding Co. Ltd., Tokyo (Japan)

    1996-12-31

    A slamming load generated by interactive motions between a ship body and water face is an important load in ensuring safety of the ship. A flat plate approximation developed by Wagner is used as a two-dimensional slamming theory, but it has a drawback in handling edges of a flat plate. Therefore, an attempt was made to expand the two-dimensional Wagner`s theory to three dimensions. This paper first shows a method to calculate water face slamming of an arbitrary axisymmetric body by using circular plate approximation. The paper then proposes a method to calculate slamming pressure distribution and slamming force for the case when shape of the water contacting surface may be approximated by an elliptic shape. Expansion to the three dimensions made clear to some extent the characteristics of the three-dimensional slamming. In the case of two dimensions or a circular column for example, the water contacting area increases rapidly in the initial stage generating large slamming force. However, in the case of three dimensions, since the water contacting area expands longitudinally and laterally, the slamming force tends to increase gradually. Maximum slamming pressure was found proportional to square of moving velocity in a water contacting boundary in the case of three dimensions, and similar to stagnation pressure on a gliding plate. 12 refs., 17 figs., 1 tab.

  4. Vibration analysis of orthotropic circular and elliptical nano-plates embedded in elastic medium based on nonlocal Mindlin plate theory and using Galerkin method

    International Nuclear Information System (INIS)

    Anjomshoa, Amin; Tahani, Masoud

    2016-01-01

    In the present study a continuum model based on the nonlocal elasticity theory is developed for free vibration analysis of embedded ortho tropic thick circular and elliptical nano-plates rested on an elastic foundation. The elastic foundation is considered to behave like a Pasternak type of foundations. Governing equations for vibrating nano-plate are derived according to the Mindlin plate theory in which the effects of shear deformations of nano-plate are also included. The Galerkin method is then employed to obtain the size dependent natural frequencies of nano-plate. The solution procedure considers the entire nano-plate as a single super-continuum element. Effect of nonlocal parameter, lengths of nano-plate, aspect ratio, mode number, material properties, thickness and foundation on circular frequencies are investigated. It is seen that the nonlocal frequencies of the nano-plate are smaller in comparison to those from the classical theory and this is more pronounced for small lengths and higher vibration modes. It is also found that as the aspect ratio increases or the nanoplate becomes more elliptical, the small scale effect on natural frequencies increases. Further, it is observed that the elastic foundation decreases the influence of nonlocal parameter on the results. Since the effect of shear deformations plays an important role in vibration analysis and design of nano-plates, by predicting smaller values for fundamental frequencies, the study of these nano-structures using thick plate theories such as Mindlin plate theory is essential.

  5. Velocity Profiles and Skin Friction on a Ribletted Flat Plate in Adverse Pressure Gradient

    National Research Council Canada - National Science Library

    Branam, Richard

    1997-01-01

    .... The skin friction drag coefficients were calculated using a numerical integration technique to determine an average value and scaled to the platform area of the plate to compare results with smooth plate values...

  6. On flow of electrically conducting fluids over a flat plate in the presence of a transverse magnetic field

    Science.gov (United States)

    Rossow, Vernon J

    1958-01-01

    The use of a magnetic field to control the motion of electrically conducting fluids is studied. The incompressible boundary-layer solutions are found for flow over a flat plate when the magnetic field is fixed relative to the plate or to the fluid. The equations are integrated numerically for the effect of the transverse magnetic field on the velocity and temperature profiles, and hence, the skin friction and rate of heat transfer. It is concluded that the skin friction and the heat-transfer rate are reduced when the transverse magnetic field is fixed relative to the plate and increased when fixed relative to the fluid. The total drag is increased in all of the areas.

  7. Flatness-based embedded adaptive fuzzy control of spark ignited engines

    Science.gov (United States)

    Rigatos, Gerasimos; Siano, Pierluigi; Arsie, Ivan

    2014-10-01

    The paper proposes a differential flatness theory-based adaptive fuzzy controller for spark-ignited (SI) engines. The system's dynamic model is considered to be completely unknown. By applying a change of variables (diffeomorphism) that is based on differential flatness theory the engine's dynamic model is written in the linear canonical (Brunovsky) form. After transforming the SI-engine model into the canonical form, the resulting control inputs are shown to contain nonlinear elements which depend on the system's parameters. These nonlinear terms are approximated with the use of neuro-fuzzy networks while a suitable learning law can be defined for the aforementioned neuro-fuzzy approximators so as to preserve the closed-loop system stability. Moreover, using Lyapunov stability analysis it is shown that the adaptive fuzzy control scheme succeeds H∞ tracking performance, which means that the influence of the modeling errors and the external disturbances on the tracking error is attenuated to an arbitrary desirable level. The efficiency of the proposed adaptive fuzzy control scheme is checked through simulation experiments.

  8. Standarized performance tests of collectors of solar thermal energy: A steel flat-plate collector with two transparent covers and a proprietary coating

    Science.gov (United States)

    1976-01-01

    Basic test results of a flat-plate solar collector whose performance was determined in the NASA-Lewis solar simulator are given. The collector was tested over ranges of inlet temperature and flux level.

  9. Craft-Joule Project: Stagnation proof transparently insulated flat plate solar collector (static)

    Energy Technology Data Exchange (ETDEWEB)

    Oliva, A; Cadafalch, J; Perez-Segarra, C.D. [Universitat Politecnica de Catalunya, Barcelona (Spain)] (and others)

    2000-07-01

    The STATIC (STAgnation proof Transparently Insulated flat plate Solar Collector) project is a Craft-Joule Project within the framework of the Non Nuclear Energy Programme Joule III coordinated by the Centre Technologic de Transferencia de Calor (CTTC). The core group of SMEs involved in the project has its main economical activity in the field of solar thermal systems at low temperature level (domestic hot water, solar heating, etc.). Beyond this, a large application potential exists for solar heating at medium temperature level (from 80 to 160 Celsius degrees) : industrial process heat, solar cooling and air conditioning, solar drying , distillation and desalination. Three of the four SME proposers are located in Southern Europe and in the Caribean, where a continuos increase of the demand for air conditioning and cooling has been demonstrated in the last years. The recent development of flat plate solar collectors with honeycomb-type transparent insulation cover has shown that this type of collectors can become a low cost alternative to evacuated tube and high concentrating CPC collectors in the medium temperature range from 80 to 160 Celsius degrees. With the expected reduction of collector cost, that forms 30%-50% of total system cost, a decisive break-through of solar thermal systems using heat in the medium temperature range can be achieved. The feasibility and good performance of these solar collectors has been proved in several prototypes. Nevertheless, up to now no commercial products are available. In order to reach this, the following developments of new concepts are necessary and are being carried out within this project: solution of the problem of overheating: development of collector versions for different working temperatures: optimization of the design with the support of high level numerical simulation. Several prototypes of the new solar collectors are being tested. System tests will also be carried or for two test arrays of optimized collector

  10. Dufour and Soret Effects on Melting from a Vertical Plate Embedded in Saturated Porous Media

    Directory of Open Access Journals (Sweden)

    Basant K. Jha

    2013-01-01

    Full Text Available Thermal-diffusion and diffusion-thermo effects on combined heat and mass transfer in mixed convection boundary layer flow with aiding and opposing external flows from a vertical plate embedded in a liquid saturated porous medium with melting are investigated. The resulting system of nonlinear ordinary differential equations is solved numerically using Runge Kutta-Fehlberg with shooting techniques. Numerical results are obtained for the velocity, temperature, and concentration distributions, as well as the Nusselt number and Sherwood number for several values of the parameters, namely, the buoyancy parameter, melting parameter, Dufour effect, Soret effect, and Lewis number. The obtained results are presented graphically and in tabular form and the physical aspects of the problem are discussed.

  11. Blast response of centrally and eccentrically loaded flat-, U-, and V-shaped armored plates: comparative study

    Science.gov (United States)

    Trajkovski, J.; Kunc, R.; Prebil, I.

    2017-07-01

    Light armored vehicles (LAVs) can be exposed to blast loading by landmines or improvised explosive devices (IEDs) during their lifetime. The bottom hull of these vehicles is usually made of a few millimeters of thin armored plate that is the vehicle's weak point in a blast-loading scenario. Therefore, blast resistance and blast load redirection are very important characteristics in providing adequate vehicle as well as occupant protection. Furthermore, the eccentric nature of loading caused by landmines was found to be omitted in the studies of simplified structures like beams and plates. For this purpose, blast wave dispersion and blast response of centrally and eccentrically loaded flat-, U-, and V-shaped plates are examined using a combined finite-element-smoothed-particle hydrodynamics (FE-SPH) model. The results showed that V-shaped plates better disperse blast waves for any type of loading and, therefore, can be successfully applied in LAVs. Based on the results of the study and the geometry of a typical LAV 6× 6, the minimum angle of V-shaped plates is also determined.

  12. Impact Localization Method for Composite Plate Based on Low Sampling Rate Embedded Fiber Bragg Grating Sensors

    Directory of Open Access Journals (Sweden)

    Zhuo Pang

    2017-01-01

    Full Text Available Fiber Bragg Grating (FBG sensors have been increasingly used in the field of Structural Health Monitoring (SHM in recent years. In this paper, we proposed an impact localization algorithm based on the Empirical Mode Decomposition (EMD and Particle Swarm Optimization-Support Vector Machine (PSO-SVM to achieve better localization accuracy for the FBG-embedded plate. In our method, EMD is used to extract the features of FBG signals, and PSO-SVM is then applied to automatically train a classification model for the impact localization. Meanwhile, an impact monitoring system for the FBG-embedded composites has been established to actually validate our algorithm. Moreover, the relationship between the localization accuracy and the distance from impact to the nearest sensor has also been studied. Results suggest that the localization accuracy keeps increasing and is satisfactory, ranging from 93.89% to 97.14%, on our experimental conditions with the decrease of the distance. This article reports an effective and easy-implementing method for FBG signal processing on SHM systems of the composites.

  13. General Observations of the Time-Dependent Flow Field Around Flat Plates in Free Fall

    DEFF Research Database (Denmark)

    Hærvig, Jakob; Jensen, Anna Lyhne; Pedersen, Marie Cecilie

    2015-01-01

    a six degrees of freedom (6DOF) solver and a dynamic mesh. To validate the simulation, the trajectories of aluminium plates falling in water are recorded by digital camera recordings and compared to the simulation. The simulation is able to calculate the motion of the plate within each time step...

  14. PERFORMANCE DETERIORATION OF THERMOSIPHON SOLAR FLAT PLATE WATER HEATER DUE TO SCALING

    Directory of Open Access Journals (Sweden)

    arunachala umesh chandavar

    2011-12-01

    Full Text Available 0 0 1 340 1943 International Islamic University 16 4 2279 14.0 Normal 0 false false false EN-US JA X-NONE /* Style Definitions */ table.MsoNormalTable {mso-style-name:"Table Normal"; mso-tstyle-rowband-size:0; mso-tstyle-colband-size:0; mso-style-noshow:yes; mso-style-priority:99; mso-style-parent:""; mso-padding-alt:0cm 5.4pt 0cm 5.4pt; mso-para-margin:0cm; mso-para-margin-bottom:.0001pt; mso-pagination:widow-orphan; font-size:11.0pt; font-family:"Times New Roman";} The performance of Flat plate Solar Water Heater deteriorates within five to twelve years of their installation due to factors related to manufacturing, operating conditions, lack of maintenance etc. Especially, problem due to scaling is significant as it is based on quality of water used. The remaining factors are system dependent and could be overcome by quality production. Software is developed by incorporating Hottel Whillier Bliss (H-W-B equation to ascertain the effect of scaling on system efficiency in case of thermosiphon system. In case of clean thermosiphon system, the instantaneous efficiency calculated at 1000 W/m2 radiation is 72 % and it drops to 46 % for 3.7 mm scale thickness. The mass flow rate is reduced by 90 % for 3.7 mm scale thickness. Whereas, the average temperature drop of water in the tank is not critical due to considerable heat content in water under severe scaled condition.  But practically in case of major scale growth, some of the risers are likely to get blocked completely which leads to negligible temperature rise in the tank. ABSTRAK: Prestasi plat rata pemanas air suria merosot selepas lima hingga dua belas tahun  pemasangannya disebabkan faktor-faktor yang berkaitan dengan pembuatannya, cara kendaliannya, kurangnya penyelenggaraan dan sebagainya.  Terutama sekali, masalah disebabkan scaling (tembunan endapan mineral perlu diambil berat kerana ianya bergantung kepada kualiti air yang digunakan. Faktor-faktor selebihya bersandarkan sistem dan ia

  15. Tårs 10000 m2 CSP + Flat Plate Solar Collector Plant - Cost-Performance Optimization of the Design

    DEFF Research Database (Denmark)

    Perers, Bengt; Furbo, Simon; Tian, Zhiyong

    2016-01-01

    , was established. The optimization showed that there was a synergy in combining CSP and FP collectors. Even though the present cost per m² of the CSP collectors is high, the total energy cost is minimized by installing a combination of collectors in such solar heating plant. It was also found that the CSP......A novel solar heating plant with Concentrating Solar Power (CSP) collectors and Flat Plate (FP) collectors has been put into operation in Tårs since July 2015. To investigate economic performance of the plant, a TRNSYS-Genopt model, including a solar collector field and thermal storage tank...

  16. Study of Boundary Layer Convective Heat Transfer with Low Pressure Gradient Over a Flat Plate Via He's Homotopy Perturbation Method

    International Nuclear Information System (INIS)

    Fathizadeh, M.; Aroujalian, A.

    2012-01-01

    The boundary layer convective heat transfer equations with low pressure gradient over a flat plate are solved using Homotopy Perturbation Method, which is one of the semi-exact methods. The nonlinear equations of momentum and energy solved simultaneously via Homotopy Perturbation Method are in good agreement with results obtained from numerical methods. Using this method, a general equation in terms of Pr number and pressure gradient (λ) is derived which can be used to investigate velocity and temperature profiles in the boundary layer.

  17. Increasing Efficiency of a 33 MW OTEC in Indonesia Using Flat-plate Solar Collector for the Seawater Heater

    OpenAIRE

    Setiawan, Iwan Rohman; Purnama, Irwan; Halim, Abdul

    2017-01-01

    This paper presents a design concept of Ocean Thermal Energy Conversion (OTEC) plant built in Mamuju, West Sulawesi, with 33 MWe and 7.1% of the power capacity and efficiency, respectively. The generated electrical power and the efficiency of OTEC plant are enhanced by a simulation of a number of derived formulas. Enhancement of efficiency is performed by increasing the temperature of the warm seawater toward the evaporator from 26˚C up to 33.5˚C using a flat-plate solar collector. The simula...

  18. Active control of noise amplification in the flow over a square leading-edge flat plate utilizing DBD plasma actuator

    Science.gov (United States)

    Yadong, HUANG; Benmou, ZHOU

    2018-05-01

    Perturbation is generally considered as the flow noise, and its energy can gain transient growth in the separation bubble. The amplified perturbations may cause unstable Kelvin–Helmohltz vortices which induce the three-dimensional transition. Active control of noise amplification via dielectric barrier discharge plasma actuator in the flow over a square leading-edge flat plate is numerically studied. The actuator is installed near the plate leading-edge where the separation bubble is formed. The maximum energy amplification of perturbations is positively correlated with the separation bubble scale which decreases with the increasing control parameters. As the magnitude of noise amplification is reduced, the laminar-turbulent transition is successfully suppressed.

  19. Low-Temperature CVD Carbon Nanotubes on Glass Plates for Flat Panel Display Applications

    National Research Council Canada - National Science Library

    Tzeng, Yonhua

    2000-01-01

    .... Carbon nanotubes deposited on metal coated glass plates were examined by SEM and analyzed using a pin to disk setup in an ultra high vacuum chamber for measuring the electron emission characteristics...

  20. Heat transfer in flow past a continuously moving porous flat plate with heat flux

    Digital Repository Service at National Institute of Oceanography (India)

    Murty, T.V.R.; Sarma, Y.V.B.

    The analysis of the heat transfer in flow past a continuously moving semi-infinite plate in the presence of suction/ injection with heat flux has been presented. Similarity solutions have been derived and the resulting equations are integrated...

  1. The Effect of Leading-Edge Sweep and Surface Inclination on the Hypersonic Flow Field Over a Blunt Flat Plate

    Science.gov (United States)

    Creager, Marcus O.

    1959-01-01

    An investigation of the effects of variation of leading-edge sweep and surface inclination on the flow over blunt flat plates was conducted at Mach numbers of 4 and 5.7 at free-stream Reynolds numbers per inch of 6,600 and 20,000, respectively. Surface pressures were measured on a flat plate blunted by a semicylindrical leading edge over a range of sweep angles from 0 deg to 60 deg and a range of surface inclinations from -10 deg to +10 deg. The surface pressures were predicted within an average error of +/- 8 percent by a combination of blast-wave and boundary-layer theory extended herein to include effects of sweep and surface inclination. This combination applied equally well to similar data of other investigations. The local Reynolds number per inch was found to be lower than the free-stream Reynolds number per inch. The reduction in local Reynolds number was mitigated by increasing the sweep of the leading edge. Boundary-layer thickness and shock-wave shape were changed little by the sweep of the leading edge.

  2. A comparative numerical study on natural convection in inclined wavy and flat-plate solar collectors

    Energy Technology Data Exchange (ETDEWEB)

    Varol, Yasin [Department of Mechanical Education, Firat University, 23119 Elazig (Turkey); Oztop, Hakan F. [Department of Mechanical Engineering, Firat University, 23119 Elazig (Turkey)

    2008-09-15

    The present study deals with the numerical analysis of natural convection heat transfer inside the inclined solar collectors. Two collectors are compared. In the first case, the collector has wavy absorber and in the second case, it has flat absorber. The solution was performed assuming the isothermal boundary conditions of absorbers and covers of collectors. CFDRC commercial software is used to simulate the laminar flow and thermal field. Governing parameters are taken as Rayleigh number (from 1 x 10{sup 6} to 5 x 10{sup 7}), inclination angle (from 20 to 60 ), wave length (from 1.33 to 4) and aspect ratio (from 0 to 4). Results are presented by streamlines, isotherms and local and mean Nusselt numbers. It is observed that flow and thermal fields are affected by the shape of enclosure and heat transfer rate increases in the case of wavy enclosure than that of flat enclosure. (author)

  3. Development and life cycle analysis of double slope active solar still with flat plate collector

    OpenAIRE

    A.K. Sethi; V. K. Dwivedi

    2014-01-01

    Potable water is an essential ingredient of socio-economic development and economic growth. Often water sources are brackish (i.e. contain dissolved salts) and/or contain harmful bacteria and therefore cannot be used for drinking. In addition, there are many coastal locations where seawater is abundant but potable water is not available. This study is focused on a development of solar still with flat plat collector for water desalination considered for small scale applications at ...

  4. Flow patterns and heat transfer characteristics of flat plate pulsating heat pipes with various asymmetric and aspect ratios of the channels

    International Nuclear Information System (INIS)

    Jang, Dong Soo; Lee, Joo Seong; Ahn, Jae Hwan; Kim, Dongwoo; Kim, Yongchan

    2017-01-01

    Highlights: • Flat plate pulsating heat pipes with asymmetric and aspect ratios were tested. • Flow patterns were investigated according to channel geometry and flow condition. • Heat transfer characteristics were analyzed with various heat inputs. • Optimum asymmetric and aspect ratios were suggested for maximum thermal performance. - Abstract: The thermal performance of flat plate pulsating heat pipes (PHPs) in compact electronic devices can be improved by adopting asymmetric channels with increased pressure differences and an unbalanced driving force. The objective of this study is to investigate the heat transfer characteristics of flat plate PHPs with various asymmetric ratios and aspect ratios in the channels. The thermal performance and flow pattern of the flat plate PHPs were measured by varying the asymmetric ratio from 1.0 to 4.0, aspect ratio from 2.5 to 5.0, and heat input from 2 to 28 W. The effects of the asymmetric ratio and aspect ratio on the thermal resistance were analyzed with the measured evaporator temperature and flow patterns at various heat inputs. With heat inputs of 6 W and 12 W, the optimum asymmetric ratio and aspect ratio for the flat plate PHPs were determined to be 4.0 and 2.5, respectively. With the heat input of 18 W, the optimum asymmetric ratio and aspect ratio were determined to be 1.5 and 2.5, respectively.

  5. Relative potentials of concentrating and two-axis tracking flat-plate photovoltaic arrays for central-station applications. Issue study

    Energy Technology Data Exchange (ETDEWEB)

    Borden, C.S.; Schwartz, D.L.

    1984-12-31

    The purpose of this study is to assess the relative economic potentials of concentrating and two-axis tracking flat-plate photovoltaic arrays for central-station applications in the mid-1990's. Specific objectives of this study are to provide information on concentrator photovoltaic collector probabilistic price and efficiency levels to illustrate critical areas of R and D for concentrator cells and collectors, and to compare concentrator and flat-plate PV price and efficiency alternatives for several locations, based on their implied costs of energy. To deal with the uncertainties surrounding research and development activities in general, a probabilistic assessment of commercially achievable concentrator photovoltaic collector efficiencies and prices (at the factory loading dock) is performed. The results of this projection of concentrator photovoltaic technology are then compared with a previous flat-plate module price analysis (performed early in 1983). To focus this analysis on specific collector alternatives and their implied energy costs for different locations, similar two-axis tracking designs are assumed for both concentrator and flat-plate options. The results of this study provide the first comprehensive assessment of PV concentrator collector manufacturing costs in combination with those of flat-plate modules, both projected to their commercial potentials in the mid-1990's.

  6. The flat-plate plant-microbial fuel cell: the effect of a new design on internal resistances

    Directory of Open Access Journals (Sweden)

    Helder Marjolein

    2012-09-01

    Full Text Available Abstract Due to a growing world population and increasing welfare, energy demand worldwide is increasing. To meet the increasing energy demand in a sustainable way, new technologies are needed. The Plant-Microbial Fuel Cell (P-MFC is a technology that could produce sustainable bio-electricity and help meeting the increasing energy demand. Power output of the P-MFC, however, needs to be increased to make it attractive as a renewable and sustainable energy source. To increase power output of the P-MFC internal resistances need to be reduced. With a flat-plate P-MFC design we tried to minimize internal resistances compared to the previously used tubular P-MFC design. With the flat-plate design current and power density per geometric planting area were increased (from 0.15 A/m2 to 1.6 A/m2 and from 0.22 W/m2 to and 0.44 W/m2as were current and power output per volume (from 7.5 A/m3 to 122 A/m3 and from 1.3 W/m3 to 5.8 W/m3. Internal resistances times volume were decreased, even though internal resistances times membrane surface area were not. Since the membrane in the flat-plate design is placed vertically, membrane surface area per geometric planting area is increased, which allows for lower internal resistances times volume while not decreasing internal resistances times membrane surface area. Anode was split into three different sections on different depths of the system, allowing to calculate internal resistances on different depths. Most electricity was produced where internal resistances were lowest and where most roots were present; in the top section of the system. By measuring electricity production on different depths in the system, electricity production could be linked to root growth. This link offers opportunities for material-reduction in new designs. Concurrent reduction in material use and increase in power output brings the P-MFC a step closer to usable energy density and economic feasibility.

  7. Design of a photovoltaic central power station: flat-plate array

    Energy Technology Data Exchange (ETDEWEB)

    1984-02-01

    A design for a photovoltaic central power station using fixed flat-panel arrays has been developed. The 100 MW plant is assumed to be located adjacent to the Saguaro Power Station of Arizona Public Service. The design assumes high-efficiency photovoltaic modules using dendritic web cells. The modules are arranged in 5 MW subfields, each with its own power conditioning unit. The photovoltaic output is connected to the existing 115 kV utility switchyard. The site specific design allows detailed cost estimates for engineering, site preparation, and installation. Collector and power conditioning costs have been treated parametrically.

  8. Annual measured and simulated thermal performance analysis of a hybrid solar district heating plant with flat plate collectors and parabolic trough collectors in series

    DEFF Research Database (Denmark)

    Tian, Zhiyong; Perers, Bengt; Furbo, Simon

    2017-01-01

    in large solar heating plants for a district heating network, a hybrid solar collector field with 5960 m2 flat plate collectors and 4039 m2 parabolic trough collectors in series was constructed in Taars, Denmark. The design principle is that the flat plate collectors preheat the return water from...... the district heating network to about 70 °C and then the parabolic trough collectors would heat the preheated water to the required supply temperature of the district heating network. Annual measured and simulated thermal performances of both the parabolic trough collector field and the flat plate collector...... field are presented in this paper. The thermal performance of both collector fields with weather data of a Design Reference Year was simulated to have a whole understanding of the application of both collectors under Danish climate conditions as well. These results not only can provide a design basis...

  9. Embedding

    DEFF Research Database (Denmark)

    Høyrup, Jens

    2016-01-01

    “Embedding” as a technical concept comes from linguistics, more precisely from grammar. The present paper investigates whether it can be applied fruitfully to certain questions that have been investigated by historians (and sometimes philosophers) of mathematics: 1. The construction of numeral...... systems, in particular place-value and quasi place-value systems. 2. The development of algebraic symbolisms. 3. The discussion whether “scientific revolutions” ever take place in mathematics, or new conceptualizations always include what preceded them. A final section investigates the relation between...... spatial and linguistic embedding and concludes that the spatio-linguistic notion of embedding can be meaningfully applied to the former two discussions, whereas the apparent embedding of older within new theories is rather an ideological mirage....

  10. Effects of the foil flatness on the stress-strain characteristics of U10Mo alloy based monolithic mini-plates

    Energy Technology Data Exchange (ETDEWEB)

    Hakan Ozaltun; Pavel Medvedev

    2014-11-01

    The effects of the foil flatness on stress-strain behavior of monolithic fuel mini-plates during fabrication and irradiation were studied. Monolithic plate-type fuels are a new fuel form being developed for research and test reactors to achieve higher uranium densities. This concept facilitates the use of low-enriched uranium fuel in the reactor. These fuel elements are comprised of a high density, low enrichment, U–Mo alloy based fuel foil encapsulated in a cladding material made of Aluminum. To evaluate the effects of the foil flatness on the stress-strain behavior of the plates during fabrication, irradiation and shutdown stages, a representative plate from RERTR-12 experiments (Plate L1P756) was considered. Both fabrication and irradiation processes of the plate were simulated by using actual irradiation parameters. The simulations were repeated for various foil curvatures to observe the effects of the foil flatness on the peak stress and strain magnitudes of the fuel elements. Results of fabrication simulations revealed that the flatness of the foil does not have a considerable impact on the post fabrication stress-strain fields. Furthermore, the irradiation simulations indicated that any post-fabrication stresses in the foil would be relieved relatively fast in the reactor. While, the perfectly flat foil provided the slightly better mechanical performance, overall difference between the flat-foil case and curved-foil case was not significant. Even though the peak stresses are less affected, the foil curvature has several implications on the strain magnitudes in the cladding. It was observed that with an increasing foil curvature, there is a slight increase in the cladding strains.

  11. Development of Streamwise Counter-Rotating Vortices in Flat Plate Boundary Layer Pre-set by Leading Edge Patterns

    KAUST Repository

    Hasheminejad, S.M.

    2017-04-03

    Development of streamwise counter-rotating vortices induced by leading edge patterns with different pattern shape is investigated using hot-wire anemometry in the boundary layer of a flat plate. A triangular, sinusoidal and notched patterns with the same pattern wavelength λ of 15mm and the same pattern amplitude A of 7.5mm were examined for free-stream velocity of 3m/s. The results show a good agreement with earlier studies. The inflection point on the velocity profile downstream of the trough of the patterns at the beginning of the vortex formation indicates that the vortices non-linearly propagate downstream. An additional vortex structure was also observed between the troughs of the notched pattern.

  12. Mixed convection boundary layer flow over a moving vertical flat plate in an external fluid flow with viscous dissipation effect.

    Directory of Open Access Journals (Sweden)

    Norfifah Bachok

    Full Text Available The steady boundary layer flow of a viscous and incompressible fluid over a moving vertical flat plate in an external moving fluid with viscous dissipation is theoretically investigated. Using appropriate similarity variables, the governing system of partial differential equations is transformed into a system of ordinary (similarity differential equations, which is then solved numerically using a Maple software. Results for the skin friction or shear stress coefficient, local Nusselt number, velocity and temperature profiles are presented for different values of the governing parameters. It is found that the set of the similarity equations has unique solutions, dual solutions or no solutions, depending on the values of the mixed convection parameter, the velocity ratio parameter and the Eckert number. The Eckert number significantly affects the surface shear stress as well as the heat transfer rate at the surface.

  13. Investigation of thermal behaviour, pressure drop, and pumping power in a Cu nanofluid-filled solar flat-plate collector

    Directory of Open Access Journals (Sweden)

    Shamshirgaran S. Reza

    2017-01-01

    Full Text Available The evaluations of the performance of solar flat-plate collectors are reported in the literature. A computer program developed by MATLAB has been applied for modelling the performance of a solar collector under steady state laminar conditions. Results demonstrate that Cu-water nanofluid would be capable of boosting the thermal efficiency of the collector by 2.4% at 4% volume concentration in the case of using Cunanofluid instead of just water as the working fluid. It is noteworthy that, dispersing the nanoparticles into the water results in a higher pressure drop and, therefore, a higher power consumption for pumping the nanofluid within the collector. It has been estimated for the collector understudy, that the increase in the pressure drop and pumping power to be around 30%.

  14. Summary of flat-plate solar array project documentation: Abstracts of published documents, 1975-1986, revision 1

    Science.gov (United States)

    Phillips, M. J.

    1986-01-01

    Abstracts of final reports, or the latest quarterly or annual, of the Flat-Plate Solar Array (FSA) Project Contractor of Jet Propulsion Laboratory (JPL) in-house activities are presented. Also presented is a list of proceedings and publications, by author, of work connected with the project. The aim of the program has been to stimulate the development of technology that will enable the private sector to manufacture and widely use photovoltaic systems for the generation of electricity in residential, commercial, industrial, and Government applications at a cost per watt that is competitive with utility generated power. FSA Project activities have included the sponsoring of research and development efforts in silicon refinement processes, advanced silicon sheet growth techniques, higher efficiency solar cells, solar cell/module fabrication processes, encapsulation, module/array engineering and reliability, and economic analyses.

  15. Investigation of Thermal Performance of Flat Plate and Evacuated Tubular Solar Collectors According to a New Dynamic Test Method

    DEFF Research Database (Denmark)

    Kong, Weiqiang; Wang, Zhifeng; Fan, Jianhua

    2012-01-01

    obtain fluid thermal capacitance in data processing. Then theoretical analysis and experimental verification are carried out to investigate influencing factors of obtaining accurate and stable second order term. A flat plate and ETC solar collector are compared using both the new dynamic method......A new dynamic test method is introduced. This so called improved transfer function method features on two new collector parameters. One is time term which can indicate solar collector's inner heat transfer ability and the other is a second order term of collector mean fluid temperature which can...... and a standard method. The results show that the improved function method can accurately and robustly estimate these two kinds of solar collectors....

  16. Stand-alone flat-plate photovoltaic power systems: System sizing and life-cycle costing methodology for Federal agencies

    Science.gov (United States)

    Borden, C. S.; Volkmer, K.; Cochrane, E. H.; Lawson, A. C.

    1984-01-01

    A simple methodology to estimate photovoltaic system size and life-cycle costs in stand-alone applications is presented. It is designed to assist engineers at Government agencies in determining the feasibility of using small stand-alone photovoltaic systems to supply ac or dc power to the load. Photovoltaic system design considerations are presented as well as the equations for sizing the flat-plate array and the battery storage to meet the required load. Cost effectiveness of a candidate photovoltaic system is based on comparison with the life-cycle cost of alternative systems. Examples of alternative systems addressed are batteries, diesel generators, the utility grid, and other renewable energy systems.

  17. Embedding

    DEFF Research Database (Denmark)

    Høyrup, Jens

    2015-01-01

    to become the starting point not only for theoretical algebra, but for the whole transformation of mathematics from his time onward: the possibility of embedding, that is, of making a symbol or an element of a calculation stand not only for a single number, determined or undetermined, but for a whole...

  18. Large-eddy simulation of separation and reattachment of a flat plate turbulent boundary layer

    KAUST Repository

    Cheng, W.

    2015-11-11

    © 2015 Cambridge University Press. We present large-eddy simulations (LES) of separation and reattachment of a flat-plate turbulent boundary-layer flow. Instead of resolving the near wall region, we develop a two-dimensional virtual wall model which can calculate the time- and space-dependent skin-friction vector field at the wall, at the resolved scale. By combining the virtual-wall model with the stretched-vortex subgrid-scale (SGS) model, we construct a self-consistent framework for the LES of separating and reattaching turbulent wall-bounded flows at large Reynolds numbers. The present LES methodology is applied to two different experimental flows designed to produce separation/reattachment of a flat-plate turbulent boundary layer at medium Reynolds number Reθ based on the momentum boundary-layer thickness θ. Comparison with data from the first case at demonstrates the present capability for accurate calculation of the variation, with the streamwise co-ordinate up to separation, of the skin friction coefficient, Reθ, the boundary-layer shape factor and a non-dimensional pressure-gradient parameter. Additionally the main large-scale features of the separation bubble, including the mean streamwise velocity profiles, show good agreement with experiment. At the larger Reθ = 11000 of the second case, the LES provides good postdiction of the measured skin-friction variation along the whole streamwise extent of the experiment, consisting of a very strong adverse pressure gradient leading to separation within the separation bubble itself, and in the recovering or reattachment region of strongly-favourable pressure gradient. Overall, the present two-dimensional wall model used in LES appears to be capable of capturing the quantitative features of a separation-reattachment turbulent boundary-layer flow at low to moderately large Reynolds numbers.

  19. Experimental and Statistical Analysis of MgO Nanofluids for Thermal Enhancement in a Novel Flat Plate Heat Pipes

    Science.gov (United States)

    Pandiaraj, P.; Gnanavelbabu, A.; Saravanan, P.

    Metallic fluids like CuO, Al2O3, ZnO, SiO2 and TiO2 nanofluids were widely used for the development of working fluids in flat plate heat pipes except magnesium oxide (MgO). So, we initiate our idea to use MgO nanofluids in flat plate heat pipe as a working fluid material. MgO nanopowders were synthesized by wet chemical method. Solid state characterizations of synthesized nanopowders were carried out by Ultraviolet Spectroscopy (UV), Fourier Transform Infrared Spectroscopy (FTIR), Scanning Electron Microscopy (SEM) and X-ray Diffraction (XRD) techniques. Synthesized nanopowders were prepared as nanofluids by adding water and as well as water/ethylene glycol as a binary mixture. Thermal conductivity measurements of prepared nanofluids were studied using transient hot-wire apparatus. Response surface methodology based on the Box-Behnken design was implemented to investigate the influence of temperature (30-60∘C), particle fraction (1.5-4.5 vol.%), and solution pH (4-12) of nanofluids as the independent variables. A total of 17 experiments were accomplished for the construction of second-order polynomial equations for target output. All the influential factors, their mutual effects and their quadratic terms were statistically validated by analysis of variance (ANOVA). The optimum stability and thermal conductivity of MgO nanofluids with various temperature, volume fraction and solution pH were predicted and compared with experimental results. The results revealed that increase in particle fraction and pH of MgO nanofluids at certain points would increase thermal conductivity and become stable at nominal temperature.

  20. Design, performance and cost of energy from high concentration and flat-plate utility-scale PV systems

    International Nuclear Information System (INIS)

    Stolte, W.J.; Whisnant, R.A.; McGowin, C.R.

    1993-01-01

    This paper presents the results of a recent study to assess the near-term cost of power in central station applications. Three PV technologies were evaluated: Fresnel-lens high-concentration photovoltaic (HCPV), central receiver HCPV, and flat-plate PV using thin-film copper indium diselenide (CIS) cell technology. Baseline assumptions included PV cell designs and performances projected for the 1995 timeframe, 25 and 100 MW/year cell manufacturing rates, 50 MW power plant size, and mature technology cost and performance estimates. The plant design characteristics are highlighted. Potential sites were evaluated and selected for the PV power plants (Carrisa Plains, CA and Apalachicola, FL) and cell manufacturing plants (Dallas-Fort Worth, TX). Conceptual designs and cost estimates were developed for the plants and their components. Plant performance was modeled and the designs were optimized to minimize levelized energy costs. Overall, the flat plate design exhibited the lowest energy costs among the designs evaluated. Its levelized energy costs at the Carrisa Plains site were estimated to be 11.8 and 10.8 cents/kWh (1990 $) for 25 and 100 MW/year module production rates, respectively. This meets the 12 cents/kWh DOE near-term goal. The energy cost of the Fresnel lens plant (at Carrisa Plains and a 100 MW/year cell production rate) was estimated to be 12.4 cents/kWh and the corresponding central receiver energy cost was estimated to be 13.1 cents/kWh, both of which are very close to the DOE goal. Further design optimization efforts are still warranted and can be expected to reduce plant capital costs

  1. Loading and heating of a large flat plate at Mach 7 in the Langley 8-foot high-temperature structures tunnel

    Science.gov (United States)

    Deveikis, W. D.; Hunt, L. R.

    1973-01-01

    Surface pressure and cold-wall heating rate distributions (wall-temperature to total-temperature ratio approximately 0.2) were obtained on a large, flat calibration panel at a nominal Mach number of 7 in an 8-foot high-temperature structures tunnel. Panel dimensions were 42.5 by 60.0 in. Test objectives were: (1) to map available flat-plate loading and heating provided by the facility and (2) to determine effectiveness of leading-edge bluntness, boundary-layer trips, and aerodynamic fences in generating a uniform, streamwise turbulent flow field over the test surface of a flat-sided panel holder.

  2. Thermal analysis and performance optimization of a solar water heater flat plate collector: Application to Tetouan (Morocco)

    International Nuclear Information System (INIS)

    Dagdougui, Hanane; Ouammi, Ahmed; Robba, Michela; Sacile, Roberto

    2011-01-01

    The development of sustainable energy services like the supply of heating water may face a trade-off with a comfortable quality of life, especially in the winter season where suitable strategies to deliver an effective service are required. This paper investigates the heat transfer process as well as the thermal behavior of a flat plate collector evaluating different cover configurations. This investigation is performed according to a two-folded approach. Firstly, a complete model is formulated and implemented taking into account various modes of heat transfer in the collector. The goal is to investigate the impact of the number and types of covers on the top heat loss and the related thermal performance in order to support decision makers about the most cost-effective design. The proposed model can also be used to investigate the effect of the different parameters which may affect the performance of the collector. Secondly, a two objective constrained optimization model has been formulated and implemented to evaluate the optimality of different design approaches. The goal is to support decision makers in the definition of the optimal water flow and of the optimal collector flat area in order to give a good compromise between the collector efficiency and the output water temperature. The overall methodology has been tested on environmental data (temperature and irradiation) which are characteristic of Tetouan (Morocco). (author)

  3. Modified rational Legendre approach to laminar viscous flow over a semi-infinite flat plate

    International Nuclear Information System (INIS)

    Tajvidi, T.; Razzaghi, M.; Dehghan, M.

    2008-01-01

    A numerical method for solving the classical Blasius' equation is proposed. The Blasius' equation is a third order nonlinear ordinary differential equation , which arises in the problem of the two-dimensional laminar viscous flow over a semi-infinite flat plane. The approach is based on a modified rational Legendre tau method. The operational matrices for the derivative and product of the modified rational Legendre functions are presented. These matrices together with the tau method are utilized to reduce the solution of Blasius' equation to the solution of a system of algebraic equations. A numerical evaluation is included to demonstrate the validity and applicability of the method and a comparison is made with existing results

  4. Catalyzed combustion in a flat plate boundary layer. II. Numerical calculations

    Energy Technology Data Exchange (ETDEWEB)

    Schefer, R.; Robben, F.

    1977-09-01

    A computer program has been developed to solve the boundary layer equations for laminar flow over a heated plate with H/sub 2//air combustion. The objectives are to investigate the importance of homogeneous as opposed to catalytic surface reactions during the combustion process, and to determine the roles of heat and mass transfer and their effect on combustion. Results are presented for combustion of H/sub 2//air at an equivalence ratio of 0.1 for flow over a noncatalytic plate at a surface temperature of 1100/sup 0/K. A detailed mechanism involving 8 chemical species and 13 reactions has been used to describe the kinetics. The reactions leading to the initiation of combustion and the effect of the large diffusivity of hydrogen are discussed. The boundary conditions for catalytic surface and a simplified model to account for catalytic wall reaction are formulated. Results are presented for combustion over a catalytic surface and compared with the non-catalytic case.

  5. Effects of velocity profile and inclination on dual-jet-induced pressures on a flat plate in a crosswind

    Science.gov (United States)

    Jakubowski, A. L.; Schetz, J. A.; Moore, C. L.; Joag, R.

    1985-01-01

    An experimental study was conducted to determine surface pressure distributions on a flat plate with dual subsonic, circular jets exhausting from the surface into a crossflow. The jets were arranged in both side-by-side and tandem configurations and were injected at 90 deg and 60 deg angles to the plate, with jet-to-crossflow velocity ratio of 2.2 and 4. The major objective of the study was to determine the effect of a nonuniform (vs uniform) jet velocity profile, simulating the exhaust of a turbo-fan engine. Nonuniform jets with a high-velocity outer annulus and a low-velocity core induced stronger negative pressure fields than uniform jets with the same mass flow rate. However, nondimensional lift losses (lift loss/jet thrust lift) due to such nonuniform jets were lower than lift losses due to uniform jets. Changing the injection angle from 90 deg to 60 deg resulted in moderate (for tandem jets) to significant (for side-by-side jets) increases in the induced negative pressures, even though the surface area influenced by the jets tended to reduce as the angle decreased. Jets arranged in the side-by-side configuration led to significant jet-induced lift losses exceeding, in some cases, lift losses reported for single jets.

  6. Engineering applications and analysis of vibratory motion fourth order fluid film over the time dependent heated flat plate

    Science.gov (United States)

    Mohmand, Muhammad Ismail; Mamat, Mustafa Bin; Shah, Qayyum

    2017-07-01

    This article deals with the time dependent analysis of thermally conducting and Magneto-hydrodynamic (MHD) liquid film flow of a fourth order fluid past a vertical and vibratory plate. In this article have been developed for higher order complex nature fluids. The governing-equations have been modeled in the terms of nonlinear partial differential equations with the help of physical boundary circumstances. Two different analytical approaches i.e. Adomian decomposition method (ADM) and the optimal homotopy asymptotic method (OHAM), have been used for discoveryof the series clarification of the problems. Solutions obtained via two diversemethods have been compared using the graphs, tables and found an excellent contract. Variants of the embedded flow parameters in the solution have been analysed through the graphical diagrams.

  7. Development and life cycle analysis of double slope active solar still with flat plate collector

    Directory of Open Access Journals (Sweden)

    A.K. Sethi

    2014-02-01

    Full Text Available Potable water is an essential ingredient of socio-economic development and economic growth. Often water sources are brackish (i.e. contain dissolved salts and/or contain harmful bacteria and therefore cannot be used for drinking. In addition, there are many coastal locations where seawater is abundant but potable water is not available. This study is focused on a development of solar still with flat plat collector for water desalination considered for small scale applications at remote locations where only saline water is available. In this paper the cost of distilled water per kg has been calculated by using the concept of life cycle cost analysis. The pay back periods for different conditions of the distribution of distilled water, namely at the cost it is produced and at the selling price on market rate have been evaluated. The cost of water per kg is minimum Rs. 0.59, when the interest rate and the lifetime of solar still are taken as 4% and 50 years respectively. The lowest payback time 1.23 years is obtained when the selling price of water Rs. 10 per kg.

  8. Comparison of the effects of Al2O3 and CuO nanoparticles on the performance of a solar flat-plate collector

    Science.gov (United States)

    Munuswamy, Dinesh Babu; Madhavan, Venkata Ramanan; Mohan, Mukunthan

    2015-12-01

    To improve the efficiency of solar flat-plate collectors further, a study had been carried out wherein the conventional working fluid was replaced by nanofluids. A 25-L/day solar flat-plate water heater with collector area of 0.5 {m}^2 has been designed and fabricated. The thermosyphon system of the solar water heater was monitored at 15 locations using T-type thermocouples. Alumina and CuO nanoparticles were synthesized and characterized using Brunauer-Emmett-Teller and X-ray diffraction techniques and dispersed using ultrasonic mechanism. To stabilize the system at an optimum level, the collector is operated with volume fractions of 0.2% and 0.4% of synthesized Al2O3 and CuO nanoparticles mixed with distilled water and used in the solar flat-plate collector. The temperature profile was compared with different volume fractions of the nanoparticles in the flowing medium. Enhanced heat transfer was observed in the solar flat-plate collector using nanoparticles, and hence, it is inferred that addition of nanoparticles improves the efficiency of the solar water heaters. This paper details the temperature profile observed in the collectors, variation of insolation over the day, and change in efficiency both on the primary side (collector) and on the secondary side (storage tank) of the solar water heater.

  9. Standardized performance tests of collectors of solar thermal energy-a flat-plate collector with a single-tube serpentine flow distribution

    Science.gov (United States)

    Johnson, S.

    1976-01-01

    This preliminary data report gives basic test results of a flat-plate solar collector whose performance was determined in the NASA-Lewis solar simulator. The collector was tested over ranges of inlet temperatures, fluxes and coolant flow rates. Collector efficienty is correlated in terms of inlet temperature and flux level.

  10. Computational Fluid Dynamics Uncertainty Analysis Applied to Heat Transfer over a Flat Plate

    Science.gov (United States)

    Groves, Curtis Edward; Ilie, Marcel; Schallhorn, Paul A.

    2013-01-01

    There have been few discussions on using Computational Fluid Dynamics (CFD) without experimental validation. Pairing experimental data, uncertainty analysis, and analytical predictions provides a comprehensive approach to verification and is the current state of the art. With pressed budgets, collecting experimental data is rare or non-existent. This paper investigates and proposes a method to perform CFD uncertainty analysis only from computational data. The method uses current CFD uncertainty techniques coupled with the Student-T distribution to predict the heat transfer coefficient over a at plate. The inputs to the CFD model are varied from a specified tolerance or bias error and the difference in the results are used to estimate the uncertainty. The variation in each input is ranked from least to greatest to determine the order of importance. The results are compared to heat transfer correlations and conclusions drawn about the feasibility of using CFD without experimental data. The results provide a tactic to analytically estimate the uncertainty in a CFD model when experimental data is unavailable

  11. An Experimental and Numerical Study of Diesel Spray Impingement on a Flat Plate

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, Le; Torelli, Roberto; Zhu, Xiucheng; Scarcelli, Riccardo; Som, Sibendu; Schmidt, Henry; Naber, Jeffrey; Lee, Seong-Young

    2017-03-14

    Combustion systems with advanced injection strategies have been extensively studied, but there still exists a significant fundamental knowledge gap on fuel spray interactions with the piston surface and chamber walls. This paper is meant to provide detailed data on spray-wall impingement physics and support the spray-wall model development. The experimental work of spray-wall impingement with non-vaporizing spray characterization, was carried out in a high pressure-temperature constant-volume combustion vessel. The simultaneous Mie scattering of liquid spray and schlieren of liquid and vapor spray were carried out. Diesel fuel was injected at a pressure of 1500 bar into ambient gas at a density of 22.8 kg/m3 with isothermal conditions (fuel, ambient, and plate temperatures of 423 K). A Lagrangian-Eulerian modeling approach was employed to characterize the spray-gas and spray-wall interactions in the CONVERGE framework by means of a Reynolds-Averaged Navier-Stokes (RANS) formulation. A set of turbulence and spray break-up model constants was identified to properly match the aforementioned measurements of liquid penetration within their experimental confidence intervals. An accuracy study on varying the minimum mesh size was also performed to ensure the grid convergence of the numerical results. Experimentally validated computational fluid dynamics (CFD) simulations were then used to investigate the local spray characteristics in the vicinity of the wall with a particular focus on Sauter Mean Diameter (SMD) and Reynolds and Weber numbers. The analysis was performed by considering before- and after-impingement conditions in order to take in account the influence of the impinged wall on the spray morphology.

  12. Efficient solar energy conversion in a low cost flat-plate solar cooker fabricated for use in rural areas of the south asian countries

    International Nuclear Information System (INIS)

    Jamil, Y.; Raza, M.; Muhammad, N.

    2008-01-01

    Solar flat plate cooker has been designed and fabricated for use in the rural areas of the South Asian countries. Indigenous low cost materials have been utilized for the fabrication of the cooker. The manufacturing cost of the cooker is less than US$ 150. The aim of this work is to utilize direct solar energy for cooking purpose. A flat plate absorber made of copper is used to absorb the heat energy from the sun. The maximum recorded plate temperature of the cooker was 110 degree C at an ambient temperature of 37 degree C. At this temperature sufficient steam is produced which is channeled to the cooking region though copper pipes. The cooker is found to be effective for cooking traditional food items like pulses, vegetables, meat, eggs, etc. It may be used as an alternative of fossil fuels in the rural areas of the South Asian countries, particularly by the rural women. (author)

  13. Numerical Investigation of Wall Cooling and Suction Effects on Supersonic Flat-Plate Boundary Layer Transition Using Large Eddy Simulation

    Directory of Open Access Journals (Sweden)

    Suozhu Wang

    2015-02-01

    Full Text Available Reducing friction resistance and aerodynamic heating has important engineering significance to improve the performances of super/hypersonic aircraft, so the purpose of transition control and turbulent drag reduction becomes one of the cutting edges in turbulence research. In order to investigate the influences of wall cooling and suction on the transition process and fully developed turbulence, the large eddy simulation of spatially evolving supersonic boundary layer transition over a flat-plate with freestream Mach number 4.5 at different wall temperature and suction intensity is performed in the present work. It is found that the wall cooling and suction are capable of changing the mean velocity profile within the boundary layer and improving the stability of the flow field, thus delaying the onset of the spatial transition process. The transition control will become more effective as the wall temperature decreases, while there is an optimal wall suction intensity under the given conditions. Moreover, the development of large-scale coherent structures can be suppressed effectively via wall cooling, but wall suction has no influence.

  14. MHD boundary layer slip flow and radiative nonlinear heat transfer over a flat plate with variable fluid properties and thermophoresis

    Directory of Open Access Journals (Sweden)

    S.K. Parida

    2015-12-01

    Full Text Available This work considers the two-dimensional steady MHD boundary layer flow of heat and mass transfer over a flat plate with partial slip at the surface subjected to the convective heat flux. The particular attraction lies in searching the effects of variable viscosity and variable thermal diffusivity on the behavior of the flow. In addition, non-linear thermal radiation effects and thermophoresis are taken into account. The governing nonlinear partial differential equations for the flow, heat and mass transfer are transformed into a set of coupled nonlinear ordinary differential equations by using similarity variable, which are solved numerically by applying Runge–Kutta fourth–fifth order integration scheme in association with quasilinear shooting technique. The novel results for the dimensionless velocity, temperature, concentration and ambient Prandtl number within the boundary layer are displayed graphically for various parameters that characterize the flow. The local skin friction, Nusselt number and Sherwood number are shown graphically. The numerical results obtained for the particular case are fairly in good agreement with the result of Rahman [6].

  15. Novel flat-plate photobioreactors for microalgae cultivation with special mixers to promote mixing along the light gradient.

    Science.gov (United States)

    Huang, Jianke; Li, Yuanguang; Wan, Minxi; Yan, Yi; Feng, Fei; Qu, Xiaoxing; Wang, Jun; Shen, Guomin; Li, Wei; Fan, Jianhua; Wang, Weiliang

    2014-05-01

    Novel flat-plate photobioreactors (PBRs) with special mixers (type-a, type-b, and type-c) were designed based on increased mixing degree along the light gradient. The hydrodynamic and light regime characteristic of the novel PBRs were investigated through computational fluid dynamics. Compared with the control reactor without mixer, the novel reactors can effectively increase liquid velocity along the light gradient, the frequency of light/dark (L/D) cycles, and the algal growth rates of Chlorella pyrenoidosa. The maximum biomass concentrations in type-a, type-b, and type-c reactors were 42.9% (1.3 g L(-1)), 31.9% (1.2 g L(-1)), and 20.9% (1.1 g L(-1)) higher than that in the control reactor (0.91 g L(-1)), respectively, at an aeration rate of 1.0 vvm. Correlation analysis of algal growth rate with the characteristics of mixing and light regime shows the key factors affecting algal photoautotrophic growth are liquid velocity along the light gradient and L/D cycles rather than the macro-mixing degree. Copyright © 2014 Elsevier Ltd. All rights reserved.

  16. Improving performance of flat-plate photobioreactors by installation of novel internal mixers optimized with computational fluid dynamics.

    Science.gov (United States)

    Huang, Jianke; Feng, Fei; Wan, Minxi; Ying, Jiangguo; Li, Yuanguang; Qu, Xiaoxing; Pan, Ronghua; Shen, Guomin; Li, Wei

    2015-04-01

    A novel mixer was developed to improve the performance of flat-plate photobioreactors (PBRs). The effects of mixer were theoretically evaluated using computational fluid dynamics (CFD) according to radial velocity of fluid and light/dark cycles within reactors. The structure parameters, including the riser width, top clearance, clearance between the baffles and walls, and number of the chambers were further optimized. The microalgae culture test aiming at validating the simulated results was conducted indoor. The results showed the maximum biomass concentrations in the optimized and archetype reactors were 32.8% (0.89 g L(-1)) and 19.4% (0.80 g L(-1)) higher than that in the control reactor (0.67 g L(-1)). Therefore, the novel mixer can significantly increase the fluid velocity along the light attenuation and light/dark cycles, thus further increased the maximum biomass concentration. The PBRs with novel mixers are greatly applicable for high-efficiency cultivation of microalgae. Copyright © 2015 Elsevier Ltd. All rights reserved.

  17. Numerical investigation for heat transfer enhancement using nanofluids over ribbed confined one-end closed flat-plate

    Directory of Open Access Journals (Sweden)

    Mohamed M. Hassan

    2017-09-01

    Full Text Available Impinging jet is one of various methods of cooling with the ability to achieve high heat transfer rates and improve average surface’s Nusselt number. This method has vast industrial applications including integrated use in solar collectors, gas turbine cooling, refrigeration, air conditioning and electronics cooling. A numerical study is conducted to study the effects of using nanofluids on impinging slot jet over a flat plate with a ribbed surface. The main objective of the study was to investigate the possibility of improving the overall heat transfer rate by focusing on the improvements in the local and average surface Nusselt number values. Several parameters effects are studied including Solid Volume Fraction, Richardson number and Reynolds number. These results indicated a marked improvement in average Nusselt number with the increase in the solid volume fraction. Also, there is an amended value when the buoyancy effect is dominant over the whole domain. The results are shown in the form of streamlines, isotherms and Nusselt numbers contra other variables. The current work was simulated using a FORTRAN CFD Code, which discretizes the non-dimensional forms of the governing equations utilizing the finite volume method and solving the consequent algebraic equations using Gauss-Seidel method Utilizing TDMA.

  18. SIMULATION OF SOLAR LITHIUM BROMIDE–WATER ABSORPTION COOLING SYSTEM WITH DOUBLE GLAZED FLAT PLATE COLLECTOR FOR ADRAR

    Directory of Open Access Journals (Sweden)

    ML CHOUGUI

    2014-12-01

    Full Text Available Adrar is a city in the Sahara desert, in southern Algeria known for its hot and dry climate, where a huge amount of energy is used for air conditioning. The aim of this research is to simulate a single effect lithium bromide–water absorption chiller coupled to a double-glazed flat plate collector to supply the cooling loads for a house of 200m2 in Adrar. The thermal energy is stored in an insulated thermal storage tank. The system was designed to cover a cooling load of 10.39KW for design day of July. Thermodynamic model was established to simulate the absorption cycle. The results have shown that the collector mass flow rate has a negligible effect on the minimum required collector area, but it has a significant effect on the optimum capacity of the storage tank. The minimum required collector area was about 65.3 m2, which could supply the cooling loads for the sunshine hours of the design day for July. The operation of the system has also been considered after sunset by saving solar energy.

  19. Exact solution of two-dimensional MHD boundary layer flow over a semi-infinite flat plate

    Science.gov (United States)

    Kudenatti, Ramesh B.; Kirsur, Shreenivas R.; Achala, L. N.; Bujurke, N. M.

    2013-05-01

    In the present paper, an exact solution for the two-dimensional boundary layer viscous flow over a semi-infinite flat plate in the presence of magnetic field is given. Generalized similarity transformations are used to convert the governing boundary layer equations into a third order nonlinear differential equation which is the famous MHD Falkner-Skan equation. This equation contains three flow parameters: the stream-wise pressure gradient (β), the magnetic parameter (M), and the boundary stretch parameter (λ). Closed-form analytical solution is obtained for β=-1 and M=0 in terms of error and exponential functions which is modified to obtain an exact solution for general values of β and M. We also obtain asymptotic analyses of the MHD Falkner-Skan equation in the limit of large η and λ. The results obtained are compared with the direct numerical solution of the full boundary layer equation, and found that results are remarkably in good agreement between the solutions. The derived quantities such as velocity profiles and skin friction coefficient are presented. The physical significance of the flow parameters are also discussed in detail.

  20. Heat and Mass Transfer with Free Convection MHD Flow Past a Vertical Plate Embedded in a Porous Medium

    Directory of Open Access Journals (Sweden)

    Farhad Ali

    2013-01-01

    on free convection unsteady magnetohydrodynamic (MHD flow of viscous fluid embedded in a porous medium is presented. The flow in the fluid is induced due to uniform motion of the plate. The dimensionless coupled linear partial differential equations are solved by using Laplace transform method. The solutions that have been obtained are expressed in simple forms in terms of elementary function exp(· and complementary error function erfc(·. They satisfy the governing equations; all imposed initial and boundary conditions and can immediately be reduced to their limiting solutions. The influence of various embedded flow parameters such as the Hartmann number, permeability parameter, Grashof number, dimensionless time, Prandtl number, chemical reaction parameter, Schmidt number, and Soret number is analyzed graphically. Numerical solutions for skin friction, Nusselt number, and Sherwood number are also obtained in tabular forms.

  1. Development of ultrasonic testing technique with the large transducer to inspect the containment vessel plates of nuclear power plant embedded in concrete

    International Nuclear Information System (INIS)

    Ishida, Hitoshi; Kurozumi, Yasuo; Kaneshima, Yoshiari

    2004-01-01

    The containment vessel plates embedded in concrete on Pressurized Water Reactors are inaccessible to inspect directly. Therefore, it is advisable to prepare inspection technology to detect existence and a location of corrosion on the embedded plates indirectly. In order to establish ultrasonic testing technique to be able to inspect the containment vessel plates embedded in concrete widely at the accessible point, experiments to detect artificial hollows simulating corrosion on a surface of a carbon steel plate mock-up covered with concrete simulating the embedded containment vessel plates were carried out with newly made ultrasonic transducers. We made newly low frequency (0.3 MHz and 0.5 MHz) surface shear horizontal (SH) wave transducers combined with three large active elements, which were equivalent to a 120mm width element. As a result of the experiments, the surface SH transducers could detect clearly the echo from the hollows with a depth of 9.5 mm and 19 mm at a distance of 1500mm from the transducers on the surface of the mock-up covered with concrete. Therefore, we evaluate that it is possible to detect the defects such as corrosion on the plates embedded in concrete with the newly made low frequency surface SH transducers with large elements. (author)

  2. Validation of a simple dynamic thermal performance characterization model based on the piston flow concept for flat-plate solar collectors

    DEFF Research Database (Denmark)

    Deng, Jie; Yang, Ming; Ma, Rongjiang

    2016-01-01

    A simple dynamic characterization model of flat-plate solar collectors based on the piston flow concept is used both to identify the collector characteristic parameters and to predict the dynamic thermal performance. The heat transport time originally defined as (1 − e−1)−1τC by Amrizal et al....... (2012) for the model turns out to be the collector static response time constant τC by analytical derivation. The nonlinear least squares method is applied to determine the characteristic parameters of a flat-plate solar air collector previously tested by the authors. Then the obtained parameters...... dynamic model based on the first-order difference method is compared to that of the numerical solution of the collector ordinary differential equation (ODE) model using the fourth-order Runge-Kutta method. The improved thermal inertia model (TIM) on the basis of closed-form solution presented by Deng et...

  3. Studies on the scale-up of biomass production with Scenedesmus spp. in flat-plate gas-lift photobioreactors.

    Science.gov (United States)

    Koller, Anja Pia; Wolf, Lara; Brück, Thomas; Weuster-Botz, Dirk

    2018-02-01

    Microalgae are flagged as next-generation biomass feedstock for sustainable chemicals and fuels, because they actively metabolize the climate gas CO 2 , do not impact food production, and are not associated with land-use change. Scaling microalgae cultivation processes from lab to pilot scale is key to assessing their economic and ecologic viability. In this work, process performances of two different Scenedesmus species were studied using a 300 L flat-plate gas-lift photobioreactor system (14 m 2 photosynthetically active area) equipped with a customized, broad-spectrum LED illumination system. Scaling up of batch processes from laboratory scale (1.8 L, 0.09 m 2 ) to the geometrically equivalent pilot scale resulted in reduced volumetric biomass productivities of up to 11% and reduced areal biomass productivities of up to 7.5% at the pilot scale. Since biofilm formation was solely detected at pilot scale, biofilm most likely impaired scalability. Nevertheless, repeated addition of nutrients (BG-11) at pilot scale resulted in a 13.5 g CDW L -1 biomass concentration within a 15 day process time with S. obtusiusculus at constant incident-photon flux densities of 1400 µmol photons m -2 s -1 and more than 19.5 g CDW L 1 after 30 days with Scenedesmus ovalternus SAG 52.80 at constant incident-photon flux densities of 750 µmol photons m -2 s -1 . This resulted in areal biomass productivities of 14 g CDW m -2 day -1 (S. ovalternus) and 19 g CDW m -2 day -1 (S. obtusiusculus), respectively.

  4. Numerical Investigation of Laminar Diffusion Flames Established on a Horizontal Flat Plate in a Parallel Air Stream

    Directory of Open Access Journals (Sweden)

    E. D. Gopalakrishnan

    2011-06-01

    Full Text Available Numerical investigation of laminar diffusion flames established on a flat plate in a parallel air stream is presented. A numerical model with a multi-step chemical kinetics mechanism, variable thermo-physical properties, multi-component species diffusion and a radiation sub-model is employed for this purpose. Both upward and downward injection of fuel has been considered in a normal gravity environment. The thermal and aerodynamic structure of the flame has been explained with the help of temperature and species contours, net reaction rate of fuel and streamlines. Flame characteristics and stability aspects for several air and fuel velocity combinations have been studied. An important characteristic of a laminar boundary layer diffusion flame with upward injection of fuel is the velocity overshoot that occurs near the flame zone. This is not observed when the fuel is injected in the downward direction. The flame standoff distance is slightly higher for the downward injection of fuel due to increase in displacement thickness of boundary layer. Influence of an obstacle, namely the backward facing step, on the flame characteristics and stability aspects is also investigated. Effects of air and fuel velocities, size and location of the step are studied in detail. Based on the air and fuel velocities, different types of flames are predicted. The use of a backward-facing step as a flame holding mechanism for upward injection of fuel, results in increased stability limits due to the formation of a recirculation zone behind the step. The predicted stability limits match with experimentally observed limits. The step location is seen to play a more important role as compared to the step height in influencing the stability aspects of flames.

  5. Diseño de un colector solar de placa plana; Design of a Solar Flat Plate Collector

    Directory of Open Access Journals (Sweden)

    Jeovany Rafael Rodríguez Mejía

    2015-12-01

    Full Text Available En el presente artículo se integra el uso de un software de diseño mecánico y un algoritmo de simulación de la operación de un colector solar de placa plana, con el objetivo de simplificar el proceso de diseño y manufactura de este último. Se exponen los resultados de la simulación de la operación del colector solar considerando diferentes combinaciones en los parámetros de los materiales utilizados, tales como sus propiedades y características físico químicas, además de la variación de las dimensiones del sistema adiseñar. Finalmente en el artículo se evalúa la operación de un colector solar para las condiciones climatológicas típicas de la irradiancia, velocidad de viento y temperatura ambiente a partir de una serie de curvas sinusoidales, típicas de Cuba, validándose la viabilidad del algoritmo como apoyo en la etapa de diseño y selección de materiales.In this article the use of mechanical design software and an algorithm for simulating the operation of a flat plate solar collector, with the objective of simplifying the process of design and manufacture of the latter isintegrated. The simulation results of the operation of the solar collector considering different combinations in the parameters of the materials used, such as its physicochemical properties and features in addition to thevariation of the dimensions of the system design are set. The article finally evaluates the operation of a solar collector for typical climatic conditions of irradiance, wind speed and ambient temperature from a series ofsinusoidal, typical Cuba curves is evaluated, validating the feasibility of the algorithm as support in step design and material selection.

  6. Finite-span rotating flat-plate wings at low reynolds number and the effects of aspect ratio

    Science.gov (United States)

    Carr, Zakery R.

    In the complex and dangerous environments of the modern warrior and emergency professional, the small size, maneuverability, and stealth of flapping-wing micro air vehicles (MAVs), scaled to the size of large insects or hummingbirds, has the potential to provide previously inaccessible levels of situational awareness, reconnaissance capability, and flexibility directly to the front lines. Although development of such an efficient, autonomous, and capable MAV is years away, there are immediate contributions that can be made to the fundamental science of the flapping-wing-type propulsion that makes MAVs so attractive. This investigation contributes to those fundamentals by considering the unsteady vortex dynamics problem of a rigid, rectangular flat plate at a fixed angle of attack rotating from rest---a simplified hovering half-stroke. Parameters are chosen to be biologically-relevant and relevant to MAVs operating at Reynolds numbers of O (103), and experiments are performed in a 50% by mass glycerin-water mixture. These experiments use novel application of methodologies verified by rigorous uncertainty analysis. The overall objective is to understand the vortex formation and forces as well as aspect ratio ( AR) effects. Of interest is the overall, time-varying, three-dimensional vortex structure obtained qualitatively from dye visualization and quantitatively from volumes reconstructed using planar stereoscopic digital particle image velocimetry (S-DPIV) measurements. The velocity information from S-DPIV also allows statements to be made on leading-edge vortex (LEV) stability, spanwise flow, LEV and tip-vortex (TV) circulation, and numerous circulation scalings. Force measurements are made and the lift coefficient is discussed in the context of the flow structure, the dimensional lift and the ability to relate velocity and force measurements going forward. AR effects is a topic of continued interest to those performing MAV-related research and also a primary

  7. The Effect of the Angle of Inclination on the Efficiency in a Medium-Temperature Flat Plate Solar Collector

    Directory of Open Access Journals (Sweden)

    Orlando Montoya-Marquez

    2017-01-01

    Full Text Available In this experimental work, the effects of the inclination angle β and the (Ti − Ta/G on the efficiency and the UL-value were investigated on a medium-temperature flat plate solar collector. The experiments were based on steady-state energy balance, by heat flow calorimetry at indoor conditions and considering the standard American National Standard Institute/American Society of Heating Refrigerating and Air Conditioning Engineers (ANSI/ASHRAE 93-2010. The solar radiation was emulated by the Joule effect using a proportional integral derivative (PID control considering two conditions of the absorber temperature, Case 1: (To − Ti > 0, and Case 2: (To − Ti = 0. The inclination angles were 0°–90° and the (Ti − Ta/G were 0.044–0.083 m2·°C/W and 0.124–0.235 for Case 1 and Case 2, respectively. The variations of β and (Ti − Ta/G cause efficiency changes up to 0.37–0.45 (21.6% and 0.31–0.45 (45.0%, respectively, for Case 1. Also, the UL(β reached changes up to 10.1–12.0 W/m2·°C (19.2% and 8.4–12.0 W/m2·°C (41.7%, respectively, for Case 1. The most significant changes of UL(β/UL(90° vs. β were 8.0% at the horizontal position for Case 1, while for Case 2, the maximum change was 1.8% only. Therefore, the changes of the inclination angle cause significant variations of the convective flow patterns within the collector, which leads to considerable variation of the collector efficiency and its UL value.

  8. Quality Test of Flexible Flat Cable (FFC) With Short Open Test Using Law Ohm Approach through Embedded Fuzzy Logic Based On Open Source Arduino Data Logger

    Science.gov (United States)

    Rohmanu, Ajar; Everhard, Yan

    2017-04-01

    A technological development, especially in the field of electronics is very fast. One of the developments in the electronics hardware device is Flexible Flat Cable (FFC), which serves as a media liaison between the main boards with other hardware parts. The production of Flexible Flat Cable (FFC) will go through the process of testing and measuring of the quality Flexible Flat Cable (FFC). Currently, the testing and measurement is still done manually by observing the Light Emitting Diode (LED) by the operator, so there were many problems. This study will be made of test quality Flexible Flat Cable (FFC) computationally utilize Open Source Embedded System. The method used is the measurement with Short Open Test method using Ohm’s Law approach to 4-wire (Kelvin) and fuzzy logic as a decision maker measurement results based on Open Source Arduino Data Logger. This system uses a sensor current INA219 as a sensor to read the voltage value thus obtained resistance value Flexible Flat Cable (FFC). To get a good system we will do the Black-box testing as well as testing the accuracy and precision with the standard deviation method. In testing the system using three models samples were obtained the test results in the form of standard deviation for the first model of 1.921 second model of 4.567 and 6.300 for the third model. While the value of the Standard Error of Mean (SEM) for the first model of the model 0.304 second at 0.736 and 0.996 of the third model. In testing this system, we will also obtain the average value of the measurement tolerance resistance values for the first model of - 3.50% 4.45% second model and the third model of 5.18% with the standard measurement of prisoners and improve productivity becomes 118.33%. From the results of the testing system is expected to improve the quality and productivity in the process of testing Flexible Flat Cable (FFC).

  9. Forces and Moments on Flat Plates of Small Aspect Ratio with Application to PV Wind Loads and Small Wind Turbine Blades

    Directory of Open Access Journals (Sweden)

    Xavier Ortiz

    2015-03-01

    Full Text Available To improve knowledge of the wind loads on photovoltaic structures mounted on flat roofs at the high angles required in high latitudes, and to study starting flow on low aspect ratio wind turbine blades, a series of wind tunnel tests were undertaken. Thin flat plates of aspect ratios between 0.4 and 9.0 were mounted on a sensitive three-component instantaneous force and moment sensor. The Reynolds numbers varied from 6 × 104 to 2 × 105. Measurements were made for angles of attack between 0° and 90° both in the free stream and in wall proximity with increased turbulence and mean shear. The ratio of drag to lift closely follows the inverse tangent of the angle of incidence for virtually all measurements. This implies that the forces of interest are due largely to the instantaneous pressure distribution around the plate and are not significantly influenced by shear stresses. The instantaneous forces appear most complex for the smaller aspect ratios but the intensity of the normal force fluctuations is between 10% and 20% in the free-steam but can exceed 30% near the wall. As the wind tunnel floor is approached, the lift and drag reduce with increasing aspect ratio, and there is a reduction in the high frequency components of the forces. It is shown that the centre of pressure is closer to the centre of the plates than the quarter-chord position for nearly all cases.

  10. Flatness-based stabilisation of a single-axis synchronous generator model with embedded trajectories of motion

    Energy Technology Data Exchange (ETDEWEB)

    Anene, E.C.; Aliyu, U.O. [Abubakar Tafawa Balewa Univ., Bauchi (Nigeria). Electrical Engineering Program; Agee, J.T. [Botswana Univ., Gaborone (Botswana). Dept. of Electrical Engineering

    2008-07-01

    A dynamic feedback linearization theory was applied to a third order single machine infinite bus system. The flatness property of a third-order synchronous generator was modelled in order to generate trajectories of motion for the stabilized plant to return to equilibrium after a transient event. The dynamics of the systems stabilized with the trajectories of motion were then analyzed. The simulations compared the effects of the controlled generator with and without trajectories. Results of the study showed that the nonlinear dynamic controller achieved asymptotic stability in the damping and stabilizing oscillations arising from the faults induced in the system. The system was able to track trajectories generated from a polynomial. The generated load angle trajectory and velocity during fault oscillations showed an improved system response when compared to results obtained from a set point stabilization method designed to return the system to post-fault equilibrium values. 21 refs., 1 tab., 12 figs.

  11. Experimental Investigation of a Solar Greenhouse Heating System Equipped with a Parabolic Trough Solar Concentrator and a Double-Purpose Flat Plate Solar Collector

    Directory of Open Access Journals (Sweden)

    M Jafari

    2017-10-01

    Full Text Available Introduction Greenhouses provide a suitable environment in which all the parameters required for growing the plants can be controlled throughout the year. Greenhouse heating is one of the most important issues in productivity of a greenhouse. In many countries, heating costs in the greenhouses are very high, having almost 60-80% of the total production costs. In recent years, several studies have attempted to reduce the heating costs of the greenhouses by applying more energy efficient equipment and using the renewable energy sources as alternatives or supplementary to the fossil fuels. In the present study a novel solar greenhouse heating system equipped with a parabolic trough solar concentrator (PTC and a flat-plate solar collector has been developed. Therefore, the aim of this paper is to investigate the performance of the proposed heating system at different working conditions. Materials and Methods The presented solar greenhouse heating system was comprised of a parabolic trough solar concentrator (PTC, a heat storage tank, a pump and a flat plate solar collector. The PTC was constructed from a polished stainless steel sheet (as the reflector and a vacuum tube receiver. The PTC was connected to the tank by using insulated tubes and a water pump was utilized to circulate the working fluid trough the PTC and the heat exchanger installed between walls of the tank. The uncovered solar collector was located inside the greenhouse. During the sunshine time, a fraction of the total solar radiation received inside the greenhouse is absorbed by the solar collector. This rises the temperature of the working fluid inside the collector which led to density reduction and natural flow of the fluid. In other words, the collector works as a natural flow flat plate solar collector during the sunshine time. At night, when the greenhouse temperature is lower than tank temperature, the fluid flows in a reverse direction through the solar collector and the

  12. Charts Adapted from Van Driest's Turbulent Flat-plate Theory for Determining Values of Turbulent Aerodynamic Friction and Heat-transfer Coefficients

    Science.gov (United States)

    Lee, Dorothy B; Faget, Maxime A

    1956-01-01

    A modified method of Van Driest's flat-plate theory for turbulent boundary layer has been found to simplify the calculation of local skin-friction coefficients which, in turn, have made it possible to obtain through Reynolds analogy theoretical turbulent heat-transfer coefficients in the form of Stanton number. A general formula is given and charts are presented from which the modified method can be solved for Mach numbers 1.0 to 12.0, temperature ratios 0.2 to 6.0, and Reynolds numbers 0.2 times 10 to the 6th power to 200 times 10 to the 6th power.

  13. Electricity from photovoltaic solar cells. Flat-Plate Solar Array Project of the US Department of Energy's National Photovoltaics Program: 10 years of progress

    Science.gov (United States)

    Christensen, Elmer

    1985-01-01

    The objectives were to develop the flat-plate photovoltaic (PV) array technologies required for large-scale terrestrial use late in the 1980s and in the 1990s; advance crystalline silicon PV technologies; develop the technologies required to convert thin-film PV research results into viable module and array technology; and to stimulate transfer of knowledge of advanced PV materials, solar cells, modules, and arrays to the PV community. Progress reached on attaining these goals, along with future recommendations are discussed.

  14. Natural convection of nanofluids over a convectively heated vertical plate embedded in a porous medium

    Energy Technology Data Exchange (ETDEWEB)

    Ghalambaz, M.; Noghrehabadi, A.; Ghanbarzadeh, A., E-mail: m.ghalambaz@gmail.com, E-mail: ghanbarzadeh.a@scu.ac.ir [Department of Mechanical Engineering, Shahid Chamran University of Ahvaz, Ahvaz (Iran, Islamic Republic of)

    2014-04-15

    In this paper, the natural convective flow of nanofluids over a convectively heated vertical plate in a saturated Darcy porous medium is studied numerically. The governing equations are transformed into a set of ordinary differential equations by using appropriate similarity variables, and they are numerically solved using the fourth-order Runge-Kutta method associated with the Gauss-Newton method. The effects of parametric variation of the Brownian motion parameter (Nb), thermophoresis parameter (Nt) and the convective heating parameter (Nc) on the boundary layer profiles are investigated. Furthermore, the variation of the reduced Nusselt number and reduced Sherwood number, as important parameters of heat and mass transfer, as a function of the Brownian motion, thermophoresis and convective heating parameters is discussed in detail. The results show that the thickness of the concentration profiles is much lower than the temperature and velocity profiles. For low values of the convective heating parameter (Nc), as the Brownian motion parameter increases, the non-dimensional wall temperature increases. However, for high values of Nc, the effect of the Brownian motion parameter on the non-dimensional wall temperature is not significant. As the Brownian motion parameter increases, the reduced Sherwood number increases and the reduced Nusselt number decreases. (author)

  15. A synthetic layout optimization of discrete heat sources flush mounted on a laminar flow cooled flat plate based on the constructal law

    International Nuclear Information System (INIS)

    Shi, Zhongyuan; Dong, Tao

    2015-01-01

    Highlights: • A constructal thermohydraulic optimization was carried out. • The effect of manufacturing limit on the Pareto solution set was discussed. • The suitable constraints may differ from those on a quasi-continuous basis. - Abstract: A synthetic optimization is presented for the Pareto layouts of discrete heat sources (with uniform heat flux) flush mounted on a flat plate over which laminar flow serves for cooling purpose. The peak temperatures and the flow drag loss are minimizing simultaneously provided that the total heat dissipation rate and the plate length are held constant. The impact of the manufacturing limit, i.e. the minimum length of the heated or the adiabatic patch, on the optimum layout is discussed. The results in general comply with analytical deduction based on the constructal theory. However in a finite length scenario, geometric constraints on the adiabatic spacing differ from that fits the situation in which maximum heat transfer performance alone is to be achieved.

  16. Embedded nonvolatile memory devices with various silicon nitride energy band gaps on glass used for flat panel display applications

    International Nuclear Information System (INIS)

    Son, Dang Ngoc; Van Duy, Nguyen; Jung, Sungwook; Yi, Junsin

    2010-01-01

    Nonvolatile memory (NVM) devices with a nitride–nitride–oxynitride stack structure on a rough poly-silicon (poly-Si) surface were fabricated using a low-temperature poly-Si (LTPS) thin film transistor technology on glass substrates for application of flat panel display (FPD). The plasma-assisted oxidation/nitridation method is used to form a uniform oxynitride with an ultrathin tunneling layer on a rough LTPS surface. The NVMs, using a Si-rich silicon nitride film as a charge-trapping layer, were proposed as one of the solutions for the improvement of device performance such as the program/erase speed, the memory window and the charge retention characteristics. To further improve the vertical scaling and charge retention characteristics of NVM devices, the high-κ high-density N-rich SiN x films are used as a blocking layer. The fabricated NVM devices have outstanding electrical properties, such as a low threshold voltage, a high ON/OFF current ratio, a low subthreshold swing, a low operating voltage of less than ±9 V and a large memory window of 3.7 V, which remained about 1.9 V over a period of 10 years. These characteristics are suitable for electrical switching and data storage with in FPD application

  17. Experimental investigation of forced-convection in a finned rhombic tube of the flat-plate solar collectors

    DEFF Research Database (Denmark)

    Taherian, Hessam; Yazdanshenas, Eshagh

    2006-01-01

    Due to scarcity of literature on forced-convection heat transfer in a solar collector with rhombic cross-section absorbing tubes, a series of experiments was arranged and conducted to determine heat transfer coefficient. In this study, a typical rhombic cross-section finned tube of flat...

  18. Effect of Embedded Pd Microstructures on the Flat-Band-Voltage Operation of Room Temperature ZnO-Based Liquid Petroleum Gas Sensors

    Science.gov (United States)

    Ali, Ghusoon M.; Thompson, Cody V.; Jasim, Ali K.; Abdulbaqi, Isam M.; Moore, James C.

    2013-01-01

    Three methods were used to fabricate ZnO-based room temperature liquid petroleum gas (LPG) sensors having interdigitated metal-semiconductor-metal (MSM) structures. Specifically, devices with Pd Schottky contacts were fabricated with: (1) un-doped ZnO active layers; (2) Pd-doped ZnO active layers; and (3) un-doped ZnO layers on top of Pd microstructure arrays. All ZnO films were grown on p-type Si(111) substrates by the sol-gel method. For devices incorporating a microstructure array, Pd islands were first grown on the substrate by thermal evaporation using a 100 μm mesh shadow mask. We have estimated the sensitivity of the sensors for applied voltage from –5 to 5 V in air ambient, as well as with exposure to LPG in concentrations from 500 to 3,500 ppm at room temperature (300 K). The current-voltage characteristics were studied and parameters such as leakage current, barrier height, reach-through voltage, and flat-band voltage were extracted. We include contributions due to the barrier height dependence on the electric field and tunneling through the barrier for the studied MSM devices. The Pd-enhanced devices demonstrated a maximum gas response at flat-band voltages. The study also revealed that active layers consisting of Pd microstructure embedded ZnO films resulted in devices exhibiting greater gas-response as compared to those using Pd-doped ZnO thin films or un-doped active layers.

  19. Experimental determination of new statistical correlations for the calculation of the heat transfer coefficient by convection for flat plates, cylinders and tube banks

    Directory of Open Access Journals (Sweden)

    Ismael Fernando Meza Castro

    2017-07-01

    Full Text Available Introduction: This project carried out an experimental research with the design, assembly, and commissioning of a convection heat transfer test bench. Objective: To determine new statistical correlations that allow knowing the heat transfer coefficients by air convection with greater accuracy in applications with different heating geometry configurations. Methodology: Three geometric configurations, such as flat plate, cylinders and tube banks were studied according to their physical properties through Reynolds and Prandtl numbers, using a data transmission interface using Arduino® controllers Measured the air temperature through the duct to obtain real-time data and to relate the heat transferred from the heating element to the fluid and to perform mathematical modeling in specialized statistical software. The study was made for the three geometries mentioned, one power per heating element and two air velocities with 10 repetitions. Results: Three mathematical correlations were obtained with regression coefficients greater than 0.972, one for each heating element, obtaining prediction errors in the heat transfer convective coefficients of 7.50% for the flat plate, 2.85% for the plate Cylindrical and 1.57% for the tube bank. Conclusions: It was observed that in geometries constituted by several individual elements, a much more accurate statistical adjustment was obtained to predict the behavior of the convection heat coefficients, since each unit reaches a stability in the surface temperature profile with Greater speed, giving the geometry in general, a more precise measurement of the parameters that govern the transfer of heat, as it is in the case of the geometry of the tube bank.

  20. Effect of openings collectors and solar irradiance on the thermal efficiency of flat plate-finned collector for indirect-type passive solar dryer

    Science.gov (United States)

    Batubara, Fatimah; Dina, Sari Farah; Klaudia Kathryn Y., M.; Turmuzi, M.; Siregar, Fitri; Panjaitan, Nora

    2017-06-01

    Research on the effect of openings solar collector and solar irradiance to thermal efficiency has been done. Solar collector by flat plate-finned type consists of 3 ply insulator namely wood, Styrofoam and Rockwool with thickness respectively are 10 mm, 25 mm and 50 mm. Absorber plate made of aluminum sheet with thickness of 0.30 mm, painted by black-doff. Installation of 19 units fins (length x height x thickness: 1000x20x10 mm) on the collector will increase surface area of absorber so it can receive much more solar energy. The solar collector cover is made of glass (thickness of 5 mm). During the research, the solar irradiance and temperature of collector are measured and recorded every five minutes. Temperature measurement performed on the surface of the absorber plate, inside of collector, surface cover and the outer side insulator (plywood). This data is used to calculate the heat loss due to conduction, convection and radiation on the collector. Openings of collectors vary as follows: 100%, 75%, 15% and 0% (total enclosed). The data collecting was conducted from 09.00 am to 17.00 pm and triplicates. The collector thermal efficiency calculated based on the ratio of the amount of heat received to the solar irradiance absorbed. The results show that each of openings solar collector has different solar irradiance (because it was done on a different day) which is in units of W/m2: 390 (100% open), 376 (75% open), 429 (15% open), and 359 (totally enclosed). The highest thermal efficiency is in openings variation of 15% opened. These results indicate that the efficiency of the collector is influenced by the solar irradiance received by the collector and the temperature on the collector plate. The highest thermal efficiency is in variation of openings 15%. These indicate that the efficiency of the collector was influenced by solar irradiance received by the collector and openings of the collector plate.

  1. An analysis of the relaxation of laminar boundary layer on a flat plate after passage of an interface with application to expansion-tube flows

    Science.gov (United States)

    Gupta, R. N.

    1972-01-01

    The relaxation of the accelerating-gas boundary layer to the test-gas boundary layer over a flat plate in an expansion tube is analyzed. Several combinations of test gas and acceleration gas are considered. The problem is treated in two conically similar limits: (1) when the time lag between the arrival of the shock and the interface at the leading edge of the plate is very large, and (2) when this lag is negligible. The time-dependent laminar-boundary-layer equations of a binary mixture of perfect gases are taken as the flow-governing equations. This coupled set of differential equations, written in terms of the Lam-Crocco variables, has been solved by a line-relaxation finite-difference techniques. The results presented include the Stanton number and the local skin-friction coefficient as functions of shock Mach number and the nondimensional distance-time variable. The results indicate that more than 95 percent of the test-gas boundary layer exists over a length, measured from the leading edge of the plate, equal to about three-tenths of the distance traversed by the interface in the free stream.

  2. Flat sources for active acoustic shielding based on distributed control of a vibrating plate coupled with a thin cavity

    NARCIS (Netherlands)

    Berkhoff, Arthur P.; Ho, J.

    2013-01-01

    Air cavities between plates are often used to improve noise insulation by passive means, especially at high frequencies. Such configurations may suffer from resonances, such as due to the mass-air-mass resonance. Lightweight structures, which tend to be undamped, may suffer from structural

  3. Embedded LTPS flash cells with oxide-nitride-oxynitride stack structure for realization of multi-function mobile flat panel displays

    Energy Technology Data Exchange (ETDEWEB)

    Jung, Sungwook; Kim, Jaehong; Son, Hyukjoo; Jang, Kyungsoo; Cho, Jaehyun; Kim, Kyunghae; Choi, Byoungdeog; Yi, Junsin [School of Information and Communication Engineering, Sungkyunkwan University, Suwon, 440-746 (Korea, Republic of)], E-mail: yi@yurim.skku.ac.kr

    2008-09-07

    In this paper, embedded flash (eFlash) cells were fabricated for realization of multi-functions, such as systems on panels (SOPs) and threshold voltage (V{sub TH}) stabilization of flat panel displays (FPDs). Fabrication was via low temperature polycrystalline silicon (LTPS) thin film transistor (TFT) technology and an oxide-nitride-oxynitride (ONOn) stack structure on glass. Poly-silicon (poly-Si) on glass, which was annealed via an excimer laser, has a very rough surface. To fabricate LTPS eFlash cells on glass with a very rough poly-Si surface, plasma-assisted oxynitridation was performed; nitrous oxide (N{sub 2}O) served as a reactive gas. LTPS eFlash cells have excellent TFT electrical properties, such as V{sub TH}, a high On/Off current ratio and a low sub-threshold swing (S). The results demonstrate that eFlash cells fabricated on glass with a rough silicon surface, via an ONOn stack structure, have switching characteristics suitable for data storage, such as a low operating voltage (<{+-}10 V) suitable for mobile FPDs, a threshold voltage window, {delta}V{sub TH}, which exceeds 2.3 V, between the programming and erasing (P/E) states, over a period of 10 years, and the capacity to retain the initial {delta}V{sub TH} over a period of 10{sup 5} P/E operations. (fast track communication)

  4. A comparison of micro-structured flat-plate and cross-cut heat sinks for thermoelectric generation application

    DEFF Research Database (Denmark)

    Rezania, Alireza; Rosendahl, L. A.

    2015-01-01

    equations for the flow and heat transfer are solved using computational fluid dynamics (CFD) in conjunction with the thermoelectric characteristics of the TEG over a wide range of flow inlet velocities. The results show that at small flow inlet velocity, the maximum net power output in TEG with plate......Heat sink configuration has strong impact on net power output from thermoelectric generators (TEGs). A weak cooling strategy can even cause negative net power output from the thermoelectric device. However, the net power output can be significantly improved by optimal design of the heat sink....... In this study, a micro-structured plate-fin heat sink is compared to a modified design of cross-cut heat sink applied to TEGs over a range of temperatures and thermal conductivities. The particular focus of this study is to explore the net power output from the TEG module. The three-dimensional governing...

  5. Measuring the efficacy of flunixin meglumine and meloxicam for lame sows using a GAITFour pressure mat and an embedded microcomputer-based force plate system.

    Science.gov (United States)

    Pairis-Garcia, M D; Johnson, A K; Abell, C A; Coetzee, J F; Karriker, L A; Millman, S T; Stalder, K J

    2015-05-01

    Pain associated with lameness on farm is a negative affective state and has a detrimental impact on individual farm animal welfare. Animal pain can be managed utilizing husbandry tools and through pharmacological approaches. Nonsteroidal anti-inflammatory drugs including meloxicam and flunixin meglumine are compounds used in many species for pain management because they are easy to administer, long lasting, and cost-effective. Assessing an animal's biomechanical parameters using such tools as the embedded microcomputer-based force plate system and GAITFour pressure mat gait analysis walkway system provides an objective, sensitive, and precise means to detect animals in lame states. The objectives of this study were to determine the efficacy of meloxicam and flunixin meglumine for pain mitigation in lame sows using the embedded microcomputer-based force plate system and GAITFour pressure mat gait analysis walkway system. Lameness was induced in 24 mature mixed-parity sows using a chemical synovitis model and compared 3 treatments: meloxicam (1.0 mg/kg per os), flunixin meglumine (2.2 mg/kg intramuscular) and sterile saline (intramuscular). Weight distribution (kg) for each foot was collected twice per second for a total of 5 min for each time point using the embedded microcomputer-based force plate system. Stride time, stride length, maximum pressure, activated sensors, and stance time were collected using 3 quality walks (readings) for each time point using the GAITFour pressure mat gait analysis walkway system. Sows administered flunixin meglumine or meloxicam tolerated more weight on their lame leg compared with saline sows (P embedded microcomputer-based force plate system and GAITFour pressure mat gait analysis walkway system. Analgesic drugs may be a key tool to manage negative pain affective states associated with lameness.

  6. A comparison of micro-structured flat-plate and cross-cut heat sinks for thermoelectric generation application

    International Nuclear Information System (INIS)

    Rezania, A.; Rosendahl, L.A.

    2015-01-01

    Highlights: • Plate-fin and cross-cut heat sinks (PFHS, CCHS) are compared for TEG application. • The three-dimensional governing equations for flow and thermoelectrics are solved. • Power generation, pumping power and optimal thermoelectric net power are studied. • Overall net power in the TEG with PFHS is slightly superior to that with CCHS. • Results are in a good agreement with the previous computational studies. - Abstract: Heat sink configuration has strong impact on net power output from thermoelectric generators (TEGs). A weak cooling strategy can even cause negative net power output from the thermoelectric device. However, the net power output can be significantly improved by optimal design of the heat sink. In this study, a micro-structured plate-fin heat sink is compared to a modified design of cross-cut heat sink applied to TEGs over a range of temperatures and thermal conductivities. The particular focus of this study is to explore the net power output from the TEG module. The three-dimensional governing equations for the flow and heat transfer are solved using computational fluid dynamics (CFD) in conjunction with the thermoelectric characteristics of the TEG over a wide range of flow inlet velocities. The results show that at small flow inlet velocity, the maximum net power output in TEG with plate-fin heat sink is higher, while the TEG with cross-cut heat sink has higher maximum net power output at high flow inlet velocity. The maximum net power output is equal in the TEGs with plate-fin heat sink and cross-cut heat sink

  7. PIV-based estimation of unsteady loads on a flat plate at high angle of attack using momentum equation approaches

    Science.gov (United States)

    Guissart, A.; Bernal, L. P.; Dimitriadis, G.; Terrapon, V. E.

    2017-05-01

    This work presents, compares and discusses results obtained with two indirect methods for the calculation of aerodynamic forces and pitching moment from 2D Particle Image Velocimetry (PIV) measurements. Both methodologies are based on the formulations of the momentum balance: the integral Navier-Stokes equations and the "flux equation" proposed by Noca et al. (J Fluids Struct 13(5):551-578, 1999), which has been extended to the computation of moments. The indirect methods are applied to spatio-temporal data for different separated flows around a plate with a 16:1 chord-to-thickness ratio. Experimental data are obtained in a water channel for both a plate undergoing a large amplitude imposed pitching motion and a static plate at high angle of attack. In addition to PIV data, direct measurements of aerodynamic loads are carried out to assess the quality of the indirect calculations. It is found that indirect methods are able to compute the mean and the temporal evolution of the loads for two-dimensional flows with a reasonable accuracy. Nonetheless, both methodologies are noise sensitive, and the parameters impacting the computation should thus be chosen carefully. It is also shown that results can be improved through the use of dynamic mode decomposition (DMD) as a pre-processing step.

  8. Analysis and validation of a quasi-dynamic model for a solar collector field with flat plate collectors and parabolic trough collectors in series for district heating

    DEFF Research Database (Denmark)

    Tian, Zhiyong; Perers, Bengt; Furbo, Simon

    2018-01-01

    A quasi-dynamic TRNSYS simulation model for a solar collector field with flat plate collectors and parabolic trough collectors in series was described and validated. A simplified method was implemented in TRNSYS in order to carry out long-term energy production analyses of the whole solar heating...... performance of the hybrid solar district heating plants is also presented. The measured and simulated results show that the integration of parabolic trough collectors in solar district heating plants can guarantee that the system produces hot water with relatively constant outlet temperature. The daily energy...... plant. The advantages of the model include faster computation with fewer resources, flexibility of different collector types in solar heating plant configuration and satisfactory accuracy in both dynamic and long-term analyses. In situ measurements were taken from a pilot solar heating plant with 5960 m...

  9. Modelling and analysis of a heating system for industrial application, using flat-plate solar-collectors with single and double cover glasses

    International Nuclear Information System (INIS)

    Maraslis, A.A.

    1987-01-01

    A calculational methodology for dimensioning a flat-plate solar-collector arrangement, which fulfils the energy requirement of a heat transfer system in one of the steps of the uranium recovery process, from the uranium-phosphorus ore at Itataia, Ceara, in Brazil. The PROSOL-1 and PROSOL-2 computer codes for determining the total area required by collector arrangement-with single and double cover glasses, respectively- taking into account the system design and meteorological conditions of the regions, were used. These codes optimize the series/parallel arranges of collectors in the whole complex and, determine the water flow in each system and the average efficiency of the collector arrangement. The technical and economical feasibility for both collector arrangement with single and double cover glasses, were verified. It was concluded that, the last one is more advantageous, allowing a reduction of 30% in the total collector area. (M.C.K.) [pt

  10. Thermo-economic optimization of a hybrid solar district heating plant with flat plate collectors and parabolic trough collectors in series

    DEFF Research Database (Denmark)

    Tian, Zhiyong; Perers, Bengt; Furbo, Simon

    2018-01-01

    Large-scale solar heating plants for district heating networks have gained great success in Europe, particularly in Denmark. A hybrid solar district heating plant with 5960 m2 flat plate collectors and 4039 m2 parabolic trough collectors in series was built in Taars, Denmark in 2015. The solar...... to optimize the hybrid solar district heating systems based on levelized cost of heat. It is found that the lowest net levelized cost of heat of hybrid solar heating plants could reach about 0.36 DKK/kWh. The system levelized cost of heat can be reduced by 5–9% by use of solar collectors in the district...... heating network in this study. The results also show that parabolic trough collectors are economically feasible for district heating networks in Denmark. The generic and multivariable levelized cost of heat method can guide engineers and designers on the design, construction and control of large...

  11. A development of the method of the control signal formation for the hot plate mill automation systems to improve the flatness of the finish plate

    Directory of Open Access Journals (Sweden)

    Voronin Stanislav S.

    2016-01-01

    Full Text Available This article describes how to control of the hot plate mill automation system to improve the quality metrics if the final strip. Based on the data of the modern hot rolling mills the classification of the cage equipment was designed. Depending on the degree of influence on the magnitude of reduction, the equipment was divided into categories. The functioning of every system including the main and the vertical cages was described. The conditions of electrical and hydraulic mechanisms was marked. The developed algorithm allows to improve defects based on the finite number of the thickness measurements given by special non-contact sensors. The example of regulators signals calculating was shown. The result of the algorithm operating was illustrated.

  12. Influence of Mach number and static pressure on plasma flow control of supersonic and rarefied flows around a sharp flat plate

    Science.gov (United States)

    Coumar, Sandra; Lago, Viviana

    2017-06-01

    This paper presents an experimental investigation, carried out at the Icare Laboratory by the FAST team, focusing on plasma flow control in supersonic and rarefied regime. The study analyzes how the Mach number as well as the ambient pressure modify the repercussions of the plasma actuator on the shock wave. It follows previous experiments performed in the MARHy (ex-SR3) wind tunnel with a Mach 2 flow interacting with a sharp flat plate, where modifications induced by a plasma actuator were observed. The flat plate was equipped with a plasma actuator composed of two aluminum electrodes. The upstream one was biased with a negative DC potential and thus, created a glow discharge type plasma. Experimental measurements showed that the boundary layer thickness and the shock wave angle increased when the discharge was ignited. The current work was performed with two nozzles generating Mach 4 flows but at two different static pressures: 8 and 71 Pa. These nozzles were chosen to study independently the impact of the Mach number and the impact of the pressure on the flow behavior. In the range of the discharge current considered in this experimental work, it was observed that the shock wave angle increased with the discharge current of +15% for the Mach 2 flow but the increase rate doubled to +28% for the Mach 4 flow at the same static pressure, showing that the discharge effect is even more significant when boosting the flow speed. When studying the effect of the discharge on the Mach 4 flow at higher static pressure, it was observed that the topology of the plasma changed drastically and the increase in the shock wave angle with the discharge current of +21 %.

  13. PLATE

    DEFF Research Database (Denmark)

    Kling, Joyce; Hjulmand, Lise-Lotte

    2008-01-01

    ’s level of English is sufficient for the increasing number of courses offered in English each semester. This paper addresses these concerns and describes a pilot project initiated in 2003 at CBS to gauge the overall English language proficiency of those teaching content courses in English. Through...... the Project in Language Assessment for Teaching in English (PLATE) language professionals from CBS’s Language Center observe teachers and provide feedback using evaluation criteria from the Common European Framework for Reference (CEFR) supplemented by some additional criteria which take the LSP nature...... of academic teaching and lecturing into account....

  14. Standard practice for acoustic emission examination of plate-like and flat panel composite structures used in aerospace applications

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    2010-01-01

    1.1 This practice covers acoustic emission (AE) examination or monitoring of panel and plate-like composite structures made entirely of fiber/polymer composites. 1.2 The AE examination detects emission sources and locates the region(s) within the composite structure where the emission originated. When properly developed AE-based criteria for the composite item are in place, the AE data can be used for nondestructive examination (NDE), characterization of proof testing, documentation of quality control or for decisions relative to structural-test termination prior to completion of a planned test. Other NDE methods may be used to provide additional information about located damage regions. For additional information see Appendix X1. 1.3 This practice can be applied to aerospace composite panels and plate-like elements as a part of incoming inspection, during manufacturing, after assembly, continuously (during structural health monitoring) and at periodic intervals during the life of a structure. 1.4 This pra...

  15. Newtonian heating effect on unsteady hydromagnetic Casson fluid flow past a flat plate with heat and mass transfer

    Directory of Open Access Journals (Sweden)

    M. Das

    2015-12-01

    Full Text Available The influence of Newtonian heating on heat and mass transfer in unsteady hydromagnetic flow of a Casson fluid past a vertical plate in the presence of thermal radiation and chemical reaction is studied. The Casson fluid model is used to distinguish the non-Newtonian fluid behavior. The fluid flow is induced due to periodic oscillations of the plate along its length and a uniform transverse magnetic field is applied in a direction which is normal to the direction of fluid flow. The partial differential equations governing the flow, heat, and mass transfer are transformed to non-dimensional form using suitable non-dimensional variables which are then solved analytically by using Laplace transform technique. The numerical values of the fluid velocity, fluid temperature, and species concentration are depicted graphically whereas the values of skin-friction, Nusselt number, and Sherwood number are presented in tabular form. It is noticed that the fluid velocity and temperature decrease with increasing values of Casson parameter while concentration decreases with increasing values of chemical reaction parameter and Schmidt number. Such a fluid flow model has several industrial and medical applications such as in glass manufacturing, paper production, purification of crude oil and study of blood flow in the cardiovascular system.

  16. Flat growth of 7075, 7475, 7050 and 7049 aluminum alloy plate in stress corrosion environments: 2-year marine atmosphere results

    Science.gov (United States)

    Dorward, R. C.; Hasse, K. R.

    1978-01-01

    Marine atmospheric exposure of smooth and precracked specimens from 7075, 7475, 7050 and 7049 plates support the conclusion that for a given strength level, the short transverse stress corrosion resistance of 7050-T7X and 7049-T7X is superior to that of 7075-T7X. The threshold stress intensity (K sub Iscc) for these alloys is about 25 MPa square root m at a yield strength of about 460 MPa; the corresponding yield strength level for 7075-T7X at this SCR level is about 425 MPa. Additional tests on two lots of high-toughness 7475 plate indicate that this alloy is capable of achieving K sub Iscc values of about 35 MPa square root m at yield strengths of 400-450 MPa. Precracked specimens from all these 7XXX-series alloys are subject to self loading from corrosion product wedging. This effect causes stress corrosion cracks to continue growing at very low apparent stress intensities, and should therefore be considered a potential driving force for stress corrosion in design and materials selection.

  17. No-contact method of determining average working-surface temperature of plate-type radiation-absorbing thermal exchange panels of flat solar collectors for heating heat-transfer fluid

    International Nuclear Information System (INIS)

    Avezova, N.R.; Avezov, R.R.

    2015-01-01

    A brand new no-contact method of determining the average working-surface temperature of plate-type radiation-absorbing thermal exchange panels (RATEPs) of flat solar collectors (FSCs) for heating a heat-transfer fluid (HTF) is suggested on the basis of the results of thermal tests in full-scale quasistationary conditions. (authors)

  18. Standardized performance tests of collectors of solar thermal energy: A selectively coated, flat-plate copper collector with one transparent cover and a tube-to-tube spacing of 5 5/8 inches

    Science.gov (United States)

    1976-01-01

    This preliminary data report gives basic test results of a flat-plate solar collector whose performance was determined in the NASA-Lewis solar simulator. The collector was tested over ranges of inlet temperatures, fluxes and coolant flow rates. Collector efficiency is correlated in terms of inlet temperature and flux level.

  19. Standard performance tests of collectors of solar thermal energy: A selectively coated, flat-plate copper collector with one transparent cover and a tube-to-tube spacing of 3-7/8 inches

    Science.gov (United States)

    1976-01-01

    Basic test results are given of a flat-plate solar collector whose performance was determined in the NASA-Lewis solar simulator. The collector was tested over ranges of inlet temperatures, fluxes, and coolant flow rates. Collector efficiency is correlated in terms of inlet temperature and flux level.

  20. MHD free convective boundary layer flow of a nanofluid past a flat vertical plate with Newtonian heating boundary condition.

    Science.gov (United States)

    Uddin, Mohammed J; Khan, Waqar A; Ismail, Ahmed I

    2012-01-01

    Steady two dimensional MHD laminar free convective boundary layer flows of an electrically conducting Newtonian nanofluid over a solid stationary vertical plate in a quiescent fluid taking into account the Newtonian heating boundary condition is investigated numerically. A magnetic field can be used to control the motion of an electrically conducting fluid in micro/nano scale systems used for transportation of fluid. The transport equations along with the boundary conditions are first converted into dimensionless form and then using linear group of transformations, the similarity governing equations are developed. The transformed equations are solved numerically using the Runge-Kutta-Fehlberg fourth-fifth order method with shooting technique. The effects of different controlling parameters, namely, Lewis number, Prandtl number, buoyancy ratio, thermophoresis, Brownian motion, magnetic field and Newtonian heating on the flow and heat transfer are investigated. The numerical results for the dimensionless axial velocity, temperature and nanoparticle volume fraction as well as the reduced Nusselt and Sherwood number have been presented graphically and discussed. It is found that the rate of heat and mass transfer increase as Newtonian heating parameter increases. The dimensionless velocity and temperature distributions increase with the increase of Newtonian heating parameter. The results of the reduced heat transfer rate is compared for convective heating boundary condition and found an excellent agreement.

  1. MHD free convective boundary layer flow of a nanofluid past a flat vertical plate with Newtonian heating boundary condition.

    Directory of Open Access Journals (Sweden)

    Mohammed J Uddin

    Full Text Available Steady two dimensional MHD laminar free convective boundary layer flows of an electrically conducting Newtonian nanofluid over a solid stationary vertical plate in a quiescent fluid taking into account the Newtonian heating boundary condition is investigated numerically. A magnetic field can be used to control the motion of an electrically conducting fluid in micro/nano scale systems used for transportation of fluid. The transport equations along with the boundary conditions are first converted into dimensionless form and then using linear group of transformations, the similarity governing equations are developed. The transformed equations are solved numerically using the Runge-Kutta-Fehlberg fourth-fifth order method with shooting technique. The effects of different controlling parameters, namely, Lewis number, Prandtl number, buoyancy ratio, thermophoresis, Brownian motion, magnetic field and Newtonian heating on the flow and heat transfer are investigated. The numerical results for the dimensionless axial velocity, temperature and nanoparticle volume fraction as well as the reduced Nusselt and Sherwood number have been presented graphically and discussed. It is found that the rate of heat and mass transfer increase as Newtonian heating parameter increases. The dimensionless velocity and temperature distributions increase with the increase of Newtonian heating parameter. The results of the reduced heat transfer rate is compared for convective heating boundary condition and found an excellent agreement.

  2. Effect of Magnetic Field on Entropy Generation Due to Laminar Forced Convection Past a Horizontal Flat Plate

    Directory of Open Access Journals (Sweden)

    Moh'd A. Al-Nimr

    2004-06-01

    Full Text Available Magnetic field effect on local entropy generation due to steady two-dimensional laminar forced convection flow past a horizontal plate was numerically investigated. This study was focused on the entropy generation characteristics and its dependency on various dimensionless parameters. The effect of various dimensionless parameters, such as Hartmann number (Ha, Eckert number (Ec, Prandtl number (Pr, Joule heating parameter (R and the free stream temperature parameter (θ∞ on the entropy generation characteristics is analyzed. The dimensionless governing equations in Cartesian coordinate were solved by an implicit finite difference technique. The solutions were carried out for Ha2=0.5-3, Ec=0.01-0.05, Pr=1-5 and θ∞=1.1-2.5. It was found that, the entropy generation increased with increasing Ha, Ec and R. While, increasing the free stream temperature parameter, and Prandtl number tend to decrease the local entropy generation.

  3. A Comparative Analysis of Seismological and Gravimetric Crustal Thicknesses below the Andean Region with Flat Subduction of the Nazca Plate

    Directory of Open Access Journals (Sweden)

    Mario E. Gimenez

    2009-01-01

    Full Text Available A gravimetric study was carried out in a region of the Central Andean Range between 28∘ and 32∘ south latitudes and from 72∘ and 66∘ west longitudes. The seismological and gravimetrical Moho models were compared in a sector which coincides with the seismological stations of the CHARGE project. The comparison reveals discrepancies between the gravity Moho depths and those obtained from seismological investigations (CHARGE project, the latter giving deeper values than those resulting from the gravimetric inversion. These discrepancies are attenuated when the positive gravimetric effect of the Nazca plate is considered. Nonetheless, a small residuum of about 5 km remains beneath the Cuyania terrane region, to the east of the main Andean chain. This residuum could be gravimetrically justified if the existence of a high density or eclogitized portion of the lower crust is considered. This result differed from the interpretations from Project “CHARGE” which revealed that the entire inferior crust extending from the Precordillera to the occidental “Sierras Pampeanas” could be “eclogitized”. In this same sector, we calculated the effective elastic thickness (Te of the crust. These results indicated an anomalous value of Te = 30 km below the Cuyania terrane. This is further conclusive evidence of the fact that the Cuyania terrane is allochthonous, for which also geological evidences exist.

  4. Evolution of disturbances in the shock layer on a flat plate in the flow of a mixture of vibrationally excited gases

    Science.gov (United States)

    Kirilovskiy, S. V.; Poplavskaya, T. V.; Tsyryulnikov, I. S.; Maslov, A. A.

    2017-05-01

    The results of the numerical and experimental investigations of the evolution of the disturbances in a hypersonic shock layer on a flat plate streamlined by a flow of the mixture of vibrationally excited gases are presented. The experimental study was conducted in the hot-shot high-enthalpy wind tunnel IT-302 of the ITAM SB RAS. The numerical simulation was carried out with the aid of the ANSYS Fluent package using the solution of the unsteady two-dimensional Navier-Stokes equations with the incorporation of the user-created modules and enabling the consideration of the vibrational non-equilibrium of the carbon dioxide molecules within the framework of the model of the two-temperature aerodynamics. It was obtained that an increase in the carbon dioxide concentration in the mixture with air leads to a reduction of the intensity of pressure disturbances on the surface. The efficiency (up to 20 %) of the method of sound absorbing coatings in the vibrationally excited flows of the mixture of the carbon dioxide and air has been shown.

  5. Co-production of lipids, eicosapentaenoic acid, fucoxanthin, and chrysolaminarin by Phaeodactylum tricornutum cultured in a flat-plate photobioreactor under varying nitrogen conditions

    Science.gov (United States)

    Gao, Baoyan; Chen, Ailing; Zhang, Wenyuan; Li, Aifen; Zhang, Chengwu

    2017-10-01

    The marine diatom Phaeodactylum tricornutum is a polymorphological, ecologically significant, and well-studied model of unicellular microalga. This diatom can accumulate diverse important metabolites. Herein, we cultured P. tricornutum in an internally installed tie-piece flat-plate photobioreactor under 14.5 m mol L-1 (high nitrogen, HN) and 2.9 m mol L-1 (low nitrogen, LN) of KNO3 and assessed its time-resolved changes in biochemical compositions. The results showed that HN was inductive to accumulate high biomass (4.1 g L-1). However, the LN condition could accelerate lipid accumulation in P. tricornutum. The maximum total lipid (TL) content under LN was up to 42.5% of biomass on day 12. Finally, neutral lipids (NLs) were 63.8% and 75.7% of TLs under HN and LN, respectively. The content of EPA ranged from 2.3% to 1.5% of dry weight during the growth period under the two culture conditions. Peak volumetric lipid productivity of 128.4 mg L-1d-1 was achieved in the HN group (on day 9). The highest volumetric productivity values of EPA, chrysolaminarin, and fucoxanthin were obtained in the exponential phase (on day 6) under HN, which were 9.6, 93.6, and 4.7 mg L-1d-1, respectively. In conclusion, extractable amounts of lipids, EPA, fucoxanthin, and chrysolaminarin could be obtained from P. tricornutum by regulating the culture conditions.

  6. A Systematic Study of Separators in Air-Breathing Flat-Plate Microbial Fuel Cells—Part 1: Structure, Properties, and Performance Correlations

    Directory of Open Access Journals (Sweden)

    Sona Kazemi

    2016-01-01

    Full Text Available Passive air-breathing microbial fuel cells (MFCs are a promising technology for energy recovery from wastewater and their performance is highly dependent on characteristics of the separator that isolates the anaerobic anode from the air-breathing cathode. The goal of the present work is to systematically study the separator characteristics and its effect on the performance of passive air-breathing flat-plate MFCs (FPMFCs. This was performed through characterization of structure, properties, and performance correlations of eight separators in Part 1 of this work. Eight commercial separators were characterized, in non-inoculated and inoculated setups, and were examined in passive air-breathing FPMFCs with different electrode spacing. The results showed a decrease in the peak power density as the oxygen and ethanol mass transfer coefficients in the separators increased, due to the increase of mixed potentials especially at smaller electrode spacing. Increasing the electrode spacing was therefore desirable for the application of diaphragms. The highest peak power density was measured using Nafion®117 with minimal electrode spacing, whereas using Nafion®117 or Celgard® with larger electrode spacing resulted in similar peak powers. Part 2 of this work focuses on numerical modelling of the FPMFCs based on mixed potential theory, implementing the experimental data from Part 1.

  7. The economic payoff for a state-of-the-art high-efficiency flat-plate crystalline silicon solar cell technology

    Science.gov (United States)

    Bickler, Donald B.; Callaghan, W. T.

    1987-01-01

    In 1986 during the flat-plate solar array project, silicon solar cells 4.0 sq cm in area were fabricated at the Jet Propulsion Laboratory (JPL) with a conversion efficiency of 20.1 percent (AM1.5-global). Sixteen cells were processed with efficiencies measuring 19.5 percent (AM1.5 global) or better. These cells were produced using refined versions of conventional processing methods, aside from certain advanced techniques that bring about a significant reduction in a major mechanism (surface recombination) that limits cell efficiency. Wacker Siltronic p-type float-zone 0.18-ohm-cm wafers were used. Conversion efficiencies in this range have previously been reported by other researchers, but generally on much smaller (0.5 vs. 4.0 cm) devices which have undergone sophisticated and costly processing steps. An economic analysis is presented of the potential payoffs for this approach, using the Solar Array Manufacturing Industry Costing Standards (SAMICS) methodology. The process sequence used and the assumptions made for capturing the economies of scale are presented.

  8. An analysis of laminar free-convection flow and heat transfer about a flat plate paralled to the direction of the generating body force

    Science.gov (United States)

    Ostrach, Simon

    1953-01-01

    The free-convection flow and heat transfer (generated by a body force) about a flat plate parallel to the direction of the body force are formally analyzed and the type of flow is found to be dependent on the Grashof number alone. For large Grashof numbers (which are of interest in aeronautics), the flow is of the boundary-layer type and the problem is reduced in a formal manner, which is analogous to Prandtl's forced-flow boundary-layer theory, to the simultaneous solution of two ordinary differential equations subject to the proper boundary conditions. Velocity and temperature distributions for Prandtl numbers of 0.01, 0.72, 0.733, 1, 1, 10, 100, and 1000 are computed, and it is shown that velocities and Nusselt numbers of the order of magnitude of those encountered in forced-convection flows may be obtained in free-convection flows. The theoretical and experimental velocity and temperature distributions are in good agreement. A flow and a heat-transfer parameter, from which the important physical quantities such as shear stress and heat-transfer rate can be computed, are derived as functions of Prandtl number alone.

  9. Prediction of an internal boundary layer on a flat plate after a step change in roughness using a near-wall RANS model

    Science.gov (United States)

    Chu, Minghan; Meng, Fanxiao; Bergstrom, Donald J.

    2017-11-01

    An in-house computational fluid dynamics code was used to simulate turbulent flow over a flat plate with a step change in roughness, exhibiting a smooth-rough-smooth configuration. An internal boundary layer (IBL) is formed at the transition from the smooth to rough (SR) and then the rough to smooth (RS) surfaces. For an IBL the flow far above the surface has experienced a wall shear stress that is different from the local value. Within a Reynolds-Averaged-Navier-Stokes (RANS) formulation, the two-layer k- ɛ model of Durbin et al. (2001) was implemented to analyze the response of the flow to the change in surface condition. The numerical results are compared to experimental data, including some in-house measurements and the seminal work of Antonia and Luxton (1971,72). This problem captures some aspects of roughness in industrial and environmental applications, such as corrosion and the earth's surface heterogeneity, where the roughness is often encountered as discrete distributions. It illustrates the challenge of incorporating roughness models in RANS that are capable of responding to complex surface roughness profiles.

  10. Sound radiated by the interaction of non-homogeneous turbulence on a transversely sheared flow with leading and trailing edges of semi-infinite flat plate

    Science.gov (United States)

    Afsar, Mohammed; Sassanis, Vasilis

    2017-11-01

    The small amplitude unsteady motion on a transversely sheared mean flow is determined by two arbitrary convected quantities with a particular choice of gauge in which the Fourier transform of the pressure is linearly-related to a scalar potential whose integral solution can be written in terms of one of these convected quantities. This formulation becomes very useful for studying Rapid-distortion theory problems involving solid surface interaction. Recent work by Goldstein et al. (JFM, 2017) has shown that the convected quantities are related to the turbulence by exact conservation laws, which allow the upstream boundary conditions for interaction of a turbulent shear flow with a solid-surface (for example) to be derived self-consistently with appropriate asymptotic separation of scales. This result requires the imposition of causality on an intermediate variable within the conservation laws that represents the local particle displacement. In this talk, we use the model derived in Goldstein et al. for trailing edge noise and compare it to leading edge noise on a semi-infinite flat plate positioned parallel to the level curves of the mean flow. Since the latter represents the leading order solution for the aerofoil interaction problem, these results are expected to be generic. M.Z.A. would also like to thank Strathclyde University for financial support from the Chancellor's Fellowship.

  11. The economic payoff for a state-of-the-art high-efficiency flat-plate crystalline silicon solar cell technology

    Science.gov (United States)

    Bickler, Donald B.; Callaghan, W. T.

    In 1986 during the flat-plate solar array project, silicon solar cells 4.0 sq cm in area were fabricated at the Jet Propulsion Laboratory (JPL) with a conversion efficiency of 20.1 percent (AM1.5-global). Sixteen cells were processed with efficiencies measuring 19.5 percent (AM1.5 global) or better. These cells were produced using refined versions of conventional processing methods, aside from certain advanced techniques that bring about a significant reduction in a major mechanism (surface recombination) that limits cell efficiency. Wacker Siltronic p-type float-zone 0.18-ohm-cm wafers were used. Conversion efficiencies in this range have previously been reported by other researchers, but generally on much smaller (0.5 vs. 4.0 cm) devices which have undergone sophisticated and costly processing steps. An economic analysis is presented of the potential payoffs for this approach, using the Solar Array Manufacturing Industry Costing Standards (SAMICS) methodology. The process sequence used and the assumptions made for capturing the economies of scale are presented.

  12. Influence of surface geometry on the culture of human cell lines: A comparative study using flat, round-bottom and v-shaped 96 well plates.

    Directory of Open Access Journals (Sweden)

    Sara Shafaie

    Full Text Available In vitro cell based models have been invaluable tools for studying cell behaviour and for investigating drug disposition, toxicity and potential adverse effects of administered drugs. Within this drug discovery pipeline, the ability to assess and prioritise candidate compounds as soon as possible offers a distinct advantage. However, the ability to apply this approach to a cell culture study is limited by the need to provide an accurate, in vitro-like, microenvironment in conjunction with a low cost and high-throughput screening (HTS methodology. Although the geometry and/or alignment of cells has been reported to have a profound influence on cell growth and differentiation, only a handful of studies have directly compared the growth of a single cell line on different shaped multiwell plates the most commonly used substrate for HTS, in vitro, studies. Herein, the impact of various surface geometries (flat, round and v-shaped 96 well plates, as well as fixed volume growth media and fixed growth surface area have been investigated on the characteristics of three commonly used human cell lines in biopharmaceutical research and development, namely ARPE-19 (retinal epithelial, A549 (alveolar epithelial and Malme-3M (dermal fibroblastic cells. The effect of the surface curvature on cells was characterised using a combination of a metabolic activity assay (CellTiter AQ/MTS, LDH release profiles (CytoTox ONE and absolute cell counts (Guava ViaCount, respectively. In addition, cell differentiation and expression of specific marker proteins were determined using flow cytometry. These in vitro results confirmed that surface topography had a significant effect (p < 0.05 on cell activity and morphology. However, although specific marker proteins were expressed on day 1 and 5 of the experiment, no significant differences were seen between the different plate geometries (p < 0.05 at the later time point. Accordingly, these results highlight the impact of

  13. Comparison of Pore-scale CO2-water-glass System Wettability and Conventional Wettability Measurement on a Flat Plate for Geological CO2 Sequestration

    Science.gov (United States)

    Jafari, M.; Cao, S. C.; Jung, J.

    2017-12-01

    Goelogical CO2 sequestration (GCS) has been recently introduced as an effective method to mitigate carbon dioxide emission. CO2 from main producer sources is collected and then is injected underground formations layers to be stored for thousands to millions years. A safe and economical storage project depends on having an insight of trapping mechanisms, fluids dynamics, and interaction of fluids-rocks. Among different forces governing fluids mobility and distribution in GCS condition, capillary pressure is of importance, which, in turn, wettability (measured by contact angel (CA)) is the most controversial parameters affecting it. To explore the sources of discrepancy in the literature for CA measurement, we conducted a series of conventional captive bubble test on glass plates under high pressure condition. By introducing a shape factor, we concluded that surface imperfection can distort the results in such tests. Since the conventional methods of measuring the CA is affected by gravity and scale effect, we introduced a different technique to measure pore-scale CA inside a transparent glass microchip. Our method has the ability to consider pore sizes and simulate static and dynamics CA during dewetting and imbibition. Glass plates shows a water-wet behavior (CA 30° - 45°) by a conventional experiment consistent with literature. However, CA of miniature bubbles inside of the micromodel can have a weaker water-wet behavior (CA 55° - 69°). In a more realistic pore-scale condition, water- CO2 interface covers whole width of a pore throats. Under this condition, the receding CA, which is used for injectability and capillary breakthrough pressure, increases with decreasing pores size. On the other hand, advancing CA, which is important for residual or capillary trapping, does not show a correlation with throat sizes. Static CA measured in the pores during dewetting is lower than static CA on flat plate, but it is much higher when measured during imbibition implying

  14. Ag-water nanofluid flow over an inclined porous plate embedded in a non-Darcy porous medium due to solar radiation

    International Nuclear Information System (INIS)

    Chakraborty, Tanmoy; Das, Kalidas; Kundu, Prabir Kumar

    2017-01-01

    The heat absorber uses in solar power plants have generally low energy adaptation owing to large emissive losses at high temperature. Recently, nanofluid based solar energy absorber have acknowledged immense scientific curiosity to competent share and store the thermal energy. Here we examine theoretically the natural convective flow of an Ag nanoparticle based nanofluid flow along an inclined flat sheet embedded in a Darcy-Forchheimer permeable medium coexistence of solar radiation. By use of similarity transformations, the fundamental partial differential system and boundary conditions are tackled numerically using Runge-Kutta Gill based shooting procedure. The impacts of governing parameters upon the flow, temperature, Nusselt number and skin friction coefficient are represented tabular as well as in graphical form.

  15. Ag-water nanofluid flow over an inclined porous plate embedded in a non-Darcy porous medium due to solar radiation

    Energy Technology Data Exchange (ETDEWEB)

    Chakraborty, Tanmoy [Techno India College of Technology, Kolkata (India); Das, Kalidas [A.B.N.Seal College, Cooch Behar (India); Kundu, Prabir Kumar [Jadavpur University, Kolkata (India)

    2017-05-15

    The heat absorber uses in solar power plants have generally low energy adaptation owing to large emissive losses at high temperature. Recently, nanofluid based solar energy absorber have acknowledged immense scientific curiosity to competent share and store the thermal energy. Here we examine theoretically the natural convective flow of an Ag nanoparticle based nanofluid flow along an inclined flat sheet embedded in a Darcy-Forchheimer permeable medium coexistence of solar radiation. By use of similarity transformations, the fundamental partial differential system and boundary conditions are tackled numerically using Runge-Kutta Gill based shooting procedure. The impacts of governing parameters upon the flow, temperature, Nusselt number and skin friction coefficient are represented tabular as well as in graphical form.

  16. Development of flow and heat transfer in the vicinity of a vertical plate embedded in a porous medium with viscous dissipation effects

    KAUST Repository

    El-Amin, Mohamed

    2012-01-01

    In this paper, the effects of viscous dissipation on unsteady free convection from an isothermal vertical flat plate in a fluidsaturated porous medium are investigated. The Darcy-Brinkman model is employed to describe the flow field. A new model of viscous dissipation is used for the Darcy-Brinkman model of porous media. The simultaneous development of the momentum and thermal boundary layers is obtained by using a finite-difference method. Boundary layer and Boussinesq approximation have been incorporated. Numerical calculations are carried out for various parameters entering into the problem. Velocity and temperature profiles as well as the local friction factor and local Nusselt number are displayed graphically. It is found that as time approaches infinity, the values of the friction factor and heat transfer coefficient approach steady state. © 2012 by Begell House, Inc.

  17. Field-based evaluations of horizontal flat-plate fish screens, II: Testing of a unique off-stream channel device - The Farmers Screen

    Science.gov (United States)

    Mesa, Matthew G.; Rose, Brien P.; Copeland, Elizabeth S.

    2012-01-01

    Screens are installed at water diversion sites to reduce entrainment of fish. Recently, the Farmers Irrigation District (Oregon) developed a unique flat-plate screen (the “Farmers Screen”) that operates passively and may offer reduced installation and operating costs. To evaluate the effectiveness of this screen on fish, we conducted two separate field experiments. First, juvenile coho salmon Oncorhynchus kisutch were released over a working version of this screen under a range of inflows (0.02–0.42 m3/s) and diversion flows (0.02–0.34 m3/s) at different water depths. Mean approach velocities ranged from 0 to 5 cm/s and sweeping velocities ranged from 36 to 178 cm/s. Water depths over the screen surface ranged from 1 to 25 cm and were directly related to inflow. Passage of fish over the screen under these conditions did not severely injure them or cause delayed mortality, and no fish were observed becoming impinged on the screen surface. Second, juvenile coho salmon and steelhead O. mykiss were released at the upstream end of a 34-m flume and allowed to volitionally move downstream and pass over a 3.5-m section of the Farmers Screen to determine whether fish would refuse to pass over the screen after encountering its leading edge. For coho salmon, 75–95% of the fish passed over the screen within 5 min and 82–98% passed within 20 min, depending on hydraulic conditions. For steelhead, 47–90% of the fish passed over the screen within 5 min and 79–95% passed within 20 min. Our results indicate that when operated within its design criteria, the Farmers Screen provides safe and efficient downstream passage of juvenile salmonids under a variety of hydraulic conditions.

  18. The sizes of Flat Plate and Evacuated Tube Collectors with Heat Pipe area as a function of the share of solar system in the heat demand

    Directory of Open Access Journals (Sweden)

    Olek Małgorzata

    2016-01-01

    Full Text Available The popularity of solar collectors in Poland is still increasing. The correct location of the collectors and a relatively high density of solar radiation allow delivering heat even in spite of relatively low ambient temperature. Moreover, solar systems used for heating domestic heat water (DHW in summer allow nearly complete elimination of conventional energy sources (e.g. gas, coal. That is why more and more house owners in Poland decide to install solar system installations. In Poland the most common types of solar collectors are flat plate collectors (FPC and evacuated tube collectors with heat pipe (ETCHP; both were selected for the analysis. The heat demand related to the preparation of hot water, connected with the size of solar collectors’ area, has been determined. The analysis includes FPC and ETCHP and heat demand of less than 10 000 kWh/year. Simulations were performed with the Matlab software and using data from a typical meteorological year (TMY. In addition, a 126–year period of measurements of insolation for Krakow has been taken into account. The HDKR model (Hay, Davis, Klucher, Reindl was used for the calculation of solar radiation on the absorber surface. The monthly medium temperature of the absorber depends on the amount of solar system heat and on the heat demand. All the previously mentioned data were used to determine solar efficiency. Due to the fact that solar efficiency and solar system heat are connected, the calculations were made with the use of an iterative method. Additionally, the upper limit for monthly useful solar system heat is resulted from the heat demand and thus the authors prepared a model of statistical solar system heat deviations based on the Monte Carlo method. It has been found that an increase in the useful solar system heat in reference to the heat demand is associated with more than proportional increase in the sizes of the analyzed surfaces of solar collector types.

  19. Comparing between predicted output temperature of flat-plate solar collector and experimental results: computational fluid dynamics and artificial neural network

    Directory of Open Access Journals (Sweden)

    F Nadi

    2017-05-01

    back propagation learning rule was used to simulate the output temperature of a solar collector. The number of neurons within the hidden layer varied from 1 to 20. The hyperbolic tan- sigmoid and pure-line were used as the transfer function in the hidden layer and output layer, respectively. Minimization of error was achieved using the Levenberg-Marquardt algorithm. To carry out the aforementioned steps, the dataset (105 observations was split into training (70 observations, and test (35 observations data. Training sets used to develop models included air velocity, solar radiation, time of the day, ambient moisture and temperature values as inputs with an associated temperature of the collector as outputs. The aim of every training algorithm is to reduce this global error by adjusting the weights and biases. Results and Discussion Compare experimental results with ANN The performance of the three-layer ANN for the prediction of output temperature of flat-plate solar collector by the Levenberg–Marquardt training algorithm was illustrated in Fig. 4. ANN predicted output temperatures with R2 and RMSE of 0.92 and 1.23, respectively. Furthermore, the maximum error in prediction of output temperature of solar collector was 3.3 K. These results are in agreement with Tripathy and Kumar, (2009 those who have predicted the output temperatures of food product in the solar drier using ANN with and RMSE of 0.95 and 0.77, respectively. Compare experimental results with CFD simulation Fig. 6 shows that over the starting length of the absorber plate, there is a variation of the velocity profile which is caused by sharp geometry and it leads to some recirculation of the air in this part of absorber plate. After this part of boundary layers, flow is fully developed and velocity profile becomes smoother and constant. Fig. 8 shows that the predicted temperature was within the experimentally measured temperature. The highest differences between simulated and experimental temperatures

  20. Thin-plate-type embedded ultrasonic transducer based on magnetostriction for the thickness monitoring of the secondary piping system of a nuclear power plant

    Energy Technology Data Exchange (ETDEWEB)

    Heo, Tae Hoon; Cho, Seung Hyun [Center for Safety Measurement, Korea Research Institute of Standards and Science, Daejeon (Korea, Republic of)

    2016-12-15

    Pipe wall thinning in the secondary piping system of a nuclear power plant is currently a major problem that typically affects the safety and reliability of the nuclear power plant directly. Regular in-service inspections are carried out to manage the piping system only during the overhaul. Online thickness monitoring is necessary to avoid abrupt breakage due to wall thinning. To this end, a transducer that can withstand a high-temperature environment and should be installed under the insulation layer. We propose a thin plate type of embedded ultrasonic transducer based on magnetostriction. The transducer was designed and fabricated to measure the thickness of a pipe under a high-temperature condition. A number of experimental results confirmed the validity of the present transducer.

  1. Embedded-monolith armor

    Science.gov (United States)

    McElfresh, Michael W.; Groves, Scott E; Moffet, Mitchell L.; Martin, Louis P.

    2016-07-19

    A lightweight armor system utilizing a face section having a multiplicity of monoliths embedded in a matrix supported on low density foam. The face section is supported with a strong stiff backing plate. The backing plate is mounted on a spall plate.

  2. Slip Flow and Heat Transfer of Nanofluids over a Porous Plate Embedded in a Porous Medium with Temperature Dependent Viscosity and Thermal Conductivity

    Directory of Open Access Journals (Sweden)

    Sajid Hussain

    2016-12-01

    Full Text Available It is well known that the best way of convective heat transfer is the flow of nanofluids through a porous medium. In this regard, a mathematical model is presented to study the effects of variable viscosity, thermal conductivity and slip conditions on the steady flow and heat transfer of nanofluids over a porous plate embedded in a porous medium. The nanofluid viscosity and thermal conductivity are assumed to be linear functions of temperature, and the wall slip conditions are employed in terms of shear stress. The similarity transformation technique is used to reduce the governing system of partial differential equations to a system of nonlinear ordinary differential equations (ODEs. The resulting system of ODEs is then solved numerically using the shooting technique. The numerical values obtained for the velocity and temperature profiles, skin friction coefficient and Nusselt’s number are presented and discussed through graphs and tables. It is shown that the increase in the permeability of the porous medium, the viscosity of the nanofluid and the velocity slip parameter decrease the momentum and thermal boundary layer thickness and eventually increase the rate of heat transfer.

  3. From Flat Stanley to Flat Cat: An Intercultural, Interlinguistic Project

    Directory of Open Access Journals (Sweden)

    Teresa Fleta

    2014-05-01

    Full Text Available In this article, a Flat Cat Project is shared. Beginning with a description of the initial idea, influenced by the picturebook Flat Stanley (Brown, 1964, an account is given of a paper-plate Flat Cat and its journey across countries and cultures, visiting children who are learning English. The Flat Cat’s visit to Madrid, Spain is described in detail, demonstrating how such projects can support development in areas such as creativity and literacy, and promote intercultural and interlinguistic learning.

  4. Experimental analysis of solar thermal integrated MD system for cogeneration of drinking water and hot water for single family villa in dubai using flat plate and evacuated tube solar collectors

    DEFF Research Database (Denmark)

    Asim, Muhammad; Imran, Muhammad; Leung, Michael K.H.

    2017-01-01

    This paper presents the experimental analysis performed on solar thermal integrated membrane distillation (MD) system using flat plate and evacuated tube collectors. The system will be utilized for cogeneration of drinking water and domestic hot water for single family in Dubai comprising of four...... on MD setup at optimized flow rates of 6 L/min on hot side and 3 L/min on cold side for producing the desired distillate. The hot side and cold side MD temperature has been maintained between 60°C and 70°C, and 20°C and 30°C. The total annual energy demand comes out to be 8,223 kWh (6,000 k......Wh is for pure water and 2,223 kWh for hot water). The optimum aperture areas for flat plate and evacuated tube collector field have been identified as 8.5 and 7.5 m2, respectively. Annual energy consumption per liter for pure water production is 1, 0.85 and 0.7 kWh/L for different MD hot and cold inlet...

  5. The effects of thermal radiation and viscous dissipation on MHD heat and mass diffusion flow past an oscillating vertical plate embedded in a porous medium with variable surface conditions

    Directory of Open Access Journals (Sweden)

    Kishore P.M.

    2012-01-01

    Full Text Available This investigation is undertaken to study the hydromagnetic flow of a viscous incompressible fluid past an oscillating vertical plate embedded in a porous medium with radiation, viscous dissipation and variable heat and mass diffusion. Governing equations are solved by unconditionally stable explicit finite difference method of DuFort - Frankel’s type for concentration, temperature, vertical velocity field and skin - friction and they are presented graphically for different values of physical parameters involved. It is observed that plate oscillation, variable mass diffusion, radiation, viscous dissipation and porous medium affect the flow pattern significantly.

  6. Combined natural convection and mass transfer effects on unsteady flow past an infinite vertical porous plate embedded in a porous medium with heat source

    Energy Technology Data Exchange (ETDEWEB)

    Das, S.S. [Department of Physics, K B D A V College, Nirakarpur, Khurda-752 019 (Orissa) (India); Tripathy, R.K. [Department of Physics, D R Nayapalli College, Bhubaneswar-751 012 (Orissa) (India); Padhy, R.K. [Department of Physics, D A V Public School, Chandrasekharpur, Bhubaneswar-751 021 (Orissa) (India); Sahu, M. [Department of Physics, Jupiter +2 Women’s Science College, IRC Village, Bhubaneswar-751 015 (Orissa) (India)

    2012-07-01

    This paper theoretically investigates the combined natural convection and mass transfer effects on unsteady flow of a viscous incompressible fluid past an infinite vertical porous plate embedded in a porous medium with heat source. The governing equations of the flow field are solved analytically for velocity, temperature, concentration distribution, skin friction and the rate of heat transfer using multi parameter perturbation technique and the effects of the flow parameters such as permeability parameter Kp, Grashof number for heat and mass transfer Gr, Gc; heat source parameter S, Schmidt number Sc, Prandtl number Pr etc. on the flow field are analyzed and discussed with the help of figures and tables. The permeability parameter Kp is reported to accelerate the transient velocity of the flow field at all points for small values of Kp (£1) and for higher values the effect reverses. The effect of increasing Grashof numbers for heat and mass transfer or heat source parameter is to enhance the transient velocity of the flow field at all points while a growing Schmidt number retards its effect at all points. A growing permeability parameter or heat source parameter increases the transient temperature of the flow field at all points, while a growing Prandtl number shows reverse effect. The effect of increasing Schmidt number is to decrease the concentration boundary layer thickness of the flow field at all points. Further, a growing permeability parameter enhances the skin friction at the wall and a growing Prandtl number shows reverse effect. The effect of increasing Prandtl number or permeability parameter leads to increase the magnitude of the rate of heat transfer at the wall.

  7. AdS2 models in an embedding superspace

    International Nuclear Information System (INIS)

    McKeon, D.G.C.; Sherry, T.N.

    2003-01-01

    An embedding superspace, whose bosonic part is the flat (2+1)-dimensional embedding space for AdS 2 , is introduced. Superfields and several supersymmetric models are examined in the embedded AdS 2 superspace

  8. Studies of flat-plate solar air collectors with absorber plates made of amorphous silicon photovoltaic modules; Amorphous taiyo denchi module wo shunetsuban to shita heibangata kukishiki shunetsuki no kenkyu

    Energy Technology Data Exchange (ETDEWEB)

    Sato, K.; Ito, S.; Miura, N. [Kanagawa Institute of Technology, Kanagawa (Japan)

    1996-10-27

    A light/heat hybrid air type heat collector has been developed in which heat is collected by solar cell panels. In Type 1 heat collector provided with a glass cover, two modules are connected in series and placed under a glass cover to serve as a heat collecting plate, each module built of a steel plate and two thin-film amorphous solar cells bonded to the steel plate. Air runs under the heat collecting plate. Type 2 heat collector is a Type 1 heat collector minus the glass cover. Air is taken in by a fan, runs in a vinyl chloride tube, and then through the heat collector where it is heated by the sun, and goes out at the exit. Heat collecting performance was subjected to theoretical analysis. This heat collector approximated in point of heat collection a model using a board painted black, which means that the new type functions effectively as an air-type heat collector. Operating as a photovoltaic power generator, the covered type generated approximately 20% less than the uncovered type under 800W/m{sup 2} insolation conditions. Type 1 has been in service for five months, and Type 2 for 2 months. At present, both are free of troubles such as deformation and the amorphous solar cell modules have deteriorated but a little. 4 refs., 9 figs.

  9. A comparison of the electrochemical recovery of palladium using a parallel flat plate flow-by reactor and a rotating cylinder electrode reactor

    International Nuclear Information System (INIS)

    Terrazas-Rodriguez, J.E.; Gutierrez-Granados, S.; Alatorre-Ordaz, M.A.; Ponce de Leon, C.; Walsh, F.C.

    2011-01-01

    The production of catalytic converters generates large amounts of waste water containing Pd 2+ , Rh 3+ and Nd 3+ ions. The electrochemical treatment of these solutions offers an economic and effective alternative to recover the precious metals in comparison with other traditional metal recovery technologies. The separation of palladium from this mixture of metal ions by catalytic deposition was carried out using a rotating cylinder electrode reactor (RCER) and a parallel plate reactor (FM01-LC) with the same cathode area (64 cm 2 ) and electrolyte volume (300 cm 3 ). The study was carried out at mean linear flow velocities of 1.27 -1 (120 e /v -1 (7390 2+ ions in the parallel plate electrode reactor was 35% while the recovery of 97% of Pd 2+ in the RCER was 62%. The volumetric energy consumption during the electrolysis was 0.56 kW h m -3 and 2.1 kW h m -3 for the RCER and the FM01-LC reactors, respectively. Using a three-dimensional stainless steel electrode in the FM01-LC laboratory reactor, 99% of palladium ions were recovered after 30 min of electrolysis while in the RCER, 120 min were necessary.

  10. The solution of the laminar-boundary-layer equation for the flat plate for velocity and temperature fields for variable physical properties and for the diffusion field at high concentration

    Science.gov (United States)

    Schuh, H

    1950-01-01

    In connection with Pohlhausen's solution for the temperature field on the flat plate, a series of formulas were indicated by means of which the velocity and temperature field for variable physical characteristics can be computed by an integral equation and an iteration method based on it. With it, the following cases were solved: On the assumption that the viscosity simply varies with the temperature while the other fluid properties remain constant, the velocity and temperature field on the heated and cooled plate, respectively, was computed at the Prandtl numbers 12.5 and 100 (viscous fluids). A closer study of these two cases resulted in general relations: The calculations for a gas of Pr number 0.7 (air) were conducted on the assumption that all fluid properties vary with the temperature, and the velocities are low enough for the heat of friction to be discounted. The result was a thickening of the boundary layers, but no appreciable modification in shearing stress or heat-transfer coefficient.

  11. Irreversibility analysis of non isothermal flat plate solar collectors for air heating with a dimensionless model; Analisis de las irreversibilidades en colectores solares de placas planas no isotermicos para calentamiento de aire utilizando un modelo adimensional

    Energy Technology Data Exchange (ETDEWEB)

    Bracamonte-Baran, Johane Hans; Baritto-Loreto, Miguel Leonardo [Universidad Central de Venezuela (Venezuela)]. E-mails: johanehb@gmail.com; johane.bracamonte@ucv.ve; miguel.baritto@ucv.ve

    2013-04-15

    The dimensionless model developed and validated by Baritto and Bracamonte (2012) for the thermal behavior of flat plate solar collector without glass cover is improved by adding the entropy balance equation in a dimensionless form. The model is solved for a wide range of aspect ratios and mass flow numbers. A parametric study is developed and the distribution of internal irreversibilities along the collector is analyzed. The influence of the design parameters on the entropy generation by fluid friction and heat transfer is analyzed and it is found that for certain combinations of these parameters optimal thermodynamic operation can be achieved. [Spanish] En el presente trabajo, el modelo adimensional desarrollado y validado por Baritto y Bracamonte (2012) para describir el comportamiento termico de colectores solares de placas planas sin cubierta transparente, se complementa con la ecuacion adimensional de balance de entropia para un elemento diferencial de colector solar. El modelo se resuelve para un amplio rango de valores de relaciones de aspecto y numero de flujo de masa. A partir de los resultados del modelo se desarrolla un analisis detallado de la influencia de estos parametros sobre la distribucion de irreversibilidades internas a lo largo del colector. Adicionalmente se estudia la influencia de estos parametros sobre los numeros de generacion de entropia por friccion viscosa, por transferencia de calor y total. Se encuentra que existen combinaciones de los parametros antes mencionados, para los cuales, la operacion del colector es termodinamicamente optima para numeros de flujo de masa elevados.

  12. Static stability analysis of smart magneto-electro-elastic heterogeneous nanoplates embedded in an elastic medium based on a four-variable refined plate theory

    Science.gov (United States)

    Ebrahimi, Farzad; Barati, Mohammad Reza

    2016-10-01

    In this article, a nonlocal four-variable refined plate theory is developed to examine the buckling behavior of nanoplates made of magneto-electro-elastic functionally graded (MEE-FG) materials resting on Winkler-Pasternak foundation. Material properties of nanoplate change in spatial coordinate based on power-law distribution. The nonlocal governing equations are deduced by employing the Hamilton principle. For various boundary conditions, the analytical solutions of nonlocal MEE-FG plates for buckling problem will be obtained based on an exact solution approach. Finally, dependency of buckling response of MEE-FG nanoplate on elastic foundation parameters, magnetic potential, external electric voltage, various boundary conditions, small scale parameter, power-law index, plate side-to-thickness ratio and aspect ratio will be figure out. These results can be advantageous for the mechanical analysis and design of intelligent nanoscale structures constructed from magneto-electro-thermo-elastic functionally graded materials.

  13. A flat solar collector built from galvanized steel plate, working by thermosyphonic flow, optimized for Mexican conditions; Un colector solar plano construido de lamina de acero galvanizada, operando por flujo termosifonico, optimizado para las condiciones mexicanas

    Energy Technology Data Exchange (ETDEWEB)

    Marroquin de Jesus, A; Olivares Ramirez, J.M.; Ramos Lopez, G.A.; Pless, R.C. [Centro de Investigacion en Ciencia Aplicada y Tecnologia Avanzada, Instituto Politecnico Nacional, Unidad Queretaro (Mexico)]. E-mail: amarroquind@utsjr.edu.mx

    2009-07-15

    Design, construction, and testing of the thermal performance of a flat solar collector for domestic water heating are described. The absorbing plate is built from readily available materials: two sheets of galvanized steel, one of the channelled types, the other one flat, which are joined by electric welding. The absorber is connected to a 198-L thermotank, insulated with polyurethane foam. In terms of receiving surface, the prototype tested here has an area of 1.35 m{sup 2}, about 20% smaller than comparable copper-tube-based collectors offered in the market. Temperature measurements conducted over a 30-day period gave values which were a few degrees lower than the theoretically calculated water temperatures. Momentary thermal efficiency values between 35% and 77% were observed. The water temperature achieved the tank at the end of the day averages 65 degrees Celsius in winter weather conditions in the central Mexican highland. This design of solar water heater is well suited to Mexican conditions, as it makes use of the high local intensity of the solar radiation, and as the channel shape of the ducts minimizes bursting during the rare occurrences of freezing temperatures in the region; it also has the advantage of being manufacturable at low cost from simple materials. [Spanish] Se describe el diseno, construccion y pruebas del desempeno termico de un colector solar plano para calentamiento de agua para uso domestico. La placa absorbedora se construyo de materiales facilmente asequibles: dos placas de acero galvanizado, una del tipo acanalado y la otra plana, unidas mediante soldadura de acero electrico. La placa absorbedora esta conectada a un termotanque con capacidad de 198 L, aislado con espuma de poliuretano. La superficie receptora de este prototipo es de 1.35 m{sup 2}, aproximadamente 20% mas pequena comparado con los colectores, basados en tubos de cobre, ofertados en el mercado. Mediciones de temperatura por un periodo de 30 dias, arrojaron valores

  14. Embedded Leverage

    DEFF Research Database (Denmark)

    Frazzini, Andrea; Heje Pedersen, Lasse

    find that asset classes with embedded leverage offer low risk-adjusted returns and, in the cross-section, higher embedded leverage is associated with lower returns. A portfolio which is long low-embedded-leverage securities and short high-embedded-leverage securities earns large abnormal returns...

  15. Flat-plate photovoltaic array design optimization

    Science.gov (United States)

    Ross, R. G., Jr.

    1980-01-01

    An analysis is presented which integrates the results of specific studies in the areas of photovoltaic structural design optimization, optimization of array series/parallel circuit design, thermal design optimization, and optimization of environmental protection features. The analysis is based on minimizing the total photovoltaic system life-cycle energy cost including repair and replacement of failed cells and modules. This approach is shown to be a useful technique for array optimization, particularly when time-dependent parameters such as array degradation and maintenance are involved.

  16. Validation of three-dimensional incompressible spatial direct numerical simulation code: A comparison with linear stability and parabolic stability equation theories for boundary-layer transition on a flat plate

    Science.gov (United States)

    Joslin, Ronald D.; Streett, Craig L.; Chang, Chau-Lyan

    1992-01-01

    Spatially evolving instabilities in a boundary layer on a flat plate are computed by direct numerical simulation (DNS) of the incompressible Navier-Stokes equations. In a truncated physical domain, a nonstaggered mesh is used for the grid. A Chebyshev-collocation method is used normal to the wall; finite difference and compact difference methods are used in the streamwise direction; and a Fourier series is used in the spanwise direction. For time stepping, implicit Crank-Nicolson and explicit Runge-Kutta schemes are used to the time-splitting method. The influence-matrix technique is used to solve the pressure equation. At the outflow boundary, the buffer-domain technique is used to prevent convective wave reflection or upstream propagation of information from the boundary. Results of the DNS are compared with those from both linear stability theory (LST) and parabolized stability equation (PSE) theory. Computed disturbance amplitudes and phases are in very good agreement with those of LST (for small inflow disturbance amplitudes). A measure of the sensitivity of the inflow condition is demonstrated with both LST and PSE theory used to approximate inflows. Although the DNS numerics are very different than those of PSE theory, the results are in good agreement. A small discrepancy in the results that does occur is likely a result of the variation in PSE boundary condition treatment in the far field. Finally, a small-amplitude wave triad is forced at the inflow, and simulation results are compared with those of LST. Again, very good agreement is found between DNS and LST results for the 3-D simulations, the implication being that the disturbance amplitudes are sufficiently small that nonlinear interactions are negligible.

  17. The acoustic power of a vibrating clamped circular plate revisited in the wide low frequency range using expansion into the radial polynomials.

    Science.gov (United States)

    Rdzanek, Wojciech P

    2016-06-01

    This study deals with the classical problem of sound radiation of an excited clamped circular plate embedded into a flat rigid baffle. The system of the two coupled differential equations is solved, one for the excited and damped vibrations of the plate and the other one-the Helmholtz equation. An approach using the expansion into radial polynomials leads to results for the modal impedance coefficients useful for a comprehensive numerical analysis of sound radiation. The results obtained are accurate and efficient in a wide low frequency range and can easily be adopted for a simply supported circular plate. The fluid loading is included providing accurate results in resonance.

  18. Drag Measurements over Embedded Cavities in a Low Reynolds Number Couette Flow

    Science.gov (United States)

    Gilmer, Caleb; Lang, Amy; Jones, Robert

    2010-11-01

    Recent research has revealed that thin-walled, embedded cavities in low Reynolds number flow have the potential to reduce the net viscous drag force acting on the surface. This reduction is due to the formation of embedded vortices allowing the outer flow to pass over the surface via a roller bearing effect. It is also hypothesized that the scales found on butterfly wings may act in a similar manner to cause a net increase in flying efficiency. In this experimental study, rectangular embedded cavities were designed as a means of successfully reducing the net drag across surfaces in a low Reynolds number flow. A Couette flow was generated via a rotating conveyor belt immersed in a tank of high viscosity mineral oil above which the plates with embedded cavities were placed. Drag induced on the plate models was measured using a force gauge and compared directly to measurements acquired over a flat plate. Various cavity aspect ratios and gap heights were tested in order to determine the conditions under which the greatest drag reductions occurred.

  19. Embeddings for the Schwarzschild metric: classification and new results

    International Nuclear Information System (INIS)

    Paston, S A; Sheykin, A A

    2012-01-01

    We suggest a method to search the embeddings of Riemannian spaces with a high enough symmetry in a flat ambient space. It is based on a procedure of construction surfaces with a given symmetry. The method is used to classify the embeddings of the Schwarzschild metric which have the symmetry of this solution, and all such embeddings in a six-dimensional ambient space (i.e. a space with a minimal possible dimension) are constructed. Four of the six possible embeddings are already known, while the two others are new. One of the new embeddings is asymptotically flat, while the other embeddings in a six-dimensional ambient space do not have this property. The asymptotically flat embedding can be of use in the analysis of the many-body problem, as well as for the development of gravity description as a theory of a surface in a flat ambient space. (paper)

  20. Poincare ball embeddings of the optical geometry

    International Nuclear Information System (INIS)

    Abramowicz, M A; Bengtsson, I; Karas, V; Rosquist, K

    2002-01-01

    It is shown that the optical geometry of the Reissner-Nordstroem exterior metric can be embedded in a hyperbolic space all the way down to its outer horizon. The adopted embedding procedure removes a breakdown of flat-space embeddings which occurs outside the horizon, at and below the Buchdahl-Bondi limit (R/M=9/4 in the Schwarzschild case). In particular, the horizon can be captured in the optical geometry embedding diagram. Moreover, by using the compact Poincare ball representation of the hyperbolic space, the embedding diagram can cover the whole extent of radius from spatial infinity down to the horizon. Attention is drawn to the advantages of such embeddings in an appropriately curved space: this approach gives compact embeddings and it clearly distinguishes the case of an extremal black hole from a non-extremal one in terms of the topology of the embedded horizon

  1. Embedded Systems

    Indian Academy of Sciences (India)

    sumer electronic systems, they are cost sensitive. Thus their cost must be low. Robustness: Embedded systems should be robust since they operate in a harsh environment. They should endure vibrations, power supply fluctuations and excessive heat. Due to limited power supply in an embedded system, the power ...

  2. Experimental characterization of the formability properties of steel plates

    International Nuclear Information System (INIS)

    Charca Ramos, G; Stout, M; Machain, R; Bolmaro, R; Bertinetti, M.A; Signorelli, J; Turner, P

    2008-01-01

    The concept of the formability limit curve (FLC) is a very useful tool in the characterization of plates and their ability to be stamped, embedded or deformed by stretching. The formability limit is represented in most characterizations, and is a concept originally proposed by Keeler and Backhofen, and Goodwin, as a line. But this is an inexact representation, since the data are greatly dispersed due to the different phenomena involved and the experimental methodology used. For this reason the experimental determination of the FLC requires many measurements, in order to be reliable. This work presents the experimental techniques that were chosen and the experimental devices that were implemented for measuring the FLC. Measurements with a semispherical punch on different geometrically shaped samples are presented, together with uniaxial traction tests to determine the directional load curves and the Lankford coefficient values. The methodologies used to test compression and flat deformation are also described in less thick samples like the plates in the study. This full characterization of the shaping properties is discussed in order to evaluate what measurements are enough to provide the data needed to calculate a model for the FLC, using crystalline plasticity coupled with the Marciniak-Kuczynski model. Galvanizad steel plates were used in this study, with the right quality for deep embedding. The FLC and the Lankford coefficient values obtained are typical of this material. The dispersion of the results corresponds to values previously reported by different authors. The uniaxial tests show a high uniformity of flow tension in all directions on the plan compared to the plate's laminated direction, and the compression experiments on the thickness show a load curve that is approximately 25% higher than the one for the traction on the plane of the plate (au)

  3. WEIGHT CONSIDERATION IN THE DESIGN OF ABSORBER PLATES

    African Journals Online (AJOL)

    A preliminary investigation (that has to supported later by economic analysis) on the design of an absorber plate for use in a liquid-cooled flat plate solar collector is considered. The objective of the design is to maximize collector efficiency factor, F', while simultaneously minimizing the plate weight. By varying the plate ...

  4. Weight Consideration in the Design of Absorber Plates | Dama ...

    African Journals Online (AJOL)

    A preliminary investigation (that has to supported later by economic analysis) on the design of an absorber plate for use in a liquid-cooled flat plate solar collector is considered. The objective of the design is to maximize collector efficiency factor, F', while simultaneously minimizing the plate weight. By varying the plate ...

  5. Embedded Systems

    Indian Academy of Sciences (India)

    system programmers should take into consideration all possi- bilities and write programs that do not fail. Responsiveness: Embedded systems should respond to events as soon as possible. For example, a patient monitoring system should process the patient'S heart signals quickly and immedi- ately notify if any abnormality ...

  6. Embedded defects

    International Nuclear Information System (INIS)

    Barriola, M.; Vachaspati, T.; Bucher, M.

    1994-01-01

    We give a prescription for embedding classical solutions and, in particular, topological defects in field theories which are invariant under symmetry groups that are not necessarily simple. After providing examples of embedded defects in field theories based on simple groups, we consider the electroweak model and show that it contains the Z string and a one-parameter family of strings called the W(α) string. It is argued that although the members of this family are gauge equivalent when considered in isolation, each member becomes physically distinct when multistring configurations are considered. We then turn to the issue of stability of embedded defects and demonstrate the instability of a large class of such solutions in the absence of bound states or condensates. The Z string is shown to be unstable for all values of the Higgs boson mass when θ W =π/4. W strings are also shown to be unstable for a large range of parameters. Embedded monopoles suffer from the Brandt-Neri-Coleman instability. Finally, we connect the electroweak string solutions to the sphaleron

  7. Creating flat design websites

    CERN Document Server

    Pratas, Antonio

    2014-01-01

    This book contains practical, step-by-step tutorials along with plenty of explanation about designing your flat website. Each section is introduced sequentially, building up your web design skills and completing your website.Creating Flat Design Websites is ideal for you if you are starting on your web development journey, but this book will also benefit seasoned developers wanting to start developing in flat.

  8. Flat Pack Toy Design

    Science.gov (United States)

    Hutcheson, Brian

    2007-01-01

    In this article, the author introduces the concept of flat pack toys. Flat pack toys are designed using a template on a single sheet of letter-sized card stock paper. Before being cut out and built into a three-dimensional toy, they are scanned into the computer and uploaded to a website. With the template accessible from the website, anyone with…

  9. Irreversibility analysis in unsteady flow over a vertical plate with arbitrary wall shear stress and ramped wall temperature

    Science.gov (United States)

    Khan, Arshad; ul Karim, Faizan; Khan, Ilyas; Ali, Farhad; Khan, Dolat

    2018-03-01

    The present paper aims to report irreversibility analysis in unsteady flow of viscous fluid over a vertical flat plate with ramped wall temperature and arbitrary wall shear stress in the presence of thermal radiation. The equations which governing the problem are solved by the method of Laplace transform. The expression for Bejan number and volumetric entropy generation rate are calculated. The effects of different embedded parameters on the Bejan number and the entropy generation number are elaborated by graphs. It is noted that entropy production in thermal system can be minimized by decreasing thermal radiation. It is also observed that heat transfer increases the entropy of the system.

  10. Compression embedding

    Science.gov (United States)

    Sandford, M.T. II; Handel, T.G.; Bradley, J.N.

    1998-07-07

    A method and apparatus for embedding auxiliary information into the digital representation of host data created by a lossy compression technique and a method and apparatus for constructing auxiliary data from the correspondence between values in a digital key-pair table with integer index values existing in a representation of host data created by a lossy compression technique are disclosed. The methods apply to data compressed with algorithms based on series expansion, quantization to a finite number of symbols, and entropy coding. Lossy compression methods represent the original data as ordered sequences of blocks containing integer indices having redundancy and uncertainty of value by one unit, allowing indices which are adjacent in value to be manipulated to encode auxiliary data. Also included is a method to improve the efficiency of lossy compression algorithms by embedding white noise into the integer indices. Lossy compression methods use loss-less compression to reduce to the final size the intermediate representation as indices. The efficiency of the loss-less compression, known also as entropy coding compression, is increased by manipulating the indices at the intermediate stage. Manipulation of the intermediate representation improves lossy compression performance by 1 to 10%. 21 figs.

  11. Cold plate

    Energy Technology Data Exchange (ETDEWEB)

    Marroquin, Christopher M.; O' Connell, Kevin M.; Schultz, Mark D.; Tian, Shurong

    2018-02-13

    A cold plate, an electronic assembly including a cold plate, and a method for forming a cold plate are provided. The cold plate includes an interface plate and an opposing plate that form a plenum. The cold plate includes a plurality of active areas arranged for alignment over respective heat generating portions of an electronic assembly, and non-active areas between the active areas. A cooling fluid flows through the plenum. The plenum, at the non-active areas, has a reduced width and/or reduced height relative to the plenum at the active areas. The reduced width and/or height of the plenum, and exterior dimensions of cold plate, at the non-active areas allow the non-active areas to flex to accommodate surface variations of the electronics assembly. The reduced width and/or height non-active areas can be specifically shaped to fit between physical features of the electronics assembly.

  12. Flat-port connectors

    KAUST Repository

    Alrashed, Mohammed

    2017-05-26

    Disclosed are various embodiments for connectors used with electronic devices, such as input and/or output ports to connect peripheral equipment or accessories. More specifically, various flat-port are provided that can be used in place of standard connectors including, but not limited to, audio jacks and Universal Serial Bus (USB) ports. The flat-port connectors are an alternate connection design to replace the traditional receptacle port (female-port), making the device more sealed creation more dust and water resistant. It is unique in the way of using the outer surfaces of the device for the electrical connection between the ports. Flat-port design can allow the manufacture of extremely thin devices by eliminating the side ports slots that take a lot of space and contribute to the increase thickness of the device. The flat-port receptacle improves the overall appearance of the device and makes it more resistant to dust and water.

  13. Plating laboratory

    International Nuclear Information System (INIS)

    Seamster, A.G.; Weitkamp, W.G.

    1984-01-01

    The lead plating of the prototype resonator has been conducted entirely in the plating laboratory at SUNY Stony Brook. Because of the considerable cost and inconvenience in transporting personnel and materials to and from Stony Brook, it is clearly impractical to plate all the resonators there. Furthermore, the high-beta resonator cannot be accommodated at Stony Brook without modifying the set up there. Consequently the authors are constructing a plating lab in-house

  14. Root-Contact/Pressure-Plate Assembly For Hydroponic System

    Science.gov (United States)

    Morris, Carlton E.; Loretan, Philip A.; Bonsi, Conrad K.; Hill, Walter A.

    1994-01-01

    Hydroponic system includes growth channels equipped with rootcontact/pressure-plate assemblies. Pump and associated plumbing circulate nutrient liquid from reservoir, along bottom of growth channels, and back to reservoir. Root-contact/pressure-plate assembly in each growth channel stimulates growth of roots by applying mild contact pressure. Flat plate and plate connectors, together constitute pressure plate, free to move upward to accommodate growth of roots. System used for growing sweetpotatoes and possibly other tuber and root crops.

  15. A New Triangular Flat Shell Element With Drilling Rotations

    DEFF Research Database (Denmark)

    Damkilde, Lars

    2008-01-01

    A new flat triangular shell element has been developed based on a newly developed triangular plate bending element by the author and a new triangular membrane element with drilling degrees of freedom. The advantage of the drilling degree of freedom is that no special precautions have to be made...... in connecting with assembly of elements. Due to the drilling rotations all nodal degrees of freedom have stiffness, and therefore no artificial suppression of degrees of freedom are needed for flat or almost flat parts of the shell structure....

  16. Rocky Flats Compliance Program

    International Nuclear Information System (INIS)

    1994-02-01

    The Department of Energy (DOE) established the Office of Technology Development (EM-50) (OTD) as an element of Environmental Restoration and Waste Management (EM) in November 1989. The primary objective of the Office of Technology Development, Rocky Flats Compliance Program (RFCP), is to develop altemative treatment technologies for mixed low-level waste (wastes containing both hazardous and radioactive components) to use in bringing the Rocky Flats Plant (RFP) into compliance with Federal and state regulations and agreements. Approximately 48,000 cubic feet of untreated low-level mixed waste, for which treatment has not been specified, are stored at the RFP. The cleanup of the Rocky Flats site is driven by agreements between DOE, the Environmental Protection Agency (EPA), and the Colorado Department of Health (CDH). Under these agreements, a Comprehensive Treatment and Management Plan (CTMP) was drafted to outline the mechanisms by which RFP will achieve compliance with the regulations and agreements. This document describes DOE's strategy to treat low-level mixed waste to meet Land Disposal Restrictions and sets specific milestones related to the regulatory aspects of technology development. These milestones detail schedules for the development of technologies to treat all of the mixed wastes at the RFP. Under the Federal Facilities Compliance Act (FFCA), the CTMP has been incorporated into Rocky Flats Plant Conceptual Site Treatment Plan (CSTP). The CSTP will become the Rocky Flats Plant site Treatment Plan in 1995 and will supersede the CTMP

  17. Solution for Flat Roofs

    Directory of Open Access Journals (Sweden)

    Şt. Vasiliu

    2008-01-01

    Full Text Available Roofs are constructive subassemblies that are located at the top of buildings, which toghether with perimetral walls and some elements of the infrastructure belongs to the subsystem elements that close the building. An important share in the roofing is represented by the flat roofs. Flat roofs must meet the requirements of resistance to mechanical action, thermal insulation, acoustic and waterproof, fire resistance, durability and aesthetics. To meet these requirements is necessary an analysis of the component layers and materials properties that determine the durability of structural assembly.

  18. Flat shoes increase neurogenesis.

    Science.gov (United States)

    Flensmark, J

    2016-12-01

    The impairment of the horizontal is caused by elevation of the heel of the foot from the ground. Receptors in the soles of the feet provide a mapping of body orientation to the upright, and is identical to Mittelstaedt's idiotropic tendency. Initiation of gait wearing flat shoes without elevation of the heel is sufficient to change to a truthful horizontal. Using flat shoes increases neurogenesis and leads to a decreased frequency of diseases of the nervous system. Copyright © 2016 Elsevier Ltd. All rights reserved.

  19. Stress field evolution above the Peruvian flat-slab (Cordillera Blanca, northern Peru)

    Science.gov (United States)

    Margirier, A.; Audin, L.; Robert, X.; Pêcher, A.; Schwartz, S.

    2017-08-01

    In subduction settings, the tectonic regime of the overriding plate is closely related to the geometry of the subducting plate. Flat-slab segments are supposed to increase coupling at the plate interface in the Andes, resulting in an increase and eastward migration of the shortening in the overriding plate. Above the Peruvian flat-slab, a 200 km-long normal fault trend parallel to the range and delimits the western flank of the Cordillera Blanca. In a context of flat subduction, expected to produce shortening, the presence of the Cordillera Blanca normal fault (CBNF) is surprising. We performed a systematic inversion of striated fault planes in the Cordillera Blanca region to better characterize the stress field above the Peruvian flat-slab. It evidences the succession of different tectonic regimes. NE-SW extension is predominant in most of the sites indicating a regional extension. We suggest that the Peruvian flat-slab trigger extension in the Western Cordillera while the shortening migrated eastward. Finally, we propose that flat-slab segments do not increase the coupling at the trench neither the shortening in the overriding plate but only favor shortening migration backward. However, the stress field of the overriding plate arises from the evolution of plate interface properties through time due to bathymetric anomaly migration.

  20. Piecewise flat gravitational waves

    NARCIS (Netherlands)

    van de Meent, M.

    2011-01-01

    We examine the continuum limit of the piecewise flat locally finite gravity model introduced by ’t Hooft. In the linear weak field limit, we find the energy–momentum tensor and metric perturbation of an arbitrary configuration of defects. The energy–momentum turns out to be restricted to satisfy

  1. Flat out and bluesome

    OpenAIRE

    Wilson, Mark; Snaebjornsdottir, Bryndis; Byatt, Lucy

    2008-01-01

    ‘Nanoq: flat out and bluesome’ is the story of polar bears, the largest land predators on earth, and their journey from the arctic wilderness to the museums and stately homes of the UK. The work documents the histories of each of these bears, the legacies of the hunters who shot them and the skills and expertise of the taxidermists who stuffed them.

  2. Embedded Processor Laboratory

    Data.gov (United States)

    Federal Laboratory Consortium — The Embedded Processor Laboratory provides the means to design, develop, fabricate, and test embedded computers for missile guidance electronics systems in support...

  3. Towards a flat 45%-efficient concentrator module

    Science.gov (United States)

    Mohedano, Rubén; Hernandez, Maikel; Vilaplana, Juan; Chaves, Julio; Miñano, Juan C.; Benitez, Pablo; Sorgato, S.; Falicoff, Waqidi

    2015-09-01

    The so-called CCS4FK is an ultra-flat photovoltaic system of high concentration and high efficiency, with potential to convert, ideally, the equivalent of a 45% of direct solar radiation into electricity by optimizing the usage of sun spectrum and by collecting part of the diffuse radiation, as a flat plate does. LPI has recently finished a design based on this concept and is now developing a prototype based on this technology, thanks to the support of FUNDACION REPSOL-Fondo de Emprendedores, which promotes entrepreneur projects in different areas linked to energy. This works shows some details of the actual design and preliminary potential performance expected, according to accurate spectral simulations.

  4. Towards a flat 45%-efficient concentrator module

    International Nuclear Information System (INIS)

    Mohedano, Rubén; Hernandez, Maikel; Vilaplana, Juan; Chaves, Julio; Sorgato, S.; Falicoff, Waqidi; Miñano, Juan C.; Benitez, Pablo

    2015-01-01

    The so-called CCS 4 FK is an ultra-flat photovoltaic system of high concentration and high efficiency, with potential to convert, ideally, the equivalent of a 45% of direct solar radiation into electricity by optimizing the usage of sun spectrum and by collecting part of the diffuse radiation, as a flat plate does. LPI has recently finished a design based on this concept and is now developing a prototype based on this technology, thanks to the support of FUNDACION REPSOL-Fondo de Emprendedores, which promotes entrepreneur projects in different areas linked to energy. This works shows some details of the actual design and preliminary potential performance expected, according to accurate spectral simulations

  5. Towards a flat 45%-efficient concentrator module

    Energy Technology Data Exchange (ETDEWEB)

    Mohedano, Rubén, E-mail: rmohedano@lpi-europe.com; Hernandez, Maikel; Vilaplana, Juan; Chaves, Julio; Sorgato, S.; Falicoff, Waqidi [LPI, Altadena, CA, USA and Madrid (Spain); Miñano, Juan C.; Benitez, Pablo [LPI, Altadena, CA, USA and Madrid (Spain); Universidad Politécnica de Madrid (UPM), Campus de Montegancedo, Madrid (Spain)

    2015-09-28

    The so-called CCS{sup 4}FK is an ultra-flat photovoltaic system of high concentration and high efficiency, with potential to convert, ideally, the equivalent of a 45% of direct solar radiation into electricity by optimizing the usage of sun spectrum and by collecting part of the diffuse radiation, as a flat plate does. LPI has recently finished a design based on this concept and is now developing a prototype based on this technology, thanks to the support of FUNDACION REPSOL-Fondo de Emprendedores, which promotes entrepreneur projects in different areas linked to energy. This works shows some details of the actual design and preliminary potential performance expected, according to accurate spectral simulations.

  6. Polymorphic Embedding of DSLs

    DEFF Research Database (Denmark)

    Hofer, Christian; Ostermann, Klaus; Rendel, Tillmann

    2008-01-01

    propose polymorphic embedding of DSLs, where many different interpretations of a DSL can be provided as reusable components, and show how polymorphic embedding can be realized in the programming language Scala. With polymorphic embedding, the static type-safety, modularity, composability and rapid...... prototyping of pure embedding are reconciled with the flexibility attainable by external toolchains....

  7. Flat covers of modules

    CERN Document Server

    Xu, Jinzhong

    1996-01-01

    Since the injective envelope and projective cover were defined by Eckmann and Bas in the 1960s, they have had great influence on the development of homological algebra, ring theory and module theory. In the 1980s, Enochs introduced the flat cover and conjectured that every module has such a cover over any ring. This book provides the uniform methods and systematic treatment to study general envelopes and covers with the emphasis on the existence of flat cover. It shows that Enochs' conjecture is true for a large variety of interesting rings, and then presents the applications of the results. Readers with reasonable knowledge in rings and modules will not have difficulty in reading this book. It is suitable as a reference book and textbook for researchers and graduate students who have an interest in this field.

  8. Transparent Solar Concentrator for Flat Panel Display

    Science.gov (United States)

    Yeh, Chia-Hung; Chang, Fuh-Yu; Young, Hong-Tsu; Hsieh, Tsung-Yen; Chang, Chia-Hsiung

    2012-06-01

    A new concept of the transparent solar concentrator for flat panel display is experimentally demonstrated without adversely affecting the visual effects. The solar concentrator is based on a solar light-guide plate with micro prisms, not only increasing the absorption area of solar energy but also enhancing the conversion efficiency. The incident light is guided by the designed solar light-guide plate according to the total internal reflection (TIR), and converted into electrical power by photovoltaic solar cells. The designed transparent solar concentrator was made and measured with high transparency, namely 94.8%. The developed solar energy system for display can store energy and supply the bias voltage to light on two light-emitting diodes (LEDs) successfully.

  9. Flat tori in three-dimensional space and convex integration.

    Science.gov (United States)

    Borrelli, Vincent; Jabrane, Saïd; Lazarus, Francis; Thibert, Boris

    2012-05-08

    It is well-known that the curvature tensor is an isometric invariant of C(2) Riemannian manifolds. This invariant is at the origin of the rigidity observed in Riemannian geometry. In the mid 1950s, Nash amazed the world mathematical community by showing that this rigidity breaks down in regularity C(1). This unexpected flexibility has many paradoxical consequences, one of them is the existence of C(1) isometric embeddings of flat tori into Euclidean three-dimensional space. In the 1970s and 1980s, M. Gromov, revisiting Nash's results introduced convex integration theory offering a general framework to solve this type of geometric problems. In this research, we convert convex integration theory into an algorithm that produces isometric maps of flat tori. We provide an implementation of a convex integration process leading to images of an embedding of a flat torus. The resulting surface reveals a C(1) fractal structure: Although the tangent plane is defined everywhere, the normal vector exhibits a fractal behavior. Isometric embeddings of flat tori may thus appear as a geometric occurrence of a structure that is simultaneously C(1) and fractal. Beyond these results, our implementation demonstrates that convex integration, a theory still confined to specialists, can produce computationally tractable solutions of partial differential relations.

  10. 2-surface twistors, embeddings and symmetries

    International Nuclear Information System (INIS)

    Jeffryes, B.P.

    1987-01-01

    2-Surface twistor space was introduced in connection with a proposal for a quasi-local definition of mass and angular momentum within general relativity. Properties of the 2-surface twistor space are related to the possibilities for embedding the 2-surface in real and complex conformally flat spaces. The additional properties of the twistor space resulting from symmetries of the 2-surface are discussed, with particular detail on axisymmetric 2-surfaces. (author)

  11. The non-fluorescent flat plate solar concentrator

    Energy Technology Data Exchange (ETDEWEB)

    Slooff, L.H.; Bende, E.E.; Budel, T. [ECN Solar Energy, Petten (Netherlands)

    2009-09-15

    Apart from costs, one of the keys to the market introduction of the fluorescent solar concentrator (FSC) is its outdoor lifetime, which up to now, is limited a few years by the lifetime of the fluorescent dye or quantum dot. This study shows that omitting the dye or quantum dot still can give power conversion efficiencies (PCE), which are comparable to, or even larger than that of the FSC. This can be done by using a special type of bottom mirror. It is shown that a PCE of 4.5% can be achieved.

  12. Optimization of flat plate drying of carrot pomace (abstract)

    Science.gov (United States)

    Carrot (Daucus carota var. sativus) pomace is a co-product of the carrot juice and cut-carrot industry; it has high nutritional value but is currently underutilized. Drum drying is one method that could be used to dry and stabilize carrot pomace. However, optimum conditions for the dryer surface tem...

  13. Turbine Engine Component Analysis: Cantilevered Composite Flat Plate Analysis

    Science.gov (United States)

    1989-11-01

    from the binary OUTPUT2 file. The OUTPUT2 file is not generally created during COSMIC NASTRAN execution, 2 so special DMAP (Direct Matrix Abstraction...finite element analysis codes: ADINA, COSMIC NASTRAN , and MAGNA. Results are compared with theoretical values to verify the finite element codes and...11 4.1 ADINA MODELING .i...................... 11 4.2 COSMIC NASTRAN MODELING ................. 16 4.3 MAGNA MODELING

  14. Operating Cell Temperature Determination in Flat-Plate Photovoltaic Modules

    International Nuclear Information System (INIS)

    Chenlo, F.

    2002-01-01

    Two procedures (simplified and complete) to determine me operating cell temperature in photovoltaic modules operating in real conditions assuming isothermal stationary modules are presented in this work. Some examples are included that show me dependence of this temperature on several environmental (sky, ground and ambient temperatures, solar irradiance, wind speed, etc.) and structural (module geometry and size, encapsulating materials, anti reflexive optical coatings, etc.) factors and also on electrical module performance. In a further step temperature profiles for non-isothermal modules are analysed besides transitory effects due to variable irradiance and wind gusts. (Author) 27 refs

  15. Cost effective flat plate photovoltaic modules using light trapping

    Science.gov (United States)

    Bain, C. N.; Gordon, B. A.; Knasel, T. M.; Malinowski, R. L.

    1981-01-01

    Work in optical trapping in 'thick films' is described to form a design guide for photovoltaic engineers. A thick optical film can trap light by diffusive reflection and total internal reflection. Light can be propagated reasonably long distances compared with layer thicknesses by this technique. This makes it possible to conduct light from inter-cell and intra-cell areas now not used in photovoltaic modules onto active cell areas.

  16. Reliability and performance experience with flat-plate photovoltaic modules

    Science.gov (United States)

    Ross, R. G., Jr.

    1982-01-01

    Statistical models developed to define the most likely sources of photovoltaic (PV) array failures and the optimum method of allowing for the defects in order to achieve a 20 yr lifetime with acceptable performance degradation are summarized. Significant parameters were the cost of energy, annual power output, initial cost, replacement cost, rate of module replacement, the discount rate, and the plant lifetime. Acceptable degradation allocations were calculated to be 0.0001 cell failures/yr, 0.005 module failures/yr, 0.05 power loss/yr, a 0.01 rate of power loss/yr, and a 25 yr module wear-out length. Circuit redundancy techniques were determined to offset cell failures using fault tolerant designs such as series/parallel and bypass diode arrangements. Screening processes have been devised to eliminate cells that will crack in operation, and multiple electrical contacts at each cell compensate for the cells which escape the screening test and then crack when installed. The 20 yr array lifetime is expected to be achieved in the near-term.

  17. Efficiency improvement of flat plate solar collector using reflector

    Directory of Open Access Journals (Sweden)

    Himangshu Bhowmik

    2017-11-01

    Full Text Available Solar collectors are the main components of a solar heating system. The collectors collect the sun’s energy, transform this radiation into heat, and then transfer this heat into a fluid, water or air, which has many household or industrial applications. This paper introduces a new technology to improve the performance of the solar thermal collectors. The solar reflector used here with the solar collector to increase the reflectivity of the collector. Thus, the reflector concentrates both direct and diffuse radiation of the sun toward the collector. To maximize the intensity of incident radiation, the reflector was allowed to change its angle with daytime. The radiations coming from the sun’s energy were converted into heat, and then this heat was transferred to the collector fluid, water. A prototype of a solar water heating system was constructed and obtained the improvement of the collector efficiency around 10% by using the reflector. Thus, the present solar water heating systems having the best thermal performance compared to the available systems.

  18. On-Line Flatness Measurement in the Steelmaking Industry

    Science.gov (United States)

    Molleda, Julio; Usamentiaga, Rubén; Garcίa, Daniel F.

    2013-01-01

    Shape is a key characteristic to determine the quality of outgoing flat-rolled products in the steel industry. It is greatly influenced by flatness, a feature to describe how the surface of a rolled product approaches a plane. Flatness is of the utmost importance in steelmaking, since it is used by most downstream processes and customers for the acceptance or rejection of rolled products. Flatness sensors compute flatness measurements based on comparing the length of several longitudinal fibers of the surface of the product under inspection. Two main different approaches are commonly used. On the one hand, most mechanical sensors measure the tensile stress across the width of the rolled product, while manufacturing and estimating the fiber lengths from this stress. On the other hand, optical sensors measure the length of the fibers by means of light patterns projected onto the product surface. In this paper, we review the techniques and the main sensors used in the steelmaking industry to measure and quantify flatness defects in steel plates, sheets and strips. Most of these techniques and sensors can be used in other industries involving rolling mills or continuous production lines, such as aluminum, copper and paper, to name a few. Encompassed in the special issue, State-of-the-Art Sensors Technology in Spain 2013, this paper also reviews the most important flatness sensors designed and developed for the steelmaking industry in Spain. PMID:23939583

  19. On-Line Flatness Measurement in the Steelmaking Industry

    Directory of Open Access Journals (Sweden)

    Rubén Usamentiaga

    2013-08-01

    Full Text Available Shape is a key characteristic to determine the quality of outgoing flat-rolled products in the steel industry. It is greatly influenced by flatness, a feature to describe how the surface of a rolled product approaches a plane. Flatness is of the utmost importance in steelmaking, since it is used by most downstream processes and customers for the acceptance or rejection of rolled products. Flatness sensors compute flatness measurements based on comparing the length of several longitudinal fibers of the surface of the product under inspection. Two main different approaches are commonly used. On the one hand, most mechanical sensors measure the tensile stress across the width of the rolled product, while manufacturing and estimating the fiber lengths from this stress. On the other hand, optical sensors measure the length of the fibers by means of light patterns projected onto the product surface. In this paper, we review the techniques and the main sensors used in the steelmaking industry to measure and quantify flatness defects in steel plates, sheets and strips. Most of these techniques and sensors can be used in other industries involving rolling mills or continuous production lines, such as aluminum, copper and paper, to name a few. Encompassed in the special issue, State-of-the-Art Sensors Technology in Spain 2013, this paper also reviews the most important flatness sensors designed and developed for the steelmaking industry in Spain.

  20. Gravitational energy in the framework of embedding and splitting theories

    Science.gov (United States)

    Grad, D. A.; Ilin, R. V.; Paston, S. A.; Sheykin, A. A.

    We study various definitions of the gravitational field energy based on the usage of isometric embeddings in the Regge-Teitelboim approach. For the embedding theory, we consider the coordinate translations on the surface as well as the coordinate translations in the flat bulk. In the latter case, the independent definition of gravitational energy-momentum tensor appears as a Noether current corresponding to global inner symmetry. In the field-theoretic form of this approach (splitting theory), we consider Noether procedure and the alternative method of energy-momentum tensor defining by varying the action of the theory with respect to flat bulk metric. As a result, we obtain energy definition in field-theoretic form of embedding theory which, among the other features, gives a nontrivial result for the solutions of embedding theory which are also solutions of Einstein equations. The question of energy localization is also discussed.

  1. Flat H Redundant Frangible Joint Development

    Science.gov (United States)

    Brown, Chris

    2016-01-01

    Orion and Commercial Crew Program (CCP) Partners have chosen to use frangible joints for certain separation events. The joints currently available are zero failure tolerant and will be used in mission safety applications. The goal is to further develop a NASA designed redundant frangible joint that will lower flight risk and increase reliability. FY16 testing revealed a successful design in subscale straight test specimens that gained efficiency and supports Orion load requirements. Approach / Innovation A design constraint is that the redundant joint must fit within the current Orion architecture, without the need for additional vehicle modification. This limitation required a design that changed the orientation of the expanding tube assemblies (XTAs), by rotating them 90deg from the standard joint configuration. The change is not trivial and affects the fracture mechanism and structural load paths. To address these changes, the design incorporates cantilevered arms on the break plate. The shock transmission and expansion of the XTA applies force to these arms and creates a prying motion to push the plate walls outward to the point of structural failure at the notched section. The 2014 test design revealed that parts could slip during functioning wasting valuable energy needed to separate the structure with only a single XTA functioning. Dual XTA functioning fully separated the assembly showing a discrepancy can be backed up with redundancy. Work on other fully redundant systems outside NASA is limited to a few patents that have not been subjected to functionality testing Design changes to prevent unwanted slippage (with ICA funding in 2015) showed success with a single XTA. The main goal for FY 2016 was to send the new Flat H RFJ to WSTF where single XTA test failures occurred back in 2014. The plan was to gain efficiency in this design by separating the Flat H RFJ with thicker ligaments with dimensions baselined in 2014. Other modifications included geometry

  2. Piecewise flat gravitational waves

    Energy Technology Data Exchange (ETDEWEB)

    Van de Meent, Maarten, E-mail: M.vandeMeent@uu.nl [Institute for Theoretical Physics and Spinoza Institute, Utrecht University, PO Box 80.195, 3508 TD Utrecht (Netherlands)

    2011-04-07

    We examine the continuum limit of the piecewise flat locally finite gravity model introduced by 't Hooft. In the linear weak field limit, we find the energy-momentum tensor and metric perturbation of an arbitrary configuration of defects. The energy-momentum turns out to be restricted to satisfy certain conditions. The metric perturbation is mostly fixed by the energy-momentum except for its lightlike modes which reproduce linear gravitational waves, despite no such waves being present at the microscopic level.

  3. 40 CFR 230.42 - Mud flats.

    Science.gov (United States)

    2010-07-01

    ... Aquatic Sites § 230.42 Mud flats. (a) Mud flats are broad flat areas along the sea coast and in coastal rivers to the head of tidal influence and in inland lakes, ponds, and riverine systems. When mud flats...

  4. Role of the urethral plate characters in the success of tubularized incised plate urethroplasty

    Directory of Open Access Journals (Sweden)

    Hamdy Aboutaleb

    2014-01-01

    Full Text Available Background: Today, tubularized incised plate (TIP urethroplasty is the most commonly performed operation for distal and mid-penile hypospadias. Reports from different centers worldwide confirm its nearly universal applicability and low complications rate. Aim: Evaluation of the urethral plate characters and its effect on the outcome of TIP urethroplasty. Materials and Methods: Between 2010 and 2013, 100 children with primary distal penile hypospadias underwent TIP urethroplasty. Urethral plates were categorized as flat, cleft, and deeply grooved. Postoperatively, patients were followed-up for evaluation of meatal stenosis, fistula formation, and glandular dehiscence at 1 st , 3 rd and 6 th months. Patients were followed-up for urethral calibration by urethral sound 8 Fr at 3 rd and 6 months follow-up. Data were statistically analysed using Epi info program to correlate between the width, plate shape, and complications. Results: Mean age at surgery was 4.3 years. Patients were followed-up for an average period of 6.4 months. Pre-operative location of the meatus was reported as coronal in 46, subcoronal in 50 and anterior penile in 4 cases. Urethral plate characters were flat in 26 cases, cleft in 52, and deeply grooved in 22. Urethral plate width was >8 mm in 74 cases and 8 mm. In addition, we also founds higher fistula rate and failed 8 Fr calibrations in flat urethral plate. Conclusions: An adequate urethral plate width (>8 mm is essential for successful TIP repair. Lower success rates with flat plates may need buccal mucosal augmentation to improve the results.

  5. Development of Surfaces Optically Suitable for Flat Solar Panels

    Science.gov (United States)

    Desmet, D.; Jason, A.

    1978-01-01

    Three areas of research in the development of flat solar panels are described. (1) A reflectometer which can separately evaluate the spectral and diffuse reflectivities of surfaces was developed. The reflectometer has a phase locked detection system. (2) A coating composed of strongly bound copper oxide that is formed by an etching process performed on an aluminum alloy with high copper content was also developed. Because of this one step fabrication process, fabrication costs are expected to be small. (3) A literature search was conducted and conclusions on the required optical properties of flat plate solar collectors are presented.

  6. UVIS Flat Field Uniformity

    Science.gov (United States)

    Quijano, Jessica Kim

    2009-07-01

    The stability and uniformity of the low-frequency flat fields {L-flat} of the UVIS detector will be assessed by using multiple-pointing observations of the globular clusters 47 Tucanae {NGC104} and Omega Centauri {NGC5139}, thus imaging moderately dense stellar fields. By placing the same star over different portions of the detector and measuring relative changes in its brightness, it will be possible to determine local variations in the response of the UVIS detector. Based on previous experience with STIS and ACS, it is deemed that a total of 9 different pointings will suffice to provide adequate characterization of the flat field stability in any given band. For each filter to be tested, the baseline consists of 9 pointings in a 3X3 box pattern with dither steps of about 25% of the FOV, or 40.5", in either the x or y direction {useful also for CTE measurements, if needed in the future}. During SMOV, the complement of filters to be tested is limited to the following 6 filters: F225W, F275W, F336W, for Omega Cen, and F438W, F606W, and F814W for 47 Tuc. Three long exposures for each target are arranged such that the initial dither position is observed with the appropriate filters for that target within one orbit at a single pointing, so that filter-to-filter differences in the observed star positions can be checked. In addition to the 9 baseline exposures, two sets of short exposures will be taken:a} one short exposure will be taken of OmegaCen with each of the visible filters {F438W, F606W and F814W} in order to check the geometric distortion solution to be obtained with the data from proposal 11444;b} for each target, a single short exposure will be taken with each filter to facilitate the study of the PSF as a function of position on the detector by providing unsaturated images of sparsely-spaced bright stars.This proposal corresponds to Activity Description ID WF39. It should execute only after the following proposal has executed:WF21 - 11434

  7. Casimir densities for parallel plate in the domain wall background

    International Nuclear Information System (INIS)

    Setare, M R

    2003-01-01

    The Casimir forces on two parallel plates in the conformally flat domain wall background due to a conformally coupled massless scalar field satisfying mixed boundary conditions on the plates are investigated. In the general case of mixed boundary conditions, formulae are derived for the vacuum expectation values of the energy-momentum tensor and vacuum forces acting on the boundaries

  8. New solutions of stokes problem for an oscillating plate using ...

    African Journals Online (AJOL)

    The fluid flow problem is solved with the help of Laplace transform technique. Here we discuss two cases: first case corresponds the oscillating porous plate with superimposed suction or blowing and second deals with an increasing or decreasing velocity amplitude of the oscillating flat plate. Journal of Applied Sciences ...

  9. IS THE WORLD FLAT?

    Directory of Open Access Journals (Sweden)

    Cristian Încalţărău

    2010-06-01

    Full Text Available Globalization became more and more prominent during the last decades. There is no way to argue that globalization led to more interconnected economies, facilitating the communication and the collaboration around the world. But where is this going? Doesglobalization mean uniformity or diversity? As the world begins to resemble more, the people are trying to distinguish between them more, which can exacerbate nationalistic feeling. Friedman argues that globalization made the world smaller and flatter, allowing all countries to take chance of the available opportunities equally. But is this really true? Although politic and cultural factors can stand in front of a really flat world, what is the key for Chinese and Indian success and which are theirs perspectives?

  10. Unsteady pressures on a blunt trailing edge measured with an embedded pressure scanner

    Science.gov (United States)

    Naughton, Jonathan; Nikoueeyan, Pourya; Hind, Michael; Strike, John; Dahland, Matz; Keeter, Steven

    2017-11-01

    Development of direct-mount pressure scanners can decrease the pneumatic tubing length required to connect the measurement ports to the scanner manifold resulting in improved dynamic range for unsteady pressure measurements. In this work, the performance of a direct-mount pressure scanner for time-resolved pressure measurement is demonstrated in a well-established flow; the pressure fluctuations near the base of flat plate is considered. The additive manufactured model is instrumented with a pressure scanner and flush-mounted high-speed pressure transducers. The configuration of the ports on the model allows for side-by-side comparison of the pressures measured via embedded pneumatic tubing routed to a pressure scanner with that measured by high-speed transducers. Prior to testing, the dynamic response of each embedded pressure port is dynamically calibrated via an in-situ calibration technique. Pressure data is then acquired for fixed angle-of-attack and different dynamic pitching conditions. The dynamic range of the measurements acquired via direct-mount scanner will be compared to those acquired by the high speed transducers for both static and dynamic pitching configurations. The uncertainties associated with Weiner deconvolution are also quantified for the measurements.

  11. Conceptualizing Embedded Configuration

    DEFF Research Database (Denmark)

    Oddsson, Gudmundur Valur; Hvam, Lars; Lysgaard, Ole

    2006-01-01

    Installing and servicing complex electromechanical systems is more tedious than is necessary. By putting the product knowledge into the product itself, which then would allow automation in constructing the product from modules, could solve that. It would support personnel in aftersales installation...... and services. The general idea can be named embedded configuration. In this article we intend to conceptualize embedded configuration, what it is and is not. The difference between embedded configuration, sales configuration and embedded software is explained. We will look at what is needed to make embedded...... configuration systems. That will include requirements to product modelling techniques. An example with consumer electronics will illuminate the elements of embedded configuration in settings that most can relate to. The question of where embedded configuration would be relevant is discussed, and the current...

  12. Light yield from a scintillator tile with embedded readout fibers

    Energy Technology Data Exchange (ETDEWEB)

    Trost, H.J. [Argonne National Lab., IL (United States); Tonnison, J.I.; Barnes, V.E. [Purdue Univ., Lafayette, IN (United States). Dept. of Physics

    1991-07-15

    We have studied the light yield in two straight fibers embedded in a square scintillator tile by means of computer simulation. The tile and fiber dimensions are taken in the ballpark of interest for the SDC main calorimeter. A fairly flat total response across the tile can be obtained. Important parameters to be controlled are identified.

  13. Design of Corrugated Plates for Optimal Fundamental Frequency

    Directory of Open Access Journals (Sweden)

    Nabeel Alshabatat

    2016-01-01

    Full Text Available This paper investigates shifting the fundamental frequency of plate structures by corrugation. Creating corrugations significantly improves the flexural rigidities of plate and hence increases its natural frequencies. Two types of corrugations are investigated: sinusoidal and trapezoidal corrugations. The finite element method (FEM is used to model the corrugated plates and extract the natural frequencies and mode shapes. The effects of corrugation geometrical parameters on simply supported plate fundamental frequency are studied. To reduce the computation time, the corrugated plates are modeled as orthotropic flat plates with equivalent rigidities. To demonstrate the validity of modeling the corrugated plates as orthotropic flat plates in studying the free vibration characteristics, a comparison between the results of finite element model and equivalent orthotropic models is made. A correspondence between the results of orthotropic models and the FE models is observed. The optimal designs of sinusoidal and trapezoidal corrugated plates are obtained based on a genetic algorithm. The optimization results show that plate corrugations can efficiently maximize plate fundamental frequency. It is found that the trapezoidal corrugation can more efficiently enhance the fundamental frequency of simply supported plate than the sinusoidal corrugation.

  14. Exact piecewise flat gravitational waves

    NARCIS (Netherlands)

    van de Meent, M.

    2011-01-01

    We generalize our previous linear result (van de Meent 2011 Class. Quantum Grav 28 075005) in obtaining gravitational waves from our piecewise flat model for gravity in 3+1 dimensions to exact piecewise flat configurations describing exact planar gravitational waves. We show explicitly how to

  15. Embedded data representations

    DEFF Research Database (Denmark)

    Willett, Wesley; Jansen, Yvonne; Dragicevic, Pierre

    2017-01-01

    We introduce embedded data representations, the use of visual and physical representations of data that are deeply integrated with the physical spaces, objects, and entities to which the data refers. Technologies like lightweight wireless displays, mixed reality hardware, and autonomous vehicles ......-situated, situated, and embedded data displays, including both visualizations and physicalizations. Based on our observations, we identify a variety of design challenges for embedded data representation, and suggest opportunities for future research and applications....

  16. Embedding beyond electrostatics

    DEFF Research Database (Denmark)

    Nåbo, Lina J.; Olsen, Jógvan Magnus Haugaard; Holmgaard List, Nanna

    2016-01-01

    We study excited states of cholesterol in solution and show that, in this specific case, solute wave-function confinement is the main effect of the solvent. This is rationalized on the basis of the polarizable density embedding scheme, which in addition to polarizable embedding includes non-electrostatic...... repulsion that effectively confines the solute wave function to its cavity. We illustrate how the inclusion of non-electrostatic repulsion results in a successful identification of the intense π → π∗ transition, which was not possible using an embedding method that only includes electrostatics....... This underlines the importance of non-electrostatic repulsion in quantum-mechanical embedding-based methods....

  17. Embedded systems handbook

    CERN Document Server

    Zurawski, Richard

    2005-01-01

    Embedded systems are nearly ubiquitous, and books on individual topics or components of embedded systems are equally abundant. Unfortunately, for those designers who thirst for knowledge of the big picture of embedded systems there is not a drop to drink. Until now. The Embedded Systems Handbook is an oasis of information, offering a mix of basic and advanced topics, new solutions and technologies arising from the most recent research efforts, and emerging trends to help you stay current in this ever-changing field.With preeminent contributors from leading industrial and academic institutions

  18. Embedded systems handbook networked embedded systems

    CERN Document Server

    Zurawski, Richard

    2009-01-01

    Considered a standard industry resource, the Embedded Systems Handbook provided researchers and technicians with the authoritative information needed to launch a wealth of diverse applications, including those in automotive electronics, industrial automated systems, and building automation and control. Now a new resource is required to report on current developments and provide a technical reference for those looking to move the field forward yet again. Divided into two volumes to accommodate this growth, the Embedded Systems Handbook, Second Edition presents a comprehensive view on this area

  19. The data embedding method

    Energy Technology Data Exchange (ETDEWEB)

    Sandford, M.T. II; Bradley, J.N.; Handel, T.G.

    1996-06-01

    Data embedding is a new steganographic method for combining digital information sets. This paper describes the data embedding method and gives examples of its application using software written in the C-programming language. Sandford and Handel produced a computer program (BMPEMBED, Ver. 1.51 written for IBM PC/AT or compatible, MS/DOS Ver. 3.3 or later) that implements data embedding in an application for digital imagery. Information is embedded into, and extracted from, Truecolor or color-pallet images in Microsoft{reg_sign} bitmap (.BMP) format. Hiding data in the noise component of a host, by means of an algorithm that modifies or replaces the noise bits, is termed {open_quote}steganography.{close_quote} Data embedding differs markedly from conventional steganography, because it uses the noise component of the host to insert information with few or no modifications to the host data values or their statistical properties. Consequently, the entropy of the host data is affected little by using data embedding to add information. The data embedding method applies to host data compressed with transform, or {open_quote}lossy{close_quote} compression algorithms, as for example ones based on discrete cosine transform and wavelet functions. Analysis of the host noise generates a key required for embedding and extracting the auxiliary data from the combined data. The key is stored easily in the combined data. Images without the key cannot be processed to extract the embedded information. To provide security for the embedded data, one can remove the key from the combined data and manage it separately. The image key can be encrypted and stored in the combined data or transmitted separately as a ciphertext much smaller in size than the embedded data. The key size is typically ten to one-hundred bytes, and it is in data an analysis algorithm.

  20. Generating physically realizable stellar structures via embedding

    Energy Technology Data Exchange (ETDEWEB)

    Maurya, S.K. [University of Nizwa, Department of Mathematical and Physical Sciences, College of Arts and Science, Nizwa (Oman); Govender, M. [Durban University of Technology, Department of Mathematics, Faculty of Applied Sciences, Durban (South Africa)

    2017-05-15

    In this work we present an exact solution of the Einstein-Maxwell field equations describing compact charged objects within the framework of classical general relativity. Our model is constructed by embedding a four-dimensional spherically symmetric static metric into a five-dimensional flat metric. The source term for the matter field is composed of a perfect fluid distribution with charge. We show that our model obeys all the physical requirements and stability conditions necessary for a realistic stellar model. Our theoretical model approximates observations of neutron stars and pulsars to a very good degree of accuracy. (orig.)

  1. Quantum Embedding Theories.

    Science.gov (United States)

    Sun, Qiming; Chan, Garnet Kin-Lic

    2016-12-20

    In complex systems, it is often the case that the region of interest forms only one part of a much larger system. The idea of joining two different quantum simulations-a high level calculation on the active region of interest, and a low level calculation on its environment-formally defines a quantum embedding. While any combination of techniques constitutes an embedding, several rigorous formalisms have emerged that provide for exact feedback between the embedded system and its environment. These three formulations: density functional embedding, Green's function embedding, and density matrix embedding, respectively, use the single-particle density, single-particle Green's function, and single-particle density matrix as the quantum variables of interest. Many excellent reviews exist covering these methods individually. However, a unified presentation of the different formalisms is so far lacking. Indeed, the various languages commonly used, functional equations for density functional embedding, diagrammatics for Green's function embedding, and entanglement arguments for density matrix embedding, make the three formulations appear vastly different. In this Account, we introduce the basic equations of all three formulations in such a way as to highlight their many common intellectual strands. While we focus primarily on a straightforward theoretical perspective, we also give a brief overview of recent applications and possible future developments. The first section starts with density functional embedding, where we introduce the key embedding potential via the Euler equation. We then discuss recent work concerning the treatment of the nonadditive kinetic potential, before describing mean-field density functional embedding and wave function in density functional embedding. We finish the section with extensions to time-dependence and excited states. The second section is devoted to Green's function embedding. Here, we use the Dyson equation to obtain equations that

  2. Polarizable Density Embedding

    DEFF Research Database (Denmark)

    Reinholdt, Peter; Kongsted, Jacob; Olsen, Jógvan Magnus Haugaard

    2017-01-01

    and diffuse basis sets that are otherwise questionable-due to electron spill-out effects-in standard embedding models. Based on our analysis, we find the PDE model to be robust and much more systematic than less sophisticated focused embedding models, and thus outline the PDE model as a very efficient...

  3. Embeddings of Heyting Algebras

    NARCIS (Netherlands)

    Jongh, D.H.J. de; Visser, A.

    In this paper we study embeddings of Heyting Algebras. It is pointed out that such embeddings are naturally connected with Derived Rules. We compare the Heyting Algebras embeddable in the Heyting Algebra of the Intuitionistic Propositional Calculus (IPC), i.e. the free Heyting Algebra on countably

  4. Line bundles and flat connections

    Indian Academy of Sciences (India)

    0344-5. Line bundles and flat connections. INDRANIL BISWAS1,∗ and GEORG SCHUMACHER2. 1School of Mathematics, Tata Institute of Fundamental Research, Homi Bhabha Road,. Mumbai 400 005, India. 2Fachbereich Mathematik und ...

  5. Embedded engineering education

    CERN Document Server

    Kaštelan, Ivan; Temerinac, Miodrag; Barak, Moshe; Sruk, Vlado

    2016-01-01

    This book focuses on the outcome of the European research project “FP7-ICT-2011-8 / 317882: Embedded Engineering Learning Platform” E2LP. Additionally, some experiences and researches outside this project have been included. This book provides information about the achieved results of the E2LP project as well as some broader views about the embedded engineering education. It captures project results and applications, methodologies, and evaluations. It leads to the history of computer architectures, brings a touch of the future in education tools and provides a valuable resource for anyone interested in embedded engineering education concepts, experiences and material. The book contents 12 original contributions and will open a broader discussion about the necessary knowledge and appropriate learning methods for the new profile of embedded engineers. As a result, the proposed Embedded Computer Engineering Learning Platform will help to educate a sufficient number of future engineers in Europe, capable of d...

  6. Embedded Linux in het onderwijs

    NARCIS (Netherlands)

    Dr Ruud Ermers

    2008-01-01

    Embedded Linux wordt bij steeds meer grote bedrijven ingevoerd als embedded operating system. Binnen de opleiding Technische Informatica van Fontys Hogeschool ICT is Embedded Linux geïntroduceerd in samenwerking met het lectoraat Architectuur van Embedded Systemen. Embedded Linux is als vakgebied

  7. Analytical study of cover plate welding deformation of the radial plate of the ITER toroidal field coil

    International Nuclear Information System (INIS)

    Ohmori, Junji; Koizumi, Norikiyo; Shimizu, Tatsuya; Okuno, Kiyoshi; Hasegawa, Mitsuru

    2009-09-01

    The winding pack (WP) of the Toroidal Field (TF) coil of ITER consists of 7 double-pancakes (DPs). In the DP, the conductor is embedded in a groove of a radial plate (RP), and cover plates (CP) are welded to the RP teeth to fix the conductors in the RP groove. The dimensions of the DP are 15 m in height and 9 m in width while the tolerances of the DP are very severe, such as a flatness of 2 mm and an in-plane deviation of a few millimeters. It is therefore required to reduce the deformation of the DP by CP welding. In order to estimate welding deformation, the authors apply an analytical method in which the CP welding deformation of the DP can be calculated using inherent strain evaluated from welding deformation measured using a RP mock-up. Calculated results indicate that out-of-plane distortion can be kept to within required tolerances, but in-plane deformation is larger than allowed when welding thickness is 2.5 mm. The in-plane deformation is mainly caused by the bending of the curved RP region. Therefore, reducing the welding thickness at the curved region emerges as the most promising solution of this issue. Calculated results assuming a welding thickness of 1 mm at the curved region show that the in-plane deformation conforms to required tolerances. Furthermore, since the maximum out-of-plane deformation is within tolerances but marginal, an alternative design in which the number of welding lines is half that of the reference design, is proposed not only to improve the out-of-plane distortion but also to simplify the manufacture of the DP. It is found that the alternative design is effective in reducing welding distortion. (author)

  8. Brauer type embedding problems

    CERN Document Server

    Ledet, Arne

    2005-01-01

    This monograph is concerned with Galois theoretical embedding problems of so-called Brauer type with a focus on 2-groups and on finding explicit criteria for solvability and explicit constructions of the solutions. The advantage of considering Brauer type embedding problems is their comparatively simple condition for solvability in the form of an obstruction in the Brauer group of the ground field. This book presupposes knowledge of classical Galois theory and the attendant algebra. Before considering questions of reducing the embedding problems and reformulating the solvability criteria, the

  9. The effect of coupling a flat-plat collector on the solar still productivity

    International Nuclear Information System (INIS)

    Badran, O. O.; Al-Tahaineh, H. A.

    2006-01-01

    Experimental investigation to study the effect of coupling a flat plate solar collector on the productivity of solar stills was carried out. Other different parameters (i.e. water depth, direction of still, solar radiation) to enhance the productivity were also studied. Single slope solar still with mirrors fixed to its interior sides was coupled with a flat plate collector. It has been found that coupling of a solar collector with a still has increased the productivity by 56%. Also the increase of water depth has decreased the productivity, while the still productivity is found to be proportional to the solar radiation intensity.(Author)

  10. Rabi splitting in an acoustic cavity embedded plate

    International Nuclear Information System (INIS)

    Ni, Xu; Liu, Xiao-Ping; Chen, Ze-Guo; Zheng, Li-Yang; Xu, Ye-Long; Lu, Ming-Hui; Chen, Yan-Feng

    2014-01-01

    We design a structure to realize Rabi splitting and Rabi oscillation in acoustics. We develop rigorous analytical models to analyze the splitting effect from the aspect of phase matching, and from the aspect of mode coupling using a coupled mode model. In this model, we discover that the splitting effect is caused by the coupling of the Fabry–Perot fundamental mode with the resonant mode of an artificial acoustic ‘atom’. We then extract the coupling strength and analyze the impact of structural parameters on it. In addition, we demonstrate Rabi oscillation in the time domain. Such quantum phenomena in the classical regime may have potential applications in the design of novel ultrasonic devices.

  11. The effect of plate-scale rheology and plate interactions on intraplate seismicity

    Science.gov (United States)

    So, Byung-Dal; Capitanio, Fabio A.

    2017-11-01

    We use finite element modeling to investigate on the stress loading-unloading cycles and earthquakes occurrence in the plate interiors, resulting from the interactions of tectonic plates along their boundary. We model a visco-elasto-plastic plate embedding a single or multiple faults, while the tectonic stress is applied along the plate boundary by an external loading visco-elastic plate, reproducing the tectonic setting of two interacting lithospheres. Because the two plates deform viscously, the timescale of stress accumulation and release on the faults is self-consistently determined, from the boundary to the interiors, and seismic recurrence is an emerging feature. This approach overcomes the constraints on recurrence period imposed by stress (stress-drop) and velocity boundary conditions, while here it is unconstrained. We illustrate emerging macroscopic characteristics of this system, showing that the seismic recurrence period τ becomes shorter as Γ and Θ decreases, where Γ =ηI /ηL, the viscosity ratio of the viscosities of the internal fault-embedded to external loading plates, respectively, and Θ =σY /σL the stress ratio of the elastic limit of the fault to far-field loading stress. When the system embeds multiple, randomly distributed faults, stress transfer results in recurrence period deviations, however the time-averaged recurrence period of each fault show the same dependence on Γ and Θ, illustrating a characteristic collective behavior. The control of these parameters prevails even when initial pre-stress was randomly assigned in terms of the spatial arrangement and orientation on the internal plate, mimicking local fluctuations. Our study shows the relevance of macroscopic rheological properties of tectonic plates on the earthquake occurrence in plate interiors, as opposed to local factors, proposing a viable model for the seismic behavior of continent interiors in the context of large-scale, long-term deformation of interacting tectonic

  12. Improving wettability of photo-resistive film surface with plasma surface modification for coplanar copper pillar plating of IC substrates

    Energy Technology Data Exchange (ETDEWEB)

    Xiang, Jing; Wang, Chong; Chen, Yuanming; Wang, Shouxu; Hong, Yan; Zhang, Huaiwu [State Key Laboratory of Electronic Thin Films and Integrated Devices, University of Electronic Science and Technology of China, Chengdu 610054 (China); Gong, Lijun [Research and Development Department, Guangzhou Fastprint Circuit Tech Co., Ltd., Guangzhou 510663 (China); He, Wei, E-mail: heweiz@uestc.edu.cn [State Key Laboratory of Electronic Thin Films and Integrated Devices, University of Electronic Science and Technology of China, Chengdu 610054 (China); Research and Development Department, Guangdong Guanghua Sci-Tech Co., Ltd., Shantou 515000 (China)

    2017-07-31

    Highlights: • Air atmosphere plasmacould generatehydrophilic groups of photo-resistive film. • Better wettability of photo-resistive filmled tohigher plating uniformity of copper pillars. • New flow isreduced cost, simplified process and elevated productivity. - Abstract: The wettability of the photo-resistive film (PF) surfaces undergoing different pretreatments including the O{sub 2}−CF{sub 4} low-pressure plasma (OCLP) and air plasma (AP), is investigated by water contact angle measurement instrument (WCAMI) before the bottom-up copper pillar plating. Chemical groups analysis performed by attenuated total reflectance Fourier transform infrared spectroscopy (ATR-FTIR) and X-ray photoelectron spectra (XPS) shows that after the OCLP and wash treatment, the wettability of PF surface is attenuated, because embedded fluorine and decreased oxygen content both enhance hydrophobicity. Compared with OCLP treatment, the PF surface treatment by non-toxic air plasma displays features of C−O, O−C=O, C=O and −NO{sub 2} by AIR-FTIR and XPS, and a promoted wettability by WCAM. Under the identical electroplating condition, the surface with a better wettability allows electrolyte to spontaneously soak all the places of vias, resulting in improved copper pillar uniformity. Statistical analysis of metallographic data shows that more coplanar and flat copper pillars are achieved with the PF treatment of air plasma. Such modified copper-pillar-plating technology meets the requirement of accurate impedance, the high density interconnection for IC substrates.

  13. Engineering flat electronic bands in quasiperiodic and fractal loop geometries

    Energy Technology Data Exchange (ETDEWEB)

    Nandy, Atanu, E-mail: atanunandy1989@gmail.com; Chakrabarti, Arunava, E-mail: arunava_chakrabarti@yahoo.co.in

    2015-11-06

    Exact construction of one electron eigenstates with flat, non-dispersive bands, and localized over clusters of various sizes is reported for a class of quasi-one-dimensional looped networks. Quasiperiodic Fibonacci and Berker fractal geometries are embedded in the arms of the loop threaded by a uniform magnetic flux. We work out an analytical scheme to unravel the localized single particle states pinned at various atomic sites or over clusters of them. The magnetic field is varied to control, in a subtle way, the extent of localization and the location of the flat band states in energy space. In addition to this we show that an appropriate tuning of the field can lead to a re-entrant behavior of the effective mass of the electron in a band, with a periodic flip in its sign. - Highlights: • Exact construction of eigenstates with flat and dispersive bands is reported. • Competition between translational order and growth of aperiodicity is discussed. • The effect of magnetic field on the location of flat band states is shown. • Flux tunable re-entrant behavior of the effective mass of electron is studied.

  14. Electronics for embedded systems

    CERN Document Server

    Bindal, Ahmet

    2017-01-01

    This book provides semester-length coverage of electronics for embedded systems, covering most common analog and digital circuit-related issues encountered while designing embedded system hardware. It is written for students and young professionals who have basic circuit theory background and want to learn more about passive circuits, diode and bipolar transistor circuits, the state-of-the-art CMOS logic family and its interface with older logic families such as TTL, sensors and sensor physics, operational amplifier circuits to condition sensor signals, data converters and various circuits used in electro-mechanical device control in embedded systems. The book also provides numerous hardware design examples by integrating the topics learned in earlier chapters. The last chapter extensively reviews the combinational and sequential logic design principles to be able to design the digital part of embedded system hardware.

  15. Smart Multicore Embedded Systems

    DEFF Research Database (Denmark)

    This book provides a single-source reference to the state-of-the-art of high-level programming models and compilation tool-chains for embedded system platforms. The authors address challenges faced by programmers developing software to implement parallel applications in embedded systems, where very...... specificities of various embedded systems from different industries. Parallel programming tool-chains are described that take as input parameters both the application and the platform model, then determine relevant transformations and mapping decisions on the concrete platform, minimizing user intervention...... and hiding the difficulties related to the correct and efficient use of memory hierarchy and low level code generation. Describes tools and programming models for multicore embedded systems Emphasizes throughout performance per watt scalability Discusses realistic limits of software parallelization Enables...

  16. Embedded Fragments Registry (EFR)

    Data.gov (United States)

    Department of Veterans Affairs — In 2009, the Department of Defense estimated that approximately 40,000 service members who served in OEF/OIF may have embedded fragment wounds as the result of small...

  17. FCJ-130 Embedding response:

    DEFF Research Database (Denmark)

    Ramsgaard Thomsen, Mette; Bech, Karin

    2011-01-01

    Ubiquitous computing positions a world where computation is embedded into our surrounding environment. Rather than retrieving information and communication from distinct devices (PCs) removed from contexts and activities, ubiquitous computing proposes that the mediated can become an integral part...

  18. The gravitational field of an infinite flat slab

    International Nuclear Information System (INIS)

    Fulling, S A; Bouas, J D; Carter, H B

    2015-01-01

    We study Einstein's equations with a localized plane-symmetric source, with close attention to gauge freedom/fixing and to listing all physically distinct solutions. In the vacuum regions there are only two qualitatively different solutions, one curved and one flat; in addition, on each of the two sides there is a free parameter describing how the slab is embedded into the vacuum region. Surprisingly, for a generic slab source the solution must be curved on one side and flat on the other. We treat infinitely thin slabs in full detail and indicate how thick slabs can increase the variety of external geometry pairs. Positive energy density seems to force external geometries with curvature singularities at some distance from the slab; we speculate that such singularities occur in regions where the solution cannot be physically relevant anyway. (invited comment)

  19. Create Your Plate

    Medline Plus

    Full Text Available ... Pacific Islanders American Indian/Alaska Native Programs Older Adults Family Link Diabetes EXPO Upcoming Diabetes EXPOs EXPO ... Plate! Click on the plate sections below to add your food choices. Reset Plate Share Create Your ...

  20. Viscous dissipation effects on heat transfer in flow past a continuous moving plate

    Digital Repository Service at National Institute of Oceanography (India)

    Soundalgekar, V.M.; Murty, T.V.R.

    The study of thermal boundary layer on taking into account the viscous dissipative heat, on a continuously moving semi-infinite flat plate is presented here.Similarity solutions are derived and the resulting equations are integrated numerically...

  1. Pyrolysis and Boundary Layer Combustion of a Non-Charring Solid Plate Under Forced Flow

    National Research Council Canada - National Science Library

    Ananth, Ramagopal

    2003-01-01

    Solutions of Navier-Stokes (NS) equations were obtained for burning rate Nu and temperature distributions for a flat PMMA plate using an iterative method to impose steady-state, pyrolysis kinetics at the surface...

  2. Geodynamics of flat subduction: Seismicity and tomographic constraints from the Andean margin

    Science.gov (United States)

    Gutscher, Marc-André; Spakman, Wim; Bijwaard, Harmen; Engdahl, E. Robert

    2000-10-01

    The cause and geodynamic impact of flat subduction are investigated. First, the 1500 km long Peru flat slab segment is examined. Earthquake hypocenter data image two morphologic highs in the subducting Nazca Plate which correlate with the positions of subducted oceanic plateaus. Travel time tomographic images confirm the three-dimensional slab geometry and suggest a lithospheric tear may bound the NW edge of the flat slab segment, with possible slab detachment occurring down dip as well. Other flat slab regions worldwide are discussed: central Chile, Ecuador, NW Colombia, Costa Rica, Mexico, southern Alaska, SW Japan, and western New Guinea. Flat subduction is shown to be a widespread phenomenon, occuring in 10% of modern convergent margins. In nearly all these cases, as a spatial and temporal correlation is observed between subducting oceanic plateaus and flat subduction, we conclude that flat subduction is caused primarily by (1) the buoyancy of thickened oceanic crust of moderate to young age and (2) a delay in the basalt to eclogite transition due to the cool thermal structure of two overlapping lithospheres. A statistical analysis of seismicity along the entire length of the Andes demonstrates that seismic energy release in the upper plate at a distance of 250-800 km from the trench is on average 3-5 times greater above flat slab segments than for adjacent steep slab segments. We propose this is due to higher interplate coupling and the cold, strong rheology of the overriding lithosphere which thus enables stress and deformation to be transmitted hundreds of kilometers into the heart of the upper plate.

  3. Estimate of Joule Heating in a Flat Dechirper

    Energy Technology Data Exchange (ETDEWEB)

    Bane, Karl [SLAC National Accelerator Lab., Menlo Park, CA (United States); Stupakov, Gennady [SLAC National Accelerator Lab., Menlo Park, CA (United States); Gjonaj, Erion [Technical Univ. of Darmstadt (Germany)

    2017-02-10

    We have performed Joule power loss calculations for a flat dechirper. We have considered the configurations of the beam on-axis between the two plates—for chirp control—and for the beam especially close to one plate—for use as a fast kicker. Our calculations use a surface impedance approach, one that is valid when corrugation parameters are small compared to aperture (the perturbative parameter regime). In our model we ignore effects of field reflections at the sides of the dechirper plates, and thus expect the results to underestimate the Joule losses. The analytical results were also tested by numerical, time-domain simulations. We find that most of the wake power lost by the beam is radiated out to the sides of the plates. For the case of the beam passing by a single plate, we derive an analytical expression for the broad-band impedance, and—in Appendix B—numerically confirm recently developed, analytical formulas for the short-range wakes. While our theory can be applied to the LCLS-II dechirper with large gaps, for the nominal apertures we are not in the perturbative regime and the reflection contribution to Joule losses is not negligible. With input from computer simulations, we estimate the Joule power loss (assuming bunch charge of 300 pC, repetition rate of 100 kHz) is 21 W/m for the case of two plates, and 24 W/m for the case of a single plate.

  4. Flat Surface Damage Detection System (FSDDS)

    Science.gov (United States)

    Williams, Martha; Lewis, Mark; Gibson, Tracy; Lane, John; Medelius, Pedro; Snyder, Sarah; Ciarlariello, Dan; Parks, Steve; Carrejo, Danny; Rojdev, Kristina

    2013-01-01

    The Flat Surface Damage Detection system (FSDDS} is a sensory system that is capable of detecting impact damages to surfaces utilizing a novel sensor system. This system will provide the ability to monitor the integrity of an inflatable habitat during in situ system health monitoring. The system consists of three main custom designed subsystems: the multi-layer sensing panel, the embedded monitoring system, and the graphical user interface (GUI). The GUI LABVIEW software uses a custom developed damage detection algorithm to determine the damage location based on the sequence of broken sensing lines. It estimates the damage size, the maximum depth, and plots the damage location on a graph. Successfully demonstrated as a stand alone technology during 2011 D-RATS. Software modification also allowed for communication with HDU avionics crew display which was demonstrated remotely (KSC to JSC} during 2012 integration testing. Integrated FSDDS system and stand alone multi-panel systems were demonstrated remotely and at JSC, Mission Operations Test using Space Network Research Federation (SNRF} network in 2012. FY13, FSDDS multi-panel integration with JSC and SNRF network Technology can allow for integration with other complementary damage detection systems.

  5. Design of flat pneumatic artificial muscles

    Science.gov (United States)

    Wirekoh, Jackson; Park, Yong-Lae

    2017-03-01

    Pneumatic artificial muscles (PAMs) have gained wide use in the field of robotics due to their ability to generate linear forces and motions with a simple mechanism, while remaining lightweight and compact. However, PAMs are limited by their traditional cylindrical form factors, which must increase radially to improve contraction force generation. Additionally, this form factor results in overly complicated fabrication processes when embedded fibers and sensor elements are required to provide efficient actuation and control of the PAMs while minimizing the bulkiness of the overall robotic system. In order to overcome these limitations, a flat two-dimensional PAM capable of being fabricated using a simple layered manufacturing process was created. Furthermore, a theoretical model was developed using Von Karman’s formulation for large deformations and the energy methods. Experimental characterizations of two different types of PAMs, a single-cell unit and a multi-cell unit, were performed to measure the maximum contraction lengths and forces at input pressures ranging from 0 to 150 kPa. Experimental data were then used to verify the fidelity of the theoretical model.

  6. Soil decontamination at Rocky Flats

    International Nuclear Information System (INIS)

    Olsen, R.L.; Hayden, J.A.; Alford, C.E.; Kochen, R.L.; Stevens, J.R.

    1979-01-01

    A soils decontamination project was initiated, to remove actinides from soils at Rocky Flats. Wet screening, attrition scrubbing with Calgon at high pH, attrition scrubbing at low pH, and cationic flotation were investigated. Pilot plant studies were carried out. Conceptual designs have been generated for mounting the process in semi-trailers

  7. Flat Head Syndrome (Positional Plagiocephaly)

    Science.gov (United States)

    ... itself out. Although they're very simple, the exercises must be done correctly. For kids with severe flat head syndrome in which repositioning for 2-3 months doesn't help, doctors may prescribe a custom-molded helmet or head band. While helmets might ...

  8. Line bundles and flat connections

    Indian Academy of Sciences (India)

    We prove that there are cocompact lattices Γ in S L ( 2 , C ) with the property that there are holomorphic line bundles L on S L ( 2 , C ) / Γ with c 1 ( L ) = 0 such that L does not admit any unitary flat connection. Author Affiliations. INDRANIL BISWAS1 GEORG SCHUMACHER2. School of Mathematics, Tata Institute of ...

  9. Smart multicore embedded systems

    CERN Document Server

    Bertels, Koen; Karlsson, Sven; Pacull, François

    2014-01-01

    This book provides a single-source reference to the state-of-the-art of high-level programming models and compilation tool-chains for embedded system platforms. The authors address challenges faced by programmers developing software to implement parallel applications in embedded systems, where very often they are forced to rewrite sequential programs into parallel software, taking into account all the low level features and peculiarities of the underlying platforms. Readers will benefit from these authors’ approach, which takes into account both the application requirements and the platform specificities of various embedded systems from different industries. Parallel programming tool-chains are described that take as input parameters both the application and the platform model, then determine relevant transformations and mapping decisions on the concrete platform, minimizing user intervention and hiding the difficulties related to the correct and efficient use of memory hierarchy and low level code generati...

  10. Finite element analysis of inclined nozzle-plate junctions

    International Nuclear Information System (INIS)

    Dixit, K.B.; Seth, V.K.; Krishnan, A.; Ramamurthy, T.S.; Dattaguru, B.; Rao, A.K.

    1979-01-01

    Estimation of stress concentration at nozzle to plate or shell junctions is a significant problem in the stress analysis of nuclear reactors. The topic is a subject matter of extensive investigations and earlier considerable success has been reported on analysis for the cases when the nozzle is perpendicular to the plate or is radial to the shell. Analytical methods for the estimation of stress concentrations for the practical situations when the intersecting nozzle is inclined to the plate or is non-radial to the shell is rather scanty. Specific complications arise in dealing with the junction region when the nozzle with circular cross-section meets the non-circular cut-out on the plate or shell. In this paper a finite element analysis is developed for inclined nozzles and results are presented for nozzle-plate junctions. A method of analysis is developed with a view to achieving simultaneously accuracy of results and simplicity in the choice of elements and their connectivity. The circular nozzle is treated by axisymmetric conical shell elements. The nozzle portion in the region around the junction and the flat plate is dealt with by triangular flat shell elements. Special transition elements are developed for joining the flat shell elements with the axisymmetric elements under non-axisymmetric loading. A substructure method of analysis is adopted which achieves considerable economy in handling the structure and also conveniently combines the different types of elements in the structure. (orig.)

  11. Energy and exergy analyses of Photovoltaic/Thermal flat transpired collectors: Experimental and theoretical study

    International Nuclear Information System (INIS)

    Gholampour, Maysam; Ameri, Mehran

    2016-01-01

    Highlights: • A Photovoltaic/Thermal flat transpired collector was theoretically and experimentally studied. • Performance of PV/Thermal flat transpired plate was evaluated using equivalent thermal, first, and second law efficiencies. • According to the actual exergy gain, a critical radiation level was defined and its effect was investigated. • As an appropriate tool, equivalent thermal efficiency was used to find optimum suction velocity and PV coverage percent. - Abstract: PV/Thermal flat transpired plate is a kind of air-based hybrid Photovoltaic/Thermal (PV/T) system concurrently producing both thermal and electrical energy. In order to develop a predictive model, validate, and investigate the PV/Thermal flat transpired plate capabilities, a prototype was fabricated and tested under outdoor conditions at Shahid Bahonar University of Kerman in Kerman, Iran. In order to develop a mathematical model, correlations for Nusselt numbers for PV panel and transpired plate were derived using CFD technique. Good agreement was obtained between measured and simulated values, with the maximum relative root mean square percent deviation (RMSE) being 9.13% and minimum correlation coefficient (R-squared) 0.92. Based on the critical radiation level defined in terms of the actual exergy gain, it was found that with proper fan and MPPT devices, there is no concern about the critical radiation level. To provide a guideline for designers, using equivalent thermal efficiency as an appropriate tool, optimum values for suction velocity and PV coverage percent under different conditions were obtained.

  12. Heat Transfer Analysis for Stationary Boundary Layer Slip Flow of a Power-Law Fluid in a Darcy Porous Medium with Plate Suction/Injection.

    Science.gov (United States)

    Aziz, Asim; Ali, Yasir; Aziz, Taha; Siddique, J I

    2015-01-01

    In this paper, we investigate the slip effects on the boundary layer flow and heat transfer characteristics of a power-law fluid past a porous flat plate embedded in the Darcy type porous medium. The nonlinear coupled system of partial differential equations governing the flow and heat transfer of a power-law fluid is transformed into a system of nonlinear coupled ordinary differential equations by applying a suitable similarity transformation. The resulting system of ordinary differential equations is solved numerically using Matlab bvp4c solver. Numerical results are presented in the form of graphs and the effects of the power-law index, velocity and thermal slip parameters, permeability parameter, suction/injection parameter on the velocity and temperature profiles are examined.

  13. Laser illuminated flat panel display

    Energy Technology Data Exchange (ETDEWEB)

    Veligdan, J.T.

    1995-12-31

    A 10 inch laser illuminated flat panel Planar Optic Display (POD) screen has been constructed and tested. This POD screen technology is an entirely new concept in display technology. Although the initial display is flat and made of glass, this technology lends itself to applications where a plastic display might be wrapped around the viewer. The display screen is comprised of hundreds of planar optical waveguides where each glass waveguide represents a vertical line of resolution. A black cladding layer, having a lower index of refraction, is placed between each waveguide layer. Since the cladding makes the screen surface black, the contrast is high. The prototype display is 9 inches wide by 5 inches high and approximately I inch thick. A 3 milliwatt HeNe laser is used as the illumination source and a vector scanning technique is employed.

  14. Isometric embeddings of polyhedra

    Science.gov (United States)

    Minemyer, Barry

    An indefinite metric polyhedron is a triple (X, T, g) where X is a topological space, T is a simplicial triangulation of X with edge set E, and g is a function from E to the reals. g assigns to each k-dimensional simplex S a unique quadratic form on Rk, denoted by G(S). An indefinite metric polyhedron is called a Euclidean polyhedron if the form G(S) is positive definite for every simplex S. Rpq denotes R p + q endowed with the inner product of signature (p, q). Our first result is that every compact n-dimensional indefinite metric polyhedron with vertex set V admits a simplicial isometric embedding into Rqq where q = max{d, 2n + 1} and d = max{deg(v) | v is in V}. We can use the compact case to extend to the non-compact case, but only if we assume that d = max{deg(v) | v is in V} is less than infinity. Specifically, every (non-compact) indefinite metric polyhedron admits a simplicial isometric embedding into Rpp where p = 2q(d3 - d2 + d + 1) and q and d are defined as above. Finally we use results of Akopyan and Greene to prove that every n-dimensional indefinite metric polyhedron admits a piecewise linear isometric embedding into Rn2n. In Chapter 2 we prove that every short (1-Lipschitz) map from an n-dimensional Euclidean polyhedron into EN is epsilon close to a pl isometric embedding (for anyepsilon > 0) provided N ≥ 3n. We can relax the dimensionality of the Euclidean space to 2n + 1 if we allow our map to be continuous instead of pl. These results are extensions of a result due to Akopyan. We provide a detailed proof of Akopyan's Theorem, as the only currently available proof is in Russian. The remaining results in this work are applications of our continuous isometric embedding theorem above. This result is used to prove that every Pro-Euclidean space of rank at most n admits an isometric embedding into E2n + 1. The result, as well as a theorem due to Bridson, also allows for an approximate isometric embedding theorem for geodesic metric spaces with

  15. Representability of Hom implies flatness

    Indian Academy of Sciences (India)

    ... A basic result of Grothendieck ([EGA], III 7.7.9) says that if F is flat over then hom ( E , F ) is representable for all E . We prove the converse of the above, in fact, we show that if is a relatively ample line bundle on over such that the functor hom ( L − n , F ) is representable for infinitely many positive integers , then F ...

  16. Polyurethane adhesives in flat roofs

    OpenAIRE

    Bogárová Markéta; Stodůlka Jindřich; Šuhajda Karel

    2017-01-01

    It is necessary to stabilize individual layers of flat roofs, mainly because of wind suction. Apart from anchoring and surcharge, these layers can be secured by bonding. At present gluing is an indispensable and widely used stabilization method. On our market we can found many types of adhesives, most widely used are based on polyurethane. This paper focuses on problematic about stabilization thermal insulation from expanded polystyrene to vapor barrier from bitumen. One of the main issues is...

  17. Flat beams in the SLC

    International Nuclear Information System (INIS)

    Adolphsen, C.; Barklow, T.; Burke, D.; Decker, F.J.; Emma, P.; Hildreth, M.; Himel, T.; Krejcik, P.; Limberg, T.; Minty, M.

    1993-01-01

    The Stanford Linear Collider was designed to operate with round beams; horizontal and vertical emittance made equal in the damping rings. The main motivation was to facilitate the optical matching through beam lines with strong coupling elements like the solenoid spin rotator magnets and the SLC arcs. Tests in 1992 showed that open-quote flat close-quote beams with a vertical to horizontal emittance ratio of around 1/10 can be successfully delivered to the end of the linac. Techniques developed to measure and control the coupling of the SLC arcs allow These beams to be transported to the Interaction Point (IP). Before flat beams could be used for collisions with polarized electrons, a new method of rotating the electron spin orientation with vertical arc orbit bumps had to be developed. Early in the 1993 run, the SLC was switched to open-quote flat close-quote beam operation. Within a short time the peak luminosity of the previous running cycle was reached and then surpassed. The average daily luminosity is now a factor of about two higher than the best achieved last year. In the following the authors present an overview of the problems encountered and their solutions for different parts of the SLC

  18. 49 CFR 231.6 - Flat cars.

    Science.gov (United States)

    2010-10-01

    ... 49 Transportation 4 2010-10-01 2010-10-01 false Flat cars. 231.6 Section 231.6 Transportation... TRANSPORTATION RAILROAD SAFETY APPLIANCE STANDARDS § 231.6 Flat cars. (Cars with sides 12 inches or less above the floor may be equipped the same as flat cars.) (a) Hand brakes—(1) Number. Same as specified for...

  19. Harmonic manifolds with minimal horospheres are flat

    Indian Academy of Sciences (India)

    Abstract. In this note we reprove the known theorem: Harmonic manifolds with minimal horospheres are flat. It turns out that our proof is simpler and more direct than the original one. We also reprove the theorem: Ricci flat harmonic manifolds are flat, which is generally affirmed by appealing to Cheeger–Gromov splitting ...

  20. Harmonic Manifolds with Minimal Horospheres are Flat

    Indian Academy of Sciences (India)

    In this note we reprove the known theorem: Harmonic manifolds with minimal horospheres are flat. It turns out that our proof is simpler and more direct than the original one. We also reprove the theorem: Ricci flat harmonic manifolds are flat, which is generally affirmed by appealing to Cheeger–Gromov splitting theorem.

  1. Estimation of effective elastic constants for grid plate

    International Nuclear Information System (INIS)

    Shibanuma, Kiyoshi; Kuriyama, Masaaki; Okumura, Yoshikazu

    1980-07-01

    This article contains a method of estimation for the effective elastic constants of a grid plate, which is a flat perforated plate with pipes for cooling. The elastic constants of the grid plate are formulated for two symmetric axes. In the case of using OFCu(E 0 = 12500 kg/mm 2 , ν 0 = 0.34) as the material of the grid, the results are given as follows. E sub(L) = 3180 kg/mm 2 , E sub(T) = 3860 kg/mm 2 upsilon sub(LT) = 0.12, upsilon sub(TL) = 0.15 (author)

  2. Radioisotopic quantitation in microtitration plates by an autofluorographic method.

    Science.gov (United States)

    Freshney, R I; Morgan, D

    1978-07-01

    An autofluorographic record of drug titrations in microtitration plates has been obtained using cultures labelled with [35s] methionine after treatment with cytostatic drugs. By adding scintillation fluid directly to each culture well of the microtitration plate, and then centrifuging the evaporate the toluene and leave a flat even film of fluor, in situ scintillation is produced. When X-ray film is exposed to the plate the scintillation of individual wells is recorded as spots on the film. These may be interpreted by eye or by scanning densitometry.

  3. Thermally Induced Principal Parametric Resonance in Circular Plates

    Directory of Open Access Journals (Sweden)

    Ali H. Nayfeh

    2002-01-01

    Full Text Available We consider the problem of large-amplitude vibrations of a simply supported circular flat plate subjected to harmonically varying temperature fields arising from an external heat flux (aeroheating for example. The plate is modeled using the von Karman equations. We used the method of multiple scales to determine an approximate solution for the case in which the frequency of the thermal variations is approximately twice the fundamental natural frequency of the plate; that is, the case of principal parametric resonance. The results show that such thermal loads produce large-amplitude vibrations, with associated multi-valued responses and subcritical instabilities.

  4. Gradient nanostructured surface of a Cu plate processed by incremental frictional sliding

    DEFF Research Database (Denmark)

    Hong, Chuanshi; Huang, Xiaoxu; Hansen, Niels

    2015-01-01

    The flat surface of a Cu plate was processed by incremental frictional sliding at liquid nitrogen temperature. The surface treatment results in a hardened gradient surface layer as thick as 1 mm in the Cu plate, which contains a nanostructured layer on the top with a boundary spacing of the order...

  5. Active Deformation in the Overriding Plate Associated with Temporal Changes of the Philippine Sea Plate Motion

    Science.gov (United States)

    Ishiyama, T.; Sato, H.; Van Horne, A.

    2015-12-01

    We present detailed geologic evidence linking changes over time in Philippine Sea plate (PHS) motion and intracontinental deformation in central and southwest (SW) Japan during the Pliocene and after. In the early Pliocene, subduction of the PHS plate under SW Japan restarted in a northerly direction after period of deceleration or cessation. Later, motion changed to a more westerly direction. Corresponding geological changes found in the overriding plate include unconformities in the forearc basins, changes in slip sense on faults, depocenter migration, re-organization of drainage systems and volcanism. Quaternary intraplate deformation is prominent north of the Median Tectonic Line (MTL) inactive segment, above a shallow flat slab. In contrast, less Quaternary tectonic activity is found north of the MTL active segment which lies over a steadily-slipping portion of the subducting slab that behaves as a less-deformed rigid block. Depocenters and active thrusting have migrated north/northwestward over the past 5 My above the shallow flat slab segment of the PHS. We reconstructed the Plio-Pleistocene migration history using Neogene stratigraphy and shallow seismic reflection profiles. We see shallow PHS slab contact with the lower continental crust in our deep seismic reflection profiles, which may explain its enhanced downward drag of the overriding plate and synchronous strong compression in the crust. We find evidence of more westerly PHS plate subduction since the middle Pleistocene in (1) unconformities in the Kumano forearc basin deposits in SW Japan, (2) drastic stream captures in Shikoku, and (3) concordant changes in fault slip sense from thrust to dextral slip along the MTL. Oblique subduction could have induced stronger horizontal stress in the overriding plate above the shallow flat slab which could account for the increasing geologic slip rate observed on active structures. During four repetitions of megathrust earthquake sequences since the 17th century

  6. Stringy stability of charged dilaton black holes with flat event horizon

    Energy Technology Data Exchange (ETDEWEB)

    Ong, Yen Chin [National Taiwan Univ., Taipei (Taiwan); Chen, Pisin [National Taiwan Univ., Taipei (Taiwan); SLAC National Accelerator Lab., Menlo Park, CA (United States)

    2015-01-15

    Electrically charged black holes with flat event horizon in anti-de Sitter space have received much attention due to various applications in Anti-de Sitter/Conformal Field Theory (AdS/CFT) correspondence, from modeling the behavior of quark-gluon plasma to superconductor. Critical to the physics on the dual field theory is the fact that when embedded in string theory, black holes in the bulk may become vulnerable to instability caused by brane pair-production. Since dilation arises naturally in the context of string theory, we study the effect of coupling dilation to Maxwell field on the stability of flat charged AdS black holes.

  7. Evaluation of Flat Surface Temperature Probes

    Science.gov (United States)

    Beges, G.; Rudman, M.; Drnovsek, J.

    2011-01-01

    The objective of this paper is elaboration of elements related to metrological analysis in the field of surface temperature measurement. Surface temperature measurements are applicable in many fields. As examples, safety testing of electrical appliances and a pharmaceutical production line represent case studies for surface temperature measurements. In both cases correctness of the result of the surface temperature has an influence on final product safety and quality and thus conformity with specifications. This paper deals with the differences of flat surface temperature probes in measuring the surface temperature. For the purpose of safety testing of electrical appliances, surface temperature measurements are very important for safety of the user. General requirements are presented in European standards, which support requirements in European directives, e.g., European Low Voltage Directive 2006/95/EC and pharmaceutical requirements, which are introduced in official state legislation. This paper introduces a comparison of temperature measurements of an attached thermocouple on the measured surface and measurement with flat surface temperature probes. As a heat generator, a so called temperature artifact is used. It consists of an aluminum plate with an incorporated electrical heating element with very good temperature stability in the central part. The probes and thermocouple were applied with different forces to the surface in horizontal and vertical positions. The reference temperature was measured by a J-type fine-wire (0.2 mm) thermocouple. Two probes were homemade according to requirements in the European standard EN 60335-2-9/A12, one with a fine-wire (0.2 mm) thermocouple and one with 0.5mm of thermocouple wire diameter. Additional commercially available probes were compared. Differences between probes due to thermal conditions caused by application of the probe were found. Therefore, it can happen that measurements are performed with improper equipment or

  8. Create Your Plate

    Medline Plus

    Full Text Available ... Student Resources History of Diabetes Resources for School Projects How to Reference Our Site Diabetes Basics Myths ... Your Plate It's simple and effective for both managing diabetes and losing weight. Creating your plate lets ...

  9. Create Your Plate

    Medline Plus

    Full Text Available ... Planning Meals Diabetes Meal Plans Create Your Plate Gluten Free Diets Meal Planning for Vegetarian Diets Cook ... Create Your Plate Meal Planning for Vegetarian Diets Gluten Free Diets Holiday Meal Planning Cook with Heart- ...

  10. Create Your Plate

    Medline Plus

    Full Text Available ... Your Plate Gluten Free Diets Meal Planning for Vegetarian Diets Cook with Heart-Healthy Foods Holiday Meal ... Healthy Diet Create Your Plate Meal Planning for Vegetarian Diets Gluten Free Diets Holiday Meal Planning Cook ...

  11. Create Your Plate

    Medline Plus

    Full Text Available ... Your Plate It's simple and effective for both managing diabetes and losing weight. Creating your plate lets you still choose the foods you want, but changes the portion sizes so you are getting larger ...

  12. Williamson Polishing & Plating Site

    Science.gov (United States)

    Williamson Polishing & Plating Co. Inc. was a plating shop located in the Martindale-Brightwood neighborhood of Indianapolis. The facility conducted job shop polishing and electroplating services. The vacant site contains a 14,651-square-foot building.

  13. Reflections on a flat wall

    International Nuclear Information System (INIS)

    Stevenson, G.R.; Huhtinen, M.

    1995-01-01

    This paper describes an investigation into whether estimates of attenuation in the flat sidewalls of the tunnel for the MC main ring can be based on a simple point-source/line-of-sight model. Having seen the limitations of such a model, an alternative is proposed where the main radiation source is not the initial object struck by the beam but the plane source provided by the first interactions of secondaries from the target in the shield-wall. This is shown to have a closer relation to reality than the point-source/line-of-sight model. (author)

  14. Blowup for flat slow manifolds

    DEFF Research Database (Denmark)

    Kristiansen, Kristian Uldall

    2017-01-01

    In this paper, we present a way of extending the blowup method, in the formulation of Krupa and Szmolyan, to flat slow manifolds that lose hyperbolicity beyond any algebraic order. Although these manifolds have infinite co-dimensions, they do appear naturally in certain settings; for example, in (a......) the regularization of piecewise smooth systems by tanh, (b) a particular aircraft landing dynamics model, and finally (c) in a model of earthquake faulting. We demonstrate the approach using a simple model system and the examples (a) and (b)....

  15. Blowup for flat slow manifolds

    Science.gov (United States)

    Kristiansen, K. U.

    2017-05-01

    In this paper, we present a way of extending the blowup method, in the formulation of Krupa and Szmolyan, to flat slow manifolds that lose hyperbolicity beyond any algebraic order. Although these manifolds have infinite co-dimensions, they do appear naturally in certain settings; for example, in (a) the regularization of piecewise smooth systems by \\tanh , (b) a particular aircraft landing dynamics model, and finally (c) in a model of earthquake faulting. We demonstrate the approach using a simple model system and the examples (a) and (b).

  16. Improving wettability of photo-resistive film surface with plasma surface modification for coplanar copper pillar plating of IC substrates

    Science.gov (United States)

    Xiang, Jing; Wang, Chong; Chen, Yuanming; Wang, Shouxu; Hong, Yan; Zhang, Huaiwu; Gong, Lijun; He, Wei

    2017-07-01

    The wettability of the photo-resistive film (PF) surfaces undergoing different pretreatments including the O2sbnd CF4 low-pressure plasma (OCLP) and air plasma (AP), is investigated by water contact angle measurement instrument (WCAMI) before the bottom-up copper pillar plating. Chemical groups analysis performed by attenuated total reflectance Fourier transform infrared spectroscopy (ATR-FTIR) and X-ray photoelectron spectra (XPS) shows that after the OCLP and wash treatment, the wettability of PF surface is attenuated, because embedded fluorine and decreased oxygen content both enhance hydrophobicity. Compared with OCLP treatment, the PF surface treatment by non-toxic air plasma displays features of Csbnd O, Osbnd Cdbnd O, Cdbnd O and sbnd NO2 by AIR-FTIR and XPS, and a promoted wettability by WCAM. Under the identical electroplating condition, the surface with a better wettability allows electrolyte to spontaneously soak all the places of vias, resulting in improved copper pillar uniformity. Statistical analysis of metallographic data shows that more coplanar and flat copper pillars are achieved with the PF treatment of air plasma. Such modified copper-pillar-plating technology meets the requirement of accurate impedance, the high density interconnection for IC substrates.

  17. Embedding objects during 3D printing to add new functionalities.

    Science.gov (United States)

    Yuen, Po Ki

    2016-07-01

    A novel method for integrating and embedding objects to add new functionalities during 3D printing based on fused deposition modeling (FDM) (also known as fused filament fabrication or molten polymer deposition) is presented. Unlike typical 3D printing, FDM-based 3D printing could allow objects to be integrated and embedded during 3D printing and the FDM-based 3D printed devices do not typically require any post-processing and finishing. Thus, various fluidic devices with integrated glass cover slips or polystyrene films with and without an embedded porous membrane, and optical devices with embedded Corning(®) Fibrance™ Light-Diffusing Fiber were 3D printed to demonstrate the versatility of the FDM-based 3D printing and embedding method. Fluid perfusion flow experiments with a blue colored food dye solution were used to visually confirm fluid flow and/or fluid perfusion through the embedded porous membrane in the 3D printed fluidic devices. Similar to typical 3D printed devices, FDM-based 3D printed devices are translucent at best unless post-polishing is performed and optical transparency is highly desirable in any fluidic devices; integrated glass cover slips or polystyrene films would provide a perfect optical transparent window for observation and visualization. In addition, they also provide a compatible flat smooth surface for biological or biomolecular applications. The 3D printed fluidic devices with an embedded porous membrane are applicable to biological or chemical applications such as continuous perfusion cell culture or biocatalytic synthesis but without the need for any post-device assembly and finishing. The 3D printed devices with embedded Corning(®) Fibrance™ Light-Diffusing Fiber would have applications in display, illumination, or optical applications. Furthermore, the FDM-based 3D printing and embedding method could also be utilized to print casting molds with an integrated glass bottom for polydimethylsiloxane (PDMS) device replication

  18. Embedding objects during 3D printing to add new functionalities

    Science.gov (United States)

    2016-01-01

    A novel method for integrating and embedding objects to add new functionalities during 3D printing based on fused deposition modeling (FDM) (also known as fused filament fabrication or molten polymer deposition) is presented. Unlike typical 3D printing, FDM-based 3D printing could allow objects to be integrated and embedded during 3D printing and the FDM-based 3D printed devices do not typically require any post-processing and finishing. Thus, various fluidic devices with integrated glass cover slips or polystyrene films with and without an embedded porous membrane, and optical devices with embedded Corning® Fibrance™ Light-Diffusing Fiber were 3D printed to demonstrate the versatility of the FDM-based 3D printing and embedding method. Fluid perfusion flow experiments with a blue colored food dye solution were used to visually confirm fluid flow and/or fluid perfusion through the embedded porous membrane in the 3D printed fluidic devices. Similar to typical 3D printed devices, FDM-based 3D printed devices are translucent at best unless post-polishing is performed and optical transparency is highly desirable in any fluidic devices; integrated glass cover slips or polystyrene films would provide a perfect optical transparent window for observation and visualization. In addition, they also provide a compatible flat smooth surface for biological or biomolecular applications. The 3D printed fluidic devices with an embedded porous membrane are applicable to biological or chemical applications such as continuous perfusion cell culture or biocatalytic synthesis but without the need for any post-device assembly and finishing. The 3D printed devices with embedded Corning® Fibrance™ Light-Diffusing Fiber would have applications in display, illumination, or optical applications. Furthermore, the FDM-based 3D printing and embedding method could also be utilized to print casting molds with an integrated glass bottom for polydimethylsiloxane (PDMS) device replication. These

  19. Vibration of plates

    CERN Document Server

    Chakraverty, Snehashish

    2008-01-01

    Plates are integral parts of most engineering structures and their vibration analysis is required for safe design. This work provides a comprehensive introduction to vibration theory and analysis of two-dimensional plates. It offers information on vibration problems along with a discussion of various plate geometries and boundary conditions.

  20. Flat Coalgebraic Fixed Point Logics

    Science.gov (United States)

    Schröder, Lutz; Venema, Yde

    Fixed point logics are widely used in computer science, in particular in artificial intelligence and concurrency. The most expressive logics of this type are the μ-calculus and its relatives. However, popular fixed point logics tend to trade expressivity for simplicity and readability, and in fact often live within the single variable fragment of the μ-calculus. The family of such flat fixed point logics includes, e.g., CTL, the *-nesting-free fragment of PDL, and the logic of common knowledge. Here, we extend this notion to the generic semantic framework of coalgebraic logic, thus covering a wide range of logics beyond the standard μ-calculus including, e.g., flat fragments of the graded μ-calculus and the alternating-time μ-calculus (such as ATL), as well as probabilistic and monotone fixed point logics. Our main results are completeness of the Kozen-Park axiomatization and a timed-out tableaux method that matches ExpTime upper bounds inherited from the coalgebraic μ-calculus but avoids using automata.

  1. Polyurethane adhesives in flat roofs

    Directory of Open Access Journals (Sweden)

    Bogárová Markéta

    2017-01-01

    Full Text Available It is necessary to stabilize individual layers of flat roofs, mainly because of wind suction. Apart from anchoring and surcharge, these layers can be secured by bonding. At present gluing is an indispensable and widely used stabilization method. On our market we can found many types of adhesives, most widely used are based on polyurethane. This paper focuses on problematic about stabilization thermal insulation from expanded polystyrene to vapor barrier from bitumen. One of the main issues is to calculate the exact amount of adhesive, which is required to guarantee the resistance against wind suction. In this problematic we can not find help neither in technical data sheets provided by the manufactures. Some of these data sheets contain at least information about amount of adhesive depending on location in roof plane and building height, but they do not specify the strength of such connection. It was therefore resorted to select several representatives polyurethane adhesives and their subsequent testing on specimens simulating the flat roof segment. The paper described the test methodology and results for two types of polyurethane adhesives.

  2. Embedded software verification and debugging

    CERN Document Server

    Winterholer, Markus

    2017-01-01

    This book provides comprehensive coverage of verification and debugging techniques for embedded software, which is frequently used in safety critical applications (e.g., automotive), where failures are unacceptable. Since the verification of complex systems needs to encompass the verification of both hardware and embedded software modules, this book focuses on verification and debugging approaches for embedded software with hardware dependencies. Coverage includes the entire flow of design, verification and debugging of embedded software and all key approaches to debugging, dynamic, static, and hybrid verification. This book discusses the current, industrial embedded software verification flow, as well as emerging trends with focus on formal and hybrid verification and debugging approaches. Includes in a single source the entire flow of design, verification and debugging of embedded software; Addresses the main techniques that are currently being used in the industry for assuring the quality of embedded softw...

  3. Numerical modeling of intraplate seismicity with a deformable loading plate

    Science.gov (United States)

    So, B. D.; Capitanio, F. A.

    2017-12-01

    We use finite element modeling to investigate on the stress loading-unloading cycles and earthquakes occurrence in the plate interiors, resulting from the interactions of tectonic plates along their boundary. We model a visco-elasto-plastic plate embedding a single or multiple faults, while the tectonic stress is applied along the plate boundary by an external loading visco-elastic plate, reproducing the tectonic setting of two interacting lithospheres. Because the two plates deform viscously, the timescale of stress accumulation and release on the faults is self-consistently determined, from the boundary to the interiors, and seismic recurrence is an emerging feature. This approach overcomes the constraints on recurrence period imposed by stress (stress-drop) and velocity boundary conditions, while here it is unconstrained. We illustrate emerging macroscopic characteristics of this system, showing that the seismic recurrence period τ becomes shorter as Γ and Θ decreases, where Γ = ηI/ηL the viscosity ratio of the viscosities of the internal fault-embedded to external loading plates, respectively, and Θ = σY/σL the stress ratio of the elastic limit of the fault to far-field loading stress. When the system embeds multiple, randomly distributed faults, stress transfer results in recurrence period deviations, however the time-averaged recurrence period of each fault show the same dependence on Γ and Θ, illustrating a characteristic collective behavior. The control of these parameters prevails even when initial pre-stress was randomly assigned in terms of the spatial arrangement and orientation on the internal plate, mimicking local fluctuations. Our study shows the relevance of macroscopic rheological properties of tectonic plates on the earthquake occurrence in plate interiors, as opposed to local factors, proposing a viable model for the seismic behavior of continent interiors in the context of large-scale, long-term deformation of interacting tectonic

  4. Unsteady Flame Embedding

    KAUST Repository

    El-Asrag, Hossam A.

    2011-01-01

    Direct simulation of all the length and time scales relevant to practical combustion processes is computationally prohibitive. When combustion processes are driven by reaction and transport phenomena occurring at the unresolved scales of a numerical simulation, one must introduce a dynamic subgrid model that accounts for the multiscale nature of the problem using information available on a resolvable grid. Here, we discuss a model that captures unsteady flow-flame interactions- including extinction, re-ignition, and history effects-via embedded simulations at the subgrid level. The model efficiently accounts for subgrid flame structure and incorporates detailed chemistry and transport, allowing more accurate prediction of the stretch effect and the heat release. In this chapter we first review the work done in the past thirty years to develop the flame embedding concept. Next we present a formulation for the same concept that is compatible with Large Eddy Simulation in the flamelet regimes. The unsteady flame embedding approach (UFE) treats the flame as an ensemble of locally one-dimensional flames, similar to the flamelet approach. However, a set of elemental one-dimensional flames is used to describe the turbulent flame structure directly at the subgrid level. The calculations employ a one-dimensional unsteady flame model that incorporates unsteady strain rate, curvature, and mixture boundary conditions imposed by the resolved scales. The model is used for closure of the subgrid terms in the context of large eddy simulation. Direct numerical simulation (DNS) data from a flame-vortex interaction problem is used for comparison. © Springer Science+Business Media B.V. 2011.

  5. Embedded microcontroller interfacing

    CERN Document Server

    Gupta, Gourab Sen

    2010-01-01

    Mixed-Signal Embedded Microcontrollers are commonly used in integrating analog components needed to control non-digital electronic systems. They are used in automatically controlled devices and products, such as automobile engine control systems, wireless remote controllers, office machines, home appliances, power tools, and toys. Microcontrollers make it economical to digitally control even more devices and processes by reducing the size and cost, compared to a design that uses a separate microprocessor, memory, and input/output devices. In many undergraduate and post-graduate courses, teachi

  6. Embedment of Employee?

    DEFF Research Database (Denmark)

    Buhl, Henrik

    1998-01-01

    and an empirical case study. My starting point will be a case study of a Danish ABB company which will form the framework of my discussion and reflect my present experience. This analysis will emphasize the possibilities of making employee participation a permanent part of the company at all levels.......The purpose of the paper is to discuss the influence of different approaches and work life conditions on the conception of embedment of employee participation. The discussion is based on three connected approaches: a theoretical research, a research into participation in working life...

  7. OLP embedment design method research for AP1000 nuclear plant

    International Nuclear Information System (INIS)

    Li Cheng; Li Shaoping; Liu Jianwei

    2013-01-01

    Background: One of the most advanced nuclear power technology, the first AP1000 reactor is under construction in China. Modularization is one of the main characteristics for AP1000 nuclear plant building. Module wall with steel face plate is used instead of reinforced concrete structure wall. A number of OLP embedments need to be installed into the module wall to connect other structures such as pipes, equipment, operation platforms and any other component attached to the module wall. Therefore, the design of embedment is very important in AP1000 structural design. Purpose: A finite element analysis method and tool for embedment design is needed for convenience. Methods: This paper applies the self-developed GTStrudl command template and VBA macro program for embedment capacity calculation and evaluation based on Microsoft Excel to the embedment design. Results: A Microsoft Excel template for embedment design is developed. Conclusions: The analysis method and template brings reasonable results and may provide some help and use for reference for the engineering practice. (authors)

  8. Stochastic approach to flat direction during inflation

    International Nuclear Information System (INIS)

    Kawasaki, Masahiro; Takesako, Tomohiro

    2012-01-01

    We revisit the time evolution of a flat and non-flat direction system during inflation. In order to take into account quantum noises in the analysis, we base on stochastic formalism and solve coupled Langevin equations numerically. We focus on a class of models in which tree-level Hubble-induced mass is not generated. Although the non-flat directions can block the growth of the flat direction's variance in principle, the blocking effects are suppressed by the effective masses of the non-flat directions. We find that the fate of the flat direction during inflation is determined by one-loop radiative corrections and non-renormalizable terms as usually considered, if we remove the zero-point fluctuation from the noise terms

  9. Acquired flat foot deformity: postoperative imaging.

    Science.gov (United States)

    Dimmick, Simon; Chhabra, Avneesh; Grujic, Leslie; Linklater, James M

    2012-07-01

    Flat foot (pes planus) is a progressive and disabling pathology that is treated initially with conservative measures and often followed by a variety of surgeries. This article briefly reviews the pathology in acquired flat foot deformity, the classification of posterior tibial tendon dysfunction, discusses surgical techniques for the management of adult flat foot deformity, and reviews potential complications and their relevant imaging appearances. Thieme Medical Publishers 333 Seventh Avenue, New York, NY 10001, USA.

  10. Learning optimal embedded cascades.

    Science.gov (United States)

    Saberian, Mohammad Javad; Vasconcelos, Nuno

    2012-10-01

    The problem of automatic and optimal design of embedded object detector cascades is considered. Two main challenges are identified: optimization of the cascade configuration and optimization of individual cascade stages, so as to achieve the best tradeoff between classification accuracy and speed, under a detection rate constraint. Two novel boosting algorithms are proposed to address these problems. The first, RCBoost, formulates boosting as a constrained optimization problem which is solved with a barrier penalty method. The constraint is the target detection rate, which is met at all iterations of the boosting process. This enables the design of embedded cascades of known configuration without extensive cross validation or heuristics. The second, ECBoost, searches over cascade configurations to achieve the optimal tradeoff between classification risk and speed. The two algorithms are combined into an overall boosting procedure, RCECBoost, which optimizes both the cascade configuration and its stages under a detection rate constraint, in a fully automated manner. Extensive experiments in face, car, pedestrian, and panda detection show that the resulting detectors achieve an accuracy versus speed tradeoff superior to those of previous methods.

  11. "Flat-Fish" Vacuum Chamber

    CERN Multimedia

    CERN PhotoLab

    1978-01-01

    The picture shows a "Flat-Fish" vacuum chamber being prepared in the ISR workshop for testing prior to installation in the Split Field Magnet (SFM) at intersection I4. The two shells of each part were hydroformed from 0.15 mm thick inconel 718 sheet (with end parts in inconel 600 for easier manual welding to the arms) and welded toghether with two strips which were attached by means of thin stainless steel sheets to the Split Field Magnet poles in order to take the vertical component of the atmospheric pressure force. This was the thinnest vacuum chamber ever made for the ISR. Inconel material was chosen for its high elastic modulus and strenght at chamber bake-out temperature. In this picture the thin sheets transferring the vertical component of the atmosferic pressure force are attached to a support frame for testing. See also 7712182, 7712179.

  12. Electrochemical reduction of water. Development of a flat cell pile

    International Nuclear Information System (INIS)

    Viguie, J.C.

    1978-01-01

    The working conditions of an electrolyser are described. Great variations of water vapor concentrations through the battery makes us advocate for piling up flat cells working under a constant potential. A 50 cm 2 half cathodic cell has been fabricated. The solid electrolyte is made of zirconia (0,91 ZrO 2 , 0,09 Y 2 O 3 ) associated with an embedded layer of nickel powder as the cathode. The disc is supported by an honeycomb shaped ceramic which is covered by a layer of nickel. The most promising method for solid electrolyte fabrication is the powder compaction and sintering process. The plasma jet projection gave interesting results and can be considered as an alternative process. A test set working at 850 0 C is on the way. It will give informations on the stability of the prepared parts and allow us to measure the characteristics of the planar cell [fr

  13. Embedded Systems Design: Optimization Challenges

    DEFF Research Database (Denmark)

    Pop, Paul

    2005-01-01

    Summary form only given. Embedded systems are everywhere: from alarm clocks to PDAs, from mobile phones to cars, almost all the devices we use are controlled by embedded systems. Over 99% of the microprocessors produced today are used in embedded systems, and recently the number of embedded systems...... in use has become larger than the number of humans on the planet. The complexity of embedded systems is growing at a very high pace and the constraints in terms of functionality, performance, low energy consumption, reliability, cost and time-to-market are getting tighter. Therefore, the task...... of designing such systems is becoming increasingly important and difficult at the same time. New automated design optimization techniques are needed, which are able to: successfully manage the complexity of embedded systems, meet the constraints imposed by the application domain, shorten the time...

  14. Embedded Systems Design with FPGAs

    CERN Document Server

    Pnevmatikatos, Dionisios; Sklavos, Nicolas

    2013-01-01

    This book presents methodologies for modern applications of embedded systems design, using field programmable gate array (FPGA) devices.  Coverage includes state-of-the-art research from academia and industry on a wide range of topics, including advanced electronic design automation (EDA), novel system architectures, embedded processors, arithmetic, dynamic reconfiguration and applications. Describes a variety of methodologies for modern embedded systems design;  Implements methodologies presented on FPGAs; Covers a wide variety of applications for reconfigurable embedded systems, including Bioinformatics, Communications and networking, Application acceleration, Medical solutions, Experiments for high energy physics, Astronomy, Aerospace, Biologically inspired systems and Computational fluid dynamics (CFD).

  15. Advances in embedded computer vision

    CERN Document Server

    Kisacanin, Branislav

    2014-01-01

    This illuminating collection offers a fresh look at the very latest advances in the field of embedded computer vision. Emerging areas covered by this comprehensive text/reference include the embedded realization of 3D vision technologies for a variety of applications, such as stereo cameras on mobile devices. Recent trends towards the development of small unmanned aerial vehicles (UAVs) with embedded image and video processing algorithms are also examined. The authoritative insights range from historical perspectives to future developments, reviewing embedded implementation, tools, technolog

  16. Communicating embedded systems networks applications

    CERN Document Server

    Krief, Francine

    2013-01-01

    Embedded systems become more and more complex and require having some knowledge in various disciplines such as electronics, data processing, telecommunications and networks. Without detailing all the aspects related to the design of embedded systems, this book, which was written by specialists in electronics, data processing and telecommunications and networks, gives an interesting point of view of communication techniques and problems in embedded systems. This choice is easily justified by the fact that embedded systems are today massively communicating and that telecommunications and network

  17. Embedded sensor systems

    CERN Document Server

    Agrawal, Dharma Prakash

    2017-01-01

    This inspiring textbook provides an introduction to wireless technologies for sensors, explores potential use of sensors for numerous applications, and utilizes probability theory and mathematical methods as a means of embedding sensors in system design. It discusses the need for synchronization and underlying limitations, inter-relation between given coverage and connectivity to number of sensors needed, and the use of geometrical distance to determine location of the base station for data collection and explore use of anchor nodes for relative position determination of sensors. The book explores energy conservation, communication using TCP, the need for clustering and data aggregation, and residual energy determination and energy harvesting. It covers key topics of sensor communication like mobile base stations and relay nodes, delay-tolerant sensor networks, and remote sensing and possible applications. The book defines routing methods and do performance evaluation for random and regular sensor topology an...

  18. Ultralight shape-recovering plate mechanical metamaterials.

    Science.gov (United States)

    Davami, Keivan; Zhao, Lin; Lu, Eric; Cortes, John; Lin, Chen; Lilley, Drew E; Purohit, Prashant K; Bargatin, Igor

    2015-12-03

    Unusual mechanical properties of mechanical metamaterials are determined by their carefully designed and tightly controlled geometry at the macro- or nanoscale. We introduce a class of nanoscale mechanical metamaterials created by forming continuous corrugated plates out of ultrathin films. Using a periodic three-dimensional architecture characteristic of mechanical metamaterials, we fabricate free-standing plates up to 2 cm in size out of aluminium oxide films as thin as 25 nm. The plates are formed by atomic layer deposition of ultrathin alumina films on a lithographically patterned silicon wafer, followed by complete removal of the silicon substrate. Unlike unpatterned ultrathin films, which tend to warp or even roll up because of residual stress gradients, our plate metamaterials can be engineered to be extremely flat. They weigh as little as 0.1 g cm(-2) and have the ability to 'pop-back' to their original shape without damage even after undergoing multiple sharp bends of more than 90°.

  19. Embedding potentials for excited states of embedded species

    International Nuclear Information System (INIS)

    Wesolowski, Tomasz A.

    2014-01-01

    Frozen-Density-Embedding Theory (FDET) is a formalism to obtain the upper bound of the ground-state energy of the total system and the corresponding embedded wavefunction by means of Euler-Lagrange equations [T. A. Wesolowski, Phys. Rev. A 77(1), 012504 (2008)]. FDET provides the expression for the embedding potential as a functional of the electron density of the embedded species, electron density of the environment, and the field generated by other charges in the environment. Under certain conditions, FDET leads to the exact ground-state energy and density of the whole system. Following Perdew-Levy theorem on stationary states of the ground-state energy functional, the other-than-ground-state stationary states of the FDET energy functional correspond to excited states. In the present work, we analyze such use of other-than-ground-state embedded wavefunctions obtained in practical calculations, i.e., when the FDET embedding potential is approximated. Three computational approaches based on FDET, that assure self-consistent excitation energy and embedded wavefunction dealing with the issue of orthogonality of embedded wavefunctions for different states in a different manner, are proposed and discussed

  20. Radiation monitor training program at Rocky Flats

    International Nuclear Information System (INIS)

    Medina, L.C.; Kittinger, W.D.; Vogel, R.M.

    The Rocky Flats Radiation Monitor Training Program is tailored to train new health physics personnel in the field of radiation monitoring. The purpose of the prescribed materials and media is to be consistent in training in all areas of Rocky Flats radiation monitoring job involvement

  1. Directivity pattern of the sound radiated from axisymmetric stepped plates.

    Science.gov (United States)

    He, Xiping; Yan, Xiuli; Li, Na

    2016-08-01

    For the purpose of optimal design and efficient utilization of the kind of stepped plate radiator in air, in this contribution, an approach for calculation of the directivity pattern of the sound radiated from a stepped plate in flexural vibration with a free edge is developed based on Kirchhoff-Love hypothesis and Rayleigh integral principle. Experimental tests of directivity pattern for a fabricated flat plate and two fabricated plates with one and two step radiators were carried out. It shows that the configuration of the measured directivity patterns by the proposed analytic approach is similar to those of the calculated approach. Comparison of the agreement between the calculated directivity pattern of a stepped plate and its corresponding theoretical piston show that the former radiator is equivalent to the latter, and the diffraction field generated by the unbaffled upper surface may be small. It also shows that the directivity pattern of a stepped radiator is independent of the metallic material but dependent on the thickness of base plate and resonant frequency. The thicker the thickness of base plate, the more directive the radiation is. The proposed analytic approach in this work may be adopted for any other plates with multi-steps.

  2. Development of a Surface Micromachined On-Chip Flat Disk Micropump

    Directory of Open Access Journals (Sweden)

    M. I. KILANI

    2009-08-01

    Full Text Available The paper presents research progress in the development of a surface micromachined flat disk micropump which employs the viscous and centrifugal effects acting on a layer of fluid sandwiched between a rotating flat disk and a stationary plate. The pump is fabricated monolithically on-chip using Sandia’s Ultraplanar Multilevel MEMS Technology (SUMMiT™ where an electrostatic comb-drive Torsional Ratcheting Actuator (TRA drives the flat disk through a geared transmission. The paper reviews available analytical models for flow geometries similar to that of the described pump, and presents a set of experiments which depict its performance and possible failure modes. Those experiments highlight future research directions in the development of electrostatically-actuated, CMOS-compatible, surface micromachined pumps.

  3. 77 FR 27438 - Certain Corrosion-Resistant Carbon Steel Flat Products From Korea: Final Results of Expedited...

    Science.gov (United States)

    2012-05-10

    ... International Trade Administration Certain Corrosion-Resistant Carbon Steel Flat Products From Korea: Final... third five-year sunset review of the countervailing duty order on certain corrosion-resistant carbon..., plated, or coated with corrosion-resistant metals such as zinc, aluminum, or zinc-, aluminum-, nickel- or...

  4. Nullspace embeddings for outerplanar graphs

    NARCIS (Netherlands)

    L. Lovász (László); A. Schrijver (Alexander)

    2017-01-01

    textabstractWe study relations between geometric embeddings of graphs and the spectrum of associated matrices, focusing on outerplanar embeddings of graphs. For a simple connected graph G=(V,E), we define a "good" G-matrix as a V×V matrix with negative entries corresponding to adjacent nodes, zero

  5. Nullspace embeddings for outerplanar graphs

    NARCIS (Netherlands)

    L. Lovász (László); A. Schrijver (Alexander); M. Loebl (Martin); J. Nešetřil (Jaroslav); R. Thomas (Robin)

    2017-01-01

    htmlabstractWe study relations between geometric embeddings of graphs and the spectrum of associated matrices, focusing on outerplanar embeddings of graphs. For a simple connected graph G = (V, E), we define a "good” G-matrix as a V × V matrix with negative

  6. Nullspace embeddings for outerplanar graphs

    NARCIS (Netherlands)

    Lovász, L.; Schrijver, A.; Loebl, M.; Nešetřil, J.; Thomas, R.

    2017-01-01

    We study relations between geometric embeddings of graphs and the spectrum of associated matrices, focusing on outerplanar embeddings of graphs. For a simple connected graph G = (V, E), we define a “good” G-matrix as a V × V matrix with negative entries corresponding to adjacent nodes, zero entries

  7. Stylistic Embedding in Yoruba Literature.

    Science.gov (United States)

    Olabode, Afolabi

    The process of embedding, a term used in generative grammar to refer to a construction in which a sentence is included within another sentence, is examined as it occurs in Yoruba literature. Examples are drawn from Yoruba praise poetry, in both written and oral form and within Yoruba novels. Forms of embedding identified include those to draw…

  8. Create Your Plate

    Medline Plus

    Full Text Available ... Monthly In Memory In Honor Become a Member En Español Type 1 Type 2 About Us Online ... Print Page Text Size: A A A Listen En Español Create Your Plate Create Your Plate is ...

  9. Create Your Plate

    Medline Plus

    Full Text Available ... Diabetes Meal Plans Create Your Plate Gluten Free Diets Meal Planning for Vegetarian Diets Cook with Heart-Healthy Foods Holiday Meal Planning ... Planning Meals Diabetes Meal Plans and a Healthy Diet Create Your Plate Meal Planning for Vegetarian Diets ...

  10. Create Your Plate

    Medline Plus

    Full Text Available ... Your Plate Gluten Free Diets Meal Planning for Vegetarian Diets Cook with Heart-Healthy Foods Holiday Meal Planning What Can I Eat? Making ... Forecast® magazine: wcie-meal-planning, . In this ... Your Plate Meal Planning for Vegetarian Diets Gluten Free Diets Holiday Meal Planning Cook ...

  11. Create Your Plate

    Medline Plus

    Full Text Available ... In Memory In Honor Become a Member En Español Type 1 Type 2 About Us Online Community ... Page Text Size: A A A Listen En Español Create Your Plate Create Your Plate is a ...

  12. Growth Plate Injuries

    Science.gov (United States)

    ... cause any lasting problems for your child or teen. Growth plates are areas of growing tissues that cause ... are replaced by solid bone. Who gets them? Growth plate injuries happen to children and teens. This injury happens twice as often in boys ...

  13. Create Your Plate

    Medline Plus

    Full Text Available ... Planning Meals Diabetes Meal Plans Create Your Plate Gluten Free Diets Meal Planning for Vegetarian Diets Cook with Heart- ... Create Your Plate Meal Planning for Vegetarian Diets Gluten Free Diets Holiday Meal Planning Cook with Heart-Healthy Foods ...

  14. Numerical investigation of heat transfer in flat vortex channels

    Directory of Open Access Journals (Sweden)

    N. V. Kukshinov

    2014-01-01

    Full Text Available The vortex channels is the method of heat transfer intensification which combines increase of surface area (finned wall and enhanced convective cooling. The vortex channels is a duct formed by combination of two plates with milled fins intersected at different angles. The investigation of heat transfer and hydraulic characteristics in vortex channels was carried out by means of CFD. Flow was simulated in wide range of Reynolds numbers, heat and hydraulic characteristics were obtained for this duct. It was shown that the sum intensification effect is comprised of convective component and the effect of surface area increase. It was shown that flat vortex channels provide to transfer the higher heat flux, than finned wall at the same conditions.

  15. I-V Performance and stability study of dyes for luminescent plate concentrators

    Energy Technology Data Exchange (ETDEWEB)

    Slooff, L.H.; Kinderman, R.; Burgers, A.R.; Van Roosmalen, J.A.M. [ECN Solar Energy, Petten (Netherlands); Buechtemann, A.; Danz, R. [Fraunhofer Institute for Applied Polymer Research, Geiselbergstr. 69, D-14476 Golm (Germany)

    2007-08-15

    In this paper, both the performance and stability of luminescent flat plate concentrator (LFPC) plates in combination with mc-Si photovoltaic cells are studied. It is shown that the electrical current of a silicon solar cell attached to the luminescent plate is improved by a factor 1.5 using a LFPC containing a single dye. It is also shown that most of the dyes are not stable in the polymer plates that are currently used. Screening of the stability of several other dyes indicates that the stability is strongly dependent on the type of dye and the polymer matrix, e.g., additives or the monomer residues.

  16. Embedded human computer interaction.

    Science.gov (United States)

    Baber, Christopher; Baumann, Konrad

    2002-05-01

    In this paper, human interaction with embedded or ubiquitous technology is considered. The techniques focus on the use of what might be termed "everyday" objects and actions as a means of controlling (or otherwise interacting with) technology. While this paper is not intended to be an exhaustive review, it does present a view of the immediate future of human-computer interaction (HCI) in which users move beyond the desktop to where interacting with technology becomes merged with other activity. At one level this places HCI in the context of other forms of personal and domestic technologies. At another level, this raises questions as to how people will interact with technologies of the future. Until now, HCI had often relied on people learning obscure command sets or learning to recognise words and objects on their computer screen. The most significant advance in HCI (the invention of the WIMP interface) is already some 40 years old. Thus, the future of HCI might be one in which people are encouraged (or at least allowed) to employ the skills that they have developed during their lives in order to interact with technology, rather than being forced to learn and perfect new skills.

  17. Sound attenuation due to plural plates in water

    International Nuclear Information System (INIS)

    Kumagai, Hiromichi; Sakuma, Toshio

    1996-01-01

    In order to prevent the expansion of tube damage and to maintain structural safety in steam generators (SG) of a liquid metal fast breeder reactor (LMFBR), it is necessary to detect precisely and immediately the leakage of water from tubes of heat exchangers. The active acoustic detection method, which detects the sound attenuation due to bubbles generated by the sodium-water reactions, has attracted interest owing to its short response time and being least affected by background noise. Sound attenuation is also subjected to structures such as heat transfer tubes and shrouds. Accordingly, it is necessary to evaluate the sound attenuation due to structures. However, studies concerning these aspects are very few. In this paper, using the water bath, the attenuation characteristics of sounds due to flat plates are investigated and discussed under various conditions such as thickness, location, and number of flat plates. (author)

  18. Innovative Ballasted Flat Roof Solar PV Racking System

    Energy Technology Data Exchange (ETDEWEB)

    Peek, Richard T. [Cascade Engineering, Grand Rapids, MI (United States)

    2014-12-15

    The objective of this project was to reduce the cost of racking for PV solar on flat commercial rooftops. Cost reductions would come from both labor savings and material savings related to the installation process. The rack would need to accommodate the majority of modules available on the market. Cascade Engineering has a long history of converting traditional metal type applications over to plastic. Injection molding of plastics have numerous advantages including selection of resin for the application, placing the material exactly where it is needed, designing in features that will speed up the installation process, and weight reduction of the array. A plastic rack would need to meet the requirements of UL2703, Mounting systems, mounting devices, clamping/retention devices, and ground lugs for use with flat-plate photovoltaic modules and panels. Comparing original data to the end of project racking design, racking material costs were reduced 50% and labor costs reduced 64%. The racking product accommodates all 60 and 72 cell panels on the market, meets UL2703 requirements, contributes only 1.3 pounds per square foot of weight to the array, requires little ballast to secure the array, automatically grounds the module when the module is secured, stacks/nests well for shipping/fewer lifts to the roof, provides integrated wire routing, allows water to drain on the roof, and accommodates various seismic roof connections. Project goals were achieved as noted in the original funding application.

  19. Long-range Rocky Flats utilization study

    International Nuclear Information System (INIS)

    1983-02-01

    The purpose of this Study was to provide information concerning the Rocky Flats Plant and its operations that will be useful to the Nation's decision-makers in determining the long-range future of the Plant. This Study was conducted under the premise that national defense policy must be supported and, accordingly, the capabilities at Rocky Flats must be maintained there or at some other location(s). The Study, therefore, makes no attempt to speculate on how possible future changes in national defense policy might affect decisions regarding the utilization of Rocky Flats. Factors pertinent to decisions regarding Rocky Flats, which are included in the Study, are: physical condition of the Plant and its vulnerabilities to natural phenomena; risks associated with plutonium to Plant workers and the public posed by postulated natural phenomena and operational accidents; identification of alternative actions regarding the future use of the Rocky Flats Plant with associated costs and time scales; local socioeconomic impacts if Rocky Flats operations were relocated; and potential for other uses if Rocky Flats facilities were vacated. The results of the tasks performed in support of this Study are summarized in the context of these five factors

  20. Chaotic inflation in models with flat directions

    International Nuclear Information System (INIS)

    Graziani, F.; Olive, K.

    1989-01-01

    We consider the chaotic inflationary scenario in models with flat directions. We find that unless the scalars along the flat directions have vacuum expectation values p or 10 14 M p 15 M p depending on the expectation values of the chaotic inflator, Ψ, one or two or more periods of inflation occur but with a resulting energy density perturbation δρ/ρ ≅ 10 -16 , far too small to be of any consequence for galaxy formation. Even with p only limited initial values of ≅ (3-200) M p result in inflation with reasonable density perturbations. Thus chaotic inflation in models with flat directions require rather special initial conditions. (orig.)

  1. Numerical Methods for Plate Forming by Line Heating

    DEFF Research Database (Denmark)

    Clausen, Henrik Bisgaard

    2000-01-01

    Line heating is the process of forming originally flat plates into a desired shape by means of heat treatment. Parameter studies are carried out on a finite element model to provide knowledge of how the process behaves with varying heating conditions. For verification purposes, experiments are ca...... are carried out; one set of experiments investigates the actual heat flux distribution from a gas torch and another verifies the validty of the FE calculations. Finally, a method to predict the heating pattern is described....

  2. Batch production of microchannel plate photo-multipliers

    Energy Technology Data Exchange (ETDEWEB)

    Frisch, Henry J.; Wetstein, Matthew; Elagin, Andrey

    2018-03-06

    In-situ methods for the batch fabrication of flat-panel micro-channel plate (MCP) photomultiplier tube (PMT) detectors (MCP-PMTs), without transporting either the window or the detector assembly inside a vacuum vessel are provided. The method allows for the synthesis of a reflection-mode photocathode on the entrance to the pores of a first MCP or the synthesis of a transmission-mode photocathode on the vacuum side of a photodetector entrance window.

  3. Lohse's historic plate archive

    Science.gov (United States)

    Tsvetkov, M.; Tsvetkova, K.; Richter, G.; Scholz, G.; Böhm, P.

    The description and the analysis of Oswald Lohse's astrophotographic plates, collected at the Astrophysical Observatory Potsdam in the period 1879 - 1889, are presented. 67 plates of the archive, taken with the greatest instrument of the observatory at that time - the refractor (D = 0.30 m, F = 5.40 m, scale = 38''/mm) and with the second heliographic objective (D = 0.13 m, F = 1.36 m, scale = 152''/mm) - - survived two world wars in relative good condition. The plate emulsions are from different manufacturers in the beginning of astrophotography (Gädicke, Schleussner, Beernaert, etc.). The sizes of the plates are usually 9x12 cm2, which corresponds to fields of 1.2deg and 5deg respectively for each instrument mentioned above. The average limiting magnitude is 13.0(pg). Besides of the plates received for technical experiments (work on photographic processes, testing of new instruments and methods of observations), the scientific observations follow programs for studies of planet surfaces, bright stars, some double stars, stellar clusters and nebulous objects. Lohse's archive is included into the Wide Field Plate Database (http://www.skyarchive.org) as the oldest systematic one, covering the fields of Orion (M42/43), Pleiades, h & chi Persei, M37, M3, M11, M13, M92, M31, etc. With the PDS 2020 GM+ microdensitometer of Münster University 10 archive plates were digitized.

  4. A form of MHD universal equations of unsteady incompressible fluid flow with variable elctroconductivity on heated moving plate

    Directory of Open Access Journals (Sweden)

    Boričić Zoran

    2005-01-01

    Full Text Available This paper deals with laminar, unsteady flow of viscous, incompressible and electro conductive fluid caused by variable motion of flat plate. Fluid electro conductivity is variable. Velocity of the plate is time function. Plate moves in its own plane and in "still" fluid. Present external magnetic filed is perpendicular to the plate. Plate temperature is a function of longitudinal coordinate and time. Viscous dissipation, Joule heat, Hole and polarization effects are neglected. For obtaining of universal equations system general similarity method is used as well as impulse and energy equation of described problem.

  5. High loading uranium plate

    International Nuclear Information System (INIS)

    Wiencek, T.C.; Domagala, R.F.; Thresh, H.R.

    1990-01-01

    Two embodiments of a high uranium fuel plate are disclosed which contain a meat comprising structured uranium compound confined between a pari of diffusion bonded ductile metal cladding plates uniformly covering the meat, the meat hiving a uniform high fuel loading comprising a content of uranium compound greater than about 45 Vol. % at a porosity not greater than about 10 Vol. %. In a first embodiment, the meat is a plurality of parallel wires of uranium compound. In a second embodiment, the meat is a dispersion compact containing uranium compound. The fuel plates are fabricated by a hot isostatic pressing process

  6. Embedded systems circuits and programming

    CERN Document Server

    Sanchez, Julio

    2012-01-01

    During the development of an engineered product, developers often need to create an embedded system--a prototype--that demonstrates the operation/function of the device and proves its viability. Offering practical tools for the development and prototyping phases, Embedded Systems Circuits and Programming provides a tutorial on microcontroller programming and the basics of embedded design. The book focuses on several development tools and resources: Standard and off-the-shelf components, such as input/output devices, integrated circuits, motors, and programmable microcontrollers The implementat

  7. Tensor Train Neighborhood Preserving Embedding

    Science.gov (United States)

    Wang, Wenqi; Aggarwal, Vaneet; Aeron, Shuchin

    2018-05-01

    In this paper, we propose a Tensor Train Neighborhood Preserving Embedding (TTNPE) to embed multi-dimensional tensor data into low dimensional tensor subspace. Novel approaches to solve the optimization problem in TTNPE are proposed. For this embedding, we evaluate novel trade-off gain among classification, computation, and dimensionality reduction (storage) for supervised learning. It is shown that compared to the state-of-the-arts tensor embedding methods, TTNPE achieves superior trade-off in classification, computation, and dimensionality reduction in MNIST handwritten digits and Weizmann face datasets.

  8. Embedded Systems Design: Optimization Challenges

    DEFF Research Database (Denmark)

    Pop, Paul

    2005-01-01

    -to-market, and reduce development and manufacturing costs. In this paper, the author introduces several embedded systems design problems, and shows how they can be formulated as optimization problems. Solving such challenging design optimization problems are the key to the success of the embedded systems design...... of designing such systems is becoming increasingly important and difficult at the same time. New automated design optimization techniques are needed, which are able to: successfully manage the complexity of embedded systems, meet the constraints imposed by the application domain, shorten the time...

  9. Chemical weathering of flat continents

    Science.gov (United States)

    Maffre, Pierre; Goddéris, Yves; Ladant, Jean-Baptiste; Carretier, Sébastien; Moquet, Jean-Sébastien; Donnadieu, Yannick; Labat, David; Vigier, Nathalie

    2017-04-01

    Mountain uplift is often cited as the main trigger of the end Cenozoic glacial state. Conversely, the absence of major uplift is invoked to explain the early Eocene warmth. This hypothesis relies on the fact that mountain uplift increases the supply of "fresh" silicate rocks through enhanced physical erosion, and boosts CO2 consumption by chemical weathering. Atmospheric CO2 —and therefore climate— then adjust to compensate for the changes in weatherability and keep the geological carbon cycle balanced (Walker's feedback). Yet, orography also strongly influences the global atmospheric and oceanic circulation. Consequently, building mountains does not only change the weathering regime in the restricted area of the orogen, but also modifies the worldwide distribution of the weathering flux. We conduct a numerical experiment in which we simulate the climate of the present day world, with all mountain ranges being removed. Up-to-date weathering and erosion laws (West, 2012; Carretier et al., 2014) are then used to quantify the global weathering for a "flat world". Specifically, the parameters of the weathering law are first carefully calculated such that the present day distribution of the weathering fluxes matches the riverine geochemical data. When removing mountains, we predict a warmer and wetter climate, especially in geographic spots located in the equatorial band. The calculated response of the global weathering flux ranges from an increase by 50% to a decrease by 70% (relative to the present day with mountains). These contrasted responses are pending on the parameterisation of the weathering model, that makes it more sensitive to reaction rate (kinetically-limited mode) or to rock supply by erosion (supply-limited mode). The most likely parameterisation —based on data-model comparison— predicts a decrease of CO2 consumption by weathering by 40% when mountains are removed. These results show that (1) the behaviour of the weathering engine depends on the

  10. IMPROVEMENTS IN EPOXY RESIN EMBEDDING METHODS

    Science.gov (United States)

    Luft, John H.

    1961-01-01

    Epoxy embedding methods of Glauert and Kushida have been modified so as to yield rapid, reproducible, and convenient embedding methods for electron microscopy. The sections are robust and tissue damage is less than with methacrylate embedding. PMID:13764136

  11. The kinetic and kinematic stability measures in healthy adult subjects with and without flat foot.

    Science.gov (United States)

    Sung, Paul S; Zipple, J Timothy; Andraka, John M; Danial, Pamela

    2017-03-01

    Flat foot problems are associated with impaired mobility and postural stability. The purpose of this study was to compare the kinematic and kinetic indices during one leg standing between subjects with and without flat foot. Forty-four participants enrolled in the study, including 22 subjects with flat foot and 22 control subjects. The measurements included kinematic stability on the trunk as well as kinetic stability from a force plate. All participants were asked to maintain one leg standing with the contralateral hip and knee flexed to approximately 90° for 25seconds. The kinetic index decreased in the flat foot group (t=-5.08, p=0.001) during one leg standing without visual input. There were strong correlations between kinetic and kinematic stabilities (0.75-0.86) with visual input and moderate correlations (0.49-0.67) without visual input in the control group. The flat foot group exhibited a significantly decreased kinetic index without visual input. The more effective postural stability in the control group might be due to efficient compensatory strategies utilized without visual input to maintain one leg standing. These outcome measures could help to develop a practical test leading to kinematic postural changes. Copyright © 2017 Elsevier Ltd. All rights reserved.

  12. Fire whirlwind formation over flat terrain.

    Science.gov (United States)

    Donald A. Haines; Gerald H. Updike

    1971-01-01

    This paper examines the factors that lead to the genesis of fire whirlwinds over flat terrain. Also presented is an estimate of the number of days one might expect to encounter meteorological conditions that permit such formations.

  13. Differential flatness applied to vehicle trajectory tracking

    OpenAIRE

    Lu , Wen Chi; Duan , Lili; Hsiao , Fei-Bin; Mora-Camino , Felix Antonio Claudio

    2008-01-01

    International audience; Differential flatness, a property of some dynamic systems which has been recognized only recently, has made possible the development of new tools to control complex nonlinear dynamic systems. Guidance dynamics of many different systems have been recognized as being explicitly or implicitly differentially flat as it is the case for flight guidance dynamics of conventional aircraft. In this paper, a new control structure is proposed to achieve trajectory tracking for veh...

  14. Near-field flat focusing mirrors

    Science.gov (United States)

    Cheng, Yu-Chieh; Staliunas, Kestutis

    2018-03-01

    This article reviews recent progress towards the design of near-field flat focusing mirrors, focusing/imaging light patterns in reflection. An important feature of such flat focusing mirrors is their transverse invariance, as they do not possess any optical axis. We start with a review of the physical background to the different focusing mechanisms of near- and far-field focusing. These near-field focusing devices like flat lenses and the reviewed near-field focusing mirrors can implement planar focusing devices without any optical axis. In contrast, various types of far-field planar focusing devices, such as high-contrast gratings and metasurfaces, unavoidably break the transverse invariance due to their radially symmetrical structures. The particular realizations of near-field flat focusing mirrors including Bragg-like dielectric mirrors and dielectric subwavelength gratings are the main subjects of the review. The first flat focusing mirror was demonstrated with a chirped mirror and was shown to manage an angular dispersion for beam focusing, similar to the management of chromatic dispersion for pulse compression. Furthermore, the reviewed optimized chirped mirror demonstrated a long near-field focal length, hardly achieved by a flat lens or a planar hyperlens. Two more different configurations of dielectric subwavelength gratings that focus a light beam at normal or oblique incidence are also reviewed. We also summarize and compare focusing performance, limitations, and future perspectives between the reviewed flat focusing mirrors and other planar focusing devices including a flat lens with a negative-index material, a planar hyperlens, a high-contrast grating, and a metasurface.

  15. Pond fractals in a tidal flat

    OpenAIRE

    Cael, B. B.; Bisson, Kelsey; Lambert, Bennett Spencer

    2015-01-01

    Studies over the past decade have reported power-law distributions for the areas of terrestrial lakes and Arctic melt ponds, as well as fractal relationships between their areas and coastlines. Here we report similar fractal structure of ponds in a tidal flat, thereby extending the spatial and temporal scales on which such phenomena have been observed in geophysical systems. Images taken during low tide of a tidal flat in Damariscotta, Maine, reveal a well-resolved power-law distribution of p...

  16. Thermal radiators with embedded pulsating heat pipes: Infra-red thermography and simulations

    International Nuclear Information System (INIS)

    Hemadri, Vadiraj A.; Gupta, Ashish; Khandekar, Sameer

    2011-01-01

    With the aim of exploring potential applications of Pulsating Heat Pipes (PHP), for space/terrestrial sectors, experimental study of embedded PHP thermal radiators, having two different effective Biot numbers respectively, and subjected to conjugate heat transfer conditions on their surface, i.e., natural convection and radiation, has been carried out under different thermo-mechanical boundary conditions. High resolution infrared camera is used to obtain spatial temperature profiles of the radiators. To complement the experimental study, detailed 3D computational heat transfer simulation has also been undertaken. By embedding PHP structures, it was possible to make the net thermal resistance of the mild steel radiator plate equivalent to the aluminum radiator plate, in spite of the large difference in their respective thermal conductivities (k Al ∼ 4k MS ). The study reveals that embedded PHP structures can be beneficial only under certain boundary conditions. The degree of isothermalization achieved in these structures strongly depends on its effective Biot number. The relative advantage of embedded PHP is appreciably higher if the thermal conductivity of the radiator plate material itself is low. The study indicates that the effective thermal conductivity of embedded PHP structure is of the order of 400 W/mK to 2300 W/mK, depending on the operating conditions. - Research highlights: → Study of radiator plates with embedded Pulsating Heat Pipe by infrared thermography. → Radiator is subjected to natural convection and radiation boundary conditions. → Experimental study is supported by 3D simulation. → Effective thermal conductivity of PHPs of the order of 2000 W/mK is obtained. → Efficacy of embedded PHPs depends on the effective Biot number of the system.

  17. Frost Growth and Densification on a Flat Surface in Laminar Flow with Variable Humidity

    Science.gov (United States)

    Kandula, M.

    2012-01-01

    Experiments are performed concerning frost growth and densification in laminar flow over a flat surface under conditions of constant and variable humidity. The flat plate test specimen is made of aluminum-6031, and has dimensions of 0.3 mx0.3 mx6.35 mm. Results for the first variable humidity case are obtained for a plate temperature of 255.4 K, air velocity of 1.77 m/s, air temperature of 295.1 K, and a relative humidity continuously ranging from 81 to 54%. The second variable humidity test case corresponds to plate temperature of 255.4 K, air velocity of 2.44 m/s, air temperature of 291.8 K, and a relative humidity ranging from 66 to 59%. Results for the constant humidity case are obtained for a plate temperature of 263.7 K, air velocity of 1.7 m/s, air temperature of 295 K, and a relative humidity of 71.6 %. Comparisons of the data with the author's frost model extended to accommodate variable humidity suggest satisfactory agreement between the theory and the data for both constant and variable humidity.

  18. Three-dimensional flat shell-to-shell coupling: numerical challenges

    Science.gov (United States)

    Guo, Kuo; Haikal, Ghadir

    2017-11-01

    The node-to-surface formulation is widely used in contact simulations with finite elements because it is relatively easy to implement using different types of element discretizations. This approach, however, has a number of well-known drawbacks, including locking due to over-constraint when this formulation is used as a twopass method. Most studies on the node-to-surface contact formulation, however, have been conducted using solid elements and little has been done to investigate the effectiveness of this approach for beam or shell elements. In this paper we show that locking can also be observed with the node-to-surface contact formulation when applied to plate and flat shell elements even with a singlepass implementation with distinct master/slave designations, which is the standard solution to locking with solid elements. In our study, we use the quadrilateral four node flat shell element for thin (Kirchhoff-Love) plate and thick (Reissner-Mindlin) plate theory, both in their standard forms and with improved formulations such as the linked interpolation [1] and the Discrete Kirchhoff [2] elements for thick and thin plates, respectively. The Lagrange multiplier method is used to enforce the node-to-surface constraints for all elements. The results show clear locking when compared to those obtained using a conforming mesh configuration.

  19. Create Your Plate

    Medline Plus

    Full Text Available ... managing diabetes and losing weight. Creating your plate lets you still choose the foods you want, but ... you have an easy portion control solution that works. Last Reviewed: October 8, 2015 Last Edited: September ...

  20. What's On Your Plate?

    Science.gov (United States)

    ... what these nutrients do in your body and what foods they are found in. Plans for Healthy Living ... food choices. Get more nutrition information online with What's On Your Plate? Smart Food Choices for Healthy Aging from the National Institute ...

  1. Create Your Plate

    Medline Plus

    Full Text Available ... Plate is a simple and effective way to manage your blood glucose levels and lose weight. With ... been easier. It can be a challenge to manage portion control wherever you are. Now, our best- ...

  2. Create Your Plate

    Medline Plus

    Full Text Available ... Count Glycemic Index Low-Calorie Sweeteners Sugar and Desserts Fitness Exercise & Type 1 Diabetes Get Started Safely ... blood glucose levels and lose weight. With this method, you fill your plate with more non-starchy ...

  3. Create Your Plate

    Medline Plus

    Full Text Available ... Edited: September 14, 2016 Articles from Diabetes Forecast® magazine: wcie-meal-planning, . In this section Food Planning Meals Diabetes Meal Plans and a Healthy Diet Create Your Plate Meal Planning for Vegetarian Diets Gluten ...

  4. Create Your Plate

    Medline Plus

    Full Text Available ... Children and Type 2 Diabetes Know Your Rights Employment Discrimination Health Care Professionals Law Enforcement Driver's License ... blood glucose levels and lose weight. With this method, you fill your plate with more non-starchy ...

  5. Humvee Armor Plate Drilling

    National Research Council Canada - National Science Library

    2004-01-01

    When drilling holes in hard steel plate used in up-armor kits for Humvee light trucks, the Anniston Army Depot, Anniston, Alabama, requested the assistance of the National Center for Defense Manufacturing and Machining (NCDMM...

  6. Create Your Plate

    Medline Plus

    Full Text Available ... one side, cut it again so you will have three sections on your plate. Fill the largest ... home, the office, or somewhere in between, you have an easy portion control solution that works. Last ...

  7. Embedded System for Biometric Identification

    OpenAIRE

    Rosli, Ahmad Nasir Che

    2010-01-01

    This chapter describes the design and implementation of an Embedded System for Biometric Identification from hardware and software perspectives. The first part of the chapter describes the idea of biometric identification. This includes the definition of

  8. Hardware Support for Embedded Java

    DEFF Research Database (Denmark)

    Schoeberl, Martin

    2012-01-01

    The general Java runtime environment is resource hungry and unfriendly for real-time systems. To reduce the resource consumption of Java in embedded systems, direct hardware support of the language is a valuable option. Furthermore, an implementation of the Java virtual machine in hardware enables...... worst-case execution time analysis of Java programs. This chapter gives an overview of current approaches to hardware support for embedded and real-time Java....

  9. Molecular Properties through Polarizable Embedding

    DEFF Research Database (Denmark)

    Olsen, Jógvan Magnus Haugaard; Kongsted, Jacob

    2011-01-01

    We review the theory related to the calculation of electric and magnetic molecular properties through polarizable embedding. In particular, we derive the expressions for the response functions up to the level of cubic response within the density functional theory-based polarizable embedding (PE......-DFT) formalism. In addition, we discuss some illustrative applications related to the calculation of nuclear magnetic resonance parameters, nonlinear optical properties, and electronic excited states in solution....

  10. A Foundation for Embedded Languages

    DEFF Research Database (Denmark)

    Rhiger, Morten

    2003-01-01

    Recent work on embedding object languages into Haskell use "phantom types" (i.e., parameterized types whose parameter does not occur on the right-hand side of the type definition) to ensure that the embedded object-language terms are simply typed. But is it a safe assumption that only simply...... be answered affirmatively for an idealized Haskell-like language and discuss to which extent Haskell can be used as a meta-language....

  11. Unsupervised Document Embedding With CNNs

    OpenAIRE

    Liu, Chundi; Zhao, Shunan; Volkovs, Maksims

    2017-01-01

    We propose a new model for unsupervised document embedding. Leading existing approaches either require complex inference or use recurrent neural networks (RNN) that are difficult to parallelize. We take a different route and develop a convolutional neural network (CNN) embedding model. Our CNN architecture is fully parallelizable resulting in over 10x speedup in inference time over RNN models. Parallelizable architecture enables to train deeper models where each successive layer has increasin...

  12. Neutron imaging plates

    International Nuclear Information System (INIS)

    Niimura, Nobuo

    1995-01-01

    Imaging plates have been used in the field of medical diagnosis since long ago, but their usefulness was verified as the two-dimensional detector for analyzing the X-ray crystalline structure of high bio molecules like protein, and they have contributed to the remarkable progress in this field. The great contribution is due to the excellent features, such as the detection efficiency of about 100%, the positional resolution smaller than 0.2 mm, the dynamic range of five digits, and the area of several hundreds mm square. The neutron imaging plates have not yet obtained the sufficient results. It was planned to construct the neutron diffractometer for biological matters, and to put imaging plate neutron detectors (IP-ND) to practical use as the detector. The research on the development of IP-NDs was carried out, and the IPp-NDs having the performance comparable with that for X-ray were able to be produced. Imaging plates are the integral type two-dimensional radiation detector using photostimulated luminescence matters, and their principle is explained. As to neutron imaging plates, the converter, neutron detection efficiency and the flight of secondary particles in photo-stimulated luminescence matters are described. As for the present state of development of neutron imaging plates, the IP-NDs made for trial, the dynamic range, the positional resolution, the detection efficiency and the kinds of converters, and the application of IP-NDs are reported. (K.I.)

  13. Flat H Frangible Joint Evolution

    Science.gov (United States)

    Diegelman, Thomas E.; Hinkel, Todd J.; Benjamin, Andrew; Rochon, Brian V.; Brown, Christopher W.

    2016-01-01

    Space vehicle staging and separation events require pyrotechnic devices. They are single-use mechanisms that cannot be tested, nor can failure-tolerant performance be demonstrated in actual flight articles prior to flight use. This necessitates the implementation of a robust design and test approach coupled with a fully redundant, failure-tolerant explosive mechanism to ensure that the system functions even in the event of a single failure. Historically, NASA has followed the single failure-tolerant (SFT) design philosophy for all human-rated spacecraft, including the Space Shuttle Program. Following the end of this program, aerospace companies proposed building the next generation human-rated vehicles with off-the-shelf, non-redundant, zero-failure-tolerant (ZFT) separation systems. Currently, spacecraft and launch vehicle providers for both the Orion and Commercial Crew Programs (CCPs) plan to deviate from the heritage safety approach and NASA's SFT human rating requirements. Both programs' partners have base-lined ZFT frangible joints for vehicle staging and fairing separation. These joints are commercially available from pyrotechnic vendors. Non-human-rated missions have flown them numerous times. The joints are relatively easy to integrate structurally within the spacecraft. In addition, the separation event is debris free, and the resultant pyro shock is lower than that of other design solutions. It is, however, a serious deficiency to lack failure tolerance. When used for critical applications on human-rated vehicles, a single failure could potentially lead to loss of crew (LOC) or loss of mission (LOM)). The Engineering and Safety & Mission Assurance directorates within the NASA Johnson Space Center took action to address this safety issue by initiating a project to develop a fully redundant, SFT frangible joint design, known as the Flat H. Critical to the ability to retrofit on launch vehicles being developed, the SFT mechanisms must fit within the same

  14. Development of Surfaces Optically Suitable for Flat Solar Panels. [using a reflectometer which separately evaluates spectral and diffuse reflectivities of surfaces

    Science.gov (United States)

    1979-01-01

    A reflectometer which can separately evaluate the spectral and diffuse reflectivities of surfaces is described. A phase locked detection system for the reflectometer is also described. A selective coating on aluminum potentially useful for flat plate solar collector applications is presented. The coating is composed of strongly bound copper oxide (divalent) and is formed by an etching process performed on an aluminum alloy with high copper content. Fabrication costs are expected to be small due to the one stop fabrication process. A number of conclusions gathered from the literature as to the required optical properties of flat plate solar collectors are discussed.

  15. Age determination and reproduction of female Fin Whales Balaenoptera physalus (Linnaeus, 1758), with special regard to baleen plates and ovaries

    NARCIS (Netherlands)

    Utrecht-Cock, van C.N.

    1965-01-01

    1. From Antarctic female Fin Whales, Balaenoptera physalus, a collection, consisting of baleen plates and the parts of these plates embedded in the gum, ovaries, and a number of earplugs was examined, in order to determine the age of these animals and to get a better insight in some characteristics

  16. Cadmium plating replacements

    Energy Technology Data Exchange (ETDEWEB)

    Nelson, M.J.; Groshart, E.C.

    1995-03-01

    The Boeing Company has been searching for replacements to cadmium plate. Two alloy plating systems seem close to meeting the needs of a cadmium replacement. The two alloys, zinc-nickel and tin-zinc are from alloy plating baths; both baths are neutral pH. The alloys meet the requirements for salt fog corrosion resistance, and both alloys excel as a paint base. Currently, tests are being performed on standard fasteners to compare zinc-nickel and tin-zinc on threaded hardware where cadmium is heavily used. The Hydrogen embrittlement propensity of the zinc-nickel bath has been tested, and just beginning for the tin-zinc bath. Another area of interest is the electrical properties on aluminum for tin-zinc and will be discussed. The zinc-nickel alloy plating bath is in production in Boeing Commercial Airplane Group for non-critical low strength steels. The outlook is promising that these two coatings will help The Boeing Company significantly reduce its dependence on cadmium plating.

  17. Bistability of flight states for heavy falling plates

    Science.gov (United States)

    Lau, Edwin; Huang, Wei-Xi

    2017-11-01

    Interactions of falling flat plates in two-dimensional flows is presented through direct numerical simulation and immersed boundary method. The transition from steady falling to tumbling flight for heavy plates is presented. At steep angles of release, the plates undergo a period of amplitude increasing fluttering motion before developing to tumble. For the same fluid-solid system of Reynolds number Re and moment of inertia I*, shallow angles of release develop to a state of steady falling after a period of diminishing fluttering amplitude. Simulations further construct a mapping of this bistable region. Relationships among Re, I*, and the critical angles of release separating the two flight states are also provided. The inclusion of this finding on the mapping of flight states suggests fluttering motion as a transitional state before the onset of tumble. National Natural Science Foundation of China or NSFC (Grant No. 11322221).

  18. Bending and stretching of plates

    CERN Document Server

    Mansfield, E H; Hemp, W S

    1964-01-01

    The Bending and Stretching of Plates deals with elastic plate theory, particularly on small- and large-deflexion theory. Small-deflexion theory concerns derivation of basic equations, rectangular plates, plates of various shapes, plates whose boundaries are amenable to conformal transformation, plates with variable rigidity, and approximate methods. Large-deflexion theory includes general equations and some exact solutions, approximate methods in large-deflexion theory, asymptotic large-deflexion theories for very thin plates. Asymptotic theories covers membrane theory, tension field theory, a

  19. Embedded Linux projects using Yocto project cookbook

    CERN Document Server

    González, Alex

    2015-01-01

    If you are an embedded developer learning about embedded Linux with some experience with the Yocto project, this book is the ideal way to become proficient and broaden your knowledge with examples that are immediately applicable to your embedded developments. Experienced embedded Yocto developers will find new insight into working methodologies and ARM specific development competence.

  20. Trusted computing for embedded systems

    CERN Document Server

    Soudris, Dimitrios; Anagnostopoulos, Iraklis

    2015-01-01

    This book describes the state-of-the-art in trusted computing for embedded systems. It shows how a variety of security and trusted computing problems are addressed currently and what solutions are expected to emerge in the coming years. The discussion focuses on attacks aimed at hardware and software for embedded systems, and the authors describe specific solutions to create security features. Case studies are used to present new techniques designed as industrial security solutions. Coverage includes development of tamper resistant hardware and firmware mechanisms for lightweight embedded devices, as well as those serving as security anchors for embedded platforms required by applications such as smart power grids, smart networked and home appliances, environmental and infrastructure sensor networks, etc. ·         Enables readers to address a variety of security threats to embedded hardware and software; ·         Describes design of secure wireless sensor networks, to address secure authen...