WorldWideScience

Sample records for flat in-plane loaded

  1. Contact Problem for an Elastic Layer on an Elastic Half Plane Loaded by Means of Three Rigid Flat Punches

    Directory of Open Access Journals (Sweden)

    T. S. Ozsahin

    2013-01-01

    Full Text Available The frictionless contact problem for an elastic layer resting on an elastic half plane is considered. The problem is solved by using the theory of elasticity and integral transformation technique. The compressive loads P and Q (per unit thickness in direction are applied to the layer through three rigid flat punches. The elastic layer is also subjected to uniform vertical body force due to effect of gravity. The contact along the interface between elastic layer and half plane is continuous, if the value of the load factor, λ, is less than a critical value, . In this case, initial separation loads, and initial separation points, are determined. Also the required distance between the punches to avoid any separation between the punches and the elastic layer is studied and the limit distance between punches that ends interaction of punches is investigated for various dimensionless quantities. However, if tensile tractions are not allowed on the interface, for the layer separates from the interface along a certain finite region. Numerical results for distance determining the separation area, vertical displacement in the separation zone, contact stress distribution along the interface between elastic layer and half plane are given for this discontinuous contact case.

  2. Communication: Two types of flat-planes conditions in density functional theory.

    Science.gov (United States)

    Yang, Xiaotian Derrick; Patel, Anand H G; Miranda-Quintana, Ramón Alain; Heidar-Zadeh, Farnaz; González-Espinoza, Cristina E; Ayers, Paul W

    2016-07-21

    Using results from atomic spectroscopy, we show that there are two types of flat-planes conditions. The first type of flat-planes condition occurs when the energy as a function of the number of electrons of each spin, Nα and Nβ, has a derivative discontinuity on a line segment where the number of electrons, Nα + Nβ, is an integer. The second type of flat-planes condition occurs when the energy has a derivative discontinuity on a line segment where the spin polarization, Nα - Nβ, is an integer, but does not have a discontinuity associated with an integer number of electrons. Type 2 flat planes are rare-we observed just 15 type 2 flat-planes conditions out of the 4884 cases we tested-but their mere existence has implications for the design of exchange-correlation energy density functionals. To facilitate the development of functionals that have the correct behavior with respect to both fractional number of electrons and fractional spin polarization, we present a dataset for the chromium atom and its ions that can be used to test new functionals.

  3. Communication: Two types of flat-planes conditions in density functional theory

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Xiaotian Derrick; Patel, Anand H. G.; González-Espinoza, Cristina E.; Ayers, Paul W. [Department of Chemistry and Chemical Biology, McMaster University, Hamilton, Ontario LBS 4M1 (Canada); Miranda-Quintana, Ramón Alain [Department of Chemistry and Chemical Biology, McMaster University, Hamilton, Ontario LBS 4M1 (Canada); Laboratory of Computational and Theoretical Chemistry, Faculty of Chemistry, University of Havana, Havana (Cuba); Heidar-Zadeh, Farnaz [Department of Chemistry and Chemical Biology, McMaster University, Hamilton, Ontario LBS 4M1 (Canada); Department of Inorganic and Physical Chemistry, Ghent University, Krijgslaan 281 (S3), 9000 Gent (Belgium); Center for Molecular Modeling, Ghent University, Technologiepark 903, 9052 Zwijnaarde (Belgium)

    2016-07-21

    Using results from atomic spectroscopy, we show that there are two types of flat-planes conditions. The first type of flat-planes condition occurs when the energy as a function of the number of electrons of each spin, N{sub α} and N{sub β}, has a derivative discontinuity on a line segment where the number of electrons, N{sub α} + N{sub β}, is an integer. The second type of flat-planes condition occurs when the energy has a derivative discontinuity on a line segment where the spin polarization, N{sub α} – N{sub β}, is an integer, but does not have a discontinuity associated with an integer number of electrons. Type 2 flat planes are rare—we observed just 15 type 2 flat-planes conditions out of the 4884 cases we tested—but their mere existence has implications for the design of exchange-correlation energy density functionals. To facilitate the development of functionals that have the correct behavior with respect to both fractional number of electrons and fractional spin polarization, we present a dataset for the chromium atom and its ions that can be used to test new functionals.

  4. Buckling of Flat Thin Plates under Combined Loading

    Directory of Open Access Journals (Sweden)

    Ion DIMA

    2015-03-01

    Full Text Available This article aims to provide a quick methodology to determine the critical values of the forces applied to the central plane of a flat isotropic plate at which a change to the stable configuration of equilibrium occurs. Considering the variety of shapes, boundary conditions and loading combinations, the article does not intend to make an exhaustive presentation of the plate buckling. As an alternative, there will be presented only the most used configurations such as: rectangular flat thin plates, boundary conditions with simply supported (hinged or clamped (fixed edges, combined loadings with single compression or single shear or combination between them, compression and shear, with or without transverse loading, encountered at wings and control surfaces shell of fin and rudder or stabilizer and elevator. The reserve factor and the critical stresses will be calculated using comparatively two methods, namely the methodology proposed by the present article and ASSIST 6.6.2.0 – AIRBUS France software, a dedicated software to local calculations, for a simply supported plate under combined loading, compression on the both sides and shear.

  5. Measuring the Flatness of Focal Plane for Very Large Mosaic CCD Camera

    Energy Technology Data Exchange (ETDEWEB)

    Hao, Jiangang; Estrada, Juan; Cease, Herman; Diehl, H.Thomas; Flaugher, Brenna L.; Kubik, Donna; Kuk, Keivin; Kuropatkine, Nickolai; Lin, Huan; Montes, Jorge; Scarpine, Vic; /Fermilab

    2010-06-08

    Large mosaic multiCCD camera is the key instrument for modern digital sky survey. DECam is an extremely red sensitive 520 Megapixel camera designed for the incoming Dark Energy Survey (DES). It is consist of sixty two 4k x 2k and twelve 2k x 2k 250-micron thick fully-depleted CCDs, with a focal plane of 44 cm in diameter and a field of view of 2.2 square degree. It will be attached to the Blanco 4-meter telescope at CTIO. The DES will cover 5000 square-degrees of the southern galactic cap in 5 color bands (g, r, i, z, Y) in 5 years starting from 2011. To achieve the science goal of constraining the Dark Energy evolution, stringent requirements are laid down for the design of DECam. Among them, the flatness of the focal plane needs to be controlled within a 60-micron envelope in order to achieve the specified PSF variation limit. It is very challenging to measure the flatness of the focal plane to such precision when it is placed in a high vacuum dewar at 173 K. We developed two image based techniques to measure the flatness of the focal plane. By imaging a regular grid of dots on the focal plane, the CCD offset along the optical axis is converted to the variation the grid spacings at different positions on the focal plane. After extracting the patterns and comparing the change in spacings, we can measure the flatness to high precision. In method 1, the regular dots are kept in high sub micron precision and cover the whole focal plane. In method 2, no high precision for the grid is required. Instead, we use a precise XY stage moves the pattern across the whole focal plane and comparing the variations of the spacing when it is imaged by different CCDs. Simulation and real measurements show that the two methods work very well for our purpose, and are in good agreement with the direct optical measurements.

  6. Communication: Recovering the flat-plane condition in electronic structure theory at semi-local DFT cost

    Science.gov (United States)

    Bajaj, Akash; Janet, Jon Paul; Kulik, Heather J.

    2017-11-01

    The flat-plane condition is the union of two exact constraints in electronic structure theory: (i) energetic piecewise linearity with fractional electron removal or addition and (ii) invariant energetics with change in electron spin in a half filled orbital. Semi-local density functional theory (DFT) fails to recover the flat plane, exhibiting convex fractional charge errors (FCE) and concave fractional spin errors (FSE) that are related to delocalization and static correlation errors. We previously showed that DFT+U eliminates FCE but now demonstrate that, like other widely employed corrections (i.e., Hartree-Fock exchange), it worsens FSE. To find an alternative strategy, we examine the shape of semi-local DFT deviations from the exact flat plane and we find this shape to be remarkably consistent across ions and molecules. We introduce the judiciously modified DFT (jmDFT) approach, wherein corrections are constructed from few-parameter, low-order functional forms that fit the shape of semi-local DFT errors. We select one such physically intuitive form and incorporate it self-consistently to correct semi-local DFT. We demonstrate on model systems that jmDFT represents the first easy-to-implement, no-overhead approach to recovering the flat plane from semi-local DFT.

  7. Lectures on strings in flat space and plane waves from N = 4 super Yang Mills

    International Nuclear Information System (INIS)

    Maldacena, J.

    2003-01-01

    In these lecture notes we explain how the string spectrum in flat space and plane waves arises from the large N limit of U(N) N = 4 super Yang Mills. We reproduce the spectrum by summing a subset of the planar Feynman diagrams. We also describe some other aspects of string propagation on plane wave backgrounds. (author)

  8. Estimates of plastic loads for pipe bends under combined in-plane and out-of-plane bending moment

    International Nuclear Information System (INIS)

    Kim, Nak Hyun; Oh, Chang Sik; Kim, Yun Jae

    2008-01-01

    This paper provides a method to estimate plastic loads (defined by twice-elastic-slope) for pipe bends under combined in-plane and out-of-plane bending moment, based on detailed 3-D FE limit analyses using elastic-perfectly plastic materials. Because closing bending moment is always lower than opening bending moment, the combination of in-plane closing bending and out-of-plane bending moment becomes the most significant case. Due to conservatism of each bending moments, the resultant moment provided by ASME B and PV code is unduly conservative. However, the concept of the resultant moment is still valid. In this paper, FE results show that the accurate solutions of bending moments provide better estimates of plastic loads of pipe bend under combined in-plane bending and out-of-plane bending moment

  9. Crack Propagation in Plane Strain under Variable Amplitude Loading

    DEFF Research Database (Denmark)

    Ricardo, Luiz Carlos Hernandes

    2010-01-01

    . In this paper procedures to determine the crack opening and closure by finite elements analyses in plane strain will be presented. The objective of this paper is also provide a review of retardation models under variable spectrum loading considering plane strain constraint as well as their correlation...

  10. A review of the wind loading zones for flat roofs in code provisions

    NARCIS (Netherlands)

    Geurts, C.P.W.; Kopp, G.A.; Morrison, M.J.

    2013-01-01

    The provisions for wind loads on flat roofs differ considerably between current wind loading standards in different jurisdictions. For a number of major wind loading codes, both the definition of roof zones, and the values applied to determine the wind loads are discussed. This paper concentrates on

  11. STRUCTURAL ANALYSIS OF IN-PLANE LOADED CLT BEAMS

    Directory of Open Access Journals (Sweden)

    Mario Jeleč

    2017-01-01

    Full Text Available Cross laminated timber (CLT is a versatile engineered timber product that is increasingly well-known and of global interest in several applications such as full size plane or linear timber elements. The aim of this study involves investigating the performance of CLT beams loaded in-plane by considering bending and shear stress analysis with a special emphasis on the in-plane shear behavior including the complex internal structure of CLT. Numerical analysis based on 3D-FE models was used and compared with two existing analytical approaches, namely representative volume sub element (method I and composite beam theory (method II. The separate verification of bending and shear stresses including tree different shear failure modes was performed, and a good agreement was obtained. The main difference between the results relates to shear failure mode in the crossing areas between the orthogonally bonded lamellas in which the distribution of shear stresses τzx over the crossing areas per height of the CLT beam is not in accordance with the analytical assumptions. The presented analyses constitute the first attempt to contribute to the on-going review process of Eurocode 5 with respect to CLT beams loaded-in plane. Currently, regulations on designing these types of beams do not exist, and thus experimental and numerical investigations are planned in the future.

  12. In Plane Loaded Glass Panes in Façades, Temperature Loads in Fixed Bonded Glass Panes

    NARCIS (Netherlands)

    Huveners, E.M.P.; Herwijnen, van F.; Soetens, F.; Hofmeyer, H.; Vitkala, J.

    2005-01-01

    The author discusses the use of glass panes as transparent stability elements in vertical façade structures subjected to in-plane loads including temperature loads. In the present façade architecture, glass is normally used non-structural. The only mechanical requirement is to resist transversal

  13. Excitation of plane Lamb wave in plate-like structures under applied surface loading

    Science.gov (United States)

    Zhou, Kai; Xu, Xinsheng; Zhao, Zhen; Yang, Zhengyan; Zhou, Zhenhuan; Wu, Zhanjun

    2018-02-01

    Lamb waves play an important role in structure health monitoring (SHM) systems. The excitation of Lamb waves has been discussed for a long time with absorbing results. However, little effort has been made towards the precise characterization of Lamb wave excitation by various transducer models with mathematical foundation. In this paper, the excitation of plane Lamb waves with plane strain assumption in isotropic plate structures under applied surface loading is solved with the Hamiltonian system. The response of the Lamb modes excited by applied loading is expressed analytically. The effect of applied loading is divided into the product of two parts as the effect of direction and the effect of distribution, which can be changed by selecting different types of transducer and the corresponding transducer configurations. The direction of loading determines the corresponding displacement of each mode. The effect of applied loading on the in-plane and normal directions depends on the in-plane and normal displacements at the surface respectively. The effect of the surface loading distribution on the Lamb mode amplitudes is mainly reflected by amplitude versus frequency or wavenumber. The frequencies at which the maxima and minima of the S0 or A0 mode response occur depend on the distribution of surface loading. The numerical results of simulations conducted on an infinite aluminum plate verify the theoretical prediction of not only the direction but also the distribution of applied loading. A pure S0 or A0 mode can be excited by selecting the appropriate direction and distribution at the corresponding frequency.

  14. Motion of a carrier with a mobile load along a rough inclined plane

    Science.gov (United States)

    Bilchenko, G. G.

    2018-03-01

    The mechanical system consisting of a carrier and a load is considered. The load can move respectively the carrier according to the preset given motion law. The carrier motion from rest caused the load motion is investigated. The carrier can move translationally along rectilinear trajectory along rough inclined plane. The trajectory is the line of the greatest descent. The axis of rectilinear channel along which the load moves is situated in vertical plane containing the carrier trajectory. The Coulomb model is taken to describe the friction forces on sloped plane. Differential equations of motion of carrier with load are obtained. The sufficient condition of the carrier motion without detachment from inclined plane is given. For two special cases of the channel installation angle and the plane inclination angle combination the motion types are described. The computation experiments results are presented: the carrier motions in the special cases are illustrated, the phase portraits for some types of motions are constructed.

  15. Efficient Closed Form Cut-Off Planes and Propagation Planes Characteristics for Dielectric Slab Loaded Boundary Value Problems

    OpenAIRE

    Zafar, Junaid

    2012-01-01

    The geometrical relationship between the cut-off and propagating planes of any waveguide system is a prerequisite for any design process. The characterization of cut-off planes and optimisation are challenging for numerical methods, closed-form solutions are always preferred. In this paper Maxwells coupled field equations are used to characterise twin E-plane and H-plane slab loaded boundary value problems. The single mode bandwidths and dispersion characteristics of these structures are pres...

  16. Variation of moment-curvature diagrams in square columns of reinforced concrete due to the presence of loads outside the plane

    International Nuclear Information System (INIS)

    Calvo Camacho, Glen

    2014-01-01

    An experimental investigation was developed to determine if has existed a variation in the moment-curvature diagrams, basic input of performance-based methodologies, due to the presence of loads outside the plane. A documentary revision of experimental, analytical and instrumentation methods is contemplated for the determination of the effect of loads outside the plane, the design of a prototype column in agreement with the requirements of current design, the construction and the failure of four columns subjected to different requests of load outside the plane. The test has consisted of a column of 14 cm of cantilevered side to which horizontal load combinations are applied, outside and inside the plane, in the upper part, as well as an axial load by means of a system of post tension with servo control. Four specimens are studied in which the only difference has been the horizontal load applied. An incremental load is applied for the control case in the plane until reaching the structural failure. The remaining tests are developed based on the magnitude of the maximum load, for which a constant load is first applied outside the plane corresponding to a percentage of the control load (30%, 50% and 80%) and then has proceed to apply the incremental load in the plane. The results have showed that for out-of-plane loads greater than 30%, both ultimate curvature and capacity are considerably reduced. In addition, a linear reduction of the ductility of the element is observed as the loads outside the plane increase. An underestimation of capabilities is shown in analytical research. In addition, the software used is shown without consider the effect of off-plane loads. (author) [es

  17. On motions of a carrier with a mobile load along a rough inclined plane

    Science.gov (United States)

    Bilchenko, Grigory; Bilchenko, Grigory; Bilchenko, Nataly

    2018-05-01

    A mechanical system consisting of a carrier and a load is considered. The load can move respectively to the carrier according to a predetermined motion law. The carrier can move translationally along a rectilinear trajectory on a rough inclined plane. The trajectory is the line of the greatest descent. The axis of the rectilinear channel, along which the load moves, is located in a vertical plane passing through the trajectory of the carrier. The Coulomb dry friction model is applied for simulation the forces of resistance to the motion of the carrier from the side of the underlying inclined plane. The extreme value of plane inclination angle at which the carrier is at rest, when the load is stationary, is obtained by taking into account the frictional forces of sliding at rest. Differential equations of motion of a carrier with a load moving with respect to the carrier are obtained taking into account the requirement of motion of the carrier along an inclined plane without detachment. The determining relationships are given which made it possible to classify the types of carrier motion when the channel setting angle and the plane inclination angle are related by a certain inequality. The results of computational experiments are presented.

  18. Heterogeneous upper-bound finite element limit analysis of masonry walls out-of-plane loaded

    Science.gov (United States)

    Milani, G.; Zuccarello, F. A.; Olivito, R. S.; Tralli, A.

    2007-11-01

    A heterogeneous approach for FE upper bound limit analyses of out-of-plane loaded masonry panels is presented. Under the assumption of associated plasticity for the constituent materials, mortar joints are reduced to interfaces with a Mohr Coulomb failure criterion with tension cut-off and cap in compression, whereas for bricks both limited and unlimited strength are taken into account. At each interface, plastic dissipation can occur as a combination of out-of-plane shear, bending and torsion. In order to test the reliability of the model proposed, several examples of dry-joint panels out-of-plane loaded tested at the University of Calabria (Italy) are discussed. Numerical results are compared with experimental data for three different series of walls at different values of the in-plane compressive vertical loads applied. The comparisons show that reliable predictions of both collapse loads and failure mechanisms can be obtained by means of the numerical procedure employed.

  19. Limit loads for piping branch junctions under internal pressure and in-plane bending-Extended solutions

    International Nuclear Information System (INIS)

    Kim, Yun-Jae; Lee, Kuk-Hee; Park, Chi-Yong

    2008-01-01

    The authors have previously proposed plastic limit load solutions for thin-walled branch junctions under internal pressure and in-plane bending, based on finite element (FE) limit loads resulting from three-dimensional (3-D) FE limit analyses using elastic-perfectly plastic materials [Kim YJ, Lee KH, Park CY. Limit loads for thin-walled piping branch junctions under internal pressure and in-plane bending. Int J Press Vessels Piping 2006;83:645-53]. The solutions are valid for ratios of the branch-to-run pipe radius and thickness from 0.4 to 1.0, and for the mean radius-to-thickness ratio of the run pipe from 10.0 to 20.0. Moreover, the solutions considered the case of in-plane bending only on the branch pipe. This paper extends the previous solutions in two aspects. Firstly, plastic limit load solutions are given also for in-plane bending on the run pipe. Secondly, the validity of the proposed solutions is extended to ratios of the branch-to-run pipe radius and thickness from 0.0 to 1.0, and the mean radius-to-thickness ratio of the run pipe from 5.0 to 20.0. Comparisons with FE results show good agreement

  20. Coupled fracture modes under anti-plane loading

    Directory of Open Access Journals (Sweden)

    Les P. Pook

    2016-07-01

    Full Text Available The linear elastic analysis of homogeneous, isotropic cracked bodies is a Twentieth Century development. It was recognised that the crack tip stress field is a singularity, but it was not until the introduction of the essentially two dimensional stress intensity factor concept in 1957 that widespread application to practical engineering problems became possible. The existence of three dimensional corner point effects in the vicinity of a corner point where a crack front intersects a free surface was investigated in the late 1970s: it was found that modes II and III cannot exist in isolation. The existence of one of these modes always induces the other. An approximate solution for corner point singularities by Bažant and Estenssoro explained some features of corner point effects but there were various paradoxes and inconsistencies. In an attempt to explain these a study was carried out on the coupled in-plane fracture mode induced by a nominal anti-plane (mode III loading applied to plates and discs weakened by a straight crack. The results derived from a large bulk of finite element models showed clearly that Bažant and Estenssoro’s analysis is incomplete. Some of the results of the study are summarised, together with some recent results for a disc under in-plane shear loading. On the basis of these results, and a mathematical argument, the results suggest that the stress field in the vicinity of a corner point is the sum of two singularities: one due to stress intensity factors and the other due to an as yet undetermined corner point singularity.

  1. Limit load solutions for piping branch junctions under out-of-plane bending

    International Nuclear Information System (INIS)

    Xu, Ying Hu; Lee, Kuk Hee; Jeon, Jun Young; Kim, Yun Jae

    2009-01-01

    Approximate plastic limit load solutions for piping branch junctions under out-of plane bending are obtained from detailed three-dimensional (3-D) FE limit analyses based on elastic-perfectly plastic materials with the small geometry change option. Two types of bending are considered; out-of-plane bending to the branch pipe and out-of-plane bending to the run pipe. Accordingly closed-form approximations are proposed for piping branch junctions under out-of-plane bending based on the FE results. The proposed solutions are valid for the branch-to-run pipe radius and thickness from 0.0 to 1.0, and the mean radius-to-thickness ratio of the run pipe from 2.0 to 20.0. And, this study provides effects of reinforcement area on plastic limit loads.

  2. Analytic study of plastic instabilities during tension or compression tests on a metallic plate bi-axially loaded in its plane: symmetric and antisymmetric modes with respect to the median plane

    International Nuclear Information System (INIS)

    Jouve, Dominique

    2012-01-01

    This report is a continuation of the thesis [23], devoted to the onset of necking plastic instabilities during tension tests on metallic plates bi-axially loaded in their plane. We are also interested here in compression tests, and in the development of antisymmetric defects with respect to the median plane of the plate. As in the thesis, we search for the dominant mode, i.e. the most unstable pair of wavelengths (λ1, λ2) in the loading plane. An approximate analytical formulation for the growth rate is proposed, especially for plane-strain tests in the absence of viscous effects, and for static tests in tension in the x1 and x2 loading directions. In that latter case, we retrieve published results [14][15]. For plane-strain tests, we show that infinitely dense networks of shear bands inclined at 45 deg. with respect to the loading direction instantaneously occur when heat softening prevails over work-hardening. (author)

  3. Wind loads on flat plate photovoltaic array fields (nonsteady winds)

    Science.gov (United States)

    Miller, R. D.; Zimmerman, D. K.

    1981-01-01

    Techniques to predict the dynamic response and the structural dynamic loads of flat plate photovoltaic arrays due to wind turbulence were analyzed. Guidelines for use in predicting the turbulent portion of the wind loading on future similar arrays are presented. The dynamic response and the loads dynamic magnification factor of the two array configurations are similar. The magnification factors at a mid chord and outer chord location on the array illustrated and at four points on the chord are shown. The wind tunnel test experimental rms pressure coefficient on which magnification factors are based is shown. It is found that the largest response and dynamic magnification factor occur at a mid chord location on an array and near the trailing edge. A technique employing these magnification factors and the wind tunnel test rms fluctuating pressure coefficients to calculate design pressure loads due to wind turbulence is presented.

  4. A comparison of economy and sagittal plane trunk movements among back-, back/front- and head-loading.

    Science.gov (United States)

    Hudson, Sean; Cooke, Carlton; Davies, Simeon; West, Sacha; Gamieldien, Raeeq; Low, Chris; Lloyd, Ray

    2018-05-14

    It has been suggested that freedom of movement in the trunk could influence load carriage economy. This study aimed to compare the economy and sagittal plane trunk movements associated with three load carriage methods that constrain posture differently. Eighteen females walked at 3 km.h -1 with loads of 0, 3, 6, 9, 12, 15 and 20 kg carried on the back, back/front and head. Load carriage economy was assessed using the Extra Load Index (ELI). Change in sagittal plane trunk forward lean and trunk angle excursion from unloaded to loaded walking were assessed. Results show no difference in economy between methods (p = 0.483), despite differences in the change in trunk forward lean (p = 0.001) and trunk angle excursion (p = 0.021) from unloaded to loaded walking. We conclude that economy is not different among the three methods of load carriage, despite significant differences in sagittal plane trunk movements.

  5. Plastic loads of pipe bends under combined pressure and out-of-plane bending

    International Nuclear Information System (INIS)

    Lee, Kuk Hee; Kim, Yun Jae; Park, Chi Yong; Lee, Sung Ho; Kim, Tae Ryong

    2007-01-01

    Based on three-Dimensional (3-D) FE limit analyses, this paper provides plastic limit and TES(Twice- Elastic-Slope) loads for pipe bends under combined pressure and out-of-plane bending. The plastic limit loads are determined from FE limit analyses based on elastic.perfectly-plastic materials using the small geometry change option, and the FE limit analyses using the large geometry change option provide TES plastic loads. A wide range of parameters related to the bend geometry is considered. Based on the FE results, closed-form approximations of plastic limit and TES plastic load solutions for pipe bends under out-of-plane bending are proposed

  6. Wind loads on flat plate photovoltaic array fields

    Science.gov (United States)

    Miller, R. D.; Zimmerman, D. K.

    1981-01-01

    The results of an experimental analysis (boundary layer wind tunnel test) of the aerodynamic forces resulting from winds acting on flat plate photovoltaic arrays are presented. Local pressure coefficient distributions and normal force coefficients on the arrays are shown and compared to theoretical results. Parameters that were varied when determining the aerodynamic forces included tilt angle, array separation, ground clearance, protective wind barriers, and the effect of the wind velocity profile. Recommended design wind forces and pressures are presented, which envelop the test results for winds perpendicular to the array's longitudinal axis. This wind direction produces the maximum wind loads on the arrays except at the array edge where oblique winds produce larger edge pressure loads. The arrays located at the outer boundary of an array field have a protective influence on the interior arrays of the field. A significant decrease of the array wind loads were recorded in the wind tunnel test on array panels located behind a fence and/or interior to the array field compared to the arrays on the boundary and unprotected from the wind. The magnitude of this decrease was the same whether caused by a fence or upwind arrays.

  7. Strain Measurement System Developed for Biaxially Loaded Cruciform Specimens

    Science.gov (United States)

    Krause, David L.

    2000-01-01

    A new extensometer system developed at the NASA Glenn Research Center at Lewis Field measures test area strains along two orthogonal axes in flat cruciform specimens. This system incorporates standard axial contact extensometers to provide a cost-effective high-precision instrument. The device was validated for use by extensive testing of a stainless steel specimen, with specimen temperatures ranging from room temperature to 1100 F. In-plane loading conditions included several static biaxial load ratios, plus cyclic loadings of various waveform shapes, frequencies, magnitudes, and durations. The extensometer system measurements were compared with strain gauge data at room temperature and with calculated strain values for elevated-temperature measurements. All testing was performed in house in Glenn's Benchmark Test Facility in-plane biaxial load frame.

  8. Differences in plantar loading between training shoes and racing flats at a self-selected running speed

    NARCIS (Netherlands)

    Wiegerinck, Johannes I.; Boyd, Jennifer; Yoder, Jordan C.; Abbey, Alicia N.; Nunley, James A.; Queen, Robin M.

    2009-01-01

    The purpose of this study was to examine the difference in plantar loading between two different running shoe types. We hypothesized that a higher maximum force, peak pressure, and contact area would exist beneath the entire foot while running in a racing flat when compared to a training shoe. 37

  9. An analysis of a pipe bend subjected to in-plane loads

    International Nuclear Information System (INIS)

    Hellen, T.K.

    1979-01-01

    This report describes a set of finite element analyses conducted on a pipe bend subjected to in-plane loads. The pipe is thin-walled, and two types of finite element, shells and solid bricks, are compared elastically. An alternative semi-analytical technique has also been used and experimental results are available, all of which show good correlative agreement. The use of suitable mesh refinement and order of numerical integration is examined. Finally, the solid elements are used to follow a loading sequence incorporating elasto-plastic behaviour as conducted by experiment. This work is an updated version of that used for the CEC benchmark calculations for the Fast Reactor Codes and Standards Working Group, Activity No 2, on Structural Analysis. (author)

  10. Determination of the critical plane and durability estimation for a multiaxial cyclic loading

    Science.gov (United States)

    Burago, N. G.; Nikitin, A. D.; Nikitin, I. S.; Yakushev, V. L.

    2018-03-01

    An analytical procedure is proposed to determine the critical plane orientation according to the Findley criterion for the multiaxial cyclic loading. The cases of in-phase and anti-phase cyclic loading are considered. Calculations of the stress state are carried out for the system of the gas turbine engine compressor disk and blades for flight loading cycles. The formulas obtained are used for estimations of the fatigue durability of this essential element of structure.

  11. Dynamic instability of imperfect laminated sandwich plates with in-plane partial edge load

    Directory of Open Access Journals (Sweden)

    Anupam Chakrabarti

    Full Text Available Dynamic instability of laminated sandwich plates having inter-laminar imperfections with in-plane partial edge loading is studied for the first time using an efficient finite element plate model. The plate model is based on a refined higher order shear deformation plate theory, where the transverse shear stresses are continuous at the layer interfaces with stress free conditions at plate top and bottom surfaces. A linear spring-layer model is used to model the inter-laminar imperfection by considering in-plane displacement jumps at the interfaces. Interestingly the plate model having all these refined features requires unknowns at the reference plane only. However, this theory requires C1 continuity of transverse displacement (w i.e., w and its derivatives should be continuous at the common edges between two elements, which is difficult to satisfy arbitrarily in any existing finite element. To deal with this, a new triangular element developed by the authors is used in the present paper.

  12. Closed-form plastic collapse loads of pipe bends under combined pressure and in-plane bending

    International Nuclear Information System (INIS)

    Oh, Chang Sik; Kim, Yun Jae

    2006-01-01

    Based on three-dimensional (3-D) FE limit analyses, this paper provides plastic limit, collapse and instability load solutions for pipe bends under combined pressure and in-plane bending. The plastic limit loads are determined from FE limit analyses based on elastic-perfectly plastic materials using the small geometry change option, and the FE limit analyses using the large geometry change option provide plastic collapse loads (using the twice-elastic-slope method) and instability loads. For the bending mode, both closing bending and opening bending are considered, and a wide range of parameters related to the bend geometry is considered. Based on the FE results, closed-form approximations of plastic limit and collapse load solutions for pipe bends under combined pressure and bending are proposed

  13. PHYSICAL FIELDS OF CIRCULAR CYLINDRICAL PIEZOCERAMIC RECEIVER IN PRESENCE OF A FLAT ACOUSTIC SOFT SCREEN

    Directory of Open Access Journals (Sweden)

    A. V. Derepa

    2017-01-01

    Full Text Available System in the form of a circular cylindrical piezoceramic transducer near a flat acoustic screen was analyzed. The aim of the work was to solve the problem of receiving plane sound waves by «cylindrical piezoceramic transducer – flat acoustically soft screen» system.Considered system was characterized by a violation of the radial symmetry of the radiation load of the transducer while maintaining the radial symmetry of the electric load. At the same time, the energy perceived by the system under consideration is distributed between all modes of oscillation of the transducer, while the conversion of mechanical energy into electric is realized only at zero mole of oscillations.Special attention was paid to the method of coupled fields in multiply connected domains using the imaging method. The design model of the «transducer–creen» system was formulated taking into account the interaction of acoustic, mechanical and electric fields in the process of energy conversion, the interaction of a cylindrical transducer with a flat screen and the interaction of a converter with elastic media outside and inside it. The physical fields of the system under consideration were determined by following solutions: the wave equation; equations of motion of thin piezoceramic cylindrical shells in displacements; equations of stimulated electrostatics for piezoceramics for given boundary conditions, conditions for coupling fields at interfaces and electrical conditions.A general conclusion was made concerning solving of an infinite system of linear algebraic equations with respect to the unknown coefficients of the expansion of the fields. As an example of the application of the obtained relations, a calculation was made and an analysis of the dependences of the electric fields of the system under consideration for various parameters of its construction on the direction of arrival on the plane wave system was conducted.

  14. Elastic stability of laminated, flat and curved, long rectangular plates subjected to combined inplane loads

    Science.gov (United States)

    Viswanathan, A. V.; Tamekuni, M.; Baker, L. L.

    1974-01-01

    A method is presented to predict theoretical buckling loads of long, rectangular flat and curved laminated plates with arbitrary orientation of orthotropic axes each lamina. The plate is subjected to combined inplane normal and shear loads. Arbitrary boundary conditions may be stipulated along the longitudinal sides of the plate. In the absence of inplane shear loads and extensional-shear coupling, the analysis is also applicable to finite length plates. Numerical results are presented for curved laminated composite plates with boundary conditions and subjected to various loadings. These results indicate some of the complexities involved in the numerical solution of the analysis for general laminates. The results also show that the reduced bending stiffness approximation when applied to buckling problems could lead to considerable error in some cases and therefore must be used with caution.

  15. The geometry of plane waves in spaces of constant curvature

    International Nuclear Information System (INIS)

    Tran, H.V.

    1988-01-01

    We examined the geometry of possible plane wave fronts in spaces of constant curvature for three cases in which the cosmological constant is positive, zero, or negative. The cosmological constant and a second-order invariant determined by a congruence of null rays were used in the investigation. We embedded the spaces under investigation in a flat five-dimensional space, and studied the null hyperplanes passing through the origin of the flat five-dimensional space. The embedded spaces are represented by quadrics in the five-dimensional space. The plane wave fronts are represented by the intersection of the quadric with null hyperplanes passing through the origin of the five-dimensional space. We concluded that in Minkowski spaces (zero cosmological constant), the plane-fronted waves will intersect if and only if the second-order invariant mentioned above is non-zero. For deSitter spaces (positive cosmological constant), plane-fronted waves will always intersect. For anti-deSitter spaces (negative cosmological constant), plane-fronted waves may but need not intersect

  16. Colliding almost-plane gravitational waves: Colliding plane waves and general properties of almost-plane-wave spacetimes

    International Nuclear Information System (INIS)

    Yurtsever, U.

    1988-01-01

    It is well known that when two precisely plane-symmetric gravitational waves propagating in an otherwise flat background collide, they focus each other so strongly as to produce a curvature singularity. This paper is the first of several devoted to almost-plane gravitational waves and their collisions. Such waves are more realistic than plane waves in having a finite but very large transverse size. In this paper we review some crucial features of the well-known exact solutions for colliding plane waves and we argue that one of these features, the breakdown of ''local inextendibility'' can be regarded as nongeneric. We then introduce a new framework for analyzing general colliding plane-wave spacetimes; we give an alternative proof of a theorem due to Tipler implying the existence of singularities in all generic colliding plane-wave solutions; and we discuss the fact that the recently constructed Chandrasekhar-Xanthopoulos colliding plane-wave solutions are not strictly plane symmetric and thus do not satisfy the conditions and the conclusion of Tipler's theorem

  17. Initiation of Failure for Masonry Subject to In-Plane Loads through Micromechanics

    Directory of Open Access Journals (Sweden)

    V. P. Berardi

    2016-01-01

    Full Text Available A micromechanical procedure is used in order to evaluate the initiation of damage and failure of masonry with in-plane loads. Masonry material is viewed as a composite with periodic microstructure and, therefore, a unit cell with suitable boundary conditions is assumed as a representative volume element of the masonry. The finite element method is used to determine the average stress on the unit cell corresponding to a given average strain prescribed on the unit cell. Finally, critical curves representing the initiation of damage and failure in both clay brick masonry and adobe masonry are provided.

  18. Steel plates and concrete filled composite shear walls related nuclear structural engineering: Experimental study for out-of-plane cyclic loading

    International Nuclear Information System (INIS)

    Li, Xiaohu; Li, Xiaojun

    2017-01-01

    Based on the program of CAP1400 nuclear structural engineering, the out-of-plane seismic behavior of steel plate and concrete infill composite shear walls (SCW) was investigated. 6 1/5 scaled specimens were conducted which consist of 5 SCW specimens and 1 reinforced concrete (RC) specimen. The specimens were tested under out-of-plane cyclic loading. The effect of the thickness of steel plate, vertical load and the strength grade of concrete on the out-of-plane seismic behavior of SCW were analyzed. The results show that the thickness of steel plate and vertical load have great influence on the ultimate bearing capacity and lateral stiffness, however, the influence of the strength grade of concrete was little within a certain range. SCW is presented to have a better ultimate capacity and lateral stiffness but have worse ductility in failure stage than that of RC. Based on the experiment, the cracking load of concrete infill SCW was analyzed in theory. The modified calculation formula of the cracking load was made, the calculated results showed good agreement with the test results. The formula can be used as the practical design for the design of cracking loads.

  19. Steel plates and concrete filled composite shear walls related nuclear structural engineering: Experimental study for out-of-plane cyclic loading

    Energy Technology Data Exchange (ETDEWEB)

    Li, Xiaohu [The College of Architecture and Civil Engineering, Beijing University of Technology, Beijing 100124 (China); Li, Xiaojun, E-mail: beerli@vip.sina.com [The College of Architecture and Civil Engineering, Beijing University of Technology, Beijing 100124 (China); Institute of Geophysics, China Earthquake Administration, Beijing 100081 (China)

    2017-04-15

    Based on the program of CAP1400 nuclear structural engineering, the out-of-plane seismic behavior of steel plate and concrete infill composite shear walls (SCW) was investigated. 6 1/5 scaled specimens were conducted which consist of 5 SCW specimens and 1 reinforced concrete (RC) specimen. The specimens were tested under out-of-plane cyclic loading. The effect of the thickness of steel plate, vertical load and the strength grade of concrete on the out-of-plane seismic behavior of SCW were analyzed. The results show that the thickness of steel plate and vertical load have great influence on the ultimate bearing capacity and lateral stiffness, however, the influence of the strength grade of concrete was little within a certain range. SCW is presented to have a better ultimate capacity and lateral stiffness but have worse ductility in failure stage than that of RC. Based on the experiment, the cracking load of concrete infill SCW was analyzed in theory. The modified calculation formula of the cracking load was made, the calculated results showed good agreement with the test results. The formula can be used as the practical design for the design of cracking loads.

  20. Numerical simulation of flat-tip micro-indentation of glassy polymers: influence of loading speed and thermodynamic state

    NARCIS (Netherlands)

    Breemen, van L.C.A.; Engels, T.A.P.; Pelletier, C.G.N.; Govaert, L.E.; Toonder, den J.M.J.

    2009-01-01

    Flat-tip micro-indentation tests were performed on quenched and annealed polymer glasses at various loading speeds. The results were analyzed using an elasto-viscoplastic constitutive model that captures the intrinsic deformation characteristics of a polymer glass: a strain-rate dependent yield

  1. Experimental Study on the Structural Behavior of HSC Slab under out of plane load

    International Nuclear Information System (INIS)

    Ham, K. W.; Lee, K. J.; Park, D. S.

    2009-01-01

    HSC(Half Steel plate Concrete) Slab is a kind of SC(Steel plate Concrete) structure, so it has a similar advantage of SC structures (short construction period, lower cost and good quality control compared to RC). To apply HSC to the slab of containment building of NPP, several test with different test condition (shear span ratio, shear bar, loading type) were conducted to verify structural behavior of HSC slab structure under out of plane loading

  2. Advanced bridge safety initiative, task 1 : development of improved analytical load rating procedures for flat-slab concrete bridges - a thesis and guidelines.

    Science.gov (United States)

    2010-01-01

    Current AASHTO provisions for the conventional load rating of flat slab bridges rely on the equivalent strip method : of analysis for determining live load effects, this is generally regarded as overly conservative by many professional : engineers. A...

  3. Generation of shape-invariant flat-top laser beams

    CSIR Research Space (South Africa)

    Ait-Ameur, K

    2015-02-01

    Full Text Available A great number of laser applications need in place of the usual Gaussian beam a flat-top intensity profile in the focal plane of a focusing lens. In general the transformation of the laser beam from the Gaussian to the flat-top shape is made by a...

  4. Ramifications of structural deformations on collapse loads of critically cracked pipe bends under in-plane bending and internal pressure

    Energy Technology Data Exchange (ETDEWEB)

    Sasidharan, Sumesh; Arunachalam, Veerappan; Subramaniam, Shanmugam [Dept. of Mechanical Engineering, National Institute of Technology, Tiruchirappalli (India)

    2017-02-15

    Finite-element analysis based on elastic-perfectly plastic material was conducted to examine the influence of structural deformations on collapse loads of circumferential through-wall critically cracked 90 .deg. pipe bends undergoing in-plane closing bending and internal pressure. The critical crack is defined for a through-wall circumferential crack at the extrados with a subtended angle below which there is no weakening effect on collapse moment of elbows subjected to in-plane closing bending. Elliptical and semioval cross sections were postulated at the bend regions and compared. Twice-elastic-slope method was utilized to obtain the collapse loads. Structural deformations, namely, ovality and thinning, were each varied from 0% to 20% in steps of 5% and the normalized internal pressure was varied from 0.2 to 0.6. Results indicate that elliptic cross sections were suitable for pipe ratios 5 and 10, whereas for pipe ratio 20, semioval cross sections gave satisfactory solutions. The effect of ovality on collapse loads is significant, although it cancelled out at a certain value of applied internal pressure. Thinning had a negligible effect on collapse loads of bends with crack geometries considered.

  5. Blackfolds, plane waves and minimal surfaces

    Science.gov (United States)

    Armas, Jay; Blau, Matthias

    2015-07-01

    Minimal surfaces in Euclidean space provide examples of possible non-compact horizon geometries and topologies in asymptotically flat space-time. On the other hand, the existence of limiting surfaces in the space-time provides a simple mechanism for making these configurations compact. Limiting surfaces appear naturally in a given space-time by making minimal surfaces rotate but they are also inherent to plane wave or de Sitter space-times in which case minimal surfaces can be static and compact. We use the blackfold approach in order to scan for possible black hole horizon geometries and topologies in asymptotically flat, plane wave and de Sitter space-times. In the process we uncover several new configurations, such as black helicoids and catenoids, some of which have an asymptotically flat counterpart. In particular, we find that the ultraspinning regime of singly-spinning Myers-Perry black holes, described in terms of the simplest minimal surface (the plane), can be obtained as a limit of a black helicoid, suggesting that these two families of black holes are connected. We also show that minimal surfaces embedded in spheres rather than Euclidean space can be used to construct static compact horizons in asymptotically de Sitter space-times.

  6. Blackfolds, plane waves and minimal surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Armas, Jay [Physique Théorique et Mathématique, Université Libre de Bruxelles and International Solvay Institutes, ULB-Campus Plaine CP231, B-1050 Brussels (Belgium); Albert Einstein Center for Fundamental Physics, University of Bern,Sidlerstrasse 5, 3012 Bern (Switzerland); Blau, Matthias [Albert Einstein Center for Fundamental Physics, University of Bern,Sidlerstrasse 5, 3012 Bern (Switzerland)

    2015-07-29

    Minimal surfaces in Euclidean space provide examples of possible non-compact horizon geometries and topologies in asymptotically flat space-time. On the other hand, the existence of limiting surfaces in the space-time provides a simple mechanism for making these configurations compact. Limiting surfaces appear naturally in a given space-time by making minimal surfaces rotate but they are also inherent to plane wave or de Sitter space-times in which case minimal surfaces can be static and compact. We use the blackfold approach in order to scan for possible black hole horizon geometries and topologies in asymptotically flat, plane wave and de Sitter space-times. In the process we uncover several new configurations, such as black helicoids and catenoids, some of which have an asymptotically flat counterpart. In particular, we find that the ultraspinning regime of singly-spinning Myers-Perry black holes, described in terms of the simplest minimal surface (the plane), can be obtained as a limit of a black helicoid, suggesting that these two families of black holes are connected. We also show that minimal surfaces embedded in spheres rather than Euclidean space can be used to construct static compact horizons in asymptotically de Sitter space-times.

  7. Experimental Studies on the Behavior of a Newly-Developed Type of Self-Insulating Concrete Masonry Shear Wall under in-Plane Cyclic Loading

    Directory of Open Access Journals (Sweden)

    Abu-Bakre Abdelmoneim Elamin Mohamad

    2017-04-01

    Full Text Available This study aimed to investigate the inelastic behavior of a newly-developed type of self-insulating concrete masonry shear wall (SCMSW under in-plane cyclic loading. The new masonry system was made from concrete blocks with special configurations to provide a stronger bond between units than ordinary concrete masonry units. A total of six fully-grouted SCMSWs were prepared with different heights (1.59 to 5.78 m and different vertical steel configurations. The developed masonry walls were tested under in-plane cyclic loading and different constant axial load ratios. In addition, the relationship between the amount of axial loading, the amount of the flexural reinforcement and the wall aspect ratios and the nonlinear hysteretic response of the SCMSW was evaluated. The results showed that the lateral load capacity of SCMSW increases with the amount of applied axial load and the amount of vertical reinforcement. However, the lateral load capacity decreases as the wall aspect ratio increases. The existence of the boundary elements at the SCMSW ends increases the ductility and the lateral load capacity. Generally, the SCMSW exhibited predominantly flexural behavior. These results agreed with those reported in previous research for walls constructed with ordinary units.

  8. The effect of cracks on the limit load of pipe bends under in-plane bending

    International Nuclear Information System (INIS)

    Griffiths, J.E.

    1976-06-01

    The limit analysis of the in-plane bending of curved tubes had received attention previously, but the effect of defects in the tube has not been considered. A lower bound has been established which, with no defects present, is in agreement with previous theoretical work. The method of linear programming allows cracks to be introduced into analysis, and results have been obtained for various geometries of defect. The results show that the presence of cracks in the pipe bend can have a marked effect on the theoretical limit load: a part-through crack penetrating only half the wall thickness will reduce the limit moment by up to 10%. The worst possible case of a through-crack may reduce the limit load by 60%. (author)

  9. The effect of cracks on the limit load of pipe bends under in-plane bending

    International Nuclear Information System (INIS)

    Griffiths, J.E.

    1976-06-01

    The limit analysis of the in-plane bending of curved tubes had received attention previously, but the effect of defects in the tube has not been considered. A lower bound is established, which, with no defects present, is in agreement with previous theoretical work. The method of linear programming allows cracks to be introduced into the analysis. and results have been obtained for various geometries of defect. The results show that the presence of cracks in the pipe bend can have a marked effect on the theoretical limit load: a part-through crack penetrating only half the wall thickness will reduce the limit moment by up to 10%. The worst possible case of a through-crack may reduce the limit load by 60% (author)

  10. Multilayered piezomagnetic/piezoelectric composites with periodic interfacial cracks subject to in-plane loading

    International Nuclear Information System (INIS)

    Tian, Wenxiang; Zhong, Zheng; Li, Yaochen

    2016-01-01

    A two-dimensional fracture problem of periodically distributed interfacial cracks in multilayered piezomagnetic/piezoelectric composites is studied under in-plane magnetic or electric loading. The magnetic permittivity of the piezoelectric material and the dielectric constant of the piezomagnetic material are considered. A system of singular integral equations of the second kind with a Cauchy kernel is obtained by means of Fourier transform and further solved by using Jacobi polynomials. The problem is solved in the real domain by constructing real fundamental solutions. The primary interfacial fracture mechanic parameters, such as the stress intensity factors (SIFs), the electric displacement intensity factors (EDIFs), the magnetic induction intensity factors (MIIFs) and the energy release rates (ERRs) are then obtained. It is found that a magnetic or electric loading normal to the crack surfaces can lead to a mixture of mode I and mode II type stress singularities at the crack tips. Numerical results show that increasing the thickness of the active layer will favor the crack initiation. Inversely, increasing the thickness of the passive layer will retard the crack initiation. Furthermore, the results indicate that the crack initiation can be inhibited by adjusting the direction of the applied magnetic or electric loading. (paper)

  11. Contact problem on indentation of an elastic half-plane with an inhomogeneous coating by a flat punch in the presence of tangential stresses on a surface

    Science.gov (United States)

    Volkov, Sergei S.; Vasiliev, Andrey S.; Aizikovich, Sergei M.; Sadyrin, Evgeniy V.

    2018-05-01

    Indentation of an elastic half-space with functionally graded coating by a rigid flat punch is studied. The half-plane is additionally subjected to distributed tangential stresses. Tangential stresses are represented in a form of Fourier series. The problem is reduced to the solution of two dual integral equations over even and odd functions describing distribution of unknown normal contact stresses. The solutions of these dual integral equations are constructed by the bilateral asymptotic method. Approximated analytical expressions for contact normal stresses are provided.

  12. Stress analyses of flat plates with attached nozzles. Vol. 2: Experimental stress analyses of a flat plate with one nozzle attached

    International Nuclear Information System (INIS)

    Battiste, R.L.; Peters, W.H.; Ranson, W.F.; Swinson, W.F.

    1975-07-01

    Vol. 1 of this report compares experimental results with theoretical stress distributions for a flat plate with one nozzle configuration and for a flat plate with two closely spaced nozzles attached. This volume contains the complete test results for a flat plate with one nozzle attached that was subjected to 1:1 and 1:2 biaxial planar loadings on the plate, to a thrust loading on the nozzle, and to a moment loading on the nozzle. The plate tested was 36 x 36 x 0.375 in., and the attached nozzle had an outer dia of 2.625 in. and a 0.250-in.-thick wall. The nozzle was located in the center of the plate and was considered to be free of weld distortions and irregularities in the junction area. (U.S.)

  13. Limit loads for pipe bends under combined pressure and in-plane bending based on finite element limit analysis

    International Nuclear Information System (INIS)

    Oh, Chang Sik; Kim, Yun Jae

    2006-01-01

    In the present paper, approximate plastic limit load solutions for pipe bends under combined internal pressure and bending are obtained from detailed three-dimensional (3-D) FE limit analyses based on elastic-perfectly plastic materials with the small geometry change option. The present FE results show that existing limit load solutions for pipe bends are lower bounds but can be very different from the present FE results in some cases, particularly for bending. Accordingly closed-form approximations are proposed for pipe bends under combined pressure and in-plane bending based on the present FE results. The proposed limit load solutions would be a basis of defective pipe bends and be useful to estimate non-linear fracture mechanics parameters based on the reference stress approach

  14. Steady state operation of a copper-water LHP with a flat-oval evaporator

    International Nuclear Information System (INIS)

    Becker, S.; Vershinin, S.; Sartre, V.; Laurien, E.; Bonjour, J.; Maydanik, Yu.F.

    2011-01-01

    In order to dissipate the heat generated by electronic boxes in avionic systems, a copper-water LHP with a flat-oval evaporator was fabricated and tested at steady state. The LHP consists of a flat shaped evaporator, 7 mm thick, including compensation chamber with attached heat exchanger. The condenser is cooled by forced convection of liquid. The variable parameters are the heat sink and ambient temperatures (20 and 55 o C), the orientation (-90 o to +90 o in two perpendicular planes) and the power input (0-100 W). Evaporator wall temperatures are higher when the evaporator is placed above the condenser. For heat sink and ambient temperature of 20 o C the evaporator wall temperature does not vary much with heat load for all measured elevations. But it fluctuates at heat sink and ambient temperature equal to 55 o C when the evaporator is placed below the condenser. The LHP total thermal resistance is governed by the condenser resistance. It decreases with increasing heat load, whatever the operating conditions, because the part of the condenser internal surface area used for condensation increases too. A minimum thermal resistance of 0.2 K/W was obtained. The maximum thermal resistance was 2.7 K/W.

  15. On-Line Flatness Measurement in the Steelmaking Industry

    Directory of Open Access Journals (Sweden)

    Rubén Usamentiaga

    2013-08-01

    Full Text Available Shape is a key characteristic to determine the quality of outgoing flat-rolled products in the steel industry. It is greatly influenced by flatness, a feature to describe how the surface of a rolled product approaches a plane. Flatness is of the utmost importance in steelmaking, since it is used by most downstream processes and customers for the acceptance or rejection of rolled products. Flatness sensors compute flatness measurements based on comparing the length of several longitudinal fibers of the surface of the product under inspection. Two main different approaches are commonly used. On the one hand, most mechanical sensors measure the tensile stress across the width of the rolled product, while manufacturing and estimating the fiber lengths from this stress. On the other hand, optical sensors measure the length of the fibers by means of light patterns projected onto the product surface. In this paper, we review the techniques and the main sensors used in the steelmaking industry to measure and quantify flatness defects in steel plates, sheets and strips. Most of these techniques and sensors can be used in other industries involving rolling mills or continuous production lines, such as aluminum, copper and paper, to name a few. Encompassed in the special issue, State-of-the-Art Sensors Technology in Spain 2013, this paper also reviews the most important flatness sensors designed and developed for the steelmaking industry in Spain.

  16. On-Line Flatness Measurement in the Steelmaking Industry

    Science.gov (United States)

    Molleda, Julio; Usamentiaga, Rubén; Garcίa, Daniel F.

    2013-01-01

    Shape is a key characteristic to determine the quality of outgoing flat-rolled products in the steel industry. It is greatly influenced by flatness, a feature to describe how the surface of a rolled product approaches a plane. Flatness is of the utmost importance in steelmaking, since it is used by most downstream processes and customers for the acceptance or rejection of rolled products. Flatness sensors compute flatness measurements based on comparing the length of several longitudinal fibers of the surface of the product under inspection. Two main different approaches are commonly used. On the one hand, most mechanical sensors measure the tensile stress across the width of the rolled product, while manufacturing and estimating the fiber lengths from this stress. On the other hand, optical sensors measure the length of the fibers by means of light patterns projected onto the product surface. In this paper, we review the techniques and the main sensors used in the steelmaking industry to measure and quantify flatness defects in steel plates, sheets and strips. Most of these techniques and sensors can be used in other industries involving rolling mills or continuous production lines, such as aluminum, copper and paper, to name a few. Encompassed in the special issue, State-of-the-Art Sensors Technology in Spain 2013, this paper also reviews the most important flatness sensors designed and developed for the steelmaking industry in Spain. PMID:23939583

  17. Forces and Moments on Flat Plates of Small Aspect Ratio with Application to PV Wind Loads and Small Wind Turbine Blades

    OpenAIRE

    Xavier Ortiz; David Rival; David Wood

    2015-01-01

    To improve knowledge of the wind loads on photovoltaic structures mounted on flat roofs at the high angles required in high latitudes, and to study starting flow on low aspect ratio wind turbine blades, a series of wind tunnel tests were undertaken. Thin flat plates of aspect ratios between 0.4 and 9.0 were mounted on a sensitive three-component instantaneous force and moment sensor. The Reynolds numbers varied from 6 × 10 4 to 2 × 10 5 . Measurements were made for angles of attack between 0°...

  18. Analysis of the Elastic Large Deflection Behavior for Metal Plates under Nonuniformly Distributed Lateral Pressure with In-Plane Loads

    Directory of Open Access Journals (Sweden)

    Jeom Kee Paik

    2012-01-01

    Full Text Available The Galerkin method is applied to analyze the elastic large deflection behavior of metal plates subject to a combination of in-plane loads such as biaxial loads, edge shear and biaxial inplane bending moments, and uniformly or nonuniformly distributed lateral pressure loads. The motive of the present study was initiated by the fact that metal plates of ships and ship-shaped offshore structures at sea are often subjected to non-uniformly distributed lateral pressure loads arising from cargo or water pressure, together with inplane axial loads or inplane bending moments, but the current practice of the maritime industry usually applies some simplified design methods assuming that the non-uniform pressure distribution in the plates can be replaced by an equivalence of uniform pressure distribution. Applied examples are presented, demonstrating that the current plate design methods of the maritime industry may be inappropriate when the non-uniformity of lateral pressure loads becomes more significant.

  19. Three-dimensional effects on cracked components under anti-plane loading

    Directory of Open Access Journals (Sweden)

    F. Berto

    2015-07-01

    Full Text Available The existence of three-dimensional effects at cracks has been known for many years, but understanding has been limited, and for some situations still is. Understanding improved when the existence of corner point singularities and their implications became known. Increasingly powerful computers made it possible to investigate three-dimensional effects numerically in detail. Despite increased understanding, threedimensional effects are sometimes ignored in situations where they may be important. The purpose of the present investigation is to study by means of accurate 3D finite element (FE models a coupled fracture mode generated by anti-plane loading of a straight through-the-thickness crack in linear elastic plates. An extended version of the present work has recently been published in the literature. The results obtained from the highly accurate finite element analyses have improved understanding of the behaviour of through cracked components under anti-plane loading. The influence of plate bending is increasingly important as the thickness decreases. It appears that a new field parameter, probably a singularity, is needed to describe the stresses at the free surfaces. Discussion on whether KIII tends to zero or infinity as a corner point is approached is futile because KIII is meaningless at a corner point. The intensity of the local stress and strain state through the thickness of the cracked components has been evaluated by using the strain energy density (SED averaged over a control volume embracing the crack tip. The SED has been considered as a parameter able to control fracture in some previous contributions and can easily take into account also coupled three-dimensional effects. Calculation of the SED shows that the position of the maximum SED is independent of plate thickness. Both for thin plates and for thick ones the maximum SED is close to the lateral surface, where the maximum intensity of the coupled mode II takes place.

  20. ANALYSIS OF A RIGID WALL IN AN ELASTIC WEIGHTY HALF-PLANE

    Directory of Open Access Journals (Sweden)

    K. V. Dmitrieva

    2016-01-01

    Full Text Available The analysis of stress-strain state of a rigid wall in an elastic weighty half-plane with a broken outline is carried out. To this end, the auxiliary problem of displacements definition in an elastic weighty quarter-plane was solved. Ritz method derived a formula to determine the displacements of elastic flat wedge boundaries in view of its own weight. On the basis of the received expressions the algorithm of displacements definition of a crack in an elastic weighty half-plane with a broken outline is developed. Analytical calculation of a rigid vertical wall located in an elastic weighty half-plane under the influence of a horizontal load, carried out by two methods: by Zhemochkin's method and finite difference method. In the problem statement an elastic half-plane is considered a model of the soil medium, therefore, only compressive normal stresses can arise on the connection of the wall with the elastic base. This assumption implies occurrence of discontinuities soil medium, and leads for the wall to an emergence of two dividing points of boundary conditions. The determination of the boundaries contact of the wall with the elastic half-plane, are not known in advance, is performed by iteratively way at each step set the position of dividing points of boundary conditions and the system of canonical equations of a corresponding method is written.  If tensile stresses appear in wall-base contact and/or there is overlap of the crack edges occurs, then proceeds to the next iteration. Analysis of the results shows that the bending moment and shear forces in sections of the rigid wall in a broken weighty half-plane differ slightly from the same diagrams constructed for a rigid wall in an elastic weightless half-plane. The verification of the results of analytical calculation with the results received by using the LIRA 9.6 that implements the finite element method is obtained. The calculation results for the rigid wall in an elastic weighty half-plane

  1. Plastic limit loads for cylindrical shell intersections under combined loading

    International Nuclear Information System (INIS)

    Skopinsky, V.N.; Berkov, N.A.; Vogov, R.A.

    2015-01-01

    In this research, applied methods of nonlinear analysis and results of determining the plastic limit loads for shell intersection configurations under combined internal pressure, in-plane moment and out-plane moment loadings are presented. The numerical analysis of shell intersections is performed using the finite element method, geometrically nonlinear shell theory in quadratic approximation and plasticity theory. For determining the load parameter of proportional combined loading, the developed maximum criterion of rate of change of relative plastic work is employed. The graphical results for model of cylindrical shell intersection under different two-parameter combined loadings (as generalized plastic limit load curves) and three-parameter combined loading (as generalized plastic limit load surface) are presented on the assumption that the internal pressure, in-plane moment and out-plane moment loads were applied in a proportional manner. - Highlights: • This paper presents nonlinear two-dimensional FE analysis for shell intersections. • Determining the plastic limit loads under combined loading is considered. • Developed maximum criterion of rate of change of relative plastic work is employed. • Plastic deformation mechanism in shell intersections is discussed. • Results for generalized plastic limit load curves of branch intersection are presented

  2. Polyurethane adhesives in flat roofs

    Directory of Open Access Journals (Sweden)

    Bogárová Markéta

    2017-01-01

    Full Text Available It is necessary to stabilize individual layers of flat roofs, mainly because of wind suction. Apart from anchoring and surcharge, these layers can be secured by bonding. At present gluing is an indispensable and widely used stabilization method. On our market we can found many types of adhesives, most widely used are based on polyurethane. This paper focuses on problematic about stabilization thermal insulation from expanded polystyrene to vapor barrier from bitumen. One of the main issues is to calculate the exact amount of adhesive, which is required to guarantee the resistance against wind suction. In this problematic we can not find help neither in technical data sheets provided by the manufactures. Some of these data sheets contain at least information about amount of adhesive depending on location in roof plane and building height, but they do not specify the strength of such connection. It was therefore resorted to select several representatives polyurethane adhesives and their subsequent testing on specimens simulating the flat roof segment. The paper described the test methodology and results for two types of polyurethane adhesives.

  3. Detection for flatness of large surface based on structured light

    Science.gov (United States)

    He, Wenyan; Cao, Xuedong; Long, Kuang; Peng, Zhang

    2016-09-01

    In order to get flatness of a large plane, this paper set up a measurement system, composed by Line Structured Light, imaging system, CCD, etc. Line Structured Light transmits parallel fringes at a proper angle onto the plane which is measured; the imaging system and CCD locate above the plane to catch the fringes. When the plane is perfect, CCD will catch straight fringes; however, the real plane is not perfect; according to the theory of projection, the fringes caught by CCD will be distorted by convex and concave. Extract the center of line fringes to obtain the distortion of the fringe, according to the functional relationship between the distortion of fringes and the height which is measured, then we will get flatness of the entire surface. Data from experiment approached the analysis of theory. In the simulation, the vertical resolution is 0.0075 mm per pixel when measuring a plane of 400mm×400mm, choosing the size of CCD 4096×4096, at the angle 85°. Helped by sub-pixel, the precision will get the level of submicron. There are two obvious advantages: method of surface sampling can increase the efficiency for auto-repairing of machines; considering the center of fringe is required mainly in this system, as a consequence, there is no serious demand for back light.

  4. Pilgrim dark energy with apparent and event horizons in non-flat universe

    International Nuclear Information System (INIS)

    Sharif, M.; Jawad, Abdul

    2013-01-01

    Pilgrim dark energy is an interesting proposal which is based on the conjecture that phantom-like dark energy with strong enough repulsive force can prevent the formation of a black hole. We investigate this conjecture by assuming the apparent and event horizons in non-flat universe and we develop different cosmological parameters. We construct the corresponding equation of state parameter, which indicates that its present values lie in the phantom era of the universe for different ranges of μ (pilgrim dark energy parameter) as well as ξ 2 (interacting parameter). It is interesting to mention here that the pilgrim dark energy with event horizon yields a phantom region for all cases of ξ 2 with μ Λ - ω' Λ plane and explore the thawing as well as freezing region and ΛCDM limit for these models. The statefinders plane is also constructed, which shows the correspondence with different models such as quintessence and phantom dark energy, ΛCDM and Chaplygin gas. Finally, we investigate the validity of the generalized second law of thermodynamics with event horizon in a flat as well as non-flat universe. (orig.)

  5. Identification of Critical Transmission Limits in Injection Impedance Plane

    DEFF Research Database (Denmark)

    Jóhannsson, Hjörtur; Østergaard, Jacob; Nielsen, Arne Hejde

    2012-01-01

    In this paper, equations are derived that describe the mapping of critical boundaries and characteristic lines from the three dimensionalPQV-surface into the two-dimensional injection impedance plane (load impedance plane for both positive and negativeresistance). The expressions derived....... The situational awareness method will bedescribed in a later paper, where this paper focuses on the derivations of some system characteristics in the injection (or load)impedance plane. The critical lines from the PQV-surface that are mapped into the impedance plane are the ones representing theconditions where...... the partial derivatives of the variables P,Q and V in respect to each other become zero. In addition to the mappingof the critical lines, some characteristic lines are mapped as well. These include the mapping of the lines of constant P,Q,Vand d from the PQV-surface into the impedance plane. All of the mapped...

  6. Signal Space Separation Method for a Biomagnetic Sensor Array Arranged on a Flat Plane for Magnetocardiographic Applications: A Computer Simulation Study

    Science.gov (United States)

    2018-01-01

    Although the signal space separation (SSS) method can successfully suppress interference/artifacts overlapped onto magnetoencephalography (MEG) signals, the method is considered inapplicable to data from nonhelmet-type sensor arrays, such as the flat sensor arrays typically used in magnetocardiographic (MCG) applications. This paper shows that the SSS method is still effective for data measured from a (nonhelmet-type) array of sensors arranged on a flat plane. By using computer simulations, it is shown that the optimum location of the origin can be determined by assessing the dependence of signal and noise gains of the SSS extractor on the origin location. The optimum values of the parameters LC and LD, which, respectively, indicate the truncation values of the multipole-order ℓ of the internal and external subspaces, are also determined by evaluating dependences of the signal, noise, and interference gains (i.e., the shield factor) on these parameters. The shield factor exceeds 104 for interferences originating from fairly distant sources. However, the shield factor drops to approximately 100 when calibration errors of 0.1% exist and to 30 when calibration errors of 1% exist. The shielding capability can be significantly improved using vector sensors, which measure the x, y, and z components of the magnetic field. With 1% calibration errors, a vector sensor array still maintains a shield factor of approximately 500. It is found that the SSS application to data from flat sensor arrays causes a distortion in the signal magnetic field, but it is shown that the distortion can be corrected by using an SSS-modified sensor lead field in the voxel space analysis. PMID:29854364

  7. Signal Space Separation Method for a Biomagnetic Sensor Array Arranged on a Flat Plane for Magnetocardiographic Applications: A Computer Simulation Study

    Directory of Open Access Journals (Sweden)

    Kensuke Sekihara

    2018-01-01

    Full Text Available Although the signal space separation (SSS method can successfully suppress interference/artifacts overlapped onto magnetoencephalography (MEG signals, the method is considered inapplicable to data from nonhelmet-type sensor arrays, such as the flat sensor arrays typically used in magnetocardiographic (MCG applications. This paper shows that the SSS method is still effective for data measured from a (nonhelmet-type array of sensors arranged on a flat plane. By using computer simulations, it is shown that the optimum location of the origin can be determined by assessing the dependence of signal and noise gains of the SSS extractor on the origin location. The optimum values of the parameters LC and LD, which, respectively, indicate the truncation values of the multipole-order ℓ of the internal and external subspaces, are also determined by evaluating dependences of the signal, noise, and interference gains (i.e., the shield factor on these parameters. The shield factor exceeds 104 for interferences originating from fairly distant sources. However, the shield factor drops to approximately 100 when calibration errors of 0.1% exist and to 30 when calibration errors of 1% exist. The shielding capability can be significantly improved using vector sensors, which measure the x, y, and z components of the magnetic field. With 1% calibration errors, a vector sensor array still maintains a shield factor of approximately 500. It is found that the SSS application to data from flat sensor arrays causes a distortion in the signal magnetic field, but it is shown that the distortion can be corrected by using an SSS-modified sensor lead field in the voxel space analysis.

  8. Extracting flat-field images from scene-based image sequences using phase correlation

    Energy Technology Data Exchange (ETDEWEB)

    Caron, James N., E-mail: Caron@RSImd.com [Research Support Instruments, 4325-B Forbes Boulevard, Lanham, Maryland 20706 (United States); Montes, Marcos J. [Naval Research Laboratory, Code 7231, 4555 Overlook Avenue, SW, Washington, DC 20375 (United States); Obermark, Jerome L. [Naval Research Laboratory, Code 8231, 4555 Overlook Avenue, SW, Washington, DC 20375 (United States)

    2016-06-15

    Flat-field image processing is an essential step in producing high-quality and radiometrically calibrated images. Flat-fielding corrects for variations in the gain of focal plane array electronics and unequal illumination from the system optics. Typically, a flat-field image is captured by imaging a radiometrically uniform surface. The flat-field image is normalized and removed from the images. There are circumstances, such as with remote sensing, where a flat-field image cannot be acquired in this manner. For these cases, we developed a phase-correlation method that allows the extraction of an effective flat-field image from a sequence of scene-based displaced images. The method uses sub-pixel phase correlation image registration to align the sequence to estimate the static scene. The scene is removed from sequence producing a sequence of misaligned flat-field images. An average flat-field image is derived from the realigned flat-field sequence.

  9. Broadband unidirectional cloaks based on flat metasurface focusing lenses

    International Nuclear Information System (INIS)

    Li, Yongfeng; Zhang, Jieqiu; Qu, Shaobo; Wang, Jiafu; Pang, Yongqiang; Xu, Zhuo; Zhang, Anxue

    2015-01-01

    Bandwidth extension and thickness reduction are now the two key issues of cloaks. In this paper, we propose to achieve broadband, thin uni-directional electromagnetic (EM) cloaks using metasurfaces. To this end, a wideband flat focusing lens is firstly devised based on high-efficiency transmissive metasurfaces. Due to the nearly dispersionless parabolic phase profile along the metasurface in the operating band, incident plane waves can be focused efficiently after passing through the metasurface. Broadband unidirectional EM cloaks were then designed by combining two identical flat lenses. Upon illumination, the incident plane waves are firstly focused by one lens and then are restored by the other lens, avoiding the cloaked region. Both simulation and experiment results verify the broadband unidirectional cloak. The broad bandwidth and small thickness of such cloaks have potential applications in achieving invisibility for electrically large objects. (paper)

  10. Broadband unidirectional cloaks based on flat metasurface focusing lenses

    Science.gov (United States)

    Li, Yongfeng; Zhang, Jieqiu; Qu, Shaobo; Wang, Jiafu; Pang, Yongqiang; Xu, Zhuo; Zhang, Anxue

    2015-08-01

    Bandwidth extension and thickness reduction are now the two key issues of cloaks. In this paper, we propose to achieve broadband, thin uni-directional electromagnetic (EM) cloaks using metasurfaces. To this end, a wideband flat focusing lens is firstly devised based on high-efficiency transmissive metasurfaces. Due to the nearly dispersionless parabolic phase profile along the metasurface in the operating band, incident plane waves can be focused efficiently after passing through the metasurface. Broadband unidirectional EM cloaks were then designed by combining two identical flat lenses. Upon illumination, the incident plane waves are firstly focused by one lens and then are restored by the other lens, avoiding the cloaked region. Both simulation and experiment results verify the broadband unidirectional cloak. The broad bandwidth and small thickness of such cloaks have potential applications in achieving invisibility for electrically large objects.

  11. Guide-Plane Retention in Designing Removable Partial Dentures.

    Science.gov (United States)

    Mothopi-Peri, Matshediso; Owen, C Peter

    To compare the influence of abutment teeth guide planes and guiding surfaces on retention of a removable partial denture (RPD). Extracted teeth embedded into a maxillary cast in the first premolar and second molar positions simulated two bounded saddles. Acrylic resin RPDs were made with no guide planes, then with guide planes, then with guiding surfaces added to directly contact the guide planes. The maximum loads on removal from the cast were recorded. There was a significant increase in retention force of 1.6 times when only guide planes were present and of 10.2 times when guiding surfaces intimately contacted the guide planes. The retention of acrylic resin RPDs can be substantially increased by making their guiding surfaces intimately contact the guide planes of the teeth.

  12. Influence of sweeping detonation-wave loading on damage evolution during spallation loading of tantalum in both a planar and curved geometry

    Energy Technology Data Exchange (ETDEWEB)

    Gray, George Thompson III [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Hull, Lawrence Mark [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Livescu, Veronica [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Faulkner, James [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Briggs, Matthew E. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Meyer, Ross Keith [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Andrews, Heather Lynn [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Hare, Steven John [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Jakulewicz, Micah Shawn [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Shinas, Michael A. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2015-03-30

    Widespread research over the past five decades has provided a wealth of experimental data and insight concerning the shock hardening, damage evolution, and the spallation response of materials subjected to square-topped shock-wave loading profiles. However, fewer quantitative studies have been conducted on the effect of direct, in-contact, high explosive (HE)-driven Taylor wave (unsupported shocks) loading on the shock hardening, damage evolution, or spallation response of materials. Systematic studies quantifying the effect of sweeping-detonation wave loading are yet sparser. In this study, the damage evolution and spallation response of Ta is shown to be critically dependent on the peak shock stress, the geometry of the sample (flat or curved plate geometry), and the shock obliquity during sweeping-detonation-wave shock loading. Sweepingwave loading in the flat-plate geometry is observed to: a) yield a lower spall strength than previously documented for 1-D supported-shock-wave loading, b) exhibit increased shock hardening as a function of increasing obliquity, and c) lead to an increased incidence of deformation twin formation with increasing shock obliquity. Sweeping-wave loading of a 10 cm radius curved Ta plate is observed to: a) lead to an increase in the shear stress as a function of increasing obliquity, b) display a more developed level of damage evolution, extensive voids and coalescence, and lower spall strength with obliquity in the curved plate than seen in the flat-plate sweeping-detonation wave loading for an equivalent HE loading, and c) no increased propensity for deformation twin formation with increasing obliquity as seen in the flat-plate geometry. The overall observations comparing and contrasting the flat versus curved sweeping-wave spall experiments with 1D loaded spallation behavior suggests a coupled influence of obliquity and geometry on dynamic shock-induced damage evolution and spall strength. Coupled experimental and modeling research

  13. Software for generation and analysis of photoelastic fringes in plates with a single hole subjected to in-plane loads

    International Nuclear Information System (INIS)

    Soares, W.A.; Andrade, A.H.P.

    1995-01-01

    A software package for generating and analyzing photoelastic images on infinite rectangular plates, subjected to in-plane loads, is being presented. It allows the user to generate photoelastic images as produced in a polariscope fed by monochromatic light. Both circular and plane polariscopes in conditions of dark or light field can be selected. Tools for obtaining light intensity distributions along horizontal and vertical lines and for extracting darkest regions of photoelastic fringes are also available. The extraction of such regions can be done by digital image processing (DIP). This process produces thin lines, from which main stresses and intensity factor used in the Fracture Mechanics can be obtained. The software was developed for running on DOS environment in Super VGA mode. The synthetic photoelastic images are generated in 64 gray levels. This software is a useful tool for teaching the fundamentals of photoelasticity and will help the researchers in the development of photoelastic experiments. (author). 6 fefs., 7 figs

  14. Flat tori in three-dimensional space and convex integration.

    Science.gov (United States)

    Borrelli, Vincent; Jabrane, Saïd; Lazarus, Francis; Thibert, Boris

    2012-05-08

    It is well-known that the curvature tensor is an isometric invariant of C(2) Riemannian manifolds. This invariant is at the origin of the rigidity observed in Riemannian geometry. In the mid 1950s, Nash amazed the world mathematical community by showing that this rigidity breaks down in regularity C(1). This unexpected flexibility has many paradoxical consequences, one of them is the existence of C(1) isometric embeddings of flat tori into Euclidean three-dimensional space. In the 1970s and 1980s, M. Gromov, revisiting Nash's results introduced convex integration theory offering a general framework to solve this type of geometric problems. In this research, we convert convex integration theory into an algorithm that produces isometric maps of flat tori. We provide an implementation of a convex integration process leading to images of an embedding of a flat torus. The resulting surface reveals a C(1) fractal structure: Although the tangent plane is defined everywhere, the normal vector exhibits a fractal behavior. Isometric embeddings of flat tori may thus appear as a geometric occurrence of a structure that is simultaneously C(1) and fractal. Beyond these results, our implementation demonstrates that convex integration, a theory still confined to specialists, can produce computationally tractable solutions of partial differential relations.

  15. On beam quality and flatness of radiotherapy megavoltage photon beams

    International Nuclear Information System (INIS)

    Hossain, Murshed; Rhoades, Jeffrey

    2016-01-01

    Ratio of percentage depth dose (PDD) at two depths, PDD at a depth of 10 cm (PDD 10 ), and beam flatness are monitored regularly for radiotherapy beams for quality assurance. The purpose of this study is to understand the effects of changes in one of these parameters on the other. Is it possible to monitor only the beam flatness and not PDD? The investigation has two components. Naturally occurring i.e., unintended changes in PDD ratio and in-plane flatness for 6 and 10 MV photon beams for one particular Siemens Artiste Linac are monitored for a period of about 4 years. Secondly, deliberate changes in the beam parameters are induced by changing the bending magnet current (BMI). Relationships between various beam parameters for unintended changes as well as deliberate changes are characterized. Long term unintentional changes of PDD ratio are found to have no systematic trend. The flatness in the in plane direction for 6 and 10 MV beams show slow increase of 0.43 and 0.75 % respectively in about 4 years while the changes in the PDD ratio show no such trend. Over 10 % changes in BMI are required to induce changes in the beam quality indices at 2 % level. PDD ratio for the 10 MV beam is found to be less sensitive, while the depth of maximum dose, d max , is more sensitive to the changes in BMI compared to the 6 MV beam. Tolerances are more stringent for PDD 10 than PDD ratio for the 10 MV beam. PDD ratio, PDD 10 , and flatness must be monitored independently. Furthermore, off axis ratio alone cannot be used to monitor flatness. The effect of beam quality change in the absolute dose is clinically insignificant.

  16. A comparison of plastic collapse and limit loads for single mitred pipe bends under in-plane bending

    International Nuclear Information System (INIS)

    Neilson, R.; Wood, J.; Hamilton, R.; Li, H.

    2010-01-01

    This paper presents a comparison of the plastic collapse loads from experimental in-plane bending tests on three 90 o single un-reinforced mitred pipe bends, with the results from various 3D solid finite element models. The bending load applied reduced the bend angle and in turn, the resulting cross-sectional ovalisation led to a recognised weakening mechanism. In addition, at maximum load there was a reversal in stiffness, characteristic of buckling. This reversal in stiffness was accompanied by significant ovalisation and plasticity at the mitre intersection. Both the weakening mechanism and the post-buckling behaviour are only observable by testing or by including large displacement effects in the plastic finite element solution. A small displacement limit solution with an elastic-perfectly plastic material model overestimated the collapse load by more than 40% and could not reproduce the buckling behaviour. The plastic collapse finite element solution, with large displacements, produced excellent agreement with the experiment. Sufficient experimental detail is presented for these results to be used as a benchmark for analysts in this area. Given the robustness of non-linear solutions in commercial finite element codes and the ready availability of computing resources, it is argued that pressure vessel code developers should now be recommending large displacement analysis as the default position for limit and plastic collapse analyses, rather than expecting engineers to anticipate weakening mechanisms and related non-linear phenomena.

  17. DLCQ and plane wave matrix Big Bang models

    Science.gov (United States)

    Blau, Matthias; O'Loughlin, Martin

    2008-09-01

    We study the generalisations of the Craps-Sethi-Verlinde matrix big bang model to curved, in particular plane wave, space-times, beginning with a careful discussion of the DLCQ procedure. Singular homogeneous plane waves are ideal toy-models of realistic space-time singularities since they have been shown to arise universally as their Penrose limits, and we emphasise the role played by the symmetries of these plane waves in implementing the flat space Seiberg-Sen DLCQ prescription for these curved backgrounds. We then analyse various aspects of the resulting matrix string Yang-Mills theories, such as the relation between strong coupling space-time singularities and world-sheet tachyonic mass terms. In order to have concrete examples at hand, in an appendix we determine and analyse the IIA singular homogeneous plane wave - null dilaton backgrounds.

  18. DLCQ and plane wave matrix Big Bang models

    International Nuclear Information System (INIS)

    Blau, Matthias; O'Loughlin, Martin

    2008-01-01

    We study the generalisations of the Craps-Sethi-Verlinde matrix big bang model to curved, in particular plane wave, space-times, beginning with a careful discussion of the DLCQ procedure. Singular homogeneous plane waves are ideal toy-models of realistic space-time singularities since they have been shown to arise universally as their Penrose limits, and we emphasise the role played by the symmetries of these plane waves in implementing the flat space Seiberg-Sen DLCQ prescription for these curved backgrounds. We then analyse various aspects of the resulting matrix string Yang-Mills theories, such as the relation between strong coupling space-time singularities and world-sheet tachyonic mass terms. In order to have concrete examples at hand, in an appendix we determine and analyse the IIA singular homogeneous plane wave - null dilaton backgrounds.

  19. A failure estimation method of steel pipe elbows under in-plane cyclic loading

    Energy Technology Data Exchange (ETDEWEB)

    Jeon, Bub Gyu; Kim, Sung Wan; Choi, Hyoung Suk; Park, Dong Uk [Seismic Simulation Tester Center, Pusan National University, Yangsan (Korea, Republic of); Kim, Nam Sik [Dept. of Civil and Environmental Engineering, Pusan National University, Busan (Korea, Republic of)

    2017-02-15

    The relative displacement of a piping system installed between isolated and nonisolated structures in a severe earthquake might be larger when without a seismic isolation system. As a result of the relative displacement, the seismic risks of some components in the building could increase. The possibility of an increase in seismic risks is especially high in the crossover piping system in the buildings. Previous studies found that an elbow which could be ruptured by low-cycle ratcheting fatigue is one of the weakest elements. Fatigue curves for elbows were suggested based on component tests. However, it is hard to find a quantitative evaluation of the ultimate state of piping elbows. Generally, the energy dissipation of a solid structure can be calculated from the relation between displacement and force. Therefore, in this study, the ultimate state of the pipe elbow, normally considered as failure of the pipe elbow, is defined as leakage under in-plane cyclic loading tests, and a failure estimation method is proposed using a damage index based on energy dissipation.

  20. A Failure Estimation Method of Steel Pipe Elbows under In-plane Cyclic Loading

    Directory of Open Access Journals (Sweden)

    Bub-Gyu Jeon

    2017-02-01

    Full Text Available The relative displacement of a piping system installed between isolated and nonisolated structures in a severe earthquake might be larger when without a seismic isolation system. As a result of the relative displacement, the seismic risks of some components in the building could increase. The possibility of an increase in seismic risks is especially high in the crossover piping system in the buildings. Previous studies found that an elbow which could be ruptured by low-cycle ratcheting fatigue is one of the weakest elements. Fatigue curves for elbows were suggested based on component tests. However, it is hard to find a quantitative evaluation of the ultimate state of piping elbows. Generally, the energy dissipation of a solid structure can be calculated from the relation between displacement and force. Therefore, in this study, the ultimate state of the pipe elbow, normally considered as failure of the pipe elbow, is defined as leakage under in-plane cyclic loading tests, and a failure estimation method is proposed using a damage index based on energy dissipation.

  1. A failure estimation method of steel pipe elbows under in-plane cyclic loading

    International Nuclear Information System (INIS)

    Jeon, Bub Gyu; Kim, Sung Wan; Choi, Hyoung Suk; Park, Dong Uk; Kim, Nam Sik

    2017-01-01

    The relative displacement of a piping system installed between isolated and nonisolated structures in a severe earthquake might be larger when without a seismic isolation system. As a result of the relative displacement, the seismic risks of some components in the building could increase. The possibility of an increase in seismic risks is especially high in the crossover piping system in the buildings. Previous studies found that an elbow which could be ruptured by low-cycle ratcheting fatigue is one of the weakest elements. Fatigue curves for elbows were suggested based on component tests. However, it is hard to find a quantitative evaluation of the ultimate state of piping elbows. Generally, the energy dissipation of a solid structure can be calculated from the relation between displacement and force. Therefore, in this study, the ultimate state of the pipe elbow, normally considered as failure of the pipe elbow, is defined as leakage under in-plane cyclic loading tests, and a failure estimation method is proposed using a damage index based on energy dissipation

  2. Level-Ground Walking for 3D Quasi-Passive Walker with Flat Feet - Lateral-plane Input using McKibben-Type Artificial Muscle -

    Directory of Open Access Journals (Sweden)

    Yamamoto Akihiro

    2016-01-01

    Full Text Available Currently, many bipedal robots have been proposed to realize the high energy efficiency walking. The passive dynamic walking does not require control input. Generally, a foot of passive dynamic walking robot is an arc foot. In this paper, it is intended to establish a control method and control mechanism to achieve energy efficient and stable gate. Therefore, we developed 3D quasi-passive walker with flat feet driven by an antagonistic pneumatic artificial muscle. An antagonistic mechanism is constituted by a pair of McKibben muscle. And an antagonistic pneumatic system is used as joint actuators of linkage mechanisms which control the torque, joint stiffness and position simultaneously. Finally, this report shows that the 3D quasi-passive walking in the level ground can realize by the swinging (simple input of the frontal direction, and the stride of the robot is proportional to lateral-plane input.

  3. Dynamic Interaction of Interfacial Point Source Loading and Cylinder in an Elastic Quarter with Anti-plane Shear

    Science.gov (United States)

    Chun, Gao; Hui, Qi; Nan, Pan Xiang; Bo, Zhao Yuan

    2017-07-01

    Theoretical steady state solution of a semi-circular cylinder impacted by an anti-plane point loading in a vertical bound of an elastic quarter is formulated in this paper through using image method and wave function expansion series. The elastic quarter is extended as a half space, and the semi-circular interfacial cylinder is extended as a circular cylinder. Displacement field is constructed as series of Fourier-Hankel and Fourier-Bessel wave functions. At last, circular boundary is expanded as Fourier series to determine coefficients of wave function. Numerical results show that material parameters have two widely divergent effects on the radial and circumferential dynamic stress distribution.

  4. Measurement of in-plane strain with dual beam spatial phase-shift digital shearography

    International Nuclear Information System (INIS)

    Xie, Xin; Chen, Xu; Li, Junrui; Yang, Lianxiang; Wang, Yonghong

    2015-01-01

    Full-field in-plane strain measurement under dynamic loading by digital shearography remains a big challenge in practice. A phase measurement for in-plane strain information within one time frame has to be achieved to solve this problem. This paper presents a dual beam spatial phase-shift digital shearography system with the capacity to measure phase distribution corresponding to in-plane strain information within a single time frame. Two laser beams with different wavelengths are symmetrically arranged to illuminate the object under test, and two cameras with corresponding filters, which enable simultaneous recording of two shearograms, are utilized for data acquisition. The phase information from the recorded shearograms, which corresponds to the in-plane strain, is evaluated by the spatial phase-shift method. The spatial phase-shift shearography system realizes a measurement of the in-plane strain through the introduction of the spatial phase-shift technique, using one frame after the loading and one frame before loading. This paper presents the theory of the spatial phase-shift digital shearography for in-plane strain measurement and its derivation, experimental results, and the technique’s potential. (paper)

  5. Flat Graphene-Enhanced Electron Transfer Involved in Redox Reactions.

    Science.gov (United States)

    Pan, Meilan; Zhang, Yanyang; Shan, Chao; Zhang, Xiaolin; Gao, Guandao; Pan, Bingcai

    2017-08-01

    Graphene is easily warped in the out-of-plane direction because of its high in-plane Young's modulus, and exploring the influence of wrinkled graphene on its properties is essential for the design of graphene-based materials for environmental applications. Herein, we prepared wrinkled graphene (WGN-1 and WGN-2) by thermal treatment and compared their electrochemical properties with those of flat graphene nanosheets (FGN). FGN exhibit activities that are much better than those of wrinkled graphene nanosheets (WGN), not only in the electrochemical oxidation of methylene blue (MB) but also in the electrochemical reduction of nitrobenzene (NB). Transformation ratios of MB and NB in FGN, WGN-1, and WGN-2 were 97.5, 80.1, and 57.9% and 94.6, 92.1, and 81.2%, respectively. Electrochemical impedance spectroscopy and the surface resistance of the graphene samples increased in the following order: FGN reaction charges transfer faster across the reaction interfaces and along the surface of FGN than that of WGN, and wrinkles restrict reaction charge transfer and reduce the reaction rates. This study reveals that the morphology of the graphene (flat or wrinkle) greatly affects redox reaction activities and may have important implications for the design of novel graphene-based nanostructures and for our understanding of graphene wrinkle-dependent redox reactions in environmental processes.

  6. Impact of Scheduling Flexibility on Demand Profile Flatness and User Inconvenience in Residential Smart Grid System

    Directory of Open Access Journals (Sweden)

    Naveed Ul Hassan

    2013-12-01

    Full Text Available The objective of this paper is to study the impact of scheduling flexibility on both demand profile flatness and user inconvenience in residential smart grid systems. Temporal variations in energy consumption by end users result in peaks and troughs in the aggregated demand profile. In a residential smart grid, some of these peaks and troughs can be eliminated through appropriate load balancing algorithms. However, load balancing requires user participation by allowing the grid to re-schedule some of their loads. In general, more scheduling flexibility can result in more demand profile flatness, however the resulting inconvenience to users would also increase. In this paper, our objective is to help the grid determine an appropriate amount of scheduling flexibility that it should demand from users, based on which, proper incentives can be designed. We consider three different types of scheduling flexibility (delay, advance scheduling and flexible re-scheduling in flexible loads and develop both optimal and sub-optimal scheduling algorithms. We discuss their implementation in centralized and distributed manners. We also identify the existence of a saturation point. Beyond this saturation point, any increase in scheduling flexibility does not significantly affect the flatness of the demand profile while user inconvenience continues to increase. Moreover, full participation of all the households is not required since increasing user participation only marginally increases demand profile flatness.

  7. Frictionless contact analysis of a functionally graded piezoelectric layered half-plane

    International Nuclear Information System (INIS)

    Ke Liaoliang; Yang Jie; Kitipornchai, Sritawat; Wang Yuesheng

    2008-01-01

    This paper investigates the frictionless contact problem of a layered half-plane made of functionally graded piezoelectric material (FGPM) in the plane strain state under the action of a rigid punch whose shape may be flat, triangular or cylindrical. It is assumed that the punch is a perfect electrical insulator with zero electric charge distribution. The electroelastic properties of the FGPM layer vary exponentially along the thickness direction. By using the Fourier integral transform technique, the problem is reduced to a Cauchy singular integral equation which is then numerically solved to determine the contact pressure, contact region, maximum indentation depth, normal stress, electrical potential and electric displacement fields. The stress intensity factor is also given to quantitatively characterize the singularity behavior of the contact pressure at the ends of a flat and triangular punch. Numerical results show that both the material property gradient of the FGPM layer and the punch geometry have a significant influence on the contact performance of the FGPM layered half-plane

  8. Experimental investigation of slamming impact acted on flat bottom bodies and cumulative damage

    Directory of Open Access Journals (Sweden)

    Hyunkyoung Shin

    2018-05-01

    Full Text Available Most offshore structures including offshore wind turbines, ships, etc. suffer from the impulsive pressure loads due to slamming phenomena in rough waves. The effects of elasticity & plasticity on such slamming loads are investigated through wet free drop test results of several steel unstiffened flat bottom bodies in the rectangular water tank. Also, their cumulative deformations by consecutively repetitive free drops from 1000 mm to 2000 mm in height are measured. Keywords: Slamming phenomena, Impulsive pressure load, Wet free drop test, Flat bottom body, Cumulative damage

  9. Crack opening displacement of circumferential through-wall cracked cylinders subjected to tension and in-plane bending loads

    International Nuclear Information System (INIS)

    Yoo, Yeon-Sik

    2003-01-01

    This study is concerned with crack opening displacements (CODs) of cylinders with a circumferential through-crack which is subjected to tension and in-plane bending loads. Most studies about crack opening behavior have performed on membrane and global bending stresses. Moreover, they cannot be valid for large-scale structures. For simplicity on evaluation for structural integrity, crack opening displacement has been often calculated by plate or pipe model considering almost stresses as a membrane component. However, it is important to investigate ones close to real crack opening behaviors under stress states for reliability on evaluation. The results must be directly related to evaluate leakage detection in reactor vessel and the primary piping system of FBR structures. From that purpose, a series of FEM analyses were performed, and hence the characteristics of COD under an in-plane bending stress were compared with those under a membrane stress. In addition, the plate model was indicated to be unreasonable for application on large-scale pipes by comparing the plate model with the pipe model. The results of this study are expected to be valid for leakage evaluation of high temperature structures especially. (author)

  10. In-Plane Anisotropy in Mechanical Behavior and Microstructural Evolution of Commercially Pure Titanium in Tensile and Cyclic Loading

    Science.gov (United States)

    Sinha, Subhasis; Gurao, N. P.

    2017-12-01

    Tensile and cyclic deformation behavior of three samples oriented at 0, 45, and 90 deg to the rolling direction in the rolling direction-transverse direction (RD-TD) plane of cold-rolled and annealed plate of commercially pure titanium is studied in the present investigation. The sample along the RD (R0) shows the highest strength but lowest ductility in monotonic tension. Although ultimate tensile strength (UTS) and elongation of samples along 45 and 90 deg to the RD (R45 and R90, respectively) are similar, the former has significantly higher yield strength than the latter, indicating different strain-hardening behavior. It is found that the R90 sample exhibits the highest monotonic ductility as well as fatigue life. This is attributed to a higher propensity for twinning in this sample with the presence of multiple variants and twin intersections. Cyclic life is also influenced by the high tendency for detwinning of contraction twins in this orientation. Elastoplastic self-consistent (EPSC) simulations of one-cycle tension-compression load reversal indicate that the activity of pyramidal 〈 c + a〉 slip and extension twinning oscillates during cyclic loading that builds up damage in a cumulative manner, leading to failure in fatigue.

  11. On the landau levels on the hyperbolic plane

    International Nuclear Information System (INIS)

    Comtet, A.

    1986-04-01

    The classical and quantum mechanics of a charged particle moving on the hyperbolic plane in a constant magnetic field is discussed. The underlying SL(2,R) symmetry leads to a general description of various possible trajectories. In contrast with the flat case, it is shown that closed orbits only arise for sufficiently strong fields. At the quantum level a group theoretical approach including both bound and continuum states is presented. It is shown that the semiclassical approximation leads to the exact bound state spectrum. The resolvent and its flat space limit are constructed in closed form

  12. Controlling the interparticle spacing of Au-salt loaded micelles and Au nanoparticles on flat surfaces.

    Science.gov (United States)

    Bansmann, J; Kielbassa, S; Hoster, H; Weigl, F; Boyen, H G; Wiedwald, U; Ziemann, P; Behm, R J

    2007-09-25

    The self-organization of diblock copolymers into micellar structures in an appropriate solvent allows the deposition of well ordered arrays of pure metal and alloy nanoparticles on flat surfaces with narrow distributions in particle size and interparticle spacing. Here we investigated the influence of the materials (substrate and polymer) and deposition parameters (temperature and emersion velocity) on the deposition of metal salt loaded micelles by dip-coating from solution and on the order and inter-particle spacing of the micellar deposits and thus of the metal nanoparticle arrays resulting after plasma removal of the polymer shell. For identical substrate and polymer, variation of the process parameters temperature and emersion velocity enables the controlled modification of the interparticle distance within a certain length regime. Moreover, also the degree of hexagonal order of the final array depends sensitively on these parameters.

  13. BUCLASP 2: A computer program for instability analysis of biaxially loaded composite stiffened panels and other structures

    Science.gov (United States)

    Tripp, L. L.; Tamekuni, M.; Viswanathan, A. V.

    1973-01-01

    The use of the computer program BUCLASP2 is described. The program is intended for linear instability analyses of structures such as unidirectionally stiffened panels. Any structure that has a constant cross section in one direction, that may be idealized as an assemblage of beam elements and laminated flat and curved plant strip elements can be analyzed. The loadings considered are combinations of axial compressive loads and in-plane transverse loads. The two parallel ends of the panel must be simply supported and arbitrary elastic boundary conditions may be imposed along any one or both external longitudinal side. This manual consists of instructions for use of the program with sample problems, including input and output information. The theoretical basis of BUCLASP2 and correlations of calculated results with known solutions, are presented.

  14. Theoretical and Experimental Investigation of the Nonlinear Behavior of an Electrostatically Actuated In-Plane MEMS Arch

    KAUST Repository

    Ramini, Abdallah; Al Hennawi, Qais M.; Younis, Mohammad I.

    2016-01-01

    We present theoretical and experimental investigation of the nonlinear behavior of a clamped-clamped in-plane MEMS arch when excited by a DC electrostatic load superimposed to an AC harmonic load. Experimentally, a case study of in-plane silicon

  15. Synthesis of Steered Flat-top Beam Pattern Using Evolutionary Algorithm

    Directory of Open Access Journals (Sweden)

    D. Mandal

    2016-12-01

    Full Text Available In this paper a pattern synthesis method based on Evolutionary Algorithm is presented. A Flat-top beam pattern has been generated from a concentric ring array of isotropic elements by finding out the optimum set of elements amplitudes and phases using Differential Evolution algorithm. The said pattern is generated in three predefined azimuth planes instate of a single phi plane and also verified for a range of azimuth plane for the same optimum excitations. The main beam is steered to an elevation angle of 30 degree with lower peak SLL and ripple. Dynamic range ratio (DRR is also being improved by eliminating the weakly excited array elements, which simplify the design complexity of feed networks.

  16. FEATURES OF ELECTROMECHANICAL ACOUSTIC ENERGY CONVERSION BY CYLINDRICAL PIEZOCERAMIC TRANSDUCERS WITH INTERNAL SCREENS IN COMPOSITION OF FLAT SYSTEMS

    Directory of Open Access Journals (Sweden)

    A. G. Leiko

    2018-01-01

    Full Text Available The problem of sound emission is considered by a system formed from cylindrical piezoceramic radiators with internal acoustically soft screens. Longitudinal axis of emitters lie in one plane. This system is characterized by the interaction of electric, mechanical and acoustic fields in the process of conversion electrical energy to acoustical energy and acoustic fields in the process of forming them in the environments. The purpose of the work is to determine the peculiarities of the electromechanical acoustic transformation of energy by cylindrical piezoceramic radiators with internal screens in the composition of flat systems, taking into account all types of interaction.The research was carried out by the method of bound fields in multiply connected domains with the use of addition theorems for the cylindrical wave functions. The physical fields arising from the emission of sound by such a system are determined by the joint solution of the system of differential equations: the wave equation; equations of motion of thin piezoceramic shells with circular polarization in displacements; the equations of forced electrostatics for piezoceramics at given boundary conditions, the conditions of conjugation of fields at the boundaries of the division of domains and electric conditions.The solution of the problem is reduced to the solution of an infinite system of linear algebraic equations with respect to unknown coefficients of field expansions.An analysis of the results of numerical calculations, performed on the basis of the obtained analytical relations, called to establish a number of features in the electromechanical acoustic transformation of energy by emitters in the composition of flat systems. They include: the role of acoustic interaction in the process of energy conversion; determination of the mechanism of quantitative assessment of the influence of interaction on these processes; the dependence of the degree of violation of the radial

  17. Movement Features Which Describe the Flat Bench Press

    Directory of Open Access Journals (Sweden)

    Król Henryk

    2017-06-01

    Full Text Available Introduction. In sport technique studies, motion features can be useful as they have a certain defined measure [1]. In this work, we examined the following three features: the structure of the movement (all the characteristics of the movement, the fluency of the movement, and the rhythm of the movement. The aim of the study was to determine the usefulness of the selected movement features in the evaluation of the flat bench press. The protocol of the study included a flat bench press with free weights and a “touch-and-go” technique. Material and methods. The study involved twenty healthy men; however, only two were selected for analysis. The first subject was a 25-year-old powerlifter (body mass = 95 kg; body height = 182 cm; 1-RM in flat bench press = 145 kg. The second one was a 25-year-old bodybuilder (body mass = 77 kg; body height = 175 cm; 1-RM in flat bench press = 100 kg. The subjects performed consecutive sets of a single repetition of flat bench pressing with an increasing load (70, 80, 90, and 100% 1-RM, with the anticipated maximum weight, until the completion of one repetition maximum. Multidimensional movement analysis was made with the measuring system Smart-E (BTS, Italy, which consisted of six infrared cameras (120 Hz and a wireless module to measure muscle bioelectric activity (Pocket EMG. Results. It was demonstrated that the internal structure of the bench press performed by the bodybuilder and the powerlifter was different. As the time-history of barbell kinematics (the acceleration-time curve showed, with increased loading of the barbell, the rhythm of the flat bench press changed, and the fluidity of the movement worsened.

  18. Simple quasi-analytical holonomic homogenization model for the non-linear analysis of in-plane loaded masonry panels: Part 1, meso-scale

    Science.gov (United States)

    Milani, G.; Bertolesi, E.

    2017-07-01

    A simple quasi analytical holonomic homogenization approach for the non-linear analysis of masonry walls in-plane loaded is presented. The elementary cell (REV) is discretized with 24 triangular elastic constant stress elements (bricks) and non-linear interfaces (mortar). A holonomic behavior with softening is assumed for mortar. It is shown how the mechanical problem in the unit cell is characterized by very few displacement variables and how homogenized stress-strain behavior can be evaluated semi-analytically.

  19. In-plane impulse response of a curved bar with varying cross-section

    International Nuclear Information System (INIS)

    Suzuki, Katsuyoshi; Kosawada, Tadashi; Takahashi, Shin; Miyashita, Yasushi.

    1984-01-01

    The vibration problem of a curved bar, of which the center line is represented with a plane curve, is important for the aseismatic design of the piping system and structures in chemical and nuclear plants. The dynamic response problem of an in-plane curved bar has not been sufficiently examined. In this study, the in-plane impact response of an in-plane curved bar having varying cross section when impact load acts in the direction of the center of curvature was analyzed. First, the Lagrangian of a curved bar with varying cross section when general exciting distributed load acts in the direction of the center of curvature along the center line was determined by the classic theory, and from its stationary condition, the equations of motion and boundary conditions were derived. Next, the equations of motion were analyzed by eigen-function development method. In the example of numerical calculation, the variation of displacement and bending moment in course of time when stepwise concentrated impact load acts on a both ends fixed symmetric semi-elliptic arc bar was determined. Besides, the change of response due to the change of cross section and the change of the point of impact load application was clarified. Displacement and bending moment varied at a certain period with static value at the center. (Kako, I.)

  20. MASTERING OF FLAT BAND PRODUCTION FOR HIGH-LOADED HYDRAULIC HOSES

    Directory of Open Access Journals (Sweden)

    A. V. Vedeneev

    2009-01-01

    Full Text Available The different methods at determination of tensile strength and cross-sectional area of flat wire are analyzed. Such technological parameters as drawing-out and widening at upset spreading are examined.

  1. The in-focus variable line spacing plane grating monochromator

    International Nuclear Information System (INIS)

    Reininger, R.

    2011-01-01

    The in-focus variable line spacing plane grating monochromator is based on only two plane optical elements, a variable line spacing plane grating and a plane pre-mirror that illuminates the grating at the angle of incidence that will focus the required photon energy. A high throughput beamline requires only a third optical element after the exit slit, an aberration corrected elliptical toroid. Since plane elements can be manufactured with the smallest figure errors, this monochromator design can achieve very high resolving power. Furthermore, this optical design can correct the deformations induced by the heat load on the optics along the dispersion plane. This should allow obtaining a resolution of 10 meV at 1 keV with currently achievable figure errors on plane optics. The position of the photon source when an insertion device center is not located at the center of the straight section, a common occurrence in new insertion device beamlines, is investigated.

  2. Flat H Redundant Frangible Joint Development

    Science.gov (United States)

    Brown, Chris

    2016-01-01

    Orion and Commercial Crew Program (CCP) Partners have chosen to use frangible joints for certain separation events. The joints currently available are zero failure tolerant and will be used in mission safety applications. The goal is to further develop a NASA designed redundant frangible joint that will lower flight risk and increase reliability. FY16 testing revealed a successful design in subscale straight test specimens that gained efficiency and supports Orion load requirements. Approach / Innovation A design constraint is that the redundant joint must fit within the current Orion architecture, without the need for additional vehicle modification. This limitation required a design that changed the orientation of the expanding tube assemblies (XTAs), by rotating them 90deg from the standard joint configuration. The change is not trivial and affects the fracture mechanism and structural load paths. To address these changes, the design incorporates cantilevered arms on the break plate. The shock transmission and expansion of the XTA applies force to these arms and creates a prying motion to push the plate walls outward to the point of structural failure at the notched section. The 2014 test design revealed that parts could slip during functioning wasting valuable energy needed to separate the structure with only a single XTA functioning. Dual XTA functioning fully separated the assembly showing a discrepancy can be backed up with redundancy. Work on other fully redundant systems outside NASA is limited to a few patents that have not been subjected to functionality testing Design changes to prevent unwanted slippage (with ICA funding in 2015) showed success with a single XTA. The main goal for FY 2016 was to send the new Flat H RFJ to WSTF where single XTA test failures occurred back in 2014. The plan was to gain efficiency in this design by separating the Flat H RFJ with thicker ligaments with dimensions baselined in 2014. Other modifications included geometry

  3. Reflections on a flat wall

    International Nuclear Information System (INIS)

    Stevenson, G.R.; Huhtinen, M.

    1995-01-01

    This paper describes an investigation into whether estimates of attenuation in the flat sidewalls of the tunnel for the MC main ring can be based on a simple point-source/line-of-sight model. Having seen the limitations of such a model, an alternative is proposed where the main radiation source is not the initial object struck by the beam but the plane source provided by the first interactions of secondaries from the target in the shield-wall. This is shown to have a closer relation to reality than the point-source/line-of-sight model. (author)

  4. Plane waves and spacelike infinity

    International Nuclear Information System (INIS)

    Marolf, Donald; Ross, Simon F

    2003-01-01

    In an earlier paper, we showed that the causal boundary of any homogeneous plane wave satisfying the null convergence condition consists of a single null curve. In Einstein-Hilbert gravity, this would include any homogeneous plane wave satisfying the weak null energy condition. For conformally flat plane waves such as the Penrose limit of AdS 5 x S 5 , all spacelike curves that reach infinity also end on this boundary and the completion is Hausdorff. However, the more generic case (including, e.g., the Penrose limits of AdS 4 x S 7 and AdS 7 x S 4 ) is more complicated. In one natural topology, not all spacelike curves have limit points in the causal completion, indicating the need to introduce additional points at 'spacelike infinity' - the endpoints of spacelike curves. We classify the distinct ways in which spacelike curves can approach infinity, finding a two-dimensional set of distinct limits. The dimensionality of the set of points at spacelike infinity is not, however, fixed from this argument. In an alternative topology, the causal completion is already compact, but the completion is non-Hausdorff

  5. Semi-analytical solution to plane strain loading of elastic layered ...

    Indian Academy of Sciences (India)

    - ... of LCs by flat ended cylindrical, quadrilateral and triangular punches and proposed a method .... in Eqs. (9–13) and applying the boundary and interface conditions Eqs. ...... Yue Z Q 1995 Indentation of a rigid plate on a multilayered solid.

  6. Solution of the ratchet-shakedown Bree problem with an extra orthogonal primary load

    International Nuclear Information System (INIS)

    Bradford, R.A.W.

    2015-01-01

    The complete shakedown and ratcheting solution is derived analytically for a flat plate subject to unequal biaxial primary membrane stresses and a cyclic secondary bending stress in one in-plane direction (x). The Tresca yield condition and elastic-perfectly plastic behaviour are assumed. It is shown that the results can be expressed in the form of a “universal” ratchet diagram applicable for all magnitudes of orthogonal load. For sufficiently large cyclic bending stresses, tensile ratcheting can occur in the x direction if the x direction primary membrane stress exceeds half that in the orthogonal direction. Conversely, for sufficiently large cyclic bending stresses ratcheting in the x direction will be compressive if the x direction primary membrane stress is less than half that in the orthogonal direction. When the x direction primary membrane stress is exactly half that in the orthogonal direction ratcheting cannot occur however large the cyclic secondary bending stress. - Highlights: • A complete shakedown and ratcheting solution is derived analytically. • The problem is Bree-like but with an extra orthogonal primary load. • The ratchet diagram can be expressed in a form applicable to any orthogonal load. • Tensile ratcheting can occur if the primary load exceeds half the orthogonal load. • Compressive ratcheting can occur for smaller primary loads

  7. Thermal conductivity of a graphite bipolar plate (BPP) and its thermal contact resistance with fuel cell gas diffusion layers: Effect of compression, PTFE, micro porous layer (MPL), BPP out-of-flatness and cyclic load

    Science.gov (United States)

    Sadeghifar, Hamidreza; Djilali, Ned; Bahrami, Majid

    2015-01-01

    This paper reports on measurements of thermal conductivity of a graphite bipolar plate (BPP) as a function of temperature and its thermal contact resistance (TCR) with treated and untreated gas diffusion layers (GDLs). The thermal conductivity of the BPP decreases with temperature and its thermal contact resistance with GDLs, which has been overlooked in the literature, is found to be dominant over a relatively wide range of compression. The effects of PTFE loading, micro porous layer (MPL), compression, and BPP out-of-flatness are also investigated experimentally. It is found that high PTFE loadings, MPL and even small BPP out-of-flatness increase the BPP-GDL thermal contact resistance dramatically. The paper also presents the effect of cyclic load on the total resistance of a GDL-BPP assembly, which sheds light on the behavior of these materials under operating conditions in polymer electrolyte membrane fuel cells.

  8. 49 CFR 174.61 - Transport vehicles and freight containers on flat cars.

    Science.gov (United States)

    2010-10-01

    ... cars. 174.61 Section 174.61 Transportation Other Regulations Relating to Transportation PIPELINE AND... containers on flat cars. (a) A transport vehicle, freight container, or package containing a hazardous... has fuel or any article classed as a hazardous material may be loaded and transported on a flat car as...

  9. String interactions in a plane-fronted parallel-wave spacetime

    International Nuclear Information System (INIS)

    Gopakumar, Rajesh

    2002-01-01

    We argue that string interactions in a plane-fronted parallel-wave spacetime are governed by an effective coupling g eff =g s (μp + α ' )f(μp + α ' ) where f(μp + α ' ) is proportional to the light-cone energy of the string states involved in the interaction. This simply follows from generalities of a matrix string description of this background. g eff nicely interpolates between the expected result (g s ) for flat space (small μp + α ' ) and a recently conjectured expression from the perturbative gauge theory side (large μp + α ' )

  10. A flat array large telescope concept for use on the moon, earth, and in space

    Science.gov (United States)

    Woodgate, Bruce E.

    1991-01-01

    An astronomical optical telescope concept is described which can provide very large collecting areas, of order 1000 sq m. This is an order of magnitude larger than the new generation of telescopes now being designed and built. Multiple gimballed flat mirrors direct the beams from a celestial source into a single telescope of the same aperture as each flat mirror. Multiple images of the same source are formed at the telescope focal plane. A beam combiner collects these images and superimposes them into a single image, onto a detector or spectrograph aperture. This telescope could be used on the earth, the moon, or in space.

  11. Outputs of shock-loaded small piezoceramic disks

    International Nuclear Information System (INIS)

    Charest, Jacques A.; Mace, Jonathan Lee

    2002-01-01

    Thin small-diameter polycrystalline Lead-Zirconate-Titanate piezoceramic disks were shock loaded in the D33 orientation over a stress range of 0.1-30 GPa. Their electrical outputs were discharged into 50 Ω viewing resistors, producing typically 0.15 μs quasi-triangular impulses ranging from 50-700 V. The gas gun flat plate impact approach and the high explosives (HE) plane wave lens approach were used to load piezoceramic elements. These piezoceramic elements consisted of 0.25 mm thick and 1.32 mm diameter disks that were ultrasonically machined from 25 mm piezocrystal disks of type APC 850, commercially produced by American Piezo Ceramic Inc. To facilitate our experiments, the piezoceramic elements were coaxially mounted at the tip of a 2.35 mm diameter brass tube, an arrangement that is commercialized by Dynasen, Inc. under the name Piezopin of model CA-1136. Simple calculations on the electrical outputs produced by these piezoceramic disks reveal electrical outputs in excess of 3000 W. Such short bursts of electrical energy have the potential for numerous applications where critical timing is needed to observe fast transient events

  12. In-plane and out-of-plane bending tests on carbon steel pipe bends

    International Nuclear Information System (INIS)

    Brouard, D.; Tremblais, A.; Vrillon, B.

    1979-01-01

    The objectives of these tests were to obtain experimental results on bends behaviour in elastic and plastic regime by in plane and out of plane bending. Results were used to improve the computer model, for large distorsion of bends, to be used in a simplified beam type computer code for piping calculations. Tests were made on type ANSI B 169 DN 5 bends in ASTM A 106 Grade B carbon steel. These tests made it possible to measure, for identical bends, in elastic regime, the flexibility factors and, in plastic regime, the total evolution in opening, in closing and out of plane. Flexibility factors of 180 0 bend without flanges are approximately the same in opening and in closing. The end effect due to flanges is not very significant, but it is important for 90 0 bends. In plastic regime, collapse loads or collapse moments of bends depends also of both the end effects and the angle bend. The end effects and the angle bend are more sensitive in opening than in closing. The interest of these tests is to procure some precise evolution curves of identical bends well characterized in geometry and metal strength, deflected in large distorsions. (orig./HP)

  13. Scattering on plane waves and the double copy

    Science.gov (United States)

    Adamo, Tim; Casali, Eduardo; Mason, Lionel; Nekovar, Stefan

    2018-01-01

    Perturbatively around flat space, the scattering amplitudes of gravity are related to those of Yang–Mills by colour-kinematic duality, under which gravitational amplitudes are obtained as the ‘double copy’ of the corresponding gauge theory amplitudes. We consider the question of how to extend this relationship to curved scattering backgrounds, focusing on certain ‘sandwich’ plane waves. We calculate the 3-point amplitudes on these backgrounds and find that a notion of double copy remains in the presence of background curvature: graviton amplitudes on a gravitational plane wave are the double copy of gluon amplitudes on a gauge field plane wave. This is non-trivial in that it requires a non-local replacement rule for the background fields and the momenta and polarization vectors of the fields scattering on the backgrounds. It must also account for new ‘tail’ terms arising from scattering off the background. These encode a memory effect in the scattering amplitudes, which naturally double copies as well.

  14. Failure analysis of edge flat-slab column connections with shear reinforcement

    OpenAIRE

    Bompa, Dan V.; Muttoni, Aurelio

    2013-01-01

    Flat-slab column connections are susceptible to brittle failure, which lead to the necessity of improving ductility and ultimate strength. In case of edge connections, the behaviour at ultimate state is highly influenced by nonsymmetrical distribution of stresses originated by a moment transfer between the slab and the column. The paper presents the test results of three full-scale reinforced concrete flat-slab edge connections with stud-rail shear reinforcement subjected to concentrated load...

  15. Deriving the effective focal plane for the CBM-RICH detector

    Energy Technology Data Exchange (ETDEWEB)

    Kres, Ievgenii [Wuppertal University (Germany); Collaboration: CBM-Collaboration

    2016-07-01

    The Compressed Baryonic Matter (CBM) experiment at the future FAIR complex will investigate the phase diagram of strongly interacting matter at high baryon density and moderate temperatures in A+A collisions from 2-11 AGeV (SIS100). A central component of the proposed detector setup is a ring imaging Cherenkov detector (RICH) using CO2 as radiator gas, and a focussing optic with a large spherical mirror. In the present design, the optimal focal plane is approximated using four individual, flat detection surfaces. However, the exact shape and position of the ideal focal plane is subject to further optimization due to effects from tilting the focussing mirror and from momentum dependant deflection of the electron tracks in the magnetic stray field. In this talk, we present a new approach to derive the effective 3-dimensional shape of the focal plane based on a set of Monte Carlo simulations, comparing the ring sharpness at each point of a preliminary focal plane as function of z-position.

  16. SAFE-PLANE, Stress Analysis of Planar Structure by Finite Elements Method

    International Nuclear Information System (INIS)

    Cornell, D.C.; Reich, Morris

    1967-01-01

    1 - Description of problem or function: SAFE-PLANE is applied to two- dimensional structures of arbitrary geometry under in-plane loads. Either plane stress or plane strain conditions may be imposed. Mechanical and thermal loads are permitted. 2 - Method of solution: The finite-element method is used to construct a mathematical model by assembling discrete elements. The total potential energy of the structure is determined and subsequently minimized by iteration on components of the displacement field until static equilibrium of the structure is attained. Strains and stresses are computed from the resulting displacements. 3 - Restrictions on the complexity of the problem: Multi-material structures with varying rigidities converge very slowly. Not valid for incompressible materials. Maximum number of nodal points = 675. Maximum number of elements = 1350

  17. Nonpolar a-plane GaN grown on r-plane sapphire using multilayer AlN buffer by metalorganic chemical vapor deposition

    International Nuclear Information System (INIS)

    Chiang, C.H.; Chen, K.M.; Wu, Y.H.; Yeh, Y.S.; Lee, W.I.; Chen, J.F.; Lin, K.L.; Hsiao, Y.L.; Huang, W.C.; Chang, E.Y.

    2011-01-01

    Mirror-like and pit-free non-polar a-plane (1 1 -2 0) GaN films are grown on r-plane (1 -1 0 2) sapphire substrates using metalorganic chemical vapor deposition (MOCVD) with multilayer high-low-high temperature AlN buffer layers. The buffer layer structure and film quality are essential to the growth of a flat, crack-free and pit-free a-plane GaN film. The multilayer AlN buffer structure includes a thin low-temperature-deposited AlN (LT-AlN) layer inserted into the high-temperature-deposited AlN (HT-AlN) layer. The results demonstrate that the multilayer AlN buffer structure can improve the surface morphology of the upper a-plane GaN film. The grown multilayer AlN buffer structure reduced the tensile stress on the AlN buffer layers and increased the compressive stress on the a-plane GaN film. The multilayer AlN buffer structure markedly improves the surface morphology of the a-plane GaN film, as revealed by scanning electron microscopy. The effects of various growth V/III ratios was investigated to obtain a-plane GaN films with better surface morphology. The mean roughness of the surface was 1.02 nm, as revealed by atomic force microscopy. Accordingly, the multilayer AlN buffer structure improves the surface morphology and facilitates the complete coalescence of the a-plane GaN layer.

  18. Properties of vitrified rocky flats TRUW with different waste loadings

    International Nuclear Information System (INIS)

    Eddy, T.L.; Sears, J.W.; Grandy, J.D.; Miley, D.V.; Erickson, A.W.; Farnsworth, R.N.; Larsen, E.D.

    1994-01-01

    Leach rates, phase structures, and mechanical properties of simulated Rocky Flats Plant 1st and 2nd slate sludge vitrified in an arc melter are described as a function of waste to soil fraction and method of devitrification to produce the glass-ceramic waste form. Volatile, hazardous, and transuranic (TRU) surrogate metals were added to assess dissolution effects. Zirconia and titania were also added to confirm their ability as transuranic-surrogate getters

  19. Elasticity Theory Solution of the Problem on Plane Bending of a Narrow Layered Cantilever Beam by Loads at Its Free End

    Science.gov (United States)

    Goryk, A. V.; Koval'chuk, S. B.

    2018-05-01

    An exact elasticity theory solution for the problem on plane bending of a narrow layered composite cantilever beam by tangential and normal loads distributed on its free end is presented. Components of the stress-strain state are found for the whole layers package by directly integrating differential equations of the plane elasticity theory problem by using an analytic representation of piecewise constant functions of the mechanical characteristics of layer materials. The continuous solution obtained is realized for a four-layer beam with account of kinematic boundary conditions simulating the rigid fixation of its one end. The solution obtained allows one to predict the strength and stiffness of composite cantilever beams and to construct applied analytical solutions for various problems on the elastic bending of layered beams.

  20. Progressive Abduction Loading Therapy with Horizontal-Plane Viscous Resistance Targeting Weakness and Flexion Synergy to Treat Upper Limb Function in Chronic Hemiparetic Stroke: A Randomized Clinical Trial.

    Science.gov (United States)

    Ellis, Michael D; Carmona, Carolina; Drogos, Justin; Dewald, Julius P A

    2018-01-01

    Progressive abduction loading therapy has emerged as a promising exercise therapy in stroke rehabilitation to systematically target the loss of independent joint control (flexion synergy) in individuals with chronic moderate/severe upper-extremity impairment. Preclinical investigations have identified abduction loading during reaching exercise as a key therapeutic factor to improve reaching function. An augmentative approach may be to additionally target weakness by incorporating resistance training to increase constitutive joint torques of reaching with the goal of improving reaching function by "overpowering" flexion synergy. The objective was, therefore, to determine the therapeutic effects of horizontal-plane viscous resistance in combination with progressive abduction loading therapy. 32 individuals with chronic hemiparetic stroke were randomly allocated to two groups. The two groups had equivalent baseline characteristics on all demographic and outcome metrics including age (59 ± 11 years), time poststroke (10.1 ± 7.6 years), and motor impairment (Fugl-Meyer, 26.7 ± 6.5 out of 66). Both groups received therapy three times/week for 8 weeks while the experimental group included additional horizontal-plane viscous resistance. Quantitative standardized progression of the intervention was achieved using a robotic device. The primary outcomes of reaching distance and velocity under maximum abduction loading and secondary outcomes of isometric strength and a clinical battery were measured at pre-, post-, and 3 months following therapy. There was no difference between groups on any outcome measure. However, for combined groups, there was a significant increase in reaching distance (13.2%, effect size; d  = 0.56) and velocity (13.6%, effect size; d  = 0.27) at posttesting that persisted for 3 months and also a significant increase in abduction, elbow extension, and external rotation strength at posttesting that did not persist 3

  1. Finite element analysis of fatigue crack closure under plane strain state

    International Nuclear Information System (INIS)

    Lee, Hak Joo; Kang, Jae Youn; Song, Ji Ho

    2004-01-01

    An elastic-plastic finite element analysis of fatigue crack closure is performed for plane strain conditions. The stabilization behavior of crack opening level and the effect of mesh size on the crack opening stress are investigated. In order to obtain a stabilized crack opening level for plane strain conditions, the crack must be advanced through approximately four times the initial monotonic plastic zone. The crack opening load tends to increase with the decrease of mesh size. The mesh size nearly equal to the theoretical plane strain cyclic plastic zone size may provide reasonable numerical results comparable with experimental crack opening data. The crack opening behavior is influenced by the crack growth increment and discontinuous opening behavior is observed. A procedure to predict the most appropriate mesh size for different stress ratio is suggested. Crack opening loads predicted by the FE analysis based on the procedure suggested resulted in good agreement with experimental ones within the error of 5 %. Effect of the distance behind the crack tip on the crack opening load determined by the ASTM compliance offset method based on the load-displacement relation and by the rotational offset method based on the load-differential displacement relation is investigated. Optimal gage location and method to determine the crack opening load is suggested

  2. Measurement and Analysis of Ultra-Thin Austenitic Stainless Steel Sheet under Biaxial Tensile Loading and In-Plane Reverse Loading

    Science.gov (United States)

    Murakoso, Satoko; Kuwabara, Toshihiko

    Biaxial tensile tests of austenitic stainless steel sheet (SUS304) 0.2mm thick have been carried out using cruciform specimens. The specimens are loaded under linear stress paths in a servo-controlled biaxial tensile testing machine. Plastic orthotropy remained coaxial with the principal stresses throughout every experiment. The successive contours of plastic work in biaxial stress space changed their shapes progressively, exemplifying differential work hardening. The geometry of the entire family of the work contours and the directions of plastic strain rates have been precisely measured and compared with those calculated using conventional yield functions. Yld2000-2d [Barlat, F., Brem, J.C., Yoon, J.W., Chung, K., Dick, R.E., Lege, D.J., Pourboghrat, F., Choi, S.H. and Chu, E., International Journal of Plasticity, Vol. 19, (2003), pp. 1297-1319.] with an exponent of 6 was capable of reproducing the general trends of the work contours and the directions of plastic strain rates with good accuracy. Furthermore, in order to quantitatively evaluate the Bauschinger effect of the test material, in-plane tension/compression tests are conducted. It was found that the non-dimensional (σ /σu) - Δɛ /(σu/ E) curves measured during unloading almost fall on a single curve and are not affected by the amount of pre-strain, where σ is the current stress during unloading, σu is the stress immediately before unloading, Δɛ (< 0) is the total strain increment during unloading.

  3. Lower bound plane stress element for modelling 3D structures

    DEFF Research Database (Denmark)

    Herfelt, Morten Andersen; Poulsen, Peter Noe; Hoang, Linh Cao

    2017-01-01

    In-plane action is often the primary load-carrying mechanism of reinforced concrete structures. The plate bending action will be secondary, and the behaviour of the structure can be modelled with a reasonable accuracy using a generalised three-dimensional plane stress element. In this paper...

  4. Reestablishment of the condyle-fossa and maxillomandibular relationships using a flat occlusal plane splint and implant-supported denture: case report with a 2-year follow-up

    OpenAIRE

    MICELLI, Ana Lígia Piza; BUARQUE E SILVA, Wilkens Aurélio; ANDRADE E SILVA, Frederico; BUARQUE E SILVA, Lígia Luzia; ALVES, Josué Nogueira; CASSELLI, Denise de Sa Maia

    2015-01-01

    When the shape, structure, and/or function of one of the parts of the components of the stomatognathic system change, structural and physiological changes also occur to absorb or compensate the consequent loads. Hence, an insightful rehabilitation of this type of patient involves essential procedures, such as: correct orientation of the occlusal plane, determination of the vertical dimension of occlusion, and a stable and healthy maxillomandibular relationship, since the nonobservance of thes...

  5. Fluorescence contribution to the reflection of a photonic flux on a flat medium

    International Nuclear Information System (INIS)

    Bourdier, A.; Frey, J.J.; Saillard, Y.; Burgan, J.R.; Desfono, J.F.

    1988-12-01

    The albedo of a flat plane due to the sole fluorescence mechanism is calculated. Numerical evaluations are given considering an incident blackbody flux on a cold material. An optimum blackbody temperature is thus defined for a given material. The importance of induced effects is underlined [fr

  6. Modelling out-of-plane and in-plane resonant modes of microplates in liquid media

    International Nuclear Information System (INIS)

    Ruiz-Díez, V; Hernando-García, J; Manzaneque, T; Sánchez-Rojas, J L; Kucera, M; Schmid, U

    2015-01-01

    In this article, the quality factor and the resonant frequency of different vibrating modes of microplates immersed in liquid are simulated by means of a finite element method (FEM) and compared with experimental data. For the in-plane modes, we studied the first extensional mode of mid-point supported microplates, which may be efficiently actuated by a thin piezoelectric film on top of the structure. A comparison of different approaches to account for the viscous loading in computationally efficient 2D finite element models is presented. As an alternative to the harmonic response, a novel multitone excitation in the fluid–structure interaction model allows for the calculation of the frequency response of the structure. For the out-of-plane modes, different modes were simulated and compared to analytical models to validate our approach. Our 2D FEM model yields more accurate estimations of the experimental resonance frequency and quality factors than the available analytical models. With the help of these tools, the applicability of the micro-resonators as viscosity and density sensors is discussed. (paper)

  7. Further study on the wheel-rail impact response induced by a single wheel flat: the coupling effect of strain rate and thermal stress

    Science.gov (United States)

    Jing, Lin; Han, Liangliang

    2017-12-01

    A comprehensive dynamic finite-element simulation method was proposed to study the wheel-rail impact response induced by a single wheel flat based on a 3-D rolling contact model, where the influences of the structural inertia, strain rate effect of wheel-rail materials and thermal stress due to the wheel-rail sliding friction were considered. Four different initial conditions (i.e. pure mechanical loading plus rate-independent, pure mechanical loading plus rate-dependent, thermo-mechanical loading plus rate-independent, and thermo-mechanical loading plus rate-dependent) were involved into explore the corresponding impact responses in term of the vertical impact force, von-Mises equivalent stress, equivalent plastic strain and shear stress. Influences of train speed, flat length and axle load on the flat-induced wheel-rail impact response were discussed, respectively. The results indicate that the maximum thermal stresses are occurred on the tread of the wheel and on the top surface of the middle rail; the strain rate hardening effect contributes to elevate the von-Mises equivalent stress and restrain the plastic deformation; and the initial thermal stress due to the sliding friction will aggravate the plastic deformation of wheel and rail. Besides, the wheel-rail impact responses (i.e. impact force, von-Mises equivalent stress, equivalent plastic strain, and XY shear stress) induced by a flat are sensitive to the train speed, flat length and axle load.

  8. The effect of load-controlled bending load on the failure pressure of wall-thinned pipe elbows

    International Nuclear Information System (INIS)

    Kim, Jin Weon; Yoon, Min Soo; Park, Chi Yong

    2013-01-01

    Highlights: • We evaluated bending load effect on the failure pressure of wall-thinned pipe elbows. • Burst tests were conducted on real-scale elbow specimens with local wall thinning. • The tests were performed under combined pressure and load-controlled bending. • Load-controlled bending reduced the failure pressure of wall-thinned elbows. • Bending load effect was significant for opening-mode and intrados wall-thinning case. - Abstract: In this research, burst tests were conducted on real-scale elbow specimens, each with an artificial local wall-thinning defect, under combined internal pressure and constant in-plane bending load, as well as under simple internal pressure, to evaluate the effect of load-controlled bending load on the failure pressure of locally wall-thinned pipe elbows. Ninety-degree, 65A Schedule 80 elbows, with wall-thinning defects in the intrados and extrados, were used as specimens. The bending loads were in-plane opening- and closing-mode bending, applied in load-control mode. The results clearly indicated that a load-controlled in-plane bending load reduced the failure pressure of wall-thinned pipe elbows, in contrast to observations previously made under displacement-controlled bending conditions. The effect of the bending load was more significant for opening-mode than for closing-mode bending, regardless of the wall-thinning location in the elbow. Also, the effect was greater when the wall-thinning defect was located in the intrados region of the elbow, rather than the extrados region. Existing models that have been proposed to evaluate the failure of wall-thinned elbows under simple internal pressure conservatively predicted the failure pressure of elbows subjected to a combined internal pressure and load-controlled bending load

  9. Homogenized rigid body and spring-mass (HRBSM) model for the pushover analysis of out-of-plane loaded unreinforced and FRP reinforced walls

    Science.gov (United States)

    Bertolesi, Elisa; Milani, Gabriele

    2017-07-01

    The present paper is devoted to the discussion of a series of unreinforced and FRP retrofitted panels analyzed adopting the Rigid Body and Spring-Mass (HRBSM) model developed by the authors. To this scope, a total of four out of plane loaded masonry walls tested up to failure are considered. At a structural level, the non-linear analyses are conducted replacing the homogenized orthotropic continuum with a rigid element and non-linear spring assemblage by means of which out of plane mechanisms are allowed. FRP retrofitting is modeled adopting two noded truss elements whose mechanical properties are selected in order to describe possible debonding phenomenon or tensile rupture of the strengthening. The outcome provided numerically are compared to the experimental results showing a satisfactory agreement in terms of global pressure-deflection curves and failure mechanisms.

  10. A Study of the Gamma-Ray Burst Fundamental Plane

    International Nuclear Information System (INIS)

    Dainotti, M. G.; Hernandez, X.; Postnikov, S.; Nagataki, S.; O’brien, P.; Willingale, R.; Striegel, S.

    2017-01-01

    Long gamma-ray bursts (GRBs) with a plateau phase in their X-ray afterglows obey a 3D relation, between the rest-frame time at the end of the plateau, T a , its corresponding X-ray luminosity, L a , and the peak luminosity in the prompt emission, L peak . This 3D relation identifies a GRB fundamental plane whose existence we here confirm. Here we include the most recent GRBs observed by Swift to define a “gold sample” (45 GRBs) and obtain an intrinsic scatter about the plane compatible within 1 σ with the previous result. We compare GRB categories, such as short GRBs with extended emission (SEE), X-ray flashes, GRBs associated with supernovae, a sample of only long-duration GRBs (132), selected from the total sample by excluding GRBs of the previous categories, and the gold sample, composed by GRBs with light curves with good data coverage and relatively flat plateaus. We find that the relation planes for each of these categories are not statistically different from the gold fundamental plane, with the exception of the SSE, which are hence identified as a physically distinct class. The gold fundamental plane has an intrinsic scatter smaller than any plane derived from the other sample categories. Thus, the distance of any particular GRB category from this plane becomes a key parameter. We computed the several category planes with T a as a dependent parameter obtaining for each category smaller intrinsic scatters (reaching a reduction of 24% for the long GRBs). The fundamental plane is independent from several prompt and afterglow parameters.

  11. Development and applications of a flat triangular element for thin laminated shells

    Science.gov (United States)

    Mohan, P.

    Finite element analysis of thin laminated shells using a three-noded flat triangular shell element is presented. The flat shell element is obtained by combining the Discrete Kirchhoff Theory (DKT) plate bending element and a membrane element similar to the Allman element, but derived from the Linear Strain Triangular (LST) element. The major drawback of the DKT plate bending element is that the transverse displacement is not explicitly defined within the interior of the element. In the present research, free vibration analysis is performed both by using a lumped mass matrix and a so called consistent mass matrix, obtained by borrowing shape functions from an existing element, in order to compare the performance of the two methods. Several numerical examples are solved to demonstrate the accuracy of the formulation for both small and large rotation analysis of laminated plates and shells. The results are compared with those available in the existing literature and those obtained using the commercial finite element package ABAQUS and are found to be in good agreement. The element is employed for two main applications involving large flexible structures. The first application is the control of thermal deformations of a spherical mirror segment, which is a segment of a multi-segmented primary mirror used in a space telescope. The feasibility of controlling the surface distortions of the mirror segment due to arbitrary thermal fields, using discrete and distributed actuators, is studied. The second application is the analysis of an inflatable structure, being considered by the US Army for housing vehicles and personnel. The updated Lagrangian formulation of the flat shell element has been developed primarily for the nonlinear analysis of the tent structure, since such a structure is expected to undergo large deformations and rotations under the action of environmental loads like the wind and snow loads. The follower effects of the pressure load have been included in the

  12. Response of a reactor building due to detonation of flat layered gas clouds

    International Nuclear Information System (INIS)

    Frik, G.

    1984-05-01

    The stress of the containment of a PWR plant of today is calculated for the loading of three detonating flat layered gas clouds. The dynamic response of the structure due to the blast wave is determined and comparisons are made with previous results of the detonating stochiometric gas cloud and with results of the individual task 11A (GRS). The calculations were realized with the method of modal superposition and linear elastic material laws. The stress conditions of the structure were comprehended by three loading cases of the flat, layered gas clouds. The first loading case B(a) leads to high stresses, which are not interpretable with a linear analysis. On the other hand, the loading case B(b) leads to stresses which are not much above and B(c) to stresses which are not much below the yield stress. It is demonstrated for a linear analysis, that the structure will not be injured by the detonation wave of case B(c). (orig./HP) [de

  13. 3D-Structured Stretchable Strain Sensors for Out-of-Plane Force Detection.

    Science.gov (United States)

    Liu, Zhiyuan; Qi, Dianpeng; Leow, Wan Ru; Yu, Jiancan; Xiloyannnis, Michele; Cappello, Leonardo; Liu, Yaqing; Zhu, Bowen; Jiang, Ying; Chen, Geng; Masia, Lorenzo; Liedberg, Bo; Chen, Xiaodong

    2018-05-17

    Stretchable strain sensors, as the soft mechanical interface, provide the key mechanical information of the systems for healthcare monitoring, rehabilitation assistance, soft exoskeletal devices, and soft robotics. Stretchable strain sensors based on 2D flat film have been widely developed to monitor the in-plane force applied within the plane where the sensor is placed. However, to comprehensively obtain the mechanical feedback, the capability to detect the out-of-plane force, caused by the interaction outside of the plane where the senor is located, is needed. Herein, a 3D-structured stretchable strain sensor is reported to monitor the out-of-plane force by employing 3D printing in conjunction with out-of-plane capillary force-assisted self-pinning of carbon nanotubes. The 3D-structured sensor possesses large stretchability, multistrain detection, and strain-direction recognition by one single sensor. It is demonstrated that out-of-plane forces induced by the air/fluid flow are reliably monitored and intricate flow details are clearly recorded. The development opens up for the exploration of next-generation 3D stretchable sensors for electronic skin and soft robotics. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Cavity resonance absorption in ultra-high bandwidth CRT deflection structure by a resistive load

    Science.gov (United States)

    Dunham, M.E.; Hudson, C.L.

    1993-05-11

    An improved ultra-high bandwidth helical coil deflection structure for a cathode ray tube is described comprising a first metal member having a bore therein, the metal walls of which form a first ground plane; a second metal member coaxially mounted in the bore of the first metal member and forming a second ground plane; a helical deflection coil coaxially mounted within the bore between the two ground planes; and a resistive load disposed in one end of the bore and electrically connected to the first and second ground planes, the resistive load having an impedance substantially equal to the characteristic impedance of the coaxial line formed by the two coaxial ground planes to inhibit cavity resonance in the structure within the ultra-high bandwidth of operation. Preferably, the resistive load comprises a carbon film on a surface of an end plug in one end of the bore.

  15. Modal space three-state feedback control for electro-hydraulic servo plane redundant driving mechanism with eccentric load decoupling.

    Science.gov (United States)

    Zhao, Jinsong; Wang, Zhipeng; Zhang, Chuanbi; Yang, Chifu; Bai, Wenjie; Zhao, Zining

    2018-06-01

    The shaking table based on electro-hydraulic servo parallel mechanism has the advantage of strong carrying capacity. However, the strong coupling caused by the eccentric load not only affects the degree of freedom space control precision, but also brings trouble to the system control. A novel decoupling control strategy is proposed, which is based on modal space to solve the coupling problem for parallel mechanism with eccentric load. The phenomenon of strong dynamic coupling among degree of freedom space is described by experiments, and its influence on control design is discussed. Considering the particularity of plane motion, the dynamic model is built by Lagrangian method to avoid complex calculations. The dynamic equations of the coupling physical space are transformed into the dynamic equations of the decoupling modal space by using the weighted orthogonality of the modal main mode with respect to mass matrix and stiffness matrix. In the modal space, the adjustments of the modal channels are independent of each other. Moreover, the paper discusses identical closed-loop dynamic characteristics of modal channels, which will realize decoupling for degree of freedom space, thus a modal space three-state feedback control is proposed to expand the frequency bandwidth of each modal channel for ensuring their near-identical responses in a larger frequency range. Experimental results show that the concept of modal space three-state feedback control proposed in this paper can effectively reduce the strong coupling problem of degree of freedom space channels, which verify the effectiveness of the proposed model space state feedback control strategy for improving the control performance of the electro-hydraulic servo plane redundant driving mechanism. Copyright © 2018 ISA. Published by Elsevier Ltd. All rights reserved.

  16. Owhership of flats

    OpenAIRE

    Přibil, Jan

    2012-01-01

    Ownership of Flats Summary In his diploma thesis "Ownership of Flats", the author focuses on applicable law of flat ownership in the Czech Republic, especially the Flat Ownership Act 72/1994 Sb. The author puts the contemporary regulation in historical context; he describes the theoretical principles underlining the current applicable law and defines in detail the basic legal terms used by the Flat Ownership Act. Original and derivative forms of flat ownership acquisition are explained, namel...

  17. Static in-plane shear behaviour of prefabricated wood-wool panel wallettes

    Science.gov (United States)

    Noh, M. S. Md; Ahmad, Z.; Ibrahim, A.; Kamarudin, A. F.; Mokhatar, S. N.

    2018-04-01

    The green construction material and technique are the current issue toward improving sustainability in the construction industry in Malaysia. The use of construction material that produced from renewable resources is a part of the effort for greening this industry. WWCP (Wood-wool cement panel) is a wood based product available to the construction industry to be used as a structural building wall element. This renewable material has the potential to replace the less eco-friendly materials such as bricks and other masonry element. However, the behaviour of wall subjected to the different load conditions is not well established and therefore, this study aimed to investigate the structural behaviour of the small scale wall (wallettes) subjected to in-plane lateral load. As a comparison, two types of fabrication technique of wallettes with dimension of 1200 mm × 1200 mm (± 30 mm) were considered. The conventional vertical stacking technique was denoted as W1 and new propose techniques (cross laminated) was denoted as W2. Three replicates of each type were fabricated and tested under in-plane lateral load until failure. The test results revealed that, the wallettes fabricated using the new fabrication technique significantly increased two times in load carrying capacity compared to wallettes with conventional technique.

  18. A Study of the Gamma-Ray Burst Fundamental Plane

    Energy Technology Data Exchange (ETDEWEB)

    Dainotti, M. G. [Department of Physics and Astronomy, Stanford University, Via Pueblo Mall 382, Stanford, CA 94305-4060 (United States); Hernandez, X. [Instituto de Astronomía, Universidad Nacional Autónoma de México, Ciudad de México 04510, México (Mexico); Postnikov, S. [The Center for Exploration of Energy and Matter, Indiana University, Bloomington, IN 47405 (United States); Nagataki, S. [RIKEN, Hirosawa, Wako Saitama (Japan); O’brien, P.; Willingale, R. [Department of Physics and Astronomy, University of Leicester, Road Leicester LE1 7RH (United Kingdom); Striegel, S., E-mail: mdainott@stanford.edu, E-mail: dainotti@oa.uj.edu.pl, E-mail: mariagiovannadainotti@yahoo.it, E-mail: xavier@astro.unam.mx, E-mail: postsergey@gmail.com, E-mail: shigehiro.nagataki@riken.jp, E-mail: zrw@le.ac.uk, E-mail: stephanie.striegel@sjsu.edu [Department of Physics and Astronomy, San Jose State University, One Washington Square, San Jose, CA 95192 (United States)

    2017-10-20

    Long gamma-ray bursts (GRBs) with a plateau phase in their X-ray afterglows obey a 3D relation, between the rest-frame time at the end of the plateau, T {sub a} , its corresponding X-ray luminosity, L {sub a} , and the peak luminosity in the prompt emission, L {sub peak}. This 3D relation identifies a GRB fundamental plane whose existence we here confirm. Here we include the most recent GRBs observed by Swift to define a “gold sample” (45 GRBs) and obtain an intrinsic scatter about the plane compatible within 1 σ with the previous result. We compare GRB categories, such as short GRBs with extended emission (SEE), X-ray flashes, GRBs associated with supernovae, a sample of only long-duration GRBs (132), selected from the total sample by excluding GRBs of the previous categories, and the gold sample, composed by GRBs with light curves with good data coverage and relatively flat plateaus. We find that the relation planes for each of these categories are not statistically different from the gold fundamental plane, with the exception of the SSE, which are hence identified as a physically distinct class. The gold fundamental plane has an intrinsic scatter smaller than any plane derived from the other sample categories. Thus, the distance of any particular GRB category from this plane becomes a key parameter. We computed the several category planes with T {sub a} as a dependent parameter obtaining for each category smaller intrinsic scatters (reaching a reduction of 24% for the long GRBs). The fundamental plane is independent from several prompt and afterglow parameters.

  19. Failure in lithium-ion batteries under transverse indentation loading

    Science.gov (United States)

    Chung, Seung Hyun; Tancogne-Dejean, Thomas; Zhu, Juner; Luo, Hailing; Wierzbicki, Tomasz

    2018-06-01

    Deformation and failure of constrained cells and modules in the battery pack under transverse loading is one of the most common conditions in batteries subjected to mechanical impacts. A combined experimental, numerical and analytical approach was undertaken to reveal the underlying mechanism and develop a new cell failure model. When large format pouch cells were subjected to local indentation all the way to failure, the post-mortem examination of the failure zones beneath the punches indicates a consistent slant fracture surface angle to the battery plane. This type of behavior can be described by the critical fracture plane theory in which fracture is caused by the shear stress modified by the normal stress. The Mohr-Coulomb fracture criterion is then postulated and it is shown how the two material constants can be determined from just one indentation test. The orientation of the fracture plane is invariant with respect to the type of loading and can be considered as a property of the cell stack. In addition, closed-form solutions are derived for the load-displacement relation for both plane-strain and axisymmetric cases. The results are in good agreement with the numerical simulation of the homogenized model and experimentally measured responses.

  20. Theoretical investigations into the influence of the position of a breaking line on the tensile failure of flat, round, bevel-edged tablets using finite element methodology (FEM) and its practical relevance for industrial tablet strength testing.

    Science.gov (United States)

    Podczeck, Fridrun; Newton, J Michael; Fromme, Paul

    2014-12-30

    Flat, round tablets may have a breaking ("score") line. Pharmacopoeial tablet breaking load tests are diametral in their design, and industrially used breaking load testers often have automatic tablet feeding systems, which position the tablets between the loading platens of the machine with the breaking lines in random orientation to the applied load. The aim of this work was to ascertain the influence of the position of the breaking line in a diametral compression test using finite element methodology (FEM) and to compare the theoretical results with practical findings using commercially produced bevel-edged, scored tablets. Breaking line test positions at an angle of 0°, 22.5°, 45°, 67.5° and 90° relative to the loading plane were studied. FEM results obtained for fully elastic and elasto-plastic tablets were fairly similar, but they highlighted large differences in stress distributions depending on the position of the breaking line. The stress values at failure were predicted to be similar for tablets tested at an angle of 45° or above, whereas at lower test angles the predicted breaking loads were up to three times larger. The stress distributions suggested that not all breaking line angles would result in clean tensile failure. Practical results, however, did not confirm the differences in the predicted breaking loads, but they confirmed differences in the way tablets broke. The results suggest that it is not advisable to convert breaking loads obtained on scored tablets into tablet tensile strength values, and comparisons between different tablets or batches should carefully consider the orientation of the breaking line with respect to the loading plane, as the failure mechanisms appear to vary. Copyright © 2014 Elsevier B.V. All rights reserved.

  1. Three-dimensional microstructural effects on plane strain ductile crack growth

    DEFF Research Database (Denmark)

    Tvergaard, Viggo; Needleman, Alan

    2006-01-01

    Ductile crack growth under mode 1, plane strain, small scale yielding conditions is analyzed. Overall plane strain loading is prescribed, but a full 3D analysis is carried out to model three dimensional microstructural effects. An elastic-viscoplastic constitutive relation for a porous plastic...

  2. Comparison of existing plastic collapse load solutions with experimental data for 90° elbows

    International Nuclear Information System (INIS)

    Han, Jae-Jun; Lee, Kuk-Hee; Kim, Nak-Hyun; Kim, Yun-Jae; Jerng, Dong Wook; Budden, Peter J.

    2012-01-01

    This paper compares published experimental plastic collapse loads for 90° elbows with existing closed-form solutions. A total of 46 experimental data are considered, covering pure bending (in-plane closing, in-plane opening and out-of-plane bending) and combined pressure and bending loads. The plastic collapse load solutions considered are from the ASME code, the Ductile Fracture handbook of Zahoor, by Chattopadhyay and co-workers, and by Y.-J. Kim and co-workers. Comparisons with the experimental data shows that the ASME code solution is conservative by a factor of 2 on collapse load for in-plane closing bending, 2.3 for out-of-plane bending, and 3 for in-plane opening bending. The solutions given by Kim and co-workers give the least conservative estimates of plastic collapse loads, although they provide slightly non-conservative estimates for some data. - Highlights: ► We compare published 46 experimental data of plastic collapse loads for 90° elbows with existing four different plastic collapse load solutions. ► We find that the ASME code solution is conservative by a factor of 2–3, depending on the loading mode. ► We find that the solutions given by Kim and co-workers give the least conservative estimates of plastic collapse loads.

  3. Mechanical Loading during Growth Is Associated with Plane-specific Differences in Vertebral Geometry: A Cross-sectional Analysis Comparing Artistic Gymnasts vs. Non-gymnasts

    Science.gov (United States)

    Dowthwaite, Jodi N.; Rosenbaum, Paula F.; Scerpella, Tamara A.

    2011-01-01

    Lumbar spine geometry, density and indices of bone strength were assessed relative to menarche status, using artistic gymnastics exposure during growth as a model of mechanical loading. Paired posteroanterior (PA) and supine lateral (LAT) DXA scans of L3 for 114 females (60 ex/gymnasts and 54 non-gymnasts) yielded output for comparison of paired (PALAT) versus standard PA and LAT outcomes. BMC, areal BMD, vertebral body dimensions, bone mineral apparent density (BMAD), axial compressive strength (IBS) and a fracture risk index were evaluated, modeling vertebral body geometry as an ellipsoid cylinder. Two-factor ANCOVA tested statistical effects of gymnastic exposure, menarche status and their interaction, adjusting for age and height as appropriate. Compared to non-gymnasts, ex/gymnasts exhibited greater PABMD, PABMC, PAWIDTH, PA CROSS-SECTIONAL AREA (CSA), PAVOLUME, LATBMD, LATBMAD, PALATCSA and PALATIBS (p<0.05). Non-gymnasts exhibited greater LATDEPTH/PAWIDTH, LATBMC/PABMC, LATVHEIGHT, LATAREA and Fracture Risk Index. Using ellipsoid vertebral geometric models, no significant differences were detected for PA or PALAT BMAD. In contrast, cuboid model results (Carter 1992) suggested erroneous ex/gymnast PABMAD advantages, resulting from invalid assumptions of proportional variation in linear skeletal dimensions. Gymnastic exposure was associated with shorter, wider vertebral bodies, yielding greater axial compressive strength and lower fracture risk, despite no BMAD advantage. Our results suggest the importance of plane-specific vertebral geometric adaptation to mechanical loading during growth. Paired scan output provides a more accurate assessment of this adaptation than PA or LAT plane scans alone. PMID:21839871

  4. Plutonium contamination in soils in open space and residential areas near Rocky Flats, Colorado

    International Nuclear Information System (INIS)

    Litaor, M.I.

    1999-01-01

    Spatial analysis of the 240 Pu: 239 Pu isotopic ratio of 42 soil samples collected around Rocky Flats Plant near Golden, Colorado, was conducted to assess the effect of Rocky Flats Plant activity on the soil environment. Two probability maps that quantified the uncertainty of the spatial distribution of plutonium isotopic ratios were constructed using the sequential Gaussian simulation technique (sGs). Assuming a plutonium isotopic ratio range of 0.152 ± 0.003 to 0.169 ± 0.009 is characteristic to global fallout in Colorado, and a mean value of 0.155 is representative for the Rocky Flats Plant area, the main findings of the current work were (1) the areas northwest and southwest of Rocky Flats Plant exhibited a plutonium ratio ≥0.155, this were minimally impacted by the plant activity; (2) he study area east of Rocky Flats Plant exhibited a plutonium isotopic ratio ≤0.155, which is a definitive indicator of Rocky Flats Plant-derived plutonium; and (3) inventory calculations across the study area exhibited large standard error of estimates. These errors were originated from the high variability in plutonium activity over a small sampling scale and the uncertainty in the global fallout isotopic ratio. Using the mean simulated estimates of plutonium isotopic ratio, coupled with plutonium activity measured at 11 soil pits and additional plutonium information published elsewhere, the plutonium loading on the open space and residential areas amounted to 111.2 GBq, with a standard error of estimate of 50.8 GBq

  5. The effect of bi-directional loading on fatigue assessment of pressurized piping elbows with local thinned areas

    International Nuclear Information System (INIS)

    Balan, C.; Redekop, D.

    2005-01-01

    An elastic-plastic finite element study is conducted to determine the effect of bi-directional loading on the fatigue characteristics of pressurized 90 deg. piping elbows with local thinned areas. The analysis is conducted on pressurized piping elbows considered previously in the literature, but analyzed only for in-plane loading. Considering also the out-of-plane loading the present analysis seeks to simulate simultaneous horizontal and vertical seismic actions. A validation study is first conducted in which the present results obtained for in-plane loading are compared with previous results. Comparisons are made for deformation patterns, hoop strain histories, and reaction forces. The relative in-plane to out-of-plane load intensities to be adopted for the combined loading case is determined next. Results considering bi-directional loadings are then found for the pressurized piping elbow for a total of 23 cases of local area thinning. Finally conclusions are drawn about the significance of considering the additional out-of-plane loading

  6. Effects of Knee Alignments and Toe Clip on Frontal Plane Knee Biomechanics in Cycling

    Science.gov (United States)

    Shen, Guangping; Zhang, Songning; Bennett, Hunter J.; Martin, James C.; Crouter, Scott E.; Fitzhugh, Eugene C.

    2018-01-01

    Effects of knee alignment on the internal knee abduction moment (KAM) in walking have been widely studied. The KAM is closely associated with the development of medial knee osteoarthritis. Despite the importance of knee alignment, no studies have explored its effects on knee frontal plane biomechanics during stationary cycling. The purpose of this study was to examine the effects of knee alignment and use of a toe clip on the knee frontal plane biomechanics during stationary cycling. A total of 32 participants (11 varus, 11 neutral, and 10 valgus alignment) performed five trials in each of six cycling conditions: pedaling at 80 rpm and 0.5 kg (40 Watts), 1.0 kg (78 Watts), and 1.5 kg (117 Watts) with and without a toe clip. A motion analysis system and a customized instrumented pedal were used to collect 3D kinematic and kinetic data. A 3 × 2 × 3 (group × toe clip × workload) mixed design ANOVA was used for statistical analysis (p < 0.05). There were two different knee frontal plane loading patterns, internal abduction and adduction moment, which were affected by knee alignment type. The knee adduction angle was 12.2° greater in the varus group compared to the valgus group (p = 0.001), yet no difference was found for KAM among groups. Wearing a toe clip increased the knee adduction angle by 0.95º (p = 0.005). The findings of this study indicate that stationary cycling may be a safe exercise prescription for people with knee malalignments. In addition, using a toe clip may not have any negative effects on knee joints during stationary cycling. Key points Varus or valgus alignment did not cause increased frontal-plane knee joint loading, suggesting stationary cycling is a safe exercise. This study supports that using a toe clip did not lead to abnormal frontal-plane knee loading during stationary cycling. Two different knee frontal plane loading patterns, knee abduction and adduction moment, were observed during stationary cycling, which are likely affected by

  7. Numerical simulation for the magnetic force distribution in electromagnetic forming of small size flat sheet

    Science.gov (United States)

    Chen, Xiaowei; Wang, Wenping; Wan, Min

    2013-12-01

    It is essential to calculate magnetic force in the process of studying electromagnetic flat sheet forming. Calculating magnetic force is the basis of analyzing the sheet deformation and optimizing technical parameters. Magnetic force distribution on the sheet can be obtained by numerical simulation of electromagnetic field. In contrast to other computing methods, the method of numerical simulation has some significant advantages, such as higher calculation accuracy, easier using and other advantages. In this paper, in order to study of magnetic force distribution on the small size flat sheet in electromagnetic forming when flat round spiral coil, flat rectangular spiral coil and uniform pressure coil are adopted, the 3D finite element models are established by software ANSYS/EMAG. The magnetic force distribution on the sheet are analyzed when the plane geometries of sheet are equal or less than the coil geometries under fixed discharge impulse. The results showed that when the physical dimensions of sheet are less than the corresponding dimensions of the coil, the variation of induced current channel width on the sheet will cause induced current crowding effect that seriously influence the magnetic force distribution, and the degree of inhomogeneity of magnetic force distribution is increase nearly linearly with the variation of induced current channel width; the small size uniform pressure coil will produce approximately uniform magnetic force distribution on the sheet, but the coil is easy to early failure; the desirable magnetic force distribution can be achieved when the unilateral placed flat rectangular spiral coil is adopted, and this program can be take as preferred one, because the longevity of flat rectangular spiral coil is longer than the working life of small size uniform pressure coil.

  8. Residual Strength of In-plane Loaded Debonded Sandwich Panels

    DEFF Research Database (Denmark)

    Berggreen, Carl Christian; Simonsen, Bo Cerup

    2005-01-01

    This paper presents a FEM based numerical model for prediction of residual strength of damaged sandwich panels. As demonstrated, the model can predict the maximum load carrying capacity of real-life panels with debond damages, where the failure is governed by face-sheet buckling followed by debond...

  9. Fatigue Crack Propagation Simulation in Plane Stress Constraint

    DEFF Research Database (Denmark)

    Ricardo, Luiz Carlos Hernandes; Spinelli, Dirceu

    2010-01-01

    Nowadays, structural and materials engineers develop structures and materials properties using finite element method. This work presents a numerical determination of fatigue crack opening and closure stress intensity factors of a C(T) specimen. Two different standard variable spectrum loadings...... are utilized, Mini-Falstaff and Wisper. The effects in two-dimensional (2D) small scale yielding models of fatigue crack growth were studied considering plane stress constraint....

  10. V-notch tip subjected to in-plane mixed mode loading: overview of recent results and possible future outcomes

    Directory of Open Access Journals (Sweden)

    F. Berto

    2017-07-01

    Full Text Available . The fictitious notch rounding concept is applied for the first time to V-notches with root hole subjected to in-plane mixed mode loading. Outof-bisector crack propagation is taken into account. The fictitious notch radius is determined as a function of the real notch radius, the microstructural support length and the notch opening angle. Due to the complexity of the problem, a method based on the simple normal stress failure criterion has been used. It is combined with the maximum tangential stress criterion to determine the crack propagation angle. An analytical method based on Neuber's procedure has been developed. The method provides the values of the microstructural support factor as a function of the mode ratio and the notch opening angle. The support factor is considered to be independent of the microstructural support length. Finally, for comparison, the support factor is determined on a purely numerical basis by iterative analysis of FE models.

  11. Flat slices in Minkowski space

    Science.gov (United States)

    Murchadha, Niall Ó.; Xie, Naqing

    2015-03-01

    Minkowski space, flat spacetime, with a distance measure in natural units of d{{s}2}=-d{{t}2}+d{{x}2}+d{{y}2}+d{{z}2}, or equivalently, with spacetime metric diag(-1, +1, +1, +1), is recognized as a fundamental arena for physics. The Poincaré group, the set of all rigid spacetime rotations and translations, is the symmetry group of Minkowski space. The action of this group preserves the form of the spacetime metric. Each t = constant slice of each preferred coordinate system is flat. We show that there are also nontrivial non-singular representations of Minkowski space with complete flat slices. If the embedding of the flat slices decays appropriately at infinity, the only flat slices are the standard ones. However, if we remove the decay condition, we find non-trivial flat slices with non-vanishing extrinsic curvature. We write out explicitly the coordinate transformation to a frame with such slices.

  12. Rigorous vector wave propagation for arbitrary flat media

    Science.gov (United States)

    Bos, Steven P.; Haffert, Sebastiaan Y.; Keller, Christoph U.

    2017-08-01

    Precise modelling of the (off-axis) point spread function (PSF) to identify geometrical and polarization aberrations is important for many optical systems. In order to characterise the PSF of the system in all Stokes parameters, an end-to-end simulation of the system has to be performed in which Maxwell's equations are rigorously solved. We present the first results of a python code that we are developing to perform multiscale end-to-end wave propagation simulations that include all relevant physics. Currently we can handle plane-parallel near- and far-field vector diffraction effects of propagating waves in homogeneous isotropic and anisotropic materials, refraction and reflection of flat parallel surfaces, interference effects in thin films and unpolarized light. We show that the code has a numerical precision on the order of 10-16 for non-absorbing isotropic and anisotropic materials. For absorbing materials the precision is on the order of 10-8. The capabilities of the code are demonstrated by simulating a converging beam reflecting from a flat aluminium mirror at normal incidence.

  13. Loading capacities and failure modes of various reinforced concrete slabs subjected to high-speed loading

    International Nuclear Information System (INIS)

    Saito, H.; Imamura, A.; Takeuchi, M.; Okamoto, S.; Kasai, Y.; Tsubota, H.; Yoshimura, M.

    1993-01-01

    The objective of this study was to clarify experimentally and analytically the loading capacities, deformations and failure modes of various types of reinforced concrete structures subjected to loads applied at various loading rates. Flat slabs, slabs with beams and cylindrical walls were tested under static, low-speed and high-speed loading. Analysis was applied to estimate the test results by the finite element method using a layered shell element. The analysis closely simulated the experimental results until punching shear failure occurred. (author)

  14. Analysis of an adhesively bonded single lap joint subjected to eccentric loading

    DEFF Research Database (Denmark)

    Anyfantis, Konstantinos; Tsouvalis, N. G.

    2013-01-01

    is benchmarking of computational tools. The test is based on a Single Lap Joint subjected to Eccentric Loading (SLJ-EL). The basic concept that lies behind this configuration is that the applied in-plane tensile load leads the adhesive layer to develop normal stresses, in-plane and out-of-plane shear stresses...

  15. Theoretical and Experimental Investigation of the Nonlinear Behavior of an Electrostatically Actuated In-Plane MEMS Arch

    KAUST Repository

    Ramini, Abdallah

    2016-05-02

    We present theoretical and experimental investigation of the nonlinear behavior of a clamped-clamped in-plane MEMS arch when excited by a DC electrostatic load superimposed to an AC harmonic load. Experimentally, a case study of in-plane silicon micromachined arch is examined and its mechanical behavior is measured using optical techniques. An algorithm is developed to extract the various parameters, such as the induced axial force and the initial rise, needed to model the behavior of the arch. A softening spring behavior is observed when the excitation is close to the first resonance frequency due to the quadratic nonlinearity coming from the arch geometry and the electrostatic force. Also, a hardening spring behavior is observed when the excitation is close to the third (second symmetric) resonance frequency due to the cubic nonlinearity coming from mid-plane stretching. Dynamic snap-through behavior is also reported for larger range of electric loads. Theoretically, a multi-mode Galerkin reduced order model is utilized to simulate the arch behavior. General agreement is reported among the theoretical and experimental data.

  16. Three gradients and the perception of flat and curved surfaces.

    Science.gov (United States)

    Cutting, J E; Millard, R T

    1984-06-01

    Researchers of visual perception have long been interested in the perceived slant of a surface and in the gradients that purportedly specify it. Slant is the angle between the line of sight and the tangent to the planar surface at any point, also called the surface normal. Gradients are the sources of information that grade, or change, with visual angle as one looks from one's feet upward to the horizon. The present article explores three gradients--perspective, compression, and density--and the phenomenal impression of flat and curved surfaces. The perspective gradient is measured at right angles to the axis of tilt at any point in the optic array; that is, when looking down a hallway at the tiles of a floor receding in the distance, perspective is measured by the x-axis width of each tile projected on the image plane orthogonal to the line of sight. The compression gradient is the ratio of y/x axis measures on the projected plane. The density gradient is measured by the number of tiles per unit solid visual angle. For flat surfaces and many others, perspective and compression gradients decrease with distance, and the density gradient increases. We discuss the manner in which these gradients change for various types of surfaces. Each gradient is founded on a different assumption about textures on the surfaces around us. In Experiment 1, viewers assessed the three-dimensional character of projections of flat and curved surfaces receding in the distance. They made pairwise judgments of preference and of dissimilarity among eight stimuli in each of four sets. The presence of each gradient was manipulated orthogonally such that each stimulus had zero, one, two, or three gradients appropriate for either a flat surface or a curved surface. Judgments were made were made for surfaces with both regularly shaped and irregularly shaped textures scattered on them. All viewer assessment were then scaled in one dimension. Multiple correlation and regression on the scale values

  17. Simple quasi-analytical holonomic homogenization model for the non-linear analysis of in-plane loaded masonry panels: Part 2, structural implementation and validation

    Science.gov (United States)

    Milani, G.; Bertolesi, E.

    2017-07-01

    The simple quasi analytical holonomic homogenization approach for the non-linear analysis of in-plane loaded masonry presented in Part 1 is here implemented at a structural leveland validated. For such implementation, a Rigid Body and Spring Mass model (RBSM) is adopted, relying into a numerical modelling constituted by rigid elements interconnected by homogenized inelastic normal and shear springs placed at the interfaces between adjoining elements. Such approach is also known as HRBSM. The inherit advantage is that it is not necessary to solve a homogenization problem at each load step in each Gauss point, and a direct implementation into a commercial software by means of an external user supplied subroutine is straightforward. In order to have an insight into the capabilities of the present approach to reasonably reproduce masonry behavior at a structural level, non-linear static analyses are conducted on a shear wall, for which experimental and numerical data are available in the technical literature. Quite accurate results are obtained with a very limited computational effort.

  18. Bypass line assisted start-up of a loop heat pipe with a flat evaporator

    International Nuclear Information System (INIS)

    Boo, Joon Hong; Jung, Eui Guk

    2009-01-01

    Loop heat pipes often experience start-up problems especially under low thermal loads. A bypass line was installed between the evaporator and the liquid reservoir to alleviate the difficulties associated with start-up of a loop heat pipe with flat evaporator. The evaporator and condenser had dimensions of 40 mm (W) by 50 mm (L). The wall and tube materials were stainless steel and the working fluid was methanol. Axial grooves were provided in the flat evaporator to serve as vapor passages. The inner diameters of liquid and vapor transport lines were 2 mm and 4 mm, respectively, and the length of the two lines was 0.5 m each. The thermal load range was up to 130 W for horizontal alignment with the condenser temperature of 10 .deg. C. The experimental results showed that the minimum thermal load for start-up was lowered by 37% when the bypass line was employed

  19. EMG analysis and modelling of flat bench press using artificial ...

    African Journals Online (AJOL)

    The objective of this study was to evaluate the contribution of particular muscle groups during the Flat Bench Press (FBP) with different external loads. Additionally, the authors attempted to determine whether regression models or Artificial Neural Networks (ANNs) can predict FBP results more precisely and whether they can ...

  20. Broadband unidirectional acoustic cloak based on phase gradient metasurfaces with two flat acoustic lenses

    Science.gov (United States)

    Wang, Xiao-Peng; Wan, Le-Le; Chen, Tian-Ning; Song, Ai-Ling; Wang, Fang

    2016-07-01

    Narrow bandwidth and bulky configuration are the main obstacles for the realization and application of invisible cloaks. In this paper, we present an effective method to achieve broadband and thin acoustic cloak by using an acoustic metasurface (AMS). In order to realize this cloak, we use slitted unit cells to design the AMS due to the advantage of less energy loss, broad operation bandwidth, and subwavelength thickness. According to the hyperboloidal phase profile along the AMS, the incident plane waves can be focused at a designed focal spot by the flat lens. Furthermore, broadband acoustic cloak is obtained by combining two identical flat lenses. The incident plane waves are focused at the center point in between of the two lenses by passing through one lens, and then recovered by passing through the other one. However, they cannot reach the cloaked regions in between of the two lenses. The simulation results can verify the non-detectability effect of the acoustic cloak. Our study results provide an available and simple approach to experimentally achieve the acoustic cloak, which can be used in acoustic non-detectability for large objects.

  1. A plane mirror experiment inspired by a comic strip

    Science.gov (United States)

    Lúcio Prados Ribeiro, Jair

    2016-01-01

    A comic strip about a plane mirror was used in a high school optics test, and it was perceived that a large portion of the students believed that the mirror should be larger than the object so the virtual image could be entirely visible. Inspired on the comic strip, an experimental demonstration with flat mirrors was developed, in order to readdress this topic learning. Students were encouraged to create their own investigation of the phenomenon with a simple instrumental apparatus and also suggest different experimental approaches.

  2. In-plane and cross-plane thermal conductivities of molybdenum disulfide

    International Nuclear Information System (INIS)

    Ding, Zhiwei; Pei, Qing-Xiang; Zhang, Yong-Wei; Jiang, Jin-Wu

    2015-01-01

    We investigate the in-plane and cross-plane thermal conductivities of molybdenum disulfide (MoS 2 ) using non-equilibrium molecular dynamics simulations. We find that the in-plane thermal conductivity of monolayer MoS 2 is about 19.76 W mK −1 . Interestingly, the in-plane thermal conductivity of multilayer MoS 2 is insensitive to the number of layers, which is in strong contrast to the in-plane thermal conductivity of graphene where the interlayer interaction strongly affects the in-plane thermal conductivity. This layer number insensitivity is attributable to the finite energy gap in the phonon spectrum of MoS 2 , which makes the phonon–phonon scattering channel almost unchanged with increasing layer number. For the cross-plane thermal transport, we find that the cross-plane thermal conductivity of multilayer MoS 2 can be effectively tuned by applying cross-plane strain. More specifically, a 10% cross-plane compressive strain can enhance the thermal conductivity by a factor of 10, while a 5% cross-plane tensile strain can reduce the thermal conductivity by 90%. Our findings are important for thermal management in MoS 2 based nanodevices and for thermoelectric applications of MoS 2 . (paper)

  3. A Critical Plane-energy Model for Multiaxial Fatigue Life Prediction of Homogeneous and Heterogeneous Materials

    Science.gov (United States)

    Wei, Haoyang

    A new critical plane-energy model is proposed in this thesis for multiaxial fatigue life prediction of homogeneous and heterogeneous materials. Brief review of existing methods, especially on the critical plane-based and energy-based methods, are given first. Special focus is on one critical plane approach which has been shown to work for both brittle and ductile metals. The key idea is to automatically change the critical plane orientation with respect to different materials and stress states. One potential drawback of the developed model is that it needs an empirical calibration parameter for non-proportional multiaxial loadings since only the strain terms are used and the out-of-phase hardening cannot be considered. The energy-based model using the critical plane concept is proposed with help of the Mroz-Garud hardening rule to explicitly include the effect of non-proportional hardening under fatigue cyclic loadings. Thus, the empirical calibration for non-proportional loading is not needed since the out-of-phase hardening is naturally included in the stress calculation. The model predictions are compared with experimental data from open literature and it is shown the proposed model can work for both proportional and non-proportional loadings without the empirical calibration. Next, the model is extended for the fatigue analysis of heterogeneous materials integrating with finite element method. Fatigue crack initiation of representative volume of heterogeneous materials is analyzed using the developed critical plane-energy model and special focus is on the microstructure effect on the multiaxial fatigue life predictions. Several conclusions and future work is drawn based on the proposed study.

  4. Testing flat plate photovoltaic modules for terrestrial environment

    Science.gov (United States)

    Hoffman, A. R.; Arnett, J. C.; Ross, R. G., Jr.

    1979-01-01

    New qualification tests have been developed for flat plate photovoltaic modules. Temperature cycling, cyclic pressure load, and humidity exposure are especially useful for detecting design and fabrication deficiencies. There is positive correlation between many of the observed field effects, such as power loss, and qualification test induced degradation. The status of research efforts for the development of test methodology for field-related problems is reviewed.

  5. Forces and Moments on Flat Plates of Small Aspect Ratio with Application to PV Wind Loads and Small Wind Turbine Blades

    Directory of Open Access Journals (Sweden)

    Xavier Ortiz

    2015-03-01

    Full Text Available To improve knowledge of the wind loads on photovoltaic structures mounted on flat roofs at the high angles required in high latitudes, and to study starting flow on low aspect ratio wind turbine blades, a series of wind tunnel tests were undertaken. Thin flat plates of aspect ratios between 0.4 and 9.0 were mounted on a sensitive three-component instantaneous force and moment sensor. The Reynolds numbers varied from 6 × 104 to 2 × 105. Measurements were made for angles of attack between 0° and 90° both in the free stream and in wall proximity with increased turbulence and mean shear. The ratio of drag to lift closely follows the inverse tangent of the angle of incidence for virtually all measurements. This implies that the forces of interest are due largely to the instantaneous pressure distribution around the plate and are not significantly influenced by shear stresses. The instantaneous forces appear most complex for the smaller aspect ratios but the intensity of the normal force fluctuations is between 10% and 20% in the free-steam but can exceed 30% near the wall. As the wind tunnel floor is approached, the lift and drag reduce with increasing aspect ratio, and there is a reduction in the high frequency components of the forces. It is shown that the centre of pressure is closer to the centre of the plates than the quarter-chord position for nearly all cases.

  6. Reflection from a flat dielectric film with negative refractive index

    OpenAIRE

    Hillion, Pierre

    2007-01-01

    We analyse the reflection of a TM electromagnetic field first on a flat dielectric film and second on a Veselago film with negative refractive index, both films being deposited on a metallic substrat acting as a mirror. An incident harmonic plane wave generates inside a conventional dielectric film a refracted propagating wave and an evanescent wave that does not contribute to reflection on the metallic substrat so that part of the information conveyed by the incident field is lost. At the op...

  7. Monopod bucket foundations under cyclic lateral loading

    DEFF Research Database (Denmark)

    Foglia, Aligi; Ibsen, Lars Bo

    on bucket foundations under lateral cyclic loading. The test setup is described in detail and a comprehensive experimental campaign is presented. The foundation is subjected to cyclic overturning moment, cyclic horizontal loading and constant vertical loading, acting on the same plane for thousands...

  8. Specific strain work as a failure criterion in plane stress state

    International Nuclear Information System (INIS)

    Zuchowski, R.; Zietkowski, L.

    1985-01-01

    An experimental verification of failure criterion based on specific strain work was performed. Thin-walled cylindrical specimens were examined by loading with constant force and constant torque moment, assuming different values for particular tests, at the same time keeping stress intensity constant, and by subjecting to thermal cycling. It was found that the critical value of failure did not depend on axial-to-shearing stresses ratio, i.e., on the type of state of stress. Thereby, the validity of the analysed failure criterion in plane stress was confirmed. Besides, a simple description of damage development in plane stress was suggested. (orig./RF)

  9. Textured insoles reduce vertical loading rate and increase subjective plantar sensation in overground running.

    Science.gov (United States)

    Wilkinson, Michael; Ewen, Alistair; Caplan, Nicholas; O'leary, David; Smith, Neil; Stoneham, Richard; Saxby, Lee

    2018-05-01

    The effect of textured insoles on kinetics and kinematics of overground running was assessed. 16 male injury-free-recreational runners attended a single visit (age 23 ± 5 yrs; stature 1.78 ± 0.06 m; mass 72.6 ± 9.2 kg). Overground 15-m runs were completed in flat, canvas plimsolls both with and without textured insoles at self-selected velocity on an indoor track in an order that was balanced among participants. Average vertical loading rate and peak vertical force (F peak ) were captured by force platforms. Video footage was digitised for sagittal plane hip, knee and ankle angles at foot strike and mid stance. Velocity, stride rate and length and contact and flight time were determined. Subjectively rated plantar sensation was recorded by visual scale. 95% confidence intervals estimated mean differences. Smallest worthwhile change in loading rate was defined as standardised reduction of 0.54 from a previous comparison of injured versus non-injured runners. Loading rate decreased (-25 to -9.3 BW s -1 ; 60% likely beneficial reduction) and plantar sensation was increased (46-58 mm) with the insole. F peak (-0.1 to 0.14 BW) and velocity (-0.02 to 0.06 m s -1 ) were similar. Stride length, flight and contact time were lower (-0.13 to -0.01 m; -0.02 to-0.01 s; -0.016 to -0.006 s) and stride rate was higher (0.01-0.07 steps s -1 ) with insoles. Textured insoles elicited an acute, meaningful decrease in vertical loading rate in short distance, overground running and were associated with subjectively increased plantar sensation. Reduced vertical loading rate could be explained by altered stride characteristics.

  10. A semiflexible alternating copolymer chain adsorption on a flat and a fluctuating surface

    International Nuclear Information System (INIS)

    Mishra, Pramod Kumar

    2010-01-01

    A lattice model of a directed self-avoiding walk is used to investigate adsorption properties of a semiflexible alternating copolymer chain on an impenetrable flat and fluctuating surface in two (square, hexagonal and rectangular lattice) and three dimensions (cubic lattice). In the cubic lattice case the surface is two-dimensional impenetrable flat and in two dimensions the surface is a fluctuating impenetrable line (hexagonal lattice) and also flat impenetrable line (square and rectangular lattice). Walks of the copolymer chains are directed perpendicular to the plane of the surface and at a suitable value of monomer surface attraction, the copolymer chain gets adsorbed on the surface. To calculate the exact value of the monomer surface attraction, the directed walk model has been solved analytically using the generating function method to discuss results when one type of monomer of the copolymer chain has attractive, repulsive or no interaction with the surface. Results obtained in the flat surface case show that, for a stiffer copolymer chain, adsorption transition occurs at a smaller value of monomer surface attraction than a flexible copolymer chain while in the case of a fluctuating surface, the adsorption transition point is independent of bending energy of the copolymer chain. These features are similar to that of a semiflexible homopolymer chain adsorption.

  11. A semiflexible alternating copolymer chain adsorption on a flat and a fluctuating surface.

    Science.gov (United States)

    Mishra, Pramod Kumar

    2010-04-21

    A lattice model of a directed self-avoiding walk is used to investigate adsorption properties of a semiflexible alternating copolymer chain on an impenetrable flat and fluctuating surface in two (square, hexagonal and rectangular lattice) and three dimensions (cubic lattice). In the cubic lattice case the surface is two-dimensional impenetrable flat and in two dimensions the surface is a fluctuating impenetrable line (hexagonal lattice) and also flat impenetrable line (square and rectangular lattice). Walks of the copolymer chains are directed perpendicular to the plane of the surface and at a suitable value of monomer surface attraction, the copolymer chain gets adsorbed on the surface. To calculate the exact value of the monomer surface attraction, the directed walk model has been solved analytically using the generating function method to discuss results when one type of monomer of the copolymer chain has attractive, repulsive or no interaction with the surface. Results obtained in the flat surface case show that, for a stiffer copolymer chain, adsorption transition occurs at a smaller value of monomer surface attraction than a flexible copolymer chain while in the case of a fluctuating surface, the adsorption transition point is independent of bending energy of the copolymer chain. These features are similar to that of a semiflexible homopolymer chain adsorption.

  12. Instability of in-plane vortices in two-dimensional easy-plane ferromagnets

    International Nuclear Information System (INIS)

    Wysin, G.M.

    1994-01-01

    An analysis of the core region of an in-plane vortex in the two-dimensional Heisenberg model with easy-plane anisotropy λ=J z /J xy leads to a clear understanding of the instability towards transformation into an out-of-plane vortex as a function of anisotropy. The anisotropy parameter λ c at which the in-plane vortex becomes unstable and develops into an out-of-plane vortex is determined with an accuracy comparable to computer simulations for square, hexagonal, and triangular lattices. For λ c , the in-plane vortex is stable but exhibits a normal mode whose frequency goes to zero as ω∝(λ c -λ) 1/2 as λ approaches λ c . For λ>λ c , the static nonzero out-of-plane spin components grow as (λ-λ c ) 1/2 . The lattice dependence of λ c is determined strongly by the number of spins in the core plaquette, is fundamentally a discreteness effect, and cannot be obtained in a continuum theory

  13. Comparison of plantar pressure distribution in subjects with normal and flat feet during gait

    Directory of Open Access Journals (Sweden)

    Aluisio Otavio Vargas Avila

    2010-06-01

    Full Text Available The aim of this study was to determine the possible relationship between loss of thenormal medial longitudinal arch measured by the height of the navicular bone in a static situationand variables related to plantar pressure distribution measured in a dynamic situation. Elevenmen (21 ± 3 years, 74 ± 10 kg and 175 ± 4 cm participated in the study. The Novel Emed-ATSystem was used for the acquisition of plantar pressure distribution data (peak pressure, meanpressure, contact area, and relative load at a sampling rate of 50 Hz. The navicular drop testproposed by Brody (1982 was used to assess the height of the navicular bone for classificationof the subjects. The results were compared by the Mann-Whitney U test, with the level of significanceset at p ≤ 0.05. Differences were observed between the two groups in the mid-foot regionfor all variables studied, with the observation of higher mean values in subjects with flat feet.There were also significant differences in contact area, relative load, peak pressure, and meanpressure between groups. The present study demonstrates the importance of paying attentionto subjects with flat feet because changes in plantar pressure distribution are associated withdiscomfort and injuries.

  14. INDUCTION HEATING OF NON-MAGNETIC SHEET METALS IN THE FIELD OF A FLAT CIRCULAR MULTITURN SOLENOID

    Directory of Open Access Journals (Sweden)

    Y. Batygin

    2016-06-01

    Full Text Available The theoretical analysis of electromagnetic processes in the system for induction heating presented by a flat circular multiturn solenoid positioned above a plane of thin sheet non-magnetic metal has been conducted. The calculated dependences for the current induced in a metal sheet blank and ratio of transformation determined have been obtained. The maximal value of the transformation ratio with regard to spreading the eddy-currents over the whole area of the sheet metal has been determined.

  15. Analysis of the gas-lubricated flat-sector-pad thrust bearing

    Science.gov (United States)

    Etsion, I.

    1976-01-01

    A flat sector-shaped pad geometry for a gas-lubricated thrust bearing is analyzed considering both the pitch and roll of the pad. It is shown that maximum load capacity is achieved when the pad is tilted so as to create uniform minimum film thickness along the pad trailing edge. Performance characteristics for various geometries and operating conditions of gas thrust bearings are presented in the form of design curves, and a comparison is made with the rectangular slider approximation. It is found that this approximation is unsafe for practical design, since it always overestimates load capacity.

  16. Standard test method for measurement of roll wave optical distortion in heat-treated flat glass

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    2008-01-01

    1.1 This test method is applicable to the determination of the peak-to-valley depth and peak-to-peak distances of the out-of-plane deformation referred to as roll wave which occurs in flat, heat-treated architectural glass substrates processed in a heat processing continuous or oscillating conveyance oven. 1.2 The values stated in inch-pound units are to be regarded as standard. The values given in parentheses are mathematical conversions to SI units that are provided for information only and are not considered standard. 1.3 This test method does not address other flatness issues like edge kink, ream, pocket distortion, bow, or other distortions outside of roll wave as defined in this test method. 1.4 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety and health practices and determine the applicability of regulatory limitations prior to use.

  17. Grand unification in the projective plane

    International Nuclear Information System (INIS)

    Hebecker, A.

    2004-01-01

    A 6-dimensional grand unified theory with the compact space having the topology of a real projective plane, i.e., a 2-sphere with opposite points identified, is considered. The space is locally flat except for two conical singularities where the curvature is concentrated. One supersymmetry is preserved in the effective 4d theory. The unified gauge symmetry, for example SU(5), is broken only by the non-trivial global topology. In contrast to the Hosotani mechanism, no adjoint Wilson-line modulus associated with this breaking appears. Since, locally, SU(5) remains a good symmetry everywhere, no UV-sensitive threshold corrections arise and SU(5)-violating local operators are forbidden. Doublet-triplet splitting can be addressed in the context of a 6d N=2 super Yang-Mills theory with gauge group SU(6). If this symmetry is first broken to SU(5) at a fixed point and then further reduced to the standard model group in the above non-local way, the two light Higgs doublets of the MSSM are predicted by the group-theoretical and geometrical structure of the model. (author)

  18. Load estimation from planar PIV measurement in vortex dominated flows

    Science.gov (United States)

    McClure, Jeffrey; Yarusevych, Serhiy

    2017-11-01

    Control volume-based loading estimates are employed on experimental and synthetic numerical planar Particle Image Velocimetry (PIV) data of a stationary cylinder and a cylinder undergoing one degree-of-freedom (1DOF) Vortex Induced Vibration (VIV). The results reveal the necessity of including out of plane terms, identified from a general formulation of the control volume momentum balance, when evaluating loads from planar measurements in three-dimensional flows. Reynolds stresses from out of plane fluctuations are shown to be significant for both instantaneous and mean force estimates when the control volume encompasses vortex dominated regions. For planar measurement, invoking a divergence-free assumption allows accurate estimation of half the identified terms. Towards evaluating the fidelity of PIV-based loading estimates for obtaining the forcing function unobtrusively in VIV experiments, the accuracy of the control volume-based loading methodology is evaluated using the numerical data with synthetically generated experimental PIV error, and a comparison is made between experimental PIV-based estimates and simultaneous force balance measurements.

  19. Does Knee Osteoarthritis Differentially Modulate Proprioceptive Acuity in the Frontal and Sagittal Planes of the Knee?

    Science.gov (United States)

    Cammarata, Martha L; Schnitzer, Thomas J; Dhaher, Yasin Y

    2012-01-01

    Objective Impaired proprioception may alter joint loading and contribute to the progression of knee osteoarthritis (OA). Though frontal plane loading at the knee contributes to OA, proprioception and its modulation with OA in this direction have not been examined. The aim of this study was to assess knee proprioceptive acuity in the frontal and sagittal planes in knee OA and healthy participants. We hypothesized that proprioceptive acuity will be decreased in the OA population in both planes of movement. Methods Thirteen persons with knee OA and fourteen healthy age-matched subjects participated. Proprioceptive acuity was assessed in varus, valgus, flexion, and extension using the threshold to detection of passive movement (TDPM). Repeated measures analysis of variance was used to assess differences in TDPM between subject groups and across movement directions. Linear regression analyses were performed to assess the correlation of TDPM between and within planes of movement. Results TDPM was found to be significantly higher (Pplanes of movement were only weakly correlated, especially in the OA group. Conclusions Consistent differences in TDPM between the OA and control groups across all movement directions suggest a global, not direction-specific, reduction in sensation in knee OA patients. PMID:21547895

  20. Preliminary Design and Analysis of an In-plane PRSEUS Joint

    Science.gov (United States)

    Lovejoy, Andrew E.; Poplawski, Steven

    2013-01-01

    As part of the National Aeronautics and Space Administration's (NASA's) Environmentally Responsible Aviation (ERA) program, the Pultruded Rod Stitched Efficient Unitized Structure (PRSEUS) has been designed, developed and tested. However, PRSEUS development efforts to date have only addressed joints required to transfer bending moments between PRSEUS panels. Development of in-plane joints for the PRSEUS concept is necessary to facilitate in-plane transfer of load from PRSEUS panels to an adjacent structure, such as from a wing panel into a fuselage. This paper presents preliminary design and analysis of an in-plane PRSEUS joint for connecting PRSEUS panels at the termination of the rod-stiffened stringers. Design requirements are provided, the PRSEUS blade joint concept is presented, and preliminary design changes and analyses are carried out to examine the feasibility of the proposed in-plane PRSEUS blade joint. The study conducted herein focuses mainly on the PRSEUS structure on one side of the joint. In particular, the design requirements for the rod shear stress and bolt bearing stress are examined. A PRSEUS blade joint design was developed that demonstrates the feasibility of this in-plane PRSEUS joint concept to terminate the rod-stiffened stringers. The presented design only demonstrates feasibility, therefore, some areas of refinement are presented that would lead to a more optimum and realistic design.

  1. Experimental and theoretical investigation of column - flat slab joint ductility

    International Nuclear Information System (INIS)

    Iskhakov, I.; Ribakov, Y.; Shah, A.

    2009-01-01

    Most modern seismic codes use ductility as one of the basic design parameters. Actually, ductility defines the ability of a structure or its elements to absorb energy by plastic deformations. Until the end of the previous century ductility was defined qualitatively. Most research works related to ductility are focused on structural elements' sections. This study was aimed at complex experimental and theoretical investigation of flat slab-column joints ductility. It is one of the first attempts to obtain quantitative values of joint's ductility for the case of high strength concrete columns and normal strength concrete slabs. It was shown that the flat slab-column joint is a three-dimension (3D) element and its ductility in horizontal and vertical directions are different. This is the main difference between ductility of elements and joint ductility. In case of flat slab-column joints, essential contribution to joint's ductility can be obtained due to the slab's confining effect. Based on experimental data, the authors demonstrate that flat slab-column joint's ductility depends on the joint's confining effect in two horizontal and vertical directions. Furthermore, the influence of slab load intensity and slab reinforcement ratio on the joint's ductility is performed in this study. It is also demonstrated that the effect of the ratio between the slab thickness and the column's section dimension on the ductility parameter is significant. Equations for obtaining a quantitative value of a flat slab-column joint's ductility parameter were developed.

  2. Standard test method for measuring rolling friction characteristics of a spherical shape on a flat horizontal plane

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    2008-01-01

    1.1 This test method covers the use of an angled launch ramp to initiate rolling of a sphere or nearly spherical shape on a flat horizontal surface to determine the rolling friction characteristics of a given spherical shape on a given surface. 1.1.1 Steel balls on a surface plate were used in interlaboratory tests (see Appendix X1). Golf balls on a green, soccer and lacrosse balls on playing surfaces, bowling balls on an a lane, basketballs on hardwood, and marbles on composite surface were tested in the development of this test method, but the test applies to any sphere rolling on any flat horizontal surface. 1.1.2 The rolling friction of spheres on horizontal surfaces is affected by the spherical shape’s stiffness, radius of curvature, surface texture, films on the surface, the nature of the counterface surface; there are many factors to consider. This test method takes all of these factors into consideration. The spherical shape of interest is rolled on the surface of interest using a standard ramp to...

  3. Stress analysis in curved composites due to thermal loading

    Science.gov (United States)

    Polk, Jared Cornelius

    Many structures in aircraft, cars, trucks, ships, machines, tools, bridges, and buildings, consist of curved sections. These sections vary from straight line segments that have curvature at either one or both ends, segments with compound curvatures, segments with two mutually perpendicular curvatures or Gaussian curvatures, and segments with a simple curvature. With the advancements made in multi-purpose composites over the past 60 years, composites slowly but steadily have been appearing in these various vehicles, compound structures, and buildings. These composite sections provide added benefits over isotropic, polymeric, and ceramic materials by generally having a higher specific strength, higher specific stiffnesses, longer fatigue life, lower density, possibilities in reduction of life cycle and/or acquisition cost, and greater adaptability to intended function of structure via material composition and geometry. To be able to design and manufacture a safe composite laminate or structure, it is imperative that the stress distributions, their causes, and effects are thoroughly understood in order to successfully accomplish mission objectives and manufacture a safe and reliable composite. The objective of the thesis work is to expand upon the knowledge of simply curved composite structures by exploring and ascertaining all pertinent parameters, phenomenon, and trends in stress variations in curved laminates due to thermal loading. The simply curved composites consist of composites with one radius of curvature throughout the span of the specimen about only one axis. Analytical beam theory, classical lamination theory, and finite element analysis were used to ascertain stress variations in a flat, isotropic beam. An analytical method was developed to ascertain the stress variations in an isotropic, simply curved beam under thermal loading that is under both free-free and fixed-fixed constraint conditions. This is the first such solution to Author's best knowledge

  4. Technique for measurements of plane waves of uniaxial strain

    International Nuclear Information System (INIS)

    Graham, R.A.

    1977-01-01

    The measurement of plane waves in uniaxial strain, in which large surface areas are loaded and the measurements are restricted to a central region that is not influenced by lateral boundaries, is discussed. Measuring techniques are covered and instruments are discussed

  5. Titanium based flat heat pipes for computer chip cooling

    Science.gov (United States)

    Soni, Gaurav; Ding, Changsong; Sigurdson, Marin; Bozorgi, Payam; Piorek, Brian; MacDonald, Noel; Meinhart, Carl

    2008-11-01

    We are developing a highly conductive flat heat pipe (called Thermal Ground Plane or TGP) for cooling computer chips. Conventional heat pipes have circular cross sections and thus can't make good contact with chip surface. The flatness of our TGP will enable conformal contact with the chip surface and thus enhance cooling efficiency. Another limiting factor in conventional heat pipes is the capillary flow of the working fluid through a wick structure. In order to overcome this limitation we have created a highly porous wick structure on a flat titanium substrate by using micro fabrication technology. We first etch titanium to create very tall micro pillars with a diameter of 5 μm, a height of 40 μm and a pitch of 10 μm. We then grow a very fine nano structured titania (NST) hairs on all surfaces of the pillars by oxidation in H202. In this way we achieve a wick structure which utilizes multiple length scales to yield high performance wicking of water. It's capable of wicking water at an average velocity of 1 cm/s over a distance of several cm. A titanium cavity is laser-welded onto the wicking substrate and a small quantity of water is hermetically sealed inside the cavity to achieve a TGP. The thermal conductivity of our preliminary TGP was measured to be 350 W/m-K, but has the potential to be several orders of magnitude higher.

  6. Quantum fields interacting with colliding plane waves: the stress-energy tensor and backreaction

    International Nuclear Information System (INIS)

    Dorca, M.; Verdaguer, E.

    1997-01-01

    Following a previous work on the quantization of a massless scalar field in a space-time representing the head on collision of two plane waves which focus into a Killing-Cauchy horizon, we compute the renormalized expectation value of the stress-energy tensor of the quantum field near that horizon in the physical state which corresponds to the Minkowski vacuum before the collision of the waves. It is found that for minimally coupled and conformally coupled scalar fields the respective stress-energy tensors are unbounded in the horizon. The specific form of the divergences suggests that when the semiclassical Einstein equations describing the backreaction of the quantum fields on the space-time geometry are taken into account, the horizon will acquire a curvature singularity. Thus the Killing-Cauchy horizon which is known to be unstable under ''generic'' classical perturbations is also unstable by vacuum polarization. The calculation is done following the point-splitting regularization technique. The dynamical colliding wave space-time has four quite distinct space-time regions, namely, one flat region, two single plane wave regions, and one interaction region. Exact mode solutions of the quantum field equation cannot be found exactly, but the blueshift suffered by the initial modes in the plane wave and interaction regions makes the use of the WKB expansion a suitable method of solution. To ensure the correct regularization of the stress-energy tensor, the initial flat modes propagated into the interaction region must be given to a rather high adiabatic order of approximation. (orig.)

  7. Three Dimensional Parametric Analyses of Stress Concentration Factor and Its Mitigation in Isotropic and Orthotropic Plate with Central Circular Hole Under Axial In-Plane Loading

    Science.gov (United States)

    Nagpal, Shubhrata; Jain, Nitin Kumar; Sanyal, Shubhashis

    2016-01-01

    The problem of finding the stress concentration factor of a loaded rectangular plate has offered considerably analytical difficulty. The present work focused on understanding of behavior of isotropic and orthotropic plate subjected to static in-plane loading using finite element method. The complete plate model configuration has been analyzed using finite element method based software ANSYS. In the present work two parameters: thickness to width of plate (T/A) and diameter of hole to width of plate (D/A) have been varied for analysis of stress concentration factor (SCF) and its mitigation. Plates of five different materials have been considered for complete analysis to find out the sensitivity of stress concentration factor. The D/A ratio varied from 0.1 to 0.7 for analysis of SCF and varied from 0.1 to 0.5 for analyzing the mitigation of SCF. 0.01, 0.05 and 0.1 are considered as T/A ratio for all the cases. The results are presented in graphical form and discussed. The mitigation in SCF reported is very encouraging. The SCF is more sensitive to D/A ratio as compared to T/A.

  8. Room-temperature epitaxial growth of high-quality m-plane InGaN films on ZnO substrates

    Energy Technology Data Exchange (ETDEWEB)

    Shimomoto, Kazuma; Ueno, Kohei [Institute of Industrial Science, University of Tokyo (Japan); Kobayashi, Atsushi [Institute of Industrial Science, University of Tokyo (Japan); Kanagawa Academy of Science and Technology (KAST), Takatsu-ku, Kawasaki (Japan); Department of Applied Chemistry, University of Tokyo (Japan); Ohta, Jitsuo [Institute of Industrial Science, University of Tokyo (Japan); Kanagawa Academy of Science and Technology (KAST), Takatsu-ku, Kawasaki (Japan); Oshima, Masaharu [Department of Applied Chemistry, University of Tokyo (Japan); Core Research for Evolutional Science and Technology, Japan Science and Technology Corporation (JST-CREST), Tokyo (Japan); Fujioka, Hiroshi [Institute of Industrial Science, University of Tokyo (Japan); Kanagawa Academy of Science and Technology (KAST), Takatsu-ku, Kawasaki (Japan); Core Research for Evolutional Science and Technology, Japan Science and Technology Corporation (JST-CREST), Tokyo (Japan); Amanai, Hidetaka; Nagao, Satoru; Horie, Hideyoshi [Mitsubishi Chemical Group, Science and Technology Research Center, Higashi-Mamiana, Ushiku-shi, Ibaraki (Japan)

    2009-05-15

    The authors have grown high-quality m -plane In{sub 0.36}Ga{sub 0.64}N (1 anti 100) films on ZnO (1 anti 100) substrates at room temperature (RT) by pulsed laser deposition (PLD) and have investigated their structural properties. m-plane InGaN films grown on ZnO substrates at RT possess atomically flat surfaces with stepped and terraced structures, indicating that the film growth proceeds in a two-dimensional mode. X-ray diffraction measurements have revealed that the m-plane InGaN films grow without phase separation reactions at RT. The full-width at half-maximum values of the 1 anti 100 X-ray rocking curves of films with X-ray incident azimuths perpendicular to the c- and a-axis are 88 arcsec and 78 arcsec, respectively. Reciprocal space-mapping has revealed that a 50 nm thick m-plane In{sub 0.36}Ga{sub 0.64}N film grows coherently on the ZnO substrate, which can probably explain the low defect density that is observed in the film. (copyright 2009 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  9. Room-temperature epitaxial growth of high-quality m-plane InGaN films on ZnO substrates

    International Nuclear Information System (INIS)

    Shimomoto, Kazuma; Ueno, Kohei; Kobayashi, Atsushi; Ohta, Jitsuo; Oshima, Masaharu; Fujioka, Hiroshi; Amanai, Hidetaka; Nagao, Satoru; Horie, Hideyoshi

    2009-01-01

    The authors have grown high-quality m -plane In 0.36 Ga 0.64 N (1 anti 100) films on ZnO (1 anti 100) substrates at room temperature (RT) by pulsed laser deposition (PLD) and have investigated their structural properties. m-plane InGaN films grown on ZnO substrates at RT possess atomically flat surfaces with stepped and terraced structures, indicating that the film growth proceeds in a two-dimensional mode. X-ray diffraction measurements have revealed that the m-plane InGaN films grow without phase separation reactions at RT. The full-width at half-maximum values of the 1 anti 100 X-ray rocking curves of films with X-ray incident azimuths perpendicular to the c- and a-axis are 88 arcsec and 78 arcsec, respectively. Reciprocal space-mapping has revealed that a 50 nm thick m-plane In 0.36 Ga 0.64 N film grows coherently on the ZnO substrate, which can probably explain the low defect density that is observed in the film. (copyright 2009 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  10. On the use of flat tile armour in high heat flux components

    Science.gov (United States)

    Merola, M.; Vieider, G.

    1998-10-01

    The possibility to have a flat tile geometry for those high heat flux components subjected to a convective heat flux (namely the divertor dump target, lower vertical target, and the limiter) has been investigated. Because of the glancing incidence of the power load, if an armour tile falls off an extremely high heat flux hits the leading edge of the adjacent tile. As a result a rapid temperature increase occurs in the armour-heat sink joint. The heat flux to the water coolant also increases rapidly up to a factor of 1.7 and 2.3 for a beryllium and CFC armour, respectively, thus causing possible critical heat flux problems. Thermal stresses in the armour-heat sink joint double in less than 0.4 s and triplicate after 1 s thus leading to a possible cascade failure. Therefore the use of a flat tile geometry for these components does not seem to be appropriate. In this case a monoblock geometry gives a much more robust solution.

  11. On the use of flat tile armour in high heat flux components

    International Nuclear Information System (INIS)

    Merola, M.; Vieider, G.

    1998-01-01

    The possibility to have a flat tile geometry for those high heat flux components subjected to a convective heat flux (namely the divertor dump target, lower vertical target, and the limiter) has been investigated. Because of the glancing incidence of the power load, if an armour tile falls off an extremely high heat flux hits the leading edge of the adjacent tile. As a result a rapid temperature increase occurs in the armour-heat sink joint. The heat flux to the water coolant also increases rapidly up to a factor of 1.7 and 2.3 for a beryllium and CFC armour, respectively, thus causing possible critical heat flux problems. Thermal stresses in the armour-heat sink joint double in less than 0.4 s and triplicate after 1 s thus leading to a possible cascade failure. Therefore the use of a flat tile geometry for these components does not seem to be appropriate. In this case a monoblock geometry gives a much more robust solution. (orig.)

  12. Lamb's plane problem in a thermo-elastic micropolar medium with stretch

    Directory of Open Access Journals (Sweden)

    T. K. Chadha

    1987-01-01

    Full Text Available A study is made of the Lamb plane problem in a thermo-elastic micropolar medium with the effect of stretch. The problem is solved for an arbitrary, normal load distribution by using the double Fourier transform. The displacement components, force stress, couple stress, vector first moment and the temperature field are determined for a half space subjected to an arbitrary normal load. Two special cases of a horizontal force and a torque which are oscillating with a frequency ω have been investigated. It is shown that results of this analysis reduce to those without stretch.

  13. 49 CFR 174.101 - Loading Class 1 (explosive) materials.

    Science.gov (United States)

    2010-10-01

    ... in a rail car equipped with any type of lighted heater or open-flame device, or electric devices... stock cars or in flat bottom gondola cars only if they are adequately braced. Boxed bombs, rocket... be loaded in closed cars, may be loaded in open-top cars or on flatcars, provided they are protected...

  14. Some Considerations Regarding Plane to Plane Parallelism Error Effects in Robotic Systems

    Directory of Open Access Journals (Sweden)

    Stelian Alaci

    2015-06-01

    Full Text Available The paper shows that by imposing the parallelism constraint between the measured plane and the reference plane, the position of the current plane is not univocal specified and is impossible to specify the way to attain the parallelism errors imposed by accuracy constrains. The parameters involved in the calculus of plane to plane parallelism error can be used to set univocal the relative position between the two planes.

  15. Conservative flight with a varying load factor and closed form ...

    Indian Academy of Sciences (India)

    Conservative flight performance of an aircraft with constant load factor was analysed by ... Within the frame work of flat earth hypotheses the equations of motion of an aircraft as obtained by ..... load factor function if this inequality holds good.

  16. BUCLAP2

    Science.gov (United States)

    Halstead, D. W.; Tripp, L. L.; Tamekuni, M.; Baker, L. L.; Viswanathan, A. V.

    1976-01-01

    Program is used to predict buckling of rectangular flat and curved laminated plates subjected to in-plane normal and shearing loads, with each lamina composed of orthotropic material with arbitrary orientation of orthotropic axes.

  17. Aquantis C-Plane Ocean Current Turbine Project

    Energy Technology Data Exchange (ETDEWEB)

    Fleming, Alex [Dehlsen Associates, LLC, Santa Barbara, CA (United States)

    2015-09-16

    The Aquantis 2.5 MW Ocean Current Generation Device technology developed by Dehlsen Associates, LLC (DA) is a derivation of wind power generating technology (a means of harnessing a slow moving fluid) adapted to the ocean environment. The Aquantis Project provides an opportunity for accelerated technological development and early commercialization, since it involves the joining of two mature disciplines: ocean engineering and wind turbine design. The Aquantis Current Plane (C-Plane) technology is an ocean current turbine designed to extract kinetic energy from a current flow. The technology is capable of achieving competitively priced, continuous, base-load, and reliable power generation from a source of renewable energy not before possible in this scale or form.

  18. Design of a cruciform bend specimen for determination of out-of- plane biaxial tensile stress effects on fracture toughness for shallow cracks

    International Nuclear Information System (INIS)

    Bass, B.R.; Bryson, J.W.; Mcafee, W.J.; Pennell, W.E.; Theiss, T.J.

    1993-01-01

    Pressurized-thermal-shock loading in a reactor pressure vessel produces significant positive out-of-plane stresses along the crack front for both circumferential and axial cracks. Experimental evidence, while very limited, seems to indicate that a reduction in toughness is associated with out-of-plane biaxial loading when compared with toughness values obtained under uniaxial conditions. A testing program is described that seeks to determine the effects of out-of-plane biaxial tensile loading on fracture toughness of RPV steels. A cruciform bend specimen that meets specified criteria for the testing pregam is analyzed using three-dimensional elastic-plastic finite-element techniques. These analysis results provide the basis for proposed test conditions that are judged likely to produce a biaxial loading effect in the cruciform bend specimen

  19. Inter-plane artifact suppression in tomosynthesis using 3D CT image data

    Directory of Open Access Journals (Sweden)

    Kim Jae G

    2011-12-01

    Full Text Available Abstract Background Despite its superb lateral resolution, flat-panel-detector (FPD based tomosynthesis suffers from low contrast and inter-plane artifacts caused by incomplete cancellation of the projection components stemming from outside the focal plane. The incomplete cancellation of the projection components, mostly due to the limited scan angle in the conventional tomosynthesis scan geometry, often makes the image contrast too low to differentiate the malignant tissues from the background tissues with confidence. Methods In this paper, we propose a new method to suppress the inter-plane artifacts in FPD-based tomosynthesis. If 3D whole volume CT images are available before the tomosynthesis scan, the CT image data can be incorporated into the tomosynthesis image reconstruction to suppress the inter-plane artifacts, hence, improving the image contrast. In the proposed technique, the projection components stemming from outside the region-of-interest (ROI are subtracted from the measured tomosynthesis projection data to suppress the inter-plane artifacts. The projection components stemming from outside the ROI are calculated from the 3D whole volume CT images which usually have lower lateral resolution than the tomosynthesis images. The tomosynthesis images are reconstructed from the subtracted projection data which account for the x-ray attenuation through the ROI. After verifying the proposed method by simulation, we have performed both CT scan and tomosynthesis scan on a phantom and a sacrificed rat using a FPD-based micro-CT. Results We have measured contrast-to-noise ratio (CNR from the tomosynthesis images which is an indicator of the residual inter-plane artifacts on the focal-plane image. In both cases of the simulation and experimental imaging studies of the contrast evaluating phantom, CNRs have been significantly improved by the proposed method. In the rat imaging also, we have observed better visual contrast from the tomosynthesis

  20. Inter-plane artifact suppression in tomosynthesis using 3D CT image data

    Science.gov (United States)

    2011-01-01

    Background Despite its superb lateral resolution, flat-panel-detector (FPD) based tomosynthesis suffers from low contrast and inter-plane artifacts caused by incomplete cancellation of the projection components stemming from outside the focal plane. The incomplete cancellation of the projection components, mostly due to the limited scan angle in the conventional tomosynthesis scan geometry, often makes the image contrast too low to differentiate the malignant tissues from the background tissues with confidence. Methods In this paper, we propose a new method to suppress the inter-plane artifacts in FPD-based tomosynthesis. If 3D whole volume CT images are available before the tomosynthesis scan, the CT image data can be incorporated into the tomosynthesis image reconstruction to suppress the inter-plane artifacts, hence, improving the image contrast. In the proposed technique, the projection components stemming from outside the region-of-interest (ROI) are subtracted from the measured tomosynthesis projection data to suppress the inter-plane artifacts. The projection components stemming from outside the ROI are calculated from the 3D whole volume CT images which usually have lower lateral resolution than the tomosynthesis images. The tomosynthesis images are reconstructed from the subtracted projection data which account for the x-ray attenuation through the ROI. After verifying the proposed method by simulation, we have performed both CT scan and tomosynthesis scan on a phantom and a sacrificed rat using a FPD-based micro-CT. Results We have measured contrast-to-noise ratio (CNR) from the tomosynthesis images which is an indicator of the residual inter-plane artifacts on the focal-plane image. In both cases of the simulation and experimental imaging studies of the contrast evaluating phantom, CNRs have been significantly improved by the proposed method. In the rat imaging also, we have observed better visual contrast from the tomosynthesis images reconstructed by

  1. ITER FW cooling by a flat channel, adapted to low flow rate and high pressure drop

    International Nuclear Information System (INIS)

    Ovchinnikov, I.B.; Bondarchuk, D.E.; Gervash, A.A.; Glazunov, D.A.; Komarov, A.O.; Kuznetsov, V.E.; Mazul, I.V.; Rulev, R.V.; Yablokov, N.A.

    2011-01-01

    Highlights: ► ITER FW cooling: pressure drop quotation must be assigned according to thermal load. ► Flat channel solutions with wide range (1:500) of hydraulic resistivity are presented. ► Simulations in Ansys CFX were carried out for presented designs. ► Usage of pressure drop quotation significantly reduces surface temperature. ► Experiments in TSEFEY-M facility confirm simulations. - Abstract: Application of hypervapotron (HV) to cool in-vessel components of ITER – divertor and first wall (FW) – is characterized by the same design load (5 MW/m 2 ) but water flow rate for FW is 8–9 times (almost by order!) less for parallel feeding elements so it seems it would be better to use other design. Several variants of a flat channel design different from HV are suggested that enable to adapt a channel to pressure quota up to 1 MPa and higher. A main feature of the suggested variants is a spiral or multi-spiral stream (flat multi spiral––FMS) that improves heat rejection and can be obtained both by exciting of such mode and forced by channel geometry. Comparison of the variants was carried out in simulations (Ansys CFX) as well as in experiments on the TSEFEY-M facility with electron-beam gun. It is shown that excitation of a spiral stream in a channel significantly reduces a temperature of a loaded surface of a channel. Miniature thermocouples were used to measure temperature near the surface.

  2. Cementation and solidification of Rocky Flats Plant incinerator ash

    International Nuclear Information System (INIS)

    Phillips, J.A.; Semones, G.B.

    1994-01-01

    Cementation studies on various aqueous waste streams at Rocky Flats have shown this technology to be effective for immobilizing the RCRA constituents in the waste. Cementation is also being evaluated for encapsulation of incinerator ash. Experiments will initially evaluate a surrogate ash waste using a Taguchi experimental design to optimize the cement formulation and waste loading levels for this application. Variables of waste loading, fly ash additions, water/cement ratio, and cement type will be tested at three levels each during the course of this work. Tests will finally be conducted on actual waste using the optimized cement formulation developed from this testing. This progression of tests will evaluate the effectiveness of cement encapsulation for this waste stream without generating any additional wastes

  3. Digital image processing: Cylindrical surface plane development of CAREM fuel pellets

    International Nuclear Information System (INIS)

    Caccavelli, J; Cativa Tolosa, S; Gommes, C

    2012-01-01

    As part of the development of fuel pellets (FPs) for nuclear reactor CAREM-25, is necessary to systematize the analysis of the mechanical integrity of the FPs that is now done manually by a human operator. Following specifications and standards of reference for this purpose, the FPs should be inspected visually for detecting material discontinuities in the FPs surfaces to minimize any deterioration, loss of material and excessive breakage during operation and load of fuel bars. The material discontinuities are classified into two defects: surface cracks and chips. For each of these surface defects exist acceptance criteria that determine if the fuel pellet (FP) as a whole is accepted or rejected. One criteria for surface cracks is that they do not exceed one third (1/3) of the circumferential surface of the FP. The FP has cylindrical shape, so some of these acceptance criteria make difficult to analyze the FP in a single photographic image. Depending on the axial rotation of the FP, the crack could not be entirely visualized on the picture frame. Even a single crack that appears in different parts of the FP rotated images may appear to be different cracks in the FP when it is actually one. For this reason it is necessary, for the automatic detection and measurement of surface defects, obtain the circumferential surface of the FP into a single image in order to decide the acceptance or reject of the FP. As the FP shape is cylindrical, it is possible to obtain the flat development of the cylindrical surface (surface unrolling) of the FPs into a single image combining the image set of the axial rotation of the FP. In this work, we expose the procedure to implement the flat development of the cylindrical surface (surface unrolling). Starting from a photographic image of the FP surface, which represents the projection of a cylinder in the plane, we obtain three-dimensional information of each point on the cylindrical surface of the FP (3D-mapping). Then, we can

  4. Transport processes in intertidal sand flats

    Science.gov (United States)

    Wu, Christy

    2010-05-01

    Methane rich sulfate depleted seeps are observed along the low water line of the intertidal sand flat Janssand in the Wadden Sea. It is unclear where in the flat the methane is formed, and how it is transported to the edge of the sand flat where the sulfidic water seeps out. Methane and sulfate distributions in pore water were determined along transects from low water line toward the central area of the sand flat. The resulting profiles showed a zone of methane-rich and sulfate-depleted pore water below 2 m sediment depth. Methane production and sulfate reduction are monitored over time for surface sediments collected from the upper flat and seeping area. Both activities were at 22 C twice as high as at 15 C. The rates in sediments from the central area were higher than in sediments from the methane seeps. Methanogenesis occurred in the presence of sulfate, and was not significantly accelerated when sulfate was depleted. The observations show a rapid anaerobic degradation of organic matter in the Janssand. The methane rich pore water is obviously transported with a unidirectional flow from the central area of the intertidal sand flat toward the low water line. This pore water flow is driven by the pressure head caused by elevation of the pore water relative to the sea surface at low tide (Billerbeck et al. 2006a). The high methane concentration at the low water line accumulates due to a continuous outflow of pore water at the seepage site that prevents penetration of electron acceptors such as oxygen and sulfate to reoxidize the reduced products of anaerobic degradation (de Beer et al. 2006). It is, however, not clear why no methane accumulates or sulfate is depleted in the upper 2 m of the flats.

  5. Individual energy savings for individual flats in blocks of flats

    DEFF Research Database (Denmark)

    Nielsen, Anker; Rose, Jørgen

    2014-01-01

    and 1980. Normally, we expect the reduction in energy consumption to be around 20% for a 2 °C lower temperature, but for an inner flat the reduction can be up to 71%. The owners of the adjoining flats get an increase in energy demand of 10 to 20% each. They will not be able to figure out whether...... this is because the neighbour maintains a low temperature or the fact that they maintain a higher temperature. The best solution is to keep your own indoor temperature low. We can also turn the problem around: if you maintain a higher temperature than your neighbours, then you will pay part of their heating bill....

  6. Structural load combinations

    International Nuclear Information System (INIS)

    Hwang, H.; Reich, M.; Ellingwood, B.; Shinozuka, M.

    1985-01-01

    This paper presents the latest results of the program entitled, ''Probability Based Load Combinations For Design of Category I Structures''. In FY 85, a probability-based reliability analysis method has been developed to evaluate safety of shear wall structures. The shear walls are analyzed using stick models with beam elements and may be subjected to dead load, live load and in-plane eqrthquake. Both shear and flexure limit states are defined analytically. The limit state probabilities can be evaluated on the basis of these limit states. Utilizing the reliability analysis method mentioned above, load combinations for the design of shear wall structures have been established. The proposed design criteria are in the load and resistance factor design (LRFD) format. In this study, the resistance factors for shear and flexure and load factors for dead and live loads are preassigned, while the load factor for SSE is determined for a specified target limit state probability of 1.0 x 10 -6 or 1.0 x 10 -5 during a lifetime of 40 years. 23 refs., 9 tabs

  7. Structural load combinations

    International Nuclear Information System (INIS)

    Hwang, H.; Reich, M.; Ellingwood, B.; Shinozuka, M.

    1986-01-01

    This paper presents the latest results of the program entitled, ''Probability Based Load Combinations For Design of Category I Structures''. In FY 85, a probability-based reliability analysis method has been developed to evaluate safety of shear wall structures. The shear walls are analyzed using stick models with beam elements and may be subjected to dead load, live load and in-plane earthquake. Both shear and flexure limit states are defined analytically. The limit state probabilities can be evaluated on the basis of these limit states. Utilizing the reliability analysis method mentioned above, load combinations for the design of shear wall structures have been established. The proposed design criteria are in the load and resistance factor design (LRFD) format. In this study, the resistance factors for shear and flexure and load factors for dead and live loads are preassigned, while the load factor for SSE is determined for a specified target limit state probability of 1.0 x 10 -6 or 1.0 x 10 -5 during a lifetime of 40 years

  8. Transition due to streamwise streaks in a supersonic flat plate boundary layer

    Science.gov (United States)

    Paredes, Pedro; Choudhari, Meelan M.; Li, Fei

    2016-12-01

    Transition induced by stationary streaks undergoing transient growth in a supersonic flat plate boundary layer flow is studied using numerical computations. While the possibility of strong transient growth of small-amplitude stationary perturbations in supersonic boundary layer flows has been demonstrated in previous works, its relation to laminar-turbulent transition cannot be established within the framework of linear disturbances. Therefore, this paper investigates the nonlinear evolution of initially linear optimal disturbances that evolve into finite amplitude streaks in the downstream region, and then studies the modal instability of those streaks as a likely cause for the onset of bypass transition. The nonmodal evolution of linearly optimal stationary perturbations in a supersonic, Mach 3 flat plate boundary layer is computed via the nonlinear plane-marching parabolized stability equations (PSE) for stationary perturbations, or equivalently, the perturbation form of parabolized Navier-Stokes equations. To assess the effect of the nonlinear finite-amplitude streaks on transition, the linear form of plane-marching PSE is used to investigate the instability of the boundary layer flow modified by the spanwise periodic streaks. The onset of transition is estimated using an N -factor criterion based on modal amplification of the secondary instabilities of the streaks. In the absence of transient growth disturbances, first mode instabilities in a Mach 3, zero pressure gradient boundary layer reach N =10 at Rex≈107 . However, secondary instability modes of the stationary streaks undergoing transient growth are able to achieve the same N -factor at Rex<2 ×106 when the initial streak amplitude is sufficiently large. In contrast to the streak instabilities in incompressible flows, subharmonic instability modes with twice the fundamental spanwise wavelength of the streaks are found to have higher amplification ratios than the streak instabilities at fundamental

  9. Oscillating dipole layer facing a conducting plane: a classical analogue of the dynamical Casimir effect

    Energy Technology Data Exchange (ETDEWEB)

    Fosco, César D. [Centro Atómico Bariloche, Instituto Balseiro, Comisión Nacional de Energía Atómica, R8402AGP, Bariloche (Argentina); Lombardo, Fernando C., E-mail: lombardo@df.uba.ar [Departamento de Física Juan José Giambiagi, FCEyN UBA and IFIBA CONICET-UBA, Facultad de Ciencias Exactas y Naturales, Ciudad Universitaria, Pabellón I, 1428, Buenos Aires (Argentina)

    2015-12-17

    We study the properties of the classical electromagnetic radiation produced by two physically different yet closely related systems, which may be regarded as classical analogues of the dynamical Casimir effect. They correspond to two flat, infinite, parallel planes, one of them static and imposing perfect-conductor boundary conditions, while the other performs a rigid oscillatory motion. The systems differ just in the electrical properties of the oscillating plane: one of them is just a planar dipole layer (representing, for instance, a small-width electret). The other, instead, has a dipole layer on the side which faces the static plane, but behaves as a conductor on the other side: this can be used as a representation of a conductor endowed with patch potentials (on the side which faces the conducting plane). We evaluate, in both cases, the dissipative flux of energy between the system and its environment, showing that, at least for small mechanical oscillation amplitudes, it can be written in terms of the dipole layer autocorrelation function. We show that there are resonances as a function of the frequency of the mechanical oscillation.

  10. Nonlinear Finite Element Analysis of a Composite Non-Cylindrical Pressurized Aircraft Fuselage Structure

    Science.gov (United States)

    Przekop, Adam; Wu, Hsi-Yung T.; Shaw, Peter

    2014-01-01

    The Environmentally Responsible Aviation Project aims to develop aircraft technologies enabling significant fuel burn and community noise reductions. Small incremental changes to the conventional metallic alloy-based 'tube and wing' configuration are not sufficient to achieve the desired metrics. One of the airframe concepts that might dramatically improve aircraft performance is a composite-based hybrid wing body configuration. Such a concept, however, presents inherent challenges stemming from, among other factors, the necessity to transfer wing loads through the entire center fuselage section which accommodates a pressurized cabin confined by flat or nearly flat panels. This paper discusses a nonlinear finite element analysis of a large-scale test article being developed to demonstrate that the Pultruded Rod Stitched Efficient Unitized Structure concept can meet these challenging demands of the next generation airframes. There are specific reasons why geometrically nonlinear analysis may be warranted for the hybrid wing body flat panel structure. In general, for sufficiently high internal pressure and/or mechanical loading, energy related to the in-plane strain may become significant relative to the bending strain energy, particularly in thin-walled areas such as the minimum gage skin extensively used in the structure under analysis. To account for this effect, a geometrically nonlinear strain-displacement relationship is needed to properly couple large out-of-plane and in-plane deformations. Depending on the loading, this nonlinear coupling mechanism manifests itself in a distinct manner in compression- and tension-dominated sections of the structure. Under significant compression, nonlinear analysis is needed to accurately predict loss of stability and postbuckled deformation. Under significant tension, the nonlinear effects account for suppression of the out-of-plane deformation due to in-plane stretching. By comparing the present results with the previously

  11. Flat synchronizations in spherically symmetric space-times

    International Nuclear Information System (INIS)

    Herrero, Alicia; Morales-Lladosa, Juan Antonio

    2010-01-01

    It is well known that the Schwarzschild space-time admits a spacelike slicing by flat instants and that the metric is regular at the horizon in the associated adapted coordinates (Painleve-Gullstrand metric form). We consider this type of flat slicings in an arbitrary spherically symmetric space-time. The condition ensuring its existence is analyzed, and then, we prove that, for any spherically symmetric flat slicing, the densities of the Weinberg momenta vanish. Finally, we deduce the Schwarzschild solution in the extended Painleve-Gullstrand-LemaItre metric form by considering the coordinate decomposition of the vacuum Einstein equations with respect to a flat spacelike slicing.

  12. Stresses in a curved pipe subject to an in-plane bending moment

    International Nuclear Information System (INIS)

    Hofmann, E.; Heeschen, U.

    1979-01-01

    The design of the KWU-primary component supports is mainly defined by the loads of the postulated pipe breaks. To estimate the maximum loading of a component support it is necessary to know the maximum in-plane bending moment (opening and closing) that can be transmitted by a pipe bend. Another reason for such information is that the displacements and distortions of the components cause higher stresses in elbows than in straight pipes. With a detailed knowledge of the deformation characteristic of a pipe bend an integrity analysis could be done without an expensive plastic system analysis. With this purpose in mind experiments were performed with straight pipes and pipe bends of different dimensions subject to in-plane bending moments. The experimental results give the ratio between the maximum transmittable moment of a pipe bend to that of a straight pipe or, the distortion of the end cross-sections and the flattening of the elbow cross-section. An attempt is made to derive simple expressions for estimating the behaviour at pipe elbows. Parallel to the experiments calculations were done for the straight pipe and elbow with a finite difference code with plastic capabilities. The results of the experiment and calculation are compared with the formulas of the ASME-Code section III subjection NB. (orig.)

  13. Laser Doppler thermometry in flat flames

    NARCIS (Netherlands)

    Maaren, van A.; Goey, de L.P.H.

    1994-01-01

    Laser Doppler Velocimetry measurements are performed in flat flames, stabilized on a newly developed flat-flame burner. It is shown that the velocity component perpendicular to the main flow direction, induced by expansion in the reaction zone and buoyancy in the burnt gas, is significant. A method

  14. On the use of flat tile armour in high heat flux components

    Energy Technology Data Exchange (ETDEWEB)

    Merola, M.; Vieider, G

    1998-10-01

    The possibility to have a flat tile geometry for those high heat flux components subjected to a convective heat flux (namely the divertor dump target, lower vertical target, and the limiter) has been investigated. Because of the glancing incidence of the power load, if an armour tile falls off an extremely high heat flux hits the leading edge of the adjacent tile. As a result a rapid temperature increase occurs in the armour-heat sink joint. The heat flux to the water coolant also increases rapidly up to a factor of 1.7 and 2.3 for a beryllium and CFC armour, respectively, thus causing possible critical heat flux problems. Thermal stresses in the armour-heat sink joint double in less than 0.4 s and triplicate after 1 s thus leading to a possible cascade failure. Therefore the use of a flat tile geometry for these components does not seem to be appropriate. In this case a monoblock geometry gives a much more robust solution. (orig.) 7 refs.

  15. Next generation sub-millimeter wave focal plane array coupling concepts: an ESA TRP project to develop multichroic focal plane pixels for future CMB polarization experiments

    Science.gov (United States)

    Trappe, N.; Bucher, M.; De Bernardis, P.; Delabrouille, J.; Deo, P.; DePetris, M.; Doherty, S.; Ghribi, A.; Gradziel, M.; Kuzmin, L.; Maffei, B.; Mahashabde, S.; Masi, S.; Murphy, J. A.; Noviello, F.; O'Sullivan, C.; Pagano, L.; Piacentini, F.; Piat, M.; Pisano, G.; Robinson, M.; Stompor, R.; Tartari, A.; van der Vorst, M.; Verhoeve, P.

    2016-07-01

    The main objective of this activity is to develop new focal plane coupling array concepts and technologies that optimise the coupling from reflector optics to the large number of detectors for next generation sub millimetre wave telescopes particularly targeting measurement of the polarization of the cosmic microwave background (CMB). In this 18 month TRP programme the consortium are tasked with developing, manufacturing and experimentally verifying a prototype multichroic pixel which would be suitable for the large focal plane arrays which will be demanded to reach the required sensitivity of future CMB polarization missions. One major development was to have multichroic operation to potentially reduce the required focal plane size of a CMB mission. After research in the optimum telescope design and definition of requirements based on a stringent science case review, a number of compact focal plane architecture concepts were investigated before a pixel demonstrator consisting of a planar mesh lens feeding a backend Resonant Cold Electron Bolometer RCEB for filtering and detection of the dual frequency signal was planned for manufacture and test. In this demonstrator the frequencies of the channels was chosen to be 75 and 105 GHz in the w band close to the peak CMB signal. In the next year the prototype breadboards will be developed to test the beams produced by the manufactured flat lenses fed by a variety of antenna configurations and the spectral response of the RCEBs will also be verified.

  16. Molecular dynamics simulations of ultrathin water film confined between flat diamond plates

    Directory of Open Access Journals (Sweden)

    A.V. Khomenko

    2008-12-01

    Full Text Available Molecular dynamics simulations of ultrathin water film confined between atomically flat rigid diamond plates are described. Films with thickness of one and two molecular diameters are concerned and TIP4P model is used for water molecules. Dynamical and equilibrium characteristics of the system for different values of the external load and shear force are investigated. An increase of the external load causes the transition of the film to a solidlike state. This is manifested in a decrease of the diffusion constant and in the ordering of the liquid molecules into quasidiscrete layers. For two-layer film under high loads, the molecules also become ordered parallel to the surfaces. Time dependencies of the friction force and the changes of its average value with the load are obtained. In general, the behaviour of the studied model is consistent with the experimental results obtained for simple liquids with spherical molecules.

  17. Propagation of plane waves in a rotating magneto-thermoelastic fiber-reinforced medium under G-N theory

    Directory of Open Access Journals (Sweden)

    Maity N.

    2017-06-01

    Full Text Available The article is concernedwith the possibility of plane wave propagation in a rotating elastic medium under the action of magnetic and thermal fields. The material is assumed to be fibre-reinforced with increased stiffness, strength and load bearing capacity. Green and Nagdhi’s concepts of generalized thermoelastic models II and III have been followed in the governing equations expressed in tensor notation. The effects of various parameters of the applied fields on the plane wave velocity have been shown graphically.

  18. Buckling analysis for anisotropic laminated plates under combined inplane loads

    Science.gov (United States)

    Viswanathan, A. V.; Tamekuni, M.; Baker, L. L.

    1974-01-01

    The buckling analysis presented considers rectangular flat or curved general laminates subjected to combined inplane normal and shear loads. Linear theory is used in the analysis. All prebuckling deformations and any initial imperfections are ignored. The analysis method can be readily extended to longitudinally stiffened structures subjected to combined inplane normal and shear loads.

  19. The Formation and Evolution of Shear Bands in Plane Strain Compressed Nickel-Base Superalloy

    Directory of Open Access Journals (Sweden)

    Bin Tang

    2018-02-01

    Full Text Available The formation and evolution of shear bands in Inconel 718 nickel-base superalloy under plane strain compression was investigated in the present work. It is found that the propagation of shear bands under plane strain compression is more intense in comparison with conventional uniaxial compression. The morphology of shear bands was identified to generally fall into two categories: in “S” shape at severe conditions (low temperatures and high strain rates and “X” shape at mild conditions (high temperatures and low strain rates. However, uniform deformation at the mesoscale without shear bands was also obtained by compressing at 1050 °C/0.001 s−1. By using the finite element method (FEM, the formation mechanism of the shear bands in the present study was explored for the special deformation mode of plane strain compression. Furthermore, the effect of processing parameters, i.e., strain rate and temperature, on the morphology and evolution of shear bands was discussed following a phenomenological approach. The plane strain compression attempt in the present work yields important information for processing parameters optimization and failure prediction under plane strain loading conditions of the Inconel 718 superalloy.

  20. Flat-space singletons

    International Nuclear Information System (INIS)

    Fronsdal, C.

    1987-01-01

    Singletons exist, as particles and as local fields, only in 3+2 de Sitter space. Their kinematical properties make them natural candidates for constituents of massless fields, and perhaps for quarks. It is interesting to find out how to describe this type of compositeness in flat space. A theory of interacting singleton fields in de Sitter space is now available, and in this paper we study the flat-space limit of the Green's functions of that theory. The flat-space limit is an autonomous theory of Green's functions, but is not an operator field theory. The three-point function is calculated and its flat-space limit is found to reveal glimpses of a physical interpretation. Causal and spectral properties are in accord with the tenets of axiomatic field theory. The theory is a generalization of local field theory, in which photons appear as composite objects although the physical S matrix is the same as in conventional QED

  1. Gravitational Couplings for Gop-Planes and y-Op-Planes

    OpenAIRE

    Giraldo, Juan Fernando Ospina

    2000-01-01

    The Wess-Zumino actions for generalized orientifold planes (GOp-planes) and y-deformed orientifold planes (yOp-planes) are presented and two series power expantions are realized from whiches processes that involves GOp-planes,yOp-planes, RR-forms, gravitons and gaugeons, are obtained. Finally non-standard GOp-planes and y-Op-planes are showed.

  2. Assessment of effect of reinforcement on plastic limit load of branch junction

    International Nuclear Information System (INIS)

    Myung, Man Sik; Kim, Yun Jae; Yoon, Ki Bong

    2009-01-01

    The present work provides effects of reinforcement shape and area on plastic limit loads of branch junctions, based on detailed three-dimensional finite element limit analysis and small strain FE limit analyses assuming elastic-perfectly plastic material behavior. Three types of loading are considered; internal pressure, in-plane bending on the branch pipe and in-plane bending on the run pipe. It is found that reinforcement is the most effective in the case when (in-plane/out-of-plane) bending is applied to the branch pipe. When bending is applied to the run pipe, reinforcement is less effective, compared to the case when bending is applied to the branch pipe. The reinforcement effect is the least effective for internal pressure.

  3. Design charts for arbitrarily pivoted, liquid-lubricated flat-sector-pad thrust bearing

    Science.gov (United States)

    Etsion, I.

    1977-01-01

    A flat, sector-shaped geometry for a liquid-lubricated thrust bearing is analyzed considering both the pitch and roll of the pad. Results are presented in design charts that enable a direct approach to the design of point- and line-pivoted, tilting pad bearings. A comparison is made with the Mitchell bearing approximation and it is found that this approximation always overestimates load capacity.

  4. 40 CFR 230.42 - Mud flats.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 24 2010-07-01 2010-07-01 false Mud flats. 230.42 Section 230.42... Aquatic Sites § 230.42 Mud flats. (a) Mud flats are broad flat areas along the sea coast and in coastal rivers to the head of tidal influence and in inland lakes, ponds, and riverine systems. When mud flats...

  5. Imaging off-plane shear waves with a two-dimensional phononic crystal lens

    International Nuclear Information System (INIS)

    Chiang Chenyu; Luan Pigang

    2010-01-01

    A two-dimensional flat phononic crystal (PC) lens for focusing off-plane shear waves is proposed. The lens consists of a triangular lattice hole-array, embedded in a solid matrix. The self-collimation effect is employed to guide the shear waves propagating through the lens along specific directions. The Dirichlet-to-Neumann maps (DtN) method is employed to calculate the band structure of the PC, which can avoid the problems of bad convergence and fake bands automatically in the void-solid PC structure. When the lens is illuminated by the off-plane shear waves emanating from a point source, a subwavelength image appears in the far-field zone. The imaging characteristics are investigated by calculating the displacement fields explicitly using the multiple scattering method, and the results are in good agreement with the ray-trace predictions. Our results may provide insights for designing new phononic devices.

  6. Research of Short-range Missile Motion in Terms of Different Wind Loads

    Directory of Open Access Journals (Sweden)

    A. N. Klishin

    2015-01-01

    Full Text Available When modeling the aircraft motion it is advisable to choose a particular model of the Earth, depending both on the task and on the required accuracy of calculation. The article describes various models of the Earth, such as the flat Earth with a plane-parallel field of gravity, spherical and non-rotating Earth with a plane-parallel field of gravity, spherical and non-rotating Earth with a central gravitational field, spherical and non-rotating Earth, taking into account the polar flattening of the Earth, spherical Earth based compression and polar daily rotation. The article also considers the influence of these models on the motion of the selected aircraft.To date, there is technical equipment to provide highly accurate description of the Earthshape, gravitational field, etc. The improved accuracy of the Earth model description results in more correct description of the trajectory and motion parameters of a ballistic missile. However, for short ranges (10-20 km this accuracy is not essential, and, furthermore, it increases time of calculation. Therefore, there is a problem of choosing the optimal description of the Earth parameters.The motion in the model of the Earth, which takes into account a daily rotation of the planet and polar flattening, is discussed in more detail, and the geographical latitude impact on coordinates of the points of fall of a ballistic missile is analyzed on the basis of obtained graphs.The article individually considers a problem of the wind effect on the aircraft motion and defines dependences of the missile motion on the parameters of different wind loads, such as wind speed and height of its action.A mathematical model of the missile motion was built and numerically integrated, using the Runge-Kutta 4th order method, for implementation and subsequent analysis.Based on the analysis of the calculation results in the abovementioned models of the Earth, differences in impact of these models on the parameters of the

  7. Behavior of masonry strengthened infilled reinforced concrete frames under in-plane load

    Directory of Open Access Journals (Sweden)

    Lila M. Abdel-Hafez

    2015-08-01

    The ductility of infilled frame strengthened with ferrocement was the best of all strengthened frames, while strengthening with GFRP increases its ultimate load carrying capacity but reduces its ductility.

  8. An epidemiologic study of flat foot in Iran

    Directory of Open Access Journals (Sweden)

    Alamy B

    1997-07-01

    Full Text Available Among 880 studied feet of 7-14 years old children 6.9% suffered mild and severe flat foot. 53.8% of the affected children were symptomatic. As 40.1% of the general population experiences symptoms, in a small proportion of affected persons, symptoms are due to flat foot. The prevalence of symptoms rises with increasing severity of the disorder. In this article, reviewing general aspects of flat food, prevalence and other epidemiological aspects of flat foot for the first time in Iran have been presented

  9. Flat-panel detectors in x-ray diagnosis

    International Nuclear Information System (INIS)

    Spahn, M.; Heer, V.; Freytag, R.

    2003-01-01

    For all application segments X-ray systems with flat-panel detectors increasingly enter the market. In digital radiography, mammography and cardiologic angiography flat-panel detectors are already well established while they are made ready for market introduction in general angiography and fluoroscopy. Two flat-panel detector technologies are available. One technology is based on an indirect conversion process of X-rays while the other one uses a direct conversion method.For radiography and dynamic applications the indirect method provides substantial advantages, while the direct method has some benefits for mammography. In radiography and mammography flat-panel detectors lead to clear improvements with respect to workflow, image quality and dose reduction potentials. These improvements are fostered by the immediate availability of the image, the large dynamic range and the high sensitivity to X-rays. New applications and the use of complex image processing algorithms have the potential to enlarge the present diagnostic range of applications.Up to now, image intensifiers are still the well-established technology for angiography and fluoroscopy. Nevertheless flat-panel detectors begin to enter this field, especially in cardiologic angiography.Characteristics of flat-panel detectors such as the availability of distortion-free images, the excellent contrast resolution, the large dynamic range, the high sensitivity to X-rays and the usability in magnetic fields provide the basis for improved and new diagnostic and interventional methods. (orig.) [de

  10. Glenohumeral contact force during flat and topspin tennis forehand drives.

    Science.gov (United States)

    Blache, Yoann; Creveaux, Thomas; Dumas, Raphaël; Chèze, Laurence; Rogowski, Isabelle

    2017-03-01

    The primary role of the shoulder joint in tennis forehand drive is at the expense of the loadings undergone by this joint. Nevertheless, few studies investigated glenohumeral (GH) contact forces during forehand drives. The aim of this study was to investigate GH compressive and shearing forces during the flat and topspin forehand drives in advanced tennis players. 3D kinematics of flat and topspin forehand drives of 11 advanced tennis players were recorded. The Delft Shoulder and Elbow musculoskeletal model was implemented to assess the magnitude and orientation of GH contact forces during the forehand drives. The results showed no differences in magnitude and orientation of GH contact forces between the flat and topspin forehand drives. The estimated maximal GH contact force during the forward swing phase was 3573 ± 1383 N, which was on average 1.25 times greater than during the follow-through phase, and 5.8 times greater than during the backswing phase. Regardless the phase of the forehand drive, GH contact forces pointed towards the anterior-superior part of the glenoid therefore standing for shearing forces. Knowledge of GH contact forces during real sport tasks performed at high velocity may improve the understanding of various sport-specific adaptations and causative factors for shoulder problems.

  11. Fluidelastic instability of a tube bundle preferentially flexible in the flow direction to simulate u-bend in-plane vibration

    International Nuclear Information System (INIS)

    Pettigrew, M.; Violette, R.; Mureithi, N.

    2006-01-01

    Almost all the available data about fluidelastic instability of heat exchanger tube bundles concerns tubes that are axisymetrically flexible. In those cases, the instability is found to be mostly in the direction transverse to the flow. Thus, the direction parallel to the flow has raised less concern in terms of bundle stability. However, the flat bar supports used in steam generators for preventing U-tubes vibration may not be as effective in the in-plane direction as in the out-of-plane direction. The possibility that fluidelastic instability can develop in the flow direction must then be assessed. In the present work, tests were done to study the fluidelastic instability of a cluster of seven tubes much more flexible in the flow direction than in the lift direction. The array configuration is rotated triangular with a pitch to diameter ratio of 1.5. The array was subjected to two-phase (air-water) cross flow. Well-defined fluidelastic instabilities were observed albeit at somewhat higher flow velocities than for axisymetrically flexible tubes. This so far unknown phenomenon may be of concern if some supports become ineffective in the in-plane direction. (author)

  12. Flat-port connectors

    KAUST Repository

    Alrashed, Mohammed

    2017-05-26

    Disclosed are various embodiments for connectors used with electronic devices, such as input and/or output ports to connect peripheral equipment or accessories. More specifically, various flat-port are provided that can be used in place of standard connectors including, but not limited to, audio jacks and Universal Serial Bus (USB) ports. The flat-port connectors are an alternate connection design to replace the traditional receptacle port (female-port), making the device more sealed creation more dust and water resistant. It is unique in the way of using the outer surfaces of the device for the electrical connection between the ports. Flat-port design can allow the manufacture of extremely thin devices by eliminating the side ports slots that take a lot of space and contribute to the increase thickness of the device. The flat-port receptacle improves the overall appearance of the device and makes it more resistant to dust and water.

  13. Creating flat design websites

    CERN Document Server

    Pratas, Antonio

    2014-01-01

    This book contains practical, step-by-step tutorials along with plenty of explanation about designing your flat website. Each section is introduced sequentially, building up your web design skills and completing your website.Creating Flat Design Websites is ideal for you if you are starting on your web development journey, but this book will also benefit seasoned developers wanting to start developing in flat.

  14. Characterization of counter-rotating streamwise vortices in flat rectangular channel with one-sided wavy wall

    KAUST Repository

    Bouremel, Yann

    2016-11-01

    Particle Image Velocimetry (PIV) has been used to characterize the evolution of counter-rotating streamwise vortices in a rectangular channel with one sided wavy surface. The vortices were created by a uniform set of saw-tooth carved over the leading edge of a flat plate at the entrance of a flat rectangular channel with one-sided wavy wall. PIV measurements were taken over the spanwise and streamwise planes at different locations and at Reynolds number of 2500. Two other Reynolds numbers of 2885 and 3333 have also been considered for quantification purpose. Pairs of counter-rotating streamwise vortices have been shown experimentally to be centred along the spanwise direction at the saw-tooth valley where the vorticity ωz=0ωz=0. It has also been found that the vorticity ωzωz of the pairs of counter-rotating vortices decreases along the streamwise direction, and increases with the Reynolds number. Moreover, different quantifications of such counter-rotating vortices have been discussed such as their size, boundary layer, velocity profile and vorticity. The current study shows that the mixing due to the wall shear stress of counter-rotating streamwise vortices as well as their averaged viscous dissipation rate of kinetic energy decrease over flat and adverse pressure gradient surfaces while increasing over favourable pressure gradient surfaces. Finally, it was also demonstrated that the main direction of stretching is orientated at around 45° with the main flow direction.

  15. Characterization of counter-rotating streamwise vortices in flat rectangular channel with one-sided wavy wall

    KAUST Repository

    Bouremel, Yann; Mitsudharmadi, Hatsari; Budiman, Alexander C.; Winoto, Sonny H.

    2016-01-01

    Particle Image Velocimetry (PIV) has been used to characterize the evolution of counter-rotating streamwise vortices in a rectangular channel with one sided wavy surface. The vortices were created by a uniform set of saw-tooth carved over the leading edge of a flat plate at the entrance of a flat rectangular channel with one-sided wavy wall. PIV measurements were taken over the spanwise and streamwise planes at different locations and at Reynolds number of 2500. Two other Reynolds numbers of 2885 and 3333 have also been considered for quantification purpose. Pairs of counter-rotating streamwise vortices have been shown experimentally to be centred along the spanwise direction at the saw-tooth valley where the vorticity ωz=0ωz=0. It has also been found that the vorticity ωzωz of the pairs of counter-rotating vortices decreases along the streamwise direction, and increases with the Reynolds number. Moreover, different quantifications of such counter-rotating vortices have been discussed such as their size, boundary layer, velocity profile and vorticity. The current study shows that the mixing due to the wall shear stress of counter-rotating streamwise vortices as well as their averaged viscous dissipation rate of kinetic energy decrease over flat and adverse pressure gradient surfaces while increasing over favourable pressure gradient surfaces. Finally, it was also demonstrated that the main direction of stretching is orientated at around 45° with the main flow direction.

  16. Ultrasound-Guided Out-of-Plane vs. In-Plane Interscalene Catheters: A Randomized, Prospective Study.

    Science.gov (United States)

    Schwenk, Eric S; Gandhi, Kishor; Baratta, Jaime L; Torjman, Marc; Epstein, Richard H; Chung, Jaeyoon; Vaghari, Benjamin A; Beausang, David; Bojaxhi, Elird; Grady, Bernadette

    2015-12-01

    Continuous interscalene blocks provide excellent analgesia after shoulder surgery. Although the safety of the ultrasound-guided in-plane approach has been touted, technical and patient factors can limit this approach. We developed a caudad-to-cephalad out-of-plane approach and hypothesized that it would decrease pain ratings due to better catheter alignment with the brachial plexus compared to the in-plane technique in a randomized, controlled study. To compare an out-of-plane interscalene catheter technique to the in-plane technique in a randomized clinical trial. Eighty-four patients undergoing open shoulder surgery were randomized to either the in-plane or out-of-plane ultrasound-guided continuous interscalene technique. The primary outcome was VAS pain rating at 24 hours. Secondary outcomes included pain ratings in the recovery room and at 48 hours, morphine consumption, the incidence of catheter dislodgments, procedure time, and block difficulty. Procedural data and all pain ratings were collected by blinded observers. There were no differences in the primary outcome of median VAS pain rating at 24 hours between the out-of-plane and in-plane groups (1.50; IQR, [0 - 4.38] vs. 1.25; IQR, [0 - 3.75]; P = 0.57). There were also no differences, respectively, between out-of-plane and in-plane median PACU pain ratings (1.0; IQR, [0 - 3.5] vs. 0.25; IQR, [0 - 2.5]; P = 0.08) and median 48-hour pain ratings (1.25; IQR, [1.25 - 2.63] vs. 0.50; IQR, [0 - 1.88]; P = 0.30). There were no differences in any other secondary endpoint. Our out-of-plane technique did not provide superior analgesia to the in-plane technique. It did not increase the number of complications. Our technique is an acceptable alternative in situations where the in-plane technique is difficult to perform.

  17. Active Tuned Mass Dampers for Control of In-Plane Vibrations of Wind Turbine Blades

    DEFF Research Database (Denmark)

    Fitzgerald, B.; Basu, Biswajit; Nielsen, Søren R.K.

    2013-01-01

    matrices. The aim of this paper is to determine whether ATMDs could be used to reduce in-plane blade vibrations in wind turbines with better performance than compared with their passive counterparts. A Euler–Lagrangian wind turbine mathematical model based on energy formulation was developed......, centrifugal, and turbulent aerodynamic loadings. Investigations show promising results for the use of ATMDs in the vibration control of wind turbine blades.......This paper investigates the use of active tuned mass dampers (ATMDs) for the mitigation of in-plane vibrations in rotating wind turbine blades. The rotating wind turbine blades with tower interaction represent time-varying dynamical systems with periodically varying mass, stiffness, and damping...

  18. Frontal plane stability following UKA in a biomechanical study.

    Science.gov (United States)

    Heyse, Thomas J; Tucker, Scott M; Rajak, Yogesh; Kia, Mohammad; Lipman, Joseph D; Imhauser, Carl W; Westrich, Geoffrey H

    2015-06-01

    Function and kinematics following unicondylar knee arthroplasty (UKA) have been reported to be close to the native knee. Gait, stair climbing and activities of daily living expose the knee joint to a combination of varus and valgus moments. Replacement of the medial compartment via UKA is likely to change the physiologic knee stability and its ability to respond to varus and valgus moments. It was hypothesized that UKA implantation would stiffen the knee and decrease range of motion in the frontal plane. Six fresh frozen cadaver knees were prepared and mounted in a six-degrees-of-freedom robot. An axial load of 200 N was applied with the knee in 15°, 45° and 90° of flexion. Varus and valgus moments were added, respectively, before and after implantation of medial UKA. Tests were than redone with a thicker polyethylene inlay to simulate overstuffing of the medial compartment. Range of motion in the frontal plane and the tibial response to moments were recorded via the industrial robot. The range of motion in the frontal plane was decreased with both, balanced and overstuffed UKA and shifted towards valgus. When exposed to valgus moments, knees following UKA were stiffer in comparison with the native knee. The effect was even more pronounced with medial overstuffing. In UKA, the compressive anatomy is replaced by much stiffer components. This lack of medial compression and relative overstuffing leads to a tighter medial collateral ligament. This drives the trend towards a stiffer joint as documented by a decrease in frontal plane range of motion. Overstuffing should strictly be avoided when performing UKA.

  19. Reduced In-Plane, Low Frequency Helicopter Noise of an Active Flap Rotor

    Science.gov (United States)

    Sim, Ben W.; Janakiram, Ram D.; Barbely, Natasha L.; Solis, Eduardo

    2009-01-01

    Results from a recent joint DARPA/Boeing/NASA/Army wind tunnel test demonstrated the ability to reduce in-plane, low frequency noise of the full-scale Boeing-SMART rotor using active flaps. Test data reported in this paper illustrated that acoustic energy in the first six blade-passing harmonics could be reduced by up to 6 decibels at a moderate airspeed, level flight condition corresponding to advance ratio of 0.30. Reduced noise levels were attributed to selective active flap schedules that modified in-plane blade airloads on the advancing side of the rotor, in a manner, which generated counteracting acoustic pulses that partially offset the negative pressure peaks associated with in-plane, steady thickness noise. These favorable reduced-noise operating states are a strong function of the active flap actuation amplitude, frequency and phase. The associated noise reductions resulted in reduced aural detection distance by up to 18%, but incurred significant vibratory load penalties due to increased hub shear forces. Small reductions in rotor lift-to-drag ratios, of no more than 3%, were also measured

  20. Effect of ski mountaineering track on foot sole loading pattern.

    Science.gov (United States)

    Haselbacher, Matthias; Mader, Katharina; Werner, Maximiliane; Nogler, Michael

    2014-09-01

    Ski mountaineering is becoming a popular sport. The ascending techniques (tracks) can be divided into 3 different groups: flat field, direct ascent, and traversing. This study examines the relationship between different mechanical loads on the foot and the 4 different mountaineering ascending techniques. All subjects used the same pair of ski boots and the same skis while performing the 4 different ascending techniques. An in-shoe dynamic pressure measuring system was used to measure the mechanical load on the foot soles of each ski mountaineer. The foot sole was divided into 6 anatomic sections to measure the different loads in each section. Thirteen men with an average age of 29 years were enrolled in the study. The results showed small, not significant differences in the mechanical foot load in the flat field or in the direct ascent. The average mechanical foot load was highest on the valley side foot while traversing (179 kPa to 117 kPa). The higher load forces were in the medial ball of the foot and the longitudinal aspect of the foot side closer to the hill. The higher impact placed on the valley side foot and the concentration of force placed on the medial ball of the valley side foot suggested the influence of the track on the load pattern of the foot sole. This higher impact may result in upward forces that affect the force distribution in the ankle and knee joints. Copyright © 2014. Published by Elsevier Inc.

  1. Development and application of W/Cu flat-type plasma facing components at ASIPP

    Science.gov (United States)

    Li, Q.; Zhao, S. X.; Sun, Z. X.; Xu, Y.; Li, B.; Wei, R.; Wang, W. J.; Qin, S. G.; Shi, Y. L.; Xie, C. Y.; Wang, J. C.; Wang, X. L.; Missirlian, M.; Guilhem, D.; Liu, G. H.; Yang, Z. S.; Luo, G.-N.

    2017-12-01

    W/Cu flat-type plasma facing components (PFCs) were widely used in divertor of fusion device because of its advantages, such as low cost, light in weight and good machinability. However, it is very difficult to manufacture them due to the large mismatch between the thermo-mechanical properties of W and Cu. Institute of Plasma Physics, Chinese Academy of Sciences (ASIPP) has successfully developed W/Cu flat-type PFCs for EAST W/Cu divertor project by hot isostatic pressing (HIP) technology. This paper presents the development and application of W/Cu flat-type PFCs at ASIPP. The optimized manufacturing process is to cast pure copper onto the rear side of W tiles at temperature of 1200 °C firstly, and then to HIP the W/Cu tiles onto CuCrZr heat sink at temperature of 600 °C, pressure of 150 MPa and duration of 3 h. W/Cu flat-type testing mock-up for EAST survived 1000 cycles at heat load of 5 MW m-2 in high heat flux tests. And then ASIPP prepared two mock-ups for CEA’s tungsten environment in steady-state tokamak (WEST) project. One mock-up withstood successfully 302 cycles of 20 MW m-2, which are far beyond the design requirement. Since 2014, W/Cu flat-type PFCs were wildly used in EAST upper divertor as baffle and dome components which showed excellent performance in 2015 and 2016 campaigns. Given the success in EAST upper divertor, W/Cu flat-type concept is as well applied in the design of actively cooled Langmuir probes which will be mounted onto EAST divertor targets soon.

  2. Development and application of W/Cu flat-type plasma facing components at ASIPP

    International Nuclear Information System (INIS)

    Li, Q; Sun, Z X; Xu, Y; Li, B; Wei, R; Wang, W J; Xie, C Y; Wang, J C; Wang, X L; Yang, Z S; Luo, G-N; Zhao, S X; Qin, S G; Shi, Y L; Liu, G H; Missirlian, M; Guilhem, D

    2017-01-01

    W/Cu flat-type plasma facing components (PFCs) were widely used in divertor of fusion device because of its advantages, such as low cost, light in weight and good machinability. However, it is very difficult to manufacture them due to the large mismatch between the thermo-mechanical properties of W and Cu. Institute of Plasma Physics, Chinese Academy of Sciences (ASIPP) has successfully developed W/Cu flat-type PFCs for EAST W/Cu divertor project by hot isostatic pressing (HIP) technology. This paper presents the development and application of W/Cu flat-type PFCs at ASIPP. The optimized manufacturing process is to cast pure copper onto the rear side of W tiles at temperature of 1200 °C firstly, and then to HIP the W/Cu tiles onto CuCrZr heat sink at temperature of 600 °C, pressure of 150 MPa and duration of 3 h. W/Cu flat-type testing mock-up for EAST survived 1000 cycles at heat load of 5 MW m −2 in high heat flux tests. And then ASIPP prepared two mock-ups for CEA’s tungsten environment in steady-state tokamak (WEST) project. One mock-up withstood successfully 302 cycles of 20 MW m −2 , which are far beyond the design requirement. Since 2014, W/Cu flat-type PFCs were wildly used in EAST upper divertor as baffle and dome components which showed excellent performance in 2015 and 2016 campaigns. Given the success in EAST upper divertor, W/Cu flat-type concept is as well applied in the design of actively cooled Langmuir probes which will be mounted onto EAST divertor targets soon. (paper)

  3. Oscillating dipole layer facing a conducting plane: a classical analogue of the dynamical Casimir effect

    Energy Technology Data Exchange (ETDEWEB)

    Fosco, Cesar D. [Comision Nacional de Energia Atomica, Centro Atomico Bariloche, Instituto Balseiro, Bariloche (Argentina); Lombardo, Fernando C. [Ciudad Universitaria, Departamento de Fisica Juan Jose Giambiagi, FCEyN UBA y IFIBA CONICET-UBA, Facultad de Ciencias Exactas y Naturales, Buenos Aires (Argentina)

    2015-12-15

    We study the properties of the classical electromagnetic radiation produced by two physically different yet closely related systems, which may be regarded as classical analogues of the dynamical Casimir effect. They correspond to two flat, infinite, parallel planes, one of them static and imposing perfect-conductor boundary conditions, while the other performs a rigid oscillatory motion. The systems differ just in the electrical properties of the oscillating plane: one of them is just a planar dipole layer (representing, for instance, a small-width electret). The other, instead, has a dipole layer on the side which faces the static plane, but behaves as a conductor on the other side: this can be used as a representation of a conductor endowed with patch potentials (on the side which faces the conducting plane). We evaluate, in both cases, the dissipative flux of energy between the system and its environment, showing that, at least for small mechanical oscillation amplitudes, it can be written in terms of the dipole layer autocorrelation function. We show that there are resonances as a function of the frequency of the mechanical oscillation. (orig.)

  4. Oscillating dipole layer facing a conducting plane: a classical analogue of the dynamical Casimir effect

    International Nuclear Information System (INIS)

    Fosco, Cesar D.; Lombardo, Fernando C.

    2015-01-01

    We study the properties of the classical electromagnetic radiation produced by two physically different yet closely related systems, which may be regarded as classical analogues of the dynamical Casimir effect. They correspond to two flat, infinite, parallel planes, one of them static and imposing perfect-conductor boundary conditions, while the other performs a rigid oscillatory motion. The systems differ just in the electrical properties of the oscillating plane: one of them is just a planar dipole layer (representing, for instance, a small-width electret). The other, instead, has a dipole layer on the side which faces the static plane, but behaves as a conductor on the other side: this can be used as a representation of a conductor endowed with patch potentials (on the side which faces the conducting plane). We evaluate, in both cases, the dissipative flux of energy between the system and its environment, showing that, at least for small mechanical oscillation amplitudes, it can be written in terms of the dipole layer autocorrelation function. We show that there are resonances as a function of the frequency of the mechanical oscillation. (orig.)

  5. In-plane and out-of-plane emission of nuclear matter in Au+Au collisions

    International Nuclear Information System (INIS)

    Bastid, N.; Dupieux, P.; Ramillien, V.; Alard, J.P.; Amouroux, V.; Berger, L.; Boussange, S.; Fraysse, L.; Ibnouzahir, M.; Montarou, G.

    1995-01-01

    Collective flow effects in Au (E/A = 150 to 800 MeV) on Au collisions measured with the phase I setup of the FOPI detector at GSI - Darmstadt are presented. Directed side ward flow is studied, by the mean transverse momentum in the reaction plane x (y)>, without reaction plane reconstruction. A more quantitative measurement of the global amount of directed side ward flow is also made and some comparisons with the predictions of different QMD versions are given. Experimental results concerning the preferential emission of particles in a direction perpendicular to the reaction plane are also presented. Azimuthal distributions of fragments around the beam axis, with respect to the reaction plane are studied in the mid-rapidity region and the associated R N (out-of-plane/in-plane ratios) are extracted. The dependence of R N upon transverse momentum, centrality, fragment charge and bombarding energy is studied. (authors). 24 refs., 10 figs., 1 tab

  6. Lower extremity energy absorption and biomechanics during landing, part II: frontal-plane energy analyses and interplanar relationships.

    Science.gov (United States)

    Norcross, Marc F; Lewek, Michael D; Padua, Darin A; Shultz, Sandra J; Weinhold, Paul S; Blackburn, J Troy

    2013-01-01

    Greater sagittal-plane energy absorption (EA) during the initial impact phase (INI) of landing is consistent with sagittal-plane biomechanics that likely increase anterior cruciate ligament (ACL) loading, but it does not appear to influence frontal-plane biomechanics. We do not know whether frontal-plane INI EA is related to high-risk frontal-plane biomechanics. To compare biomechanics among INI EA groups, determine if women are represented more in the high group, and evaluate interplanar INI EA relationships. Descriptive laboratory study. Research laboratory. Participants included 82 (41 men, 41 women; age = 21.0 ± 2.4 years, height = 1.74 ± 0.10 m, mass = 70.3 ± 16.1 kg) healthy, physically active volunteers. We assessed landing biomechanics with an electromagnetic motion-capture system and force plate. We calculated frontal- and sagittal-plane total, hip, knee, and ankle INI EA. Total frontal-plane INI EA was used to create high, moderate, and low tertiles. Frontal-plane knee and hip kinematics, peak vertical and posterior ground reaction forces, and peak internal knee-varus moment (pKVM) were identified and compared across groups using 1-way analyses of variance. We used a χ (2) analysis to evaluate male and female allocation to INI EA groups. We used simple, bivariate Pearson product moment correlations to assess interplanar INI EA relationships. The high-INI EA group exhibited greater knee valgus at ground contact, hip adduction at pKVM, and peak hip adduction than the low-INI EA group (P .05). Greater frontal-plane INI EA was associated with less favorable frontal-plane biomechanics that likely result in greater ACL loading. Women were more likely than men to use greater frontal-plane INI EA. The magnitudes of sagittal- and frontal-plane INI EA were largely independent.

  7. Allowable heat load on the edge of the ITER first wall panel beryllium flat tiles

    Directory of Open Access Journals (Sweden)

    R. Mitteau

    2017-08-01

    Full Text Available Plasma facing components are usually qualified to a given heat load density applied at the top face of the armour tiles with normal incidence angle. When employed in tokamak fusion machines, heat loading on the tile sides is possible due to optimised shaping, that doesn't provide edge shadowing for all design situations. An edge heat load may occur both at the tile and component scales. The edge load needs to be controlled and quantified. The adequate control of edge heat loads is especially critical for water cooled components that uses armour tiles which are bonded to the heat sink, for ensuring the long-term integrity of the tile bonding. An edge heat load allowance criterion of 10% of the top heat load is proposed. The 10% criterion is supported by experimental heat flux tests.

  8. Relative potentials of concentrating and two-axis tracking flat-plate photovoltaic arrays for central-station applications

    Science.gov (United States)

    Borden, C. S.; Schwartz, D. L.

    1984-01-01

    The purpose of this study is to assess the relative economic potentials of concenrating and two-axis tracking flat-plate photovoltaic arrays for central-station applications in the mid-1990's. Specific objectives of this study are to provide information on concentrator photovoltaic collector probabilistic price and efficiency levels to illustrate critical areas of R&D for concentrator cells and collectors, and to compare concentrator and flat-plate PV price and efficiency alternatives for several locations, based on their implied costs of energy. To deal with the uncertainties surrounding research and development activities in general, a probabilistic assessment of commercially achievable concentrator photovoltaic collector efficiencies and prices (at the factory loading dock) is performed. The results of this projection of concentrator photovoltaic technology are then compared with a previous flat-plate module price analysis (performed early in 1983). To focus this analysis on specific collector alternatives and their implied energy costs for different locations, similar two-axis tracking designs are assumed for both concentrator and flat-plate options.

  9. MATHEMATICAL MODELING OF HEAT EXCHANGE IN DIRECT FLAT CHANNELS AND DIRECT ROUND PIPES WITH ROUGH WALLS UNDER THE SYMMETRIC HEAT SUPPLY

    Directory of Open Access Journals (Sweden)

    I E. Lobanov

    2017-01-01

    Full Text Available Objectives. The aim of present work was to carry out mathematical modelling of heat transfer with symmetrical heating in flat channels and round pipes with rough walls.Methods. The calculation was carried out using the L'Hôpital-Bernoulli's method. The solution of the problem of intensified heat transfer in a round tube with rough walls was obtained using the Lyon's integral.Results. Different from existing theories, a methodology of theoretical computational heat transfer determination for flat rough channels and round pipes with rough walls is developed on the basis of the principle of full viscosity superposition in a turbulent boundary layer. The analysis of the calculated heat transfer and hydroresistivity values for flat rough channels and round rough pipes shows that the increase in heat transfer is always less than the corresponding increase in hydraulic resistance, which is a disadvantage as compared to channels with turbulators, with all else being equal. The results of calculating the heat transfer for channels with rough walls in an extended range of determinant parameters, which differ significantly from the corresponding data for the channels with turbulators, determine the level of heat exchange intensification.Conclusion. An increase in the calculated values of the relative average heat transfer Nu/NuGL for flat rough channels and rough pipes with very high values of the relative roughness is significantly contributed by both an increase in the relative roughness height and an increase in the Reynolds number Re. In comparison with empirical dependencies, the main advantage of solutions for averaged heat transfer in rough flat channels and round pipes under symmetrical thermal load obtained according to the developed theory is that they allow the calculation of heat exchange in rough pipes to be made in the case of large and very large relative heights of roughness protrusions, including large Reynolds numbers, typical for pipes

  10. An experimental study of an explosively driven flat plate launcher

    Science.gov (United States)

    Rae, Philip; Haroz, Erik; Armstrong, Chris; Perry, Lee; M Division Team

    2017-06-01

    For some upcoming experiments it is desired to impact a large explosive assembly with one or more moderate diameter flat metal plates traveling at high velocity (2-3 km s-1). The time of arrival of these plates will need to carefully controlled and delayed (i.e. the time(s) of arrival known to approximately a microsecond). For this reason, producing a flyer plate from more traditional gun assemblies is not possible. Previous researchers have demonstrated the ability to throw reasonably flat metal flyers from the so-called Forest flyer geometry. The defining characteristics of this design are a carefully controlled reduction in explosive area from a larger explosive plane-wave-lens and booster pad to a smaller flyer plate to improve the planarity of the drive available and an air gap between the explosive booster and the plate to reduce the peak tensile stresses generated in the plate to suppress spalling. This experimental series comprised a number of different design variants and plate and explosive drive materials. The aim was to calibrate a predictive computational modeling capability on this kind of system in preparation for later more radical design ideas best tested in a computer before undertaking the expensive business of construction.

  11. The effect of oblique angle of sound incidence, realistic edge conditions, curvature and in-plane panel stresses on the noise reduction characteristics of general aviation type panels

    Science.gov (United States)

    Grosveld, F.; Lameris, J.; Dunn, D.

    1979-01-01

    Experiments and a theoretical analysis were conducted to predict the noise reduction of inclined and curved panels. These predictions are compared to the experimental results with reasonable agreement between theory and experiment for panels under an oblique angle of sound incidence. Theoretical as well as experimental results indicate a big increase in noise reduction when a flat test panel is curved. Further curving the panel slightly decreases the noise reduction. Riveted flat panels are shown to give a higher noise reduction in the stiffness-controlled frequency region, while bonded panels are superior in this region when the test panel is curved. Experimentally measured noise reduction characteristics of flat aluminum panels with uniaxial in-plane stresses are presented and discussed. These test results indicate an important improvement in the noise reduction of these panels in the frequency range below the fundamental panel/cavity frequency.

  12. Standard guide for measuring the wear volumes of piston ring segments run against flat coupons in reciprocating wear tests

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    2011-01-01

    1.1 This guide covers and describes a profiling method for use accurately measuring the wear loss of compound-curved (crowned) piston ring specimens that run against flat counterfaces. It does not assume that the wear scars are ideally flat, as do some alternative measurement methods. Laboratory-scale wear tests have been used to evaluate the wear of materials, coatings, and surface treatments that are candidates for piston rings and cylinder liners in diesel engines or spark ignition engines. Various loads, temperatures, speeds, lubricants, and durations are used for such tests, but some of them use a curved piston ring segment as one sliding partner and a flat or curved specimen (simulating the cylinder liner) as its counterface. The goal of this guide is to provide more accurate wear measurements than alternative approaches involving weight loss or simply measuring the length and width of the wear marks. 1.2 This standard does not purport to address all of the safety concerns, if any, associated with its ...

  13. New progressive technology of flat gears processing development

    Directory of Open Access Journals (Sweden)

    Михайло Володимирович Маргуліс

    2015-11-01

    Full Text Available Relevant scientific and technical problems in relation to mechanical engineering is development of new technological processes that make it possible to achieve high accuracy and durability of machine parts that meet the requirements imposed on them. So it is important to develop a new method to make a flat gear teeth by plastic deformation of the ingot. The article deals with the actual problem of improving productivity and quality of plane wheels teeth that are widely used in advanced wave, planetary and other transmissions. A progressive method to produce flat gear teeth gear by plastic deformation of the ingot with two knurl rollers alternately moving reciprocally in the direction not intersecting the axis of the ingot mounting surface has been described in the article. The working surface of the rollers corresponds to the resulting shape of the teeth. The schemes of the teeth installing and knurling have been shown. The necessary material and the heat treatment of the knurling tools have been described. Its use will significantly increase the wear resistance of the working surfaces of the teeth and their durability as well as to increase productivity and its manufacturing costs. The material of the rollers is BC15steel. The surface layer of the knurling tools was subjected to nitration, surface hardness being up to 65 HRC. Knurling is made in the5236P shaper suited for this purpose

  14. Wind inflow observation from load harmonics

    OpenAIRE

    Marta, Bertelè; Bottasso, Carlo L.; Cacciola, Stefano; Fabiano Daher Adegas,; Sara, Delport

    2017-01-01

    The wind field leaves its fingerprint on the rotor response. This fact can be exploited by using the rotor as a sensor: by looking at the rotor response, in the present case in terms of blade loads, one may infer the wind characteristics. This paper describes a wind state observer that estimates four wind parameters, namely the vertical and horizontal shears and the yaw and upflow misalignment angles, from out-of-plane and in-plane blade bending moments. The resulting observ...

  15. Modification of parabolic dish antenna pattern using two symmetrically placed circular flat plates

    Science.gov (United States)

    Thorpe, Glen C.

    1987-12-01

    This study aims to formulate a method of predicting the far field pattern of a parabolic dish antenna with two moveable flat plates mounted symmetrically on either side of the feed horn. The approach taken has been to first analyze the radiation pattern of the antenna with the disks at certain heights out from the surface of the dish. To do this the near-field radiation in amplitude and phase was measured over a plane surface in the near-field and the values were then transformed into the far field using a Fast Fourier Transform. Far field pattern values of the antenna were directly measured for each setting of the plates. The results obtained from the Fast Fourier Transform of the near field data were in good agreement with the values obtained by measurement. Finally, an approximate model of the antenna was developed and implemented as a computer program. This model, while relatively unsophisticated, provided some insights into the changes in the near field phase distribution caused by the moveable circular flat plates.

  16. Out-of-Plane Bending Properties of Out-of-Autoclave Thermosetting Prepregs during Forming Processes

    OpenAIRE

    Hassan A. Alshahrani; Mehdi H. Hojjati

    2016-01-01

    In order to predict and model wrinkling which is caused by out of plane deformation due to compressive loading in the plane of the material during composite prepregs forming, it is necessary to quantitatively understand the relative magnitude of the bending stiffness. This study aims to examine the bending properties of out-of-autoclave (OOA) thermosetting prepreg under vertical cantilever test condition. A direct method for characterizing the bending behavior of composite prepregs was develo...

  17. Design, fabrication and performance tests for a polymer-based flexible flat heat pipe

    International Nuclear Information System (INIS)

    Hsieh, Shou-Shing; Yang, Ya-Ru

    2013-01-01

    Highlights: ► Fabrication of a polymer-based flexible flat heat pipe. ► Bending angle of 15° will lead to a better thermal performance of the system. ► Powers higher than 12.67 W can be transferred/delivered. - Abstract: In this paper, we report on the novel design, fabrication and performance tests for a polymer-based flexible flat heat pipe (FHP) with a bending angle in the range of 15–90°. Each heat pipe is 4 mm thick, 20 mm wide and 80 mm long, with two layers of No. 250 copper mesh as the wicking material. A copper/silicone rubber hybrid structure is designed and fabricated to achieve the flexibility of the heat pipe. Thermal characteristics are measured and studied for de-ionized water under different working conditions. Experimental results reveal that a bending angle of 15° on the vertical plane has a better thermal performance than those of heat pipes with/without bending. In addition, a higher power of 12.67 W can be transferred/delivered

  18. Effect of reinforcement on plastic limit loads of branch junctions

    International Nuclear Information System (INIS)

    Kim, Yun-Jae; Myeong, Man-Sik; Yoon, Kee-Bong

    2009-01-01

    This paper provides effects of reinforcement shape and area on plastic limit loads of branch junctions under internal pressure and in-plane/out-of-plane bending, via detailed three-dimensional finite element limit analysis assuming elastic-perfectly plastic material behaviour. It is found that reinforcement is most effective when (in-plane/out-of-plane) bending is applied to the branch pipe. When bending is applied to the run pipe, reinforcement is less effective when bending is applied to the branch pipe. The reinforcement effect is the least effective for internal pressure.

  19. OPSquare : assessment of a novel flat optical data center network architecture under realistic data center traffic

    NARCIS (Netherlands)

    Miao, W.; Yan, F.; Raz, O.; Calabretta, N.

    2016-01-01

    The performances of OPSquare flat data-center network based on flow-controlled optical switches are investigated. Results show <1E-6 packet loss and <2µs end-to-end latency for 0.3 load when scaling to 40960 servers with 32×32 optical switches.

  20. Reinforced concrete membrane elements subjected to reversed cyclic in-plane shear stress

    International Nuclear Information System (INIS)

    Ohmori, N.; Tsubota, H.; Inoue, N.; Watanabe, S.; Kurihara, K.

    1987-01-01

    The response of reinforced concrete elements subjected to reversed cyclic in-plane shear stresses can be predicted by an analytical model, which considers equilibrium, compatibility and stress-strain relationships including hysteresis loop of unloading and reloading stages all expressed in terms of average stresses and average strains. The analytical results show that the dominant hysteretic behaviours in regard to decrease of stiffness during unloading, successive slip phenomena and restoration of compressive stiffness at the reloading stages are well simulated analytically. The results agree quite well with the observed behaviours. As for the envelope curve of the hysteretic response there remain the discrepancies that the stiffness and ultimate strength are a bit larger than the observed results, especially in the case of a panel with a large reinforcement ratio. Such descrepancies are also found in the predicted results of monotonic loading and more precise studies are necessary to evaluate more accurate envelope curves under not only reversed cyclic loading but also monotonic loading. (orig./HP)

  1. Creation of the {pi} angle standard for the flat angle measurements

    Energy Technology Data Exchange (ETDEWEB)

    Giniotis, V; Rybokas, M, E-mail: gi@ap.vtu.l, E-mail: MRybokas@gama.l [Department of Information Technologies, Vilnius Gediminas Technical University, Sauletekio al. 11, 10223 Vilnius-40 (Lithuania)

    2010-07-01

    Angle measurements are based mainly on multiangle prisms - polygons with autocollimators, rotary encoders for high accuracy and circular scales as the standards of the flat angle. Traceability of angle measurements is based on the standard of the plane angle - prism (polygon) calibrated at an appropriate accuracy. Some metrological institutions have established their special test benches (comparators) equipped with circular scales or rotary encoders of high accuracy and polygons with autocollimators for angle calibration purposes. Nevertheless, the standard (etalon) of plane angle - polygon has many restrictions for the transfer of angle unit - radian (rad) and other units of angle. It depends on the number of angles formed by the flat sides of the polygon that is restricted by technological and metrological difficulties related to the production and accuracy determination of the polygon. A possibility to create the standard of the angle equal to {pi} rad or half the circle or the full angle is proposed. It can be created by the circular scale with the rotation axis of very high accuracy and two precision reading instruments, usually, photoelectric microscopes (PM), placed on the opposite sides of the circular scale using the special alignment steps. A great variety of angle units and values can be measured and its traceability ensured by applying the third PM on the scale. Calibration of the circular scale itself and other scale or rotary encoder as well is possible using the proposed method with an implementation of {pi} rad as the primary standard angle. The method proposed enables to assure a traceability of angle measurements at every laboratory having appropriate environment and reading instruments of appropriate accuracy together with a rotary table with the rotation axis of high accuracy - rotation trajectory (runout) being in the range of 0.05 {mu}m. Short information about the multipurpose angle measurement test bench developed is presented.

  2. Reactively loaded arrays based on overlapping sub-arrays with flat-top radiation pattern

    NARCIS (Netherlands)

    Maximidis, R. T.; Smolders, A. B.; Toso, G.; Caratelli, D.

    2017-01-01

    The design of reactively-loaded antenna arrays featuring a pulse-shaped radiation pattern for limited scan-angle applications is presented. The use of the reactive loading allows reducing the complexity of the feeding structure, eliminating the need for complex overlapping beam-forming networks and

  3. Large Scale Applications Using FBG Sensors: Determination of In-Flight Loads and Shape of a Composite Aircraft Wing

    Directory of Open Access Journals (Sweden)

    Matthew J. Nicolas

    2016-06-01

    Full Text Available Technological advances have enabled the development of a number of optical fiber sensing methods over the last few years. The most prevalent optical technique involves the use of fiber Bragg grating (FBG sensors. These small, lightweight sensors have many attributes that enable their use for a number of measurement applications. Although much literature is available regarding the use of FBGs for laboratory level testing, few publications in the public domain exist of their use at the operational level. Therefore, this paper gives an overview of the implementation of FBG sensors for large scale structures and applications. For demonstration, a case study is presented in which FBGs were used to determine the deflected wing shape and the out-of-plane loads of a 5.5-m carbon-composite wing of an ultralight aerial vehicle. The in-plane strains from the 780 FBG sensors were used to obtain the out-of-plane loads as well as the wing shape at various load levels. The calculated out-of-plane displacements and loads were within 4.2% of the measured data. This study demonstrates a practical method in which direct measurements are used to obtain critical parameters from the high distribution of FBG sensors. This procedure can be used to obtain information for structural health monitoring applications to quantify healthy vs. unhealthy structures.

  4. Approaching nanometre accuracy in measurement of the profile deviation of a large plane mirror

    International Nuclear Information System (INIS)

    Müller, Andreas; Hofmann, Norbert; Manske, Eberhard

    2012-01-01

    The interferometric nanoprofilometer (INP), developed at the Institute of Process Measurement and Sensor Technology at the Ilmenau University of Technology, is a precision device for measuring the profile deviations of plane mirrors with a profile length of up to 250 mm at the nanometre scale. As its expanded uncertainty of U(l) = 7.8 nm at a confidence level of p = 95% (k = 2) was mainly influenced by the uncertainty of the straightness standard (3.6 nm) and the uncertainty caused by the signal and demodulation errors of the interferometer signals (1.2 nm), these two sources of uncertainty have been the subject of recent analyses and modifications. To measure the profile deviation of the standard mirror we performed a classic three-flat test using the INP. The three-flat test consists of a combination of measurements between three different test flats. The shape deviations of the three flats can then be determined by applying a least-squares solution of the resulting equation system. The results of this three-flat test showed surprisingly good consistency, enabling us to correct this systematic error in profile deviation measurements and reducing the uncertainty component of the standard mirror to 0.4 nm. Another area of research is the signal and demodulation error arising during the interpretation of the interferometer signals. In the case of the interferometric nanoprofilometer, the special challenge is that the maximum path length differences are too small during the scan of the entire profile deviation over perfectly aligned 250 mm long mirrors for proper interpolation and correction since they do not yet cover even half of an interference fringe. By applying a simple method of weighting to the interferometer data the common ellipse fitting could be performed successfully and the demodulation error was greatly reduced. The remaining uncertainty component is less than 0.5 nm. In summary we were successful in greatly reducing two major systematic errors. The

  5. New plastic plane stress model for concrete

    International Nuclear Information System (INIS)

    Winnicki, A.; Cichon, Cz.

    1993-01-01

    In the paper a description of concrete behaviour in the plane stress case is given on the basis of the modified bounding surface plasticity theory. Three independent plastic mechanisms have been introduced describing axiatoric and deviatoric plastic strains and their coupling. All the new analytical formulae for material functions being in agreement with experiments and loading/unloading criteria have been proposed. In addition, for the proper description of concrete behaviour in tension a new, separate function of bounding surface shrinkage has been introduced. (author)

  6. Nearaffine planes

    NARCIS (Netherlands)

    Wilbrink, H.A.

    1982-01-01

    In this paper we develop a theory for nearaffine planes analogous to the theory of ordinary affine translation planes. In a subsequent paper we shall use this theory to give a characterization of a certain class of Minkowski planes.

  7. Chaotic inflation in models with flat directions

    International Nuclear Information System (INIS)

    Graziani, F.; Olive, K.

    1989-01-01

    We consider the chaotic inflationary scenario in models with flat directions. We find that unless the scalars along the flat directions have vacuum expectation values p or 10 14 M p 15 M p depending on the expectation values of the chaotic inflator, Ψ, one or two or more periods of inflation occur but with a resulting energy density perturbation δρ/ρ ≅ 10 -16 , far too small to be of any consequence for galaxy formation. Even with p only limited initial values of ≅ (3-200) M p result in inflation with reasonable density perturbations. Thus chaotic inflation in models with flat directions require rather special initial conditions. (orig.)

  8. One-turn stub-loaded loop patch antenna on a small ground plane

    DEFF Research Database (Denmark)

    Thaysen, Jesper; Jakobsen, Kaj Bjarne

    2005-01-01

    A small 1.1-cm3 one-turn loop patch antenna located 2.5 mm above an 18 × 25 mm ground plane separated by a dielectric substrate with relative permittivity of 9.8 is presented. By varying the length of a thin quarter-wavelength matching line, it is possible to change the resonant frequency. An RLC...

  9. A proposed standard round compact specimen for plane strain fracture toughness testing

    Science.gov (United States)

    Underwood, J. H.; Newman, J. C., Jr.; Seeley, R. R.

    1980-01-01

    A round, disk-shaped specimen is proposed as a standard test specimen for addition to ASTM Test for Plane-Strain Fracture Toughness of Metallic Materials (E 399-78A). The specimen is diametrically cracked, and loaded in the same way as the existing standard compact specimen. Tests and analyses were performed to verify that the proposed round compact specimen and associated stress intensity factor K solution are appropriate for a standard plane strain fracture toughness test. The use of the round compact specimen for other fracture tests is described.

  10. Sagittal plane tilting deformity of the patellofemoral joint: a new concept in patients with chondromalacia patella.

    Science.gov (United States)

    Aksahin, Ertugrul; Aktekin, Cem Nuri; Kocadal, Onur; Duran, Semra; Gunay, Cüneyd; Kaya, Defne; Hapa, Onur; Pepe, Murad

    2017-10-01

    The aims of this study were to evaluate sagittal plane alignment in patients with chondromalacia patella via magnetic resonance imaging (MRI), analyse the relationships between the location of the patellar cartilaginous lesions and sagittal alignment and finally investigate the relationships between the sagittal plane malalignment and patellofemoral loadings using by finite element analysis. Fifty-one patients who were diagnosed with isolated modified Outerbridge grade 3-4 patellar chondromalacia based on MRI evaluation and 51 control subjects were evaluated. Chondromalacia patella patients were divided into three subgroups according to the chondral lesion location as superior, middle and inferior. The patella-patellar tendon angle (P-PT) was used for evaluation of sagittal alignment of patellofemoral joint. Each subgroup was compared with control group by using P-PT angle. To investigate the biomechanical effects of sagittal plane malpositioning on patellofemoral joint, bone models were created at 30°, 60° and 90° knee flexion by using mean P-PT angles, which obtained from patients with chondromalacia patellae and control subjects. The total loading and contact area values of the patellofemoral joints were investigated by finite element analysis. The mean age of all participants was 52.9 ± 8.2 years. The mean P-PT angle was significantly lower in chondromalacia group (142.1° ± 3.6°) compared to control group (144.5° ± 5.3°) (p = 0.008). Chondral lesions were located in superior, middle and inferior zones in 16, 20 and 15 patients, respectively. The mean P-PT angles in patients with superior (141.8 ± 2.7) and inferior subgroups (139.2 ± 2.3) were significantly lower than the values in the control group (p chondromalacia than in the control models at the same flexion degrees. There were increased loadings at 30° and 90° flexions in the sagittal patellar tilt models. This study revealed that sagittal plain malpositioning of the

  11. Near-field flat focusing mirrors

    Science.gov (United States)

    Cheng, Yu-Chieh; Staliunas, Kestutis

    2018-03-01

    This article reviews recent progress towards the design of near-field flat focusing mirrors, focusing/imaging light patterns in reflection. An important feature of such flat focusing mirrors is their transverse invariance, as they do not possess any optical axis. We start with a review of the physical background to the different focusing mechanisms of near- and far-field focusing. These near-field focusing devices like flat lenses and the reviewed near-field focusing mirrors can implement planar focusing devices without any optical axis. In contrast, various types of far-field planar focusing devices, such as high-contrast gratings and metasurfaces, unavoidably break the transverse invariance due to their radially symmetrical structures. The particular realizations of near-field flat focusing mirrors including Bragg-like dielectric mirrors and dielectric subwavelength gratings are the main subjects of the review. The first flat focusing mirror was demonstrated with a chirped mirror and was shown to manage an angular dispersion for beam focusing, similar to the management of chromatic dispersion for pulse compression. Furthermore, the reviewed optimized chirped mirror demonstrated a long near-field focal length, hardly achieved by a flat lens or a planar hyperlens. Two more different configurations of dielectric subwavelength gratings that focus a light beam at normal or oblique incidence are also reviewed. We also summarize and compare focusing performance, limitations, and future perspectives between the reviewed flat focusing mirrors and other planar focusing devices including a flat lens with a negative-index material, a planar hyperlens, a high-contrast grating, and a metasurface.

  12. Philosophy, design and testing of a uniform applied load flat plate testing machine

    International Nuclear Information System (INIS)

    Quirk, A.; Crook, C.

    1976-08-01

    The presence of a central crack, and its associated plastic zones may significantly affect distribution of the stress applied by a loading machine, to a test plate. As a result the fracture stress may be affected, usually optimistically. Examples of these effects are discussed. The design of a machine in which the load is uniformly applied to the test specimen is described and preliminary test data presented. (author)

  13. Flat-screen detector systems in skeletal radiology

    International Nuclear Information System (INIS)

    Grampp, S.; Czerny, C.; Krestan, C.; Henk, C.; Heiner, L.; Imhof, H.

    2003-01-01

    Implementation of flat-panel detectors and digital integration of the technique instead of the use of conventional radiographs leads to a shortening of the work process. With flat-panel technology the image production process is shortened by more than 30%. Major advantages in the implementation of integrated RIS, PACS and flat-panel detector system are increases in quality because most mistakes in picture labeling can be avoided, easier handling without the need for cassettes, and the possibility of image post-processing. The diagnostic quality of the images in the field of musculoskeletal radiology is, in comparison to conventional radiographs, at least adequate and in most cases markedly improved with a marked reduction in radiation exposure of around 30-50%. With respect to the numerous advantages of the digital techniques and especially flat-panel technology there is a very high likelihood that conventional radiographs will be substituted in the coming years, even though the cost of the new technology is currently significantly higher compared to conventional systems. (orig.) [de

  14. Indentation-Induced Mechanical Deformation Behaviors of AlN Thin Films Deposited on c-Plane Sapphire

    International Nuclear Information System (INIS)

    Jian, Sh.R.; Juang, J.Y.

    2012-01-01

    The mechanical properties and deformation behaviors of AlN thin films deposited on c-plane sapphire substrates by helicon sputtering method were determined using the Berkovich nano indentation and cross-sectional transmission electron microscopy (XTEM). The load-displacement curves show the 'pop-ins' phenomena during nano indentation loading, indicative of the formation of slip bands caused by the propagation of dislocations. No evidence of nano indentation-induced phase transformation or cracking patterns was observed up to the maximum load of 80 mN, from either XTEM or atomic force microscopy (AFM) of the mechanically deformed regions. Instead, XTEM revealed that the primary deformation mechanism in AlN thin films is via propagation of dislocations on both basal and pyramidal planes. Furthermore, the hardness and Young's modulus of AlN thin films estimated using the continuous contact stiffness measurements (CSMs) mode provided with the nanoindenter are 16.2 GPa and 243.5 GPa, respectively.

  15. Optimization of flat and horizontally curved neutron monochromators for given diffractometer geometries

    International Nuclear Information System (INIS)

    Graf, H.A.

    1983-08-01

    The computer program MONREF was written for calculating the integrated intensity and the k-vector distribution produced by mosaic-crystal monochromators in neutron diffractometers of given geometries. The program treats flat and horizontally curved monochromators in Bragg reflection. Its basic algorithm is derived from Zachariasen's coupled differential equations which were modified to include the case of asymmetrically cut crystals. The calculations are restricted to the scattering in the experimental plane. In the first part of the report the program and its applications are described. In the second part a compilation of intensities is presented, calculated for crystals of Cu, Si, Ge and pyrolytic graphite commonly used as monochromators, in a standard diffractometer configuration. (orig.)

  16. Discovery of a GeV Blazar Shining Through the Galactic Plane

    Energy Technology Data Exchange (ETDEWEB)

    Vandenbroucke, J.; Buehler, R.; Ajello, M.; Bechtol, K.; /Stanford U., HEPL /KIPAC, Menlo Park /SLAC; Bellini, A.; /Padua U., Astron. Dept. /Baltimore, Space Telescope Sci.; Bolte, M.; /UC, Santa Cruz; Cheung, C.C.; /Naval Research Lab, Wash., D.C. /NAS, Washington, D.C.; Civano, F.; /Smithsonian Astrophys. Observ.; Donato, D.; /NASA, Goddard; Fuhrmann, L.; /Bonn, Max Planck Inst., Radioastron.; Funk, S.; Healey, S.E.; /Stanford U., HEPL /KIPAC, Menlo Park /SLAC; Hill, A.B.; /Joseph Fourier U.; Knigge, C.; /Southampton U.; Madejski, G.M.; Romani, R.W.; /Stanford U., HEPL /KIPAC, Menlo Park /SLAC; Santander-Garcia, M.; /IAC, La Laguna /Isaac Newton Group /Laguna U., Tenerife; Shaw, M.S.; /Stanford U., HEPL /KIPAC, Menlo Park /SLAC; Steeghs, D.; /Warwick U.; Torres, M.A.P.; /Smithsonian Astrophys. Observ.; Van Etten, A.; /Stanford U., HEPL /KIPAC, Menlo Park /SLAC /Texas U., Astron. Dept.

    2011-08-11

    The Fermi Large Area Telescope (LAT) discovered a new gamma-ray source near the Galactic plane, Fermi J0109+6134, when it flared brightly in 2010 February. The low Galactic latitude (b = -1.2{sup o}) indicated that the source could be located within the Galaxy, which motivated rapid multi-wavelength follow-up including radio, optical, and X-ray observations. We report the results of analyzing all 19 months of LAT data for the source, and of X-ray observations with both Swift and the Chandra X-ray Observatory. We determined the source redshift, z = 0.783, using a Keck LRIS observation. Finally, we compiled a broadband spectral energy distribution (SED) from both historical and new observations contemporaneous with the 2010 February flare. The redshift, SED, optical line width, X-ray obsorption, and multi-band variability indicate that this new Gev source is a blazar seen through the Galactic plane. Because several of the optical emission lines have equivalent width > 5 {angstrom}, this blazar belongs in the flat-spectrum radio quasar category.

  17. Out-of-plane ultimate shear strength of RC mat-slab foundations

    International Nuclear Information System (INIS)

    Kumagai, Hitoshi; Nukui, Yasushi; Imamura, Akira; Terayama, Takeshi; Hagiwara, Tetsuya; Kojima, Isao

    2011-01-01

    There have been few studies on the out-of-plane shear in RC mat-slab foundations, and the reasonable method has been demanded to estimate ultimate shear strength of RC mat-slab foundations in the nuclear facilities. In the previous study, the out-of-plane loading tests on the 20 square slab specimens had been performed to collect the fundamental data. In this study, the test results were successfully predicted by 3D non-linear Finite Element Analysis. It has been confirmed that the ultimate shear stress in the slab specimen can be estimated by the Arakawa's formula, which is commonly used to estimate the shear strength of RC beams. (author)

  18. On maximal surfaces in asymptotically flat space-times

    International Nuclear Information System (INIS)

    Bartnik, R.; Chrusciel, P.T.; O Murchadha, N.

    1990-01-01

    Existence of maximal and 'almost maximal' hypersurfaces in asymptotically flat space-times is established under boundary conditions weaker than those considered previously. We show in particular that every vacuum evolution of asymptotically flat data for Einstein equations can be foliated by slices maximal outside a spatially compact set and that every (strictly) stationary asymptotically flat space-time can be foliated by maximal hypersurfaces. Amongst other uniqueness results, we show that maximal hypersurface can be used to 'partially fix' an asymptotic Poincare group. (orig.)

  19. State-plane analysis of parallel resonant converter

    Science.gov (United States)

    Oruganti, R.; Lee, F. C.

    1985-01-01

    A method for analyzing the complex operation of a parallel resonant converter is developed, utilizing graphical state-plane techniques. The comprehensive mode analysis uncovers, for the first time, the presence of other complex modes besides the continuous conduction mode and the discontinuous conduction mode and determines their theoretical boundaries. Based on the insight gained from the analysis, a novel, high-frequency resonant buck converter is proposed. The voltage conversion ratio of the new converter is almost independent of load.

  20. Flat deformation theorem and symmetries in spacetime

    International Nuclear Information System (INIS)

    Llosa, Josep; Carot, Jaume

    2009-01-01

    The flat deformation theorem states that given a semi-Riemannian analytic metric g on a manifold, locally there always exists a two-form F, a scalar function c, and an arbitrarily prescribed scalar constraint depending on the point x of the manifold and on F and c, say Ψ(c, F, x) = 0, such that the deformed metric η = cg - εF 2 is semi-Riemannian and flat. In this paper we first show that the above result implies that every (Lorentzian analytic) metric g may be written in the extended Kerr-Schild form, namely η ab := ag ab - 2bk (a l b) where η is flat and k a , l a are two null covectors such that k a l a = -1; next we show how the symmetries of g are connected to those of η, more precisely; we show that if the original metric g admits a conformal Killing vector (including Killing vectors and homotheties), then the deformation may be carried out in a way such that the flat deformed metric η 'inherits' that symmetry.

  1. Flexible flat feet in children: a real problem?

    Science.gov (United States)

    García-Rodríguez, A; Martín-Jiménez, F; Carnero-Varo, M; Gómez-Gracia, E; Gómez-Aracena, J; Fernández-Crehuet, J

    1999-06-01

    To estimate the prevalence of flexible flat feet in the provincial population of 4- to 13-year-old schoolchildren and the incidence of treatments considered unnecessary. Province of Málaga, Spain. We examined and graded by severity a sample of 1181 pupils taken from a total population of 198 858 primary schoolchildren (CI: 95%; margin of error: 5%). The sample group was separated into three 2-year age groups: 4 and 5 years, 8 and 9 years, and 12 and 13 years. The plantar footprint was classified according to Denis1 into three grades of flat feet: grade 1 in which support of the lateral edge of the foot is half that of the metatarsal support; grade 2 in which the support of the central zone and forefoot are equal; and grade 3 in which the support in the central zone of the foot is greater than the width of the metatarsal support. The statistical analysis for the evaluation of the differences between the groups was performed with Student's t and chi2 tests as appropriate. The prevalence of flat feet was 2.7%. Of the 1181 children sampled, 168 children (14.2%) were receiving orthopedic treatment, but only 2.7% had diagnostic criteria of flat feet. When we inspected the sample, we found that a number of children were being treated for flat feet with boots and arch supports. Most of them did not have a flat plantar footprint according to the criteria that we used for this work. Furthermore, in the group of children that we diagnosed as having flat feet, only 28.1% were being treated. We found no significant differences between the number of children receiving orthopedic treatments and the presence or absence of a flat plantar footprint. Children who were overweight in the 4- and 5-year-old group showed an increased prevalence for flat feet as diagnosed by us. The data suggest that an excessive number of orthopedic treatments had been prescribed in the province. When extrapolated to the 1997 population of schoolchildren within the age groups studied the figures

  2. Comparative analysis of the construction solution variants for flat arch coverings of buildings

    Directory of Open Access Journals (Sweden)

    Ibragimov Aleksandr Mayorovich

    2014-03-01

    Full Text Available Arch structures of long span buildings’ coverings are more beneficial in respect to material expenses, than beam and frame systems. Constructive schemes of roof frameworks of arch coverings are diverse, which means their operation under loading differs much. The authors offer a number of construction solutions for flat arch coverings of long span buildings. The comparative analysis of these construction solutions is presented. The operation of radial link arch is observed. The arch consists of discontinuous top chord and radial bowstring under the single load (uniformly distributed and concentrated in nods with different spans and rises. The problem of radial link arch optimization is solved in dependence with arising forces and rise. The optimal camber of arch was found. In further works the authors plan to analyze spans more than 36 meters and solve the problem in case of asymmetrical loadings.

  3. Long-range Rocky Flats utilization study

    International Nuclear Information System (INIS)

    1983-02-01

    The purpose of this Study was to provide information concerning the Rocky Flats Plant and its operations that will be useful to the Nation's decision-makers in determining the long-range future of the Plant. This Study was conducted under the premise that national defense policy must be supported and, accordingly, the capabilities at Rocky Flats must be maintained there or at some other location(s). The Study, therefore, makes no attempt to speculate on how possible future changes in national defense policy might affect decisions regarding the utilization of Rocky Flats. Factors pertinent to decisions regarding Rocky Flats, which are included in the Study, are: physical condition of the Plant and its vulnerabilities to natural phenomena; risks associated with plutonium to Plant workers and the public posed by postulated natural phenomena and operational accidents; identification of alternative actions regarding the future use of the Rocky Flats Plant with associated costs and time scales; local socioeconomic impacts if Rocky Flats operations were relocated; and potential for other uses if Rocky Flats facilities were vacated. The results of the tasks performed in support of this Study are summarized in the context of these five factors

  4. An Experimental Investigation of the Dynamic Behavior of an In-Plane MEMS Shallow Arch Under Electrostatic Excitation

    KAUST Repository

    Ramini, Abdallah

    2016-01-20

    We present experimental investigation of the nonlinear dynamics of a clamped-clamped in-plane MEMS shallow arch when excited by an electrostatic force. We explore the dynamic behaviors of the in-plane motion of the shallow arches via frequency sweeps in the neighborhood of the first resonance frequency. The shallow arch response is video microscopy recorded and analyzed by means of digital imaging. The experimental data show local softening behavior for small DC and AC loads. For high voltages, the experimental investigation reveals interesting dynamics, where the arch exhibits a dynamic snap-Through behavior. These attractive experimental results verify the previously reported complex behavior of in-plane MEMS arches and show promising results to implement these structures for variety of sensing and actuation applications. © Copyright 2015 by ASME.

  5. Role of tidal flat in material cycling in the coastal sea

    OpenAIRE

    Yara, Yumiko; Yanagi, Tetsuo; Montani, Shigeru; Kuninao, Tada

    2007-01-01

    A simple tidal flat model with pelagic and benthic ecosystems was developed in order to analyze the nitrogen cycling in an inter-tidal flat of the Seto Inland Sea, Japan. After the verification of calculation results with the observed results in water quality and benthic biomasses, the role of this tidal flat in nitrogen cycling was evaluated from the viewpoint of water quality purification capability. When there is no suspension feeder in the tidal flat, the water quality purification capab...

  6. Step-flow anisotropy of the m-plane GaN (1100) grown under nitrogen-rich conditions by plasma-assisted molecular beam epitaxy

    International Nuclear Information System (INIS)

    Sawicka, Marta; Siekacz, Marcin; Skierbiszewski, Czeslaw; Turski, Henryk; Krysko, Marcin; DziePcielewski, Igor; Grzegory, Izabella; Smalc-Koziorowska, Julita

    2011-01-01

    The homoepitaxial growth of m-plane (1100) GaN was investigated by plasma-assisted molecular beam epitaxy under nitrogen-rich conditions. The surface morphologies as a function of sample miscut were studied, providing evidence for a strong growth anisotropy that is a consequence of the anisotropy of Ga adatom diffusion barriers on the m-plane surface recently calculated ab initio[Lymperakis and Neugebauer, Phys. Rev. B 79, 241308(R) (2009)]. We found that substrate miscut toward [0001] implies a step flow toward while substrate miscut toward [0001] causes formation of atomic steps either perpendicular or parallel to the [0001] direction, under N-rich conditions at 730 deg C. We describe the growth conditions for achieving atomically flat m-plane GaN layers with parallel atomic steps.

  7. Complex analysis of movement in evaluation of flat bench press performance.

    Science.gov (United States)

    Król, Henryk; Golas, Artur; Sobota, Grzegorz

    2010-01-01

    The complex methodology of investigations was applied to study a movement structure on bench press. We have checked the usefulness of multimodular measuring system (SMART-E, BTS company, Italy) and a special device for tracking the position of barbell (pantograph). Software Smart Analyser was used to create a database allowing chosen parameters to be compared. The results from different measuring devices are very similar, therefore the replacement of many devices by one multimodular system is reasonable. In our study, the effect of increased barbell load on the values of muscles activity and bar kinematics during the flat bench press movement was clearly visible. The greater the weight of a barbell, the greater the myoactivity of shoulder muscles and vertical velocity of the bar. It was also confirmed the presence of the so-called sticking point (period) during the concentric phase of the bench press. In this study, the initial velocity of the barbell decreased (v(min)) not only under submaximal and maximal loads (90 and 100% of the one repetition maximum; 1-RM), but also under slightly lighter weights (70 and 80% of 1-RM).

  8. Plane strain deformation of a multi-layered poroelastic half-space by ...

    Indian Academy of Sciences (India)

    The Biot linearized quasi-static theory of fluid-infiltrated porous materials is used to formulate the problem of the two-dimensional plane strain deformation of a multi-layered poroelastic half-space by surface loads. The Fourier–Laplace transforms of the stresses, displacements, pore pressure and fluid flux in each ...

  9. Eight plane IPND [Integration Prototype Near Detector] mechanical testing

    International Nuclear Information System (INIS)

    Zhao, A.; Guarino, V.; Wood, K.; Nephew, T.; Ayres, D.

    2008-01-01

    A mechanical test of an 8 plane IPND mechanical prototype, which was constructed using extrusions from the testing/tryout of the 16 cell prototype extrusion die in Argonne National Laboratory, was conducted. There were 4 vertical and 4 horizontal planes in this 8 plane IPND prototype. Each vertical plane had four 16 cell extrusions, while each horizontal plane had six 16 cell extrusions. Each plane was glued together using the formulation of Devcon adhesive, Devcon 60. The vertical extrusions used in the vertical planes shares the same dimensions as the horizontal extrusions in the horizontal planes with the average web thickness of 2.1 mm and the average wall thickness of 3.1 mm. This mechanical prototype was constructed with end-seals on the both ends of the vertical extrusions. The gaps were filled with epoxy between extrusions and end-seals. The overall dimension of IPND is 154.8 by 103.1 by 21.7 inches with the weight of approximately 1200 kg, as shown in a figure. Two similar mechanical tests of 3 layer and 11 layer prototypes have been done in order to evaluate the strength of the adhesive joint between extrusions in the NOvA detector. The test showed that the IPND prototype was able to sustain under the loading of weight of itself and scintillator. Two FEA models were built to verify the measurement data from the test. The prediction from FEA slice model seems correlated reasonably well to the test result, even under a 'rough' estimated condition for the wall thickness (from an untuned die) and an unknown property of 'garage type' extrusion. A full size of FEA 3-D model also agrees very well with the test data from strain gage readings. It is worthy to point out that the stress distribution of the structure is predominantly determined by the internal pressure, while the buckling stability relies more on the loading weight from the extrusions themselves and scintillate. Results of conducted internal pressure tests, including 3- cell, 11-cell and the IPND

  10. A New Approach to EMG Analysis of Closed-Circuit Movements Such as the Flat Bench Press

    Directory of Open Access Journals (Sweden)

    Artur Golas

    2018-03-01

    Full Text Available Background: The bench press (BP is a complex exercise demanding high neuromuscular activity. Therefore, the main objective of this study was to identify the patterns of muscular activity of the prime movers on both sides of an elite powerlifter. Methods: A World Champion (RAW PR 320 kg participated in the study (age: 34 years; body mass: 103 kg; body height 1.72 m; one-repetition maximum (1 RM flat bench press: 220 kg. The subject performed one repetition of the flat bench press with: 70% 1 RM (150 kg and 90% 1 RM (200 kg in tempos: 2 s eccentric and 1 s concentric phase; 6 s eccentric and 1 s concentric phase. The activity was recorded for: pectoralis major, anterior deltoid, and triceps brachii (lateral and long head. Results: The total sum of peak muscle activity for the four analyzed muscles during both phases of the BP with the different loads and tempos was significantly different, and greater on the right side of the body. Conclusions: The use of lighter loads activate muscle groups in a different activation level, allowing for a greater muscle control. Lifting submaximal and maximal loads causes an activation of most motor units involved in the movement. Experienced athletes have a stabilized neuromuscular pattern for lifting which has different bilateral activity contribution.

  11. Flat beams in the SLC

    International Nuclear Information System (INIS)

    Adolphsen, C.; Barklow, T.; Burke, D.; Decker, F.J.; Emma, P.; Hildreth, M.; Himel, T.; Krejcik, P.; Limberg, T.; Minty, M.

    1993-01-01

    The Stanford Linear Collider was designed to operate with round beams; horizontal and vertical emittance made equal in the damping rings. The main motivation was to facilitate the optical matching through beam lines with strong coupling elements like the solenoid spin rotator magnets and the SLC arcs. Tests in 1992 showed that open-quote flat close-quote beams with a vertical to horizontal emittance ratio of around 1/10 can be successfully delivered to the end of the linac. Techniques developed to measure and control the coupling of the SLC arcs allow These beams to be transported to the Interaction Point (IP). Before flat beams could be used for collisions with polarized electrons, a new method of rotating the electron spin orientation with vertical arc orbit bumps had to be developed. Early in the 1993 run, the SLC was switched to open-quote flat close-quote beam operation. Within a short time the peak luminosity of the previous running cycle was reached and then surpassed. The average daily luminosity is now a factor of about two higher than the best achieved last year. In the following the authors present an overview of the problems encountered and their solutions for different parts of the SLC

  12. Development of a selective thin film and of a hermetically sealed flat plate solar collector with gas filling

    Science.gov (United States)

    Zernial, W.

    1982-12-01

    The industrial productibility of a selective absorbing thin film was investigated on the basis of reactive cathodic sputtering of Ni. On substrates of 1.8 sq m of Al, Cu, steel and stainless steel, solar absorption values up to 97% were achieved at emissivities of 5 to 10%. A prototype flat plate collector for high temperatures with two covers and hermetical sealing was developed. The technical data of the collector were measured, dependent on the selectivity of the absorber, gas fillings of dry air, argon or SF6 and the geometry and were compared with those of an evacuated flat plate collector. A hermetical sealed double flat plate collector for low temperatures was developed which has the advantage of lower no load temperatures and higher energy gain for heating swimming pool water compared with a conventional flat plate collector. The insolation values on collectors were measured and were used for a calculation of the energy gains of different collector types.

  13. Topologically protected edge states for out-of-plane and in-plane bulk elastic waves

    Science.gov (United States)

    Huo, Shao-Yong; Chen, Jiu-Jiu; Huang, Hong-Bo

    2018-04-01

    Topological phononic insulators (TPnIs) show promise for application in the manipulation of acoustic waves for the design of low-loss transmission and perfectly integrated communication devices. Since solid phononic crystals exist as a transverse polarization mode and a mixed longitudinal-transverse polarization mode, the realization of topological edge states for both out-of-plane and in-plane bulk elastic waves is desirable to enhance the controllability of the edge waves in solid systems. In this paper, a two-dimensional (2D) solid/solid hexagonal-latticed phononic system that simultaneously supports the topologically protected edge states for out-of-plane and in-plane bulk elastic waves is investigated. Firstly, two pairs of two-fold Dirac cones, respectively corresponding to the out-of-plane and in-plane waves, are obtained at the same frequency by tuning the crystal parameters. Then, a strategy of zone folding is invoked to form double Dirac cones. By shrinking and expanding the steel scatterer, the lattice symmetry is broken, and band inversions induced, giving rise to an intriguing topological phase transition. Finally, the topologically protected edge states for both out-of-plane and in-plane bulk elastic waves, which can be simultaneously located at the frequency range from 1.223 to 1.251 MHz, are numerically observed. Robust pseudospin-dependent elastic edge wave propagation along arbitrary paths is further demonstrated. Our results will significantly broaden its practical application in the engineering field.

  14. A novel approach to generate random surface thermal loads in piping

    Energy Technology Data Exchange (ETDEWEB)

    Costa Garrido, Oriol, E-mail: oriol.costa@ijs.si; El Shawish, Samir; Cizelj, Leon

    2014-07-01

    Highlights: • Approach for generating continuous and time-dependent random thermal fields. • Temperature fields simulate fluid mixing thermal loads at fluid–wall interface. • Through plane-wave decomposition, experimental temperature statistics are reproduced. • Validation of the approach with a case study from literature. • Random surface thermal loads generation for future thermal fatigue analyses of piping. - Abstract: There is a need to perform three-dimensional mechanical analyses of pipes, subjected to complex thermo-mechanical loadings such as the ones evolving from turbulent fluid mixing in a T-junction. A novel approach is proposed in this paper for fast and reliable generation of random thermal loads at the pipe surface. The resultant continuous and time-dependent temperature fields simulate the fluid mixing thermal loads at the fluid–wall interface. The approach is based on reproducing discrete fluid temperature statistics, from experimental readings or computational fluid dynamic simulation's results, at interface locations through plane-wave decomposition of temperature fluctuations. The obtained random thermal fields contain large scale instabilities such as cold and hot spots traveling at flow velocities. These low frequency instabilities are believed to be among the major causes of the thermal fatigue in T-junction configurations. The case study found in the literature has been used to demonstrate the generation of random surface thermal loads. The thermal fields generated with the proposed approach are statistically equivalent (within the first two moments) to those from CFD simulations results of similar characteristics. The fields maintain the input data at field locations for a large set of parameters used to generate the thermal loads. This feature will be of great advantage in future sensitivity fatigue analyses of three-dimensional pipe structures.

  15. A novel approach to generate random surface thermal loads in piping

    International Nuclear Information System (INIS)

    Costa Garrido, Oriol; El Shawish, Samir; Cizelj, Leon

    2014-01-01

    Highlights: • Approach for generating continuous and time-dependent random thermal fields. • Temperature fields simulate fluid mixing thermal loads at fluid–wall interface. • Through plane-wave decomposition, experimental temperature statistics are reproduced. • Validation of the approach with a case study from literature. • Random surface thermal loads generation for future thermal fatigue analyses of piping. - Abstract: There is a need to perform three-dimensional mechanical analyses of pipes, subjected to complex thermo-mechanical loadings such as the ones evolving from turbulent fluid mixing in a T-junction. A novel approach is proposed in this paper for fast and reliable generation of random thermal loads at the pipe surface. The resultant continuous and time-dependent temperature fields simulate the fluid mixing thermal loads at the fluid–wall interface. The approach is based on reproducing discrete fluid temperature statistics, from experimental readings or computational fluid dynamic simulation's results, at interface locations through plane-wave decomposition of temperature fluctuations. The obtained random thermal fields contain large scale instabilities such as cold and hot spots traveling at flow velocities. These low frequency instabilities are believed to be among the major causes of the thermal fatigue in T-junction configurations. The case study found in the literature has been used to demonstrate the generation of random surface thermal loads. The thermal fields generated with the proposed approach are statistically equivalent (within the first two moments) to those from CFD simulations results of similar characteristics. The fields maintain the input data at field locations for a large set of parameters used to generate the thermal loads. This feature will be of great advantage in future sensitivity fatigue analyses of three-dimensional pipe structures

  16. Crystals with an Open Wave-Vector Surface: Peculiarities of Reflection and Possibilities of Designing Flat Lenses

    International Nuclear Information System (INIS)

    Eritsyan, O. S.; Lalayan, A. A.; Arakelyan, O. M.; Papoyan, A. A.; Kostanyan, R. B.

    2010-01-01

    The frequency dependence of the reflection coefficient of MgF 2 crystal in the frequency range of 200-800 cm -1 at different orientations of the optical axis has been investigated. The experimental data are compared with the calculation results. This comparison confirms that the wave vectors for the extraordinary wave have an open surface. This makes it possible to focus a divergent beam refracted at a flat boundary ori- ented perpendicularly to the optical crystal axis. The focusing effect of a plane-parallel MgF 2 crystal plate is calculated.

  17. The ecology, behaviour and physiology of fishes on coral reef flats, and the potential impacts of climate change.

    Science.gov (United States)

    Harborne, A R

    2013-09-01

    Reef flats, typically a low-relief carbonate and sand habitat in shallow water leeward of the reef crest, are one of the most extensive zones on Pacific coral reefs. This shallow zone often supports an abundant and diverse fish assemblage that is exposed to more significant variations in physical factors, such as water depth and movement, temperature and ultraviolet (UV) radiation levels, than most other reef fishes. This review examines the characteristics of reef flat fish assemblages, and then investigates what is known about how they respond to their biophysical environment. Because of the challenges of living in shallow, wave-exposed water, reef flats typically support a distinct fish assemblage compared to other reef habitats. This assemblage clearly changes across tidal cycles as some larger species migrate to deeper water at low tide and other species modify their behaviour, but quantitative data are generally lacking. At least some reef flat fish species are well-adapted to high temperatures, low oxygen concentrations and high levels of UV radiation. These behavioural and physiological adaptations suggest that there may be differences in the demographic processes between reef flat assemblages and those in deeper water. Indeed, there is some evidence that reef flats may act as nurseries for some species, but more research is required. Further studies are also required to predict the effects of climate change, which is likely to have multifaceted impacts on reef flats by increasing temperature, water motion and sediment load. Sea-level rise may also affect reef flat fish assemblages and food webs by increasing the amount of time that larger species are able to forage in this zone. The lack of data on reef flats is surprising given their size and relative ease of access, and a better understanding of their functional role within tropical marine seascapes is urgently required. © 2013 The Fisheries Society of the British Isles.

  18. Optimal design of sandwich ribbed flat baffle plates of a circular cylindrical tank

    International Nuclear Information System (INIS)

    Malinowski, Marek; Magnucki, Krzysztof

    2005-01-01

    The subject of this paper is a sandwich ribbed flat baffle plate of a circular cylindrical tank. The paper deals with a problem of optimal thickness of this construction with a soft core. The construction is distinguished by a local axisymmetric pre-springing. The mathematical description is based on the theory of shells with analysis of disturbance of the stress membrane state. The sandwich ribbed flat baffle plate divides the tank into two chambers. One of them is loaded by uniform pressure, while the other is empty and unloaded. Dimensions of ribs, faces and the entire baffle plate have been determined with a view to minimize the mass under strength constraints. The effect of optimal thickness of this sandwich plate has been examined by means of the finite element method

  19. Systems considerations in mosaic focal planes

    Science.gov (United States)

    White, K. P., III

    1983-08-01

    Two key reasons for pursuing the development of mosaic focal planes are reviewed and it is shown that rapid frame repetition rate is the only requirement that can be solved no other way than through mosaic focal planes. With the view that spaceborne mosaic focal plane sensors are necessarily 'smart sensors' requiring a lot of onboard processing just to function, it is pointed out that various artificial intelligence techniques may be the most appropriate to incorporate in the data processing. Finally, a novel mosaic focal plane design is proposed, termed a virtual mosaic focal plane, in response to other system constraints.

  20. Usage of prestressed vertical bolts for retrofitting flat slabs damaged due to punching shear

    Directory of Open Access Journals (Sweden)

    Hamed S. Askar

    2015-09-01

    An experimental investigation with the objective of retrofitting flat slabs damaged due to punching shear using prestressed vertical bolts is presented in this paper. The parameters examined in this study are vertical prestressed bolts with different ratios within the slab thickness, slab thickness and central column size. Through the experimental tests the load carrying capacity, deformation characteristics and the cracking behavior have been investigated. A comparison between the behavior of retrofitted slabs and their references showed that the proposed system of repair is effective and could be used in practice. A comparison between the experimental results and calculated punching failure load based on the formulas adopted by different codes, showed a reasonable agreement.

  1. Public involvement in cleanup - the Rocky Flats experience

    International Nuclear Information System (INIS)

    Paukert, J.; Pennock, S.; Schassburger, R.

    1992-01-01

    The U.S. Department of Energy's Rocky Flats Plant recently completed and implemented the Rocky Flats Plant Community Relations Plan for public involvement in environmental restoration of the site. The plan was developed in cooperation with the plant's regulators, the U.S. Environmental Protection Agency and the Colorado Department of Health. In addition, citizens near the plant played a significant role in shaping the document through extensive community interviews and public comment. The result of these cooperative efforts is a plan that meets and exceeds the applicable federal and state community relations requirements for a cleanup program. In fact, the U.S. Environmental Protection Agency has used the Rocky Flats Plant Community Relations Plants a model for similar plans at other federal facilities. Plan development, however, is only the starting point for an effective community relations effort. The Rocky Flats Plant and the public will face many challenges together as we implement the plan and build a partnership for addressing environmental cleanup issues. (author)

  2. Improvements in electron beam monitoring and heat flux flatness at the JUDITH 2-facility

    Energy Technology Data Exchange (ETDEWEB)

    Weber, Thomas, E-mail: weber.th@gmx.de [Forschungszentrum Jülich, Institute of Energy and Climate Research, Jülich (Germany); Bürger, Andreas; Dominiczak, Karsten; Pintsuk, Gerald [Forschungszentrum Jülich, Institute of Energy and Climate Research, Jülich (Germany); Banetta, Stefano; Bellin, Boris [Fusion for Energy, Josep Pla, 2, Torres Diagonal Litoral B3, 08019 Barcelona (Spain); Mitteau, Raphael; Eaton, Russell [ITER Organization, Route de Vinon-sur-Verdon, CS 90 046, 13067 St Paul Lez Durance Cedex (France)

    2015-10-15

    Highlights: • Monitoring of the much faster electron beam motion by IR camera through a synchronized frame triggering. • Estimation of the heat flux generated by electron beam guns based on calorimetry and FEM simulations. • Consideration of the inclined electron beam loading of rectangular-shaped objects. - Abstract: Three beryllium-armoured small-scale mock-ups and one semi-prototype for the ITER first wall were tested by the electron beam facility JUDITH 2 at Forschungszentrum Jülich. Both testing campaigns with cyclic loads up to 2.5 MW/m{sup 2} are carried out in compliance with the extensive quality and management specifications of ITER Organization (IO) and Fusion for Energy (F4E). Several dedicated calibration experiments were performed before the actual testing in order to fulfil the testing requirements and tolerances. These quality requests have been the motivation for several experimental setup improvements. The most relevant results of these activities, being the electron beam monitoring and the heat flux flatness verification, will be presented.

  3. Improvements in electron beam monitoring and heat flux flatness at the JUDITH 2-facility

    International Nuclear Information System (INIS)

    Weber, Thomas; Bürger, Andreas; Dominiczak, Karsten; Pintsuk, Gerald; Banetta, Stefano; Bellin, Boris; Mitteau, Raphael; Eaton, Russell

    2015-01-01

    Highlights: • Monitoring of the much faster electron beam motion by IR camera through a synchronized frame triggering. • Estimation of the heat flux generated by electron beam guns based on calorimetry and FEM simulations. • Consideration of the inclined electron beam loading of rectangular-shaped objects. - Abstract: Three beryllium-armoured small-scale mock-ups and one semi-prototype for the ITER first wall were tested by the electron beam facility JUDITH 2 at Forschungszentrum Jülich. Both testing campaigns with cyclic loads up to 2.5 MW/m"2 are carried out in compliance with the extensive quality and management specifications of ITER Organization (IO) and Fusion for Energy (F4E). Several dedicated calibration experiments were performed before the actual testing in order to fulfil the testing requirements and tolerances. These quality requests have been the motivation for several experimental setup improvements. The most relevant results of these activities, being the electron beam monitoring and the heat flux flatness verification, will be presented.

  4. Structural and electronic properties of InN epitaxial layer grown on c-plane sapphire by chemical vapor deposition technique

    Energy Technology Data Exchange (ETDEWEB)

    Barick, Barun Kumar, E-mail: bkbarick@gmail.com; Prasad, Nivedita; Saroj, Rajendra Kumar; Dhar, Subhabrata [Department of Physics, Indian Institute of Technology, Bombay, Mumbai 400076 (India)

    2016-09-15

    Growth of InN epilayers on c-plane sapphire substrate by chemical vapor deposition technique using pure indium metal and ammonia as precursors has been systematically explored. It has been found that [0001] oriented indium nitride epitaxial layers with smooth surface morphology can be grown on c-plane sapphire substrates by optimizing the growth conditions. Bandgap of the film is observed to be Burstein–Moss shifted likely to be due to high background electron concentration. It has been found that the concentration of this unintentional doping decreases with the increase in the growth temperature and the ammonia flux. Epitaxial quality on the other hand deteriorates as the growth temperature increases. Moreover, the morphology of the deposited layer has been found to change from flat top islands to faceted mounds as the flow rate of ammonia increases. This phenomenon is expected to be related to the difference in surface termination character at low and high ammonia flow rates.

  5. Rocky Flats Compliance Program

    International Nuclear Information System (INIS)

    1994-02-01

    The Department of Energy (DOE) established the Office of Technology Development (EM-50) (OTD) as an element of Environmental Restoration and Waste Management (EM) in November 1989. The primary objective of the Office of Technology Development, Rocky Flats Compliance Program (RFCP), is to develop altemative treatment technologies for mixed low-level waste (wastes containing both hazardous and radioactive components) to use in bringing the Rocky Flats Plant (RFP) into compliance with Federal and state regulations and agreements. Approximately 48,000 cubic feet of untreated low-level mixed waste, for which treatment has not been specified, are stored at the RFP. The cleanup of the Rocky Flats site is driven by agreements between DOE, the Environmental Protection Agency (EPA), and the Colorado Department of Health (CDH). Under these agreements, a Comprehensive Treatment and Management Plan (CTMP) was drafted to outline the mechanisms by which RFP will achieve compliance with the regulations and agreements. This document describes DOE's strategy to treat low-level mixed waste to meet Land Disposal Restrictions and sets specific milestones related to the regulatory aspects of technology development. These milestones detail schedules for the development of technologies to treat all of the mixed wastes at the RFP. Under the Federal Facilities Compliance Act (FFCA), the CTMP has been incorporated into Rocky Flats Plant Conceptual Site Treatment Plan (CSTP). The CSTP will become the Rocky Flats Plant site Treatment Plan in 1995 and will supersede the CTMP

  6. Magnetohydrodynamic unsteady flow of a Maxwell fluid past a flat plate

    International Nuclear Information System (INIS)

    Khandpur, S.L.; Ravi Kant

    1979-01-01

    A study of the equations describing the flow pattern set up in a linear electrically conducting viscoelastic fluid past an infinite flat plate in the presence of a transverse magnetic field has been made, when the plate is moving parallel to itself with an arbitrary time dependent velocity. The pressure is assumed to be uniform with initial velocity distribution in an exponential form. Operational methods are used to obtain the exact solutions for the velocity profiles. The effects of relaxation parameter of the fluid and magnetic field have been studied. Several particular cases are easily deduced of which two cases: (i) when the plate is moving in its own plane harmonically with time, and (ii) when the velocity of the plate is decaying exponentially with time, are discussed. (auth.)

  7. Flat oysters in the Eierlandse Gat, Wadden Sea

    NARCIS (Netherlands)

    Have, van der T.M.; Kamermans, P.; Zee, van der E.M.

    2018-01-01

    This report presents the results of a short survey of flat oysters (Ostrea edulis) in the Western Wadden Sea. Ten sites were visited and flat oysters were found on nine locations in the Eijerlandse gat. Empty cockleshells and live and dead Pacific oysters provided the main settlement substrate. The

  8. Effect of cyclic block loading on character of deformation and strength of structural materials in plane stressed state

    International Nuclear Information System (INIS)

    Kul'chitskij, N.M.; Troshchenko, A.V.; Koval'chuk, B.I.; Khamaza, L.A.; Nikolaev, I.A.

    1982-01-01

    The paper is concerned with choice of conditions for preliminary cyclic block loading, determination of fatigue failure resistance characteristics for various structural materials under regular and selected block loading, investigation of the preliminary cyclic loading effect on regularities of elastoplastic deformation of materials concerned in the biaxial stressed state. Under selected conditions of cyclic block loading the character of damage accumulation is close to the linear law for the materials of high-srength doped steel, and VT6 alloys of concern. These materials in the initial state and after preliminary cyclic loading are anisotropic. Axial direction is characterized by a higher plastic strain resistance for steel and tangential direction - for VT6 alloy. The generalized strain curves for the materials in question are not invariant as to the stressed state type. It is stated that the effect of preliminary unsteady cyclic loading on resistance and general regularities of material deformation in the complex stressed state is insignificant. It is observed that stress-strain properties of the materials tend to vary in the following way: plastic strain resistance of the steel lowers and that of VT6 rises, anisotropy of the materials somehow decreases. The variation in the material anisotropy may be attributed to a decrease in residual stresses resulting from preliminary cyclic loading

  9. Estimation of vertical load on a tire from contact patch length and its use in vehicle stability control

    OpenAIRE

    Dhasarathy, Deepak

    2010-01-01

    The vertical load on a moving tire was estimated by using accelerometers attached to the inner liner of a tire. The acceleration signal was processed to obtain the contact patch length created by the tire on the road surface. Then an appropriate equation relating the patch length to the vertical load is used to calculate the load. In order to obtain the needed data, tests were performed on a flat-track test machine at the Goodyear Innovation Center in Akron, Ohio; tests were also conducted on...

  10. Parallel DSMC Solution of Three-Dimensional Flow Over a Finite Flat Plate

    Science.gov (United States)

    Nance, Robert P.; Wilmoth, Richard G.; Moon, Bongki; Hassan, H. A.; Saltz, Joel

    1994-01-01

    This paper describes a parallel implementation of the direct simulation Monte Carlo (DSMC) method. Runtime library support is used for scheduling and execution of communication between nodes, and domain decomposition is performed dynamically to maintain a good load balance. Performance tests are conducted using the code to evaluate various remapping and remapping-interval policies, and it is shown that a one-dimensional chain-partitioning method works best for the problems considered. The parallel code is then used to simulate the Mach 20 nitrogen flow over a finite-thickness flat plate. It is shown that the parallel algorithm produces results which compare well with experimental data. Moreover, it yields significantly faster execution times than the scalar code, as well as very good load-balance characteristics.

  11. Accessibility of low-income family flats in North Jakarta city

    Science.gov (United States)

    Feminin, T. A.; Wiranegara, H. W.; Supriatna, Y.

    2018-01-01

    The majority of relocated, low-income families in North Jakarta city who residing the flats, complained at decreasing their accessibility to the workplaces and to the social facilities. The aim of this research was to identify the changing of their accessibility before and after relocated, viewed from three dimensions: distance, travel time, and travel cost to the workplaces, educational facilities, and shopping areas. The research design was questionnaire survey containing the degree of accessibility before and after resided the flats. Five flats were chosen as cases. Their inhabitants were chosen as respondents which used simple random sampling. The result showed that their flats accessibility to the workplaces in all three dimensions was lower than when they resided in the slum area. Also, in distance and travel time accessibility to shopping areas was lower. Only accessibility to educational facilities measured in those three dimensions was higher after they moved. Supply for affordable public transport from their flats to reach their workplaces is needed to raise their accessibility. Also, they need subsidizeto rent of their flats so the burden to their income lesser.Using the ground space of their flats for retail activities was to make more accessible for their shopping activities.

  12. Investigation on the intense fringe formation phenomenon downstream hot-image plane.

    Science.gov (United States)

    Hu, Yonghua; Li, Guohui; Zhang, Lifu; Huang, Wenti; Chen, Shuming

    2015-11-30

    The propagation of a high-power flat-topped Gaussian beam, which is modulated by three parallel wirelike scatterers, passing through a downstream Kerr medium slab and free spaces is investigated. A new phenomenon is found that a kind of intense fringe with intensity several times that of the incident beam can be formed in a plane downstream the Kerr medium. This kind of intense fringe is another result in the propagation process of nonlinear imaging and it locates scores of centimeters downstream the predicted hot image plane. Moreover, the intensity of this fringe can achieve the magnitude of that of hot image in corresponding single-scatterer case, and this phenomenon can arise only under certain conditions. As for the corresponding hot images, they are also formed but largely suppressed. The cause of the formation of such an intense fringe is analyzed and found related to interference in the free space downstream the Kerr medium. Moreover, the ways it is influenced by some important factors such as the wavelength of incident beam and the properties of scatterers and Kerr medium are discussed, and some important properties and relations are revealed.

  13. Flat plate approximation in the three-dimensional slamming; Heiban kinji ni yoru sanjigen suimen shogeki keisanho ni tsuite

    Energy Technology Data Exchange (ETDEWEB)

    Toyama, Y. [Mitsui Engineering and Shipbuilding Co. Ltd., Tokyo (Japan)

    1996-12-31

    A slamming load generated by interactive motions between a ship body and water face is an important load in ensuring safety of the ship. A flat plate approximation developed by Wagner is used as a two-dimensional slamming theory, but it has a drawback in handling edges of a flat plate. Therefore, an attempt was made to expand the two-dimensional Wagner`s theory to three dimensions. This paper first shows a method to calculate water face slamming of an arbitrary axisymmetric body by using circular plate approximation. The paper then proposes a method to calculate slamming pressure distribution and slamming force for the case when shape of the water contacting surface may be approximated by an elliptic shape. Expansion to the three dimensions made clear to some extent the characteristics of the three-dimensional slamming. In the case of two dimensions or a circular column for example, the water contacting area increases rapidly in the initial stage generating large slamming force. However, in the case of three dimensions, since the water contacting area expands longitudinally and laterally, the slamming force tends to increase gradually. Maximum slamming pressure was found proportional to square of moving velocity in a water contacting boundary in the case of three dimensions, and similar to stagnation pressure on a gliding plate. 12 refs., 17 figs., 1 tab.

  14. Flat plate approximation in the three-dimensional slamming; Heiban kinji ni yoru sanjigen suimen shogeki keisanho ni tsuite

    Energy Technology Data Exchange (ETDEWEB)

    Toyama, Y [Mitsui Engineering and Shipbuilding Co. Ltd., Tokyo (Japan)

    1997-12-31

    A slamming load generated by interactive motions between a ship body and water face is an important load in ensuring safety of the ship. A flat plate approximation developed by Wagner is used as a two-dimensional slamming theory, but it has a drawback in handling edges of a flat plate. Therefore, an attempt was made to expand the two-dimensional Wagner`s theory to three dimensions. This paper first shows a method to calculate water face slamming of an arbitrary axisymmetric body by using circular plate approximation. The paper then proposes a method to calculate slamming pressure distribution and slamming force for the case when shape of the water contacting surface may be approximated by an elliptic shape. Expansion to the three dimensions made clear to some extent the characteristics of the three-dimensional slamming. In the case of two dimensions or a circular column for example, the water contacting area increases rapidly in the initial stage generating large slamming force. However, in the case of three dimensions, since the water contacting area expands longitudinally and laterally, the slamming force tends to increase gradually. Maximum slamming pressure was found proportional to square of moving velocity in a water contacting boundary in the case of three dimensions, and similar to stagnation pressure on a gliding plate. 12 refs., 17 figs., 1 tab.

  15. Dynamics of intertidal flats in the Loire estuary

    Science.gov (United States)

    Kervella, Stephane; Sottolichio, Aldo; Bertier, Christine

    2014-05-01

    Tidal flats form at the edges of many tidal estuaries, and are found in broad climatic regions. Their evolution plays a fundamental role in maintaining the morphodynamic equilibrium of an estuary. The Loire estuary is one of the largest macrotidal systems of the french atlantic coast. Since 200 years, its geometry has been drastically modified through channeling, deepening, embanking, infilling of secondary channels, etc. These works altered many intertidal areas. In the recent years, efforts for the rectification of the morphology have been made in order to restore the ecology of the estuary. In this context, it is crucial to better understand the dynamics of intertidal flats, still poorly understood in this estuary. The aim of this work is to analyse a series of original observations conducted for the first time in two intertidal flats of the central Lore estuary between 2008 and 2010. The tidal flats are situated in the northern bank, at 12 and 17 km upstream from the mouth respectively. Six Altus altimeters were deployed at two cross shore transects, measuring continuously and at a high-frequency bed altimetry and water level, providing information on tide and waves. At the semi-diurnal tidal scale, the surficial sediment of intertidal flats is permanently mobilized. Altimetry variations are low, and their amplitude varies as a function of tides and river flow. At the scale of several months, the sedimentation is controlled by the position of the turbidity maximum (and therefore by the river flow) and also by the tidal amplitude. During low river flow periods, altimetry variations are only due to tidal cycles. During decaying tides, suspended sediment settle mainly on the lower part of the tidal flats, forming fluid mud layers of several cm thick, which can consolidate rapidly; under rising tides, the increasing of tidal currents promotes erosion. During periods of high river flow, the turbidity maximum shifts to the lower estuary. The higher suspended sediment

  16. Increased strength of concrete subject to high loading rates

    International Nuclear Information System (INIS)

    Curbach, M.

    1987-01-01

    Within the scope of this work various problems are discussed which occur in connection with concrete under high tensile loading rates (e.g. when a plane crashes on a nuclear power plant very high loads occur which act only for a very short time). Particularly the causes for the already frequently noticed increases in strength with increasing loading rates are investigated and also the question whether this increased strength can be taken into account when dimensioning a construction. (MM) [de

  17. Nonlinear kinematic hardening under non-proportional loading

    International Nuclear Information System (INIS)

    Ottosen, N.S.

    1979-07-01

    Within the framework of conventional plasticity theory, it is first determined under which conditions Melan-Prager's and Ziegler's kinematic hardening rules result in identical material behaviour. Next, assuming initial isotropy and adopting the von Mises yield criterion, a nonlinear kinematic hardening function is proposed for prediction of metal behaviour. The model assumes that hardening at a specific stress point depends on the direction of the new incremental loading. Hereby a realistic response is obtained for general reversed loading, and a smooth behaviour is assured, even when loading deviates more and more from proportional loading and ultimately results in reversed loading. The predictions of the proposed model for non-proportional loading under plane stress conditions are compared with those of the classical linear kinematic model, the isotropic model and with published experimental data. Finally, the limitations of the proposaed model are discussed. (author)

  18. Exact Riemann solutions of the Ripa model for flat and non-flat bottom topographies

    Science.gov (United States)

    Rehman, Asad; Ali, Ishtiaq; Qamar, Shamsul

    2018-03-01

    This article is concerned with the derivation of exact Riemann solutions for Ripa model considering flat and non-flat bottom topographies. The Ripa model is a system of shallow water equations accounting for horizontal temperature gradients. In the case of non-flat bottom topography, the mass, momentum and energy conservation principles are utilized to relate the left and right states across the step-type bottom topography. The resulting system of algebraic equations is solved iteratively. Different numerical case studies of physical interest are considered. The solutions obtained from developed exact Riemann solvers are compared with the approximate solutions of central upwind scheme.

  19. Effects of Fatigue on Frontal Plane Knee Motion, Muscle Activity, and Ground Reaction Forces In Men and Women During Landing

    OpenAIRE

    Smith, Michael P.; Sizer, Phillip S.; James, C. Roger

    2009-01-01

    Women tear their Anterior Cruciate Ligament (ACL) 2-8 times more frequently than men. Frontal plane knee motion can produce a pathological load in the ACL. During a state of fatigue the muscles surrounding the knee joint may lose the ability to protect the joint during sudden deceleration while landing. The purpose of this study was to investigate the effects of fatigue and gender on frontal plane knee motion, EMG amplitudes, and GRF magnitudes during drop- jump landing. Pretest-posttest comp...

  20. Wind load design methods for ground-based heliostats and parabolic dish collectors

    Energy Technology Data Exchange (ETDEWEB)

    Peterka, J A; Derickson, R G [Colorado State Univ., Fort Collins, CO (United States). Fluid Dynamics and Diffusion Lab.

    1992-09-01

    The purpose of this design method is to define wind loads on flat heliostat and parabolic dish collectors in a simplified form. Wind loads are defined for both mean and peak loads accounting for the protective influence of upwind collectors, wind protective fences, or other wind-blockage elements. The method used to define wind loads was to generalize wind load data obtained during tests on model collectors, heliostats or parabolic dishes, placed in a modeled atmospheric wind in a boundary-layer wind-tunnel at Colorado State University. For both heliostats and parabolic dishes, loads are reported for solitary collectors and for collectors as elements of a field. All collectors were solid with negligible porosity; thus the effects of porosity in the collectors is not addressed.

  1. Cosmic microwave background anisotropies in multiconnected flat spaces

    International Nuclear Information System (INIS)

    Riazuelo, Alain; Weeks, Jeffrey; Uzan, Jean-Philippe; Lehoucq, Roland; Luminet, Jean-Pierre

    2004-01-01

    This article investigates the signature of the seventeen multiconnected flat spaces in cosmic microwave background (CMB) maps. For each such space it recalls a fundamental domain and a set of generating matrices, and then goes on to find an orthonormal basis for the set of eigenmodes of the Laplace operator on that space. The basis eigenmodes are expressed as linear combinations of eigenmodes of the simply connected Euclidean space. A preceding work, which provides a general method for implementing multiconnected topologies in standard CMB codes, is then applied to simulate CMB maps and angular power spectra for each space. Unlike in the 3-torus, the results in most multiconnected flat spaces depend on the location of the observer. This effect is discussed in detail. In particular, it is shown that the correlated circles on a CMB map are generically not back to back, so that negative search of back-to-back circles in the Wilkinson Microwave Anisotropy Probe data does not exclude a vast majority of flat or nearly flat topologies

  2. Design of a quasi-flat linear permanent magnet generator for pico-scale wave energy converter in south coast of Yogyakarta, Indonesia

    Science.gov (United States)

    Azhari, Budi; Prawinnetou, Wassy; Hutama, Dewangga Adhyaksa

    2017-03-01

    Indonesia has several potential ocean energies to utilize. One of them is tidal wave energy, which the potential is about 49 GW. To convert the tidal wave energy to electricity, linear permanent magnet generator (LPMG) is considered as the best appliance. In this paper, a pico-scale tidal wave power converter was designed using quasi-flat LPMG. The generator was meant to be applied in southern coast of Yogyakarta, Indonesia and was expected to generate 1 kW output. First, a quasi-flat LPMG was designed based on the expected output power and the wave characteristic at the placement site. The design was then simulated using finite element software of FEMM. Finally, the output values were calculated and the output characteristics were analyzed. The results showed that the designed power plant was able to produce output power of 725.78 Wp for each phase, with electrical efficiency of 64.5%. The output characteristics of the LPMG: output power would increase as the average wave height or wave period increases. Besides, the efficiency would increase if the external load resistance increases. Meanwhile the output power of the generator would be maximum at load resistance equals 11 Ω.

  3. On the determination of general plane stress states in orthotropic materials from ultrasonic velocity data in non symmetry planes

    International Nuclear Information System (INIS)

    Goncalves Filho, Orlando J.A.

    2015-01-01

    This work reports the progress in the development of a new experimental protocol for plane stress determination in orthotropic materials based on the ultrasonic velocity of bulk waves propagating in non symmetry planes with oblique incidence. The presence of stress-induced deformation introduces an acoustic anisotropy in the material in addition to that defined by its texture. Orthotropic materials under general plane stress states become acoustically monoclic and its orthotropic planes orthogonal to the stress plane become non symmetry planes. The inverse solution of the generalized Christoffel equation for ultrasonic bulk waves propagating in non symmetry planes of anisotropic bodies is known to be numerically unstable. The suggested protocol deals with this numerical instability without recourse to bulk wave propagation in the stress plane as proposed in the literature. Hence, it should be useful for plane stress analysis of thin wall pressure vessels where ultrasonic measurements in the direction of the wall plane are not possible. For the initial validation of the suggested protocol and verification of the stability of the inversion algorithm, computer simulation of stress determination have been performed from synthetic sets of velocity data obtained by the forward solution of the generalized Christoffel equation. Preliminary results for slightly orthotropic aluminium highlight the potential of the suggested protocol. (author)

  4. Unitarity in three-dimensional flat space higher spin theories

    International Nuclear Information System (INIS)

    Grumiller, D.; Riegler, M.; Rosseel, J.

    2014-01-01

    We investigate generic flat-space higher spin theories in three dimensions and find a no-go result, given certain assumptions that we spell out. Namely, it is only possible to have at most two out of the following three properties: unitarity, flat space, non-trivial higher spin states. Interestingly, unitarity provides an (algebra-dependent) upper bound on the central charge, like c=42 for the Galilean W_4"("2"−"1"−"1") algebra. We extend this no-go result to rule out unitary “multi-graviton” theories in flat space. We also provide an example circumventing the no-go result: Vasiliev-type flat space higher spin theory based on hs(1) can be unitary and simultaneously allow for non-trivial higher-spin states in the dual field theory.

  5. Exact piecewise flat gravitational waves

    NARCIS (Netherlands)

    van de Meent, M.

    2011-01-01

    We generalize our previous linear result (van de Meent 2011 Class. Quantum Grav 28 075005) in obtaining gravitational waves from our piecewise flat model for gravity in 3+1 dimensions to exact piecewise flat configurations describing exact planar gravitational waves. We show explicitly how to

  6. A protocol for classifying normal- and flat-arched foot posture for research studies using clinical and radiographic measurements

    Directory of Open Access Journals (Sweden)

    Menz Hylton B

    2009-07-01

    required to determine whether foot posture variations in the sagittal, transverse or both planes provide the best descriptor of the flat foot.

  7. In-plane mechanics of soft architectured fibre-reinforced silicone rubber membranes.

    Science.gov (United States)

    Bailly, L; Toungara, M; Orgéas, L; Bertrand, E; Deplano, V; Geindreau, C

    2014-12-01

    Silicone rubber membranes reinforced with architectured fibre networks were processed with a dedicated apparatus, allowing a control of the fibre content and orientation. The membranes were subjected to tensile loadings combined with continuous and discrete kinematical field measurements (DIC and particle tracking). These tests show that the mechanical behaviour of the membranes is hyperelastic at the first order. They highlight the influence of the fibre content and orientation on both the membrane in-plane deformation and stress levels. They also prove that for the considered fibrous architectures and mechanical loadings, the motion and deformation of fibres is an affine function of the macroscale transformation. These trends are fairly well described by the micromechanical model proposed recently in Bailly et al. (JMBBM, 2012). This result proves that these materials are very good candidates for new biomimetic membranes, e.g. to improve aortic analogues used for in vitro experiments, or existing textiles used for vascular (endo)prostheses. Copyright © 2014 Elsevier Ltd. All rights reserved.

  8. Holography and Entanglement in Flat Spacetime

    International Nuclear Information System (INIS)

    Li Wei; Takayanagi, Tadashi

    2011-01-01

    We propose a holographic correspondence of the flat spacetime based on the behavior of the entanglement entropy and the correlation functions. The holographic dual theory turns out to be highly nonlocal. We argue that after most part of the space is traced out, the reduced density matrix gives the maximal entropy and the correlation functions become trivial. We present a toy model for this holographic dual using a nonlocal scalar field theory that reproduces the same property of the entanglement entropy. Our conjecture is consistent with the entropy of Schwarzschild black holes in asymptotically flat spacetimes.

  9. Postural effects of symmetrical and asymmetrical loads on the spines of schoolchildren

    Directory of Open Access Journals (Sweden)

    Negrini Stefano

    2007-07-01

    Full Text Available Abstract The school backpack constitutes a daily load for schoolchildren: we set out to analyse the postural effects of this load, considering trunk rotation, shoulder asymmetry, thoracic kyphosis, lumbar lordosis, and sagittal and frontal decompensation from the plumbline. A group of 43 subjects (mean age = 12.5 ± 0.5 years were considered: average backpack loads and average time spent getting to/from home/school (7 min had been determined in a previous study conducted on this population. Children were evaluated by means of an optoelectronic device in different conditions corresponding to their usual everyday school backpack activities: without load; bearing 12 (week maximum and 8 (week average kg symmetrical loads; bearing an 8 kg asymmetrical load; after fatigue due to backpack carrying (a 7-minute treadmill walking session bearing an 8 kg symmetrical load. Both types of load induce changes in posture: the symmetrical one in the sagittal plane, without statistical significant differences between 8 and 12 kg, and the asymmetrical one in all anatomical planes. Usual fatigue accentuates sagittal effects, but recovery of all parameters (except lumbar lordosis follows removal of the load. The backpack load effect on schoolchildren posture should be more carefully evaluated in the future, even if we must bear in mind that laws protect workers to carry heavy loads but not children, and results in the literature support the hypothesis that back pain in youngsters is correlated with back pain in adulthood

  10. Transport aircraft loading and balancing system: Using a CLIPS expert system for military aircraft load planning

    Science.gov (United States)

    Richardson, J.; Labbe, M.; Belala, Y.; Leduc, Vincent

    1994-01-01

    The requirement for improving aircraft utilization and responsiveness in airlift operations has been recognized for quite some time by the Canadian Forces. To date, the utilization of scarce airlift resources has been planned mainly through the employment of manpower-intensive manual methods in combination with the expertise of highly qualified personnel. In this paper, we address the problem of facilitating the load planning process for military aircraft cargo planes through the development of a computer-based system. We introduce TALBAS (Transport Aircraft Loading and BAlancing System), a knowledge-based system designed to assist personnel involved in preparing valid load plans for the C130 Hercules aircraft. The main features of this system which are accessible through a convivial graphical user interface, consists of the automatic generation of valid cargo arrangements given a list of items to be transported, the user-definition of load plans and the automatic validation of such load plans.

  11. Heteroepitaxial growth of basal plane stacking fault free a-plane GaN

    Energy Technology Data Exchange (ETDEWEB)

    Wieneke, Matthias; Hempel, Thomas; Noltemeyer, Martin; Witte, Hartmut; Dadgar, Armin; Blaesing, Juergen; Christen, Juergen; Krost, Alois [Otto-von-Guericke Universitaet Magdeburg, FNW/IEP, Magdeburg (Germany)

    2010-07-01

    Growth of light emitting quantum-wells based on a-plane GaN is a possibility to reduce or even to avoid polarization correlated luminescence red shift and reduction of radiative recombination efficiency. But until now heteroepitaxially grown a-plane GaN films are characterized by a poor crystalline quality expressed by a high density of basal plane stacking faults (BSF) and partial dislocations. We present Si doped a-plane GaN films grown on r-plane sapphire substrates by metal organic vapor phase epitaxy using high temperature AlGaN nucleation layers. FE-SEM images revealed three dimensionally grown GaN crystallites sized up to tenth micrometer in the basal plane and a few tenth micrometers along the c-axes. Though, the full width at half maxima of the X-ray diffraction {omega}-scans of the in-plane GaN(1 anti 100) and GaN(0002) Bragg reflections exhibited a very high crystal quality. Furthermore, luminescence spectra were dominated by near band gap emission, while there was no separated peak of the basal plane stacking fault. In summary we present heteroepitaxially grown a-plane GaN without an evidence of basal plane stacking faults in X-ray diffraction measurements and luminescence spectra.

  12. Load transfer in short fibre reinforced metal matrix composites

    International Nuclear Information System (INIS)

    Garces, Gerardo; Bruno, Giovanni; Wanner, Alexander

    2007-01-01

    The internal load transfer and the deformation behaviour of aluminium-matrix composites reinforced with 2D-random alumina (Saffil) short fibres was studied for different loading modes. The evolution of stress in the metallic matrix was measured by neutron diffraction during in situ uniaxial deformation tests. Tensile and compressive tests were performed with loading axis parallel or perpendicular to the 2D-reinforcement plane. The fibre stresses were computed based on force equilibrium considerations. The results are discussed in light of a model recently established by the co-authors for composites with visco-plastic matrix behaviour and extended to the case of plastic deformation in the present study. Based on that model, the evolution of internal stresses and the macroscopic stress-strain were simulated. Comparison between the experimental and computational results shows a qualitative agreement in all relevant aspects

  13. The plane elasticity problem for a crack near the curved surface

    Science.gov (United States)

    Lebedeva, M. V.

    2018-05-01

    The unconventional approach to the plane elasticity problem for a crack near the curved surface is presented. The solution of the problem is considered in the form of the sum of solutions of two auxiliary problems. The first one describes the plane with a crack, whose surfaces are loaded by some unknown self-balanced force p(x). The second problem is dealing with the semi-infinite region with the boundary conditions equal to the difference of boundary conditions of the problem to be sought and the solution of the first problem on the region border. The unknown function p(x) is supposed to be approximated with the sufficient level of accuracy by N order polynomial with complex coefficients. This paper is aimed to determine the critical loads causing the spontaneous growth of cracks. The angles of propagation of the stationary cracks located in the region with a ledge or a cut are found. The influence of length of a crack on the bearing ability of an elastic body with the curved surface is investigated. The effect of a form of the concentrator and orientation of a crack to the fracture load subject to the different combinations of forces acting both on a surface of a crack and at infinity is analysed. The results of this research can be applied for calculation of the durability of thin-walled vessels of pressure, e.g., chemical reactors, in order to ensure their ecological safety.

  14. Ultrasound-Guided Out-of-Plane vs. In-Plane Interscalene Catheters: A Randomized, Prospective Study

    OpenAIRE

    Schwenk, Eric S.; Gandhi, Kishor; Baratta, Jaime L.; Torjman, Marc; Epstein, Richard H.; Chung, Jaeyoon; Vaghari, Benjamin A.; Beausang, David; Bojaxhi, Elird; Grady, Bernadette

    2015-01-01

    Background: Continuous interscalene blocks provide excellent analgesia after shoulder surgery. Although the safety of the ultrasound-guided in-plane approach has been touted, technical and patient factors can limit this approach. We developed a caudad-to-cephalad out-of-plane approach and hypothesized that it would decrease pain ratings due to better catheter alignment with the brachial plexus compared to the in-plane technique in a randomized, controlled study. Objectives: To compare an out-...

  15. Optimal/flatness based-control of stand-alone power systems using fuel cells, batteries and supercapacitors

    Directory of Open Access Journals (Sweden)

    Mahdi Benaouadj

    2017-03-01

    Full Text Available In this work, an optimal control (under constraints based on the Pontryagin’s maximum principle is used to optimally manage energy flows in a basic PEM (Proton Exchange Membrane fuel cells system associated to lithium-ion batteries and supercapacitors through a common DC bus having a voltage to stabilize using the differential flatness approach. The adaptation of voltage levels between different sources and load is ensured by use of three DCDC converters, one boost connected to the PEM fuel cells, while the two others are buck/boost and connected to the lithium-ion batteries and supercapacitors. The aim of this paper is to develop an energy management strategy that is able to satisfy the following objectives: - Impose the power requested by a habitat (representing the load according to a proposed daily consumption profile, - Keep fuel cells working at optimal power delivery conditions, - Maintain constant voltage across the common DC bus, - Stabilize the batteries voltage and stored quantity of charge at desired values given by the optimal control. Results obtained under MATLAB/Simulink environment prove that the cited objectives are satisfied, validating then, effectiveness and complementarity between the optimal and flatness concepts proposed for energy management. Note that this study is currently in experimentally validation within MSE Laboratory.

  16. FLAT FEET OF DHE CHILDREN IN PRE-SCHOOL AGE

    Directory of Open Access Journals (Sweden)

    Admira Koničanin

    2011-03-01

    Full Text Available Subjekt : Of this research are flat feet of the children of both sexes in pre-school age children Aim : Of the research is confirm wheter is exists or flat feel of the children of both sexes in pre-school age.

  17. Atomically flat surface of (0 0 1) textured FePt thin films by residual stress control

    Energy Technology Data Exchange (ETDEWEB)

    Liu, S.H. [Department of Materials Science and Engineering, Feng Chia University, Taichung 407, Taiwan (China); Hsiao, S.N., E-mail: pmami.hsiao@gmail.com [Department of Materials Science and Engineering, Feng Chia University, Taichung 407, Taiwan (China); Department of Power Mechanical Engineering, National Tsing Hua University, Hsinchu 300, Taiwan (China); Chou, C.L.; Chen, S.K. [Department of Materials Science and Engineering, Feng Chia University, Taichung 407, Taiwan (China); Lee, H.Y. [National Synchrotron Radiation Research Center, Hsinchu 300, Taiwan (China); Department of Applied Science, National Hsinchu University of Education, Hsinchu 300, Taiwan (China)

    2015-11-01

    Highlights: • We demonstrate crystallographic structure, (0 0 1) texture, surface roughness, and residual stress in the single-layered FePt thin films annealed at various heating rates (10–110 K/s). • Texture coefficient of (0 0 1)-plane of the samples increases with increasing heating rate from 10 to 40 K/s, which is correlated with perpendicular magnetic anisotropy and in-plane tensile stress. • Dewetting phenomenon due to stress relaxation leads to the broadening of [0 0 1] easy axis and degradation of perpendicular magnetic anisotropy. • A strong dependence of surface roughness on in-plane residual stress was revealed. • When the samples are RTA at 40 K/s, the enhanced perpendicular magnetic anisotropy and atomically surface roughness are achieved. - Abstract: Single-layered Fe{sub 52}Pt{sub 48} films with thickness of 10 nm were sputter-deposited on glass substrates. Rapid thermal annealing with different heating rates (10–110 K/s) was applied to transform as-deposited fcc phase into L1{sub 0} phase and meanwhile to align [0 0 1]-axis of L1{sub 0} crystal along plane normal direction. Based on X-ray diffractometry using synchrotron radiation source, the texture coefficient of (0 0 1)-plane increases with increasing heating rate from 10 to 40 K/s, which is correlated with perpendicular magnetic anisotropy and in-plane tensile stress analyzed by asymmetric sin{sup 2} ψ method. Furthermore, it was revealed by atomic force microscopy that the dewetting process occurred as heating rate was raised up to 80 K/s and higher. The change in the microstructure due to stress relaxation leads to the degradation of (0 0 1) orientation and magnetic properties. Surface roughness is closely related to the in-plane tensile stress. Enhanced perpendicular magnetic anisotropy and atomically flat surface were achieved for the samples annealed at 40 K/s, which may be suitable for further practical applications. This work also suggests a feasible way for surface

  18. Trajectory Optimization for Differential Flat Systems

    OpenAIRE

    Kahina Louadj; Benjamas Panomruttanarug; Alexandre Carlos Brandao Ramos; Felix Mora-Camino

    2016-01-01

    International audience; The purpose of this communication is to investigate the applicability of Variational Calculus to the optimization of the operation of differentially flat systems. After introducingcharacteristic properties of differentially flat systems, the applicability of variational calculus to the optimization of flat output trajectories is displayed. Two illustrative examples are also presented.

  19. Removal torque evaluation of three different abutment screws for single implant restorations after mechanical cyclic loading.

    Science.gov (United States)

    Paepoemsin, T; Reichart, P A; Chaijareenont, P; Strietzel, F P; Khongkhunthian, P

    2016-01-01

    The aim of this study was to evaluate the removal torque of three different abutment screws and pull out strength of implant-abutment connection for single implant restorations after mechanical cyclic loading. The study was performed in accordance with ISO 14801:2007. Three implant groups (n=15) were used: group A, PW Plus® with flat head screw; group B, PW Plus® with tapered screw; and group C, Conelog® with flat head screw. All groups had the same implant-abutment connection feature: cone with mandatory index. All screws were tightened with manufacturer's recommended torque. Ten specimens in each group underwent cyclic loading (1×106 cycles, 10 Hz, and 250 N). Then, all specimens were un-tightened, measured for the removal torque, and underwent a tensile test. The force that dislodged abutment from implant fixture was recorded. The data were analysed using independent sample t-test, ANOVA and Tukey HSD test. Before cyclic loading, removal torque in groups A, B and C were significantly different (B> A> C, Pabutment from implant fixture increased immensely after cyclic loading.

  20. Intercorrelated in-plane and out-of-plane ferroelectricity in ultrathin two-dimensional layered semiconductor In2Se3

    KAUST Repository

    Cui, Chaojie; Hu, Weijin; Yan, Xingxu; Addiego, Christopher; Gao, Wenpei; Wang, Yao; Wang, Zhe; Li, Linze; Cheng, Yingchun; Li, Peng; Zhang, Xixiang; Alshareef, Husam N.; Wu, Tao; Zhu, Wenguang; Pan, Xiaoqing; Li, Lain-Jong

    2018-01-01

    Enriching the functionality of ferroelectric materials with visible-light sensitivity and multiaxial switching capability would open up new opportunities for their applications in advanced information storage with diverse signal manipulation functions. We report experimental observations of robust intra-layer ferroelectricity in two-dimensional (2D) van der Waals layered -In2Se3 ultrathin flakes at room temperature. Distinct from other 2D and conventional ferroelectrics, In2Se3 exhibits intrinsically intercorrelated out-of-plane and in-plane polarization, where the reversal of the out-of-plane polarization by a vertical electric field also induces the rotation of the in-plane polarization. Based on the in-plane switchable diode effect and the narrow bandgap (~1.3 eV) of ferroelectric In2Se3, a prototypical non-volatile memory device, which can be manipulated both by electric field and visible light illumination, is demonstrated for advancing data storage technologies.

  1. Intercorrelated in-plane and out-of-plane ferroelectricity in ultrathin two-dimensional layered semiconductor In2Se3

    KAUST Repository

    Cui, Chaojie

    2018-01-30

    Enriching the functionality of ferroelectric materials with visible-light sensitivity and multiaxial switching capability would open up new opportunities for their applications in advanced information storage with diverse signal manipulation functions. We report experimental observations of robust intra-layer ferroelectricity in two-dimensional (2D) van der Waals layered -In2Se3 ultrathin flakes at room temperature. Distinct from other 2D and conventional ferroelectrics, In2Se3 exhibits intrinsically intercorrelated out-of-plane and in-plane polarization, where the reversal of the out-of-plane polarization by a vertical electric field also induces the rotation of the in-plane polarization. Based on the in-plane switchable diode effect and the narrow bandgap (~1.3 eV) of ferroelectric In2Se3, a prototypical non-volatile memory device, which can be manipulated both by electric field and visible light illumination, is demonstrated for advancing data storage technologies.

  2. Rigidity of generalized Bach-flat vacuum static spaces

    Science.gov (United States)

    Yun, Gabjin; Hwang, Seungsu

    2017-11-01

    In this paper, we study the structure of generalized Bach-flat vacuum static spaces. Generalized Bach-flat metrics are considered as extensions of both Einstein and Bach-flat metrics. First, we prove that a compact Riemannian n-manifold with n ≥ 4 which is a generalized Bach-flat vacuum static space is Einstein. A generalized Bach-flat vacuum static space with the potential function f having compact level sets is either Ricci-flat or a warped product with zero scalar curvature when n ≥ 5, and when n = 4, it is Einstein if f has its minimum. Secondly, we consider critical metrics for another quadratic curvature functional involving the Ricci tensor, and prove similar results. Lastly, by applying the technique developed above, we prove Besse conjecture when the manifold is generalized Bach-flat.

  3. Influence of Environmental Pollution on Leaf Properties of Urban Plane Trees, Platanus orientalis L.

    Science.gov (United States)

    Pourkhabbaz, Alireza; Rastin, Nayerah; Olbrich, Andrea; Langenfeld-Heyser, Rosemarie

    2010-01-01

    To investigate whether leaves of plane trees (Platanus orientalis) are damaged by traffic pollution, trees from a megacity (Mashhad, Iran) and a rural area were investigated. Soil and air from the urban centre showed enrichment of several toxic elements, but only lead was enriched in leaves. Leaf size and stomata density were lower at the urban site. At the urban site leaf surfaces were heavily loaded by dust particles but the stomata were not occluded; the cuticle was thinner; other anatomical properties were unaffected suggesting that plane trees can cope with traffic exhaust in megacities. PMID:20577871

  4. Composition of The Knee Index, a novel three-dimensional biomechanical index for knee joint load, in subjects with mild to moderate knee osteoarthritis

    DEFF Research Database (Denmark)

    Clausen, Brian; Andriacchi, Tom; Nielsen, Dennis Brandborg

    Background Knee joint load is an important factor associated with progression of knee osteoarthritis. To provide an overall understanding of knee joint loading, the Knee Index (KI) has been developed to include moments from all three planes (frontal, sagittal and transversal). However, before KI...... index of joint load for the knee, in patients with mild to moderate knee osteoarthritis. Methods The contribution of frontal, sagittal and transversal plane knee moments to KI was investigated in 24 subjects (13 women, age: 58 ± 7.6 years, BMI: 27.1 ± 3.0) with clinically diagnosed mild to moderate knee...... kinematics (i.e. the knee adduction moment), and secondarily the sagittal plane kinematics (i.e. the knee flexion moment). This holds promise for using KI in clinical trials since both frontal and sagittal knee joint moments have been suggested to be associated with the knee osteoarthritis disease...

  5. 49 CFR 231.6 - Flat cars.

    Science.gov (United States)

    2010-10-01

    ... 49 Transportation 4 2010-10-01 2010-10-01 false Flat cars. 231.6 Section 231.6 Transportation... TRANSPORTATION RAILROAD SAFETY APPLIANCE STANDARDS § 231.6 Flat cars. (Cars with sides 12 inches or less above the floor may be equipped the same as flat cars.) (a) Hand brakes—(1) Number. Same as specified for...

  6. Land claim and loss of tidal flats in the Yangtze Estuary.

    Science.gov (United States)

    Chen, Ying; Dong, Jinwei; Xiao, Xiangming; Zhang, Min; Tian, Bo; Zhou, Yunxuan; Li, Bo; Ma, Zhijun

    2016-04-01

    Tidal flats play a critical role in supporting biodiversity and in providing ecosystem services but are rapidly disappearing because of human activities. The Yangtze Estuary is one of the world's largest alluvial estuaries and is adjacent to the most developed economic zone in China. Using the Yangtze Estuary as a study region, we developed an automatic algorithm to estimate tidal flat areas based on the Land Surface Water Index and the Normalized Difference Vegetation Index. The total area of tidal flats in the Yangtze Estuary has decreased by 36% over the past three decades, including a 38% reduction in saltmarshes and a 31% reduction in barren mudflats. Meanwhile, land claim has accumulated to 1077 km(2), a value that exceeds the area of the remaining tidal flats. We divided the Yangtze Estuary into Shanghai and Jiangsu areas, which differ in riverine sediment supply and tidal flat management patterns. Although land claim has accelerated in both areas, the decline in tidal flat area has been much greater in Jiangsu than in Shanghai because of abundant supplies of sediment and artificial siltation in the latter area. The results highlight the need for better coastal planning and management based on tidal flat dynamics.

  7. The elasticity anisotropy in the basal atomic planes of Mg(OH)2 and Ca(OH)2 associated with auxetic elastic properties of the hydrogen sub-lattice

    International Nuclear Information System (INIS)

    Harutyunyan, Valeri S.; Abrahamyan, Aren A.; Aivazyan, Ashot P.

    2013-01-01

    Graphical abstract: To the out-of-plane strain ε x induced in the (0 0 0 1) atomic planes of Mg(OH) 2 , the contributions of constituent octahedral layers ε x (1) and interlayers ε x (2) are of opposite sign. Highlights: ► Elasticity anisotropy of rare earth metal hydroxides is theoretically analyzed. ► Elastic anisotropy within (0 0 0 1) atomic planes is studied from energy consideration. ► The out-of-plane Poisson’s ratios of octahedral layers and interlayers are of opposite sign. ► Auxeticity of the hydrogen sublattice (interlayers) results from weak interlayer bonding. ► The obtained expression for the in-plane Young’s modulus results in useful conclusions. - Abstract: Within the framework of the Hook’s generalized law and using the experimental data for characteristic crystallographic parameters and stiffness constants available from literature, the individual elastic properties of constituent octahedral layers and interlayers of the (0 0 0 1) atomic planes in the Mg(OH) 2 and Ca(OH) 2 crystal lattices are theoretically quantified from intermolecular interaction energy. It is shown that, under uniaxial type of deformation applied along the (0 0 0 1) basal planes, in the “load-deformation response” the octahedral layers and interlayers exhibit the positive and negative Poisson’s ratio, respectively. Manifestation of such a type strong elastic anisotropy in the basal atomic planes and auxetic elastic behavior of the hydrogen sub-lattice (interlayers) upon applied uniaxial load result from a large difference in the strength of bonding within octahedral layers and interlayers. The intermolecular binding energy is contributed both by “hydroxyl–hydroxyl” and “metal atom–hydroxyl” dispersion interactions, whereas the Young’s modulus in the direction parallel to a (0 0 0 1) plane is practically contributed only by the former interaction. For this Young’s modulus, an approximate analytical expression is derived, which is

  8. Peginterferon alfa-2b and weight-based or flat-dose ribavirin in chronic hepatitis C patients: a randomized trial.

    Science.gov (United States)

    Jacobson, Ira M; Brown, Robert S; Freilich, Bradley; Afdhal, Nezam; Kwo, Paul Y; Santoro, John; Becker, Scott; Wakil, Adil E; Pound, David; Godofsky, Eliot; Strauss, Robert; Bernstein, David; Flamm, Steven; Pauly, Mary Pat; Mukhopadhyay, Pabak; Griffel, Louis H; Brass, Clifford A

    2007-10-01

    This prospective, multicenter, community-based and academic-based, open-label, investigator-initiated, U.S. study evaluated efficacy and safety of pegylated interferon (PEG-IFN) alfa-2b plus a flat or weight-based dose of ribavirin (RBV) in adults with chronic hepatitis C. Patients (n = 5027) were randomly assigned to receive PEG-IFN alfa-2b 1.5 microg/kg/week plus flat-dose (800 mg/day) or weight-based (800-1400 mg/day) RBV for 48 weeks (patients with genotype 1, 4, 5, or 6) and for 24 or 48 weeks (genotype 2/3 patients). Primary end point was sustained virologic response (undetectable [<125 IU/mL] serum hepatitis C virus RNA at 24-week follow-up). Sustained virologic response, but not end-of-treatment, rates were significantly higher with weight-based than with flat-dose RBV (44.2% versus 40.5%; P = 0.008). Sustained virologic response rates by intention-to-treat analysis were 34.0% and 28.9%, respectively, in genotype 1 patients (P = 0.005) and 31.2% and 26.7%, respectively, in genotype 1 patients with high baseline viral load (P = 0.056). In genotype 2/3 patients, rates were not significantly different (61.8% and 59.5%, respectively) regardless of treatment duration. Besides greater hemoglobin reductions with weight-based RBV, safety profiles were similar across RBV dosing groups, including the 1400-mg/day group. PEG-IFN alfa-2b plus weight-based RBV is more effective than flat-dose RBV, particularly in genotype 1 patients, providing equivalent efficacy across all weight groups. RBV 1400 mg/day is appropriate for patients 105 to 125 kg. For genotype 2/3 patients, 24 weeks of treatment with flat-dose RBV is adequate; no evidence of additional benefit of extending treatment to 48 weeks was demonstrated.

  9. Flat directions in flipped SU(5). I: All-order analysis

    Energy Technology Data Exchange (ETDEWEB)

    Cleaver, G.B. E-mail: gcleaver@rainbow.physics.tamu.edu; Ellis, J. E-mail: john.ellis@cern.ch; Nanopoulos, D.V. E-mail: dimitri@soda.physics.tamu.edu

    2001-04-23

    We present a systematic classification of field directions for the string-derived flipped SU(5) model that are D- and F-flat to all orders. Properties of the flipped SU(5) model with field values in these directions are compared to those associated with other flat directions that have been shown to be F-flat to specific finite orders in the superpotential. We discuss the phenomenological Higgs spectrum, and quark and charged-lepton mass textures.

  10. Flat Directions in Flipped SU(5); 1, All-Order Analysis

    CERN Document Server

    Cleaver, G B; Nanopoulos, Dimitri V

    2001-01-01

    We present a systematic classification of field directions for the string-derived flipped SU(5) model that are D- and F-flat to all orders. Properties of the flipped SU(5) model with field values in these directions are compared to those associated with other flat directions that have been shown to be F-flat to specific finite orders in the superpotential. We discuss the phenomenological Higgs spectrum, and quark and charged-lepton mass textures.

  11. Intercorrelated In-Plane and Out-of-Plane Ferroelectricity in Ultrathin Two-Dimensional Layered Semiconductor In2Se3.

    Science.gov (United States)

    Cui, Chaojie; Hu, Wei-Jin; Yan, Xingxu; Addiego, Christopher; Gao, Wenpei; Wang, Yao; Wang, Zhe; Li, Linze; Cheng, Yingchun; Li, Peng; Zhang, Xixiang; Alshareef, Husam N; Wu, Tom; Zhu, Wenguang; Pan, Xiaoqing; Li, Lain-Jong

    2018-02-14

    Enriching the functionality of ferroelectric materials with visible-light sensitivity and multiaxial switching capability would open up new opportunities for their applications in advanced information storage with diverse signal manipulation functions. We report experimental observations of robust intralayer ferroelectricity in two-dimensional (2D) van der Waals layered α-In 2 Se 3 ultrathin flakes at room temperature. Distinct from other 2D and conventional ferroelectrics, In 2 Se 3 exhibits intrinsically intercorrelated out-of-plane and in-plane polarization, where the reversal of the out-of-plane polarization by a vertical electric field also induces the rotation of the in-plane polarization. On the basis of the in-plane switchable diode effect and the narrow bandgap (∼1.3 eV) of ferroelectric In 2 Se 3 , a prototypical nonvolatile memory device, which can be manipulated both by electric field and visible light illumination, is demonstrated for advancing data storage technologies.

  12. Punching shear in reinforced concrete flat slabs with hole adjacent to the column and moment transfer

    Directory of Open Access Journals (Sweden)

    D. C. Oliveira

    Full Text Available The structural behavior and the ultimate punching shear resistance of internal reinforced concrete flat slab-column connections, with one hole adjacent to the column, with or without flexural moment transfer of the slab to the column was investigated. Main variables were: the existence whether or not hole, flexural reinforcement layout and ratio, the direction and sense of the moment transferred and the eccentricity of the load (M (moment transferred to column / V (shear ratio at the connection - 0,50 m or 0,25 m. Seven internal slab-column joining were tested and ultimate loads, cracking, deflections, concrete and reinforcement strains were analyzed. The existence of hole adjacent to the smaller column dimension, the hole dimension, flexural reinforcement rate and placing, the variation of relation Mu/Vu in function of the load, and, than, of eccentricity of the load, influenced the slabs behavior and rupture load. Test results were compared with the estimations from CEB-FIP/MC1990 [7], EC2/2004 [12], ACI-318:2011 [1] and NBR 6118:2007 [5]. ACI [1] and EC2 [12] presented most conservative estimates, although have presented some non conservative estimates. Brazilian NBR [5], even though being partly based in EC2 [12], presented smaller conservative estimates and more non conservative estimates. A modification on all codes is proposed for taking in account the moment caused by the eccentricity at the critical perimeter for slabs with holes.

  13. Acoustic radiation force on cylindrical shells in a plane standing wave

    International Nuclear Information System (INIS)

    Mitri, F G

    2005-01-01

    In this paper, the radiation force per length resulting from a plane standing wave incident on an infinitely long cylindrical shell is computed. The cases of elastic and viscoelastic shells immersed in ideal (non-viscous) fluids are considered with particular emphasis on their thickness and the content of their interior hollow spaces. Numerical calculations of the radiation force function Y st are performed. The fluid-loading effect on the radiation force function curves is analysed as well. The results show several features quite different when the interior hollow space is changed from air to water. Moreover, the theory developed here is more general since it includes the results on cylinders

  14. Modified rational Legendre approach to laminar viscous flow over a semi-infinite flat plate

    International Nuclear Information System (INIS)

    Tajvidi, T.; Razzaghi, M.; Dehghan, M.

    2008-01-01

    A numerical method for solving the classical Blasius' equation is proposed. The Blasius' equation is a third order nonlinear ordinary differential equation , which arises in the problem of the two-dimensional laminar viscous flow over a semi-infinite flat plane. The approach is based on a modified rational Legendre tau method. The operational matrices for the derivative and product of the modified rational Legendre functions are presented. These matrices together with the tau method are utilized to reduce the solution of Blasius' equation to the solution of a system of algebraic equations. A numerical evaluation is included to demonstrate the validity and applicability of the method and a comparison is made with existing results

  15. Effect of target color and scanning geometry on terrestrial LiDAR point-cloud noise and plane fitting

    Science.gov (United States)

    Bolkas, Dimitrios; Martinez, Aaron

    2018-01-01

    Point-cloud coordinate information derived from terrestrial Light Detection And Ranging (LiDAR) is important for several applications in surveying and civil engineering. Plane fitting and segmentation of target-surfaces is an important step in several applications such as in the monitoring of structures. Reliable parametric modeling and segmentation relies on the underlying quality of the point-cloud. Therefore, understanding how point-cloud errors affect fitting of planes and segmentation is important. Point-cloud intensity, which accompanies the point-cloud data, often goes hand-in-hand with point-cloud noise. This study uses industrial particle boards painted with eight different colors (black, white, grey, red, green, blue, brown, and yellow) and two different sheens (flat and semi-gloss) to explore how noise and plane residuals vary with scanning geometry (i.e., distance and incidence angle) and target-color. Results show that darker colors, such as black and brown, can produce point clouds that are several times noisier than bright targets, such as white. In addition, semi-gloss targets manage to reduce noise in dark targets by about 2-3 times. The study of plane residuals with scanning geometry reveals that, in many of the cases tested, residuals decrease with increasing incidence angles, which can assist in understanding the distribution of plane residuals in a dataset. Finally, a scheme is developed to derive survey guidelines based on the data collected in this experiment. Three examples demonstrate that users should consider instrument specification, required precision of plane residuals, required point-spacing, target-color, and target-sheen, when selecting scanning locations. Outcomes of this study can aid users to select appropriate instrumentation and improve planning of terrestrial LiDAR data-acquisition.

  16. Harmonic manifolds with minimal horospheres are flat

    Indian Academy of Sciences (India)

    Abstract. In this note we reprove the known theorem: Harmonic manifolds with minimal horospheres are flat. It turns out that our proof is simpler and more direct than the original one. We also reprove the theorem: Ricci flat harmonic manifolds are flat, which is generally affirmed by appealing to Cheeger–Gromov splitting ...

  17. Harmonic Manifolds with Minimal Horospheres are Flat

    Indian Academy of Sciences (India)

    In this note we reprove the known theorem: Harmonic manifolds with minimal horospheres are flat. It turns out that our proof is simpler and more direct than the original one. We also reprove the theorem: Ricci flat harmonic manifolds are flat, which is generally affirmed by appealing to Cheeger–Gromov splitting theorem.

  18. Flat directions in left-right symmetric string derived models

    International Nuclear Information System (INIS)

    Cleaver, Gerald B.; Clements, David J.; Faraggi, Alon E.

    2002-01-01

    The only string models known to reproduce the minimal supersymmetric standard model in the low energy effective field theory are those constructed in the free fermionic formulation. We demonstrate the existence of quasirealistic free fermionic heterotic string models in which supersymmetric singlet flat directions do not exist. This raises the possibility that supersymmetry is broken perturbatively in such models by the one-loop Fayet-Iliopoulos term. We show, however, that supersymmetric flat directions that utilize vacuum expectation values of some non-Abelian fields in the massless string spectrum do exist in the model. We argue that hidden sector condensates lift the flat directions and break supersymmetry hierarchically

  19. Stand-alone flat-plate photovoltaic power systems: System sizing and life-cycle costing methodology for Federal agencies

    Science.gov (United States)

    Borden, C. S.; Volkmer, K.; Cochrane, E. H.; Lawson, A. C.

    1984-01-01

    A simple methodology to estimate photovoltaic system size and life-cycle costs in stand-alone applications is presented. It is designed to assist engineers at Government agencies in determining the feasibility of using small stand-alone photovoltaic systems to supply ac or dc power to the load. Photovoltaic system design considerations are presented as well as the equations for sizing the flat-plate array and the battery storage to meet the required load. Cost effectiveness of a candidate photovoltaic system is based on comparison with the life-cycle cost of alternative systems. Examples of alternative systems addressed are batteries, diesel generators, the utility grid, and other renewable energy systems.

  20. PRIMARY STAGE OF PAKIS-STEM-BLOCK SYSTEM AS THERMAL PROTECTIVE TO FLAT BARE CONCRETE ROOFTOP IN TROPICAL CLIMATE OF SURABAYA

    Directory of Open Access Journals (Sweden)

    Danny Santoso Mintorogo

    2011-07-01

    Full Text Available In the era of global warming and increasing urban heat island condition, flat concrete deck on shop-houses may be less sustainable to handle the excessive solar heat radiation impacts on the roof surfaces. Innovative alternative roofing system is needed to manage heat radiation that will lead to sustainable factors likes energy savings, less energy body used on the roofing materials, and provide comprehensive environmental friendly roof system. This paper discusses about particular environmental friendly materials such as “Pakis-Stem Blocks” system is a good thermal resistant to absorb the solar sun heat and provide natural cooling through convective-wind without adding substantial loads to the roof structures. “Pakis-stem blocks” are easier, cheaper and more valuable than other sub-structure roofing materials as thermal resistant layer on flat bare concrete deck besides green roofing systems.

  1. Use of loading-unloading compression curves in medical device design

    Science.gov (United States)

    Ciornei, M. C.; Alaci, S.; Ciornei, F. C.; Romanu, I. C.

    2017-08-01

    The paper presents a method and experimental results regarding mechanical testing of soft materials. In order to characterize the mechanical behaviour of technological materials used in prosthesis, a large number of material constants are required, as well as the comparison to the original. The present paper proposes as methodology the comparison between compression loading-unloading curves corresponding to a soft biological tissue and to a synthetic material. To this purpose, a device was designed based on the principle of the dynamic harness test. A moving load is considered and the force upon the indenter is controlled for loading-unloading phases. The load and specimen deformation are simultaneously recorded. A significant contribution of this paper is the interpolation of experimental data by power law functions, a difficult task because of the instability of the system of equations to be optimized. Finding the interpolation function was simplified, from solving a system of transcendental equations to solving a unique equation. The characteristic parameters of the experimentally curves must be compared to the ones corresponding to actual tissue. The tests were performed for two cases: first, using a spherical punch, and second, for a flat-ended cylindrical punch.

  2. Review of Punching Shear Behaviour of Flat Slabs Reinforced with FRP Bars

    Science.gov (United States)

    Mohamed, Osama A.; Khattab, Rania

    2017-10-01

    Using Fibre Reinforced Polymer (FRP) bars to reinforce two-way concrete slabs can extend the service life, reduce maintenance cost and improve-life cycle cost efficiency. FRP reinforcing bars are more environmentally friendly alternatives to traditional reinforcing steel. Shear behaviour of reinforced concrete structural members is a complex phenomenon that relies on the development of internal load-carrying mechanisms, the magnitude and combination of which is still a subject of research. Many building codes and design standards provide design formulas for estimation of punching shear capacity of FRP reinforced flat slabs. Building code formulas take into account the effects of the axial stiffness of main reinforcement bars, the ratio of the perimeter of the critical section to the slab effective depth, and the slab thickness on the punching shear capacity of two-way slabs reinforced with FRP bars or grids. The goal of this paper is to compare experimental data published in the literature to the equations offered by building codes for the estimation of punching shear capacity of concrete flat slabs reinforced with FRP bars. Emphasis in this paper is on two North American codes, namely, ACI 440.1R-15 and CSA S806-12. The experimental data covered in this paper include flat slabs reinforced with GFRP, BFRP, and CFRP bars. Both ACI 440.1R-15 and CSA S806-12 are shown to be in good agreement with test results in terms of predicting the punching shear capacity.

  3. NUMERICAL DERIVATIONS OF A MACROSCOPIC MODEL FOR REINFORCED CONCRETE WALLS CONSIDERING IN-PLANE AND OUT-OF-PLANE BEHAVIOR

    OpenAIRE

    LATCHAROTE; Panon KAI, Yoshiro

    2015-01-01

    A macroscopic model, macro plate model, was proposed to represent a wall member of RC walls. Both in-plane and out-of-plane behavior were considered for numerical derivations of macro plate model. For out-of-plane behavior, bending deformation was incorporated with shear deformation to consider out-of-plane deformation as same as in-plane behavior. The hysteretic behavior of macro plate model can be directly expressed by stress-strain relationships in any conventional hysteretic rules, which ...

  4. Fuel cells, batteries and super-capacitors stand-alone power systems management using optimal/flatness based-control

    Energy Technology Data Exchange (ETDEWEB)

    Benaouadj, M.; Aboubou, A.; Bahri, M.; Boucetta, A. [MSE Laboratory, Mohamed khiderBiskra University (Algeria); Ayad, M. Y., E-mail: ayadmy@gmail.com [R& D, Industrial Hybrid Vehicle Applications (France)

    2016-07-25

    In this work, an optimal control (under constraints) based on the Pontryagin’s maximum principle is used to optimally manage energy flows in a basic PEM (Proton Exchange Membrane) fuel cells system associated to lithium-ion batteries and supercapacitors through a common DC bus having a voltage to stabilize using the differential flatness approach. The adaptation of voltage levels between different sources and load is ensured by use of three DC-DC converters, one boost connected to the PEM fuel cells, while the two others are buck/boost and connected to the lithiumion batteries and supercapacitors. The aim of this paper is to develop an energy management strategy that is able to satisfy the following objectives: Impose the power requested by a habitat (representing the load) according to a proposed daily consumption profile, Keep fuel cells working at optimal power delivery conditions, Maintain constant voltage across the common DC bus, Stabilize the batteries voltage and stored quantity of charge at desired values given by the optimal control. Results obtained under MATLAB/Simulink environment prove that the cited objectives are satisfied, validating then, effectiveness and complementarity between the optimal and flatness concepts proposed for energy management. Note that this study is currently in experimentally validation within MSE Laboratory.

  5. Effects of matrix properties on microscale damage in thermoplastic laminates under quasi-static and impact loading

    KAUST Repository

    Wafai, B. Husam

    2018-03-01

    Thermoplastics reinforced with continuous fibers are very promising building materials for the auto industry and consumer electronics to reduce the weight of vehicles and portable devices, and to deliver a high impact tolerance at the same time. Polypropylene is an abundant thermoplastic, and its glass fibers composites make a valuable solution that is suitable for mass production. But the adoption of such composites requires a deep understanding of their mechanical behavior under the relevant loading conditions. In this Ph.D. work, we aim to understand the damage process in continuous glass fiberreinforced polypropylene in detail. We will focus in particular on developing an approach for microscale observation of damage during the out-of-plane loading process and will use these observations for both qualitative and quantitative evaluation of the composite. We will apply our approach to two kinds of polypropylene composites, one of them is specially designed to withstand impact. The comparison between the two types of composites at slow and fast loading cases will shed some light on the effect of the polymer properties on the behavior of composites under out-of-plane loading.

  6. Covariant quantizations in plane and curved spaces

    International Nuclear Information System (INIS)

    Assirati, J.L.M.; Gitman, D.M.

    2017-01-01

    We present covariant quantization rules for nonsingular finite-dimensional classical theories with flat and curved configuration spaces. In the beginning, we construct a family of covariant quantizations in flat spaces and Cartesian coordinates. This family is parametrized by a function ω(θ), θ element of (1,0), which describes an ambiguity of the quantization. We generalize this construction presenting covariant quantizations of theories with flat configuration spaces but already with arbitrary curvilinear coordinates. Then we construct a so-called minimal family of covariant quantizations for theories with curved configuration spaces. This family of quantizations is parametrized by the same function ω(θ). Finally, we describe a more wide family of covariant quantizations in curved spaces. This family is already parametrized by two functions, the previous one ω(θ) and by an additional function Θ(x,ξ). The above mentioned minimal family is a part at Θ = 1 of the wide family of quantizations. We study constructed quantizations in detail, proving their consistency and covariance. As a physical application, we consider a quantization of a non-relativistic particle moving in a curved space, discussing the problem of a quantum potential. Applying the covariant quantizations in flat spaces to an old problem of constructing quantum Hamiltonian in polar coordinates, we directly obtain a correct result. (orig.)

  7. Covariant quantizations in plane and curved spaces

    Energy Technology Data Exchange (ETDEWEB)

    Assirati, J.L.M. [University of Sao Paulo, Institute of Physics, Sao Paulo (Brazil); Gitman, D.M. [Tomsk State University, Department of Physics, Tomsk (Russian Federation); P.N. Lebedev Physical Institute, Moscow (Russian Federation); University of Sao Paulo, Institute of Physics, Sao Paulo (Brazil)

    2017-07-15

    We present covariant quantization rules for nonsingular finite-dimensional classical theories with flat and curved configuration spaces. In the beginning, we construct a family of covariant quantizations in flat spaces and Cartesian coordinates. This family is parametrized by a function ω(θ), θ element of (1,0), which describes an ambiguity of the quantization. We generalize this construction presenting covariant quantizations of theories with flat configuration spaces but already with arbitrary curvilinear coordinates. Then we construct a so-called minimal family of covariant quantizations for theories with curved configuration spaces. This family of quantizations is parametrized by the same function ω(θ). Finally, we describe a more wide family of covariant quantizations in curved spaces. This family is already parametrized by two functions, the previous one ω(θ) and by an additional function Θ(x,ξ). The above mentioned minimal family is a part at Θ = 1 of the wide family of quantizations. We study constructed quantizations in detail, proving their consistency and covariance. As a physical application, we consider a quantization of a non-relativistic particle moving in a curved space, discussing the problem of a quantum potential. Applying the covariant quantizations in flat spaces to an old problem of constructing quantum Hamiltonian in polar coordinates, we directly obtain a correct result. (orig.)

  8. Reducing Undue Conservatism in "Higher Frequency" Structural Design Loads in Aerospace Components

    Science.gov (United States)

    Knight, J. Brent

    2012-01-01

    This study is intended to investigate the frequency dependency of significant strain due to vibratory loads in aerospace vehicle components. The notion that "higher frequency" dynamic loads applied as static loads is inherently conservative is perceived as widely accepted. This effort is focused on demonstrating that principle and attempting to evolve methods to capitalize on it to mitigate undue conservatism. It has been suggested that observations of higher frequency modes that resulted in very low corresponding strain did so due to those modes not being significant. Two avionics boxes, one with its first significant mode at 341 Hz and the other at 857 Hz, were attached to a flat panel installed on a curved orthogrid panel which was driven acoustically in tests performed at NASA/MSFC. Strain and acceleration were measured at select locations on each of the boxes. When possible, strain gage rosettes and accelerometers were installed on either side of a given structural member so that measured strain and acceleration data would directly correspond to one another. Ultimately, a frequency above which vibratory loads can be disregarded for purposes of static structural analyses and sizing of typical robust aerospace components is sought.

  9. Functional data analysis on ground reaction force of military load carriage increment

    Science.gov (United States)

    Din, Wan Rozita Wan; Rambely, Azmin Sham

    2014-06-01

    Analysis of ground reaction force on military load carriage is done through functional data analysis (FDA) statistical technique. The main objective of the research is to investigate the effect of 10% load increment and to find the maximum suitable load for the Malaysian military. Ten military soldiers age 31 ± 6.2 years, weigh 71.6 ± 10.4 kg and height of 166.3 ± 5.9 cm carrying different military load range from 0% body weight (BW) up to 40% BW participated in an experiment to gather the GRF and kinematic data using Vicon Motion Analysis System, Kirstler force plates and thirty nine body markers. The analysis is conducted in sagittal, medial lateral and anterior posterior planes. The results show that 10% BW load increment has an effect when heel strike and toe-off for all the three planes analyzed with P-value less than 0.001 at 0.05 significant levels. FDA proves to be one of the best statistical techniques in analyzing the functional data. It has the ability to handle filtering, smoothing and curve aligning according to curve features and points of interest.

  10. Evaluation of uterine peristalsis using cine MRI on the coronal plane in comparison with the sagittal plane.

    Science.gov (United States)

    Shitano, Fuki; Kido, Aki; Kataoka, Masako; Fujimoto, Koji; Kiguchi, Kayo; Fushimi, Yasutaka; Togashi, Kaori

    2016-01-01

    Uterine peristalsis is supposed to be closely related to the early stages of reproduction. Sperms are preferentially transported from the uterine cervix to the side of the tube with the dominant follicle. However, with respect to magnetic resonance imaging (MRI), uterine peristalsis has only been evaluated at the sagittal plane of cine MRI. To evaluate and compare uterine peristalsis both on sagittal and coronal planes using cine MRI. Internal ethics committee approval was obtained, and subjects provided informed written consent. Thirty-one women underwent MRI scans in the periovulatory phase of the menstrual cycle. Cine MR images obtained by fast advanced spin echo sequence at 3-T field strength magnet (Toshiba Medical Systems) were visually evaluated by two independent radiologists. The frequency and the direction of peristalsis, and the presence of outer myometrium conduction of signal intensities (OMC), were evaluated. The laterality of the dominant follicle was determined on axial images and compared with the peristaltic direction in fundus. The subjects in which peristaltic directions were more clearly recognized were significantly frequent in coronal planes than in sagittal planes (P < 0.05). There was no significant difference in the peristaltic frequency between the sagittal and the coronal plane. However, the OMC was more recognized in the coronal plane than in the sagittal plane (P < 0.05). Peristaltic waves conducted toward the possible ovulation side were observed in only three of the 10 subjects. OMC of uterine peristalsis was better demonstrated in the coronal plane compared to the sagittal plane. © The Foundation Acta Radiologica 2015.

  11. Affine planes, ternary rings, and examples of non-Desarguesian planes

    OpenAIRE

    Ivanov, Nikolai V.

    2016-01-01

    The paper is devoted to a detailed self-contained exposition of a part of the theory of affine planes leading to a construction of affine (or, equivalently, projective) planes not satisfying the Desarques axiom. It is intended to complement the introductory expositions of the theory of affine and projective planes. A novelty of our exposition is a new notation for the ternary operation in a ternary ring, much more suggestive than the standard one.

  12. FLEXURAL STRESS ANALYSIS OF RIGID PAVEMENTS USING AXI-SYMMETRIC AND PLANE STRAIN FEM

    Directory of Open Access Journals (Sweden)

    V.A. Sawant

    2017-11-01

    Full Text Available The design of pavement involves a study of soils and paving materials, their response under load for different climatic conditions. In the present study, an attempt has been made to compare stresses predicted using two finite element analyses. First analysis is based on the twodimensional plane strain assumption where as in second approach axi-symmetric condition is assumed to consider three-dimensional behavior of rigid pavement. The results are compared with flexural stresses obtained from conventional Portland Cement Association method. The computed flexural stresses obtained from axi-symmetric condition are found to be in close agreement with PCA method. Results of plane strain analysis show a fair agreement after application of an appropriate multiplication factor

  13. Integrated microelectromechanical gyroscope under shock loads

    Science.gov (United States)

    Nesterenko, T. G.; Koleda, A. N.; Barbin, E. S.

    2018-01-01

    The paper presents a new design of a shock-proof two-axis microelectromechanical gyroscope. Without stoppers, the shock load enables the interaction between the silicon sensor elements. Stoppers were installed in the gyroscope to prevent the contact interaction between electrodes and spring elements with fixed part of the sensor. The contact of stoppers occurs along the plane, thereby preventing the system from serious contact stresses. The shock resistance of the gyroscope is improved by the increase in its eigenfrequency at which the contact interaction does not occur. It is shown that the shock load directed along one axis does not virtually cause the movement of sensing elements along the crosswise axes. Maximum stresses observed in the proposed gyroscope at any loading direction do not exceed the value allowable for silicon.

  14. Flexural behavior and design of steel-plate composite (SC) walls for accident thermal loading

    Energy Technology Data Exchange (ETDEWEB)

    Booth, Peter N., E-mail: boothpn@purdue.edu [Lyles School of Civil Engineering, Purdue University, West Lafayette, IN (United States); Varma, Amit H., E-mail: ahvarma@purdue.edu [Lyles School of Civil Engineering, Purdue University, West Lafayette, IN (United States); Sener, Kadir C., E-mail: ksener@purdue.edu [Lyles School of Civil Engineering, Purdue University, West Lafayette, IN (United States); Malushte, Sanjeev R. [Bechtel Corp., Frederick, MD (United States)

    2015-12-15

    Modular steel-plate composite (SC) safety-related nuclear power plant structures must be designed to resist accident thermal and mechanical loads. The design accident thermal load represents the condition where high pressure and temperature steam is released as result of a mechanical failure and applied against the surfaces of power plant structural walls. The effect of heating and pressure can have both short and long term effects on the mechanical integrity of SC structures including degradation and cracking of concrete infill, residual stresses, and out-of-plane deformations. The purpose of this research is to study the effects of thermal and mechanical loads on the out-of-plane flexural response of SC walls and to develop simplified equations that can be used to predict behavior. Four experimental beam tests are reported that represent full-scale cross-sections of SC walls subjected to combinations of mechanical and thermal loads. The study determined that thermal loads reduce the out-of-plane flexural stiffness of SC walls. For the ambient condition, the flexural stiffness closely matches a conventional elastic cracked-transformed model, and at elevated temperatures, the stiffness is reduced to a fully-cracked flexural stiffness that only takes into account the stiffness of the steel faceplates. A method is presented for estimating the thermal curvature, ϕ{sub th}, and thermal moment, M{sub th}, resulting from unequal heating of opposing faces of an SC wall. Based on the tests in this study, the application of accident thermal loads did not result in a reduction of the flexural strength of the SC section.

  15. Flat detectors and their clinical applications

    International Nuclear Information System (INIS)

    Spahn, Martin

    2005-01-01

    Diagnostic and interventional flat detector X-ray systems are penetrating the market in all application segments. First introduced in radiography and mammography, they have conquered cardiac and general angiography and are getting increasing attention in fluoroscopy. Two flat detector technologies prevail. The dominating method is based on an indirect X-ray conversion process, using cesium iodide scintillators. It offers considerable advantages in radiography, angiography and fluoroscopy. The other method employs a direct converter such as selenium which is particularly suitable for mammography. Both flat detector technologies are based on amorphous silicon active pixel matrices. Flat detectors facilitate the clinical workflow in radiographic rooms, foster improved image quality and provide the potential to reduce dose. This added value is based on their large dynamic range, their high sensitivity to X-rays and the instant availability of the image. Advanced image processing is instrumental in these improvements and expand the range of conventional diagnostic methods. In angiography and fluoroscopy the transition from image intensifiers to flat detectors is facilitated by ample advantages they offer, such as distortion-free images, excellent coarse contrast, large dynamic range and high X-ray sensitivity. These characteristics and their compatibility with strong magnetic fields are the basis for improved diagnostic methods and innovative interventional applications. (orig.)

  16. The position of the occlusal plane in natural and artificial dentitions as related to other craniofacial planes.

    Science.gov (United States)

    Al Quran, Firas A M; Hazza'a, Abdalla; Al Nahass, Nabeel

    2010-12-01

    This study aimed at determining the most reliable ala-tragus line as a guide for the orientation of the occlusal plane in complete denture patients by use of cephalometric landmarks on dentate volunteers. Analysis was made for prosthodontically related craniofacial reference lines and angles of lateral cephalometric radiographs taken for 47 dentate adults. Variables were determined and data were analyzed using SPSS (SPSS, Inc., Chicago, IL). Occlusal plane angle formed between the occlusal plane and Camper's plane had the lowest mean value in the angle formed with Camper's I, which represents the measure taken from the superior border of the tragus of the ear with a score of 2.1°. The highest was measured in the angle formed with Camper's III with a score of 6.1°, while the angle formed with Camper's II was 3.2°. The differences between the three planes in relation to the occlusal plane was significant (p < 0.001). The superior border of the tragus with the inferior border of the ala of the nose was most accurate in orienting the occlusal plane. © 2010 by The American College of Prosthodontists.

  17. Understanding how axial loads on the spine influence segmental biomechanics for idiopathic scoliosis patients: A magnetic resonance imaging study.

    Science.gov (United States)

    Little, J P; Pearcy, M J; Izatt, M T; Boom, K; Labrom, R D; Askin, G N; Adam, C J

    2016-02-01

    Segmental biomechanics of the scoliotic spine are important since the overall spinal deformity is comprised of the cumulative coronal and axial rotations of individual joints. This study investigates the coronal plane segmental biomechanics for adolescent idiopathic scoliosis patients in response to physiologically relevant axial compression. Individual spinal joint compliance in the coronal plane was measured for a series of 15 idiopathic scoliosis patients using axially loaded magnetic resonance imaging. Each patient was first imaged in the supine position with no axial load, and then again following application of an axial compressive load. Coronal plane disc wedge angles in the unloaded and loaded configurations were measured. Joint moments exerted by the axial compressive load were used to derive estimates of individual joint compliance. The mean standing major Cobb angle for this patient series was 46°. Mean intra-observer measurement error for endplate inclination was 1.6°. Following loading, initially highly wedged discs demonstrated a smaller change in wedge angle, than less wedged discs for certain spinal levels (+2,+1,-2 relative to the apex, (pbiomechanical data on in vivo spinal biomechanics of the scoliotic spine, for analysis of deformity progression and surgical planning. Copyright © 2015 Elsevier Ltd. All rights reserved.

  18. Power analysis and simulation of a vehicle under combined loads

    International Nuclear Information System (INIS)

    Khayyam, H.; Kouzani, A.Z.; Khoshmanesh, K.; Hu, E.

    2008-01-01

    Reducing fuel consumption in vehicles offers many obvious economic benefits, and also helps reduce air pollution emission levels. Mechanical engineers and automotive researches have continuously searched for ways to optimize fuel consumption in vehicles. This paper presented an analytical model of fuel consumption (AMFC) in an effort to coordinate the driving power and manage the overall fuel consumption for an internal combustion engine vehicle. The model calculated the different loads applied on the vehicle, such as road-slope, road-friction, wind-drag, accessories, and mechanical losses. It also solved the combustion equation of the engine under different working conditions including various fuel compositions, excess airs and air inlet temperatures. The model then determined the contribution of each load to signify the energy distribution and power flows of the vehicle. In order to assess the model's sensitivity to different loads, the following four simulations were conducted: flat-windless, flat-windy, sloppy-windless, sloppy-windy. The average fuel consumption for the four simulations was presented. The paper outlined the specification of the vehicle and environment as well as the simulation methodology. The model, algorithm, slope simulation, and drive strategy were presented. It was concluded that the power consumption significantly increased where the slope friction came into play and that the model has the potential to assist in vehicle energy management. 16 refs., 4 tabs., 14 figs

  19. Causal inheritance in plane wave quotients

    International Nuclear Information System (INIS)

    Hubeny, Veronika E.; Rangamani, Mukund; Ross, Simon F.

    2003-01-01

    We investigate the appearance of closed timelike curves in quotients of plane waves along spacelike isometries. First we formulate a necessary and sufficient condition for a quotient of a general spacetime to preserve stable causality. We explicitly show that the plane waves are stably causal; in passing, we observe that some pp-waves are not even distinguishing. We then consider the classification of all quotients of the maximally supersymmetric ten-dimensional plane wave under a spacelike isometry, and show that the quotient will lead to closed timelike curves iff the isometry involves a translation along the u direction. The appearance of these closed timelike curves is thus connected to the special properties of the light cones in plane wave spacetimes. We show that all other quotients preserve stable causality

  20. Causal inheritance in plane wave quotients

    Science.gov (United States)

    Hubeny, Veronika E.; Rangamani, Mukund; Ross, Simon F.

    2004-01-01

    We investigate the appearance of closed timelike curves in quotients of plane waves along spacelike isometries. First we formulate a necessary and sufficient condition for a quotient of a general space-time to preserve stable causality. We explicitly show that the plane waves are stably causal; in passing, we observe that some pp waves are not even distinguishing. We then consider the classification of all quotients of the maximally supersymmetric ten-dimensional plane wave under a spacelike isometry, and show that the quotient will lead to closed timelike curves iff the isometry involves a translation along the u direction. The appearance of these closed timelike curves is thus connected to the special properties of the light cones in plane wave space-times. We show that all other quotients preserve stable causality.

  1. In-plane shear test of fibre reinforced concrete panels

    DEFF Research Database (Denmark)

    Solgaard, Anders Ole Stubbe; Stang, Henrik; Goltermann, Per

    2008-01-01

    The present paper concerns the investigation of polymer Fiber Reinforced Concrete (FRC) panels subjected to in-plane shear. The use of fibers as primary reinforcement in panels is a new application of fiber reinforcement, hence test methods, design bases and models are lacking. This paper...... contributes to the investigation of fibers as reinforcement in panels with experimental results and a consistent approach to material characterization and modeling. The proposed model draws on elements from the classical yield line theory of rigid, perfectly plastic materials and the theory of fracture...... mechanics. Model panels have been cast to investigate the correlation between the load bearing capacity and the amount of fibers (vol. %) in the mixture. The type of fibers in the mixture was Poly Vinyl Alcohol (PVA) fibers, length 8 mm, diameter 0.04 mm. The mechanical properties of the FRC have been...

  2. Cross plane scattering correction

    International Nuclear Information System (INIS)

    Shao, L.; Karp, J.S.

    1990-01-01

    Most previous scattering correction techniques for PET are based on assumptions made for a single transaxial plane and are independent of axial variations. These techniques will incorrectly estimate the scattering fraction for volumetric PET imaging systems since they do not take the cross-plane scattering into account. In this paper, the authors propose a new point source scattering deconvolution method (2-D). The cross-plane scattering is incorporated into the algorithm by modeling a scattering point source function. In the model, the scattering dependence both on axial and transaxial directions is reflected in the exponential fitting parameters and these parameters are directly estimated from a limited number of measured point response functions. The authors' results comparing the standard in-plane point source deconvolution to the authors' cross-plane source deconvolution show that for a small source, the former technique overestimates the scatter fraction in the plane of the source and underestimate the scatter fraction in adjacent planes. In addition, the authors also propose a simple approximation technique for deconvolution

  3. Sub-crop geologic map of pre-Tertiary rocks in the Yucca Flat and northern Frenchman Flat areas, Nevada Test Site, southern Nevada

    Energy Technology Data Exchange (ETDEWEB)

    Cole, J.C.; Harris, A.G.; Wahl, R.R.

    1997-10-02

    This map displays interpreted structural and stratigraphic relations among the Paleozoic and older rocks of the Nevada Test Site region beneath the Miocene volcanic rocks and younger alluvium in the Yucca Flat and northern Frenchman Flat basins. These interpretations are based on a comprehensive examination and review of data for more than 77 drillholes that penetrated part of the pre-Tertiary basement beneath these post-middle Miocene structural basins. Biostratigraphic data from conodont fossils were newly obtained for 31 of these holes, and a thorough review of all prior microfossil paleontologic data is incorporated in the analysis. Subsurface relationships are interpreted in light of a revised regional geologic framework synthesized from detailed geologic mapping in the ranges surrounding Yucca Flat, from comprehensive stratigraphic studies in the region, and from additional detailed field studies on and around the Nevada Test Site. All available data indicate the subsurface geology of Yucca Flat is considerably more complicated than previous interpretations have suggested. The western part of the basin, in particular, is underlain by relics of the eastward-vergent Belted Range thrust system that are folded back toward the west and thrust by local, west-vergent contractional structures of the CP thrust system. Field evidence from the ranges surrounding the north end of Yucca Flat indicate that two significant strike-slip faults track southward beneath the post-middle Miocene basin fill, but their subsurface traces cannot be closely defined from the available evidence. In contrast, the eastern part of the Yucca Flat basin is interpreted to be underlain by a fairly simple north-trending, broad syncline in the pre-Tertiary units. Far fewer data are available for the northern Frenchman Flat basin, but regional analysis indicates the pre-Tertiary structure there should also be relatively simple and not affected by thrusting. This new interpretation has implications

  4. Sub-crop geologic map of pre-Tertiary rocks in the Yucca Flat and northern Frenchman Flat areas, Nevada Test Site, southern Nevada

    International Nuclear Information System (INIS)

    Cole, J.C.; Harris, A.G.; Wahl, R.R.

    1997-01-01

    This map displays interpreted structural and stratigraphic relations among the Paleozoic and older rocks of the Nevada Test Site region beneath the Miocene volcanic rocks and younger alluvium in the Yucca Flat and northern Frenchman Flat basins. These interpretations are based on a comprehensive examination and review of data for more than 77 drillholes that penetrated part of the pre-Tertiary basement beneath these post-middle Miocene structural basins. Biostratigraphic data from conodont fossils were newly obtained for 31 of these holes, and a thorough review of all prior microfossil paleontologic data is incorporated in the analysis. Subsurface relationships are interpreted in light of a revised regional geologic framework synthesized from detailed geologic mapping in the ranges surrounding Yucca Flat, from comprehensive stratigraphic studies in the region, and from additional detailed field studies on and around the Nevada Test Site. All available data indicate the subsurface geology of Yucca Flat is considerably more complicated than previous interpretations have suggested. The western part of the basin, in particular, is underlain by relics of the eastward-vergent Belted Range thrust system that are folded back toward the west and thrust by local, west-vergent contractional structures of the CP thrust system. Field evidence from the ranges surrounding the north end of Yucca Flat indicate that two significant strike-slip faults track southward beneath the post-middle Miocene basin fill, but their subsurface traces cannot be closely defined from the available evidence. In contrast, the eastern part of the Yucca Flat basin is interpreted to be underlain by a fairly simple north-trending, broad syncline in the pre-Tertiary units. Far fewer data are available for the northern Frenchman Flat basin, but regional analysis indicates the pre-Tertiary structure there should also be relatively simple and not affected by thrusting. This new interpretation has implications

  5. An Algorithm for constructing Hjelmslev planes

    OpenAIRE

    Hall, Joanne L.; Rao, Asha

    2013-01-01

    Projective Hjelmslev planes and Affine Hjelmselv planes are generalisations of projective planes and affine planes. We present an algorithm for constructing a projective Hjelmslev planes and affine Hjelsmelv planes using projective planes, affine planes and orthogonal arrays. We show that all 2-uniform projective Hjelmslev planes, and all 2-uniform affine Hjelsmelv planes can be constructed in this way. As a corollary it is shown that all 2-uniform Affine Hjelmselv planes are sub-geometries o...

  6. Lithium-Ion Textile Batteries with Large Areal Mass Loading

    KAUST Repository

    Hu, Liangbing; La Mantia, Fabio; Wu, Hui; Xie, Xing; McDonough, James; Pasta, Mauro; Cui, Yi

    2011-01-01

    We integrate Li-ion battery electrode materials into a 3D porous textile conductor by using a simple process. When compared to flat metal current collectors, our 3D porous textile conductor not only greatly facilitates the ability for a high active material mass loading on the battery electrode but also leads to better device performance.

  7. Lithium-Ion Textile Batteries with Large Areal Mass Loading

    KAUST Repository

    Hu, Liangbing

    2011-10-06

    We integrate Li-ion battery electrode materials into a 3D porous textile conductor by using a simple process. When compared to flat metal current collectors, our 3D porous textile conductor not only greatly facilitates the ability for a high active material mass loading on the battery electrode but also leads to better device performance.

  8. A two-dimensional, finite-element methods for calculating TF coil response to out-of-plane Lorentz forces

    International Nuclear Information System (INIS)

    Witt, R.J.

    1989-01-01

    Toroidal field (TF) coils in fusion systems are routinely operated at very high magnetic fields. While obtaining the response of the coil to in-plane loads is relatively straightforward, the same is not true for the out-of-plane loads. Previous treatments of the out-of-plane problem have involved large, three-dimensional finite element idealizations. A new treatment of the out-of-plane problem is presented here; the model is two-dimensional in nature, and consumes far less CPU-time than three-dimensional methods. The approach assumes there exists a region of torsional deformation in the inboard leg and a bending region in the outboard leg. It also assumes the outboard part of the coil is attached to a torque frame/cylinder, which experiences primarily torsional deformation. Three-dimensional transition regions exist between the inboard and outboard legs and between the outboard leg and the torque frame. By considering several idealized problems of cylindrical shells subjected to moment distributions, it is shown that the size of these three-dimensional regions is quite small, and that the interaction between the torsional and bending regions can be treated in an equivalent two-dimensional fashion. Equivalent stiffnesses are derived to model penetration into and twist along the cylinders. These stiffnesses are then used in a special substructuring analysis to couple the three regions together. Results from the new method are compared to results from a 3D continuum model. (orig.)

  9. MyETL: A Java Software Tool to Extract, Transform, and Load Your Business

    Directory of Open Access Journals (Sweden)

    Michele Nuovo

    2015-12-01

    Full Text Available The project follows the development of a Java Software Tool that extracts data from Flat File (Fixed Length Record Type, CSV (Comma Separated Values, and XLS (Microsoft Excel 97-2003 Worksheet file, apply transformation to those sources, and finally load the data into the end target RDBMS. The software refers to a process known as ETL (Extract Transform and Load. Those kinds of systems are called ETL systems.

  10. On applicability of crack shape characterization rules for multiple in-plane surface cracks

    International Nuclear Information System (INIS)

    Kim, Jong Min; Choi, Suhn; Park, Keun Bae; Choi, Jae Boong; Huh, Nam Su

    2009-01-01

    The fracture mechanics assessment parameters, such as the elastic stress intensity factor and the elastic-plastic J-integral, for a surface crack can be significantly affected by adjacent cracks. Regarding such an interaction effect, the relative distance between adjacent cracks, crack aspect ratio and loading condition were known to be important factors for multiple cracks, which affects the fracture mechanics assessment parameters. Although several guidance (ASME Sec. XI, BS7910, British Energy R6 and API RP579) on a crack interaction effect (crack combination rule) have been proposed and used for assessing the interaction effect, each guidance provides different rules for combining multiple surface cracks into a single surface crack. Based on the systematic elastic and elastic-plastic finite element analyses, the present study investigated the acceptability of the crack combination rules provided in the existing guidance, and the relevant recommendations on a crack interaction for in-plane surface cracks in a plate were discussed. To quantify the interaction effect, the elastic stress intensity factor and elastic-plastic J-integral along the crack front were used. As for the loading condition, only axial tension was considered. As a result, BS7910 seems to provide the most relevant crack combination rule for in-plane dual surface cracks, whereas API RP579 provides the most conservative results. In particular, ASME Sec. XI still seems to have some room for a revision to shorten the critical distance between two adjacent cracks for a crack combination. The overall tendency of the elastic-plastic analyses results is identical to that of the elastic analyses results.

  11. Fermi system with planes and charge reservoir: Anisotropic in-plane resistivity

    International Nuclear Information System (INIS)

    Levin, G.A.; Quader, K.F.

    1992-01-01

    The authors explore the normal state in-plane resistivity of a model Fermi system with two planes and a charge reservoir. When the Fermi energy lies near the top of one of the resulting sub-bands, the system can be described by two types of quasiparticle excitations with different energy spectra and relaxation times. They show that for certain stoichiometry, ρ ab is linear in temperature with positive or negative intercepts. A relation between the slopes and intercepts of resistivities in the a and b directions in untwinned crystals is derived. The results are in good agreement with experimental data on YBCO. 7 refs., 1 tab

  12. ESB Clinical Biomechanics Award 2008: Complete data of total knee replacement loading for level walking and stair climbing measured in vivo with a follow-up of 6-10 months.

    Science.gov (United States)

    Heinlein, Bernd; Kutzner, Ines; Graichen, Friedmar; Bender, Alwina; Rohlmann, Antonius; Halder, Andreas M; Beier, Alexander; Bergmann, Georg

    2009-05-01

    Detailed information about the loading of the knee joint is required for various investigations in total knee replacement. Up to now, gait analysis plus analytical musculo-skeletal models were used to calculate the forces and moments acting in the knee joint. Currently, all experimental and numerical pre-clinical tests rely on these indirect measurements which have limitations. The validation of these methods requires in vivo data; therefore, the purpose of this study was to provide in vivo loading data of the knee joint. A custom-made telemetric tibial tray was used to measure the three forces and three moments acting in the implant. This prosthesis was implanted into two subjects and measurements were obtained for a follow-up of 6 and 10 months, respectively. Subjects performed level walking and going up and down stairs using a self-selected comfortable speed. The subjects' activities were captured simultaneously with the load data on a digital video tape. Customized software enabled the display of all information in one video sequence. The highest mean values of the peak load components from the two subjects were as follows: during level walking the forces were 276%BW (percent body weight) in axial direction, 21%BW (medio-lateral), and 29%BW (antero-posterior). The moments were 1.8%BW*m in the sagittal plane, 4.3%BW*m (frontal plane) and 1.0%BW*m (transversal plane). During stair climbing the axial force increased to 306%BW, while the shear forces changed only slightly. The sagittal plane moment increased to 2.4%BW*m, while the frontal and transversal plane moments decreased slightly. Stair descending produced the highest forces of 352%BW (axial), 35%BW (medio-lateral), and 36%BW (antero-posterior). The sagittal and frontal plane moments increased to 2.8%BW*m and 4.6%BW*m, respectively, while the transversal plane moment changed only slightly. Using the data obtained, mechanical simulators can be programmed according to realistic load profiles. Furthermore

  13. On the necessity of connection between plane and curve space metrics in gravity theory on a plane background

    International Nuclear Information System (INIS)

    Vlasov, A.A.

    1988-01-01

    The necessity of covariant connection of plane space metrics in the gravity theory ''on a plane background'' is underlined. It is shown that this connection in the relativistic gravity theory results in its difference from the general relativity theory ''on a plane background''

  14. Failure of composite plates under static biaxial planar loading

    Science.gov (United States)

    Waas, Anthony M.; Khamseh, Amir R.

    1992-01-01

    The project involved detailed investigations into the failure mechanisms in composite plates as a function of hole size (holes centrally located in the plates) under static loading. There were two phases to the project, the first dealing with uniaxial loads along the fiber direction, and the second dealing with coplanar biaxial loading. Results for the uniaxial tests have been reported and published previously, thus this report will place emphasis on the second phase of the project, namely the biaxial tests. The composite plates used in the biaxial loading experiments, as well as the uniaxial, were composed of a single ply unidirectional graphite/epoxy prepreg sandwiched between two layers of transparent thermoplastic. This setup enabled us to examine the failure initiation and propagation modes nondestructively, during the test. Currently, similar tests and analysis of results are in progress for graphite/epoxy cruciform shaped flat laminates. The results obtained from these tests will be available at a later time.

  15. Closed form solution for the finite anti-plane shear field for a class of hyperelastic incompressible brittle solids

    Science.gov (United States)

    Stolz, Claude

    2010-12-01

    The equilibrium solution of a damaged zone in finite elasticity is given for a class of hyperelastic materials which does not suffer tension when a critical stretching value is reached. The study is made for a crack in anti-plane shear loading condition. The prescribed loading is that of linearized elastostatics conditions at infinity. The geometry of the damaged zone is found and the stationary propagation is discussed when the inertia terms can be neglected.

  16. Vacuum energy in asymptotically flat 2 + 1 gravity

    Energy Technology Data Exchange (ETDEWEB)

    Miskovic, Olivera, E-mail: olivera.miskovic@pucv.cl [Instituto de Física, Pontificia Universidad Católica de Valparaíso, Casilla 4059, Valparaíso (Chile); Olea, Rodrigo, E-mail: rodrigo.olea@unab.cl [Departamento de Ciencias Físicas, Universidad Andres Bello, Sazié 2212, Piso 7, Santiago (Chile); Roy, Debraj, E-mail: roy.debraj@pucv.cl [Instituto de Física, Pontificia Universidad Católica de Valparaíso, Casilla 4059, Valparaíso (Chile)

    2017-04-10

    We compute the vacuum energy of three-dimensional asymptotically flat space based on a Chern–Simons formulation for the Poincaré group. The equivalent action is nothing but the Einstein–Hilbert term in the bulk plus half of the Gibbons–Hawking term at the boundary. The derivation is based on the evaluation of the Noether charges in the vacuum. We obtain that the vacuum energy of this space has the same value as the one of the asymptotically flat limit of three-dimensional anti-de Sitter space.

  17. Vacuum energy in asymptotically flat 2 + 1 gravity

    International Nuclear Information System (INIS)

    Miskovic, Olivera; Olea, Rodrigo; Roy, Debraj

    2017-01-01

    We compute the vacuum energy of three-dimensional asymptotically flat space based on a Chern–Simons formulation for the Poincaré group. The equivalent action is nothing but the Einstein–Hilbert term in the bulk plus half of the Gibbons–Hawking term at the boundary. The derivation is based on the evaluation of the Noether charges in the vacuum. We obtain that the vacuum energy of this space has the same value as the one of the asymptotically flat limit of three-dimensional anti-de Sitter space.

  18. A technique for measuring dynamic friction coefficient under impact loading.

    Science.gov (United States)

    Lin, Y L; Qin, J G; Chen, R; Zhao, P D; Lu, F Y

    2014-09-01

    We develop a novel setup based on the split Hopkinson pressure bar technique to test the dynamic friction coefficient under impact loading. In the setup, the major improvement is that the end of the incident bar near the specimen is wedge-shaped, which results in a combined compressive and shear loading applied to the specimen. In fact, the shear loading is caused by the interfacial friction between specimen and bars. Therefore, when the two loading force histories are measured, the friction coefficient histories can be calculated without any assumptions and theoretical derivations. The geometry of the friction pairs is simple, and can be either cuboid or cylindrical. Regarding the measurements, two quartz transducers are used to directly record the force histories, and an optical apparatus is designed to test the interfacial slip movement. By using the setup, the dynamic friction coefficient of PTFE/aluminum 7075 friction pairs was tested. The time resolved dynamic friction coefficient and slip movement histories were achieved. The results show that the friction coefficient changes during the loading process, the average data of the relatively stable flat plateau section of the friction coefficient curves is 0.137, the maximum normal pressure is 52 MPa, the maximum relative slip velocity is 1.5 m/s, and the acceleration is 8400 m(2)/s. Furthermore, the friction test was simulated using an explicit FEM code LS-DYNA. The simulation results showed that the constant pressure and slip velocity can both be obtained with a wide flat plateau incident pulse. For some special friction pairs, normal pressure up to a few hundred MPa, interfacial slip velocities up to 10 m/s, and slip movement up to centimeter-level can be expected.

  19. High-performance flat data center network architecture based on scalable and flow-controlled optical switching system

    Science.gov (United States)

    Calabretta, Nicola; Miao, Wang; Dorren, Harm

    2016-03-01

    Traffic in data centers networks (DCNs) is steadily growing to support various applications and virtualization technologies. Multi-tenancy enabling efficient resource utilization is considered as a key requirement for the next generation DCs resulting from the growing demands for services and applications. Virtualization mechanisms and technologies can leverage statistical multiplexing and fast switch reconfiguration to further extend the DC efficiency and agility. We present a novel high performance flat DCN employing bufferless and distributed fast (sub-microsecond) optical switches with wavelength, space, and time switching operation. The fast optical switches can enhance the performance of the DCNs by providing large-capacity switching capability and efficiently sharing the data plane resources by exploiting statistical multiplexing. Benefiting from the Software-Defined Networking (SDN) control of the optical switches, virtual DCNs can be flexibly created and reconfigured by the DCN provider. Numerical and experimental investigations of the DCN based on the fast optical switches show the successful setup of virtual network slices for intra-data center interconnections. Experimental results to assess the DCN performance in terms of latency and packet loss show less than 10^-5 packet loss and 640ns end-to-end latency with 0.4 load and 16- packet size buffer. Numerical investigation on the performance of the systems when the port number of the optical switch is scaled to 32x32 system indicate that more than 1000 ToRs each with Terabit/s interface can be interconnected providing a Petabit/s capacity. The roadmap to photonic integration of large port optical switches will be also presented.

  20. Characterization of the electrical output of flat-plate photovoltaic arrays

    Science.gov (United States)

    Gonzalez, C. C.; Hill, G. M.; Ross, R. G., Jr.

    1982-01-01

    The electric output of flat-plate photovoltaic arrays changes constantly, due primarily to changes in cell temperature and irradiance level. As a result, array loads such as direct-current to alternating-current power conditioners must be able to accommodate widely varying input levels, while maintaining operation at or near the array maximum power point.The results of an extensive computer simulation study that was used to define the parameters necessary for the systematic design of array/power-conditioner interfaces are presented as normalized ratios of power-conditioner parameters to array parameters, to make the results universally applicable to a wide variety of system sizes, sites, and operating modes. The advantages of maximum power tracking and a technique for computing average annual power-conditioner efficiency are discussed.

  1. A New Energy-Critical Plane Damage Parameter for Multiaxial Fatigue Life Prediction of Turbine Blades

    Directory of Open Access Journals (Sweden)

    Zheng-Yong Yu

    2017-05-01

    Full Text Available As one of fracture critical components of an aircraft engine, accurate life prediction of a turbine blade to disk attachment is significant for ensuring the engine structural integrity and reliability. Fatigue failure of a turbine blade is often caused under multiaxial cyclic loadings at high temperatures. In this paper, considering different failure types, a new energy-critical plane damage parameter is proposed for multiaxial fatigue life prediction, and no extra fitted material constants will be needed for practical applications. Moreover, three multiaxial models with maximum damage parameters on the critical plane are evaluated under tension-compression and tension-torsion loadings. Experimental data of GH4169 under proportional and non-proportional fatigue loadings and a case study of a turbine disk-blade contact system are introduced for model validation. Results show that model predictions by Wang-Brown (WB and Fatemi-Socie (FS models with maximum damage parameters are conservative and acceptable. For the turbine disk-blade contact system, both of the proposed damage parameters and Smith-Watson-Topper (SWT model show reasonably acceptable correlations with its field number of flight cycles. However, life estimations of the turbine blade reveal that the definition of the maximum damage parameter is not reasonable for the WB model but effective for both the FS and SWT models.

  2. Buckling analysis for axially compressed flat plates, structural sections, and stiffened plates reinforced with laminated composites

    Science.gov (United States)

    Viswanathan, A. V.; Soong, T.; Miller, R. E., Jr.

    1971-01-01

    A classical buckling analysis is developed for stiffened, flat plates composed of a series of linked plate and beam elements. Plates are idealized as multilayered orthotropic elements. Structural beads and lips are idealized as beams. The loaded edges of the stiffened plate are simply-supported and the conditions at the unloaded edges can be prescribed arbitrarily. The plate and beam elements are matched along their common junctions for displacement continuity and force equilibrium in an exact manner. Offsets between elements are considered in the analysis. Buckling under uniaxial compressive load for plates, sections, and stiffened plates is investigated. Buckling loads are the lowest of all possible general and local failure modes, and the mode shape is used to determine whether buckling is a local or general instability. Numerical correlations with existing analysis and test data for plates, sections, and stiffened plates including boron-reinforced structures are discussed. In general correlations are reasonably good.

  3. Effects of changing speed on knee and ankle joint load during walking and running.

    Science.gov (United States)

    de David, Ana Cristina; Carpes, Felipe Pivetta; Stefanyshyn, Darren

    2015-01-01

    Joint moments can be used as an indicator of joint loading and have potential application for sports performance and injury prevention. The effects of changing walking and running speeds on joint moments for the different planes of motion still are debatable. Here, we compared knee and ankle moments during walking and running at different speeds. Data were collected from 11 recreational male runners to determine knee and ankle joint moments during different conditions. Conditions include walking at a comfortable speed (self-selected pacing), fast walking (fastest speed possible), slow running (speed corresponding to 30% slower than running) and running (at 4 m · s(-1) ± 10%). A different joint moment pattern was observed between walking and running. We observed a general increase in joint load for sagittal and frontal planes as speed increased, while the effects of speed were not clear in the transverse plane moments. Although differences tend to be more pronounced when gait changed from walking to running, the peak moments, in general, increased when speed increased from comfortable walking to fast walking and from slow running to running mainly in the sagittal and frontal planes. Knee flexion moment was higher in walking than in running due to larger knee extension. Results suggest caution when recommending walking over running in an attempt to reduce knee joint loading. The different effects of speed increments during walking and running should be considered with regard to the prevention of injuries and for rehabilitation purposes.

  4. Lithospheric flexure under the Hawaiian volcanic load: Internal stresses and a broken plate revealed by earthquakes

    Science.gov (United States)

    Klein, Fred W.

    2016-01-01

    Several lines of earthquake evidence indicate that the lithospheric plate is broken under the load of the island of Hawai`i, where the geometry of the lithosphere is circular with a central depression. The plate bends concave downward surrounding a stress-free hole, rather than bending concave upward as with past assumptions. Earthquake focal mechanisms show that the center of load stress and the weak hole is between the summits of Mauna Loa and Mauna Kea where the load is greatest. The earthquake gap at 21 km depth coincides with the predicted neutral plane of flexure where horizontal stress changes sign. Focal mechanism P axes below the neutral plane display a striking radial pattern pointing to the stress center. Earthquakes above the neutral plane in the north part of the island have opposite stress patterns; T axes tend to be radial. The M6.2 Honomu and M6.7 Kiholo main shocks (both at 39 km depth) are below the neutral plane and show radial compression, and the M6.0 Kiholo aftershock above the neutral plane has tangential compression. Earthquakes deeper than 20 km define a donut of seismicity around the stress center where flexural bending is a maximum. The hole is interpreted as the soft center where the lithospheric plate is broken. Kilauea's deep conduit is seismically active because it is in the ring of maximum bending. A simplified two-dimensional stress model for a bending slab with a load at one end yields stress orientations that agree with earthquake stress axes and radial P axes below the neutral plane. A previous inversion of deep Hawaiian focal mechanisms found a circular solution around the stress center that agrees with the model. For horizontal faults, the shear stress within the bending slab matches the slip in the deep Kilauea seismic zone and enhances outward slip of active flanks.

  5. Observations on the effects of grooved surfaces on the interfacial torque in highly loaded rolling and sliding tests

    DEFF Research Database (Denmark)

    Janakiraman, Shravan; Klit, Peder; Jensen, Niels Steenfeldt

    2014-01-01

    Some efforts have been undertaken to study the effects of grooved surfaces on the interfacial film thickness and torque between two contacting non-conformal surfaces under heavy loads. Transverse grooves of micrometer scale depth were engraved on polished, flat ring surfaces using established ind...

  6. General classification of a normally flat Ric- semi symmetric submanifolds

    International Nuclear Information System (INIS)

    Mirzoyan, V.A.

    2012-01-01

    It has been proved that a normally flat submanifold M in Euclidean space En satisfies the condition R(X,Y)Ricci =0 if and only if it is the open part of one of the following submanifolds: (1) normally flat two-dimensional submanifold, (2) normally flat Einstein submanifold (in particular Ricci-flat or locally Euclidean), (3) normally flat semi- Einstein submanifold, (4) normally flat interlacing product of semi-Einstein submanifolds and locally Euclidean submanifold (may be of zero dimension), (5) direct product of the above enumerated classes of submanifolds

  7. STRENGTHENING THE ROLE OF GOVERNMENT IN RESOLVING FRAUD AND DISPUTES OF THE FLAT MANAGEMENT

    Directory of Open Access Journals (Sweden)

    Situmorang P.

    2018-03-01

    Full Text Available The public concern with the housing issues and conditions including flat management becomes current phenomenon in developing countries such as Indonesia. However, less attention has been paid by researchers to discuss the role of government in the flat management. The fact is that fraud and disputes often occur as a result of the management of flats such as management fees and monthly billing invoice becoming the main issue at the court. Through case law approach method with four different cases, this paper therefore captures several issues related to the management of flats. For instance, this paper discusses a case where flat management companies tend to increase maintenance fees without having a consent or agreement, both from owners and tenants. Disputes are also related to transparency of collected management fees by flat management companies, causing dissatisfaction from the owners and tenants. Hence, this paper suggests that there is the need of government’s role in the flat management issues. This suggestion is relevant to the idea of exercising government’s power through monitoring flat management companies in order to comply with flat legislation. This paper argues that the use of government’s authority could be practised through monitoring system and setting up administrative procedure on the management of flats.

  8. 3D flat holography: entropy and logarithmic corrections

    International Nuclear Information System (INIS)

    Bagchi, Arjun; Basu, Rudranil

    2014-01-01

    We compute the leading corrections to the Bekenstein-Hawking entropy of the Flat Space Cosmological (FSC) solutions in 3D flat spacetimes, which are the flat analogues of the BTZ black holes in AdS 3 . The analysis is done by a computation of density of states in the dual 2D Galilean Conformal Field Theory and the answer obtained by this matches with the limiting value of the expected result for the BTZ inner horizon entropy as well as what is expected for a generic thermodynamic system. Along the way, we also develop other aspects of holography of 3D flat spacetimes

  9. Instability of flat space at finite temperature

    International Nuclear Information System (INIS)

    Gross, D.J.; Perry, M.J.; Yaffe, L.G.

    1982-01-01

    The instabilities of quantum gravity are investigated using the path-integral formulation of Einstein's theory. A brief review is given of the classical gravitational instabilities, as well as the stability of flat space. The Euclidean path-integral representation of the partition function is employed to discuss the instability of flat space at finite temperature. Semiclassical, or saddle-point, approximations are utilized. We show how the Jeans instability arises as a tachyon in the graviton propagator when small perturbations about hot flat space are considered. The effect due to the Schwarzschild instanton is studied. The small fluctuations about this instanton are analyzed and a negative mode is discovered. This produces, in the semiclassical approximation, an imaginary part of the free energy. This is interpreted as being due to the metastability of hot flat space to nucleate black holes. These then evolve by evaporation or by accretion of thermal gravitons, leading to the instability of hot flat space. The nucleation rate of black holes is calculated as a function of temperature

  10. Performance evaluation of flat panel detector in x-ray fluoroscopy

    International Nuclear Information System (INIS)

    Grewal, R.K.; Mclean, I.D.

    2004-01-01

    Full text: Flat panel detectors are currently replacing the conventional image intensifiers in R-F imaging. We evaluated the performance of a biplane cardiac imaging system (Siemens Axiom Artis dBC), the image acquisition was based on a 25 cm diagonal digital fiat panel detector. Performance characteristics included image quality, typical patient entrance dose and measurement of input to the surface of flat detector. The results were compared with conventional image intensifier systems (Siemens Hicor Unit and Toshiba DPF 2000 A Biplane Unit) used in cardiac imaging at Westmead. Image quality and dose measurements were performed following standard protocols using Westmead test object and 20 cm solid water as absorber in the beam. For measurement of input to the surface of flat detector, 2 mm copper was placed on the collimator. Radcal 3cc and 180 cc ion chambers were used for dose measurements. Image quality: Our measurements on flat panel system indicate that high contrast resolution and threshold contrast is not affected by changing field size. This is expected due to minimum loss of signal in the imaging chain of digital systems and the independence of detector pixel size with change in field of view. While low contrast resolution was found to be similar to conventional systems, high contrast resolution was significantly superior using flat detector system for large and intermediate field of view (25-28 1p/cm against 18-20). Typical patient dose as measured using flat detector system was similar to the conventional Toshiba pulsed fluoroscopy system( ∼ 3 - 8 mGy/min depending on the field size). This was 40-50 % lower than our old Siemens hicore unit. Input to the surface of flat detector was found to vary with field size as is the case with a conventional II system. As described elsewhere, although there is no necessity to increase exposure or video gain in a digital magnification, digital data interpolation process introduces noise. As a result system

  11. Evaluation of the deformation value of an optical flat under gravity

    International Nuclear Information System (INIS)

    Kondo, Yohan; Bitou, Youichi

    2014-01-01

    The flatness of an optical surface can be evaluated using a Fizeau interferometer. There is strong demand for ensuring that the measurement uncertainty of flatness is of nanometer order over a measurement range of 300 mm or more; however, the measurement range and measurement uncertainty of flatness at the National Metrology Institute of Japan (NMIJ) are 300 mm and 10 nm, respectively. In a Fizeau flatness interferometer, the gap distance between the reference flat and the specimen is measured. To obtain the absolute profile of the specimen, the absolute profile of the reference flat should be measured in advance. The three-flat test is one of the methods used to measure the absolute profile of a reference flat. The reference flat, however, deforms under the force of gravity, and its absolute deformation value cannot be determined by the three-flat test. The deformation value of the reference flat can be corrected by the finite element method (FEM) analysis; however, it is difficult to ensure the validity of the analysis and there is a large uncertainty component of the Fizeau flatness interferometer. To verify the FEM analysis, we developed a scanning deflectometric profiler (SDP) that does not require a reference flat and can directly measure a profile. We calibrated an optical flat using a Fizeau flatness interferometer and the SDP. Finally, the deformation value of the reference flat under the force of gravity was evaluated by comparing the measurement results. (paper)

  12. Algebraic Structures on MOD Planes

    OpenAIRE

    Kandasamy, Vasantha; Ilanthenral, K.; Smarandache, Florentin

    2015-01-01

    Study of MOD planes happens to a very recent one. In this book, systematically algebraic structures on MOD planes like, MOD semigroups, MOD groups and MOD rings of different types are defined and studied. Such study is innovative for a large four quadrant planes are made into a small MOD planes. Several distinct features enjoyed by these MOD planes are defined, developed and described.

  13. Curvilinear steel elements in load-bearing structures of high-rise building spatial frames

    Directory of Open Access Journals (Sweden)

    Ibragimov Alexander

    2018-01-01

    Full Text Available The application of curvilinear elements in load-bearing metal structures of high-rise buildings supposes ensuring of their bearing capacity and serviceability. There may exist a great variety of shapes and orientations of such structural elements. In particular, it may be various flat curves of an open or closed oval profile such as circular or parabolic arch or ellipse. The considered approach implies creating vast internal volumes without loss in the load-bearing capacity of the frame. The basic concept makes possible a wide variety of layout and design solutions. The presence of free internal spaces of large volume in "skyscraper" type buildings contributes to resolving a great number of problems, including those of communicative nature. The calculation results confirm the basic assumptions.

  14. Curvilinear steel elements in load-bearing structures of high-rise building spatial frames

    Science.gov (United States)

    Ibragimov, Alexander; Danilov, Alexander

    2018-03-01

    The application of curvilinear elements in load-bearing metal structures of high-rise buildings supposes ensuring of their bearing capacity and serviceability. There may exist a great variety of shapes and orientations of such structural elements. In particular, it may be various flat curves of an open or closed oval profile such as circular or parabolic arch or ellipse. The considered approach implies creating vast internal volumes without loss in the load-bearing capacity of the frame. The basic concept makes possible a wide variety of layout and design solutions. The presence of free internal spaces of large volume in "skyscraper" type buildings contributes to resolving a great number of problems, including those of communicative nature. The calculation results confirm the basic assumptions.

  15. Measurement of Flat Slab Deformations by the Multi-Image Photogrammetry Method

    Science.gov (United States)

    Marčiš, Marián; Fraštia, Marek; Augustín, Tomáš

    2017-12-01

    The use of photogrammetry during load tests of building components is a common practise all over the world. It is very effective thanks to its contactless approach, 3D measurement, fast data collection, and partial or full automation of image processing; it can deliver very accurate results. Multi-image convergent photogrammetry supported by artificial coded targets is the most accurate photogrammetric method when the targets are detected in an image with a higher degree of accuracy than a 0.1 pixel. It is possible to achieve an accuracy of 0.03 mm for all the points measured on the object observed if the camera is close enough to the object, and the positions of the camera and the number of shots are precisely planned. This contribution deals with the design of a special hanging frame for a DSLR camera used during the photogrammetric measurement of the deformation of flat concrete slab. The results of the photogrammetric measurements are compared to the results from traditional contact measurement techniques during load tests.

  16. Measurement of Flat Slab Deformations by the Multi-Image Photogrammetry Method

    Directory of Open Access Journals (Sweden)

    Marčiš Marián

    2017-12-01

    Full Text Available The use of photogrammetry during load tests of building components is a common practise all over the world. It is very effective thanks to its contactless approach, 3D measurement, fast data collection, and partial or full automation of image processing; it can deliver very accurate results. Multi-image convergent photogrammetry supported by artificial coded targets is the most accurate photogrammetric method when the targets are detected in an image with a higher degree of accuracy than a 0.1 pixel. It is possible to achieve an accuracy of 0.03 mm for all the points measured on the object observed if the camera is close enough to the object, and the positions of the camera and the number of shots are precisely planned. This contribution deals with the design of a special hanging frame for a DSLR camera used during the photogrammetric measurement of the deformation of flat concrete slab. The results of the photogrammetric measurements are compared to the results from traditional contact measurement techniques during load tests.

  17. Boundary layer on a flat plate with suction; Couche limite sur paroi plane poreuse avec aspiration

    Energy Technology Data Exchange (ETDEWEB)

    Favre, A; Dumas, R; Verollet, E [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires; Institut de Mecanique Statistique de la Turbulence, Faculte des Sciences de Marseille, 13 (France)

    1961-07-01

    This research done in wind tunnel concerns the turbulent boundary layer of a porous flat plate with suction. The porous wall is 1 m long and begins 1 m downstream of the leading edge. The Reynolds number based on the boundary layer thickness is of the order of 16.300. The suction rate defined as the ratio of the velocity perpendicular to the wall to the external flow velocity ranges from 0 to 2 per cent. The pressure gradient can be controlled. The mean velocity profiles have been determined for various positions and suction rates by means of total pressure probes together with the intensities of the turbulent velocity fluctuations components, energy spectra and correlations by means of hot wire anemometers, spectral analyser and correlator. The stream lines, the values of the viscous and turbulent shear stresses, of the local wall friction, of the turbulent energy production term, with some information on the dissipation of the energy have been derived from these measurements. For these data the integral of equation of continuity in boundary layer have been drawn. The suction effects on the boundary layer are important. The suction thoroughly alters the mean velocity profiles by increasing the viscous shear stresses near the wall and decreasing them far from the wall, it diminishes the longitudinal and transversal turbulence intensities, the turbulent shear stresses, and the production of energy of turbulence. These effects are much stressed in the inner part of the boundary layer. On the other hand the energy spectra show that the turbulence scale is little modified, the boundary layer thickness being not much diminished by the suction. The suction effects can be appreciated by comparing twice the suction rate to the wall friction coefficient (assumed airtight), quite noticeable as soon as the rate is about unity, they become very important when it reaches ten. (author) [French] Ces recherches, effectuees en soufflerie, concernent la couche limite turbulente d

  18. Flat beams in a 50 TeV hadron collider

    International Nuclear Information System (INIS)

    Peggs, S.; Harrison, M.; Pilat, F.; Syphers, M.

    1997-01-01

    The basic beam dynamics of a next generation 50 x 50 TeV hadron collider based on a high field magnet approach have been outlined over the past several years. Radiation damping not only produces small emittances, but also flat beams, just as in electron machines. Based on open-quotes Snowmass 96close quotes parameters, we investigate the issues associated with flat beams in very high energy hadron colliders

  19. Performance of Screen Grid Insulating Concrete Form Walls under Combined In-Plane Vertical and Lateral Loads

    KAUST Repository

    Abdel Mooty, Mohamed

    2010-12-01

    Insulating Concrete Forms (ICF) walls generally comprise two layers of Expanded Polystyrene (EPS), steel reinforcement is placed in the center between the two layers and concrete is poured to fill the gap between those two layers. ICF\\'s have many advantages over traditional methods of wall construction such as reduced construction time, noise reduction, strength enhancement, energy efficiency, and compatibility with any inside or outside surface finish. The focus of this study is the Screen Grid ICF wall system consisting of a number of beams and columns forming a concrete mesh. The performance of ICF wall systems under lateral loads simulating seismic effect is experimentally evaluated in this paper. This work addresses the effect of the different design parameters on the wall behavior under seismic simulated loads. This includes different steel reinforcement ratio, various reinforcement distribution, wall aspect ratios, different openings sizes for windows and doors, as well as different spacing of the grid elements of the screen grid wall. Ten full scale wall specimens were tested where the effects of the various parameters on wall behavior in terms of lateral load capacity, lateral displacement, and modes of failure are presented. The test results are stored to be used for further analysis and calibration of numerical models developed for this study. © (2011) Trans Tech Publications.

  20. In-plane and out-of-plane nonlinear dynamics of an axially moving beam

    International Nuclear Information System (INIS)

    Farokhi, Hamed; Ghayesh, Mergen H.; Amabili, Marco

    2013-01-01

    In the present study, the nonlinear forced dynamics of an axially moving beam is investigated numerically taking into account the in-plane and out-of-plane motions. The nonlinear partial differential equations governing the motion of the system are derived via Hamilton’s principle. The Galerkin scheme is then introduced to these partial differential equations yielding a set of second-order nonlinear ordinary differential equations with coupled terms. This set is transformed into a new set of first-order nonlinear ordinary differential equations by means of a change of variables. A direct time integration technique is conducted upon the new set of equations resulting in the bifurcation diagrams of Poincaré maps of the system. The dynamical characteristics of the system are investigated for different system parameters and presented through use of time histories, phase-plane portraits, Poincaré sections, and fast Fourier transforms

  1. The Flat Tax in Central Europe: Slovakia and the Czech Republic in Comparative Perspective

    Directory of Open Access Journals (Sweden)

    Joseph Michael Ellis

    2011-03-01

    Full Text Available Why and how have Slovakia and the Czech Republic adopted flat tax policies? That is what this paper answers. This is a curious development given that flat tax policies were noticeably absent from the landscape of most of the world, including Eastern Europe. I argue that two simultaneous processes occur that make adoption viable.  First, at the domestic level, the idea of the flat tax is held in esteem by a number of actors, specifically: elite carriers, tax and financial ministers, think tanks and right-wing political parties. They champion this idea to its adoption, or at the least, introduce the flat tax into the policy-making apparatus. Second, at the international level, policy diffusion of the flat tax takes place. In other words, the experience of previous adopters impacts the decisions of future adopters. Examining both cognitive heuristics theory and rational learning I argue that there are “varieties of diffusion” during the diffusion of the flat tax.

  2. Friction and anchorage loading revisited.

    Science.gov (United States)

    Dholakia, Kartik D

    2012-01-01

    Contemporary concepts of sliding mechanics explain that friction is inevitable. To overcome this frictional resistance, excess force is required to retract the tooth along the archwire (ie, individual retraction of canines, en masse retraction of anterior teeth), in addition to the amount of force required for tooth movement. The anterior tooth retraction force, in addition to excess force (to overcome friction), produces reciprocal protraction force on molars, thereby leading to increased anchorage loading. However, this traditional concept was challenged in recent literature, which was based on the finite element model, but did not bear correlation to the clinical scenario. This article will reinforce the fact that clinically, friction increases anchorage loading in all three planes of space, considering the fact that tooth movement is a quasistatic process rather than a purely continuous or static one, and that conventional ways of determining the effects of static or dynamic friction on anchorage load cannot be applied to clinical situations (which consist of anatomical resistance units and a complex muscular force system). The article does not aim to quantify friction and its effect on the amount of anchorage load. Rather, a new perspective regarding the role of various additional factors (which is not explained by contemporary concept) that may influence friction and anchorage loading is provided..

  3. Present and future of flat panel detectors in the world

    International Nuclear Information System (INIS)

    Inamura, Kiyonari

    2002-01-01

    Present status of development of flat panel detectors and their clinical application in the world have been surveyed, and future trends are also explored especially in the field of material researches and methods of manufacturing. Also the importance of role of medical physicists on user side is described because characteristic physics measurement of a detector assembly is unavoidable and essential in quality assurance in clinical routine and acceptance test in hospitals. Even though physics measurements and clinical evaluations on flat panel detectors have shown remarkable progress and advances in these several years, future problems of cost down in manufacturing and quality assurance to prevent individual differences between detector assemblies must be resolved. Results of evaluation in mammography, chest radiography, fluoroscopy for cardiovascular examination, bone tumor examination and radiotherapy application indicate that flat panel detectors are future promising materials. Their systematic operation is contributing to heighten accuracy of image examinations and preciseness of radiation therapy. Encouragement to medical physicists relevant to flat panel detectors is also raised in this paper. (author)

  4. Temporal bed level variations in the Yangtze tidal flats (abstract)

    NARCIS (Netherlands)

    Yan, H.; Van Prooijen, B.C.

    2013-01-01

    The Yangtze River is one of the largest rivers in the world and the longest one in Asia. Its estuary forms an important entrance for shipping, but is also a key ecological system. Especially the inter-tidal flats are valuable habitats. The health and integrity of the estuarine tidal flat are however

  5. Enhancement of the in-plane shear properties of carbon fiber composites containing carbon nanotube mats

    Science.gov (United States)

    Kim, Hansang

    2015-01-01

    The in-plane shear property of carbon fiber laminates is one of the most important structural features of aerospace and marine structures. Fiber-matrix debonding caused by in-plane shear loading is the major failure mode of carbon fiber composites because of the stress concentration at the interfaces. In this study, carbon nanotube mats (CNT mat) were incorporated in two different types of carbon fiber composites. For the case of woven fabric composites, mechanical interlocking between the CNTs and the carbon fibers increased resistance to shear failure. However, not much improvement was observed for the prepreg composites as a result of incorporation of the CNT mats. The reinforcement mechanism of the CNT mat layer was investigated by a fractographic study using scanning electron microscopy. In addition, the CNT mat was functionalized by three different methods and the effectiveness of the functionalization methods was determined and the most appropriate functionalization method for the CNT mat was air oxidation.

  6. Interfacial Crack Arrest in Sandwich Panels with Embedded Crack Stoppers Subjected to Fatigue Loading

    DEFF Research Database (Denmark)

    Martakos, G.; Andreasen, J. H.; Berggreen, Christian

    2017-01-01

    A novel crack arresting device has been implemented in sandwich panels and tested using a special rig to apply out-of-plane loading on the sandwich panel face-sheets. Fatigue crack propagation was induced in the face-core interface of the sandwich panels which met the crack arrester. The effect o...

  7. Environmental testing of terrestrial flat plate photovoltaic modules

    Science.gov (United States)

    Hoffman, A.; Griffith, J.

    1979-01-01

    The Low-Cost Solar Array (LSA) Project at the Jet Propulsion Laboratory has as one objective: the development and implementation of environmental tests for flat plate photovoltaic modules as part of the Department of Energy's terrestrial photovoltaic program. Modules procured under this program have been subjected to a variety of laboratory tests intended to simulate service environments, and the results of these tests have been compared to available data from actual field service. This comparison indicates that certain tests (notably temperature cycling, humidity cycling, and cyclic pressure loading) are effective indicators of some forms of field failures. Other tests have yielded results useful in formulating module design guidelines. Not all effects noted in field service have been successfully reproduced in the laboratory, however, and work is continuing in order to improve the value of the test program as a tool for evaluating module design and workmanship. This paper contains a review of these ongoing efforts and an assessment of significant test results to date.

  8. TRANSVERSE MODES FOR FLAT INTER-BUNCH WAKES*

    CERN Document Server

    Burov, A

    2013-01-01

    If inter-bunch wake fields are flat, i.e. their variations over a bunch length can be neglected, all coherent modes have the same coupled-bunch structure, provided the bunches can be treated as identical by their inner qualities (train theorem). If a flat feedback is strong enough, the transverse modes are single-bunch, provided the inter-bunch wakes are also flat (damper theorem).

  9. Higher-spin algebras, holography and flat space

    Energy Technology Data Exchange (ETDEWEB)

    Sleight, C. [Max-Planck-Institut für Physik (Werner-Heisenberg-Institut),Föhringer Ring 6, D-80805 Munich (Germany); Université Libre de Bruxelles and International Solvay Institutes,ULB-Campus Plaine CP231, 1050 Brussels (Belgium); Taronna, M. [Université Libre de Bruxelles and International Solvay Institutes,ULB-Campus Plaine CP231, 1050 Brussels (Belgium)

    2017-02-20

    In this article we study the higher-spin algebra behind the type-A cubic couplings recently extracted from the free O(N) model in generic dimensions, demonstrating that they coincide with the known structure constants for the unique higher-spin algebra in generic dimensions. This provides an explicit check of the holographic reconstruction and of the duality between higher-spin theories and the free O(N) model in generic dimensions, generalising the result of Giombi and Yin in AdS{sub 4}. For completeness, we also address the same problem in the flat space for the cubic couplings derived by Metsaev in 1991, which are recovered from the flat limit of the AdS type-A cubic couplings. We observe that both flat and AdS{sub 4} higher-spin Lorentz subalgebras coincide, hinting towards the existence of a full higher-spin symmetry behind the flat-space cubic couplings of Metsaev.

  10. Effect of Barbell Weight on the Structure of the Flat Bench Press.

    Science.gov (United States)

    Król, Henryk; Gołaś, Artur

    2017-05-01

    Król, H and Gołaś, A. Effect of barbell weight on the structure of the flat bench press. J Strength Cond Res 31(5): 1321-1337, 2017-In this study, we have used the multimodular measuring system SMART. The system consisted of 6 infrared cameras and a wireless module to measure muscle bioelectric activity. In addition, the path of the barbell was measured with a special device called the pantograph. Our study concerns the change in the structure of the flat bench press when the weight of the barbell is increased. The research on the bench press technique included both the causes of the motion: the internal structure of the movement and the external kinematic structure showing the effects of the motion, i.e., all the characteristics of the movement. Twenty healthy, male recreational weight trainers with at least 1 year of lifting experience (the mean ± SD = 3.3 ± 1.6 years) were recruited for this study. The subjects had a mean body mass of 80.2 ± 8.6 kg, an average height of 1.77 ± 0.08 m, and their average age was 24.7 ± 0.9 years. In the measuring session, the participants performed consecutive sets of a single repetition of bench pressing with an increasing load (about 70, 80, 90, and 100% of their 1 repetition maximum [1RM]). The results showed a significant change in the phase structure of the bench press, as the barbell weight was increased. While doing the bench press at a 100% 1RM load, the pectoralis major changes from being the prime mover to being the supportive prime mover. At the same time, the role of the prime mover is taken on by the deltoideus anterior. The triceps brachii, in particular, clearly shows a greater involvement.

  11. On the mathematic simulation of the energy efficiency for heat exchangers with the systems of impingement plane-parallel jets

    Directory of Open Access Journals (Sweden)

    Haritonova Larisa

    2017-01-01

    Full Text Available The article gives the analytical generalization of the data on the energy efficiency for heat exchangers with the flat heat exchange surface to which systems of impact plane parallel jets are sent. Functional relations of specific power consumption (per unit of area, which were obtained for the first time using the techniques of the similarity law, for moving a heat carrier are shown with regard to design and operation factors. The regression equations representing a mathematical model of the process enable to carry out an analysis of various factors impact on the parameter to be determined. The obtained results can be used to optimize or to create the calculation techniques for new highly-efficient heat exchange devices with jet plane -parallel impingement systems and also to reduce power consumption for moving a heat carrier.

  12. Stresses and Displacements in Functionally Graded Materials of Semi-Infinite Extent Induced by Rectangular Loadings

    Directory of Open Access Journals (Sweden)

    Zhong-Qi Yue

    2012-01-01

    Full Text Available This paper presents the stress and displacement fields in a functionally graded material (FGM caused by a load. The FGM is a graded material of Si3N4-based ceramics and is assumed to be of semi-infinite extent. The load is a distributed loading over a rectangular area that is parallel to the external surface of the FGM and either on its external surface or within its interior space. The point-load analytical solutions or so-called Yue’s solutions are used for the numerical integration over the distributed loaded area. The loaded area is discretized into 200 small equal-sized rectangular elements. The numerical integration is carried out with the regular Gaussian quadrature. Weak and strong singular integrations encountered when the field points are located on the loaded plane, are resolved with the classical methods in boundary element analysis. The numerical integration results have high accuracy.

  13. In situ nonlinear ultrasonic technique for monitoring microcracking in concrete subjected to creep and cyclic loading.

    Science.gov (United States)

    Kim, Gun; Loreto, Giovanni; Kim, Jin-Yeon; Kurtis, Kimberly E; Wall, James J; Jacobs, Laurence J

    2018-08-01

    This research conducts in situ nonlinear ultrasonic (NLU) measurements for real time monitoring of load-induced damage in concrete. For the in situ measurements on a cylindrical specimen under sustained load, a previously developed second harmonic generation (SHG) technique with non-contact detection is adapted to a cylindrical specimen geometry. This new setup is validated by demonstrating that the measured nonlinear Rayleigh wave signals are equivalent to those in a flat half space, and thus the acoustic nonlinearity parameter, β can be defined and interpreted in the same way. Both the acoustic nonlinearity parameter and strain are measured to quantitatively assess the early-age damage in a set of concrete specimens subjected to either 25 days of creep, or 11 cycles of cyclic loading at room temperature. The experimental results show that the acoustic nonlinearity parameter is sensitive to early-stage microcrack formation under both loading conditions - the measured β can be directly linked to the accumulated microscale damage. This paper demonstrates the potential of NLU for the in situ monitoring of mechanical load-induced microscale damage in concrete components. Copyright © 2018 Elsevier B.V. All rights reserved.

  14. Wind inflow observation from load harmonics

    Directory of Open Access Journals (Sweden)

    M. Bertelè

    2017-12-01

    Full Text Available The wind field leaves its fingerprint on the rotor response. This fact can be exploited by using the rotor as a sensor: by looking at the rotor response, in the present case in terms of blade loads, one may infer the wind characteristics. This paper describes a wind state observer that estimates four wind parameters, namely the vertical and horizontal shears and the yaw and upflow misalignment angles, from out-of-plane and in-plane blade bending moments. The resulting observer provides on-rotor wind inflow characteristics that can be exploited for wind turbine and wind farm control. The proposed formulation is evaluated through extensive numerical simulations in turbulent and nonturbulent wind conditions using a high-fidelity aeroservoelastic model of a multi-MW wind turbine.

  15. Projective flatness in the quantisation of bosons and fermions

    Science.gov (United States)

    Wu, Siye

    2015-07-01

    We compare the quantisation of linear systems of bosons and fermions. We recall the appearance of projectively flat connection and results on parallel transport in the quantisation of bosons. We then discuss pre-quantisation and quantisation of fermions using the calculus of fermionic variables. We define a natural connection on the bundle of Hilbert spaces and show that it is projectively flat. This identifies, up to a phase, equivalent spinor representations constructed by various polarisations. We introduce the concept of metaplectic correction for fermions and show that the bundle of corrected Hilbert spaces is naturally flat. We then show that the parallel transport in the bundle of Hilbert spaces along a geodesic is a rescaled projection provided that the geodesic lies within the complement of a cut locus. Finally, we study the bundle of Hilbert spaces when there is a symmetry.

  16. LOAD ON BURIED PRESSURE CONDUITS WITH REFERENCE TO ...

    African Journals Online (AJOL)

    width of conduit or trench; the shearing forces on the plane between the backfill and adjacent earth; for embankment condition, the amounL of relative settlement between the backfill and adjacent earth; the rigidity of the conduit support under embankment loading. Table 3. Selected values of c'' for use in Eq. 8. Sand and.

  17. Computational Design of Flat-Band Material

    Science.gov (United States)

    Hase, I.; Yanagisawa, T.; Kawashima, K.

    2018-02-01

    Quantum mechanics states that hopping integral between local orbitals makes the energy band dispersive. However, in some special cases, there are bands with no dispersion due to quantum interference. These bands are called as flat band. Many models having flat band have been proposed, and many interesting physical properties are predicted. However, no real compound having flat band has been found yet despite the 25 years of vigorous researches. We have found that some pyrochlore oxides have quasi-flat band just below the Fermi level by first principles calculation. Moreover, their valence bands are well described by a tight-binding model of pyrochlore lattice with isotropic nearest neighbor hopping integral. This model belongs to a class of Mielke model, whose ground state is known to be ferromagnetic with appropriate carrier doping and on-site repulsive Coulomb interaction. We have also performed a spin-polarized band calculation for the hole-doped system from first principles and found that the ground state is ferromagnetic for some doping region. Interestingly, these compounds do not include magnetic element, such as transition metal and rare-earth elements.

  18. Radiation monitor training program at Rocky Flats

    International Nuclear Information System (INIS)

    Medina, L.C.; Kittinger, W.D.; Vogel, R.M.

    The Rocky Flats Radiation Monitor Training Program is tailored to train new health physics personnel in the field of radiation monitoring. The purpose of the prescribed materials and media is to be consistent in training in all areas of Rocky Flats radiation monitoring job involvement

  19. Flat epithelial atypia and atypical ductal hyperplasia: carcinoma underestimation rate.

    Science.gov (United States)

    Ingegnoli, Anna; d'Aloia, Cecilia; Frattaruolo, Antonia; Pallavera, Lara; Martella, Eugenia; Crisi, Girolamo; Zompatori, Maurizio

    2010-01-01

    This study was carried out to determine the underestimation rate of carcinoma upon surgical biopsy after a diagnosis of flat epithelial atypia and atypical ductal hyperplasia and 11-gauge vacuum-assisted breast biopsy. A retrospective review was conducted of 476 vacuum-assisted breast biopsy performed from May 2005 to January 2007 and a total of 70 cases of atypia were identified. Fifty cases (71%) were categorized as pure atypical ductal hyperplasia, 18 (26%) as pure flat epithelial atypia and two (3%) as concomitant flat epithelial atypia and atypical ductal hyperplasia. Each group were compared with the subsequent open surgical specimens. Surgical biopsy was performed in 44 patients with atypical ductal hyperplasia, 15 patients with flat epithelial atypia, and two patients with flat epithelial atypia and atypical ductal hyperplasia. Five cases of atypical ductal hyperplasia were upgraded to ductal carcinoma in situ, three cases of flat epithelial atypia yielded one ductal carcinoma in situ and two cases of invasive ductal carcinoma, and one case of flat epithelial atypia/atypical ductal hyperplasia had invasive ductal carcinoma. The overall rate of malignancy was 16% for atypical ductal hyperplasia (including flat epithelial atypia/atypical ductal hyperplasia patients) and 20% for flat epithelial atypia. The presence of flat epithelial atypia and atypical ductal hyperplasia at biopsy requires careful consideration, and surgical excision should be suggested.

  20. Stationary closed strings in five-dimensional flat spacetime

    Science.gov (United States)

    Igata, Takahisa; Ishihara, Hideki; Nishiwaki, Keisuke

    2012-11-01

    We investigate stationary rotating closed Nambu-Goto strings in five-dimensional flat spacetime. The stationary string is defined as a world sheet that is tangent to a timelike Killing vector. The Nambu-Goto equation of motion for the stationary string is reduced to the geodesic equation on the orbit space of the isometry group action generated by the Killing vector. We take a linear combination of a time-translation vector and space-rotation vectors as the Killing vector, and explicitly construct general solutions of stationary rotating closed strings in five-dimensional flat spacetime. We show a variety of their configurations and properties.

  1. Wetting of flat gradient surfaces.

    Science.gov (United States)

    Bormashenko, Edward

    2018-04-01

    Gradient, chemically modified, flat surfaces enable directed transport of droplets. Calculation of apparent contact angles inherent for gradient surfaces is challenging even for atomically flat ones. Wetting of gradient, flat solid surfaces is treated within the variational approach, under which the contact line is free to move along the substrate. Transversality conditions of the variational problem give rise to the generalized Young equation valid for gradient solid surfaces. The apparent (equilibrium) contact angle of a droplet, placed on a gradient surface depends on the radius of the contact line and the values of derivatives of interfacial tensions. The linear approximation of the problem is considered. It is demonstrated that the contact angle hysteresis is inevitable on gradient surfaces. Electrowetting of gradient surfaces is discussed. Copyright © 2018 Elsevier Inc. All rights reserved.

  2. Friendly vertical housing: case of walk-up flat housing development in Yogyakarta

    Science.gov (United States)

    Fosterharoldas Swasto, Deva

    2018-03-01

    In Yogyakarta Province, the local government have developed walk-up flats housing for more than ten years since the mid of the 2000s. Yogyakarta City and Sleman Regency was pioneering the construction with some blocks of flats in several locations. However, after this period, there is limited evaluation about the effectiveness of the occupancy. One of the issues is related to the sustainable housing development. Concerning this situation, it is proposed to examine how the development of walk-up flats housing in Yogyakarta City and Sleman Regency can be evaluated based on specific housing indicator, as a part of sustainable housing development concept. This paper would like to explore the phenomenon on how ‘friendly’ the flats is. The researcher will qualitatively asses variables from the walk-up flat cases in Yogyakarta City and Sleman Regency. The results suggested that the physical quality of the vertical housing situation could be enhanced to meet residents’ satisfaction.

  3. Detecting areal changes in tidal flats after sea dike construction ...

    Indian Academy of Sciences (India)

    The main objective of this study was to estimate changes in the area of tidal flats that occurred after sea dike construction on the western coast of South Korea using Landsat-TM images. Applying the ISODATA method of unsupervised classification for Landsat-TM images, the tidal flats were identified, and the resulting areas ...

  4. Lucy's flat feet: the relationship between the ankle and rearfoot arching in early hominins.

    Directory of Open Access Journals (Sweden)

    Jeremy M DeSilva

    Full Text Available BACKGROUND: In the Plio-Pleistocene, the hominin foot evolved from a grasping appendage to a stiff, propulsive lever. Central to this transition was the development of the longitudinal arch, a structure that helps store elastic energy and stiffen the foot during bipedal locomotion. Direct evidence for arch evolution, however, has been somewhat elusive given the failure of soft-tissue to fossilize. Paleoanthropologists have relied on footprints and bony correlates of arch development, though little consensus has emerged as to when the arch evolved. METHODOLOGY/PRINCIPAL FINDINGS: Here, we present evidence from radiographs of modern humans (n = 261 that the set of the distal tibia in the sagittal plane, henceforth referred to as the tibial arch angle, is related to rearfoot arching. Non-human primates have a posteriorly directed tibial arch angle, while most humans have an anteriorly directed tibial arch angle. Those humans with a posteriorly directed tibial arch angle (8% have significantly lower talocalcaneal and talar declination angles, both measures of an asymptomatic flatfoot. Application of these results to the hominin fossil record reveals that a well developed rearfoot arch had evolved in Australopithecus afarensis. However, as in humans today, Australopithecus populations exhibited individual variation in foot morphology and arch development, and "Lucy" (A.L. 288-1, a 3.18 Myr-old female Australopithecus, likely possessed asymptomatic flat feet. Additional distal tibiae from the Plio-Pleistocene show variation in tibial arch angles, including two early Homo tibiae that also have slightly posteriorly directed tibial arch angles. CONCLUSIONS/SIGNIFICANCE: This study finds that the rearfoot arch was present in the genus Australopithecus. However, the female Australopithecus afarensis "Lucy" has an ankle morphology consistent with non-pathological flat-footedness. This study suggests that, as in humans today, there was variation in arch

  5. Coupled Chiral Structure in Graphene-Based Film for Ultrahigh Thermal Conductivity in Both In-Plane and Through-Plane Directions.

    Science.gov (United States)

    Meng, Xin; Pan, Hui; Zhu, Chengling; Chen, Zhixin; Lu, Tao; Xu, Da; Li, Yao; Zhu, Shenmin

    2018-06-21

    The development of high-performance thermal management materials to dissipate excessive heat both in plane and through plane is of special interest to maintain efficient operation and prolong the life of electronic devices. Herein, we designed and constructed a graphene-based composite film, which contains chiral liquid crystals (cellulose nanocrystals, CNCs) inside graphene oxide (GO). The composite film was prepared by annealing and compacting of self-assembled GO-CNC, which contains chiral smectic liquid crystal structures. The helical arranged nanorods of carbonized CNC act as in-plane connections, which bridge neighboring graphene sheets. More interestingly, the chiral structures also act as through-plane connections, which bridge the upper and lower graphene layers. As a result, the graphene-based composite film shows extraordinary thermal conductivity, in both in-plane (1820.4 W m -1 K -1 ) and through-plane (4.596 W m -1 K -1 ) directions. As a thermal management material, the heat dissipation and transportation behaviors of the composite film were investigated using a self-heating system and the results showed that the real-time temperature of the heater covered with the film was 44.5 °C lower than a naked heater. The prepared film shows a much higher efficiency of heat transportation than the commonly used thermal conductive Cu foil. Additionally, this graphene-based composite film exhibits excellent mechanical strength of 31.6 MPa and an electrical conductivity of 667.4 S cm -1 . The strategy reported here may open a new avenue to the development of high-performance thermal management films.

  6. Elastic stability of biaxially loaded longitudinally stiffened composite structures.

    Science.gov (United States)

    Viswanathan, A. V.; Tamekuni, M.; Tripp, L. L.

    1973-01-01

    A linear analysis method is presented for the elastic stability of structures of uniform cross section, that may be idealized as an assemblage of laminated plate-strips, flat and curved, and beams. Each plate-strip and beam covers the entire length of the structure and is simply supported on the edges normal to the longitudinal axis. Arbitrary boundary conditions may be specified on any external longitudinal side of plate-strips. The structure or selected plate-strips may be loaded in any desired combination of inplane biaxial loads. The analysis simultaneously considers all modes of instability and is applicable for the buckling of laminated composite structures. Some numerical results are presented to indicate possible applications.

  7. Changes in tendon spatial frequency parameters with loading.

    Science.gov (United States)

    Pearson, Stephen J; Engel, Aaron J; Bashford, Gregory R

    2017-05-24

    To examine and compare the loading related changes in micro-morphology of the patellar tendon. Fifteen healthy young males (age 19±3yrs, body mass 83±5kg) were utilised in a within subjects matched pairs design. B mode ultrasound images were taken in the sagittal plane of the patellar tendon at rest with the knee at 90° flexion. Repeat images were taken whilst the subjects were carrying out maximal voluntary isometric contractions. Spatial frequency parameters related to the tendon morphology were determined within regions of interest (ROI) from the B mode images at rest and during isometric contractions. A number of spatial parameters were observed to be significantly different between resting and contracted images (Peak spatial frequency radius (PSFR), axis ratio, spatial Q-factor, PSFR amplitude ratio, and the sum). These spatial frequency parameters were indicative of acute alterations in the tendon micro-morphology with loading. Acute loading modifies the micro-morphology of the tendon, as observed via spatial frequency analysis. Further research is warranted to explore its utility with regard to different loading induced micro-morphological alterations, as these could give valuable insight not only to aid strengthening of this tissue but also optimization of recovery from injury and treatment of conditions such as tendinopathies. Copyright © 2017 Elsevier Ltd. All rights reserved.

  8. Composite Structural Analysis of Flat-Back Shaped Blade for Multi-MW Class Wind Turbine

    Science.gov (United States)

    Kim, Soo-Hyun; Bang, Hyung-Joon; Shin, Hyung-Ki; Jang, Moon-Seok

    2014-06-01

    This paper provides an overview of failure mode estimation based on 3D structural finite element (FE) analysis of the flat-back shaped wind turbine blade. Buckling stability, fiber failure (FF), and inter-fiber failure (IFF) analyses were performed to account for delamination or matrix failure of composite materials and to predict the realistic behavior of the entire blade region. Puck's fracture criteria were used for IFF evaluation. Blade design loads applicable to multi-megawatt (MW) wind turbine systems were calculated according to the Germanischer Lloyd (GL) guideline and the International Electrotechnical Commission (IEC) 61400-1 standard, under Class IIA wind conditions. After the post-processing of final load results, a number of principal load cases were selected and converted into applied forces at the each section along the blade's radius of the FE model. Nonlinear static analyses were performed for laminate failure, FF, and IFF check. For buckling stability, linear eigenvalue analysis was performed. As a result, we were able to estimate the failure mode and locate the major weak point.

  9. Influence of mandibular fixation method on stability of the maxillary occlusal plane after occlusal plane alteration.

    Science.gov (United States)

    Yosano, Akira; Katakura, Akira; Takaki, Takashi; Shibahara, Takahiko

    2009-05-01

    In this study, we investigated how method of mandibular fixation influenced longterm postoperative stability of the maxilla in Class III cases. In particular, we investigated change in the maxillary occlusal plane after Occlusal Plane Alteration. Therefore, we focused on change in the palatal plane to evaluate stability of the maxillary occlusal plane, as the position of the palatal plane affects the maxillary occlusal plane. This study included 16 patients diagnosed with mandibular protrusion. Alteration of the occlusal plane was achieved by clockwise rotation of the maxilla by Le Fort I osteotomy and mandibular setback was performed by bilateral sagittal split ramus osteotomy. We analyzed and examined lateral cephalometric radiographs taken at 1 month, 3 months, 6 months, and 1 year after surgery. Stability achieved by two methods of mandibular fixation was compared. In one group of patients (group S) titanium screws were used, and in the other group (group P) titanium-locking mini-plates were used. No significant displacement was recognized in group S, whereas an approximately 0.7mm upward vertical displacement was recognized in the anterior nasal spine in group P. As a result, not only the angle of the palatal plane and S-N plane, but also occlusal plane angle in group P showed a greater decrease than that in group S. The results suggest that fixing the mandible with screws yielded greater stability of the maxilla and maxillary occlusal plane than fixing the mandible with titanium plates.

  10. Flat-port connectors

    KAUST Repository

    Alrashed, Mohammed

    2017-01-01

    and water resistant. It is unique in the way of using the outer surfaces of the device for the electrical connection between the ports. Flat-port design can allow the manufacture of extremely thin devices by eliminating the side ports slots that take a lot

  11. Dipolar interaction induced band gaps and flat modes in surface-modulated magnonic crystals

    Science.gov (United States)

    Gallardo, R. A.; Schneider, T.; Roldán-Molina, A.; Langer, M.; Fassbender, J.; Lenz, K.; Lindner, J.; Landeros, P.

    2018-04-01

    Theoretical results for the magnetization dynamics of a magnonic crystal formed by grooves on the surface of a ferromagnetic film, called a surface-modulated magnonic crystal, are presented. For such a system, the role of the periodic dipolar field induced by the geometrical modulation is addressed by using the plane-wave method. The results reveal that, under the increasing of the depth of the grooves, zones with magnetizing and demagnetizing fields act on the system in such a way that magnonic band gaps are observed in both Damon-Eshbach and backward volume geometries. Particularly, in the backward volume configuration, high-frequency band gaps and low-frequency flat modes are obtained. By taking into account the properties of the internal field induced by the grooves, the flattening of the modes and their shift towards low frequencies are discussed and explained. To test the validity of the model, the theoretical results of this work are confirmed by micromagnetic simulations, and good agreement between both methods is achieved. The theoretical model allows for a detailed understanding of the physics underlying these kinds of systems, thereby providing an outlook for potential applications on magnonic devices.

  12. Prescribed curvature tensor in locally conformally flat manifolds

    Science.gov (United States)

    Pina, Romildo; Pieterzack, Mauricio

    2018-01-01

    A global existence theorem for the prescribed curvature tensor problem in locally conformally flat manifolds is proved for a special class of tensors R. Necessary and sufficient conditions for the existence of a metric g ¯ , conformal to Euclidean g, are determined such that R ¯ = R, where R ¯ is the Riemannian curvature tensor of the metric g ¯ . The solution to this problem is given explicitly for special cases of the tensor R, including the case where the metric g ¯ is complete on Rn. Similar problems are considered for locally conformally flat manifolds.

  13. 2D nonlocal versus 3D bifurcation studies for biaxially loaded plates

    DEFF Research Database (Denmark)

    Benallal, A.; Tvergaard, Viggo

    1998-01-01

    The main objective of this work is to analyse how a two-dimensional second gradient plasticity model is able to reproduce the three-dimensional bifurcation behaviour for a biaxially loaded flat plate. While it is found that the simple model used here is able to capture them qualitatively for the ...

  14. Fatigue life assessment of thin-walled welded joints under non-proportional load-time histories by the shear stress rate integral approach

    Directory of Open Access Journals (Sweden)

    A. Bolchoun

    2016-10-01

    Full Text Available Fatigue life tests under constant and variable amplitude loadings were performed on the tube-tube thin-walled welded specimens made of magnesium (AZ31 and AZ61 alloys. The tests included pure axial, pure torsional and combined in-phase and out-of-phase loadings with the load ratio  RR " ", " " 1  . For the tests with variable amplitude loads a Gaußdistributed loading spectrum with S L 4 5 10  cycles was used. Since magnesium welds show a fatigue life reduction under out-of-phase loads, a stress-based method, which takes this behavior into account, is proposed. The out-of-phase loading results in rotating shear stress vectors in the section planes, which are not orthogonal to the surface. This fact is used in order to provide an out-of-phase measure of the load. This measure is computed as an area covered by the shear stress vectors in all planes over a certain time interval, its computation involves the shear stress and the shear stress rate vectors in the individual planes. Fatigue life evaluation for the variable amplitudes loadings is performed using the Palmgren-Miner linear damage accumulation, whereas the total damage of every cycle is split up into two components: the amplitude component and the out-of-phase component. In order to compute the two components a modification of the rainflow counting method, which keeps track of the time intervals, where the cycles occur, must be used. The proposed method also takes into account different slopes of the pure axial and the pure torsional Wöhler-line by means of a Wöhler-line interpolation for combined loadings

  15. Engineering flat electronic bands in quasiperiodic and fractal loop geometries

    Energy Technology Data Exchange (ETDEWEB)

    Nandy, Atanu, E-mail: atanunandy1989@gmail.com; Chakrabarti, Arunava, E-mail: arunava_chakrabarti@yahoo.co.in

    2015-11-06

    Exact construction of one electron eigenstates with flat, non-dispersive bands, and localized over clusters of various sizes is reported for a class of quasi-one-dimensional looped networks. Quasiperiodic Fibonacci and Berker fractal geometries are embedded in the arms of the loop threaded by a uniform magnetic flux. We work out an analytical scheme to unravel the localized single particle states pinned at various atomic sites or over clusters of them. The magnetic field is varied to control, in a subtle way, the extent of localization and the location of the flat band states in energy space. In addition to this we show that an appropriate tuning of the field can lead to a re-entrant behavior of the effective mass of the electron in a band, with a periodic flip in its sign. - Highlights: • Exact construction of eigenstates with flat and dispersive bands is reported. • Competition between translational order and growth of aperiodicity is discussed. • The effect of magnetic field on the location of flat band states is shown. • Flux tunable re-entrant behavior of the effective mass of electron is studied.

  16. Theoretical and Field Experimental Investigation of an Arrayed Solar Thermoelectric Flat-Plate Generator

    Science.gov (United States)

    Rehman, Naveed ur; Siddiqui, Mubashir Ali

    2018-05-01

    This work theoretically and experimentally investigated the performance of an arrayed solar flat-plate thermoelectric generator (ASFTEG). An analytical model, based on energy balances, was established for determining load voltage, power output and overall efficiency of ASFTEGs. An array consists of TEG devices (or modules) connected electrically in series and operating in closed-circuit mode with a load. The model takes into account the distinct temperature difference across each module, which is a major feature of this model. Parasitic losses have also been included in the model for realistic results. With the given set of simulation parameters, an ASFTEG consisting of four commercially available Bi2Te3 modules had a predicted load voltage of 200 mV and generated 3546 μW of electric power output. Predictions from the model were in good agreement with field experimental outcomes from a prototype ASFTEG, which was developed for validation purposes. Later, the model was simulated to maximize the performance of the ASFTEG by adjusting the thermal and electrical design of the system. Optimum values of design parameters were evaluated and discussed in detail. Beyond the current limitations associated with improvements in thermoelectric materials, this study will eventually lead to the successful development of portable roof-top renewable TEGs.

  17. Rock Fracture Toughness Study Under Mixed Mode I/III Loading

    Science.gov (United States)

    Aliha, M. R. M.; Bahmani, A.

    2017-07-01

    Fracture growth in underground rock structures occurs under complex stress states, which typically include the in- and out-of-plane sliding deformation of jointed rock masses before catastrophic failure. However, the lack of a comprehensive theoretical and experimental fracture toughness study for rocks under contributions of out-of plane deformations (i.e. mode III) is one of the shortcomings of this field. Therefore, in this research the mixed mode I/III fracture toughness of a typical rock material is investigated experimentally by means of a novel cracked disc specimen subjected to bend loading. It was shown that the specimen can provide full combinations of modes I and III and consequently a complete set of mixed mode I/III fracture toughness data were determined for the tested marble rock. By moving from pure mode I towards pure mode III, fracture load was increased; however, the corresponding fracture toughness value became smaller. The obtained experimental fracture toughness results were finally predicted using theoretical and empirical fracture models.

  18. Circles-in-the-sky searches and observable cosmic topology in a flat universe

    International Nuclear Information System (INIS)

    Mota, B.; Reboucas, M. J.; Tavakol, R.

    2010-01-01

    In a universe with a detectable nontrivial spatial topology, the last scattering surface contains pairs of matching circles with the same distribution of temperature fluctuations--the so-called circles-in-the-sky. Searches for nearly antipodal circles-in-the-sky in maps of cosmic microwave background radiation have so far been unsuccessful. This negative outcome, along with recent theoretical results concerning the detectability of nearly flat compact topologies, is sufficient to exclude a detectable nontrivial topology for most observers in very nearly flat positively and negatively curved universes, whose total matter-energy density satisfies 0 tot -1| -5 . Here, we investigate the consequences of these searches for observable nontrivial topologies if the Universe turns out to be exactly flat (Ω tot =1). We demonstrate that in this case, the conclusions deduced from such searches can be radically different. We show that, although there is no characteristic topological scale in the flat manifolds, for all multiply-connected orientable flat manifolds, it is possible to directly study the action of the holonomies in order to obtain a general upper bound on the angle that characterizes the deviation from antipodicity of pairs of matching circles associated with the shortest closed geodesic. This bound is valid for all observers and all possible values of the compactification length parameters. We also show that in a flat universe, there are observers for whom the circles-in-the-sky searches already undertaken are insufficient to exclude the possibility of a detectable nontrivial spatial topology. It is remarkable how such small variations in the spatial curvature of the Universe, which are effectively indistinguishable geometrically, can have such a drastic effect on the detectability of cosmic topology. Another important outcome of our results is that they offer a framework with which to make statistical inferences from future circles-in-the-sky searches on whether

  19. Interacting agegraphic dark energy models in non-flat universe

    International Nuclear Information System (INIS)

    Sheykhi, Ahmad

    2009-01-01

    A so-called 'agegraphic dark energy' was recently proposed to explain the dark energy-dominated universe. In this Letter, we generalize the agegraphic dark energy models to the universe with spatial curvature in the presence of interaction between dark matter and dark energy. We show that these models can accommodate w D =-1 crossing for the equation of state of dark energy. In the limiting case of a flat universe, i.e. k=0, all previous results of agegraphic dark energy in flat universe are restored.

  20. Testing and Analysis of a Composite Non-Cylindrical Aircraft Fuselage Structure. Part 1; Ultimate Design Loads

    Science.gov (United States)

    Przekop, Adam; Jegley, Dawn C.; Lovejoy, Andrew E.; Rouse, Marshall; Wu, Hsi-Yung T.

    2016-01-01

    The Environmentally Responsible Aviation Project aimed to develop aircraft technologies enabling significant fuel burn and community noise reductions. Small incremental changes to the conventional metallic alloy-based 'tube and wing' configuration were not sufficient to achieve the desired metrics. One airframe concept identified by the project as having the potential to dramatically improve aircraft performance was a composite-based hybrid wing body configuration. Such a concept, however, presented inherent challenges stemming from, among other factors, the necessity to transfer wing loads through the entire center fuselage section which accommodates a pressurized cabin confined by flat or nearly flat panels. This paper discusses finite element analysis and testing of a large-scale hybrid wing body center section structure developed and constructed to demonstrate that the Pultruded Rod Stitched Efficient Unitized Structure concept can meet these challenging demands of the next generation airframes. Part I of the paper considers the five most critical load conditions, which are internal pressure only and positive and negative g-loads with and without internal pressure. Analysis results are compared with measurements acquired during testing. Performance of the test article is found to be closely aligned with predictions and, consequently, able to support the hybrid wing body design loads in pristine and barely visible impact damage conditions.

  1. Constructive curves in non-Euclidean planes

    OpenAIRE

    Horváth, Ákos G.

    2016-01-01

    In this paper we overview the theory of conics and roulettes in four non-Euclidean planes. We collect the literature about these classical concepts, from the eighteenth century to the present, including papers available only on arXiv. The comparison of the four non-Euclidean planes, in terms of the known results on conics and roulettes, reflects only the very subjective view of the author.

  2. Magnetized and Flat Beam Experiment at FAST

    Energy Technology Data Exchange (ETDEWEB)

    Halavanau, A. [Fermilab; Hyun, J. [Sokendai, Tsukuba; Mihalcea, D. [NIU, DeKalb; Piot, P. [NICADD, DeKalb; Sen, T. [Fermilab; Thangaraj, C. [Fermilab

    2017-05-22

    A photocathode, immersed in solenoidal magnetic field, can produce canonical-angular-momentum (CAM) dominated or “magnetized” electron beams. Such beams have an application in electron cooling of hadron beams and can also be uncoupled to yield asymmetric-emittance (“flat”) beams. In the present paper we explore the possibilities of the flat beam generation at Fermilab’s Accelerator Science and Technology (FAST) facility. We present optimization of the beam flatness and four-dimensional transverse emittance and investigate the mapping and its limitations of the produced eigen-emittances to conventional emittances using a skew-quadrupole channel. Possible application of flat beams at the FAST facility are also discussed.

  3. Theoretical study of the influence of decentring on longitudinal stability of a flat-convex lenticular lighted wing

    Energy Technology Data Exchange (ETDEWEB)

    Bouquet, R [Univ. de Poitiers, ENSMA, Poitiers (France)

    1985-07-01

    The flat-convex lenticular wings have a very interesting polar-diagram, with a big relative thickness, good for partial static lifting force by introduction of light gas. But the longitudinal balance can be easily realized only with a notable decentring for the load. The theoretical study of stability conditions, in horizontal propulsed flight, as in gliding without engine power, gives the localization of a balance center, different of the gravity center, and the calculation of an optimal centring, function of a diagram-family c{sub m}(i) established on computer. In this new calculation, described in this paper, the relative of static lifting force is one of the principal parameters. A 16 mm coloured movie in annex shows the flight tests with a motorized wireless-controlled scale-model, realized according to the theory. This experiments give proof of aeronautical possibilities of this flat-convex lenticular lighted air-ship, with the name of: 'flying turtle' project. (author)

  4. Flat connection, conformal field theory and quantum group

    International Nuclear Information System (INIS)

    Kato, Mitsuhiro.

    1989-07-01

    General framework of linear first order differential equation for four-point conformal block is studied by using flat connection. Integrability and SL 2 invariance restrict possible form of flat connection. Under a special ansatz classical Yang-Baxter equation appears as an integrability condition and the WZW model turns to be unique conformal field theory in that case. Monodromy property of conformal block can be easily determined by the flat connection. 11 refs

  5. Calculation approaches for grid usage fees to influence the load curve in the distribution grid level

    International Nuclear Information System (INIS)

    Illing, Bjoern

    2014-01-01

    Dominated by the energy policy the decentralized German energy market is changing. One mature target of the government is to increase the contribution of renewable generation to the gross electricity consumption. In order to achieve this target disadvantages like an increased need for capacity management occurs. Load reduction and variable grid fees offer the grid operator solutions to realize capacity management by influencing the load profile. The evolution of the current grid fees towards more causality is required to adapt these approaches. Two calculation approaches are developed in this assignment. On the one hand multivariable grid fees keeping the current components demand and energy charge. Additional to the grid costs grid load dependent parameters like the amount of decentralized feed-ins, time and local circumstances as well as grid capacities are considered. On the other hand the grid fee flat-rate which represents a demand based model on a monthly level. Both approaches are designed to meet the criteria for future grid fees. By means of a case study the effects of the grid fees on the load profile at the low voltage grid is simulated. Thereby the consumption is represented by different behaviour models and the results are scaled at the benchmark grid area. The resulting load curve is analyzed concerning the effects of peak load reduction as well as the integration of renewable energy sources. Additionally the combined effect of grid fees and electricity tariffs is evaluated. Finally the work discusses the launching of grid fees in the tense atmosphere of politics, legislation and grid operation. Results of this work are two calculation approaches designed for grid operators to define the grid fees. Multivariable grid fees are based on the current calculation scheme. Hereby demand and energy charges are weighted by time, locational and load related dependencies. The grid fee flat-rate defines a limitation in demand extraction. Different demand levels

  6. Field-theoretic approach to gravity in the flat space-time

    Energy Technology Data Exchange (ETDEWEB)

    Cavalleri, G [Centro Informazioni Studi Esperienze, Milan (Italy); Milan Univ. (Italy). Ist. di Fisica); Spinelli, G [Istituto di Matematica del Politecnico di Milano, Milano (Italy)

    1980-01-01

    In this paper it is discussed how the field-theoretical approach to gravity starting from the flat space-time is wider than the Einstein approach. The flat approach is able to predict the structure of the observable space as a consequence of the behaviour of the particle proper masses. The field equations are formally equal to Einstein's equations without the cosmological term.

  7. A method for load management in low voltage grids. Application from e-mobility to heat storage; Verfahren zum Lastmanagement in Niederspannungsnetzen. Anwendung von E-Mobility bis Waermespeicher

    Energy Technology Data Exchange (ETDEWEB)

    Hess, Tobias; Schegner, Peter [TU Dresden (Germany). IEEH; Hable, Matthias [ENSO NETZ GmbH, Dresden (Germany)

    2012-07-01

    With the expected charging characteristic of e-mobility a considerable load peak during the night is expected. The paper describes the application of a modified maximal rectangle algorithm to determine the optimal starting times for charging to realise a flat load curve. The load characteristic of e-mobility is similar to heat storage. This allows to use the currently widely spread heat storage devices as example for developing and testing methods for optimized load management in low voltage networks. It is shown that the developed optimization algorithm finds solutions close to the global optimum even in large networks ({approx} 25000 devices) with low requirements of calculation time (< 1 min). (orig.)

  8. Competition between invariant habit plane and compatible junction plane in TiNb-based shape memory alloy

    International Nuclear Information System (INIS)

    Inamura, T.; Kim, H.Y.; Hosoda, H.; Miyazaki, S.

    2013-01-01

    Highlights: ► Kinematic compatibility (KC) among martensite variants in Ti-Nb-Al is evaluated. ► Rotation Q is necessary to keep KC at any junction plane (JP). ► The rotation Q is equivalent to the rotation to form the exact twin-relationship. ► The JP preferentially observed in experiment is the JP with the smaller Q. ► We propose two preferential JPs with {1 1 1} type I and 〈2 1 1〉 type II twin in Ti-Nb-Al. -- Abstract: The invariant plane (IP) condition at a habit plane (HP) and the kinematic compatibility (KC) condition at a junction plane (JP) are quantitatively evaluated by the geometrically nonlinear theory of martensite and the origin of the twin orientation relationship (OR) at a JP is revealed in a β titanium shape memory alloy. Exact twin OR at a JP is impossible among the habit plane variants (HPVs). A nonzero rotation is necessary to maintain the compatibility at a JP between the HPVs. The fully compatible HPV cluster in which IP at a HP and KC at a JP are maintained simultaneously is impossible in this alloy. However, it was found that twin OR and KC can be maintained simultaneously. The preferentially observed HPV clusters in transmission electron microscopy are the clusters with a smaller rotation to maintain KC at a JP

  9. Loads and loads and loads: The influence of prospective load, retrospective load, and ongoing task load in prospective memory

    Directory of Open Access Journals (Sweden)

    Beat eMeier

    2015-06-01

    Full Text Available In prospective memory tasks different kinds of load can occur. Adding a prospective memory task can impose a load on ongoing task performance. Adding ongoing task load can affect prospective memory performance. The existence of multiple target events increases prospective load and adding complexity to the to-be-remembered action increases retrospective load. In two experiments, we systematically examined the effects of these different types of load on prospective memory performance. Results showed an effect of prospective load on costs in the ongoing task for categorical targets (Experiment 2, but not for specific targets (Experiment 1. Retrospective load and ongoing task load both affected remembering the retrospective component of the prospective memory task. We suggest that prospective load can enhance costs in the ongoing task due to additional monitoring requirements. Retrospective load and ongoing task load seem to impact the division of resources between the ongoing task and retrieval of the retrospective component, which may affect disengagement from the ongoing task. In general, the results demonstrate that the different types of load affect prospective memory differentially.

  10. Mitigating the Long term Operating Extreme Load through Active Control

    International Nuclear Information System (INIS)

    Koukoura, Christina; Natarajan, Anand

    2014-01-01

    The parameters influencing the long term extreme operating design loads are identified through the implementation of a Design of Experiment (DOE) method. A function between the identified critical factors and the ultimate out-of-plane loads on the blade is determined. Variations in the initial blade azimuth location are shown to affect the extreme blade load magnitude during operation in normal turbulence wind input. The simultaneously controlled operation of generator torque variation and pitch variation at low blade pitch angles is detected to be responsible for very high loads acting on the blades. Through gain scheduling of the controller (modifications of the proportional Kp and the integral K gains) the extreme loads are mitigated, ensuring minimum instantaneous variations in the power production for operation above rated wind speed. The response of the blade load is examined for different values of the integral gain as resulting in rotor speed error and the rate of change of rotor speed. Based on the results a new load case for the simulation of extreme loads during normal operation is also presented

  11. Improved Plane-Wave Ultrasound Beamforming by Incorporating Angular Weighting and Coherent Compounding in Fourier Domain.

    Science.gov (United States)

    Chen, Chuan; Hendriks, Gijs A G M; van Sloun, Ruud J G; Hansen, Hendrik H G; de Korte, Chris L

    2018-05-01

    In this paper, a novel processing framework is introduced for Fourier-domain beamforming of plane-wave ultrasound data, which incorporates coherent compounding and angular weighting in the Fourier domain. Angular weighting implies spectral weighting by a 2-D steering-angle-dependent filtering template. The design of this filter is also optimized as part of this paper. Two widely used Fourier-domain plane-wave ultrasound beamforming methods, i.e., Lu's f-k and Stolt's f-k methods, were integrated in the framework. To enable coherent compounding in Fourier domain for the Stolt's f-k method, the original Stolt's f-k method was modified to achieve alignment of the spectra for different steering angles in k-space. The performance of the framework was compared for both methods with and without angular weighting using experimentally obtained data sets (phantom and in vivo), and data sets (phantom) provided by the IEEE IUS 2016 plane-wave beamforming challenge. The addition of angular weighting enhanced the image contrast while preserving image resolution. This resulted in images of equal quality as those obtained by conventionally used delay-and-sum (DAS) beamforming with apodization and coherent compounding. Given the lower computational load of the proposed framework compared to DAS, to our knowledge it can, therefore, be concluded that it outperforms commonly used beamforming methods such as Stolt's f-k, Lu's f-k, and DAS.

  12. Existence of Projective Planes

    OpenAIRE

    Perrott, Xander

    2016-01-01

    This report gives an overview of the history of finite projective planes and their properties before going on to outline the proof that no projective plane of order 10 exists. The report also investigates the search carried out by MacWilliams, Sloane and Thompson in 1970 [12] and confirms their result by providing independent verification that there is no vector of weight 15 in the code generated by the projective plane of order 10.

  13. Detecting topology in a nearly flat spherical universe

    International Nuclear Information System (INIS)

    Weeks, Jeffrey; Lehoucq, Roland; Uzan, Jean-Philippe

    2003-01-01

    When the density parameter is close to unity, the universe has a large curvature radius independent of its being hyperbolic or spherical, or in the limiting case of an infinite curvature radius, flat. Whatever the curvature, the universe may have either a simply connected or a multiply connected topology. In the flat case, the topology scale is arbitrary, and there is no a priori reason for this scale to be of the same order as the size of the observable universe. In the hyperbolic case, any nontrivial topology would almost surely be on a length scale too large to detect. In the spherical case, in contrast, the topology could easily occur on a detectable scale. The present paper shows how, in the spherical case, the assumption of a nearly flat universe simplifies the algorithms for detecting a multiply connected topology, but also reduces the amount of topology that can be seen. This is of primary importance for the upcoming cosmic microwave background data analysis. This paper shows that for spherical spaces one may restrict the search to diametrically opposite pairs of circles in the circles-in-the-sky method and still detect the cyclic factor in the standard factorization of the holonomy group. This vastly decreases the algorithm's run time. If the search is widened to include pairs of candidate circles whose centres are almost opposite and whose relative twist varies slightly, then the cyclic factor along with a cyclic subgroup of the general factor may also be detected. Unfortunately, the full holonomy group is, in general, unobservable in a nearly flat spherical universe, and so a full six-parameter search is unnecessary. Crystallographic methods could also potentially detect the cyclic factor and a cyclic subgroup of the general factor, but nothing else

  14. Detecting topology in a nearly flat spherical universe

    Energy Technology Data Exchange (ETDEWEB)

    Weeks, Jeffrey [15 Farmer St, Canton NY 13617-1120 (United States); Lehoucq, Roland [CE-Saclay, DSM/DAPNIA/Service d' Astrophysique, F-91191 Gif sur Yvette Cedex (France); Uzan, Jean-Philippe [Institut d' Astrophysique de Paris, GReCO, CNRS-FRE 2435, 98 bis, Bd Arago, 75014 Paris (France)

    2003-04-21

    When the density parameter is close to unity, the universe has a large curvature radius independent of its being hyperbolic or spherical, or in the limiting case of an infinite curvature radius, flat. Whatever the curvature, the universe may have either a simply connected or a multiply connected topology. In the flat case, the topology scale is arbitrary, and there is no a priori reason for this scale to be of the same order as the size of the observable universe. In the hyperbolic case, any nontrivial topology would almost surely be on a length scale too large to detect. In the spherical case, in contrast, the topology could easily occur on a detectable scale. The present paper shows how, in the spherical case, the assumption of a nearly flat universe simplifies the algorithms for detecting a multiply connected topology, but also reduces the amount of topology that can be seen. This is of primary importance for the upcoming cosmic microwave background data analysis. This paper shows that for spherical spaces one may restrict the search to diametrically opposite pairs of circles in the circles-in-the-sky method and still detect the cyclic factor in the standard factorization of the holonomy group. This vastly decreases the algorithm's run time. If the search is widened to include pairs of candidate circles whose centres are almost opposite and whose relative twist varies slightly, then the cyclic factor along with a cyclic subgroup of the general factor may also be detected. Unfortunately, the full holonomy group is, in general, unobservable in a nearly flat spherical universe, and so a full six-parameter search is unnecessary. Crystallographic methods could also potentially detect the cyclic factor and a cyclic subgroup of the general factor, but nothing else.

  15. Lithium-ion textile batteries with large areal mass loading

    Energy Technology Data Exchange (ETDEWEB)

    Hu, Liangbing; La Mantia, Fabio; Wu, Hui; Xie, Xing; McDonough, James; Pasta, Mauro; Cui, Yi [Department of Materials Science and Engineering, Stanford University, Stanford, CA (United States)

    2011-11-15

    We integrate Li-ion battery electrode materials into a 3D porous textile conductor by using a simple process. When compared to flat metal current collectors, our 3D porous textile conductor not only greatly facilitates the ability for a high active material mass loading on the battery electrode but also leads to better device performance. (Copyright copyright 2011 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  16. Array elements for a DBS flat-plate antenna

    Science.gov (United States)

    Maddocks, M. C. D.

    1988-07-01

    The introduction of a direct broadcast by satellite (DBS) television service requires suitable receiving antennas to be available. An alternative to the parabolic dish antenna is a flat-plate antenna. The overall design of a circularly-polarized flat-plate antenna which can be mounted flat on the wall of a building has been considered in a companion Report. In this Report various types of elements are investigated and their advantages and disadvantages discussed. The most suitable element for use in a flat-plate array is identified as a linearly-polarized folded-dipole element; its performance is reported here. Linearly-polarized elements are found to perform better than circularly-polarized elements and could be used with a polarization converter to receive the circularly-polarized radiation that would be transmitted by DBS.

  17. Basic examination of in-plane spatial resolution in multi-slice CT

    International Nuclear Information System (INIS)

    Hara, Takanori; Kato, Hideki; Akiyama, Mitsutoshi; Murata, Katsutoshi

    2002-01-01

    In computed tomography (single-slice spiral CT, conventional CT), in-plane (x-y plane) spatial resolution is consistently identified as depending on the detector density of the in-plane (x-y plane). However, we considered that the in-plane (x-y plane) spatial resolution of multi-slice CT (MSCT) was influenced by an error in the detector's sensitivity to the Z-axis and by the frequency of use of direct row data and complementary row data when the image of spiral pitches (SP) was reconstructed. Our goal in this experiment was to analyze the relationship of the in-plane (x-y plane) spatial resolution of an asymmetric-type detector in MSCT to SP, tube current, and rotation time. By employing a tungsten wire phantom of 0.2 mm in diameter, we examined modulation transfer functions (MTF) by point-spread functions (PSF) of CT-images. Next, using the mean-square-root bandwidth theory, we analyzed the MTF of wire phantoms. The analysis of in-plane (x-y plane) spatial resolution revealed that various tube currents had no effect on the value of the mean-square-root bandwidth. However, rotation time and high spiral pitch did have an effect on mean-square-root bandwidth. Considering the results mentioned above, spiral pitch (z-axis reconstruction algorithm) had a slight effect on in-plane (x-y plane) spatial resolution of asymmetric-type detectors in MSCT. Accordingly, we proposed a new general view of VDDz (view/mm) in MSCT that considered view data density on the Z-axis according to spiral pitch (mm/rotation), rotation time (view/rotation), and slice collimation. (author)

  18. Mathematical modeling of the crack growth in linear elastic isotropic materials by conventional fracture mechanics approaches and by molecular dynamics method: crack propagation direction angle under mixed mode loading

    Science.gov (United States)

    Stepanova, Larisa; Bronnikov, Sergej

    2018-03-01

    The crack growth directional angles in the isotropic linear elastic plane with the central crack under mixed-mode loading conditions for the full range of the mixity parameter are found. Two fracture criteria of traditional linear fracture mechanics (maximum tangential stress and minimum strain energy density criteria) are used. Atomistic simulations of the central crack growth process in an infinite plane medium under mixed-mode loading using Large-scale Molecular Massively Parallel Simulator (LAMMPS), a classical molecular dynamics code, are performed. The inter-atomic potential used in this investigation is Embedded Atom Method (EAM) potential. The plane specimens with initial central crack were subjected to Mixed-Mode loadings. The simulation cell contains 400000 atoms. The crack propagation direction angles under different values of the mixity parameter in a wide range of values from pure tensile loading to pure shear loading in a wide diapason of temperatures (from 0.1 К to 800 К) are obtained and analyzed. It is shown that the crack propagation direction angles obtained by molecular dynamics method coincide with the crack propagation direction angles given by the multi-parameter fracture criteria based on the strain energy density and the multi-parameter description of the crack-tip fields.

  19. Biaxial loading effects on fracture toughness of reactor pressure vessel steel

    International Nuclear Information System (INIS)

    McAfee, W.J.; Bass, B.R.; Bryson, J.W. Jr.; Pennell, W.E.

    1995-03-01

    The preliminary phases of a program to develop and evaluate fracture methodologies for assessing crack-tip constraint effects on fracture toughness of reactor pressure vessel (RPV) steels have been completed by the Heavy-Section Steel Technology (HSST) Program. Objectives were to investigate effect of biaxial loading on fracture toughness, quantify this effect through existing stress-based, dual-parameter, fracture-toughness correlations, or propose and verify alternate correlations. A cruciform beam specimen with 2-D, shallow, through-thickness flaw and a special loading fixture was designed and fabricated. Tests were performed using biaxial loading ratios of 0:1 (uniaxial), 0.6:1, and 1:1 (equi-biaxial). Critical fracture-toughness values were calculated for each test. Biaxial loading of 0.6:1 resulted in a reduction in the lower bound fracture toughness of ∼12% as compared to that from the uniaxial tests. The biaxial loading of 1:1 yielded two subsets of toughness values; one agreed well with the uniaxial data, while one was reduced by ∼43% when compared to the uniaxial data. Results were evaluated using J-Q theory and Dodds-Anderson (D-A) micromechanical scaling model. The D-A model predicted no biaxial effect, while the J-Q method gave inconclusive results. When applied to the 1:1 biaxial data, these constraint methodologies failed to predict the observed reduction in fracture toughness obtained in one experiment. A strain-based constraint methodology that considers the relationship between applied biaxial load, the plastic zone width in the crack plane, and fracture toughness was formulated and applied successfully to the data. Evaluation of this dual-parameter strain-based model led to the conclusion that it has the capability of representing fracture behavior of RPV steels in the transition region, including the effects of out-of-plane loading on fracture toughness. This report is designated as HSST Report No. 150

  20. New edge-centered photonic square lattices with flat bands

    Science.gov (United States)

    Zhang, Da; Zhang, Yiqi; Zhong, Hua; Li, Changbiao; Zhang, Zhaoyang; Zhang, Yanpeng; Belić, Milivoj R.

    2017-07-01

    We report a new class of edge-centered photonic square lattices with multiple flat bands, and consider in detail two examples: the Lieb-5 and Lieb-7 lattices. In these lattices, there are 5 and 7 sites in the unit cell and in general, the number is restricted to odd integers. The number of flat bands m in the new Lieb lattices is related to the number of sites N in the unit cell by a simple formula m =(N - 1) / 2. The flat bands reported here are independent of the pseudomagnetic field. The properties of lattices with even and odd number of flat bands are different. We consider the localization of light in such Lieb lattices. If the input beam excites the flat-band mode, it will not diffract during propagation, owing to the strong mode localization. In the Lieb-7 lattice, the beam will also oscillate during propagation and still not diffract. The period of oscillation is determined by the energy difference between the two flat bands. This study provides a new platform for investigating light trapping, photonic topological insulators, and pseudospin-mediated vortex generation.

  1. Model of wind shear conditional on turbulence and its impact on wind turbine loads

    DEFF Research Database (Denmark)

    Dimitrov, Nikolay Krasimirov; Natarajan, Anand; Kelly, Mark C.

    2015-01-01

    proposed for flat terrain and that can significantly decrease the uncertainty associated with fatigue load predictions for wind turbines with large rotors. An essential contribution is the conditioning of wind shear on the 90% quantile of wind turbulence, such that the appropriate magnitude of the design...... fatigue load is achieved. The proposed wind shear model based on the wind measurements is thereby probabilistic in definition, with shear jointly distributed with wind turbulence. A simplified model for the wind shear exponent is further derived from the full stochastic model. The fatigue loads over...... is most pronounced on the blade flap loads. It is further shown that under moderate wind turbulence, the wind shear exponents may be over-specified in the design standards, and a reduction of wind shear exponent based on the present measurements can contribute to reduced fatigue damage equivalent loads...

  2. The breakage behaviour of Aspirin under quasi-static indentation and single particle impact loading: effect of crystallographic anisotropy.

    Science.gov (United States)

    Olusanmi, D; Roberts, K J; Ghadiri, M; Ding, Y

    2011-06-15

    The influence of crystallographic structural anisotropy on the breakage behaviour of Aspirin under impact loading is highlighted. Under both quasi-static testing conditions, using nano-indentation, and dynamic impact tests, Aspirin demonstrates clear anisotropy in its slip and fracture behaviour. During nano-indentation on the (100) and (001) faces, cracks were propagated along the [010] direction. While the hardness was found to be comparatively similar for both these faces, it was observed that slip due to plastic deformation occurred more readily on the (100) than the (001) crystal planes suggesting the former as the preferred slip plane. Furthermore, the fracture toughness on the (001) planes was found to be distinctly lower than that of the (100) planes, indicating the former as the preferred cleavage plane. Observations of the crystal morphology of damaged particles after dynamic impact testing showed that both the chipping and fragmentation of Aspirin mostly occurred via cleavage in a manner consistent with the observed fracture behaviour following nano-indentation. This work highlights the importance of cleavage as a dominant factor underpinning the fracture mechanism of Aspirin under both quasi-static and impact loading conditions. Copyright © 2011 Elsevier B.V. All rights reserved.

  3. Supergalactic studies. IV. Systematic orientation of galaxy clouds relative to the supergalactic plane

    International Nuclear Information System (INIS)

    de Vaucouleurs, G.

    1975-01-01

    The major nearby clouds of galaxies tend to be elongated in directions roughly parallel to the supergalactic plane. Out of 11 clouds (or 12 including the Local Cloud, Paper I) with major axes a>10degree and sufficiently elongated (b/a -5 (or 1x10 -5 if the Local Cloud is included). In lower supergalactic latitudes (vertical-barBvertical-bar =20degree with =0.49; in higher latitudes (10degree =23degree with =0.62. Several possible mechanisms leading to this systematic orientation in a flat supercluster are noted. This effect adds greatly to the difficulty of explaining the ''supercluster effect'' as a random clumping accident. The combined probability that the observed distribution of objects discussed in Papers I to IV could arise by chance in the random clumping hypothesis is of the order of 10 -12

  4. Dose distributions of pendulum fields in the field border plane

    International Nuclear Information System (INIS)

    Schrader, R.

    1986-01-01

    Calculations (program SIDOS-U2) and LiF measurements taken in a cylindric water phantom are used to investigate the isodose distributions of different pendulum irradiation methods (Co-60) in a plane which is parallel to the central ray plane and crosses the field borders at the depth of the axis. The dose values compared to the maximum values of the central ray plane are completely different for each pendulum method. In case of monoaxial pendulum methods around small angles, the maximum dose value found in the border plane is less than 50% of the dose in the central ray plane. The relative maximum of the border plane moves to tissues laying in a greater depth. In case of bi-axial methods, the maximum value of the border plane can be much more than 50% of the maximum dose measured in the central ray plane. (orig.) [de

  5. Occlusal plane location in edentulous patients: a review.

    Science.gov (United States)

    Shetty, Sanath; Zargar, Nazia Majeed; Shenoy, Kamalakanth; Rekha, V

    2013-09-01

    Occlusal plane orientation is an important factor in the construction of a complete denture. Occlusal plane could be oriented using landmarks in the mandibular arch as well as in the maxillary arch. In the mandibular arch there are few landmarks which could be used to orient the occlusal plane like the retromolar pad, corner of the lips (lower lip length) whereas the maxillary arch has a number of landmarks, of which the ala-tragal line is the most commonly used and the same being the most controversial. In the following article different landmarks and its accuracy for orientating the occlusal plane in an edentulous subject as studied by various authors has been discussed.

  6. Comparative Transcriptome and Microscopy Analyses Provide Insights into Flat Shape Formation in Peach (Prunus persica

    Directory of Open Access Journals (Sweden)

    Jian Guo

    2018-01-01

    Full Text Available Fruit shape is an important external characteristic that consumers use to select preferred fruit cultivars. In peach, the flat fruit cultivars have become more and more popular worldwide. Genetic markers closely linking to the flat fruit trait have been identified and are useful for marker-assisted breeding. However, the cellular and genetic mechanisms underpinning flat fruit formation are still poorly understood. In this study, we have revealed the differences in fruit cell number, cell size, and in gene expression pattern between the traditional round fruit and modern flat fruit cultivars. Flat peach cultivars possessed significantly lower number of cells in the vertical axis because cell division in the vertical direction stopped early in the flat fruit cultivars at 15 DAFB (day after full bloom than in round fruit cultivars at 35 DAFB. This resulted in the reduction in vertical development in the flat fruit. Significant linear relationship was observed between fruit vertical diameter and cell number in vertical axis for the four examined peach cultivars (R2 = 0.9964 at maturation stage, and was also observed between fruit vertical diameter and fruit weight (R2 = 0.9605, which indicated that cell number in vertical direction contributed to the flat shape formation. Furthermore, in RNA-seq analysis, 4165 differentially expressed genes (DEGs were detected by comparing RNA-seq data between flat and round peach cultivars at different fruit development stages. In contrast to previous studies, we discovered 28 candidate genes potentially responsible for the flat shape formation, including 19 located in the mapping site and 9 downstream genes. Our study indicates that flat and round fruit shape in peach is primarily determined by the regulation of cell production in the vertical direction during early fruit development.

  7. Comparison of plantar pressure distribution in subjects with normal and flat feet during gait DOI: 10.5007/1980-0037.2010v12n4p290

    Directory of Open Access Journals (Sweden)

    Patrik Felipe Nazario

    2010-01-01

    Full Text Available The aim of this study was to determine the possible relationship between loss of the normal medial longitudinal arch measured by the height of the navicular bone in a static situation and variables related to plantar pressure distribution measured in a dynamic situation. Eleven men (21 ± 3 years, 74 ± 10 kg and 175 ± 4 cm participated in the study. The Novel Emed-AT System was used for the acquisition of plantar pressure distribution data (peak pressure, mean pressure, contact area, and relative load at a sampling rate of 50 Hz. The navicular drop test proposed by Brody (1982 was used to assess the height of the navicular bone for classification of the subjects. The results were compared by the Mann-Whitney U test, with the level of significance set at p ≤ 0.05. Differences were observed between the two groups in the mid-foot region for all variables studied, with the observation of higher mean values in subjects with flat feet. There were also significant differences in contact area, relative load, peak pressure, and mean pressure between groups. The present study demonstrates the importance of paying attention to subjects with flat feet because changes in plantar pressure distribution are associated with discomfort and injuries.

  8. Finite Thin Cover on an Orthotropic Elastic Half Plane

    Directory of Open Access Journals (Sweden)

    Federico Oyedeji Falope

    2016-01-01

    Full Text Available The present work deals with the mechanical behaviour of thin films bonded to a homogeneous elastic orthotropic half plane under plain strain condition and infinitesimal strain. Both the film and semi-infinite substrate display linear elastic orthotropic behaviour. By assuming perfect adhesion between film and half plane together with membrane behaviour of the film, the compatibility condition between the coating and substrate leads to a singular integral equation with Cauchy kernel. Such an equation is straightforwardly solved by expanding the unknown interfacial stress in series of Chebyshev polynomials displaying square-root singularity at the film edges. This approach allows handling the singular behaviour of the shear stress and, in turn, reducing the problem to a linear algebraic system of infinite terms. Results are found for two loading cases, with particular reference to concentrated axial forces acting at the edges of the film. The corresponding mode II stress intensity factor has been assessed, thus providing the stress concentrations at both ends of the covering. Possible applications of the results here obtained range from MEMS, NEMS, and solar Silicon cell for energy harvesting to welded joint and building foundation.

  9. Transparency in stereopsis: parallel encoding of overlapping depth planes.

    Science.gov (United States)

    Reeves, Adam; Lynch, David

    2017-08-01

    We report that after extensive training, expert adults can accurately report the number, up to six, of transparent overlapping depth planes portrayed by brief (400 ms or 200 ms) random-element stereoscopic displays, and can well discriminate six from seven planes. Naïve subjects did poorly above three planes. Displays contained seven rows of 12 randomly located ×'s or +'s; jittering the disparities and number in each row to remove spurious cues had little effect on accuracy. Removing the central 3° of the 10° display to eliminate foveal vision hardly reduced the number of reportable planes. Experts could report how many of six planes contained +'s when the remainder contained ×'s, and most learned to report up to six planes in reverse contrast (left eye white +'s; right eye black +'s). Long-term training allowed some experts to reach eight depth planes. Results suggest that adult stereoscopic vision can learn to distinguish the outputs of six or more statistically independent, contrast-insensitive, narrowly tuned, asymmetric disparity channels in parallel.

  10. Flat roofs. Dayligth systems, sealing, roof greening, solar engineering, thermal insulation, drainage, monitoring; Flachdaecher. Tageslichtsysteme, Abdichtungstechnik, Dachbegruenung, Solartechnik, Flachdachdaemmung, Entwaesserung, Monitoring

    Energy Technology Data Exchange (ETDEWEB)

    Schoenfeldt, Simone von; Bratfisch, Rainer (comps.)

    2010-07-15

    The target of the project is, to lower the costs of the basic constructions and the costs of the static calculation. These costs categories develop when setting up collectors on flat roofs. Cost-optimized solutions are presented beginning with the attachment detail up to the carrying construction. A economical implementation enables. A substantial point of the project is the examination of the load assumptions, particularly the wind load. Result is a modular system, which gives a selection of attachment details depending upon available roof structure and a combination of different carrying constructions co-ordinated with most frequently occurring collector types enables. (orig./GL)

  11. Thermal-hydraulic characteristics of double flat core HCLWR

    International Nuclear Information System (INIS)

    Sugimoto, Jun; Iwamura, Takamichi; Okubo, Tsutomu; Murao, Yoshio

    1989-02-01

    A thermal-hydraulic characteristics of double flat core high conversion light water reactor (HCLWR) is described. The concept of flat core proposed by Ishiguro et al. is to achieve negative void reactivity coefficient in tight lattice core, and at the same time, high conversion ratio and high burnup can be obtainable. The proposed double flat core HCLWR, based on these physical advantages and the consideration of safety assurance, aims at efficient use of the pressure vessel space to produce comparable thermal output as current 3-loop PWRs. The present work revealed the following items concerning the thermalhydraulic feasibility of the double flat core HCLWR: (1) Main thermal-hydraulic parameters of the plant can be almost the same as current PWRs, showing the use of PWR standard components without major modifications except in core region. (2) Heat removal from the fuel rod in a steady operational condition has enough margin to the critical heat flux (CHF) limit, which is evaluated with the existing CHF correlations. (3) The calculation by REFLA code shows that the maximum cladding temperature in LOCA-reflood is estimated to be far lower than the licensing criteria. It is therefore considered that the proposed double flat core HCLWR is feasible from the point of thermal-hydraulics. Since the available data base has certain applicational limit to the very short core as the present double flat core HCLWR, further detailed assessment is required. (author)

  12. Experimental investigation on in-plane/out-of-plane vortex-induced vibrations of curved cylinder in parallel and perpendicular flows

    Science.gov (United States)

    Srinil, Narakorn; Ma, Bowen; Zhang, Licong

    2018-05-01

    This study is motivated by an industrial need to better understand the vortex-induced vibration (VIV) of a curved structure subject to current flows with varying directions whose data for model calibration and validation are lacking. In this paper, new experimental investigations on the two-degree-of-freedom in-plane/out-of-plane VIV of a rigid curved circular cylinder immersed in steady and uniform free-stream flows are presented. The principal objective is to examine how the approaching flow direction versus the cylinder curvature plane affects cross-flow and in-line VIV and the associated hydrodynamic properties. This is achieved by testing the curved cylinder in 3 different flow orientations comprising the parallel flows aligned with the curvature vertical plane in convex and concave configurations, and the flows perpendicular to the curvature plane. The case of varying flow velocities in a subcritical flow range with a maximum Reynolds number of about 50,000 is considered for the curved cylinder with a low mass ratio and damping ratio. Experimental results are presented and discussed in terms of the cylinder response amplitudes, inclination angles, mean displacements, motion trajectories, oscillation frequencies, hydrodynamic forces, relative phases, fluid excitation and added inertia coefficients. Comparisons with other experimental results of curved and straight cylinder VIV are also presented. The experiments highlight the important effects of cylinder curvature versus flow orientation on the combined cross-flow/in-line VIV. The maximum (minimum) responses occur in the perpendicular (convex) flow case whereas the extended lower-branch responses occur in the concave flow case. For perpendicular flows, some meaningful features are observed, including the appearances of cross-flow mean displacements and asymmetric eight-shaped motion trajectories due to multiple 2:1:1 resonances where two out-of-plane and one in-plane dominant frequencies are simultaneously

  13. Colonies of Gyrosigma eximium: a new phenomenon in Arctic tidal flats

    Directory of Open Access Journals (Sweden)

    Józef Wiktor

    2016-10-01

    Full Text Available For the first time at Svalbard, a colonial form of the tube-dwelling diatom Gyrosigma eximium was found in summer 2010 in the tidal flats on Spitsbergen at 78°N. The colonies take the form of conical, green structures that are 1–2 cm high and are associated with other diatom taxa and cyanobacteria (Oscillatoriaceae. The diatom colonies were associated with rich meiofauna and apparently act as cohesive factors for the fine sediment. In the Arctic tidal flats, this represents the first observation of long-term sediment stabilization and biological enrichment. Since this first observation, this species has apparently colonized broader areas in Advenentelva's tidal flat.

  14. Reconstruction of Spectra Using X-ray Flat Panel Detector; Reconstruccion de Espectros de Rayos X Utilizando un Detector Flat Panel

    Energy Technology Data Exchange (ETDEWEB)

    Gallardo, S.; Querol, A.; Pozuelo, F.; Juste, B.; Rodenas, J.; Verdu, G.

    2013-07-01

    In this work, we used a flat panel detector with a wedge of PMMA for absorbed dose curve for given working conditions of X-ray tube The relationship between absorbed dose curve recorded by the flat panel and primary X-ray spectrum is defined by a response function that can be obtained using the Monte Carlo method, namely the MCNP5 code. However there are some problems that affect the applicability of this method such as: flat panel characteristics and the characteristics of the physical process (ill-conditioned problem). Both aspects are discussed in this paper.

  15. Operational characteristics of miniature loop heat pipe with flat evaporator

    Energy Technology Data Exchange (ETDEWEB)

    Gai, Dongxing; Liu, Zhichun; Liu, Wei; Yang, Jinguo [Huazhong University of Science and Technology, School of Energy and Power Engineering, Wuhan, Hubei (China)

    2009-12-15

    Loop heat pipes are heat transfer devices whose operating principle is based on the evaporation and condensation of a working fluid, and which use the capillary pumping forces to ensure the fluid circulation. A series of tests have been carried out with a miniature loop heat pipe (mLHP) with flat evaporator and fin-and-tube type condenser. The loop is made of pure copper with stainless mesh wick and methanol as the working fluid. Detailed study is conducted on the start-up reliability of the mLHP at high as well as low heat loads. During the testing of mLHP under step power cycles, the thermal response presented by the loop to achieve steady state is very short. At low heat loads, temperature oscillations are observed throughout the loop. The amplitudes and frequencies of these fluctuations are large at evaporator wall and evaporator inlet. It is expected that the extent and nature of the oscillations occurrence is dependent on the thermal and hydrodynamic conditions inside the compensation chamber. The thermal resistance of the mLHP lies between 0.29 and 3.2 C/W. The effects of different liquid charging ratios and the tilt angles to the start-up and the temperature oscillation are studied in detail. (orig.)

  16. Determining the ice-binding planes of antifreeze proteins by fluorescence-based ice plane affinity.

    Science.gov (United States)

    Basu, Koli; Garnham, Christopher P; Nishimiya, Yoshiyuki; Tsuda, Sakae; Braslavsky, Ido; Davies, Peter

    2014-01-15

    Antifreeze proteins (AFPs) are expressed in a variety of cold-hardy organisms to prevent or slow internal ice growth. AFPs bind to specific planes of ice through their ice-binding surfaces. Fluorescence-based ice plane affinity (FIPA) analysis is a modified technique used to determine the ice planes to which the AFPs bind. FIPA is based on the original ice-etching method for determining AFP-bound ice-planes. It produces clearer images in a shortened experimental time. In FIPA analysis, AFPs are fluorescently labeled with a chimeric tag or a covalent dye then slowly incorporated into a macroscopic single ice crystal, which has been preformed into a hemisphere and oriented to determine the a- and c-axes. The AFP-bound ice hemisphere is imaged under UV light to visualize AFP-bound planes using filters to block out nonspecific light. Fluorescent labeling of the AFPs allows real-time monitoring of AFP adsorption into ice. The labels have been found not to influence the planes to which AFPs bind. FIPA analysis also introduces the option to bind more than one differently tagged AFP on the same single ice crystal to help differentiate their binding planes. These applications of FIPA are helping to advance our understanding of how AFPs bind to ice to halt its growth and why many AFP-producing organisms express multiple AFP isoforms.

  17. ACS/WFC Sky Flats from Frontier Fields Imaging

    Science.gov (United States)

    Mack, J.; Lucas, R. A.; Grogin, N. A.; Bohlin, R. C.; Koekemoer, A. M.

    2018-04-01

    Parallel imaging data from the HST Frontier Fields campaign (Lotz et al. 2017) have been used to compute sky flats for the ACS/WFC detector in order to verify the accuracy of the current set of flat field reference files. By masking sources and then co-adding many deep frames, the F606W and F814W filters have enough combined background signal that from Poisson statistics are efficiency tracks the thickness of the two WFC chips. Observations of blue and red calibration standards measured at various positions on the detector (Bohlin et al. 2017) confirm the fidelity of the F814W flat, with aperture photometry consistent to 1% across the FOV, regardless of spectral type. At bluer wavelengths, the total sky background is substantially lower, and the F435W sky flat shows a combination of both flat errors and detector artifacts. Aperture photometry of the red standard star shows a maximum deviation of 1.4% across the array in this filter. Larger residuals up to 2.5% are found for the blue standard, suggesting that the spatial sensitivity in F435W depends on spectral type.

  18. THE FLAT TAX - A COMPARATIVE STUDY OF THE EXISTING MODELS

    Directory of Open Access Journals (Sweden)

    Schiau (Macavei Laura - Liana

    2011-07-01

    Full Text Available In the two last decades the flat tax systems have spread all around the globe from East and Central Europe to Asia and Central America. Many specialists consider this phenomenon a real fiscal revolution, but others see it as a mistake as long as the new systems are just a feint of the true flat tax designed by the famous Stanford University professors Robert Hall and Alvin Rabushka. In this context this paper tries to determine which of the existing flat tax systems resemble the true flat tax model by comparing and contrasting their main characteristics with the features of the model proposed by Hall and Rabushka. The research also underlines the common features and the differences between the existing models. The idea of this kind of study is not really new, others have done it but the comparison was limited to one country. For example Emil Kalchev from New Bulgarian University has asses the Bulgarian income system, by comparing it with the flat tax and concluding that taxation in Bulgaria is not simple, neutral and non-distortive. Our research is based on several case studies and on compare and contrast qualitative and quantitative methods. The study starts form the fiscal design drawn by the two American professors in the book The Flat Tax. Four main characteristics of the flat tax system were chosen in order to build the comparison: fiscal design, simplicity, avoidance of double taxation and uniformity of the tax rates. The jurisdictions chosen for the case study are countries all around the globe with fiscal systems which are considered flat tax systems. The results obtained show that the fiscal design of Hong Kong is the only flat tax model which is built following an economic logic and not a legal sense, being in the same time a simple and transparent system. Others countries as Slovakia, Albania, Macedonia in Central and Eastern Europe fulfill the requirement regarding the uniformity of taxation. Other jurisdictions avoid the double

  19. Torsional Tribological Behavior and Torsional Friction Model of Polytetrafluoroethylene against 1045 Steel

    Science.gov (United States)

    Wang, Shibo; Niu, Chengchao

    2016-01-01

    In this work, the plane-on-plane torsional fretting tribological behavior of polytetrafluoroethylene (PTFE) was studied. A model of a rigid, flat-ended punch acting on an elastic half-space was built according to the experimental conditions. The results indicate that the shape of T–θ curves was influenced by both the torsional angle and the normal load. The torsion friction torque and wear rate of PTFE exponentially decreased when the torsion angle rose. The torsional torque increased from 0.025 N·m under a normal load of 43 N to 0.082 N·m under a normal load of 123 N. With sequentially increasing normal load, the value of torque was maintained. With rising normal load, the wear mass loss of PTFE disks was increased and the wear rate was decreased. Good agreement was found with the calculated torque according to the model and the experimental torque except for that under a normal load of 163 N. The difference under a normal load of 163 N was caused by the coefficient of friction. Usually the coefficient of friction of a polymer decreases with increasing normal load, whereas a constant coefficient of friction was applied in the model. PMID:26799324

  20. Full scale test SSP 34m blade, edgewise loading LTT. Extreme load and PoC{sub I}nvE Data report

    Energy Technology Data Exchange (ETDEWEB)

    Nielsen, Magda; Roczek-Sieradzan, A.; Jensen, Find M. (and others)

    2010-09-15

    This report is the second report covering the research and demonstration project 'Experimental blade research: Structural mechanisms in current and future large blades under combined loading', supported by the EUDP program. A 34m wind turbine blade from SSP-Technology A/S has been tested in edgewise direction (LTT). The blade has been submitted to thorough examination by means of strain gauges, displacement transducers and a 3D optical measuring system. This data report presents results obtained during full scale testing of the blade up to 80% Risoe load, where 80% Risoe load corresponds to 100% certification load. These pulls at 80% Risoe load were repeated and the results from these pulls were compared. The blade was reinforced according to a Risoe DTU invention, where the trailing edge panels are coupled. The coupling is implemented to prevent the out of plane deformations and to reduce peeling stresses in the adhesive joints. Test results from measurements with the reinforcement have been compared to results without the coupling. The report presents only the relevant results for the 80% Risoe load and the results applicable for the investigation of the influence of the invention on the profile deformation. (Author)