WorldWideScience

Sample records for flares initial comparison

  1. Electron Beam Return-Current Losses in Solar Flares: Initial Comparison of Analytical and Numerical Results

    Science.gov (United States)

    Holman, Gordon

    2010-01-01

    Accelerated electrons play an important role in the energetics of solar flares. Understanding the process or processes that accelerate these electrons to high, nonthermal energies also depends on understanding the evolution of these electrons between the acceleration region and the region where they are observed through their hard X-ray or radio emission. Energy losses in the co-spatial electric field that drives the current-neutralizing return current can flatten the electron distribution toward low energies. This in turn flattens the corresponding bremsstrahlung hard X-ray spectrum toward low energies. The lost electron beam energy also enhances heating in the coronal part of the flare loop. Extending earlier work by Knight & Sturrock (1977), Emslie (1980), Diakonov & Somov (1988), and Litvinenko & Somov (1991), I have derived analytical and semi-analytical results for the nonthermal electron distribution function and the self-consistent electric field strength in the presence of a steady-state return-current. I review these results, presented previously at the 2009 SPD Meeting in Boulder, CO, and compare them and computed X-ray spectra with numerical results obtained by Zharkova & Gordovskii (2005, 2006). The phYSical significance of similarities and differences in the results will be emphasized. This work is supported by NASA's Heliophysics Guest Investigator Program and the RHESSI Project.

  2. Lionfish predators use flared fin displays to initiate cooperative hunting.

    Science.gov (United States)

    Lönnstedt, Oona M; Ferrari, Maud C O; Chivers, Douglas P

    2014-06-01

    Despite considerable study, mystery surrounds the use of signals that initiate cooperative hunting in animals. Using a labyrinth test chamber, we examined whether a lionfish, Dendrochirus zebra, would initiate cooperative hunts with piscine partners. We found that D. zebra uses a stereotyped flared fin display to alert conspecific and heterospecific lionfish species Pterois antennata to the presence of prey. Per capita success rate was significantly higher for cooperative hunters when compared with solitary ones, with hunt responders assisting hunt initiators in cornering the prey using their large extended pectoral fins. The initiators would most often take the first strike at the group of prey, but both hunters would then alternate striking at the remaining prey. Results suggest that the cooperative communication signal may be characteristic to the lionfish family, as interspecific hunters were equally coordinated and successful as intraspecific hunters. Our findings emphasize the complexity of collaborative foraging behaviours in lionfish; the turn-taking in strikes suggests that individuals do not solely try to maximize their own hunting success: instead they equally share the resources between themselves. Communicative group hunting has enabled Pteroine fish to function as highly efficient predators. © 2014 The Author(s) Published by the Royal Society. All rights reserved.

  3. Prediction and comparison of noise levels from ground and elevated flare systems

    International Nuclear Information System (INIS)

    Obasi, E.

    2009-01-01

    Flaring is a process to dispose of hydrocarbons during clean-up, emergency shut downs or dispose a small volume waste streams of mixed gasses that cannot easily or safely be separated. This presentation discussed flaring as a noise issue. It focused on flaring noise characterization; flare noise modeling; flare sound power levels; and flare sound pressure level comparison at a distance of 1.5 km. The presentation included a photograph of flaring at a gas plant in Nigeria. The presentation listed some of the potential health effects associated with long term exposure to excessive noise, such as hearing loss; headaches; stress; fatigue; sleep disturbance; and high blood pressure. Companies flare gas to dispose waste gases in a safe and reliable manner through combustion and to depressurize gas lines during maintenance and emergencies. This presentation also discussed ground and elevated flares; components of flare noise characterization; and key factors affecting flare noise. A model to predict flaring noise was also presented. It demonstrated that at the same gas mass flow rate, the noise level from elevated flare stacks are significantly higher than ground flares. tabs., figs.

  4. Prediction and comparison of noise levels from ground and elevated flare systems

    Energy Technology Data Exchange (ETDEWEB)

    Obasi, E. [Stantec Consulting Ltd., Surrey, BC (Canada)

    2009-07-01

    Flaring is a process to dispose of hydrocarbons during clean-up, emergency shut downs or dispose a small volume waste streams of mixed gasses that cannot easily or safely be separated. This presentation discussed flaring as a noise issue. It focused on flaring noise characterization; flare noise modeling; flare sound power levels; and flare sound pressure level comparison at a distance of 1.5 km. The presentation included a photograph of flaring at a gas plant in Nigeria. The presentation listed some of the potential health effects associated with long term exposure to excessive noise, such as hearing loss; headaches; stress; fatigue; sleep disturbance; and high blood pressure. Companies flare gas to dispose waste gases in a safe and reliable manner through combustion and to depressurize gas lines during maintenance and emergencies. This presentation also discussed ground and elevated flares; components of flare noise characterization; and key factors affecting flare noise. A model to predict flaring noise was also presented. It demonstrated that at the same gas mass flow rate, the noise level from elevated flare stacks are significantly higher than ground flares. tabs., figs.

  5. Comparison of high-temperature flare models with observations and implications for the low-temperature flare

    International Nuclear Information System (INIS)

    Machado, M.E.; Emslie, A.G.

    1979-01-01

    We analyze EUV data from the Harvard College Observatory and Naval Research Laboratory instruments on board the Skylab Apollo Telescope Mount, together with SOLRAD 9 X-ray data, in order to empirically deduce the variation of emission measure with temperature in the atmosphere of a number of solar flares. From these data we construct a ''mean'' differential emission measure profile Q (T) for a flare, which we find to be characterized by a low-lying plateau at temperatures of a few hundred thousand K, representative of a thin transition zone at these temperatures.We then compare this empirical profile with that predicted by a number of theoretical models, each of which represents a solution of the energy equation for the flare under various simplifying assumptions. In this way we not only deduce estimates of various flare parameters, such as gas pressure, but also gain insight into the validity of the various modeling assumptions employed.We find that realistic flare models must include both conductive and radiative terms in the energy equation, and that hydrodynamic terms may be important at low temperatures. Considering only models which neglect this hydrodynamic term, we compute conductive fluxes at various levels in the high-temperature plasma and compare them to the observed radiated power throughout the atmosphere, with particular reference to the 1973 September 5 event, which is rich in observations throughout most of the electromagnetic spectrum. This comparison yields results which reinforce our belief in the dominance of the conduction and radiation terms in the flare energy balance.The implications of this result for flare models in general is discussed; in particular, it is shown that the inclusion of the conductive term into models which have hitherto neglected it can perhaps resolve some of the observational difficulties with such models

  6. INITIATION PROCESSES FOR THE 2013 MAY 13 X1.7 LIMB FLARE

    International Nuclear Information System (INIS)

    Shen, Jinhua; Wang, Ya; Zhou, Tuanhui; Ji, Haisheng

    2017-01-01

    For the X1.7 class flare on 2013 May 13 (SOL2013-05-13T01:53), its initiation process was well observed by the Atmospheric Imaging Assembly (AIA) on board the Solar Dynamic Observatory and the Extreme UltraViolet Imager (EUVI) on board STEREO-B . The initiation process incorporates the following phenomena: an X-ray precursor that started ∼9 minutes before flare onset, two hot magnetic loops (as seen with AIA hot channels) forming a sigmoidal core magnetic structure (as seen with the EUVI), a rapidly formed magnetic flux rope (MFR) that expands outward, and a flare loop that contracts inward. The two hot magnetic loops were activated after the occurrence of the X-ray precursor. After activation, magnetic reconnection occurred between the two hot magnetic loops (inside the sigmoid structure), which produced the expanding MFR and the contracting flare loop (CFL). The MFR and CFL can only be seen with AIA hot and cool channels, respectively. For this flare, the real initiation time can be regarded as being from the starting time of the precursor, and its impulsive phase started when the MFR began its fast expansion. In addition, the CFL and the growing postflare magnetic loops are different loop systems, and the CFL was the product of magnetic reconnection between sheared magnetic fields that also produced the MFR.

  7. INITIATION PROCESSES FOR THE 2013 MAY 13 X1.7 LIMB FLARE

    Energy Technology Data Exchange (ETDEWEB)

    Shen, Jinhua [Xinjiang Astronomical Observatory, CAS, 830011, Urumqi (China); Wang, Ya; Zhou, Tuanhui; Ji, Haisheng, E-mail: jihs@pmo.ac.cn [Purple Mountain Observatory, CAS, Nanjing, 210008 (China)

    2017-01-20

    For the X1.7 class flare on 2013 May 13 (SOL2013-05-13T01:53), its initiation process was well observed by the Atmospheric Imaging Assembly (AIA) on board the Solar Dynamic Observatory and the Extreme UltraViolet Imager (EUVI) on board STEREO-B . The initiation process incorporates the following phenomena: an X-ray precursor that started ∼9 minutes before flare onset, two hot magnetic loops (as seen with AIA hot channels) forming a sigmoidal core magnetic structure (as seen with the EUVI), a rapidly formed magnetic flux rope (MFR) that expands outward, and a flare loop that contracts inward. The two hot magnetic loops were activated after the occurrence of the X-ray precursor. After activation, magnetic reconnection occurred between the two hot magnetic loops (inside the sigmoid structure), which produced the expanding MFR and the contracting flare loop (CFL). The MFR and CFL can only be seen with AIA hot and cool channels, respectively. For this flare, the real initiation time can be regarded as being from the starting time of the precursor, and its impulsive phase started when the MFR began its fast expansion. In addition, the CFL and the growing postflare magnetic loops are different loop systems, and the CFL was the product of magnetic reconnection between sheared magnetic fields that also produced the MFR.

  8. Comparison of emission properties of two homologous flares in AR 11283

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Yan; Jing, Ju; Wang, Shuo; Wang, Haimin, E-mail: yx2@njit.edu [Space Weather Research Lab, Center for Solar-Terrestrial Research, New Jersey Institute of Technology 323 Martin Luther King Boulevard, Newark, NJ 07102-1982 (United States)

    2014-05-20

    Large, complex, active regions may produce multiple flares within a certain period of one or two days. These flares could occur in the same location with similar morphologies, commonly referred to as 'homologous flares'. In 2011 September, active region NOAA 11283 produced a pair of homologous flares on the 6th and 7th, respectively. Both of them were white-light (WL) flares, as captured by the Helioseismic and Magnetic Imager (HMI) on board the Solar Dynamics Observatory in visible continuum at 6173 Å which is believed to originate from the deep solar atmosphere. We investigate the WL emission of these X-class flares with HMI's seeing-free imaging spectroscopy. The durations of impulsive peaks in the continuum are about 4 minutes. We compare the WL with hard X-ray (HXR) observations for the September 6 flare and find a good correlation between the continuum and HXR both spatially and temporally. In absence of RHESSI data during the second flare on September 7, the derivative of the GOES soft X-ray is used and also found to be well correlated temporally with the continuum. We measure the contrast enhancements, characteristic sizes, and HXR fluxes of the twin flares, which are similar for both flares, indicating analogous triggering and heating processes. However, the September 7 flare was associated with conspicuous sunquake signals whereas no seismic wave was detected during the flare on September 6. Therefore, this comparison suggests that the particle bombardment may not play a dominant role in producing the sunquake events studied in this paper.

  9. Methane flaring: an initiative in line with the greenhouse challenge

    International Nuclear Information System (INIS)

    Greenwood, D.

    1999-01-01

    Methane is a by-product of the coalification process. Once produced, it typically remains trapped within the coal seam and the surrounding strata. High quality black coals in Australia may contain up to 20 m 3 of methane per tonne of coal. In order to mine coal safely, this gas level must be reduced. Presence of gas at the coal face is a hazard as sparks created by coal extraction machine picks may ignite the gas/air mix. Concentrations of methane between approximately 5% and 15% in air create an explosive mixture. This represents a considerable potential safety risk for underground mining personnel. In Queensland, all underground mining personnel and equipment are protected by sensors that remove electrical power from machines should the ambient methane levels exceed 1.25%. While this assists in creating a safe working environment, it also halts coal production. Normal mine ventilation air removes a significant amount of methane, however in gassy mines the ventilation air flow required to maintain methane levels below the 1.25% limit can introduce other problems. These include excess airborne dust, which can lead to respiratory issues and poor visibility. A flare was installed at Central Colliery to achieve reduction of the greenhouse gas emissions. It would also be used to burn gas flow beyond that which can be effectively utilised by power generation

  10. Flares on dMe stars: IUE and optical observations of At Mic, and comparison of far-ultraviolet stellar and solar flares

    International Nuclear Information System (INIS)

    Bromage, G.E.; Phillips, K.J.H.; Dufton, P.L.; Kingston, A.E.

    1986-01-01

    The paper concerns observations of a large flare event on the dMe star At Mic, detected by the International Ultraviolet Explorer. The far-ultraviolet spectra of the flare is compared with those of other stellar flares, and also with a large solar flare recorded by the Skylab mission in 1973. The quiescent-phase optical and ultraviolet spectrum of the same dMe flare star is discussed. (U.K.)

  11. Impulsiveness and energetics in solar flares with and without type II radio bursts - A comparison of hard X-ray characteristics for over 2500 solar flares

    Science.gov (United States)

    Pearson, Douglas H.; Nelson, Robert; Kojoian, Gabriel; Seal, James

    1989-01-01

    The hard X-ray characteristics of more than 2500 solar flares are used to study the relative size, impulsiveness, and energetics of flares with and without type II radio bursts. A quantitative definition of the hard X-ray impulsiveness is introduced, which may be applied to a large number of events unambiguously. It is found that the flares with type II bursts are generally not significantly larger, more impulsive, or more energetic than those without type II bursts. Also, no evidence is found to suggest a simple classification of the flares as either 'impulsive' or 'gradual'. Because type II bursts are present even in small flares with relatively unimpulsive energy releases, it is concluded that changes in the ambient conditions of the solar atmosphere causing an unusually low Alfven speed may be important in the generation of the shock wave that produces type II radio bursts.

  12. Flare colours and luminosities

    International Nuclear Information System (INIS)

    Cristaldi, S.; Rodono, M.

    1975-01-01

    Flare colours determined from simultaneous UBV observations made at Catania Observatory and from sequential UBV observations made at McDonald Observatory are presented. They fit fairly well with the theoretical colours computed according to the Gurzadian's (1970) non-thermal model. Only part of the observed flare colours are consistent with the solar type models by Gershberg (1967) and Kunkel (1970). From a B-band patrol of UV Cet-type stars carried out from 1967 to 1972, some quantitative estimates of flare frequencies and luminosities and their average contributions to the stellar radiation are given. The corresponding parameters for the Sun, which were estimated from 'white light' flare activity, are also given for comparison. The Sun and V 1216 Sgr can be regarded as low-activity flare stars of the type found by Kunkel (1973). (Auth.)

  13. Does the stellar distribution flare? A comparison of stellar scale heights with LAB H I data

    Energy Technology Data Exchange (ETDEWEB)

    Kalberla, P. M. W.; Kerp, J.; Dedes, L. [Argelander-Institut für Astronomie, Universität Bonn, Auf dem Hügel 71, 53121 Bonn (Germany); Haud, U., E-mail: pkalberla@astro.uni-bonn.de [Tartu Observatory, 61602 Tõravere (Estonia)

    2014-10-10

    The question of whether the stellar populations in the Milky Way take part in the flaring of scale heights as observed for the H I gas is a matter of debate. Standard mass models for the Milky Way assume a constant scale height for each of the different stellar distributions. However, there is mounting evidence that at least some of the stellar distributions reach, at large galactocentric distances, high altitudes, which are incompatible with a constant scale height. We discuss recent observational evidence for stellar flaring and compare it with H I data from the Leiden/Argentine/Bonn survey. Within the systemic and statistical uncertainties we find a good agreement between both.

  14. Statistical aspects of the 1980 solar flares. Part 3: Parametric comparison and final comments

    International Nuclear Information System (INIS)

    Wilson, R.M.

    1983-04-01

    The 1349 study flares are considered addressing relationships between pairs of specific study paremeters namely, H alpha rise time versus H alpha importance, X-ray class and H alpha decay time, H alpha decay time versus H alpha importance, and X-ray class, and H alpha importance versus X-ray class. Mean H alpha rise time and decay time versus X-ray class and H alpha importance will also be discussed, and some final comments regarding the study flares are given

  15. Solar flares

    International Nuclear Information System (INIS)

    Zirin, H.

    1974-01-01

    A review of the knowledge about solar flares which has been obtained through observations from the earth and from space by various methods is presented. High-resolution cinematography is best carried out at H-alpha wavelengths to reveal the structure, time history, and location of flares. The classification flares in H alpha according to either physical or morphological criteria is discussed. The study of flare morphology, which shows where, when, and how flares occur, is important for evaluating theories of flares. Consideration is given to studies of flares by optical spectroscopy, radio emissions, and at X-ray and XUV wavelengths. Research has shown where and possibly why flares occur, but the physics of the instability involved, of the particle acceleration, and of the heating are still not understood. (IAA)

  16. The solar flare of 18 August 1979: Incoherent scatter radar data and photochemical model comparisons

    International Nuclear Information System (INIS)

    Zinn, J.; Sutherland, C.D.; Fenimore, E.E.; Ganguly, S.

    1988-04-01

    Measurements of electron density at seven D-region altidues were made with the Arecibo radar during a Class-X solar flare on 18 August 1979. Measurements of solar x-ray fluxes during the same period were available from the GOES-2 satellite (0.5 to 4 /angstrom/ and 1 to 8 /angstrom/) and from ISEE-3 (in four bands between 26 and 400 keV). From the x-ray flux data we computed ionization rates in the D-region and the associated chemical changes, using a coupled atmospheric chemistry and diffusion model (with 836 chemical reactions and 19 vertical levels). The computed electron densities matched the data fairly well after we had adjusted the rate coefficients of two reactions. We discuss the hierarchies among the many flare-induced chemical reactions in two altitude ranges within the D-region and the effects of adjusting several other rate coefficients. 51 refs., 6 figs., 3 tabs

  17. Flare stars

    International Nuclear Information System (INIS)

    Nicastro, A.J.

    1981-01-01

    The least massive, but possibly most numerous, stars in a galaxy are the dwarf M stars. It has been observed that some of these dwarfs are characterized by a short increase in brightness. These stars are called flare stars. These flare stars release a lot of energy in a short amount of time. The process producing the eruption must be energetic. The increase in light intensity can be explained by a small area rising to a much higher temperature. Solar flares are looked at to help understand the phenomenon of stellar flares. Dwarfs that flare are observed to have strong magnetic fields. Those dwarf without the strong magnetic field do not seem to flare. It is believed that these regions of strong magnetic fields are associated with star spots. Theories on the energy that power the flares are given. Astrophysicists theorize that the driving force of a stellar flare is the detachment and collapse of a loop of magnetic flux. The mass loss due to stellar flares is discussed. It is believed that stellar flares are a significant contributor to the mass of interstellar medium in the Milky Way

  18. A comparison of theoretical and solar-flare intensity ratios for the Fe XIX X-ray lines

    International Nuclear Information System (INIS)

    Bhatia, A.K.; Mason, H.E.; Fawcett, B.C.; Phillips, K.J.H.

    1989-04-01

    Atomic data consisting of energy levels, g f-values and wavelengths are presented for the Fe XIX 2s 2 2p 4 -2s 2 2p 3 3s, 2s 2 2p 3 3d arrays that give rise to lines in solar flare and active-region X-ray spectra. Collision strengths and theoretical intensity ratios are given for the 2s 2 2p 4 -2s 2 2p 3 3d lines, which occur in the 13.2-14.3 A range. Solar spectra in this range include a large number of other intense lines, notably those due to He-like Ne (Ne IX). Although the Ne IX lines are potentially the most useful indicators of electron density in solar X-ray spectra, blending with the Fe XIX lines has been a major problem for previous analyses. Comparison of observed spectra with those calculated from the Fe XIX atomic data presented here and Ne IX lines from other work indicates that there is generally good agreement. We use the calculated Fe XIX and Ne IX line spectra and several observed spectra during a flare previously analysed to estimate electron density from Ne IX line ratios, thus for the first time properly taking into account blends with Fe XIX lines. (author)

  19. A model on CME/Flare initiation: Loss of Equilibrium caused by mass loss of quiescent prominences

    Science.gov (United States)

    Miley, George; Chon Nam, Sok; Kim, Mun Song; Kim, Jik Su

    2015-08-01

    Coronal Mass Ejections (CMEs) model should give an answer to enough energy storage for giant bulk plasma into interplanetary space to escape against the sun’s gravitation and its explosive eruption. Advocates of ‘Mass Loading’ model (e.g. Low, B. 1996, SP, 167, 217) suggested a simple mechanism of CME initiation, the loss of mass from a prominence anchoring magnetic flux rope, but they did not associate the mass loss with the loss of equilibrium. The catastrophic loss of equilibrium model is considered as to be a prospective CME/Flare model to explain sudden eruption of magnetic flux systems. Isenberg, P. A., et al (1993, ApJ, 417, 368)developed ideal magnetohydrodynamic theory of the magnetic flux rope to show occurrence of catastrophic loss of equilibrium according to increasing magnetic flux transported into corona.We begin with extending their study including gravity on prominence’s material to obtain equilibrium curves in case of given mass parameters, which are the strengths of the gravitational force compared with the characteristic magnetic force. Furthermore, we study quasi-static evolution of the system including massive prominence flux rope and current sheet below it to obtain equilibrium curves of prominence’s height according to decreasing mass parameter in a properly fixed magnetic environment. The curves show equilibrium loss behaviors to imply that mass loss result in equilibrium loss. Released fractions of magnetic energy are greater than corresponding zero-mass case. This eruption mechanism is expected to be able to apply to the eruptions of quiescent prominences, which is located in relatively weak magnetic environment with 105 km of scale length and 10G of photospheric magnetic field.

  20. Flare energetics

    Science.gov (United States)

    Wu, S. T.; Dejager, C.; Dennis, B. R.; Hudson, H. S.; Simnett, G. M.; Strong, K. T.; Bentley, R. D.; Bornmann, P. L.; Bruner, M. E.; Cargill, P. J.

    1986-01-01

    In this investigation of flare energetics, researchers sought to establish a comprehensive and self-consistent picture of the sources and transport of energy within a flare. To achieve this goal, they chose five flares in 1980 that were well observed with instruments on the Solar Maximum Mission, and with other space-borne and ground-based instruments. The events were chosen to represent various types of flares. Details of the observations available for them and the corresponding physical parameters derived from these data are presented. The flares were studied from two perspectives, the impulsive and gradual phases, and then the results were compared to obtain the overall picture of the energics of these flares. The role that modeling can play in estimating the total energy of a flare when the observationally determined parameters are used as the input to a numerical model is discussed. Finally, a critique of the current understanding of flare energetics and the methods used to determine various energetics terms is outlined, and possible future directions of research in this area are suggested.

  1. Improved flare tip design

    Energy Technology Data Exchange (ETDEWEB)

    Gogolek, P. [Natural Resources Canada, Ottawa, ON (Canada). CANMET Energy Technology Centre

    2004-07-01

    This paper discusses the testing procedures and development of an improved flare tip design. Design objectives included performance equal to or better than utility flares at low wind speed; conversion efficiency; fuel slip; smoking; significant improvement at high wind speed; and no increase in trace emissions. A description of the testing facility of the flare tip was provided, with reference to the fact that the facility allowed for realistic near full scale gas flares in a single-pass flare test facility. Other details of the facility included: an adjustable ceiling; high capacity variable speed fan; sampling ports along working section in stack; windows along working section; and air cooled walls, floor, and ceiling. The fuels used in the flare tip included natural gas, propane, gasoline and inert gases. Details of wind speed, appurtenances and turbulence generating grids were presented, with reference to continuous gas emission measurements. A list of design constraints was provided. Flare performance included wind speed, turbulence and fuel composition. A chart of conversion inefficiencies with a correlation of wind speed and turbulence, fuel flow and pipe size was also presented. Several new tip designs were fabricated for testing, with screening tests for comparison to basic pipe and ranking designs. Significant improvements were found in one of the new designs, including results with 30 per cent propane in fuel. Emissions reduction from 10 to 35 per cent were noted. It was concluded that future work should focus on evaluating improved tip for stability at low wind speeds. Fuel slips are the primary source of emissions, and it was recommended that further research is necessary to improve existing flare tips. tabs, figs.

  2. Comparison of theoretically predicted and observed Solar Maximum Mission X-ray spectra for the 1980 April 13 and May 9 flares

    International Nuclear Information System (INIS)

    Smith, D.F.; Orwig, L.E.

    1982-01-01

    A method for predicting the hard X-ray spectrum in the 10--100 keV range for compact flares during their initial rise is developed on the basis of a thermal model. Observations of the flares of 1980 April 13, 4:05 U.T., and 1980 May 9, 7:12 U.T. are given and their combined spectra from the Hard X-ray Burst Spectrometer and Hard X-ray Imaging Spectrometer on the Solar Maximum Mission are deduced. Constraints on the cross sectional area of the supposed emitting arch are obtained from data from the Hard X-ray Imaging Spectrometer. A power-law spectrum is predicted for the rise of the flare of April 13 for initial arch densities less than 10 10 cm -3 and also for the flare of May 9 for initial arch densities less than 5.4 x 10 10 cm -3 . In both cases power-law spectra are observed. Limitations and implications of these results are discussed

  3. Solar flares

    International Nuclear Information System (INIS)

    Kaastra, J.S.

    1985-01-01

    In this thesis an electrodynamic model for solar flares is developed. The main theoretical achievements underlying the present study are treated briefly and the observable flare parameters are described within the framework of the flare model of this thesis. The flare model predicts large induced electric fields. Therefore, acceleration processes of charged particles by direct electric fields are treated. The spectrum of the accelerated particles in strong electric fields is calculated, 3 with the electric field and the magnetic field perpendicular and in the vicinity of an X-type magnetic neutral line. An electromagnetic field configuration arises in the case of a solar flare. A rising current filament in a quiescent background bipolar magnetic field causes naturally an X-type magnetic field configuration below the filament with a strong induced electric field perpendicular to the ambient magnetic field. This field configuration drives particles and magnetic energy towards the neutral line, where a current sheet is generated. The global evolution of the fields in the flare is determined by force balance of the Lorentz forces on the filament and the force balance on the current sheet. The X-ray, optical and radio observations of a large solar flare on May 16, 1981 are analyzed. It is found that these data fit the model very well. (Auth.)

  4. Comparison of Two Intracanal Irrigants’ Effect on Flare-Up in Necrotic Teeth

    Science.gov (United States)

    Zarei, Mina; Bidar, Maryam

    2006-01-01

    INTRODUCTION: The aim of this study was to compare the efficacy of two irrigants on decreasing the pain and swelling at different times after treatment of necrotic pulp. MATERIALS AND METHODS: Fifty patients with single canal tooth and necrotic pulp were selected and divided into two groups, twenty-five in each. Rotary files were used for preparing the canals and 0.2% chlorhexidine gluconate and 2.5% sodium hypochlorite were used for irrigation of canals. Then canals were filled by lateral condensation technique. A questionnaire was given to patients asking for the level of their pain and swelling. The patients were followed for 48h. Visual Analogue Scale (VAS) was used for determination of pain degree. The scale with 4 levels was used for measurement of the intensity of swelling. The data were statistically analyzed using Mann-Witney and Kruskal-Wallis tests. RESULTS: The research showed no significant difference between irrigant solutions in decreasing the amount of pain and swelling after endodontic treatments. No significant relationship was detected between the incidence of pain with swelling, age, and sex. Flare-up in maxilla was more than mandible. CONCLUSION: According to results of this in vivo study it was concluded that efficacies of 0.2% chlorhexidine gluconate and 2.5% NaOCl are the same. PMID:24379878

  5. Comparison of two intracanal irrigants' effect on flare-up in necrotic teeth.

    Science.gov (United States)

    Zarei, Mina; Bidar, Maryam

    2006-01-01

    The aim of this study was to compare the efficacy of two irrigants on decreasing the pain and swelling at different times after treatment of necrotic pulp. Fifty patients with single canal tooth and necrotic pulp were selected and divided into two groups, twenty-five in each. Rotary files were used for preparing the canals and 0.2% chlorhexidine gluconate and 2.5% sodium hypochlorite were used for irrigation of canals. Then canals were filled by lateral condensation technique. A questionnaire was given to patients asking for the level of their pain and swelling. The patients were followed for 48h. Visual Analogue Scale (VAS) was used for determination of pain degree. The scale with 4 levels was used for measurement of the intensity of swelling. The data were statistically analyzed using Mann-Witney and Kruskal-Wallis tests. The research showed no significant difference between irrigant solutions in decreasing the amount of pain and swelling after endodontic treatments. No significant relationship was detected between the incidence of pain with swelling, age, and sex. Flare-up in maxilla was more than mandible. According to results of this in vivo study it was concluded that efficacies of 0.2% chlorhexidine gluconate and 2.5% NaOCl are the same.

  6. Flare Observations

    Directory of Open Access Journals (Sweden)

    Benz Arnold O.

    2008-02-01

    Full Text Available Solar flares are observed at all wavelengths from decameter radio waves to gamma-rays at 100 MeV. This review focuses on recent observations in EUV, soft and hard X-rays, white light, and radio waves. Space missions such as RHESSI, Yohkoh, TRACE, and SOHO have enlarged widely the observational base. They have revealed a number of surprises: Coronal sources appear before the hard X-ray emission in chromospheric footpoints, major flare acceleration sites appear to be independent of coronal mass ejections (CMEs, electrons, and ions may be accelerated at different sites, there are at least 3 different magnetic topologies, and basic characteristics vary from small to large flares. Recent progress also includes improved insights into the flare energy partition, on the location(s of energy release, tests of energy release scenarios and particle acceleration. The interplay of observations with theory is important to deduce the geometry and to disentangle the various processes involved. There is increasing evidence supporting reconnection of magnetic field lines as the basic cause. While this process has become generally accepted as the trigger, it is still controversial how it converts a considerable fraction of the energy into non-thermal particles. Flare-like processes may be responsible for large-scale restructuring of the magnetic field in the corona as well as for its heating. Large flares influence interplanetary space and substantially affect the Earth’s lower ionosphere. While flare scenarios have slowly converged over the past decades, every new observation still reveals major unexpected results, demonstrating that solar flares, after 150 years since their discovery, remain a complex problem of astrophysics including major unsolved questions.

  7. Flare Observations

    Science.gov (United States)

    Benz, Arnold O.

    2017-12-01

    Solar flares are observed at all wavelengths from decameter radio waves to gamma-rays beyond 1 GeV. This review focuses on recent observations in EUV, soft and hard X-rays, white light, and radio waves. Space missions such as RHESSI, Yohkoh, TRACE, SOHO, and more recently Hinode and SDO have enlarged widely the observational base. They have revealed a number of surprises: Coronal sources appear before the hard X-ray emission in chromospheric footpoints, major flare acceleration sites appear to be independent of coronal mass ejections, electrons, and ions may be accelerated at different sites, there are at least 3 different magnetic topologies, and basic characteristics vary from small to large flares. Recent progress also includes improved insights into the flare energy partition, on the location(s) of energy release, tests of energy release scenarios and particle acceleration. The interplay of observations with theory is important to deduce the geometry and to disentangle the various processes involved. There is increasing evidence supporting magnetic reconnection as the basic cause. While this process has become generally accepted as the trigger, it is still controversial how it converts a considerable fraction of the energy into non-thermal particles. Flare-like processes may be responsible for large-scale restructuring of the magnetic field in the corona as well as for its heating. Large flares influence interplanetary space and substantially affect the Earth's ionosphere. Flare scenarios have slowly converged over the past decades, but every new observation still reveals major unexpected results, demonstrating that solar flares, after 150 years since their discovery, remain a complex problem of astrophysics including major unsolved questions.

  8. STATISTICAL ANALYSIS OF FLARING LOOPS OBSERVED BY NOBEYAMA RADIOHELIOGRAPH. I. COMPARISON OF LOOPTOP AND FOOTPOINTS

    International Nuclear Information System (INIS)

    Huang Guangli; Nakajima, Hiroshi

    2009-01-01

    Twenty-four events with looplike structures at 17 and 34 GHz are selected from the flare list of Nobeyama Radioheliograph. We obtained the brightness temperatures at 17 and 34 GHz, the polarization degrees at 17 GHz, and the power-law spectral indices at the radio peak time for one looptop (LT) and two footpoints (FPs) of each event. We also calculated the magnetic field strengths and the column depths of nonthermal electrons in the LT and FPs of each event, using the equations modified from the gyrosynchrotron equations by Dulk. The main statistical results from those data are summarized as follows. (1) The spectral indices, the brightness temperatures at 17 and 34 GHz, the polarization degrees at 17 GHz, the calculated magnetic field strengths, and the calculated column densities of nonthermal electrons are always positively correlated between the LT and the two FPs of the selected events. (2) About one-half of the events have the brightest LT at 17 and 34 GHz. (3) The spectral indices in the two FPs are larger (softer) than those in the corresponding LT in most events. (4) The calculated magnetic field strengths in the two FPs are always larger than those in the corresponding LT. (5) Most of the events have the same positive or negative polarization sense in the LT and the two FPs. (6) The brightness temperatures at 17 and 34 GHz in each of the LT and the two FPs statistically decrease with their spectral indices and the calculated magnetic field strengths, but increase with their calculated column densities of nonthermal electrons. Moreover, we try to discuss the possible causes of the present statistical results.

  9. Solar flares

    International Nuclear Information System (INIS)

    Brown, J.C.; Smith, D.F.

    1980-01-01

    The current observational and theoretical status of solar flares as a typical astrophysical problem is reviewed with especial reference to the intense and complex energy release in large flares. Observations and their diagnostic applications are discussed in three broad areas: thermal radiation at temperatures T 5 K; thermal radiation at T > approximately 10 5 K; and non-thermal radiation and particles. Particular emphasis is given to the most recent observational discoveries such as flare γ-rays, interplanetary Langmuir waves, and the ubiquitous association of soft x-ray loops with flares, and also the progress in particle diagnostics of hard x-ray and radio bursts. The theoretical problems of primary energy release are considered in terms of both possible magnetic configuration and in plasma instabilities and the question of achieving the necessary flash power discussed. The credibility of models for the secondary redistribution through the atmosphere of the primary magnetic energy released in terms of conduction, convection, radiation and particle transport is examined. Progress made in the flare problem in the past decade is assessed and some possible reasons why no convincing solution has yet been found are considered. 296 references. (U.K.)

  10. Microwave imaging of a solar limb flare - Comparison of spectra and spatial geometry with hard X-rays

    Science.gov (United States)

    Schmahl, E. J.; Kundu, M. R.; Dennis, B. R.

    1985-01-01

    A solar limb flare was mapped using the Very Large Array (VLA) together with hard X-ray (HXR) spectral and spatial observations of the Solar Maximum Mission satellite. Microwave flux records from 2.8 to 19.6 GHz were instrumental in determining the burst spectrum, which has a maximum at 10 GHz. The flux spectrum and area of the burst sources were used to determine the number of electrons producing gyrosynchrotron emission, magnetic field strength, and the energy distribution of gyrosynchrotron-emitting electrons. Applying the thick target model to the HXR spectrum, the number of high energy electrons responsible for the X-ray bursts was found to be 10 to the 36th, and the electron energy distribution was approximately E exp -5, significantly different from the parameters derived from the microwave observations. The HXR imaging observations exhibit some similiarities in size and structure o the first two burst sources mapped with the VLA. However, during the initial burst, the HXR source was single and lower in the corona than the double 6 cm source. The observations are explained in terms of a single loop with an isotropic high-energy electron distribution which produced the microwaves, and a larger beamed component which produced the HXR at the feet of the loop.

  11. Statistical Studies of Solar White-light Flares and Comparisons with Superflares on Solar-type Stars

    Science.gov (United States)

    Namekata, Kosuke; Sakaue, Takahito; Watanabe, Kyoko; Asai, Ayumi; Maehara, Hiroyuki; Notsu, Yuta; Notsu, Shota; Honda, Satoshi; Ishii, Takako T.; Ikuta, Kai; Nogami, Daisaku; Shibata, Kazunari

    2017-12-01

    Recently, many superflares on solar-type stars have been discovered as white-light flares (WLFs). The statistical study found a correlation between their energies (E) and durations (τ): τ \\propto {E}0.39, similar to those of solar hard/soft X-ray flares, τ \\propto {E}0.2{--0.33}. This indicates a universal mechanism of energy release on solar and stellar flares, i.e., magnetic reconnection. We here carried out statistical research on 50 solar WLFs observed with Solar Dynamics Observatory/HMI and examined the correlation between the energies and durations. As a result, the E–τ relation on solar WLFs (τ \\propto {E}0.38) is quite similar to that on stellar superflares (τ \\propto {E}0.39). However, the durations of stellar superflares are one order of magnitude shorter than those expected from solar WLFs. We present the following two interpretations for the discrepancy: (1) in solar flares, the cooling timescale of WLFs may be longer than the reconnection one, and the decay time of solar WLFs can be elongated by the cooling effect; (2) the distribution can be understood by applying a scaling law (τ \\propto {E}1/3{B}-5/3) derived from the magnetic reconnection theory. In the latter case, the observed superflares are expected to have 2–4 times stronger magnetic field strength than solar flares.

  12. STELLAR CORONAE, SOLAR FLARES: A DETAILED COMPARISON OF {sigma} GEM, HR 1099, AND THE SUN IN HIGH-RESOLUTION X-RAYS

    Energy Technology Data Exchange (ETDEWEB)

    Huenemoerder, David P. [Massachusetts Institute of Technology, Kavli Institute for Astrophysics and Space Research, 70 Vassar St., Cambridge, MA 02139 (United States); Phillips, Kenneth J. H. [Visiting Scientist, Space Research Center, Polish Academy of Sciences, 51-622, Kopernika 11, Wroclaw (Poland); Sylwester, Janusz; Sylwester, Barbara, E-mail: dph@space.mit.edu, E-mail: kennethjhphillips@yahoo.com, E-mail: js@cbk.pan.wroc.pl, E-mail: bs@cbk.pan.wroc.pl [Space Research Center, Polish Academy of Sciences, 51-622, Kopernika 11, Wroclaw (Poland)

    2013-05-10

    The Chandra High Energy Transmission Grating Spectrometer (HETG) spectra of the coronally active binary stars {sigma} Gem and HR 1099 are among the highest fluence observations for such systems taken at high spectral resolution in X-rays with this instrument. This allows us to compare their properties in detail to solar flare spectra obtained with the Russian CORONAS-F spacecraft's RESIK instrument at similar resolution in an overlapping bandpass. Here we emphasize the detailed comparisons of the 3.3-6.1 A region (including emission from highly ionized S, Si, Ar, and K) from solar flare spectra to the corresponding {sigma} Gem and HR 1099 spectra. We also model the larger wavelength range of the HETG, from 1.7 to 25 A - having emission lines from Fe, Ca, Ar, Si, Al, Mg, Ne, O, and N-to determine coronal temperatures and abundances. {sigma} Gem is a single-lined coronally active long-period binary which has a very hot corona. HR 1099 is a similar, but shorter period, double-lined system. With very deep HETG exposures we can even study emission from some of the weaker species, such as K, Na, and Al, which are important since they have the lowest first ionization potentials, a parameter well known to be correlated with elemental fractionation in the solar corona. The solar flare temperatures reach Almost-Equal-To 20 MK, comparable to the {sigma} Gem and HR 1099 coronae. During the Chandra exposures, {sigma} Gem was slowly decaying from a flare and its spectrum is well characterized by a collisional ionization equilibrium plasma with a broad temperature distribution ranging from 2 to 60 MK, peaking near 25 MK, but with substantial emission from 50 MK plasma. We have detected K XVIII and Na XI emission which allow us to set limits on their abundances. HR 1099 was also quite variable in X-rays, also in a flare state, but had no detectable K XVIII. These measurements provide new comparisons of solar and stellar coronal abundances, especially at the lowest first

  13. Comparison of microdose flare-up and antagonist multiple-dose protocols for poor-responder patients: a randomized study.

    Science.gov (United States)

    Demirol, Aygul; Gurgan, Timur

    2009-08-01

    To compare the efficacy of the microdose flare-up and multiple-dose antagonist protocols for poor-responder patients in intracytoplasmic sperm injection-ET cycles. A randomized, prospective study. Center for assisted reproductive technology in Turkey. Ninety patients with poor ovarian response in a minimum of two previous IVF cycles. All women were prospectively randomized into two groups by computer-assisted randomization. The patients in group 1 were stimulated according to the microdose flare-up protocol (n = 45), while the patients in group 2 were stimulated according to antagonist multiple-dose protocol (n = 45). The mean number of mature oocytes retrieved was the primary outcome measure, and fertilization rate, implantation rate per embryo, and clinical pregnancy rates were secondary outcome measures. The mean age of the women, the mean duration of infertility, basal FSH level, and the number of previous IVF cycles were similar in both groups. The total gonadotropin dose used was significantly higher in group 2, while the number of oocytes retrieved was significantly greater in group 1. Although the fertilization and clinical pregnancy rates were nonsignificantly higher in group 1 compared with group 2, the implantation rate was significantly higher in the microdose flare-up group than in the multiple-dose antagonist group (22% vs. 11%). The microdose flare-up protocol seems to have a better outcome in poor-responder patients, with a significantly higher mean number of mature oocytes retrieved and higher implantation rate.

  14. Endodontic flare-ups: comparison of incidence between single and multiple visits procedures in patients attending a Nigerian teaching hospital.

    Science.gov (United States)

    Oginni, Ao; Udoye, C I

    2004-12-01

    The present study was performed to compare the incidence of endodontic flare ups in single with multiple visits treatment procedures, to establish the relationship between pre-operative and post obturation pain in patients attending for endodontic therapy in a Nigerian teaching Hospital. Patients were randomly assigned to either single visit or multiple visits group. Data collected at root canal treatment appointment and recall visits (1st, 7th and 30th day post obturation) include pulp vitality status, the presence or absence of pre-operative pain, presence and degree of post obturation pain. Presence of endodontic flare-ups (defined as either patient's report of pain not controlled with over the counter medication and or increasing swelling). The compiled data were analyzed using chi-square where applicable. P level endodontic flare-ups (8.1 %) were recorded in the multiple visits group compared to 19 (18,3%) flare-ups for the single visit group, P = 0.02. For both single and multiple visits procedures, there were statistically significant correlations between pre operative and post obturation pain (P = 0.002 and P = 0.0004 respectively). Teeth with vital pulps reported the lowest frequency of post obturation pain (48.8%), while those with non vital pulps were found to have the highest frequency oh post obturation pain (50,3%), P = 0.9. Although the present study reported higher incidences for post obturation pain and flare-ups following the single visit procedures, single visit endodontic therapy has been shown to be a safe and effective alternative to multiple visits treatment.

  15. Flare continuum

    International Nuclear Information System (INIS)

    Robinson, R.D.

    1985-01-01

    This paper reviews the metre-wave continuum radiation which is related to similar solar emissions observed in the decimetre and centimetre spectral regions. This type of emission, known as Flare Contiuum, is related to the radio bursts of types II and IV. After summarising the history of the phenomenon and reviewing the observational work, the author discusses the various possible radiation mechanisms and their relation to the solar corona, the interplanetary medium and related regions. The theoretical topics covered include the role of high-energy particles, the trapping of such particles, gyro-synchrotron radiation, polarization and plasma interactions. (U.K.)

  16. Postoperative Pain and Flare-Ups: Comparison of Incidence Between Single and Multiple Visit Pulpectomy in Primary Molars

    Science.gov (United States)

    Gowda, Subhadra Halemane Nagaraj

    2017-01-01

    Introduction Endodontic treatment performed in either single- or multiple visit can be followed by numerous short- and long term complications. One of the short term complications include postoperative pain and flare–ups. The ability to predict its prevalence and forewarn the patient may go some way towards enabling coping strategies and help dentist in pain management treatment decisions Aim To compare the incidence and intensity of postoperative pain and flare-ups between single- and multiple visit pulpectomy in primary molars. Also, to correlate the preoperative status of the pulp to postoperative pain and flare-ups. Materials and Methods Eighty primary molars indicated for pulpectomy were included in the study and divided into two groups. Tooth treated and preoperative status of the pulp vitality was recorded. All the conventional steps in pulpectomy were followed. Teeth in Group 1 (single visit pulpectomy) were obturated on the same visit. Teeth in Group 2 (multiple visit pulpectomy) were obturated in the subsequent appointment. The recording of postoperative pain, flare-ups, use of medication were done after 24 hours, seven days and one month. Results Four cases in both the groups reported postoperative pain (10%) at 24 hour recall, p=0.74. One flare-up (2.5%) was recorded in each group p=0.67. None of the patients reported pain at seventh day and one month recall. Postoperative pain was recorded in five non-vital teeth (13.5%) and three vital teeth (6.9%). However, it was statistically not significant p=0.53. Conclusion From the perspective of our study there was a low incidence of postoperative pain. The majority of patients in both groups reported no pain or only minimal pain within 24 hours of treatment. There were no differences between single- and multi visit treatment protocols with respect to the incidence of postoperative pain. No significant correlation could be found between pulp vitality and the incidence of postoperative pain. PMID:28511499

  17. Hα and Hβ emission in a C3.3 solar flare: comparison between observations and simulations

    Science.gov (United States)

    Zuccarello, F.; Simoes, P. J. D. A.; Capparelli, V.; Fletcher, L.; Romano, P.; Mathioudakis, M.; Cauzzi, G.; Carlsson, M.; Kuridze, D.; Keys, P.

    2017-12-01

    This work is based on the analysis of an extremely rare set of simultaneous observations of a C3.3 solar flare in the Hα and Hβ lines at high spatial and temporal resolution, which were acquired at the Dunn Solar Telescope. Images of the C3.3 flare (SOL2014-04-22T15:22) made at various wavelengths along the Hα line profile by the Interferometric Bidimensional Spectrometer (IBIS) and in the Hβ with the Rapid Oscillations in the Solar Atmosphere (ROSA) broadband imager are analyzed to obtain the intensity evolution. The analysis shows that Hα and Hβ intensity excesses in three identified flare footpoints are well correlated in time. In the stronger footpoints, the typical value of the the Hα/Hβ intensity ratio observed is ˜ 0.4 - 0.5, in broad agreement with values obtained from a RADYN non-LTE simulation driven by an electron beam with parameters constrained by observations. The weaker footpoint has a larger Hα/Hβ ratio, again consistent with a RADYN simulation but with a smaller energy flux.

  18. Flaring fix: better technologies green flaring

    International Nuclear Information System (INIS)

    Stastny, P.

    2004-01-01

    Recent advances in reducing solution gas flaring and venting are discussed, highlighting the 2002 report of the Clean Air Strategic Alliance (CASA) and its 39 recommendations targeting a 50 per cent reduction in flaring from a 1996 baseline. Much of the improvement to date (62 per cent at the end of 2002 on an annual basis) has come from collecting and sending gas down pipelines for processing, but improvements in technologies such as incineration, in combustion efficiency, and the use of micro-turbines, also helped to make a difference. Improvements in smokeless flares, through the addition of a special flare tip to flare stacks, has similarly contributed to higher combustion efficiency, and further improvements are expected from sonic flare technology currently under development. Expectations are also high for advances in incinerator technology, particularly enclosed burner systems, which almost completely burn flare gas while having no visible flame, smoke or odor

  19. Comparison of mild and microdose GnRH agonist flare protocols on IVF outcome in poor responders.

    Science.gov (United States)

    Karimzadeh, Mohammad Ali; Mashayekhy, Mehri; Mohammadian, Farnaz; Moghaddam, Fatemeh Mansoori

    2011-05-01

    To compare the IVF outcome of clomiphene citrate/gonadotropin/antagonist (mild protocol) and microdose GnRH agonist flare protocols for poor responders undergoing in vitro fertilization. 159 poor responder patients were randomized and ovarian stimulation was performed with clomiphene citrate, gonadotropin and antagonist (group I) or microdose GnRH agonist flare (group II) protocols. Main outcome was clinical pregnancy rate and secondary outcomes were doses of gonadotropin administration and duration of stimulation. There were no significant differences in age, causes of infertility, basal FSH, BMI, duration of infertility, E(2) level on the day of hCG injection in both groups. Although the cancellation, fertilization, and clinical pregnancy rates were similar in both groups, the endometrial thickness, number of retrieved oocytes, mature oocytes and implantation rate were significantly higher in mild protocol. The doses of gonadotropin administration and duration of stimulation were significantly lower in mild protocol. We recommend mild protocol in assisted reproductive technology cycles for poor responders based on our results regarding less doses of used gonadotropin and a shorter duration of stimulation.

  20. Models for stellar flares

    International Nuclear Information System (INIS)

    Cram, L.E.; Woods, D.T.

    1982-01-01

    We study the response of certain spectral signatures of stellar flares (such as Balmer line profiles and the broad-band continuum) to changes in atmospheric structure which might result from physical processes akin to those thought to occur in solar flares. While each physical process does not have a unique signature, we can show that some of the observed properties of stellar flares can be explained by a model which involves increased pressures and temperatures in the flaring stellar chromosphere. We suggest that changes in stellar flare area, both with time and with depth in the atmosphere, may play an important role in producing the observed flare spectrum

  1. IMPULSIVE ACCELERATION OF CORONAL MASS EJECTIONS. II. RELATION TO SOFT X-RAY FLARES AND FILAMENT ERUPTIONS

    Energy Technology Data Exchange (ETDEWEB)

    Bein, B. M.; Berkebile-Stoiser, S.; Veronig, A. M.; Temmer, M. [Kanzelhoehe Observatory-IGAM, Institute of Physics, University of Graz, Universitaetsplatz 5, A-8010 Graz (Austria); Vrsnak, B. [Hvar Observatory, Faculty of Geodesy, University of Zagreb, Kaciceva 26, HR-10000 Zagreb (Croatia)

    2012-08-10

    Using high time cadence images from the STEREO EUVI, COR1, and COR2 instruments, we derived detailed kinematics of the main acceleration stage for a sample of 95 coronal mass ejections (CMEs) in comparison with associated flares and filament eruptions. We found that CMEs associated with flares reveal on average significantly higher peak accelerations and lower acceleration phase durations, initiation heights, and heights, at which they reach their peak velocities and peak accelerations. This means that CMEs that are associated with flares are characterized by higher and more impulsive accelerations and originate from lower in the corona where the magnetic field is stronger. For CMEs that are associated with filament eruptions we found only for the CME peak acceleration significantly lower values than for events that were not associated with filament eruptions. The flare rise time was found to be positively correlated with the CME acceleration duration and negatively correlated with the CME peak acceleration. For the majority of the events the CME acceleration starts before the flare onset (for 75% of the events) and the CME acceleration ends after the soft X-ray (SXR) peak time (for 77% of the events). In {approx}60% of the events, the time difference between the peak time of the flare SXR flux derivative and the peak time of the CME acceleration is smaller than {+-}5 minutes, which hints at a feedback relationship between the CME acceleration and the energy release in the associated flare due to magnetic reconnection.

  2. Comparison between Two Bromine Containing Free Radical Initiators in PRESAGE®

    Energy Technology Data Exchange (ETDEWEB)

    Park, Hyeonsuk; Ryu, Dongmin; Ye, Sung-Joon [Seoul National University, Seoul (Korea, Republic of)

    2016-10-15

    PRESAGE® is an optically clear 3-D polyurethane dosimeter which contains a halogenated carbon as a free radical initiator and leucomalachite dye. The change of the optical density is known to be linear with respect to the absorbed dose and the sensitivity is related to the carbon–halogen bond dissociation energy of the free radical initiator. Although there are some studies regarding free radical initiators and dye materials, there’s a lack of reports about the effect of other elements like LMG solvent which can be added when there’s a difficulty mixing materials. Also, there are some studies about comparison between free radicals with different kind of halogen atoms but there’s a lack of studies of comparison between initiators with the same halogen atom. In this experiments, two kinds of halocarbon free radical initiator with the same halogen atom (bromine) as well as the effect of the LMG solvent were studied to use the dosimeter as a therapeutic purpose. Effective atomic numbers were also calculated. The initiators with the same halogen atom, CBr{sub 4} and C{sub 2}H{sub 2}Br{sub 4}, reacted totally differently. CBr{sub 4} was more sensitive to the radiation and emitted maximum 4 times more free radicals upon irradiation with no additional effective atomic number but the absorbance after irradiation was highly variable with time. For stable measurement, C{sub 2}H{sub 2}Br{sub 4} would be more appropriate as a free radical initiator.

  3. KEPLER FLARES. I. ACTIVE AND INACTIVE M DWARFS

    Energy Technology Data Exchange (ETDEWEB)

    Hawley, Suzanne L.; Davenport, James R. A.; Kowalski, Adam F.; Wisniewski, John P.; Deitrick, Russell; Hilton, Eric J. [Department of Astronomy, University of Washington, Box 351580, Seattle, WA 98195 (United States); Hebb, Leslie, E-mail: slhawley@uw.edu [Department of Physics, Hobart and William Smith Colleges, 300 Pulteney Street, Geneva, NY 14456 (United States)

    2014-12-20

    We analyzed Kepler short-cadence M dwarf observations. Spectra from the Astrophysical Research Consortium 3.5 m telescope identify magnetically active (Hα in emission) stars. The active stars are of mid-M spectral type, have numerous flares, and have well-defined rotational modulation due to starspots. The inactive stars are of early M type, exhibit less starspot signature, and have fewer flares. A Kepler to U-band energy scaling allows comparison of the Kepler flare frequency distributions with previous ground-based data. M dwarfs span a large range of flare frequency and energy, blurring the distinction between active and inactive stars designated solely by the presence of Hα. We analyzed classical and complex (multiple peak) flares on GJ 1243, finding strong correlations between flare energy, amplitude, duration, and decay time, with only a weak dependence on rise time. Complex flares last longer and have higher energy at the same amplitude, and higher energy flares are more likely to be complex. A power law fits the energy distribution for flares with log E{sub K{sub p}}> 31 erg, but the predicted number of low-energy flares far exceeds the number observed, at energies where flares are still easily detectable, indicating that the power-law distribution may flatten at low energy. There is no correlation of flare occurrence or energy with starspot phase, the flare waiting time distribution is consistent with flares occurring randomly in time, and the energies of consecutive flares are uncorrelated. These observations support a scenario where many independent active regions on the stellar surface are contributing to the observed flare rate.

  4. KEPLER FLARES. I. ACTIVE AND INACTIVE M DWARFS

    International Nuclear Information System (INIS)

    Hawley, Suzanne L.; Davenport, James R. A.; Kowalski, Adam F.; Wisniewski, John P.; Deitrick, Russell; Hilton, Eric J.; Hebb, Leslie

    2014-01-01

    We analyzed Kepler short-cadence M dwarf observations. Spectra from the Astrophysical Research Consortium 3.5 m telescope identify magnetically active (Hα in emission) stars. The active stars are of mid-M spectral type, have numerous flares, and have well-defined rotational modulation due to starspots. The inactive stars are of early M type, exhibit less starspot signature, and have fewer flares. A Kepler to U-band energy scaling allows comparison of the Kepler flare frequency distributions with previous ground-based data. M dwarfs span a large range of flare frequency and energy, blurring the distinction between active and inactive stars designated solely by the presence of Hα. We analyzed classical and complex (multiple peak) flares on GJ 1243, finding strong correlations between flare energy, amplitude, duration, and decay time, with only a weak dependence on rise time. Complex flares last longer and have higher energy at the same amplitude, and higher energy flares are more likely to be complex. A power law fits the energy distribution for flares with log E K p > 31 erg, but the predicted number of low-energy flares far exceeds the number observed, at energies where flares are still easily detectable, indicating that the power-law distribution may flatten at low energy. There is no correlation of flare occurrence or energy with starspot phase, the flare waiting time distribution is consistent with flares occurring randomly in time, and the energies of consecutive flares are uncorrelated. These observations support a scenario where many independent active regions on the stellar surface are contributing to the observed flare rate

  5. Magnetic transients in flares

    International Nuclear Information System (INIS)

    Zirin, H.; Tanaka, K.

    1981-01-01

    We present data on magnetic transients (mgtr's) observed in flares on 1980 July 1 and 5 with Big Bear videomagnetograph (VMG). The 1980 July 1 event was a white light flare in which a strong bipolar mgtr was observed, and a definite change in the sunspots occurred at the time of the flare. In the 1980 July 5 flare, a mgtr was observed in only one polarity, and, although no sunspot changes occurred simultaneous with the flare, major spot changes occurred in a period of hours

  6. Elongation of Flare Ribbons

    Energy Technology Data Exchange (ETDEWEB)

    Qiu, Jiong; Longcope, Dana W. [Department of Physics, Montana State University, Bozeman MT (United States); Cassak, Paul A. [Department of Physics and Astronomy, West Virginia University, Morgantown WV (United States); Priest, Eric R. [School of Mathematics and Statistics, University of St. Andrews, Fife KY16 9SS, Scotland (United Kingdom)

    2017-03-20

    We present an analysis of the apparent elongation motion of flare ribbons along the polarity inversion line (PIL), as well as the shear of flare loops in several two-ribbon flares. Flare ribbons and loops spread along the PIL at a speed ranging from a few to a hundred km s{sup −1}. The shear measured from conjugate footpoints is consistent with the measurement from flare loops, and both show the decrease of shear toward a potential field as a flare evolves and ribbons and loops spread along the PIL. Flares exhibiting fast bidirectional elongation appear to have a strong shear, which may indicate a large magnetic guide field relative to the reconnection field in the coronal current sheet. We discuss how the analysis of ribbon motion could help infer properties in the corona where reconnection takes place.

  7. Solar Flares: Magnetohydrodynamic Processes

    Directory of Open Access Journals (Sweden)

    Kazunari Shibata

    2011-12-01

    Full Text Available This paper outlines the current understanding of solar flares, mainly focused on magnetohydrodynamic (MHD processes responsible for producing a flare. Observations show that flares are one of the most explosive phenomena in the atmosphere of the Sun, releasing a huge amount of energy up to about 10^32 erg on the timescale of hours. Flares involve the heating of plasma, mass ejection, and particle acceleration that generates high-energy particles. The key physical processes for producing a flare are: the emergence of magnetic field from the solar interior to the solar atmosphere (flux emergence, local enhancement of electric current in the corona (formation of a current sheet, and rapid dissipation of electric current (magnetic reconnection that causes shock heating, mass ejection, and particle acceleration. The evolution toward the onset of a flare is rather quasi-static when free energy is accumulated in the form of coronal electric current (field-aligned current, more precisely, while the dissipation of coronal current proceeds rapidly, producing various dynamic events that affect lower atmospheres such as the chromosphere and photosphere. Flares manifest such rapid dissipation of coronal current, and their theoretical modeling has been developed in accordance with observations, in which numerical simulations proved to be a strong tool reproducing the time-dependent, nonlinear evolution of a flare. We review the models proposed to explain the physical mechanism of flares, giving an comprehensive explanation of the key processes mentioned above. We start with basic properties of flares, then go into the details of energy build-up, release and transport in flares where magnetic reconnection works as the central engine to produce a flare.

  8. Sgr A* flares: tidal disruption of asteroids and planets?

    NARCIS (Netherlands)

    Zubovas, K.; Nayakshin, S.; Markoff, S.

    2012-01-01

    It is theoretically expected that a supermassive black hole (SMBH) in the centre of a typical nearby galaxy disrupts a solar-type star every ∼105 yr, resulting in a bright flare lasting for months. Sgr A*, the resident SMBH of the Milky Way, produces (by comparison) tiny flares that last only hours

  9. Midtreatment flare-ups.

    Science.gov (United States)

    Harrington, G W; Natkin, E

    1992-04-01

    It should be apparent that the prompt and effective treatment of midtreatment flare-ups of all types is an essential and integral part of the overall endodontic treatment procedure. The expeditious management of these flare-ups will do much to enhance a positive attitude among patients toward endodontic treatment and to ensure the well-being and comfort of these patients.

  10. Recent big flare

    International Nuclear Information System (INIS)

    Moriyama, Fumio; Miyazawa, Masahide; Yamaguchi, Yoshisuke

    1978-01-01

    The features of three big solar flares observed at Tokyo Observatory are described in this paper. The active region, McMath 14943, caused a big flare on September 16, 1977. The flare appeared on both sides of a long dark line which runs along the boundary of the magnetic field. Two-ribbon structure was seen. The electron density of the flare observed at Norikura Corona Observatory was 3 x 10 12 /cc. Several arc lines which connect both bright regions of different magnetic polarity were seen in H-α monochrome image. The active region, McMath 15056, caused a big flare on December 10, 1977. At the beginning, several bright spots were observed in the region between two main solar spots. Then, the area and the brightness increased, and the bright spots became two ribbon-shaped bands. A solar flare was observed on April 8, 1978. At first, several bright spots were seen around the solar spot in the active region, McMath 15221. Then, these bright spots developed to a large bright region. On both sides of a dark line along the magnetic neutral line, bright regions were generated. These developed to a two-ribbon flare. The time required for growth was more than one hour. A bright arc which connects two ribbons was seen, and this arc may be a loop prominence system. (Kato, T.)

  11. A comparison of erythromycin and cefadroxil in the prevention of flare-ups from asymptomatic teeth with pulpal necrosis and associated periapical pathosis.

    Science.gov (United States)

    Morse, D R; Furst, M L; Lefkowitz, R D; D'Angelo, D; Esposito, J V

    1990-05-01

    In a previous study by our group with patients having asymptomatic teeth with pulpal necrosis and an associated periapical radiolucent lesion (PN/PL), it was shown that prophylactic administration of penicillin V or erythromycin (high-dose, 1-day regimen) resulted in a low incidence of flare-up (mean = 2.2%) and a low incidence of swelling and pain not associated with flare-up. No hypersensitivity responses occurred, and gastrointestinal side effects were found primarily with the erythromycins. To ascertain whether a single-dose administration of a long-acting 1-gm tablet of the cephalosporin antibiotic cefadroxil would result in a similar outcome, the present study was undertaken with 200 patients having quiescent PN/PL. The patients were randomly given either cefadroxil or erythromycin (base or stearate). Evaluations of flare-up were done 1 day, 1 week, and 2 months after endodontic treatment. A 2.0% flare-up incidence was found, with no statistically significant differences for cefadroxil (1.0%), stearate (2.0%), or base (4.0%). No hypersensitivity responses occurred. Gastrointestinal side effects were found primarily with the erythromycins (19.0%). The results showed that a 1-gm, single-dose regimen of cefadroxil was as effective as erythromycin and penicillin in preventing flare-ups and serious sequelae. A comparative analysis of the data from our first study (no peritreatment antibiotics) and the pooled data from our last three investigations (including the current trial) showed that peritreatment antibiotic coverage significantly reduced flare-ups and serious sequelae after endodontic treatment of asymptomatic PN/PL (p less than 0.001).

  12. Flare stars in Pleiades. 5

    International Nuclear Information System (INIS)

    Mirzoyan, L.V.; Chavushyan, O.S.; Erastova, L.K.; Oganyan, G.B.; Melikyan, N.D.; Natsvlishvili, R.Sh.; Tsvetkov, M.K.

    1977-01-01

    The results of photographic observations of stellar flares in the Pleiades region made in the Byurakan and Abastumany astrophysical observatories in 1973-1974 are presented. The observations and revisions of the pictures taken earlier helped to detect 20 new flare stars and 62 repeated flares of flare stars known before. Two-colour photographic and UV observation of 21 flares were carried out. The observation data point to considerable differences in the mean frequency of flares of various flare stars in the Pleiades

  13. Sun and solar flares

    Energy Technology Data Exchange (ETDEWEB)

    McKenna-Lawlor, S. (Saint Patrick' s Coll., Maynooth (Ireland))

    1982-07-01

    The subject is discussed under the headings: the sun's core (thermonuclear reactions, energy transfer from core through radiation zone, convection zone, photosphere, chromosphere and corona); the photosphere (convection, granulation, sunspots, magnetic fields, solar cycle, rotation of the sun); solar variability and paleoclimatic records (correlation of low solar activity with increased /sup 14/C production in atmosphere); the chromosphere and corona (turbulence, temperature, coronal streamers, energy transfer); solar flares (cosmic rays, aurorae, spectra, velocity of flares, prominences, mechanisms of flares); the solar wind.

  14. Solar Features - Solar Flares

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — A solar flare is a short-lived sudden increase in the intensity of radiation emitted in the neighborhood of sunspots. For many years it was best monitored in the...

  15. Proton solar flares

    International Nuclear Information System (INIS)

    Shaposhnikova, E.F.

    1979-01-01

    The observations of proton solar flares have been carried out in 1950-1958 using the extrablackout coronograph of the Crimea astrophysical observatory. The experiments permit to determine two characteristic features of flares: the directed motion of plasma injection flux from the solar depths and the appearance of a shock wave moving from the place of the injection along the solar surface. The appearance of the shock wave is accompanied by some phenomena occuring both in the sunspot zone and out of it. The consistent flash of proton flares in the other groups of spots, the disappearance of fibres and the appearance of eruptive prominences is accomplished in the sunspot zone. Beyond the sunspot zone the flares occur above spots, the fibres disintegrate partially or completely and the eruptive prominences appear in the regions close to the pole

  16. Comparison of plasma/serum levels of procalcitonin between infection and febrile disease flare in patients with systemic lupus erythematosus: a meta-analysis.

    Science.gov (United States)

    Liu, Li-Na; Wang, Peng; Guan, Shi-Yang; Li, Xiao-Mei; Li, Bao-Zhu; Leng, Rui-Xue; Pan, Hai-Feng

    2017-12-01

    Currently published data regarding the potential role of procalcitonin (PCT) for the discrimination between systemic lupus erythematosus (SLE) flare and infection are contradictory. To derive a more precise evaluation, a meta-analysis was performed. Published literatures from PubMed, Embase, and the Cochrane Library were obtained. The Newcastle-Ottawa Scale was used to assess the study quality. Pooled standard mean difference (SMD) with 95% confidence interval (CI) was calculated by random-effect model analysis. Heterogeneity test was performed by the Q statistic and quantified using I 2 . Eight studies including 205 SLE flare patients and 198 SLE patients with infection were finally incorporated in the meta-analysis after examining title, type, abstracts, and full text. No significant differences in plasma/serum PCT levels were found between SLE patients with flare and SLE patients with infection when all studies were pooled into the meta-analysis (pooled SMD = - 0.45, 95% CI = - 0.96 to 0.06). However, subgroup analysis showed that Asian SLE patients with infection had higher plasma/serum PCT levels when compared with SLE patients with flare (p infection. However, plasma/serum PCT levels are significantly higher in Asian SLE patients with infection.

  17. Fibromyalgia Flares: A Qualitative Analysis.

    Science.gov (United States)

    Vincent, Ann; Whipple, Mary O; Rhudy, Lori M

    2016-03-01

    Patients with fibromyalgia report periods of symptom exacerbation, colloquially referred to as "flares" and despite clinical observation of flares, no research has purposefully evaluated the presence and characteristics of flares in fibromyalgia. The purpose of this qualitative study was to describe fibromyalgia flares in a sample of patients with fibromyalgia. Using seven open-ended questions, patients were asked to describe how they perceived fibromyalgia flares and triggers and alleviating factors associated with flares. Patients were also asked to describe how a flare differs from their typical fibromyalgia symptoms and how they cope with fibromyalgia flares. Content analysis was used to analyze the text. A total of 44 participants completed the survey. Responses to the seven open-ended questions revealed three main content areas: causes of flares, flare symptoms, and dealing with a flare. Participants identified stress, overdoing it, poor sleep, and weather changes as primary causes of flares. Symptoms characteristic of flares included flu-like body aches/exhaustion, pain, fatigue, and variety of other symptoms. Participants reported using medical treatments, rest, activity and stress avoidance, and waiting it out to cope with flares. Our results demonstrate that periods of symptom exacerbation (i.e., flares) are commonly experienced by patients with fibromyalgia and symptoms of flares can be differentiated from every day or typical symptoms of fibromyalgia. Our study is the first of its kind to qualitatively explore characteristics, causes, and management strategies of fibromyalgia flares. Future studies are needed to quantitatively characterize fibromyalgia flares and evaluate mechanisms of flares. © 2015 American Academy of Pain Medicine. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  18. Numerical simulation of a sour gas flare

    Energy Technology Data Exchange (ETDEWEB)

    Chambers, A. [Alberta Research Council, Devon, AB (Canada)

    2008-07-01

    Due to the limited amount of information in the literature on sour gas flares and the cost of conducting wind tunnel and field experiments on sour flares, this presentation presented a modelling project that predicted the effect of operating conditions on flare performance and emissions. The objectives of the project were to adapt an existing numerical model suitable for flare simulation, incorporate sulfur chemistry, and run simulations for a range of conditions typical of sour flares in Alberta. The study involved the use of modelling expertise at the University of Utah, and employed large eddy simulation (LES) methods to model open flames. The existing model included the prediction of turbulent flow field; hydrocarbon reaction chemistry; soot formation; and radiation heat transfer. The presentation addressed the unique features of the model and discussed whether LES could predict the flow field. Other topics that were presented included the results from a University of Utah comparison; challenges of the LES model; an example of a run time issue; predicting the impact of operating conditions; and the results of simulations. Last, several next steps were identified and preliminary results were provided. Future work will focus on reducing computation time and increasing information reporting. figs.

  19. OBSERVATION AND ANALYSIS OF BALLISTIC DOWNFLOWS IN AN M-CLASS FLARE WITH THE INTERFACE REGION IMAGING SPECTROGRAPH

    Energy Technology Data Exchange (ETDEWEB)

    Brannon, Sean R. [Department of Physics, Montana State University, Bozeman, MT 59717 (United States)

    2016-12-10

    Despite significant advances in instrumentation, there remain no studies that analyze observations of on-disk flare loop plasma flows covering the entire evolution from chromospheric evaporation, through plasma cooling, to draining downflows. We present results from an imaging and spectroscopic observation from the Interface Region Imaging Spectrograph ( IRIS ) of the SOL2015–03–12T11:50:00 M-class flare, at high spatial resolution and time cadence. Our analysis of this event reveals initial plasma evaporation at flare temperatures indicated by 100–200 km s{sup −1} blueshifts in the Fe xxi line. We subsequently observe plasma cooling into chromospheric lines (Si iv and O iv) with ∼11 minute delay, followed by loop draining at ∼40 km s{sup −1} as indicated by a “C”-shaped redshift structure and significant (∼60 km s{sup −1}) non-thermal broadening. We use density-sensitive lines to calculate a plasma density for the flare loops, and estimate a theoretical cooling time approximately equal to the observed delay. Finally, we use a simple elliptical free-fall draining model to construct synthetic spectra, and perform what we believe to be the first direct comparison of such synthetic spectra to observations of draining downflows in flare loops.

  20. XSST/TRC rocket observations of July 13, 1982 flare

    International Nuclear Information System (INIS)

    Foing, B.H.; Bonnet, R.M.; Dame, L.; Bruner, M.; Acton, L.W.

    1986-01-01

    The present analysis of UV filtergrams of the July 13, 1982 solar flare obtained by the XSST/TRC rocket experiments has used calibrated intensities of the flare components to directly estimate the Lyman-alpha line flux, C IV line flux, and excess 160-nm continuum temperature brighness over the underlying plage. The values obtained are small by comparison with other observed or calculated equivalent quantities from the Machado (1980) model of flare F1. The corresponding power required to heat up to the temperature minimum over the 1200 sq Mm area is found to be 3.6 x 10 to the 25th erg/sec for this small X-ray C6 flare, 7 min after the ground-based observed flare maximum. 13 references

  1. Identifying flares in rheumatoid arthritis

    DEFF Research Database (Denmark)

    Bykerk, Vivian P; Bingham, Clifton O; Choy, Ernest H

    2016-01-01

    to flare, with escalation planned in 61%. CONCLUSIONS: Flares are common in rheumatoid arthritis (RA) and are often preceded by treatment reductions. Patient/MD/DAS agreement of flare status is highest in patients worsening from R/LDA. OMERACT RA flare questions can discriminate between patients with...... Set. METHODS: Candidate flare questions and legacy measures were administered at consecutive visits to Canadian Early Arthritis Cohort (CATCH) patients between November 2011 and November 2014. The American College of Rheumatology (ACR) core set indicators were recorded. Concordance to identify flares...

  2. Comparison of Intraocular Pressure Reduction of Initial and Adjunct ...

    African Journals Online (AJOL)

    Conclusion: Initial SLT showed a sustained reduction in IOP, compared to adjunct with marginally lower ... of reducing exposure to benzalkonium chloride is by substituting some of the ... in which the trabecular meshwork is targeted using.

  3. FFTF initial fuel loading, preanalyses, and comparison with preliminary results

    International Nuclear Information System (INIS)

    Rothrock, R.B.; Daughtry, J.W.; Zimmerman, B.D.; Petrowicz, N.E.; Bennett, R.A.; Ombrellaro, P.A.

    1980-02-01

    Disadvantages of conventional loading from the center out were circumvented by loading one trisector at a time, and connecting the control rod drivelines in each sector after it was loaded so that the rods could be operated during the loading of subsequent trisectors. This sequence was interrupted once during the loading of the final sector, to achieve initial criticality at an approximately minimum critical loading and to measure absolute subcriticality by the rod drop technique. An in-core detector was preferable to the standard FTR ex-core detectors for monitoring the initial fuel loading. Consequently, special fission chambers were installed in an instrument thimble near the core center to monitor the initial fuel loading

  4. Diagnostics of solar flare reconnection

    Directory of Open Access Journals (Sweden)

    M. Karlický

    2004-01-01

    Full Text Available We present new diagnostics of the solar flare reconnection, mainly based on the plasma radio emission. We propose that the high-frequency (600-2000 MHz slowly drifting pulsating structures map the flare magnetic field reconnection. These structures correspond to the radio emission from plasmoids which are formed in the extended current sheet due to tearing and coalescence processes. An increase of the frequency drift of the drifting structures is interpreted as an increase of the reconnection rate. Using this model, time scales of slowly drifting pulsating structure observed during the 12 April 2001 flare by the Trieste radiopolarimeter with high time resolution (1 ms are interpreted as a radio manifestation of electron beams accelerated in the multi-scale reconnection process. For short periods Fourier spectra of the observed structure have a power-law form with power-law indices in the 1.3-1.6 range. For comparison the 2-D MHD numerical modeling of the multi-scale reconnection is made and it is shown that Fourier spectrum of the reconnection dissipation power has also a power-law form, but with power-law index 2. Furthermore, we compute a time evolution of plasma parameters (density, magnetic field etc in the 2-D MHD model of the reconnection. Then assuming a plasma radio emission from locations, where the 'double-resonance' instability generates the upper-hybrid waves due to unstable distribution function of suprathermal electrons, we model radio spectra. Effects of the MHD turbulence are included. The resulting spectra are compared with those observed. It is found, that depending on model parameters the lace bursts and the decimetric spikes can be reproduced. Thus, it is shown that the model can be used for diagnostics of the flare reconnection process. We also point out possible radio signatures of reconnection outflow termination shocks. They are detected as type II-like herringbone structures in the 200-700 MHz frequency range. Finally

  5. Flare stars in Pleiades. 6

    International Nuclear Information System (INIS)

    Mirzoyan, L.V.; Chavushyan, O.S.; Oganyan, G.B.; Ambaryan, V.V.; Garibdzhanyan, A.T.; Melikyan, N.D.; Natsvlishvili, R.Sh.; AN Gruzinskoj SSR, Abastumani. Abastumanskaya Astrofizicheskaya Observatoriya)

    1981-01-01

    The results of photographic observations of stellar flares in the Pleiades region carried out at the Byurakan and Abastumani astrophysical observatories during 1976-1979 are given. On the basis of these observations 17 new flare stars have been found. Total number of all known flare stars in the Pleiades region on 1 June 1980 reached 524, and the number of all flares-1244. The observational data on distribution of flare stars according to the observed flares is satisfactorily represented by the average frequency function introduced by V.A.Ambartsumian. The total number of the flare stars in the Pleiades is of the order of 1100. Using three telescopes, synchronous photographic observations of stellar flares in Pleiades in U, B, V, system are carried out. The colour indices U-B and B-V of stellar flares in periods including the maximum of the flare slightly differ from that of photoelectrically defined for flares of UV Ceti type stars, which testifies the physical relationship of flare stars in Pleiades and in the vicinity of the Sun [ru

  6. A comparison between r-LH and urinary supplements containing LH activity in patients undergoing the microdose GnRH agonist flare protocol for in-vitro fertilization: a pilot study.

    Science.gov (United States)

    Shavit, Tal; Agdi, Mohammed; Son, Weon Y; Hasson, Josseph; Dahan, Michael H

    2016-08-01

    The aim of this study was to compare pregnancy rates and stimulation parameters in patients with diminished ovarian reserve, who were treated with recombinant human luteinizing hormone (r-LH) or menopausal gonadotropins (hMG), as part of a microdose flare protocol. A retrospective cohort study was performed. Comparisons between the group that was stimulated with r-LH plus follicle stimulating hormone (FSH) to those treated with hMG and FSH, were performed. Measurements included: medication doses, number of oocyte collected, number of embryos obtained, pregnancy and clinical pregnancy rates. Patients in the r-LH group (N.=40) had significant higher clinical pregnancy rates (33% vs. 14%; P=0.04) and used lower dose of LH (1938 IU vs. 2807 IU; P=0.02) compared to patients that were stimulated with hMG (N.=39). r-LH may offer advantages for the treatment of diminished ovarian reserve when performing a microdose flare protocol when compared to hMG. Both larger and prospective studies should be carried out to confirm these findings.

  7. Fractional Differential Equations in Terms of Comparison Results and Lyapunov Stability with Initial Time Difference

    Directory of Open Access Journals (Sweden)

    Coşkun Yakar

    2010-01-01

    Full Text Available The qualitative behavior of a perturbed fractional-order differential equation with Caputo's derivative that differs in initial position and initial time with respect to the unperturbed fractional-order differential equation with Caputo's derivative has been investigated. We compare the classical notion of stability to the notion of initial time difference stability for fractional-order differential equations in Caputo's sense. We present a comparison result which again gives the null solution a central role in the comparison fractional-order differential equation when establishing initial time difference stability of the perturbed fractional-order differential equation with respect to the unperturbed fractional-order differential equation.

  8. Future flare compositions

    NARCIS (Netherlands)

    Lingen, J.L.N. van; Meuken, D.; Hackspik, M.M.; Mäkeläinen, T.; Weiser, V.; Poulson, G.W.

    2014-01-01

    This poster describes the work done within the Category B joint research project under the European Defence Agency (EDA) on Future Flare Compositions [1]. Contributing members were Finland, Germany, United Kingdom and the Netherlands. The program was aimed to identify the technology gaps that apply

  9. Flaring research update

    International Nuclear Information System (INIS)

    Reynen, B.A.

    1999-01-01

    Several studies regarding waste gas flaring have been conducted in an effort to determine the potential health and environmental impacts associated with flaring. Energy source conservation and greenhouse gas emissions reduction are other reasons for studying the issue. A brief outline for each of the following research priorities was given: (1) operating practices, (2) flare performance, focusing on improved combustion efficiency, (3) speciation, addressing the potential effects of incomplete combustion, (4) alternative technologies such as membrane technology, cryogenics and power generation to reduce flare gas volume, (5) improved liquid separation, concentrating on the removal of entrained liquids to improve performance and reduce emissions and (6) fate and transport, including plume modeling, ambient air monitoring, tracking of known toxins, primarily to address concerns of environmental groups.The expectation is that this broad and comprehensive research effort will yield substantive and credible scientific data, lead to cooperation in the research community, reduce emissions, beneficially impact on regulations and standards and gain the support of environmental organizations

  10. Comparison of initial damage rates using neutron and electron irradiations

    International Nuclear Information System (INIS)

    Goldstone, J.A.R.

    1978-08-01

    The purpose of this experiment was twofold: (1) The number of interstitials that pin dislocations was studied as a function of neutron energy. (2) By comparison with electron irradiations on the sample, a correlation between the predicted and measured numbers of defects was found. All irradiations were performed on the same high purity copper sample. The sample was machined in the form of a cantilever beam with a flexural resonant frequency of 770 Hz. Changes in Young's modulus at constant strain amplitude were monitored continuously through changes in the resonant frequency of the sample. These changes in the modulus can be related to the number of pinning points added to dislocation lines, which are in turn related to the number of free interstitials produced. Neutron energy dependence experiments were done from 2 to 24 MeV on the copper sample and at 14 MeV on a gold sample. By equating pinning rates from electron and neutron irradiations and using the free interstitial production rate obtained from electron irradiations, an estimate of the free interstitial production cross section for neutrons of 2 to 24 MeV was made

  11. Which of Kepler's Stars Flare?

    Science.gov (United States)

    Kohler, Susanna

    2017-12-01

    The habitability of distant exoplanets is dependent upon many factors one of which is the activity of their host stars. To learn about which stars are most likely to flare, a recent study examines tens of thousands of stellar flares observed by Kepler.Need for a Broader SampleArtists rendering of a flaring dwarf star. [NASAs Goddard Space Flight Center/S. Wiessinger]Most of our understanding of what causes a star to flare is based on observations of the only star near enough to examine in detail the Sun. But in learning from a sample size of one, a challenge arises: we must determine which conclusions are unique to the Sun (or Sun-like stars), and which apply to other stellar types as well.Based on observations and modeling, astronomers think that stellar flares result from the reconnection of magnetic field lines in a stars outer atmosphere, the corona. The magnetic activity is thought to be driven by a dynamo caused by motions in the stars convective zone.HR diagram of the Kepler stars, with flaring main-sequence (yellow), giant (red) and A-star (green) stars in the authors sample indicated. [Van Doorsselaere et al. 2017]To test whether these ideas are true generally, we need to understand what types of stars exhibit flares, and what stellar properties correlate with flaring activity. A team of scientists led by Tom Van Doorsselaere (KU Leuven, Belgium) has now used an enormous sample of flares observed by Kepler to explore these statistics.Intriguing TrendsVan Doorsselaere and collaborators used a new automated flare detection and characterization algorithm to search through the raw light curves from Quarter 15 of the Kepler mission, building a sample of 16,850 flares on 6,662 stars. They then used these to study the dependence of the flare occurrence rate, duration, energy, and amplitude on the stellar spectral type and rotation period.This large statistical study led the authors to several interesting conclusions, including:Flare star incidence rate as a a

  12. Comparison of estradiol and progesterone priming/antagonist/letrozole and microdose flare-up protocols for poor responders undergoing intracytoplasmic sperm injection.

    Science.gov (United States)

    Yucel, Oguz; Ekin, Murat; Cengiz, Hüseyin; Zebitay, Ali Galip; Yalcinkaya, Sener; Karahuseyinoglu, Sercin

    2014-09-01

    To compare the effect of the GnRH antagonist/letrozole/gonadotropin protocol with the microdose GnRH agonist flare-up protocol in poor ovarian responders for intracytoplasmic sperm injection. One hundred twenty-one consecutive patients suspected of having or with a history of poor ovarian response between January 2009 and June 2010, who were undergoing ICSI were enrolled. The microdose flareup (MF) protocol was used in 79 patients and the estradiol + progesterone/letrozole + gonadotropin and GnRH antagonist (EP/ALG) protocol was used in 42 patients. Age of the patients, duration of infertility, basal FSH, the total gonadotropin consumption, duration of stimulation, E2 level on the day of hCG administration, the number of embryo transferred, the fertilization rate, implantation rate, clinical pregnancy rate and the live birth rate were not statistically different (p > 0.05). Only the number of oocytes retrieved was significantly higher in the EP/LGA group (1.7 ± 0.7 versus 2.6 ± 0.6). The EP/LGA protocol has no significant improvement against the microdose flare-up protocol in poor responder patients.

  13. Comparison of different initiation protocols in the resistant hepatocyte model

    International Nuclear Information System (INIS)

    Espandiari, Parvaneh; Robertson, Larry W.; Srinivasan, Cidambi; Glauert, Howard P.

    2005-01-01

    Several models in rat liver have been developed to study multistage carcinogenesis, including the Solt-Farber resistant hepatocyte model. In this model, initiation consists of either a necrogenic dose of a hepatocarcinogen or a non-necrogenic dose in conjunction with partial hepatectomy (PH). As an alternative to PH, we investigated two different procedures: fasting for 96 h followed by refeeding, or the use of one-day-old neonates. Male Fisher 344 rats were injected p.o. with diethylnitrosamine (DEN) (0, 20, or 100 mg/kg) 24 h after refeeding or PH (controls received DEN alone with no proliferative stimulus). For the neonatal group, male and female Fisher 344 rats were treated with DEN (0 or 20 mg/kg, i.p.) at one day of age. All initiated animals were treated at the same age (11 weeks) with the following selection agents: three daily doses of 2-acetylaminofluorene (AAF) (30 mg/kg), followed by a single dose of carbon tetrachloride (2 ml/kg), followed by three additional daily treatments of AAF (30 mg/kg). Rats were euthanized 2 weeks after the last AAF injection. The PH, neonatal male, and neonatal female groups receiving DEN developed more γ-glutamyl transpeptidase (GGT)-positive foci per cubic centimeter and foci per liver as compared to untreated rats receiving the same proliferative stimulus, whereas the fasting/refeeding group and the group receiving no proliferative stimulus did not. All DEN-treated groups receiving one of the proliferative stimuli had more foci per cubic centimeter than the DEN-treated group receiving no proliferative stimulus. The volume fractions of GGT-positive foci in the PH/DEN and neonatal male/DEN groups were higher than those of both the DEN-treated group receiving no proliferative stimulus and the groups receiving the same proliferative stimulus without DEN. In neonatal females-receiving DEN, the volume fraction was not different from either neonatal females not receiving DEN or DEN-treated rats receiving no proliferative

  14. Spectropolarimetric Inversions of the Ca II 8542 Å Line in an M-class Solar Flare

    Science.gov (United States)

    Kuridze, D.; Henriques, V. M. J.; Mathioudakis, M.; Rouppe van der Voort, L.; de la Cruz Rodríguez, J.; Carlsson, M.

    2018-06-01

    We study the M1.9-class solar flare SOL2015-09-27T10:40 UT using high-resolution full Stokes imaging spectropolarimetry of the Ca II 8542 Å line obtained with the CRISP imaging spectropolarimeter at the Swedish 1-m Solar Telescope. Spectropolarimetric inversions using the non-LTE code NICOLE are used to construct semiempirical models of the flaring atmosphere to investigate the structure and evolution of the flare temperature and magnetic field. A comparison of the temperature stratification in flaring and nonflaring areas reveals strong heating of the flare ribbon during the flare peak. The polarization signals of the ribbon in the chromosphere during the flare maximum become stronger when compared to its surroundings and to pre- and post-flare profiles. Furthermore, a comparison of the response functions to perturbations in the line-of-sight magnetic field and temperature in flaring and nonflaring atmospheres shows that during the flare, the Ca II 8542 Å line is more sensitive to the lower atmosphere where the magnetic field is expected to be stronger. The chromospheric magnetic field was also determined with the weak-field approximation, which led to results similar to those obtained with the NICOLE inversions.

  15. Endodontic cellulitis 'flare-up'. Case report.

    Science.gov (United States)

    Matusow, R J

    1995-02-01

    Endodontic cellulitis involves facial swelling which can vary from mild to severe and can occur as a primary case or a flare-up following initial treatment of asymptomatic teeth with periapical lesions. The microbial spectrum in primary cases involves a significant mixture of anaerobic and facultative aerobic microbes, chiefly streptococci. In a previous study, cultures from flare-up cases, utilizing the same anaerobic techniques as in primary cases, revealed an absence of obligate anaerobes and an 80 per cent incidence of facultative aerobic streptococci. These cases also revealed a significant time lapse from onset of symptoms to the cellulitis phase. No sex or age factors were noted in the primary or flare-up cases. The purpose of this case report is to restate a traditional theory, namely, the alteration of the oxidation/reduction potential (Eh), as a major factor for endodontic cellulitis flare-ups; to confirm the pathogenic potential of oral facultative streptococci; and that asymptomatic endodontic lesions tend to exist with mixed aerobic/anaerobic microbial flora.

  16. Automated flare forecasting using a statistical learning technique

    Science.gov (United States)

    Yuan, Yuan; Shih, Frank Y.; Jing, Ju; Wang, Hai-Min

    2010-08-01

    We present a new method for automatically forecasting the occurrence of solar flares based on photospheric magnetic measurements. The method is a cascading combination of an ordinal logistic regression model and a support vector machine classifier. The predictive variables are three photospheric magnetic parameters, i.e., the total unsigned magnetic flux, length of the strong-gradient magnetic polarity inversion line, and total magnetic energy dissipation. The output is true or false for the occurrence of a certain level of flares within 24 hours. Experimental results, from a sample of 230 active regions between 1996 and 2005, show the accuracies of a 24-hour flare forecast to be 0.86, 0.72, 0.65 and 0.84 respectively for the four different levels. Comparison shows an improvement in the accuracy of X-class flare forecasting.

  17. Automated flare forecasting using a statistical learning technique

    International Nuclear Information System (INIS)

    Yuan Yuan; Shih, Frank Y.; Jing Ju; Wang Haimin

    2010-01-01

    We present a new method for automatically forecasting the occurrence of solar flares based on photospheric magnetic measurements. The method is a cascading combination of an ordinal logistic regression model and a support vector machine classifier. The predictive variables are three photospheric magnetic parameters, i.e., the total unsigned magnetic flux, length of the strong-gradient magnetic polarity inversion line, and total magnetic energy dissipation. The output is true or false for the occurrence of a certain level of flares within 24 hours. Experimental results, from a sample of 230 active regions between 1996 and 2005, show the accuracies of a 24-hour flare forecast to be 0.86, 0.72, 0.65 and 0.84 respectively for the four different levels. Comparison shows an improvement in the accuracy of X-class flare forecasting. (research papers)

  18. Dynamics of flare sprays

    International Nuclear Information System (INIS)

    Tandberg-Hanssen, E.; Hansen, R.T.

    1980-01-01

    During solar cycle No. 20 new insight into the flare-spray phenomenon has been attained due to several innovations in solar optical-observing techniques (higher spatial resolution cinema-photography, tunable pass-band filters, multi-slit spectroscopy and extended angular field coronographs). From combined analysis of 13 well-observed sprays which occured between 1969-1974 we conclude that (i) the spray material originates from a preexisting active region filament which undergoes increased absorption some tens of minutes prior to the abrupt chromospheric brightening at the 'flare-start', and (ii) the spray material is confined within a steadily expanding, loop-shaped (presumably magnetically controlled) envelope with part of the material draining back down along one or both legs of the loop. (orig.)

  19. Chromosphere flare models

    International Nuclear Information System (INIS)

    Avrett, E.H.; Kurucz, R.L.; Machado, M.E.; NASA, Marshall Space Flight Center, Huntsville, AL)

    1985-01-01

    Further calculated results based on the F1 and F2 chromospheric models of Machado et al. (1980) are presented in addition to results from a model with enhanced temperatures relative to the weak-flare model F1 in the upper photosphere and low chromosphere, and from a model with enhanced temperatures relative to the strong flare model F2 in the upper chromosphere. The coupled equations of statistical equilibrium and radiative transfer for H, H(-), He I-II, C I-IV, Si I-II, Mg I-II, Fe, Al, O I-II, Na, and Ca II are solved, and the overall absorption and emission of radiation by lines throughout the spectrum are determined by means of a reduced set of opacities taken from a compilation of over 10 million lines. Semiempirical models show that the white light flare continuum may arise by extreme chromospheric overheating, as well as by an enhancement of the minimum temperature region. 34 references

  20. Flares on a Bp Star

    Science.gov (United States)

    Mullan, D. J.

    2009-09-01

    Two large X-ray flares have been reported from the direction of a magnetic B2p star (σ Ori E). Sanz-Forcada et al. have suggested that the flares did not occur on the B2p star but on a companion of late spectral type. A star which is a candidate for a late-type flare star near σ Ori E has recently been identified by Bouy et al. However, based on the properties of the flares, and based on a recent model of rotating magnetospheres, we argue that, rather than attributing the two flares to a late-type dwarf, it is a viable hypothesis that the flares were magnetic phenomena associated with the rotating magnetosphere of the B2p star itself.

  1. FLARES ON A Bp STAR

    International Nuclear Information System (INIS)

    Mullan, D. J.

    2009-01-01

    Two large X-ray flares have been reported from the direction of a magnetic B2p star (σ Ori E). Sanz-Forcada et al. have suggested that the flares did not occur on the B2p star but on a companion of late spectral type. A star which is a candidate for a late-type flare star near σ Ori E has recently been identified by Bouy et al. However, based on the properties of the flares, and based on a recent model of rotating magnetospheres, we argue that, rather than attributing the two flares to a late-type dwarf, it is a viable hypothesis that the flares were magnetic phenomena associated with the rotating magnetosphere of the B2p star itself.

  2. The evolution of flaring and non-flaring active regions

    Science.gov (United States)

    Kilcik, A.; Yurchyshyn, V.; Sahin, S.; Sarp, V.; Obridko, V.; Ozguc, A.; Rozelot, J. P.

    2018-06-01

    According to the modified Zurich classification, sunspot groups are classified into seven different classes (A, B, C, D, E, F and H) based on their morphology and evolution. In this classification, classes A and B, which are small groups, describe the beginning of sunspot evolution, while classes D, E and F describe the large and evolved groups. Class C describes the middle phase of sunspot evolution and the class H describes the end of sunspot evolution. Here, we compare the lifetime and temporal evolution of flaring and non-flaring active regions (ARs), and the flaring effect on ARs in these groups in detail for the last two solar cycles (1996 through 2016). Our main findings are as follows: (i) Flaring sunspot groups have longer lifetimes than non-flaring ones. (ii) Most of the class A, B and C flaring ARs rapidly evolve to higher classes, while this is not applicable for non-flaring ARs. More than 50 per cent of the flaring A, B and C groups changed morphologically, while the remaining D, E, F and H groups did not change remarkably after the flare activity. (iii) 75 per cent of all flaring sunspot groups are large and complex. (iv) There is a significant increase in the sunspot group area in classes A, B, C, D and H after flaring activity. In contrast, the sunspot group area of classes E and F decreased. The sunspot counts of classes D, E and F decreased as well, while classes A, B, C and H showed an increase.

  3. Flare-induced MHD disturbances in the corona--Moreton waves and type II shocks

    International Nuclear Information System (INIS)

    Uchida, Y.

    1972-01-01

    The propagation in the corona of the magnetohydrodynamic (MHD) disturbance possibly emitted at the explosive stage in the initial phase of a flare is considered. The behavior of the MHD fast-mode wavefront, whose source is located at the flare, is calculated by using eiconal-characteristic method in the High Altitude Observatory (HAO) realistic models of coronal magnetic field and density for the days of some particular flare events. It is shown as the result that the peculiar behavior of Moreton' s surface wave and the peculiar appearance in the shape and position of the type II burst sources can be consistently understood by considering the refraction, focussing, and fermation of shocks of MHD fast-mode disturbance in the actual distribution of Alfven velocity in the corona. Based on some comparison of the positions of low-Alfven-velocity regions in the corona with observed positions of type II burst sources, it is proposed that the type II burst sources may be identified with such low-Alfven-velocity regions ''illuminated'' by thus enhanced shocks. (U.S.)

  4. Solar flare leaves sun quaking

    Science.gov (United States)

    1998-05-01

    Dr. Alexander G. Kosovichev, a senior research scientist from Stanford University, and Dr. Valentina V. Zharkova from Glasgow (United Kingdom) University found the tell-tale seismic signature in data on the Sun's surface collected by the Michelson Doppler Imager onboard the Solar and Heliospheric Observatory (SOHO) spacecraft immediately following a moderate-sized flare on July 9, 1996. "Although the flare was a moderate one, it still released an immense amount of energy," said Dr. Craig Deforest, a researcher with the SOHO project. "The energy released is equal to completely covering the Earth's continents with a yard of dynamite and detonating it all at once." SOHO is a joint project of the European Space Agency and NASA. The finding is reported in the May 28 issue of the journal Nature, and is the subject of a press conference at the spring meeting of the American Geophysical Union in Boston, Mass., May 27. The solar quake that the science team recorded looks much like ripples spreading from a rock dropped into a pool of water. But over the course of an hour, the solar waves traveled for a distance equal to 10 Earth diameters before fading into the fiery background of the Sun's photosphere. Unlike water ripples that travel outward at a constant velocity, the solar waves accelerated from an initial speed of 22,000 miles per hour to a maximum of 250,000 miles per hour before disappearing. "People have looked for evidence of seismic waves from flares before, but they didn't have a theory so they didn't know where to look," says Kosovichev. Several years ago Kosovichev and Zharkova developed a theory that can explain how a flare, which explodes in space above the Sun's surface, can generate a major seismic wave in the Sun's interior. According to the currently accepted model of solar flares, the primary explosion creates high-energy electrons (electrically charged subatomic particles). These are funneled down into a magnetic flux tube, an invisible tube of magnetic

  5. Analysis of ultraviolet and X-ray observations of three homologous solar flares from SMM

    Science.gov (United States)

    Cheng, Chung-Chieh; Pallavicini, Roberto

    1987-01-01

    Three homologous flares observed in the UV lines of Fe XXI and O V and in X-rays from the SMM were studied. It was found that: (1) the homology of the flares was most noticeable in Fe XXI and soft X-ray emissions; (2) the three flares shared many of the same loop footprints which were located in O V bright kernals associated with hard X-ray bursts; and (3) in spite of the strong spatial homology, the temporal evolution in UV and X-ray emissions varied from flare to flare. A comparison between the UV observations and photospheric magnetograms revealed that the basic flare configuration was a complex loop system consisting of many loops or bundles of loops.

  6. Comparison of the ultrashort gonadotropin-releasing hormone agonist-antagonist protocol with microdose flare -up protocol in poor responders: a preliminary study.

    Science.gov (United States)

    Berker, Bülent; Duvan, Candan İltemir; Kaya, Cemil; Aytaç, Ruşen; Satıroğlu, Hakan

    2010-01-01

    To determine the potential effect of the ultrashort gonadotropin-releasing hormone (GnRH) agonist/GnRH antagonist protocol versus the microdose GnRH agonist protocol in poor responders undergoing intracytoplasmic sperm injection (ICSI). The patients in the Agonist-Antagonist Group (n=41) were administered the ultrashort GnRH-agonist/ antagonist protocol, while the patients in the Microdose Group (n=41) were stimulated according to the microdose flare-up protocol. The mean number of mature oocytes retrieved was the primary outcome measure. Fertilization rate, implantation rate per embryo and clinical pregnancy rates were secondary outcome measures. There was no differenc between the mean number of mature oocytes retrieved in the two groups. There were also no statistical differences between the two groups in terms of peak serum E2 level, canceled cycles, endometrial thickness on hCG day, number of 2 pronucleus and number of embryos transferred. However, the total gonadotropin consumption and duration of stimulation were significantly higher with the Agonist-Antagonist Group compared with the Microdose Group. The implantation and clinical pregnancy rates were similar between the two groups. Despite the high dose of gonadotropin consumption and longer duration of stimulation with the ultrashort GnRH agonist/ antagonist protocol, it seems that the Agonist-Antagonist Protocol is not inferior to the microdose protocol in poor responders undergoing ICSI.

  7. Solar Flares and Their Prediction

    Science.gov (United States)

    Adams, Mitzi L.

    1999-01-01

    Solar flares and coronal mass ejection's (CMES) can strongly affect the local environment at the Earth. A major challenge for solar physics is to understand the physical mechanisms responsible for the onset of solar flares. Flares, characterized by a sudden release of energy (approx. 10(exp 32) ergs for the largest events) within the solar atmosphere, result in the acceleration of electrons, protons, and heavier ions as well as the production of electromagnetic radiation from hard X-rays to km radio waves (wavelengths approx. = 10(exp -9) cm to 10(exp 6) cm). Observations suggest that solar flares and sunspots are strongly linked. For example, a study of data from 1956-1969, reveals that approx. 93 percent of major flares originate in active regions with spots. Furthermore, the global structure of the sunspot magnetic field can be correlated with flare activity. This talk will review what we know about flare causes and effects and will discuss techniques for quantifying parameters, which may lead to a prediction of solar flares.

  8. How flares can be understood

    International Nuclear Information System (INIS)

    Severny, A.B.

    1977-01-01

    Specific features of the flare phenomenon which are important for understanding of flares are the following: (1) Fine structure of visible emission of flares, especially at the very beginning and in the pre-flare active region. This structure can be seen also in later stages of development as bright points, some of which exist from the flare beginning (Babin's observations at Crimea, 1972-1976). (2) Turbulent motion with velocities up to 250-300 km s -1 as can be estimated from broadening of emission lines. (3) Predominantly red asymmetry of emission lines in the explosive phase and during further development of flares. (4) 'Supersonic' velocities and supergravitational accelerations of separate moving masses of the flare plasma. (5) The appearance of flares in areas with high grad H, exceeding 0.1 G km -1 which is equivalent to regions of electric currents > approximately 10 11 A. (6) Strong variations of net magnetic flux through the active region, as it follows from Meudon, Crimean, and Sacramento Peak (Rust's) observations. (Auth.)

  9. Parameterization of solar flare dose

    International Nuclear Information System (INIS)

    Lamarche, A.H.; Poston, J.W.

    1996-01-01

    A critical aspect of missions to the moon or Mars will be the safety and health of the crew. Radiation in space is a hazard for astronauts, especially high-energy radiation following certain types of solar flares. A solar flare event can be very dangerous if astronauts are not adequately shielded because flares can deliver a very high dose in a short period of time. The goal of this research was to parameterize solar flare dose as a function of time to see if it was possible to predict solar flare occurrence, thus providing a warning time. This would allow astronauts to take corrective action and avoid receiving a dose greater than the recommended limit set by the National Council on Radiation Protection and Measurements (NCRP)

  10. Flare-ups in endodontics and their relationship to various medicaments.

    Science.gov (United States)

    Ehrmann, Ernest H; Messer, Harold H; Clark, Robert M

    2007-12-01

    The purpose of this research is to investigate the frequency of endodontic flare-ups using a visual analogue scale. Definitions of flare-ups vary widely as does their reported frequency. A flare-up was defined as an increase of 20 or more points on the visual analogue scale for a given tooth, within the periods of 4 h and 24 h after the initial treatment appointment. The data from a previous study were used to determine the incidence of flare-ups after using three modalities (Ledermix, calcium hydroxide and no medication) to manage patients presenting for relief of pain of endodontic origin. A statistical analysis showed that there were no significant differences in flare-up rates at both the 4-h and 24-h periods between the three modalities. Further research is required using the above definition of a flare-up and standardising treatment protocols.

  11. Flare Seismology from SDO Observations

    Science.gov (United States)

    Lindsey, Charles; Martinez Oliveros, Juan Carlos; Hudson, Hugh

    2011-10-01

    Some flares release intense seismic transients into the solar interior. These transients are the sole instance we know of in which the Sun's corona exerts a conspicuous influence on the solar interior through flares. The desire to understand this phenomenon has led to ambitious efforts to model the mechanisms by which energy stored in coronal magnetic fields drives acoustic waves that penetrate deep into the Sun's interior. These mechanisms potentially involve the hydrodynamic response of the chromosphere to thick-target heating by high-energy particles, radiative exchange in the chromosphere and photosphere, and Lorentz-force transients to account for acoustic energies estimated up to at 5X10^27 erg and momenta of order 6X10^19 dyne sec. An understanding of these components of flare mechanics promises more than a powerful diagnostic for local helioseismology. It could give us fundamental new insight into flare mechanics themselves. The key is appropriate observations to match the models. Helioseismic observations have identified the compact sources of transient seismic emission at the foot points of flares. The Solar Dynamics Observatory is now giving us high quality continuum-brightness and Doppler observations of acoustically active flares from HMI concurrent with high-resolution EUV observations from AIA. Supported by HXR observations from RHESSI and a broad variety of other observational resources, the SDO promises a leading role in flare research in solar cycle 24.

  12. Solar neighbourhood flare stars - a review

    International Nuclear Information System (INIS)

    Kunkel, W.E.

    1975-01-01

    The review concentrates on 'astronomical' aspects of flare activity, such as where, and under what circumstances flare activity is found in the solar vicinity. Non-classical activity is briefly described (without regard for completeness) and the influence of detection effects on flare observations is treated. Flare stars discovered during the last four years are described and flare activity of local dMe stars is compared. The BY Draconis syndrome is discussed followed by some remarks about rotation. Pleiades flare activity is compared to that of the solar neighbourhood and evidence for the evolution of flare activity in stars is examined. (Auth.)

  13. Relation between gamma-ray emission, radio bursts, and proton fluxes from solar flares

    International Nuclear Information System (INIS)

    Fomichev, V.V.; Chertok, I.M.

    1985-01-01

    Data on solar gamma-ray flares, including 24 flares with gamma-ray lines, recorded up to June 1982, are analyzed. It is shown that from the point of view of radio emission the differences between flares with and without gamma-ray lines has a purely quantitative character: the former are accompanied by the most intense microwave bursts. Meter type II bursts are not a distinctive feature of flares with gamma-ray lines. Pulsed flares, regardless of the presence or absence of gamma-ray lines, are not accompanied by significant proton fluxes at the earth. On the whole, contrary to the popular opinion in the literature, flares with gamma-ray lines do not display a deficit of proton flux in interplanetary space in comparison with similar flares without gamma-ray lines. The results of quantitative diagnostics of proton flares based on radio bursts are not at variance with the presence of flares without detectable gamma-ray emission in lines but with a pronounced increase in the proton flux at the earth. 23 references

  14. Comparison of the initial ETA gas propagation experiments with theoretical models

    Energy Technology Data Exchange (ETDEWEB)

    Chambers, F.W.; Clark, J.C.; Fessenden, T.J.

    1982-04-20

    This report contains a description of the initial ETA propagation experiments in air at a beam current of 4.5 kA. The beam was observed to propagate at the pressures anticipated on the basis of previous theory and experiment. A comparison of measured net current waveforms with predictions of the PHOENIX code showed good agreement over the pressure range 0.1 to 200 torr. However, the beam was observed to expand with Z at a faster rate than theory predicts. Excessive transverse beam modulation at injection complicated the experiments and limited their comparison with theory.

  15. Comparison of the initial ETA gas propagation experiments with theoretical models

    International Nuclear Information System (INIS)

    Chambers, F.W.; Clark, J.C.; Fessenden, T.J.

    1982-01-01

    This report contains a description of the initial ETA propagation experiments in air at a beam current of 4.5 kA. The beam was observed to propagate at the pressures anticipated on the basis of previous theory and experiment. A comparison of measured net current waveforms with predictions of the PHOENIX code showed good agreement over the pressure range 0.1 to 200 torr. However, the beam was observed to expand with Z at a faster rate than theory predicts. Excessive transverse beam modulation at injection complicated the experiments and limited their comparison with theory

  16. Theoretical and observational assessments of flare efficiencies

    International Nuclear Information System (INIS)

    Leahey, D.M.; Preston, K.; Strosher, M.

    2000-01-01

    During the processing of hydrocarbon materials, gaseous wastes are flared in an effort to completely burn the waste material and therefore leave behind very little by-products. Complete combustion, however is rarely successful because entrainment of air into the region of combusting gases restricts flame sizes to less than optimum values. The resulting flames are often too small to dissipate the amount of heat associated with complete (100 per cent) combustion efficiency. Flaring, therefore, often results in emissions of gases with more complex molecular structures than just carbon dioxide and water. Polycyclic aromatic hydrocarbons and volatile organic compounds which are indicative of incomplete combustion are often associated with flaring. This theoretical study of flame efficiencies was based on the knowledge of the full range of chemical reactions and associated kinetics. In this study, equations developed by Leahey and Schroeder were used to estimate flame lengths, areas and volumes as functions of flare stack exit velocity, stoichiometric mixing ratio and wind speed. This was followed by an estimate of heats released as part of the combustion process. This was derived from the knowledge of the flame dimensions together with an assumed flame temperature of 1200 K. Combustion efficiencies were then obtained by taking the ratio of estimated actual heat release values to those associated with complete combustion. It was concluded that combustion efficiency decreases significantly with wind speed increases from 1 to 6 m/s. After that initial increase, combustion efficiencies level off at values between 10 to 15 per cent. Propane and ethane were found to burn more efficiently than methane or hydrogen sulfide. 24 refs., 4 tabs., 1 fig., 1 append

  17. The sun and solar flares

    International Nuclear Information System (INIS)

    McKenna-Lawlor, S.

    1982-01-01

    The subject is discussed under the headings: the sun's core (thermonuclear reactions, energy transfer from core through radiation zone, convection zone, photosphere, chromosphere and corona); the photosphere (convection, granulation, sunspots, magnetic fields, solar cycle, rotation of the sun); solar variability and paleoclimatic records (correlation of low solar activity with increased 14 C production in atmosphere); the chromosphere and corona (turbulence, temperature, coronal streamers, energy transfer); solar flares (cosmic rays, aurorae, spectra, velocity of flares, prominences, mechanisms of flares); the solar wind. (U.K.)

  18. Giant Radio Flare of Cygnus X-3 in September 2016

    Science.gov (United States)

    Trushkin, S. A.; Nizhelskij, N. A.; Tsybulev, P. G.; Zhekanis, G. V.

    2017-06-01

    In the long-term multi-frequency monitoring program of the microquasars with RATAN-600 we discovered the giant flare from X-ray binary Cyg X-3 on 13 September 2016. It happened after 2000 days of the 'quiescent state' of the source passed after the former giant flare (˜18 Jy) in March 2011. We have found that during this quiet period the hard X-ray flux (Swift/BAT, 15-50 keV) and radio flux (RATAN-600, 11 GHz) have been strongly anti-correlated. Both radio flares occurred after transitions of the microquasar to a 'hypersoft' X-ray state that occurred in February 2011 and in the end of August 2016. The giant flare was predicted by us in the first ATel (Trushkin et al. (2016)). Indeed after dramatic decrease of the hard X-ray Swift 15-50 keV flux and RATAN 4- 11 GHz fluxes (a 'quenched state') a small flare (0.7 Jy at 4-11 GHz) developed on MJD 57632 and then on MJD 57644.5 almost simultaneously with X-rays radio flux rose from 0.01 to 15 Jy at 4.6 GHz during few days. The rise of the flaring flux is well fitted by a exponential law that could be a initial phase of the relativistic electrons generation by internal shock waves in the jets. Initially spectra were optically thick at frequencies lower 2 GHz and optically thin at frequencies higher 8 GHz with typical spectral index about -0.5. After maximum of the flare radio fluxes at all frequencies faded out with exponential law.

  19. Arrival times of Flare/Halo CME associated shocks at the Earth: comparison of the predictions of three numerical models with these observations

    Directory of Open Access Journals (Sweden)

    S. M. P. McKenna-Lawlor

    2002-07-01

    Full Text Available The arrival times at L1 of eleven travelling shocks associated both with X-ray flaring and with halo CMEs recorded aboard SOHO/LASCO have been considered. Close to the Sun the velocities of these events were estimated using either Type II radio records or CME speeds. Close to the Earth the shocks were detected in the data of various solar wind plasma, interplanetary magnetic field (IMF and energetic particle experiments aboard SOHO, ACE, WIND, INTERBALL-1 and IMP-8. The real-time shock arrival predictions of three numerical models, namely the Shock Time of Arrival Model (STOA, the Interplanetary Shock Propagation Model (ISPM and the Hakamada-Akasofu-Fry Solar Wind Model (HAFv.2 were tested against these observations. This is the first time that energetic protons (tens of keV to a few MeV have been used to complement plasma and IMF data in validating shock propagation models. The models were all generally successful in predicting shock arrivals. STOA provided the smallest values of the "predicted minus measured" arrival times and displayed a typical predictive precision better than about 8 h. The ratio of the calculated standard deviation of the transit times to Earth to the standard deviation of the measurements was estimated for each model (treating interacting events as composite shocks and these ratios turned out to be 0.60, 1.15 and 1.02 for STOA, ISPM and HAFv.2, respectively. If an event in the sample for which the shock velocity was not well known is omitted from consideration, these ratios become 0.36, 0.76 and 0.81, respectively. Larger statistical samples should now be tested. The ratio of the in situ shock velocity and the "Sun to L1" transit velocity (Vsh /Vtr was in the range of 0.7–0.9 for individual, non-interacting, shock events. HAFv.2 uniquely provided information on those changes in the COBpoint (the moving Connection point on the shock along the IMF to the OBserver which directly influenced energetic particle rise times

  20. Transient magnetic field changes in flares

    International Nuclear Information System (INIS)

    Patterson, A.; Zirin, H.

    1981-01-01

    Magnetic changes have been detected with the videomagnetograph (VMG) at Big Bear during two large flares on 1979 November 5. Two kinds of changes were detected in both flares: a decrease in satellite field strength near the locus of the flare and the appearance of strong transient fields during the peak of the flare. We explain why we believe that the observed effects are real and not instrumental and discuss their significance for flare studies

  1. Solar Features - Solar Flares - Patrol

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The H-alpha Flare Patrol identifies time periods each day when the sun is being continuously monitored by select ground-based solar observatories.

  2. Flare stars and Pascal distribution

    International Nuclear Information System (INIS)

    Muradian, R.

    1994-07-01

    Observed statistics of stellar flares are described by Pascal or Negative Binomial Distribution. The analogy with other classes of chaotic production mechanisms such as hadronic particle multiplicity distributions and photoelectron counts from thermal sources is noticed. (author). 12 refs

  3. Solar flares at submillimeter wavelengths

    Czech Academy of Sciences Publication Activity Database

    Krucker, S.; Gimenez de Castro, C.G.; Hudson, H. S.; Trottet, G.; Bastian, T.S.; Hales, A.S.; Kašparová, Jana; Klein, K. L.; Kretzschmar, M.; Luethi, T.; Mackinnon, A.; Pohjolainen, S.; White, S.M.

    2013-01-01

    Roč. 21, č. 1 (2013), 58/1-58/45 ISSN 0935-4956 Institutional support: RVO:67985815 Keywords : Sun * flares * radio observations Subject RIV: BN - Astronomy, Celestial Mechanics, Astrophysics Impact factor: 13.312, year: 2013

  4. Arrival times of Flare/Halo CME associated shocks at the Earth: comparison of the predictions of three numerical models with these observations

    Directory of Open Access Journals (Sweden)

    S. M. P. McKenna-Lawlor

    Full Text Available The arrival times at L1 of eleven travelling shocks associated both with X-ray flaring and with halo CMEs recorded aboard SOHO/LASCO have been considered. Close to the Sun the velocities of these events were estimated using either Type II radio records or CME speeds. Close to the Earth the shocks were detected in the data of various solar wind plasma, interplanetary magnetic field (IMF and energetic particle experiments aboard SOHO, ACE, WIND, INTERBALL-1 and IMP-8. The real-time shock arrival predictions of three numerical models, namely the Shock Time of Arrival Model (STOA, the Interplanetary Shock Propagation Model (ISPM and the Hakamada-Akasofu-Fry Solar Wind Model (HAFv.2 were tested against these observations. This is the first time that energetic protons (tens of keV to a few MeV have been used to complement plasma and IMF data in validating shock propagation models. The models were all generally successful in predicting shock arrivals. STOA provided the smallest values of the "predicted minus measured" arrival times and displayed a typical predictive precision better than about 8 h. The ratio of the calculated standard deviation of the transit times to Earth to the standard deviation of the measurements was estimated for each model (treating interacting events as composite shocks and these ratios turned out to be 0.60, 1.15 and 1.02 for STOA, ISPM and HAFv.2, respectively. If an event in the sample for which the shock velocity was not well known is omitted from consideration, these ratios become 0.36, 0.76 and 0.81, respectively. Larger statistical samples should now be tested. The ratio of the in situ shock velocity and the "Sun to L1" transit velocity (Vsh /Vtr was in the range of 0.7–0.9 for individual, non-interacting, shock events. HAFv.2 uniquely provided information on those changes in the COBpoint (the moving Connection point on the shock along the IMF to the OBserver which directly influenced energetic

  5. [A clinical study of endodontic flare-ups].

    Science.gov (United States)

    Yeh, S J; Lin, Y T; Lu, S Y

    1994-06-01

    The purpose of this study was to investigate the clinical variables influencing endodontic flare-ups. Three hundred and thirteen teeth receiving endodontic treatment at the Endodontic Department, Chang Gung Memorial Hospital were studied from December 1992 to February 1993. Among them, 21 teeth with significant pain and 9 with apical swelling were noted after the first appointment of treatment. Three teeth with persistent pain and one with apical swelling were also found one week after completion of endodontic therapy. The results showed significant improvement of clinical symptoms and signs one week after completion of endodontic treatment in comparison with pretreatment and after the first appointment (p endodontic flare-ups after the first appointment of treatment (P endodontic flare-ups.

  6. On the possible cyclic recurrence of flare activity of flare stars in the pleiades

    International Nuclear Information System (INIS)

    Mirzoyan, L.V.; Oganyan, G.V.

    1977-01-01

    The flare activity of flare stars in Pleiades is investigated. It is shown that according to flare statistics only one half of the probable Pleiades members with low luminosities have flare activity throughout the observation period. Two assumptions are suggested to explain this contradiction with the concept on the evolutionary importance of the flare star phase which all the dwarf stars go through: cyclic nature of the flare activity and large dispersion in flare activity phase durations for equally luminous stars. Certain evidences to support cyclic flare activity assumption are adduced

  7. Common SphinX and RHESSI observations of solar flares

    Science.gov (United States)

    Mrozek, T.; Gburek, S.; Siarkowski, M.; Sylwester, B.; Sylwester, J.; Gryciuk, M.

    The Polish X-ray spectrofotometer SphinX has observed a great number of solar flares in the year 2009 - during the most quiet solar minimum almost over the last 100 years. Hundreds of flares have been recorded due to excellent sensitivity of SphinX's detectors. The Si-PIN diodes are about 100 times more sensitive to X-rays than GOES X-ray Monitors. SphinX detectors were absolutely calibrated on Earth with a use of the BESSY synchrotron. In space observations were made in the range 1.2-15~keV with 480~eV energy resolution. SphinX data overlap with the low-energy end of the Ramaty High Energy Solar Spectroscopic Imager (RHESSI) data. RHESSI detectors are quite old (7 years in 2009), but still sensitive enough to provide us with observations of extremely weak solar flares such as those which occurred in 2009. We have selected a group of flares simultaneously observed by RHESSI and SphinX and performed a spectroscopic analysis of the data. Moreover, we compared the physical parameters of these flares plasma. Preliminary results of the comparison show very good agreement between both instruments.

  8. Comparison of trunk activity during gait initiation and walking in humans.

    Directory of Open Access Journals (Sweden)

    Jean-Charles Ceccato

    Full Text Available To understand the role of trunk muscles in maintenance of dynamic postural equilibrium we investigate trunk movements during gait initiation and walking, performing trunk kinematics analysis, Erector spinae muscle (ES recordings and dynamic analysis. ES muscle expressed a metachronal descending pattern of activity during walking and gait initiation. In the frontal and horizontal planes, lateroflexion and rotation occur before in the upper trunk and after in the lower trunk. Comparison of ES muscle EMGs and trunk kinematics showed that trunk muscle activity precedes corresponding kinematics activity, indicating that the ES drive trunk movement during locomotion and thereby allowing a better pelvis mobilization. EMG data showed that ES activity anticipates propulsive phases in walking with a repetitive pattern, suggesting a programmed control by a central pattern generator. Our findings also suggest that the programs for gait initiation and walking overlap with the latter beginning before the first has ended.

  9. A comparative study between clinical grading of anterior chamber flare and flare reading using the Kowa laser flare meter.

    Science.gov (United States)

    Konstantopoulou, Kallirroi; Del'Omo, Roberto; Morley, Anne M; Karagiannis, Dimitris; Bunce, Catey; Pavesio, Carlos

    2015-10-01

    To assess the accuracy of standard clinical grading of aqueous flare in uveitis according to the Standardization of Uveitis Nomenclature consensus, and compare the results with the readings of the laser flare meter, Kowa 500. Two examiners clinically graded the flare in 110 eyes. The flare was then measured using the Kowa laser flare meter. Twenty-nine eyes were graded as anterior chamber flare +2; for 18 of these, the clinicians were in agreement, the rest differed by the order of one grade. The range of the laser flare meter for these eyes was 5.2-899.1 photons/ms. The median value was 41.4. Seventy-four eyes were graded with flare +1. Agreement was established in 51 of these eyes. Disagreement for the rest was again by the order of 1, and the flare meter range was 1.1-169.9 photons/ms, median value 18.4. For the clinical measure of flare 0, the clinicians disagreed on three out of five eyes. The flare meter readings ranged from 2.5 to 14.1 photons/ms, median value 9.9. Only two eyes were graded with flare +3 and there was one step disagreement on both of them. We found little evidence of association between the flare readings and intraocular pressure or age. Our findings suggest that clinical evaluation of aqueous flare is subjective. Compared with the Kowa laser flare meter's numeric readings, the discrepancies observed indicate that clinical grading is an approximate science. The laser flare meter provides an accurate, reproducible, non-invasive assessment of aqueous flare that can prove valuable in research and clinical decisions.

  10. ELECTRON ACCELERATION IN CONTRACTING MAGNETIC ISLANDS DURING SOLAR FLARES

    Energy Technology Data Exchange (ETDEWEB)

    Borovikov, D.; Tenishev, V.; Gombosi, T. I. [University of Michigan, Department of Climate and Space Sciences and Engineering, 2455 Hayward Street, Ann Arbor, MI 48104-2143 (United States); Guidoni, S. E. [The Catholic University of America, 620 Michigan Avenue Northeast, Washington, DC 20064 (United States); DeVore, C. R.; Karpen, J. T.; Antiochos, S. K. [Heliophysics Science Division, NASA Goddard Space Flight Center, Greenbelt, MD 20771 (United States)

    2017-01-20

    Electron acceleration in solar flares is well known to be efficient at generating energetic particles that produce the observed bremsstrahlung X-ray spectra. One mechanism proposed to explain the observations is electron acceleration within contracting magnetic islands formed by magnetic reconnection in the flare current sheet. In a previous study, a numerical magnetohydrodynamic simulation of an eruptive solar flare was analyzed to estimate the associated electron acceleration due to island contraction. That analysis used a simple analytical model for the island structure and assumed conservation of the adiabatic invariants of particle motion. In this paper, we perform the first-ever rigorous integration of the guiding-center orbits of electrons in a modeled flare. An initially isotropic distribution of particles is seeded in a contracting island from the simulated eruption, and the subsequent evolution of these particles is followed using guiding-center theory. We find that the distribution function becomes increasingly anisotropic over time as the electrons’ energy increases by up to a factor of five, in general agreement with the previous study. In addition, we show that the energized particles are concentrated on the Sunward side of the island, adjacent to the reconnection X-point in the flare current sheet. Furthermore, our analysis demonstrates that the electron energy gain is dominated by betatron acceleration in the compressed, strengthened magnetic field of the contracting island. Fermi acceleration by the shortened field lines of the island also contributes to the energy gain, but it is less effective than the betatron process.

  11. [Comparison of the differences in pain and the effect of ibuprofen in reducing endodontic flare-up after single-visit root canal therapy between Uyghur and Han patients with chronic apical periodontitis].

    Science.gov (United States)

    Yan, Lei; Wang, Xin-Ying; Wan, Na; Wu, Pei-Ling

    2017-04-01

    To compare the incidence of postoperative pain of chronic periapical periodontitis patients with root canal therapy between Han and Uygur, and the effect of ibuprofen in reducing endodontic flare-up after single-visit root canal therapy between Uyghur and Han patients with chronic apical periodontitis, in order to provide a basis for clinical administration. Two hundred and fifty Uyghur and 250 Han patients with chronic apical periodontitis in their incisor, canine and premolar were collected, and randomly divided into 2 groups: experimental group and control group. After single-visit root canal therapy, Uyghur patients in the experimental group (UEG) and Han patients in the experimental group (HEG) took ibuprofen capsules according to the drug instructions; while Uyghur patients in the control group (UCG) and Han patients in the control group(HCG) took placebo capsules. Both doctors and patient kept blind from the drug capsules and group of the patients. The incidence, degree of endodontic Flare-up at 6, 12, 24, 48, 72 hours and 1 week after root canal therapy were recorded and analyzed by χ 2 test using SPSS11.0 software package. During the experiment, the incidence of E flare-up in Uygur patients was higher than in Han patients; the incidence of E flare-up in different groups in orders from high to low was: UCG>HCG>UEG>HEG. Chi-square test showed that there were significant differences between the two groups. In view of time distribution, most of flare-up happened between 24~48 hours after root canal therapy with the highest degree in all 4 groups. Regardless of the incidence or degree of flare-up, HEG and HCG were significantly greater than UEG and UCG. Ibuprofen can reduce and prevent flare-up for both Uyghur and Han patients, but it has better effect on Han patients.

  12. Upstream petroleum industry flaring guide : review draft

    International Nuclear Information System (INIS)

    1999-03-01

    The Alberta requirements and expectations for upstream petroleum flaring are presented. Flaring is associated with a wide range of energy activities including oil and gas well drilling and well completion operations. The guide incorporates the recommendations made to the Alberta Energy and Utilities Board (EUB) in June 1998 by the multi-stakeholder Clean Air Strategic Alliance (CASA) on associated or solution gas flaring. Additional requirements which address flaring issues not covered in the CASA report are also included in this guide. The Guide requires a 15 per cent reduction in solution gas flare volume by the end of year 2000 from the 1996 baseline, and a 25 per cent reduction by the end of 2001. The Guide prescribes new flare performance requirements for all flares, within three years for existing solution gas flares, five years for flares at other existing permanent facilities. It sets personal consultation and public notification requirements for new and existing solution gas batteries, and new sulphur recovery requirements for facilities not covered by existing EUB regulations. The Guide also addresses the question of conflict resolution to deal with flaring concerns, the release of flaring and venting data, the proposed reduction of flare limits, progress towards minimizing requirements for electricity generators using otherwise flared gas, annual reporting to the EUB, and management framework review in 2001

  13. Replication Validity of Initial Association Studies: A Comparison between Psychiatry, Neurology and Four Somatic Diseases

    Science.gov (United States)

    Dumas-Mallet, Estelle; Button, Katherine; Boraud, Thomas; Munafo, Marcus; Gonon, François

    2016-01-01

    Context There are growing concerns about effect size inflation and replication validity of association studies, but few observational investigations have explored the extent of these problems. Objective Using meta-analyses to measure the reliability of initial studies and explore whether this varies across biomedical domains and study types (cognitive/behavioral, brain imaging, genetic and “others”). Methods We analyzed 663 meta-analyses describing associations between markers or risk factors and 12 pathologies within three biomedical domains (psychiatry, neurology and four somatic diseases). We collected the effect size, sample size, publication year and Impact Factor of initial studies, largest studies (i.e., with the largest sample size) and the corresponding meta-analyses. Initial studies were considered as replicated if they were in nominal agreement with meta-analyses and if their effect size inflation was below 100%. Results Nominal agreement between initial studies and meta-analyses regarding the presence of a significant effect was not better than chance in psychiatry, whereas it was somewhat better in neurology and somatic diseases. Whereas effect sizes reported by largest studies and meta-analyses were similar, most of those reported by initial studies were inflated. Among the 256 initial studies reporting a significant effect (p<0.05) and paired with significant meta-analyses, 97 effect sizes were inflated by more than 100%. Nominal agreement and effect size inflation varied with the biomedical domain and study type. Indeed, the replication rate of initial studies reporting a significant effect ranged from 6.3% for genetic studies in psychiatry to 86.4% for cognitive/behavioral studies. Comparison between eight subgroups shows that replication rate decreases with sample size and “true” effect size. We observed no evidence of association between replication rate and publication year or Impact Factor. Conclusion The differences in reliability

  14. The Flare Irradiance Spectral Model (FISM) and its Contributions to Space Weather Research, the Flare Energy Budget, and Instrument Design

    Science.gov (United States)

    Chamberlin, Phillip

    2008-01-01

    The Flare Irradiance Spectral Model (FISM) is an empirical model of the solar irradiance spectrum from 0.1 to 190 nm at 1 nm spectral resolution and on a 1-minute time cadence. The goal of FISM is to provide accurate solar spectral irradiances over the vacuum ultraviolet (VUV: 0-200 nm) range as input for ionospheric and thermospheric models. The seminar will begin with a brief overview of the FISM model, and also how the Solar Dynamics Observatory (SDO) EUV Variability Experiment (EVE) will contribute to improving FISM. Some current studies will then be presented that use FISM estimations of the solar VUV irradiance to quantify the contributions of the increased irradiance from flares to Earth's increased thermospheric and ionospheric densites. Initial results will also be presented from a study looking at the electron density increases in the Martian atmosphere during a solar flare. Results will also be shown quantifying the VUV contributions to the total flare energy budget for both the impulsive and gradual phases of solar flares. Lastly, an example of how FISM can be used to simplify the design of future solar VUV irradiance instruments will be discussed, using the future NOAA GOES-R Extreme Ultraviolet and X-Ray Sensors (EXIS) space weather instrument.

  15. Properties of an impulsive compact solar flare determined from Solar Maximum Mission X-ray measurements

    Science.gov (United States)

    Linford, G. A.; Wolfson, C. J.

    1988-01-01

    Soft X-ray, hard X-ray magnetogram, and H-alpha data have been analyzed for an impulsive compact solar flare which occurred on May 21, 1985. The derived flare loop dimensions are about 20,000 km length and about 150 km diameter. Measurements of line ratios from the Mg XI ion indicate that the plasma density varied from about 4 x 10 to the 12th/cu cm early in the flare to about 10 to the 12th/cu cm during the flare decay. The initial temperature of this plasma was about 8 x 10 to the 6th K and dropped to about 5 x 10 to the 6th K during the decay phase. The simplest interpretation of the event is one in which the source of the soft X-ray flare emission is confined to a thin loop of very high density.

  16. Properties of an impulsive compact solar flare determined from Solar Maximum Mission X-ray measurements

    International Nuclear Information System (INIS)

    Linford, G.A.; Wolfson, C.J.

    1988-01-01

    Soft X-ray, hard X-ray magnetogram, and H-alpha data have been analyzed for an impulsive compact solar flare which occurred on May 21, 1985. The derived flare loop dimensions are about 20,000 km length and about 150 km diameter. Measurements of line ratios from the Mg XI ion indicate that the plasma density varied from about 4 x 10 to the 12th/cu cm early in the flare to about 10 to the 12th/cu cm during the flare decay. The initial temperature of this plasma was about 8 x 10 to the 6th K and dropped to about 5 x 10 to the 6th K during the decay phase. The simplest interpretation of the event is one in which the source of the soft X-ray flare emission is confined to a thin loop of very high density. 44 references

  17. Properties of an impulsive compact solar flare determined from Solar Maximum Mission X-ray measurements

    Energy Technology Data Exchange (ETDEWEB)

    Linford, G.A.; Wolfson, C.J.

    1988-08-01

    Soft X-ray, hard X-ray magnetogram, and H-alpha data have been analyzed for an impulsive compact solar flare which occurred on May 21, 1985. The derived flare loop dimensions are about 20,000 km length and about 150 km diameter. Measurements of line ratios from the Mg XI ion indicate that the plasma density varied from about 4 x 10 to the 12th/cu cm early in the flare to about 10 to the 12th/cu cm during the flare decay. The initial temperature of this plasma was about 8 x 10 to the 6th K and dropped to about 5 x 10 to the 6th K during the decay phase. The simplest interpretation of the event is one in which the source of the soft X-ray flare emission is confined to a thin loop of very high density. 44 references.

  18. The evaluation of endodontic flare-ups and their relationship to various risk factors.

    Science.gov (United States)

    Onay, Emel Olga; Ungor, Mete; Yazici, A Canan

    2015-11-14

    To evaluate the incidence of flare-ups and identify the risk factors including age, gender, tooth type, number of root canals, initial diagnosis, the type of irrigation regimen, treatment modality and the number of visits, in patients who received root canal treatment from January 2002 to January 2008. Records of 1819 teeth belonging to 1410 patients treated by 1 endodontics specialist during 6-year period were kept. Patient, tooth, and treatment characteristics were evaluated and the relationships between these characteristics and flare-ups were studied. Statistical analysis was carried out by using Pearson Chi-square test, Fisher's Exact test, and Binary Logistic regression analyses. The incidence of flare-ups was 59 (3.2 %) out of 1819 teeth that received endodontic therapy. Pulpal necrosis without periapical pathosis was the most common indication for flare-up (6 %) (p flare-ups compared to those with single appointments (OR: 3.14, CI: 1.414-7.009, p flare-ups regarding to age, gender, tooth type, number of root canals, treatment modality, and the irrigation solutions that used during the treatment. The incidence of flare-up is minimal when teeth are treated in one visit. Absence of a periapical lesion in necrotic teeth is a significant risk factor for flare-ups.

  19. How is symptom flare defined in musculoskeletal conditions: A systematic review.

    Science.gov (United States)

    Costa, Nathalia; Ferreira, Manuela L; Cross, Marita; Makovey, Joanna; Hodges, Paul W

    2018-01-31

    To systematically review the definitions for "flare" in musculoskeletal conditions, the derivation processes, and validation of definitions for the 12 most burdensome musculoskeletal conditions. A literature search was conducted in MEDLINE, EMBASE, CINAHL, AMED, PsycInfo and Lilacs to identify studies that investigated derivation or validation of a flare definition, which we considered as a phrase or group of domains. Reports of derivation of flare definitions were identified for 9/12 musculoskeletal conditions. Validation of flare definitions was initiated for 4/12. For each condition, different derivation and validation methods have been used, with variable levels of consumer involvement, and in some cases different groups have worked on the process in parallel. Although some flare definitions began simply as "symptom worsening" or "change in treatment", most evolved into multidimensional definitions that include: pain, impact on function, joint symptoms, and emotional elements. Frequently initial attempts to create phrase to define the term flare evolved into consensus on the breadth of domains involved. Validation has compared flare definitions/domains against measures of disease activity, clinicians' diagnosis, response to drug therapy, or a combination. This review suggests that greater characterisation and definition of flares in musculoskeletal conditions are linked to the inclusion of multiple perspectives, multifaceted domains and compound comparators for their validation. Further work is required to optimise and test the derived definitions for most musculoskeletal conditions. As some elements are disease-specific, flare definitions cannot be extrapolated to other conditions. Research regarding flare in back pain (most burdensome disease) is limited. Copyright © 2018 Elsevier Inc. All rights reserved.

  20. What's an Asthma Flare-Up?

    Science.gov (United States)

    ... Staying Safe Videos for Educators Search English Español Asthma Flare-Ups KidsHealth / For Parents / Asthma Flare-Ups ... español ¿Qué es una crisis asmática? What Are Asthma Flare-Ups? Keeping asthma under control helps kids ...

  1. Design alternatives, components key to optimum flares

    International Nuclear Information System (INIS)

    Cunha-Leite, O.

    1992-01-01

    A properly designed flare works as an emissions control system with greater than 98% combustion efficiency. The appropriate use of steam, natural gas, and air-assisted flare tips can result in smokeless combustion. Ground flare, otherwise the elevated flare is commonly chosen because it handles larger flow releases more economically. Flaring has become more complicated than just lighting up waste gas. Companies are increasingly concerned about efficiency. In addition, U.S. Occupational Safety and Health Administration (OSHA) and U.S. Environmental Protection Agency (EPA) have become more active, resulting in tighter regulations on both safety and emissions control. These regulations have resulted in higher levels of concern and involvement in safety and emissions matters, not to mention smoke, noise, glare, and odor. This first to two articles on flare design and components looks at elevated flares, flare tips, incinerator-type flares, flare pilots, and gas seals. Part 2 will examine knockout drums, liquid-seal drums, ignition systems, ground flares, vapor recovery systems, and flare noise

  2. Instant CloudFlare starter

    CERN Document Server

    Dickey, Jeff

    2013-01-01

    Get to grips with a new technology, understand what it is and what it can do for you, and then get to work with the most important features and tasks. Written as a practical guide, CloudFlare Starter will show you all you need to know in order to effectively improve your online presence in a multitude of different ways. ""Instant CloudFlare Starter"" is a practical yet accessible guide for website owners looking to optimize their site for optimum security and maximum performance.

  3. An initial limited biodosimetry inter-comparison exercise: FOI and DRDC Ottawa

    International Nuclear Information System (INIS)

    Stricklin, D.; Wilkinson, D.; Arvidsson, E.; Prud'homme-Lalonde, L.; Thorleifson, E.; Mullins, D.; Lachapelle, S.

    2007-01-01

    While biodosimetry is a valuable tool in radiation dose assessment, the dicentric assay, which is the most validated method to date, requires some degree of technical competence. Recently published ISO guidelines indicate the need for documenting competence and establishment of quality control programs. Inter-laboratory comparisons are required to document the ability to perform reproducible and accurate assessments. FOI and DRDC Ottawa have conducted an initial limited biodosimetry exercise inter-comparison for quality assurance purposes. The exercise involved blinded exchange of three previously prepared slides from each laboratory from samples that had been evaluated for each lab's dose-response curve. Approximately 100 cells from each slide were evaluated and aberration frequencies reported and compared to the expected frequencies. The limited number of cells evaluated for each sample could not permit statistically distinguishing a 20% difference in all the samples. However, the results indicated reasonable agreement in analyses for all samples for triage purposes. Comparison of aberration frequencies, rather than dose estimates, further illustrates consistent scoring criteria between the two laboratories. The exercise conducted by FOI and DRDC Ottawa provided an efficient means of documenting expertise. Such cooperation further establishes the international biodosimetry network and ensures our readiness for emergency response

  4. Fusobacterium nucleatum in endodontic flare-ups.

    Science.gov (United States)

    Chávez de Paz Villanueva, Luis Eduardo

    2002-02-01

    The extent to which Fusobacterium nucleatum is recovered from root canals of teeth that present with an interappointment flare-up following endodontic instrumentation was investigated. Included in the study were 28 patients that sought emergency treatment after initiation of root canal therapy. Only non-painful teeth that had been treated because of a necrotic pulp and periapical inflammatory lesion were studied. Root canal samples for bacterial analysis were taken, transported to a bacteriological laboratory, and processed for a semiquantitative assessment of bacterial isolates. Bacterial findings were correlated with self-assessed pain intensity as recorded by means of a Visual Analogue Scale. Clinical presentation of swelling and presence of exudate in the treated root canals were also linked. Bacteria were recovered from all teeth examined. Gram-negative anaerobic coccoid rods (Prevotella species and Porphyromonas species) were frequent isolates. All teeth in patients who were reported to be in severe pain (Visual Analogue Scale > or = 6) displayed F nucleatum. Nine out of 10 of these teeth also had swelling and exudate in the root canals. Samples from the remaining patients that had teeth with less pain score showed a variable bacterial recovery. None of these teeth displayed F nucleatum. F nucleatum appears to be associated with the development of the most severe forms of interappointment endodontic flare-ups.

  5. Radiating shocks and condensations in flares

    International Nuclear Information System (INIS)

    Fisher, G.H.

    1985-01-01

    Rapid energy release (by either ''thick target'' (beam) or ''thermal'' models of heating) in solar flare loop models usually leads to ''chromospheric evaporation,'' the process of heating cool chromospheric material to coronal temperatures, and the resulting increase in hot soft x-ray emitting plasma. The evaporated plasma flows up into the coronal portion of the loop because of the increased pressure in the evaporated region. However, the pressure increase also leads to a number of interesting phenomena in the flare chromosphere, which will be the subject of this paper. The sudden pressure increase in the evaporated plasma initiates a downward moving ''chromospheric condensation,'' an overdense region which gradually decelerates as it accretes material and propagates into the gravitationally stratified chromosphere. Solutions to an equation of motion for this condensation shows that its motion decays after about one minute of propagation into the chromosphere. When the front of this downflowing region is supersonic relative to the atmosphere ahead of it, a radiating shock will form. If the downflow is rapid enough, the shock strength should be sufficient to excite uv radiation normally associated with the transition region, and furthermore, the radiating shock will be brighter than the transition region. These results lead to a number of observationally testable relationships between the optical and ultraviolet spectra from the condensation and radiating shock

  6. Energy Release in Solar Flares,

    Science.gov (United States)

    1982-10-01

    Plasma Research, Stanford University P. Kaufmanu CRAA/CNPq -Conseiho lacional de Desenvolvimento Cientifico e Tecnologico, Slo Paulo, SP, Brasil D.F...three phases of energy release in solar flares (Sturrock, 1980). However, a recent article by Feldman e a.. (1982) points to a significant

  7. Thermal Fronts in Solar Flares

    Czech Academy of Sciences Publication Activity Database

    Karlický, Marian

    2015-01-01

    Roč. 814, č. 2 (2015), 153/1-153/7 ISSN 0004-637X R&D Projects: GA ČR GAP209/12/0103 Institutional support: RVO:67985815 Keywords : plasmas * Sun flares * radio radiation Subject RIV: BN - Astronomy, Celestial Mechanics, Astrophysics Impact factor: 5.909, year: 2015

  8. Solar Flare Aimed at Earth

    Science.gov (United States)

    2002-01-01

    At the height of the solar cycle, the Sun is finally displaying some fireworks. This image from the Solar and Heliospheric Observatory (SOHO) shows a large solar flare from June 6, 2000 at 1424 Universal Time (10:24 AM Eastern Daylight Savings Time). Associated with the flare was a coronal mass ejection that sent a wave of fast moving charged particles straight towards Earth. (The image was acquired by the Extreme ultaviolet Imaging Telescope (EIT), one of 12 instruments aboard SOHO) Solar activity affects the Earth in several ways. The particles generated by flares can disrupt satellite communications and interfere with power transmission on the Earth's surface. Earth's climate is tied to the total energy emitted by the sun, cooling when the sun radiates less energy and warming when solar output increases. Solar radiation also produces ozone in the stratosphere, so total ozone levels tend to increase during the solar maximum. For more information about these solar flares and the SOHO mission, see NASA Science News or the SOHO home page. For more about the links between the sun and climate change, see Sunspots and the Solar Max. Image courtesy SOHO Extreme ultaviolet Imaging Telescope, ESA/NASA

  9. The Crab Nebula flaring activity

    Energy Technology Data Exchange (ETDEWEB)

    Montani, G., E-mail: giovanni.montani@frascati.enea.it [ENEA – C.R, UTFUS-MAG, via Enrico Fermi 45, I-00044 Frascati (RM) (Italy); Dipartimento di Fisica, Università di Roma “Sapienza”, p.le Aldo Moro 5, I-00185 Roma (Italy); Bernardini, M.G. [INAF – Osservatorio Astronomico di Brera, via Bianchi 46, I-23807 Merate (Italy)

    2014-12-12

    The discovery made by AGILE and Fermi of a short time scale flaring activity in the gamma-ray energy emission of the Crab Nebula is a puzzling and unexpected feature, challenging particle acceleration theory. In the present work we propose the shock-induced magnetic reconnection as a viable mechanism to explain the Crab flares. We postulate that the emitting region is located at ∼10{sup 15} cm from the central pulsar, well inside the termination shock, which is exactly the emitting region size as estimated by the overall duration of the phenomenon ∼1 day. We find that this location corresponds to the radial distance at which the shock-induced magnetic reconnection process is able to accelerate the electrons up to a Lorentz factor ∼10{sup 9}, as required by the spectral fit of the observed Crab flare spectrum. The main merit of the present analysis is to highlight the relation between the observational constraints to the flare emission and the radius at which the reconnection can trigger the required Lorentz factor. We also discuss different scenarios that can induce the reconnection. We conclude that the existence of a plasma instability affecting the wind itself as the Weibel instability is the privileged scenario in our framework.

  10. Incidence and factors related to flare-ups in a graduate endodontic programme.

    Science.gov (United States)

    Iqbal, M; Kurtz, E; Kohli, M

    2009-02-01

    To investigate the incidence and factors related to endodontic flare-ups in nonsurgical root canal treatment (NSRCT) cases completed by graduate endodontic residents at University of Pennsylvania, USA. Residents at University of Pennsylvania enter all clinical patient records into an electronic database called PennEndo database. Analysis of records of 6580 patients treated from September 2000 to July 2005 revealed a total of 26 patients with flare-ups (0.39%). Patients were categorized to have undergone flare-up when they attended for an unscheduled visit and active treatment, and when they suffered from severe pain and or swelling after initiation or continuation of NSRCT. SAS software was used to develop a logistic regression model with flare-up as a dependent variable. Independent variables included in the model were: history of previous pain, one vs. two visit NSRCT, periapical diagnosis, tooth type, rotary versus hand instrumentation, and lateral versus vertical compaction of gutta-percha. The odds for developing a flare-up in teeth with a periapical radiolucency were 9.64 times greater than teeth without a periapical radiolucency (P = 0.0090). There was no statistically significant difference in flare-ups between one and two visits NSRCT. The odds of developing a flare-up increased 40 fold when NSRCT was completed in three or more visits. However, this result may have been confounded by addition of an unscheduled visit in patients suffering from flare-ups. Other independent variables did not have any statistically significant correlations. A low percentage of patients experienced flare-ups during NSRCT procedures. The presence of a periapical lesion was the single most important predictor of flare-ups during NSRCT.

  11. Flare observation by the satellite 'Hinotori'

    International Nuclear Information System (INIS)

    Tanaka, Toshio

    1981-01-01

    The satellite ''Hinotori'' makes 5 rounds a day and is doing flare observation. The total observation days amounted to 94 days. Among the observed flares, the quiet mode flares were picked up from the reproduced data. The plot of the time variation of flares was obtained for four energy bands, HXM-1 (17 to 40 keV), HXM2 - 7 (over 40 keV), FLM-L (1 to 5 keV) and FLM-H (5 to 12 keV). At present, the judge of flares is made by using hard X-ray of the HXM-1 plot. False signals were completely removed. A large percentage of big flares was collected by Hinotori, eleven X-class flares were recorded. The operation status of ''Hinotori'' has been in good condition. The spin frequency has increased with a constant rate. (Kato, T.)

  12. X-ray line coincidence photopumping in a solar flare

    Science.gov (United States)

    Keenan, F. P.; Poppenhaeger, K.; Mathioudakis, M.; Rose, S. J.; Flowerdew, J.; Hynes, D.; Christian, D. J.; Nilsen, J.; Johnson, W. R.

    2018-03-01

    Line coincidence photopumping is a process where the electrons of an atomic or molecular species are radiatively excited through the absorption of line emission from another species at a coincident wavelength. There are many instances of line coincidence photopumping in astrophysical sources at optical and ultraviolet wavelengths, with the most famous example being Bowen fluorescence (pumping of O III 303.80 Å by He II), but none to our knowledge in X-rays. However, here we report on a scheme where a He-like line of Ne IX at 11.000 Å is photopumped by He-like Na X at 11.003 Å, which predicts significant intensity enhancement in the Ne IX 82.76 Å transition under physical conditions found in solar flare plasmas. A comparison of our theoretical models with published X-ray observations of a solar flare obtained during a rocket flight provides evidence for line enhancement, with the measured degree of enhancement being consistent with that expected from theory, a truly surprising result. Observations of this enhancement during flares on stars other than the Sun would provide a powerful new diagnostic tool for determining the sizes of flare loops in these distant, spatially unresolved, astronomical sources.

  13. Statistical study of spatio-temporal distribution of precursor solar flares associated with major flares

    Science.gov (United States)

    Gyenge, N.; Ballai, I.; Baranyi, T.

    2016-07-01

    The aim of the present investigation is to study the spatio-temporal distribution of precursor flares during the 24 h interval preceding M- and X-class major flares and the evolution of follower flares. Information on associated (precursor and follower) flares is provided by Reuven Ramaty High Energy Solar Spectroscopic Imager (RHESSI). Flare list, while the major flares are observed by the Geostationary Operational Environmental Satellite (GOES) system satellites between 2002 and 2014. There are distinct evolutionary differences between the spatio-temporal distributions of associated flares in about one-day period depending on the type of the main flare. The spatial distribution was characterized by the normalized frequency distribution of the quantity δ (the distance between the major flare and its precursor flare normalized by the sunspot group diameter) in four 6 h time intervals before the major event. The precursors of X-class flares have a double-peaked spatial distribution for more than half a day prior to the major flare, but it changes to a lognormal-like distribution roughly 6 h prior to the event. The precursors of M-class flares show lognormal-like distribution in each 6 h subinterval. The most frequent sites of the precursors in the active region are within a distance of about 0.1 diameter of sunspot group from the site of the major flare in each case. Our investigation shows that the build-up of energy is more effective than the release of energy because of precursors.

  14. KEPLER FLARES. II. THE TEMPORAL MORPHOLOGY OF WHITE-LIGHT FLARES ON GJ 1243

    Energy Technology Data Exchange (ETDEWEB)

    Davenport, James R. A.; Hawley, Suzanne L.; Johnson, Emily C.; Peraza, Jesus; Jansen, Tiffany C.; Larsen, Daniel M. [Department of Astronomy, University of Washington, P.O. Box 351580, Seattle, WA 98195 (United States); Hebb, Leslie [Department of Physics, Hobart and William Smith Colleges, 300 Pulteney Street, Geneva, NY 14456 (United States); Wisniewski, John P.; Malatesta, Michael; Keil, Marcus; Silverberg, Steven M.; Scheffler, Matthew S.; Berdis, Jodi R. [HL Dodge Department of Physics and Astronomy, University of Oklahoma, 440 W Brooks Street, Norman, OK 73019 (United States); Kowalski, Adam F. [NASA Goddard Space Flight Center, Code 671, Greenbelt, MD 20771 (United States); Hilton, Eric J., E-mail: jrad@astro.washington.edu [Universe Sandbox, 911 E. Pike Street #333, Seattle, WA 98122 (United States)

    2014-12-20

    We present the largest sample of flares ever compiled for a single M dwarf, the active M4 star GJ 1243. Over 6100 individual flare events, with energies ranging from 10{sup 29} to 10{sup 33} erg, are found in 11 months of 1 minute cadence data from Kepler. This sample is unique for its completeness and dynamic range. We have developed automated tools for finding flares in short-cadence Kepler light curves, and performed extensive validation and classification of the sample by eye. From this pristine sample of flares we generate a median flare template. This template shows that two exponential cooling phases are present during the white-light flare decay, providing fundamental constraints for models of flare physics. The template is also used as a basis function to decompose complex multi-peaked flares, allowing us to study the energy distribution of these events. Only a small number of flare events are not well fit by our template. We find that complex, multi-peaked flares occur in over 80% of flares with a duration of 50 minutes or greater. The underlying distribution of flare durations for events 10 minutes and longer appears to follow a broken power law. Our results support the idea that sympathetic flaring may be responsible for some complex flare events.

  15. KEPLER FLARES. II. THE TEMPORAL MORPHOLOGY OF WHITE-LIGHT FLARES ON GJ 1243

    International Nuclear Information System (INIS)

    Davenport, James R. A.; Hawley, Suzanne L.; Johnson, Emily C.; Peraza, Jesus; Jansen, Tiffany C.; Larsen, Daniel M.; Hebb, Leslie; Wisniewski, John P.; Malatesta, Michael; Keil, Marcus; Silverberg, Steven M.; Scheffler, Matthew S.; Berdis, Jodi R.; Kowalski, Adam F.; Hilton, Eric J.

    2014-01-01

    We present the largest sample of flares ever compiled for a single M dwarf, the active M4 star GJ 1243. Over 6100 individual flare events, with energies ranging from 10 29 to 10 33 erg, are found in 11 months of 1 minute cadence data from Kepler. This sample is unique for its completeness and dynamic range. We have developed automated tools for finding flares in short-cadence Kepler light curves, and performed extensive validation and classification of the sample by eye. From this pristine sample of flares we generate a median flare template. This template shows that two exponential cooling phases are present during the white-light flare decay, providing fundamental constraints for models of flare physics. The template is also used as a basis function to decompose complex multi-peaked flares, allowing us to study the energy distribution of these events. Only a small number of flare events are not well fit by our template. We find that complex, multi-peaked flares occur in over 80% of flares with a duration of 50 minutes or greater. The underlying distribution of flare durations for events 10 minutes and longer appears to follow a broken power law. Our results support the idea that sympathetic flaring may be responsible for some complex flare events

  16. Organic carbon degradation in arctic marine sediments, Svalbard: A comparison of initial and terminal steps

    DEFF Research Database (Denmark)

    Arnosti, C.; Jørgensen, BB

    2006-01-01

    carbohydrate concentrations were comparable to those measured in more temperate sediments, and likely comprise a considerable fraction of porewater dissolved organic carbon. A comparison of dissolved carbohydrate inventories with hydrolysis and sulfate reduction rates suggests that the turnover of carbon......Degradation of marine organic matter under anoxic conditions involves microbial communities working in concert to remineralize complex substrates to CO2. In order to investigate the coupling between the initial and terminal steps of this sequence in permanently cold sediments, rates...... of extracellular enzymatic hydrolysis and sulfate reduction were measured in parallel cores collected from 5 fjords on the west and northwest coast of Svalbard, in the high Arctic. Inventories of total dissolved carbohydrates were also measured in order to evaluate their potential role in carbon turnover...

  17. Transition Region Emission and the Energy Input to Thermal Plasma in Solar Flares

    Science.gov (United States)

    Holman, Gordon D.; Holman, Gordon D.; Dennis, Brian R.; Haga, Leah; Raymond, John C.; Panasyuk, Alexander

    2005-01-01

    Understanding the energetics of solar flares depends on obtaining reliable determinations of the energy input to flare plasma. X-ray observations of the thermal bremsstrahlung from hot flare plasma provide temperatures and emission measures which, along with estimates of the plasma volume, allow the energy content of this hot plasma to be computed. However, if thermal energy losses are significant or if significant energy goes directly into cooler plasma, this is only a lower limit on the total energy injected into thermal plasma during the flare. We use SOHO UVCS observations of O VI flare emission scattered by coronal O VI ions to deduce the flare emission at transition region temperatures between 100,000 K and 1 MK for the 2002 July 23 and other flares. We find that the radiated energy at these temperatures significantly increases the deduced energy input to the thermal plasma, but by an amount that is less than the uncertainty in the computed energies. Comparisons of computed thermal and nonthermal electron energies deduced from RHESSI, GOES, and UVCS are shown.

  18. COMPTEL gamma-ray observations of the C4 solar flare on 20 January 2000

    International Nuclear Information System (INIS)

    Young, C.A.; Arndt, M.B.; Bennett, K.; Winkler, C.; Connors, A.; Debrunner, H.; Diehl, R.; Rank, G.; Schoenfelder, V.; McConnell, M.; Miller, R.S.; Ryan, J.M.

    2001-01-01

    The 'Pre-SMM' (Vestrand and Miller 1998) picture of gamma-ray line (GRL) flares was that they are relatively rare events. This picture was quickly put in question with the launch of the Solar Maximum Mission (SMM). Over 100 GRL flares were seen with sizes ranging from very large GOES class events (X12) down to moderately small events (M2). It was argued by some (Bai 1986) that this was still consistent with the idea that GRL events are rare. Others, however, argued the opposite (Vestrand 1988; Cliver, Crosby and Dennis 1994), stating that the lower end of this distribution was just a function of SMM's sensitivity. They stated that the launch of the Compton Gamma-ray Observatory (CGRO) would in fact continue this distribution to show even smaller GRL flares. In response to a BACODINE cosmic gamma-ray burst alert, COMPtonTELescope on the CGRO recorded gamma rays above 1 MeV from the C4 flare at 0221 UT 20 January 2000. This event, though at the limits of COMPTEL's sensitivity, clearly shows a nuclear line excess above the continuum. Using new spectroscopy techniques we were able to resolve individual lines. This has allowed us to make a basic comparison of this event with the GRL flare distribution from SMM and also compare this flare with a well-observed large GRL flare seen by OSSE

  19. Internal and External Reconnection Series Homologous Solar Flares

    Science.gov (United States)

    Sterling, Alphonse C.; Moore, Ronald L.

    2001-01-01

    Using data from the extreme ultraviolet imaging telescope (EIT) on SOHO and the soft X-ray telescope (SXT) on Yohkoh, we examine a series of morphologically homologous solar flares occurring in National Oceanic and Atmospheric Administration (NOAA) active region 8210 over May 1-2, 1998. An emerging flux region (EFR) impacted against a sunspot to the west and next to a coronal hole to the east is the source of the repeated flaring. An SXT sigmoid parallels the EFR's neutral line at the site of the initial flaring in soft X rays. In EIT each flaring episode begins with the formation of a crinkle pattern external to the EFR. These EIT crinkles move out from, and then in toward, the EFR with velocities approx. 20 km/ s. A shrinking and expansion of the width of the coronal hole coincides with the crinkle activity, and generation and evolution of a postflare loop system begins near the time of crinkle formation. Using a schematic based on magnetograms of the region, we suggest that these observations are consistent with the standard reconnection-based model for solar eruptions but are modified by the presence of the additional magnetic fields of the sunspot and coronal hole. In the schematic, internal reconnection begins inside of the EFR-associated fields, unleashing a flare, postflare loops, and a coronal mass ejection (CME). External reconnection, first occurring between the escaping CME and the coronal hole field and second occurring between fields formed as a result of the first external reconnection, results in the EIT crinkles and changes in the coronal hole boundary. By the end of the second external reconnection, the initial setup is reinstated; thus the sequence can repeat, resulting in morphologically homologous eruptions. Our inferred magnetic topology is similar to that suggested in the "breakout model" of eruptions although we cannot determine if our eruptions are released primarily by the breakout mechanism (external reconnection) or, alternatively

  20. Initial Comparison of Baseline Physical and Mechanical Properties for the VHTR Candidate Graphite Grades

    Energy Technology Data Exchange (ETDEWEB)

    Carroll, Mark C. [Idaho National Lab. (INL), Idaho Falls, ID (United States). VHTR Program

    2014-09-01

    High-purity graphite is the core structural material of choice in the Very High Temperature Reactor (VHTR) design, a graphite-moderated, helium-cooled configuration capable of producing thermal energy for power generation as well as process heat for industrial applications that require temperatures higher than the outlet temperatures of present nuclear reactors. The Baseline Graphite Characterization Program is establishing accurate as-manufactured mechanical and physical property distributions in nuclear-grade graphites by providing comprehensive data that captures the level of variation in measured values. In addition to providing a thorough comparison between these values in different graphite grades, the program is also carefully tracking individual specimen source, position, and orientation information in order to provide comparisons both in specific properties and in the associated variability between different lots, different billets, and different positions from within a single billet. This report is a preliminary comparison between each of the grades of graphite that are considered “candidate” grades from four major international graphite producers. These particular grades (NBG-18, NBG-17, PCEA, IG-110, and 2114) are the major focus of the evaluations presently underway on irradiated graphite properties through the series of Advanced Graphite Creep (AGC) experiments. NBG-18, a medium-grain pitch coke graphite from SGL from which billets are formed via vibration molding, was the favored structural material in the pebble-bed configuration. NBG-17 graphite from SGL is essentially NBG-18 with the grain size reduced by a factor of two. PCEA, petroleum coke graphite from GrafTech with a similar grain size to NBG-17, is formed via an extrusion process and was initially considered the favored grade for the prismatic layout. IG-110 and 2114, from Toyo Tanso and Mersen (formerly Carbone Lorraine), respectively, are fine-grain grades produced via an isomolding

  1. The Effects of Flare Definitions on the Statistics of Derived Flare Distrubtions

    Science.gov (United States)

    Ryan, Daniel; Dominique, Marie; Seaton, Daniel B.; Stegen, Koen; White, Arthur

    2016-05-01

    The statistical examination of solar flares is crucial to revealing their global characteristics and behaviour. However, statistical flare studies are often performed using standard but basic flare detection algorithms relying on arbitrary thresholds which may affect the derived flare distributions. We explore the effect of the arbitrary thresholds used in the GOES event list and LYRA Flare Finder algorithms. We find that there is a small but significant relationship between the power law exponent of the GOES flare peak flux frequency distribution and the algorithms’ flare start thresholds. We also find that the power law exponents of these distributions are not stable but appear to steepen with increasing peak flux. This implies that the observed flare size distribution may not be a power law at all. We show that depending on the true value of the exponent of the flare size distribution, this deviation from a power law may be due to flares missed by the flare detection algorithms. However, it is not possible determine the true exponent from GOES/XRS observations. Additionally we find that the PROBA2/LYRA flare size distributions are clearly non-power law. We show that this is consistent with an insufficient degradation correction which causes LYRA absolute irradiance values to be unreliable. This means that they should not be used for flare statistics or energetics unless degradation is adequately accounted for. However they can be used to study time variations over shorter timescales and for space weather monitoring.

  2. Diagnostics of electron-heated solar flare models. III - Effects of tapered loop geometry and preheating

    Science.gov (United States)

    Emslie, A. G.; Li, Peng; Mariska, John T.

    1992-01-01

    A series of hydrodynamic numerical simulations of nonthermal electron-heated solar flare atmospheres and their corresponding soft X-ray Ca XIX emission-line profiles, under the conditions of tapered flare loop geometry and/or a preheated atmosphere, is presented. The degree of tapering is parameterized by the magnetic mirror ratio, while the preheated atmosphere is parameterized by the initial upper chromospheric pressure. In a tapered flare loop, it is found that the upward motion of evaporated material is faster compared with the case where the flare loop is uniform. This is due to the diverging nozzle seen by the upflowing material. In the case where the flare atmosphere is preheated and the flare geometry is uniform, the response of the atmosphere to the electron collisional heating is slow. The upward velocity of the hydrodynamic gas is reduced due not only to the large coronal column depth, but also to the increased inertia of the overlying material. It is concluded that the only possible electron-heated scenario in which the predicted Ca XIX line profiles agree with the BCS observations is when the impulsive flare starts in a preheated dense corona.

  3. Deep Flare Net (DeFN) Model for Solar Flare Prediction

    Science.gov (United States)

    Nishizuka, N.; Sugiura, K.; Kubo, Y.; Den, M.; Ishii, M.

    2018-05-01

    We developed a solar flare prediction model using a deep neural network (DNN) named Deep Flare Net (DeFN). This model can calculate the probability of flares occurring in the following 24 hr in each active region, which is used to determine the most likely maximum classes of flares via a binary classification (e.g., ≥M class versus statistically predict flares, the DeFN model was trained to optimize the skill score, i.e., the true skill statistic (TSS). As a result, we succeeded in predicting flares with TSS = 0.80 for ≥M-class flares and TSS = 0.63 for ≥C-class flares. Note that in usual DNN models, the prediction process is a black box. However, in the DeFN model, the features are manually selected, and it is possible to analyze which features are effective for prediction after evaluation.

  4. The comparison of microdose flare-up and multiple dose antagonist protocols based on hCG day estradiol (E2), progesterone (P) and P/E2 ratio among poor responder patients in ICSI-ET cycles.

    Science.gov (United States)

    Cicek, M N; Kahyaoglu, I; Kahyaoglu, S

    2015-02-01

    Elevated progesterone levels surpassing exact treshold values impede endometrial receptivity and decrease clinical pregnancy rates in different responder patients during assisted reproductive techniques. A progesterone (P): estradiol (E2) ratio of > 1 on the day of hCG administration has also been suggested to be a manifestation of low ovarian reserve. The clinical significance of P/E2 ratio on the day of hCG administration was investigated among poor responder patients. Based on the ESHRE Bologna consensus criteria related to poor ovarian response diagnosis, 48 poor responder patients were treated with the microdose flare-up regimen and 34 patients were treated with the multiple-dose GnRH antagonist protocol. All patients were destined to perform a ICSI-ET procedure at the end of the stimulation protocols. Progesterone levels and P/E2 ratios have been detected during controlled ovarian hyperstimulation. In the microdose flare-up group; the duration of stimulation, total gonadotropin dose used and hCG day E2 levels were significantly higher than the multiple dose antagonist group. However, the mean hCG day P/E2 rate in the microdose flare-up group was less than that in the multiple-dose antagonist group. The clinical pregnancy rates were non significantly higher in the multiple dose antagonist protocol group than in microdose flare-up group. Impaired endometrial receptivity caused by elevated P levels results with lower pregnancy rates. Regardless of the selected stimulation protocol, poor responder patients are not prone to exhibit high P and E2 secretion. Increased P/E2 ratio of > 1 on hCG day has limited value to predict cycle outcomes in poor responder patients because of ovarian follicle depletion.

  5. Search for relation between flares and photometric variability outside of flares in EV Lac

    International Nuclear Information System (INIS)

    Rojzman, G.Sh.

    1984-01-01

    The observations of the flare star EV Lac in July-September 1981 have confirmed the existence of photometric variability outside the flares during the night. It was found that, as a rule, a slow increase of brightness in U and B bands during 1-2 hours preceded the flares. It is suggested that the variability outside the flares is the result of the variability of chpomospheric emission lines and continuum that are emitted by the chromospheric preflare formations

  6. Dwarf Star Erupts in Giant Flare

    Science.gov (United States)

    2005-01-01

    This movie taken by NASA'S Galaxy Evolution Explorer shows one of the largest flares, or star eruptions, ever recorded at ultraviolet wavelengths. The star, called GJ 3685A, just happened to be in the Galaxy Evolution Explorer's field of view while the telescope was busy observing galaxies. As the movie demonstrates, the seemingly serene star suddenly exploded once, then even more intensely a second time, pouring out in total about one million times more energy than a typical flare from our Sun. The second blast of light constituted an increase in brightness by a factor of at least 10,000. Flares are huge explosions of energy stemming from a single location on a star's surface. They are caused by the brief destruction of a star's magnetic fields. Many types of stars experience them, though old, small, rapidly rotating 'red dwarfs' like GJ 3685A tend to flare more frequently and dramatically. These stars, called flare stars, can experience powerful eruptions as often as every few hours. Younger stars, in general, also erupt more often. One of the reasons astronomers study flare stars is to gain a better picture and history of flare events taking place on the Sun. A preliminary analysis of the GJ 3685A flare shows that the mechanisms underlying stellar eruptions may be more complex than previously believed. Evidence for the two most popular flare theories was found. Though this movie has been sped up (the actual flare lasted about 20 minutes), time-resolved data exist for each one-hundredth of a second. These observations were taken at 2 p.m. Pacific time, April 24, 2004. In the still image, the time sequence starts in the upper left panel, continues in the upper right, then moves to the lower left and ends in the lower right. The circular and linear features that appear below and to the right of GJ 3685A during the flare event are detector artifacts caused by the extreme brightness of the flare.

  7. FAST CONTRACTION OF CORONAL LOOPS AT THE FLARE PEAK

    International Nuclear Information System (INIS)

    Liu Rui; Wang Haimin

    2010-01-01

    On 2005 September 8, a coronal loop overlying the active region NOAA 10808 was observed in TRACE 171 A to contract at ∼100 km s -1 at the peak of an X5.4-2B flare at 21:05 UT. Prior to the fast contraction, the loop underwent a much slower contraction at ∼6 km s -1 for about 8 minutes, initiating during the flare preheating phase. The sudden switch to fast contraction is presumably corresponding to the onset of the impulsive phase. The contraction resulted in the oscillation of a group of loops located below, with the period of about 10 minutes. Meanwhile, the contracting loop exhibited a similar oscillatory pattern superimposed on the dominant downward motion. We suggest that the fast contraction reflects a suddenly reduced magnetic pressure underneath due either to (1) the eruption of magnetic structures located at lower altitudes or to (2) the rapid conversion of magnetic free energy in the flare core region. Electrons accelerated in the shrinking trap formed by the contracting loop can theoretically contribute to a late-phase hard X-ray burst, which is associated with Type IV radio emission. To complement the X5.4 flare which was probably confined, a similar event observed in SOHO/EIT 195 A on 2004 July 20 in an eruptive, M8.6 flare is briefly described, in which the contraction was followed by the expansion of the same loop leading up to a halo coronal mass ejection. These observations further substantiate the conjecture of coronal implosion and suggest coronal implosion as a new exciter mechanism for coronal loop oscillations.

  8. Flares of Nearby, Mid-to-late M-dwarfs Characterized by the MEarth Project

    Science.gov (United States)

    Mondrik, Nicholas; Charbonneau, David; Irwin, Jonathan; Newton, Elisabeth R.

    2017-01-01

    Stellar flares are both a curse and a blessing: Transit and radial velocity searches for exoplanets are hindered by the variability caused by flares, while the characteristics of this variability offer valuable insight into the magnetic properties of the star. We present an analysis of flare events of nearby, mid-to-late M-dwarfs from the MEarth Project. MEarth consists of a northern and a southern array of 8 telescopes each that photometrically monitors most mid-to-late M-dwarfs within 30 parsecs. Although the initial motivation was to search for exoplanet transits, the cadence of approximately 20 minutes is well-suited to capturing long-lived flares. However, MEarth employs a single, wide, red bandpass, which poses challenges to the robust detection of flare events, which are typically bluer in color. Using MEarth data, our team has recently published trigonometric parallaxes and estimates of rotation periods for an unprecedented number of nearby low-mass stars. We also gathered supplementary optical and near infrared spectra of a subset of these stars. We describe here the properties of the flares detected by MEarth, and explore the relation of the presence of flares on individual stars with stellar parameters such as rotational period, mass, and H-alpha equivalent width. We also provide an estimate of flare rate for individual stars by injecting flares into our pipeline.The MEarth project acknowledges funding from the National Science Foundation and the David and Lucile Packard Foundation Fellowship for Science and Engineering. This work was made possible through the support of a grant from the John Templeton Foundation.

  9. Solar flares through electric current interaction

    International Nuclear Information System (INIS)

    De Jager, C.

    1988-01-01

    The fundamental hypothesis by Alfven and Carlqvist (1967) that solar flares are related to electrical currents in the solar chromosphere and low corona is investigated in the light of modern observations. The authors confirm the important role of currents in solar flares. There must be tens of such current loops (flux threads) in any flare, and this explains the hierarchy of bursts in flares. The authors summarize quantitative data on energies, numbers of particles involved and characteristic times. A special case is the high-energy flare: this one may originate in the same way as less energetic ones, but it occurs in regions with higher magnetic field strength. Because of the high particle energies involved their emission seats live only very briefly; hence the area of emission coincides virtually with the seat of the instability. These flares are therefore the best examples for studying the primary instability leading to the flare. Finally, the authors compare the merits of the original Alfven-Carlqvist idea (that flares originate by current interruption) with the one that they are due to interaction (reconnection) between two or more fluxthreads. The authors conclude that a final decision cannot yet by made, although the observed extremely short time constants of flare bursts seem to demand a reconnection-type instability rather than interruption of a circuit

  10. Continuum emission in the 1980 July 1 solar flare

    International Nuclear Information System (INIS)

    Zirin, H.; Neidig, D.F.

    1981-01-01

    Comparison of continuum measurements of the 1980 July 1 flare at Big Bear Solar Observatory and Sacramento Peak Observatory show strong blue emission kernels with the ratio of Balmer continuum (Bac):lambda3862 continuum:continuum above 4275 A to be about 10:5:1. The blue continuum at 3862 A is too strong to be explained by unresolved lines. The Bac intensity was 2.5 times the photosphere and the strongest lambda3862 continuum was 2 times the photosphere. The brightest continuum kernel occurred late in the flare, after the hard X-ray peak and related in time to an isolated peak in the 2.2 MeV line, suggesting that the continuum was excited by protons above 20 MeV

  11. Quantitative comparison of initial soil erosion processes and runoff generation in Spanish and German vineyards.

    Science.gov (United States)

    Rodrigo Comino, J; Iserloh, T; Lassu, T; Cerdà, A; Keestra, S D; Prosdocimi, M; Brings, C; Marzen, M; Ramos, M C; Senciales, J M; Ruiz Sinoga, J D; Seeger, M; Ries, J B

    2016-09-15

    The aim of this study was to enable a quantitative comparison of initial soil erosion processes in European vineyards using the same methodology and equipment. The study was conducted in four viticultural areas with different characteristics (Valencia and Málaga in Spain, Ruwer-Mosel valley and Saar-Mosel valley in Germany). Old and young vineyards, with conventional and ecological planting and management systems were compared. The same portable rainfall simulator with identical rainfall intensity (40mmh(-1)) and sampling intervals (30min of test duration, collecting the samples at 5-min-intervals) was used over a circular test plot with 0.28m(2). The results of 83 simulations have been analysed and correlation coefficients were calculated for each study area to identify the relationship between environmental plot characteristics, soil texture, soil erosion, runoff and infiltration. The results allow for identification of the main factors related to soil properties, topography and management, which control soil erosion processes in vineyards. The most important factors influencing soil erosion and runoff were the vegetation cover for the ecological German vineyards (with 97.6±8% infiltration coefficients) and stone cover, soil moisture and slope steepness for the conventional land uses. Copyright © 2016 Elsevier B.V. All rights reserved.

  12. Observations of vector magnetic fields in flaring active regions

    Science.gov (United States)

    Chen, Jimin; Wang, Haimin; Zirin, Harold; Ai, Guoxiang

    1994-01-01

    We present vector magnetograph data of 6 active regions, all of which produced major flares. Of the 20 M-class (or above) flares, 7 satisfy the flare conditions prescribed by Hagyard (high shear and strong transverse fields). Strong photospheric shear, however, is not necessarily a condition for a flare. We find an increase in the shear for two flares, a 6-deg shear increase along the neutral line after a X-2 flare and a 13-deg increase after a M-1.9 flare. For other flares, we did not detect substantial shear changes.

  13. The thermal phase of solar flares

    International Nuclear Information System (INIS)

    Hirayama, Tadashi

    1979-01-01

    This paper is described on the observation of the flares, and then the numerical simulation on the structural change in the corona and the chromosphere during the flare is briefly discussed. Most of the flares occur on the active region where the density and the electron temperature are higher than those in the quiet region. The temperature and density increase after the flare started. The temperature of the pre-flare chromosphere is about 6000 K, and it rises during the flare. The temperature of the transition region is about 10 5 K, and the gas pressure increases more than one order of magnitude during the flare. Sometimes, the flaring in the photosphere is observed. Large amount of mass ejected at the time of the flare is observed. Most probable energy source of the flare is the magnetic energy contained in the form of electric current. Liberation of this energy into the corona is discussed in this paper. It is assumed that a column of unit area is standing vertically in the corona, the top being closed. A hydrostatic model of the corona-chromosphere is constructed, in which the heat source is assumed to be in the corona. As the results of calculation, it can be said that the temperature of the flaring corona does not depend upon the liberated energy, the density in the corona increases proportionally to the energy, and particles are supplied from the chromosphere with the upward velocity of about 100 km/s. The gas pressure of the transition region can become up to three orders of magnitude larger. All these are consistent with the observation. Extension of this calculation is also performed. (Kato, T.)

  14. Current gout treatment and flare in South Korea: Prophylactic duration associated with fewer gout flares.

    Science.gov (United States)

    Choi, Hyo Jin; Lee, Chan Hee; Lee, Joo Hyun; Yoon, Bo Young; Kim, Hyoun Ah; Suh, Chang Hee; Choi, Sang Tae; Song, Jung Soo; Joo, Ho Yeon; Choi, Sung Jae; Lee, Ji Soo; Shin, Kee Chul; Baek, Han Joo

    2017-04-01

    To evaluate treatment patterns and clinical factors affecting gout flare in South Korea. We retrospectively examined data from 401 patients seen at nine rheumatology multicenter clinics, under urate lowering therapy (ULT) more than 6 months after stopping prophylactic medication. Demographic data, clinical and laboratory features were collected at the initiation of ULT, upon stopping prophylaxis, and 6 months after. The mean age was 52.2 years and mean disease duration was 25.0 months. The male-to-female count was 387 : 14. The most common ULT starting agent was allopurinol 83.8%. Colchicine (62.3%) was the most commonly prescribed prophylactic agent. During ULT, 134 of the 401 patients (33.4%) experienced at least one gouty attack in the period from stopping prophylaxis to 6 months later. The duration of prophylaxis was different between those with serum uric acid levels below 6 mg/dL and those over 6 mg/dL (P = 0.001). Of the 179 patients (44.6%) who attained target serum uric acid (SUA) levels (6 mg/dL) at the end of prophylaxis, those taking gout flares during ULT. © 2014 Asia Pacific League of Associations for Rheumatology and Wiley Publishing Asia Pty Ltd.

  15. Initial image interpretation of appendicular skeletal radiographs: A comparison between nurses and radiographers

    International Nuclear Information System (INIS)

    Piper, Keith J.; Paterson, Audrey

    2009-01-01

    Purpose: To examine the effect of a short training programme on nurses and radiographers, exploring differences between their performance before and after training. Method: Twenty-two nurses and 18 radiographers interpreted 20 trauma radiographs of the appendicular skeleton before and after training. Normal and abnormal cases of a discriminatory nature were included. Total score, sensitivity and specificity values were calculated for each participant by comparison with an agreed expected answer. The area under the curve (AUC) was analysed using alternate free-response receiver operating characteristic (AFROC) methodology. Results: Significant differences were demonstrated between the total scores achieved by the two groups (pre-training: p = 0.007, post-training: p = 0.04). After training, the mean score increased significantly for both groups (p < 0.001). No significant difference was found between the radiographers mean pre-training scores and the nurses mean post-training scores (p = 0.66). Sensitivity for both groups increased following training, significantly so for the nurses (nurses: p < 0.001, radiographers: p = 0.06). Specificity reduced significantly after training for the nurses (p < 0.001), and increased for the radiographers but not significantly (p = 0.085). After training, there was no significant difference between the two groups in terms of sensitivity (p = 0.09) but specificity was significantly higher for the radiographers (p < 0.001). The radiographers achieved higher pre-training AUC values than the nurses (p = 0.04), although a difference remained after training this did not achieve statistical significance (p = 0.15). The AUC values increased significantly after training for both groups (nurses: p = 0.012, radiographers: p = 0.004) and again there was no significant difference between the radiographers pre-training performance and the nurses post-training performance (p = 0.62). Conclusion: Improvement after training was seen in both groups

  16. Comparison of Medicare claims versus physician adjudication for identifying stroke outcomes in the Women's Health Initiative.

    Science.gov (United States)

    Lakshminarayan, Kamakshi; Larson, Joseph C; Virnig, Beth; Fuller, Candace; Allen, Norrina Bai; Limacher, Marian; Winkelmayer, Wolfgang C; Safford, Monika M; Burwen, Dale R

    2014-03-01

    Many studies use medical record review for ascertaining outcomes. One large, longitudinal study, the Women's Health Initiative (WHI), ascertains strokes using participant self-report and subsequent physician review of medical records. This is resource-intensive. Herein, we assess whether Medicare data can reliably assess stroke events in the WHI. Subjects were WHI participants with fee-for-service Medicare. Four stroke definitions were created for Medicare data using discharge diagnoses in hospitalization claims: definition 1, stroke codes in any position; definition 2, primary position stroke codes; and definitions 3 and 4, hemorrhagic and ischemic stroke codes, respectively. WHI data were randomly split into training (50%) and test sets. A concordance matrix was used to examine the agreement between WHI and Medicare stroke diagnosis. A WHI stroke and a Medicare stroke were considered a match if they occurred within ±7 days of each other. Refined analyses excluded Medicare events when medical records were unavailable for comparison. Training data consisted of 24 428 randomly selected participants. There were 577 WHI strokes and 557 Medicare strokes using definition 1. Of these, 478 were a match. With regard to algorithm performance, specificity was 99.7%, negative predictive value was 99.7%, sensitivity was 82.8%, positive predictive value was 85.8%, and κ=0.84. Performance was similar for test data. Whereas specificity and negative predictive value exceeded 99%, sensitivity ranged from 75% to 88% and positive predictive value ranged from 80% to 90% across stroke definitions. Medicare data seem useful for population-based stroke research; however, performance characteristics depend on the definition selected.

  17. Active Longitude and Solar Flare Occurrences

    Science.gov (United States)

    Gyenge, N.; Ludmány, A.; Baranyi, T.

    2016-02-01

    The aim of the present work is to specify the spatio-temporal characteristics of flare activity observed by the Reuven Ramaty High Energy Solar Spectroscopic Imager (RHESSI) and the Geostationary Operational Environmental Satellite (GOES) in connection with the behavior of the longitudinal domain of enhanced sunspot activity known as active longitude (AL). By using our method developed for this purpose, we identified the AL in every Carrington Rotation provided by the Debrecen Photoheliographic Data. The spatial probability of flare occurrence has been estimated depending on the longitudinal distance from AL in the northern and southern hemispheres separately. We have found that more than 60% of the RHESSI and GOES flares is located within +/- 36^\\circ from the AL. Hence, the most flare-productive active regions tend to be located in or close to the active longitudinal belt. This observed feature may allow for the prediction of the geo-effective position of the domain of enhanced flaring probability. Furthermore, we studied the temporal properties of flare occurrence near the AL and several significant fluctuations were found. More precisely, the results of the method are the following fluctuations: 0.8, 1.3, and 1.8 years. These temporal and spatial properties of the solar flare occurrence within the active longitudinal belts could provide us with an enhanced solar flare forecasting opportunity.

  18. A Bayesian method for detecting stellar flares

    Science.gov (United States)

    Pitkin, M.; Williams, D.; Fletcher, L.; Grant, S. D. T.

    2014-12-01

    We present a Bayesian-odds-ratio-based algorithm for detecting stellar flares in light-curve data. We assume flares are described by a model in which there is a rapid rise with a half-Gaussian profile, followed by an exponential decay. Our signal model also contains a polynomial background model required to fit underlying light-curve variations in the data, which could otherwise partially mimic a flare. We characterize the false alarm probability and efficiency of this method under the assumption that any unmodelled noise in the data is Gaussian, and compare it with a simpler thresholding method based on that used in Walkowicz et al. We find our method has a significant increase in detection efficiency for low signal-to-noise ratio (S/N) flares. For a conservative false alarm probability our method can detect 95 per cent of flares with S/N less than 20, as compared to S/N of 25 for the simpler method. We also test how well the assumption of Gaussian noise holds by applying the method to a selection of `quiet' Kepler stars. As an example we have applied our method to a selection of stars in Kepler Quarter 1 data. The method finds 687 flaring stars with a total of 1873 flares after vetos have been applied. For these flares we have made preliminary characterizations of their durations and and S/N.

  19. X-ray Emission from Solar Flares

    Indian Academy of Sciences (India)

    2016-01-27

    Jan 27, 2016 ... Solar flares; X-ray detectors; X-ray line emission and continuum; break energy; microflares. Abstract. Solar X-ray Spectrometer (SOXS), the first space-borne solar astronomy experiment of India was designed to improve our current understanding of X-ray emission from the Sun in general and solar flares in ...

  20. FLARES AND THEIR UNDERLYING MAGNETIC COMPLEXITY

    International Nuclear Information System (INIS)

    Engell, Alexander J.; Golub, Leon; Korreck, Kelly; Siarkowski, Marek; Gryciuk, Magda; Sylwester, Janusz; Sylwester, Barbara; Cirtain, Jonathan

    2011-01-01

    SphinX (Solar PHotometer IN X-rays), a full-disk-integrated spectrometer, observed 137 flare-like/transient events with active region (AR) 11024 being the only AR on disk. The Hinode X-Ray Telescope (XRT) and Solar Optical Telescope observe 67 of these events and identified their location from 12:00 UT on July 3 through 24:00 UT 2009 July 7. We find that the predominant mechanisms for flares observed by XRT are (1) flux cancellation and (2) the shearing of underlying magnetic elements. Point- and cusp-like flare morphologies seen by XRT all occur in a magnetic environment where one polarity is impeded by the opposite polarity and vice versa, forcing the flux cancellation process. The shearing is either caused by flux emergence at the center of the AR and separation of polarities along a neutral line or by individual magnetic elements having a rotational motion. Both mechanisms are observed to contribute to single- and multiple-loop flares. We observe that most loop flares occur along a large portion of a polarity inversion line. Point- and cusp-like flares become more infrequent as the AR becomes organized with separation of the positive and negative polarities. SphinX, which allows us to identify when these flares occur, provides us with a statistically significant temperature and emission scaling law for A and B class flares: EM = 6.1 x 10 33 T 1.9±0.1 .

  1. Offshore production flares: a PETROBRAS review

    Energy Technology Data Exchange (ETDEWEB)

    Pagot, Paulo R.; Burmann, Clovis P.; Araujo, Paulo Bento de; Motomura, Tsukasa [PETROBRAS S.A., Rio de Janeiro, RJ (Brazil)

    2008-07-01

    The purpose of the present work is to briefly present the offshore flare system technological evolution and the main design criteria for flare and its supporting structure. In order to perform the aimed task, this work was divided into two parts: the first part presents the technological evolution of the offshore production flares and the second one discusses the flare system designing criteria. The evolution of the technology associated to the offshore production flares is organized by the authors just dividing the history in four chronological phases. Each phase is defined by the predominant use of the, by the time, most up-to-date technological alternative and it will be described with the help of sketches, drawings, photographs, data and information about the platforms where such technologies were applied. The second part of the present work discusses the dimensional criteria, interesting aspects and flaws of the offshore flare systems in two different fields, which are: definition of the flare system capacity; and flow and thermal design of the flare system. (author)

  2. 40 CFR 63.987 - Flare requirements.

    Science.gov (United States)

    2010-07-01

    ... specified in paragraphs (b)(3)(i) through (iv) of this section. (i) Method 22 of appendix A of part 60 shall...) cross sectional area of the flare tip. (iv) Flare flame or pilot monitors, as applicable, shall be..., ultra-violet beam sensor, or infrared sensor) capable of continuously detecting that at least one pilot...

  3. Fast electrons in small solar flares

    International Nuclear Information System (INIS)

    Lin, R.P.

    1975-01-01

    Because approximately 5-100 keV electrons are frequently accelerated and emitted by the Sun in small flares, it is possible to define a detailed characteristic physical picture of these events. The review summarizes both the direct spacecraft observations of non-relativistic solar electrons, and observations of the X-ray and radio emission generated by these particles at the Sun and in the interplanetary medium. These observations bear on the basic astrophysical process of particle acceleration in tenuous plasmas. It is found that in many small solar flares the approximately 5-100 keV electrons accelerated during flash phase constitute the bulk of the total flare energy. Thus the basic flare mechanism in these flares essentially converts the available flare energy into fast electrons. These electrons may produce the other flare electromagnetic emissions through their interactions with the solar atmosphere. In large proton flares these electrons may provide the energy to eject material from the Sun and to create a shock wave which could then accelerate nuclei and electrons to much higher energies. (Auth.)

  4. New flare stars in the Pleiade. 3

    International Nuclear Information System (INIS)

    Parsamyan, Eh.S.

    1976-01-01

    The flare stars in the Pleiads were investigated. The observations were carried out from the second part of 1972 to the beginning of 1973. Data on 9 new and 9 repeat flares are given. The new data are compared with those obtained previously

  5. Solar flare irradiation records in Antarctic meteorites

    International Nuclear Information System (INIS)

    Goswami, J.N.

    1981-01-01

    Observations of solar flare heavy nuclei tracks in eight Antartic meteorite samples are reported. Two of these were interior specimens from an L-3 chondrite which contained track-rich grains (olivine) indicating their exposure to solar flare irradiation before compaction of the meteorite. Preliminary noble gas data also indicate the presence of solar-type gases. (U.K.)

  6. A LARGE-SCALE SEARCH FOR EVIDENCE OF QUASI-PERIODIC PULSATIONS IN SOLAR FLARES

    Energy Technology Data Exchange (ETDEWEB)

    Inglis, A. R.; Ireland, J.; Dennis, B. R. [Solar Physics Laboratory, Heliophysics Science Division, NASA Goddard Space Flight Center, Greenbelt, MD 20771 (United States); Hayes, L; Gallagher, P. [Trinity College Dublin, Dublin (Ireland)

    2016-12-20

    The nature of quasi-periodic pulsations (QPP) in solar flares is poorly constrained, and critically the general prevalence of such signals in solar flares is unknown. Therefore, we perform a large-scale search for evidence of signals consistent with QPP in solar flares, focusing on the 1–300 s timescale. We analyze 675 M- and X-class flares observed by the Geostationary Operational Environmental Satellite (GOES) series in 1–8 Å soft X-rays between 2011 February 1 and 2015 December 31. Additionally, over the same era we analyze Fermi /Gamma-ray Burst Monitor (GBM) 15–25 keV X-ray data for each of these flares associated with a Fermi /GBM solar flare trigger, a total of 261 events. Using a model comparison method, we determine whether there is evidence for a substantial enhancement in the Fourier power spectrum that may be consistent with a QPP signature, based on three tested models; a power-law plus a constant, a broken power-law plus constant, and a power-law-plus-constant with an additional QPP signature component. From this, we determine that ∼30% of GOES events and ∼8% of Fermi /GBM events show strong signatures consistent with classical interpretations of QPP. For the remaining events either two or more tested models cannot be strongly distinguished from each other, or the events are well-described by single power-law or broken power-law Fourier power spectra. For both instruments, a preferred characteristic timescale of ∼5–30 s was found in the QPP-like events, with no dependence on flare magnitude in either GOES or GBM data. We also show that individual events in the sample show similar characteristic timescales in both GBM and GOES data sets. We discuss the implications of these results for our understanding of solar flares and possible QPP mechanisms.

  7. A Large-Scale Search for Evidence of Quasi-Periodic Pulsations in Solar Flares

    Science.gov (United States)

    Inglis, A. R.; Ireland, J.; Dennis, B. R..; Hayes, L.; Gallagher, P.

    2016-01-01

    The nature of quasi-periodic pulsations (QPP) in solar flares is poorly constrained, and critically the general prevalence of such signals in solar flares is unknown. Therefore, we perform a large-scale search for evidence of signals consistent with QPP in solar flares, focusing on the 1300 s timescale. We analyze 675 M- and X-class flares observed by the Geostationary Operational Environmental Satellite (GOES) series in 18 soft X-rays between 2011 February 1 and 2015 December 31. Additionally, over the same era we analyze Fermi/Gamma-ray Burst Monitor (GBM) 1525 keV X-ray data for each of these flares associated with a Fermi/GBM solar flare trigger, a total of 261 events. Using a model comparison method, we determine whether there is evidence for a substantial enhancement in the Fourier power spectrum that may be consistent with a QPP signature, based on three tested models; a power-law plus a constant, a broken power-law plus constant, and a power-law-plus-constant with an additional QPP signature component. From this, we determine that approx. 30% of GOES events and approx. 8% of Fermi/GBM events show strong signatures consistent with classical interpretations of QPP. For the remaining events either two or more tested models cannot be strongly distinguished from each other, or the events are well-described by single power-law or broken power-law Fourier power spectra. For both instruments, a preferred characteristic time-scale of approx. 5-30 s was found in the QPP-like events, with no dependence on flare magnitude in either GOES or GBM data. We also show that individual events in the sample show similar characteristic time-scales in both GBM and GOES data sets. We discuss the implications of these results for our understanding of solar flares and possible QPP mechanisms.

  8. A LARGE-SCALE SEARCH FOR EVIDENCE OF QUASI-PERIODIC PULSATIONS IN SOLAR FLARES

    International Nuclear Information System (INIS)

    Inglis, A. R.; Ireland, J.; Dennis, B. R.; Hayes, L; Gallagher, P.

    2016-01-01

    The nature of quasi-periodic pulsations (QPP) in solar flares is poorly constrained, and critically the general prevalence of such signals in solar flares is unknown. Therefore, we perform a large-scale search for evidence of signals consistent with QPP in solar flares, focusing on the 1–300 s timescale. We analyze 675 M- and X-class flares observed by the Geostationary Operational Environmental Satellite (GOES) series in 1–8 Å soft X-rays between 2011 February 1 and 2015 December 31. Additionally, over the same era we analyze Fermi /Gamma-ray Burst Monitor (GBM) 15–25 keV X-ray data for each of these flares associated with a Fermi /GBM solar flare trigger, a total of 261 events. Using a model comparison method, we determine whether there is evidence for a substantial enhancement in the Fourier power spectrum that may be consistent with a QPP signature, based on three tested models; a power-law plus a constant, a broken power-law plus constant, and a power-law-plus-constant with an additional QPP signature component. From this, we determine that ∼30% of GOES events and ∼8% of Fermi /GBM events show strong signatures consistent with classical interpretations of QPP. For the remaining events either two or more tested models cannot be strongly distinguished from each other, or the events are well-described by single power-law or broken power-law Fourier power spectra. For both instruments, a preferred characteristic timescale of ∼5–30 s was found in the QPP-like events, with no dependence on flare magnitude in either GOES or GBM data. We also show that individual events in the sample show similar characteristic timescales in both GBM and GOES data sets. We discuss the implications of these results for our understanding of solar flares and possible QPP mechanisms.

  9. Fermi -LAT Observations of High-energy Behind-the-limb Solar Flares

    Energy Technology Data Exchange (ETDEWEB)

    Ackermann, M.; Buehler, R. [Deutsches Elektronen Synchrotron DESY, D-15738 Zeuthen (Germany); Allafort, A.; Bottacini, E.; Cameron, R. A.; Charles, E. [W. W. Hansen Experimental Physics Laboratory, Kavli Institute for Particle Astrophysics and Cosmology, Department of Physics and SLAC National Accelerator Laboratory, Stanford University, Stanford, CA 94305 (United States); Baldini, L. [Università di Pisa and Istituto Nazionale di Fisica Nucleare, Sezione di Pisa I-56127 Pisa (Italy); Barbiellini, G. [Istituto Nazionale di Fisica Nucleare, Sezione di Trieste, I-34127 Trieste (Italy); Bastieri, D. [Istituto Nazionale di Fisica Nucleare, Sezione di Padova, I-35131 Padova (Italy); Bellazzini, R. [Istituto Nazionale di Fisica Nucleare, Sezione di Pisa, I-56127 Pisa (Italy); Bissaldi, E.; Caragiulo, M.; Costanza, F. [Istituto Nazionale di Fisica Nucleare, Sezione di Bari, I-70126 Bari (Italy); Bonino, R. [Istituto Nazionale di Fisica Nucleare, Sezione di Torino, I-10125 Torino (Italy); Bregeon, J. [Laboratoire Univers et Particules de Montpellier, Université Montpellier, CNRS/IN2P3, F-34095 Montpellier (France); Bruel, P. [Laboratoire Leprince-Ringuet, École polytechnique, CNRS/IN2P3, F-91128 Palaiseau (France); Caraveo, P. A. [INAF-Istituto di Astrofisica Spaziale e Fisica Cosmica Milano, via E. Bassini 15, I-20133 Milano (Italy); Cavazzuti, E.; Ciprini, S. [Agenzia Spaziale Italiana (ASI) Science Data Center, I-00133 Roma (Italy); Cecchi, C., E-mail: nicola.omodei@stanford.edu, E-mail: vahep@stanford.edu, E-mail: melissa.pesce.rollins@pi.infn.it [Istituto Nazionale di Fisica Nucleare, Sezione di Perugia, I-06123 Perugia (Italy); and others

    2017-02-01

    We report on the Fermi -LAT detection of high-energy emission from the behind-the-limb (BTL) solar flares that occurred on 2013 October 11, and 2014 January 6 and September 1. The Fermi -LAT observations are associated with flares from active regions originating behind both the eastern and western limbs, as determined by STEREO . All three flares are associated with very fast coronal mass ejections (CMEs) and strong solar energetic particle events. We present updated localizations of the >100 MeV photon emission, hard X-ray (HXR) and EUV images, and broadband spectra from 10 keV to 10 GeV, as well as microwave spectra. We also provide a comparison of the BTL flares detected by Fermi -LAT with three on-disk flares and present a study of some of the significant quantities of these flares as an attempt to better understand the acceleration mechanisms at work during these occulted flares. We interpret the HXR emission to be due to electron bremsstrahlung from a coronal thin-target loop top with the accelerated electron spectra steepening at semirelativistic energies. The >100 MeV gamma-rays are best described by a pion-decay model resulting from the interaction of protons (and other ions) in a thick-target photospheric source. The protons are believed to have been accelerated (to energies >10 GeV) in the CME environment and precipitate down to the photosphere from the downstream side of the CME shock and landed on the front side of the Sun, away from the original flare site and the HXR emission.

  10. Energetic Particle Estimates for Stellar Flares

    Science.gov (United States)

    Youngblood, Allison; Chamberlin, Phil; Woods, Tom

    2018-01-01

    In the heliosphere, energetic particles are accelerated away from the Sun during solar flares and/or coronal mass ejections where they frequently impact the Earth and other solar system bodies. Solar (or stellar) energetic particles (SEPs) not only affect technological assets, but also influence mass loss and chemistry in planetary atmospheres (e.g., depletion of ozone). SEPs are increasingly recognized as an important factor in assessing exoplanet habitability, but we do not yet have constraints on SEP emission from any stars other than the Sun. Until indirect measurements are available, we must assume solar-like particle production and apply correlations between solar flares and SEPs detected near Earth to stellar flares. We present improved scaling relations between solar far-UV flare flux and >10 MeV proton flux near Earth. We apply these solar scaling relations to far-UV flares from exoplanet host stars and discuss the implications for modeling chemistry and mass loss in exoplanet atmospheres.

  11. Models of spots and flares

    International Nuclear Information System (INIS)

    Mullan, D.J.

    1983-01-01

    Laboratory experiments in recent years have shown that there are many more ways to drive a plasma out of equilibrium than to preserve equilibrium. In that sense, it is perhaps easier to understand why flares should occur in a stellar atmosphere than why a long-lived feature such as a dark spot should persist. The author summarizes work on the equilibrium structure of cool spots in the sun and stars. Since spots involve complex interactions between convective flows and magnetic fields, he needs to refer to observations for help in identifying the dominant processes which should enter into the modelling. His summary therefore begins by discussing certain relevant properties of spots in the solar atmosphere. The next sections deal with the magnetic fields in spots, the stability of spots, spot cooling and missing flux. The author concludes that spots should be viewed not simply as cool areas, but rather as engines which do the work of converting the energy of convective flows into flare-compatible form. (Auth.)

  12. THE CONFINED X-CLASS FLARES OF SOLAR ACTIVE REGION 2192

    Energy Technology Data Exchange (ETDEWEB)

    Thalmann, J. K.; Su, Y.; Temmer, M.; Veronig, A. M., E-mail: julia.thalmann@uni-graz.at [Institute of Physics/IGAM, University of Graz, Universitätsplatz 5/II, 8010 Graz (Austria)

    2015-03-10

    The unusually large active region (AR) NOAA 2192, observed in 2014 October, was outstanding in its productivity of major two-ribbon flares without coronal mass ejections. On a large scale, a predominantly north–south oriented magnetic system of arcade fields served as a strong top and lateral confinement for a series of large two-ribbon flares originating from the core of the AR. The large initial separation of the flare ribbons, together with an almost absent growth in ribbon separation, suggests a confined reconnection site high up in the corona. Based on a detailed analysis of the confined X1.6 flare on October 22, we show how exceptional the flaring of this AR was. We provide evidence for repeated energy release, indicating that the same magnetic field structures were repeatedly involved in magnetic reconnection. We find that a large number of electrons was accelerated to non-thermal energies, revealing a steep power-law spectrum, but that only a small fraction was accelerated to high energies. The total non-thermal energy in electrons derived (on the order of 10{sup 25} J) is considerably higher than that in eruptive flares of class X1, and corresponds to about 10% of the excess magnetic energy present in the active-region corona.

  13. Assessment of respiratory disorders in relation to solution gas flaring activities in Alberta

    International Nuclear Information System (INIS)

    1998-02-01

    A study was conducted by Alberta Health to address the issue of whether or not flaring of solution gas has a negative impact on human health. The Flaring Working Group of the Clean Air Strategic Alliance initiated this study which focused on the assessment of the relationship between human health disorders (such as asthma, bronchitis, pneumonia and upper respiratory infections) and solution gas flaring activities in rural, urban and aboriginal populations. The personal exposure to flaring emissions was estimated by physical proximity to the source of emissions. A small area was studied in which geographical variations in human health disorders were compared to geographical variations of socioeconomic and environmental factors. Data was gathered from 1989 to 1996 to evaluate long term average conditions and changes over the time period investigated. Notwithstanding physicians' claims for increased rates of respiratory infections and hospitalization attributed to solution gas flaring, the study found no evidence linking respiratory infections and solution gas flaring. This was the conclusion regardless of the measure of health outcomes, the rural-urban status, ethnicity, or age. Nevertheless, the study recommended identification of bio-markers of exposure and effect reflective of the compounds of interest, and the development of a responsive and comprehensive geographic information database that would allow data linkage at all geographic levels for different periods of time. refs., 10 tabs., 15 figs., 1 appendix

  14. The diagnostic utility of the flare phenomenon on bone scintigraphy in staging prostate cancer

    International Nuclear Information System (INIS)

    Cook, Gary J.R.; Lewington, Valerie J.; Chua, Sue C.; Venkitaraman, Ram; Huddart, Robert A.; Parker, Christopher C.; Dearnaley, David D.; Horwich, Alan; Sohaib, Aslam S.

    2011-01-01

    Bone scintigraphy (BS) lacks sensitivity for detecting very early skeletal metastases (SM) in prostate cancer (PC) and is often limited by poor specificity. Also scintigraphic flare of SM can occur following effective treatment and mislead an early response assessment. We hypothesised that a flare reaction might amplify the signal from subclinical SM, increasing the sensitivity of BS and that the phenomenon may be specific for metastases. We conducted a prospective study to determine the frequency of the flare phenomenon in patients with metastatic PC starting hormone therapy and to explore its utility in patients with negative staging scans but considered at high risk of SM and in those with equivocal baseline BS abnormalities. Ninety-nine patients commencing first-line hormone therapy had repeat BS at 6 weeks to score a flare reaction. Of 22 patients with unequivocal SM on the baseline scan, a flare occurred in 9 (41%). Of 36 high-risk localised prostate cancer patients with normal BS pre-treatment, the scan became positive for metastases at 6 weeks in 4 (11%). Of 41 patients with pre-treatment scintigraphic abnormalities of uncertain aetiology, a flare occurred in 8 cases (20%). All eight were confirmed to have SM by follow-up and imaging. Of the 33 remaining patients without a flare, 2 developed SM at 14 months and the remainder did not develop SM in a median follow-up period of 36 months. The flare phenomenon following initial hormone therapy can be used to improve both sensitivity and specificity of BS in PC. (orig.)

  15. The diagnostic utility of the flare phenomenon on bone scintigraphy in staging prostate cancer

    Energy Technology Data Exchange (ETDEWEB)

    Cook, Gary J.R.; Lewington, Valerie J.; Chua, Sue C. [Royal Marsden Hospital, Department of Nuclear Medicine and PET, Sutton, Surrey (United Kingdom); Venkitaraman, Ram; Huddart, Robert A.; Parker, Christopher C.; Dearnaley, David D.; Horwich, Alan [Royal Marsden Hospital, Academic Urology Unit, Sutton, Surrey (United Kingdom); Sohaib, Aslam S. [Royal Marsden Hospital, Department of Radiology, Sutton, Surrey (United Kingdom)

    2011-01-15

    Bone scintigraphy (BS) lacks sensitivity for detecting very early skeletal metastases (SM) in prostate cancer (PC) and is often limited by poor specificity. Also scintigraphic flare of SM can occur following effective treatment and mislead an early response assessment. We hypothesised that a flare reaction might amplify the signal from subclinical SM, increasing the sensitivity of BS and that the phenomenon may be specific for metastases. We conducted a prospective study to determine the frequency of the flare phenomenon in patients with metastatic PC starting hormone therapy and to explore its utility in patients with negative staging scans but considered at high risk of SM and in those with equivocal baseline BS abnormalities. Ninety-nine patients commencing first-line hormone therapy had repeat BS at 6 weeks to score a flare reaction. Of 22 patients with unequivocal SM on the baseline scan, a flare occurred in 9 (41%). Of 36 high-risk localised prostate cancer patients with normal BS pre-treatment, the scan became positive for metastases at 6 weeks in 4 (11%). Of 41 patients with pre-treatment scintigraphic abnormalities of uncertain aetiology, a flare occurred in 8 cases (20%). All eight were confirmed to have SM by follow-up and imaging. Of the 33 remaining patients without a flare, 2 developed SM at 14 months and the remainder did not develop SM in a median follow-up period of 36 months. The flare phenomenon following initial hormone therapy can be used to improve both sensitivity and specificity of BS in PC. (orig.)

  16. Model Comparison in Subsurface Science: The DECOVALEX and Sim-SEQ Initiatives (Invited)

    Science.gov (United States)

    Birkholzer, J. T.; Mukhopadhyay, S.; Rutqvist, J.; Tsang, C.

    2013-12-01

    , the DECOVALEX project has played a major role in improving our understanding of coupled THM processes in fractured rock and buffer/backfill materials, a subject of importance to performance assessment of a radioactive waste geologic repository. The second example is the Sim-SEQ project, a relatively recent model comparison initiative addressing multi-phase processes relevant in geologic carbon sequestration. Like DECOVALEX, Sim-SEQ is not about benchmarking, but rather about evaluating model building efforts in a broad and comprehensive sense. In Sim-SEQ, sixteen international modeling teams are building their own models for a specific carbon sequestration site referred to as the Sim-SEQ Study site (the S-3 site). The S-3 site is patterned after the ongoing SECARB Phase III Early Test site in southwestern Mississippi, where CO2 is injected into a fluvial sandstone unit with high vertical and lateral heterogeneity. The complex geology of the S-3 site, its location in the water leg of a CO2-EOR field with a strong water drive, and the presence of methane in the reservoir brine make this a challenging task, requiring the modelers to use their best judgment in making a large number of choices about how to model various processes and properties of the system.

  17. Identifying core domains to assess flare in rheumatoid arthritis

    DEFF Research Database (Denmark)

    Bartlett, Susan J; Hewlett, Sarah; Bingham, Clifton O

    2012-01-01

    For rheumatoid arthritis (RA), there is no consensus on how to define and assess flare. Variability in flare definitions impairs understanding of findings across studies and limits ability to pool results. The OMERACT RA Flare Group sought to identify domains to define RA flares from patient...

  18. Comparison of adherence and persistence among adults with type 2 diabetes mellitus initiating saxagliptin or linagliptin

    Directory of Open Access Journals (Sweden)

    Farr AM

    2016-08-01

    Full Text Available Amanda M Farr,1 John Jack Sheehan,2 Brian M Davis,1 David M Smith1 1Life Sciences, Truven Health Analytics, an IBM Company, Cambridge, MA, 2Health Economics and Outcomes Research – Diabetes, AstraZeneca, Fort Washington, PA, USA Background: Adherence and persistence to antidiabetes medications are important to control blood glucose levels among individuals with type 2 diabetes mellitus (T2D.Objectives: The objective of this study was to compare adherence and persistence over a 12-month period between patients initiating saxagliptin and patients initiating linagliptin, two dipeptidyl peptidase-4 inhibitors.Methods: This retrospective cohort study was conducted in MarketScan® Commercial and Medicare Supplemental claims databases. Patients with T2D initiating saxagliptin or linagliptin between January 1, 2009, and June 30, 2013, were selected. Patients were required to be at least 18 years old and have 12 months of continuous enrollment prior to and following initiation. Adherence and persistence to initiated medication were measured over the 12 months after initiation using outpatient pharmacy claims. Patients were considered adherent if the proportion of days covered was ≥0.80. Patients were considered nonpersistent (or to have discontinued if there was a gap of >60 days without initiated medication on hand. Multivariable logistic regression and multivariable Cox proportional hazard models were fit to compare adherence and persistence, respectively, between the two cohorts.Results: There were 21,599 saxagliptin initiators (mean age 55 years; 53% male and 5,786 linagliptin initiators (mean age 57 years; 54% male included in the study sample. Over the 12-month follow-up, 46% of saxagliptin initiators and 42% of linagliptin initiators were considered adherent and 47% of saxagliptin initiators and 51% of linagliptin initiators discontinued their initiated medication. After controlling for patient characteristics, saxagliptin initiation was

  19. A New Paradigm for Flare Particle Acceleration

    Science.gov (United States)

    Guidoni, Silvina E.; Karpen, Judith T.; DeVore, C. Richard

    2017-08-01

    The mechanism that accelerates particles to the energies required to produce the observed high-energy impulsive emission and its spectra in solar flares is not well understood. Here, we propose a first-principle-based model of particle acceleration that produces energy spectra that closely resemble those derived from hard X-ray observations. Our mechanism uses contracting magnetic islands formed during fast reconnection in solar flares to accelerate electrons, as first proposed by Drake et al. (2006) for kinetic-scale plasmoids. We apply these ideas to MHD-scale islands formed during fast reconnection in a simulated eruptive flare. A simple analytic model based on the particles’ adiabatic invariants is used to calculate the energy gain of particles orbiting field lines in our ultrahigh-resolution, 2.5D, MHD numerical simulation of a solar eruption (flare + coronal mass ejection). Then, we analytically model electrons visiting multiple contracting islands to account for the observed high-energy flare emission. Our acceleration mechanism inherently produces sporadic emission because island formation is intermittent. Moreover, a large number of particles could be accelerated in each macroscopic island, which may explain the inferred rates of energetic-electron production in flares. We conclude that island contraction in the flare current sheet is a promising candidate for electron acceleration in solar eruptions. This work was supported in part by the NASA LWS and H-SR programs..

  20. Temporal and Periodic Variations of Sunspot Counts in Flaring and Non-Flaring Active Regions

    Science.gov (United States)

    Kilcik, A.; Yurchyshyn, V.; Donmez, B.; Obridko, V. N.; Ozguc, A.; Rozelot, J. P.

    2018-04-01

    We analyzed temporal and periodic variations of sunspot counts (SSCs) in flaring (C-, M-, or X-class flares), and non-flaring active regions (ARs) for nearly three solar cycles (1986 through 2016). Our main findings are as follows: i) temporal variations of monthly means of the daily total SSCs in flaring and non-flaring ARs behave differently during a solar cycle and the behavior varies from one cycle to another; during Solar Cycle 23 temporal SSC profiles of non-flaring ARs are wider than those of flaring ARs, while they are almost the same during Solar Cycle 22 and the current Cycle 24. The SSC profiles show a multi-peak structure and the second peak of flaring ARs dominates the current Cycle 24, while the difference between peaks is less pronounced during Solar Cycles 22 and 23. The first and second SSC peaks of non-flaring ARs have comparable magnitude in the current solar cycle, while the first peak is nearly absent in the case of the flaring ARs of the same cycle. ii) Periodic variations observed in the SSCs profiles of flaring and non-flaring ARs derived from the multi-taper method (MTM) spectrum and wavelet scalograms are quite different as well, and they vary from one solar cycle to another. The largest detected period in flaring ARs is 113± 1.6 days while we detected much longer periodicities (327± 13, 312 ± 11, and 256± 8 days) in the non-flaring AR profiles. No meaningful periodicities were detected in the MTM spectrum of flaring ARs exceeding 55± 0.7 days during Solar Cycles 22 and 24, while a 113± 1.3 days period was detected in flaring ARs of Solar Cycle 23. For the non-flaring ARs the largest detected period was only 31± 0.2 days for Cycle 22 and 72± 1.3 days for the current Cycle 24, while the largest measured period was 327± 13 days during Solar Cycle 23.

  1. Radio imaging of solar flares using the very large array - New insights into flare process

    Science.gov (United States)

    Kundu, M. R.; Schmahl, E. J.; Vlahos, L.; Velusamy, T.

    1982-01-01

    An interpretation of VLA observations of microwave bursts is presented in an attempt to distinguish between certain models of flares. The VLA observations provide information about the pre-flare magnetic field topology and the existence of mildly relativistic electrons accelerated during flares. Examples are shown of changes in magnetic field topology in the hour before flares. In one case, new bipolar loops appear to emerge, which is an essential component of the model developed by Heyvaerts et al. (1977). In another case, a quadrupole structure, suggestive of two juxtaposed bipolar loops, appears to trigger the flare. Because of the observed diversity of magnetic field topologies in microwave bursts, it is believed that the magnetic energy must be dissipated in more than one way. The VLA observations are clearly providing means for sorting out the diverse flare models.

  2. The Variable Crab Nebula: Evidence for a Connection Between GeV Flares and Hard X-ray Variations

    Science.gov (United States)

    Wilson-Hodge, Colleen A.; Harding, A. K.; Hays, E. A.; Cherry, M. L.; Case, G. L.; Finger, M. H.; Jenke, P.; Zhang, X.

    2016-01-01

    In 2010, hard X-ray variations (Wilson-Hodge et al. 2011) and GeV flares (Tavani et al 2011, Abdo et al. 2011) from the Crab Nebula were discovered. Connections between these two phenomena were unclear, in part because the timescales were quite different, with yearly variations in hard X-rays and hourly to daily variations in the GeV flares. The hard X-ray flux from the Crab Nebula has again declined since 2014, much like it did in 2008-2010. During both hard X-ray decline periods, the Fermi LAT detected no GeV flares, suggesting that injection of particles from the GeV flares produces the much slower and weaker hard X-ray variations. The timescale for the particles emitting the GeV flares to lose enough energy to emit synchrotron photons in hard X-rays is consistent with the yearly variations observed in hard X-rays and with the expectation that the timescale for variations slowly increases with decreasing energy. This hypothesis also predicts even slower and weaker variations below 10 keV, consistent with the non-detection of counterparts to the GeV flares by Chandra (Weisskopf et al 2013). We will present a comparison of the observed hard X-ray variations and a simple model of the decay of particles from the GeV flares to test our hypothesis.

  3. Factors Associated with Breastfeeding Initiation: A Comparison between France and French-Speaking Canada.

    Directory of Open Access Journals (Sweden)

    Lisa-Christine Girard

    Full Text Available Breastfeeding is associated with multiple domains of health for both mothers and children. Nevertheless, breastfeeding initiation is low within certain developed countries. Furthermore, comparative studies of initiation rates using harmonised data across multiple regions is scarce.The aim of the present study was to investigate and compare individual-level determinants of breastfeeding initiation using two French-speaking cohorts.Participants included ~ 3,900 mothers enrolled in two cohort studies in Canada and France. Interviews, questionnaires, and medical records were utilised to collect information on maternal, family, and medical factors associated with breastfeeding initiation.Rates of breastfeeding initiation were similar across cohorts, slightly above 70%. Women in both Canada and France who had higher levels of maternal education, were born outside of their respective countries and who did not smoke during pregnancy were more likely to initiate breastfeeding with the cohort infant. Notably, cohort effects of maternal education at the university level were found, whereby having 'some university' was not statistically significant for mothers in France. Further, younger mothers in Canada, who delivered by caesarean section and who had previous children, had reduced odds of breastfeeding initiation. These results were not found for mothers in France.While some similar determinants were observed, programming efforts to increase breastfeeding initiation should be tailored to the characteristics of specific geographical regions which may be heavily impacted by the social, cultural and political climate of the region, in addition to individual and family level factors.

  4. The aims of initiation ceremonies at universities: Comparisons in time and space1

    Directory of Open Access Journals (Sweden)

    N. S. Jansen van Rensburg

    1990-03-01

    Full Text Available In this article initiation practices at South African universities are analysed and compared with initiation ceremonies described in anthropological literature. It is argued that any initiation ceremony has at least the partial aim of preparing initiates for the roles and functions in society or specific organizations. Naturally a reasonable degree of harmony between the intent of initiation on the one hand and the values of an institution on the other hand can be expected. The intention of initiation usually is to prepare one for a position or rote by means of the expression of certain values. On the question whether this harmony between ideas and actions is found in the case of existent initiation ceremonies at South African universities, the answer is negative. These ceremonies do not aim to convey and develop attitudes and values essential to a university and in fact do not prepare first-year students for their new environment and a community of scholars. The way in which universities transcend their authority by condoning and officially allowing the demeaning initiation practices is also questioned.

  5. Implications of NRL/ATM solar flare observations on flare theories

    International Nuclear Information System (INIS)

    Cheng, C.C.; Spicer, D.S.

    1975-01-01

    During the Skylab mission, many solar flares were observed with the NRL XUV spectroheliogram in the wavelength region from 150 to 650 A. Because of its high spatial resolution (approximately 2ins.) the three-dimensional structures of the flare emission regions characterized by temperatures from 10 4 K to 20 x 10 6 K can be resolved. Thus the spatial relationship between the relatively cool plasma and the hot plasma components of a flare, and the associated magnetic field structure can be inferred. The implications for various flare models are discussed. (Auth.)

  6. Influences of misprediction costs on solar flare prediction

    Science.gov (United States)

    Huang, Xin; Wang, HuaNing; Dai, XingHua

    2012-10-01

    The mispredictive costs of flaring and non-flaring samples are different for different applications of solar flare prediction. Hence, solar flare prediction is considered a cost sensitive problem. A cost sensitive solar flare prediction model is built by modifying the basic decision tree algorithm. Inconsistency rate with the exhaustive search strategy is used to determine the optimal combination of magnetic field parameters in an active region. These selected parameters are applied as the inputs of the solar flare prediction model. The performance of the cost sensitive solar flare prediction model is evaluated for the different thresholds of solar flares. It is found that more flaring samples are correctly predicted and more non-flaring samples are wrongly predicted with the increase of the cost for wrongly predicting flaring samples as non-flaring samples, and the larger cost of wrongly predicting flaring samples as non-flaring samples is required for the higher threshold of solar flares. This can be considered as the guide line for choosing proper cost to meet the requirements in different applications.

  7. Endodontic inter-appointment flare-ups: An example of chaos?

    Directory of Open Access Journals (Sweden)

    Poorya Jalali

    2015-01-01

    Full Text Available Introduction: Pain and/or swelling after instrumentation of a root canal constitute a significant complication during endodontic treatment. Despite a large number of articles discussing the causative factors behind endodontic flare-ups, the exact mechanism is still not understood. The Hypothesis: The seemingly irrational behavior of endodontic inter-appointment flare-ups may be due to sensitive dependence on initial conditions. A model based on Lorenz′ chaos theory is presented as a possible explanation for the sudden emergence and unpredictability of flare-ups. Evaluation of the Hypothesis: All studies agree on some common traits regarding inter-appointment flare-ups: Careful instrumentation can still cause flare-up; the host inflammatory response behaves as a complex nonlinear network; and also the poly-etiologic nature of this phenomenon all illustrate the sensitive dependence on initial conditions of the system. Integrating more variables (e.g., different species of bacteria into this already complex system will make it increasingly chaotic reflecting its unpredictable behavior.

  8. Comparison of the inertial properties and forces required to initiate movement for three gait trainers.

    Science.gov (United States)

    Paleg, Ginny; Huang, Morris; Vasquez Gabela, Stephanie C; Sprigle, Stephen; Livingstone, Roslyn

    2016-01-01

    The purpose of this study was to evaluate the inertial properties and forces required to initiate movement on two different surfaces in a sample of three commonly prescribed gait trainers. Tests were conducted in a laboratory setting to compare the Prime Engineering KidWalk, Rifton Pacer, and Snug Seat Mustang with and without a weighted anthropometric test dummy configured to the weight and proportions of a 4-year-old child. The Pacer was the lightest and the KidWalk the heaviest while footprints of the three gait trainers were similar. Weight was borne fairly evenly on the four casters of the Pacer and Mustang while 85% of the weight was borne on the large wheels of the mid-wheel drive KidWalk. These differences in frame style, wheel, and caster style and overall mass impact inertial properties and forces required to initiate movement. Test results suggest that initiation forces on tile were equivalent for the Pacer and KidWalk while the Mustang had the highest initiation force. Initiation forces on carpet were lowest for the KidWalk and highest for the Mustang. This initial study of inertia and movement initiation forces may provide added information for clinicians to consider when selecting a gait trainer for their clients.

  9. Can we explain atypical solar flares?

    Science.gov (United States)

    Dalmasse, K.; Chandra, R.; Schmieder, B.; Aulanier, G.

    2015-02-01

    Context. We used multiwavelength high-resolution data from ARIES, THEMIS, and SDO instruments to analyze a non-standard, C3.3 class flare produced within the active region NOAA 11589 on 2012 October 16. Magnetic flux emergence and cancellation were continuously detected within the active region, the latter leading to the formation of two filaments. Aims: Our aim is to identify the origins of the flare taking the complex dynamics of its close surroundings into account. Methods: We analyzed the magnetic topology of the active region using a linear force-free field extrapolation to derive its 3D magnetic configuration and the location of quasi-separatrix layers (QSLs), which are preferred sites for flaring activity. Because the active region's magnetic field was nonlinear force-free, we completed a parametric study using different linear force-free field extrapolations to demonstrate the robustness of the derived QSLs. Results: The topological analysis shows that the active region presented a complex magnetic configuration comprising several QSLs. The considered data set suggests that an emerging flux episode played a key role in triggering the flare. The emerging flux probably activated the complex system of QSLs, leading to multiple coronal magnetic reconnections within the QSLs. This scenario accounts for the observed signatures: the two extended flare ribbons developed at locations matched by the photospheric footprints of the QSLs and were accompanied with flare loops that formed above the two filaments, which played no important role in the flare dynamics. Conclusions: This is a typical example of a complex flare that can a priori show standard flare signatures that are nevertheless impossible to interpret with any standard model of eruptive or confined flare. We find that a topological analysis, however, permitted us to unveil the development of such complex sets of flare signatures. Movies associated to Figs. 1, 3, and 9 are only available at the CDS via

  10. Laser flare photometry in clinical practice

    Directory of Open Access Journals (Sweden)

    Yury S Astakhov

    2016-06-01

    Full Text Available Laser flare photometry (LFP is the only quantitative and objective method for the evaluation of aqueous flare. There are numerous opportunities to use LFP in clinical practice, and they are discussed in the paper. It is especially helpful in management of uveitis patients, because it allows estimating the correct diagnosis, managing the patient during the treatment with noninvasive method and predicting relapses and complications.

  11. Physics of Coupled CME and Flare Systems

    Science.gov (United States)

    2016-12-21

    AFRL-RV-PS- AFRL-RV-PS- TR-2016-0162 TR-2016-0162 PHYSICS OF COUPLED CME AND FLARE SYSTEMS K. S. Balasubramaniam, et al. 21 December 2016 Final...30 Sep 2016 4. TITLE AND SUBTITLE Physics of Coupled CME and Flare Systems 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 61102F...objectives for this task were: (i) derive measureable physical properties and discernible structural circumstances in solar active regions that

  12. A Comparison of Adults' Responses to Collage versus Drawing in an Initial Art-Making Session

    Science.gov (United States)

    Raffaelli, Teresa; Hartzell, Elizabeth

    2016-01-01

    The goal of this systematic comparison of collage and drawing was to contribute to the sparse body of literature on the way individuals might respond to two materials commonly used in art therapy. Eight graduate and undergraduate university students who identified as non-artists completed two tasks, one using drawing materials and one using…

  13. Modelling blazar flaring using a time-dependent fluid jet emission model - an explanation for orphan flares and radio lags

    Science.gov (United States)

    Potter, William J.

    2018-01-01

    Blazar jets are renowned for their rapid violent variability and multiwavelength flares, however, the physical processes responsible for these flares are not well understood. In this paper, we develop a time-dependent inhomogeneous fluid jet emission model for blazars. We model optically thick radio flares for the first time and show that they are delayed with respect to the prompt optically thin emission by ∼months to decades, with a lag that increases with the jet power and observed wavelength. This lag is caused by a combination of the travel time of the flaring plasma to the optically thin radio emitting sections of the jet and the slow rise time of the radio flare. We predict two types of flares: symmetric flares - with the same rise and decay time, which occur for flares whose duration is shorter than both the radiative lifetime and the geometric path-length delay time-scale; extended flares - whose luminosity tracks the power of particle acceleration in the flare, which occur for flares with a duration longer than both the radiative lifetime and geometric delay. Our model naturally produces orphan X-ray and γ-ray flares. These are caused by flares that are only observable above the quiescent jet emission in a narrow band of frequencies. Our model is able to successfully fit to the observed multiwavelength flaring spectra and light curves of PKS1502+106 across all wavelengths, using a transient flaring front located within the broad-line region.

  14. Modelling emissions from natural gas flaring

    Directory of Open Access Journals (Sweden)

    G. Ezaina Umukoro

    2017-04-01

    Full Text Available The world today recognizes the significance of environmental sustainability to the development of nations. Hence, the role oil and gas industry plays in environmental degrading activities such as gas flaring is of global concern. This study presents material balance equations and predicts results for non-hydrocarbon emissions such as CO2, CO, NO, NO2, and SO2 etc. from flaring (combustion of 12 natural gas samples representing composition of natural gas of global origin. Gaseous emission estimates and pattern were modelled by coding material balance equations for six reaction types and combustion conditions with a computer program. On the average, anticipated gaseous emissions from flaring natural gas with an average annual global flaring rate 126 bcm per year (between 2000 and 2011 in million metric tonnes (mmt are 560 mmt, 48 mmt, 91 mmt, 93 mmt and 50 mmt for CO2, CO, NO, NO2 and SO2 respectively. This model predicted gaseous emissions based on the possible individual combustion types and conditions anticipated in gas flaring operation. It will assist in the effort by environmental agencies and all concerned to track and measure the extent of environmental pollution caused by gas flaring operations in the oil and gas industry.

  15. New Results from the Flare Genesis Experiment

    Science.gov (United States)

    Rust, D. M.; Bernasconi, P. N.; Eaton, H. A.; Keller, C.; Murphy, G. A.; Schmieder, B.

    2000-05-01

    From January 10 to 27, 2000, the Flare Genesis solar telescope observed the Sun while suspended from a balloon in the stratosphere above Antarctica. The goal of the mission was to acquire long time series of high-resolution images and vector magnetograms of the solar photosphere and chromosphere. Images were obtained in the magnetically sensitive Ca I line at 6122 Angstroms and at H-alpha (6563 Angstroms). The FGE data were obtained in the context of Max Millennium Observing Campaign #004, the objective of which was to study the ``Genesis of Solar Flares and Active Filaments/Sigmoids." Flare Genesis obtained about 26,000 usable images on the 8 targeted active regions. A preliminary examination reveals a good sequence on an emerging flux region and data on the M1 flare on January 22, as well as a number of sequences on active filaments. We will present the results of our first analysis efforts. Flare Genesis was supported by NASA grants NAG5-4955, NAG5-5139, and NAG5-8331 and by NSF grant OPP-9615073. The Air Force Office of Scientific Research and the Ballistic Missile Defense Organization supported early development of the Flare Genesis Experiment.

  16. Lyman continuum observations of solar flares

    Science.gov (United States)

    Machado, M. E.; Noyes, R. W.

    1978-01-01

    A study is made of Lyman continuum observations of solar flares, using data obtained by the EUV spectroheliometer on the Apollo Telescope Mount. It is found that there are two main types of flare regions: an overall 'mean' flare coincident with the H-alpha flare region, and transient Lyman continuum kernels which can be identified with the H-alpha and X-ray kernels observed by other authors. It is found that the ground level hydrogen population in flares is closer to LTE than in the quiet sun and active regions, and that the level of Lyman continuum formation is lowered in the atmosphere from a mass column density .000005 g/sq cm in the quiet sun to .0003 g/sq cm in the mean flare, and to .001 g/sq cm in kernels. From these results the amount of chromospheric material 'evaporated' into the high temperature region is derived, which is found to be approximately 10 to the 15th g, in agreement with observations of X-ray emission measures.

  17. Solar-flare-induced Forbush decreases - Dependence on shock wave geometry

    Science.gov (United States)

    Thomas, B. T.; Gall, R.

    1984-01-01

    It is argued that the principal mechanism for the association of Forbush decreases with the passage of a solar flare shock wave is prolonged containment of cosmic ray particles behind the flare compression region, which acts as a semipermeable obstacle to particle motion along the field lines, leading to additional adiabatic cooling of the particles. Liouville's theorem is used to calculate the instantaneous distribution function at 1 AU for each particle arriving at the earth. By averaging over a large number of individual estimates, a representative estimate of the omnidirectional phase space density and the corresponding particle intensity is obtained. The energy change of individual particles at the shocks is found to be small in comparison to the energy lost by adiabatic cooling of the cosmic rays between the shock wave and the sun. The effects of particle rigidity, diffusion coefficient, and flare longitude on the magnitude of the Forbush decrease are quantitatively investigated.

  18. The inner-relationship of hard X-ray and EUV bursts during solar flares

    International Nuclear Information System (INIS)

    Emslie, A.G.; Brown, J.C.; Donnelly, R.F.

    1978-01-01

    A comparison is made between the flux-versus-time profile in the EUV band and the thick target electron flux profile as inferred from hard X-rays for a number of moderately large solar flares. This complements Kane and Donnelly's (1971) study of small flares. The hard X-ray data are from ESRO TD-1A and the EUV inferred from SFD observations. Use of a chi 2 minimising method shows that the best overall fit between the profile fine structures obtains for synchronism to < approximately 5 s which is within the timing accuracy. This suggests that neither conduction nor convection is fast enough as the primary mechanism of energy transport into the EUV flare and rather favours heating by the electrons themselves or by some MHD wave process much faster than acoustic waves. The electron power deposited, for a thick target model, is however far greater than the EUV luminosity for any reasonable assumptions about the area and depth over which EUV is emitted. This means that either most of the power deposited is conducted away to the optical flare or that only a fraction < approximately 1-10% of the X-ray emitting electrons are injected downwards. Recent work on Hα flare heating strongly favours the latter alternative - i.e. that electrons are mostly confined in the corona. (Auth.)

  19. Solar flare location effect on the spectral characteristics of the diurnal anisotropy of cosmic ray intensity

    Energy Technology Data Exchange (ETDEWEB)

    Yadava, R S; Kumar, S; Naqvi, T N [Aligarh Muslim Univ. (India)

    1977-01-01

    The spectral parameters of the diurnal anisotropy of cosmic ray intensity are studied separately for days where the solar flares have occurred on the western limb as well as on the eastern limb of the solar disc for both nucleonic as well as mesonic components of the cosmic rays. It is observed that the diurnal amplitude of the cosmic ray intensity in space is larger for days where solar flares have occurred on the western limb of the solar disc as compared to the days where solar flares have occurred on the eartern limb of the solar disc. This is true in both nucleonic as well as mesonic components of the cosmic ray intensity. The average value of the direction in space of diurnal anisotropy in local asymptotic time for various stations is almost same and is observed at around the same hours for flares which occur on the western as well as eastern limb of the solar disc. When these results are compared with the direction of the diurnal anisotropy in space on quiet days, it is found that the direction of the diurnal anisotropy on days where solar flares have occurred on the western limb as well as eastern limb of the solar disc is earlier in comparison to quiet days. This phase shift towards earlier hours is about three hours for nucleonic as well as mesonic components of the cosmic rays intensity. The variation of the rigidity exponent observed on different types of days for the nucleonic component has also been discussed.

  20. Determination of solar flare accelerated ion angular distributions from SMM gamma ray and neutron measurements and determination of the He-3/H ratio in the solar photosphere from SMM gamma ray measurements

    Science.gov (United States)

    Lingenfelter, Richard E.

    1989-01-01

    Comparisons of Solar Maximum Mission (SMM) observations of gamma-ray line and neutron emission with theoretical calculation of their expected production by flare accelerated ion interactions in the solar atmosphere have led to significant advances in the understanding of solar flare particle acceleration and interaction, as well as the flare process itself. These comparisons have enabled the determination of, not only the total number and energy spectrum of accelerated ions trapped at the sun, but also the ion angular distribution as they interact in the solar atmosphere. The Monte Carlo program was modified to include in the calculations of ion trajectories the effects of both mirroring in converging magnetic fields and of pitch angle scattering. Comparing the results of these calculations with the SMM observations, not only the angular distribution of the interacting ions can be determined, but also the initial angular distribution of the ions at acceleration. The reliable determination of the solar photospheric He-3 abundance is of great importance for understanding nucleosynthesis in the early universe and its implications for cosmology, as well as for the study of the evolution of the sun. It is also essential for the determinations of the spectrum and total number of flare accelerated ions from the SMM/GRS gamma-ray line measurements. Systematic Monte Carlo calculations of the time dependence were made as a function of the He-3 abundance and other variables. A new series of calculations were compared for the time-dependent flux of 2.223 MeV neutron capture line emission and the ratio of the time-integrated flux in the 2.223 MeV line to that in the 4.1 to 6.4 MeV nuclear deexcitation band.

  1. Real-world comparison of health care utilization between duloxetine and pregabalin initiators with fibromyalgia

    Directory of Open Access Journals (Sweden)

    Peng X

    2014-01-01

    Full Text Available X Peng,1 P Sun,2 D Novick,1 J Andrews,1 S Sun2 1Eli Lilly and Company, Indianapolis, IN, USA; 2Kailo Research Group, Indianapolis, IN, USA Objectives: To compare health care utilization of duloxetine initiators and pregabalin initiators among fibromyalgia patients in a real-world setting. Methods: A retrospective cohort study was conducted based on a US national commercial health claims database (2006–2009. Fibromyalgia patients who initiated duloxetine or pregabalin in 2008, aged 18–64 years, and who maintained continuous health insurance coverage 1 year before and 1 year after initiation were assigned to duloxetine or pregabalin cohorts on the basis of their initiated agent. Patients who had pill coverage of the agents over the course of 90 days preceding the initiation were excluded. The two comparative cohorts were constructed using propensity score greedy match methods. Descriptive analysis and paired t-test were performed to compare health care utilization rates in the postinitiation year and the changes of these rates from the preinitiation year to the postinitiation year. Results: Both matched cohorts (n=1,265 pairs had a similar mean initiation age (49–50 years, percentage of women (87%–88%, and prevalence of baseline comorbid conditions (neuropathic pain other than diabetic peripheral neuropathic pain, low back pain, cardiovascular disease, hypertension, headache or migraine, and osteoarthritis. In the preinitiation year, both cohorts had similar inpatient, outpatient, and medication utilization rates (inpatient, 15.7%–16.1%; outpatient, 100.0%; medication, 97.9%–98.7%. The utilization rates diverged in the postinitiation year, with the pregabalin cohort using more fibromyalgia-related inpatient care (3.2% versus 2.2%; P<0.05, any inpatient care (19.3% versus 16.8%; P<0.05, and fibromyalgia-related outpatient care (62.1% versus 51.8%; P<0.05. From the preinitiation period to the postinitiation period, the duloxetine cohort

  2. Solar and stellar flares and their impact on planets

    Science.gov (United States)

    Shibata, Kazunari

    Recent observations of the Sun revealed that the solar atmosphere is full of flares and flare-like phenomena, which affect terrestrial environment and our civilization. It has been established that flares are caused by the release of magnetic energy through magnetic reconnection. Many stars show flares similar to solar flares, and such stellar flares especially in stars with fast rotation are much more energetic than solar flares. These are called superflares. The total energy of a solar flare is 1029 - 1032 erg, while that of a superflare is 1033 - 1038 erg. Recently, it was found that superflares (with 1034 - 1035 erg) occur on Sun-like stars with slow rotation with frequency once in 800 - 5000 years. This suggests the possibility of superflares on the Sun. We review recent development of solar and stellar flare research, and briefly discuss possible impacts of superflares on the Earth and exoplanets.

  3. Block-induced Complex Structures Building the Flare-productive Solar Active Region 12673

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Shuhong; Zhang, Jun [CAS Key Laboratory of Solar Activity, National Astronomical Observatories, Chinese Academy of Sciences, Beijing 100012 (China); Zhu, Xiaoshuai [Max-Planck Institute for Solar System Research, D-37077 Göttingen (Germany); Song, Qiao, E-mail: shuhongyang@nao.cas.cn [Key Laboratory of Space Weather, National Center for Space Weather, China Meteorological Administration, Beijing 100081 (China)

    2017-11-10

    Solar active region (AR) 12673 produced 4 X-class, 27 M-class, and numerous lower-class flares during its passage across the visible solar disk in 2017 September. Our study is to answer the questions why this AR was so flare-productive and how the X9.3 flare, the largest one of the past decade, took place. We find that there was a sunspot in the initial several days, and then two bipolar regions emerged nearby it successively. Due to the standing of the pre-existing sunspot, the movement of the bipoles was blocked, while the pre-existing sunspot maintained its quasi-circular shaped umbra only with the disappearance of a part of penumbra. Thus, the bipolar patches were significantly distorted, and the opposite polarities formed two semi-circular shaped structures. After that, two sequences of new bipolar regions emerged within the narrow semi-circular zone, and the bipolar patches separated along the curved channel. The new bipoles sheared and interacted with the previous ones, forming a complex topological system, during which numerous flares occurred. At the highly sheared region, a great deal of free energy was accumulated. On September 6, one negative patch near the polarity inversion line began to rapidly rotate and shear with the surrounding positive fields, and consequently the X9.3 flare erupted. Our results reveal that the block-induced complex structures built the flare-productive AR and the X9.3 flare was triggered by an erupting filament due to the kink instability. To better illustrate this process, a block-induced eruption model is proposed for the first time.

  4. Effect of flow parameters on flare stack generator noise

    International Nuclear Information System (INIS)

    Dinn, T.S.

    1998-01-01

    The SoundPLAN Computer Noise Model was used to determine the general effect of flare noise in a community adjacent to a petrochemical plant. Tests were conducted to determine the effect of process flow conditions and the pulsating flame on the flare stack generator noise from both a refinery flare and process flare. Flaring under normal plant operations, the flaring of fuel gas and the flaring of hydrogen were the three conditions that were tested. It was shown that the steam flow rate was the determining factor in the flare stack generated noise. Variations in the water seal level in the flare line surge tank increased or decreased the gas flowrate, which resulted in a pulsating flame. The period and amplitude of the pulsating noise from the flare stacks was determined by measuring several parameters. Flare stack noise oscillations were found to be greater for the process flare than for the refinery flare stack. It was suggested that minimizing the amount of steam fed to the flare and improving the burner design would minimize noise. 2 tabs., 6 figs

  5. Comparison of robust H∞ filter and Kalman filter for initial alignment of inertial navigation system

    Institute of Scientific and Technical Information of China (English)

    HAO Yan-ling; CHEN Ming-hui; LI Liang-jun; XU Bo

    2008-01-01

    There are many filtering methods that can be used for the initial alignment of an integrated inertial navigation system.This paper discussed the use of GPS,but focused on two kinds of filters for the initial alignment of an integrated strapdown inertial navigation system (SINS).One method is based on the Kalman filter (KF),and the other is based on the robust filter.Simulation results showed that the filter provides a quick transient response and a little more accurate estimate than KF,given substantial process noise or unknown noise statistics.So the robust filter is an effective and useful method for initial alignment of SINS.This research should make the use of SINS more popular,and is also a step for further research.

  6. Feasibility of flare gas reformation to practical energy in Farashband gas refinery: no gas flaring.

    Science.gov (United States)

    Rahimpour, Mohammad Reaza; Jokar, Seyyed Mohammad

    2012-03-30

    A suggested method for controlling the level of hazardous materials in the atmosphere is prevention of combustion in flare. In this work, three methods are proposed to recover flare gas instead of conventional gas-burning in flare at the Farashband gas refinery. These methods aim to minimize environmental and economical disadvantages of burning flare gas. The proposed methods are: (1) gas to liquid (GTL) production, (2) electricity generation with a gas turbine and, (3) compression and injection into the refinery pipelines. To find the most suitable method, the refinery units that send gas to the flare as well as the required equipment for the three aforementioned methods are simulated. These simulations determine the amount of flare gas, the number of GTL barrels, the power generated by the gas turbine and the required compression horsepower. The results of simulation show that 563 barrels/day of valuable GTL products is produced by the first method. The second method provides 25 MW electricity and the third method provides a compressed natural gas with 129 bar pressure for injection to the refinery pipelines. In addition, the economics of flare gas recovery methods are studied and compared. The results show that for the 4.176MMSCFD of gas flared from the Farashband gas refinery, the electricity production gives the highest rate of return (ROR), the lowest payback period, the highest annual profit and mild capital investment. Therefore, the electricity production is the superior method economically. Copyright © 2012 Elsevier B.V. All rights reserved.

  7. XSST/TRC rocket observations of July 13, 1982 flare. [X-ray Spectrometer, Spectrograph and Telescope/Transition Region Camera

    Science.gov (United States)

    Foing, Bernard H.; Bonnet, Roger M.; Dame, Luc; Bruner, Marilyn; Acton, Loren W.

    1986-01-01

    The present analysis of UV filtergrams of the July 13, 1982 solar flare obtained by the XSST/TRC rocket experiments has used calibrated intensities of the flare components to directly estimate the Lyman-alpha line flux, C IV line flux, and excess 160-nm continuum temperature brighness over the underlying plage. The values obtained are small by comparison with other observed or calculated equivalent quantities from the Machado (1980) model of flare F1. The corresponding power required to heat up to the temperature minimum over the 1200 sq Mm area is found to be 3.6 x 10 to the 25th erg/sec for this small X-ray C6 flare, 7 min after the ground-based observed flare maximum.

  8. 40 CFR 65.164 - Performance test and flare compliance determination notifications and reports.

    Science.gov (United States)

    2010-07-01

    ... determination notifications and reports. 65.164 Section 65.164 Protection of Environment ENVIRONMENTAL..., Control Devices, and Routing to a Fuel Gas System or a Process § 65.164 Performance test and flare... an initially scheduled performance test, there is a delay (due to operational problems, etc.) in...

  9. Particle acceleration in explosive relativistic reconnection events and Crab Nebula gamma-ray flares

    Science.gov (United States)

    Lyutikov, Maxim; Komissarov, Serguei; Sironi, Lorenzo

    2018-04-01

    We develop a model of gamma-ray flares of the Crab Nebula resulting from the magnetic reconnection events in a highly magnetised relativistic plasma. We first discuss physical parameters of the Crab Nebula and review the theory of pulsar winds and termination shocks. We also review the principle points of particle acceleration in explosive reconnection events [Lyutikov et al., J. Plasma Phys., vol. 83(6), p. 635830601 (2017a); J. Plasma Phys., vol. 83(6), p. 635830602 (2017b)]. It is required that particles producing flares are accelerated in highly magnetised regions of the nebula. Flares originate from the poleward regions at the base of the Crab's polar outflow, where both the magnetisation and the magnetic field strength are sufficiently high. The post-termination shock flow develops macroscopic (not related to the plasma properties on the skin-depth scale) kink-type instabilities. The resulting large-scale magnetic stresses drive explosive reconnection events on the light-crossing time of the reconnection region. Flares are produced at the initial stage of the current sheet development, during the X-point collapse. The model has all the ingredients needed for Crab flares: natural formation of highly magnetised regions, explosive dynamics on the light travel time, development of high electric fields on macroscopic scales and acceleration of particles to energies well exceeding the average magnetic energy per particle.

  10. FLARE-GENERATED TYPE II BURST WITHOUT ASSOCIATED CORONAL MASS EJECTION

    Energy Technology Data Exchange (ETDEWEB)

    Magdalenic, J.; Marque, C.; Zhukov, A. N. [Solar-Terrestrial Center of Excellence, SIDC, Royal Observatory of Belgium, Avenue Circulaire 3, B-1180 Brussels (Belgium); Vrsnak, B. [Hvar Observatory, Faculty of Geodesy, Kaciceva 26, HR-10000 Zagreb (Croatia); Veronig, A., E-mail: Jasmina.Magdalenic@oma.be [IGAM/Kanzelhoehe Observatory, Institut of Physics, Universitaet Graz, Universitaetsplatz 5, A-8010 Graz (Austria)

    2012-02-20

    We present a study of the solar coronal shock wave on 2005 November 14 associated with the GOES M3.9 flare that occurred close to the east limb (S06 Degree-Sign E60 Degree-Sign ). The shock signature, a type II radio burst, had an unusually high starting frequency of about 800 MHz, indicating that the shock was formed at a rather low height. The position of the radio source, the direction of the shock wave propagation, and the coronal electron density were estimated using Nancay Radioheliograph observations and the dynamic spectrum of the Green Bank Solar Radio Burst Spectrometer. The soft X-ray, H{alpha}, and Reuven Ramaty High Energy Solar Spectroscopic Imager observations show that the flare was compact, very impulsive, and of a rather high density and temperature, indicating a strong and impulsive increase of pressure in a small flare loop. The close association of the shock wave initiation with the impulsive energy release suggests that the impulsive increase of the pressure in the flare was the source of the shock wave. This is supported by the fact that, contrary to the majority of events studied previously, no coronal mass ejection was detected in association with the shock wave, although the corresponding flare occurred close to the limb.

  11. Results of experiments with flare type igniters on diesel fuel and crude oil emulsions

    International Nuclear Information System (INIS)

    Moffat, C.; Hankins, P.

    1997-01-01

    Development of a hand-deployable igniter that could ignite contained diesel fuel and crude oil emulsions on water was described. The igniter was developed as part of the U.S. Navy Supervisor of Salvage (SUPSALV) In-Situ Burn (ISB) system. It is a manually operated, electrically fired, high temperature flare type igniter. It is 41 cm long, 10 cm in diameter, weighs 1.5 kg, and is packaged and shipped with the ISB system. The chemical and mineral composition of the flair allows for a three minute burn of up to 1370 degrees C (2500 degrees F) at the center. The flare is most effective when used in conjunction with a shroud of sorbent material which traps and holds oil around the burning flare aiding the ignition process by increasing the initial propagation area. In small-scale tank experiments the flare ignited diesel fuel in ambient temperatures of 3 degrees C, with winds of 8 to 10 m/sec. The flare also ignited 22.5 per cent water-in crude oil emulsion in 3 degrees C temperatures. 4 refs., 3 tabs

  12. Narrowband dm-spikes, intermediate drift bursts and pulsations in the solar flare of August 19, 1981

    International Nuclear Information System (INIS)

    Karlicky, M.

    1986-01-01

    In the initial phase (1251-1253 UT) of the flare of Aug. 19, 1981, an interesting group of narrowband dm-spikes, intermediate drift bursts and pulsations was observed. The paper tries to explain this group of bursts by a uniform model. It is shown that all these bursts are associated with acceleration and trapping of superthermal electrons in the flare loop. The parameters of the flare loop and the electric field in the acceleration process are estimated. An explanation is given of why the ''period'' of intermediate drift bursts and of pulsations is the same. Later the flare loop under study explodes and a shock wave (type II radio burst) is generated at a relatively high altitude of ∼ 100,000 km above the photosphere. This process is connected with the 10 cm radio flux decrease. (author)

  13. Comparison of initial capital investment requirements for new domestic energy supplies: 1980 update

    International Nuclear Information System (INIS)

    Schlesinger, B.; Hay, N.E.; Wilkinson, P.

    1980-01-01

    A.G.A.'s update of its 1978 analysis comparing the initial capital investments required for several domestic sources of alternative energy (coal conversion, oil shale, unconventional natural gas, Alaskan gas, nuclear power, and solar energy) concludes that US energy-supply and utilization systems based on gaseous fuels need substantially less initial capital investment than do equivalent nuclear, coal, and solar electric systems or synthetic-liquids systems. The capital estimates include the costs of resource extraction, processing and conversion, transmission and distribution, and end-use equipment. The cost advantages shown for the three end-use applications compared - residential and small-commercial space heating, premium industrial usage, and large industrial boilers - reflect both the lower capital requirements and higher energy efficiencies of the gaseous systems

  14. Preparing beginning reading teachers: An experimental comparison of initial early literacy field experiences

    OpenAIRE

    Al Otaiba, Stephanie; Lake, Vickie E.; Greulich, Luana; Folsom, Jessica S.; Guidry, Lisa

    2012-01-01

    This randomized-control trial examined the learning of preservice teachers taking an initial Early Literacy course in an early childhood education program and of the kindergarten or first grade students they tutored in their field experience. Preservice teachers were randomly assigned to one of two tutoring programs: Book Buddies and Tutor Assisted Intensive Learning Strategies (TAILS), which provided identical meaning-focused instruction (shared book reading), but differed ...

  15. Predictors of Flare Following Etanercept Withdrawal in Patients with Rheumatoid Factor-negative Juvenile Idiopathic Arthritis Who Reached Remission while Taking Medication.

    Science.gov (United States)

    Aquilani, Angela; Pires Marafon, Denise; Marasco, Emiliano; Nicolai, Rebecca; Messia, Virginia; Perfetti, Francesca; Magni-Manzoni, Silvia; De Benedetti, Fabrizio

    2018-05-01

    To evaluate the rate of flare after etanercept (ETN) withdrawal in patients with juvenile idiopathic arthritis (JIA) who attained clinical remission while taking medication, and to identify predictors of flare. Patients were included with oligo- (oJIA) and rheumatoid factor-negative polyarticular JIA (pJIA) who received a first course of ETN for at least 18 months, maintained clinically inactive disease (CID) for at least 6 months during treatment, and were followed for 12 months after ETN withdrawal. Demographic and clinical features were collected at onset, at baseline (initiation of ETN), and at time of disease flare. After ETN withdrawal, 66 of the 110 patients enrolled (60%) flared with arthritis (of whom 7 flared with concurrent anterior uveitis; none with uveitis alone). The median time to flare was 4.3 months (interquartile range 2.5-6.4) with no evident differences between oJIA and pJIA. The number and type of joints involved at baseline and characteristics of ETN treatment/discontinuation were not associated with flare. Patients who flared were more frequently males (p = 0.034), positive for antinuclear antibody (ANA; p = 0.047), and had higher values of C-reactive protein (CRP; p = 0.012) at baseline. These variables remained significantly associated with flare in a multivariate logistic analysis, a model accounting for only 14% of the variability of the occurrence of the flare. Our results show that a significant proportion of patients with JIA who maintain CID for at least 6 months experience a relapse after ETN withdrawal. Male sex, presence of ANA, and elevated CRP at baseline were associated with higher risk of flare.

  16. Radio-flaring Ultracool Dwarf Population Synthesis

    Energy Technology Data Exchange (ETDEWEB)

    Route, Matthew, E-mail: mroute@purdue.edu [Department of Astronomy and Astrophysics, the Pennsylvania State University, 525 Davey Laboratory, University Park, PA 16802 (United States)

    2017-08-10

    Over a dozen ultracool dwarfs (UCDs), low-mass objects of spectral types ≥M7, are known to be sources of radio flares. These typically several-minutes-long radio bursts can be up to 100% circularly polarized and have high brightness temperatures, consistent with coherent emission via the electron cyclotron maser operating in approximately kilogauss magnetic fields. Recently, the statistical properties of the bulk physical parameters that describe these UCDs have become described adequately enough to permit synthesis of the population of radio-flaring objects. For the first time, I construct a Monte Carlo simulator to model the population of these radio-flaring UCDs. This simulator is powered by Intel Secure Key (ISK), a new processor technology that uses a local entropy source to improve random number generation that has heretofore been used to improve cryptography. The results from this simulator indicate that only ∼5% of radio-flaring UCDs within the local interstellar neighborhood (<25 pc away) have been discovered. I discuss a number of scenarios that may explain this radio-flaring fraction and suggest that the observed behavior is likely a result of several factors. The performance of ISK as compared to other pseudorandom number generators is also evaluated, and its potential utility for other astrophysical codes is briefly described.

  17. Force application during handcycling and handrim wheelchair propulsion: an initial comparison.

    Science.gov (United States)

    Arnet, Ursina; van Drongelen, Stefan; Veeger, D H; van der Woude L, H V

    2013-12-01

    The aim of the study was to evaluate the external applied forces, the effectiveness of force application and the net shoulder moments of handcycling in comparison with handrim wheelchair propulsion at different inclines. Ten able-bodied men performed standardized exercises on a treadmill at inclines of 1%, 2.5% and 4% with an instrumented handbike and wheelchair that measured three-dimensional propulsion forces. The results showed that during handcycling significantly lower mean forces were applied at inclines of 2.5% (P propulsion. The force effectiveness did not differ between the devices (P = .757); however, the effectiveness did increase with higher inclines during handcycling whereas it stayed constant over all inclines for wheelchair propulsion. The resulting peak net shoulder moments were lower for handcycling compared with wheelchair propulsion at all inclines (P < .001). These results confirm the assumption that handcycling is physically less straining.

  18. Assessment of pulmonary parenchyma perfusion with FAIR in comparison with DCE-MRI-Initial results

    Energy Technology Data Exchange (ETDEWEB)

    Fan Li [Department of Radiology, ChangZheng Hospital Affiliated to Second Military Medical University, No. 415 Fengyang Road, Shanghai 200003 (China)], E-mail: fanli0930@163.com; Liu Shiyuan [Department of Radiology, ChangZheng Hospital Affiliated to Second Military Medical University, No. 415 Fengyang Road, Shanghai 200003 (China); Sun Fei [GE Healthcare China (China)], E-mail: Fei.sun@med.ge.com; Xiao Xiangsheng [Department of Radiology, ChangZheng Hospital Affiliated to Second Military Medical University, No. 415 Fengyang Road, Shanghai 200003 (China)], E-mail: lizhaobin79@163.com

    2009-04-15

    Objective: The aim of this study was to assess pulmonary parenchyma perfusion with flow-sensitive alternating inversion recovery (FAIR) in comparison with 3D dynamic contrast-enhanced (DCE) imaging in healthy volunteers and in patients with pulmonary embolism or lung cancer. Materials and methods: Sixteen healthy volunteers and 16 patients with pulmonary embolism (5 cases) or lung cancer (11 cases) were included in this study. Firstly, the optimized inversion time of FAIR (TI) was determined in 12 healthy volunteers. Then, FAIR imaging with the optimized TI was performed followed by DCE-MRI on the other 4 healthy volunteers and 16 patients. Tagging efficiency of lung and SNR of perfusion images were calculated with different TI values. In the comparison of FAIR with DCE-MRI, the homogeneity of FAIR and DCE-MRI perfusion was assessed. In the cases of perfusion abnormality, the contrast between normal lung and perfusion defects was quantified by calculating a normalized signal intensity ratio. Results: One thousand milliseconds was the optimal TI, which generated the highest lung tagging efficiency and second highest PBF SNR. In the volunteers, the signal intensity of perfusion images acquired with both FAIR and DCE-MRI was homogeneous. Wedged-shaped or triangle perfusion defects were visualized in five pulmonary embolisms and three lung cancer cases. There was no significant statistical difference in signal intensity ratio between FAIR and DCE-MRI (P > 0.05). In the rest of eight lung cancers, all the lesions showed low perfusion against the higher perfused pulmonary parenchyma in both FAIR and DCE-MRI. Conclusion: Pulmonary parenchyma perfusion imaging with FAIR was feasible, consistent and could obtain similar functional information to that from DCE-MRI.

  19. Assessment of pulmonary parenchyma perfusion with FAIR in comparison with DCE-MRI-Initial results

    International Nuclear Information System (INIS)

    Fan Li; Liu Shiyuan; Sun Fei; Xiao Xiangsheng

    2009-01-01

    Objective: The aim of this study was to assess pulmonary parenchyma perfusion with flow-sensitive alternating inversion recovery (FAIR) in comparison with 3D dynamic contrast-enhanced (DCE) imaging in healthy volunteers and in patients with pulmonary embolism or lung cancer. Materials and methods: Sixteen healthy volunteers and 16 patients with pulmonary embolism (5 cases) or lung cancer (11 cases) were included in this study. Firstly, the optimized inversion time of FAIR (TI) was determined in 12 healthy volunteers. Then, FAIR imaging with the optimized TI was performed followed by DCE-MRI on the other 4 healthy volunteers and 16 patients. Tagging efficiency of lung and SNR of perfusion images were calculated with different TI values. In the comparison of FAIR with DCE-MRI, the homogeneity of FAIR and DCE-MRI perfusion was assessed. In the cases of perfusion abnormality, the contrast between normal lung and perfusion defects was quantified by calculating a normalized signal intensity ratio. Results: One thousand milliseconds was the optimal TI, which generated the highest lung tagging efficiency and second highest PBF SNR. In the volunteers, the signal intensity of perfusion images acquired with both FAIR and DCE-MRI was homogeneous. Wedged-shaped or triangle perfusion defects were visualized in five pulmonary embolisms and three lung cancer cases. There was no significant statistical difference in signal intensity ratio between FAIR and DCE-MRI (P > 0.05). In the rest of eight lung cancers, all the lesions showed low perfusion against the higher perfused pulmonary parenchyma in both FAIR and DCE-MRI. Conclusion: Pulmonary parenchyma perfusion imaging with FAIR was feasible, consistent and could obtain similar functional information to that from DCE-MRI.

  20. Comparison and alignment of an academic medical center's strategic goals with ASHP initiatives.

    Science.gov (United States)

    Engels, Melanie J; Chaffee, Bruce W; Clark, John S

    2015-12-01

    An academic medical center's strategic goals were compared and aligned with the 2015 ASHP Health-System Pharmacy Initiative and the Pharmacy Practice Model Initiative (PPMI). The department's pharmacy practice model steering committee identified potential solutions to narrow prioritized gaps using a modified nominal group technique and a multivoting dot technique. Five priority solutions were identified and assigned to work groups to develop business plans, which included admission medication history and reconciliation for high-risk patients and those with complex medication regimens, pharmacist provision of discharge counseling to high-risk patients and those with complex medication regimens, improved measurement and reporting of the impact of PPMI programs on patient outcomes, implementation of a departmentwide formalized peer review and evaluation process, and the greeting of every patient at some time during his or her visit by a pharmacy team member. Stakeholders evaluated the business plans based on feasibility, financial return on investment, and anticipated safety enhancements. The solution that received the highest priority ranking and was subsequently implemented was "improved measurement and reporting of the impact of PPMI programs on patient outcomes." A defined process was followed for identifying gaps among current practices at an academic medical center and the 2015 ASHP Health-System Pharmacy Initiative and the PPMI. A key priority to better document the impact of pharmacists on patient care was identified for our department by using a nominal group technique brainstorming process and a multivoting dot technique and creating standardized business plans for five potential priority projects. Copyright © 2015 by the American Society of Health-System Pharmacists, Inc. All rights reserved.

  1. Force systems in the initial phase of orthodontic treatment -- a comparison of different leveling arch wires.

    Science.gov (United States)

    Fuck, Lars-Michael; Drescher, Dieter

    2006-01-01

    The determination of orthodontically-effective forces and moments places great demands on the technical equipment. Many patients report severe pain after fixed appliance insertion. Since it is assumed that pain from orthodontic appliances is associated with the force and moment levels applied to the teeth and since the occurrence of root resorption is a common therapeutic side effect, it would seem important to know the actual magnitudes of the components of the active orthodontic force systems. The aim of the present study was therefore to measure initial force systems produced by different leveling arch-wires in a complete multi-bracket appliance and to assess whether force and moment levels can be regarded as biologically acceptable or not. The actual bracket position in 42 patients was transferred onto a measurement model. Forces and moments produced by a super-elastic nickel-titanium (NiTi) archwire, a 6-strand stainless steel archwire, and a 7-strand super-elastic NiTi archwire were determined experimentally on different teeth. Average forces and moments produced by the super-elastic NiTi arch wires were found to be the highest. In spite if their larger diameter, the stranded arch wires' average force and moment levels were lower, especially that of the stranded super-elastic archwire. Nevertheless, maximum force levels sometimes exceeded recommended values in the literature and must be considered as too high. The measured arch wires' initial force systems differed significantly depending on the type of archwire and its material structure. Stranded arch wires produced lower force and moment levels, and we recommend their use in the initial phase of orthodontic treatment.

  2. Facilitating Low-Carbon Living? A Comparison of Intervention Measures in Different Community-Based Initiatives

    Directory of Open Access Journals (Sweden)

    Martina Schäfer

    2018-04-01

    Full Text Available The challenge of facilitating a shift towards sustainable housing, food and mobility has been taken up by diverse community-based initiatives ranging from “top-down” approaches in low-carbon municipalities to “bottom-up” approaches in intentional communities. This paper compares intervention measures in four case study areas belonging to these two types, focusing on their potential of re-configuring daily housing, food, and mobility practices. Taking up critics on dominant intervention framings of diffusing low-carbon technical innovations and changing individual behavior, we draw on social practice theory for the empirical analysis of four case studies. Framing interventions in relation to re-configuring daily practices, the paper reveals differences and weaknesses of current low-carbon measures of community-based initiatives in Germany and Austria. Low-carbon municipalities mainly focus on introducing technologies and offering additional infrastructure and information to promote low-carbon practices. They avoid interfering into residents’ daily lives and do not restrict carbon-intensive practices. In contrast, intentional communities base their interventions on the collective creation of shared visions, decisions, and rules and thus provide social and material structures, which foster everyday low-carbon practices and discourage carbon-intensive ones. The paper discusses the relevance of organizational and governance structures for implementing different types of low-carbon measures and points to opportunities for broadening current policy strategies.

  3. Comparison of steroid pulse therapy and conventional oral steroid therapy as initial treatment for autoimmune pancreatitis

    International Nuclear Information System (INIS)

    Tomiyama, Takashi; Uchida, Kazushige; Matsushita, Mitsunobu; Ikeura, Tsukasa; Fukui, Toshiro; Takaoka, Makoto; Nishio, Akiyoshi; Okazaki, Kazuichi

    2011-01-01

    The efficacy of oral steroid therapy for autoimmune pancreatitis (AIP) is well known, and oral prednisolone treatment is most usually commenced at 30-40 mg/day, but there have been few reports about comparative studies of oral steroid therapy and steroid pulse therapy as the initial treatment for AIP. We studied the clinical course and image findings to estimate the utility of steroid pulse therapy for AIP, comparing it with oral steroid therapy. Laboratory and image findings were assessed retrospectively in 11 patients who received steroid pulse therapy, and the findings were compared to those in 10 patients who received conventional oral steroid therapy. Change in pancreatic size showed no significant difference between the therapies after 2 weeks of treatment. Significant improvement of lower bile duct strictures after 2 weeks of treatment and that of immunoglobulin values within 6 months were shown with both therapies. However, steroid pulse therapy showed significant improvement of γ-guanosine triphosphate (GTP) in 2 weeks and of alanine aminotransferase (ALT) in 2 and 8 weeks, compared with oral steroid therapy. Moreover, there was one patient in whom the lower bile duct stricture was not improved by oral steroid therapy, but it did show improvement with steroid pulse therapy. Initial steroid pulse therapy is a beneficial alternative to oral steroid therapy for the improvement of bile duct lesions. In future, the accumulation of a larger number of patients receiving steroid pulse therapy is needed, and prospective studies will be required. (author)

  4. A study of flare stars in the taurus region

    International Nuclear Information System (INIS)

    Khodzhaev, A.S.

    1986-01-01

    The results are given of a search for flare stars in the region of the dark clouds in Taurus together with the results of photometric, H /sub alpha/ -spectroscopic, and statistical investigations of them. Photographic observations during 1980-1984 revealed 92 new flare stars, 13 of which were found to be known Orion variables with 16 repeated flares of 13 previously known flare stars. Their apparent distribution is considered. The question of whether the flare stars belong to a dark cloud is discussed. A comparative analysis of the flare stars in the Taurus region and other aggregates is made. The Hertzsprung-Russell (V, B - V) and two-color (U - B, B - V) diagrams for the flare stars are similar to the corresponding diagrams constructed for star clusters and associations (Pleiades, Orion, etc.). The total number of flare stars in the region of the dark clouds in Taurus is estimated at ≥ 500

  5. Gas Flaring: Carbon dioxide Contribution to Global Warming ...

    African Journals Online (AJOL)

    PROF HORSFALL

    emissions resulting from high consumption of fossil fuels. Flaring been a ... method of analysis showed that carbon dioxide from gas flaring constitute 1% of the total ... Although of these, methane is potentially the most .... in some gas plants.

  6. Frequency distribution function of stellar flares in the Orion association

    International Nuclear Information System (INIS)

    Parsamian, E.S.

    1981-01-01

    The temporal distributions of flare stars in the Orion association and the numbers of stars with different flare frequencies are determined by means of Ambartsumian's (1978) method, which uses the chronology of discovery of 'first' flares and the chronology of confirmations, i.e., the temporal distributions of 'repeated' flares. It is shown that flare stars with high flare frequency (not greater than 1000 hours) in the Pleiades are basically stars of low luminosity with M(U) not less than 13m. Two independent methods of determining the number of flare stars in the aggregates confirm that there are about 1.5 times more flare stars in the Orion association than in the Pleiades

  7. Foreign Language Analysis and Recognition (FLARe) Initial Progress

    Science.gov (United States)

    2012-11-29

    speaker diarization code was optimized to execute faster and yield a lower Diarization Error Rate (DER). Minimizing the file read and write operations...PLP features were calculated using the same procedure described in Section 2.1.1 A second set of models was estimated that include Speaker Adaptive...non-SAT HMMs. Constrained Maximum Likelihood Linear Regression (CMLLR) transforms were estimated for each speaker , and recognition lattices were

  8. Effect of calcium hydroxide and triple antibiotic paste as intracanal medicaments on the incidence of inter-appointment flare-up in diabetic patients: An in vivo study

    Science.gov (United States)

    Pai, Swathi; Vivekananda Pai, A. R.; Thomas, Manuel S.; Bhat, Vishal

    2014-01-01

    Aim: To evaluate and compare the effect of antibacterial intracanal medicaments on inter-appointment flare-up in diabetic patients. Materials and Methods: Fifty diabetic patients requiring root canal treatment were assigned into groups I, II, and III. In group I, no intracanal medicament was placed. In groups II and III, calcium hydroxide and triple antibiotic pastes were placed as intracanal medicaments, respectively. Patients were instructed to record their pain on days 1, 2, 3, 7, and 14. Inter-appointment flare-up was evaluated using verbal rating scale (VRS). Results: Overall incidence of inter-appointment flare-up among diabetic patients was found to be 16%. In group I, 50% of the patients and in group II, 15% of the patients developed inter-appointment flare-up. However, no patients in group III developed inter-appointment flare-up. The comparison of these results was found to be statistically significant (P = 0.002; χ2 = 12.426). However, with respect to intergroup comparison, only the difference between groups I and III was found to be statistically significant (P = 0.002; χ2 = 12.00). Conclusions: Calcium hydroxide and triple antibiotic paste are effective for managing inter-appointment flare-ups in diabetic patients. Triple antibiotic paste is more effective than calcium hydroxide in preventing the occurrence of flare-up in diabetic patients. PMID:24944440

  9. Flaring red dwarf stars: news from Crimea

    International Nuclear Information System (INIS)

    Gershberg, Roald E

    1998-01-01

    Important phenomena are briefly described which have recently been discovered in the Crimean studies of flaring red dwarf stars believed to be the most common type of variable stars in the Galaxy. These phenomena include (i) long-lived radiation from a blueshifted component in the ionized-helium λ 4686 A emission line in the active state of one such star, (ii) a long-lived absorption component in the stellar flare light curves with a lifetime exceeding that of the conventional flare emission, and (iii) solarcycle-like activity periodicity of the star EV Lac, whose mass is only 0.3 solar masses. In theoretical terms, a red dwarf star spot model is constructed which, in contrast to the commonly accepted model, agrees well with the solar spot picture. (physics of our days)

  10. Flaring red dwarf stars: news from Crimea

    Energy Technology Data Exchange (ETDEWEB)

    Gershberg, Roald E [Crimean Astrophysical Observatory, Nauchnyi, Crimea (Ukraine)

    1998-08-31

    Important phenomena are briefly described which have recently been discovered in the Crimean studies of flaring red dwarf stars believed to be the most common type of variable stars in the Galaxy. These phenomena include (i) long-lived radiation from a blueshifted component in the ionized-helium {lambda} 4686 A emission line in the active state of one such star, (ii) a long-lived absorption component in the stellar flare light curves with a lifetime exceeding that of the conventional flare emission, and (iii) solarcycle-like activity periodicity of the star EV Lac, whose mass is only 0.3 solar masses. In theoretical terms, a red dwarf star spot model is constructed which, in contrast to the commonly accepted model, agrees well with the solar spot picture. (physics of our days)

  11. Solar flare loops observations and interpretations

    CERN Document Server

    Huang, Guangli; Ji, Haisheng; Ning, Zongjun

    2018-01-01

    This book provides results of analysis of typical solar events, statistical analysis, the diagnostics of energetic electrons and magnetic field, as well as the global behavior of solar flaring loops such as their contraction and expansion. It pays particular attention to analyzing solar flare loops with microwave, hard X-ray, optical and EUV emissions, as well as the theories of their radiation, and electron acceleration/transport. The results concerning influence of the pitch-angle anisotropy of non-thermal electrons on their microwave and hard X-ray emissions, new spectral behaviors in X-ray and microwave bands, and results related to the contraction of flaring loops, are widely discussed in the literature of solar physics. The book is useful for graduate students and researchers in solar and space physics.

  12. Endodontic flare-ups: a prospective study.

    Science.gov (United States)

    Alves, Vanessa de Oliveira

    2010-11-01

    The objective of this prospective clinical study was to evaluate the incidence of flare-ups (pain and/or swelling requiring endodontic interappointment and emergency treatment) and identify the risk factors associated with their occurrence in patients who received endodontic treatment from June 2006 to June 2007 at the endodontics clinic of the São Paulo Dental Association (APCD), Jardim Paulista branch, São Paulo, Brazil. The incidence of flare-ups was 1.71% out of 408 teeth that had received endodontic therapy. Statistical analysis using the chi-squared test (P flare-up rate and the presence of a periradicular radiolucency. Copyright © 2010 Mosby, Inc. All rights reserved.

  13. TEMPORAL AND SPATIAL RELATIONSHIP OF FLARE SIGNATURES AND THE FORCE-FREE CORONAL MAGNETIC FIELD

    Energy Technology Data Exchange (ETDEWEB)

    Thalmann, J. K.; Veronig, A.; Su, Y., E-mail: julia.thalmann@uni-graz.at [Institute of Physics/IGAM, University of Graz, Universitätsplatz 5/II, A-8010 Graz (Austria)

    2016-08-01

    We investigate the plasma and magnetic environment of active region NOAA 11261 on 2011 August 2 around a GOES M1.4 flare/CME (SOL2011-08-02T06:19). We compare coronal emission at the (extreme) ultraviolet and X-ray wavelengths, using SDO AIA and RHESSI images, in order to identify the relative timing and locations of reconnection-related sources. We trace flare ribbon signatures at ultraviolet wavelengths in order to pin down the intersection of previously reconnected flaring loops in the lower solar atmosphere. These locations are used to calculate field lines from three-dimensional (3D) nonlinear force-free magnetic field models, established on the basis of SDO HMI photospheric vector magnetic field maps. Using this procedure, we analyze the quasi-static time evolution of the coronal model magnetic field previously involved in magnetic reconnection. This allows us, for the first time, to estimate the elevation speed of the current sheet’s lower tip during an on-disk observed flare as a few kilometers per second. A comparison to post-flare loops observed later above the limb in STEREO EUVI images supports this velocity estimate. Furthermore, we provide evidence for an implosion of parts of the flaring coronal model magnetic field, and identify the corresponding coronal sub-volumes associated with the loss of magnetic energy. Finally, we spatially relate the build up of magnetic energy in the 3D models to highly sheared fields, established due to the dynamic relative motions of polarity patches within the active region.

  14. Corporate responsibility reporting according to Global Reporting Initiative: an international comparison

    Directory of Open Access Journals (Sweden)

    Ionela-Corina CHERSAN

    2016-04-01

    Full Text Available The Global Reporting Initiative (GRI is an organization that has managed to impose its reporting practices on corporate responsibility among large transnational companies. The model proposed by GRI is based on the supposed convergence between the economic, social and environmental dimensions of sustainable development. This convergence can be presumed at macroeconomic level, but at the level of enterprises, the three dimensions are often divergent. By analyzing the structure of reports included in the GRI database, our article aims to identify the factors that impact on company’s behavior in the corporate responsibility reporting process. In addition, our research invites to answer the following question: is it not possible that these reports attempt to exaggerate company environmental and social performance, rather than to cause a change in their conduct?

  15. Performance of OSC's initial Amtec generator design, and comparison with JPL's Europa Orbiter goals

    International Nuclear Information System (INIS)

    Schock, A.; Noravian, H.; Or, C.; Kumar, V.

    1998-01-01

    The procedure for the analysis (with overpotential correction) of multitube AMTEC (Alkali Metal Thermal-to-Electrical Conversion) cells described in Paper IECEC 98-243 was applied to a wide range of multicell radioisotope space power systems. System design options consisting of one or two generators, each with 2, 3, or 4 stacked GPHS (General Purpose Heat Source) modules, identical to those used on previous NASA missions, were analyzed and performance-mapped. The initial generators analyzed by OSC had 8 AMTEC cells on each end of the heat source stack, with five beta-alumina solid electrolyte (BASE) tubes per cell. The heat source and converters in the Orbital generator designs are embedded in a thermal insulation system consisting of Min-K fibrous insulation surrounded by graded-length molybdenum multifoils. Detailed analyses in previous Orbital studies found that such an insulation system could reduce extraneous heat losses to about 10%. For the above design options, the present paper presents the system mass and performance (i.e., the EOM system efficiency and power output and the BOM evaporator and clad temperatures) for a wide range of heat inputs and load voltages, and compares the results with JPL's preliminary goals for the Europa Orbiter mission to be launched in November 2003. The analytical results showed that the initial 16-cell generator designs resulted in either excessive evaporator and clad temperatures and/or insufficient power outputs to meet the JPL-specified mission goals. The computed performance of modified OSC generators with different numbers of AMTEC cells, cell diameters, cell lengths, cell materials, BASE tube lengths, and number of tubes per cell are described in Paper IECEC.98.245 in these proceedings

  16. Comparison between Fluoride and Nano-hydroxyapatite in Remineralizing Initial Enamel Lesion: An in vitro Study.

    Science.gov (United States)

    Daas, Issa; Badr, Sherine; Osman, Essam

    2018-03-01

    The aim of this study was to compare the effectiveness of nano-hydroxyapatite (nano-HAP) paste and fluoride varnish in remineralizing initial enamel lesion in young permanent teeth and their ability to resist secondary caries under dynamic pH cycling quantitatively and qualitatively. Initial caries-like lesions were artificially developed on 45 specimens. Specimens were divided into three groups: (1) Control (without treatment), (2) fluoride varnish (3M ESPE), and (3) nano-HAP paste (Desensibilize Nano P). The nano-HAP paste was applied twice separated by one pH cycle, and the varnish was applied only once followed by 7 days of pH cycling. All specimens were examined using DIAGNOdent® pen (KaVo, Germany), and a representative specimen was randomly selected from each group for qualitative evaluation using scanning electron microscope (SEM) at four stages: Baseline, after lesion formation, immediately after remineralization, and after pH cycling. Data were statistically analyzed with Statistical Package for the Social Sciences (SPSS), version 20. The degree of demineralization was significantly elevated in control group; however, no significant difference was found between fluoride varnish group and nano-HAP paste group (p Nano-HAP paste showed promising long-term protective effect in terms of surface depositions and maintaining a smooth surface compared with fluoride varnish. Based on the findings of this study, nano-HAP paste might be recommended as alternative remineralizing agent with lower fluoride concentration than fluoride varnish that could be beneficial for children, pregnant females, and those who are at high risk of dental fluorosis.

  17. Modelling Reactivity-Initiated-Accident Experiments With Falcon And SCANAIR: A Comparison Exercise

    International Nuclear Information System (INIS)

    Romano, A.; Wallin, H.; Zimmermann, M.A.

    2005-01-01

    A critical assessment is made of the state-of-the-art fuel performance code FALCON in the context of selected Reactivity Initiated Accident (RIA) experiments from the CABRI REP Na series, and contrasts its predictions against those of the extensively benchmarked SCANAIR (Version 3.2) code. The thermal fields in the fuel and cladding, the clad mechanical deformation, and the Fission Gas Release (FGR) are adopted as 'Figures of Merit' by which to judge code performance. Particular attention is paid to the importance of fission-gas-induced clad deformation (which is modelled in SCANAIR, but not in FALCON), relative to that driven by the fuel thermal expansion (which is modelled by both codes). The thermal fields calculated by the codes are in good agreement with each other, especially during the initial stages of the transients --- the adiabatic phase. Larger discrepancies are observed at later times, and are due to the different models applied to calculate the gap conductance. FALCON predicts clad permanent deformations at the end of the transients with a maximum deviation from the experimental measurements of about 20%. Generally, the code always tends to underpredict the measurements. SCANAIR performs similarly, but grossly overpredicts the permanent clad strain for the case involving a very energetic pulse. The fission-gas-driven clad deformation is only relevant for very fast pulse energy injection cases, which are not prototypical of the RIA transients expected in PWRs. The FGR models in FALCON do not capture the mechanism of 'burst-release' in the RIA transients, having been developed for steady-state irradiation conditions. This also explains why they performed poorly when applied to the fast-transient cases analyzed here. In contrast, the FGR results from SCANAIR are in satisfactory agreement with the experimental results. (author)

  18. 25 Years of DECOVALEX - Research Advances and Lessons Learned from an International Model Comparison Initiative

    Science.gov (United States)

    Birkholzer, J. T.

    2017-12-01

    This presentation provides an overview of an international research and model comparison collaboration (DECOVALEX) for advancing the understanding and modeling of coupled thermo-hydro-mechanical-chemical (THMC) processes in geological systems. Prediction of these coupled effects is an essential part of the performance and safety assessment of geologic disposal systems for radioactive waste and spent nuclear fuel, and is also relevant for a range of other sub-surface engineering activities. DECOVALEX research activities have been supported by a large number of radioactive-waste-management organizations and regulatory authorities. Research teams from more than a dozen international partner organizations have participated in the comparative modeling evaluation of complex field and laboratory experiments in the UK, Switzerland, Japan, France and Sweden. Together, these tasks (1) have addressed a wide range of relevant issues related to engineered and natural system behavior in argillaceous, crystalline and other host rocks, (2) have yielded in-depth knowledge of coupled THM and THMC processes associated with nuclear waste repositories and wider geo-engineering applications, and (3) have advanced the capability, as well as demonstrated the suitability, of numerical simulation models for quantitative analysis.

  19. THE FLARE-ONA OF EK DRACONIS

    International Nuclear Information System (INIS)

    Ayres, Thomas R.

    2015-01-01

    EK Draconis (HD 129333: G1.5 V) is a well-known young (50 Myr) solar analog. In 2012, Hubble Space Telescope returned to EK Dra to follow up a far-ultraviolet (FUV) SNAPshot visit by Cosmic Origins Spectrograph (COS) two years earlier. The brief SNAP pointing had found surprisingly redshifted, impulsively variable subcoronal “hot-line” emission of Si iv 1400 Å (T ∼ 8 × 10 4 K). Serendipitously, the 2012 follow-on program witnessed one of the largest FUV flares ever recorded on a sunlike star, which again displayed strong redshifts (downflows) of 30–40 km s −1 , even after compensating for small systematics in the COS velocity scales, uncovered through a cross-calibration by Space Telescope Imaging Spectrograph (STIS). The (now reduced, but still substantial) ∼10 km s −1 hot-line redshifts outside the flaring interval did not vary with rotational phase, so cannot be caused by “Doppler imaging” (bright surface patches near a receding limb). Density diagnostic O iv] 1400 Å multiplet line ratios of EK Dra suggest n e ∼ 10 11 cm −3 , an order of magnitude larger than in low-activity solar twin α Centauri A, but typical of densities inferred in large stellar soft X-ray events. The self-similar FUV hot-line profiles between the flare decay and the subsequent more quiet periods, and the unchanging but high densities, reinforce a long-standing idea that the coronae of hyperactive dwarfs are flaring all the time, in a scale-free way; a flare-ona if you will. In this picture, the subsonic hot-line downflows probably are a byproduct of the post-flare cooling process, something like “coronal rain” on the Sun. All in all, the new STIS/COS program documents a complex, energetic, dynamic outer atmosphere of the young sunlike star

  20. Two-phase Heating in Flaring Loops

    Science.gov (United States)

    Zhu, Chunming; Qiu, Jiong; Longcope, Dana W.

    2018-03-01

    We analyze and model a C5.7 two-ribbon solar flare observed by the Solar Dynamics Observatory, Hinode, and GOES on 2011 December 26. The flare is made of many loops formed and heated successively over one and half hours, and their footpoints are brightened in the UV 1600 Å before enhanced soft X-ray and EUV missions are observed in flare loops. Assuming that anchored at each brightened UV pixel is a half flaring loop, we identify more than 6700 half flaring loops, and infer the heating rate of each loop from the UV light curve at the footpoint. In each half loop, the heating rate consists of two phases: intense impulsive heating followed by a low-rate heating that is persistent for more than 20 minutes. Using these heating rates, we simulate the evolution of their coronal temperatures and densities with the model of the “enthalpy-based thermal evolution of loops.” In the model, suppression of thermal conduction is also considered. This model successfully reproduces total soft X-ray and EUV light curves observed in 15 passbands by four instruments GOES, AIA, XRT, and EVE. In this flare, a total energy of 4.9 × 1030 erg is required to heat the corona, around 40% of this energy is in the slow-heating phase. About two-fifths of the total energy used to heat the corona is radiated by the coronal plasmas, and the other three fifth transported to the lower atmosphere by thermal conduction.

  1. Recurrent flares in active region NOAA 11283

    Science.gov (United States)

    Romano, P.; Zuccarello, F.; Guglielmino, S. L.; Berrilli, F.; Bruno, R.; Carbone, V.; Consolini, G.; de Lauretis, M.; Del Moro, D.; Elmhamdi, A.; Ermolli, I.; Fineschi, S.; Francia, P.; Kordi, A. S.; Landi Degl'Innocenti, E.; Laurenza, M.; Lepreti, F.; Marcucci, M. F.; Pallocchia, G.; Pietropaolo, E.; Romoli, M.; Vecchio, A.; Vellante, M.; Villante, U.

    2015-10-01

    Context. Flares and coronal mass ejections (CMEs) are solar phenomena that are not yet fully understood. Several investigations have been performed to single out their related physical parameters that can be used as indices of the magnetic complexity leading to their occurrence. Aims: In order to shed light on the occurrence of recurrent flares and subsequent associated CMEs, we studied the active region NOAA 11283 where recurrent M and X GOES-class flares and CMEs occurred. Methods: We use vector magnetograms taken by HMI/SDO to calculate the horizontal velocity fields of the photospheric magnetic structures, the shear and the dip angles of the magnetic field, the magnetic helicity flux distribution, and the Poynting fluxes across the photosphere due to the emergence and the shearing of the magnetic field. Results: Although we do not observe consistent emerging magnetic flux through the photosphere during the observation time interval, we detected a monotonic increase of the magnetic helicity accumulated in the corona. We found that both the shear and the dip angles have high values along the main polarity inversion line (PIL) before and after all the events. We also note that before the main flare of X2.1 GOES class, the shearing motions seem to inject a more significant energy than the energy injected by the emergence of the magnetic field. Conclusions: We conclude that the very long duration (about 4 days) of the horizontal displacement of the main photospheric magnetic structures along the PIL has a primary role in the energy release during the recurrent flares. This peculiar horizontal velocity field also contributes to the monotonic injection of magnetic helicity into the corona. This process, coupled with the high shear and dip angles along the main PIL, appears to be responsible for the consecutive events of loss of equilibrium leading to the recurrent flares and CMEs. A movie associated to Fig. 4 is available in electronic form at http://www.aanda.org

  2. An essay on sunspots and solar flares

    International Nuclear Information System (INIS)

    Akasofu, S.-I.

    1984-01-01

    The presently prevailing theories of sunspots and solar flares rely on the hypothetical presence of magnetic flux tubes beneath the photosphere and the two subsequent hypotheses, their emergence above the photosphere and explosive magnetic reconnection, converting magnetic energy carried by the flux tubes for solar flare energy. In this paper, attention is paid to the fact that there are large-scale magnetic fields which divide the photosphere into positive and negative (line-of-sight) polarity regions and that they are likely to be more fundamental than sunspot fields, as emphasized most recently by McIntosh. A new phenomenological model of the sunspot pair formation is then constructed by considering an amplification process of these large-scale fields near their boundaries by shear flows, including localized vortex motions. The amplification results from a dynamo process associated with such vortex flows and the associated convergence flow in the large-scale fields. This dynamo process generates also some of the familiar ''force-free'' fields or the ''sheared'' magnetic fields in which the magnetic field-aligned currents are essential. Upward field-aligned currents generated by the dynamo process are carried by downward streaming electrons which are expected to be accelerated by an electric potential structure; a similar structure is responsible for accelerating auroral electrons in the magnetosphere. Depending on the magnetic field configuration and the shear flows, the current-carrying electrons precipitate into different geometrical patterns, causing circular flares, umbral flares, two-ribbon flares, etc. Thus, it is suggested that ''low temperature flares'' are directly driven by the photospheric dynamo process. (author)

  3. Solar flare impulsivity and its relationship with white-light flares and with CMEs

    Science.gov (United States)

    Watanabe, K.; Masuda, S.

    2017-12-01

    There are many types of classification in solar flares. One of them is a classification by flare duration in soft X-rays; so-called impulsive flare and long duration event (LDE). Typically, the duration of an impulsive flare is shorter than 1 hour, and that of an LDE is longer than 1 hour. These two types of flare show different characteristics. In soft X-rays, impulsive flares usually have a compact loop structure. On the other hand, LDEs show a large-scale loop, sometimes a large arcade structure. In hard X-rays (HXRs), the difference appears clear, too. The former shows a strong and short-time (10 minutes) emissions and show a large coronal source. These facts suggest that HXR observation becomes one of a good indicator to classify solar flares, especially for the study on the particle acceleration and the related phenomena. However, HXR data do not always exist due to the satellite orbit and the small sensitivity of HXR instruments. So, in this study, based on the concept of the Neupert effect (Neupert, 1968), we use soft X-ray derivative data as the proxy of HXR. From this data, we define impulsivity (IP) for each flare. Then we investigate solar flares using this new index. First we apply IP index to white-light flare (WLF) research. We investigate how WL enhancement depends on IP, then it is found that WLF tend to have large IP values. So the flare impulsivity (IP) is one of the important factors if WL enhancement appears or not in a solar flare. Next we investigate how CME itself and/or its physical parameters depend on IP index. It has been believed that most of CMEs are associated with LDEs, but we found that there is only a weak correlation between the existence of CME and IP index. Finally, we also search for the relationship between WLF and CME as a function of IP and discuss the physical condition of WLF.

  4. Statistical Distributions of Optical Flares from Gamma-Ray Bursts

    International Nuclear Information System (INIS)

    Yi, Shuang-Xi; Yu, Hai; Wang, F. Y.; Dai, Zi-Gao

    2017-01-01

    We statistically study gamma-ray burst (GRB) optical flares from the Swift /UVOT catalog. We compile 119 optical flares, including 77 flares with redshift measurements. Some tight correlations among the timescales of optical flares are found. For example, the rise time is correlated with the decay time, and the duration time is correlated with the peak time of optical flares. These two tight correlations indicate that longer rise times are associated with longer decay times of optical flares and also suggest that broader optical flares peak at later times, which are consistent with the corresponding correlations of X-ray flares. We also study the frequency distributions of optical flare parameters, including the duration time, rise time, decay time, peak time, and waiting time. Similar power-law distributions for optical and X-ray flares are found. Our statistic results imply that GRB optical flares and X-ray flares may share the similar physical origin, and both of them are possibly related to central engine activities.

  5. Statistical Distributions of Optical Flares from Gamma-Ray Bursts

    Energy Technology Data Exchange (ETDEWEB)

    Yi, Shuang-Xi [College of Physics and Engineering, Qufu Normal University, Qufu 273165 (China); Yu, Hai; Wang, F. Y.; Dai, Zi-Gao, E-mail: fayinwang@nju.edu.cn [School of Astronomy and Space Science, Nanjing University, Nanjing 210093 (China)

    2017-07-20

    We statistically study gamma-ray burst (GRB) optical flares from the Swift /UVOT catalog. We compile 119 optical flares, including 77 flares with redshift measurements. Some tight correlations among the timescales of optical flares are found. For example, the rise time is correlated with the decay time, and the duration time is correlated with the peak time of optical flares. These two tight correlations indicate that longer rise times are associated with longer decay times of optical flares and also suggest that broader optical flares peak at later times, which are consistent with the corresponding correlations of X-ray flares. We also study the frequency distributions of optical flare parameters, including the duration time, rise time, decay time, peak time, and waiting time. Similar power-law distributions for optical and X-ray flares are found. Our statistic results imply that GRB optical flares and X-ray flares may share the similar physical origin, and both of them are possibly related to central engine activities.

  6. X-ray Emission Characteristics of Flares Associated with CMEs ...

    Indian Academy of Sciences (India)

    tics of solar flares and their relationship with the dynamics of CMEs have ... lation between X-ray peak intensity of the flares with linear speed as well ... shear angle (θ1, measured at the flare onset), the final shear angle (θ2, measured at the.

  7. Solar flares as harbinger of new physics

    CERN Document Server

    Zioutas, K; Semertzidis, Y.; Papaevangelou, T.; Georgiopoulou, E.; Gardikiotis, A.; Dafni, T.; Tsagri, M.; Semertzidis, Y.; Papaevangelou, T.; Dafni, T.

    2011-01-01

    This work provides additional evidence on the involvement of exotic particles like axions and/or other WISPs, following recent measurements during the quietest Sun and flaring Sun. Thus, SPHINX mission observed a minimum basal soft X-rays emission in the extreme solar minimum in 2009. The same scenario (with ~17 meV axions) fits also the dynamical behaviour of white-light solar flares, like the measured spectral components in the visible and in soft X-rays, and, the timing between them. Solar chameleons remain a viable candidate, since they may preferentially convert to photons in outer space.

  8. Impulsive phase of solar flares: theory

    International Nuclear Information System (INIS)

    Mackinnon, A.L.

    1986-01-01

    The paper reviews the theoretical interpretation of impulsive phase phenomena in solar flares. The impulsive phase is defined to be that period of approx. 10 - 100s duration, during which the flare radiative output undergoes its most rapid, dramatic increase and decrease. The interpretation of the various impulsive phase radiation signatures are examined, including the i) hard x-ray emission, ii) radio emission, iii) UV, Hα and white light emissions and iv) gamma-ray emission. The acceleration mechanisms are discussed with respect to candidate acceleration mechanisms, and the synthesis of the theory and observations. (UK)

  9. Dynamic data-driven integrated flare model based on self-organized criticality

    Science.gov (United States)

    Dimitropoulou, M.; Isliker, H.; Vlahos, L.; Georgoulis, M. K.

    2013-05-01

    Context. We interpret solar flares as events originating in active regions that have reached the self-organized critical state. We describe them with a dynamic integrated flare model whose initial conditions and driving mechanism are derived from observations. Aims: We investigate whether well-known scaling laws observed in the distribution functions of characteristic flare parameters are reproduced after the self-organized critical state has been reached. Methods: To investigate whether the distribution functions of total energy, peak energy, and event duration follow the expected scaling laws, we first applied the previously reported static cellular automaton model to a time series of seven solar vector magnetograms of the NOAA active region 8210 recorded by the Imaging Vector Magnetograph on May 1 1998 between 18:59 UT and 23:16 UT until the self-organized critical state was reached. We then evolved the magnetic field between these processed snapshots through spline interpolation, mimicking a natural driver in our dynamic model. We identified magnetic discontinuities that exceeded a threshold in the Laplacian of the magnetic field after each interpolation step. These discontinuities were relaxed in local diffusion events, implemented in the form of cellular automaton evolution rules. Subsequent interpolation and relaxation steps covered all transitions until the end of the processed magnetograms' sequence. We additionally advanced each magnetic configuration that has reached the self-organized critical state (SOC configuration) by the static model until 50 more flares were triggered, applied the dynamic model again to the new sequence, and repeated the same process sufficiently often to generate adequate statistics. Physical requirements, such as the divergence-free condition for the magnetic field, were approximately imposed. Results: We obtain robust power laws in the distribution functions of the modeled flaring events with scaling indices that agree well

  10. Comparison of Crack Initiation, Propagation and Coalescence Behavior of Concrete and Rock Materials

    Science.gov (United States)

    Zengin, Enes; Abiddin Erguler, Zeynal

    2017-04-01

    There are many previously studies carried out to identify crack initiation, propagation and coalescence behavior of different type of rocks. Most of these studies aimed to understand and predict the probable instabilities on different engineering structures such as mining galleries or tunnels. For this purpose, in these studies relatively smaller natural rock and synthetic rock-like models were prepared and then the required laboratory tests were performed to obtain their strength parameters. By using results provided from these models, researchers predicted the rock mass behavior under different conditions. However, in the most of these studies, rock materials and models were considered as contains none or very few discontinuities and structural flaws. It is well known that rock masses naturally are extremely complex with respect to their discontinuities conditions and thus it is sometimes very difficult to understand and model their physical and mechanical behavior. In addition, some vuggy rock materials such as basalts and limestones also contain voids and gaps having various geometric properties. Providing that the failure behavior of these type of rocks controlled by the crack initiation, propagation and coalescence formed from their natural voids and gaps, the effect of these voids and gaps over failure behavior of rocks should be investigated. Intact rocks are generally preferred due to relatively easy side of their homogeneous characteristics in numerical modelling phases. However, it is very hard to extract intact samples from vuggy rocks because of their complex pore sizes and distributions. In this study, the feasibility of concrete samples to model and mimic the failure behavior vuggy rocks was investigated. For this purpose, concrete samples were prepared at a mixture of %65 cement dust and %35 water and their physical and mechanical properties were determined by laboratory experiments. The obtained physical and mechanical properties were used to

  11. A comparison of high-frequency noise levels on Cascadia Initiative ocean-bottom seismometers

    Science.gov (United States)

    Hilmo, R.; Wilcock, W. S. D.; Roland, E. C.; Bodin, P.; Connolly, J.

    2017-12-01

    The Cascadia Initiative (CI) included a four-year deployment of 70 ocean bottom seismometers (OBSs) on the Cascadia subduction zone and the Juan de Fuca plate for the purposes of characterizing seismicity and imaging the Earth's interior. The Cascadia subduction zone megathrust exhibits very low rates of seismicity relative to most other subduction zones, and there is great motivation to understand deformation on the megathrust because of its potential to produce a catastrophic M9 earthquake. An understanding of earthquake detectability of the CI network, based on knowledge of noise levels, could contribute to the interpretation of earthquake catalogs derived from the experiment and aid in the design of future networks. This project is aimed at estimating these thresholds of local earthquake detectability and how they change across the array both geographically and temporally. We characterize background noise levels recorded from 0.1 to 20 Hz with an emphasis on the frequency band used to detect local seismicity ( 3-15 Hz) to understand how noise levels depend on instrument design and environmental parameters including seafloor depth, season and oceanographic conditions. Our initial analysis of 3 weeks of vertical channel data in September, January, and May 2012-2013 shows that noise increase significantly moving from the continental shelf to deeper water. Noise levels at a given depth vary with instrument type but further analysis is required to determine whether this reflects variations in instrumental noise and ground coupling noise or errors in the scaling of the instrument response. There is also a strong seasonality in recorded noise levels at some frequencies, with winter noise levels exceeding spring and fall noise levels by up to 10 decibels in both the microseism band and in the fin whale calling band (15-20 Hz). In contrast, the seasonal noise level in the local seismicity band for a given instrument type and location shows smaller noise variation

  12. An observational study of the hand hygiene initiative: a comparison of preintervention and postintervention outcomes

    Science.gov (United States)

    Mukerji, Amit; Narciso, Janet; Moore, Christine; McGeer, Allison; Kelly, Edmond; Shah, Vibhuti

    2013-01-01

    Objectives To evaluate the impact of implementing a simple, user-friendly eLearning module on hand hygiene (HH) compliance and infection rates. Design Preintervention and postintervention observational study. Participants All neonates admitted to the neonatal intensive care unit (NICU) over the study period were eligible for participation and were included in the analyses. A total of 3422 patients were admitted over a 36-month span (July 2009 to June 2012). Interventions In the preintervention and postintervention periods (phases I and II), all healthcare providers were trained on HH practices using an eLearning module. The principles of the ‘4 moments of HH’ and definition of ‘baby space’ were incorporated using interactive tools. The intervention then extended into a long-term sustainability programme (phase III), including the requirement of an annual recertification of the module and introduction of posters and screensavers throughout the NICU. Primary and secondary outcome measures The primary outcome was HH compliance rates among healthcare providers in the three phases. The secondary outcome was healthcare-associated infection rates in the NICU. Results HH compliance rates declined initially in phase II then improved in phase III with the addition of a long-term sustainability programme (76%, 67% and 76% in phases I, II and III, respectively (pchallenging to implement and sustain with the need for ongoing reinforcement and education. PMID:23793705

  13. Comparison of fatigue crack initiation behavior in different microstructures of TC21 titanium alloy

    Directory of Open Access Journals (Sweden)

    Tan Changsheng

    2018-01-01

    Full Text Available Cyclic heterogeneous deformation, slip characteristics and crack nucleation with different microstructures, such as bimodal microstructure (BM and fine lamellar microstructure (FLM in TC21 alloy (Ti-6Al-2Sn-2Zr-3Mo-1Cr-2Nb-0.1Si, were systematically investigated and analyzed during high cycle fatigue at room temperature. The results demonstrated that the FLM microstructure possesses higher high-cycle fatigue strength than those of the BM one. For BM, the heterogeneous plastic deformation existed within the different large primary α phase, such as equiaxed primary α and primary α lath. The cracks at interfaces and slip bands easily coalesce with each other to form large cracks in BM. However, the α laths with similar morphology and size (nanosize distributed uniformly in FLM and could relatively deform homogeneously in micro-region, which delayed the initiation of the fatigue crack. Based on the electron-backscattered diffraction (EBSD analysis, it found that the strain was nonuniformly distributed in BM, however, it is relatively homogeneous in FLM. Moreover, lots of straight cracks are parallel and along single intrusions within the β grain which delays the coalescence of cracks.

  14. Fingermark visualisation on uncirculated £5 (Bank of England) polymer notes: Initial process comparison studies.

    Science.gov (United States)

    Downham, Rory P; Brewer, Eleigh R; King, Roberto S P; Luscombe, Aoife M; Sears, Vaughn G

    2017-06-01

    Experiments were conducted to investigate the effectiveness of a range of fingermark visualisation processes on brand new, uncirculated, £5 polymer banknotes (and their test note predecessors), as produced by the Bank of England (BoE). In the main study of this paper, a total of 14 individual processes were investigated on BoE £5 polymer banknotes, which included both 'Category A' processes (as recommended in the Home Office Fingermark Visualisation Manual) as well as recently developed processes, including fpNatural ® 2 powder (cuprorivaite) from Foster+Freeman and a vacuum metal deposition sequence that evaporates silver followed by zinc. Results from this preliminary investigation indicate that fpNatural ® 2, multimetal deposition, Wet Powder ™ Black, iron oxide powder suspension and black magnetic powder are the most effective processes on these uncirculated £5 BoE polymer banknotes, when viewed under "primary viewing" conditions (white light or fluorescence). Additional fingermarks were visualised on the polymer banknotes following the subsequent use of reflected infrared imaging and lifting techniques, and with the benefit of these techniques taken into consideration, the aforementioned processes remained amongst the most effective overall. This work provides initial insight into fingermark visualisation strategies for BoE £5 polymer banknotes, and the need for further studies in order to generate mature operational guidance is emphasised. Copyright © 2017 Elsevier B.V. All rights reserved.

  15. Preparing beginning reading teachers: An experimental comparison of initial early literacy field experiences.

    Science.gov (United States)

    Al Otaiba, Stephanie; Lake, Vickie E; Greulich, Luana; Folsom, Jessica S; Guidry, Lisa

    2012-01-01

    This randomized-control trial examined the learning of preservice teachers taking an initial Early Literacy course in an early childhood education program and of the kindergarten or first grade students they tutored in their field experience. Preservice teachers were randomly assigned to one of two tutoring programs: Book Buddies and Tutor Assisted Intensive Learning Strategies (TAILS), which provided identical meaning-focused instruction (shared book reading), but differed in the presentation of code-focused skills. TAILS used explicit, scripted lessons, and the Book Buddies required that code-focused instruction take place during shared book reading. Our research goal was to understand which tutoring program would be most effective in improving knowledge about reading, lead to broad and deep language and preparedness of the novice preservice teachers, and yield the most successful student reading outcomes. Findings indicate that all pre-service teachers demonstrated similar gains in knowledge, but preservice teachers in the TAILS program demonstrated broader and deeper application of knowledge and higher self-ratings of preparedness to teach reading. Students in both conditions made similar comprehension gains, but students tutored with TAILS showed significantly stronger decoding gains.

  16. Initial Comparison of Direct and Legacy Modeling Approaches for Radial Core Expansion Analysis

    International Nuclear Information System (INIS)

    Shemon, Emily R.

    2016-01-01

    not conservative and could be overestimating reactivity feedback effects that are closely tied to reactor safety. We conclude that there is indeed value in performing direct simulation of deformed meshes despite the increased computational expense. PROTEUS-SN is already part of the SHARP multi-physics toolkit where both thermal hydraulics and structural mechanical feedback modeling can be applied but this is the first comparison of direct simulation to legacy techniques for radial core expansion.

  17. Initial Comparison of Direct and Legacy Modeling Approaches for Radial Core Expansion Analysis

    Energy Technology Data Exchange (ETDEWEB)

    Shemon, Emily R. [Argonne National Lab. (ANL), Argonne, IL (United States)

    2016-10-10

    not conservative and could be overestimating reactivity feedback effects that are closely tied to reactor safety. We conclude that there is indeed value in performing direct simulation of deformed meshes despite the increased computational expense. PROTEUS-SN is already part of the SHARP multi-physics toolkit where both thermal hydraulics and structural mechanical feedback modeling can be applied but this is the first comparison of direct simulation to legacy techniques for radial core expansion.

  18. Features of Microwave Radiation and Magnetographic Characteristics of Solar Active Region NOAA 12242 Before the X1.8 Flare on December 20, 2014

    Science.gov (United States)

    Abramov-Maximov, V. E.; Borovik, V. N.; Opeikina, L. V.; Tlatov, A. G.; Yasnov, L. V.

    2017-12-01

    This paper continues the cycle of authors' works on the detection of precursors of large flares (M5 and higher classes) in active regions (ARs) of the Sun by their microwave radiation and magnetographic characteristics. Generalization of the detected precursors of strong flares can be used to develop methods for their prediction. This paper presents an analysis of the development of NOAA AR 12242, in which an X1.8 flare occurred on December 20, 2014. The analysis is based on regular multiazimuth and multiwavelength observations with the RATAN-600 radio telescope in the range 1.65-10 cm with intensity and circular polarization analysis and data from the Solar Dynamics Observatory (SDO). It was found that a new component appeared in the AR microwave radiation two days before the X-flare. It became dominant in the AR the day before the flare and significantly decreased after the flare. The use of multiazimuth observations from RATAN-600 and observations at 1.76 cm from the Nobeyama Radioheliograph made it possible to identify the radio source that appeared before the X-flare with the site of the closest convergence of opposite polarity fields near the neutral line in the AR. It was established that the X-flare occurred 20 h after the total gradient of the magnetic field of the entire region calculated from SDO/HMI data reached its maximum value. Analysis of the evolution of the microwave source that appeared before the X-flare in AR 12242 and comparison of its parameters with the parameters of other components of the AR microwave radiation showed that the new source can be classified as neutral line associated sources (NLSs), which were repeatedly detected by the RATAN-600 and other radio telescopes 1-3 days before the large flares.

  19. OBSERVATIONS OF A SERIES OF FLARES AND ASSOCIATED JET-LIKE ERUPTIONS DRIVEN BY THE EMERGENCE OF TWISTED MAGNETIC FIELDS

    Energy Technology Data Exchange (ETDEWEB)

    Lim, Eun-Kyung; Yurchyshyn, Vasyl; Kim, Sujin; Cho, Kyung-Suk; Kumar, Pankaj; Kim, Yeon-Han [Korea Astronomy and Space Science Institute, 776 Daedeokdae-ro, Yuseong-gu, Daejeon 305-348 (Korea, Republic of); Park, Sung-Hong [Institute for Astronomy, Astrophysics, Space Applications and Remote Sensing (IAASARS), National Observatory of Athens, Penteli 15236 (Greece); Chae, Jongchul; Yang, Heesu; Cho, Kyuhyoun; Song, Donguk, E-mail: eklim@kasi.re.kr [Astronomy Program, Department of Physics and Astronomy, Seoul National University, Seoul 151-747 (Korea, Republic of)

    2016-01-20

    We studied temporal changes of morphological and magnetic properties of a succession of four confined flares followed by an eruptive flare using the high-resolution New Solar Telescope (NST) operating at the Big Bear Solar Observatory (BBSO) and Helioseismic and Magnetic Imager (HMI) magnetograms and Atmospheric Image Assembly (AIA) EUV images provided by the Solar Dynamics Observatory (SDO). From the NST/Hα and the SDO/AIA 304 Å observations we found that each flare developed a jet structure that evolved in a manner similar to evolution of the blowout jet: (1) an inverted-Y-shaped jet appeared and drifted away from its initial position; (2) jets formed a curtain-like structure that consisted of many fine threads accompanied by subsequent brightenings near the footpoints of the fine threads; and finally, (3) the jet showed a twisted structure visible near the flare maximum. Analysis of the HMI data showed that both the negative magnetic flux and the magnetic helicity have been gradually increasing in the positive-polarity region, indicating the continuous injection of magnetic twist before and during the series of flares. Based on these results, we suggest that the continuous emergence of twisted magnetic flux played an important role in producing successive flares and developing a series of blowout jets.

  20. Comparison of initial loading doses of 5 mg and 10 mg for warfarin therapy

    Directory of Open Access Journals (Sweden)

    Sidnei Lastória

    2014-03-01

    Full Text Available CONTEXT: The question of what is the best loading dosage of warfarin when starting anticoagulant treatment has been under discussion for ten years. We were unable to find any comparative studies of these characteristics conducted here in Brazil. OBJECTIVE: To compare the safety and efficacy of two initial warfarin dosage regimens for anticoagulant treatment. METHODS: One-hundred and ten consecutive patients of both sexes, with indications for anticoagulation because of venous or arterial thromboembolism, were analyzed prospectively. During the first 3 days of treatment, these patients were given adequate heparin to keep aPTT (activated partial thromboplastin time between 1.5 and 2.5, plus 5 mg of warfarin. From the fourth day onwards, their warfarin doses were adjusted using International Normalized Ratios (INR; target range: 2 to 3. This prospective cohort was compared with a historical series of 110 patients had been given 10 mg of warfarin on the first 2 days and 5 mg on the third day with adjustments based on INR thereafter. Outcomes analyzed were as follows: recurrence of thromboembolism, bleeding events and time taken to enter the therapeutic range. RESULTS: Efficacy, safety and length of hospital stay were similar in both samples. The sample that were given 10 mg entered the therapeutic range earlier (means: 4.5 days vs. 5.8 days, were on lower doses at discharge and had better therapeutic indicators at the first return appointment. CONCLUSIONS: The 10 mg dosage regimen took less time to attain the therapeutic range and was associated with lower warfarin doses at discharge and better INR at first out-patients follow-up visit.

  1. Asthma in pregnancy: association between the Asthma Control Test and the Global Initiative for Asthma classification and comparisons with spirometry.

    Science.gov (United States)

    de Araujo, Georgia Véras; Leite, Débora F B; Rizzo, José A; Sarinho, Emanuel S C

    2016-08-01

    The aim of this study was to identify a possible association between the assessment of clinical asthma control using the Asthma Control Test (ACT) and the Global Initiative for Asthma (GINA) classification and to perform comparisons with values of spirometry. Through this cross-sectional study, 103 pregnant women with asthma were assessed in the period from October 2010 to October 2013 in the asthma pregnancy clinic at the Clinical Hospital of the Federal University of Pernambuco. Questionnaires concerning the level of asthma control were administered using the Global Initiative for Asthma classification, the Asthma Control Test validated for asthmatic expectant mothers and spirometry; all three methods of assessing asthma control were performed during the same visit between the twenty-first and twenty-seventh weeks of pregnancy. There was a significant association between clinical asthma control assessment using the Asthma Control Test and the Global Initiative for Asthma classification (pspirometry. This study shows that both the Global Initiative for Asthma classification and the Asthma Control Test can be used for asthmatic expectant mothers to assess the clinical control of asthma, especially at the end of the second trimester, which is assumed to be the period of worsening asthma exacerbations during pregnancy. We highlight the importance of the Asthma Control Test as a subjective instrument with easy application, easy interpretation and good reproducibility that does not require spirometry to assess the level of asthma control and can be used in the primary care of asthmatic expectant mothers. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  2. He I D3 OBSERVATIONS OF THE 1984 MAY 22 M6.3 SOLAR FLARE

    Energy Technology Data Exchange (ETDEWEB)

    Liu Chang; Xu Yan; Deng Na; Lee, Jeongwoo; Zhang Jifeng; Wang Haimin [Space Weather Research Laboratory, Center for Solar-Terrestrial Research, New Jersey Institute of Technology, University Heights, Newark, NJ 07102-1982 (United States); Prasad Choudhary, Debi, E-mail: chang.liu@njit.edu [Physics and Astronomy Department, California State University Northridge, 18111 Nordhoff Street, Northridge, CA 91330-0001 (United States)

    2013-09-01

    The He I D3 line has a unique response to a flare impact on the low solar atmosphere and can be a powerful diagnostic tool for energy transport processes. Using images obtained from the recently digitized films of the Big Bear Solar Observatory, we report D3 observations of the M6.3 flare on 1984 May 22, which occurred in an active region with a circular magnetic polarity inversion line (PIL). The impulsive phase of the flare starts with a main elongated source that darkens in D3, inside of which bright emission kernels appear at the time of the initial small peak in hard X-rays (HXRs). These flare cores subsequently evolve into a sharp emission strand lying within the dark halo; this evolution occurs at the same time as the main peak in HXRs, reversing the overall source contrast from -5% to 5%. The radiated energy in D3 during the main peak is estimated to be about 10{sup 30} erg, which is comparable to that carried by nonthermal electrons above 20 keV. Afterward, the flare proceeds along the circular PIL in the counterclockwise direction to form a dark circular ribbon in D3, which apparently mirrors the bright ribbons in H{alpha} and He I 10830 A. All of these ribbons last for over one hour in the late gradual phase. We suggest that the present event resembles the so-called black-light flare that was proposed based on continuum images, and that D3 darkening and brightening features herein may be due to thermal conduction heating and the direct precipitation of high-energy electrons, respectively.

  3. CALCULATING SEPARATE MAGNETIC FREE ENERGY ESTIMATES FOR ACTIVE REGIONS PRODUCING MULTIPLE FLARES: NOAA AR11158

    Energy Technology Data Exchange (ETDEWEB)

    Tarr, Lucas; Longcope, Dana; Millhouse, Margaret [Department of Physics, Montana State University, Bozeman, MT 59717 (United States)

    2013-06-10

    It is well known that photospheric flux emergence is an important process for stressing coronal fields and storing magnetic free energy, which may then be released during a flare. The Helioseismic and Magnetic Imager (HMI) on board the Solar Dynamics Observatory (SDO) captured the entire emergence of NOAA AR 11158. This region emerged as two distinct bipoles, possibly connected underneath the photosphere, yet characterized by different photospheric field evolutions and fluxes. The combined active region complex produced 15 GOES C-class, two M-class, and the X2.2 Valentine's Day Flare during the four days after initial emergence on 2011 February 12. The M and X class flares are of particular interest because they are nonhomologous, involving different subregions of the active region. We use a Magnetic Charge Topology together with the Minimum Current Corona model of the coronal field to model field evolution of the complex. Combining this with observations of flare ribbons in the 1600 A channel of the Atmospheric Imaging Assembly on board SDO, we propose a minimization algorithm for estimating the amount of reconnected flux and resulting drop in magnetic free energy during a flare. For the M6.6, M2.2, and X2.2 flares, we find a flux exchange of 4.2 Multiplication-Sign 10{sup 20} Mx, 2.0 Multiplication-Sign 10{sup 20} Mx, and 21.0 Multiplication-Sign 10{sup 20} Mx, respectively, resulting in free energy drops of 3.89 Multiplication-Sign 10{sup 30} erg, 2.62 Multiplication-Sign 10{sup 30} erg, and 1.68 Multiplication-Sign 10{sup 32} erg.

  4. A Proton Flare Triggered the Mw 8.1 Chiapos Mexican Earthquake

    Science.gov (United States)

    Elfaki, H.; Yousef, S.

    2017-12-01

    In a 2015 Cairo University M.Sc. thesis by Sarah Khodairy, very strong earthquakes were found to be highly correlated with proton flares. Strange blue and green bright flashes of light across Mexico accompanied the 8th of September 2017 Mw 1.8 Chiapas earthquake. Those lights were contemporary with a solar proton flare. Those green and blue lights are indicative of the arrival of proton streams over Mexico and their interaction with atmospheric Oxygen and Nitrogen atoms respectively in analogy with aurora lights. The proton streams attacked the weak spots of tectonic plates where the Coscos plate is being subducted below the North American plate. It is suggested that they induced telluric electric currents in the ground and in the magma thus caused motion and more subduction in the tectonic plates. Such motion immediately trigged the Chiapas earthquake in the near vicinity. The Bz component of the interplanetary magnetic field was highly negative, a door was opened in the magnetosphere and the proton stream easily leaked inside and targeted Mexico. This proton flare was accompanied by coronal mass ejection and extremely strong X.9.3- class X-ray flare as well as magnetic storms. On the other hand, the 19th of September Mw 7.1 Puebla central Mexico earthquake was initiated by fast solar wind coronal hole stream. Such stream if they hit ground they cause earthquakes, if they hit narrow seas like the Red Sea they cause flash floods. However if they target Oceans they initiate hurricanes.

  5. Involuntary psychiatric attendances at an Australasian emergency department: A comparison of police and health-care worker initiated presentations.

    Science.gov (United States)

    Llewellin, Peter; Arendts, Glenn; Weeden, Jacqueline; Pethebridge, Andrew

    2011-10-01

    To identify any significant differences in the population of patients brought in to a hospital ED under involuntary mental health orders, based on whether the orders are initiated by police or health professionals. A retrospective analysis of consecutive presentations to a tertiary hospital ED with a co-located psychiatric emergency care centre over a 12 month period, with univariate and multivariate statistical comparisons. Two hundred and eighty-two patients (making 378 ED presentations) met the case definition and were analysed. Compared with patients on medical orders, patients on police orders had significantly more presentations related to violence, longer stays in ED and lower rates of admission to an inpatient bed, but were no more likely to require restraint or security intervention within the ED. Patients on police and medical orders differ considerably, but the impact of these differences on ED workload is small. © 2011 The Authors. EMA © 2011 Australasian College for Emergency Medicine and Australasian Society for Emergency Medicine.

  6. Dependence of absolute magnitudes (energies) of flares on the cluster age containing flare stars

    International Nuclear Information System (INIS)

    Parsamyan, Eh.S.

    1976-01-01

    Dependences between Δmsub(u) and msub(u) are given for the Orion, NGC 7000, Pleiades and Praesepe aggregations. Maximum absolute values of flares have been calculated for stars with different luminosities. It has been shown that the values of flares can be limited by a straight line which gives the representation on the distribution of maximum values of amplitudes for the stars with different luminosities in an aggregation. Presented are k and m 0 parameters characterizing the lines fot the Orion, NGC 7000, Pleiades and Praesepe aggregation and their age T dependence. From the dependence between k (angular coefficient of straight lines) and lgT for the aggregation with known T the age of those aggregation involving a great amount of flaring stars can be found. The age of flaring stars in the neighbourhood of the Sun has been determined. The age of UV Ceti has been shown by an order to exceed that of the rest stars

  7. Photospheric Magnetic Field Properties of Flaring versus Flare-quiet Active Regions. II. Discriminant Analysis

    Science.gov (United States)

    Leka, K. D.; Barnes, G.

    2003-10-01

    We apply statistical tests based on discriminant analysis to the wide range of photospheric magnetic parameters described in a companion paper by Leka & Barnes, with the goal of identifying those properties that are important for the production of energetic events such as solar flares. The photospheric vector magnetic field data from the University of Hawai'i Imaging Vector Magnetograph are well sampled both temporally and spatially, and we include here data covering 24 flare-event and flare-quiet epochs taken from seven active regions. The mean value and rate of change of each magnetic parameter are treated as separate variables, thus evaluating both the parameter's state and its evolution, to determine which properties are associated with flaring. Considering single variables first, Hotelling's T2-tests show small statistical differences between flare-producing and flare-quiet epochs. Even pairs of variables considered simultaneously, which do show a statistical difference for a number of properties, have high error rates, implying a large degree of overlap of the samples. To better distinguish between flare-producing and flare-quiet populations, larger numbers of variables are simultaneously considered; lower error rates result, but no unique combination of variables is clearly the best discriminator. The sample size is too small to directly compare the predictive power of large numbers of variables simultaneously. Instead, we rank all possible four-variable permutations based on Hotelling's T2-test and look for the most frequently appearing variables in the best permutations, with the interpretation that they are most likely to be associated with flaring. These variables include an increasing kurtosis of the twist parameter and a larger standard deviation of the twist parameter, but a smaller standard deviation of the distribution of the horizontal shear angle and a horizontal field that has a smaller standard deviation but a larger kurtosis. To support the

  8. Transport and containment of plasma, particles and energy within flares

    Science.gov (United States)

    Acton, L. W.; Brown, W. A.; Bruner, M. E. C.; Haisch, B. M.; Strong, K. T.

    1983-01-01

    Results from the analysis of flares observed by the Solar Maximum Mission (SMM) and a recent rocket experiment are discussed. Evidence for primary energy release in the corona through the interaction of magnetic structures, particle and plasma transport into more than a single magnetic structure at the time of a flare and a complex and changing magnetic topology during the course of a flare is found. The rocket data are examined for constraints on flare cooling, within the context of simple loop models. These results form a basis for comments on the limitations of simple loop models for flares.

  9. Flare stars of the Orion Nebula - spectra of an outburst

    International Nuclear Information System (INIS)

    Carter, B.D.; O'Mara, B.J.; Ross, J.E.

    1988-01-01

    For the first time, detailed, time-resolved spectra of a flare event of an Orion cluster flare star are presented. These spectra, covering ∼ λλ3600-4600, were obtained by using the Anglo-Australian Telescope with a fibre coupler to simultaneously monitor 23 flare stars in the region of the Orion Nebula. The flare spectra reveal continuous emission which filled in the photospheric Ca I 4226 A absorption, and hydrogen Balmer, Ca II H and K, He I 4026 A and He I 4471 A line emission. Overall, the spectral behaviour indicates similarities to strong outbursts of the classical dMe flare stars. (author)

  10. Simulating Flaring Events via an Intelligent Cellular Automata Mechanism

    Science.gov (United States)

    Dimitropoulou, M.; Vlahos, L.; Isliker, H.; Georgoulis, M.

    2010-07-01

    We simulate flaring events through a Cellular Automaton (CA) model, in which, for the first time, we use observed vector magnetograms as initial conditions. After non-linear force free extrapolation of the magnetic field from the vector magnetograms, we identify magnetic discontinuities, using two alternative criteria: (1) the average magnetic field gradient, or (2) the normalized magnetic field curl (i.e. the current). Magnetic discontinuities are identified at the grid-sites where the magnetic field gradient or curl exceeds a specified threshold. We then relax the magnetic discontinuities according to the rules of Lu and Hamilton (1991) or Lu et al. (1993), i.e. we redistribute the magnetic field locally so that the discontinuities disappear. In order to simulate the flaring events, we consider several alternative scenarios with regard to: (1) The threshold above which magnetic discontinuities are identified (applying low, high, and height-dependent threshold values); (2) The driving process that occasionally causes new discontinuities (at randomly chosen grid sites, magnetic field increments are added that are perpendicular (or may-be also parallel) to the existing magnetic field). We address the question whether the coronal active region magnetic fields can indeed be considered to be in the state of self-organized criticality (SOC).

  11. Second-stage acceleration in solar flares

    International Nuclear Information System (INIS)

    Mullan, D.J.

    1976-01-01

    A model proposed by Chevalier and Scott to account for cosmic ray acceleration in an expanding supernova remnant is applied to the case of a shock wave injected into the solar corona by a flare. Certain features of solar cosmic rays can be explained by this model. (orig.) [de

  12. A clarification on endodontic flare-ups.

    Science.gov (United States)

    Morse, D R; Esposito, J V

    1990-09-01

    In an article on endodontic flare-ups by Robert J. Matusow, our research and publications are discussed. Since we found what we consider to be distortions and misinterpretations of our work, it was decided to clarify the apparent discrepancies found in Matusow's article.

  13. Hybrid simulations of chromospheric HXR flare sources

    Czech Academy of Sciences Publication Activity Database

    Moravec, Z.; Varady, Michal; Kašparová, Jana; Kramoliš, D.

    2016-01-01

    Roč. 337, č. 10 (2016), s. 1020-1023 ISSN 0004-6337. [Dynamic Sun - Exploring the Many Facets of Solar Eruptive Events. Potsdam, 26.10.2015-29.10.2015] Institutional support: RVO:67985815 Keywords : Sun * chromosphere * flares Subject RIV: BN - Astronomy, Celestial Mechanics, Astrophysics Impact factor: 0.916, year: 2016

  14. 40 CFR 65.147 - Flares.

    Science.gov (United States)

    2010-07-01

    ..., equal to or less than 122 meters per second (400 feet per second) if the net heating value of the gas... section, less than the velocity, V max, and less than 122 meters per second (400 feet per sec), where the... standard cubic meter (300 British thermal units per standard cubic foot) or greater if the flare is steam...

  15. Flare Characteristics from X-ray Light Curves

    Science.gov (United States)

    Gryciuk, M.; Siarkowski, M.; Sylwester, J.; Gburek, S.; Podgorski, P.; Kepa, A.; Sylwester, B.; Mrozek, T.

    2017-06-01

    A new methodology is given to determine basic parameters of flares from their X-ray light curves. Algorithms are developed from the analysis of small X-ray flares occurring during the deep solar minimum of 2009, between Solar Cycles 23 and 24, observed by the Polish Solar Photometer in X-rays (SphinX) on the Complex Orbital Observations Near-Earth of Activity of the Sun-Photon (CORONAS- Photon) spacecraft. One is a semi-automatic flare detection procedure that gives start, peak, and end times for single ("elementary") flare events under the assumption that the light curve is a simple convolution of a Gaussian and exponential decay functions. More complex flares with multiple peaks can generally be described by a sum of such elementary flares. Flare time profiles in the two energy ranges of SphinX (1.16 - 1.51 keV, 1.51 - 15 keV) are used to derive temperature and emission measure as a function of time during each flare. The result is a comprehensive catalogue - the SphinX Flare Catalogue - which contains 1600 flares or flare-like events and is made available for general use. The methods described here can be applied to observations made by Geosynchronous Operational Environmental Satellites (GOES), the Reuven Ramaty High Energy Solar Spectroscopic Imager (RHESSI) and other broad-band spectrometers.

  16. WHITE-LIGHT FLARES ON CLOSE BINARIES OBSERVED WITH KEPLER

    International Nuclear Information System (INIS)

    Gao, Qing; Xin, Yu; Liu, Ji-Feng; Zhang, Xiao-Bin; Gao, Shuang

    2016-01-01

    Based on Kepler data, we present the results of a search for white light flares on 1049 close binaries. We identify 234 flare binaries, of which 6818 flares are detected. We compare the flare-binary fraction in different binary morphologies (“detachedness”). The result shows that the fractions in over-contact and ellipsoidal binaries are approximately 10%–20% lower than those in detached and semi-detached systems. We calculate the binary flare activity level (AL) of all the flare binaries, and discuss its variations along the orbital period ( P orb ) and rotation period ( P rot , calculated for only detached binaries). We find that the AL increases with decreasing P orb or P rot , up to the critical values at P orb ∼ 3 days or P rot ∼ 1.5 days, and thereafter the AL starts decreasing no matter how fast the stars rotate. We examine the flaring rate as a function of orbital phase in two eclipsing binaries on which a large number of flares are detected. It appears that there is no correlation between flaring rate and orbital phase in these two binaries. In contrast, when we examine the function with 203 flares on 20 non-eclipse ellipsoidal binaries, bimodal distribution of amplitude-weighted flare numbers shows up at orbital phases 0.25 and 0.75. Such variation could be larger than what is expected from the cross section modification.

  17. MOST OBSERVATIONS OF OUR NEAREST NEIGHBOR: FLARES ON PROXIMA CENTAURI

    Energy Technology Data Exchange (ETDEWEB)

    Davenport, James R. A. [Department of Physics and Astronomy, Western Washington University, 516 High Street, Bellingham, WA 98225 (United States); Kipping, David M. [Department of Astronomy, Columbia University, 550 West 120th Street, New York, NY 10027 (United States); Sasselov, Dimitar [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138 (United States); Matthews, Jaymie M. [Department of Physics and Astronomy, University of British Columbia, 6224 Agricultural Road, Vancouver, BC V6T 1Z1 (Canada); Cameron, Chris [Department of Mathematics, Physics and Geology, Cape Breton University, 1250 Grand Lake Road, Sydney, NS B1P 6L2 (Canada)

    2016-10-01

    We present a study of white-light flares from the active M5.5 dwarf Proxima Centauri using the Canadian microsatellite Microvariability and Oscillations of STars . Using 37.6 days of monitoring data from 2014 to 2015, we have detected 66 individual flare events, the largest number of white-light flares observed to date on Proxima Cen. Flare energies in our sample range from 10{sup 29} to 10{sup 31.5} erg. The flare rate is lower than that of other classic flare stars of a similar spectral type, such as UV Ceti, which may indicate Proxima Cen had a higher flare rate in its youth. Proxima Cen does have an unusually high flare rate given its slow rotation period, however. Extending the observed power-law occurrence distribution down to 10{sup 28} erg, we show that flares with flux amplitudes of 0.5% occur 63 times per day, while superflares with energies of 10{sup 33} erg occur ∼8 times per year. Small flares may therefore pose a great difficulty in searches for transits from the recently announced 1.27 M {sub ⊕} Proxima b, while frequent large flares could have significant impact on the planetary atmosphere.

  18. Field Measurements of Black Carbon Yields from Gas Flaring.

    Science.gov (United States)

    Conrad, Bradley M; Johnson, Matthew R

    2017-02-07

    Black carbon (BC) emissions from gas flaring in the oil and gas industry are postulated to have critical impacts on climate and public health, but actual emission rates remain poorly characterized. This paper presents in situ field measurements of BC emission rates and flare gas volume-specific BC yields for a diverse range of flares. Measurements were performed during a series of field campaigns in Mexico and Ecuador using the sky-LOSA optical measurement technique, in concert with comprehensive Monte Carlo-based uncertainty analyses. Parallel on-site measurements of flare gas flow rate and composition were successfully performed at a subset of locations enabling direct measurements of fuel-specific BC yields from flares under field conditions. Quantified BC emission rates from individual flares spanned more than 4 orders of magnitude (up to 53.7 g/s). In addition, emissions during one notable ∼24-h flaring event (during which the plume transmissivity dropped to zero) would have been even larger than this maximum rate, which was measured as this event was ending. This highlights the likely importance of superemitters to global emission inventories. Flare gas volume-specific BC yields were shown to be strongly correlated with flare gas heating value. A newly derived correlation fitting current field data and previous lab data suggests that, in the context of recent studies investigating transport of flare-generated BC in the Arctic and globally, impacts of flaring in the energy industry may in fact be underestimated.

  19. Study on the flare stars in the Taurus region

    International Nuclear Information System (INIS)

    Khodzhaev, A.S.

    1986-01-01

    The results of the search of flare stars and their photometric, Hsub(α)-spectroscopic and statistical study in the Taurus are presented. By means of photographic observations carried out during 1980-1984, 92 new flare stars were discovered, 13 of which are known Orion Population variables, and 16 repeated flare-ups among 13 known flare stars. Spatial distribution of these stars was considered and the problem of their membership was discussed. Comparative analysis of the data of flare stars in the Taurus with that of other systems has been carried out. The Herzsprung-Russel and two-colour (U-B, B-V) diagrams for the Taurus flare stars are similar to the diagrams of stellar clusters and associations (Pleiades, Orion etc.). The estimated total number of flare stars in this region is larger than 500

  20. Management of routine solution gas flaring in Alberta

    International Nuclear Information System (INIS)

    1998-01-01

    Alberta's Clean Air Strategic Alliance (CASA) shares decision-making responsibilities with the Government of Alberta for strategic aspects of air quality. In 1997, the Alliance established the Flaring Project Team to develop recommendations that address potential and observed impacts associated with flaring, with particular focus on 'upstream solution gas' flaring. The upstream industry explores for, acquires, develops, produces and markets crude oil and natural gas. Essentially, solution gas at upstream sites is 'co-produced' during crude oil production. The project team was established to collect and summarize information on flaring and its impacts and to develop recommendations for short-term actions to minimize the practice of routine flaring of solution gas. Another goal of the team is to develop a research strategy to better understand flaring emissions and their effects on human, animal and environmental health. The team is working on developing long-term strategies for actions to address the gas flaring issue. 5 refs., 1 tab., 7 figs

  1. Motion of matter in flare loops of the solar disc

    International Nuclear Information System (INIS)

    Xu Ao-ao

    1987-01-01

    By using the optical observation data of a Class 3B double-ribbon flare obtained on July 14, 1980 at the Yunan Observatory, and the x-ray result from the SMM satellite for the same flare, the law of motion of matter in the flare loops of the solar disc is discussed. First, the solar disc positions from the Hα and x-ray images for the flare were compared, and the altitude of the flare loop was determined according to projection effects. Second, the line-of-sight velocity distribution in the region of flare activity due to the falling of matter in the flare loop was estimated theoretically. The result agreed with the observed data

  2. Changes in initial expenditures for benign prostatic hyperplasia evaluation in the Medicare population: a comparison to overall Medicare inflation.

    Science.gov (United States)

    Bellinger, Adam S; Elliott, Sean P; Yang, Liu; Wei, John T; Saigal, Christopher S; Smith, Alexandria; Wilt, Timothy J; Strope, Seth A

    2012-05-01

    Benign prostatic hyperplasia creates significant expenses for the Medicare program. We determined expenditure trends for benign prostatic hyperplasia evaluative testing after urologist consultation and placed these trends in the context of overall Medicare expenditures. Using a 5% national sample of Medicare beneficiaries from 2000 to 2007 we developed a cohort of 40,253 with claims for new visits to urologists for diagnoses consistent with symptomatic benign prostatic hyperplasia. We assessed trends in initial inflation and geography adjusted expenditures within 12 months of diagnosis by evaluative test categories derived from the 2003 American Urological Association guideline on the management of benign prostatic hyperplasia. Using governmental reports on Medicare expenditure trends for benign prostatic hyperplasia we compared expenditures to overall and imaging specific Medicare expenditures. Comparisons were assessed by the Z-test and regression analysis for linear trends, as appropriate. Between 2000 and 2007 inflation adjusted total Medicare expenditures per patient for the initial evaluation of patients with benign prostatic hyperplasia seen by urologists increased from $255.44 to $343.98 (p inflation adjusted expenditures increased for benign prostatic hyperplasia related evaluations. This growth was slower than the overall growth in Medicare expenditures. The increase in BPH related imaging expenditures was restrained compared to that of the Medicare program as a whole. Copyright © 2012 American Urological Association Education and Research, Inc. Published by Elsevier Inc. All rights reserved.

  3. Anomalous Temporal Behaviour of Broadband Ly Alpha Observations During Solar Flares from SDO/EVE

    Science.gov (United States)

    Milligan, Ryan O.; Chamberlin, Phillip C.

    2016-01-01

    Although it is the most prominent emission line in the solar spectrum, there has been a notable lack of studies devoted to variations in Lyman-alpha (Ly-alpha) emission during solar flares in recent years. However, the few examples that do exist have shown Ly-alpha emission to be a substantial radiator of the total energy budget of solar flares (of the order of 10 percent). It is also a known driver of fluctuations in the Earth's ionosphere. The EUV (Extreme Ultra-Violet) Variability Experiment (EVE) on board the Solar Dynamics Observatory (SDO) now provides broadband, photometric Ly-alpha data at 10-second cadence with its Multiple EUV Grating Spectrograph-Photometer (MEGS-P) component, and has observed scores of solar flares in the 5 years since it was launched. However, the MEGS-P time profiles appear to display a rise time of tens of minutes around the time of the flare onset. This is in stark contrast to the rapid, impulsive increase observed in other intrinsically chromospheric features (H-alpha, Ly-beta, LyC, C III, etc.). Furthermore, the emission detected by MEGS-P peaks around the time of the peak of thermal soft X-ray emission and not during the impulsive phase when energy deposition in the chromosphere (often assumed to be in the form of non-thermal electrons) is greatest. The time derivative of Ly-alpha lightcurves also appears to resemble that of the time derivative of soft X-rays, reminiscent of the Neupert effect. Given that spectrally-resolved Ly-alpha observations during flares from SORCE / SOLSTICE (Solar Radiation and Climate Experiment / Solar Stellar Irradiance Comparison Experiment) peak during the impulsive phase as expected, this suggests that the atypical behaviour of MEGS-P data is a manifestation of the broadband nature of the observations. This could imply that other lines andor continuum emission that becomes enhanced during flares could be contributing to the passband. Users are hereby urged to exercise caution when interpreting

  4. Microbial causes of endodontic flare-ups.

    Science.gov (United States)

    Siqueira, Jose F

    2003-07-01

    Inter-appointment flare-up is characterized by the development of pain, swelling or both, following endodontic intervention. The causative factors of flare-ups encompass mechanical, chemical and/or microbial injury to the pulp or periradicular tissues. Of these factors, microorganisms are arguably the major causative agents of flare-ups. Even though the host is usually unable to eliminate the root canal infection, mobilization and further concentration of defence components at the periradicular tissues impede spreading of infection, and a balance between microbial aggression and host defences is commonly achieved. There are some situations during endodontic therapy in which such a balance may be disrupted in favour of microbial aggression, and an acute periradicular inflammation can ensue. Situations include apical extrusion of infected debris, changes in the root canal microbiota and/or in environmental conditions caused by incomplete chemo-mechanical preparation, secondary intraradicular infections and perhaps the increase in the oxidation-reduction potential within the root canal favouring the overgrowth of the facultative bacteria. Based on these situations, preventive measures against infective flare-ups are proposed, including selection of instrumentation techniques that extrude lesser amounts of debris apically; completion of the chemo-mechanical procedures in a single visit; use of an antimicrobial intracanal medicament between appointments in the treatment of infected cases; not leaving teeth open for drainage and maintenance of the aseptic chain throughout endodontic treatment. Knowledge about the microbial causes of flare-ups and adoption of appropriate preventive measures can significantly reduce the incidence of this highly distressing and undesirable clinical phenomenon.

  5. The classification of flaring states of blazars

    Science.gov (United States)

    Resconi, E.; Franco, D.; Gross, A.; Costamante, L.; Flaccomio, E.

    2009-08-01

    Aims: The time evolution of the electromagnetic emission from blazars, in particular high-frequency peaked sources (HBLs), displays irregular activity that has not yet been understood. In this work we report a methodology capable of characterizing the time behavior of these variable objects. Methods: The maximum likelihood blocks (MLBs) is a model-independent estimator that subdivides the light curve into time blocks, whose length and amplitude are compatible with states of constant emission rate of the observed source. The MLBs yield the statistical significance in the rate variations and strongly suppresses the noise fluctuations in the light curves. We applied the MLBs for the first time on the long term X-ray light curves (RXTE/ASM) of Mkn 421, Mkn 501, 1ES 1959+650, and 1ES 2155-304, more than 10 years of observational data (1996-2007). Using the MLBs interpretation of RXTE/ASM data, the integrated time flux distribution is determined for each single source considered. We identify in these distributions the characteristic level, as well as the flaring states of the blazars. Results: All the distributions show a significant component at negative flux values, most probably caused by an uncertainty in the background subtraction and by intrinsic fluctuations of RXTE/ASM. This effect concerns in particular short time observations. To quantify the probability that the intrinsic fluctuations give rise to a false identification of a flare, we study a population of very faint sources and their integrated time-flux distribution. We determine duty cycle or fraction of time a source spent in the flaring state of the source Mkn 421, Mkn 501, 1ES 1959+650 and 1ES 2155-304. Moreover, we study the random coincidences between flares and generic sporadic events such as high-energy neutrinos or flares in other wavelengths.

  6. The regulatory context of gas flaring in Alberta

    International Nuclear Information System (INIS)

    Gilmour, B.S.; Cook, C.

    1999-01-01

    The legislative and regulatory regime regarding gas flaring in Alberta was reviewed. The issue of gas flaring has received much attention from petroleum industry regulators in Alberta. Residents living in the vicinity of flares have identified them as sources of odour, smoke, noise and air quality-related health concerns. Sulfur dioxide and carbon dioxide emissions from the flare stacks may contribute to acid rain and the greenhouse effect. The Strosher Report, released by the Alberta Research Council in 1996, has also identified about 250 different compounds in flare emissions, including volatile organic compounds (VOCs), polycyclic aromatic hydrocarbons (PAHs) and other products of incomplete combustion. The public opposition to solution gas flaring has caused regulators to consider new options designed to reduce the adverse economic and environmental impacts that may be associated with gas flaring. This paper discusses the roles of the Alberta Energy and Utilities Board (EUB) and Alberta Environmental Protection in administering legislation that impacts on gas flaring. In March 1999, the EUB released a guide containing the following five major points regarding gas flaring: (1) implementation of the Clean Air Strategic Alliance's (CASA's) recommendations to eventually eliminate flaring, by starting immediately to reduce flaring, and improve the efficiency of flares, (2) adoption of the CASA schedule of reduction targets for solution gas flaring, (3) conducting a review of the current approval process for small-scale electrical generation systems to encourage co-generation as a productive use of solution gas that is being flared, (4) creating better public notification requirements for new and existing facilities, and (5) discussing conflict resolution between operators and landowners. 26 refs

  7. Progress report on recommendations of the Flaring Project Team

    International Nuclear Information System (INIS)

    Macken, C.

    1999-01-01

    Part of the mandate of the Clean Air Strategic Alliance (CASA) is to share decision-making responsibility for air quality management with the government of Alberta, through the ministries of Environmental Protection, Energy, and Health, and the Alberta Energy and Utilities Board (EUB). CASA's vision for air quality in Alberta is that 'the air will be odourless, tasteless, look clear, and have no measurable short- or long-term adverse effects on people, animals, or the environment'. In 1997, CASA approved the establishment of the Flaring Project Team in response to public concern about potential and observed impacts associated with flaring of solution gas. Members of that team established a framework for the management of solution gas flaring. Their long-term goal is to eliminate routine flaring of solution gas. The Project Team assessed existing information on solution gas flaring, including technologies, efficiencies, emissions and impacts. Alternative technologies were also reviewed along with biological and health effects of solution gas flaring. A list of data gaps and research needs was compiled in order to help with the development of the Team's recommendations. The Team's final report was delivered in June 1998. It was recommended that the following policy objective hierarchy be used to guide decisions related to routine solution gas flaring: (1) eliminate routine solution gas flaring, (2) reduce volumes of gas flared, and (3) improve the efficiency of flares. By way of progress the Project Team was able to report that in March, 1999, the EUB issued a draft interim directive to address upstream petroleum industry flaring. The draft Directive incorporates the recommendations from the CASA Flaring Project Team with respect to management of solution gas flaring. In December 1998, changes to the royalty structure to encourage the productive use of flare gas have been announced by the Alberta Department of Energy and Alberta Environmental protection, thus

  8. Fermi LAT View of a Sample of Flaring γ-Ray AGNs S. Buson1,∗ , D ...

    Indian Academy of Sciences (India)

    and provide a comparison with AGNs seen in flaring state by the previous gamma- ... sients2. Weekly summary reports are also published in the 'Fermi Sky Blog'3. In addition, the FA–GSW on duty is in charge of triggering Target of Opportunity.

  9. Internal and External reconnection in a Series of Homologous Solar Flares

    Science.gov (United States)

    Sterling, Alphonse C.; Moore, Ronald L.; Rose, M. Franklin (Technical Monitor)

    2000-01-01

    Using data from the Extreme Ultraviolet Telescope (EIT) on SOHO and the Soft X-ray Telescope (SXT) on Yohkoh, we examine a series of morphologically homologous solar flares occurring in NOAA AR 8210 over May 1-2, 1998. An emerging flux region (EFR) impacted against a sunspot to the west and next to a coronal hole to the east is the source of the repeated flaring. An SXT sigmoid parallels the EFR's neutral line at the site of the initial flaring in soft X-rays. In EIT, each flaring episode begins with the formation of a crinkle pattern external to the EFR. These EIT crinkles move out from, and then in toward, the EFR with velocities approximately 20 km/s. A shrinking and expansion of the width of the coronal hole coincides with the crinkle activity, and generation and evolution of a postflare loop system begins near the. time of crinkle formation. Using a schematic based on magnetograms of the region, we suggest that these observations are consistent with the standard reconnection-based model for solar eruptions, but modified by the presence of the additional magnetic fields of the sunspot and coronal hole. In the schematic, internal reconnection begins inside of the EFR-associated fields, unleashing a flare, postflare loops, and a CME. External reconnection, first occurring between the escaping CME and the coronal hole field, and second occurring between fields formed as a result of the first external reconnection, results in the EIT crinkles and changes in the coronal hole boundary. By the end of the second external reconnection, the initial setup is reinstated; thus the sequence can repeat, resulting in morphologically homologous eruptions. Our inferred magnetic topology is similar to that suggested in the "breakout model" of eruptions [Antiochos, 1998], although we cannot determine if our eruptions are released primarily by the breakout mechanism (external reconnection) or, alternatively, are released primarily by the internal reconnection.

  10. A CIRCULAR-RIBBON SOLAR FLARE FOLLOWING AN ASYMMETRIC FILAMENT ERUPTION

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Chang; Deng, Na; Lee, Jeongwoo; Wang, Haimin [Space Weather Research Laboratory, New Jersey Institute of Technology, University Heights, Newark, NJ 07102-1982 (United States); Liu, Rui [CAS Key Laboratory of Geospace Environment, Department of Geophysics and Planetary Sciences, University of Science and Technology of China, Hefei 230026 (China); Pariat, Étienne [LESIA, Observatoire de Paris, PSL Research University, CNRS, Sorbonne Universits, UPMC Univ. Paris 06, Univ. Paris Diderot, Sorbonne Paris Cité, F-92190 Meudon (France); Wiegelmann, Thomas [Max-Planck-Institut für Sonnensystemforschung, Justus-von-Liebig Weg 3, D-37077 Göttingen (Germany); Liu, Yang [W. W. Hansen Experimental Physics Laboratory, Stanford University, Stanford, CA 94305-4085 (United States); Kleint, Lucia, E-mail: chang.liu@njit.edu [University of Applied Sciences and Arts Northwestern Switzerland, Bahnhofstrasse 6, 5210 Windisch (Switzerland)

    2015-10-20

    The dynamic properties of flare ribbons and the often associated filament eruptions can provide crucial information on the flaring coronal magnetic field. This Letter analyzes the GOES-class X1.0 flare on 2014 March 29 (SOL2014-03-29T17:48), in which we found an asymmetric eruption of a sigmoidal filament and an ensuing circular flare ribbon. Initially both EUV images and a preflare nonlinear force-free field model show that the filament is embedded in magnetic fields with a fan-spine-like structure. In the first phase, which is defined by a weak but still increasing X-ray emission, the western portion of the sigmoidal filament arches upward and then remains quasi-static for about five minutes. The western fan-like and the outer spine-like fields display an ascending motion, and several associated ribbons begin to brighten. Also found is a bright EUV flow that streams down along the eastern fan-like field. In the second phase that includes the main peak of hard X-ray (HXR) emission, the filament erupts, leaving behind two major HXR sources formed around its central dip portion and a circular ribbon brightened sequentially. The expanding western fan-like field interacts intensively with the outer spine-like field, as clearly seen in running difference EUV images. We discuss these observations in favor of a scenario where the asymmetric eruption of the sigmoidal filament is initiated due to an MHD instability and further facilitated by reconnection at a quasi-null in corona; the latter is in turn enhanced by the filament eruption and subsequently produces the circular flare ribbon.

  11. Chandra Captures Flare From Brown Dwarf

    Science.gov (United States)

    2000-07-01

    The first flare ever seen from a brown dwarf, or failed star, was detected by NASA's Chandra X-ray Observatory. The bright X-ray flare has implications for understanding the explosive activity and origin of magnetic fields of extremely low mass stars. Chandra detected no X-rays at all from LP 944-20 for the first nine hours of a twelve hour observation, then the source flared dramatically before it faded away over the next two hours. "We were shocked," said Dr. Robert Rutledge of the California Institute of Technology in Pasadena, the lead author on the discovery paper to appear in the July 20 issue of Astrophysical Journal Letters. "We didn't expect to see flaring from such a lightweight object. This is really the 'mouse that roared.'" Chandra LP 944-20 X-ray Image Press Image and Caption The energy emitted in the brown dwarf flare was comparable to a small solar flare, and was a billion times greater than observed X-ray flares from Jupiter. The flaring energy is believed to come from a twisted magnetic field. "This is the strongest evidence yet that brown dwarfs and possibly young giant planets have magnetic fields, and that a large amount of energy can be released in a flare," said Dr. Eduardo Martin, also of Caltech and a member of the team. Professor Gibor Basri of the University of California, Berkeley, the principal investigator for this observation, speculated that the flare "could have its origin in the turbulent magnetized hot material beneath the surface of the brown dwarf. A sub-surface flare could heat the atmosphere, allowing currents to flow and give rise to the X-ray flare -- like a stroke of lightning." LP 944-20 is about 500 million years old and has a mass that is about 60 times that of Jupiter, or 6 percent that of the Sun. Its diameter is about one-tenth that of the Sun and it has a rotation period of less than five hours. Located in the constellation Fornax in the southern skies, LP 944-20 is one of the best studied brown dwarfs because it is

  12. Black carbon in the Arctic: the underestimated role of gas flaring and residential combustion emissions

    Directory of Open Access Journals (Sweden)

    A. Stohl

    2013-09-01

    annual mean Arctic BC surface concentrations due to residential combustion by 68% when using daily emissions. A large part (93% of this systematic increase can be captured also when using monthly emissions; the increase is compensated by a decreased BC burden at lower latitudes. In a comparison with BC measurements at six Arctic stations, we find that using daily-varying residential combustion emissions and introducing gas flaring emissions leads to large improvements of the simulated Arctic BC, both in terms of mean concentration levels and simulated seasonality. Case studies based on BC and carbon monoxide (CO measurements from the Zeppelin observatory appear to confirm flaring as an important BC source that can produce pollution plumes in the Arctic with a high BC / CO enhancement ratio, as expected for this source type. BC measurements taken during a research ship cruise in the White, Barents and Kara seas north of the region with strong flaring emissions reveal very high concentrations of the order of 200–400 ng m−3. The model underestimates these concentrations substantially, which indicates that the flaring emissions (and probably also other emissions in northern Siberia are rather under- than overestimated in our emission data set. Our results suggest that it may not be "vertical transport that is too strong or scavenging rates that are too low" and "opposite biases in these processes" in the Arctic and elsewhere in current aerosol models, as suggested in a recent review article (Bond et al., Bounding the role of black carbon in the climate system: a scientific assessment, J. Geophys. Res., 2013, but missing emission sources and lacking time resolution of the emission data that are causing opposite model biases in simulated BC concentrations in the Arctic and in the mid-latitudes.

  13. Non-LTE Calculations of the Fe I 6173 Å Line in a Flaring Atmosphere

    Science.gov (United States)

    Hong, Jie; Ding, M. D.; Li, Ying; Carlsson, Mats

    2018-04-01

    The Fe I 6173 Å line is widely used in the measurements of vector magnetic fields by instruments including the Helioseismic and Magnetic Imager (HMI). We perform non-local thermodynamic equilibrium calculations of this line based on radiative hydrodynamic simulations in a flaring atmosphere. We employ both a quiet-Sun atmosphere and a penumbral atmosphere as the initial one in our simulations. We find that, in the quiet-Sun atmosphere, the line center is obviously enhanced during an intermediate flare. The enhanced emission is contributed from both radiative backwarming in the photosphere and particle beam heating in the lower chromosphere. A blue asymmetry of the line profile also appears due to an upward mass motion in the lower chromosphere. If we take a penumbral atmosphere as the initial atmosphere, the line has a more significant response to the flare heating, showing a central emission and an obvious asymmetry. The low spectral resolution of HMI would indicate some loss of information, but the enhancement and line asymmetry are still kept. By calculating polarized line profiles, we find that the Stokes I and V profiles can be altered as a result of flare heating. Thus the distortion of this line has a crucial influence on the magnetic field measured from this line, and one should be cautious in interpreting the magnetic transients observed frequently in solar flares.

  14. TURBULENT DYNAMICS IN SOLAR FLARE SHEET STRUCTURES MEASURED WITH LOCAL CORRELATION TRACKING

    Energy Technology Data Exchange (ETDEWEB)

    McKenzie, D. E., E-mail: mckenzie@physics.montana.edu [Department of Physics, Montana State University, P.O. Box 173840, Bozeman, MT 59717-3840 (United States)

    2013-03-20

    High-resolution observations of the Sun's corona in extreme ultraviolet and soft X-rays have revealed a new world of complexity in the sheet-like structures connecting coronal mass ejections (CMEs) to the post-eruption flare arcades. This article presents initial findings from an exploration of dynamic flows in two flares observed with Hinode/XRT and SDO/AIA. The flows are observed in the hot ({approx}> 10 MK) plasma above the post-eruption arcades and measured with local correlation tracking. The observations demonstrate significant shears in velocity, giving the appearance of vortices and stagnations. Plasma diagnostics indicate that the plasma {beta} exceeds unity in at least one of the studied events, suggesting that the coronal magnetic fields may be significantly affected by the turbulent flows. Although reconnection models of eruptive flares tend to predict a macroscopic current sheet in the region between the CME and the flare arcade, it is not yet clear whether the observed sheet-like structures are identifiable as the current sheets or 'thermal halos' surrounding the current sheets. Regardless, the relationship between the turbulent motions and the embedded magnetic field is likely to be complicated, involving dynamic fluid processes that produce small length scales in the current sheet. Such processes may be crucial for triggering, accelerating, and/or prolonging reconnection in the corona.

  15. Analysis of the effect of dissimilar welding in a high pressure flare stack

    International Nuclear Information System (INIS)

    Mahdi Ezwan Mahmoud; Mohd Harun; Zaifol Samsu; Norasiah Kasim; Zaiton Selamat; Alahuddin, K.H.

    2010-01-01

    A flare stack is an elevated vertical stack found in a natural gas processing plant, used primarily for combusting waste gases released by pressure relief valves. The materials used for our high pressure flare tip are carbon steel (CS) type A516 Gr. 55 for its lower portion, and stainless steel (SS) 310 for its upper portion. Both were combined into a single unit by arc welding (dissimilar welding), with SS310 as a base metal. After 5 years of operations, few mechanical deformations were observed on the flare stack, along with corrosion deposit on the CS portion of the flare. Detailed analysis shows the presence of toe and shrinkage cracks, along with spheroidization of pearlite in the CS. These are caused by factors such as mismatched welding and coefficient of thermal expansion (CTE) between the metals. These factors helped exacerbate crack initiation and propagation. Based on the evidence collected, it is recommended that the CS A516 be replaced with SS310. (author)

  16. Solar Flare Super-Events: When they Can Occur and the Energy Limits of their Realization

    Science.gov (United States)

    Ishkov, Vitaly N.

    2015-03-01

    For the successful development of terrestrial civilization it is necessary to estimate the space factors, including phenomena on Sun, which can ruin it or cause such catastrophic loss, that the restoration to the initial level can take unacceptably long time. Super-powerful solar flares are the only such phenomena. Therefore an attempt is undertaken to estimate the possibility of such super-event occurrence at this stage of our star evolution. Since solar flare events are the consequence of the newly emerging magnetic fluxes interacting with the already existing magnetic fields of active regions, are investigated the observed cases which lead to the realization of such super-events. From the observations of the maximal magnetic fluxes during the period of reliable solar observations, the conclusion is made that the super- extreme solar flares cannot significantly exceed the most powerful solar flares which have already been observed. On the statistics of the reliable solar cycles the sunspot groups, in which occurred the most powerful solar super-events (August- September 1859 - solar cycle 10; June 1991 - SC 22; October-November 2003 - SC 23) appeared in the periods of the solar magnetic field reorganization between the epochs of "increased" and "lowered" solar activity.

  17. Dynamic Spectral Imaging of Decimetric Fiber Bursts in an Eruptive Solar Flare

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Zhitao; Chen, Bin; Gary, Dale E., E-mail: zw56@njit.edu [Center for Solar-Terrestrial Research, New Jersey Institute of Technology, University Heights, Newark, NJ 07102 (United States)

    2017-10-20

    Fiber bursts are a type of fine structure that is often superposed on type IV radio continuum emission during solar flares. Although studied for many decades, its physical exciter, emission mechanism, and association with the flare energy release remain unclear, partly due to the lack of simultaneous imaging observations. We report the first dynamic spectroscopic imaging observations of decimetric fiber bursts, which occurred during the rise phase of a long-duration eruptive flare on 2012 March 3, as obtained by the Karl G. Jansky Very Large Array in 1–2 GHz. Our results show that the fiber sources are located near and above one footpoint of the flare loops. The fiber source and the background continuum source are found to be co-spatial and share the same morphology. It is likely that they are associated with nonthermal electrons trapped in the converging magnetic fields near the footpoint, as supported by a persistent coronal hard X-ray source present during the flare rise phase. We analyze three groups of fiber bursts in detail with dynamic imaging spectroscopy and obtain their mean frequency-dependent centroid trajectories in projection. By using a barometric density model and magnetic field based on a potential field extrapolation, we further reconstruct the 3D source trajectories of fiber bursts, for comparison with expectations from the whistler wave model and two MHD-based models. We conclude that the observed fiber burst properties are consistent with an exciter moving at the propagation velocity expected for whistler waves, or models that posit similar exciter velocities.

  18. A Search for Vector Magnetic Field Variations Associated with the M-Class Flares of 1991 June 10 in AR 6659

    Science.gov (United States)

    Hagyard, Mona J.; Stark, B. A.; Venkatakrishnan, P.

    1998-01-01

    A careful analysis of a 6-hour time sequence of vector magnetograms of AR 6659, observed on 1991 June 10 with the MSFC vector magnetograph, has revealed only minor changes in the vector magnetic field azimuths in the vicinity of two M-class flares, and the association of these changes with the flares is not unambiguous. In this paper we present our analysis of the data which includes comparison of vector magnetograms prior to and during the flares, calculation of distributions of the rms variation of the azimuth at each pixel in the field of view of the active region, and examination of the variation with time of the azimuths at every pixel covered by the main flare emissions as observed with the H-alpha telescope coaligned with the vector magnetograph. We also present results of an analysis of evolutionary changes in the azimuth over the field of view of the active region.

  19. Generation Mechanisms of Quasi-parallel and Quasi-circular Flare Ribbons in a Confined Flare

    Energy Technology Data Exchange (ETDEWEB)

    Hernandez-Perez, Aaron; Thalmann, Julia K.; Veronig, Astrid M.; Dickson, Ewan C. [IGAM/Institute of Physics, University of Graz, A-8010 Graz (Austria); Su, Yang [Key Laboratory of Dark Matter and Space Astronomy, Purple Mountain Observatory Chinese Academy of Sciences, 2 West Beijing Road, 210008 Nanjing (China); Gömöry, Peter, E-mail: aaron.hernandez-perez@uni-graz.at [Astronomical Institute, Slovak Academy of Sciences, 05960 Tatranská Lomnica (Slovakia)

    2017-10-01

    We analyze a confined multiple-ribbon M2.1 flare (SOL2015-01-29T11:42) that originated from a fan-spine coronal magnetic field configuration, within active region NOAA 12268. The observed ribbons form in two steps. First, two primary ribbons form at the main flare site, followed by the formation of secondary ribbons at remote locations. We observe a number of plasma flows at extreme-ultraviolet temperatures during the early phase of the flare (as early as 15 minutes before the onset) propagating toward the formation site of the secondary ribbons. The secondary ribbon formation is co-temporal with the arrival of the pre-flare generated plasma flows. The primary ribbons are co-spatial with Ramaty High Energy Spectroscopic Imager ( RHESSI ) hard X-ray sources, whereas no enhanced X-ray emission is detected at the secondary ribbon sites. The (E)UV emission, associated with the secondary ribbons, peaks ∼1 minute after the last RHESSI hard X-ray enhancement. A nonlinear force-free model of the coronal magnetic field reveals that the secondary flare ribbons are not directly connected to the primary ribbons, but to regions nearby. Detailed analysis suggests that the secondary brightenings are produced due to dissipation of kinetic energy of the plasma flows (heating due to compression), and not due to non-thermal particles accelerated by magnetic reconnection, as is the case for the primary ribbons.

  20. SLIPPING MAGNETIC RECONNECTIONS WITH MULTIPLE FLARE RIBBONS DURING AN X-CLASS SOLAR FLARE

    International Nuclear Information System (INIS)

    Zheng, Ruisheng; Chen, Yao; Wang, Bing

    2016-01-01

    With the observations of the Solar Dynamics Observatory , we present the slipping magnetic reconnections with multiple flare ribbons (FRs) during an X1.2 eruptive flare on 2014 January 7. A center negative polarity was surrounded by several positive ones, and three FRs appeared. The three FRs showed apparent slipping motions, and hook structures formed at their ends. Due to the moving footpoints of the erupting structures, one tight semi-circular hook disappeared after the slippage along its inner and outer edges, and coronal dimmings formed within the hook. The east hook also faded as a result of the magnetic reconnection between the arcades of a remote filament and a hot loop that was impulsively heated by the under flare loops. Our results are accordant with the slipping magnetic reconnection regime in three-dimensional standard model for eruptive flares. We suggest that the complex structures of the flare are likely a consequence of the more complex flux distribution in the photosphere, and the eruption involves at least two magnetic reconnections.

  1. Statistical investigation of flare stars. III. Flare stars in the general galactic star field

    International Nuclear Information System (INIS)

    Mirzoyan, L.V.; Ambaryan, V.V.; Garibdzhanyan, A.T.; Mirzoyan, A.L.

    1989-01-01

    Some questions relating to the existence of a large number of flare stars in the general star field of the Galaxy are discussed. It is shown that only a small proportion of them can be found by photographic observations, and the fraction of field flare stars among such stars found in the regions of star clusters and associations does not exceed 10%. The ratio of the numbers of flare stars of the foreground and the background for a particular system depends on its distance, reaching zero at a distance of about 500 pc. The spatial density of flare stars in the Pleiades is at least two orders of magnitude greater than in the general galactic field. A lower limit for the number of flare stars in the Galaxy is estimated at 4.2 ·10 9 , and the number of nonflare red dwarfs at 2.1·10 10 . There are grounds for believing that they were all formed in star clusters and associations

  2. The coalescence instability in solar flares

    Science.gov (United States)

    Tajima, T.; Brunel, F.; Sakai, J.-I.; Vlahos, L.; Kundu, M. R.

    1985-01-01

    The nonlinear coalescence instability of current carrying solar loops can explain many of the characteristics of the solar flares such as their impulsive nature, heating and high energy particle acceleration, amplitude oscillations of electromagnetic and emission as well as the characteristics of two-dimensional microwave images obtained during a flare. The plasma compressibility leads to the explosive phase of loop coalescence and its overshoot results in amplitude oscillations in temperatures by adiabatic compression and decompression. It is noted that the presence of strong electric fields and super-Alfvenic flows during the course of the instability play an important role in the production of nonthermal particles. A qualitative explanation on the physical processes taking place during the nonlinear stages of the instability is given.

  3. Microwave emission from flaring magnetic loops

    International Nuclear Information System (INIS)

    Vlahos, L.

    1980-01-01

    The microwave emission from a flaring loop is considered. In particular the author examines the question: What will be the characteristics of the radio emission at centimeter wavelengths from a small compact flaring loop when the mechanism which pumps magnetic energy into the plasma in the form of heating and/or electron acceleration satisfies the conditions: (a) the magnetic energy is released in a small volume compared to the volume of the loop, and the rate at which magnetic energy is transformed into plasma energy is faster than the energy losses from the same volume. This causes a local enhancement of the temperature by as much as one or two orders of magnitude above the coronal temperature; (b) The bulk of the energy released goes into heating the plasma and heats primarily the electrons. (Auth.)

  4. The coalescence instability in solar flares

    International Nuclear Information System (INIS)

    Tajima, T.; Brunel, F.; Sakai, J.I.; Vlahos, L.; Kundu, M.R.

    1984-01-01

    The non-linear coalescence instability of current carrying solar loops can explain many of the characteristics of the solar flares such as their impulsive nature, heating and high energy particle acceleration, amplitude oscillations of electromagnetic emission as well as the characteristics of 2-D microwave images obtained during a flare. The plasma compressibility leads to the explosive phase of loop coalescence and its overshoot results in amplitude oscillations in temperatures by adiabatic compression and decompression. We note that the presence of strong electric fields and super-Alfvenic flows during the course of the instabilty paly an important role in the production of non-thermal particles. A qualitative explanation on the physical processes taking place during the non-linear stages of the instability is given. (author)

  5. Enhancement in electron and ion temperatures due to solar flares as measured by SROSS-C2 satellite

    Directory of Open Access Journals (Sweden)

    D. K. Sharma

    2004-06-01

    Full Text Available The observations on the ionospheric electron and ion temperatures (Te and Ti measured by the RPA payload aboard the SROSS-C2 satellite have been used to study the effect of solar flares on ionospheric heating. The data on solar flare has been obtained from the National Geophysical Data Center (NGDC Boulder, Colorado (USA. It has been found that the electron and ion temperatures have a consistent enhancement during the solar flares on the dayside Earth's ionosphere. The estimated enhancement for the average electron temperature is from 1.3 to 1.9 times whereas for ion temperature it is from 1.2 to 1.4 times to the normal days average temperature. The enhancement of ionospheric temperatures due to solar flares is correlated with the diurnal variation of normal days' ionospheric temperatures. The solar flare does not have any significant effect on the nightside ionosphere. A comparison with the temperature obtained from the IRI-95 model also shows a similar enhancement.

  6. Enhancement in electron and ion temperatures due to solar flares as measured by SROSS-C2 satellite

    Directory of Open Access Journals (Sweden)

    D. K. Sharma

    2004-06-01

    Full Text Available The observations on the ionospheric electron and ion temperatures (Te and Ti measured by the RPA payload aboard the SROSS-C2 satellite have been used to study the effect of solar flares on ionospheric heating. The data on solar flare has been obtained from the National Geophysical Data Center (NGDC Boulder, Colorado (USA. It has been found that the electron and ion temperatures have a consistent enhancement during the solar flares on the dayside Earth's ionosphere. The estimated enhancement for the average electron temperature is from 1.3 to 1.9 times whereas for ion temperature it is from 1.2 to 1.4 times to the normal days average temperature. The enhancement of ionospheric temperatures due to solar flares is correlated with the diurnal variation of normal days' ionospheric temperatures. The solar flare does not have any significant effect on the nightside ionosphere. A comparison with the temperature obtained from the IRI-95 model also shows a similar enhancement.

  7. Super enrichment of Fe-group nuclei in solar flares and their association with large 3He enrichments

    International Nuclear Information System (INIS)

    Anglin, J.D.; Dietrich, W.F.; Simpson, J.A.

    1977-01-01

    ''Fe''/He ratios at approximately 2 MeV/n have been measured in 60 solar flares and periods of enhanced fluxes during the interval 1972-1976. The observed ditribution of ratios is extremely wide with values ranging from approximately 1 to more than 1000 times the solar abundance ratio. In constrast, most of the CHO/He ratios for the same flares lie within a factor 2 of the observed mean value of 2 x 10 -2 . While experimental limitations prevent a complete correlation study of Fe-group and 3 He abundances, comparison of flares with large Fe enrichments with flares with large 3 He enrichments for the period 1969-1976 shows that a 3 He-rich flare is also likely to be rich in iron. We feel that the association of 3 He and Fe enrichments may be explained by a two-stage process in which a preliminary enrichment of heavy nuclei precedes the preferential acceleration of ambient 3 He. Nuclear interactions are ruled out as the principal source of the enriched 3 He. (author)

  8. Attitudes on En Route Air Traffic Control Training and Work: A Comparison of Recruits Initially Trained at the FAA Academy and Recruits Initially Trained at Assigned Centers.

    Science.gov (United States)

    Mathews, John J.; And Others

    In the comparison, questionnaires concerning aspects of training-related and work-related attitudes were sent to 225 Air Traffic Control (ATC) trainees who represented groups of attritions and retentions in two En Route training programs; viz, programs that provided basic training at the FAA Academy and programs that provided basic training at the…

  9. Technical and economic analysis use of flare gas into alternative energy as a breakthrough in achieving zero routine flaring

    Science.gov (United States)

    Petri, Y.; Juliza, H.; Humala, N.

    2018-03-01

    The activity of exploring natural oil and gas will produce gas flare 0.584 MMSCFD. A gas flare is the combustion of gas remaining to avoid poisonous gas like H2S and CO which is very dangerous for human and environmental health. The combustion can bring about environmental pollution and losses because it still contains valuable energy. It needs the policy to encourage the use of flare gas with Zero Routine Flaring and green productivity to reduce waste and pollution. The objective of the research was to determine the use of gas flare so that it will have economic value and can achieve Zero Routine Flaring. It was started by analysing based on volume or rate and composition gas flare was used to determine technical feasibility, and the estimation of the gas reserves as the determination of the economy of a gas well. The results showed that the use of flare gas as fuel for power generation feasible to be implemented technically and economically with Internal Rate of Return (IRR) 19.32% and the Payback Period (PP) 5 year. Thus, it can increase gas flare value economically and can achieve a breakthrough in Zero Routine Flaring.

  10. Determination of solar flare accelerated ion angular distributions from SMM gamma ray and neutron measurements and determination of the He-3/H ratio in the solar photosphere from SMM gamma ray measurements. Final technical report, 1 July 1987-31 August 1989

    International Nuclear Information System (INIS)

    Lingenfelter, R.E.

    1989-08-01

    Comparisons of Solar Maximum Mission (SMM) observations of gamma-ray line and neutron emission with theoretical calculation of their expected production by flare accelerated ion interactions in the solar atmosphere have led to significant advances in the understanding of solar flare particle acceleration and interaction, as well as the flare process itself. These comparisons have enabled the determination of, not only the total number and energy spectrum of accelerated ions trapped at the sun, but also the ion angular distribution as they interact in the solar atmosphere. The Monte Carlo program was modified to include in the calculations of ion trajectories the effects of both mirroring in converging magnetic fields and of pitch angle scattering. Comparing the results of these calculations with the SMM observations, not only the angular distribution of the interacting ions can be determined, but also the initial angular distribution of the ions at acceleration. The reliable determination of the solar photospheric He-3 abundance is of great importance for understanding nucleosynthesis in the early universe and its implications for cosmology, as well as for the study of the evolution of the sun. It is also essential for the determinations of the spectrum and total number of flare accelerated ions from the SMM/GRS gamma-ray line measurements. Systematic Monte Carlo calculations of the time dependence were made as a function of the He-3 abundance and other variables. A new series of calculations were compared for the time-dependent flux of 2.223 MeV neutron capture line emission and the ratio of the time-integrated flux in the 2.223 MeV line to that in the 4.1 to 6.4 MeV nuclear deexcitation band

  11. A solar tornado triggered by flares?

    OpenAIRE

    Panesar, N. K.; Innes, D. E.; Tiwari, S. K.; Low, B. C.

    2013-01-01

    Context. Solar tornados are dynamical, conspicuously helical magnetic structures that are mainly observed as a prominence activity. Aims. We investigate and propose a triggering mechanism for the solar tornado observed in a prominence cavity by SDO/AIA on September 25, 2011. Methods. High-cadence EUV images from the SDO/AIA and the Ahead spacecraft of STEREO/EUVI are used to correlate three flares in the neighbouring active-region (NOAA 11303) and their EUV waves with the dynamical de...

  12. Sunspot waves and flare energy release

    Czech Academy of Sciences Publication Activity Database

    Sych, R.A.; Karlický, Marian; Altyntsev, A.; Dudík, Jaroslav; Kashapova, L. K.

    2015-01-01

    Roč. 577, May (2015), A43/1-A43/8 ISSN 0004-6361 R&D Projects: GA ČR GAP209/12/0103; GA ČR GAP209/12/1652 Grant - others:EC(XE) 606862 Program:FP7 Institutional support: RVO:67985815 Keywords : Sun flares * Sun oscillations * Sun X-rays Subject RIV: BN - Astronomy, Celestial Mechanics, Astrophysics Impact factor: 4.378, year: 2014

  13. A COLD FLARE WITH DELAYED HEATING

    International Nuclear Information System (INIS)

    Fleishman, Gregory D.; Pal'shin, Valentin D.; Lysenko, Alexandra L.; Meshalkina, Natalia; Kashapova, Larisa K.; Altyntsev, Alexander T.

    2016-01-01

    Recently, a number of peculiar flares have been reported that demonstrate significant nonthermal particle signatures with low, if any, thermal emission, which implies a close association of the observed emission with the primary energy release/electron acceleration region. This paper presents a flare that appears “cold” at the impulsive phase, while displaying delayed heating later on. Using hard X-ray data from Konus- Wind , microwave observations by SSRT, RSTN, NoRH, and NoRP, context observations, and three-dimensional modeling, we study the energy release, particle acceleration, and transport, and the relationships between the nonthermal and thermal signatures. The flaring process is found to involve the interaction between a small loop and a big loop with the accelerated particles divided roughly equally between them. Precipitation of the electrons from the small loop produced only a weak thermal response because the loop volume was small, while the electrons trapped in the big loop lost most of their energy in the coronal part of the loop, which resulted in coronal plasma heating but no or only weak chromospheric evaporation, and thus unusually weak soft X-ray emission. The energy losses of the fast electrons in the big tenuous loop were slow, which resulted in the observed delay of the plasma heating. We determined that the impulsively accelerated electron population had a beamed angular distribution in the direction of the electric force along the magnetic field of the small loop. The accelerated particle transport in the big loop was primarily mediated by turbulent waves, which is similar to other reported cold flares.

  14. Solar flares and the cosmic ray intensity

    International Nuclear Information System (INIS)

    Hatton, C.J.

    1980-01-01

    The relationship between the cosmic ray intensity and solar activity during solar cycle 20 is discussed. A model is developed whereby it is possible to simulate the observed cosmic ray intensity from the observed number of solar flares of importance >= 1. This model leads to a radius for the modulation region of 60-70 AU. It is suggested that high speed solar streams also made a small contribution to the modulation of cosmic rays during solar cycle 20. (orig.)

  15. The Discriminant Analysis Flare Forecasting System (DAFFS)

    Science.gov (United States)

    Leka, K. D.; Barnes, Graham; Wagner, Eric; Hill, Frank; Marble, Andrew R.

    2016-05-01

    The Discriminant Analysis Flare Forecasting System (DAFFS) has been developed under NOAA/Small Business Innovative Research funds to quantitatively improve upon the NOAA/SWPC flare prediction. In the Phase-I of this project, it was demonstrated that DAFFS could indeed improve by the requested 25% most of the standard flare prediction data products from NOAA/SWPC. In the Phase-II of this project, a prototype has been developed and is presently running autonomously at NWRA.DAFFS uses near-real-time data from NOAA/GOES, SDO/HMI, and the NSO/GONG network to issue both region- and full-disk forecasts of solar flares, based on multi-variable non-parametric Discriminant Analysis. Presently, DAFFS provides forecasts which match those provided by NOAA/SWPC in terms of thresholds and validity periods (including 1-, 2-, and 3- day forecasts), although issued twice daily. Of particular note regarding DAFFS capabilities are the redundant system design, automatically-generated validation statistics and the large range of customizable options available. As part of this poster, a description of the data used, algorithm, performance and customizable options will be presented, as well as a demonstration of the DAFFS prototype.DAFFS development at NWRA is supported by NOAA/SBIR contracts WC-133R-13-CN-0079 and WC-133R-14-CN-0103, with additional support from NASA contract NNH12CG10C, plus acknowledgment to the SDO/HMI and NSO/GONG facilities and NOAA/SWPC personnel for data products, support, and feedback. DAFFS is presently ready for Phase-III development.

  16. Underground Storage Alternative To Nigeria's Gas Flaring

    International Nuclear Information System (INIS)

    Obi, A.I

    2004-01-01

    Energy demands are increasing as the world's population of energy users grows. At the same time many nations want to decommission nuclear plants in support of a cleaner environment. Clean burning natural gas is the fuel most likely to meet society's complex requirements. Demand for natural gas will rise more strongly than for any fossil fuel. The utilization of the huge gas resources form the petroleum deposit in the Niger Delta area is the major problem confronting the oil/gas industry in Nigeria and the disposal of associated gas has been a major challenge for the barrel of oil; hence with oil production of about 2.0 million barrels per day, some 2.0 billion standard cubic feet of AG is producing everyday. An alarming proportion of the gas is wasted by flaring, while very small proportion is used by oil-producing companies and other most alarming rate of flaring in the world compared with other oil/gas producing countries. This paper highlights the numerous benefits accruing from proper utilization of natural gas using SASOL of South Africa as an example and recommends underground storage of natural gas as an industry that will help check flaring, meet fluctuating demand and create wealth for the nation

  17. Acceleration of runaway electrons in solar flares

    Science.gov (United States)

    Moghaddam-Taaheri, E.; Goertz, C. K.

    1990-01-01

    The dc electric field acceleration of electrons out of a thermal plasma and the evolution of the runaway tail are studied numerically, using a relativistic quasi-linear code based on the Ritz-Galerkin method and finite elements. A small field-aligned electric field is turned on at a certain time. The resulting distribution function from the runaway process is used to calculate the synchrotron emission during the evolution of the runaway tail. It is found that, during the runaway tail formation, which lasts a few tens of seconds for typical solar flare conditions, the synchrotron emission level is low, almost ot the same order as the emission from the thermal plasma, at the high-frequency end of the spectrum. However, the emission is enhanced explosively in a few microseconds by several orders of magnitude at the time the runaway tail stops growing along the magnetic field and tends toward isotropy due to the pitch-angle scattering of the fast particles. Results indicate that, in order to account for the observed synchrotron emission spectrum of a typical solar flare, the electric field acceleration phase must be accompanied or preceded by a heating phase which yields an enhanced electron temperature of about 2-15 keV in the flare region if the electric field is 0.1-0.2 times the Dreicer field and cyclotron-to-plasma frequency ratios are of order 1-2.

  18. Solar flare pion and neutron production

    International Nuclear Information System (INIS)

    Forrest, D.J.; Vestrand, W.T.

    1992-01-01

    During cycle 21, the Gamma Ray Spectrometer on SMM observed three large flares with clear evidence for pion decay gamma rays and high energy neutrons. Two of these had an extended emission phase. The emission observed in these extended phases were clearly different from those observed in the impulsive phase. Compared to the impulsive phase, the extended phase emissions were strongly deficient in electron bremsstrahlung relative to the nuclear line emission in the 1.0-7.0 MeV band and appeared to have a reduced energetic neutron to pion gamma ray emission in the >10 MeV band. These changes can be produced either by a strong hardening of the accelerated ion spectrum together with a relative decrease in the energetic electron spectrum, or by a pronounced change in the geometry of the particle spectrum downwards towards the photosphere. The authors review the observational evidence in terms of these two possibilities. A dramatic change in the energetic particle geometry appears to offer the simplest explanation. If true these two flares represent the first clear evidence of strong particle geometry effects within individual flares

  19. The evaluation of endodontic flare-ups and their relationship to various risk factors

    OpenAIRE

    Onay, Emel Olga; Ungor, Mete; Yazici, A. Canan

    2015-01-01

    Background To evaluate the incidence of flare-ups and identify the risk factors including age, gender, tooth type, number of root canals, initial diagnosis, the type of irrigation regimen, treatment modality and the number of visits, in patients who received root canal treatment from January 2002 to January 2008. Methods Records of 1819 teeth belonging to 1410 patients treated by 1 endodontics specialist during 6-year period were kept. Patient, tooth, and treatment characteristics were evalua...

  20. Flare activity on UV Ceti: visible and IUE observations

    International Nuclear Information System (INIS)

    Phillips, K.J.H.; Bromage, G.E.; Dufton, P.L.; Keenan, F.P.; Kingston, A.E.

    1988-01-01

    Simultaneous far-ultraviolet (IUE) spectroscopy and optical photometry and spectrophotometry of a flare on UV Ceti are reported. The flare reached ΔU=2 mag but showed only modest enhancements in the IUE spectra. The optical spectrophotometry indicated broadened Balmer line profiles during the flare, with Hβ and Hγ clearly showing red wings (∼ 100 km s -1 ). The results are compared with other IUE and optical observations of UV Ceti, and their solar analogues. (author)

  1. Spots and White Light Flares in an L Dwarf

    Science.gov (United States)

    2013-01-01

    Program GN-2012A-Q-37) GMOS spectrograph (Hook et al. 2004) when a series of flares occurred. A spectrum of the most powerful flare in its impulsive...10:14 Hα HeI HeI HeI OI Fig. 4. Gemini-North GMOS spectra of W1906+40 in quiescence (below) and in flare. Note the broad Hα, atomic emission lines

  2. Flare activity on UV CETI: visible and IUE observations

    International Nuclear Information System (INIS)

    Phillips, K.J.H.; Bromage, G.E.; Dufton, P.L.; Keenan, F.P.; Kingston, A.E.

    1988-06-01

    Simultaneous far-ultraviolet (IUE) spectroscopy and optical photometry and spectrophotometry of a flare on UV Ceti are reported. The flare reached ΔU = 2sup(m) but showed only modest enhancements in the IUE spectra. The optical spectrophotometry indicated broadened Balmer line profiles during the flare, with Hβ and Hγ clearly showing red wings. The results are compared with other IUE and optical observations of UV Ceti, and their solar analogues. (author)

  3. Incidence and Predictive Factors of Pain Flare After Spine Stereotactic Body Radiation Therapy: Secondary Analysis of Phase 1/2 Trials

    International Nuclear Information System (INIS)

    Pan, Hubert Y.; Allen, Pamela K.; Wang, Xin S.; Chang, Eric L.; Rhines, Laurence D.; Tatsui, Claudio E.; Amini, Behrang; Wang, Xin A.; Tannir, Nizar M.; Brown, Paul D.; Ghia, Amol J.

    2014-01-01

    Purpose/Objective(s): To perform a secondary analysis of institutional prospective spine stereotactic body radiation therapy (SBRT) trials to investigate posttreatment acute pain flare. Methods and Materials: Medical records for enrolled patients were reviewed. Study protocol included baseline and follow-up surveys with pain assessment by Brief Pain Inventory and documentation of pain medications. Patients were considered evaluable for pain flare if clinical note or follow-up survey was completed within 2 weeks of SBRT. Pain flare was defined as a clinical note indicating increased pain at the treated site or survey showing a 2-point increase in worst pain score, a 25% increase in analgesic intake, or the initiation of steroids. Binary logistic regression was used to determine predictive factors for pain flare occurrence. Results: Of the 210 enrolled patients, 195 (93%) were evaluable for pain flare, including 172 (88%) clinically, 135 (69%) by survey, and 112 (57%) by both methods. Of evaluable patients, 61 (31%) had undergone prior surgery, 57 (29%) had received prior radiation, and 34 (17%) took steroids during treatment, mostly for prior conditions. Pain flare was observed in 44 patients (23%). Median time to pain flare was 5 days (range, 0-20 days) after the start of treatment. On multivariate analysis, the only independent factor associated with pain flare was the number of treatment fractions (odds ratio = 0.66, P=.004). Age, sex, performance status, spine location, number of treated vertebrae, prior radiation, prior surgery, primary tumor histology, baseline pain score, and steroid use were not significant. Conclusions: Acute pain flare after spine SBRT is a relatively common event, for which patients should be counseled. Additional study is needed to determine whether prophylactic or symptomatic intervention is preferred

  4. Incidence and Predictive Factors of Pain Flare After Spine Stereotactic Body Radiation Therapy: Secondary Analysis of Phase 1/2 Trials

    Energy Technology Data Exchange (ETDEWEB)

    Pan, Hubert Y.; Allen, Pamela K. [Department of Radiation Oncology, University of Texas MD Anderson Cancer, Houston, Texas (United States); Wang, Xin S. [Department of Symptom Research, University of Texas MD Anderson Cancer, Houston, Texas (United States); Chang, Eric L. [Department of Radiation Oncology, University of Texas MD Anderson Cancer, Houston, Texas (United States); Department of Radiation Oncology, USC Norris Cancer Center, Los Angeles, California (United States); Rhines, Laurence D.; Tatsui, Claudio E. [Department of Neurosurgery, University of Texas MD Anderson Cancer, Houston, Texas (United States); Amini, Behrang [Department of Diagnostic Radiology, University of Texas MD Anderson Cancer, Houston, Texas (United States); Wang, Xin A. [Department of Radiation Physics, University of Texas MD Anderson Cancer, Houston, Texas (United States); Tannir, Nizar M. [Department of Genitourinary Medical Oncology, University of Texas MD Anderson Cancer, Houston, Texas (United States); Brown, Paul D. [Department of Radiation Oncology, University of Texas MD Anderson Cancer, Houston, Texas (United States); Ghia, Amol J., E-mail: AJGhia@mdanderson.org [Department of Radiation Oncology, University of Texas MD Anderson Cancer, Houston, Texas (United States)

    2014-11-15

    Purpose/Objective(s): To perform a secondary analysis of institutional prospective spine stereotactic body radiation therapy (SBRT) trials to investigate posttreatment acute pain flare. Methods and Materials: Medical records for enrolled patients were reviewed. Study protocol included baseline and follow-up surveys with pain assessment by Brief Pain Inventory and documentation of pain medications. Patients were considered evaluable for pain flare if clinical note or follow-up survey was completed within 2 weeks of SBRT. Pain flare was defined as a clinical note indicating increased pain at the treated site or survey showing a 2-point increase in worst pain score, a 25% increase in analgesic intake, or the initiation of steroids. Binary logistic regression was used to determine predictive factors for pain flare occurrence. Results: Of the 210 enrolled patients, 195 (93%) were evaluable for pain flare, including 172 (88%) clinically, 135 (69%) by survey, and 112 (57%) by both methods. Of evaluable patients, 61 (31%) had undergone prior surgery, 57 (29%) had received prior radiation, and 34 (17%) took steroids during treatment, mostly for prior conditions. Pain flare was observed in 44 patients (23%). Median time to pain flare was 5 days (range, 0-20 days) after the start of treatment. On multivariate analysis, the only independent factor associated with pain flare was the number of treatment fractions (odds ratio = 0.66, P=.004). Age, sex, performance status, spine location, number of treated vertebrae, prior radiation, prior surgery, primary tumor histology, baseline pain score, and steroid use were not significant. Conclusions: Acute pain flare after spine SBRT is a relatively common event, for which patients should be counseled. Additional study is needed to determine whether prophylactic or symptomatic intervention is preferred.

  5. Leflunomide is associated with a higher flare rate compared to methotrexate in the treatment of chronic uveitis in juvenile idiopathic arthritis.

    Science.gov (United States)

    Bichler, J; Benseler, S M; Krumrey-Langkammerer, M; Haas, J-P; Hügle, B

    2015-01-01

    Chronic anterior uveitis is a serious complication of juvenile idiopathic arthritis (JIA); disease flares are highly associated with loss of vision. Leflunomide (LEF) is used successfully for JIA joint disease but its effectiveness in uveitis has not been determined. The aim of this study was to determine whether LEF improves flare rates of uveitis in JIA patients compared to preceding methotrexate (MTX) therapy. A single-centre retrospective study of consecutive children with JIA and chronic anterior uveitis was performed. All children initially received MTX and were then switched to LEF. Demographic, clinical, and laboratory data, dose and duration of MTX and LEF therapy, concomitant medications and rate of anterior uveitis flares, as determined by an expert ophthalmologist, were obtained. Flare rates were compared using a generalized linear mixed model with a negative binomial distribution. A total of 15 children were included (80% females, all antinuclear antibody positive). The median duration of MTX therapy was 51 (range 26-167) months; LEF was given for a median of 12 (range 4-47) months. Anti-tumour necrosis factor (anti-TNF-α) co-medication was given to four children while on MTX. By contrast, LEF was combined with anti-TNF-α treatment in six children. On MTX, JIA patients showed a uveitis flare rate of 0.0247 flares/month, while LEF treatment was associated with a significantly higher flare rate of 0.0607 flares/month (p = 0.008). Children with JIA had significantly more uveitis flares on LEF compared to MTX despite receiving anti-TNF-α co-medication more frequently. Therefore, LEF may need to be considered less effective in controlling chronic anterior uveitis.

  6. Sunspot splitting triggering an eruptive flare

    Science.gov (United States)

    Louis, Rohan E.; Puschmann, Klaus G.; Kliem, Bernhard; Balthasar, Horst; Denker, Carsten

    2014-02-01

    Aims: We investigate how the splitting of the leading sunspot and associated flux emergence and cancellation in active region NOAA 11515 caused an eruptive M5.6 flare on 2012 July 2. Methods: Continuum intensity, line-of-sight magnetogram, and dopplergram data of the Helioseismic and Magnetic Imager were employed to analyse the photospheric evolution. Filtergrams in Hα and He I 10830 Å of the Chromospheric Telescope at the Observatorio del Teide, Tenerife, track the evolution of the flare. The corresponding coronal conditions were derived from 171 Å and 304 Å images of the Atmospheric Imaging Assembly. Local correlation tracking was utilized to determine shear flows. Results: Emerging flux formed a neutral line ahead of the leading sunspot and new satellite spots. The sunspot splitting caused a long-lasting flow towards this neutral line, where a filament formed. Further flux emergence, partly of mixed polarity, as well as episodes of flux cancellation occurred repeatedly at the neutral line. Following a nearby C-class precursor flare with signs of interaction with the filament, the filament erupted nearly simultaneously with the onset of the M5.6 flare and evolved into a coronal mass ejection. The sunspot stretched without forming a light bridge, splitting unusually fast (within about a day, complete ≈6 h after the eruption) in two nearly equal parts. The front part separated strongly from the active region to approach the neighbouring active region where all its coronal magnetic connections were rooted. It also rotated rapidly (by 4.9° h-1) and caused significant shear flows at its edge. Conclusions: The eruption resulted from a complex sequence of processes in the (sub-)photosphere and corona. The persistent flows towards the neutral line likely caused the formation of a flux rope that held the filament. These flows, their associated flux cancellation, the emerging flux, and the precursor flare all contributed to the destabilization of the flux rope. We

  7. Long-term hemispheric variation of the flare index

    International Nuclear Information System (INIS)

    Feng Song; Deng Lin-Hua; Xu Shi-Chun

    2013-01-01

    The long-term hemispheric variation of the flare index is investigated. It is found that, (1) the phase difference of the flare index between the northern and southern hemispheres is about 6–7 months, which is near the time delay between flare activity and sunspot activity; (2) both the dominant and phase-leading hemisphere of the flare index is the northern hemisphere in the considered time interval, implying that the hemispheric asynchrony of solar activity has a close connection with the N-S asymmetry of solar activity. (research papers)

  8. Endodontic flare up: incidence and association of possible risk factors.

    Science.gov (United States)

    Gbadebo, S O; Sulaiman, A O; Anifowose, O O

    2016-06-01

    Endodontic emergency during root canal treatment (flare up) is a common occurrence in multivisit root canal treatment (RCT) and it may be associated with many factors. The occurrence however can affect the prognosis of the tooth and the patient -clinician relationship. To determine the incidence and risk factors associated with occurrence of flare up in a multi visit RCT. Patients planned for multi-visit (RCT) were recruited for the research. Standard protocol was followed in all cases. After the first visit, the patients were followed up for possible development of flare up. Patients' demographics, presence or absence of preoperative pain, status of the pulp and occurrence of flare up were among the data collected. Data was analyzed using SPSS version 20 with level of significance set at P flare up was 8.5%. Prior to treatment, 47% of the cases had pain, 61.3% had apical radioluscency and 83% had pulpal necrosis. Majority (7, 77.8%) of the flare up occurred after the first visit (p=0.000). Only pre- treatment pain had a statistical significant ielationship with occurrence of flare up (p=0.009). Incidence of flare up was 8.5% and the major risk factor was preoperative pain. First visit in a multi visit RCT is an important stage which if well handled, can reduce the incidence of flare up.

  9. Variation of the solar wind velocity following solar flares

    International Nuclear Information System (INIS)

    Huang, Y.; Lee, Y.

    1975-01-01

    By use of the superposed epoch method, changes in the solar wind velocity following solar flares have been investigated by using the solar wind velocity data obtained by Pioneer 6 and 7 and Vela 3, 4, and 5 satellites. A significant increase of the solar wind velocity has been found on the second day following importance 3 solar flares and on the third day following importance 2 solar flares. No significant increase of the solar wind velocity has been found for limb flares. (auth)

  10. Imaging Observations of Magnetic Reconnection in a Solar Eruptive Flare

    International Nuclear Information System (INIS)

    Li, Y.; Ding, M. D.; Sun, X.; Qiu, J.; Priest, E. R.

    2017-01-01

    Solar flares are among the most energetic events in the solar atmosphere. It is widely accepted that flares are powered by magnetic reconnection in the corona. An eruptive flare is usually accompanied by a coronal mass ejection, both of which are probably driven by the eruption of a magnetic flux rope (MFR). Here we report an eruptive flare on 2016 March 23 observed by the Atmospheric Imaging Assembly on board the Solar Dynamics Observatory . The extreme-ultraviolet imaging observations exhibit the clear rise and eruption of an MFR. In particular, the observations reveal solid evidence of magnetic reconnection from both the corona and chromosphere during the flare. Moreover, weak reconnection is observed before the start of the flare. We find that the preflare weak reconnection is of tether-cutting type and helps the MFR to rise slowly. Induced by a further rise of the MFR, strong reconnection occurs in the rise phases of the flare, which is temporally related to the MFR eruption. We also find that the magnetic reconnection is more of 3D-type in the early phase, as manifested in a strong-to-weak shear transition in flare loops, and becomes more 2D-like in the later phase, as shown by the apparent rising motion of an arcade of flare loops.

  11. Imaging Observations of Magnetic Reconnection in a Solar Eruptive Flare

    Energy Technology Data Exchange (ETDEWEB)

    Li, Y.; Ding, M. D. [School of Astronomy and Space Science, Nanjing University, Nanjing 210023 (China); Sun, X. [W. W. Hansen Experimental Physics Laboratory, Stanford University, Stanford, CA 94305 (United States); Qiu, J. [Department of Physics, Montana State University, Bozeman, MT 59717 (United States); Priest, E. R., E-mail: yingli@nju.edu.cn [School of Mathematics and Statistics, University of St Andrews, Fife KY16 9SS, Scotland (United Kingdom)

    2017-02-01

    Solar flares are among the most energetic events in the solar atmosphere. It is widely accepted that flares are powered by magnetic reconnection in the corona. An eruptive flare is usually accompanied by a coronal mass ejection, both of which are probably driven by the eruption of a magnetic flux rope (MFR). Here we report an eruptive flare on 2016 March 23 observed by the Atmospheric Imaging Assembly on board the Solar Dynamics Observatory . The extreme-ultraviolet imaging observations exhibit the clear rise and eruption of an MFR. In particular, the observations reveal solid evidence of magnetic reconnection from both the corona and chromosphere during the flare. Moreover, weak reconnection is observed before the start of the flare. We find that the preflare weak reconnection is of tether-cutting type and helps the MFR to rise slowly. Induced by a further rise of the MFR, strong reconnection occurs in the rise phases of the flare, which is temporally related to the MFR eruption. We also find that the magnetic reconnection is more of 3D-type in the early phase, as manifested in a strong-to-weak shear transition in flare loops, and becomes more 2D-like in the later phase, as shown by the apparent rising motion of an arcade of flare loops.

  12. Electron density diagnostics in the 10-100 A interval for a solar flare

    Science.gov (United States)

    Brown, W. A.; Bruner, M. E.; Acton, L. W.; Mason, H. E.

    1986-01-01

    Electron density measurements from spectral-line diagnostics are reported for a solar flare on July 13, 1982, 1627 UT. The spectrogram, covering the 10-95 A interval, contained usable lines of helium-like ions C V, N VI, O VII, and Ne IX which are formed over the temperature interval 0.7-3.5 x 10 to the 6th K. In addition, spectral-line ratios of Si IX, Fe XIV, and Ca XV were compared with new theoretical estimates of their electron density sensitivity to obtain additional electron density diagnostics. An electron density of 3 x 10 to the 10th/cu cm was obtained. The comparison of these results from helium-like and other ions gives confidence in the utility of these tools for solar coronal analysis and will lead to a fuller understanding of the phenomena observed in this flare.

  13. Neutral beams in two-ribbon flares and in the geomagnetic tail

    International Nuclear Information System (INIS)

    Martens, P.C.H.; Young, A.

    1990-01-01

    The current sheet created in the wake of an erupting filament during a two-ribbon flare is studied. A comparison with the geomagnetic tail shows that the physics of these systems is very similar, and therefore the existence of super Dreicer fields and the generation of netural beams traveling down the postflare loops with small pitch angles may be expected. The observational evidence for neutral beams in flares is reviewed and found to be generally supportive, while contracting the widely held hypothesis of electron beams. A dimensional analysis further demonstrates that the results for self-consistent numerical simulations of the current sheet in the geomagnetic tail can directly be scaled to the coronal current sheet, and the scaling parameters are derived. 71 refs

  14. SU-E-J-58: Comparison of Conformal Tracking Methods Using Initial, Adaptive and Preceding Image Frames for Image Registration

    Energy Technology Data Exchange (ETDEWEB)

    Teo, P; Guo, K; Alayoubi, N; Kehler, K; Pistorius, S [CancerCare Manitoba, Winnipeg, MB (Canada)

    2015-06-15

    Purpose: Accounting for tumor motion during radiation therapy is important to ensure that the tumor receives the prescribed dose. Increasing the field size to account for this motion exposes the surrounding healthy tissues to unnecessary radiation. In contrast to using motion-encompassing techniques to treat moving tumors, conformal radiation therapy (RT) uses a smaller field to track the tumor and adapts the beam aperture according to the motion detected. This work investigates and compares the performance of three markerless, EPID based, optical flow methods to track tumor motion with conformal RT. Methods: Three techniques were used to track the motions of a 3D printed lung tumor programmed to move according to the tumor of seven lung cancer patients. These techniques utilized a multi-resolution optical flow algorithm as the core computation for image registration. The first method (DIR) registers the incoming images with an initial reference frame, while the second method (RFSF) uses an adaptive reference frame and the third method (CU) uses preceding image frames for registration. The patient traces and errors were evaluated for the seven patients. Results: The average position errors for all patient traces were 0.12 ± 0.33 mm, −0.05 ± 0.04 mm and −0.28 ± 0.44 mm for CU, DIR and RFSF method respectively. The position errors distributed within 1 standard deviation are 0.74 mm, 0.37 mm and 0.96 mm respectively. The CU and RFSF algorithms are sensitive to the characteristics of the patient trace and produce a wider distribution of errors amongst patients. Although the mean error for the DIR method is negatively biased (−0.05 mm) for all patients, it has the narrowest distribution of position error, which can be corrected using an offset calibration. Conclusion: Three techniques of image registration and position update were studied. Using direct comparison with an initial frame yields the best performance. The authors would like to thank Dr.YeLin Suh for

  15. SU-E-J-58: Comparison of Conformal Tracking Methods Using Initial, Adaptive and Preceding Image Frames for Image Registration

    International Nuclear Information System (INIS)

    Teo, P; Guo, K; Alayoubi, N; Kehler, K; Pistorius, S

    2015-01-01

    Purpose: Accounting for tumor motion during radiation therapy is important to ensure that the tumor receives the prescribed dose. Increasing the field size to account for this motion exposes the surrounding healthy tissues to unnecessary radiation. In contrast to using motion-encompassing techniques to treat moving tumors, conformal radiation therapy (RT) uses a smaller field to track the tumor and adapts the beam aperture according to the motion detected. This work investigates and compares the performance of three markerless, EPID based, optical flow methods to track tumor motion with conformal RT. Methods: Three techniques were used to track the motions of a 3D printed lung tumor programmed to move according to the tumor of seven lung cancer patients. These techniques utilized a multi-resolution optical flow algorithm as the core computation for image registration. The first method (DIR) registers the incoming images with an initial reference frame, while the second method (RFSF) uses an adaptive reference frame and the third method (CU) uses preceding image frames for registration. The patient traces and errors were evaluated for the seven patients. Results: The average position errors for all patient traces were 0.12 ± 0.33 mm, −0.05 ± 0.04 mm and −0.28 ± 0.44 mm for CU, DIR and RFSF method respectively. The position errors distributed within 1 standard deviation are 0.74 mm, 0.37 mm and 0.96 mm respectively. The CU and RFSF algorithms are sensitive to the characteristics of the patient trace and produce a wider distribution of errors amongst patients. Although the mean error for the DIR method is negatively biased (−0.05 mm) for all patients, it has the narrowest distribution of position error, which can be corrected using an offset calibration. Conclusion: Three techniques of image registration and position update were studied. Using direct comparison with an initial frame yields the best performance. The authors would like to thank Dr.YeLin Suh for

  16. Comparison of a Commonwealth-initiated regional radiation oncology facility in Toowoomba with a Queensland Health facility

    International Nuclear Information System (INIS)

    Poulsen, M.; Ramsay, R.; Gogna, K.; Middleton, M.; Martin, J.; Khoo, E.; Wong, W.; McQuitty, S.; Walpole, E.; Fairweather, R.

    2010-01-01

    The aim was to compare a private Commonwealth-initiated regional radiation oncology facility in Toowoomba with a Queensland Health facility (QHF) in Brisbane. The comparison concentrated on staffing, case mix and operational budgets, but was not able to look at changes in access to services. Data were collected from the two facilities from January 2008 to June 2008 inclusive. A number of factors were compared, including case mix, staffing levels, delay times for treatment, research, training and treatment costs. The case mix between the two areas was similar with curative treatments making up just over half the work load in both centres and two-thirds the work being made up of cancers of breast and prostate. Staffing levels were leaner in Toowoomba, especially in the areas of nursing, administration and trial coordinators. Research activity was slightly higher in Toowoomba. The average medicare cost per treatment course was similar in both centres ($5000 per course). Total costs of an average treatment including patient, State and Commonwealth costs, showed a 30% difference in costing favouring Toowoomba. This regional radiation oncology centre has provided state-of-the-art cancer care that is close to home for patients living in the Darling Downs region. Both public and private patients have been treated with modest costs to the patient and significant savings to QH. The case mix is similar to the QHF, and there has been significant activity in clinical research. A paperless working environment is one factor that has allowed staffing levels to be reduced. Ongoing support from Governments are required if private facilities are to participate in important ongoing staff training.

  17. A Data-Driven, Integrated Flare Model Based on Self-Organized Criticality

    Science.gov (United States)

    Dimitropoulou, M.; Isliker, H.; Vlahos, L.; Georgoulis, M.

    2013-09-01

    We interpret solar flares as events originating in solar active regions having reached the self-organized critical state, by alternatively using two versions of an "integrated flare model" - one static and one dynamic. In both versions the initial conditions are derived from observations aiming to investigate whether well-known scaling laws observed in the distribution functions of characteristic flare parameters are reproduced after the self-organized critical state has been reached. In the static model, we first apply a nonlinear force-free extrapolation that reconstructs the three-dimensional magnetic fields from two-dimensional vector magnetograms. We then locate magnetic discontinuities exceeding a threshold in the Laplacian of the magnetic field. These discontinuities are relaxed in local diffusion events, implemented in the form of cellular-automaton evolution rules. Subsequent loading and relaxation steps lead the system to self-organized criticality, after which the statistical properties of the simulated events are examined. In the dynamic version we deploy an enhanced driving mechanism, which utilizes the observed evolution of active regions, making use of sequential vector magnetograms. We first apply the static cellular automaton model to consecutive solar vector magnetograms until the self-organized critical state is reached. We then evolve the magnetic field inbetween these processed snapshots through spline interpolation, acting as a natural driver in the dynamic model. The identification of magnetically unstable sites as well as their relaxation follow the same rules as in the static model after each interpolation step. Subsequent interpolation/driving and relaxation steps cover all transitions until the end of the sequence. Physical requirements, such as the divergence-free condition for the magnetic field vector, are approximately satisfied in both versions of the model. We obtain robust power laws in the distribution functions of the modelled

  18. Optical flare observed in the flaring gamma-ray blazar Ton 599

    Science.gov (United States)

    Pursimo, Tapio; Sagues, Ana; Telting, John; Ojha, Roopesh

    2017-11-01

    We report optical photometry of the flat spectrum radio quasar Ton 599, obtained with the 2.56m Nordic Optical Telescope in La Palma, to look for any enhanced optical activity associated with a recent flare in the daily averaged gamma-ray flux (ATel#10931, ATel#10937).

  19. EVOLUTION OF CURRENTS OF OPPOSITE SIGNS IN THE FLARE-PRODUCTIVE SOLAR ACTIVE REGION NOAA 10930

    International Nuclear Information System (INIS)

    Ravindra, B.; Venkatakrishnan, P.; Tiwari, Sanjiv Kumar; Bhattacharyya, R.

    2011-01-01

    Analysis of a time series of high spatial resolution vector magnetograms of the active region NOAA 10930 available from the Solar Optical Telescope SpectroPolarimeter on board Hinode revealed that there is a mixture of upward and downward currents in the two footpoints of an emerging flux rope. The flux emergence rate is almost the same in both the polarities. We observe that along with an increase in magnetic flux, the net current in each polarity increases initially for about three days after which it decreases. This net current is characterized by having exactly opposite signs in each polarity while its magnitude remains almost the same most of the time. The decrease of the net current in both the polarities is due to the increase of current having a sign opposite to that of the net current. The dominant current, with the same sign as the net current, is seen to increase first and then decreases during the major X-class flares. Evolution of non-dominant current appears to be a necessary condition for flare initiation. The above observations can be plausibly explained in terms of the superposition of two different force-free states resulting in a non-zero Lorentz force in the corona. This Lorentz force then pushes the coronal plasma and might facilitate the magnetic reconnection required for flares. Also, the evolution of the net current is found to follow the evolution of magnetic shear at the polarity inversion line.

  20. Solar flare effects on the zodiacal light

    International Nuclear Information System (INIS)

    Misconi, N.Y.

    1975-01-01

    An observational and theoretical study was carried out of possible solar flare effects on the zodiacal light. A total of 38 nights (February, March and April 1966, March 1967, and March 1968) of ground based observations, which were taken from Mt. Haleakala, Hawaii by Weinberg, were searched for solar flare effects. No changes were found in the shape of the main cone of the zodiacal light at elongations greater than 23 degrees from the sun to a limit of approximately 20 S 10 (V) units, and none were found in the level of brightness from night to night to a limit of approximately 100 S 10 (V) units. The earlier reported enhancement in the zodiacal light due to a large solar flare by Blackwell and Ingham (1961) is considered doubtful for two reasons: probable contamination of their observations by enhanced atmospheric emission, and detailed geometry of that event shows that it is unlikely that the plasma/dust interaction could have caused a 40 percent enhancement in the zodiacal light. Whether or not the plasma/dust interaction can be effective in causing a brightness change, a knowledge of the brightness contribution along the lines of sight and as a function of heliocentric distance is needed. For this purpose models of dielectric and metallic particles with spatial distribution of the form r/sup -ν/, ν = 0,1,2, and size distribution of the form a/sup -p/, p = 2.5,4, were computed using the Mie scattering theory. Dynamical processes affecting the dust particle's heliocentric orbit were considered in relation to brightness changes

  1. Comparison of GnRh Agonist Microdose Flare Up and GnRh Antagonist/Letrozole in Treatment of Poor Responder Patients in Intra Cytoplaspic Sperm Injection: Randomized Clinical Trial.

    Science.gov (United States)

    Nabati, Azar; Peivandi, Sepideh; Khalilian, Alireza; Mirzaeirad, Sina; Hashemi, Seyyed Abbas

    2015-08-06

    the prevalence of infertility is up to 10 to 15 % which 9 to 24 % of them are Poor Ovarian Responders (POR). This study was designed to compare two methods of GnRH Agonist Microdose Flareup (MF) and GnRH Antagonist/Letrozole (AL) in treatment of these patients. this randomized clinical trial study consisted of 123 patients. In the first step of treatment in both methods FSH, LH, estradiol, anderostandion, testestron in third day of menstruation period and the thickness of endometrium by Transvaginal sonography were evaluated. At the time of HCG injection the thickness of endometrium and follicles which were more than 14mm ware established and hormones were evaluated. Two weeks later serum βhCG and after 6 to 8 weeks Transvaginal sonography were applied to prove the pregnancy. there were 61 patients with mean age of 38.7±4.58 in MF group and 62 patients with mean age of 38.5±4.6 in AL group (P=0.80). At the time of hCG injection there were significant increase in the level of LH,estradiol, thickness of endometrium and follicles more than 14mm in MF patients (P<0.0001). The mean time of ovary stimulation in MF group was 10.72±1.5 and in AL was 8.45±1.2 (P<0.0001). The mean level of gonadotropin which were used was 80.6±20.1 in MF patients and 64.7±16.4 in AL group (P<0.0001). 18 % of MF group and 38.7% in AL group had no normal cycle of ovulation (OR: 2.87, 95% CI: 1.25-6.57, P=0.011). The mean numbers of oocyte and normal fetus in MF was 5.83±3.5 and 3.7±2.5 and in AL was 3±1.69 and 1.4±1.33 (P<0.0001). The number of chemical pregnancy in MF group was 10 (16.4%) and in AL was 3 (4.8%) (OR:3.85, 95%CI:1.06-14.77, P=0.037). Clinical pregnancy in 10 patients (16.4%) of MF group and 3 (4.8%)in AL was reported. OR: 3.85, 95%CI: 1.06-14.77, P=0.037). this study showed that MF method of pregnancy leads to more positive results in pregnancy based on chemical and clinical evaluation in comparison with AL and is advised for poor responder patients.

  2. Lower atmosphere of solar flares; Proceedings of the Solar Maximum Mission Symposium, Sunspot, NM, Aug. 20-24, 1985

    International Nuclear Information System (INIS)

    Neidig, D.F.

    1986-01-01

    The topics discussed by the present conference encompass the chromospheric flare phenomenon, white light flares, UV emission and the flare transition region, the flare corona and high energy emissions, stellar flares, and flare energy release and transport. Attention is given to radiative shocks and condensation in flares, impulsive brightening of H-alpha flare points, the structure and response of the chromosphere to radiation backwarming during solar flares, the interpretation of continuum emissions in white light flares, and the radiation properties of solar plasmas. Also discussed are EUV images of a solar flare and C III intensity, an active region survey in H-alpha and X-rays, dynamic thermal plasma conditions in large flares, the evolution of the flare mechanism in dwarf stars, the evidence concerning electron beams in solar flares, the energetics of the nonlinear tearing mode, macroscopic electric fields during two-ribbon flares, and the low temperature signatures of energetic particles

  3. Exergy analysis of waste emissions from gas flaring

    Directory of Open Access Journals (Sweden)

    Olawale Saheed ISMAIL

    2016-07-01

    Full Text Available Gas flaring produces a stream of waste gases at high temperature and pressure which contains carbon monoxide, Hydrogen Sulphide etc. The resultant effect of which is detrimental to our planet and, consequently, to the life of both the living and the non-living things. It’s well known that gas flaring contributes in no small measure to the global warming. Exergy analysis is applied in this work to analyze waste emissions from gas flaring so as to have a model through which impact of gas flaring can be measured. The study considers both the thermo-mechanical exergy and the chemical exergy of these gases. Relevant data on gas flaring activities in the Niger-Delta region of Nigeria between the periods of fifteen (15 years was obtained from the Nigerian National Petroleum Corporation (NNPC. A computer program (Exergy Calculator was developed based on the equations generated in the Model. Exergy associated with gas flaring activities in Nigeria between the periods of 1998 through 2012 was calculated. The results show that 1 mscf (in thousand cubic feet of flared gases generate 0.000041 MWh of energy leading to a value of 440158.607 MWh of energy for the period under review.The analysis provides important conclusions and recommendations for improving oil platforms operationsin in order to safeguard the environment, health of the populace, and maximize recovered exergy from gas flaring.

  4. Flare Ribbon Expansion and Energy Release Ayumi Asai , Takaaki ...

    Indian Academy of Sciences (India)

    2001-04-10

    1Nobeyama Solar Radio Observatory, Minamisaku, Nagano, 384-1305, Japan. ... X2.3 solar flare which occurred on April 10, 2001. .... In the right panel of. Fig. 3, we show the temporal variation of the physical parameters, such as Bp, vf , ˙ , and S along a slit line. Here, we defined vf as the speed of the flare-ribbon ...

  5. Effect of Particle Acceleration Process on the Flare Characteristics of ...

    Indian Academy of Sciences (India)

    R. Narasimhan (Krishtel eMaging) 1461 1996 Oct 15 13:05:22

    J. Astrophys. Astr. (2002) 23, 95–99. Effect of Particle Acceleration Process on the Flare Characteristics of. Blazars. S. Bhattacharyya, S. Sahayanathan & C. L. Kaul Nuclear Research Laboratory,. Bhabha Atomic Research Centre, Mumbai 400 085, India. Abstract. Following the kinetic equation approach, we study the flare.

  6. An Interactive Multi-instrument Database of Solar Flares

    Energy Technology Data Exchange (ETDEWEB)

    Sadykov, Viacheslav M; Kosovichev, Alexander G; Oria, Vincent; Nita, Gelu M [Center for Computational Heliophysics, New Jersey Institute of Technology, Newark, NJ 07102 (United States)

    2017-07-01

    Solar flares are complicated physical phenomena that are observable in a broad range of the electromagnetic spectrum, from radio waves to γ -rays. For a more comprehensive understanding of flares, it is necessary to perform a combined multi-wavelength analysis using observations from many satellites and ground-based observatories. For an efficient data search, integration of different flare lists, and representation of observational data, we have developed the Interactive Multi-Instrument Database of Solar Flares (IMIDSF, https://solarflare.njit.edu/). The web-accessible database is fully functional and allows the user to search for uniquely identified flare events based on their physical descriptors and the availability of observations by a particular set of instruments. Currently, the data from three primary flare lists ( Geostationary Operational Environmental Satellites , RHESSI , and HEK) and a variety of other event catalogs ( Hinode , Fermi GBM, Konus- W IND, the OVSA flare catalogs, the CACTus CME catalog, the Filament eruption catalog) and observing logs ( IRIS and Nobeyama coverage) are integrated, and an additional set of physical descriptors (temperature and emission measure) is provided along with an observing summary, data links, and multi-wavelength light curves for each flare event since 2002 January. We envision that this new tool will allow researchers to significantly speed up the search of events of interest for statistical and case studies.

  7. Reconnection in Solar Flares: Outstanding Questions Hiroaki Isobe ...

    Indian Academy of Sciences (India)

    Although the idea of magnetic reconnection for explaining the energy release in solar flares had been proposed many decades ago (Parker 1957; Sweet. 1958) it was after Yohkoh (Ogawara et al. 1991) observations that the reality of mag- netic reconnection occurring during solar flares was established. Examples of evi-.

  8. Solar Flares and the High Energy Solar Spectroscopic Imager (HESSI)

    Science.gov (United States)

    Holman, Gordon D.; Fisher, Richard R. (Technical Monitor)

    2001-01-01

    Solar flares are the biggest explosions in the solar system. They are important both for understanding explosive events in the Universe and for their impact on human technology and communications. The satellite-based HESSI is designed to study the explosive release of energy and the acceleration of electrons, protons, and other charged particles to high energies in solar flares. HESSI produces "color" movies of the Sun in high-energy X rays and gamma rays radiated by these energetic particles. HESSI's X-ray and gamma-ray images of flares are obtained using techniques similar to those used in radio interferometry. Ground-based radio observations of the Sun provide an important complement to the HESSI observations of solar flares. I will describe the HESSI Project and the high-energy aspects of solar flares, and how these relate to radio astronomy techniques and observations.

  9. Establishing a core domain set to measure rheumatoid arthritis flares

    DEFF Research Database (Denmark)

    Bykerk, Vivian P; Lie, Elisabeth; Bartlett, Susan J

    2014-01-01

    OBJECTIVE: The OMERACT Rheumatoid Arthritis (RA) Flare Group (FG) is developing a data-driven, patient-inclusive, consensus-based RA flare definition for use in clinical trials, longterm observational studies, and clinical practice. At OMERACT 11, we sought endorsement of a proposed core domain set...... to measure RA flare. METHODS: Patient and healthcare professional (HCP) qualitative studies, focus groups, and literature review, followed by patient and HCP Delphi exercises including combined Delphi consensus at Outcome Measures in Rheumatology 10 (OMERACT 10), identified potential domains to measure flare...... Filter 2.0 methodology. RESULTS: A pre-meeting combined Delphi exercise for defining flare identified 9 domains as important (>70% consensus from patients or HCP). Four new patient-reported domains beyond those included in the RA disease activity core set were proposed for inclusion (fatigue...

  10. Sources of uncertainty in characterizing health risks from flare emissions

    International Nuclear Information System (INIS)

    Hrudey, S.E.

    2000-01-01

    The assessment of health risks associated with gas flaring was the focus of this paper. Health risk assessments for environmental decision-making includes the evaluation of scientific data to identify hazards and to determine dose-response assessments, exposure assessments and risk characterization. Gas flaring has been the cause for public health concerns in recent years, most notably since 1996 after a published report by the Alberta Research Council. Some of the major sources of uncertainty associated with identifying hazardous contaminants in flare emissions were discussed. Methods to predict human exposures to emitted contaminants were examined along with risk characterization of predicted exposures to several identified contaminants. One of the problems is that elemental uncertainties exist regarding flare emissions which places limitations of the degree of reassurance that risk assessment can provide, but risk assessment can nevertheless offer some guidance to those responsible for flare emissions

  11. ABRUPT LONGITUDINAL MAGNETIC FIELD CHANGES IN FLARING ACTIVE REGIONS

    International Nuclear Information System (INIS)

    Petrie, G. J. D.; Sudol, J. J.

    2010-01-01

    We characterize the changes in the longitudinal photospheric magnetic field during 38 X-class and 39 M-class flares within 65 0 of disk center using 1 minute GONG magnetograms. In all 77 cases, we identify at least one site in the flaring active region where clear, permanent, stepwise field changes occurred. The median duration of the field changes was about 15 minutes and was approximately equal for X-class and for M-class flares. The absolute values of the field changes ranged from the detection limit of ∼10 G to as high as ∼450 G in two exceptional cases. The median value was 69 G. Field changes were significantly stronger for X-class than for M-class flares and for limb flares than for disk-center flares. Longitudinal field changes less than 100 G tended to decrease longitudinal field strengths, both close to disk center and close to the limb, while field changes greater than 100 G showed no such pattern. Likewise, longitudinal flux strengths tended to decrease during flares. Flux changes, particularly net flux changes near disk center, correlated better than local field changes with GOES peak X-ray flux. The strongest longitudinal field and flux changes occurred in flares observed close to the limb. We estimate the change of Lorentz force associated with each flare and find that this is large enough in some cases to power seismic waves. We find that longitudinal field decreases would likely outnumber increases at all parts of the solar disk within 65 0 of disk center, as in our observations, if photospheric field tilts increase during flares as predicted by Hudson et al.

  12. Long Duration Gamma-Ray Flares & Solar Energetic Particles — Is there a Connection?

    Science.gov (United States)

    de Nolfo, G. A.; Boezio, M.; Bruno, A.; Christian, E. R.; Martucci, M.; Mergè, M.; Munini, R.; Ricci, M.; Ryan, J. M.; Share, G.; Stochaj, S.

    2017-12-01

    Little is known still about the origin of the high-energy and sustained emission from Long Duration Gamma-Ray Flares (LDGRFs), identified with Compton Gamma-Ray Observatory (CGRO), the Solar Maximum Mission (SMM), and now Fermi. Though Fermi/LAT has identified dozens of flares with LDGRF emission, the nature of this emission has been a challenge to explain both due to the extreme energies and long durations. The highest energy emission has generally been attributed to pion production from the interaction of high-energy protons with the ambient matter, suggesting that particle acceleration occurs over large volumes extending high in the corona, either from stochastic acceleration within large coronal loops or from back precipitation from CME-driven shocks. It is possible to test these models by making direct comparisons between the accelerated ion population at the flare derived from the observations of Fermi/LAT with PAMELA measurements of solar energetic particles in the energy range corresponding to the pion-related emission observed with Fermi. For nearly a dozen SEP events, we compare the two populations (SEPs in space and the interacting population at the Sun) and discuss the implications in terms of particle acceleration and transport models.

  13. HARD X-RAY ASYMMETRY LIMITS IN SOLAR FLARE CONJUGATE FOOTPOINTS

    Energy Technology Data Exchange (ETDEWEB)

    Daou, Antoun G.; Alexander, David, E-mail: agdaou@rice.edu, E-mail: dalex@rice.edu [Department of Physics and Astronomy, Rice University, 6100 Main Street, MS 108, Houston, TX, 77005 (United States)

    2016-11-20

    The transport of energetic electrons in a solar flare is modeled using a time-dependent one-dimensional Fokker–Planck code that incorporates asymmetric magnetic convergence. We derive the temporal and spectral evolution of the resulting hard X-ray (HXR) emission in the conjugate chromospheric footpoints, assuming thick target photon production, and characterize the time evolution of the numerically simulated footpoint asymmetry and its relationship to the photospheric magnetic configuration. The thick target HXR asymmetry in the conjugate footpoints is found to increase with magnetic field ratio as expected. However, we find that the footpoint HXR asymmetry saturates for conjugate footpoint magnetic field ratios ≥4. This result is borne out in a direct comparison with observations of 44 double-footpoint flares. The presence of such a limit has not been reported before, and may serve as both a theoretical and observational benchmark for testing a range of particle transport and flare morphology constraints, particularly as a means to differentiate between isotropic and anisotropic particle injection.

  14. Estimating soot emissions from an elevated flare

    Science.gov (United States)

    Almanza, Victor; Sosa, Gustavo

    2009-11-01

    Combustion aerosols are one of the major concerns in flaring operations, due to both health and environmental hazards. Preliminary results are presented for a 2D transient simulation of soot formation in a reacting jet with exit velocity of 130 m/s under a 5 m/s crossflow released from a 50 m high elevated flare and a 50 cm nozzle. Combustion dynamics was simulated with OpenFOAM. Gas-phase non-premixed combustion was modeled with the Chalmers PaSR approach and a κ-ɛ turbulence model. For soot formation, Moss model was used and the ISAT algorithm for solving the chemistry. Sulfur chemistry was considered to account for the sourness of the fuel. Gas composition is 10 % H2S and 90 % C2H4. A simplified Glassman reaction mechanism was used for this purpose. Results show that soot levels are sensitive to the sulfur present in the fuel, since it was observed a slight decrease in the soot volume fraction. NSC is the current oxidation model for soot formation. Predicted temperature is high (about 2390 K), perhaps due to soot-radiation interaction is not considered yet, but a radiation model implementation is on progress, as well as an oxidation mechanism that accounts for OH radical. Flame length is about 50 m.

  15. SLIPPING MAGNETIC RECONNECTION OF FLUX-ROPE STRUCTURES AS A PRECURSOR TO AN ERUPTIVE X-CLASS SOLAR FLARE

    Energy Technology Data Exchange (ETDEWEB)

    Li, Ting; Hou, Yijun; Zhang, Jun [Key Laboratory of Solar Activity, National Astronomical Observatories, Chinese Academy of Sciences, Beijing 100012 (China); Yang, Kai, E-mail: liting@nao.cas.cn [School of Astronomy and Space Science, Nanjing University, Nanjing 210023 (China)

    2016-10-20

    We present the quasi-periodic slipping motion of flux-rope structures prior to the onset of an eruptive X-class flare on 2015 March 11, obtained by the Interface Region Imaging Spectrograph and the Solar Dynamics Observatory . The slipping motion occurred at the north part of the flux rope and seemed to successively peel off the flux rope. The speed of the slippage was 30−40 km s{sup −1}, with an average period of 130 ± 30 s. The Si iv λ 1402.77 line showed a redshift of 10−30 km s{sup −1} and a line width of 50−120 km s{sup −1} at the west legs of slipping structures, indicative of reconnection downflow. The slipping motion lasted about 40 minutes, and the flux rope started to rise up slowly at the late stage of the slippage. Then an X2.1 flare was initiated, and the flux rope was impulsively accelerated. One of the flare ribbons swept across a negative-polarity sunspot, and the penumbral segments of the sunspot decayed rapidly after the flare. We studied the magnetic topology at the flaring region, and the results showed the existence of a twisted flux rope, together with quasi-separatrix layer (QSL) structures binding the flux rope. Our observations imply that quasi-periodic slipping magnetic reconnection occurs along the flux-rope-related QSLs in the preflare stage, which drives the later eruption of the flux rope and the associated flare.

  16. Study of magnetic helicity injection in the active region NOAA 9236 producing multiple flare-associated coronal mass ejection events

    International Nuclear Information System (INIS)

    Park, Sung-Hong; Cho, Kyung-Suk; Bong, Su-Chan; Kumar, Pankaj; Kim, Yeon-Han; Park, Young-Deuk; Kusano, Kanya; Chae, Jongchul; Park, So-Young

    2013-01-01

    To better understand a preferred magnetic field configuration and its evolution during coronal mass ejection (CME) events, we investigated the spatial and temporal evolution of photospheric magnetic fields in the active region NOAA 9236 that produced eight flare-associated CMEs during the time period of 2000 November 23-26. The time variations of the total magnetic helicity injection rate and the total unsigned magnetic flux are determined and examined not only in the entire active region but also in some local regions such as the main sunspots and the CME-associated flaring regions using SOHO/MDI magnetogram data. As a result, we found that (1) in the sunspots, a large amount of positive (right-handed) magnetic helicity was injected during most of the examined time period, (2) in the flare region, there was a continuous injection of negative (left-handed) magnetic helicity during the entire period, accompanied by a large increase of the unsigned magnetic flux, and (3) the flaring regions were mainly composed of emerging bipoles of magnetic fragments in which magnetic field lines have substantially favorable conditions for making reconnection with large-scale, overlying, and oppositely directed magnetic field lines connecting the main sunspots. These observational findings can also be well explained by some MHD numerical simulations for CME initiation (e.g., reconnection-favored emerging flux models). We therefore conclude that reconnection-favored magnetic fields in the flaring emerging flux regions play a crucial role in producing the multiple flare-associated CMEs in NOAA 9236.

  17. In vitro comparison of initiation properties of bacteriophage lambda wild-type PR and x3 mutant promoters.

    OpenAIRE

    Hawley, D K; McClure, W R

    1980-01-01

    The in vitro initiation properties of the PR promoter of bacteriophage lambda and of a PR mutant, x3, were compared. Using the abortive initiation reaction, we measured the lags in the approach to a final steady-state rate when dinucleotide synthesis was initiated with RNA polymerase. These lags corresponded to the average times required for the formation of transcriptionally active open complexes. By measuring the lags at different RNA polymerase concentrations, we could separate open comple...

  18. Simulating flaring events in complex active regions driven by observed magnetograms

    Science.gov (United States)

    Dimitropoulou, M.; Isliker, H.; Vlahos, L.; Georgoulis, M. K.

    2011-05-01

    Context. We interpret solar flares as events originating in active regions that have reached the self organized critical state, by using a refined cellular automaton model with initial conditions derived from observations. Aims: We investigate whether the system, with its imposed physical elements, reaches a self organized critical state and whether well-known statistical properties of flares, such as scaling laws observed in the distribution functions of characteristic parameters, are reproduced after this state has been reached. Methods: To investigate whether the distribution functions of total energy, peak energy and event duration follow the expected scaling laws, we first applied a nonlinear force-free extrapolation that reconstructs the three-dimensional magnetic fields from two-dimensional vector magnetograms. We then locate magnetic discontinuities exceeding a threshold in the Laplacian of the magnetic field. These discontinuities are relaxed in local diffusion events, implemented in the form of cellular automaton evolution rules. Subsequent loading and relaxation steps lead the system to self organized criticality, after which the statistical properties of the simulated events are examined. Physical requirements, such as the divergence-free condition for the magnetic field vector, are approximately imposed on all elements of the model. Results: Our results show that self organized criticality is indeed reached when applying specific loading and relaxation rules. Power-law indices obtained from the distribution functions of the modeled flaring events are in good agreement with observations. Single power laws (peak and total flare energy) are obtained, as are power laws with exponential cutoff and double power laws (flare duration). The results are also compared with observational X-ray data from the GOES satellite for our active-region sample. Conclusions: We conclude that well-known statistical properties of flares are reproduced after the system has

  19. FLARE RIBBON ENERGETICS IN THE EARLY PHASE OF AN SDO FLARE

    Energy Technology Data Exchange (ETDEWEB)

    Fletcher, L.; Hannah, I. G.; Hudson, H. S. [School of Physics and Astronomy, SUPA, University of Glasgow, Glasgow, G12 8QQ (United Kingdom); Innes, D. E. [Max Planck Institute for Solar System Research, Max-Planck-Strasse 2, D-37191 Katlenburg-Lindau (Germany)

    2013-07-10

    The sites of chromospheric excitation during solar flares are marked by extended extreme ultraviolet ribbons and hard X-ray (HXR) footpoints. The standard interpretation is that these are the result of heating and bremsstrahlung emission from non-thermal electrons precipitating from the corona. We examine this picture using multi-wavelength observations of the early phase of an M-class flare SOL2010-08-07T18:24. We aim to determine the properties of the heated plasma in the flare ribbons, and to understand the partition of the power input into radiative and conductive losses. Using GOES, SDO/EVE, SDO/AIA, and RHESSI, we measure the temperature, emission measure (EM), and differential emission measure of the flare ribbons, and deduce approximate density values. The non-thermal EM, and the collisional thick target energy input to the ribbons are obtained from RHESSI using standard methods. We deduce the existence of a substantial amount of plasma at 10 MK in the flare ribbons, during the pre-impulsive and early-impulsive phase of the flare. The average column EM of this hot component is a few times 10{sup 28} cm{sup -5}, and we can calculate that its predicted conductive losses dominate its measured radiative losses. If the power input to the hot ribbon plasma is due to collisional energy deposition by an electron beam from the corona then a low-energy cutoff of {approx}5 keV is necessary to balance the conductive losses, implying a very large electron energy content. Independent of the standard collisional thick-target electron beam interpretation, the observed non-thermal X-rays can be provided if one electron in 10{sup 3}-10{sup 4} in the 10 MK (1 keV) ribbon plasma has an energy above 10 keV. We speculate that this could arise if a non-thermal tail is generated in the ribbon plasma which is being heated by other means, for example, by waves or turbulence.

  20. Solar and Stellar Flares and Their Effects on Planets

    Science.gov (United States)

    Shibata, Kazunari

    2015-08-01

    Recent space observations of the Sun revealed that the solar atmosphere is full of explosions, such as flares and flare-like phenomena. These flares generate not only strong electromagnetic emissions but also nonthermal particles and bulk plasma ejections, which sometimes lead to geomagnetic storms and affect terrestrial environment and our civilization, damaging satellite, power-grids, radio communication etc. Solar flares are prototype of various explosions in our universe, and hence are important not only for geophysics and environmental science but also for astrophysics. The energy source of solar flares is now established to be magnetic energy stored near sunspots. There is now increasing observational evidence that solar flares are caused by magnetic reconnection, merging of anti-parallel magnetic field lines and associated magneto-plasma dynamics (Shibata and Magara 2011, Living Review). It has also been known that many stars show flares similar to solar flares, and often such stellar flares are much more energetic than solar flares. The total energy of a solar flare is typically 10^29 - 10^32 erg. On the other hand, there are much more energetic flares (10^33 - 10^38 erg) in stars, especially in young stars. These are called superflares. We argue that these superflares on stars can also be understood in a unified way based on the reconnection mechanism. Finally we show evidence of occurrence of superflares on Sun-like stars according to recent stellar observations (Maehara et al. 2012, Nature, Shibayama et al. 2013), which revealed that superflares with energy of 10^34 - 10^35 erg (100 - 1000 times of the largest solar flares) occur with frequency of once in 800 - 5000 years on Sun-like stars which are very similar to our Sun. Against the previous belief, these new observations as well as theory (Shibata et al. 2013) suggest that we cannot deny the possibility of superflares on the present Sun. Finally, we shall discuss possible impacts of these superflares

  1. SIZE DISTRIBUTIONS OF SOLAR FLARES AND SOLAR ENERGETIC PARTICLE EVENTS

    International Nuclear Information System (INIS)

    Cliver, E. W.; Ling, A. G.; Belov, A.; Yashiro, S.

    2012-01-01

    We suggest that the flatter size distribution of solar energetic proton (SEP) events relative to that of flare soft X-ray (SXR) events is primarily due to the fact that SEP flares are an energetic subset of all flares. Flares associated with gradual SEP events are characteristically accompanied by fast (≥1000 km s –1 ) coronal mass ejections (CMEs) that drive coronal/interplanetary shock waves. For the 1996-2005 interval, the slopes (α values) of power-law size distributions of the peak 1-8 Å fluxes of SXR flares associated with (a) >10 MeV SEP events (with peak fluxes ≥1 pr cm –2 s –1 sr –1 ) and (b) fast CMEs were ∼1.3-1.4 compared to ∼1.2 for the peak proton fluxes of >10 MeV SEP events and ∼2 for the peak 1-8 Å fluxes of all SXR flares. The difference of ∼0.15 between the slopes of the distributions of SEP events and SEP SXR flares is consistent with the observed variation of SEP event peak flux with SXR peak flux.

  2. HEATING OF FLARE LOOPS WITH OBSERVATIONALLY CONSTRAINED HEATING FUNCTIONS

    Energy Technology Data Exchange (ETDEWEB)

    Qiu Jiong; Liu Wenjuan; Longcope, Dana W. [Department of Physics, Montana State University, Bozeman, MT 59717-3840 (United States)

    2012-06-20

    We analyze high-cadence high-resolution observations of a C3.2 flare obtained by AIA/SDO on 2010 August 1. The flare is a long-duration event with soft X-ray and EUV radiation lasting for over 4 hr. Analysis suggests that magnetic reconnection and formation of new loops continue for more than 2 hr. Furthermore, the UV 1600 Angstrom-Sign observations show that each of the individual pixels at the feet of flare loops is brightened instantaneously with a timescale of a few minutes, and decays over a much longer timescale of more than 30 minutes. We use these spatially resolved UV light curves during the rise phase to construct empirical heating functions for individual flare loops, and model heating of coronal plasmas in these loops. The total coronal radiation of these flare loops are compared with soft X-ray and EUV radiation fluxes measured by GOES and AIA. This study presents a method to observationally infer heating functions in numerous flare loops that are formed and heated sequentially by reconnection throughout the flare, and provides a very useful constraint to coronal heating models.

  3. Modelling combustion reactions for gas flaring and its resulting emissions

    Directory of Open Access Journals (Sweden)

    O. Saheed Ismail

    2016-07-01

    Full Text Available Flaring of associated petroleum gas is an age long environmental concern which remains unabated. Flaring of gas maybe a very efficient combustion process especially steam/air assisted flare and more economical than utilization in some oil fields. However, it has serious implications for the environment. This study considered different reaction types and operating conditions for gas flaring. Six combustion equations were generated using the mass balance concept with varying air and combustion efficiency. These equations were coded with a computer program using 12 natural gas samples of different chemical composition and origin to predict the pattern of emission species from gas flaring. The effect of key parameters on the emission output is also shown. CO2, CO, NO, NO2 and SO2 are the anticipated non-hydrocarbon emissions of environmental concern. Results show that the quantity and pattern of these chemical species depended on percentage excess/deficiency of stoichiometric air, natural gas type, reaction type, carbon mass content, impurities, combustion efficiency of the flare system etc. These emissions degrade the environment and human life, so knowing the emission types, pattern and flaring conditions that this study predicts is of paramount importance to governments, environmental agencies and the oil and gas industry.

  4. Flare spray on the solar disk observed on June 2, 1974 and accompanied radio bursts

    Energy Technology Data Exchange (ETDEWEB)

    Maeda, K [Hyogo Coll. of Medicine (Japan). Dept. of Physics; Tamenaga, T; Kubota, J

    1978-09-01

    The time variation of H..beta.. absorption spectrum due to spray matter is consistent with that expected from the explosive ejection model that all of the matter is ejected with various initial upward velocities during a short interval and uniformly decelerated due to gravity along a straight path. The velocity distribution in the spray is determined by this model. It is found that an impulsive microwave burst and intensive type III bursts occurred prior to the spray ejection (about 1 min). The traveling direction of the spray matter agrees with that of energetic electrons; the latter is estimated from the radioheliograph data on the basis of the plasma hypothesis and an assumed electron density distribution in the corona. From the Stark broadening of H..beta.. line and the enhancement of continuous emission, the electron density and effective thickness of the hydrogen emitting region shortly after the maximum phase of the flare are estimated to be 1.6 x 10/sup 13/ cm/sup -3/ and 8.7 x 10/sup 7/ cm, respectively. A study of turbulent velocities of absorption lines originating in different levels of the flare shows that the disturbances from the flare attained to the formation depth of FeI No. 318 lines but did not reach the photospheric level.

  5. Recurrent pulse trains in the solar hard X-ray flare of 1980 June 7

    International Nuclear Information System (INIS)

    Kiplinger, A.L.; Dennis, B.R.; Frost, K.J.; Orwig, L.E.

    1983-01-01

    This study presents a detailed examination of the solar hard X-ray and γ-ray flare of 1980 June 7 as seen by the Hard X-Ray Burst Spectrometer on SMM. The hard X-ray profile is most unusual in that it is characterized by an initial pulse train of seven intense hard X-ray spikes. However, the event is unique among the 6300 events observed by HXRBS in that the temporal signature of this pulse train recurs twice during the flare. Such signatures of temporal stability in impulsive solar flares have not been observed before. Examinations of the hard X-ray data in conjunction with radio and γ-ray observations show that the 28--480 keV X-ray emission is simultaneous with the 17 GHz microwave fluxes within 128 ms and that the 3.5--6.5 MeV prompt γ-ray line emission is coincident with secondary maxima of the microwave and X-ray fluxes. Studies of the temporal and spectral properties of the pulses indicate that the pulses are not produced by purely reversible processes, and that if the source is oscillatory, it is not a high quality oscillator. Although the absence of spatially resolved hard X-ray observations leaves other possibilities open, a parameterization of the event as a set of seven sequentially firing loops is presented that offers many satisfying explanations of the observations

  6. Distribution function of frequency of stellar flares in the Orion association

    International Nuclear Information System (INIS)

    Parsamyan, Eh.S.

    1980-01-01

    Using the chronology of discoveries of new flares and the chronology of confirmation i.e. the time distribution of second flares (Ambartsumian's method), the distribution function of frequency of flares on stars in the Orion association is obtained. A number of stars having different frequencies is also found. It is shown that flare stars with high flare frequency (ν -1 13sup(m). The quantities of flare stars in aggregates determined by two independent methods show that the number of flare stars in Orion association is about 1.5 times greater than in the Pleiades cluster [ru

  7. Initial sociometric impressions of attention-deficit hyperactivity disorder and comparison boys: predictions from social behaviors and from nonbehavioral variables.

    Science.gov (United States)

    Erhardt, Drew; Hinshaw, Stephen P

    1994-08-01

    This study systematically compared the influence of naturalistic social behaviors and nonbehavioral variables on the development of peer status in 49 previously unfamiliar boys, aged 6-12 years, who attended a summer research program. Twenty-five boys with attention-deficit hyperactivity disorder (ADHD) and 24 comparison boys participated. Physical attractiveness, motor competence, intelligence, and academic achievement constituted the nonbehavioral variables; social behaviors included noncompliance, aggression, prosocial actions, and isolation, measured by live observations of classroom and playground interactions. As early as the first day of interaction, ADHD and comparison boys displayed clear differences in social behaviors, and the ADHD youngsters were overwhelmingly rejected. Whereas prosocial behavior independently predicted friendship ratings during the first week, the magnitude of prediction was small. In contrast, the boys' aggression (or noncompliance) strongly predicted negative nominations, even with nonbehavioral factors, group status (ADHD versus comparison), and other social behaviors controlled statistically. Implications for understanding and remediating negative peer reputations are discussed.

  8. Flare-related color effects in UV Ceti stars

    International Nuclear Information System (INIS)

    Flesch, T.R.

    1975-01-01

    The UV Ceti flare stars YZ CMi, BD+16 0 2708, EV Lac, and AD Leo were monitored photoelectrically for flare activity with the 76 centimeter reflecting telescope of the University of Florida's Rosemary Hill Observatory. Observations were carried out from January, 1973 to April, 1975. The instrumentation allowed simultaneous readings to be taken at 3500, 4632, and 6496A with a time resolution of 2 seconds. A total of 15 major events were observed, with 14 of these being observed in all three colors. All events showed the classical fast rise and slower decline that is typical of this type of activity. One event showed peculiar behavior in the red bandpass that may indicate strong dependence of the flare light in some cases on line emission. The data were applied to the fast electron model of flare activity proposed by Gurzadyan. Several serious inconsistencies in the theory were found that would not have been evident in single-channel monitoring. No event could be fitted in all three colors using consistent values of the unknown parameters in the theory. The most serious deficiencies in the theory were the wavelength dependence of the optical depth of the electron cloud and the lack of treatment of line emission behavior. Differential color indices for flare light are calculated and are shown to be essentially constant throughout the entire event for the stronger flares. A color-color plot of the flare light at maximum reveals that 11 of the flares show a linear relation. This relation indicates that the smaller the u-b index, the larger is the b-r index. This is probably directly involved with line emission during flare events. Future research possibilities are discussed, with spectroscopic studies and simultaneous multicolor observations being stressed

  9. Modeling Flare Hard X-ray Emission from Electrons in Contracting Magnetic Islands

    Science.gov (United States)

    Guidoni, Silvina E.; Allred, Joel C.; Alaoui, Meriem; Holman, Gordon D.; DeVore, C. Richard; Karpen, Judith T.

    2016-05-01

    The mechanism that accelerates particles to the energies required to produce the observed impulsive hard X-ray emission in solar flares is not well understood. It is generally accepted that this emission is produced by a non-thermal beam of electrons that collides with the ambient ions as the beam propagates from the top of a flare loop to its footpoints. Most current models that investigate this transport assume an injected beam with an initial energy spectrum inferred from observed hard X-ray spectra, usually a power law with a low-energy cutoff. In our previous work (Guidoni et al. 2016), we proposed an analytical method to estimate particle energy gain in contracting, large-scale, 2.5-dimensional magnetic islands, based on a kinetic model by Drake et al. (2010). We applied this method to sunward-moving islands formed high in the corona during fast reconnection in a simulated eruptive flare. The overarching purpose of the present work is to test this proposed acceleration model by estimating the hard X-ray flux resulting from its predicted accelerated-particle distribution functions. To do so, we have coupled our model to a unified computational framework that simulates the propagation of an injected beam as it deposits energy and momentum along its way (Allred et al. 2015). This framework includes the effects of radiative transfer and return currents, necessary to estimate flare emission that can be compared directly to observations. We will present preliminary results of the coupling between these models.

  10. ["Flare-up" during endodontic treatment--etiology and management].

    Science.gov (United States)

    Zuckerman, O; Metzger, Z; Sela, G; Lin, S

    2007-04-01

    "Flare-ups" during or following endodontic treatment are not uncommon. A "Flare-up" refers to post-operative pain and/or swelling resulting from bacterial, mechanical or chemical irritation. Prompt diagnosis and treatment are essential for reducing patients' pain and discomfort. Prevention of bacterial, chemical or mechanical invasion to the periapical tissues is the best approach. Other treatment modalities which reduce the probability of periradicular tissue irritation should also be adopted. Etiology, prevention, diagnosis and treatment options of "flare-up" cases are discussed as well as indications for analgesics, in accordance with the severity of the pain.

  11. Very low luminosity stars with very large amplitude flares

    International Nuclear Information System (INIS)

    Schaefer, B.E.

    1990-01-01

    CCD frames of CZ Cnc, KY Cep, the gamma-ray burster optical transient, and NSV 12006 are analyzed. Also studied are 549 archival photographic plates of the CZ Cnc field. These observations are compared with the data of Lovas (1976). Flare events on CZ Cnc are examined. Based on the data it is noted that CZ Cnc is a main-sequence star, has a magnitude of 16.1, a distance of 100 pc, occasional large-amplitude flares, and frequent flares with amplitudes greater than 4 mag. 36 refs

  12. Flare pit reclamation in British Columbia

    International Nuclear Information System (INIS)

    Mitchell, J.D.

    1997-01-01

    The legislative acts and policies administered by the Pollution Prevention program of the B.C. Ministry of Environment, Lands and Parks, (MELP) were reviewed. MELP is responsible for protecting land, water, air and living resources. Past oil and gas activities have left behind high levels of hazardous materials spills on the land which can pose a risk to human health. Flare pits are also a potential source of soil and groundwater contamination, therefore proper management and remediation of these sites is critical to ensuring that adverse impacts do not occur due to contamination of the sites. MELP has created a Contaminated Sites Regulation (CSR) which presents a consistent approach to ensuring protection of human health, the environment and property. This paper explores key provisions of the CSR, the prescribed contaminated sites management process and compares the B.C. legislation with that of neighbouring Alberta. 5 refs., 1 tab., 4 figs

  13. Plasma Astrophysics, part II Reconnection and Flares

    CERN Document Server

    Somov, Boris V

    2007-01-01

    This well-illustrated monograph is devoted to classic fundamentals, current practice, and perspectives of modern plasma astrophysics. The first part is unique in covering all the basic principles and practical tools required for understanding and working in plasma astrophysics. The second part presents the physics of magnetic reconnection and flares of electromagnetic origin in space plasmas within the solar system; single and double stars, relativistic objects, accretion disks, and their coronae are also covered. This book is designed mainly for professional researchers in astrophysics. However, it will also be interesting and useful to graduate students in space sciences, geophysics, as well as advanced students in applied physics and mathematics seeking a unified view of plasma physics and fluid mechanics.

  14. Return currents in solar flares - Collisionless effects

    Science.gov (United States)

    Rowland, H. L.; Vlahos, L.

    1985-01-01

    If the primary, precipitating electrons in a solar flare are unstable to beam plasma interactions, it is shown that strong Langmuir turbulence can seriously modify the way in which a return current is carried by the background plasma. In particular, the return (or reverse) current will not be carried by the bulk of the electrons, but by a small number of high velocity electrons. For beam/plasma densities greater than 0.01, this can reduce the effects of collisions on the return current. For higher density beams where the return current could be unstable to current driven instabilities, the effects of strong turbulence anomalous resistivity is shown to prevent the appearance of such instabilities. Again in this regime, how the return current is carried is determined by the beam generated strong turbulence.

  15. Electron precipitation in solar flares - Collisionless effects

    Science.gov (United States)

    Vlahos, L.; Rowland, H. L.

    1984-01-01

    A large fraction of the electrons which are accelerated during the impulsive phase of solar flares stream towards the chromosphere and are unstable to the growth of plasma waves. The linear and nonlinear evolution of plasma waves as a function of time is analyzed with a set of rate equations that follows, in time, the nonlinearly coupled system of plasma waves-ion fluctuations. As an outcome of the fast transfer of wave energy from the beam to the ambient plasma, nonthermal electron tails are formed which can stabilize the anomalous Doppler resonance instability responsible for the pitch angle scattering of the beam electrons. The non-collisional losses of the precipitating electrons are estimated, and the observational implication of these results are discussed.

  16. Mass upflows in 'post'-flare loops

    International Nuclear Information System (INIS)

    Forbes, T.G.; Priest, E.R.

    1983-01-01

    A self-consistent numerical model of a reconnecting magnetic field configuration similar to that occurring during the main-phase of two-ribbon flares is used to estimate the upflow caused by the fast-mode expansion of the magnetic field moving into the reconnection region. Such an expansion creates a field-aligned pressure gradient which accelerates plasma upward from the chromospheric base of magnetic field lines in the region external to the loops. The numerical results imply that the amount of mass sucked up in this way is even smaller than was previously estimated by Kopp and Pneuman who used a kinematic model. Therefore, some indirect mechanism (such as evaporation), which would probably derive its motive power from the thermal energy generated by the reconnection, is required to explain the large mass upflows inferred from observations. (orig.)

  17. Comparative study of flare control laws

    Science.gov (United States)

    Nadkarni, A. A.

    1981-01-01

    The development of a digital, three dimensional, automatic control law designed to achieve an optimal transition of a B-737 aircraft between glide slope conditions and the desired final touchdown condition is presented. The digital control law is a time invariant, state estimate feedback law, and the design is capable of using the microwave landing system. Major emphasis is placed on the reduction of aircraft noise in communities surroundings airports, the reduction of fuel consumption, the reduction of the effects of adverse weather conditions on aircraft operations, and the efficient use of airspace in congested terminal areas. Attention is also given to the development of the capability to perform automatic flares from steep glide slopes to precise touchdown locations.

  18. Biotic extinctions by solar flares; and reply

    International Nuclear Information System (INIS)

    Beland, P.; Russell, D.A.; Crutzen, P.J.; Reid, G.C.

    1976-01-01

    Some comments are offered on the paper by Reid and others (nature 259:177 (1976)) in which a mechanism was suggested by which solar protons might catastrophically deplete atmospheric D 3 during a reversal of the Earth's geomagnetic field. Organisms would thereby be exposed to a more intense UV environment, leading to species extinctions. These authors assumed that during a reversal the geomagnetic field effectively disappears for about 1000 years, and also that solar flares sufficiently intense to cause extinctions occur at intervals of 1000 years or more. The validity of these assumptions is here examined using data on geomagnetic reversals identified over the past 75 M years, together with extinction data, and some anomalies are pointed out. A reply by Reid and others is appended. (U.K.)

  19. Reconstruction of a Large-scale Pre-flare Coronal Current Sheet Associated with a Homologous X-shaped Flare

    Science.gov (United States)

    Jiang, Chaowei; Yan, Xiaoli; Feng, Xueshang; Duan, Aiying; Hu, Qiang; Zuo, Pingbing; Wang, Yi

    2017-11-01

    As a fundamental magnetic structure in the solar corona, electric current sheets (CSs) can form either prior to or during a solar flare, and they are essential for magnetic energy dissipation in the solar corona because they enable magnetic reconnection. However, the static reconstruction of a CS is rare, possibly due to limitations that are inherent in the available coronal field extrapolation codes. Here we present the reconstruction of a large-scale pre-flare CS in solar active region 11967 using an MHD-relaxation model constrained by the SDO/HMI vector magnetogram. The CS is associated with a set of peculiar homologous flares that exhibit unique X-shaped ribbons and loops occurring in a quadrupolar magnetic configuration.This is evidenced by an ’X’ shape, formed from the field lines traced from the CS to the photosphere. This nearly reproduces the shape of the observed flare ribbons, suggesting that the flare is a product of the dissipation of the CS via reconnection. The CS forms in a hyperbolic flux tube, which is an intersection of two quasi-separatrix layers. The recurrence of the X-shaped flares might be attributed to the repetitive formation and dissipation of the CS, as driven by the photospheric footpoint motions. These results demonstrate the power of a data-constrained MHD model in reproducing a CS in the corona as well as providing insight into the magnetic mechanism of solar flares.

  20. Initiation of movement from quiet stance: comparison of gait and stepping in elderly subjects of different levels of functional ability.

    Science.gov (United States)

    Brunt, Denis; Santos, Valeria; Kim, Hyeong Dong; Light, Kathye; Levy, Charles

    2005-04-01

    This study describes how elderly subjects initiate gait, and step from a position of quiet stance. Based on scores from selected standardized tests subjects were placed in either a high (HFL) or low functional level (LFL) group and were asked to initiate gait, step onto a 10 cm high, 1.22 m wide curb and step over a 10 cm high, 9 cm wide obstacle at a self paced speed. Stepping conditions affected the velocity of movement. It was clear that all subjects decreased initiation velocity for both curb and obstacle compared to gait initiation. Swing and stance limb acceleration ground reaction forces and EMG amplitude were modulated according to initiation velocity. Toe clearance was greater for obstacle than curb and gait initiation. Swing toe-off was significantly earlier and there was a trend for obstacle clearance to be greater for the HFL group. Those in the LFL group appear to be at a greater risk for falling due to the possible effect of slower rate of toe-off that could influence toe clearance over the obstacle.

  1. A Paired Comparison of Initial and Recurrent Concussions Sustained by US High School Athletes Within a Single Athletic Season.

    Science.gov (United States)

    Currie, Dustin W; Comstock, R Dawn; Fields, Sarah K; Cantu, Robert C

    To compare initial and recurrent concussions regarding average number of days between concussions, acute concussion symptoms and symptom resolution time, and return to play time. High school athletes sustaining multiple concussions linked within sport seasons drawn from a large sports injury surveillance study. Retrospective analysis of longitudinal surveillance data. Number of days between concussions, number of symptoms endorsed, specific symptoms endorsed, symptom resolution time, return to play time. Median time between initial and recurrent concussions was 21 days (interquartile range = 10-43 days). Loss of consciousness, the only significant symptom difference, occurred more frequently in recurrent (6.8%) than initial (1.7%) concussions (P = .04). No significant difference was found in the number of symptoms (P = .84) or symptom resolution time (P = .74). Recurrent concussions kept athletes from play longer than initial concussions (P concussions were season ending. We found that athletes' initial and recurrent concussions had similar symptom presentations and resolution time. Despite these similarities, athletes were restricted from returning to play for longer periods following a recurrent concussion, indicating clinicians are managing recurrent concussions more conservatively. It is probable that concussion recognition and management are superior now compared with when previous studies were published, possibly improving recurrent concussion outcomes.

  2. Receptivity of Hypersonic Boundary Layers over Straight and Flared Cones

    Science.gov (United States)

    Balakumar, Ponnampalam; Kegerise, Michael A.

    2010-01-01

    The effects of adverse pressure gradients on the receptivity and stability of hypersonic boundary layers were numerically investigated. Simulations were performed for boundary layer flows over a straight cone and two flared cones. The steady and the unsteady flow fields were obtained by solving the two-dimensional Navier-Stokes equations in axi-symmetric coordinates using the 5th order accurate weighted essentially non-oscillatory (WENO) scheme for space discretization and using third-order total-variation-diminishing (TVD) Runge-Kutta scheme for time integration. The mean boundary layer profiles were analyzed using local stability and non-local parabolized stability equations (PSE) methods. After the most amplified disturbances were identified, two-dimensional plane acoustic waves were introduced at the outer boundary of the computational domain and time accurate simulations were performed. The adverse pressure gradient was found to affect the boundary layer stability in two important ways. Firstly, the frequency of the most amplified second-mode disturbance was increased relative to the zero pressure gradient case. Secondly, the amplification of first- and second-mode disturbances was increased. Although an adverse pressure gradient enhances instability wave growth rates, small nose-tip bluntness was found to delay transition due to the low receptivity coefficient and the resulting weak initial amplitude of the instability waves. The computed and measured amplitude-frequency spectrums in all three cases agree very well in terms of frequency and the shape except for the amplitude.

  3. Can Substorm Particle Acceleration Be Applied to Solar Flares?

    Energy Technology Data Exchange (ETDEWEB)

    Birn, J. [Space Science Institute, Boulder, CO 80301 (United States); Battaglia, M. [Institute of 4D Technologies, School of Engineering, University of Applied Sciences and Arts Northwestern Switzerland, CH-5210 Windisch (Switzerland); Fletcher, L. [University of Glasgow, Scotland (United Kingdom); Hesse, M. [Birkeland Centre for Space Science, Department of Physics and Technology, University of Bergen, NO-5007 Bergen (Norway); Neukirch, T., E-mail: jbirn@lanl.gov [University of St. Andrews, Scotland (United Kingdom)

    2017-10-20

    Using test particle studies in the electromagnetic fields of three-dimensional magnetohydrodynamic (MHD) simulations of magnetic reconnection, we study the energization of charged particles in the context of the standard two-ribbon flare picture in analogy to the standard magnetospheric substorm paradigm. In particular, we investigate the effects of the collapsing field (“collapsing magnetic trap”) below a reconnection site, which has been demonstrated to be the major acceleration mechanism that causes energetic particle acceleration and injections observed in Earth’s magnetotail associated with substorms and other impulsive events. We contrast an initially force-free, high-shear field (low beta) with low and moderate shear, finite-pressure (high-beta) arcade structures, where beta represents the ratio between gas (plasma) and magnetic pressure. We demonstrate that the energization affects large numbers of particles, but the acceleration is modest in the presence of a significant shear field. Without incorporating loss mechanisms, the effect on particles at different energies is similar, akin to adiabatic heating, and thus is not a likely mechanism to generate a power-law tail onto a (heated or not heated) Maxwellian velocity distribution.

  4. FLARE-GENERATED SHOCK WAVE PROPAGATION THROUGH SOLAR CORONAL ARCADE LOOPS AND AN ASSOCIATED TYPE II RADIO BURST

    Energy Technology Data Exchange (ETDEWEB)

    Kumar, Pankaj; Cho, Kyung-Suk [Korea Astronomy and Space Science Institute (KASI), Daejeon, 305-348 (Korea, Republic of); Innes, D. E., E-mail: pankaj@kasi.re.kr [Max-Planck Institut für Sonnensystemforschung, D-37077 Göttingen (Germany)

    2016-09-01

    This paper presents multiwavelength observations of a flare-generated type II radio burst. The kinematics of the shock derived from the type II burst closely match a fast extreme ultraviolet (EUV) wave seen propagating through coronal arcade loops. The EUV wave was closely associated with an impulsive M1.0 flare without a related coronal mass ejection, and was triggered at one of the footpoints of the arcade loops in active region NOAA 12035. It was initially observed in the 335 Å images from the Atmospheric Image Assembly with a speed of ∼800 km s{sup −1} and it accelerated to ∼1490 km s{sup −1} after passing through the arcade loops. A fan–spine magnetic topology was revealed at the flare site. A small, confined filament eruption (∼340 km s{sup −1}) was also observed moving in the opposite direction to the EUV wave. We suggest that breakout reconnection in the fan–spine topology triggered the flare and associated EUV wave that propagated as a fast shock through the arcade loops.

  5. Impulsive and gradual phases of a solar limb flare as observed from the solar maximum mission satellite

    Energy Technology Data Exchange (ETDEWEB)

    Poland, A.I.; Frost, K.J.; Woodgate, B.E.; Shine, R.A.; Kenny, P.J. (National Aeronautics and Space Administration, Greenbelt, MD (USA). Lab. for Astronomy and Solar Physics); Machado, M.E. (Observatorio Nacional de Fisica Cosmica, San Miguel (Argentina)); Wolfson, C.J.; Bruner, E.C. (Lockheed Palo Alto Research Labs., CA (USA)); Cheng, C.C. (Naval Research Lab., Washington, DC (USA)); Tandberg-Hanssen, E.A. (National Aeronautics and Space Administration, Huntsville, AL (USA). George C. Marshall Space Flight Center)

    1982-06-01

    Simultaneous observations of a solar limb flare in the X-ray and ultraviolet regions of the spectrum are presented. Temporal and spectral X-ray observations were obtained for the 25-300 keV range while temporal, spectral, and spatial X-ray observations were obtained for the 30-0.3 keV range. The ultraviolet observations were images with a 10'' spatial resolution in the lines of O v (Tsub(e) approx. equal to 2.5 x 10/sup 5/ K) and Fe XXI (Tsub(e) approx. equal to 1.1 x 10/sup 7/ K). The hard X-ray and O v data indicate that the impulsive phase began in the photosphere or chromosphere and continued for several minutes as material was ejected into the corona. Impulsive excitation was observed up to 30,000 km above the solar surface at specific points in the flare loop. The Fe XXI observations indicate a preheating before the impulsive phase and showed the formation of hot post-flare loops. This later formation was confirmed by soft X-ray observations. These observations provide limitations for current flare models and will provide the data needed for initial conditions in modeling the concurrent coronal transient.

  6. The impulsive and gradual phases of a solar limb flare as observed from the solar maximum mission satellite

    International Nuclear Information System (INIS)

    Poland, A.I.; Frost, K.J.; Woodgate, B.E.; Shine, R.A.; Kenny, P.J.; Wolfson, C.J.; Bruner, E.C.; Cheng, C.C.; Tandberg-Hanssen, E.A.

    1982-01-01

    Simultaneous observations of a solar limb flare in the X-ray and ultraviolet regions of the spectrum are presented. Temporal and spectral X-ray observations were obtained for the 25-300 keV range while temporal, spectral, and spatial X-ray observations were obtained for the 30-0.3 keV range. The ultraviolet observations were images with a 10'' spatial resolution in the lines of O v (Tsub(e) approx. equal to 2.5 x 10 5 K) and Fe XXI (Tsub(e) approx. equal to 1.1 x 10 7 K). The hard X-ray and O v data indicate that the impulsive phase began in the photosphere or chromosphere and continued for several minutes as material was ejected into the corona. Impulsive excitation was observed up to 30,000 km above the solar surface at specific points in the flare loop. The Fe XXI observations indicate a preheating before the impulsive phase and showed the formation of hot post-flare loops. This later formation was confirmed by soft X-ray observations. These observations provide limitations for current flare models and will provide the data needed for initial conditions in modeling the concurrent coronal transient. (orig.)

  7. FLARE-GENERATED SHOCK WAVE PROPAGATION THROUGH SOLAR CORONAL ARCADE LOOPS AND AN ASSOCIATED TYPE II RADIO BURST

    International Nuclear Information System (INIS)

    Kumar, Pankaj; Cho, Kyung-Suk; Innes, D. E.

    2016-01-01

    This paper presents multiwavelength observations of a flare-generated type II radio burst. The kinematics of the shock derived from the type II burst closely match a fast extreme ultraviolet (EUV) wave seen propagating through coronal arcade loops. The EUV wave was closely associated with an impulsive M1.0 flare without a related coronal mass ejection, and was triggered at one of the footpoints of the arcade loops in active region NOAA 12035. It was initially observed in the 335 Å images from the Atmospheric Image Assembly with a speed of ∼800 km s −1 and it accelerated to ∼1490 km s −1 after passing through the arcade loops. A fan–spine magnetic topology was revealed at the flare site. A small, confined filament eruption (∼340 km s −1 ) was also observed moving in the opposite direction to the EUV wave. We suggest that breakout reconnection in the fan–spine topology triggered the flare and associated EUV wave that propagated as a fast shock through the arcade loops.

  8. Full-field and anomaly initialization using a low-order climate model: a comparison and proposals for advanced formulations

    Science.gov (United States)

    Carrassi, A.; Weber, R. J. T.; Guemas, V.; Doblas-Reyes, F. J.; Asif, M.; Volpi, D.

    2014-04-01

    Initialization techniques for seasonal-to-decadal climate predictions fall into two main categories; namely full-field initialization (FFI) and anomaly initialization (AI). In the FFI case the initial model state is replaced by the best possible available estimate of the real state. By doing so the initial error is efficiently reduced but, due to the unavoidable presence of model deficiencies, once the model is let free to run a prediction, its trajectory drifts away from the observations no matter how small the initial error is. This problem is partly overcome with AI where the aim is to forecast future anomalies by assimilating observed anomalies on an estimate of the model climate. The large variety of experimental setups, models and observational networks adopted worldwide make it difficult to draw firm conclusions on the respective advantages and drawbacks of FFI and AI, or to identify distinctive lines for improvement. The lack of a unified mathematical framework adds an additional difficulty toward the design of adequate initialization strategies that fit the desired forecast horizon, observational network and model at hand. Here we compare FFI and AI using a low-order climate model of nine ordinary differential equations and use the notation and concepts of data assimilation theory to highlight their error scaling properties. This analysis suggests better performances using FFI when a good observational network is available and reveals the direct relation of its skill with the observational accuracy. The skill of AI appears, however, mostly related to the model quality and clear increases of skill can only be expected in coincidence with model upgrades. We have compared FFI and AI in experiments in which either the full system or the atmosphere and ocean were independently initialized. In the former case FFI shows better and longer-lasting improvements, with skillful predictions until month 30. In the initialization of single compartments, the best

  9. Comparison of angular dependence of magnetic Barkhausen noise of hysteresis and initial magnetization curve in API5L steel

    Science.gov (United States)

    Chávez-Gonzalez, A. F.; Martínez-Ortiz, P.; Pérez-Benítez, J. A.; Espina-Hernández, J. H.; Caleyo, F.

    2018-01-01

    This work analyzes the differences between the magnetic Barkhausen noise corresponding to the initial magnetization curve and Barkhausen noise corresponding to one branch of the hysteresis loop in API-5L steel. The outcomes show that the Barkhausen noise signal corresponding to the initial magnetization curve and that corresponding to the hysteresis are significantly different. This difference is due to the presence of different processes of the domain wall dynamics in both phenomena. To study the processes present in magnetization dynamics for an applied field of H > 0, research into the angular dependence of a Barkhausen signal using applied field bands has revealed that a Barkhausen signal corresponding to the initial magnetization curve is more suitable than a Barkhausen signal corresponding to the hysteresis loop.

  10. Gamma-ray flares from the Crab Nebula.

    Science.gov (United States)

    Abdo, A A; Ackermann, M; Ajello, M; Allafort, A; Baldini, L; Ballet, J; Barbiellini, G; Bastieri, D; Bechtol, K; Bellazzini, R; Berenji, B; Blandford, R D; Bloom, E D; Bonamente, E; Borgland, A W; Bouvier, A; Brandt, T J; Bregeon, J; Brez, A; Brigida, M; Bruel, P; Buehler, R; Buson, S; Caliandro, G A; Cameron, R A; Cannon, A; Caraveo, P A; Casandjian, J M; Çelik, Ö; Charles, E; Chekhtman, A; Cheung, C C; Chiang, J; Ciprini, S; Claus, R; Cohen-Tanugi, J; Costamante, L; Cutini, S; D'Ammando, F; Dermer, C D; de Angelis, A; de Luca, A; de Palma, F; Digel, S W; do Couto e Silva, E; Drell, P S; Drlica-Wagner, A; Dubois, R; Dumora, D; Favuzzi, C; Fegan, S J; Ferrara, E C; Focke, W B; Fortin, P; Frailis, M; Fukazawa, Y; Funk, S; Fusco, P; Gargano, F; Gasparrini, D; Gehrels, N; Germani, S; Giglietto, N; Giordano, F; Giroletti, M; Glanzman, T; Godfrey, G; Grenier, I A; Grondin, M-H; Grove, J E; Guiriec, S; Hadasch, D; Hanabata, Y; Harding, A K; Hayashi, K; Hayashida, M; Hays, E; Horan, D; Itoh, R; Jóhannesson, G; Johnson, A S; Johnson, T J; Khangulyan, D; Kamae, T; Katagiri, H; Kataoka, J; Kerr, M; Knödlseder, J; Kuss, M; Lande, J; Latronico, L; Lee, S-H; Lemoine-Goumard, M; Longo, F; Loparco, F; Lubrano, P; Madejski, G M; Makeev, A; Marelli, M; Mazziotta, M N; McEnery, J E; Michelson, P F; Mitthumsiri, W; Mizuno, T; Moiseev, A A; Monte, C; Monzani, M E; Morselli, A; Moskalenko, I V; Murgia, S; Nakamori, T; Naumann-Godo, M; Nolan, P L; Norris, J P; Nuss, E; Ohsugi, T; Okumura, A; Omodei, N; Ormes, J F; Ozaki, M; Paneque, D; Parent, D; Pelassa, V; Pepe, M; Pesce-Rollins, M; Pierbattista, M; Piron, F; Porter, T A; Rainò, S; Rando, R; Ray, P S; Razzano, M; Reimer, A; Reimer, O; Reposeur, T; Ritz, S; Romani, R W; Sadrozinski, H F-W; Sanchez, D; Saz Parkinson, P M; Scargle, J D; Schalk, T L; Sgrò, C; Siskind, E J; Smith, P D; Spandre, G; Spinelli, P; Strickman, M S; Suson, D J; Takahashi, H; Takahashi, T; Tanaka, T; Thayer, J B; Thompson, D J; Tibaldo, L; Torres, D F; Tosti, G; Tramacere, A; Troja, E; Uchiyama, Y; Vandenbroucke, J; Vasileiou, V; Vianello, G; Vitale, V; Wang, P; Wood, K S; Yang, Z; Ziegler, M

    2011-02-11

    A young and energetic pulsar powers the well-known Crab Nebula. Here, we describe two separate gamma-ray (photon energy greater than 100 mega-electron volts) flares from this source detected by the Large Area Telescope on board the Fermi Gamma-ray Space Telescope. The first flare occurred in February 2009 and lasted approximately 16 days. The second flare was detected in September 2010 and lasted approximately 4 days. During these outbursts, the gamma-ray flux from the nebula increased by factors of four and six, respectively. The brevity of the flares implies that the gamma rays were emitted via synchrotron radiation from peta-electron-volt (10(15) electron volts) electrons in a region smaller than 1.4 × 10(-2) parsecs. These are the highest-energy particles that can be associated with a discrete astronomical source, and they pose challenges to particle acceleration theory.

  11. Radiation signatures from a locally energized flaring loop

    International Nuclear Information System (INIS)

    Emslie, A.G.; Vlahos, L.; and Institute for Plasma Research, Stanford University)

    1980-01-01

    We calculate the radiation signatures from a locally energized solar flare loop, at a variety of wavelengths. Our calculations depend strongly on the physical properties of the energy release mechanism which we qualitatively discuss

  12. Thermal x-rays and deuterium production in stellar flares

    International Nuclear Information System (INIS)

    Colgate, S.A.

    1977-01-01

    The x-ray spectrum of flares is shown to be necessarily thermal up to greater than or equal to 200 keV because the self magnetic field of any electron stream required for a thick or thin target source is inconsistently large. The resulting flare model can then be related to stellar luminosity, convection and magnetic fields to result in a maximum possible γ-burst (Mullan, 1976) and continuous x-ray flux. One of the most striking isotopic anomalies observed is the extreme enrichment of Helium (3) in some solar flares and the mysterious depletion of deuterium. It is discussed how deuterium may be produced and emitted in the largest flares associated with γ-bursts but in amounts insufficient to support the tentative conclusion of Colemen and Worden

  13. Radiative hazard of solar flares in the nearterrestrial cosmic space

    International Nuclear Information System (INIS)

    Kolomenskij, A.V.; Petrov, V.M.; Zil', M.V.; Eremkina, T.M.

    1978-01-01

    Simulation of radiation enviroment due to solar cosmic rays was carried out in the near-terrestrial space. Systematized are the data on cosmic ray flux and spectra detected during 19-th and 20-th cycles of solar activity. 127 flares are considered with proton fluxes of more than 10 proton/cm 2 at energies higher than 30 MeV. Obtained are distribution functions of intervals between flares, flux distribution of flares and characteristic rigidity, and also distribution of magnetic disturbances over Dsub(st)-variation amplitude. The totality of these distributions presents the statistic model of radiation enviroment caused by solar flare protons for the period of maximum solar .activity. This model is intended for estimation of radiation hazard at manned cosmic flights

  14. Gas flaring: Carbon dioxide contribution to global warming ...

    African Journals Online (AJOL)

    Journal Home > Vol 20, No 2 (2016) > ... The quantitative method of analysis showed that carbon dioxide from gas ... gas flaring cause environmental degradation, health risks and constitute financial loss to the local oil producing communities.

  15. Forecasting Flare Activity Using Deep Convolutional Neural Networks

    Science.gov (United States)

    Hernandez, T.

    2017-12-01

    Current operational flare forecasting relies on human morphological analysis of active regions and the persistence of solar flare activity through time (i.e. that the Sun will continue to do what it is doing right now: flaring or remaining calm). In this talk we present the results of applying deep Convolutional Neural Networks (CNNs) to the problem of solar flare forecasting. CNNs operate by training a set of tunable spatial filters that, in combination with neural layer interconnectivity, allow CNNs to automatically identify significant spatial structures predictive for classification and regression problems. We will start by discussing the applicability and success rate of the approach, the advantages it has over non-automated forecasts, and how mining our trained neural network provides a fresh look into the mechanisms behind magnetic energy storage and release.

  16. Gamma-ray flares from the Crab nebula

    International Nuclear Information System (INIS)

    Abdo, A.A.; Ackermann, M.; Ajello, M.; Allafort, A.; Baldini, L.; Ballet, J.; Casandjian, J.M.; Grenier, I.A.; Naumann-Godo, M.; Pierbattista, M.; Tibaldo, L.

    2011-01-01

    A young and energetic pulsar powers the well-known Crab Nebula. Here, we describe two separate gamma-ray (photon energy greater than 100 mega-electron volts) flares from this source detected by the Large Area Telescope on board the Fermi Gamma-ray Space Telescope. The first flare occurred in February 2009 and lasted approximately 16 days. The second flare was detected in September 2010 and lasted approximately 4 days. During these outbursts, the gamma-ray flux from the nebula increased by factors of four and six, respectively. The brevity of the flares implies that the gamma rays were emitted via synchrotron radiation from peta-electron-volt (10 15 electron volts) electrons in a region smaller than 1.4 * 10 -2 parsecs. These are the highest-energy particles that can be associated with a discrete astronomical source, and they pose challenges to particle acceleration theory. (authors)

  17. Excitation of helium resonance lines in solar flares

    International Nuclear Information System (INIS)

    Porter, J.G.; Gebbie, K.B.; November, L.J.; Joint Institute for Laboratory Astrophysics, Boulder, CO; National Solar Observatory, Sunspot, NM)

    1985-01-01

    Helium resonance line intensities are calculated for a set of six flare models corresponding to two rates of heating and three widely varying incident fluxes of soft X-rays. The differing ionization and excitation equilibria produced by these models, the processes which dominate the various cases, and the predicted helium line spectra are examined. The line intensities and their ratios are compared with values derived from Skylab NRL spectroheliograms for a class M flare, thus determining which of these models most nearly represents the density vs temperature structure and soft X-ray flux in the flaring solar transition region, and the temperature and dominant mechanaism of formation of the helium line spectrum during a flare. 26 references

  18. Proton Flares in Solar Activity Complexes: Possible Origins and Consequences

    Science.gov (United States)

    Isaeva, E. S.; Tomozov, V. M.; Yazev, S. A.

    2018-03-01

    Solar flares observed during the 24th solar-activity cycle and accompanied by fluxes of particles detected at the Earth's orbit with intensities exceeding 10 particles cm-2 s-1 and energies of more than 10 MeV per particle mainly occurred in activity complexes (82% of cases), with 80% of these occurring no more than 20 heliographic degrees from the nearest coronal holes. The correlation between the X-ray classes of flares and the proton fluxes detected at the Earth's orbit is weak. The work presented here supports the hypothesis that the leakage of particles into the heliosphere is due to the existence of long-lived magnetic channels, which facilitate the transport of flare-accelerated particles into the boundary regions of open magnetic structures of coronal holes. The possible contribution of exchange reconnection in the formation of such channels and the role of exchange reconnection in the generation of flares are discussed.

  19. MAG4 versus alternative techniques for forecasting active region flare productivity

    Science.gov (United States)

    Falconer, David A; Moore, Ronald L; Barghouty, Abdulnasser F; Khazanov, Igor

    2014-01-01

    MAG4 is a technique of forecasting an active region's rate of production of major flares in the coming few days from a free magnetic energy proxy. We present a statistical method of measuring the difference in performance between MAG4 and comparable alternative techniques that forecast an active region's major-flare productivity from alternative observed aspects of the active region. We demonstrate the method by measuring the difference in performance between the “Present MAG4” technique and each of three alternative techniques, called “McIntosh Active-Region Class,” “Total Magnetic Flux,” and “Next MAG4.” We do this by using (1) the MAG4 database of magnetograms and major flare histories of sunspot active regions, (2) the NOAA table of the major-flare productivity of each of 60 McIntosh active-region classes of sunspot active regions, and (3) five technique performance metrics (Heidke Skill Score, True Skill Score, Percent Correct, Probability of Detection, and False Alarm Rate) evaluated from 2000 random two-by-two contingency tables obtained from the databases. We find that (1) Present MAG4 far outperforms both McIntosh Active-Region Class and Total Magnetic Flux, (2) Next MAG4 significantly outperforms Present MAG4, (3) the performance of Next MAG4 is insensitive to the forward and backward temporal windows used, in the range of one to a few days, and (4) forecasting from the free-energy proxy in combination with either any broad category of McIntosh active-region classes or any Mount Wilson active-region class gives no significant performance improvement over forecasting from the free-energy proxy alone (Present MAG4). Key Points Quantitative comparison of performance of pairs of forecasting techniques Next MAG4 forecasts major flares more accurately than Present MAG4 Present MAG4 forecast outperforms McIntosh AR Class and total magnetic flux PMID:26213517

  20. Multifractality as a Measure of Complexity in Solar Flare Activity

    Science.gov (United States)

    Sen, Asok K.

    2007-03-01

    In this paper we use the notion of multifractality to describe the complexity in H α flare activity during the solar cycles 21, 22, and 23. Both northern and southern hemisphere flare indices are analyzed. Multifractal behavior of the flare activity is characterized by calculating the singularity spectrum of the daily flare index time series in terms of the Hölder exponent. The broadness of the singularity spectrum gives a measure of the degree of multifractality or complexity in the flare index data. The broader the spectrum, the richer and more complex is the structure with a higher degree of multifractality. Using this broadness measure, complexity in the flare index data is compared between the northern and southern hemispheres in each of the three cycles, and among the three cycles in each of the two hemispheres. Other parameters of the singularity spectrum can also provide information about the fractal properties of the flare index data. For instance, an asymmetry to the left or right in the singularity spectrum indicates a dominance of high or low fractal exponents, respectively, reflecting a relative abundance of large or small fluctuations in the total energy emitted by the flares. Our results reveal that in the even (22nd) cycle the singularity spectra are very similar for the northern and southern hemispheres, whereas in the odd cycles (21st and 23rd) they differ significantly. In particular, we find that in cycle 21, the northern hemisphere flare index data have higher complexity than its southern counterpart, with an opposite pattern prevailing in cycle 23. Furthermore, small-scale fluctuations in the flare index time series are predominant in the northern hemisphere in the 21st cycle and are predominant in the southern hemisphere in the 23rd cycle. Based on these findings one might suggest that, from cycle to cycle, there exists a smooth switching between the northern and southern hemispheres in the multifractality of the flaring process. This new

  1. Intralesional triamcinolone for flares of hidradenitis suppurativa (HS)

    DEFF Research Database (Denmark)

    Riis, Peter Theut; Boer, Jurr; Prens, Errol P

    2016-01-01

    (triamcinolone acetonide 10 mg/mL) in the management of acute flares in HS. METHODS: This was a prospective case series evaluating the effect of intralesional corticosteroids for alleviation of acute flares in HS. Physician- and patient-reported outcomes were noted. RESULTS: Significant reductions in physician......-assessed erythema (median score from 2-1, P edema (median score from 2-1, P

  2. Electron and proton kinetics and dynamics in flaring atmospheres

    CERN Document Server

    Zharkova, Valentina

    2012-01-01

    This timely book presents new research results on high-energy particle physics related to solar flares, covering the theory and applications of the reconnection process in a clear and comprehensible way. It investigates particle kinetics and dynamics in flaring atmospheres and their diagnostics from spectral observations, while providing an analysis of the observation data and techniques and comparing various models. Written by an internationally acclaimed expert, this is vital reading for all solar, astro-, and plasma physicists working in the field.

  3. Neutrino fluxes produced by high energy solar flare particles

    International Nuclear Information System (INIS)

    Kolomeets, E.V.; Shmonin, V.L.

    1975-01-01

    In this work the calculated differential energy spectra of neutrinos poduced by high energy protons accelerated during 'small' solar flares are presented. The muon flux produced by neutrino interactions with the matter at large depths under the ground is calculated. The obtained flux of muons for the total number of solar flare accelerated protons of 10 28 - 10 32 is within 10 9 - 10 13 particles/cm 2 X s x ster. (orig.) [de

  4. New impressive capabilities of SE-workbench for EO/IR real-time rendering of animated scenarios including flares

    Science.gov (United States)

    Le Goff, Alain; Cathala, Thierry; Latger, Jean

    2015-10-01

    To provide technical assessments of EO/IR flares and self-protection systems for aircraft, DGA Information superiority resorts to synthetic image generation to model the operational battlefield of an aircraft, as viewed by EO/IR threats. For this purpose, it completed the SE-Workbench suite from OKTAL-SE with functionalities to predict a realistic aircraft IR signature and is yet integrating the real-time EO/IR rendering engine of SE-Workbench called SE-FAST-IR. This engine is a set of physics-based software and libraries that allows preparing and visualizing a 3D scene for the EO/IR domain. It takes advantage of recent advances in GPU computing techniques. The recent past evolutions that have been performed concern mainly the realistic and physical rendering of reflections, the rendering of both radiative and thermal shadows, the use of procedural techniques for the managing and the rendering of very large terrains, the implementation of Image- Based Rendering for dynamic interpolation of plume static signatures and lastly for aircraft the dynamic interpolation of thermal states. The next step is the representation of the spectral, directional, spatial and temporal signature of flares by Lacroix Defense using OKTAL-SE technology. This representation is prepared from experimental data acquired during windblast tests and high speed track tests. It is based on particle system mechanisms to model the different components of a flare. The validation of a flare model will comprise a simulation of real trials and a comparison of simulation outputs to experimental results concerning the flare signature and above all the behavior of the stimulated threat.

  5. Chromospheric Evaporation in an M1.8 Flare Observed by the Extreme-ultraviolet Imaging Spectrometer (EIS) on Hinode

    Science.gov (United States)

    Doschek, G. A.; Warren, H. P.

    2012-12-01

    We discuss observations of chromospheric evaporation for a flare that occurred on 9 March 2012 near 03:30 UT obtained from the Extreme-ultraviolet Imaging Spectrometer (EIS) on the Hinode spacecraft. This was a multiple event with a strong energy input that reached the M1.8 class when observed by EIS. EIS was in raster mode and fortunately the slit reached almost the exact location of a significant energy input. Also, fortunately EIS obtained a full-CCD spectrum of the flare, i.e., the entire CCD was readout so that data were obtained for about the 500 lines identified in the EIS wavelength ranges. Chromospheric evaporation characterized by 150-200 km/s upflows was observed in several locations in multi-million degree spectral lines of flare ions such as Fe XXII, Fe XXIII, Fe XXIV, with simultaneous 20 - 60 km/s upflows in a host of million degree coronal lines from ions such as Fe XI - Fe XVI. The behavior of cooler, transition region ions such as O VI, Fe VIII, He II, and Fe X is more complex. At a point close to strong energy input, the flare ions reveal an isothermal source with a temperature close to 14 MK. At this point there is a strong downflow in cooler active region lines from ions such as Fe XIII and Fe XIV. Electron densities were obtained from density sensitive lines ratios from Fe XIII and Fe XIV. The results to be presented are refined from the preliminary data given above and combined with context AIA observations for a comparison with predictions of models of chromospheric evaporation as envisaged in the Standard Flare Model.

  6. Comparisons of Stuttering Frequency during and after Speech Initiation in Unaltered Feedback, Altered Auditory Feedback and Choral Speech Conditions

    Science.gov (United States)

    Saltuklaroglu, Tim; Kalinowski, Joseph; Robbins, Mary; Crawcour, Stephen; Bowers, Andrew

    2009-01-01

    Background: Stuttering is prone to strike during speech initiation more so than at any other point in an utterance. The use of auditory feedback (AAF) has been found to produce robust decreases in the stuttering frequency by creating an electronic rendition of choral speech (i.e., speaking in unison). However, AAF requires users to self-initiate…

  7. A comparison of early versus late initiation of renal replacement therapy in critically ill patients with acute kidney injury

    DEFF Research Database (Denmark)

    Karvellas, Constantine J; Farhat, Maha R; Sajjad, Imran

    2011-01-01

    Introduction: Our aim was to investigate the impact of early versus late initiation of renal replacement therapy (RRT) on clinical outcomes in critically ill patients with acute kidney injury (AKI). Methods: Systematic review and meta-analysis were used in this study. PUBMED, EMBASE, SCOPUS, Web ...

  8. Comparison Between Individually and Group-Based Insulin Pump Initiation by Time-Driven Activity-Based Costing.

    Science.gov (United States)

    Ridderstråle, Martin

    2017-07-01

    Depending on available resources, competencies, and pedagogic preference, initiation of insulin pump therapy can be performed on either an individual or a group basis. Here we compared the two models with respect to resources used. Time-driven activity-based costing (TDABC) was used to compare initiating insulin pump treatment in groups (GT) to individual treatment (IT). Activities and cost drivers were identified, timed, or estimated at location. Medical quality and patient satisfaction were assumed to be noninferior and were not measured. GT was about 30% less time-consuming and 17% less cost driving per patient and activity compared to IT. As a batch driver (16 patients in one group) GT produced an upward jigsaw-shaped accumulative cost curve compared to the incremental increase incurred by IT. Taking the alternate cost for those not attending into account, and realizing the cost of opportunity gained, suggested that GT was cost neutral already when 5 of 16 patients attended, and that a second group could be initiated at no additional cost as the attendance rate reached 15:1. We found TDABC to be effective in comparing treatment alternatives, improving cost control and decision making. Everything else being equal, if the setup is available, our data suggest that initiating insulin pump treatment in groups is far more cost effective than on an individual basis and that TDABC may be used to find the balance point.

  9. Comparison of secondary organic aerosol formation from toluene on initially wet and dry ammonium sulfate particles at moderate relative humidity

    Directory of Open Access Journals (Sweden)

    T. Liu

    2018-04-01

    Full Text Available The formation of secondary organic aerosol (SOA has been widely studied in the presence of dry seed particles at low relative humidity (RH. At higher RH, initially dry seed particles can exist as wet particles due to water uptake by the seeds as well as the SOA. Here, we investigated the formation of SOA from the photooxidation of toluene using an oxidation flow reactor in the absence of NOx under a range of OH exposures on initially wet or dry ammonium sulfate (AS seed particles at an RH of 68 %. The ratio of the SOA yield on wet AS seeds to that on dry AS seeds, the relative SOA yield, decreased from 1.31 ± 0.02 at an OH exposure of 4.66 × 1010 molecules cm−3 s to 1.01 ± 0.01 at an OH exposure of 5.28 × 1011 molecules cm−3 s. This decrease may be due to the early deliquescence of initially dry AS seeds after being coated by highly oxidized toluene-derived SOA. SOA formation lowered the deliquescence RH of AS and resulted in the uptake of water by both AS and SOA. Hence the initially dry AS seeds contained aerosol liquid water (ALW soon after SOA formed, and the SOA yield and ALW approached those of the initially wet AS seeds as OH exposure and ALW increased, especially at high OH exposure. However, a higher oxidation state of the SOA on initially wet AS seeds than that on dry AS seeds was observed at all levels of OH exposure. The difference in mass fractions of m ∕ z 29, 43 and 44 of SOA mass spectra, obtained using an aerosol mass spectrometer (AMS, indicated that SOA formed on initially wet seeds may be enriched in earlier-generation products containing carbonyl functional groups at low OH exposures and later-generation products containing acidic functional groups at high exposures. Our results suggest that inorganic dry seeds become at least partially deliquesced particles during SOA formation and hence that ALW is inevitably involved in the SOA formation at moderate RH. More laboratory

  10. Comparison of secondary organic aerosol formation from toluene on initially wet and dry ammonium sulfate particles at moderate relative humidity

    Science.gov (United States)

    Liu, Tengyu; Huang, Dan Dan; Li, Zijun; Liu, Qianyun; Chan, ManNin; Chan, Chak K.

    2018-04-01

    The formation of secondary organic aerosol (SOA) has been widely studied in the presence of dry seed particles at low relative humidity (RH). At higher RH, initially dry seed particles can exist as wet particles due to water uptake by the seeds as well as the SOA. Here, we investigated the formation of SOA from the photooxidation of toluene using an oxidation flow reactor in the absence of NOx under a range of OH exposures on initially wet or dry ammonium sulfate (AS) seed particles at an RH of 68 %. The ratio of the SOA yield on wet AS seeds to that on dry AS seeds, the relative SOA yield, decreased from 1.31 ± 0.02 at an OH exposure of 4.66 × 1010 molecules cm-3 s to 1.01 ± 0.01 at an OH exposure of 5.28 × 1011 molecules cm-3 s. This decrease may be due to the early deliquescence of initially dry AS seeds after being coated by highly oxidized toluene-derived SOA. SOA formation lowered the deliquescence RH of AS and resulted in the uptake of water by both AS and SOA. Hence the initially dry AS seeds contained aerosol liquid water (ALW) soon after SOA formed, and the SOA yield and ALW approached those of the initially wet AS seeds as OH exposure and ALW increased, especially at high OH exposure. However, a higher oxidation state of the SOA on initially wet AS seeds than that on dry AS seeds was observed at all levels of OH exposure. The difference in mass fractions of m / z 29, 43 and 44 of SOA mass spectra, obtained using an aerosol mass spectrometer (AMS), indicated that SOA formed on initially wet seeds may be enriched in earlier-generation products containing carbonyl functional groups at low OH exposures and later-generation products containing acidic functional groups at high exposures. Our results suggest that inorganic dry seeds become at least partially deliquesced particles during SOA formation and hence that ALW is inevitably involved in the SOA formation at moderate RH. More laboratory experiments conducted with a wide variety of SOA precursors

  11. Periodic Recurrence Patterns In X-Ray Solar Flare Appearances

    Science.gov (United States)

    Gyenge, N.; Erdélyi, R.

    2018-06-01

    The temporal recurrence of micro-flare events is studied for a time interval before and after of major solar flares. Our sample is based on the X-ray flare observations by the Geostationary Operational Environmental Satellite (GOES) and Reuven Ramaty High Energy Solar Spectroscopic Imager (RHESSI). The analyzed data contain 1330/301 M-class and X-class GOES/RHESSI energetic solar flares and 4062/4119 GOES/RHESSI micro-flares covering the period elapse since 2002. The temporal analysis of recurrence, by Fast Fourier Transform, of the micro-flares, shows multiple significant periods. Based on the GOES and RHESSI data, the temporal analysis also demonstrates that multiple periods manifest simultaneously in both statistical samples without any significant shift over time. In the GOES sample, the detected significant periods are: 11.33, 5.61, 3.75, 2.80, and 2.24 minutes. The RHESSI data show similar significant periods at 8.54, 5.28, 3.66, 2.88, and 2.19 minutes. The periods are interpreted as signatures of standing oscillations, with the longest period (P 1) being the fundamental and others being higher harmonic modes. The period ratio of the fundamental and higher harmonics (P 1/P N ) is also analyzed. The standing modes may be signatures of global oscillations of the entire solar atmosphere encompassing magnetized plasma from the photosphere to the corona in active regions.

  12. Observation of solar flare by Hinotori SXT/HXM

    International Nuclear Information System (INIS)

    Ohki, Ken-ichiro; Takakura, Tatsuo; Tsuneta, Sukehisa; Nitta, Nariaki; Makishima, Kazuo.

    1982-01-01

    Solar flares were observed by SXT (hard X-ray two-dimensional observation system) and HXM (hard X-ray spectrometer) on Hinotori. The results of two-dimensional analysis of 20 flares are reported in this paper. Various images of hard X-ray were observed. Hard X-ray bursts with relatively long duration may be generated in corona. The hard X-ray flare generated on the solar disc gives information on the relative position to the H flare. The examples of this hard X-ray images are presented. The HXM can observe the hard X-ray spectra up to 350 keV. The flares with duration less than 5 min have the spectra coninciding with the thermal radiation from a single temperature before the peak, and power law type non-thermal radiation spectra after the peak. The hard X-ray flares with duration longer than 10 min have power law type spectra. (Kato, T.)

  13. Narrow-band radio flares from red dwarf stars

    Energy Technology Data Exchange (ETDEWEB)

    White, S.M.; Kundu, M.R.; Jackson, P.D.

    1986-12-01

    VLA observations of narrow-band behavior in 20 cm flares from two red dwarf stars, L726 - 8A and AD Leo, are reported. The flare on L726 - 8A was observed at 1415 and 1515 MHz; the flux and the evolution differed significantly at the two frequencies. The flare on AD Leo lasted for 2 hr at 1415 MHz but did not appear at 1515 MHz. The AD Leo flare appears to rule out a source drifting through the stellar corona and is unlikely to be due to plasma emission. In the cyclotron maser model the narrow-band behavior reflects the range of magnetic fields present within the source. The apparent constancy of this field for 2 hr is difficult to understand if magnetic reconnection is the source of energy for the flare. The consistent polarization exhibited by red dwarf flares at 20 cm may be related to stellar activity cycles, and changes in this polarization will permit measuring the length of these cycles. 22 references.

  14. Narrow-band radio flares from red dwarf stars

    Science.gov (United States)

    White, Stephen M.; Kundu, Mukul R.; Jackson, Peter D.

    1986-01-01

    VLA observations of narrow-band behavior in 20 cm flares from two red dwarf stars, L726 - 8A and AD Leo, are reported. The flare on L726 - 8A was observed at 1415 and 1515 MHz; the flux and the evolution differed significantly at the two frequencies. The flare on AD Leo lasted for 2 hr at 1415 MHz but did not appear at 1515 MHz. The AD Leo flare appears to rule out a source drifting through the stellar corona and is unlikely to be due to plasma emission. In the cyclotron maser model the narrow-band behavior reflects the range of magnetic fields present within the source. The apparent constancy of this field for 2 hr is difficult to understand if magnetic reconnection is the source of energy for the flare. The consistent polarization exhibited by red dwarf flares at 20 cm may be related to stellar activity cycles, and changes in this polarization will permit measuring the length of these cycles.

  15. Magnetohydrodynamic Simulations for Studying Solar Flare Trigger Mechanism

    Energy Technology Data Exchange (ETDEWEB)

    Muhamad, J.; Kusano, K.; Inoue, S.; Shiota, D. [Institute for Space-Earth Environmental Research, Nagoya University, Furocho, Chikusa-ku, Nagoya, Aichi, 464-8601 (Japan)

    2017-06-20

    In order to understand the flare trigger mechanism, we conduct three-dimensional magnetohydrodynamic simulations using a coronal magnetic field model derived from data observed by the Hinode satellite. Several types of magnetic bipoles are imposed into the photospheric boundary of the Nonlinear Force-free Field model of Active Region (AR) NOAA 10930 on 2006 December 13, to investigate what kind of magnetic disturbance may trigger the flare. As a result, we confirm that certain small bipole fields, which emerge into the highly sheared global magnetic field of an AR, can effectively trigger a flare. These bipole fields can be classified into two groups based on their orientation relative to the polarity inversion line: the so-called opposite polarity, and reversed shear structures, as suggested by Kusano et al. We also investigate the structure of the footpoints of reconnected field lines. By comparing the distribution of reconstructed field lines and observed flare ribbons, the trigger structure of the flare can be inferred. Our simulation suggests that the data-constrained simulation, taking into account both the large-scale magnetic structure and small-scale magnetic disturbance (such as emerging fluxes), is a good way to discover a flare-producing AR, which can be applied to space weather prediction.

  16. Health and exposure assessment of flare gas emissions

    International Nuclear Information System (INIS)

    Kindzierski, W.B.; Byrne-Lewis, C.; Probert, S.

    2000-01-01

    The incomplete combustion of flare gases produces pollutants such as volatile organic compounds (VOCs) and polycyclic aromatic hydrocarbons (PAHs) which are cause for concern for public health. Some of the concerns relate to potential long-term cumulative health effects from exposure to hazardous air pollutants including benzene, styrene, naphthalene, and benzopyrene. This study demonstrated that several factors should be taken into account when considering the importance of flaring and human exposure to flare gas emissions. Most flare stacks are located in rural areas, but most time-availability studies have been done on urban populations where the majority of people spend their time indoors. It was recommended that more time-activity studies are needed to emphasize the behaviour of rural populations which are most susceptible to exposure from pollutants from flaring. It was concluded that higher indoor air concentrations exist for many VOCs and PAHs compared to outdoors, but in these instances, indoor sources are the major contributors to indoor air concentrations. It was recommended that health assessments of hazardous air pollutants emitted from gas flaring has to take into account the indoor setting and other background exposures in order to provide useful information for decision makers. 49 refs., 8 tabs., 1 fig

  17. Flare research with the NASA/MSFC vector magnetograph - Observed characteristics of sheared magnetic fields that produce flares

    Science.gov (United States)

    Moore, R. L.; Hagyard, M. J.; Davis, J. M.

    1987-01-01

    The present MSFC Vector Magnetograph has sufficient spatial resolution (2.7 arcsec pixels) and sensitivity to the transverse field (the noise level is about 100 gauss) to map the transverse field in active regions accurately enough to reveal key aspects of the sheared magnetic fields commonly found at flare sites. From the measured shear angle along the polarity inversion line in sites that flared and in other shear sites that didn't flare, evidence is found that a sufficient condition for a flare to occur in 1000 gauss fields in and near sunspots is that both: (1) the maximum shear angle exceed 85 degrees; and (2) the extent of strong shear (shear angle of greater than 80 degrees) exceed 10,000 km.

  18. ANATOMY OF A SOLAR FLARE: MEASUREMENTS OF THE 2006 DECEMBER 14 X-CLASS FLARE WITH GONG, HINODE, AND RHESSI

    International Nuclear Information System (INIS)

    Matthews, S. A.; Zharkov, S.; Zharkova, V. V.

    2011-01-01

    Some of the most challenging observations to explain in the context of existing flare models are those related to the lower atmosphere and below the solar surface. Such observations, including changes in the photospheric magnetic field and seismic emission, indicate the poorly understood connections between energy release in the corona and its impact in the photosphere and the solar interior. Using data from Hinode, TRACE, RHESSI, and GONG we study the temporal and spatial evolution of the 2006 December 14 X-class flare in the chromosphere, photosphere, and the solar interior. We investigate the connections between the emission at various atmospheric depths, including acoustic signatures obtained by time-distance and holography methods from the GONG data. We report the horizontal displacements observed in the photosphere linked to the timing and locations of the acoustic signatures we believe to be associated with this flare, their vertical and horizontal displacement velocities, and their potential implications for current models of flare dynamics.

  19. Developing a Construct to Evaluate Flares in Rheumatoid Arthritis: A Conceptual Report of the OMERACT RA Flare Definition Working Group

    DEFF Research Database (Denmark)

    Alten, Rieke; Choy, Ernest H; Christensen, Robin

    2011-01-01

    Rheumatoid arthritis (RA) patients and healthcare professionals (HCP) recognize that episodic worsening disease activity, often described as a "flare," is a common feature of RA that can contribute to impaired function and disability. However, there is no standard definition to enable measurement...... of its intensity and impact. The conceptual framework of the Outcome Measures in Rheumatology Clinical Trials (OMERACT) RA Flare Definition Working Group includes an anchoring statement, developed at OMERACT 9 in 2008: "flare in RA" is defined as worsening of signs and symptoms of sufficient intensity....... The conceptual framework of flare takes into account validated approaches to measurement in RA: (1) various disease activity indices (e.g., Disease Activity Score, Clinical Disease Activity Index, Simplified Disease Activity Index); (2) use of patient-reported outcomes (PRO); and (3) characterization...

  20. Oilfield Flare Gas Electricity Systems (OFFGASES Project)

    Energy Technology Data Exchange (ETDEWEB)

    Rachel Henderson; Robert Fickes

    2007-12-31

    The Oilfield Flare Gas Electricity Systems (OFFGASES) project was developed in response to a cooperative agreement offering by the U.S. Department of Energy (DOE) and the National Energy Technology Laboratory (NETL) under Preferred Upstream Management Projects (PUMP III). Project partners included the Interstate Oil and Gas Compact Commission (IOGCC) as lead agency working with the California Energy Commission (CEC) and the California Oil Producers Electric Cooperative (COPE). The project was designed to demonstrate that the entire range of oilfield 'stranded gases' (gas production that can not be delivered to a commercial market because it is poor quality, or the quantity is too small to be economically sold, or there are no pipeline facilities to transport it to market) can be cost-effectively harnessed to make electricity. The utilization of existing, proven distribution generation (DG) technologies to generate electricity was field-tested successfully at four marginal well sites, selected to cover a variety of potential scenarios: high Btu, medium Btu, ultra-low Btu gas, as well as a 'harsh', or high contaminant, gas. Two of the four sites for the OFFGASES project were idle wells that were shut in because of a lack of viable solutions for the stranded noncommercial gas that they produced. Converting stranded gas to useable electrical energy eliminates a waste stream that has potential negative environmental impacts to the oil production operation. The electricity produced will offset that which normally would be purchased from an electric utility, potentially lowering operating costs and extending the economic life of the oil wells. Of the piloted sites, the most promising technologies to handle the range were microturbines that have very low emissions. One recently developed product, the Flex-Microturbine, has the potential to handle the entire range of oilfield gases. It is deployed at an oilfield near Santa Barbara to run on waste gas

  1. DETERMINING HEATING RATES IN RECONNECTION FORMED FLARE LOOPS OF THE M8.0 FLARE ON 2005 MAY 13

    Energy Technology Data Exchange (ETDEWEB)

    Liu Wenjuan; Qiu Jiong; Longcope, Dana W. [Department of Physics, Montana State University, Bozeman, MT 59717-3840 (United States); Caspi, Amir [Laboratory for Atmospheric and Space Physics, University of Colorado, Boulder, CO 80303 (United States)

    2013-06-20

    We analyze and model an M8.0 flare on 2005 May 13 observed by the Transition Region and Coronal Explorer and the Reuven Ramaty High Energy Solar Spectroscopic Imager (RHESSI) to determine the energy release rate from magnetic reconnection that forms and heats numerous flare loops. The flare exhibits two ribbons in UV 1600 A emission. Analysis shows that the UV light curve at each flaring pixel rises impulsively within a few minutes, and decays slowly with a timescale longer than 10 minutes. Since the lower atmosphere (the transition region and chromosphere) responds to energy deposit nearly instantaneously, the rapid UV brightening is thought to reflect the energy release process in the newly formed flare loop rooted at the footpoint. In this paper, we utilize the spatially resolved (down to 1'') UV light curves and the thick-target hard X-ray emission to construct heating functions of a few thousand flare loops anchored at the UV footpoints, and compute plasma evolution in these loops using the enthalpy-based thermal evolution of loops model. The modeled coronal temperatures and densities of these flare loops are then used to calculate coronal radiation. The computed soft X-ray spectra and light curves compare favorably with those observed by RHESSI and by the Geostationary Operational Environmental Satellite X-ray Sensor. The time-dependent transition region differential emission measure for each loop during its decay phase is also computed with a simplified model and used to calculate the optically thin C IV line emission, which dominates the UV 1600 A bandpass during the flare. The computed C IV line emission decays at the same rate as observed. This study presents a method to constrain heating of reconnection-formed flare loops using all available observables independently, and provides insight into the physics of energy release and plasma heating during the flare. With this method, the lower limit of the total energy used to heat the flare loops in

  2. Variability in the Reporting of Serum Urate and Flares in Gout Clinical Trials

    DEFF Research Database (Denmark)

    Stamp, Lisa K; Morillon, Melanie B; Taylor, William J

    2018-01-01

    OBJECTIVE: To describe the ways in which serum urate (SU) and gout flares are reported in clinical trials, and to propose minimum reporting requirements. METHODS: This analysis was done as part of a systematic review aiming to validate SU as a biomarker for gout. The ways in which SU and flares.......3%) of these reporting at more than just the final study visit. Two ways of reporting gout flares were identified: mean flare rate and percentage of participants with flares. There was variability in time periods over which flares rates were reported. CONCLUSION: There is inconsistent reporting of SU and flares in gout...... studies. Reporting the percentage of participants who achieve a target SU reflects international treatment guidelines. SU should also be reported as a continuous variable with a relevant central and dispersion estimate. Gout flares should be reported as both percentage of participants and mean flare rates...

  3. M DWARF FLARE CONTINUUM VARIATIONS ON ONE-SECOND TIMESCALES: CALIBRATING AND MODELING OF ULTRACAM FLARE COLOR INDICES

    International Nuclear Information System (INIS)

    Kowalski, Adam F.; Mathioudakis, Mihalis; Hawley, Suzanne L.; Hilton, Eric J.; Wisniewski, John P.; Dhillon, Vik S.; Marsh, Tom R.; Brown, Benjamin P.

    2016-01-01

    We present a large data set of high-cadence dMe flare light curves obtained with custom continuum filters on the triple-beam, high-speed camera system ULTRACAM. The measurements provide constraints for models of the near-ultraviolet (NUV) and optical continuum spectral evolution on timescales of ≈1 s. We provide a robust interpretation of the flare emission in the ULTRACAM filters using simultaneously obtained low-resolution spectra during two moderate-sized flares in the dM4.5e star YZ CMi. By avoiding the spectral complexity within the broadband Johnson filters, the ULTRACAM filters are shown to characterize bona fide continuum emission in the NUV, blue, and red wavelength regimes. The NUV/blue flux ratio in flares is equivalent to a Balmer jump ratio, and the blue/red flux ratio provides an estimate for the color temperature of the optical continuum emission. We present a new “color–color” relationship for these continuum flux ratios at the peaks of the flares. Using the RADYN and RH codes, we interpret the ULTRACAM filter emission using the dominant emission processes from a radiative-hydrodynamic flare model with a high nonthermal electron beam flux, which explains a hot, T ≈ 10 4 K, color temperature at blue-to-red optical wavelengths and a small Balmer jump ratio as observed in moderate-sized and large flares alike. We also discuss the high time resolution, high signal-to-noise continuum color variations observed in YZ CMi during a giant flare, which increased the NUV flux from this star by over a factor of 100

  4. M DWARF FLARE CONTINUUM VARIATIONS ON ONE-SECOND TIMESCALES: CALIBRATING AND MODELING OF ULTRACAM FLARE COLOR INDICES

    Energy Technology Data Exchange (ETDEWEB)

    Kowalski, Adam F. [Department of Astronomy, University of Maryland, College Park, MD 20742 (United States); Mathioudakis, Mihalis [Astrophysics Research Centre, School of Mathematics and Physics, Queen’s University Belfast, Belfast, BT7 1NN (United Kingdom); Hawley, Suzanne L.; Hilton, Eric J. [Department of Astronomy, University of Washington, Box 351580, Seattle, WA 98195 (United States); Wisniewski, John P. [HL Dodge Department of Physics and Astronomy, University of Oklahoma, 440 W Brooks Street, Norman, OK 73019 (United States); Dhillon, Vik S. [Department of Physics and Astronomy, University of Sheffield, Sheffield S3 7RH (United Kingdom); Marsh, Tom R. [Department of Physics, Gibbet Hill Road, University of Warwick, Coventry CV4 7AL (United Kingdom); Brown, Benjamin P., E-mail: adam.f.kowalski@nasa.gov [Laboratory for Atmospheric and Space Physics and Department of Astrophysical and Planetary Sciences, University of Colorado, Boulder, Colorado 80309 (United States)

    2016-04-01

    We present a large data set of high-cadence dMe flare light curves obtained with custom continuum filters on the triple-beam, high-speed camera system ULTRACAM. The measurements provide constraints for models of the near-ultraviolet (NUV) and optical continuum spectral evolution on timescales of ≈1 s. We provide a robust interpretation of the flare emission in the ULTRACAM filters using simultaneously obtained low-resolution spectra during two moderate-sized flares in the dM4.5e star YZ CMi. By avoiding the spectral complexity within the broadband Johnson filters, the ULTRACAM filters are shown to characterize bona fide continuum emission in the NUV, blue, and red wavelength regimes. The NUV/blue flux ratio in flares is equivalent to a Balmer jump ratio, and the blue/red flux ratio provides an estimate for the color temperature of the optical continuum emission. We present a new “color–color” relationship for these continuum flux ratios at the peaks of the flares. Using the RADYN and RH codes, we interpret the ULTRACAM filter emission using the dominant emission processes from a radiative-hydrodynamic flare model with a high nonthermal electron beam flux, which explains a hot, T ≈ 10{sup 4} K, color temperature at blue-to-red optical wavelengths and a small Balmer jump ratio as observed in moderate-sized and large flares alike. We also discuss the high time resolution, high signal-to-noise continuum color variations observed in YZ CMi during a giant flare, which increased the NUV flux from this star by over a factor of 100.

  5. Do Long-cadence Data of the Kepler Spacecraft Capture Basic Properties of Flares?

    Science.gov (United States)

    Yang, Huiqin; Liu, Jifeng; Qiao, Erlin; Zhang, Haotong; Gao, Qing; Cui, Kaiming; Han, Henggeng

    2018-06-01

    Flare research is becoming a burgeoning realm of interest in the study of stellar activity due to the launch of Kepler in 2009. Kepler provides data with two time resolutions, i.e., the long-cadence (LC) data with a time resolution of 30 minutes and the short-cadence (SC) data with a time resolution of 1 minute, both of which can be used to study stellar flares. In this paper, we search flares in light curves with both LC data and SC data, and compare them in aspects of the true-flare rate, the flare energy, the flare amplitude, and the flare duration. It is found that LC data systematically underestimated the energies of flares by 25%, and underestimated the amplitudes of flares by 60% compared with SC flares. The durations are systematically overestimated by 50% compared with SC flares. However, the above percentages are poorly constrained and there is a lot of scatter. About 60% of SC flares have not been detected by LC data. We investigate the limitation of LC data, and suggest that although LC data cannot reflect the detailed profiles of flares, they can also capture the basic properties of stellar flares.

  6. A comparison of conventional local approach and the short crack approach to fatigue crack initiation at a notch

    Energy Technology Data Exchange (ETDEWEB)

    Ranganathan, Narayanaswami; Leroy, Rene; Tougui, Abdellah [Laboratoire de Mecanique et Rheologie, Universite Francois Rabelais de Tours, Polytech Tours, Departement Mecanique et Conception de Systemes, Tours (France)

    2009-09-15

    Methods to estimate fatigue crack initiation life at a notch tip are compared. The methods used determine the strain amplitudes at the notch tip using Neuber's or Glinka's approximation. In conventional approaches, equivalent-damage levels are determined, using appropriate strain-life relationships coupled with damage-summation models. In the short-crack approach, a crack-like defect is assumed to exist at the notch tip. It is shown that the short-crack concept can be successfully applied to predict crack-initiation behavior at a notch. Model predictions are compared with carefully designed experiments. It is shown that model predictions are very close to experimentally measured lives under an aircraft-wing loading spectrum. (Abstract Copyright [2009], Wiley Periodicals, Inc.)

  7. Multifrequency Behaviour of the Gamma-Ray Binary System PSR B1259-63: Modelling the FERMI Flare

    Directory of Open Access Journals (Sweden)

    Brian van Soelen

    2014-12-01

    Full Text Available This paper presents a brief overview of the multifrequency properties of the gamma-ray binary system PSR B1259-63 from radio to very high energy gamma-rays. A summary is also presented of the various models put forward to explain the Fermi "flare" detected in 2011. Initial results are presented of a new turbulence driven model to explain the GeV observations.

  8. Initial assessment of jaundice in otherwise healthy infants--a comparison of methods in two postnatal units.

    LENUS (Irish Health Repository)

    Allen, N M

    2012-02-01

    Transcutaneous bilirubin (TcB) has the potential to reduce total serum bilirubin (TS) sampling. The principal aim of this study was to determine and compare the number of initial TSB samples (TSBs) in two postnatal units (hospitals A & B) whereby hospital A used TcB and hospital B did not. A secondary aim was to determine the clinical factors that led to initial TSBs exceeding exchange transfusion level in both hospitals. Results demonstrated both hospitals had similar populations and patient numbers following selection criteria. 1645 neonates (10.4%) had one or more TSBs performed in hospital A, versus 2373 neonates (15.1%) in hospital B (p < 0.01). Fourteen neonates in hospital A and 3 neonates in hospital B had initial TSBs above exchange transfusion level. For neonates with TSBs above exchange, preventable factors related to earlier testing and follow up. In routine clinical practice, TcB is associated with a significantly reduced number of TSB measurements. TSB levels above exchange transfusion are linked to preventable factors, in otherwise healthy neonates.

  9. Flare Prediction Using Photospheric and Coronal Image Data

    Science.gov (United States)

    Jonas, E.; Shankar, V.; Bobra, M.; Recht, B.

    2016-12-01

    We attempt to forecast M-and X-class solar flares using a machine-learning algorithm and five years of image data from both the Helioseismic and Magnetic Imager (HMI) and Atmospheric Imaging Assembly (AIA) instruments aboard the Solar Dynamics Observatory. HMI is the first instrument to continuously map the full-disk photospheric vector magnetic field from space (Schou et al., 2012). The AIA instrument maps the transition region and corona using various ultraviolet wavelengths (Lemen et al., 2012). HMI and AIA data are taken nearly simultaneously, providing an opportunity to study the entire solar atmosphere at a rapid cadence. Most flare forecasting efforts described in the literature use some parameterization of solar data - typically of the photospheric magnetic field within active regions. These numbers are considered to capture the information in any given image relevant to predicting solar flares. In our approach, we use HMI and AIA images of solar active regions and a deep convolutional kernel network to predict solar flares. This is effectively a series of shallow-but-wide random convolutional neural networks stacked and then trained with a large-scale block-weighted least squares solver. This algorithm automatically determines which patterns in the image data are most correlated with flaring activity and then uses these patterns to predict solar flares. Using the recently-developed KeystoneML machine learning framework, we construct a pipeline to process millions of images in a few hours on commodity cloud computing infrastructure. This is the first time vector magnetic field images have been combined with coronal imagery to forecast solar flares. This is also the first time such a large dataset of solar images, some 8.5 terabytes of images that together capture over 3000 active regions, has been used to forecast solar flares. We evaluate our method using various flare prediction windows defined in the literature (e.g. Ahmed et al., 2013) and a novel per

  10. Piezoelectrically Initiated Pyrotechnic Igniter

    Science.gov (United States)

    Quince, Asia; Dutton, Maureen; Hicks, Robert; Burnham, Karen

    2013-01-01

    This innovation consists of a pyrotechnic initiator and piezoelectric initiation system. The device will be capable of being initiated mechanically; resisting initiation by EMF, RF, and EMI (electromagnetic field, radio frequency, and electromagnetic interference, respectively); and initiating in water environments and space environments. Current devices of this nature are initiated by the mechanical action of a firing pin against a primer. Primers historically are prone to failure. These failures are commonly known as misfires or hang-fires. In many cases, the primer shows the dent where the firing pin struck the primer, but the primer failed to fire. In devices such as "T" handles, which are commonly used to initiate the blowout of canopies, loss of function of the device may result in loss of crew. In devices such as flares or smoke generators, failure can result in failure to spot a downed pilot. The piezoelectrically initiated ignition system consists of a pyrotechnic device that plugs into a mechanical system (activator), which on activation, generates a high-voltage spark. The activator, when released, will strike a stack of electrically linked piezo crystals, generating a high-voltage, low-amperage current that is then conducted to the pyro-initiator. Within the initiator, an electrode releases a spark that passes through a pyrotechnic first-fire mixture, causing it to combust. The combustion of the first-fire initiates a primary pyrotechnic or explosive powder. If used in a "T" handle, the primary would ramp the speed of burn up to the speed of sound, generating a shock wave that would cause a high explosive to go "high order." In a flare or smoke generator, the secondary would produce the heat necessary to ignite the pyrotechnic mixture. The piezo activator subsystem is redundant in that a second stack of crystals would be struck at the same time with the same activation force, doubling the probability of a first strike spark generation. If the first

  11. FACT. Flare alerts from blazar monitoring

    Energy Technology Data Exchange (ETDEWEB)

    Dorner, Daniela [Universitaet Wuerzburg (Germany); Bretz, Thomas [RWTH Aachen (Germany); Collaboration: FACT-Collaboration

    2015-07-01

    One of the major goals of the First G-APD Cherenkov Telescope is the longterm monitoring of bright TeV blazars. For more than three years, FACT has observed the blazars Mrk 421 and Mrk 501 and a few other sources on a regular basis. To understand these highly variable objects, simultaneous data at different wavelengths are very useful. FACT is not only taking part in multi-wavelength campaigns, but also sending alerts to other instruments in case of enhanced flux, to study flares within the multi-wavelength frame. To send fast alerts, an automatic quick look analysis was set up on site. Once the data are written on disk, they are automatically processed, and the analysis results are published on a website where other observers can monitor the activity of the source in the very high energy band. In addition, alerts are sent in case the flux is higher than a certain predefined value. In 2014, more than five alerts have been sent. Results from three years of monitoring are presented.

  12. An unorthodox X-Class Long-Duration Confined Flare

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Rui; Gou, Tingyu; Wang, Yuming; Liu, Kai [CAS Key Laboratory of Geospace Environment, Department of Geophysics and Planetary Sciences, University of Science and Technology of China, Hefei 230026 (China); Titov, Viacheslav S. [Predictive Science, Inc., 9990 Mesa Rim Road, Suite 170, San Diego, CA 92121 (United States); Wang, Haimin, E-mail: rliu@ustc.edu.cn [Space Weather Research Laboratory, Center for Solar-Terrestrial Research, NJIT, Newark, NJ 07102 (United States)

    2014-07-20

    We report the observation of an X-class long-duration flare which is clearly confined. It appears as a compact-loop flare in the traditional EUV passbands (171 and 195 Å), but in the passbands sensitive to flare plasmas (94 and 131 Å), it exhibits a cusp-shaped structure above an arcade of loops like other long-duration events. Inspecting images in a running difference approach, we find that the seemingly diffuse, quasi-static cusp-shaped structure consists of multiple nested loops that repeatedly rise upward and disappear approaching the cusp edge. Over the gradual phase, we detect numerous episodes of loop rising, each lasting minutes. A differential emission measure analysis reveals that the temperature is highest at the top of the arcade and becomes cooler at higher altitudes within the cusp-shaped structure, contrary to typical long-duration flares. With a nonlinear force-free model, our analysis shows that the event mainly involves two adjacent sheared arcades separated by a T-type hyperbolic flux tube (HFT). One of the arcades harbors a magnetic flux rope, which is identified with a filament that survives the flare owing to the strong confining field. We conclude that a new emergence of magnetic flux in the other arcade triggers the flare, while the preexisting HFT and flux rope dictate the structure and dynamics of the flare loops and ribbons during the long-lasting decay phase, and that a quasi-separatrix layer high above the HFT could account for the cusp-shaped structure.

  13. NEW SOLAR EXTREME-ULTRAVIOLET IRRADIANCE OBSERVATIONS DURING FLARES

    International Nuclear Information System (INIS)

    Woods, Thomas N.; Hock, Rachel; Eparvier, Frank; Jones, Andrew R.; Chamberlin, Phillip C.; Klimchuk, James A.; Didkovsky, Leonid; Judge, Darrell; Mariska, John; Warren, Harry; Schrijver, Carolus J.; Webb, David F.; Bailey, Scott; Tobiska, W. Kent

    2011-01-01

    New solar extreme-ultraviolet (EUV) irradiance observations from the NASA Solar Dynamics Observatory (SDO) EUV Variability Experiment provide full coverage in the EUV range from 0.1 to 106 nm and continuously at a cadence of 10 s for spectra at 0.1 nm resolution and even faster, 0.25 s, for six EUV bands. These observations can be decomposed into four distinct characteristics during flares. First, the emissions that dominate during the flare's impulsive phase are the transition region emissions, such as the He II 30.4 nm. Second, the hot coronal emissions above 5 MK dominate during the gradual phase and are highly correlated with the GOES X-ray. A third flare characteristic in the EUV is coronal dimming, seen best in the cool corona, such as the Fe IX 17.1 nm. As the post-flare loops reconnect and cool, many of the EUV coronal emissions peak a few minutes after the GOES X-ray peak. One interesting variation of the post-eruptive loop reconnection is that warm coronal emissions (e.g., Fe XVI 33.5 nm) sometimes exhibit a second large peak separated from the primary flare event by many minutes to hours, with EUV emission originating not from the original flare site and its immediate vicinity, but rather from a volume of higher loops. We refer to this second peak as the EUV late phase. The characterization of many flares during the SDO mission is provided, including quantification of the spectral irradiance from the EUV late phase that cannot be inferred from GOES X-ray diagnostics.

  14. A comparison of 20 or 40 mg per day of carbimazole in the initial treatment of hyperthyroidism.

    Science.gov (United States)

    Page, S R; Sheard, C E; Herbert, M; Hopton, M; Jeffcoate, W J

    1996-11-01

    The optimal dosage regimen for carbimazole (CBZ) in the treatment of hyperthyroidism remains uncertain, despite clinical use of the drug for approximately fifty years. We have compared the early clinical and biochemical responses to 20 or 40 mg/day of CBZ given as initial treatment for hyperthyroidism. Prospective open multicentre trial. Sixty-three patients presenting with hyperthyroidism. Serum total and free thyroid hormones, serum TSH and SHBG were measured at baseline and at 4 and 10 weeks after start of therapy. Weight, pulse and a symptom questionnaire were also monitored at 6 and 12 weeks. Patients randomized to a starting dose of 40 mg/day CBZ had lower total (98 +/- 10 vs 158 +/- 11 nmol/l, P symptom score) and SHBG concentrations were similar. Drug-related hypothyroidism was less likely to occur at 4 and 10 weeks in those patient who initially received 20 mg CBZ/day, but this dose was less effective at controlling hyperthyroidism in those with more severe hyperthyroidism with baseline TT4 > 260 nmol/l. In treating hyperthyroidism, 20 mg/day carbimazole is effective, convenient and has a lower risk than 40 mg/day of iatrogenic hypothyroidism in patients with mild or moderate hyperthyroidism. Higher doses are required for those with severe hyperthyroidism.

  15. Pancreatic ductal adenocarcinoma presenting with acute and chronic pancreatitis as initial presentation: is prognosis better? A comparison study..

    Science.gov (United States)

    Thorat, Ashok; Huang, Wen-Hsuan; Yeh, Ta-Sen; Jan, Yi-Yan; Hwang, Tsann-Long

    2014-10-01

    Pancreatic ductal adenocarcinoma (PDAC) may present with acute and /or chronic pancreatitis due to pancreatic ductal obstruction causing diagnostic dilemma. The aim of this retrospective study was to investigate the outcome and prognosis of the patients of PDAC presenting with pancreatitis. From 1991 to 2009, 298 patients with PDAC that underwent surgical treatment were retrospectively studied and divided in two groups depending upon initial symptomatic presentation. Group A (n=254) comprised patients without pancreatitis while group B (n=44) patients presented with acute and/or chronic pancreatitis initially. All the patients in studied cohort were surgically treated. Mean age of group A was 63.1 years & for group B it was 62.9 years. Location of tumor was in head of the pancreas in 66.14% of group A patients (n=168) and 61.36% of group B patients (n=27). Although statistically insignificant, the patients in group B had overall better 5-year survival than the patients in group A (20% vs 15.9%). This retrospective study highlights the overall better survival of PDAC patients presenting with acute and/or chronic pancreatitis than those without as contrary to previous reports which stated the poor prognosis of PDAC patients if associated with underlying pancreatitis.

  16. The initial magnetic susceptibility of polydisperse ferrofluids: A comparison between experiment and theory over a wide range of concentration

    International Nuclear Information System (INIS)

    Solovyova, Anna Y.; Goldina, Olga A.; Ivanov, Alexey O.; Elfimova, Ekaterina A.; Lebedev, Aleksandr V.

    2016-01-01

    Temperature dependencies of the static initial magnetic susceptibility for ferrofluids at various concentrations are studied using experiment and statistical-mechanical theories. Magnetic susceptibility measurements are carried out for twelve samples of magnetite-based fluids stabilized with oleic acid over a wide range of temperatures (210 K ≲T ≲ 390 K); all samples have the same granulometric composition but different volume ferroparticle concentrations (0.2 ≲ φ ≲ 0.5). Experimental results are analyzed using three theories: the second-order modified mean-field theory (MMF2) [A. O. Ivanov and O. B. Kuznetsova, Phys. Rev. E 64, 41405 (2001)]; its correction for polydisperse ferrofluids arising from Mayer-type cluster expansion and taking into account the first terms of the polydisperse second virial coefficient [A. O. Ivanov and E. A. Elfimova, J. Magn. Magn. Mater 374, 327 (2015)]; and a new theory based on MMF2 combined with the first terms of the polydisperse second and third virial contributions to susceptibility. It turns out that the applicability of each theory depends on the experimental sample density. If twelve ferrofluid samples are split into three groups of strong, moderate, and low concentrated fluids, the temperature dependences of the initial magnetic susceptibility in each group are very precisely described by one of the three theories mentioned above. The determination of a universal formula predicting a ferrofluid susceptibility over a broad range of concentrations and temperatures remains as a challenge.

  17. A magnetic bald-patch flare in solar active region 11117

    Science.gov (United States)

    Jiang, Chao-Wei; Feng, Xue-Shang; Wu, Shi-Tsan; Hu, Qiang

    2017-09-01

    With SDO observations and a data-constrained magnetohydrodynamics (MHD) model, we identify a confined multi-ribbon flare that occurred on 2010 October 25 in solar active region 11117 as a magnetic bald patch (BP) flare with strong evidence. From the photospheric magnetic field observed by SDO/HMI, we find there are indeed magnetic BPs on the polarity inversion lines (PILs) which match parts of the flare ribbons. From the 3D coronal magnetic field derived from an MHD relaxation model constrained by the vector magnetograms, we find strikingly good agreement of the BP separatrix surface (BPSS) footpoints with the flare ribbons, and the BPSS itself with the hot flaring loop system. Moreover, the triggering of the BP flare can be attributed to a small flux emergence under the lobe of the BPSS, and the relevant change of coronal magnetic field through the flare is reproduced well by the pre-flare and post-flare MHD solutions, which match the corresponding pre- and post-flare AIA observations, respectively. Our work contributes to the study of non-typical flares that constitute the majority of solar flares but which cannot be explained by the standard flare model.

  18. M DWARFS IN SLOAN DIGITAL SKY SURVEY STRIPE 82: PHOTOMETRIC LIGHT CURVES AND FLARE RATE ANALYSIS

    International Nuclear Information System (INIS)

    Kowalski, Adam F.; Hawley, Suzanne L.; Hilton, Eric J.; Becker, Andrew C.; Sesar, Branimir; West, Andrew A.; Bochanski, John J.

    2009-01-01

    We present a flare rate analysis of 50,130 M dwarf light curves in Sloan Digital Sky Survey Stripe 82. We identified 271 flares using a customized variability index to search ∼2.5 million photometric observations for flux increases in the u and g bands. Every image of a flaring observation was examined by eye and with a point-spread function-matching and image subtraction tool to guard against false positives. Flaring is found to be strongly correlated with the appearance of Hα in emission in the quiet spectrum. Of the 99 flare stars that have spectra, we classify eight as relatively inactive. The flaring fraction is found to increase strongly in stars with redder colors during quiescence, which can be attributed to the increasing flare visibility and increasing active fraction for redder stars. The flaring fraction is strongly correlated with |Z| distance such that most stars that flare are within 300 pc of the Galactic plane. We derive flare u-band luminosities and find that the most luminous flares occur on the earlier-type m dwarfs. Our best estimate of the lower limit on the flaring rate (averaged over Stripe 82) for flares with Δu ≥ 0.7 mag on stars with u -1 deg -2 but can vary significantly with the line of sight.

  19. Cross-Cultural Comparison of Genetic and Cultural Transmission of Smoking Initiation Using an Extended Twin Kinship Model.

    Science.gov (United States)

    Maes, Hermine H; Morley, Kate; Neale, Michael C; Kendler, Kenneth S; Heath, Andrew C; Eaves, Lindon J; Martin, Nicholas G

    2018-06-01

    Considerable evidence from twin and adoption studies indicates that genetic and shared environmental factors play a role in the initiation of smoking behavior. Although twin and adoption designs are powerful to detect genetic and environmental influences, they do not provide information on the processes of assortative mating and parent-offspring transmission and their contribution to the variability explained by genetic and/or environmental factors. We examined the role of genetic and environmental factors in individual differences for smoking initiation (SI) using an extended kinship design. This design allows the simultaneous testing of additive and non-additive genetic, shared and individual-specific environmental factors, as well as sex differences in the expression of genes and environment in the presence of assortative mating and combined genetic and cultural transmission, while also estimating the regression of the prevalence of SI on age. A dichotomous lifetime 'ever' smoking measure was obtained from twins and relatives in the 'Virginia 30,000' sample and the 'Australian 25,000'. Results demonstrate that both genetic and environmental factors play a significant role in the liability to SI. Major influences on individual differences appeared to be additive genetic and unique environmental effects, with smaller contributions from assortative mating, shared sibling environment, twin environment, cultural transmission, and resulting genotype-environment covariance. Age regression of the prevalence of SI was significant. The finding of negative cultural transmission without dominance led us to investigate more closely two possible mechanisms for the lower parent-offspring correlations compared to the sibling and DZ twin correlations in subsets of the data: (1) age × gene interaction, and (2) social homogamy. Neither of the mechanism provided a significantly better explanation of the data. This study showed significant heritability, partly due to assortment

  20. A dimensionless dynamic contrast enhanced MRI parameter for intra-prostatic tumour target volume delineation: initial comparison with histology

    Science.gov (United States)

    Hrinivich, W. Thomas; Gibson, Eli; Gaed, Mena; Gomez, Jose A.; Moussa, Madeleine; McKenzie, Charles A.; Bauman, Glenn S.; Ward, Aaron D.; Fenster, Aaron; Wong, Eugene

    2014-03-01

    Purpose: T2 weighted and diffusion weighted magnetic resonance imaging (MRI) show promise in isolating prostate tumours. Dynamic contrast enhanced (DCE)-MRI has also been employed as a component in multi-parametric tumour detection schemes. Model-based parameters such as Ktrans are conventionally used to characterize DCE images and require arterial contrast agent (CR) concentration. A robust parameter map that does not depend on arterial input may be more useful for target volume delineation. We present a dimensionless parameter (Wio) that characterizes CR wash-in and washout rates without requiring arterial CR concentration. Wio is compared to Ktrans in terms of ability to discriminate cancer in the prostate, as demonstrated via comparison with histology. Methods: Three subjects underwent DCE-MRI using gadolinium contrast and 7 s imaging temporal resolution. A pathologist identified cancer on whole-mount histology specimens, and slides were deformably registered to MR images. The ability of Wio maps to discriminate cancer was determined through receiver operating characteristic curve (ROC) analysis. Results: There is a trend that Wio shows greater area under the ROC curve (AUC) than Ktrans with median AUC values of 0.74 and 0.69 respectively, but the difference was not statistically significant based on a Wilcoxon signed-rank test (p = 0.13). Conclusions: Preliminary results indicate that Wio shows potential as a tool for Ktrans QA, showing similar ability to discriminate cancer in the prostate as Ktrans without requiring arterial CR concentration.

  1. Detecting Solar Neutrino Flare in Megaton and km3 detectors

    International Nuclear Information System (INIS)

    Fargion, Daniele; Di Giacomo, Paola

    2009-01-01

    To foresee a solar flare neutrino signal we infer its upper and lower bound. The upper bound was derived since a few years by general energy equipartition arguments on observed solar particle flare. The lower bound, the most compelling one for any guarantee neutrino signal, is derived by most recent records of hard Gamma bump due to solar flare on January 2005 (by neutral pion decay). Because neutral and charged pions (made by hadron scattering in the flare) are born on the same foot, their link is compelling: the observed gamma flux [Grechnev V.V. et al., (arXiv:0806.4424), Solar Physics, Vol. 1, October, (2008), 252] reflects into a corresponding one for the neutrinos, almost one to one. Moreover while gamma photons might be absorbed (in deep corona) or at least reduced inside the flaring plasma, the secondaries neutrino are not. So pion neutrinos should be even more abundant than gamma ones. Tens-hundred MeV neutrinos may cross undisturbed the whole Sun, doubling at least their rate respect a unique solar-side for gamma flare. Therefore we obtain minimal bounds opening a windows for neutrino astronomy, already at the edge of present but quite within near future Megaton neutrino detectors. Such detectors are considered mostly to reveal cosmic supernova background or rare Local Group (few Mpc) Supernovas events [Matthew D. Kistler et al. (0810.1959v1)]. However rarest (once a decade), brief (a few minutes) powerful solar neutrino 'flare' may shine and they may overcome by two to three order of magnitude the corresponding steady atmospheric neutrino noise on the Earth, leading in largest Neutrino detector at least to one or to meaning-full few events clustered signals. The voice of such a solar anti-neutrino flare component at a few tens MeVs may induce an inverse beta decay over a vanishing anti-neutrino solar background. Megaton or even inner ten Megaton Ice Cube detector at ten GeV threshold may also reveal traces in hardest energy of solar flares. Icecube

  2. Stellar CME candidates: towards a stellar CME-flare relation

    Science.gov (United States)

    Paraskevi Moschou, Sofia; Drake, Jeremy J.; Cohen, Ofer; Alvarado-Gomez, Julian D.; Garraffo, Cecilia

    2018-06-01

    For decades the Sun has been the only star that allowed for direct CME observations. Recently, with the discovery of multiple extrasolar systems, it has become imperative that the role of stellar CMEs be assessed in the context of exoplanetary habitability. Solar CMEs and flares show a higher association with increasing flaring energy, with strong flares corresponding to large and fast CMEs. As argued in earlier studies, extrasolar environments around active stars are potentially dominated by CMEs, as a result of their extreme flaring activity. This has strong implications for the energy budget of the system and the atmospheric erosion of orbiting planets.Nevertheless, with current instrumentation we are unable to directly observe CMEs in even the closest stars, and thus we have to look for indirect techniques and observational evidence and signatures for the eruption of stellar CMEs. There are three major observational techniques for tracing CME signatures in other stellar systems, namely measuring Type II radio bursts, Doppler shifts in UV/optical lines or transient absorption in the X-ray spectrum. We present observations of the most probable stellar CME candidates captured so far and examine the different observational techniques used together with their levels of uncertainty. Assuming that they were CMEs, we try to asses their kinematic and energetic characteristics and place them in an extension of the well-established solar CME-flare energy scaling law. We finish by discussing future observations for direct measurements.

  3. Flare-up rate of single-visit endodontics.

    Science.gov (United States)

    Trope, M

    1991-01-01

    The purpose of the study was to compare the flare-up rate for single-visit endodontics among teeth without radiographic or clinical signs of apical periodontitis, those with radiographic or clinical signs of apical periodontitis not previously root-treated, and those with apical periodontitis where retreatment was performed. All teeth were instrumented to a predetermined minimum size with a 0.5 per cent solution of sodium hypochlorite being used as the irrigant. The root canal was obturated without regard to the presence or absence of symptoms or diagnosis of the apical condition. The patients were given written post-operative instructions and a prescription for 600 mg ibuprofen to be taken if mild to moderate pain developed. If severe pain and/or swelling developed, the patient was instructed to telephone immediately and was considered to have had a flare-up. Teeth without signs of apical periodontitis did not have any flare-ups. One flare-up occurred in 69 teeth with signs of apical periodontitis not previously root-treated. The majority of the flare-ups (3 of 22 teeth) occurred in teeth with signs of apical periodontitis requiring retreatment.

  4. Relationship of intracanal medicaments to endodontic flare-ups.

    Science.gov (United States)

    Trope, M

    1990-10-01

    The purpose of the study was to compare the effect of three intracanal medicaments on the incidence of post-instrumentation flare-ups. All teeth were instrumented to a predetermined minimum size using a 0.5% solution of sodium hypochlorite as the irrigant. Formocresol, Ledermix, and calcium hydroxide were placed in strict sequence irrespective of the presence or absence of symptoms or radiographic signs of apical periodontitis. The patients were given written post-operative instructions and a prescription for 600 mg ibuprofen to be taken if mild to moderate pain developed. If severe pain and/or swelling developed the patient was instructed to call the office immediately and was considered to have had a flare-up. Twelve flare-ups occurred in teeth with radiographic signs of apical periodontitis; none in teeth without periapical radiolucencies. Six of the twelve flare-ups occurred in retreatment cases and the other six occurred in teeth without previous endodontic treatment. No significant difference was found in the flare-up rate among the three intracanal medicaments.

  5. International consensus for a definition of disease flare in lupus.

    Science.gov (United States)

    Ruperto, N; Hanrahan, L M; Alarcón, G S; Belmont, H M; Brey, R L; Brunetta, P; Buyon, J P; Costner, M I; Cronin, M E; Dooley, M A; Filocamo, G; Fiorentino, D; Fortin, P R; Franks, A G; Gilkeson, G; Ginzler, E; Gordon, C; Grossman, J; Hahn, B; Isenberg, D A; Kalunian, K C; Petri, M; Sammaritano, L; Sánchez-Guerrero, J; Sontheimer, R D; Strand, V; Urowitz, M; von Feldt, J M; Werth, V P; Merrill, J T

    2011-04-01

    The Lupus Foundation of America (LFA) convened an international working group to obtain a consensus definition of disease flare in lupus. With help from the Paediatric Rheumatology International Trials Organization (PRINTO), two web-based Delphi surveys of physicians were conducted. Subsequently, the LFA held a second consensus conference followed by a third Delphi survey to reach a community-wide agreement for flare definition. Sixty-nine of the 120 (57.5%) polled physicians responded to the first survey. Fifty-nine of the responses were available to draft 12 preliminary statements, which were circulated in the second survey. Eighty-seven of 118 (74%) physicians completed the second survey, with an agreement of 70% for 9/12 (75%) statements. During the second conference, three alternative flare definitions were consolidated and sent back to the international community. One hundred and sixteen of 146 (79.5%) responded, with agreement by 71/116 (61%) for the following definition: "A flare is a measurable increase in disease activity in one or more organ systems involving new or worse clinical signs and symptoms and/or laboratory measurements. It must be considered clinically significant by the assessor and usually there would be at least consideration of a change or an increase in treatment." The LFA proposes this definition for lupus flare on the basis of its high face validity.

  6. Energy storage and deposition in a solar flare

    Science.gov (United States)

    Vorpahl, J. A.

    1976-01-01

    X-ray pictures of a solar flare taken with the S-056 X-ray telescope aboard Skylab are interpreted in terms of flare energy deposition and storage. The close similarity between calculated magnetic-field lines and the overall structure of the X-ray core is shown to suggest that the flare occurred in an entire arcade of loops. It is found that different X-ray features brightened sequentially as the flare evolved, indicating that some triggering disturbance moved from one side to the other in the flare core. A propagation velocity of 180 to 280 km/s is computed, and it is proposed that the geometry of the loop arcade strongly influenced the propagation of the triggering disturbance as well as the storage and site of the subsequent energy deposition. Some possible physical causes for the sequential X-ray brightening are examined, and a magnetosonic wave is suggested as the triggering disturbance. 'Correct' conditions for energy release are considered

  7. Modelling Quasi-Periodic Pulsations in Solar and Stellar Flares

    Science.gov (United States)

    McLaughlin, J. A.; Nakariakov, V. M.; Dominique, M.; Jelínek, P.; Takasao, S.

    2018-02-01

    Solar flare emission is detected in all EM bands and variations in flux density of solar energetic particles. Often the EM radiation generated in solar and stellar flares shows a pronounced oscillatory pattern, with characteristic periods ranging from a fraction of a second to several minutes. These oscillations are referred to as quasi-periodic pulsations (QPPs), to emphasise that they often contain apparent amplitude and period modulation. We review the current understanding of quasi-periodic pulsations in solar and stellar flares. In particular, we focus on the possible physical mechanisms, with an emphasis on the underlying physics that generates the resultant range of periodicities. These physical mechanisms include MHD oscillations, self-oscillatory mechanisms, oscillatory reconnection/reconnection reversal, wave-driven reconnection, two loop coalescence, MHD flow over-stability, the equivalent LCR-contour mechanism, and thermal-dynamical cycles. We also provide a histogram of all QPP events published in the literature at this time. The occurrence of QPPs puts additional constraints on the interpretation and understanding of the fundamental processes operating in flares, e.g. magnetic energy liberation and particle acceleration. Therefore, a full understanding of QPPs is essential in order to work towards an integrated model of solar and stellar flares.

  8. Interactive Multi-Instrument Database of Solar Flares

    Science.gov (United States)

    Ranjan, Shubha S.; Spaulding, Ryan; Deardorff, Donald G.

    2018-01-01

    The fundamental motivation of the project is that the scientific output of solar research can be greatly enhanced by better exploitation of the existing solar/heliosphere space-data products jointly with ground-based observations. Our primary focus is on developing a specific innovative methodology based on recent advances in "big data" intelligent databases applied to the growing amount of high-spatial and multi-wavelength resolution, high-cadence data from NASA's missions and supporting ground-based observatories. Our flare database is not simply a manually searchable time-based catalog of events or list of web links pointing to data. It is a preprocessed metadata repository enabling fast search and automatic identification of all recorded flares sharing a specifiable set of characteristics, features, and parameters. The result is a new and unique database of solar flares and data search and classification tools for the Heliophysics community, enabling multi-instrument/multi-wavelength investigations of flare physics and supporting further development of flare-prediction methodologies.

  9. Radiation dose from solar flares at ground level

    International Nuclear Information System (INIS)

    O'Brien, K.

    1979-01-01

    Wdowczyk and Wolfendale (Nature, 268, 510, 1977) concluded that a very large solar flare producing exposure of 10 4 rad at ground level (lethal to almost any organism) has a possible frequency of once per 10 5 -10 8 yr. In the work reported similar results were obtained using a more elaborate model. Flares occuring from February 1956 to August 1972 were analyzed. The flare size distribution above the earth's atmosphere, and neutron flux, dose and dose equivalent at ground level at the latitude of Deep River, Canada, were calculated. The probable frequency of flares delivering various doses are given. Doses larger than 100 rad which have significant somatic effects on man and other animals may be delivered once in 10 6 years. The probability of 10 4 rad was found to be 10 -8 /yr. These calculations apply only to high geomagnetic latitudes. Field reversals during which the geomagnetic field is much weaker than current values total about 10% of the past 4 million years. This suggests that a very large flare delivering a large dose worldwide at ground level cannot be ruled out. (author)

  10. Anti-neutrino imprint in solar neutrino flare

    Science.gov (United States)

    Fargion, D.

    2006-10-01

    A future neutrino detector at megaton mass might enlarge the neutrino telescope thresholds revealing cosmic supernova background and largest solar flares (SFs) neutrinos. Indeed the solar energetic (Ep>100 MeV) flare particles (protons, α), while scattering among themselves on solar corona atmosphere must produce prompt charged pions, whose chain decays are source of a solar (electron muon) neutrino 'flare' (at tens or hundreds MeV energy). These brief (minutes) neutrino 'bursts' at largest flare peak may overcome by three to five orders of magnitude the steady atmospheric neutrino noise on the Earth, possibly leading to their detection above detection thresholds (in a full mixed three flavour state). Moreover the birth of anti-neutrinos at a few tens of MeV very clearly flares above a null thermal 'hep' anti-neutrino solar background and also above a tiny supernova relic and atmospheric noise. The largest prompt solar anti-neutrino 'burst' may be well detected in future Super Kamikande (gadolinium implemented) anti-neutrino \\bar\

  11. Diagnosing and quantification of acute alcohol intoxication. Comparison of dual-energy CT with biochemical analysis. Initial experience

    International Nuclear Information System (INIS)

    Korkusuz, H.; Abbas Raschidi, B.; Keese, D.; Kromen, W.; Bauer, R.W.; Vogl, T.J.; Namgaladze, D.

    2012-01-01

    Purpose: To quantify the correlation between fat content of an acute alcohol intoxication and the difference of computer tomography attenuation value in dual-energy CT in comparison to biochemical triglyceride analysis and to evaluate qualitatively the value of DECT in the diagnosis of fatty liver caused by ethanol-dosage in rats. Materials and Methods: DECT at 140 kV and 80 kV was performed on 20 rats before and two days after the administration of 3 ml of 50 % ethanol. The CT attenuation value in the livers at 140 kV, 80 kV and the differences between them in Hounsfield units (ΔH) were collected. Parts of the liver (100 mg) were measured in biochemical triglyceride analysis as the reference standard. A blood sample was also taken to measure specific liver enzymes. Results: Linear correlation between biochemical triglyceride analysis and CT density of ΔH was found (r = 0.949). 140 kV attenuation data were between 44 HU and 61.3 HU, 80 kV attenuation data were between 58.4 HU and 64.7 HU, and ΔH data were between 3.4 HU and 14.4 HU (p ≤ 0.037). The biochemical triglyceride analysis data were between 7.1 mg/g and 41.1 mg/g. The hepatic enzymes serum aspartate (ASAT) aminotransferase and alanine aminotransferase (ALAT) were elevated in all rats. ASAT correlated directly with ΔHU (r = -0.86). Conclusion: DECT provides a non-invasive method to determine and evaluate hepatic fat content after acute alcohol intoxication. It provides the possibility to detect and quantify the hepatic fat content of liver graft. (orig.)

  12. An Initial Cross-Cultural Comparison of Adult Playfulness in Mainland China and German-Speaking Countries

    Directory of Open Access Journals (Sweden)

    Dandan Pang

    2018-03-01

    Full Text Available Compared with playfulness in infants and children, playfulness in adults is relatively under-studied. Although there is no empirical research comparing differences in adult playfulness across cultures, one might expect variations between Western and Eastern societies such as China. While playfulness is typically seen as a positive trait in Western culture, there are hints in Chinese culture that being playful has negative connotations (e.g., associations with laziness and seeing play as the opposite of work. The aim of this study was to compare expressions of playfulness in one sample from German-speaking countries (n = 143 and two samples from China (Guangzhou: n = 176; Beijing: n = 100. Participants completed one playfulness scale developed in the West (Short Measure of Adult Playfulness, SMAP and one from the East (Adult Playfulness Questionnaire, APQ. Additional ratings of the participants were collected to measure: (a the level of playful behavior expressed by people in different situations (e.g., when being around family members, in public, or on social media, and (b individuals’ perceptions of society’s expectations concerning the appropriateness of being playful in the given situations. Overall, the results of the comparisons were mixed. Although SMAP scores did not vary significantly across the three samples, people from German-speaking countries tended to score higher on some facets of the APQ and some situational ratings. Stronger effects were found when comparing only the German-speaking sample and the Guangzhou sample. In addition to the cross-cultural differences that we expected, we also detected Chinese regional variations (North vs. South. We conclude that societal rules and cultural factors may impact expressions of playfulness in a society.

  13. An Initial Cross-Cultural Comparison of Adult Playfulness in Mainland China and German-Speaking Countries

    Science.gov (United States)

    Pang, Dandan; Proyer, René T.

    2018-01-01

    Compared with playfulness in infants and children, playfulness in adults is relatively under-studied. Although there is no empirical research comparing differences in adult playfulness across cultures, one might expect variations between Western and Eastern societies such as China. While playfulness is typically seen as a positive trait in Western culture, there are hints in Chinese culture that being playful has negative connotations (e.g., associations with laziness and seeing play as the opposite of work). The aim of this study was to compare expressions of playfulness in one sample from German-speaking countries (n = 143) and two samples from China (Guangzhou: n = 176; Beijing: n = 100). Participants completed one playfulness scale developed in the West (Short Measure of Adult Playfulness, SMAP) and one from the East (Adult Playfulness Questionnaire, APQ). Additional ratings of the participants were collected to measure: (a) the level of playful behavior expressed by people in different situations (e.g., when being around family members, in public, or on social media), and (b) individuals’ perceptions of society’s expectations concerning the appropriateness of being playful in the given situations. Overall, the results of the comparisons were mixed. Although SMAP scores did not vary significantly across the three samples, people from German-speaking countries tended to score higher on some facets of the APQ and some situational ratings. Stronger effects were found when comparing only the German-speaking sample and the Guangzhou sample. In addition to the cross-cultural differences that we expected, we also detected Chinese regional variations (North vs. South). We conclude that societal rules and cultural factors may impact expressions of playfulness in a society. PMID:29651265

  14. An Initial Cross-Cultural Comparison of Adult Playfulness in Mainland China and German-Speaking Countries.

    Science.gov (United States)

    Pang, Dandan; Proyer, René T

    2018-01-01

    Compared with playfulness in infants and children, playfulness in adults is relatively under-studied. Although there is no empirical research comparing differences in adult playfulness across cultures, one might expect variations between Western and Eastern societies such as China. While playfulness is typically seen as a positive trait in Western culture, there are hints in Chinese culture that being playful has negative connotations (e.g., associations with laziness and seeing play as the opposite of work). The aim of this study was to compare expressions of playfulness in one sample from German-speaking countries ( n = 143) and two samples from China (Guangzhou: n = 176; Beijing: n = 100). Participants completed one playfulness scale developed in the West (Short Measure of Adult Playfulness, SMAP) and one from the East (Adult Playfulness Questionnaire, APQ). Additional ratings of the participants were collected to measure: (a) the level of playful behavior expressed by people in different situations (e.g., when being around family members, in public, or on social media), and (b) individuals' perceptions of society's expectations concerning the appropriateness of being playful in the given situations. Overall, the results of the comparisons were mixed. Although SMAP scores did not vary significantly across the three samples, people from German-speaking countries tended to score higher on some facets of the APQ and some situational ratings. Stronger effects were found when comparing only the German-speaking sample and the Guangzhou sample. In addition to the cross-cultural differences that we expected, we also detected Chinese regional variations (North vs. South). We conclude that societal rules and cultural factors may impact expressions of playfulness in a society.

  15. Comparison of initial high resolution computed tomography features in viral pneumonia between metapneumovirus infection and severe acute respiratory syndrome

    International Nuclear Information System (INIS)

    Wong, Cheuk Kei Kathy; Lai, Vincent; Wong, Yiu Chung

    2012-01-01

    Objective: To review and compare initial high resolution computed tomography (HRCT) findings in patients with metapneumovirus pneumonia and severe acute respiratory syndrome (SARS-Coronovirus). Materials and methods: 4 cases of metapneumovirus pneumonia (mean age of 52.3 years) in an institutional outbreak (Castle Peak Hospital) in 2008 and 38 cases of SARS-coronovirus (mean age of 39.6 years) admitted to Tuen Mun hospital during an epidemic outbreak in 2003 were included. HRCT findings of the lungs for all patients were retrospectively reviewed by two independent radiologists. Results: In the metapneumovirus group, common HRCT features were ground glass opacities (100%), consolidation (100%), parenchymal band (100%), bronchiectasis (75%). Crazy paving pattern was absent. They were predominantly subpleural and basal in location and bilateral involvement was observed in 50% of patients. In the SARS group, common HRCT features were ground glass opacities (92.1%), interlobular septal thickening (86.8%), crazy paving pattern (73.7%) and consolidation (68%). Bronchiectasis was not seen. Majority of patient demonstrated segmental or lobar in distribution and bilateral involvement was observed in 44.7% of patients. Pleural effusion and lymphadenopathy were of consistent rare features in both groups. Conclusion: Ground glass opacities, interlobular septal thickening and consolidations were consistent HRCT manifestations in both metapneumovirus infection and SARS. The presence of bronchiectasis (0% in SARS) may point towards metapneumovirus while crazy paving pattern is more suggestive of SARS.

  16. Some evidence on the evolution of the flare mechanism in dwarf stars

    Energy Technology Data Exchange (ETDEWEB)

    Skumanich, A.

    1986-10-01

    White-light flare parameters are estimated for the sun as a star. It is found that these parameters fall in the same domain as those for the dMe flare stars. In particular, it is found that the time-averaged flare power loss and quiescent coronal soft X-ray power loss at solar maximum satisfies the recently proposed flare power-coronal X-ray relation for dMe stars (Doyle and Butler; Skumanich). In addition, one finds that dM stars, which are believed to be magnetically evolved dMe stars, also satisfy the same relation. On this basis, an evolutionary scenario is suggested for the flare mechanism in which the total flare rate remains, more or less, constant but the mean flare yield decreases linearly with coronal X-ray strength. It is also suggested that the flare mechanism is universal in all magnetically active dwarfs. 48 references.

  17. Twin Screw Extruder Production of MTTP Decoy Flares SERDP WP-1240

    National Research Council Canada - National Science Library

    Campbell, Carol

    2005-01-01

    The objective of this effort is to develop an environmentally acceptable decoy flare formulation and process to produce aircraft decoy flares without the use of HAP or Volatile Organic Compounds (VOC...

  18. Transient behavior of a flare-associated solar wind. I - Gas dynamics in a radial open field region

    Science.gov (United States)

    Nagai, F.

    1984-01-01

    A numerical investigation is conducted into the way in which a solar wind model initially satisfying both steady state and energy balance conditions is disturbed and deformed, under the assumption of heating that correspoonds to the energy release of solar flares of an importance value of approximately 1 which occur in radial open field regions. Flare-associated solar wind transient behavior is modeled for 1-8 solar radii. The coronal temperature around the heat source region rises, and a large thermal conductive flux flows inward to the chromosphere and outward to interplanetary space along field lines. The speed of the front of expanding chromospheric material generated by the impingement of the conduction front on the upper chromosphere exceeds the local sound velocity in a few minutes and eventually exceeds 100 million cm/sec.

  19. OSO-8 observations of the impulsive phase of solar flares in the transition-zone and corona

    Science.gov (United States)

    Lites, B. W.; Bruner, E. C., Jr.; Wolfson, C. J.

    1981-01-01

    Several solar flares were observed from their onset in C IV 1548.2 A and 1-8 A X-rays using instruments on OSO-8. It is found that impulsive brightening in C IV is often accompanied by redshifts, interpreted as downflows, of the order of 80 km/s. The maximum soft X-ray intensity usually arrives several minutes after the maximum C IV intensity. The most energetic C IV event observed shows a small blueshift just before reaching maximum intensity; estimates of the mass flux associated with this upflow through the transition zone are consistent with the increase of mass in the coronal loops as observed in soft X-rays. Finally, it is suggested that the frequent occurrence of violent dynamical processes at the onset of the flare is associated with the initial energy release mechanism.

  20. Well-observed dynamics of flaring and peripheral coronal magnetic loops during an M-class limb flare

    International Nuclear Information System (INIS)

    Shen, Jinhua; Zhou, Tuanhui; Ji, Haisheng; Feng, Li; Wiegelmann, Thomas; Inhester, Bernd

    2014-01-01

    In this paper, we present a variety of well-observed dynamic behaviors for the flaring and peripheral magnetic loops of the M6.6 class extreme limb flare that occurred on 2011 February 24 (SOL2011-02-24T07:20) from EUV observations by the Atmospheric Imaging Assembly on the Solar Dynamics Observatory and X-ray observations by RHESSI. The flaring loop motion confirms the earlier contraction-expansion picture. We find that the U-shaped trajectory delineated by the X-ray corona source of the flare roughly follows the direction of a filament eruption associated with the flare. Different temperature structures of the coronal source during the contraction and expansion phases strongly suggest different kinds of magnetic reconnection processes. For some peripheral loops, we discover that their dynamics are closely correlated with the filament eruption. During the slow rising to abrupt, fast rising of the filament, overlying peripheral magnetic loops display different responses. Two magnetic loops on the elbow of the active region had a slow descending motion followed by an abrupt successive fast contraction, while magnetic loops on the top of the filament were pushed outward, slowly being inflated for a while and then erupting as a moving front. We show that the filament activation and eruption play a dominant role in determining the dynamics of the overlying peripheral coronal magnetic loops.

  1. Comparison of gridded versus observation data to initialize ARAC dispersion models for the Algeciras, Spain steel mill CS-137 release

    International Nuclear Information System (INIS)

    Aluzzi, F J; Pace, J C; Pobanz, B M; Vogt, P J

    1999-01-01

    On May 30, 1998 scrap metal containing radioactive Cesium-137 (Cs-137) was accidentally melted in a furnace at the Acerinox steel mill in Algeciras, Spain. Cs-137 was released from the mill's smokestack, and spread across the western Mediterranean Sea to France and Italy and beyond. The first indication of the release was radiation levels up to 1000 times background reported by Swiss, French, and Italian authorities during the following two weeks. Initially no elevated radiation levels were detected over Spain. A release of hazardous material to the atmosphere is the type of situation the Atmospheric Release Advisory Capability (ARAC) emergency response organization was designed to address. The amount and exact time of the release were unknown, though the incident was thought to have taken place during the last week in May. Using air concentration measurements supplied by colleagues of ARAC in Spain, France, Switzerland, Italy, Sweden, Russia and the European Union, ARAC meteorologists estimated the magnitude and timing of the release (Vogt, 1999). Correctly locating the downwind footprint is the most important goal of emergency response modeling. In this study, we compare predicted results for the Algeciras event based on four wind data sources: (1) US Navy Operational Global Atmospheric Prediction System (NOGAPS) data alone, (2) surface and upper air observations alone, (3) NOGAPS data together with surface and upper air observations, and (4) forecasts from ARAC's in-house execution of the U.S. Navy Operational Regional Atmospheric Prediction System (NORAPS) (without surface or upper air observations). We compare the resulting dispersion predictions from ARAC's diagnostic dispersion modeling system to the measurements supplied by our European colleagues to determine which data source produced the best results

  2. Comparison of the microstructure, deformation and crack initiation behavior of austenitic stainless steel irradiated in-reactor or with protons

    Science.gov (United States)

    Stephenson, Kale J.; Was, Gary S.

    2015-01-01

    The objective of this study was to compare the microstructures, microchemistry, hardening, susceptibility to IASCC initiation, and deformation behavior resulting from proton or reactor irradiation. Two commercial purity and six high purity austenitic stainless steels with various solute element additions were compared. Samples of each alloy were irradiated in the BOR-60 fast reactor at 320 °C to doses between approximately 4 and 12 dpa or by a 3.2 MeV proton beam at 360 °C to a dose of 5.5 dpa. Irradiated microstructures consisted mainly of dislocation loops, which were similar in size but lower in density after proton irradiation. Both irradiation types resulted in the formation of Ni-Si rich precipitates in a high purity alloy with added Si, but several other high purity neutron irradiated alloys showed precipitation that was not observed after proton irradiation, likely due to their higher irradiation dose. Low densities of small voids were observed in several high purity proton irradiated alloys, and even lower densities in neutron irradiated alloys, implying void nucleation was in process. Elemental segregation at grain boundaries was very similar after each irradiation type. Constant extension rate tensile experiments on the alloys in simulated light water reactor environments showed excellent agreement in terms of the relative amounts of intergranular cracking, and an analysis of localized deformation after straining showed a similar response of cracking to surface step height after both irradiation types. Overall, excellent agreement was observed after proton and reactor irradiation, providing additional evidence that proton irradiation is a useful tool for accelerated testing of irradiation effects in austenitic stainless steel.

  3. Comparison of the initial orthodontic force systems produced by a new lingual bracket system and a straight-wire appliance.

    Science.gov (United States)

    Fuck, Lars-Michael; Wiechmann, Dirk; Drescher, Dieter

    2005-09-01

    Over the last few years, lingual appliances have become an established orthodontic treatment technique. Many studies have concentrated on various esthetic aspects, on laboratory and clinical procedures, and on patient comfort and compliance. The orthodontic force systems of these appliances, however, have not yet been investigated. The aim of this study was thus to determine the forces and moments produced by a new lingual bracket system during the leveling phase of orthodontic treatment and to compare those with the corresponding force system of a labial straight-wire appliance. The intra-oral situation of ten patients undergoing orthodontic treatment was replicated in measurement casts fitted with lingual and labial brackets. Special care was taken to precisely reproduce each patient's interbracket geometry. We measured each tooth's force systems as generated by a leveling arch inserted into the lingual and labial brackets. The resulting force systems of both appliances were found to be quite similar with regard to the magnitude of most force and moment components. Only the first molars were subjected to considerably greater single forces with the lingual appliance. Tipping moments were found to be significantly smaller with the lingual technique, whereas the rotational moments were significantly smaller with the labial appliance. All in all we noted significant differences between the two techniques only in certain areas which upon closer examination were distributed over only a few tooth types. The initial force systems produced by the new lingual bracket system proved to be comparable with those delivered by a conventional straight-wire appliance. The actual levels of forces and moments, however, were found in certain cases to be too heavy with both techniques. We therefore recommend the development of leveling wires producing considerably lighter forces and moments.

  4. Comparison of the microstructure, deformation and crack initiation behavior of austenitic stainless steel irradiated in-reactor or with protons

    Energy Technology Data Exchange (ETDEWEB)

    Stephenson, Kale J., E-mail: kalejs@umich.edu; Was, Gary S.

    2015-01-15

    Highlights: • Dislocation loops were the prominent defect, but neutron irradiation caused higher loop density. • Grain boundaries had similar amounts of radiation-induced segregation. • The increment in hardness and yield stress due to irradiation were very similar. • Relative IASCC susceptibility was nearly identical. • The effect of dislocation channel step height on IASCC was similar. - Abstract: The objective of this study was to compare the microstructures, microchemistry, hardening, susceptibility to IASCC initiation, and deformation behavior resulting from proton or reactor irradiation. Two commercial purity and six high purity austenitic stainless steels with various solute element additions were compared. Samples of each alloy were irradiated in the BOR-60 fast reactor at 320 °C to doses between approximately 4 and 12 dpa or by a 3.2 MeV proton beam at 360 °C to a dose of 5.5 dpa. Irradiated microstructures consisted mainly of dislocation loops, which were similar in size but lower in density after proton irradiation. Both irradiation types resulted in the formation of Ni–Si rich precipitates in a high purity alloy with added Si, but several other high purity neutron irradiated alloys showed precipitation that was not observed after proton irradiation, likely due to their higher irradiation dose. Low densities of small voids were observed in several high purity proton irradiated alloys, and even lower densities in neutron irradiated alloys, implying void nucleation was in process. Elemental segregation at grain boundaries was very similar after each irradiation type. Constant extension rate tensile experiments on the alloys in simulated light water reactor environments showed excellent agreement in terms of the relative amounts of intergranular cracking, and an analysis of localized deformation after straining showed a similar response of cracking to surface step height after both irradiation types. Overall, excellent agreement was observed

  5. Comparison of Quality Oncology Practice Initiative (QOPI) Measure Adherence Between Oncology Fellows, Advanced Practice Providers, and Attending Physicians.

    Science.gov (United States)

    Zhu, Jason; Zhang, Tian; Shah, Radhika; Kamal, Arif H; Kelley, Michael J

    2015-12-01

    Quality improvement measures are uniformly applied to all oncology providers, regardless of their roles. Little is known about differences in adherence to these measures between oncology fellows, advance practice providers (APP), and attending physicians. We investigated conformance across Quality Oncology Practice Initiative (QOPI) measures for oncology fellows, advance practice providers, and attending physicians at the Durham Veterans Affairs Medical Center (DVAMC). Using data collected from the Spring 2012 and 2013 QOPI cycles, we abstracted charts of patients and separated them based on their primary provider. Descriptive statistics and the chi-square test were calculated for each QOPI measure between fellows, advanced practice providers (APPs), and attending physicians. A total of 169 patients were reviewed. Of these, 31 patients had a fellow, 39 had an APP, and 99 had an attending as their primary oncology provider. Fellows and attending physicians performed similarly on 90 of 94 QOPI metrics. High-performing metrics included several core QOPI measures including documenting consent for chemotherapy, recommending adjuvant chemotherapy when appropriate, and prescribing serotonin antagonists when prescribing emetogenic chemotherapies. Low-performing metrics included documentation of treatment summary and taking action to address problems with emotional well-being by the second office visit. Attendings documented the plan for oral chemotherapy more often (92 vs. 63%, P=0.049). However, after the chart audit, we found that fellows actually documented the plan for oral chemotherapy 88% of the time (p=0.73). APPs and attendings performed similarly on 88 of 90 QOPI measures. The quality of oncology care tends to be similar between attendings and fellows overall; some of the significant differences do not remain significant after a second manual chart review, highlighting that the use of manual data collection for QOPI analysis is an imperfect system, and there may

  6. Comparison of Initial Response of Nebulized Salbutamol and Adrenaline in Infants and young Children Admitted with Acute Bronchiolitis.

    Science.gov (United States)

    Adhikari, S; Thapa, P; Rao, K S; Bk, G

    2016-01-01

    Background Acute bronchiolitis is common cause of hospitalization in infants and young children. There are widespread variations in the diagnosis and management. Despite the use of bronchodilators for decades, there is lack of consensus for the benefit of one above another. Objective To compare initial response of nebulized adrenaline and salbutamol. Method Children aged two months to two years admitted with acute bronchiolitis in the department of Paediatrics of Manipal teaching hospital, Pokhara, Nepal, from 1st March 2014 to 28th February 2015 were enrolled. Patients fulfilling inclusion criteria received either adrenaline or salbutamol nebulization. Data were collected in a predesigned proforma. Respiratory distress assessment instrument (RDAI) scores were considered primary outcome measure and respiratory rate at 48 hours, duration of hospital stay, requirement of supplemental oxygen and intravenous fluid were considered secondary outcome measure. Result A total of 40 patients were enrolled in each study group. Mean RDAI scores at admission was in 9.75 with (CI- 9.01, 10.49) in adrenaline and 9.77 (CI- 9.05, 10.50) in salbutamol group. There was gradual decline in mean RDAI scores in both the groups over 48 hours to 4.15 (CI- 3.57,4.73) and 4.13 (CI- 3.69,4.56) in adrenaline and salbutamol group respectively. Hospital stay was 5.32 days in adrenaline and 5.68 days in salbutamol group. Patients nebulized with adrenaline required oxygen for 33.30 hours compared with 36.45 hours in salbutamol. Intravenous fluid duration was also less in adrenaline group compared to salbutamol group (33.15 vs 37.80 hours). Conclusion Patients of acute bronchiolitis nebulized with either salbutamol or adrenaline experienced similar decline in RDAI scores in the first 48 hours. Duration of supplementary oxygen and intravenous fluid was less in adrenaline group compared with salbutamol group.

  7. HIGH-ENERGY NEUTRINOS FROM RECENT BLAZAR FLARES

    Energy Technology Data Exchange (ETDEWEB)

    Halzen, Francis; Kheirandish, Ali [Wisconsin IceCube Particle Astrophysics Center and Department of Physics, University of Wisconsin, Madison, WI 53706 (United States)

    2016-11-01

    The energy density of cosmic neutrinos measured by IceCube matches the one observed by Fermi in extragalactic photons that predominantly originate in blazars. This has inspired attempts to match Fermi sources with IceCube neutrinos. A spatial association combined with a coincidence in time with a flaring source may represent a smoking gun for the origin of the IceCube flux. In 2015 June, the Fermi Large Area Telescope observed an intense flare from blazar 3C 279 that exceeded the steady flux of the source by a factor of 40 for the duration of a day. We show that IceCube is likely to observe neutrinos, if indeed hadronic in origin, in data that are still blinded at this time. We also discuss other opportunities for coincident observations that include a recent flare from blazar 1ES 1959+650 that previously produced an intriguing coincidence with AMANDA observations.

  8. SIGN SINGULARITY AND FLARES IN SOLAR ACTIVE REGION NOAA 11158

    Energy Technology Data Exchange (ETDEWEB)

    Sorriso-Valvo, L.; De Vita, G. [IMIP-CNR, U.O.S. LICRYL di Cosenza, Ponte P. Bucci, Cubo 31C, I-87036 Rende (Italy); Kazachenko, M. D.; Krucker, S.; Welsch, B. T.; Fisher, G. H. [Space Sciences Laboratory, University of California, 7 Gauss Way, Berkeley 94720, California (United States); Primavera, L.; Servidio, S.; Lepreti, F.; Carbone, V. [Dipartimento di Fisica, Università della Calabria, Ponte P. Bucci, Cubo 31C, I-87036 Rende (Italy); Vecchio, A., E-mail: sorriso@fis.unical.it [INGV, Sede di Cosenza, Ponte P. Bucci, Cubo 30C, I-87036 Rende (Italy)

    2015-03-01

    Solar Active Region NOAA 11158 has hosted a number of strong flares, including one X2.2 event. The complexity of current density and current helicity are studied through cancellation analysis of their sign-singular measure, which features power-law scaling. Spectral analysis is also performed, revealing the presence of two separate scaling ranges with different spectral index. The time evolution of parameters is discussed. Sudden changes of the cancellation exponents at the time of large flares and the presence of correlation with Extreme-Ultra-Violet and X-ray flux suggest that eruption of large flares can be linked to the small-scale properties of the current structures.

  9. The Solar Flare: A Strongly Turbulent Particle Accelerator

    Science.gov (United States)

    Vlahos, L.; Krucker, S.; Cargill, P.

    The topics of explosive magnetic energy release on a large scale (a solar flare) and particle acceleration during such an event are rarely discussed together in the same article. Many discussions of magnetohydrodynamic (MHD) mod- eling of solar flares and/or CMEs have appeared (see [143] and references therein) and usually address large-scale destabilization of the coronal mag- netic field. Particle acceleration in solar flares has also been discussed exten- sively [74, 164, 116, 166, 87, 168, 95, 122, 35] with the main emphasis being on the actual mechanisms for acceleration (e.g., shocks, turbulence, DC electric fields) rather than the global magnetic context in which the acceleration takes place.

  10. MR Persei - A new rotating, spotted flare star

    Science.gov (United States)

    Honeycutt, R. K.; Turner, G. W.; Vesper, D. N.; Schlegel, E. M.

    1992-01-01

    Spectroscopy and photometry are used to show that MR Persei, an object originally classified as a dwarf nova, is in fact a flare star. The automated CCD photometry consists of sequences of exposures within a single night as well as long-term photometry over a five-month interval. One sequence shows a 30-min flare, accompanied by post-flare 'dips'. A 0.2 mag variation with a period of about one-half day is also seen in this sequence. The long-term photometry is used to refine the period to 0.45483 d, which we attribute to the rotation of a spotted star. Evidence for membership of MR Per in the young Alpha Per cluster is considered, and found to be inconclusive.

  11. High-energy particles associated with solar flares

    International Nuclear Information System (INIS)

    Sakurai, K.; Klimas, A.J.

    1974-05-01

    High energy particles, the so-called solar cosmic rays, are often generated in association with solar flares, and then emitted into interplanetary space. These particles, consisting of electrons, protons, and other heavier nuclei, including the iron-group, are accelerated in the vicinity of the flare. By studying the temporal and spatial variation of these particles near the earth's orbit, their storage and release mechanisms in the solar corona and their propagation mechanism can be understood. The details of the nuclear composition and the rigidity spectrum for each nuclear component of the solar cosmic rays are important for investigating the acceleration mechanism in solar flares. The timing and efficiency of the acceleration process can also be investigated by using this information. These problems are described in some detail by using observational results on solar cosmic rays and associated phenomena. (U.S.)

  12. Factors associated with endodontic flare-ups: a prospective study.

    Science.gov (United States)

    Imura, N; Zuolo, M L

    1995-09-01

    The purpose of this prospective study was to assess the incidence of flare-ups (a severe problem requiring an unscheduled visit and treatment) among patients who received endodontic treatment by the two authors in their respective practices during a period of one year, and also to examine the correlation with pre-operative and operative variables. The results showed an incidence of 1.58% for flare-ups from 1012 endodontically treated teeth. Statistical analysis using the chi-square test (Pflare-ups were found to be positively correlated with multiple appointments, retreatment cases, periradicular pain prior to treatment, presence of radiolucent lesions, and patients taking analgesic or anti-inflammatory drugs. In contrast, there was no correlation between flare-up, and age, sex, different arch/tooth groups and the status of the pulp.

  13. Are All Flare Ribbons Simply Connected to the Corona?

    Energy Technology Data Exchange (ETDEWEB)

    Judge, Philip G. [High Altitude Observatory, National Center for Atmospheric Research, P.O. Box 3000, Boulder, CO 80307-3000 (United States); Paraschiv, Alin; Lacatus, Daniela; Donea, Alina [Monash Center for Astrophysics, School of Mathematical Science, Monash University, Victoria 3800 (Australia); Lindsey, Charlie, E-mail: judge@ucar.edu, E-mail: alina.donea@monash.edu, E-mail: alin.paraschiv@monash.edu, E-mail: daniela.lacatus@monash.edu, E-mail: indsey@cora.nwra.com [Northwest Research Associates, 3380 Mitchell Lane, Boulder, CO 80301 (United States)

    2017-04-01

    We consider the observational basis for the belief that flare ribbons in the chromosphere result from energy transport from the overlying corona. We study ribbons of small flares using magnetic and intensity data from the Hinode , Solar Dynamics Observatory , and IRIS missions. While most ribbons appear connected to the corona and overlie regions of significant vertical magnetic field, we examine one ribbon with no clear evidence for such connections. Evolving horizontal magnetic fields seen with Hinode suggest that reconnection with preexisting fields below the corona can explain the data. The identification of just one, albeit small, ribbon, with no apparent connection to the corona, leads us to conclude that at least two mechanisms are responsible for the heating that leads to flare ribbon emission.

  14. Photographic colorimetry of stellar flares in the Pleiades and Orion. II

    International Nuclear Information System (INIS)

    Mirzoian, L.V.; Chavushian, O.S.; Melikian, N.D.; Natsvlishvili, R.Sh.; Ambarian, V.V.; Brutian, G.A.

    1984-01-01

    Synchronous three-telescope UBV photographic colorimetry of Pleiades and Orion stellar flares obtained at Biurakan Astrophysical Observatory and Abastumani Astrophysical Observatory during 86 observing hours in 1980 and 1981 is presented. The data are compiled in tables and discussed in terms of color differences appearing at different stages of a flare. A total of 32 flares are observed (25 in the Pleiades and 7 in Orion), and four new flare stars are identified in each region. 12 references

  15. Fifty per cent reduction in solution gas flaring : a report to the Saddle Hills Awareness Committee

    International Nuclear Information System (INIS)

    1999-01-01

    Information by the Alberta Energy Company to the Saddle Hills Awareness Committee (SHAC) regarding company operations in the West Peace River Arch of the western Canadian Sedimentary Basin in northwest Alberta is presented, the purpose being to bring the Committee up-to-date, and respond to concerns about the health effects of sour gas emissions. The SHAC represents citizens who are concerned about issues relating to sour gas emissions. AEC West, a business unit of Alberta Energy Company, operates two sour gas processing plants, one sweet gas plant and three sour oil batteries in the Grande Prairie area. AEC's gas plants are connected by pipelines and process petroleum and natural gas products from approximately 200 oil and gas wells. The H 2 S content of the natural gas being processed by AEC's various plants ranges from trace amounts to 11 per cent. Activities at AEC's Hythe plant and at the Sexsmith plant, and the company's gas storage project are briefly reviewed. An analysis is included of the role that flaring plays in the petroleum and natural gas industry, emphasizing AEC West's efforts during 1997 to reduce solution gas flaring volumes from single well oil batteries by 50 per cent. Other AEC West environmental protection initiatives include the preliminary regional airshed study sponsored by the company which resulted in part from SHAC feedback and in part from the innovative approach of AEC employees. AEC West established the industry's first Ombudsman to provide a problem resolution focus on landowner complaints and introduced a policy of making available solution gas that would eventually be flared to industrial colleagues, free of charge

  16. Current Fragmentation and Particle Acceleration in Solar Flares

    Science.gov (United States)

    Cargill, P. J.; Vlahos, L.; Baumann, G.; Drake, J. F.; Nordlund, Å.

    2012-11-01

    Particle acceleration in solar flares remains an outstanding problem in plasma physics and space science. While the observed particle energies and timescales can perhaps be understood in terms of acceleration at a simple current sheet or turbulence site, the vast number of accelerated particles, and the fraction of flare energy in them, defies any simple explanation. The nature of energy storage and dissipation in the global coronal magnetic field is essential for understanding flare acceleration. Scenarios where the coronal field is stressed by complex photospheric motions lead to the formation of multiple current sheets, rather than the single monolithic current sheet proposed by some. The currents sheets in turn can fragment into multiple, smaller dissipation sites. MHD, kinetic and cellular automata models are used to demonstrate this feature. Particle acceleration in this environment thus involves interaction with many distributed accelerators. A series of examples demonstrate how acceleration works in such an environment. As required, acceleration is fast, and relativistic energies are readily attained. It is also shown that accelerated particles do indeed interact with multiple acceleration sites. Test particle models also demonstrate that a large number of particles can be accelerated, with a significant fraction of the flare energy associated with them. However, in the absence of feedback, and with limited numerical resolution, these results need to be viewed with caution. Particle in cell models can incorporate feedback and in one scenario suggest that acceleration can be limited by the energetic particles reaching the condition for firehose marginal stability. Contemporary issues such as footpoint particle acceleration are also discussed. It is also noted that the idea of a "standard flare model" is ill-conceived when the entire distribution of flare energies is considered.

  17. HOOKED FLARE RIBBONS AND FLUX-ROPE-RELATED QSL FOOTPRINTS

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, Jie; Li, Hui [Key Laboratory of Dark Matter and Space Astronomy, Purple Mountain Observatory, CAS, Nanjing 210008 (China); Gilchrist, Stuart A.; Aulanier, Guillaume; Schmieder, Brigitte; Pariat, Etienne, E-mail: nj.lihui@pmo.ac.cn [LESIA, Observatoire de Paris, PSL Research University, CNRS, Sorbonne Universités, UPMC Univ. Paris 06, Univ. Paris-Diderot, Sorbonne Paris Cité, 5 place Jules Janssen, F-92195 Meudon (France)

    2016-05-20

    We studied the magnetic topology of active region 12158 on 2014 September 10 and compared it with the observations before and early in the flare that begins at 17:21 UT (SOL2014-09-10T17:45:00). Our results show that the sigmoidal structure and flare ribbons of this active region observed by the Solar Dynamics Observatory /Atmospheric Imaging Assembly can be well reproduced from a Grad–Rubin nonlinear force-free field extrapolation method. Various inverse-S- and inverse-J-shaped magnetic field lines, which surround a coronal flux rope, coincide with the sigmoid as observed in different extreme-ultraviolet wavelengths, including its multithreaded curved ends. Also, the observed distribution of surface currents in the magnetic polarity where it was not prescribed is well reproduced. This validates our numerical implementation and setup of the Grad–Rubin method. The modeled double inverse-J-shaped quasi-separatrix layer (QSL) footprints match the observed flare ribbons during the rising phase of the flare, including their hooked parts. The spiral-like shape of the latter may be related to a complex pre-eruptive flux rope with more than one turn of twist, as obtained in the model. These ribbon-associated flux-rope QSL footprints are consistent with the new standard flare model in 3D, with the presence of a hyperbolic flux tube located below an inverse-teardrop-shaped coronal QSL. This is a new step forward forecasting the locations of reconnection and ribbons in solar flares and the geometrical properties of eruptive flux ropes.

  18. Thermodynamics of supra-arcade downflows in solar flares

    Science.gov (United States)

    Chen, Xin; Liu, Rui; Deng, Na; Wang, Haimin

    2017-10-01

    Context. Supra-arcade downflows (SADs) have been frequently observed during the gradual phase of solar flares near the limb. In coronal emission lines sensitive to flaring plasmas, they appear as tadpole-like dark voids against the diffuse fan-shaped "haze" above, flowing toward the well-defined flare arcade. Aims: We aim to investigate the evolution of SADs' thermal properties, and to shed light on the formation mechanism and physical processes of SADs. Methods: We carefully studied several selected SADs from two flare events and calculated their differential emission measures (DEMs) as well as DEM-weighted temperatures using data obtained by the Atmospheric Imaging Assembly (AIA) onboard the Solar Dynamic Observatory. Results: Our analysis shows that SADs are associated with a substantial decrease in DEM above 4 MK, which is 1-3 orders of magnitude smaller than the surrounding haze as well as the region before or after the passage of SADs, but comparable to the quiet corona. There is no evidence for the presence of the SAD-associated hot plasma (>20 MK) in the AIA data, and this decrease in DEM does not cause any significant change in the DEM distribution as well as the DEM-weighted temperature, which supports this idea that SADs are density depletion. This depression in DEM rapidly recovers in the wake of the SADs studied, generally within a few minutes, suggesting that they are discrete features. In addition, we found that SADs in one event are spatio-temporally associated with the successive formation of post-flare loops along the flare arcade. Movies associated to Figs. A.1 and A.2 are available at http://www.aanda.org

  19. HOOKED FLARE RIBBONS AND FLUX-ROPE-RELATED QSL FOOTPRINTS

    International Nuclear Information System (INIS)

    Zhao, Jie; Li, Hui; Gilchrist, Stuart A.; Aulanier, Guillaume; Schmieder, Brigitte; Pariat, Etienne

    2016-01-01

    We studied the magnetic topology of active region 12158 on 2014 September 10 and compared it with the observations before and early in the flare that begins at 17:21 UT (SOL2014-09-10T17:45:00). Our results show that the sigmoidal structure and flare ribbons of this active region observed by the Solar Dynamics Observatory /Atmospheric Imaging Assembly can be well reproduced from a Grad–Rubin nonlinear force-free field extrapolation method. Various inverse-S- and inverse-J-shaped magnetic field lines, which surround a coronal flux rope, coincide with the sigmoid as observed in different extreme-ultraviolet wavelengths, including its multithreaded curved ends. Also, the observed distribution of surface currents in the magnetic polarity where it was not prescribed is well reproduced. This validates our numerical implementation and setup of the Grad–Rubin method. The modeled double inverse-J-shaped quasi-separatrix layer (QSL) footprints match the observed flare ribbons during the rising phase of the flare, including their hooked parts. The spiral-like shape of the latter may be related to a complex pre-eruptive flux rope with more than one turn of twist, as obtained in the model. These ribbon-associated flux-rope QSL footprints are consistent with the new standard flare model in 3D, with the presence of a hyperbolic flux tube located below an inverse-teardrop-shaped coronal QSL. This is a new step forward forecasting the locations of reconnection and ribbons in solar flares and the geometrical properties of eruptive flux ropes.

  20. Giant Rapid X-ray Flares in Extragalactic Globular Clusters

    Science.gov (United States)

    Irwin, Jimmy

    2018-01-01

    There is only one known class of non-destructive, highly energetic astrophysical object in the Universe whose energy emission varies by more than a factor of 100 on time scales of less than a minute -- soft gamma repeaters/anomalous X-ray pulsars, whose flares are believed to be caused by the energy release from the cracking of a neutron star's surface by very strong magnetic fields. All other known violent, rapid explosions, including gamma-ray bursts and supernovae, are believed to destroy the object in the process. Here, we report the discovery of a second class of non-destructive, highly energetic rapidly flaring X-ray object located within two nearby galaxies with fundamentally different properties than soft gamma repeaters/anomalous X-ray pulsars. One source is located within a suspected globular cluster of the host galaxy and flared one time, while the other source is located in either a globular cluster of the host galaxy or the core of a stripped dwarf companion galaxy that flared on six occasions over a seven year time span. When not flaring, the sources appear as normal accreting neutron star or black hole X-ray binaries, indicating that the flare event does not significantly disrupt the host system. While the nature of these sources is still unclear, the discovery of these sources in decade-old archival Chandra X-ray Observatory data illustrates the under-utilization of X-ray timing as a means to discover new classes of explosive events in the Universe.

  1. M DWARF FLARES FROM TIME-RESOLVED SLOAN DIGITAL SKY SURVEY SPECTRA

    International Nuclear Information System (INIS)

    Hilton, Eric J.; Hawley, Suzanne L.; Kowalski, Adam F.; West, Andrew A.

    2010-01-01

    We have identified 63 flares on M dwarfs from the individual component spectra in the Sloan Digital Sky Survey (SDSS) using a novel measurement of emission-line strength called the Flare Line Index. Each of the ∼38,000 M dwarfs in the SDSS low-mass star spectroscopic sample of West et al. was observed several times (usually 3-5) in exposures that were typically 9-25 minutes in duration. Our criteria allowed us to identify flares that exhibit very strong Hα and Hβ emission-line strength and/or significant variability in those lines throughout the course of the exposures. The flares we identified have characteristics consistent with flares observed by classical spectroscopic monitoring. The flare duty cycle for the objects in our sample is found to increase from 0.02% for early M dwarfs to 3% for late M dwarfs. We find that the flare duty cycle is larger in the population near the Galactic plane and that the flare stars are more spatially restricted than the magnetically active but non-flaring stars. This suggests that flare frequency may be related to stellar age (younger stars are more likely to flare) and that the flare stars are younger than the mean active population.

  2. Some calculations using the two-dimensional turbulent combustion code flare

    International Nuclear Information System (INIS)

    Martin, D.

    1986-09-01

    A brief description of the code FLARE is given. Both the model used in FLARE and the numerical scheme used to implement the model are described. Results for the simulation of an experiment are presented and discussed. An alternative turbulence model to that used in FLARE is discussed but it is concluded that the original model is better. (author)

  3. Quasi-periodic Pulsations in the Most Powerful Solar Flare of Cycle 24

    Science.gov (United States)

    Kolotkov, Dmitrii Y.; Pugh, Chloe E.; Broomhall, Anne-Marie; Nakariakov, Valery M.

    2018-05-01

    Quasi-periodic pulsations (QPPs) are common in solar flares and are now regularly observed in stellar flares. We present the detection of two different types of QPP signals in the thermal emission light curves of the X9.3-class solar flare SOL2017-09-06T12:02, which is the most powerful flare of Cycle 24. The period of the shorter-period QPP drifts from about 12 to 25 s during the flare. The observed properties of this QPP are consistent with a sausage oscillation of a plasma loop in the flaring active region. The period of the longer-period QPP is about 4 to 5 minutes. Its properties are compatible with standing slow magnetoacoustic oscillations, which are often detected in coronal loops. For both QPP signals, other mechanisms such as repetitive reconnection cannot be ruled out, however. The studied solar flare has an energy in the realm of observed stellar flares, and the fact that there is evidence of a short-period QPP signal typical of solar flares along with a long-period QPP signal more typical of stellar flares suggests that the different ranges of QPP periods typically observed in solar and stellar flares is likely due to observational constraints, and that similar physical processes may be occurring in solar and stellar flares.

  4. On the Importance of the Flare's Late Phase for the Solar Extreme Ultraviolet Irradiance

    Science.gov (United States)

    Woods, Thomas N.; Eparvier, Frank; Jones, Andrew R.; Hock, Rachel; Chamberlin, Phillip C.; Klimchuk, James A.; Didkovsky, Leonid; Judge, Darrell; Mariska, John; Bailey, Scott; hide

    2011-01-01

    The new solar extreme ultraviolet (EUV) irradiance observations from NASA Solar Dynamics Observatory (SDO) have revealed a new class of solar flares that are referred to as late phase flares. These flares are characterized by the hot 2-5 MK coronal emissions (e.g., Fe XVI 33.5 nm) showing large secondary peaks that appear many minutes to hours after an eruptive flare event. In contrast, the cool 0.7-1.5 MK coronal emissions (e.g., Fe IX 17.1 nm) usually dim immediately after the flare onset and do not recover until after the delayed second peak of the hot coronal emissions. We refer to this period of 1-5 hours after the fl amrea sin phase as the late phase, and this late phase is uniquely different than long duration flares associated with 2-ribbon flares or large filament eruptions. Our analysis of the late phase flare events indicates that the late phase involves hot coronal loops near the flaring region, not directly related to the original flaring loop system but rather with the higher post-eruption fields. Another finding is that space weather applications concerning Earth s ionosphere and thermosphere need to consider these late phase flares because they can enhance the total EUV irradiance flare variation by a factor of 2 when the late phase contribution is included.

  5. Witnessing a Large-scale Slipping Magnetic Reconnection along a Dimming Channel during a Solar Flare

    Energy Technology Data Exchange (ETDEWEB)

    Jing, Ju; Lee, Jeongwoo; Xu, Yan; Liu, Chang; Wang, Haimin [Center for Solar-Terrestrial Research, New Jersey Institute of Technology, Newark, NJ 07102-1982 (United States); Liu, Rui [CAS Key Laboratory of Geospace Environment, Department of Geophysics and Planetary Sciences, University of Science and Technology of China, Hefei 230026 (China); Cheung, Mark C. M. [Lockheed Martin Solar and Astrophysics Laboratory, Palo Alto, CA 94304 (United States); Zhu, Chunming, E-mail: ju.jing@njit.edu [Department of Physics, Montana State University, Bozeman, MT 59717 (United States)

    2017-06-20

    We report the intriguing large-scale dynamic phenomena associated with the M6.5 flare (SOL2015-06-22T18:23) in NOAA active region 12371, observed by RHESSI , Fermi , and the Atmospheric Image Assembly (AIA) and Magnetic Imager (HMI) on the Solar Dynamics Observatory ( SDO ). The most interesting feature of this event is a third ribbon (R3) arising in the decay phase, propagating along a dimming channel (seen in EUV passbands) toward a neighboring sunspot. The propagation of R3 occurs in the presence of hard X-ray footpoint emission and is broadly visible at temperatures from 0.6 MK to over 10 MK through the differential emission measure analysis. The coronal loops then undergo an apparent slipping motion following the same path of R3, after a ∼80 minute delay. To understand the underlying physics, we investigate the magnetic configuration and the thermal structure of the flaring region. Our results are in favor of a slipping-type reconnection followed by the thermodynamic evolution of coronal loops. In comparison with those previously reported slipping reconnection events, this one proceeds across a particularly long distance (∼60 Mm) over a long period of time (∼50 minutes) and shows two clearly distinguished phases: the propagation of the footpoint brightening driven by nonthermal particle injection and the apparent slippage of loops governed by plasma heating and subsequent cooling.

  6. Multiple-wavelength analysis of energy release during a solar flare - Thermal and nonthermal electron populations

    Science.gov (United States)

    Willson, Robert F.; Lang, Kenneth R.; Klein, Karl-Ludwig; Kerdraon, Alain; Trottet, Gerard

    1990-01-01

    Collaborative solar investigations by Tufts University and the Observatoire de Paris have resulted in simultaneous radio observations with the Very Large Array (VLA) and the Nancay Radioheliograph (NR), comparisons of this radio data with X-ray observations, and theoretical interpretations of the dominant radiation mechanisms during a weak impulsive solar flare observed on May 28, 1988. The VLA has mapped the flaring structures at time intervals of 3.3 s, showing that the preflash and flash-phase components of the impulsive emission originate in spatially separated sources. The 20.7 cm preflash source is ascribed to thermal gyroresonance emission from coronal loops with typical magnetic field strengths of up to 270 G; this emission is associated with heating and exhibits no detectable hard X-ray radiation above 30 keV. The flash-phase 20.7 cm source and the hard X-ray emission are attributed to nonthermal electrons in the coronal and chromospheric portions of a magnetic loop. The combination of imaging observations at 20.7 and 91.6 cm excludes emission from a confined hot plasma during the flash phase.

  7. Foretelling Flares and Solar Energetic Particle Events: the FORSPEF tool

    Science.gov (United States)

    Anastasiadis, Anastasios; Papaioannou, Athanasios; Sandberg, Ingmar; Georgoulis, Manolis K.; Tziotziou, Kostas; Jiggens, Piers

    2017-04-01

    A novel integrated prediction system, for both solar flares (SFs) and solar energetic particle (SEP) events is being presented. The Forecasting Solar Particle Events and Flares (FORSPEF) provides forecasting of solar eruptive events, such as SFs with a projection to coronal mass ejections (CMEs) (occurrence and velocity) and the likelihood of occurrence of a SEP event. In addition, FORSPEF, also provides nowcasting of SEP events based on actual SF and CME near real-time data, as well as the complete SEP profile (peak flux, fluence, rise time, duration) per parent solar event. The prediction of SFs relies on a morphological method: the effective connected magnetic field strength (Beff); it is based on an assessment of potentially flaring active-region (AR) magnetic configurations a