WorldWideScience

Sample records for flame spray synthesis

  1. Flame spray pyrolysis synthesis and aerosol deposition of nanoparticle films

    DEFF Research Database (Denmark)

    Tricoli, Antonio; Elmøe, Tobias Dokkedal

    2012-01-01

    The assembly of nanoparticle films by flame spray pyrolysis (FSP) synthesis and deposition on temperature‐controlled substrates (323–723 K) was investigated for several application‐relevant conditions. An exemplary SnO2 nanoparticle aerosol was generated by FSP and its properties (e.g., particle...

  2. Nanoparticle synthesis using flame spray pyrolysis for catalysis

    DEFF Research Database (Denmark)

    Høj, Martin

    processes based on renewable feedstock, new or improved ways of preparing catalysts and a better understanding of the catalyst structure at operating conditions. This thesis explores flame spray pyrolysis (FSP) as a novel one-step preparation method for heterogeneous catalysts and investigates structure...

  3. Synthesis and Deposition of TiC-Fe Coatings by Oxygen-acetylene Flame Spraying

    Institute of Scientific and Technical Information of China (English)

    2003-01-01

    A simpler and more convenient method for producing wear-resistant, TiC-reinforced coatings were investigated in this study. It consists of the simultaneous synthesis and deposition of TiC-Fe materials by oxyacetylene flame spraying.Solid reagents bound together to form a single particle are injected into the flame stream where an in-situ reaction occurs. The reaction products are propelled onto a substrate to form a coating. Microstructural analyses reveal that TiC and Fe are the dominant phases in the coatings. The reaction between Ti and C happens step by step along with the reactive spray powder flight, and TiC-Fe materials were mainly synthesized where the spray distance is 125~170 mm. The TiC-Fe coatings are composed of alternate TiC-rich and TiC-poor lamellae with different microhardness of 11.9~13.7 and 3.0~6.0 Gpa, respectively. Submicron and round TiC particles are dispersed within a ductile metal matrix. The peculiar microstructure is thought to be responsible for its good wear resistance, which is better nearly five times than WC-reinforced cermet coatings obtained by traditional oxyacetylene flame spray.

  4. Cathode materials produced by spray flame synthesis for lithium ion batteries

    Energy Technology Data Exchange (ETDEWEB)

    Hamid, NoorAshrina Binti A.

    2013-07-03

    Lithium ion batteries are one of the most enthralling rechargeable energy storage systems for portable application due to their high energy density. Nevertheless, with respect to electromobility innovation towards better electrochemical properties such as higher energy and power density is required. Altering the cathode material used in Li-ion batteries is favorable since the mass- and volume performance is closely related to the cathode electrode mass. Instead of using LiCoO{sub 2} as cathode electrode, LiFePO{sub 4} has gained serious attention as this material owns a high theoretical capacity of 170 mAh g{sup -1}. It is non-toxic, cheap and consists of abundant materials but suffers from low electronic and ionic conductivity. Utilization of nanotechnology methods in combination with composite formation is known to cure this problem effectively. In this work, a new combination of techniques using highly scalable gas-phase synthesis namely spray-flame synthesis and subsequent solid-state reaction has been used to synthesize nanocomposite LiFePO{sub 4}/C. At first this work deals with the formation and characterization of nanosize FePO{sub 4} from a solution of iron(III)acetylacetonate and tributyl phosphate in toluene using spray-flame synthesis. It was shown that a subsequent solid state reaction with Li{sub 2}CO{sub 3} and glucose yielded a LiFePO{sub 4}/C nanocomposite with very promising electrochemical properties. Based on these initial findings the influence of two synthesis parameter - carbon content and annealing temperature - was investigated towards the physicochemical properties of LiFePO{sub 4}/C. It was shown that an annealing temperature of 700 C leads to high purity composite materials consisting of crystalline LiFePO{sub 4} with crystallite sizes well below 100 nm and amorphous carbon consisting of disordered and graphite-like carbon. Variation of glucose amount between 10 and 30 wt% resulted in carbon contents between 2.1 and 7.3 wt%. In parallel

  5. Cathode materials produced by spray flame synthesis for lithium ion batteries

    Energy Technology Data Exchange (ETDEWEB)

    Hamid, NoorAshrina Binti A.

    2013-07-03

    Lithium ion batteries are one of the most enthralling rechargeable energy storage systems for portable application due to their high energy density. Nevertheless, with respect to electromobility innovation towards better electrochemical properties such as higher energy and power density is required. Altering the cathode material used in Li-ion batteries is favorable since the mass- and volume performance is closely related to the cathode electrode mass. Instead of using LiCoO{sub 2} as cathode electrode, LiFePO{sub 4} has gained serious attention as this material owns a high theoretical capacity of 170 mAh g{sup -1}. It is non-toxic, cheap and consists of abundant materials but suffers from low electronic and ionic conductivity. Utilization of nanotechnology methods in combination with composite formation is known to cure this problem effectively. In this work, a new combination of techniques using highly scalable gas-phase synthesis namely spray-flame synthesis and subsequent solid-state reaction has been used to synthesize nanocomposite LiFePO{sub 4}/C. At first this work deals with the formation and characterization of nanosize FePO{sub 4} from a solution of iron(III)acetylacetonate and tributyl phosphate in toluene using spray-flame synthesis. It was shown that a subsequent solid state reaction with Li{sub 2}CO{sub 3} and glucose yielded a LiFePO{sub 4}/C nanocomposite with very promising electrochemical properties. Based on these initial findings the influence of two synthesis parameter - carbon content and annealing temperature - was investigated towards the physicochemical properties of LiFePO{sub 4}/C. It was shown that an annealing temperature of 700 C leads to high purity composite materials consisting of crystalline LiFePO{sub 4} with crystallite sizes well below 100 nm and amorphous carbon consisting of disordered and graphite-like carbon. Variation of glucose amount between 10 and 30 wt% resulted in carbon contents between 2.1 and 7.3 wt%. In parallel

  6. Iron Oxide Doped Alumina-Zirconia Nanoparticle Synthesis by Liquid Flame Spray from Metal Organic Precursors

    OpenAIRE

    Juha-Pekka Nikkanen; Helmi Keskinen; Mikko Aromaa; Mikael Järn; Tomi Kanerva; Erkki Levänen; Jyrki M. Mäkelä; Tapio Mäntylä

    2008-01-01

    The liquid flame spray (LFS) method was used to make iron oxide doped alumina-zirconia nanoparticles. Nanoparticles were generated using a turbulent, high-temperature (Tmax⁡∼3000 K) H2-O2 flame. The precursors were aluminium-isopropoxide, zirconium-n-propoxide, and ferrocene in xylene solution. The solution was atomized into micron-sized droplets by high velocity H2 flow and introduced into the flame where nanoparticles were formed. The particle morphology, size, phase, and chemical compositi...

  7. Flame spray synthesis under a non-oxidizing atmosphere: Preparation of metallic bismuth nanoparticles and nanocrystalline bulk bismuth metal

    Energy Technology Data Exchange (ETDEWEB)

    Grass, Robert N.; Stark, Wendelin J. [Institute for Chemical and Bioengineering, ETH Zuerich (Switzerland)], E-mail: wendelin.stark@chem.ethz.ch

    2006-10-15

    Metallic bismuth nanoparticles of over 98% purity were prepared by a modified flame spray synthesis method in an inert atmosphere by oxygen-deficient combustion of a bismuth-carboxylate based precursor. The samples were characterized by X-ray diffraction, thermal analysis and scanning electron microscopy confirming the formation of pure, crystalline metallic bismuth nanoparticles. Compression of the as-prepared powder resulted in highly dense, nanocrystalline pills with strong electrical conductivity and bright metallic gloss.

  8. Flame spraying of polymers

    International Nuclear Information System (INIS)

    Varacalle, D.J. Jr.; Zeek, D.P.; Couch, K.W.; Benson, D.M.; Kirk, S.M.

    1997-01-01

    Statistical design-of-experiment studies of the thermal spraying of polymer powders are presented. Studies of the subsonic combustion (i.e., Flame) process were conducted in order to determine the quality and economics of polyester and urethane coatings. Thermally sprayed polymer coatings are of interest to several industries for anticorrosion applications, including the chemical, automotive, and aircraft industries. In this study, the coating design has been optimized for a site-specific application using Taguchi-type fractional-factorial experiments. Optimized coating designs are presented for the two powder systems. A substantial range of thermal processing conditions and their effect on the resultant polymer coatings is presented. The coatings were characterized by optical metallography, hardness testing, tensile testing, and compositional analysis. Characterization of the coatings yielded the thickness, bond strength, Knoop microhardness, roughness, deposition efficiency, and porosity. Confirmation testing was accomplished to verify the coating designs

  9. Two-Nozzle Flame Spray Pyrolysis (FSP) Synthesis of CoMo/Al2O3 Hydrotreating Catalysts

    DEFF Research Database (Denmark)

    Høj, Martin; Pham, David K.; Brorson, Michael

    2013-01-01

    and the hydrodenitrogenation activity improved from 70 to 90 % relative activity. This suggests that better promotion of the active molybdenum sulfide phase was achieved when using two-nozzle FSP synthesis, probably due to less formation of the undesired phase CoAl2O4, which makes Co unavailable for promotion.......Two-nozzle frame spray analysis (FSP) synthesis of CoMo/Al2O3 where Co and Al are sprayed in separate flames was applied to minimize the formation of CoAl2O4 observed in one-nozzle flame spray pyrolysis (FSP) synthesis and the materials were characterized by N2-adsorption (BET), X-ray diffraction...... (XRD), UV–vis diffuse reflectance spectroscopy, Raman spectroscopy, transmission electron microscopy, and catalytic performances in hydrotreating. By varying the flame mixing distances (81–175 mm) the amount of CoAl2O4 could be minimized. As evidenced by UV–vis spectroscopy, CoAl2O4 was detected only...

  10. Iron Oxide Doped Alumina-Zirconia Nanoparticle Synthesis by Liquid Flame Spray from Metal Organic Precursors

    Directory of Open Access Journals (Sweden)

    Juha-Pekka Nikkanen

    2008-01-01

    Full Text Available The liquid flame spray (LFS method was used to make iron oxide doped alumina-zirconia nanoparticles. Nanoparticles were generated using a turbulent, high-temperature (Tmax⁡∼3000 K H2-O2 flame. The precursors were aluminium-isopropoxide, zirconium-n-propoxide, and ferrocene in xylene solution. The solution was atomized into micron-sized droplets by high velocity H2 flow and introduced into the flame where nanoparticles were formed. The particle morphology, size, phase, and chemical composition were determined by TEM, XRD, XPS, and N2-adsorption measurements. The collected particulate material consists of micron-sized aggregates with nanosized primary particles. In both doped and undoped samples, tetragonal phase of zirconia was detected in room temperature while alumina was found to be noncrystalline. In the doped powder, Fe was oxidized to Fe2O3. The primary particle size of collected sample was approximately from 6 nm to 40 nm. Doping was observed to increase the specific surface area of the powder from 39 m2/g to 47 m2/g.

  11. Polydisperse effects in jet spray flames

    Science.gov (United States)

    Weinberg, Noam; Greenberg, J. Barry

    2018-01-01

    A laminar jet polydisperse spray diffusion flame is analysed mathematically for the first time using an extension of classical similarity solutions for gaseous jet flames. The analysis enables a comparison to be drawn between conditions for flame stability or flame blow-out for purely gaseous flames and for spray flames. It is found that, in contrast to the Schmidt number criteria relevant to gas flames, droplet size and initial spray polydispersity play a critical role in determining potential flame scenarios. Some qualitative agreement for lift-off height is found when comparing predictions of the theory and sparse independent experimental evidence from the literature.

  12. Process Design for Size-Controlled Flame Spray Synthesis of Li4Ti5O12 and Electrochemical Performance

    Directory of Open Access Journals (Sweden)

    Waser Oliver

    2017-03-01

    Full Text Available Inexpensive synthesis of electroceramic materials is required for efficient energy storage. Here the design of a scalable process, flame spray pyrolysis (FSP, for synthesis of size-controlled nanomaterials is investigated focusing on understanding the role of air entrainment (AE during their aerosol synthesis with emphasis on battery materials. The AE into the enclosed FSP reactor is analysed quantitatively by computational fluid dynamics (CFD and calculated temperatures are verified by Fourier transform infrared spectroscopy (FTIR. Various Li4Ti5O12 (LTO particle compositions are made and characterized by N2 adsorption, electron microscopy and X-ray diffraction while the electrochemical performance of LTO is tested at various charging rates. Increasing AE decreases recirculation in the enclosing tube leading to lower reactor temperatures and particle concentrations by air dilution as well as shorter and narrower residence time distributions. As a result, particle growth by coagulation - coalescence decreases leading to smaller primary particles that are mostly pure LTO exhibiting high C-rate performance with more than 120 mAh/g galvanostatic specific charge at 40C, outperforming commercial LTO. The effect of AE on FSP-made particle characteristics is demonstrated also in combustion synthesis of LiFePO4 and ZrO2.

  13. One-step synthesis of bismuth molybdate catalysts via flame spray pyrolysis for the selective oxidation of propylene to acrolein

    DEFF Research Database (Denmark)

    Schuh, K.; Kleist, W.; Høj, Martin

    2014-01-01

    Flame spray pyrolysis (FSP) of Bi(III)-and Mo(VI)-2-ethylhexanoate dissolved in xylene resulted in various nanocrystalline bismuth molybdate phases depending on the Bi/Mo ratio. Besides alpha-Bi2Mo3O12 and gamma-Bi2MoO6, FSP gave direct access to the metastable beta-Bi2Mo2O9 phase with high surfa...

  14. Synthesis and characterization of nanosized calcium phosphates by flame spray pyrolysis, and their effect on osteogenic differentiation of stem cells

    Energy Technology Data Exchange (ETDEWEB)

    Ataol, Sibel; Tezcaner, Ayşen [Middle East Technical University, Department of Biomedical Engineering (Turkey); Duygulu, Ozgur [TUBITAK Marmara Research Center, Materials Institute (Turkey); Keskin, Dilek [Middle East Technical University, Department of Biomedical Engineering (Turkey); Machin, Nesrin E., E-mail: nesrinmachin@gmail.com [Kocaeli University, Department of Chemical Engineering (Turkey)

    2015-02-15

    The present study evaluates the synthesis of biocompatible osteoconductive and osteoinductive nano calcium phosphate (CaP) particles by industrially applied, aerosol-derived flame spray pyrolysis method for biomedical field. Calcium phosphate nanoparticles were produced in a range of calcium-to-phosphorus ratio, (1.20–2.19) in order to analyze the morphology and crystallinity changes, and to test the bioactivity of particles. The characterization results confirmed that nanometer-sized, spherical calcium phosphate particles were produced. The average primary particle size was determined as 23 nm by counting more than 500 particles in TEM pictures. XRD patterns, HRTEM, SAED, and SEM analyses revealed the amorphous nature of the as-prepared nano calcium phosphate particles at low Ca/P ratios. Increases in the specific surface area and crystallinity were observed with the increasing Ca/P ratio. TGA–DTA analysis showed that the thermally stable crystal phases formed after 700 °C. Cell culture studies were conducted with urine-derived stem cells that possess the characteristics of mesenchymal stem cells. Synthesized amorphous nanoparticles did not have cytotoxic effect at 5–50 μg/ml concentration range. Cells treated with the as-prepared nanoparticles had higher alkaline phosphatase (ALP) enzyme activity than control cells, indicating osteogenic differentiation of cells. A slight decrease in ALP activity of cells treated with two highest Ca:P ratios at 50 μg/ml concentration was observed at day 7. The findings suggest that calcium phosphate nanoparticles produced in this work have a potential to be used as biomaterials in biomedical applications.

  15. Synthesis and characterization of nanosized calcium phosphates by flame spray pyrolysis, and their effect on osteogenic differentiation of stem cells

    Science.gov (United States)

    Ataol, Sibel; Tezcaner, Ayşen; Duygulu, Ozgur; Keskin, Dilek; Machin, Nesrin E.

    2015-02-01

    The present study evaluates the synthesis of biocompatible osteoconductive and osteoinductive nano calcium phosphate (CaP) particles by industrially applied, aerosol-derived flame spray pyrolysis method for biomedical field. Calcium phosphate nanoparticles were produced in a range of calcium-to-phosphorus ratio, (1.20-2.19) in order to analyze the morphology and crystallinity changes, and to test the bioactivity of particles. The characterization results confirmed that nanometer-sized, spherical calcium phosphate particles were produced. The average primary particle size was determined as 23 nm by counting more than 500 particles in TEM pictures. XRD patterns, HRTEM, SAED, and SEM analyses revealed the amorphous nature of the as-prepared nano calcium phosphate particles at low Ca/P ratios. Increases in the specific surface area and crystallinity were observed with the increasing Ca/P ratio. TGA-DTA analysis showed that the thermally stable crystal phases formed after 700 °C. Cell culture studies were conducted with urine-derived stem cells that possess the characteristics of mesenchymal stem cells. Synthesized amorphous nanoparticles did not have cytotoxic effect at 5-50 μg/ml concentration range. Cells treated with the as-prepared nanoparticles had higher alkaline phosphatase (ALP) enzyme activity than control cells, indicating osteogenic differentiation of cells. A slight decrease in ALP activity of cells treated with two highest Ca:P ratios at 50 μg/ml concentration was observed at day 7. The findings suggest that calcium phosphate nanoparticles produced in this work have a potential to be used as biomaterials in biomedical applications.

  16. Flame spray technology method for production of nanopowders

    CERN Document Server

    Trommer, Rafael M

    2015-01-01

    This books presents a complete and updated overview of Flame Spray process, from its History to the Apparatus necessary for the synthesis of nanostructures. It addresses not only the materials produced by this technique, but also their properties, such as crystallinity and crystallite size, specific surface area, particle size and morphology. Also, the principles of nanoparticle formation are described. It is a useful read to all those interested in low cost synthesis of nanostructured powders and coatings.

  17. Computational Analysis of Spray Jet Flames

    Science.gov (United States)

    Jain, Utsav

    There is a boost in the utilization of renewable sources of energy but because of high energy density applications, combustion will never be obsolete. Spray combustion is a type of multiphase combustion which has tremendous engineering applications in different fields, varying from energy conversion devices to rocket propulsion system. Developing accurate computational models for turbulent spray combustion is vital for improving the design of combustors and making them energy efficient. Flamelet models have been extensively used for gas phase combustion because of their relatively low computational cost to model the turbulence-chemistry interaction using a low dimensional manifold approach. This framework is designed for gas phase non-premixed combustion and its implementation is not very straight forward for multiphase and multi-regime combustion such as spray combustion. This is because of the use of a conserved scalar and various flamelet related assumptions. Mixture fraction has been popularly employed as a conserved scalar and hence used to parameterize the characteristics of gaseous flamelets. However, for spray combustion, the mixture fraction is not monotonic and does not give a unique mapping in order to parameterize the structure of spray flames. In order to develop a flamelet type model for spray flames, a new variable called the mixing variable is introduced which acts as an ideal conserved scalar and takes into account the convection and evaporation of fuel droplets. In addition to the conserved scalar, it has been observed that though gaseous flamelets can be characterized by the conserved scalar and its dissipation, this might not be true for spray flamelets. Droplet dynamics has a significant influence on the spray flamelet and because of effects such as flame penetration of droplets and oscillation of droplets across the stagnation plane, it becomes important to accommodate their influence in the flamelet formulation. In order to recognize the

  18. Characterization of silica and titania nanoparticles synthesized in a spray flame reactor

    Energy Technology Data Exchange (ETDEWEB)

    Cignoli, F.; Maffi, S.; Bellomunno, C.; De Iuliis, S.; Zizak, G. [CNR-IENI, Milano (Italy)

    2009-07-01

    Nanostructured materials represent nowadays a wide and largely unexplored field of potential applications. This is a research topic in high and rapid development, both at a basic level and under the point of view of potential practical applications, leaving large space for a thorough scientific analysis, which requires a significant amount of time for ultimate conclusions. This paper dealt with the preliminary work performed in the field of frame spray pyrolysis synthesis for nanoparticles, using an external mixing gas assisted nozzle. An experimental apparatus was designed, realized, and characterized for the synthesis of nanoparticles by the flame spray pyrolysis method. The presentation discussed the advantages of the flame spray pyrolysis technique and the experimental set-up including an image of the water spray and discussion of phase doppler anemometry and visualizations to investigate the flow field and the dimensional distribution of the droplets generated by the atomizer. The presentation also discussed the selection of precursor and dispersion fuel for nanoparticles synthesis through flame spray pyrolysis and transmission electron microscopy for dimensional analysis of nanoparticles. It was concluded that the apparatus demonstrated good stability and reproducibility of the reaction flame and, therefore, of the material produced. figs.

  19. Characteristics of spray flames and the effect of group combustion on the morphology of flame-made nanoparticles

    Science.gov (United States)

    Eslamian, Morteza; Heine, Martin C.

    2008-01-01

    Characteristics of burning and non-burning sprays generated by a coaxial air-assist nozzle, previously used for the synthesis of ceramic nanoparticles by flame spray pyrolysis (FSP), are studied using phase Doppler anemometry. Also, the effect of droplet interaction on the overall combustion behavior of the spray (group combustion) and, consequently, on the characteristics of flame-made ceramic particles is investigated. A physical model is proposed which correlates the formation of inhomogeneous mixtures of micron-sized hollow particles and solid nanoparticles to the combustion mode: the precursor droplets which entirely evaporate in the hot flame are responsible for the formation of nanoparticles. The vapor species react, forming intermediate and product molecules and clusters that quickly grow to nanosized ceramic particles. On the other hand, under certain conditions, a small number of the droplets, particularly with large initial sizes, escape from the spray boundaries and become extinguished, producing large hollow ceramic particles. It is also possible that some of the large droplets, which lie within the spray core, do not entirely evaporate. These surviving droplets then form large particles which are usually hollow but can collapse to solid particles at sufficiently high temperatures. Also, a criterion for the formation of homogeneous ceramic nanoparticles is presented.

  20. Characteristics of spray flames and the effect of group combustion on the morphology of flame-made nanoparticles

    International Nuclear Information System (INIS)

    Eslamian, Morteza; Heine, Martin C

    2008-01-01

    Characteristics of burning and non-burning sprays generated by a coaxial air-assist nozzle, previously used for the synthesis of ceramic nanoparticles by flame spray pyrolysis (FSP), are studied using phase Doppler anemometry. Also, the effect of droplet interaction on the overall combustion behavior of the spray (group combustion) and, consequently, on the characteristics of flame-made ceramic particles is investigated. A physical model is proposed which correlates the formation of inhomogeneous mixtures of micron-sized hollow particles and solid nanoparticles to the combustion mode: the precursor droplets which entirely evaporate in the hot flame are responsible for the formation of nanoparticles. The vapor species react, forming intermediate and product molecules and clusters that quickly grow to nanosized ceramic particles. On the other hand, under certain conditions, a small number of the droplets, particularly with large initial sizes, escape from the spray boundaries and become extinguished, producing large hollow ceramic particles. It is also possible that some of the large droplets, which lie within the spray core, do not entirely evaporate. These surviving droplets then form large particles which are usually hollow but can collapse to solid particles at sufficiently high temperatures. Also, a criterion for the formation of homogeneous ceramic nanoparticles is presented

  1. A spray flamelet/progress variable approach combined with a transported joint PDF model for turbulent spray flames

    Science.gov (United States)

    Hu, Yong; Olguin, Hernan; Gutheil, Eva

    2017-05-01

    A spray flamelet/progress variable approach is developed for use in spray combustion with partly pre-vaporised liquid fuel, where a laminar spray flamelet library accounts for evaporation within the laminar flame structures. For this purpose, the standard spray flamelet formulation for pure evaporating liquid fuel and oxidiser is extended by a chemical reaction progress variable in both the turbulent spray flame model and the laminar spray flame structures, in order to account for the effect of pre-vaporised liquid fuel for instance through use of a pilot flame. This new approach is combined with a transported joint probability density function (PDF) method for the simulation of a turbulent piloted ethanol/air spray flame, and the extension requires the formulation of a joint three-variate PDF depending on the gas phase mixture fraction, the chemical reaction progress variable, and gas enthalpy. The molecular mixing is modelled with the extended interaction-by-exchange-with-the-mean (IEM) model, where source terms account for spray evaporation and heat exchange due to evaporation as well as the chemical reaction rate for the chemical reaction progress variable. This is the first formulation using a spray flamelet model considering both evaporation and partly pre-vaporised liquid fuel within the laminar spray flamelets. Results with this new formulation show good agreement with the experimental data provided by A.R. Masri, Sydney, Australia. The analysis of the Lagrangian statistics of the gas temperature and the OH mass fraction indicates that partially premixed combustion prevails near the nozzle exit of the spray, whereas further downstream, the non-premixed flame is promoted towards the inner rich-side of the spray jet since the pilot flame heats up the premixed inner spray zone. In summary, the simulation with the new formulation considering the reaction progress variable shows good performance, greatly improving the standard formulation, and it provides new

  2. Flame spray deposition of porous catalysts on surfaces and in microsystems

    DEFF Research Database (Denmark)

    Thybo, Susanne; Jensen, Søren; Johansen, Johnny

    2004-01-01

    Flame spray synthesis is investigated as a method for one step synthesis and deposition of porous catalysts onto surfaces and into microreactors. Using a standard photolithographic lift-off process, catalyst can be deposited on flat surfaces in patterns with sub-millimeter feature sizes....... With shadow masks, porous catalyst layers can be deposited selectively into microchannels. Using Au/TiO$_2$ as test catalyst and CO-oxidation as test reaction, it is found that the apparent activation energy of the deposited catalyst is similar to what is normally seen for supported gold catalysts...

  3. Porosity and wear resistance of flame sprayed tungsten carbide coatings

    Science.gov (United States)

    Winarto, Winarto; Sofyan, Nofrijon; Rooscote, Didi

    2017-06-01

    Thermal-sprayed coatings offer practical and economical solutions for corrosion and wear protection of components or tools. To improve the coating properties, heat treatment such as preheat is applied. The selection of coating and substrate materials is a key factor in improving the quality of the coating morphology after the heat treatment. This paper presents the experimental results regarding the effect of preheat temperatures, i.e. 200°C, 300°C and 400°C, on porosity and wear resistance of tungsten carbide (WC) coating sprayed by flame thermal coating. The powders and coatings morphology were analyzed by a Field Emission Scanning Electron Microscope equipped with Energy Dispersive Spectrometry (FE-SEM/EDS), whereas the phase identification was performed by X-Ray diffraction technique (XRD). In order to evaluate the quality of the flame spray obtained coatings, the porosity, micro-hardness and wear rate of the specimens was determined. The results showed that WC coating gives a higher surface hardness from 1391 HVN up to 1541 HVN compared to that of the non-coating. Moreover, the wear rate increased from 0.072 mm3/min. to 0.082 mm3/min. when preheat temperature was increased. Preheat on H13 steel substrate can reduce the percentage of porosity level from 10.24 % to 3.94% on the thermal spray coatings.

  4. Transported PDF Modeling of Ethanol Spray in Hot-Diluted Coflow Flame

    NARCIS (Netherlands)

    Ma, L.; Naud, B.; Roekaerts, D.J.E.M.

    2015-01-01

    This paper presents a numerical modeling study of one ethanol spray flame from the Delft Spray-in-Hot-Coflow (DSHC) database, which has been used to study Moderate or Intense Low-oxygen Dilution (MILD) combustion of liquid fuels (Correia Rodrigues et al. Combust. Flame 162(3), 759–773, 2015). A

  5. PDF modelling and particle-turbulence interaction of turbulent spray flames

    NARCIS (Netherlands)

    Beishuizen, N.A.

    2008-01-01

    Turbulent spray flames can be found in many applications, such as Diesel engines, rocket engines and power plants. The many practical applications are a motivation to investigate the physical phenomena occurring in turbulent spray flames in detail in order to be able to understand, predict and

  6. Large-scale manufacture of ZnO nanorods by flame spray pyrolysis

    International Nuclear Information System (INIS)

    Hembram, K.; Sivaprakasam, D.; Rao, T. N.; Wegner, K.

    2013-01-01

    Large quantities of ZnO nanorods (>3 kg/h throughput) were produced in the gas-phase by flame spray pyrolysis (FSP) of a zinc nitrate–ethanol precursor solution without employing any catalysts or dopants. The nanorods with diameters of 20–30 nm and aspect ratios as high as seven were collected as a dry powder. Several rods self-aligned by forming junctions at the basal planes, while some even assembled into tetrapods. The aspect ratio of the nanorods could be controlled by the concentration of the Zn ions in the starting precursor solution, its delivery rate, and the oxygen flow into the reactor. To the best of our knowledge, this is the first time that synthesis of high aspect ratio ZnO nanorods by FSP is reported. Previous lab-scale experiments always yielded rather spherical albeit slightly elongated nanoparticles unless dopants were added. Such a product powder was obtained here when the ethanol in the precursor solution was replaced by methanol at otherwise constant process conditions. This is attributed to different temperature–time histories of the particles in the flame based on which a mechanism for ZnO nanorod formation in spray flames is proposed.

  7. Synthesis of Nano-Particles in Flames

    DEFF Research Database (Denmark)

    Johannessen, Tue

    flame burner and a premixed burner with a precursor jet. The experimental setups and results are shown and discussed in detail. Alumina powder with specific surface area between 45 m2/g and 190 m2/g was obtained.Temperature and flow fields of the flame processes are analysed by numerical simulations...... energy expression.Furthermore, the model is validated by comparison with experimental data of the flame synthesis of titania by combustion of TiCl4 previously presented by Pratsinis et al. (1996).The combination of particle dynamics and CFD simulations has proved to be an efficient method......The scope of this work is to investigate the synthesis of aluminum oxide particles in flames from the combustion of an aluminum alkoxide precursor.A general introduction to particles formation in the gas phase is presented with emphasis on the mechanisms that control the particle morphology after...

  8. Characteristics of combustion flame sprayed nickel aluminum using a Coanda Assisted Spray Manipulation collar for off-normal deposits

    Science.gov (United States)

    Archibald, Reid S.

    A novel flame spray collar called the Coanda Assisted Spray Manipulation collar (CSM) has been tested for use on the Sulzer Metco 5P II combustion flame spray gun. A comparison study of the stock nozzle and the CSM has been performed by evaluating the porosity, surface roughness, microhardness, tensile strength and microscopy of normal and off-normal sprayed NiAl deposits. The use of the CSM collar resulted in the need to position the sprayed coupons closer to the gun, which in turn affected the particle impact energy and particle temperatures of the NiAl powder. For the CSM, porosities had a larger scatterband, surface roughness was comparably the same, microhardness was lower, and tensile strength was higher. The microscopy analysis revealed a greater presence of unmelted particles and steeper intersplat boundaries for the CSM. For both processes, the porosity and surface roughness increased and the microhardness decreased as the spray angle decreased.

  9. Adjustable wettability of paperboard by liquid flame spray nanoparticle deposition

    Science.gov (United States)

    Stepien, Milena; Saarinen, Jarkko J.; Teisala, Hannu; Tuominen, Mikko; Aromaa, Mikko; Kuusipalo, Jurkka; Mäkelä, Jyrki M.; Toivakka, Martti

    2011-01-01

    Liquid flame spray process (LFS) was used for depositing TiO x and SiO x nanoparticles on paperboard to control wetting properties of the surface. By the LFS process it is possible to create either superhydrophobic or superhydrophilic surfaces. Changes in the wettability are related to structural properties of the surface, which were characterized using scanning electron microscope (SEM) and atomic force microscope (AFM). The surface properties can be ascribed as a correlation between wetting properties of the paperboard and the surface texture created by nanoparticles. Surfaces can be produced inline in a one step roll-to-roll process without need for additional modifications. Furthermore, functional surfaces with adjustable hydrophilicity or hydrophobicity can be fabricated simply by choosing appropriate liquid precursors.

  10. Characterization of Liquid Fuel Evaporation of a Lifted Methanol Spray Flame in a Vitiated Coflow Burner

    Science.gov (United States)

    Cabra, Ricardo; Dibble, Robert W.; Chen, Jyh-Yuan

    2002-01-01

    An experimental investigation of lifted spray flames in a coflow of hot, vitiated gases is presented. The vitiated coflow burner is a spray flame that issues into a coaxial flow of hot combustion products from a lean, premixed H2/Air flame. The spray flame in a vitiated coflow emulates the combustion that occurs in many advanced combustors without the detailed fluid mechanics. Two commercially available laser diagnostic systems are used to characterize the spray flame and to demonstrate the vitiated coflow burner's amenability to optical investigation. The Ensemble Particle Concentration and Size (EPCS) system is used to measure the path-average droplet size distribution and liquid volume fraction at several axial locations while an extractive probe instrument named the Real-time Fuel-air Analyzer (RFA) is used to measure the air to fuel ratio downstream of the spray nozzle with high temporal and spatial resolution. The effect of coflow conditions (stoichiometry) and dilution of the fuel with water was studied with the EPCS optical system. As expected, results show that water retards the evaporation and combustion of fuels. Measurements obtained by the RFA extractive probe show that while the Delavan manufactured nozzle does distribute the fuel over the manufacturer specified spray angle, it unfortunately does not distribute the fuel uniformly, providing conditions that may result in the production of unwanted NOx. Despite some limitations due to the inherent nature of the experimental techniques, the two diagnostics can be readily applied to spray flames in the vitiated coflow environment.

  11. Eulerian–Lagrangian RANS Model Simulations of the NIST Turbulent Methanol Spray Flame

    NARCIS (Netherlands)

    Zhu, Shanglong; Roekaerts, Dirk; Pozarlik, Artur Krzysztof; van der Meer, Theodorus H.

    2015-01-01

    A methanol spray flame in a combustion chamber of the NIST was simulated using an Eulerian–Lagrangian RANS model. Experimental data and previous numerical investigations by other researchers on this flame were analyzed to develop methods for more comprehensive model validation. The inlet boundary

  12. Flame synthesis of zinc oxide nanocrystals

    Energy Technology Data Exchange (ETDEWEB)

    Merchan-Merchan, Wilson, E-mail: wmerchan-merchan@ou.edu [School of Aerospace and Mechanical Engineering, University of Oklahoma, Norman, OK 73019 (United States); Farahani, Moien Farmahini [School of Aerospace and Mechanical Engineering, University of Oklahoma, Norman, OK 73019 (United States)

    2013-02-01

    Highlights: Black-Right-Pointing-Pointer We report a single-step flame method for the synthesis of Zn oxide nanocrystals. Black-Right-Pointing-Pointer Diverse flame positions lead to a variation of Zn oxide nanocrystal growth. Black-Right-Pointing-Pointer The synthesized crystals have polyhedral, pipet- and needle-like shape. Black-Right-Pointing-Pointer High length-to-diameter aspect-ratio crystals appear in a higher temperature flame. Black-Right-Pointing-Pointer The crystal growth mechanism corresponds to vapor-to-solid conversion. - Abstract: Distinctive zinc oxide (ZnO) nanocrystals were synthesized on the surface of Zn probes using a counter-flow flame medium formed by methane/acetylene and oxygen-enriched air streams. The source material, a zinc wire with a purity of {approx}99.99% and diameter of 1 mm, was introduced through a sleeve into the oxygen rich region of the flame. The position of the probe/sleeve was varied within the flame medium resulting in growth variation of ZnO nanocrystals on the surface of the probe. The shape and structural parameters of the grown crystals strongly depend on the flame position. Structural variations of the synthesized crystals include single-crystalline ZnO nanorods and microprisms (ZMPs) (the ZMPs have less than a few micrometers in length and several hundred nanometers in cross section) with a large number of facets and complex axial symmetry with a nanorod protruding from their tips. The protruding rods are less than 100 nm in diameter and lengths are less than 1 {mu}m. The protruding nanorods can be elongated several times by increasing the residence time of the probe/sleeve inside the oxygen-rich flame or by varying the flame position. At different flame heights, nanorods having higher length-to-diameter aspect-ratio can be synthesized. A lattice spacing of {approx}0.26 nm was measured for the synthesized nanorods, which can be closely correlated with the (0 0 2) interplanar spacing of hexagonal ZnO (Wurtzite) cells

  13. Modeling ethanol spray jet flame in hot-diluted coflow with transported PDF

    NARCIS (Netherlands)

    Ma, L.; Naud, B.; Roekaerts, D.J.E.M.

    2014-01-01

    MILD Combustion, also known as flameless combustion, is attracting wide scientific interest due to its potential of high efficiency and low NOx emission. This paper focuses on the numerical modeling of one of the ethanol spray flame cases from the Delft Spray-in-Hot-Coflow (DSHC) burner, which has

  14. Effects of coflow temperature and composition on ethanol spray flames in hot-diluted coflow

    International Nuclear Information System (INIS)

    Correia Rodrigues, H.; Tummers, M.J.; Veen, E.H. van; Roekaerts, D.J.E.M.

    2015-01-01

    Highlights: • Comprehensive experimental study of spray flames in hot-diluted coflow. • Application of coherent anti-Stokes Raman in spray flames. • Identification of relevant phenomena determining the lift-off behavior of spray flames in hot-diluted coflow. - Abstract: Ethanol pressure-swirl sprays issuing in a hot-diluted oxidizer coflow with different temperature and composition were studied. The bulk coflow temperature was varied together with the oxygen volume fraction. The bulk coflow temperature was changed from 1480 K to 1225 K and the oxygen volume fraction from 7.1% to 10.1%. The liquid mass flow rates were chosen to yield spray flames with nearly identical Weber number. Laser Doppler anemometry, phase Doppler anemometry and coherent anti-Stokes Raman scattering were applied in the spray region and the coflow inlet. The current measurements provide a thorough description of the spray structure, droplet dispersion and gas temperature fields as well as a comprehensive database useful for validation of numerical models. Visual observations of the flame luminescence reveal that the lift-off height depends on the liquid mass flow rates as well as the coflow conditions. The lift-off height is shown to increase for lower coflow temperatures and higher liquid mass flow rates. It is found that lift-off behavior depends on the droplet convective, vaporization and chemical time scales prior to ignition. Phase Doppler anemometry results indicate that the droplet mean size and velocity distribution close to the atomizer are not influenced by the coflow conditions. A flame-front develops at the outer region of the spray where a low density of large droplets are present. A significant number of peak temperatures samples above 2000 K is observed at this location. Decrease of the coflow temperature leads to a reduction of the local peak temperatures. Closer to the center axis, the local mixture composition becomes increasingly rich and the heat-release is lower than

  15. Structure and temperature distribution of a stagnation-point Diesel spray premixed flame

    International Nuclear Information System (INIS)

    Lin, J.-C.; Lin, Ta-Hui

    2005-01-01

    We experimentally examine the flow and flame characteristics of a stagnation point premixed flame influenced by Diesel sprays. In the experiment, distributions of drop size, drop axial velocity and its fluctuation as well as the gas phase temperature are measured by using the phase-doppler particle analyzer and a thin thermocouple. As might be expected, similar to the gasoline spray flame, the partially prevaporized Diesel spray flame is composed of a weak blue flame zone, indicating the burning of methane fuel, and a strongly luminous zone containing many bright yellow lines showing the passages of burning Diesel drops. It is found that the axial temperature profiles at various radial positions consist of an upstream preheat region, a maximum temperature downstream of the blue flame and a downstream region with a declined temperature curve because of the heat loss to the quartz plate. The SMD of the drops increases from the upstream preheat region to a maximum near the blue flame and then decreases in the downstream burning zone. Along the axial position, the drops are decelerated in front of the flame but accelerated when passing through the blue flame. It is also interesting to note that the radial distributions of SMD and number density of drops in the upstream region are mainly influenced by small drops flowing outward, since the upstream vaporization of Diesel drops is very limited; while those in the downstream region should be influenced by both small drops flowing outward and Diesel drops burning. From the experimental observations, there are impinging and bouncing of Diesel drops downstream of the spray flame near the quartz plate, resulting in a small amount of soot and carbon deposits on the wall. These interesting phenomena will be reported in the near future

  16. Linear Stability Analysis of Laminar Premixed Fuel-Rich Double-Spray Flames

    Directory of Open Access Journals (Sweden)

    Noam Weinberg

    2014-03-01

    Full Text Available This paper considers the stability of a double-spray premixed flame formed when both fuel and oxidizer are initially present in the form of sprays of evaporating liquid droplets. To simplify the inherent complexity that characterizes the analytic solution of multi-phase combustion processes, the analysis is restricted to fuel-rich laminar premixed double-spray flames, and assumes a single-step global chemical reaction mechanism. Steady-state solutions are obtained and the sensitivity of the flame temperature and the flame propagating velocity to the initial liquid fuel and/or oxidizer loads are established. The stability analysis revealed an increased proneness to cellular instability induced by the presence of the two sprays, and for the fuel-rich case considered here the influence of the liquid oxidizer was found to be more pronounced than that of the liquid fuel. Similar effects were noted for the neutral pulsating stability boundaries. The impact of unequal latent heats of vaporization is also investigated and found to be in keeping with the destabilizing influence of heat loss due to droplet evaporation. It should be noted that as far as the authors are aware no experimental evidence is available for (at least validation of the predictions. However, they do concur in a general and reasonable fashion with independent experimental evidence in the literature of the behavior of single fuel spray laminar premixed flames.

  17. Transported PDF Modeling of Ethanol Spray in Hot-Diluted Coflow Flame

    OpenAIRE

    Ma, L.; Naud, B.; Roekaerts, D.J.E.M.

    2015-01-01

    This paper presents a numerical modeling study of one ethanol spray flame from the Delft Spray-in-Hot-Coflow (DSHC) database, which has been used to study Moderate or Intense Low-oxygen Dilution (MILD) combustion of liquid fuels (Correia Rodrigues et al. Combust. Flame 162(3), 759–773, 2015). A “Lagrangian-Lagrangian” approach is adopted where both the joint velocity-scalar Probability Density Function (PDF) for the continuous phase and the joint PDF of droplet properties are modeled and solv...

  18. Microstructure and performance of titanium oxide coatings sprayed by oxygen-acetylene flame

    Czech Academy of Sciences Publication Activity Database

    Ctibor, Pavel; Štengl, Václav; Zahálka, F.; Murafa, Nataliya

    2011-01-01

    Roč. 10, č. 3 (2011), s. 403-407 ISSN 1474-905X R&D Projects: GA AV ČR IAAX00430803 Institutional research plan: CEZ:AV0Z20430508; CEZ:AV0Z40320502 Keywords : Plasma spraying * flame spraying * photocatalysis * TiO2 Subject RIV: JH - Ceramics, Fire-Resistant Materials and Glass Impact factor: 2.584, year: 2011

  19. Modeling ethanol spray jet flame in hot-diluted coflow with transported PDF

    OpenAIRE

    Ma, L.; Naud, B.; Roekaerts, D.J.E.M.

    2014-01-01

    MILD Combustion, also known as flameless combustion, is attracting wide scientific interest due to its potential of high efficiency and low NOx emission. This paper focuses on the numerical modeling of one of the ethanol spray flame cases from the Delft Spray-in-Hot-Coflow (DSHC) burner, which has been used to study MILD oxidation of liquid fuels. The study has been carried out following the approach of dilute spray simulation. To properly account the turbulent two-phase flow system, a joint ...

  20. Combustion Synthesis of Nanomaterials Using Various Flame Configurations

    KAUST Repository

    Ismail, Mohamed Anwar

    2016-02-01

    interaction jet region, followed by a merged-jet region. The modified CWJ burner revealed appreciable mixing characteristics between the precursor and combustion gases within these regions, with a slight increase in the axial velocity due to the precursor injection. This led to more uniformity in particle size distribution of the synthesized nanoparticles with the poppet valve (first modification). The double-slit modification improved the uniformity of generated nanoparticles at a very wide range of stable experimental conditions. Images of OH fluorescence showed that flames are tightly attached to the burner tip and TTIP has no influence on these flames structures. The particle size was slightly affected by the operating conditions. The phase of TiO2 nanoparticles was mainly dependent on the equivalence ratio and fuel type, which impact flame height, heat release rate and high temperature residence time of the precursor vapor. For ethylene and methane flames, the anatase content is proportional to the equivalence ratio, whereas it is inversely proportional in the case of propane flames. The anatase content reduced by 8% as we changed Re between 8,000 and 19,000, implying that the Re has a slight effect on the anatase content. The synthesized TiO2 nanoparticles exhibited high crystallinity and the anatase phase was dominant at high equivalence ratios (φ >1.6) for C2H4, and at low equivalence ratios (φ <1.3) for the C3H8 flame. Concerning advanced nanoparticle synthesis, a multiple diffusion burner and flame spray pyrolysis (FSP) were adopted in this study to investigate the effect of doping/coating on TiO2 nanoparticles. The nanoparticles were characterized by the previously mentioned techniques in addition to thermogravimetric analysis (TGA) for carbon content, X-ray photoelectron spectroscopy (XPS) for surface chemistry, ultraviolet-visible spectroscopy (UV-vis) for light absorbance, inductively coupled plasma (ICP) for metal traces, and superconducting quantum

  1. Flame-Sprayed Y2O3 Films with Metal-EDTA Complex Using Various Cooling Agents

    Science.gov (United States)

    Komatsu, Keiji; Toyama, Ayumu; Sekiya, Tetsuo; Shirai, Tomoyuki; Nakamura, Atsushi; Toda, Ikumi; Ohshio, Shigeo; Muramatsu, Hiroyuki; Saitoh, Hidetoshi

    2017-01-01

    In this study, yttrium oxide (Y2O3) films were synthesized from a metal-ethylenediaminetetraacetic (metal-EDTA) complex by employing a H2-O2 combustion flame. A rotation apparatus and various cooling agents (compressed air, liquid nitrogen, and atomized purified water) were used during the synthesis to control the thermal history during film deposition. An EDTA·Y·H complex was prepared and used as the staring material for the synthesis of Y2O3 films with a flame-spraying apparatus. Although thermally extreme environments were employed during the synthesis, all of the obtained Y2O3 films showed only a few cracks and minor peeling in their microstructures. For instance, the Y2O3 film synthesized using the rotation apparatus with water atomization units exhibited a porosity of 22.8%. The maximum film's temperature after deposition was 453 °C owing to the high heat of evaporation of water. Cooling effects of substrate by various cooling units for solidification was dominated to heat of vaporization, not to unit's temperatures.

  2. Unsteady flamelet modelling of spray flames using deep artificial neural networks

    Science.gov (United States)

    Owoyele, Opeoluwa; Kundu, Prithwish; Ameen, Muhsin; Echekki, Tarek; Som, Sibendu

    2017-11-01

    We investigate the applicability of the tabulated, multidimensional unsteady flamelet model and artificial neural networks (TFM-ANN) to lifted diesel spray flame simulations. The tabulated flamelet model (TFM), based on the widely known flamelet assumption, eliminates the use of a progress variable and has been shown to successfully model global diesel spray flame characteristics in previous studies. While the TFM has shown speed-up compared to other models and predictive capabilities across a range of ambient conditions, it involves the storage of multidimensional tables, requiring large memory and multidimensional interpolation schemes. This work discusses the implementation of deep artificial neural networks (ANN) to replace the use of large tables and multidimensional interpolation. The proposed framework is validated by applying it to an n-dodecane spray flame (ECN Spray A) at different conditions using a 4 dimensional flamelet library. The validations are then extended for the simulations using a 5-dimensional flamelet table applied to the combustion of methyl decanoate in a compression ignition engine. Different ANN topologies, optimization algorithms and speed-up techniques are explored and details of computational resources required for TFM-ANN and the TFM are also presented. The overall tools and algorithms used in this study can be directly extended to other multidimensional tabulated models.

  3. Electron microscopy and EXAFS studies on oxide-supported gold-silver nanoparticles prepared by flame spray pyrolysis

    Energy Technology Data Exchange (ETDEWEB)

    Hannemann, Stefan [Institute of Chemical and Bioengineering, Swiss Federal Institute of Technology, ETH Hoenggerberg, CH-8093 Zurich (Switzerland); Grunwaldt, Jan-Dierk [Institute of Chemical and Bioengineering, Swiss Federal Institute of Technology, ETH Hoenggerberg, CH-8093 Zurich (Switzerland)]. E-mail: grunwaldt@chem.ethz.ch; Krumeich, Frank [Laboratory of Inorganic Chemistry, Swiss Federal Institute of Technology, ETH Hoenggerberg, CH-8093 Zurich (Switzerland); Kappen, Peter [Department of Physics, La Trobe University, Victoria 3086 (Australia); Baiker, Alfons [Institute of Chemical and Bioengineering, Swiss Federal Institute of Technology, ETH Hoenggerberg, CH-8093 Zurich (Switzerland)

    2006-09-15

    Gold and gold-silver nanoparticles prepared by flame spray pyrolysis (FSP) were characterized by electron microscopy, in situ X-ray absorption spectroscopy (XANES and EXAFS), X-ray diffraction (XRD) and their catalytic activity in CO oxidation. Within this one-step flame-synthesis procedure, precursor solutions of dimethyl gold(III) acetylacetonate and silver(I) benzoate together with the corresponding precursor of the silica, iron oxide or titania support, were sprayed and combusted. In order to prepare small metal particles, a low noble metal loading was required. A loading of 0.1-1 wt.% of Au and Ag resulted in 1-6 nm particles. The size of the noble metal particles increased with higher loadings of gold and particularly silver. Both scanning transmission electron microscopy (STEM) combined with energy dispersive X-ray spectroscopy (EDXS) and X-ray absorption spectroscopy (XAS) studies proved the formation of mixed Au-Ag particles. In case of 1% Au-1% Ag/SiO{sub 2}, TEM combined with electron spectroscopic imaging (ESI) using an imaging filter could be used in addition to prove the presence of silver and gold in the same noble metal particle. CO oxidation in the presence of hydrogen was chosen as a test reaction sensitive to small gold particles. Both the influence of the particle size and the alloying of gold and silver were reflected in the CO oxidation activity.

  4. Electron microscopy and EXAFS studies on oxide-supported gold-silver nanoparticles prepared by flame spray pyrolysis

    International Nuclear Information System (INIS)

    Hannemann, Stefan; Grunwaldt, Jan-Dierk; Krumeich, Frank; Kappen, Peter; Baiker, Alfons

    2006-01-01

    Gold and gold-silver nanoparticles prepared by flame spray pyrolysis (FSP) were characterized by electron microscopy, in situ X-ray absorption spectroscopy (XANES and EXAFS), X-ray diffraction (XRD) and their catalytic activity in CO oxidation. Within this one-step flame-synthesis procedure, precursor solutions of dimethyl gold(III) acetylacetonate and silver(I) benzoate together with the corresponding precursor of the silica, iron oxide or titania support, were sprayed and combusted. In order to prepare small metal particles, a low noble metal loading was required. A loading of 0.1-1 wt.% of Au and Ag resulted in 1-6 nm particles. The size of the noble metal particles increased with higher loadings of gold and particularly silver. Both scanning transmission electron microscopy (STEM) combined with energy dispersive X-ray spectroscopy (EDXS) and X-ray absorption spectroscopy (XAS) studies proved the formation of mixed Au-Ag particles. In case of 1% Au-1% Ag/SiO 2 , TEM combined with electron spectroscopic imaging (ESI) using an imaging filter could be used in addition to prove the presence of silver and gold in the same noble metal particle. CO oxidation in the presence of hydrogen was chosen as a test reaction sensitive to small gold particles. Both the influence of the particle size and the alloying of gold and silver were reflected in the CO oxidation activity

  5. Testing of Flame Sprayed Al2O3 Matrix Coatings Containing TiO2

    Directory of Open Access Journals (Sweden)

    Czupryński A.

    2016-09-01

    Full Text Available The paper presents the results of the properties of flame sprayed ceramic coatings using oxide ceramic materials coating of a powdered aluminium oxide (Al2O3 matrix with 3% titanium oxide (TiO2 applied to unalloyed S235JR grade structural steel. A primer consisting of a metallic Ni-Al-Mo based powder has been applied to plates with dimensions of 5×200×300 mm and front surfaces of Ø40×50 mm cylinders. Flame spraying of primer coating was made using a RotoTec 80 torch, and an external coating was made with a CastoDyn DS 8000 torch. Evaluation of the coating properties was conducted using metallographic testing, phase composition research, measurement of microhardness, substrate coating adhesion (acc. to EN 582:1996 standard, erosion wear resistance (acc. to ASTM G76-95 standard, and abrasive wear resistance (acc. to ASTM G65 standard and thermal impact. The testing performed has demonstrated that flame spraying with 97% Al2O3 powder containing 3% TiO2 performed in a range of parameters allows for obtaining high-quality ceramic coatings with thickness up to ca. 500 µm on a steel base. Spray coating possesses a structure consisting mainly of aluminium oxide and a small amount of NiAl10O16 and NiAl32O49 phases. The bonding primer coat sprayed with the Ni-Al-Mo powder to the steel substrate and external coating sprayed with the 97% Al2O3 powder with 3% TiO2 addition demonstrates mechanical bonding characteristics. The coating is characterized by a high adhesion to the base amounting to 6.5 MPa. Average hardness of the external coating is ca. 780 HV. The obtained coatings are characterized by high erosion and abrasive wear resistance and the resistance to effects of cyclic thermal shock.

  6. Suspension Flame Spray Construction of Polyimide-Copper Layers for Marine Antifouling Applications

    Science.gov (United States)

    Liu, Yi; Xu, Xiaomin; Suo, Xinkun; Gong, Yongfeng; Li, Hua

    2018-01-01

    Individual capsule-like polyimide splats have been fabricated by suspension flame spray, and the polyimide splat exhibits hollow structure with an inner pore and a tiny hole on its top surface. Enwrapping of 200-1000-nm copper particles inside the splats is accomplished during the deposition for constrained release of copper for antifouling performances. Antifouling testing of the coatings by 24-h exposure to Escherichia coli-containing artificial seawater shows that the Cu-doped splat already prohibits effectively attachment of the bacteria. The prohibited adhesion of bacteria obviously impedes formation and further development of bacterial biofilm. This capsulated splat with releasing and loading of copper biocides results in dual-functional structures bearing both release-killing and contact-killing mechanisms. The suspension flame spray route and the encapsulated structure of the polyimide-Cu coatings would open a new window for designing and constructing marine antifouling layers for long-term applications.

  7. Production of nano structured zinc oxide by the flame spray method

    International Nuclear Information System (INIS)

    Trommer, R.M.; Bergmann, C.P.

    2009-01-01

    Nanostructured zinc oxide has been widely employed in several applications, mainly as antibactericidal and absorber of ultraviolet radiation (UV). The preference for a nanostructured material is associated with the different properties presented by these entities when compared to the bulk material. Thus, this work employed the flame spray technique, an alternative method with an enormous potential in nanoparticles production, to obtain ZnO powders. Basically, a precursor solution is prepared, atomized and then sprayed in the flame, where it burns and leads to the formation of particles. X-ray diffraction analysis pointed the crystalline phase zincite. By scanning electronic microscopy, it was possible to observe irregular and aggregated particles in the powder. By transmission electronic microscopy, images of the nanometric ZnO particles were obtained, being later confirmed by the single line method. (author)

  8. Narrow band flame emission from dieseline and diesel spray combustion in a constant volume combustion chamber

    KAUST Repository

    Wu, Zengyang

    2016-08-18

    In this paper, spray combustion of diesel (No. 2) and diesel-gasoline blend (dieseline: 80% diesel and 20% gasoline by volume) were investigated in an optically accessible constant volume combustion chamber. Effects of ambient conditions on flame emissions were studied. Ambient oxygen concentration was varied from 12% to 21% and three ambient temperatures were selected: 800 K, 1000 K and 1200 K. An intensified CCD camera coupled with bandpass filters was employed to capture the quasi-steady state flame emissions at 430 nm and 470 nm bands. Under non-sooting conditions, the narrow-band flame emissions at 430 nm and 470 nm can be used as indicators of CH∗ (methylidyne) and HCHO∗ (formaldehyde), respectively. The lift-off length was measured by imaging the OH∗ chemiluminescence at 310 nm. Flame emission structure and intensity distribution were compared between dieseline and diesel at wavelength bands. Flame emission images show that both narrow band emissions become shorter, thinner and stronger with higher oxygen concentration and higher ambient temperature for both fuels. Areas of weak intensity are observed at the flame periphery and the upstream for both fuels under all ambient conditions. Average flame emission intensity and area were calculated for 430 nm and 470 nm narrow-band emissions. At a lower ambient temperature the average intensity increases with increasing ambient oxygen concentration. However, at the 1200 K ambient temperature condition, the average intensity is not increasing monotonically for both fuels. For most of the conditions, diesel has a stronger average flame emission intensity than dieseline for the 430 nm band, and similar phenomena can be observed for the 470 nm band with 800 K and 1200 K ambient temperatures. However, for the 1000 K ambient temperature cases, dieseline has stronger average flame emission intensities than diesel for all oxygen concentrations at 470 nm band. Flame emissions for the two bands have a

  9. High rate flame synthesis of highly crystalline iron oxide nanorods

    International Nuclear Information System (INIS)

    Merchan-Merchan, W; Taylor, A M; Saveliev, A V

    2008-01-01

    Single-step flame synthesis of iron oxide nanorods is performed using iron probes inserted into an opposed-flow methane oxy-flame. The high temperature reacting environment of the flame tends to convert elemental iron into a high density layer of iron oxide nanorods. The diameters of the iron oxide nanorods vary from 10 to 100 nm with a typical length of a few microns. The structural characterization performed shows that nanorods possess a highly ordered crystalline structure with parameters corresponding to cubic magnetite (Fe 3 O 4 ) with the [100] direction oriented along the nanorod axis. Structural variations of straight nanorods such as bends, and T-branched and Y-branched shapes are frequently observed within the nanomaterials formed, opening pathways for synthesis of multidimensional, interconnected networks

  10. Ensemble Diffraction Measurements of Spray Combustion in a Novel Vitiated Coflow Turbulent Jet Flame Burner

    Science.gov (United States)

    Cabra, R.; Hamano, Y.; Chen, J. Y.; Dibble, R. W.; Acosta, F.; Holve, D.

    2000-01-01

    An experimental investigation is presented of a novel vitiated coflow spray flame burner. The vitiated coflow emulates the recirculation region of most combustors, such as gas turbines or furnaces; additionally, since the vitiated gases are coflowing, the burner allows exploration of the chemistry of recirculation without the corresponding fluid mechanics of recirculation. As such, this burner allows for chemical kinetic model development without obscurations caused by fluid mechanics. The burner consists of a central fuel jet (droplet or gaseous) surrounded by the oxygen rich combustion products of a lean premixed flame that is stabilized on a perforated, brass plate. The design presented allows for the reacting coflow to span a large range of temperatures and oxygen concentrations. Several experiments measuring the relationships between mixture stoichiometry and flame temperature are used to map out the operating ranges of the coflow burner. These include temperatures as low 300 C to stoichiometric and oxygen concentrations from 18 percent to zero. This is achieved by stabilizing hydrogen-air premixed flames on a perforated plate. Furthermore, all of the CO2 generated is from the jet combustion. Thus, a probe sample of NO(sub X) and CO2 yields uniquely an emission index, as is commonly done in gas turbine engine exhaust research. The ability to adjust the oxygen content of the coflow allows us to steadily increase the coflow temperature surrounding the jet. At some temperature, the jet ignites far downstream from the injector tube. Further increases in the coflow temperature results in autoignition occurring closer to the nozzle. Examples are given of methane jetting into a coflow that is lean, stoichiometric, and even rich. Furthermore, an air jet with a rich coflow produced a normal looking flame that is actually 'inverted' (air on the inside, surrounded by fuel). In the special case of spray injection, we demonstrate the efficacy of this novel burner with a

  11. Evaluation of a Consistent LES/PDF Method Using a Series of Experimental Spray Flames

    Science.gov (United States)

    Heye, Colin; Raman, Venkat

    2012-11-01

    A consistent method for the evolution of the joint-scalar probability density function (PDF) transport equation is proposed for application to large eddy simulation (LES) of turbulent reacting flows containing evaporating spray droplets. PDF transport equations provide the benefit of including the chemical source term in closed form, however, additional terms describing LES subfilter mixing must be modeled. The recent availability of detailed experimental measurements provide model validation data for a wide range of evaporation rates and combustion regimes, as is well-known to occur in spray flames. In this work, the experimental data will used to investigate the impact of droplet mass loading and evaporation rates on the subfilter scalar PDF shape in comparison with conventional flamelet models. In addition, existing model term closures in the PDF transport equations are evaluated with a focus on their validity in the presence of regime changes.

  12. Flame assisted synthesis of catalytic ceramic membranes

    DEFF Research Database (Denmark)

    Johansen, Johnny; Mosleh, Majid; Johannessen, Tue

    2004-01-01

    technology it is possible to make supported catalysts, composite metal oxides, catalytically active surfaces, and porous ceramic membranes. Membrane layers can be formed by using a porous substrate tube (or surface) as a nano-particle filter. The aerosol gas from the flame is led through a porous substrate...

  13. Investigations on the self-excited oscillations in a kerosene spray flame

    Energy Technology Data Exchange (ETDEWEB)

    de la Cruz Garcia, M.; Mastorakos, E.; Dowling, A.P. [Engineering Department, Cambridge University, Trumpington Street, CB2 1PZ, Cambridge (United Kingdom)

    2009-02-15

    A laboratory scale gas turbine type burner at atmospheric pressure and with air preheat was operated with aviation kerosene Jet-A1 injected from a pressure atomiser. Self-excited oscillations were observed and analysed to understand better the relationship between the spray and thermo-acoustic oscillations. The fluctuations of CH{sup *} chemiluminescence measured simultaneously with the pressure were used to determine the flame transfer function. The Mie scattering technique was used to record spray fluctuations in reacting conditions with a high speed camera. Integrating the Mie intensity over the imaged region gave a temporal signal acquired simultaneously with pressure fluctuations and the transfer function between the light scattered from the spray and the velocity fluctuations in the plenum was evaluated. Phase Doppler anemometry was used for axial velocity and drop size measurements at different positions downstream the injection plane and for various operating conditions. Pressure spectra showed peaks at a frequency that changed with air mass flow rate. The peak for low air mass flow rate operation was at 220 Hz and was associated with a resonance of the supply plenum. At the same global equivalence ratio but at high air mass flow rates, the pressure spectrum peak was at 323 Hz, a combustion chamber resonant frequency. At low air flow rates, the spray fluctuation motion was pronounced and followed the frequency of the pressure oscillation. At high air flow rates, more effective evaporation resulted in a complete disappearance of droplets at an axial distance of about 1/3 burner diameters from the injection plane, leading to a different flame transfer function and frequency of the self-excited oscillation. The results highlight the sensitivity of the self-excited oscillation to the degree of mixing achieved before the main recirculation zone. (author)

  14. Structure of a swirl-stabilized spray flame by imaging, laser Doppler velocimetry, and phase Doppler anemometry

    Science.gov (United States)

    Edwards, C. F.; Rudoff, R. C.

    1991-01-01

    Data are presented which describe the mean structure of a steady, swirl-stabilized, kerosene spray flame in the near-injector region of a research furnace. The data presented include ensemble-averaged results of schlieren, luminosity, and extinction imaging, measurement of the gas phase velocity field by laser Doppler velocimetry, and characterization of the condensed phase velocity by phase Doppler anemometry. The results of these studies define six key regions in the flame: the dense spray region; the rich, two-phase, fuel jet; the main air jet; the internal product recirculation zone; the external product recirculation zone; and the gaseous diffusion flame zone. The first five of these regions form a conical mixing layer which prepares the air and fuel for combustion. The air and fuel jets comprise the central portion of this mixing layer and are bounded on either side by the hot product gases of the internal and external recirculation zones. Entrainment of these product gases into the air/fuel streams provides the energy required to evaporate the fuel spray and initiate combustion. Intermittency of the internal recirculation and spray jet flows accounts for unexpected behavior observed in the aerodynamics of the two phases. The data reported herein are part of the database being accumulated on this spray flame for the purpose of detailed comparison with numerical modeling.

  15. Novel Flame-Based Synthesis of Nanowires for Multifunctional Application

    Science.gov (United States)

    2015-05-13

    pattern (SAED) of SnO2/WO2.9 heterojunction for case 7. TEM (Fig. 14(a)) reveals that the coating on the tungsten- oxide nanowires is actually a...tungsten oxide nanowire,s resulting in radial growth of Zn2SnO4 nanocube/WO2.9 nanowire heterojunction . Furthermore, the combined flame and solution...SECURITY CLASSIFICATION OF: Progress for the project has been made in various areas. Specifically, we report on: (i) flame synthesis of metal- oxide

  16. Product engineering by high-temperature flame synthesis

    DEFF Research Database (Denmark)

    Johannessen, Tue; Johansen, Johnny; Mosleh, Majid

    product gas can be applied directly in additional product engineering concepts. A brief overview of on-going product developments and product engineering projects is outlined below. These projects, which are all founded on flame synthesis of nano-structured materials, include: • Preparation of catalyzed...... hardware by direct deposition of catalysts on process equipment • Modifications of the substrate surfaces to obtain good adhesion during flame-coating • Formation of membrane layers by gas-phase deposition of nano-particles • Catalyst deposition in micro-reactors for rapid catalyst screening...

  17. Soot and Spectral Radiation Modeling for a High-Pressure Turbulent Spray Flame

    Energy Technology Data Exchange (ETDEWEB)

    Ferreryo-Fernandez, Sebastian [Pennsylvania State Univ., University Park, PA (United States); Paul, Chandan [Pennsylvania State Univ., University Park, PA (United States); Sircar, Arpan [Pennsylvania State Univ., University Park, PA (United States); Imren, Abdurrahman [Pennsylvania State Univ., University Park, PA (United States); Haworth, Daniel C [Pennsylvania State Univ., University Park, PA (United States); Roy, Somesh P [Marquette University (United States); Modest, Michael F [University of California Merced (United States)

    2017-04-26

    Simulations are performed of a transient high-pressure turbulent n-dodecane spray flame under engine-relevant conditions. An unsteady RANS formulation is used, with detailed chemistry, a semi-empirical two-equation soot model, and a particle-based transported composition probability density function (PDF) method to account for unresolved turbulent fluctuations in composition and temperature. Results from the PDF model are compared with those from a locally well-stirred reactor (WSR) model to quantify the effects of turbulence-chemistry-soot interactions. Computed liquid and vapor penetration versus time, ignition delay, and flame lift-off height are in good agreement with experiment, and relatively small differences are seen between the WSR and PDF models for these global quantities. Computed soot levels and spatial soot distributions from the WSR and PDF models show large differences, with PDF results being in better agreement with experimental measurements. An uncoupled photon Monte Carlo method with line-by-line spectral resolution is used to compute the spectral intensity distribution of the radiation leaving the flame. This provides new insight into the relative importance of molecular gas radiation versus soot radiation, and the importance of turbulent fluctuations on radiative heat transfer.

  18. Ethanol flame synthesis of carbon nanotubes in deficient oxygen environments

    Science.gov (United States)

    Hu, Wei-Chieh; Lin, Ta-Hui

    2016-04-01

    In this study, carbon nanotubes (CNTs) were synthesized using ethanol diffusion flames in a stagnation-flow system composed of an upper oxidizer duct and a lower liquid pool. In the experiments, a gaseous mixture of oxygen and nitrogen flowed from the upper oxidizer duct, and then impinged onto the vertically aligned ethanol pool to generate a planar and steady diffusion flame in a deficient oxygen environment. A nascent nickel mesh was used as the catalytic metal substrate to collect deposited materials. The effect of low oxygen concentration on the formation of CNTs was explored. The oxygen concentration significantly influenced the flame environment and thus the synthesized carbon products. Lowering the oxygen concentration increased the yield, diameter, and uniformity of CNTs. The optimal operating conditions for CNT synthesis were an oxygen concentration in the range of 15%-19%, a flame temperature in the range of 460 °C-870 °C, and a sampling position of 0.5-1 mm below the upper edge of the blue flame front. It is noteworthy that the concentration gradient of C2 species and CO governed the CNT growth directly. CNTs were successfully fabricated in regions with uniform C2 species and CO distributions.

  19. Charge-induced secondary atomization in diffusion flames of electrostatic sprays

    Science.gov (United States)

    Gomez, Alessandro; Chen, Gung

    1994-01-01

    The combustion of electrostatic sprays of heptane in laminar counterflow diffusion flames was experimentally studied by measuring droplet size and velocity distributions, as well as the gas-phase temperature. A detailed examination of the evolution of droplet size distribution as droplets approach the flame shows that, if substantial evaporation occurs before droplets interact with the flame, an initially monodisperse size distribution becomes bimodal. A secondary sharp peak in the size histogram develops in correspondence of diameters about one order of magnitude smaller than the mean. No evaporation mechanism can account for the development of such bimodality, that can be explained only in terms of a disintegration of droplets into finer fragments of size much smaller than that of the parent. Other evidence in support of this interpretation is offered by the measurements of droplet size-velocity correlation and velocity component distributions, showing that, as a consequence of the ejection process, the droplets responsible for the secondary peak have velocities uncorrelated with the mean flow. The fission is induced by the electric charge. When a droplet evaporates, in fact, the electric charge density on the droplet surface increases while the droplet shrinks, until the so-called Rayleigh limit is reached at which point the repulsion of electric charges overcomes the surface tension cohesive force, ultimately leading to a disintegraton into finer fragments. We report on the first observation of such fissions in combustion environments. If, on the other hand, insufficient evaporation has occurred before droplets enter the high temperature region, there appears to be no significant evidence of bimodality in their size distribution. In this case, in fact, the concentration of flame chemi-ions or, in the case of positively charged droplets, electrons may be sufficient for them to neutralize the charge on the droplets and to prevent disruption.

  20. Ignition of turbulent swirling n-heptane spray flames using single and multiple sparks

    Energy Technology Data Exchange (ETDEWEB)

    Marchionea, T.; Ahmeda, S.F.; Mastorakos, E. [Department of Engineering, University of Cambridge (United Kingdom)

    2009-01-15

    This paper examines ignition processes of an n-heptane spray in a flow typical of a liquid-fuelled burner. The spray is created by a hollow-cone pressure atomiser placed in the centre of a bluff body, around which swirling air induces a strong recirculation zone. Ignition was achieved by single small sparks of short duration (2 mm; 0.5 ms), located at various places inside the flow so as to identify the most ignitable regions, or larger sparks of longer duration (5 mm; 8 ms) repeated at 100 Hz, located close to the combustion chamber enclosure so as to mimic the placement and characteristics of a gas turbine combustor surface igniter. The air and droplet velocities, the droplet diameter, and the total (i.e. liquid plus vapour) equivalence ratio were measured in inert flow by phase Doppler anemometry and sampling respectively. Fast camera imaging suggested that successful ignition events were associated with flamelets that propagated back towards the spray nozzle. Measurements of ignition probability with the single spark showed that localised ignition inside the spray is more likely to result in successful flame establishment when the spark is located in a region of negative velocity, relatively small droplet Sauter mean diameter, and mean equivalence ratio within the flammability limits. Ignition with the single spark was not possible at the location where the multiple spark experiments were performed. For those, the multiple spark sequence lasted approximately 1 to 5 s. It was found that a long spark sequence increases the ignition efficiency, which reached a maximum of 100% at the axial distance where the recirculation zone had maximum width. Ignition was not feasible with the spark downstream of about two burner diameters. Visualisation showed that small flame kernels emanate very often from the spark, which can be stretched as far as 20 mm from the electrodes by the turbulent velocity fluctuations. These kernels survive very little time. Successful overall

  1. Structure of alumina supported vanadia catalysts for oxidative dehydrogenation of propane prepared by flame spray pyrolysis

    DEFF Research Database (Denmark)

    Høj, Martin; Jensen, Anker Degn; Grunwaldt, Jan-Dierk

    2013-01-01

    .%. The catalysts were subsequently characterized by BET surface area, X-ray diffraction (XRD), Raman, UV–vis diffuse reflectance and X-ray absorption spectroscopy (XAS) as well as measurement of the catalytic performance. The catalysts had specific surface areas from 143 to 169 m2/g corresponding to average......A series of five vanadia on alumina catalysts for oxidative dehydrogenation of propane to propene were synthesized by flame spray pyrolysis (FSP) using vanadium(III)acetylacetonate and aluminium(III)acetylacetonate dissolved in toluene as precursors. The vanadium loading was 2, 3, 5, 7.5 and 10wt...... X-ray absorption near edge structure (XANES) spectroscopy showed that the vanadia can be reduced when operating at low oxygen concentrations. The catalyst performance was determined in fixed bed reactors with an inlet gas composition of C3H8/O2/N2=5/25/70. The main products were propene, CO and CO2...

  2. A composition joint PDF method for the modeling of spray flames

    Science.gov (United States)

    Raju, M. S.

    1995-01-01

    This viewgraph presentation discusses an extension of the probability density function (PDF) method to the modeling of spray flames to evaluate the limitations and capabilities of this method in the modeling of gas-turbine combustor flows. The comparisons show that the general features of the flowfield are correctly predicted by the present solution procedure. The present solution appears to provide a better representation of the temperature field, particularly, in the reverse-velocity zone. The overpredictions in the centerline velocity could be attributed to the following reasons: (1) the use of k-epsilon turbulence model is known to be less precise in highly swirling flows and (2) the swirl number used here is reported to be estimated rather than measured.

  3. NOx emissions from high swirl turbulent spray flames with highly oxygenated fuels

    KAUST Repository

    Bohon, Myles

    2013-01-01

    Combustion of fuels with fuel bound oxygen is of interest from both a practical and a fundamental viewpoint. While a great deal of work has been done studying the effect of oxygenated additives in diesel and gasoline engines, much less has been done examining combustion characteristics of fuels with extremely high mass fractions of fuel bound oxygen. This work presents an initial investigation into the very low NOx emissions resulting from the combustion of a model, high oxygen mass fraction fuel. Glycerol was chosen as a model fuel with a fuel bound oxygen mass fraction of 52%, and was compared with emissions measured from diesel combustion at similar conditions in a high swirl turbulent spray flame. This work has shown that high fuel bound oxygen mass fractions allow for combustion at low global equivalence ratios with comparable exhaust gas temperatures due to the significantly lower concentrations of diluting nitrogen. Despite similar exhaust gas temperatures, NOx emissions from glycerol combustion were up to an order of magnitude lower than those measured using diesel fuel. This is shown to be a result not of specific burner geometry, but rather is influenced by the presence of higher oxygen and lower nitrogen concentrations at the flame front inhibiting NOx production. © 2012 The Combustion Institute.

  4. Effects of Nozzle Diameter on Diesel Spray Flames: A numerical study using an Eulerian Stochastic Field Method

    DEFF Research Database (Denmark)

    Pang, Kar Mun; Jangi, Mehdi; Bai, Xue-Song

    2017-01-01

    The present numerical study aims to assess the performance of an Eulerian Stochastic Field (ESF) model in simulating spray flames produced by three fuel injectors with different nozzle diameters of 100 μm, 180 μm and 363 μm. A comparison to the measurements shows that although the simulated ignit...... serve as an important tool for the simulation of spray flames in marine diesel engines, where fuel injectors with different nozzle diameters are applied for pilot and main injections.......The present numerical study aims to assess the performance of an Eulerian Stochastic Field (ESF) model in simulating spray flames produced by three fuel injectors with different nozzle diameters of 100 μm, 180 μm and 363 μm. A comparison to the measurements shows that although the simulated...... ignition delay times are consistently overestimated, the relative differences remain below 28%. Furthermore, the change of the averaged pressure rise with respect to the variation of nozzle diameter is captured by the model. The simulated flame lift-off lengths also agree with the measurements...

  5. Volumetric flame synthesis of well-defined molybdenum oxide nanocrystals.

    Science.gov (United States)

    Merchan-Merchan, Wilson; Saveliev, Alexei V; Desai, Milind

    2009-11-25

    Well-defined faceted inorganic Mo oxide nanocrystals are synthesized in the gas phase using a solid-fed-precursor flame synthesis method. The solid crystals have rectangular cross-section with characteristic size of 10-20 nm and with lengths ranging from 50 nm to a few hundred nanometres. A 1 mm diameter high purity Mo probe introduced in the oxygen-rich part of the flame serves as the material source. A combination of the strong temperature gradient and varying chemical species concentrations within the flame volume provides the ideal conditions for the rapid and direct formation of these unique nanocrystals. Oxidation and evaporation of MoO3 in the oxygen-rich zone are followed by reduction to MoO2 in the lower temperature, more fuel-rich zone. The MoO3 vapours formed are pushed in the direction of the gas flow and transformed into mature well-defined convex polyhedron nanocrystals bounded with six faces resembling rectangular parallelepipeds.

  6. Exposure to organophosphate flame retardants in spray polyurethane foam applicators: Role of dermal exposure.

    Science.gov (United States)

    Bello, Anila; Carignan, Courtney C; Xue, Yalong; Stapleton, Heather M; Bello, Dhimiter

    2018-04-01

    Spray polyurethane foam (SPF) is a highly effective thermal insulation material that has seen considerable market growth in the past decade. Organophosphate flame retardants (PFRs) are added to SPF formulations to meet fire code requirements. A common flame retardant used in SPF formulations is tris 1-chloro 2-propyl phosphate (TCIPP), a suspected endocrine disruptor. Exposure monitoring efforts during SPF applications have focused primarily on the isocyanate component, a potent respiratory and dermal sensitizer. However, to our knowledge, there is no monitoring data for TCIPP. To characterize occupational exposures to TCIPP and other flame retardants during SPF insulation. Workers at four SPF insulation sites and one foam removal site (total n = 14) were recruited as part of this pilot study. Personal inhalation exposure to TCIPP was monitored with a CIP-10MI inhalable sampler and potential dermal exposure was assessed through the use of a glove dosimeter. Biomarkers of TCIPP and three other PFRs were measured in urine collected from workers pre-and post-shift. Linear mixed effect models were used to analyze associations of urinary biomarkers with inhalation and dermal exposures and paired t-tests were used to examine the difference on the means of urinary biomarkers pre-and post-shift. Chemical analysis of all species was performed with liquid chromatography-electrospray ionization tandem mass spectrometry. Geometric mean (GM) concentrations of TCIPP in personal air monitors and glove dosimeters collected from SPF applicators, 294.7 μg/m 3 and 18.8 mg/pair respectively. Overall, GM concentrations of the two TCIPP urinary biomarkers BCIPP and BCIPHIPP and (6.2 and 88.8 μg/mL) were 26-35 times higher than reported in the general population. Post-shift levels of TCIPP biomarkers were higher than pre-shift even though workers at insulation sites wore supplied air respirators, gloves and coveralls. The urinary biomarkers for the other PFRs were not

  7. The role of palladium in iron based Fischer-Tropsch catalysts prepared by flame spray pyrolysis

    Energy Technology Data Exchange (ETDEWEB)

    Minnermann, M.; Zielasek, V.; Baeumer, M. [Bremen Univ. (DE). Inst. of Applied and Physical Chemistry (IAPC); Pokhrei, S.; Maedler, L. [Bremen Univ. (DE). Foundation Inst. of Materials Science (IWT); Thiel, K. [Fraunhofer Institute for Manufactoring Technology and Applied Materials Research, Bremen (Germany)

    2011-07-01

    Flame spray pyrolysis (FSP) is a novel technique for the fabrication of nanostructured catalysts with far-reaching options to control structure and composition even in cases where complex composites need to be prepared. In this study, we took advantage of this technique to synthesize highly dispersed pure and Pd-doped iron oxide nanoparticles and investigated them as Fischer-Tropsch (FT) catalysts. By systematically varying the Pd content over a large range from 0.1 wt % to 10 wt %, we were able to directly analyze the influence of the Pd content on activity and selectivity. In addition to catalytic measurements, the structure and composition of the particles were characterized before and after these measurements, using transmission electron microscopy, adsorption measurements, X-ray diffraction and EXAFS. The comparison revealed, on the one hand, that small Pd clusters (diameter: 1-2 nm) evolve from initially homogeneously distributed Pd and, on the other hand, that the iron oxide transforms into iron carbides depending on the Pd content. The presence of Pd influences the particle size in the pristine samples (8 - 11 nm), resulting in specific surface areas that increase as the Pd content increases. However, after activation and reaction the specific surface areas become similar due to partial agglomeration and sintering. In a fixed bed FT reaction test, enhanced FT activity was observed with increasing Pd content while the selectivity shifts to longer chain hydrocarbons, mainly paraffins. (orig.)

  8. Fabrication of ultrathin multilayered superomniphobic nanocoatings by liquid flame spray, atomic layer deposition, and silanization

    Science.gov (United States)

    Sorvali, Miika; Vuori, Leena; Pudas, Marko; Haapanen, Janne; Mahlberg, Riitta; Ronkainen, Helena; Honkanen, Mari; Valden, Mika; Mäkelä, Jyrki M.

    2018-05-01

    Superomniphobic, i.e. liquid-repellent, surfaces have been an interesting area of research during recent years due to their various potential applications. However, producing such surfaces, especially on hard and resilient substrates like stainless steel, still remains challenging. We present a stepwise fabrication process of a multilayered nanocoating on a stainless steel substrate, consisting of a nanoparticle layer, a nanofilm, and a layer of silane molecules. Liquid flame spray was used to deposit a TiO2 nanoparticle layer as the bottom layer for producing a suitable surface structure. The interstitial Al2O3 nanofilm, fabricated by atomic layer deposition (ALD), stabilized the nanoparticle layer, and the topmost fluorosilane layer lowered the surface energy of the coating for enhanced omniphobicity. The coating was characterized with field emission scanning electron microscopy, focused ion beam scanning electron microscopy, x-ray photoelectron spectroscopy, contact angle (CA) and sliding angle (SA) measurements, and microscratch testing. The widely recognized requirements for superrepellency, i.e. CA > 150° and SA < 10°, were achieved for deioinized water, diiodomethane, and ethylene glycol. The mechanical stability of the coating could be varied by tuning the thickness of the ALD layer at the expense of repellency. To our knowledge, this is the thinnest superomniphobic coating reported so far, with the average thickness of about 70 nm.

  9. Fabrication of ultrathin multilayered superomniphobic nanocoatings by liquid flame spray, atomic layer deposition, and silanization.

    Science.gov (United States)

    Sorvali, Miika; Vuori, Leena; Pudas, Marko; Haapanen, Janne; Mahlberg, Riitta; Ronkainen, Helena; Honkanen, Mari; Valden, Mika; Mäkelä, Jyrki M

    2018-05-04

    Superomniphobic, i.e. liquid-repellent, surfaces have been an interesting area of research during recent years due to their various potential applications. However, producing such surfaces, especially on hard and resilient substrates like stainless steel, still remains challenging. We present a stepwise fabrication process of a multilayered nanocoating on a stainless steel substrate, consisting of a nanoparticle layer, a nanofilm, and a layer of silane molecules. Liquid flame spray was used to deposit a TiO 2 nanoparticle layer as the bottom layer for producing a suitable surface structure. The interstitial Al 2 O 3 nanofilm, fabricated by atomic layer deposition (ALD), stabilized the nanoparticle layer, and the topmost fluorosilane layer lowered the surface energy of the coating for enhanced omniphobicity. The coating was characterized with field emission scanning electron microscopy, focused ion beam scanning electron microscopy, x-ray photoelectron spectroscopy, contact angle (CA) and sliding angle (SA) measurements, and microscratch testing. The widely recognized requirements for superrepellency, i.e. CA > 150° and SA layer at the expense of repellency. To our knowledge, this is the thinnest superomniphobic coating reported so far, with the average thickness of about 70 nm.

  10. Comparative examination of the microstructure and high temperature oxidation performance of NiCrBSi flame sprayed and pack cementation coatings

    Science.gov (United States)

    Chaliampalias, D.; Vourlias, G.; Pavlidou, E.; Skolianos, S.; Chrissafis, K.; Stergioudis, G.

    2009-01-01

    Coatings formed from NiCrBSi powder were deposited by thermal spray and pack cementation processes on low carbon steel. The microstructure and morphology of the coatings were studied by scanning electron microscopy (SEM) and X-ray diffraction analysis (XRD). Flame sprayed coatings exhibited high porosity and were mechanically bonded to the substrate while pack cementation coatings were more compact and chemically bonded to the substrate. The microhardness and the high temperature oxidation resistance of the coated samples were evaluated by a Vickers microhardness tester and by thermogravimetric measurements (TG), respectively. Pack cementation coatings showed higher hardness and were more protective to high temperature environments than the flame sprayed coatings.

  11. Mixed phase Pt-Ru catalyst for direct methanol fuel cell anode by flame aerosol synthesis

    DEFF Research Database (Denmark)

    Chakraborty, Debasish; Bischoff, H.; Chorkendorff, Ib

    2005-01-01

    A spray-flame aerosol catalyzation technique was studied for producing Pt-Ru anode electrodes for the direct methanol fuel cell. Catalysts were produced as aerosol nanoparticles in a spray-flame reactor and deposited directly as a thin layer on the gas diffusion layer. The as-prepared catalyst wa......Ru1/Vulcan carbon. The kinetics of methanol oxidation on the mixed phase catalyst was also explored by electrochemical impedance spectroscopy. (c) 2005 The Electrochemical Society.......A spray-flame aerosol catalyzation technique was studied for producing Pt-Ru anode electrodes for the direct methanol fuel cell. Catalysts were produced as aerosol nanoparticles in a spray-flame reactor and deposited directly as a thin layer on the gas diffusion layer. The as-prepared catalyst...... was found to be a mixture of nanocrystalline, mostly unalloyed Pt and an amorphous phase mostly of Ru and to a lesser extent of Pt oxides on top of the crystalline phase. The flame-produced Pt1Ru1 demonstrated similar onset potential but similar to 60% higher activity compared to commercially available Pt1...

  12. Large eddy simulation of the low temperature ignition and combustion processes on spray flame with the linear eddy model

    Science.gov (United States)

    Wei, Haiqiao; Zhao, Wanhui; Zhou, Lei; Chen, Ceyuan; Shu, Gequn

    2018-03-01

    Large eddy simulation coupled with the linear eddy model (LEM) is employed for the simulation of n-heptane spray flames to investigate the low temperature ignition and combustion process in a constant-volume combustion vessel under diesel-engine relevant conditions. Parametric studies are performed to give a comprehensive understanding of the ignition processes. The non-reacting case is firstly carried out to validate the present model by comparing the predicted results with the experimental data from the Engine Combustion Network (ECN). Good agreements are observed in terms of liquid and vapour penetration length, as well as the mixture fraction distributions at different times and different axial locations. For the reacting cases, the flame index was introduced to distinguish between the premixed and non-premixed combustion. A reaction region (RR) parameter is used to investigate the ignition and combustion characteristics, and to distinguish the different combustion stages. Results show that the two-stage combustion process can be identified in spray flames, and different ignition positions in the mixture fraction versus RR space are well described at low and high initial ambient temperatures. At an initial condition of 850 K, the first-stage ignition is initiated at the fuel-lean region, followed by the reactions in fuel-rich regions. Then high-temperature reaction occurs mainly at the places with mixture concentration around stoichiometric mixture fraction. While at an initial temperature of 1000 K, the first-stage ignition occurs at the fuel-rich region first, then it moves towards fuel-richer region. Afterwards, the high-temperature reactions move back to the stoichiometric mixture fraction region. For all of the initial temperatures considered, high-temperature ignition kernels are initiated at the regions richer than stoichiometric mixture fraction. By increasing the initial ambient temperature, the high-temperature ignition kernels move towards richer

  13. Flame Synthesis of Composite Oxides for Catalytic Applications

    DEFF Research Database (Denmark)

    Jensen, Joakim Reimer

    2002-01-01

    gas (CO/CO2/H2) and an excellent thermal stability. Addition of alumina as a structural promoter is necessary in order to obtain a high activity for methanol formation. The binary systems, i.e., CuO/ZnO, ZnO/Al2O3 and CuO/Al2O3 are investigated as a prelude to the preparation of the ternary catalyst...... the flame temperature, the high temperature residence time and the precursor concentration. The Cu/ZnO/Al2O3 methanol catalyst is used as a model system for the preparation of catalytic materials. The flame synthesized catalyst exhibits a high and reproducible activity for methanol formation from synthesis...... crystallites is oxidized. A number of complications may arise using the N2O-titration. It may be difficult to obtain full oxidation of the copper surface without having some oxidation of the bulk. Secondly, some sintering of the nano-sized copper crystallites may occur due to the exothermic nature...

  14. Preparation of flame sprayed poly(tetrafluoroethylene-co-hexafluoropropylene) coatings and their tribological properties under water lubrication

    International Nuclear Information System (INIS)

    Feng Zhizhong; Xu Haiyan; Yan Fengyuan

    2008-01-01

    Poly(tetrafluoroethylene-co-hexafluoropropylene) (FEP) coatings were prepared on AISI-1045 steel via flame spraying. The chemical changes of the FEP powder occurring during the spraying process were analyzed by means of Fourier transformation infrared spectroscopy. The flame spraying of the FEP powders under the chosen conditions did not lead to structural changes related to degradation and oxidation. The friction and wear behaviors of the FEP coatings sliding against AISI-52100 steel ball under dry- and water-lubricated conditions were investigated using a ball-on-disc test rig, and the worn surface morphologies of the coatings were also observed using the scanning electron microscope. The FEP coatings recorded smaller friction coefficients under water lubrication than under dry sliding. However, the wear rate of the coating under water lubrication was about two times of that under dry sliding. This indicated that water as a lubricant was able to effectively reduce the friction coefficient but it led to an increased wear rate of the FEP coatings/steel sliding pairs. X-ray photoelectron spectroscope (XPS) results illustrate that the transfer film did formed during the dry sliding but it is hindered under water lubrication, and it might be the major cause of the larger wear rate under the water lubrication.

  15. Multiple-diffusion flame synthesis of pure anatase and carbon-coated titanium dioxide nanoparticles

    KAUST Repository

    Memon, Nasir; Anjum, Dalaver H.; Chung, Suk-Ho

    2013-01-01

    A multi-element diffusion flame burner (MEDB) is useful in the study of flame synthesis of nanomaterials. Here, the growth of pure anatase and carbon-coated titanium dioxide (TiO2) using an MEDB is demonstrated. Hydrogen (H2), oxygen (O2), and argon

  16. Stabilization and structure of N-heptane flame on CWJ-spray burner with kHZ SPIV and OH-PLIF

    KAUST Repository

    Mansour, Morkous S.

    2015-08-31

    A curved wall-jet (CWJ) burner was employed to stabilize turbulent spray flames that utilized a Coanda effect by supplying air as annular-inward jet over a curved surface, surrounding an axisymmetric solid cone fuel spray. The stabilization characteristics and structure of n-heptane/air turbulent flames were investigated with varying fuel and air flow rates and the position of pressure atomizer (L). High-speed planar laser-induced fluorescence (PLIF) of OH radicals delineated reaction zone contours and simultaneously stereoscopic particle image velocimetry (SPIV) quantified the flow field features, involving turbulent mixing within spray, ambient air entrainment and flame-turbulence interaction. High turbulent rms velocities were generated within the recirculation zone, which improved the flame stabilization. OH fluorescence signals revealed a double flame structure near the stabilization edge of lifted flame that consisted of inner partially premixed flame and outer diffusion flame front. The inner reaction zone is highly wrinkled and folded due to significant turbulent mixing between the annular-air jet and the fuel vapor generated from droplets along the contact interface of this air jet with the fuel spray. Larger droplets, having higher momentum are able to penetrate the inner reaction zone and then vaporized in the low-speed hot region bounded by these reaction zones; this supports the outer diffusion flame. Frequent local extinctions in the inner reaction zone were observed at low air flow rate. As flow rate increases, the inner zone is more resistant to local extinction despite of its high wrinkling and corrugation degree. However, the outer reaction zone exhibits stable and mildly wrinkled features irrespective of air flow rate. The liftoff height increases with the air mass flow rate but decreases with L.

  17. Modelling of diesel spray flames under engine-like conditions using an accelerated Eulerian Stochastic Field method

    DEFF Research Database (Denmark)

    Pang, Kar Mun; Jangi, Mehdi; Bai, Xue-Song

    2018-01-01

    This paper aims to simulate diesel spray flames across a wide range of engine-like conditions using the Eulerian Stochastic Field probability density function (ESF-PDF) model. The ESF model is coupled with the Chemistry Coordinate Mapping approach to expedite the calculation. A convergence study...... is carried out for a number of stochastic fields at five different conditions, covering both conventional diesel combustion and low-temperature combustion regimes. Ignition delay time, flame lift-off length as well as distributions of temperature and various combustion products are used to evaluate...... the performance of the model. The peak values of these properties generated using thirty-two stochastic fields are found to converge, with a maximum relative difference of 27% as compared to those from a greater number of stochastic fields. The ESF-PDF model with thirty-two stochastic fields performs reasonably...

  18. Microemulsion flame pyrolysis for hopcalite nanoparticle synthesis: a new concept for catalyst preparation

    OpenAIRE

    Kaskel, Stefan; Biemelt, Tim; Wegner, Karl; Teichert, Johannes

    2016-01-01

    A new route to highly active hopcalite catalysts via flame spray pyrolysis of an inverse microemulsion precursor is reported. The nitrate derived nanoparticles are around 15 nm in diameter and show excellent conversion of CO under ambient conditions, outperforming commercial reference hopcalite materials produced by co-precipitation.

  19. Microemulsion flame pyrolysis for hopcalite nanoparticle synthesis: a new concept for catalyst preparation.

    Science.gov (United States)

    Biemelt, T; Wegner, K; Teichert, J; Kaskel, S

    2015-04-07

    A new route to highly active hopcalite catalysts via flame spray pyrolysis of an inverse microemulsion precursor is reported. The nitrate derived nanoparticles are around 15 nm in diameter and show excellent conversion of CO under ambient conditions, outperforming commercial reference hopcalite materials produced by co-precipitation.

  20. Structural and technological formation of surface nanostructured Ti-Ni-Mo layers by high-speed gas-flame spraying

    Directory of Open Access Journals (Sweden)

    Blednova Zhesfina

    2015-01-01

    Full Text Available The article covers a complex method of forming surface-modified layers using materials with shape memory effect (SME based on TiNiMo including pre-grinding and mechanical activation of the coating material, high-speed gas-flame spraying of Ni adhesive layer and subsequent TiNiMo spraying with molybdenum content up to 2%, thermal and thermomechanical processing in a single technological cycle. This allowed forming nanostructured surface layers with a high level of functional mechanical and performance properties. We defined control parameters of surface steel modification using material with shape memory effect based on TiNiMo, which monitor the structural material state, both at the stage of spraying, and during subsequent combined treatment, which allows affecting purposefully on the functional properties of the SME surface layer. Test results of samples before coating and after surface modification with TiNiMo in the seawater indicate that surface modification brings to a slower damage accumulation and to increase of steel J91171 endurance limit in seawater by 45%. Based on complex metallophysical research of surface layers we obtained new data about nano-sized composition “steel - Ni - TiNiMo”.

  1. Wear of Flame-Sprayed Ni-Cr-B-Si Powder Coating on Journal for Seal Contact

    Directory of Open Access Journals (Sweden)

    Hu Sheng-Yen

    2016-01-01

    Full Text Available Flame-sprayed techniques is used in this paper to coat Ni-Cr-B-Si powder on low-carbon steel or bearing steel materials of the journal surface. The wear tester is used to explore material properties of the binding capability, surface hardness, wear and friction within each layer depth. The normal force is applied in addition to the cladding layer by not only using bearing ball but also oil seal pieces, to explore rubber material of oil seal contact journal. In experiments to explore the material and processing conditions affect the microstructure and hardness of the cladding layer, and at the same hardness, surface roughness to affect the performance of the mill run.The results showed that spraying Ni-Cr-B-Si alloy powder in mild steel sheet to melt and run, cladding layer and the substrate has a uniform distribution of fine abrasive particles and binding effect, causing the substrate surface hardness (HRC about promotion 10 times. While, if sprayed Ni-Cr-B-Si alloy powder to steel panels bearing surface because the surface coated compact structure, can reduce the surface roughness and the coefficient of friction, and more improve the wear resistance of the cladding layer.

  2. Selectivity Enhancement by Using Double-Layer MOX-Based Gas Sensors Prepared by Flame Spray Pyrolysis (FSP

    Directory of Open Access Journals (Sweden)

    Julia Rebholz

    2016-09-01

    Full Text Available Here we present a novel concept for the selective recognition of different target gases with a multilayer semiconducting metal oxide (SMOX-based sensor device. Direct current (DC electrical resistance measurements were performed during exposure to CO and ethanol as single gases and mixtures of highly porous metal oxide double- and single-layer sensors obtained by flame spray pyrolysis. The results show that the calculated resistance ratios of the single- and double-layer sensors are a good indicator for the presence of specific gases in the atmosphere, and can constitute some building blocks for the development of chemical logic devices. Due to the inherent lack of selectivity of SMOX-based gas sensors, such devices could be especially relevant for domestic applications.

  3. Structural and fluorescence properties of Ni:MgO-SiO2 particles synthesized by flame spray pyrolysis

    International Nuclear Information System (INIS)

    Suzuki, Takenobu; Ohishi, Yasutake; Tani, Takao

    2006-01-01

    Structural and fluorescence properties of flame spray-synthesized Ni 1 mol%-doped MgO-SiO 2 nano-particles (MgO:SiO 2 = 100:0, 50:50, 25:75 and 0:100 in mol%) were investigated as a first step to prepare transparent materials containing Ni:MgO for optical gain media. Polyhedral aggregates of primary particles with diameters of 8-19 nm were obtained for all compositions. The 100MgO particles were single crystalline and showed the fluorescences (centered at 1260 and 1320 nm) and lifetime (3.8 ms) similar to those of solid state-synthesized Ni:MgO polycrystalline powder under laser excitation at 976 nm, suggesting Ni ions incorporated in MgO

  4. Fabrication of high-performance fluorine doped-tin oxide film using flame-assisted spray deposition

    Energy Technology Data Exchange (ETDEWEB)

    Purwanto, Agus, E-mail: Aguspur@uns.ac.id [Department of Chemical Engineering, Faculty of Engineering, Sebelas Maret University, Jl. Ir. Sutami 36 A, Surakarta, Central Java 57126 (Indonesia); Widiyandari, Hendri [Department of Physics, Faculty of Mathematics and Natural Sciences, Diponegoro University, Jl. Prof. Dr. Soedarto, Tembalang, Semarang 50275 (Indonesia); Jumari, Arif [Department of Chemical Engineering, Faculty of Engineering, Sebelas Maret University, Jl. Ir. Sutami 36 A, Surakarta, Central Java 57126 (Indonesia)

    2012-01-01

    A high-performance fluorine-doped tin oxide (FTO) film was fabricated by flame-assisted spray deposition method. By varying the NH{sub 4}F doping concentration, the optimal concentration was established as 8 at.%. X-ray diffractograms confirmed that the as-grown FTO film was tetragonal SnO{sub 2}. In addition, the FTO film was comprised of nano-sized grains ranging from 40 to 50 nm. The heat-treated FTO film exhibited a sheet resistance of 21.8 {Omega}/{open_square} with an average transmittance of 81.9% in the visible region ({lambda} = 400-800 nm). The figures of merit shows that the prepared FTO film can be used for highly efficient dye-sensitized solar cells electrodes.

  5. Synthesis and Characterization of Calcium Phosphate Powders for Biomedical Applications by Plasma Spray Coating

    OpenAIRE

    Sasidharan Pillai, Rahul

    2015-01-01

    This PhD work mainly focus on the synthesis and characterization of calcium phosphate powders for plasma spray coating. The preparation of high temperature phase stabilized βTCP and HA/βTCP powders for plasma spray coating applications has been the topic of investigation. Nowadays plasma sprayed coatings are widely used for biomedical applications especially in the dental and orthopaedic implantation field. Previously Ti based alloys were widely used for the orthopaedic and dental implant ap...

  6. One-step flame synthesis of silver nanoparticles for roll-to-roll production of antibacterial paper

    Science.gov (United States)

    Brobbey, Kofi J.; Haapanen, Janne; Gunell, Marianne; Mäkelä, Jyrki M.; Eerola, Erkki; Toivakka, Martti; Saarinen, Jarkko J.

    2017-10-01

    Nanoparticles are used in several applications due to the unique properties they possess compared to bulk materials. Production techniques have continuously evolved over the years. Recently, there has been emphasis on environmentally friendly manufacturing processes. Substrate properties often limit the possible production techniques and, for example; until recently, it has been difficult to incorporate nanoparticles into paper. Chemical reduction of a precursor in the presence of paper changes the bulk properties of paper, which may limit intended end-use. In this study, we present a novel technique for incorporating silver nanoparticles into paper surface using a flame pyrolysis procedure known as Liquid Flame Spray. Papers precoated with mineral pigments and plastic are used as substrates. Silver nanoparticles were analyzed using SEM and XPS measurements. Results show a homogeneous monolayer of silver nanoparticles on the surface of paper, which demonstrated antibacterial properties against E. coli. Paper precoated with plastic showed more nanoparticles on the surface compared to pigment coated paper samples except for polyethylene-precoated paper. The results demonstrate a dry synthesis approach for depositing silver nanoparticles directly onto paper surface in a process which produces no effluents. The production technique used herein is up scalable for industrial production of antibacterial paper.

  7. Flame temperature trends in reacting vanadium and tungsten ethoxide fluid sprays during CO2-laser pyrolysis

    CSIR Research Space (South Africa)

    Mwakikunga, BW

    2011-09-01

    Full Text Available We observe the “invisible-to-the- naked-eye” flames of tungsten and vanadium ethoxide aerosols when ignited at moderate laser excitation (0 < Plaser< 70 W) by employing an IR thermo-graphic camera. No emission is seen in the visible range whether...

  8. Effect of bond coat and preheat on the microstructure, hardness, and porosity of flame sprayed tungsten carbide coatings

    Science.gov (United States)

    Winarto, Winarto; Sofyan, Nofrijon; Rooscote, Didi

    2017-06-01

    Thermally sprayed coatings are used to improve the surface properties of tool steel materials. Bond coatings are commonly used as intermediate layers deposited on steel substrates (i.e. H13 tool steel) before the top coat is applied in order to enhance a number of critical performance criteria including adhesion of a barrier coating, limiting atomic migration of the base metal, and corrosion resistance. This paper presents the experimental results regarding the effect of nickel bond coat and preheats temperatures (i.e. 200°C, 300°C and 400°C) on microstructure, hardness, and porosity of tungsten carbide coatings sprayed by flame thermal coating. Micro-hardness, porosity and microstructure of tungsten carbide coatings are evaluated by using micro-hardness testing, optical microscopy, scanning electron microscopy, and X-ray diffraction. The results show that nickel bond coatings reduce the susceptibility of micro crack formation at the bonding area interfaces. The percentage of porosity level on the tungsten carbide coatings with nickel bond coat decreases from 5.36 % to 2.78% with the increase of preheat temperature of the steel substrate of H13 from 200°C to 400°C. The optimum hardness of tungsten carbide coatings is 1717 HVN in average resulted from the preheat temperature of 300°C.

  9. A study of Cu/ZnO/Al2O3 methanol catalysts prepared by flame combustion synthesis

    DEFF Research Database (Denmark)

    Jensen, Joakim Reimer; Johannessen, Tue; Wedel, Stig

    2003-01-01

    The flame combustion synthesis of Cu/ZnO/Al2O3 catalysts for the synthesis of methanol from CO, CO2 and H2 is investigated. The oxides are generated in a premixed flame from the acetyl-acetonate vapours of Cu, Zn and Al mixed with the fuel and air prior to combustion. The flame-generated powder...... temperature and quench-cooling of the flame tend to increase the dispersion of the phases and the specific surface area of the particles. Properties of both the ternary composition, the three binary compositions and the pure oxides are discussed. The calculation of simultaneous phase and chemical equilibrium...

  10. Computational Fluid-Particle Dynamics for the Flame Synthesis of Alumina Particles

    DEFF Research Database (Denmark)

    Johannessen, Tue; Pratsinis, Sotirie E.; Livbjerg, Hans

    2000-01-01

    A mathematical model for the dynamics of particle growth during synthesis of ultra fine particles in diffusion flames is presented. The model includes the kinetics of particle coalescence and coagulation, and when combined with a calculation of the temperature, velocity and gas composition distri...

  11. Production of nano structured zinc oxide by the flame spray method; Obtencao de oxido de zinco nanoestruturado pelo metodo de aspersao de solucao em chama

    Energy Technology Data Exchange (ETDEWEB)

    Trommer, R.M.; Bergmann, C.P. [Universidade Federal do Rio Grande do Sul (LACER/PPGEM/UFRGS), Porto Alegre, RS (Brazil). Programa de Pos-graduacao em Engenharia de Minas, Metalurgica e de Materiais. Lab. de Materiais Ceramicos

    2009-07-01

    Nanostructured zinc oxide has been widely employed in several applications, mainly as antibactericidal and absorber of ultraviolet radiation (UV). The preference for a nanostructured material is associated with the different properties presented by these entities when compared to the bulk material. Thus, this work employed the flame spray technique, an alternative method with an enormous potential in nanoparticles production, to obtain ZnO powders. Basically, a precursor solution is prepared, atomized and then sprayed in the flame, where it burns and leads to the formation of particles. X-ray diffraction analysis pointed the crystalline phase zincite. By scanning electronic microscopy, it was possible to observe irregular and aggregated particles in the powder. By transmission electronic microscopy, images of the nanometric ZnO particles were obtained, being later confirmed by the single line method. (author)

  12. Plasma-enhanced synthesis of green flame retardant cellulosic materials

    Science.gov (United States)

    Totolin, Vladimir

    The natural fiber-containing fabrics and composites are more environmentally friendly, and are used in transportation (automobiles, aerospace), military applications, construction industries (ceiling paneling, partition boards), consumer products, etc. Therefore, the flammability characteristics of the composites based on polymers and natural fibers play an important role. This dissertation presents the development of plasma assisted - green flame retardant coatings for cellulosic substrates. The overall objective of this work was to generate durable flame retardant treatment on cellulosic materials. In the first approach sodium silicate layers were pre-deposited onto clean cotton substrates and cross linked using low pressure, non-equilibrium oxygen plasma. A statistical design of experiments was used to optimize the plasma parameters. The modified cotton samples were tested for flammability using an automatic 45° angle flammability test chamber. Aging tests were conducted to evaluate the coating resistance during the accelerated laundry technique. The samples revealed a high flame retardant behavior and good thermal stability proved by thermo-gravimetric analysis. In the second approach flame retardant cellulosic materials have been produced using a silicon dioxide (SiO2) network coating. SiO 2 network armor was prepared through hydrolysis and condensation of the precursor tetraethyl orthosilicate (TEOS), prior coating the substrates, and was cross linked on the surface of the substrates using atmospheric pressure plasma (APP) technique. Due to protection effects of the SiO2 network armor, the cellulosic based fibers exhibit enhanced thermal properties and improved flame retardancy. In the third approach, the TEOS/APP treatments were extended to linen fabrics. The thermal analysis showed a higher char content and a strong endothermic process of the treated samples compared with control ones, indicating a good thermal stability. Also, the surface analysis proved

  13. Preparation of MMC structures consisting of carbonfibre/aluminium prepregs by using the high velocity flame spraying; Herstellen von Halbzeugen aus kohlenstoffaserverstaerkten Aluminiumprepregs mit dem Hochgeschwindigkeitsflammspritzen

    Energy Technology Data Exchange (ETDEWEB)

    Wielage, B.; Rahm, J. [Lehrstuhl fuer Verbundwerkstoffe, TU Chemnitz-Zwickau, Chemnitz (Germany)

    1994-12-01

    The application of the thermal spraying process is a new way to produce carbon fibre reinforced Al-Matrix composites. Spreaded fibre rovings are enveloped in the matrix material with high velocity flame spraying. The advantage of the thermal spraying process is based in the low times for contacting between carbon fibres and liquid matrix material. Chemical reactions on the interface fibre/matrix, which are caused the decreasing of the fibre tensile strange, can be excluded. The thermal sprayed prepregs are compressed to MMC by hot pressing process. This longfibre reinforced composites are used to increase for instance casted components of motors. The aim of this research is the estimation of possibility to applicate the high velocity flame process for prepreg manufacturing. (orig.) [Deutsch] Die Anwendung des thermischen Spritzens zur Herstellung C/langfaserverstaerkter Al-Matrix Verbundwerkstoffe mittels Prepregtechnik beschreitet einen neuartigen Verfahrensweg. Zu Fasergelegen aufgespreizte Rovings werden durch Flamm- oder Hochgeschwindigkeitsflammspritzen mit dem Matrixmetall eingehuellt. Der Vorteil des thermischen Spritzens liegt in den geringen Kontaktzeiten der C-Fasern mit dem schmelzfluessigen Matrixmetall. Chemische Reaktionen zwischen Fasern und der Matrix, die zur Karbidbildung und Reduzierung der Verbundfestigkeit fuehren, koennen auch beim Verwenden von C-Fasern ohne Barriereschicht weitgehend ausgeschlossen werden. Die so hergestellten Prepregs koennen z.B. durch Heisspressen zu MMC kompaktiert werden, und als Halbzeuge (Inserts) Gussbauteile in hochbelasteten Bereichen partiell verstaerken. Die im Rahmen der Veroeffentlichung dargestellten Untersuchungen haben die kritische Beurteilung der Ergebnisse des HVOF-Spritzverfahrens zur Herstellung von C/Faser/Aluminiumprepregs zum Ziel. (orig.)

  14. Temperature and Concentration Traces of Spray Flows During Motion in a Flame

    Directory of Open Access Journals (Sweden)

    Antonov Dmitry V.

    2016-01-01

    Full Text Available Heat and mass transfer models are developed on the base of experimental data and using Ansys Fluent software. These models allow prediction of the temperature and concentration traces of droplets. Transfer mechanisms of water droplets from different flames of flammable liquid (ethanol, kerosene И benzine with temperature gases 450–850 К are analyzed. The paper considers aerosol flows with droplets sizes of 0.04–0.4 mm and concentration of 3.8·10-5 –10.3·10-5 m3 of droplets/m3 of gas. The maximum gas temperature reduction in the trace of a moving liquid is ranged from 850 K to 600 K. The times of keeping the low temperature of the gas-vapor mixture in the droplets trace are from 13 s to 25 s relative to the initial gas temperature.

  15. Ni-SiO2 Catalysts for the Carbon Dioxide Reforming of Methane: Varying Support Properties by Flame Spray Pyrolysis

    Directory of Open Access Journals (Sweden)

    Emma C. Lovell

    2015-03-01

    Full Text Available Silica particles were prepared by flame spray pyrolysis (FSP as a support for nickel catalysts. The impact of precursor feed rate (3, 5 and 7 mL/min during FSP on the silica characteristics and the ensuing effect on catalytic performance for the carbon dioxide, or dry, reforming of methane (DRM was probed. Increasing the precursor feed rate: (i progressively lowered the silica surface area from ≈340 m2/g to ≈240 m2/g; (ii altered the silanol groups on the silica surface; and (iii introduced residual carbon-based surface species to the sample at the highest feed rate. The variations in silica properties altered the (5 wt % nickel deposit characteristics which in turn impacted on the DRM reaction. As the silica surface area increased, the nickel dispersion increased which improved catalyst performance. The residual carbon-based species also appeared to improve nickel dispersion, and in turn catalyst activity, although not to the same extent as the change in silica surface area. The findings illustrate both the importance of silica support characteristics on the catalytic performance of nickel for the DRM reaction and the capacity for using FSP to control these characteristics.

  16. High-capacity cathodes for lithium-ion batteries from nanostructured LiFePO4 synthesized by highly-flexible and scalable flame spray pyrolysis

    Science.gov (United States)

    Hamid, N. A.; Wennig, S.; Hardt, S.; Heinzel, A.; Schulz, C.; Wiggers, H.

    2012-10-01

    Olivine, LiFePO4 is a promising cathode material for lithium-ion batteries due to its low cost, environmental acceptability and high stability. Its low electric conductivity prevented it for a long time from being used in large-scale applications. Decreasing its particle size along with carbon coating significantly improves electronic conductivity and lithium diffusion. With respect to the controlled formation of very small particles with large specific surface, gas-phase synthesis opens an economic and flexible route towards high-quality battery materials. Amorphous FePO4 was synthesized as precursor material for LiFePO4 by flame spray pyrolysis of a solution of iron acetylacetonate and tributyl phosphate in toluene. The pristine FePO4 with a specific surface from 126-218 m2 g-1 was post-processed to LiFePO4/C composite material via a solid-state reaction using Li2CO3 and glucose. The final olivine LiFePO4/C particles still showed a large specific surface of 24 m2 g-1 and were characterized using X-ray diffraction (XRD), electron microscopy, X-ray photoelectron spectrocopy (XPS) and elemental analysis. Electrochemical investigations of the final LiFePO4/C composites show reversible capacities of more than 145 mAh g-1 (about 115 mAh g-1 with respect to the total coating mass). The material supports high drain rates at 16 C while delivering 40 mAh g-1 and causes excellent cycle stability.

  17. Synthesis of MgO Nanoparticles by Solvent Mixed Spray Pyrolysis Technique for Optical Investigation

    OpenAIRE

    Nemade, K. R.; Waghuley, S. A.

    2014-01-01

    Solvent mixed spray pyrolysis technique has attracted a global interest in the synthesis of nanomaterials since reactions can be run in liquid state without further heating. Magnesium oxide (MgO) is a category of the practical semiconductor metal oxides, which is extensively used as catalyst and optical material. In the present study, MgO nanoparticles were successfully synthesized using a solvent mixed spray pyrolysis. The X-ray diffraction pattern confirmed the formation of MgO phase with a...

  18. One-step flame synthesis of an active Pt/TiO2 catalyst for SO2 oxidation

    DEFF Research Database (Denmark)

    Johannessen, Tue; Koutsopoulos, Sotiris

    2002-01-01

    Flame synthesis as a route for production of composite metal oxides has been employed for the one-step synthesis of a supported noble metal catalyst, i.e. a Pt/TiO2 catalyst, by simultaneous combustion of Ti-isopropoxide and platinum acetylacetonate in a quench-cooled flame reactor. The average...... size of the platinum particles supported on aggregated nano-particles of TiO2 is approximately 2 nm. The high SO2-oxidation activity of the catalyst proves that platinum is not hidden in the titania matrix. The flame-produced catalyst showed catalytic activity similar to samples prepared by wet...

  19. Combustion Synthesis of Nanomaterials Using Various Flame Configurations

    KAUST Repository

    Ismail, Mohamed

    2016-01-01

    Titanium dioxide (TiO2) is an important semiconducting metal oxide and is expected to play an important role in future applications related to photonic crystals, energy storage, and photocatalysis. Two aspects regarding the combustion synthesis have

  20. Modelling of flame temperature of solution combustion synthesis of ...

    Indian Academy of Sciences (India)

    Administrator

    The basis of combustion synthesis technique comes from the ... of oxidizer to fuel is calculated using the total oxidizing ..... +. −. ∑. (4) where S/Nm is the mean S/N ratio of all the experimental ..... Minitab Inc., User manual of MINITAB. TM.

  1. Nano-TiO{sub 2} coatings on aluminum surfaces by aerosol flame synthesis

    Energy Technology Data Exchange (ETDEWEB)

    Liberini, Mariacira; De Falco, Gianluigi; Scherillo, Fabio; Astarita, Antonello [Dipartimento di Ingegneria Chimica, dei Materiali e della Produzione Industriale, Università degli Studi di Napoli Federico II, Napoli 80125 (Italy); Commodo, Mario; Minutolo, Patrizia [Istituto di Ricerche sulla Combustione, CNR, Napoli 80125 (Italy); D' Anna, Andrea, E-mail: anddanna@unina.it [Dipartimento di Ingegneria Chimica, dei Materiali e della Produzione Industriale, Università degli Studi di Napoli Federico II, Napoli 80125 (Italy); Squillace, Antonino [Dipartimento di Ingegneria Chimica, dei Materiali e della Produzione Industriale, Università degli Studi di Napoli Federico II, Napoli 80125 (Italy)

    2016-06-30

    Aluminum alloys are widely used in the aeronautic industry for their high mechanical properties; however, because they are very sensitive to corrosion, surface treatments are often required. TiO{sub 2} has excellent resistance to oxidation and it is often used to improve the corrosion resistance of aluminum surfaces. Several coating procedures have been proposed over the years, which are in some cases expensive in terms of production time and amount of deposited material. Moreover, they can damage aluminum alloys if thermal treatments are required. In this paper, a one-step method for the coating of aluminum surfaces with titania nanoparticles is presented. Narrowly sized, TiO{sub 2} nanoparticles are synthesized by flame aerosol and directly deposited by thermophoresis onto cold plates of aluminum AA2024. Submicron coatings of different thicknesses are obtained from two flame synthesis conditions by varying the total deposition time. A fuel-lean synthesis condition was used to produce 3.5 nm pure anatase nanoparticles, while a mixture of rutile and anatase nanoparticles having 22 nm diameter — rutile being the predominant phase —, was synthesized in a fuel-rich condition. Scanning electron microscopy is used to characterize morphology of titania films, while coating thickness is measured by confocal microscopy measurements. Electrochemical impedance spectroscopy is used to evaluate corrosion resistance of coated aluminum substrates. Results show an improvement of the electrochemical behavior of titania coated surfaces as compared to pristine aluminum surfaces. The best results are obtained by covering the substrates with 3.5 nm anatase-phase nanoparticles and with lower deposition times, that assure a uniform surface coating. - Highlights: • Nanosized TiO{sub 2} particles produced by aerosol flame synthesis • Coatings of aluminum substrates with TiO{sub 2} nanoparticles by thermophoretic deposition in flames • Thickness measurement by confocal microscopy

  2. Nano-TiO_2 coatings on aluminum surfaces by aerosol flame synthesis

    International Nuclear Information System (INIS)

    Liberini, Mariacira; De Falco, Gianluigi; Scherillo, Fabio; Astarita, Antonello; Commodo, Mario; Minutolo, Patrizia; D'Anna, Andrea; Squillace, Antonino

    2016-01-01

    Aluminum alloys are widely used in the aeronautic industry for their high mechanical properties; however, because they are very sensitive to corrosion, surface treatments are often required. TiO_2 has excellent resistance to oxidation and it is often used to improve the corrosion resistance of aluminum surfaces. Several coating procedures have been proposed over the years, which are in some cases expensive in terms of production time and amount of deposited material. Moreover, they can damage aluminum alloys if thermal treatments are required. In this paper, a one-step method for the coating of aluminum surfaces with titania nanoparticles is presented. Narrowly sized, TiO_2 nanoparticles are synthesized by flame aerosol and directly deposited by thermophoresis onto cold plates of aluminum AA2024. Submicron coatings of different thicknesses are obtained from two flame synthesis conditions by varying the total deposition time. A fuel-lean synthesis condition was used to produce 3.5 nm pure anatase nanoparticles, while a mixture of rutile and anatase nanoparticles having 22 nm diameter — rutile being the predominant phase —, was synthesized in a fuel-rich condition. Scanning electron microscopy is used to characterize morphology of titania films, while coating thickness is measured by confocal microscopy measurements. Electrochemical impedance spectroscopy is used to evaluate corrosion resistance of coated aluminum substrates. Results show an improvement of the electrochemical behavior of titania coated surfaces as compared to pristine aluminum surfaces. The best results are obtained by covering the substrates with 3.5 nm anatase-phase nanoparticles and with lower deposition times, that assure a uniform surface coating. - Highlights: • Nanosized TiO_2 particles produced by aerosol flame synthesis • Coatings of aluminum substrates with TiO_2 nanoparticles by thermophoretic deposition in flames • Thickness measurement by confocal microscopy • Improvement of

  3. High-speed flame spraying, an alternative process for producing thermal insulation layers; Hochgeschwindigkeitsflammspritzen - Ein alternatives Verfahren zum Herstellen von Waermedaemmschichten

    Energy Technology Data Exchange (ETDEWEB)

    Steffens, H.D.; Wilden, J.; Josefiak, L.; Moebus, S. [Dortmund Univ. (Germany). Lehrstuhl fuer Werkstofftechnologie

    1996-12-31

    Ceramic thermal insulation layers on a ZrO{sub 2} basis produced by high-speed flame spraying differ in their structure from layers produced by atmospheric plasma spraying. If suitable powder modifications are chosen, the reulting layer structure can compensate thermally induced stresses efficiently. The layers also had a higher thermoshock resistance than APS layers. [Deutsch] Mittels Hochgeschwindigkeitsflammspritzens erzeugte keramische Waermedaemmschichten auf Basis von ZrO{sub 2} unterscheiden sich bezueglich ihrer Gefuegestruktur deutlich von atmosphaerisch plasmagespritzten WDS. Bei der Wahl geeigneter Pulvermodifikationen ermoeglicht die entstehende Schichtstruktur in hohem Mass den Ausgleich thermisch induzierter Spannungen. In vergleichenden Thermoschockversuchen erreichten HGFS-gespritzte WDS bei gleicher thermischer Isolationsfaehigkeit bessere Werte der Thermoschockbestaendigkeit als ASP-gespritzte. (orig.)

  4. Chemical Synthesis Accelerated by Paper Spray: The Haloform Reaction

    Science.gov (United States)

    Bain, Ryan M.; Pulliam, Christopher J.; Raab, Shannon A.; Cooks, R. Graham

    2016-01-01

    In this laboratory, students perform a synthetic reaction in two ways: (i) by traditional bulk-phase reaction and (ii) in the course of reactive paper spray ionization. Mass spectrometry (MS) is used both as an analytical method and a means of accelerating organic syntheses. The main focus of this laboratory exercise is that the same ionization…

  5. Fabrication and performance of Li4Ti5O12/C Li-ion battery electrodes using combined double flame spray pyrolysis and pressure-based lamination technique

    Science.gov (United States)

    Gockeln, Michael; Pokhrel, Suman; Meierhofer, Florian; Glenneberg, Jens; Schowalter, Marco; Rosenauer, Andreas; Fritsching, Udo; Busse, Matthias; Mädler, Lutz; Kun, Robert

    2018-01-01

    Reduction of lithium-ion battery (LIB) production costs is inevitable to make the use of LIB technology more viable for applications such as electric vehicles or stationary storage. To meet the requirements in today's LIB cost efficiency, our current research focuses on an alternative electrode fabrication method, characterized by a combination of double flame spray pyrolysis and lamination technique (DFSP/lamination). In-situ carbon coated nano-Li4Ti5O12 (LTO/C) was synthesized using versatile DFSP. The as-prepared composite powder was then directly laminated onto a conductive substrate avoiding the use of any solvent or binder for electrode preparation. The influence of lamination pressures on the microstructure and electrochemical performance of the electrodes was also investigated. Enhancements in intrinsic electrical conductivity were found for higher lamination pressures. Capacity retention of highest pressurized DFSP/lamination-prepared electrode was 87.4% after 200 dis-/charge cycles at 1C (vs. Li). In addition, LTO/C material prepared from the double flame spray pyrolysis was also used for fabricating electrodes via doctor blading technique. Laminated electrodes obtained higher specific discharge capacities compared to calendered and non-calendered blade-casted electrodes due to superior microstructural properties. Such a fast and industrially compelling integrative DFSP/lamination tool could be a prosperous, next generation technology for low-cost LIB electrode fabrication.

  6. Flame Synthesis of Single- and Multi-Walled Carbon Nanotubes and Nanofibers

    Science.gov (United States)

    VanderWal, R. L.; Ticich, Thomas M.

    2001-01-01

    Metal-catalyzed carbon nanotubes are highly sought for a diverse range of applications that include nanoelectronics, battery electrode material, catalysis, hydrogen storage media and reinforcing agents in polymer composites. These latter applications will require vast quantities of nanotubes at competitive prices to be economically feasible. Moreover, reinforcing applications may not require ultrahigh purity nanotubes. Indeed, functionalization of nanotubes to facilitate interfacial bonding within composites will naturally introduce defects into the tube walls, lessening their tensile strength. Current methods of aerosol synthesis of carbon nanotubes include laser ablation of composite targets of carbon and catalyst metal within high temperature furnaces and decomposition of a organometallics in hydrocarbons mixtures within a tube furnace. Common to each approach is the generation of particles in the presence of the reactive hydrocarbon species at elevated temperatures. In the laser-ablation approach, the situation is even more dynamic in that particles and nanotubes are borne during the transient cooling phase of the laser-induced plasma for which the temperature far exceeds that of the surrounding hot gases within the furnace process tube. A shared limitation is that more efficient methods of nanoparticle synthesis are not readily incorporated into these approaches. In contrast, combustion can quite naturally create nanomaterials such as carbon black. Flame synthesis is well known for its commercial scalability and energy efficiency. However, flames do present a complex chemical environment with steep gradients in temperature and species concentrations. Moreover, reaction times are limited within buoyant driven flows to tens of milliseconds. Therein microgravity can greatly lessen temperature and spatial gradients while allowing independent control of flame residence times. In preparation for defining the microgravity experiments, the work presented here focuses

  7. Effect of fuel rate and annealing process of LiFePO{sub 4} cathode material for Li-ion batteries synthesized by flame spray pyrolysis method

    Energy Technology Data Exchange (ETDEWEB)

    Halim, Abdul; Setyawan, Heru; Machmudah, Siti; Nurtono, Tantular; Winardi, Sugeng [Chemical Engineering, Sepuluh Nopember Institute of Technology, Kampus Sukolilo Surabaya Indonesia 60111 (Indonesia)

    2014-02-24

    In this study the effect of fuel rate and annealing on particle formation of LiFePO{sub 4} as battery cathode using flame spray pyrolysis method was investigated numerically and experimentally. Numerical study was done using ANSYS FLUENT program. In experimentally, LiFePO{sub 4} was synthesized from inorganic aqueous solution followed by annealing. LPG was used as fuel and air was used as oxidizer and carrier gas. Annealing process attempted in inert atmosphere at 700°C for 240 min. Numerical result showed that the increase of fuel rate caused the increase of flame temperature. Microscopic observation using Scanning Electron Microscopy (SEM) revealed that all particles have sphere and polydisperse. Increasing fuel rate caused decreasing particle size and increasing particles crystallinity. This phenomenon attributed to the flame temperature. However, all produced particles still have more amorphous phase. Therefore, annealing needed to increase particles crystallinity. Fourier Transform Infrared (FTIR) analysis showed that all particles have PO4 function group. Increasing fuel rate led to the increase of infrared spectrum absorption corresponding to the increase of particles crystallinity. This result indicated that phosphate group vibrated easily in crystalline phase. From Electrochemical Impedance Spectroscopy (EIS) analysis, annealing can cause the increase of Li{sup +} diffusivity. The diffusivity coefficient of without and with annealing particles were 6.84399×10{sup −10} and 8.59888×10{sup −10} cm{sup 2} s{sup −1}, respectively.

  8. Multiple-diffusion flame synthesis of pure anatase and carbon-coated titanium dioxide nanoparticles

    KAUST Repository

    Memon, Nasir

    2013-09-01

    A multi-element diffusion flame burner (MEDB) is useful in the study of flame synthesis of nanomaterials. Here, the growth of pure anatase and carbon-coated titanium dioxide (TiO2) using an MEDB is demonstrated. Hydrogen (H2), oxygen (O2), and argon (Ar) are utilized to establish the flame, whereas titanium tetraisopropoxide is used as the precursor for TiO2. The nanoparticles are characterized using high-resolution transmission electron microscopy, with elemental mapping (of C, O, and Ti), X-ray diffraction, Raman spectroscopy, and thermogravimetric analysis. The growth of pure anatase TiO2 nanoparticles occurs when Ar and H2 are used as the precursor carrier gas, while the growth of carbon-coated nanoparticles ensues when Ar and ethylene (C2H4) are used as the precursor carrier gas. A uniform coating of 3-5nm of carbon is observed around TiO2 particles. The growth of highly crystalline TiO2 nanoparticles is dependent on the gas flow rate of the precursor carrier and amorphous particles are observed at high flow rates. Carbon coating occurs only on crystalline nanoparticles, suggesting a possible growth mechanism of carbon-coated TiO2 nanoparticles. © 2013 The Combustion Institute.

  9. An alternative fluorine precursor for the synthesis of SnO2:F by spray pyrolysis

    International Nuclear Information System (INIS)

    Arca, E.; Fleischer, K.; Shvets, I.V.

    2012-01-01

    An alternative, non-toxic precursor was employed for the synthesis of SnO 2 :F transparent conducting oxide. The performance of benzenesulfonyl fluoride (BSF) as F source for spray pyrolysis was investigated. Its decomposition and the actual incorporation of fluorine in the tin oxide matrix were confirmed by X-ray photoelectron spectroscopy while its effect on the electrical properties was investigated by resistance and Hall measurements. Results were compared with respect to samples grown using a common fluorine source (NH 4 F), a commercial available sample and a sample grown by spray pyrolysis at an independent laboratory. We show that BSF leads to actively doped conductive SnO 2 with good carrier mobility, though the fluorine incorporation rate and hence overall conductivity of the films is lower than for fluorine precursors commonly used in spray pyrolysis.

  10. Room temperature synthesis of glycerol carbonate catalyzed by spray dried sodium aluminate microspheres

    OpenAIRE

    Sreerangappa, Ramesh; Debecker, Damien P.; 13th European Congress on Catalysis – EuropaCat 2017

    2017-01-01

    Nanostructured NaAlO2 microspheres are produced by one-pot spray dried route, and are characterized by various physico-chemical methods. The obtained solids are composed of spherical aggregates of sodium aluminate with small crystallite size and strong surface basicity. This makes them highly active catalysts in the base-catalyzed synthesis of glycerol carbonate from glycerol and dimethyl carbonate. The catalyst does not leach and showed good reusability up to three cycles.

  11. Plasma-spray synthesis and characterization of ti-based nitride and oxide nanogranules

    Energy Technology Data Exchange (ETDEWEB)

    Antipas, Georgios S.E., E-mail: gantipas@metal.ntua.gr [School of Mining Engineering and Metallurgy, National Technical University of Athens, Athens (Greece)

    2014-09-15

    The synthesis of nanosized Ti-based nanogranules via plasma spraying is reported. The synthesis route involved use of both nitrogen and oxygen gases with varying results. In the case of nitrogen, a mixture of titanium nitrides were produced, yielding both the Ti2N and the sub-stoichiometric TiN0.61 compounds. In the case of oxygen, both the stoichiometric rutile and TiO ceramic phases were indexed. Based on EDS analysis, even fractional oxygen concentrations caused tungsten impurities which originated from the cathode electrode. The method yielded particle mass median sizes of the order of 15nm and the smallest particles detected were 5nm. (author)

  12. Modelling of diesel spray flame under engine-like conditions using an accelerated eulerian stochastic fields method: A convergence study of the number of stochastic fields

    DEFF Research Database (Denmark)

    Pang, Kar Mun; Jangi, Mehdi; Bai, X.-S.

    generated similar results. The principal motivation for ESF compared to Lagrangian particle based PDF is the relative ease of implementation of the former into Eulerian computational fluid dynamics(CFD) codes [5]. Several works have attempted to implement the ESF model for the simulations of diesel spray......The use of transported Probability Density Function(PDF) methods allows a single model to compute the autoignition, premixed mode and diffusion flame of diesel combustion under engine-like conditions [1,2]. The Lagrangian particle based transported PDF models have been validated across a wide range...... combustion under engine-like conditions.The current work aims to further evaluate the performance of the ESF model in this application, with an emphasis on examining the convergence of the number of stochastic fields, nsf. Five test conditions, covering both the conventional diesel combustion and low...

  13. Microstructure, Tensile Adhesion Strength and Thermal Shock Resistance of TBCs with Different Flame-Sprayed Bond Coat Materials Onto BMI Polyimide Matrix Composite

    Science.gov (United States)

    Abedi, H. R.; Salehi, M.; Shafyei, A.

    2017-10-01

    In this study, thermal barrier coatings (TBCs) composed of different bond coats (Zn, Al, Cu-8Al and Cu-6Sn) with mullite top coats were flame-sprayed and air-plasma-sprayed, respectively, onto bismaleimide matrix composites. These polyimide matrix composites are of interest to replace PMR-15, due to concerns about the toxicity of the MDA monomer from which PMR-15 is made. The results showed that pores and cracks appeared at the bond coat/substrate interface for the Al-bonded TBC because of its high thermal conductivity and diffusivity resulting in transferring of high heat flux and temperature to the polymeric substrate during top coat deposition. The other TBC systems due to the lower conductivity and diffusivity of bonding layers could decrease the adverse thermal effect on the polymer substrate during top coat deposition and exhibited adhesive bond coat/substrate interfaces. The tensile adhesion test showed that the adhesion strength of the coatings to the substrate is inversely proportional to the level of residual stress in the coatings. However, the adhesion strength of Al bond-coated sample decreased strongly after mullite top coat deposition due to thermal damage at the bond coat/substrate interface. TBC system with the Cu-6Sn bond coat exhibited the best thermal shock resistance, while Al-bonded TBC showed the lowest. It was inferred that thermal mismatch stresses and oxidation of the bond coats were the main factors causing failure in the thermal shock test.

  14. Large-scale fabrication of superhydrophobic polyurethane/nano-Al2O3 coatings by suspension flame spraying for anti-corrosion applications

    Science.gov (United States)

    Chen, Xiuyong; Yuan, Jianhui; Huang, Jing; Ren, Kun; Liu, Yi; Lu, Shaoyang; Li, Hua

    2014-08-01

    This study aims to further enhance the anti-corrosion performances of Al coatings by constructing superhydrophobic surfaces. The Al coatings were initially arc-sprayed onto steel substrates, followed by deposition of polyurethane (PU)/nano-Al2O3 composites by a suspension flame spraying process. Large-scale corrosion-resistant superhydrophobic PU/nano-Al2O3-Al coatings were successfully fabricated. The coatings showed tunable superhydrophilicity/superhydrophobicity as achieved by changing the concentration of PU in the starting suspension. The layer containing 2.0 wt.%PU displayed excellent hydrophobicity with the contact angle of ∼151° and the sliding angle of ∼6.5° for water droplets. The constructed superhydrophobic coatings showed markedly improved anti-corrosion performances as assessed by electrochemical corrosion testing carried out in 3.5 wt.% NaCl solution. The PU/nano-Al2O3-Al coatings with superhydrophobicity and competitive anti-corrosion performances could be potentially used as protective layers for marine infrastructures. This study presents a promising approach for fabricatiing superhydrophobic coatings for corrosion-resistant applications.

  15. Process development for synthesis and plasma spray deposition of LaPO4 and YPO4 for nuclear applications

    International Nuclear Information System (INIS)

    Chakravarthy, Y.; Sreekumar, K.P.; Jayakumar, S.; Thiyagarajan, T.K.; Ananthapadmanabhan, P.V.; Das, A.K.; Gantayet, L.M.; Krishnan, K.

    2009-01-01

    Rare earth phosphates are geologically very stable and considered as potential matrix material for nuclear waste disposal and also for many high temperature thermal barrier and corrosion barrier applications involving molten metals. This paper focuses on developmental studies related to synthesis, thermal stability and plasma spray deposition of LaPO 4 and YPO 4 . The rare earth phosphates were synthesized by chemical method from their respective oxide materials using ortho phosphoric acid. The as-precipitated powders were converted to thermal spray grade powder by compaction, sintering and crushing. Thermal stability of these phosphates up to their melting point was determined by arc plasma melting, followed by X-ray diffraction. Results indicate that LaPO 4 and YPO 4 melt congruently without decomposition. Plasma spray deposition was carried out using the in-house 40 kW atmospheric plasma spray system. Adherent coatings could be deposited on various substrates by optimizing the plasma spray parameters. (author)

  16. Room temperature synthesis of glycerol carbonate catalyzed by spray dried sodium aluminate microspheres

    OpenAIRE

    Sreerangappa, Ramesh; Debecker, Damien P.

    2017-01-01

    Nanostructured NaAlO2 microspheres are produced from an aqueous solution, by a one-pot spray drying route. The obtained solids are composed of spherical aggregates of sodium aluminate with small crystallite size and strong surface basicity. This makes them highly active catalysts in the base-catalyzed synthesis of glycerol carbonate from glycerol and dimethyl carbonate. The new catalyst does not leach and is recyclable. NaAlO2 microspheres outcompete commercially available NaAlO2 as well as o...

  17. Synthesis of ZnO particles in a quench-cooled flame reactor

    DEFF Research Database (Denmark)

    Hansen, Jens Peter; Jensen, Joakim Reimer; Livbjerg, Hans

    2001-01-01

    The quench cooling of a flame by injection of cold air was studied in a flame reactor for the formation of ZnO particles in a premixed flame with a precursor jet. A rapid temperature drop downstream from the temperature peak is advantageous for the attainment of a large specific surface area...

  18. Pengaruh NiCrAlY, Ni/Cr2O3/CrxCy Sebagai Variasi Bond Coat Dengan Penambahan Lapisan Al2O3 dan YSZ Pada Inconel 625 Terhadap Struktur Mikro Lapisan Menggunakan Metode Flame Spraying

    Directory of Open Access Journals (Sweden)

    Aprian Immanuel

    2017-01-01

    Full Text Available Thermal Barrier Coating (TBC berfungsi untuk mengurangi temperatur substrat serta meningkatkan daya tahannya terhadap korosi dan oksidasi. Pada penelitian ini, digunakan flame spraying dari variasi bond coat (Ni-Cr-Al-Y, (Ni/CrO3/CrXCY dan tanpa bond coat serta melapisi kembali lapisan bond coat dengan Al2O3 dan ZrO2 – 8%Y2O3 sebagai Thermal Barrier Coating untuk diteliti pengaruhnya terhadap struktur mikro lapisan yang terbentuk. Hasil flame spray diamati dengan SEM pada variasi bond coat NiCrAlY ditemukan beberapa serbuk dari material top coat dengan beberapa kondisi yaitu meleleh (melted, meleleh sebagian (semi melted, dan tidak meleleh (unmelted. Ditemukan poros yang merata hampir di seluruh permukaan sampel dan munculnya pengintian retak. Perbedaan sebelum dan sesudah perlakuan ada pada persebaran setiap unsur di setiap spesimen, dan lapisan oksida yang terbentuk pada seluruh variasi bond coat

  19. Flame spray synthesis of CoMo/Al2O3 hydrotreating catalysts

    DEFF Research Database (Denmark)

    Høj, Martin; Linde, Kasper; Hansen, Thomas Klint

    2011-01-01

    containing 16wt.% Mo (atomic ratio Co/Mo=1/3), which did not contain crystalline MoO3 and only small amounts of CoAl2O4. The hydrotreating activity was approximately 75% of that of commercial cobalt molybdenum catalysts prepared by wet impregnation of pre-shaped alumina extrudates. Since the commercial...... obtained consisted mostly of γ-Al2O3 with some CoAl2O4, as evidenced by X-ray diffraction (XRD) and UV–vis spectroscopy. Bulk MoO3 was not detected by XRD, except at the highest molybdenum content (32wt.%) and in the unsupported sample, indicating that molybdenum is well dispersed on the surface.......After activation by sulfidation the activity of the catalysts were measured for the three hydrotreating reactions hydrodesulfurization, hydrodenitrogenation and hydrogenation using a model oil containing dibenzothiophene, indole and naphthalene in n-heptane solution. The best catalyst was the FSP-produced material...

  20. Oxidation Behavior of Titanium Carbonitride Coating Deposited by Atmospheric Plasma Spray Synthesis

    Science.gov (United States)

    Zhu, Lin; He, Jining; Yan, Dianran; Liao, Hanlin; Zhang, Nannan

    2017-10-01

    As a high-hardness and anti-frictional material, titanium carbonitride (TiCN) thick coatings or thin films are increasingly being used in many industrial fields. In the present study, TiCN coatings were obtained by atmospheric plasma spray synthesis or reactive plasma spray. In order to promote the reaction between the Ti particles and reactive gases, a home-made gas tunnel was mounted on a conventional plasma gun to perform the spray process. The oxidation behavior of the TiCN coatings under different temperatures in static air was carefully investigated. As a result, when the temperature was over 700 °C, the coatings suffered from serious oxidation, and finally they were entirely oxidized to the TiO2 phase at 1100 °C. The principal oxidation mechanism was clarified, indicating that the oxygen can permeate into the defects and react with TiCN at high temperatures. In addition, concerning the use of a TiCN coating in high-temperature conditions, the microhardness of the oxidized coatings at different treatment temperatures was also evaluated.

  1. The effect of Pt nanoparticles loading on H{sub 2} sensing properties of flame-spray-made SnO{sub 2} sensing films

    Energy Technology Data Exchange (ETDEWEB)

    Liewhiran, Chaikarn, E-mail: chaikarn_l@yahoo.com [Department of Physics and Materials Science, Faculty of Science, Chiang Mai University, Chiang Mai 50202 (Thailand); Materials Science Research Center, Faculty of Science, Chiang Mai University, Chiang Mai 50202 (Thailand); Tamaekong, Nittaya [Program in Materials Science, Faculty of Science, Maejo University, Chiang Mai 50290 (Thailand); Tuantranont, Adisorn; Wisitsoraat, Anurat [Nanoelectronics and MEMS Laboratory, National Electronics and Computer Technology Center, Klong Luang, Pathumthani 12120 (Thailand); Phanichphant, Sukon [Materials Science Research Center, Faculty of Science, Chiang Mai University, Chiang Mai 50202 (Thailand)

    2014-10-15

    SnO{sub 2} nanoparticles loaded with 0.2–2 wt% Pt have successfully been synthesized in a single step by flame spray pyrolysis (FSP) and investigated for gas sensing towards hydrogen (H{sub 2}). According to characterization results by X-ray diffraction, nitrogen adsorption, scanning/high resolution-transmission electron microscopy and analyses based on Hume-Rothery rules using atomic radii, crystal structure, electronegativities, and valency/oxidation states of Pt and Sn, it is conclusive that Pt is not solute in SnO{sub 2} crystal but forms nanoparticles loaded on SnO{sub 2} surface. H{sub 2} gas sensing was studied at 200–10,000 ppm and 150–350 °C in dry air. It was found that H{sub 2} response was enhanced by more than one order of magnitude with a small Pt loading concentration of 0.2 wt% but further increase of Pt loading amount resulted in deteriorated H{sub 2}-sensing performance. The optimal SnO{sub 2} sensing film (0.2 wt% Pt-loaded SnO{sub 2}, 20 μm in thickness) showed an optimum H{sub 2} response of ∼150.2 at 10,000 ppm and very short response time in a few seconds at a low optimal operating temperature of 200 °C. In addition, the response tended to increase linearly and the response times decreased drastically with increasing H{sub 2} concentration. Moreover, the selectivity against carbon monoxide (CO) and acetylene (C{sub 2}H{sub 2}) gases was also found to be considerably improved with the small amount of Pt loading. The H{sub 2} response dependence on Pt concentration can be explained based on the spillover mechanism, which is highly effective only when Pt catalyst is well-dispersed at the low Pt loading concentration of 0.2 wt%. - Highlights: • Pt/SnO{sub 2} nanoparticles were prepared in a single step by flame spray pyrolysis. • Pt loading on SnO{sub 2} nanoparticles at low level of 0.2 wt% gives optimal H{sub 2} response. • 0.2 wt% Pt/SnO{sub 2} sensor exhibits a low optimum operating temperature of 200 °C. • H

  2. Effect of surface topological structure and chemical modification of flame sprayed aluminum coatings on the colonization of Cylindrotheca closterium on their surfaces

    Science.gov (United States)

    Chen, Xiuyong; He, Xiaoyan; Suo, Xinkun; Huang, Jing; Gong, Yongfeng; Liu, Yi; Li, Hua

    2016-12-01

    Biofouling is one of the major problems for the coatings used for protecting marine infrastructures during their long-term services. Regulation in surface structure and local chemistry is usually the key for adjusting antifouling performances of the coatings. In this study, flame sprayed multi-layered aluminum coatings with micropatterned surfaces were constructed and the effects of their surface structure and chemistry on the settlement of typical marine diatoms were investigated. Micropatterned topographical morphology of the coatings was constructed by employing steel mesh as a shielding plate during the coating deposition. A silicone elastomer layer for sealing and interconnection was further brush-coated on the micropatterned coatings. Additional surface modification was made using zwitterionic molecules via DOPA linkage. The surface-modified coatings resist effectively colonization of Cylindrotheca closterium. This is explained by the quantitative examination of a simplified conditioning layer that deteriorated adsorption of bovine calf serum proteins on the zwitterionic molecule-treated samples is revealed. The colonization behaviors of the marine diatoms are markedly influenced by the micropatterned topographical morphology. Either the surface micropatterning or the surface modification by zwitterionic molecules enhances antimicrobial ability of the coatings. However, the combined micropatterned structure and zwitterionic modification do not show synergistic effect. The results give insight into anti-corrosion/fouling applications of the modified aluminum coatings in the marine environment.

  3. Pt-doped In{sub 2}O{sub 3} nanoparticles prepared by flame spray pyrolysis for NO{sub 2} sensing

    Energy Technology Data Exchange (ETDEWEB)

    Inyawilert, K. [Chiang Mai University, Department of Physics and Materials Science, Faculty of Science (Thailand); Channei, D. [Naresuan University, Department of Chemistry, Faculty of Science (Thailand); Tamaekong, N. [Maejo University, Program in Materials Science, Faculty of Science (Thailand); Liewhiran, C. [Chiang Mai University, Department of Physics and Materials Science, Faculty of Science (Thailand); Wisitsoraat, A.; Tuantranont, A. [National Electronics and Computer Technology Center (NECTEC), Nanoelectronics and MEMS Laboratory (Thailand); Phanichphant, S., E-mail: sphanichphant@gmail.com [Chiang Mai University, Faculty of Science, Materials Science Research Center (Thailand)

    2016-02-15

    Undoped In{sub 2}O{sub 3} and 0.25–1.00 wt% M (M=Pt, Nb, and Ru)-doped/loaded In{sub 2}O{sub 3} nanoparticles were successfully synthesized in a single-step flame spray pyrolysis technique using indium nitrate, platinum (II) acetylacetonate, niobium ethoxide, and ruthenium (III) acetylacetonate precursors. The undoped In{sub 2}O{sub 3} and M-doped In{sub 2}O{sub 3} nanoparticles were characterized by Brunauer–Emmett–Teller (BET) analysis, X-ray diffraction (XRD), and scanning and transmission electron microscopy (SEM & TEM). The BET average diameter of spherical nanoparticles was found to be in the range of 10.2–15.2 nm under 5/5 (precursor/oxygen) flame conditions. All XRD peaks were confirmed to correspond to the cubic structure of In{sub 2}O{sub 3}. TEM images showed that there is no Pt nanoparticle loaded on In{sub 2}O{sub 3} surface, suggesting that Pt should form solid solution with the In{sub 2}O{sub 3} lattice. Gas sensing studies showed that 0.5 wt% Pt doping in In{sub 2}O{sub 3} nanoparticles gave a significant enhancement of NO{sub 2} sensing performances in terms of sensor response and selectivity. 0.5 wt% Pt/In{sub 2}O{sub 3} exhibited a high NO{sub 2} response of ∼1904 to 5 ppm NO{sub 2} at 250 °C and good NO{sub 2} selectivity against NO, H{sub 2}S, H{sub 2}, and C{sub 2}H{sub 5}OH. In contrast, Nb and Ru loading resulted in deteriorated NO{sub 2} response. Therefore, Pt is demonstrated to be an effective additive to enhance NO{sub 2} sensing performances of In{sub 2}O{sub 3}-based sensors.

  4. Oxidation behaviour at 1123 K of AISI 304-Ni/Al-Al2O3/TiO2 multilayer system deposited by flame spray

    Directory of Open Access Journals (Sweden)

    Cervera, I.

    2011-04-01

    Full Text Available The oxidation behaviour of alumina/titania (97/3, 87/13 and 60/40 ceramic coatings using a Ni-Al coupling layer was studied in a thermobalance. Both layers were deposited on an AISI 304 stainless steel base metal by the flame spray technique. The coated steel was heated from room temperature to 1,123 K at 40 K min –1, oxidized in air for 50 h, and then cooled to room temperature at 40 K min–1. The mass gain was mainly attributed to the oxidation of Ni-Al coupling layer. Kinetic laws, DW·S –1 (mg.mm–2 vs. time (hours were close to a parabolic plot for each sample. Surface composition of ceramic top layer and the cross section of multilayer system were analysed using a wide range of experimental techniques including Scanning Electron Microscopy (SEM, equipped with a link energy dispersive X-Ray spectroscopy (EDX and X-Ray diffraction (XRD before and after the oxidation process. Coatings 97/3 and 87/13 presented a stable structure after flame spray deposition and they did not evolve with the oxidation process, while most of the 60/40 coating changed to a metastable structure after deposition and to a more stable structure after oxidation with high micro-cracks content. SEM and EDX microanalysis of the cross-sections showed that significant oxidation and a weak intergranular precipitation had been produced in the coupling layer and on the stainless steel base metal, respectively.El comportamiento a oxidación de recubrimientos cerámicos alúmina/titania (97/3, 87/13, 60/40 usando una capa de anclaje Ni-Al se ha estudiado mediante una termobalanza. Ambas capas se han depositado sobre un acero inoxidable AISI 304 utilizando la técnica de proyección llama (FS. El acero recubierto se ha calentado desde la temperatura ambiente hasta 1.123 K a 40 K min–1, se ha oxidado al aire durante 50 h, y luego se ha enfriado hasta la temperatura ambiente a 40 K min–1. La ganancia en masa se atribuye a la oxidación de la capa de enganche Ni-Al. La cin

  5. Spray-combustion synthesis: efficient solution route to high-performance oxide transistors.

    Science.gov (United States)

    Yu, Xinge; Smith, Jeremy; Zhou, Nanjia; Zeng, Li; Guo, Peijun; Xia, Yu; Alvarez, Ana; Aghion, Stefano; Lin, Hui; Yu, Junsheng; Chang, Robert P H; Bedzyk, Michael J; Ferragut, Rafael; Marks, Tobin J; Facchetti, Antonio

    2015-03-17

    Metal-oxide (MO) semiconductors have emerged as enabling materials for next generation thin-film electronics owing to their high carrier mobilities, even in the amorphous state, large-area uniformity, low cost, and optical transparency, which are applicable to flat-panel displays, flexible circuitry, and photovoltaic cells. Impressive progress in solution-processed MO electronics has been achieved using methodologies such as sol gel, deep-UV irradiation, preformed nanostructures, and combustion synthesis. Nevertheless, because of incomplete lattice condensation and film densification, high-quality solution-processed MO films having technologically relevant thicknesses achievable in a single step have yet to be shown. Here, we report a low-temperature, thickness-controlled coating process to create high-performance, solution-processed MO electronics: spray-combustion synthesis (SCS). We also report for the first time, to our knowledge, indium-gallium-zinc-oxide (IGZO) transistors having densification, nanoporosity, electron mobility, trap densities, bias stability, and film transport approaching those of sputtered films and compatible with conventional fabrication (FAB) operations.

  6. Synthesis Characterization and Decomposition Studies of tris[N-N-dibenzyidithocarbaso)Indium (III) Chemical Spray Deposition of Polycrystalline CuInS2 on Copper Films

    Science.gov (United States)

    Hehemann, David G.; Lau, J. Eva; Harris, Jerry D.; Hoops, Michael D.; Duffy, Norman V.

    2005-01-01

    This paper presents the results of the synthesis characterization and decomposition studies of tris[N-N-dibenzyidithocarbaso)Indium (III) with chemical spray deposition of polycrystalline CuInS2 on Copper Films.

  7. A novel intumescent flame retardant-functionalized graphene: Nanocomposite synthesis, characterization, and flammability properties

    International Nuclear Information System (INIS)

    Huang, Guobo; Chen, Suqing; Tang, Shouwan; Gao, Jianrong

    2012-01-01

    An intumescent flame retardant, poly(piperazine spirocyclic pentaerythritol bisphosphonate) (PPSPB), has been covalently grafted onto the surfaces of graphene oxide (GO) to obtain GO–PPSPB and according nanocomposites were prepared via solvent blending. The X-ray diffraction (XRD) and transmission electron microscopy (TEM) results show that the chemically reduced GO–PPSPB (CRG–PPSPB) can achieve better dispersion in the ethylene vinyl acetate copolymer (EVA) matrix and exfoliated EVA/CRG–PPSPB nanocomposites are formed. The results from thermogravimetric analysis (TGA) and cone calorimeter tests indicate that CRG–PPSPB improve thermal stability and reduce obviously the flammability (including peak heat release rate (PHRR), total heat release (THR), average mass loss rate (AMLR), etc.) of EVA. Compared with pure EVA resin, the PHRR of the EVA/CRG–PPSPB nanocomposites filled with 1 wt% CRG–PPSPB is reduced by about 56%. The SEM images show that a compact, dense and uniform intumescent char is formed for EVA/CRG–PPSPB nanocomposites after combustion. The functionalization of graphene by intumescent flame retardant PPSPB can improve both the dispersion of graphene sheets in the polymer matrix and flame retardancy of the nanocomposites. -- Highlights: ► Graphene oxide were modified with intumescent flame retardant PPSPB. ► EVA/CRG–PPSPB nanocomposites were prepared via solvent blending. ► CRG–PPSPB improved the flame retardancy of EVA nanocomposites.

  8. Synthesis and Application of a Novel Polyamide Charring Agent for Halogen-Free Flame Retardant Polypropylene

    Directory of Open Access Journals (Sweden)

    Jie Liu

    2013-01-01

    Full Text Available A novel charring agent, poly(p-ethylene terephthalamide (PETA, for halogen-free flame retardant polypropylene was synthesized by using p-phthaloyl chloride (TPC and ethylenediamine through solution polycondensation at low temperature, and the effects of PETA on flame retardance of polypropylene (PP/IFR systems were studied. The experimental results showed that PETA could considerably enhance the fire retardant performance as proved by evidence of the increase of limiting oxygen index (LOI values, the results of UL-94 tests, and cone calorimeter tests (CCT. Fourier transform infrared spectroscopy (FTIR and scanning electron microscope (SEM demonstrated that an appropriate amount of PETA could react with PP/IFR system to form cross-link network; a more compact char layer could be formed which was responsible for the improved thermal and flame retardant properties of PP/IFR systems. However, the superfluous amount of PETA would play the negative role.

  9. Flame synthesis of carbon nano onions using liquefied petroleum gas without catalyst

    International Nuclear Information System (INIS)

    Dhand, Vivek; Prasad, J. Sarada; Rao, M. Venkateswara; Bharadwaj, S.; Anjaneyulu, Y.; Jain, Pawan Kumar

    2013-01-01

    Densely agglomerated, high specific surface area carbon nano onions with diameter of 30–40 nm have been synthesized. Liquefied petroleum gas and air mixtures produced carbon nano onions in diffusion flames without catalyst. The optimized oxidant to fuel ratio which produces carbon nano onions has been found to be 0.1 slpm/slpm. The experiment yielded 70% pure carbon nano onions with a rate of 5 g/h. X-ray diffraction, high-resolution electron microscopy and Raman spectrum reveal the densely packed sp 2 hybridized carbon with (002) semi-crystalline hexagonal graphite reflection. The carbon nano onions are thermally stable up to 600 °C. - Highlights: ►Flame synthesized carbon nano onions with 30–40 nm diameters. ►LPG/air, diffusion type flame used in absence of catalyst to produce nano onions. ►Carbon nano onion production rate is 5 g/hr and with 70% purity.

  10. Synthesis, microstructure and mechanical properties of ceria stabilized tetragonal zirconia prepared by spray drying technique

    International Nuclear Information System (INIS)

    Sharma, S.C.; Gokhale, N.M.; Dayal, Rajiv; Lazl, Ramji

    2002-01-01

    Ceria stabilized zirconia powders with ceria concentration varying from 6 to 16 mol% were synthesized using spray drying technique. Powders were characterized for their particle size distribution and specific surface area. The dense sintered ceramics fabricated using these powders were characterized for their microstructure, crystallite size and phase composition. The flexural strength, fracture toughness and micro-hardness of sintered ceramics were measured. High fracture toughness and flexural strength were obtained for sintered bodies with 12 mol% of CeO 2 . Flexural strength and fracture toughness were dependent on CeO 2 concentration, crystallite size and phase composition of sintered bodies. Correlation of data has indicated that the transformable tetragonal phase is the key factor in controlling the fracture toughness and strength of ceramics. It has been demonstrated that the synthesis method is effective to prepare nanocrystalline tetragonal ceria stabilized zirconia powders with improved mechanical properties. Ce-ZrO 2 with 20 wt% alumina was also prepared with flexural strength, 1200 MPa and fracture toughness 9.2 MPa√m. (author)

  11. Continuous flame aerosol synthesis of carbon-coated nano-LiFePO4 for Li-ion batteries

    Science.gov (United States)

    Waser, Oliver; Büchel, Robert; Hintennach, Andreas; Novák, Petr; Pratsinis, Sotiris E.

    2013-01-01

    Core-shell, nanosized LiFePO4-carbon particles were made in one step by scalable flame aerosol technology at 7 g/h. Core LiFePO4 particles were made in an enclosed flame spray pyrolysis (FSP) unit and were coated in-situ downstream by auto thermal carbonization (pyrolysis) of swirl-fed C2H2 in an O2-controlled atmosphere. The formation of acetylene carbon black (ACB) shell was investigated as a function of the process fuel-oxidant equivalence ratio (EQR). The core-shell morphology was obtained at slightly fuel-rich conditions (1.0 < EQR < 1.07) whereas segregated ACB and LiFePO4 particles were formed at fuel-lean conditions (0.8 < EQR < 1). Post-annealing of core-shell particles in reducing environment (5 vol% H2 in argon) at 700 °C for up to 4 hours established phase pure, monocrystalline LiFePO4 with a crystal size of 65 nm and 30 wt% ACB content. Uncoated LiFePO4 or segregated LiFePO4-ACB grew to 250 nm at these conditions. Annealing at 800 °C induced carbothermal reduction of LiFePO4 to Fe2P by ACB shell consumption that resulted in cavities between carbon shell and core LiFePO4 and even slight LiFePO4 crystal growth but better electrochemical performance. The present carbon-coated LiFePO4 showed superior cycle stability and higher rate capability than the benchmark, commercially available LiFePO4. PMID:23407817

  12. Flame synthesis of nanoparticles - Applications in catalysis and product/process engineering

    DEFF Research Database (Denmark)

    Johannessen, Tue; Jensen, Joakim R.; Mosleh, Majid

    2004-01-01

    High-temperature flame processes for the production of nanoparticles can be applied in chemical product and process engineering. As an example one can produce well-defined spinel structures, e.g. zinc aluminate spinel (ZnAl2O4) and magnesium aluminate spinel (MgAl2O4) with high specific surface a...

  13. Design, synthesis, and application of novel flame retardants derived from biomass

    Directory of Open Access Journals (Sweden)

    Yan Liu

    2012-11-01

    Full Text Available Biomass represents an abundant and relatively low cost carbon resource that can be utilized to produce platform chemicals such as levulinic acid. Novel oligomeric flame retardants, the poly(MDP-PDCP-MAs (PMPMs, were designed and synthesized using diphenolic acid as one of the raw materials, which is derived from levulinic acid. To change the molar ratio of reactants, a series of PMPM samples with different nitrogen contents were obtained and characterized by FTIR and solid-state 13C NMR spectroscopy. The solubility test and thermogravimetric analysis (TGA indicated a good solvent-resistant property and thermal stability. The flame retardancy and thermal behavior of ABS with 30% loading of different PMPM samples were investigated by limiting oxygen index test (LOI, TGA, and microscale combustion colorimeter (MCC. The results showed that PMPMs are effective charring agents that can increase the thermal stability and flame retardancy of ABS. Scanning electron microscopy (SEM observations of the residue of ABS/PMPM blends indicated the compact charred layer formed was responsible for improving the thermal stability and char yield of ABS with low nitrogen content in PMPM-1 flame retardant.

  14. A novel branched phosphorus-containing flame retardant: synthesis and its application

    Science.gov (United States)

    Zhang, Yi; Liu, Jiping; Li, Shulei

    2018-03-01

    A novel branched polyphosphonate flame retardant (BPDD) has been synthesized through melt polycondensation and end-capping reaction. The chemical structure of BPDD was characterized by fourier transform infrared (FTIR) spectra and nuclear magnetic resonance (NMR) spectra. The test results of the vertical burning test (UL-94), limiting oxygen index (LOI) and cone calorimeter (CONE) measurements reveal that BPDD can effectively enhanced flame-retardant properties of EP. The LOI values of EP/BPDD composites increased from 23.9 % of pure EP to 33.6% and UL-94 V-0 was obtained with the 20 wt% BPDD loading. Besides, the peak heat release rate (PHRR) and total heat release (THR) of EP/BPDD composites were reduced significantly compared with the pure EP. When 20 wt% BPPD was incorporated, the PHRR and THR were decreased 66.2 % and 37.3%, respectively. The comprehensive test results shows that the improvement of flame retardancy of the EP/BPDD composites was attributed to the synergistic action of the condensed phase and gas phases.

  15. Flame synthesis of carbon nano onions using liquefied petroleum gas without catalyst

    Energy Technology Data Exchange (ETDEWEB)

    Dhand, Vivek, E-mail: vivekdhand2012@gmail.com [Centre for Knowledge Management of Nanoscience and Technology, 12-5-32/8, Vijayapuri Colony, Tarnaka, Secunderabad-500 017, A.P (India); Prasad, J. Sarada; Rao, M. Venkateswara [Centre for Environment, Institute of Science and Technology, Jawaharlal Nehru Technological University, Kukatpally, Hyderabad 500 085 (India); Bharadwaj, S. [Department of Physics, CVR College of Engineering and Osmania University, Hyderabad 501510, A.P (India); Anjaneyulu, Y. [TLGVRC, Jackson State University, JSU Box 18739, Jackson, MS 39217-0939 (United States); Jain, Pawan Kumar [International Advanced Research Centre for Powder Metallurgy and New Materials (ARCI), Balapur PO, Hyderabad 500005, Andhra Pradesh (India)

    2013-03-01

    Densely agglomerated, high specific surface area carbon nano onions with diameter of 30-40 nm have been synthesized. Liquefied petroleum gas and air mixtures produced carbon nano onions in diffusion flames without catalyst. The optimized oxidant to fuel ratio which produces carbon nano onions has been found to be 0.1 slpm/slpm. The experiment yielded 70% pure carbon nano onions with a rate of 5 g/h. X-ray diffraction, high-resolution electron microscopy and Raman spectrum reveal the densely packed sp{sup 2} hybridized carbon with (002) semi-crystalline hexagonal graphite reflection. The carbon nano onions are thermally stable up to 600 Degree-Sign C. - Highlights: Black-Right-Pointing-Pointer Flame synthesized carbon nano onions with 30-40 nm diameters. Black-Right-Pointing-Pointer LPG/air, diffusion type flame used in absence of catalyst to produce nano onions. Black-Right-Pointing-Pointer Carbon nano onion production rate is 5 g/hr and with 70% purity.

  16. Effects of flame conditions on the synthesis of germanium oxide nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Ifeacho, P.; Simanzhenkhov, V.; Wiggers, H.; Roth, P.; Schulz, C. [Duisburg-Essen Univ., Duisburg (Germany). Inst. fuer Verbrennung und Gasdynamik

    2005-07-01

    A low pressure premixed H{sub 2}/O{sub 2}/Ar flat flame doped with tetramethyl germanium Ge(CH{sub 3}){sub 4} (TMG) was used to investigate the influence of the variation of experimental parameters on GeO/GeO{sub 2} nanoparticle formation. GeO as well as GeO{sub 2} are thermodynamically stable, and their appearance and is appearance respectively provides valuable information on oxidizing and reducing conditions in the flame. The reactor was fed with different concentrations of TMG and operated for H{sub 2}/O{sub 2} ratios between 0.6 - 1.3. The pressure was varied between 25 - 55 mbar, while the gas velocity was varied between 0.69 - 1.95 m/s. It was found that, increasing pressure results in a reduction in mean particle diameter. An increase in oxygen concentration accelerates particle growth. For H{sub 2}/O{sub 2} < 1.0, the color of the GeO{sub x}, powders is while indicating the preferential formation of GeO{sub 2}. If the oxygen concentration decreases, the stoichiometry shifts towards GeO represented by a color transformation starting from while over grey to black. Transmission electron microscopy (TEM) and particle mass spectrometry (PMS) indicate the formation of particles with spherical morphology and mean diameters of 1.5 nm - 10 nm. (orig.)

  17. Synthesis and carbonization chemistry of a phosphorous–nitrogen based intumescent flame retardant

    International Nuclear Information System (INIS)

    Ma, Haiyun; Fang, Zhengping

    2012-01-01

    Graphical abstract: The carbonization chemistry and mechanism of a novel synthesized intumescent flame retardant. The final chars showed a complex P-O-Ph and aromatic/graphitic structure containing architecture. Highlights: ► The IFR synthesized is polymeric and has high molecular weight. ► The IFR has a higher thermal stability than most of the commercial IFRs. ► The final chars of IFR showed a complex P-O-Ph and aromatic/graphitic structure. - Abstract: In this work, a polymeric phosphorous–nitrogen containing intumescent flame retardant, named poly(diaminodiphenyl methane spirocyclic pentaerythritol bisphosphonate) (PDSPB), was synthesized. The carbonization chemistry was investigated. FTIR and 1 H NMR were used to confirm the chemical structure of PDSPB. Thermogravimetric analysis (TGA), scanning electron microscopy (SEM), transmission electron microscopy (TEM), in situ FTIR and energy dispersive X-ray (EDX) were used to investigate and monitor the chemical structural changes during thermal degradation. PDSPB demonstrated a three-step degradation behavior. PDSPB oligomers continuously polymerized and generated a higher macromolecular weight during the first step (200–250 °C). The phosphate ester bonds were broken down and phosphoric acid was released which dehydrated the carbon source to form chars during the second step (280–320 °C). The residues will be further degraded and form final chars during the final weight loss step (400–450 °C). The final chars showed a complex P-O-Ph and aromatic/graphitic structure containing architecture.

  18. Size Tunable Synthesis of Highly Crystalline BaTiO3 Nanoparticles using Salt-Assisted Spray Pyrolysis

    International Nuclear Information System (INIS)

    Itoh, Yoshifumi; Lenggoro, I. Wuled; Okuyama, Kikuo; Maedler, Lutz; Pratsinis, Sotiris E.

    2003-01-01

    Highly crystalline, dense BaTiO 3 nanoparticles in a size range from 30 to 360nm with a narrow size distribution (σ g = 1.2-1.4) were prepared at various synthesis temperatures using a salt-assisted spray pyrolysis (SASP) method without the need for post-annealing. The effect of synthesis temperature on particle size, crystallinity and surface morphology of the nanoparticles were characterized by X-ray diffraction and scanning/transmission electron microscopy. The nature of the crystalline structure was analyzed by Rietveld refinement and Raman spectroscopy. The particle size decreased with decreasing operation temperature. The crystal phase was transformed from tetragonal to cubic at a particles size of about 50nm at room temperature. SASP can be used to produce high weight fraction of tetragonal BaTiO 3 nanoparticles down to 64nm in a single step

  19. Synthesis and hyperthermia property of hydroxyapatite-ferrite hybrid particles by ultrasonic spray pyrolysis

    International Nuclear Information System (INIS)

    Inukai, Akihiro; Sakamoto, Naonori; Aono, Hiromichi; Sakurai, Osamu; Shinozaki, Kazuo; Suzuki, Hisao; Wakiya, Naoki

    2011-01-01

    Biocompatible hybrid particles composed of hydroxyapatite (Ca 10 (PO 4 ) 6 (OH) 2 , HAp) and ferrite (γ-Fe 2 O 3 and Fe 3 O 4 ) were synthesized using a two-step procedure. First, the ferrite particles were synthesized by co-precipitation. Second, the suspension, which was composed of ferrite particles by a co-precipitation method, Ca(NO 3 ) 2 , and H 3 PO 4 aqueous solution with surfactant, was nebulized into mist ultrasonically. Then the mist was pyrolyzed at 1000 o C to synthesize HAp-ferrite hybrid particles. The molar ratio of Fe ion and HAp was (Fe 2+ and Fe 3+ )/HAp=6. The synthesized hybrid particle was round and dimpled, and the average diameter of a secondary particle was 740 nm. The cross section of the synthesized hybrid particles revealed two phases: HAp and ferrite. The ferrite was coated with HAp. The synthesized hybrid particles show a saturation magnetization of 11.8 emu/g. The net saturation magnetization of the ferrite component was calculated as 32.5 emu/g. The temperature increase in the AC-magnetic field (370 kHz, 1.77 kA/m) was 9 o C with 3.4 g (the ferrite component was 1.0 g). These results show that synthesized hybrid particles are biocompatible and might be useful for magnetic transport and hyperthermia studies. - Research Highlights: → Biocompatible hybrid particles composed of hydroxyapatite (Ca 10 (PO 4 ) 6 (OH) 2 , HAp) and ferrite (γ-Fe 2 O 3 and Fe 3 O 4 ) were synthesized using a two-step synthesis, which is comprised of co-precipitation and ultrasonic spray pyrolysis. → Cross sectional TEM observation and X-ray diffraction revealed that synthesized hybrid particles showed two phases (HAp and ferrite), and the ferrite was coated with HAp. → The saturation magnetization of ferrite in the HAp-ferrite hybrid was 32.49 emu/g. → The increased temperature in the AC-magnetic field (370 kHz, 1.77 kA/m) was 9 o C with 3.4 g (the ferrite component was 1.0 g).

  20. Stabilization and structure of N-heptane flame on CWJ-spray burner with kHZ SPIV and OH-PLIF

    KAUST Repository

    Mansour, Morkous S.; Al Khesho, Issam; Chung, Suk-Ho

    2015-01-01

    characteristics and structure of n-heptane/air turbulent flames were investigated with varying fuel and air flow rates and the position of pressure atomizer (L). High-speed planar laser-induced fluorescence (PLIF) of OH radicals delineated reaction zone contours

  1. Hydrothermal Synthesis of Fe3O4 Nanoparticles and Flame Resistance Magnetic Poly styrene Nanocomposite

    Directory of Open Access Journals (Sweden)

    Kambiz Hedayati

    2017-01-01

    Full Text Available Fe3O4 nanostructures were synthesized via a facile hydrothermal reaction. The effect of various surfactants such as cationic and anionic on the morphology of the product was investigated. Magnetic nanoparticles were added to poly styrene for preparation of magnetic nanocomposite. Nanostructures were then characterized using X-ray diffraction, scanning electron microscopy and Fourier transform infrared spectroscopy. The magnetic properties of the samples were also investigated using vibrating sample magnetometer. The magnesium ferrite nanoparticles exhibit super paramagnetic behaviour at room temperature, with a saturation magnetization of 66 emu/g and a coercivity less than 5 Oe. Distribution of the magnetic nanoparticles into poly styrene matrix increases the coercivity. Nanoparticles appropriately enhanced flame retardant property of the PS matrix. Nanoparticles act as barriers which decrease thermal transport and volatilization during decomposition of the polymer.

  2. Plasma-spraying synthesis of high-performance photocatalytic TiO2 coatings

    International Nuclear Information System (INIS)

    Takahashi, Yasuo; Maeda, Masakatsu; Ohmori, Akira; Shibata, Yoshitaka; Miyano, Yasuyuki; Murai, Kensuke

    2014-01-01

    Anatase (A-) TiO 2 is a photocatalytic material that can decompose air-pollutants, acetaldehyde, bacteria, and so on. In this study, three kinds of powder (A-TiO 2 without HAp, TiO 2 + 10mass%HAp, and TiO 2 +30mass%HAp, where HAp is hydroxyapatite and PBS is polybutylene succinate) were plasma sprayed on biodegradable PBS substrates. HAp powder was mixed with A-TiO 2 powder by spray granulation in order to facilitate adsorption of acetaldehyde and bacteria. The crystal structure was almost completely maintained during the plasma spray process. HAp enhanced the decomposition of acetaldehyde and bacteria by promoting adsorption. A 10mass% HAp content was the most effective for decomposing acetaldehyde when plasma preheating of the PBS was not carried out before the plasma spraying. The plasma preheating of PBS increased the yield rate of the spray process and facilitated the decomposition of acetaldehyde by A-TiO 2 coatings without HAp. HAp addition improved photocatalytic sterilization when plasma preheating of the PBS was performed

  3. Synthesis and carbonization chemistry of a phosphorous-nitrogen based intumescent flame retardant

    Energy Technology Data Exchange (ETDEWEB)

    Ma, Haiyun, E-mail: mahaiyun@gmail.com [College of Chemistry and Environmental Science, HeBei University, Baoding, Hebei Province 071002 (China); Fang, Zhengping [MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Institute of Polymer Composites, Zhejiang University, Hangzhou 310027 (China); Laboratory of Polymer Materials and Engineering, Ningbo Institute of Technology, Zhejiang University, Ningbo 315100 (China)

    2012-09-10

    Graphical abstract: The carbonization chemistry and mechanism of a novel synthesized intumescent flame retardant. The final chars showed a complex P-O-Ph and aromatic/graphitic structure containing architecture. Highlights: Black-Right-Pointing-Pointer The IFR synthesized is polymeric and has high molecular weight. Black-Right-Pointing-Pointer The IFR has a higher thermal stability than most of the commercial IFRs. Black-Right-Pointing-Pointer The final chars of IFR showed a complex P-O-Ph and aromatic/graphitic structure. - Abstract: In this work, a polymeric phosphorous-nitrogen containing intumescent flame retardant, named poly(diaminodiphenyl methane spirocyclic pentaerythritol bisphosphonate) (PDSPB), was synthesized. The carbonization chemistry was investigated. FTIR and {sup 1}H NMR were used to confirm the chemical structure of PDSPB. Thermogravimetric analysis (TGA), scanning electron microscopy (SEM), transmission electron microscopy (TEM), in situ FTIR and energy dispersive X-ray (EDX) were used to investigate and monitor the chemical structural changes during thermal degradation. PDSPB demonstrated a three-step degradation behavior. PDSPB oligomers continuously polymerized and generated a higher macromolecular weight during the first step (200-250 Degree-Sign C). The phosphate ester bonds were broken down and phosphoric acid was released which dehydrated the carbon source to form chars during the second step (280-320 Degree-Sign C). The residues will be further degraded and form final chars during the final weight loss step (400-450 Degree-Sign C). The final chars showed a complex P-O-Ph and aromatic/graphitic structure containing architecture.

  4. Synthesis of micro- and nanodiamonds by the method of oxy- acetylene combustion flame

    International Nuclear Information System (INIS)

    Sabitov, S; Medyanova, B; Partizan, G; Koshanova, A; Mansurova, M; Lesbayev, B; Mansurov, B; Merkibayev, Ye

    2016-01-01

    This work presents the results of experiments on synthesis of micro- and nanodiamonds by the method of oxy-acetylene torch on the surface of pre-deposited copper thin films. The influence of the thickness of the buffer copper film and the concentration ratio of oxygen and acetylene on the structure formation of the deposited samples was investigated during performed experiments. Studies by Raman scattering and scanning electron microscopy showed that the synthesis of micro- and nano-diamonds occurs under certain experimental conditions. (paper)

  5. Modelling of diesel spray flame under engine-like conditions using an accelerated eulerian stochastic fields method: A convergence study of the number of stochastic fields

    OpenAIRE

    Pang, Kar Mun; Jangi, Mehdi; Bai, X.-S.; Schramm, Jesper; Walther, Jens Honore

    2016-01-01

    The use of transported Probability Density Function(PDF) methods allows a single model to compute the autoignition, premixed mode and diffusion flame of diesel combustion under engine-like conditions [1,2]. The Lagrangian particle based transported PDF models have been validated across a wide range of conditions [2,3]. Alternatively, the transported PDF model can also be formulated in the Eulerian framework[4]. The Eulerian PDF is commonly known as the Eulerian Stochastic Fields (ESF) model. ...

  6. Flame synthesis of carbon nano-onions enhanced by acoustic modulation

    Energy Technology Data Exchange (ETDEWEB)

    Chung, De-Hua; Lin, Ta-Hui [Department of Mechanical Engineering, National Cheng Kung University, Tainan 70101, Taiwan (China); Hou, Shuhn-Shyurng, E-mail: sshou@mail.ksu.edu.tw [Center for Micro/Nano Science and Technology, National Cheng Kung University, Tainan 70101, Taiwan (China)

    2010-10-29

    Ethylene jet diffusion flames modulated by acoustic excitation in an atmospheric environment were used to synthesize carbon nano-onions (CNOs) on a catalytic nickel substrate. The formation of CNOs was significantly enhanced by acoustic excitation at frequencies near either the natural flickering frequency or the acoustically resonant frequency. The rate of yield of CNOs was high at 10 and 20 Hz (near the natural flickering frequency) for a sampling position z = 5 mm above the burner exit where the gas temperature was about 450-520 deg. C, or at 10, 20 and 30 Hz for z = 10 mm with the gas temperature ranging from 420 to 500 deg. C. Additionally, for both z = 5 and 10 mm, a quantity of CNOs can be obtained at 60-70 Hz, near the acoustically resonant frequency, where the gas temperature was between 620 and 720 deg. C. Almost no CNOs were produced for the other frequencies due to low temperature or lack of carbon sources. CNOs synthesized at low frequencies had a greater diameter and a higher degree of graphitization than those at high frequencies.

  7. Synthesis of conductive semi-transparent silver films deposited by a Pneumatically-Assisted Ultrasonic Spray Pyrolysis Technique

    Energy Technology Data Exchange (ETDEWEB)

    Zaleta-Alejandre, E.; Balderas-Xicoténcatl, R. [Centro de Investigación y de Estudios Avanzados-IPN, Departamento de Física, , Apdo. Postal 14-470, Del, Gustavo A. Madero, C.P. 07000, México, D.F. (Mexico); Arrieta, M.L. Pérez [Universidad Autónoma de Zacatecas, Unidad Académica de Física, Calzada Solidaridad esq. Paseo, La Bufa s/n, C.P. 98060, Zacatecas, México (Mexico); Meza-Rocha, A.N.; Rivera-Álvarez, Z. [Centro de Investigación y de Estudios Avanzados-IPN, Departamento de Física, , Apdo. Postal 14-470, Del, Gustavo A. Madero, C.P. 07000, México, D.F. (Mexico); Falcony, C., E-mail: cfalcony@fis.cinvestav.mx [Centro de Investigación y de Estudios Avanzados-IPN, Departamento de Física, , Apdo. Postal 14-470, Del, Gustavo A. Madero, C.P. 07000, México, D.F. (Mexico)

    2013-10-01

    Highlights: • We deposited metallic silver films without post-deposition annealing. • The spray pyrolysis technique is of low cost and scalable for industrial applications. • We obtained deposition rate of 60 nm min{sup −1} at 300 °C. • The average resistivity was 1E−7 Ω m. • Semi-transparent silver films were obtained at 350 °C and deposition time of 45 s. -- Abstract: The synthesis and characterization of nanostructured silver films deposited on corning glass by a deposition technique called Pneumatically-Assisted Ultrasonic Spray Pyrolysis are reported. Silver nitrate and triethanolamine were used as silver precursor and reducer agent, respectively. The substrate temperatures during deposition were in the range of 300–450 °C and the deposition times from 30 to 240 s. The deposited films are polycrystalline with cubic face-centered structure, and crystalline grain size less than 30 nm. Deposition rates up to 600 Å min{sup −1} were obtained at substrate temperature as low as 300 °C. The electrical, optical, and morphological properties of these films are also reported. Semi-transparent conductive silver films were obtained at 350 °C with a deposition time of 45 s.

  8. Synthesis of conductive semi-transparent silver films deposited by a Pneumatically-Assisted Ultrasonic Spray Pyrolysis Technique

    International Nuclear Information System (INIS)

    Zaleta-Alejandre, E.; Balderas-Xicoténcatl, R.; Arrieta, M.L. Pérez; Meza-Rocha, A.N.; Rivera-Álvarez, Z.; Falcony, C.

    2013-01-01

    Highlights: • We deposited metallic silver films without post-deposition annealing. • The spray pyrolysis technique is of low cost and scalable for industrial applications. • We obtained deposition rate of 60 nm min −1 at 300 °C. • The average resistivity was 1E−7 Ω m. • Semi-transparent silver films were obtained at 350 °C and deposition time of 45 s. -- Abstract: The synthesis and characterization of nanostructured silver films deposited on corning glass by a deposition technique called Pneumatically-Assisted Ultrasonic Spray Pyrolysis are reported. Silver nitrate and triethanolamine were used as silver precursor and reducer agent, respectively. The substrate temperatures during deposition were in the range of 300–450 °C and the deposition times from 30 to 240 s. The deposited films are polycrystalline with cubic face-centered structure, and crystalline grain size less than 30 nm. Deposition rates up to 600 Å min −1 were obtained at substrate temperature as low as 300 °C. The electrical, optical, and morphological properties of these films are also reported. Semi-transparent conductive silver films were obtained at 350 °C with a deposition time of 45 s

  9. Synthesis of complex oxides with garnet structure by spray drying of an aqueous salt solution

    Science.gov (United States)

    Makeenko, A. V.; Larionova, T. V.; Klimova-Korsmik, O. G.; Starykh, R. V.; Galkin, V. V.; Tolochko, O. V.

    2017-04-01

    The use of spray drying to obtain powders of complex oxides with a garnet structure has demonstrated. The processes occurring during heating of the synthesized oxide-salt product, leading to the formation of a material with a garnet structure, have been investigated using DTA, TGA, XPS, and XRD. It has been shown that a single-phase garnet structure of system (Y x Gd(3- x))3Al5O12 can be synthesized over the entire range of compositions.

  10. Solution synthesis of mixed-metal chalcogenide nanoparticles and spray deposition of precursor films

    Science.gov (United States)

    Schulz, Douglas L.; Curtis, Calvin J.; Ginley, David S.

    2000-01-01

    A colloidal suspension comprising metal chalcogenide nanoparticles and a volatile capping agent. The colloidal suspension is made by reacting a metal salt with a chalcogenide salt in an organic solvent to precipitate a metal chalcogenide, recovering the metal chalcogenide, and admixing the metal chalcogenide with a volatile capping agent. The colloidal suspension is spray deposited onto a substrate to produce a semiconductor precursor film which is substantially free of impurities.

  11. Synthesis of Cr-doped CaTiSiO5 ceramic pigments by spray drying

    International Nuclear Information System (INIS)

    Lyubenova, T. Stoyanova; Matteucci, F.; Costa, A.L.; Dondi, M.; Ocana, M.; Carda, J.

    2009-01-01

    Cr-doped CaTiSiO 5 was synthesized by spray drying and conventional ceramic method in order to assess its potential as ceramic pigment. The evolution of the phase composition with thermal treatment was investigated by X-ray powder diffraction (XRPD) and thermal analyses (DTA-TGA-EGA). Powder morphology and particle size distribution were analyzed by scanning electron microscopy (SEM) and laser diffraction, respectively. The color efficiency of pigments was evaluated by optical spectroscopy (UV-vis-NIR) and colorimetric analysis (CIE Lab). Results proved that spray drying is an efficient procedure to prepare highly reactive pigment precursors. The spray-dried powders consist of hollow spherical particles with aggregate size in the 1-10 μm range, developing a brown coloration. Optical spectra reveal the occurrence of Cr(III) and Cr(IV), both responsible for the brown color of this pigment. The former occupies the octahedral site of titanite, in substitution of Ti(IV), while the latter is located at the tetrahedral site, where replaces Si(IV)

  12. Independent control of metal cluster and ceramic particle characteristics during one-step synthesis of Pt/TiO2

    DEFF Research Database (Denmark)

    Schulz, H.; Madler, L.; Strobel, R.

    2005-01-01

    Rapid quenching during flame spray synthesis of Pt/TiO2 (0-10 Wt% Pt) is demonstrated as a versatile method for independent control of support (TiO2) and noble metal (Pt)cluster characteristics. Titania grain size, morphology, crystal phase structure, and crystal size were analyzed by nitrogen ad...

  13. Synthesis of ZnO nanorods by spray pyrolysis for H2S gas sensor

    International Nuclear Information System (INIS)

    Shinde, S.D.; Patil, G.E.; Kajale, D.D.; Gaikwad, V.B.; Jain, G.H.

    2012-01-01

    Highlights: ► Hexagonal pillar shaped ZnO nanorods with different sizes have been successfully synthesized by spray pyrolysis technique. ► ZnO nanorods thin films showed much better sensitivity and stability than the conventional materials to H 2 S gas (100 ppm) at 50 °C. ► This ZnO thin film has potential in application of room temperature H 2 S gas sensing. - Abstract: Hexagonal pillar shaped ZnO nanorods with different sizes have been successfully synthesized by spray pyrolysis technique (SPT). The equal amount of methanol and water is used as a solvent to dissolve the AR grade Zinc acetate for precursor solution. This solution is sprayed on to the glass substrate heated at 350 °C. The films were characterized by ultra-violet spectroscopy (UV), X-ray diffraction (XRD), field emission scanning electron microscopy (FESEM) and transmission electron microscopy (TEM). The deposition of thin films results in a layer comprising well-shaped hexagonal ZnO nanorods with diameter of 90–120 nm and length of up to 200 nm. The gas sensing properties of these films have been investigated for various interfering gases such as CO 2 , CO, ethanol, NH 3 and H 2 S, etc. at operating temperature from 30° (room temperature) to 450 °C. The results indicate that the ZnO nanorods thin films showed much better sensitivity and stability than the conventional materials to H 2 S gas (100 ppm) at 50 °C. The hexagonal pillar shaped ZnO nanorods can improve the sensitivity and selectivity of the sensors.

  14. Scalable synthesis of mesoporous titania microspheres via spray-drying method.

    Science.gov (United States)

    Pal, Manas; Wan, Li; Zhu, Yongheng; Liu, Yupu; Liu, Yang; Gao, Wenjun; Li, Yuhui; Zheng, Gengfeng; Elzatahry, Ahmed A; Alghamdi, Abdulaziz; Deng, Yonghui; Zhao, Dongyuan

    2016-10-01

    Mesoporous TiO2 has several potential applications due to its unique electronic and optical properties, although its structures and morphologies are typically difficult to tune because of its uncontrollable and fast sol-gel reaction. In this study we have coupled the template-directed-sol-gel-chemistry with the low-cost, scalable, and environmentally benign aerosol (spray-drying) one-pot preparation technique for the fabrication of hierarchically mesoporous TiO2 microspheres and Fe3O4@mesoporous TiO2-x microspheres in a large scale. Parameters during the pre-hydrolysis and spray-drying treatment were varied to successfully control the bead diameter, morphology, monodispersity, surface area and pore size for improving their effectiveness for better application. Unlike to the previous aerosol synthetic approaches, where mainly quite a high temperature gradient with the strict control of spray-drying precursor concentration is implied, our strategy is lying on comparatively low drying temperature with an additional post-ultrasonication (further hydrolysis and condensation) route of the pre-calcined TiO2 samples. As-synthesized mesoporous microspheres have a size distribution from 500nm to 5μm, specific surface areas ranging from 150 to 162m(2)g(-1) and mean pore sizes of several nanometers (4-6nm). Further Fe3O4@mesoporous TiO2-x microspheres were observed to show remarkable selective phosphopeptide-enrichment activity which might have significant importance in disease diagnosis and other biomedical applications. Copyright © 2016. Published by Elsevier Inc.

  15. Synthesis and characterization of Yttria-stabilized zirconia (YSZ) thin films using spray pyrolysis technique

    International Nuclear Information System (INIS)

    Jamale, A.P.; Chourasiya, M.G.; Chavan, A.U.; Patil, S.P.; Jadhav, L.D.

    2009-01-01

    Micro solid oxide fuel cells (SOFC) are of great potential, which require components in film form. We are reporting the spray pyrolysis of 8YSZ films as solid electrolyte for micro-SOFC. The process parameters of the technique were optimized to get stoichiometric films of YSZ. The micro-structural and electrical properties of the films were studied. The elemental analysis of the film showed the desired composition in the film. The conductivity of the film was 0.05 S/cm at 500 deg C with activation energy of 0.90eV. (author)

  16. Rapid synthesis of spherical-shaped green-emitting MgGa2O4:Mn2+ phosphor via spray pyrolysis

    International Nuclear Information System (INIS)

    Choi, Sungho; Kim, Kyoungun; Moon, Young-Min; Park, Byung-Yoon; Jung, Ha-Kyun

    2010-01-01

    Simple, one-step synthesis of spherical-shaped powder phosphors with aqueous precursors via a spray pyrolysis method is reported. Green-emitting MgGa 2 O 4 :Mn 2+ phosphor with a controlled shape was successfully obtained by spraying under a reductive atmosphere (N 2 + H 2 carrier gas) without high-temperature post-heat treatment. In addition, the corresponding powder phosphors were well dispersed and showed a clean surface morphology compared to an existing cumbersome process using high-temperature post-annealing. The new method may help to prevent surface residual non-radiative defect sites. The result of highly luminescent and spherical morphology, non-aggregated powder phosphor by this procedure holds promise for a cost-effective and rapid synthesis process for conventional inorganic phosphors.

  17. Synthesis of V2O5 microspheres by spray pyrolysis as cathode material for supercapacitors

    Science.gov (United States)

    Yin, Zhendong; Xu, Jie; Ge, Yali; Jiang, Qiaoya; Zhang, Yaling; Yang, Yawei; Sun, Yuping; Hou, Siyu; Shang, Yuanyuan; Zhang, Yingjiu

    2018-03-01

    Vanadium oxide (V2O5) microspheres have attracted considerable attention in the energy field due to their unique properties such as high stability and electrochemical activity. Here, massive V2O5 microspheres with smooth surface, hollow cavity and uniform particle sizes (0.4–1.5 μm), were synthesized by a facile spray pyrolysis process. Post-treatment at predefined temperatures effectively turned the microsphere shell into stacked nanorods with widths of 100 nm and lengths of 500 nm when processed at 500 °C for 3 h under nitrogen atmosphere, with enhanced crystallinity. When applied as cathode materials for supercapacitors, the post-treated V2O5 microspheres at 500 °C exhibited improved specific capacitance and longer discharge time. This is an effective method to manufacture massive V2O5 microspheres with tailored structure and potential applications in high-performance energy storage materials.

  18. Synthesis and characterization of cobalt doped nickel oxide thin films by spray pyrolysis method

    Science.gov (United States)

    Sathisha, D.; Naik, K. Gopalakrishna

    2018-05-01

    Cobalt (Co) doped nickel oxide (NiO) thin films were deposited on glass substrates at a temperature of about 400 °C by spray pyrolysis method. The effect of Co doping concentration on structural, optical and compositional properties of NiO thin films was investigated. X-ray diffraction result shows that the deposited thin films are polycrystalline in nature. Surface morphologies of the deposited thin films were observed by FESEM and AFM. EDS spectra showed the incorporation of Co dopants in NiO thin films. Optical properties of the grown thin films were characterized by UV-visible spectroscopy. It was found that the optical band gap energy and transmittance of the films decrease with increasing Co doping concentration.

  19. Synthesis and characterization of Yttria-stabilized-zirconia by spray pyrolysis

    International Nuclear Information System (INIS)

    Melo Halmenschlager, Cibele; Vieira, Ramaugusto; Shigueaki Takimi, Antonio; Lima da Silva, Aline; De Fraga Malfatti, Celia; Perez Bergmann, Carlos

    2003-01-01

    Yttria-stabilized-zirconia (YSZ) has been object of many studies due to its great chemical stability and excellent ionic conduction in high temperature. One of the applications of YSZ films is the use as electrolyte in solid oxide fuel cells (SOFC). The great challenge of the SOFC is the development of a intermediary temperature solid oxide fuel cell (ITSOFC) to work in a temperature around 700 o C with the same efficiency of high temperature SOFC, with this aim fuel cells utilizing thin electrolyte films ha been developed. Traditional techniques of thin films deposition as Combustion Vapour Deposition (CVD) and Sputtering are very expensive, the reagents must be very pure and it is necessary to use a system of vacuum. Spray pyrolysis is a good alternative to deposit dense films with thickness between 0,1 and 10 . This technique has a lot of advantages front to classic methods of deposition because of the simplicity of the process and the equipment, low cost, and minimal waste production. In this process, when the parameters are very well controlled, it is possible to obtain oxide films with high quality. In the present work, amorphous films consisted of a layer of 8 mol% Yttria-stabilized zirconia were produced by spray pyrolysis and heat treated to obtain crystalline films. The film was prepared with zirconium acetylacetonate (Zr(C 6 H 7 O 2 ) 4 ) and yttrium chloride (YCl 3 .6H 2 O), dissolved in ethanol (C 2 H 6 O) and diethylene glycol butyl ether (C 8 H 18 O 3 ) mixed in the volume ratio of 1:1, and a disk of steel 316L was used as substrate. The amorphous film was deposited in the substrate heat until 280 o C ± 50 o C and after deposition from thermal treatment at 700 o C, the amorphous film was changed into Yttria-stabilized-zirconia crystalline film. The precursor solution was characterized for the Differential Thermal Analysis (DTA). The morphology and crystallinity of the films was investigated by scanning electron microscopy (SEM) and X-ray diffraction

  20. Characterization, Corrosion Resistance, and Cell Response of High-Velocity Flame-Sprayed HA and HA/TiO2 Coatings on 316L SS

    Science.gov (United States)

    Singh, Tejinder Pal; Singh, Harpreet; Singh, Hazoor

    2012-09-01

    The main aim of this study is to evaluate corrosion and biocompatibility behavior of thermal spray hydroxyapatite (HA) and hydroxyapatite/titania bond (HA/TiO2)-coated 316L stainless steel (316L SS). In HA/TiO2 coatings, TiO2 was used as a bond coat between HA top coat and 316L SS substrate. The coatings were characterized by x-ray diffraction and scanning electron microscopy/energy dispersive spectroscopy, and corrosion resistance determined for the uncoated substrate and the two coatings. The biological behavior was investigated by the cell culture studies using osteosarcoma cell line KHOS-NP (R-970-5). The corrosion resistance of the steel was found to increase after the deposition of the HA and HA/TiO2 bond coatings. Both HA, as well as, HA/TiO2 coatings exhibit excellent bond strength of 49 and 47 MPa, respectively. The cell culture studies showed that HA-coated 316L SS specimens appeared more biocompatible than the uncoated and HA/TiO2-coated 316L SS specimens.

  1. Burning velocity of the heterogeneous flame propagation in the SHS process expressed in explicit form

    International Nuclear Information System (INIS)

    Makino, A.; Law, C.K.

    1995-01-01

    The combustion behavior of the self-propagating high-temperature synthesis (SHS) process has been the subject of many analytical and experimental investigations. Recently, a theory based on spray combustion was proposed for the SHS flame structure and propagation. In contrast to previous studies based on the homogeneous premixed flame, this theory accounts for the premixed-mode of propagation of the bulk flame and the non-premixed reaction of the dispersed nonmetal (or higher melting-point metal) particles which supports the bulk flame. Finite-rate reaction at the particle surface and the temperature-dependent, Arrhenius nature of mass diffusion are both incorporated. The heterogeneous nature of the theory has satisfactorily captured the effects of particle size on the flame propagation speed. The final solution of Makino and Law was obtained numerically and hence presented parametrically. The authors have since then derived an approximate analytical expression for the burning velocity, which explicitly displays the functional dependence of the burning velocity on the various system parameters. This result is presented herein. Applicability of this expression is examined by comparing it with the numerical results for Ti-C, Ti-B, Zr-B, Hf-B, and Co-Ti systems. A fair degree of agreement has been shown as far as the general trend and approximate magnitude are concerned

  2. Synthesis of Nanocrystalline ZnS Thin Films via Spray Pyrolysis for Optoelectronic Devices

    Directory of Open Access Journals (Sweden)

    F. Rahman

    2013-02-01

    Full Text Available ZnS thin films were deposited on the glass substrates at a temperature of 350 °C by a low cost spray pyrolysis technique and annealed at 450 °C and 550 °C in a closed furnace. The as-deposited and annealed films were characterized by Energy Dispersive X-ray, X-ray Diffraction and UV-VIS spectrophotometer and dc conductivity by four probe van der Pauw method. The X-ray diffraction spectra of as-deposited films showed amorphous nature and after annealing at 450 °C and 550 °C the films were found polycrystalline nature with wurtzite hexagonal structure. The optical transmission spectra suggest that the fundamental absorption edge in the films is formed by the direct allowed transition. The optical band gap was decreased from 3.75 to 2.5 eV when the as-deposited films were annealed. The existing results of electrical conductivity and the activation energy reveal the semi-conducting behaviour of the samples.

  3. Synthesis of electrochromic vanadium oxide by pulsed spray pyrolysis technique and its properties

    International Nuclear Information System (INIS)

    Patil, C E; Tarwal, N L; Shinde, P S; Patil, P S; Deshmukh, H P

    2009-01-01

    A new improved pulsed spray pyrolysis technique (PSPT) was employed to deposit a vanadium oxide (V 2 O 5 ) thin film from a methanolic vanadium chloride precursor onto glass and conducting F : SnO 2 coated glass substrates. The structural, morphological, electrical, optical and spectroscopic properties of the film deposited at 573 K were studied. Infrared spectroscopy and x-ray diffraction confirmed the presence of the V 2 O 5 phase. The V 2 O 5 film (thickness ∼118 nm) is polycrystalline with a tetragonal crystal structure. Scanning electron microscopy reveals compact granular morphology consisting of ∼80-100 nm size grains. The film is transparent in the visible region (average %T ∼70%) with an optical band gap energy of 2.47 eV involving both direct and indirect optical transitions. The room temperature electrical resistivity (conductivity) of the film is 1.6 x 10 8 Ω cm (6.25 x 10 -9 S cm -1 ) with an activation energy of 0.67 eV in the temperature range 300-550 K. It exhibited cathodic electrochromism in the lithium containing electrolyte (0.5 M LiClO 4 + propylene carbonate).

  4. Synthesis and characterization of spray deposited CZTS thin films for photo-electrochemical application

    Science.gov (United States)

    Chavda, Arvind; Patel, Biren; Mukhopadhyay, Priyanka Marathey Indrajit; Ray, Abhijit

    2018-05-01

    Cu2ZnSnS4 (CZTS) is one of the most promising light absorber materials for photovoltaic and photo-electrochemical applications. We synthesized CZTS thin films on a F:SnO2 and soda lime glass substrates by very simple, cost effective and highly scalable spray pyrolysis technique. The films were post treated by rapid thermal processing route of sulfurization to enhance the stoichiometry and crystallinity of the film. The structural, morphological, optical and electrical properties of RTP sulfurized films were studied. The X-ray diffraction (XRD) pattern revealed the formation of tetragonal CZTS phase, which confirmed by Raman analysis with a major peak at 336 cm-1 without the presence of the principle vibration mode of any other secondary phases, such as Cu2SnS3, CuxS(x=1.8,2) etc. The sulfurized film exhibited increased crystallinity and better stoichiometry. The optical and electrical data reveal the direct optical band gap, bulk carrier concentration and resistivity of 1.5 eV, 2.28×1018 cm-3 and 1.21 Ω/cm2, respectively. Finally the photoactivity of CZTS thin films was tested by forming photoelectrochemical cell in 0.1M Na2S2O3 electrolyte (pH=7.72), showing a cathodic photocurrent of nearly 20 µA/cm2 at 0V RHE.

  5. Ultrasensitive NO2 Sensor Based on Ohmic Metal-Semiconductor Interfaces of Electrolytically Exfoliated Graphene/Flame-Spray-Made SnO2 Nanoparticles Composite Operating at Low Temperatures.

    Science.gov (United States)

    Tammanoon, Nantikan; Wisitsoraat, Anurat; Sriprachuabwong, Chakrit; Phokharatkul, Ditsayut; Tuantranont, Adisorn; Phanichphant, Sukon; Liewhiran, Chaikarn

    2015-11-04

    In this work, flame-spray-made undoped SnO2 nanoparticles were loaded with 0.1-5 wt % electrolytically exfoliated graphene and systematically studied for NO2 sensing at low working temperatures. Characterizations by X-ray diffraction, transmission/scanning electron microscopy, and Raman and X-ray photoelectron spectroscopy indicated that high-quality multilayer graphene sheets with low oxygen content were widely distributed within spheriodal nanoparticles having polycrystalline tetragonal SnO2 phase. The 10-20 μm thick sensing films fabricated by spin coating on Au/Al2O3 substrates were tested toward NO2 at operating temperatures ranging from 25 to 350 °C in dry air. Gas-sensing results showed that the optimal graphene loading level of 0.5 wt % provided an ultrahigh response of 26,342 toward 5 ppm of NO2 with a short response time of 13 s and good recovery stabilization at a low optimal operating temperature of 150 °C. In addition, the optimal sensor also displayed high sensor response and relatively short response time of 171 and 7 min toward 5 ppm of NO2 at room temperature (25 °C). Furthermore, the sensors displayed very high NO2 selectivity against H2S, NH3, C2H5OH, H2, and H2O. Detailed mechanisms for the drastic NO2 response enhancement by graphene were proposed on the basis of the formation of graphene-undoped SnO2 ohmic metal-semiconductor junctions and accessible interfaces of graphene-SnO2 nanoparticles. Therefore, the electrolytically exfoliated graphene-loaded FSP-made SnO2 sensor is a highly promising candidate for fast, sensitive, and selective detection of NO2 at low operating temperatures.

  6. Ion Imprinted Polymer for Preconcentration and Determination of Ultra-Trace Cadmium, Employing Flow Injection Analysis with Thermo Spray Flame Furnace Atomic Absorption Spectrometry.

    Science.gov (United States)

    do Lago, Ayla Campos; Marchioni, Camila; Mendes, Tássia Venga; Wisniewski, Célio; Fadini, Pedro Sergio; Luccas, Pedro Orival

    2016-11-01

    This work proposes a preconcentration method using an ion imprinted polymer (IIP) for determination of cadmium, in several samples, employing a mini-column filled with the polymer coupled into a flow injection analysis system with detection by thermospray flame furnace atomic absorption spectrometry (FIA-TS-FF-AAS). The polymer was synthesized via bulk using methacrylic acid and vinylimidazole as a functional monomer. For the FIA system initial assessment, the variables: pH, eluent concentration and buffer concentration were studied, employing a 23 full factorial design. To obtain the optimum values for each significant variable, a Doehlert matrix was employed. After the optimization conditions as: pH 5.8, eluent (HNO3) concentration of 0.48 mol L -1 and buffer concentration of 0.01 mol L -1 , were adopted. The proposed method showed a linear response in the range of 0.081-10.0 μg L -1 , limits detection and quantification of 0.024 and 0.081 μg L -1 , respectively; preconcentration factor of 165, consumptive index of 0.06 mL, concentration efficiency 132 min -1 , and frequency of readings equal to 26 readings h -1 The accuracy was checked by analysis of certified reference materials for trace metals and recovery tests. The obtained results were in agreement with 95% confidence level (t-test). The method was adequate to apply in samples of: jewelry (earrings) (2.38 ± 0.28 μg kg -1 ), black tea (1.09 ± 0.15 μg kg -1 ), green tea (3.85 ± 0.13 μg kg -1 ), cigarette tobacco (38.27 ± 0.22 μg kg -1 ), and hair (0.35 ± 0.02 μg kg -1 ). © The Author(s) 2016.

  7. Synthesis and characterization of Fe doped cadmium selenide thin films by spray pyrolysis

    Energy Technology Data Exchange (ETDEWEB)

    Yadav, Abhijit A., E-mail: aay_physics@yahoo.co.in [Thin Film Physics Laboratory, Department of Physics, Electronics and Photonics, Rajarshi Shahu Mahavidyalaya, Latur 413 512, Maharashtra (India)

    2012-12-05

    Highlights: Black-Right-Pointing-Pointer Simple and inexpensive method to dope trivalent Fe in CdSe thin films. Black-Right-Pointing-Pointer Fe doped CdSe thin films are highly photosensitive. Black-Right-Pointing-Pointer AFM analysis shows uniform deposition of film over the entire substrate surface. Black-Right-Pointing-Pointer The band gap energy decreases from 1.74 to 1.65 eV with Fe doping. Black-Right-Pointing-Pointer Film resistivity decreases to 6.76 Multiplication-Sign 10{sup 4} {Omega}-cm with Fe doping in CdSe thin films. - Abstract: Undoped and Fe doped CdSe thin films have been deposited onto the amorphous and fluorine doped tin oxide coated glass substrates by spray pyrolysis. The Fe doping concentration has been optimized by photoelectrochemical (PEC) characterization technique. The structural, surface morphological, compositional, optical and electrical properties of undoped and Fe doped CdSe thin films have been studied. X-ray diffraction study reveals that the as deposited CdSe films possess hexagonal crystal structure with preferential orientation along (1 0 0) plane. AFM analysis shows uniform deposition of the film over the entire substrate surface with minimum surface roughness of 7.90 nm. Direct allowed type of transition with band gap decreasing from 1.74 to 1.65 eV with Fe doping has been observed. The activation energy of the films has been found to be in the range of 0.14-0.19 eV at low temperature and 0.27-0.44 eV at high temperature. Semi-conducting behavior has been observed from resistivity measurements. The thermoelectric power measurements reveal that the films are of n type.

  8. Synthesis of mullite-based coatings from alumina and zircon powder mixtures by plasma spraying and laser remelting

    International Nuclear Information System (INIS)

    Hazra, S.; Das, J.; Bandyopadhyay, P.P.

    2015-01-01

    A mechanical mixture of alumina and pulverized zircon sand in 3:2 M ratio has been plasma sprayed to obtain mullite coating. Thereafter, the top layer of the coating has been remelted using laser. The presence of a mullite phase in the as-sprayed and laser remelted coatings has been confirmed qualitatively using X-ray diffraction. Both as-sprayed and laser remelted coatings have been characterized for their microstructure, hardness and porosity. The ultrafine grain structure of the coating produced by rapid quenching has been analyzed using transmission electron microscope. Presence of a mullite phase in the coatings has also been confirmed using small angle electron diffraction. Laser remelting has resulted in an appreciable reduction in porosity and increase in hardness in the coatings. - Highlights: • Mullite has been produced by plasma spraying of alumina–zircon powder mixture. • As sprayed coating shows good integrity. • Laser remelting reduced porosity and increased coating hardness

  9. Synthesis of mullite-based coatings from alumina and zircon powder mixtures by plasma spraying and laser remelting

    Energy Technology Data Exchange (ETDEWEB)

    Hazra, S. [Integrated Test Range, Chandipur, Balasore, Odisha 756025 (India); Das, J. [Department of Metallurgical and Materials Engineering, IIT Kharagpur, 721302 (India); Bandyopadhyay, P.P., E-mail: ppb@mech.iitkgp.ernet.in [Department of Mechanical Engineering, IIT Kharagpur, 721302 (India)

    2015-03-15

    A mechanical mixture of alumina and pulverized zircon sand in 3:2 M ratio has been plasma sprayed to obtain mullite coating. Thereafter, the top layer of the coating has been remelted using laser. The presence of a mullite phase in the as-sprayed and laser remelted coatings has been confirmed qualitatively using X-ray diffraction. Both as-sprayed and laser remelted coatings have been characterized for their microstructure, hardness and porosity. The ultrafine grain structure of the coating produced by rapid quenching has been analyzed using transmission electron microscope. Presence of a mullite phase in the coatings has also been confirmed using small angle electron diffraction. Laser remelting has resulted in an appreciable reduction in porosity and increase in hardness in the coatings. - Highlights: • Mullite has been produced by plasma spraying of alumina–zircon powder mixture. • As sprayed coating shows good integrity. • Laser remelting reduced porosity and increased coating hardness.

  10. SPRAY CASTING

    OpenAIRE

    SALAMCI, Elmas

    2010-01-01

    ABSTRACT This paper is designed to provide a basic review of spray casting. A brief overview of the historical development of spray  casting and the description of plant and equipment have been given. Following metallurgical characteristics of spray formed alloys, process parameters and solidification mechanism of spray deposition have been discussed in detail. Finally, microstructure and mechanical properties of the selected spray cast Al-Zn-Mg-Cu alloys have been presented and comp...

  11. Nucleation and growth mechanism for flame synthesis of MoO2 hollow microchannels with nanometer wall thickness.

    Science.gov (United States)

    Merchan-Merchan, Wilson; Saveliev, Alexei V; Taylor, Aaron M

    2009-12-01

    The growth and morphological evolution of molybdenum-oxide microstructures formed in the high temperature environment of a counter-flow oxy-fuel flame using molybdenum probes is studied. Experiments conducted using various probe retention times show the sequence of the morphological changes. The morphological row begins with micron size objects exhibiting polygonal cubic shape, develops into elongated channels, changes to large structures with leaf-like shape, and ends in dendritic structures. Time of probe-flame interaction is found to be a governing parameter controlling the wide variety of morphological patterns; a molecular level growth mechanism is attributed to their development. This study reveals that the structures are grown in several consecutive stages: material "evaporation and transportation", "transformation", "nucleation", "initial growth", "intermediate growth", and "final growth". XRD analysis shows that the chemical compositions of all structures correspond to MoO(2).

  12. New Flame-Retardant Poly(ester-imide)s Containing Phosphine Oxide Moieties in the Main Chain: Synthesis and Properties

    OpenAIRE

    FAGHIHI, Khalil

    2014-01-01

    Six new flame-retardant poly(ester-imide)s (9a-f) with high inherent viscosity and containing phosphine oxide moieties in the main chain were synthesized from the polycondensation reaction of N,N-(3,3-diphenylphenyl phosphine oxide) bistrimellitimide diacid chloride (7) with 6 aromatic diols (8a-f) by 2 different methods:--solution and microwave-assisted polycondensation. The results showed that compared to solution polycondensation, the microwave-assisted polycondensation reaction us...

  13. Synthesis of nanoparticles in a flame aerosol reactor with independent and strict control of their size, crystal phase and morphology

    International Nuclear Information System (INIS)

    Jiang Jingkun; Chen, D-R; Biswas, Pratim

    2007-01-01

    A flame aerosol reactor (FLAR) was developed to synthesize nanoparticles with desired properties (crystal phase and size) that could be independently controlled. The methodology was demonstrated for TiO 2 nanoparticles, and this is the first time that large sets of samples with the same size but different crystal phases (six different ratios of anatase to rutile in this work) were synthesized. The degree of TiO 2 nanoparticle agglomeration was determined by comparing the primary particle size distribution measured by scanning electron microscopy (SEM) to the mobility-based particle size distribution measured by online scanning mobility particle spectrometry (SMPS). By controlling the flame aerosol reactor conditions, both spherical unagglomerated particles and highly agglomerated particles were produced. To produce monodisperse nanoparticles, a high throughput multi-stage differential mobility analyser (MDMA) was used in series with the flame aerosol reactor. Nearly monodisperse nanoparticles (geometric standard deviation less than 1.05) could be collected in sufficient mass quantities (of the order of 10 mg) in reasonable time (1 h) that could be used in other studies such as determination of functionality or biological effects as a function of size

  14. Synthesis of nanoparticles in a flame aerosol reactor with independent and strict control of their size, crystal phase and morphology

    Energy Technology Data Exchange (ETDEWEB)

    Jiang Jingkun; Chen, D-R; Biswas, Pratim [Aerosol and Air Quality Research Laboratory, Department of Energy, Environmental and Chemical Engineering, Washington University in St Louis, Campus Box 1180, St Louis, MO 63130 (United States)

    2007-07-18

    A flame aerosol reactor (FLAR) was developed to synthesize nanoparticles with desired properties (crystal phase and size) that could be independently controlled. The methodology was demonstrated for TiO{sub 2} nanoparticles, and this is the first time that large sets of samples with the same size but different crystal phases (six different ratios of anatase to rutile in this work) were synthesized. The degree of TiO{sub 2} nanoparticle agglomeration was determined by comparing the primary particle size distribution measured by scanning electron microscopy (SEM) to the mobility-based particle size distribution measured by online scanning mobility particle spectrometry (SMPS). By controlling the flame aerosol reactor conditions, both spherical unagglomerated particles and highly agglomerated particles were produced. To produce monodisperse nanoparticles, a high throughput multi-stage differential mobility analyser (MDMA) was used in series with the flame aerosol reactor. Nearly monodisperse nanoparticles (geometric standard deviation less than 1.05) could be collected in sufficient mass quantities (of the order of 10 mg) in reasonable time (1 h) that could be used in other studies such as determination of functionality or biological effects as a function of size.

  15. Flame Length

    Data.gov (United States)

    Earth Data Analysis Center, University of New Mexico — Flame length was modeled using FlamMap, an interagency fire behavior mapping and analysis program that computes potential fire behavior characteristics. The tool...

  16. Fabrication of Water Jet Resistant and Thermally Stable Superhydrophobic Surfaces by Spray Coating of Candle Soot Dispersion.

    Science.gov (United States)

    Qahtan, Talal F; Gondal, Mohammed A; Alade, Ibrahim O; Dastageer, Mohammed A

    2017-08-08

    A facile synthesis method for highly stable carbon nanoparticle (CNP) dispersion in acetone by incomplete combustion of paraffin candle flame is presented. The synthesized CNP dispersion is the mixture of graphitic and amorphous carbon nanoparticles of the size range of 20-50 nm and manifested the mesoporosity with an average pore size of 7 nm and a BET surface area of 366 m 2 g -1 . As an application of this material, the carbon nanoparticle dispersion was spray coated (spray-based coating) on a glass surface to fabricate superhydrophobic (water contact angle > 150° and sliding angle fabricated from direct candle flame soot deposition (candle-based coating). This study proved that water jet resistant and thermally stable superhydrophobic surfaces can be easily fabricated by simple spray coating of CNP dispersion gathered from incomplete combustion of paraffin candle flame and this technique can be used for different applications with the potential for the large scale fabrication.

  17. Synthesis and characterization of in situ TiC–TiB2 composite coatings by reactive plasma spraying on a magnesium alloy

    International Nuclear Information System (INIS)

    Zou Binglin; Tao Shunyan; Huang Wenzhi; Khan, Zuhair S.; Fan Xizhi; Gu Lijian; Wang Ying; Xu Jiaying; Cai Xiaolong; Ma Hongmei; Cao Xueqiang

    2013-01-01

    Highlights: ► TiC–TiB 2 composites coatings were produced on Mg alloy by reactive plasma spraying. ► Phase composition, microstructure and wear resistance of the coatings were studied. ► The resultant product in the coatings was composed of TiC and TiB 2 . ► The produced coatings displayed porous and dense microstructures. ► The synthesized coatings exhibited good wear resistance for Mg alloy substrate. - Abstract: TiC–TiB 2 composite coatings were successfully synthesized using the technique of reactive plasma spraying (RPS) on a magnesium alloy. Phase composition, microstructure and wear resistance of the coatings were characterized by using X-ray diffraction, scanning electron microscopy and pin-on-disk wear test, respectively. The results showed that the resultant product in the RPS coatings was composed of TiC and TiB 2 . Depending on the ignition of self-propagating high-temperature synthesis reaction in the agglomerate particles, the RPS coatings displayed porous and dense microstructures. The porosity of the RPS coatings, to some extent, decreased when the feed powders were plasma sprayed with Ni powders. The RPS coatings provided good wear resistance for the substrate under various loads. For high loads (e.g., ≥15 N), the wear resistance could be significantly improved by the proper addition of Ni into the RPS coatings.

  18. Automatic targeting of plasma spray gun

    International Nuclear Information System (INIS)

    Abbatiello, L.A.; Neal, R.E.

    1978-01-01

    A means for monitoring the material portion in the flame of a plasma spray gun during spraying operations is described. A collimated detector, sensitive to certain wavelengths of light emission, is used to locate the centroid of the material with each pass of the gun. The response from the detector is then relayed to the gun controller to be used to automatically realign the gun

  19. Automatic targeting of plasma spray gun

    Science.gov (United States)

    Abbatiello, Leonard A.; Neal, Richard E.

    1978-01-01

    A means for monitoring the material portion in the flame of a plasma spray gun during spraying operations is provided. A collimated detector, sensitive to certain wavelengths of light emission, is used to locate the centroid of the material with each pass of the gun. The response from the detector is then relayed to the gun controller to be used to automatically realign the gun.

  20. Some aspects of numerical analysis of turbulent gaseous and spray combustion

    International Nuclear Information System (INIS)

    Takagi, T.

    1991-01-01

    In this paper numerical calculations and analysis on turbulent non-premixed gaseous and spray combustion are reviewed. Attentions were paid to the turbulent flow and combustion modeling applicable to predicting the flow, mixing and combustion of gaseous fuels and sprays. Some of the computed results of turbulent gaseous non-premixed (diffusion) flames with and without swirl and transient spray combustion were compared with experimental ones to understand the processes in the flame and to assure how the computations predict the experiments

  1. Flames in vortices & tulip-flame inversion

    Science.gov (United States)

    Dold, J. W.

    This article summarises two areas of research regarding the propagation of flames in flows which involve significant fluid-dynamical motion [1]-[3]. The major difference between the two is that in the first study the fluid motion is present before the arrival of any flame and remains unaffected by the flame [1, 2] while, in the second study it is the flame that is responsible for all of the fluid dynamical effects [3]. It is currently very difficult to study flame-motion in which the medium is both highly disturbed before the arrival of a flame and is further influenced by the passage of the flame.

  2. Solution synthesis of telluride-based nano-barbell structures coated with PEDOT:PSS for spray-printed thermoelectric generators

    Science.gov (United States)

    Bae, Eun Jin; Kang, Young Hun; Jang, Kwang-Suk; Lee, Changjin; Cho, Song Yun

    2016-05-01

    Solution-processable telluride-based heterostructures coated with poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) (Te-Bi2Te3/PEDOT:PSS) were synthesized through a solution-phase reaction at low temperatures. The water-based synthesis yielded PEDOT:PSS-coated Te-Bi2Te3 nano-barbell structures with a high Seebeck coefficient that can be stably dispersed in water. These hybrid solutions were deposited onto a substrate by the spray-printing method to prepare thermoelectric generators. The thermoelectric properties of the Te-Bi2Te3/PEDOT:PSS hybrid films were significantly enhanced by a simple acid treatment due to the increased electrical conductivity, and the power factor of those materials can be effectively tuned over a wide range depending on the acid concentration of the treatment. The power factors of the synthesized Te-Bi2Te3/PEDOT:PSS hybrids were optimized to 60.05 μW m-1 K-2 with a Seebeck coefficient of 93.63 μV K-1 and an electrical conductivity of 69.99 S cm-1. The flexible thermoelectric generator fabricated by spray-printing Te-Bi2Te3/PEDOT:PSS hybrid solutions showed an open-circuit voltage of 1.54 mV with six legs at ΔT = 10 °C. This approach presents the potential for realizing printing-processable hybrid thermoelectric materials for application in flexible thermoelectric generators.Solution-processable telluride-based heterostructures coated with poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) (Te-Bi2Te3/PEDOT:PSS) were synthesized through a solution-phase reaction at low temperatures. The water-based synthesis yielded PEDOT:PSS-coated Te-Bi2Te3 nano-barbell structures with a high Seebeck coefficient that can be stably dispersed in water. These hybrid solutions were deposited onto a substrate by the spray-printing method to prepare thermoelectric generators. The thermoelectric properties of the Te-Bi2Te3/PEDOT:PSS hybrid films were significantly enhanced by a simple acid treatment due to the increased electrical conductivity, and

  3. One-Pot Synthesis of CoSex -rGO Composite Powders by Spray Pyrolysis and Their Application as Anode Material for Sodium-Ion Batteries.

    Science.gov (United States)

    Park, Gi Dae; Kang, Yun Chan

    2016-03-14

    A simple one-pot synthesis of metal selenide/reduced graphene oxide (rGO) composite powders for application as anode materials in sodium-ion batteries was developed. The detailed mechanism of formation of the CoSe(x)-rGO composite powders that were selected as the first target material in the spray pyrolysis process was studied. The crumple-structured CoSe(x)-rGO composite powders prepared by spray pyrolysis at 800 °C had a crystal structure consisting mainly of Co0.85 Se with a minor phase of CoSe2. The bare CoSe(x) powders prepared for comparison had a spherical shape and hollow structure. The discharge capacities of the CoSe(x)-rGO composite and bare CoSe(x) powders in the 50th cycle at a constant current density of 0.3 A g(-1) were 420 and 215 mA h g(-1), respectively, and their capacity retentions measured from the second cycle were 80 and 46%, respectively. The high structural stability of the CoSe(x)-rGO composite powders for repeated sodium-ion charge and discharge processes resulted in superior sodium-ion storage properties compared to those of the bare CoSe(x) powders. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Synthesis of free-standing carbon nanohybrid by directly growing carbon nanotubes on air-sprayed graphene oxide paper and its application in supercapacitor

    International Nuclear Information System (INIS)

    Wei, Li; Jiang, Wenchao; Yuan, Yang; Goh, Kunli; Yu, Dingshan; Wang, Liang; Chen, Yuan

    2015-01-01

    We report the synthesis of a free-standing two dimensional carbon nanotube (CNT)-reduced graphene oxide (rGO) hybrid by directly growing CNTs on air-sprayed GO paper. As a result of the good integration between CNTs and thermally reduced GO film during chemical vapor deposition, excellent electrical conductivity (2.6×10 4 S/m), mechanical flexibility (electrical resistance only increases 1.1% after bent to 90° for 500 times) and a relatively large surface area (335.3 m 2 /g) are achieved. Two-electrode supercapacitor assembled using the CNT–rGO hybrids in ionic liquid electrolyte (1-ethyl-3-methylimidazolium tetrafluoroborate) shows excellent stability upon 500 bending cycles with the gravimetric energy density measuring 23.7 Wh/kg and a power density of 2.0 kW/kg. Furthermore, it shows an impedance phase angle of −64.4° at a frequency of 120 Hz, suggesting good potentials for 120 Hz alternating current line filtering applications. - Graphical abstract: Flexible and highly conductive carbon nanotube-reduced graphene oxide nanohybrid. - Highlights: • Direct growth of carbon nanotubes by chemical vapor deposition on air-sprayed graphene oxide paper. • Two-dimensional carbon nanohybrid with excellent conductivity and mechanical flexibility. • Supercapacitor with excellent performance stability upon mechanical deformation for flexible electronics applications. • Supercapacitor with high impedance phase angle for 120 Hz alternating current line filtering applications

  5. Visualization research on spray atomization, evaporation and combustion processes of ethanol–diesel blend under LTC conditions

    International Nuclear Information System (INIS)

    Huang, Sheng; Deng, Peng; Huang, Ronghua; Wang, Zhaowen; Ma, Yinjie; Dai, Hui

    2015-01-01

    Highlights: • Spray combustion of E20 diesel in LTC condition shows a U-shape flame structure. • The chasing behavior of fuel spray exists near the spray axis. • Fuel ignition doesn’t initiate at the spray tip but in peripheral regions behind it. • An improper chamber structure may lead to a long post-combustion duration. - Abstract: Utilization of ethanol in diesel engines has been widely studied by means of engine experiments and emission detection. However, pertinent studies on the spray combustion process of ethanol–diesel blends are scarce. In order to verify the effect of ethanol in modern diesel engines, an experiment is conducted to visualize the spray combustion process of ethanol–diesel blend under LTC conditions. Stages including atomization, evaporation and combustion, are investigated individually to realize synergistic analysis. Meanwhile, considering the long time scale of combustion after fuel injection finishes, characteristics during and after injection period are both targeted in this paper. Moreover, measurement of macroscopic characteristics, such as spray tip penetration, spray spreading cone angle and flame lift off length, provides a quantitative profile of the spray structure. Results show that, evaporation, different from atomization, has little influence on spray penetration, but promotes the spray spreading angle and spray projected area. So does combustion, which enlarges the spray projected area further. Ignition takes place on the periphery behind the spray tip, then quickly extends to the whole head of the spray and forms a U-shape diffusion structure. After the injection period, the residual spray tail develops into wavelike structures due to absence of subsequent entrainment force. Also, the penetration speed falls greatly to an extent much slower than flame propagation, which frees the flame from the lift-off effect. Subsequently, the flame propagates upstream towards the nozzle orifice. After consumed all fuel in

  6. Influence of the process parameters on the spray pyrolysis technique, on the synthesis of gadolinium doped-ceria thin film

    International Nuclear Information System (INIS)

    Halmenschlager, C.M.; Neagu, R.; Rose, L.; Malfatti, C.F.; Bergmann, C.P.

    2013-01-01

    Graphical abstract: Gas-tight CGO made by spray pyrolysis suitable to be used as SOFC electrolyte. Display Omitted Highlights: ► Dense and crystalline CGO films deposited by spray pyrolysis on various substrates. ► Solvent did not have a strong influence on the film microstructure, defect concentration or thickness. ► The substrate did not have a strong influence on the film microstructure, defect concentration or thickness. ► Films with at least 2.5 μm of thickness presented high impermeability. ► The films obtained are suitable to use as a SOFC electrolyte. -- Abstract: This work presents the results of a process of optimization applied to gadolinia-doped ceria (Ce 0.8 Gd 0.2 O 1.9−x , or CGO) thin films, deposited by spray pyrolysis (SP). Spray pyrolysis is a high thermal deposition method that combines material deposition and heat treatment. This combination is advantageous since the post-deposition heat treatment step is not necessary. However, stresses are solidified in the coating during the deposition, which may lead to the initiation of a crack in the coating. The aim of this work was to achieve thin, dense, and continuous CGO coatings, which may be used as gas separation membranes and as a solid state electrochemical interfaces. Dense, flat, low-defect substrates such as silica slides, silicon mono crystal wafers, and porous substrates were used as substrates in this work. Cerium ammonium nitrate and gadolinium acetylacetonate were dissolved in ethanol and butyl carbitol to form a precursor solution that was sprayed on the heated substrates. Process parameters such as solvent composition, deposition rate and different heating regimes were analyzed. The microstructure was analyzed by secondary electron microscopy (SEM) and was found that thin, dense, and defect-free films could be produced on dense and porous substrates. The results obtained show that it is possible to obtain a CGO dense film deposited by spray pyrolysis. X-ray diffraction

  7. Spray cooling

    International Nuclear Information System (INIS)

    Rollin, Philippe.

    1975-01-01

    Spray cooling - using water spraying in air - is surveyed as a possible system for make-up (peak clipping in open circuit) or major cooling (in closed circuit) of the cooling water of the condensers in thermal power plants. Indications are given on the experiments made in France and the systems recently developed in USA, questions relating to performance, cost and environmental effects of spray devices are then dealt with [fr

  8. Rapid in situ synthesis of spherical microflower Pt/C catalyst via spray-drying for high performance fuel cell application

    Energy Technology Data Exchange (ETDEWEB)

    Balgis, R.; Ogi, T.; Okuyama, K. [Department of Chemical Engineering, Graduate School of Engineering, Hiroshima University, Higashi Hiroshima, Hiroshima (Japan); Anilkumar, G.M.; Sago, S. [Research and Development Centre, Noritake Co., Ltd., Higashiyama, Miyoshi, Aichi (Japan)

    2012-08-15

    A facile route for the rapid in situ synthesis of platinum nanoparticles on spherical microflower carbon has been developed. An aqueous precursor slurry containing carbon black, polystyrene latex (PSL), polyvinyl alcohol, and platinum salt was spray-dried, followed by calcination to simultaneously reduce platinum salt and to decompose PSL particles. Prepared Pt/C catalyst showed high-performance electrocatalytic activity with excellent durability. The mass activity and specific activity values were 132.26 mA mg{sup -1} Pt and 207.62 {mu}A cm{sup -2} Pt, respectively. This work presents a future direction for the production of high-performance Pt/C catalyst in an industrial scale. (Copyright copyright 2012 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  9. Synthesis and electrochemical characteristics of spinel LiMn2O4 via a precipitation spray-drying process

    International Nuclear Information System (INIS)

    Wu, H.M.; Tu, J.P.; Yuan, Y.F.; Li, Y.; Zhao, X.B.; Cao, G.S.

    2005-01-01

    Spinel LiMn 2 O 4 has been successfully synthesized using a precipitation spray-drying process. After the precursor was annealed at 750 deg. C for 10 h, the synthesized material was well-crystallized spinel particle, and exhibited uniform particle size distribution. From cyclic voltammetry results, there is an anomalous redox peaks (3.75/3.26 V). In the charge/discharge potential (versus Li) ranging from 3.2 to 4.5 V, it delivered a high initial discharge capacity of 123 mAh/g at a discharge rate of 60 μA/cm 2 (1/4 C rate). At a high discharge rate of 2.4 mA/cm 2 (10 C rate), the obtainable reversible capacity was 79 mAh/g. The simple procedure of precipitation spray-drying process is time and energy saving, and thus is promising for commercial application

  10. Synthesis and property of powders of oxide superconductor by the spray drying and the mist pyrolysis method

    Energy Technology Data Exchange (ETDEWEB)

    Awano, M.; Takagi, H.; Torii, Y.; Tsuzuki, A.; Murayama, N.; Ishii, E. (Government Industrial Research Inst., Nagoya (Japan)); Sudo, E. (Tokyo Kokyu Rozai Co. Ltd., Fukuoka (Japan))

    1989-01-01

    Powders of oxide superconductor (Ba-Y-Cu-O and Bi-Pb-Sr-Ca-Cu-O systems) were synthesized by the spray drying and the mist pyrolysis methods. Fine Ba{sub 2}YCu{sub 3}O{sub 7-y} particles with diameter of 0.1-0.3 {mu}m were produced by the spray drying of the oxalates coprecipitated slurry and following calcination at 800deg C. By the pyrolyzing of nitrates mist containing Ba{sup 2+},Y{sup 3+},Cu{sup 2+} ions in the reaction zone heated at 950-980deg C fine particles were also produced. For Bi-Pb-Sr-Ca-Cu-O system, above mentioned methods were effective to produce fine homogeneous particles of compound at intermediate stage to high Tc phase. Sintered body made from these fine homogeneous powders were densified to about 95-98% of theoretical densitiy. (orig.).

  11. High-Performance Molybdenum Coating by Wire–HVOF Thermal Spray Process

    Science.gov (United States)

    Tailor, Satish; Modi, Ankur; Modi, S. C.

    2018-04-01

    Coating deposition on many industrial components with good microstructural, mechanical properties, and better wear resistance is always a challenge for the thermal spray community. A number of thermal spray methods are used to develop such promising coatings for many industrial applications, viz. arc spray, flame spray, plasma, and HVOF. All these processes have their own limitations to achieve porous free, very dense, high-performance wear-resistant coatings. In this work, an attempt has been made to overcome this limitation. Molybdenum coatings were deposited on low-carbon steel substrates using wire-high-velocity oxy-fuel (W-HVOF; WH) thermal spray system (trade name HIJET 9610®). For a comparison, Mo coatings were also fabricated by arc spray, flame spray, plasma spray, and powder-HVOF processes. As-sprayed coatings were analyzed using x-ray diffraction, scanning electron microscopy for phase, and microstructural analysis, respectively. Coating microhardness, surface roughness, and porosity were also measured. Adhesion strength and wear tests were conducted to determine the mechanical and wear properties of the as-sprayed coatings. Results show that the coatings deposited by W-HVOF have better performance in terms of microstructural, mechanical, and wear resistance properties, in comparison with available thermal spray process (flame spray and plasma spray).

  12. Synthesis of ZnO nanorods by spray pyrolysis for H{sub 2}S gas sensor

    Energy Technology Data Exchange (ETDEWEB)

    Shinde, S.D.; Patil, G.E. [Materials Research Lab., K.T.H.M. College, Nashik 422 005 (India); Kajale, D.D. [Materials Research Lab., Arts, Commerce and Science College, Nandgaon 423 106 (India); Gaikwad, V.B. [Materials Research Lab., K.T.H.M. College, Nashik 422 005 (India); Jain, G.H., E-mail: gotanjain@rediffmail.com [Materials Research Lab., K.T.H.M. College, Nashik 422 005 (India)

    2012-07-05

    Highlights: Black-Right-Pointing-Pointer Hexagonal pillar shaped ZnO nanorods with different sizes have been successfully synthesized by spray pyrolysis technique. Black-Right-Pointing-Pointer ZnO nanorods thin films showed much better sensitivity and stability than the conventional materials to H{sub 2}S gas (100 ppm) at 50 Degree-Sign C. Black-Right-Pointing-Pointer This ZnO thin film has potential in application of room temperature H{sub 2}S gas sensing. - Abstract: Hexagonal pillar shaped ZnO nanorods with different sizes have been successfully synthesized by spray pyrolysis technique (SPT). The equal amount of methanol and water is used as a solvent to dissolve the AR grade Zinc acetate for precursor solution. This solution is sprayed on to the glass substrate heated at 350 Degree-Sign C. The films were characterized by ultra-violet spectroscopy (UV), X-ray diffraction (XRD), field emission scanning electron microscopy (FESEM) and transmission electron microscopy (TEM). The deposition of thin films results in a layer comprising well-shaped hexagonal ZnO nanorods with diameter of 90-120 nm and length of up to 200 nm. The gas sensing properties of these films have been investigated for various interfering gases such as CO{sub 2}, CO, ethanol, NH{sub 3} and H{sub 2}S, etc. at operating temperature from 30 Degree-Sign (room temperature) to 450 Degree-Sign C. The results indicate that the ZnO nanorods thin films showed much better sensitivity and stability than the conventional materials to H{sub 2}S gas (100 ppm) at 50 Degree-Sign C. The hexagonal pillar shaped ZnO nanorods can improve the sensitivity and selectivity of the sensors.

  13. Synthesis of high-performance Li2FeSiO4/C composite powder by spray-freezing/freeze-drying a solution with two carbon sources

    Science.gov (United States)

    Fujita, Yukiko; Iwase, Hiroaki; Shida, Kenji; Liao, Jinsun; Fukui, Takehisa; Matsuda, Motohide

    2017-09-01

    Li2FeSiO4 is a promising cathode active material for lithium-ion batteries due to its high theoretical capacity. Spray-freezing/freeze-drying, a practical process reported for the synthesis of various ceramic powders, is applied to the synthesis of Li2FeSiO4/C composite powders and high-performance Li2FeSiO4/C composite powders are successfully synthesized by using starting solutions containing both Indian ink and glucose as carbon sources followed by heating. The synthesized composite powders have a unique structure, composed of Li2FeSiO4 nanoparticles coated with a thin carbon layer formed by the carbonization of glucose and carbon nanoparticles from Indian ink. The carbon layer enhances the electrochemical reactivity of the Li2FeSiO4, and the carbon nanoparticles play a role in the formation of electron-conducting paths in the cathode. The composite powders deliver an initial discharge capacity of 195 and 137 mAh g-1 at 0.1 C and 1 C, respectively, without further addition of conductive additive. The discharge capacity at 1 C is 72 mAh g-1 after the 100th cycle, corresponding to approximately 75% of the capacity at the 2nd cycle.

  14. Synthesis of nano-structured tin oxide thin films with faster response to LPG and ammonia by spray pyrolysis

    Science.gov (United States)

    PrasannaKumari, K.; Thomas, Boben

    2018-01-01

    Nanostructured SnO2 thin film have been efficiently fabricated by spray pyrolysis using atomizers of different types. The structure and morphology of as-prepared samples are investigated by techniques such as x-ray diffraction, and field-emission scanning electron microscopy. Significant morphological changes are observed in films by modifying the precursor atomization as a result of change of spray device. The optical characterization indicates that change in atomization, affects the absorbance and the band gap, following the varied crystallite size. Gas sensing investigations on ultrasonically prepared tin oxide films show NH3 response at operating temperatures lower down to 50 °C. For 1000 ppm of LPG the response at 350 °C for air blast atomizer film is about 99%, with short response and recovery times. The photoluminescence emmision spectra reveal the correlation between atomization process and the quantity of oxygen vacancies present in the samples. The favorable size reduction in microstructure with good crystallinity with slight change in lattice properties suggest their scope in gas sensing applications. On the basis of these characterizations, the mechanism of LPG and NH3 gas sensing of nanostructured SnO2 thin films has been proposed.

  15. Low Temperature Synthesis of Fluorine-Doped Tin Oxide Transparent Conducting Thin Film by Spray Pyrolysis Deposition.

    Science.gov (United States)

    Ko, Eun-Byul; Choi, Jae-Seok; Jung, Hyunsung; Choi, Sung-Churl; Kim, Chang-Yeoul

    2016-02-01

    Transparent conducting oxide (TCO) is widely used for the application of flat panel display like liquid crystal displays and plasma display panel. It is also applied in the field of touch panel, solar cell electrode, low-emissivity glass, defrost window, and anti-static material. Fluorine-doped tin oxide (FTO) thin films were fabricated by spray pyrolysis of ethanol-added FTO precursor solutions. FTO thin film by spray pyrolysis is very much investigated and normally formed at high temperature, about 500 degrees C. However, these days, flexible electronics draw many attentions in the field of IT industry and the research for flexible transparent conducting thin film is also required. In the industrial field, indium-tin oxide (ITO) film on polymer substrate is widely used for touch panel and displays. In this study, we investigated the possibility of FTO thin film formation at relatively low temperature of 250 degrees C. We found out that the control of volume of input precursor and exhaust gases could make it possible to form FTO thin film with a relatively low electrical resistance, less than 100 Ohm/sq and high optical transmittance about 88%.

  16. Gram-scale synthesis of catalytic Co9S8 nanocrystal ink as a cathode material for spray-deposited, large-area dye-sensitized solar cells.

    Science.gov (United States)

    Chang, Shu-Hao; Lu, Ming-De; Tung, Yung-Liang; Tuan, Hsing-Yu

    2013-10-22

    We report the development of Co9S8 nanocrystals as a cost-effective cathode material that can be readily combined with spraying techniques to fabricate large-area dye-sensitized solar cell (DSSC) devices and can be further connected with series or parallel cell architectures to obtain a relatively high output voltage or current. A gram-scale synthesis of Co9S8 nanocrystal is carried out via a noninjection reaction by mixing anhydrous CoCl2 with trioctylphosphine (TOP), dodecanethiol and oleylamine (OLA) at 250 °C. The Co9S8 nanocrystals possess excellent catalytic ability with respect to I(-)/I3(-) redox reactions. The Co9S8 nanocrystals are prepared as nanoinks to fabricate uniform, crack-free Co9S8 thin films on different substrates by using a spray deposition technique. These Co9S8 films are used as counter electrodes assembled with dye-adsorbed TiO2 photoanodes to fabricate DSSC devices having a working area of 2 cm(2) and an average power conversion efficiency (PCE) of 7.02 ± 0.18% under AM 1.5 solar illumination, which is comparable with the PCE of 7.2 ± 0.12% obtained using a Pt cathode. Furthermore, six 2 cm(2)-sized DSSC devices connected in series output an open-circuit voltage of 4.2 V that can power a wide range of electronic devices such as LED arrays and can charge commercial lithium ion batteries.

  17. Research on the Properties of Thermal Sprayed Ni-Cr-Si-Fe-B Coatings

    Directory of Open Access Journals (Sweden)

    Raimonda Lukauskaitė

    2012-12-01

    Full Text Available The article deals with the flame sprayed Ni-Cr-Si-Fe-B coating on aluminum alloy substrates. Before the thermal spraying process, aluminum samples were modified applying chemical, mechanical and thermal processing pre-treatment methods. The main aluminum surface treatment was removing an oxide layer from the surface and improving the exploitation properties of nickel-based coatings. The work involved coating microstructure, porosity, adhesion and microhardness tests. The dependence of the estimated exploitation properties of flame spray coatings on aluminum surface preparation methods and technological parameters of spraying has been established.Article in Lithuanian

  18. Research on the Properties of Thermal Sprayed Ni-Cr-Si-Fe-B Coatings

    Directory of Open Access Journals (Sweden)

    Raimonda Lukauskaitė

    2013-02-01

    Full Text Available The article deals with the flame sprayed Ni-Cr-Si-Fe-B coating on aluminum alloy substrates. Before the thermal spraying process, aluminum samples were modified applying chemical, mechanical and thermal processing pre-treatment methods. The main aluminum surface treatment was removing an oxide layer from the surface and improving the exploitation properties of nickel-based coatings. The work involved coating microstructure, porosity, adhesion and microhardness tests. The dependence of the estimated exploitation properties of flame spray coatings on aluminum surface preparation methods and technological parameters of spraying has been established.Article in Lithuanian

  19. Pt coating on flame-generated carbon particles

    International Nuclear Information System (INIS)

    Choi, In Dae; Lee, Dong Geun

    2008-01-01

    Carbon black, activated carbon and carbon nanotube have been used as supporting materials for precious metal catalysts used in fuel cell electrodes. One-step flame synthesis method is used to coat 2-5nm Pt dots on flame-generated carbon particles. By adjusting flame temperature, gas flow rates and resident time of particles in flame, we can obtain Pt/C nano catalyst-support composite particles. Additional injection of hydrogen gas facilitates pyrolysis of Pt precursor in flame. The size of as-incepted Pt dots increases along the flame due to longer resident time and sintering in high temperature flame. Surface coverage and dispersion of the Pt dots is varied at different sampling heights and confirmed by Transmission Electron Microscopy (TEM), Energy Dispersive Spectra (EDS) and X-Ray Diffraction (XRD). Crystallinity and surface bonding groups of carbon are investigated through X-ray Photoelectron Spectroscoy (XPS) and Raman spectroscopy

  20. Self-templating synthesis of hollow spheres of zeolite ZSM-5 from spray-dried aluminosilicate precursor

    Czech Academy of Sciences Publication Activity Database

    Pashková, Veronika; Tokarová, V.; Brabec, Libor; Dědeček, Jiří

    2016-01-01

    Roč. 228, JUL 2016 (2016), s. 59-63 ISSN 1387-1811 R&D Projects: GA ČR GA15-13876S; GA MŠk LM2015073 Institutional support: RVO:61388955 Keywords : MFI * zeolite shells * template free synthesis Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 3.615, year: 2016

  1. Advanced Diagnostics for High Pressure Spray Combustion.

    Energy Technology Data Exchange (ETDEWEB)

    Skeen, Scott A.; Manin, Julien Luc; Pickett, Lyle M.

    2014-06-01

    The development of accurate predictive engine simulations requires experimental data to both inform and validate the models, but very limited information is presently available about the chemical structure of high pressure spray flames under engine- relevant conditions. Probing such flames for chemical information using non- intrusive optical methods or intrusive sampling techniques, however, is challenging because of the physical and optical harshness of the environment. This work details two new diagnostics that have been developed and deployed to obtain quantitative species concentrations and soot volume fractions from a high-pressure combusting spray. A high-speed, high-pressure sampling system was developed to extract gaseous species (including soot precursor species) from within the flame for offline analysis by time-of-flight mass spectrometry. A high-speed multi-wavelength optical extinction diagnostic was also developed to quantify transient and quasi-steady soot processes. High-pressure sampling and offline characterization of gas-phase species formed following the pre-burn event was accomplished as well as characterization of gas-phase species present in the lift-off region of a high-pressure n-dodecane spray flame. For the initial samples discussed in this work several species were identified, including polycyclic aromatic hydrocarbons (PAH); however, quantitative mole fractions were not determined. Nevertheless, the diagnostic developed here does have this capability. Quantitative, time-resolved measurements of soot extinction were also accomplished and the novel use of multiple incident wavelengths proved valuable toward characterizing changes in soot optical properties within different regions of the spray flame.

  2. Development of test systems for characterizing emissions from spray polyurethane foam insulation (SPFI)

    Science.gov (United States)

    The relationship between onsite manufacture of spray polyurethane foam insulation (SPFI) and potential exposures to diisocyanates, amines, flame retardants (FRs), blowing agents, aldehydes and other organic compounds that may be emitted from SPFI is not well understood. EPA is de...

  3. Microwave-assisted synthesis of SiO2 nanoparticles and its application on the flame retardancy of poly styrene and poly carbonate nanocomposites

    Directory of Open Access Journals (Sweden)

    A. Esmaeili-Bafghi-Karimabad

    2015-07-01

    Full Text Available Various morphologies of silica nanoparticles were synthesized by a microwave-assisted Pechini method. Silica nanostructures were synthesized via a fast reaction between tetra ethyl ortho silicate and ammonia at presence citric acid and other effective agents in Pechini procedure. Then for preparation of polymer-matrix nanocomposites, SiO2 nanoparticles were added to poly carbonate (PC and poly styrene (PS matrices. Nanostructures were characterized by X-ray diffraction (XRD, scanning electron microscopy (SEM and Fourier transform infrared (FT-IR. The influence of SiO2 nanostructures on the flame retardancy of the polymeric matrix was studied using UL- 94 analysis. Our results show that the SiO2 nanostructure can enhance the flame retardant property of the poly carbonate matrix. PC shows better flame retardancy compare to poly styrene.

  4. Gravity Effects Observed In Partially Premixed Flames

    Science.gov (United States)

    Puri, Ishwar K.; Aggarwal, Suresh K.; Lock, Andrew J.; Gauguly, Ranjan; Hegde, Uday

    2003-01-01

    Partially premixed flames (PPFs) contain a rich premixed fuel air mixture in a pocket or stream, and, for complete combustion to occur, they require the transport of oxidizer from an appropriately oxidizer-rich (or fuel-lean) mixture that is present in another pocket or stream. Partial oxidation reactions occur in fuel-rich portions of the mixture and any remaining unburned fuel and/or intermediate species are consumed in the oxidizer-rich portions. Partial premixing, therefore, represents that condition when the equivalence ratio (phi) in one portion of the flowfield is greater than unity, and in another section its value is less than unity. In general, for combustion to occur efficiently, the global equivalence ratio is in the range fuel-lean to stoichiometric. These flames can be established by design by placing a fuel-rich mixture in contact with a fuel-lean mixture, but they also occur otherwise in many practical systems, which include nonpremixed lifted flames, turbulent nonpremixed combustion, spray flames, and unwanted fires. Other practical applications of PPFs are reported elsewhere. Although extensive experimental studies have been conducted on premixed and nonpremixed flames under microgravity, there is a absence of previous experimental work on burner stabilized PPFs in this regard. Previous numerical studies by our group employing a detailed numerical model showed gravity effects to be significant on the PPF structure. We report on the results of microgravity experiments conducted on two-dimensional (established on a Wolfhard-Parker slot burner) and axisymmetric flames (on a coannular burner) that were investigated in a self-contained multipurpose rig. Thermocouple and radiometer data were also used to characterize the thermal transport in the flame.

  5. Progress of flame gunning materials; Yosha hoshuzai no shinpo

    Energy Technology Data Exchange (ETDEWEB)

    Murakami, Kakuichi [Harima Ceramic Corp., Hyogo (Japan)

    1999-04-01

    This report concerns to progress in the thermal spraying for repairing refractory, to say more precisely the flame-gunning materials. Gunning method using wet-slurry materials, in spite of its simplicity in execution, possesses a shortcoming of forming the porous deposit around spraying spot. Contrarily, the flame-gunning method is becoming popular in Japan because this method provides us with the minutely organized deposit having high tenacity and corrosion-resisting property. Flame is made from propane/oxygen mixture to assure the efficient melting of powdered clay. Magnesia/Dromite/slag system is preferable to converter furnace to produce a deposit layer less than 10% porosity. Materials based on alumina are preferable, although giving a relatively elevated porosity, to vacuum degassing vessel, converter furnace of stainless steel, hot stove for blast furnace, etc. Silca-rich system is characterized by the resistivity to recycled thermal procedure which brings about application to coke furnace. (NEDO)

  6. Flame structure of methane inverse diffusion flame

    KAUST Repository

    Elbaz, Ayman M.

    2014-07-01

    This paper presents high speed images of OH-PLIF at 10. kHz simultaneously with 2D PIV (particle image velocimetry) measurements collected along the entire length of an inverse diffusion flame with circumferentially arranged methane fuel jets. For a fixed fuel flow rate, the central air jet Re was varied, leading to four air to fuel velocity ratios, namely Vr = 20.7, 29, 37.4 and 49.8. A double flame structure could be observed composed of a lower fuel entrainment region and an upper mixing and intense combustion region. The entrainment region was enveloped by an early OH layer, and then merged through a very thin OH neck to an annular OH layer located at the shear layer of the air jet. The two branches of this annular OH layer broaden as they moved downstream and eventfully merged together. Three types of events were observed common to all flames: breaks, closures and growing kernels. In upstream regions of the flames, the breaks were counterbalanced by flame closures. These breaks in OH signal were found to occur at locations where locally high velocity flows were impinging on the flame. As the Vr increased to 37.4, the OH layers became discontinuous over the downstream region of the flame, and these regions of low or no OH moved upstream. With further increases in Vr, these OH pockets act as flame kernels, growing as they moved downstream, and became the main mechanism for flame re-ignition. Along the flame length, the direction of the two dimensional principle compressive strain rate axis exhibited a preferred orientation of approximately 45° with respect to the flow direction. Moreover, the OH zones were associated with elongated regions of high vorticity. © 2013 Elsevier Inc.

  7. On the Flame Height Definition for Upward Flame Spread

    OpenAIRE

    Consalvi, Jean L; Pizzo, Yannick; Porterie, Bernard; Torero, Jose L

    2007-01-01

    Flame height is defined by the experimentalists as the average position of the luminous flame and, consequently is not directly linked with a quantitative value of a physical parameter. To determine flame heights from both numerical and theoretical results, a more quantifiable criterion is needed to define flame heights and must be in agreement with the experiments to allow comparisons. For wall flames, steady wall flame experiments revealed that flame height may be define...

  8. Demonstration of Thermally Sprayed Metal and Polymer Coatings for Steel Structures at Fort Bragg, NC

    Science.gov (United States)

    2017-09-01

    ER D C/ CE RL T R- 17 -3 0 DoD Corrosion Prevention and Control Program Demonstration of Thermally Sprayed Metal and Polymer Coatings...and Polymer Coatings for Steel Structures at Fort Bragg, NC Final Report on Project F07-AR10 Larry D. Stephenson, Alfred D. Beitelman, Richard G...5 2.1.2 Thermoplastic polymer coating (flame spray

  9. Experimental Study of Liquid Fuel Spray Combustion

    DEFF Research Database (Denmark)

    Westlye, Fredrik Ree

    the specific physical quantities needed in CFD validation of these types of flames. This work is a testament to that fact. The first part of this thesis is an extensive study of optical combustion diagnostics applied to complex transient sprayflames in a high temperature and pressure environment...... by the Danish Council for Strategic Research. Other supporters of the project have been MAN Diesel & Turbo A/S, DTU Mechanical Engineering, DTU Chemical Engineering, Sandia National Laboratories USA, Norwegian University of Science & Technology (NTNU) and University of Nottingham, Malaysia Campus.......The physiochemical properties and electromagnetic interactions in flames, of which various optical combustion diagnostics are based, have been reviewed. Key diagnostics have been presented with practical examples of their application which, together with a comprehensive review of fuel spray flames, form...

  10. Molybdenum plasma spray powder, process for producing said powder, and coating made therefrom

    International Nuclear Information System (INIS)

    Lafferty, W.D.; Cheney, R.F.; Pierce, R.H.

    1979-01-01

    Plasma spray powders of molybdenum particles containing 0.5 to 15 weight percent oxygen and obtained by reacting molybdenum particles with oxygen or oxides in a plasma, form plasma spray coatings exhibiting hardness comparable to flame sprayed coatings formed from molybdenum wire and plasma coatings of molybdenum powders. Such oxygen rich molybdenum powders may be used to form wear resistant coatings, such as for piston rings. (author)

  11. Study of Multi-Function Micro-Plasma Spraying Technology

    International Nuclear Information System (INIS)

    Wang Liuying; Wang Hangong; Hua Shaochun; Cao Xiaoping

    2007-01-01

    A multi-functional micro-arc plasma spraying system was developed according to aerodynamics and plasma spray theory. The soft switch IGBT (Insulated Gate Bipolar Transistor) invert technique, micro-computer control technique, convergent-divergent nozzle structure and axial powder feeding techniques have been adopted in the design of the micro-arc plasma spraying system. It is not only characterized by a small volume, a light weight, highly accurate control, high deposition efficiency and high reliability, but also has multi-functions in plasma spraying, welding and quenching. The experimental results showed that the system can produce a supersonic flame at a low power, spray Al 2 O 3 particles at an average speed up to 430 m/s, and make nanostructured AT13 coatings with an average bonding strength of 42.7 MPa. Compared to conventional 9M plasma spraying with a higher power, the coatings with almost the same properties as those by conventional plasma spray can be deposited by multi-functional micro-arc plasma spraying with a lower power plasma arc due to an improved power supply design, spray gun structure and powder feeding method. Moreover, this system is suitable for working with thin parts and undertaking on site repairs, and as a result, the application of plasma spraying will be greatly extended

  12. Synthesis and characterization of Gd0.1Ce0.9O1.95 thin films by spray pyrolysis technique

    DEFF Research Database (Denmark)

    Chourashiya, M. G.; Pawar, S. H.; Jadhav, L. D.

    2008-01-01

    The Gd doped ceria (CGO) in thin layers is of great interest for low temperature operation. In the present investigation, we report on the use of spray pyrolysis technique for the synthesis of CGO thin films. The process parameters were optimized for synthesizing Gd0.1Ce0.9O1.95 films. Films were...... characterized by XRD, EDS, SEM, and AFM and are observed to be phase pure and dense with surface roughness of the order of ∼5 nm. The d.c. conductivity was also measured and is observed to be ∼0.5 S/cm at 623 K....

  13. A New Flame-Retardant Polyamide Containing Phosphine Oxide and N,N-(4,4-diphenylether) Moieties in the Main Chain: Synthesis and Characterization

    OpenAIRE

    FAGHIHI, Khalil

    2014-01-01

    A new flame-retardant polyamide containing phosphine oxide moieties in the main chain was synthesized from the solution polycondensation reaction of bis(3-aminophenyl) phenyl phosphine oxide with N,N-(4,4-diphenylether) bis trimellitimide, using thionyl chloride, N-methyl-2-pyrolidone, and pyridine as condensing agents. This new polymer was obtained in high yield (92%), has high inherent viscosity (0.73 dL/g), and was characterized by elemental analysis, FT-IR spectroscopy, thermal gr...

  14. Effect of W/O Emulsion Fuel Properties on Spray Combustion

    Science.gov (United States)

    Ida, Tamio; Fuchihata, Manabu; Takeda, Shuuco

    This study proposes a realizable technology for an emulsion combustion method that can reduce environmental loading. This paper discusses the effect on spray combustion for W/O emulsion fuel properties with an added agent, and the ratio between water and emulsifier added to a liquid fuel. The addition of water or emulsifier to a liquid fuel affected the spray combustion by causing micro-explosions in the flame due to geometric changes in the sprayed flame and changes to the temperature distribution. Experimental results revealed that the flame length shortened by almost 40% upon the addition of the water. Furthermore, it was found that water was effective in enhancing combustion due to its promoting micro-explosions. Results also showed that when the emulsifier was added to the spray flame, the additive burned in the flame's wake, producing a bright red flame. The flame length was observed to be long as a result. The micro-explosion phenomenon, caused by emulsifier dosage differences, was observed using time-dependent images at a generated frequency and an explosion scale with a high-speed photography method. Results indicated that the micro-explosion phenomenon in the W/O emulsion combustion method effectively promoted the combustion reaction and suppressed soot formation.

  15. DNS of spark ignition and edge flame propagation in turbulent droplet-laden mixing layers

    Energy Technology Data Exchange (ETDEWEB)

    Neophytou, A.; Mastorakos, E.; Cant, R.S. [Hopkinson Laboratory, Department of Engineering, University of Cambridge (United Kingdom)

    2010-06-15

    A parametric study of forced ignition at the mixing layer between air and air carrying fine monosized fuel droplets is done through one-step chemistry direct numerical simulations to determine the influence of the size and volatility of the droplets, the spark location, the droplet-air mixing layer initial thickness and the turbulence intensity on the ignition success and the subsequent flame propagation. The propagation is analyzed in terms of edge flame displacement speed, which has not been studied before for turbulent edge spray flames. Spark ignition successfully resulted in a tribrachial flame if enough fuel vapour was available at the spark location, which occurred when the local droplet number density was high. Ignition was achieved even when the spark was offset from the spray, on the air side, due to the diffusion of heat from the spark, provided droplets evaporated rapidly. Large kernels were obtained by sparking close to the spray, since fuel was more readily available. At long times after the spark, for all flames studied, the probability density function of the displacement speed was wide, with a mean value in the range 0.55-0.75S{sub L}, with S{sub L} the laminar burning velocity of a stoichiometric gaseous premixed flame. This value is close to the mean displacement speed in turbulent edge flames with gaseous fuel. The displacement speed was negatively correlated with curvature. The detrimental effect of curvature was attenuated with a large initial kernel and by increasing the thickness of the mixing layer. The mixing layer was thicker when evaporation was slow and the turbulence intensity higher. However, high turbulence intensity also distorted the kernel which could lead to high values of curvature. The edge flame reaction component increased when the maximum temperature coincided with the stoichiometric contour. The results are consistent with the limited available experimental evidence and provide insights into the processes associated with

  16. Lifted Turbulent Jet Flames

    Science.gov (United States)

    1993-04-14

    flame length L simultaneously with h, and measuring the visible radiation I simultaneously with h. L(t) was found to be nearly uncorrelated with h(t...variation of 7i/2 /76 with ýh. These experiments included measuring the flame length L simultaneously with h, and measuring the visible radiation I...Measurements of Liftoff Height and Flame Length ... 66 4.5 Simultaneous Measurements of Liftoff Height and Radiation ....... 71 4.6 D scussion

  17. Photocatalytically active titanium dioxide nanopowders: Synthesis, photoactivity and magnetic separation

    International Nuclear Information System (INIS)

    Nikkanen, J-P; Heinonen, S; Saarivirta, E Huttunen; Honkanen, M; Levänen, E

    2013-01-01

    Two approaches were used to obtain nanocrystalline titanium dioxide (TiO 2 ) photocatalyst powders. Firstly, low-temperature synthesis method and secondly liquid flame spraying. The structural properties of the produced powders were determined with X-ray diffraction, transmission electron microscopy and nitrogen adsorption tests. The photocatalytic properties of the powders were studied with methylene blue (MB) discoloration tests. After discolorations tests, TiO 2 was coagulated with magnetite particles using FeCl 3 ·6 H 2 O at a fixed pH value. Magnetic separation of coagulated TiO 2 and magnetite was carried out by a permanent magnet. The obtained results showed that the particle size of the powders synthesized at low-temperature was very small and the specific surface area high. The phase content of the powder was also shown to depend greatly on the acidity of the synthesis solution. Powder synthesized by liquid flame spraying was mixture of anatase and rutile phases with essentially larger particle size and lower specific surface area than those of low-temperature synthesized powders. The MB discoloration test showed that photocatalytic activity depends on the phase structure as well as the specific surface area of the synthesized TiO 2 powder. The magnetic separation of TiO 2 –magnetite coagulate from solution proved to be efficient around pH:8

  18. Plasma sprayed coatings on crankshaft used steels

    Science.gov (United States)

    Mahu, G.; Munteanu, C.; Istrate, B.; Benchea, M.

    2017-08-01

    Plasma spray coatings may be an alternative to conventional heat treatment of main journals and crankpins of the crankshaft. The applications of plasma coatings are various and present multiple advantages compared to electric arc wire spraying or flame spraying. The study examines the layers sprayed with the following powders: Cr3C2- 25(Ni 20Cr), Al2O3- 13TiO2, Cr2O3-SiO2- TiO2 on the surface of steels used in the construction of a crankshaft (C45). The plasma spray coatings were made with the Spray wizard 9MCE facility at atmospheric pressure. The samples were analyzed in terms of micro and morphological using optical microscopy, scanning electron microscopy and X-ray diffraction. Wear tests on samples that have undergone simulates extreme working conditions of the crankshafts. In order to emphasize adherence to the base material sprayed layer, were carried out tests of microscratches and micro-indentation. Results have showed a relatively compact morphological aspect given by the successive coatings with splat-like specific structures. Following the microscratch analysis it can be concluded that Al2O3-13TiO2 coating has a higher purpose in terms of hardness compared to Cr3C2-(Ni 20Cr) and Cr2O3-SiO2- TiO2 powders. Thermal coatings of the deposited powders have increased the mechanical properties of the material. The results stand to confirm that plasma sprayed Al2O3-13TiO2 powder is in fact a efficient solution for preventing mechanical wear, even with a faulty lubrication system.

  19. Monitoring of monooctanoyl phosphatidylcholine synthesis by enzymatic acidolysis between soybean phosphatidylcholine and caprylic acid by thin-layer chromatography with a flame ionization detector

    DEFF Research Database (Denmark)

    Vikbjerg, Anders Falk; Mu, Huiling; Xu, Xuebing

    2005-01-01

    Thin-layer chromatography with flame ionization detector (TLC-FID) method was used for monitoring the production of structured phospholipids (ML-type: L-long chain fatty acids; M-medium chain fatty acids) by enzyme-catalyzed acidolysis between soybean phosphatidylcholine (PC) and caprylic acid....... It was found that the structured PC fractionated into 2-3 distinct bands on both plate thin layer chromatography (TLC) and Chromarod TLC. These 3 bands represented PC of LL-type, ML-type and MM-type, respectively. The TLC-FID method was applied in the present study to examine the influence of enzyme dosage...

  20. Trapping and aerogelation of nanoparticles in negative gravity hydrocarbon flames

    International Nuclear Information System (INIS)

    Chakrabarty, Rajan K.; Novosselov, Igor V.; Beres, Nicholas D.; Moosmüller, Hans; Sorensen, Christopher M.; Stipe, Christopher B.

    2014-01-01

    We report the experimental realization of continuous carbon aerogel production using a flame aerosol reactor by operating it in negative gravity (−g; up-side-down configuration). Buoyancy opposes the fuel and air flow forces in −g, which eliminates convectional outflow of nanoparticles from the flame and traps them in a distinctive non-tipping, flicker-free, cylindrical flame body, where they grow to millimeter-size aerogel particles and gravitationally fall out. Computational fluid dynamics simulations show that a closed-loop recirculation zone is set up in −g flames, which reduces the time to gel for nanoparticles by ≈10 6  s, compared to positive gravity (upward rising) flames. Our results open up new possibilities of one-step gas-phase synthesis of a wide variety of aerogels on an industrial scale.

  1. Trapping and aerogelation of nanoparticles in negative gravity hydrocarbon flames

    Energy Technology Data Exchange (ETDEWEB)

    Chakrabarty, Rajan K., E-mail: rajan.chakrabarty@gmail.com [Department of Energy, Environmental and Chemical Engineering, Washington University in St. Louis, St. Louis, Missouri 63130 (United States); Laboratory for Aerosol Science, Spectroscopy, and Optics, Desert Research Institute, Nevada System of Higher Education, Reno, Nevada 89512 (United States); Novosselov, Igor V. [Department of Mechanical Engineering, University of Washington, Seattle, Washington 98195 (United States); Enertechnix Inc., Maple Valley, Washington 98068 (United States); Beres, Nicholas D.; Moosmüller, Hans [Laboratory for Aerosol Science, Spectroscopy, and Optics, Desert Research Institute, Nevada System of Higher Education, Reno, Nevada 89512 (United States); Sorensen, Christopher M. [Condensed Matter Laboratory, Department of Physics, Kansas State University, Manhattan, Kansas 66506 (United States); Stipe, Christopher B. [TSI Incorporated, 500 Cardigan Rd, Shoreview, Minnesota 55126 (United States)

    2014-06-16

    We report the experimental realization of continuous carbon aerogel production using a flame aerosol reactor by operating it in negative gravity (−g; up-side-down configuration). Buoyancy opposes the fuel and air flow forces in −g, which eliminates convectional outflow of nanoparticles from the flame and traps them in a distinctive non-tipping, flicker-free, cylindrical flame body, where they grow to millimeter-size aerogel particles and gravitationally fall out. Computational fluid dynamics simulations show that a closed-loop recirculation zone is set up in −g flames, which reduces the time to gel for nanoparticles by ≈10{sup 6} s, compared to positive gravity (upward rising) flames. Our results open up new possibilities of one-step gas-phase synthesis of a wide variety of aerogels on an industrial scale.

  2. Flame structure, spectroscopy and emissions quantification of rapeseed biodiesel under model gas turbine conditions

    International Nuclear Information System (INIS)

    Chong, Cheng Tung; Hochgreb, Simone

    2017-01-01

    Highlights: • Rapeseed biodiesel shows extended flame reaction zone with no soot formation. • RME spray flame shows higher droplet number density and volume flux than diesel. • RME droplet size and velocity distribution are similar to diesel. • Blending 50% RME with diesel reduces soot formation non-linearly. • RME shows lower NO_x and higher CO emissions level compared to diesel. - Abstract: The spray combustion characteristics of rapeseed biodiesel/methyl esters (RME) and 50% RME/diesel blend were investigated and compared with conventional diesel fuel, using a model swirl flame burner. The detailed database with well-characterised boundary conditions can be used as validation targets for flame modelling. An airblast, swirl-atomized liquid fuel spray was surrounded by air preheated to 350 °C at atmospheric pressure. The reacting droplet distribution within the flame was determined using phase Doppler particle anemometry. For both diesel and RME, peak droplet concentrations are found on the outside of the flame region, with large droplets migrating to the outside via swirl, and smaller droplets located around the centreline region. However, droplet concentrations and sizes are larger for RME, indicating a longer droplet evaporation timescale. This delayed droplet vaporisation leads to a different reaction zone relative to diesel, with an extended core reaction. In spite of the longer reaction zone, RME flames displayed no sign of visible soot radiation, unlike the case of diesel spray flame. Blending 50% RME with diesel results in significant reduction in soot radiation. Finally, RME emits 22% on average lower NO_x emissions compared to diesel under lean burning conditions.

  3. Unsteady Flame Embedding

    KAUST Repository

    El-Asrag, Hossam A.

    2011-01-01

    Direct simulation of all the length and time scales relevant to practical combustion processes is computationally prohibitive. When combustion processes are driven by reaction and transport phenomena occurring at the unresolved scales of a numerical simulation, one must introduce a dynamic subgrid model that accounts for the multiscale nature of the problem using information available on a resolvable grid. Here, we discuss a model that captures unsteady flow-flame interactions- including extinction, re-ignition, and history effects-via embedded simulations at the subgrid level. The model efficiently accounts for subgrid flame structure and incorporates detailed chemistry and transport, allowing more accurate prediction of the stretch effect and the heat release. In this chapter we first review the work done in the past thirty years to develop the flame embedding concept. Next we present a formulation for the same concept that is compatible with Large Eddy Simulation in the flamelet regimes. The unsteady flame embedding approach (UFE) treats the flame as an ensemble of locally one-dimensional flames, similar to the flamelet approach. However, a set of elemental one-dimensional flames is used to describe the turbulent flame structure directly at the subgrid level. The calculations employ a one-dimensional unsteady flame model that incorporates unsteady strain rate, curvature, and mixture boundary conditions imposed by the resolved scales. The model is used for closure of the subgrid terms in the context of large eddy simulation. Direct numerical simulation (DNS) data from a flame-vortex interaction problem is used for comparison. © Springer Science+Business Media B.V. 2011.

  4. Synthesis and field emission properties of carbon nanotubes grown in ethanol flame based on a photoresist-assisted catalyst annealing process

    International Nuclear Information System (INIS)

    Yang Xiaoxia; Fang Guojia; Liu Nishuang; Wang Chong; Zheng Qiao; Zhou Hai; Zhao Dongshan; Long Hao; Liu Yuping; Zhao Xingzhong

    2009-01-01

    Carbon nanotubes (CNTs) have been grown directly on a Si substrate without a diffusion barrier in ethanol diffusion flame using Ni as the catalyst after a photoresist-assisted catalyst annealing process. The growth mechanism of as-synthesized CNTs is confirmed by scanning electron microscopy, high resolution transmission-electron microscopy and energy-dispersive spectroscopy. The photoresist is the key for the formation of active catalyst particles during annealing process, which then result in the growth of CNTs. The catalyst annealing temperature has been found to affect the morphologies and field electron emission properties of CNTs significantly. The field emission properties of as-grown CNTs are investigated with a diode structure and the obtained CNTs exhibit enhanced characteristics. This technique will be applicable to a low-cost fabrication process of electron-emitter arrays.

  5. Hydrogen-enriched non-premixed jet flames : analysis of the flame surface, flame normal, flame index and Wobbe index

    NARCIS (Netherlands)

    Ranga Dinesh, K.K.J.; Jiang, X.; Oijen, van J.A.

    2014-01-01

    A non-premixed impinging jet flame is studied using three-dimensional direct numerical simulation with detailed chemical kinetics in order to investigate the influence of fuel variability on flame surface, flame normal, flame index and Wobbe index for hydrogen-enriched combustion. Analyses indicate

  6. Flame structure of methane inverse diffusion flame

    KAUST Repository

    Elbaz, Ayman M.; Roberts, William L.

    2014-01-01

    This paper presents high speed images of OH-PLIF at 10. kHz simultaneously with 2D PIV (particle image velocimetry) measurements collected along the entire length of an inverse diffusion flame with circumferentially arranged methane fuel jets. For a

  7. Synthesis and characterization of Yb and Er based monosilicate powders and durability of plasma sprayed Yb2SiO5 coatings on C/C–SiC composites

    International Nuclear Information System (INIS)

    Khan, Zuhair S.; Zou Binglin; Huang Wenzhi; Fan Xizhi; Gu Lijian; Chen Xiaolong; Zeng Shuibing; Wang Chunjie; Cao Xueqiang

    2012-01-01

    Highlights: ► Ultra-pure rare-earth monosilicate powders based on Er and Yb have been fabricated by solid-state reaction. ► Spray-drying treatment results in powders with free flowing characteristics and rounded surface morphologies. ► CTEs are found to be 7.1 ppm/°C for Yb 2 SiO 5 and 7.5 ppm/°C for Er 2 SiO 5 . ► Plasma spraying has been used to deposit Yb 2 SiO 5 coatings on C/C–SiC substrate. ► Coatings remain strongly intact with the substrate on thermal cycling between ∼400 °C and 1500 °C in gas burner rig experiment. - Abstract: Rare-earth silicates such as Yb 2 SiO 5 and Er 2 SiO 5 are promising environmental barrier coating materials for ceramic matrix composites. In this work, Yb 2 SiO 5 and Er 2 SiO 5 ceramic powders have been synthesized by solid-state reaction using Yb 2 O 3 , Er 2 O 3 and SiO 2 as starting materials. The fabricated powders were subjected to spray drying treatment for subsequent synthesis of coatings by plasma spraying. The spray drying resulted in well-dispersed and spherical powder particles with good flowability. Analytical techniques such as X-ray diffraction (XRD), scanning electron microscopy (SEM), thermogravimetry and differential scanning calorimetry (TGA/DSC) and dilatometry were applied to study the microstructural and thermal characteristics of the powders. Ultra-high purity monosilicate powders formed as a result of heating treatments at 1400 °C in a box furnace for 20 h. TG/DSC revealed the genesis temperatures of the silicate formation (low temperature polymorphs) and also showed that the solid-state reactions to form Yb and Er based monosilicates proceeded without any weight-loss in the tested temperature range. The values of coefficients of thermal expansion (CTE) of the fabricated compounds are found to be 7.1 ppm/°C for Yb 2 SiO 5 and 7.5 ppm/°C for Er 2 SiO 5 by dilatometric measurements. Besides these studies, coating formation by plasma spraying of spray-dried Yb 2 SiO 5 powders on the ceramic

  8. A new method for thermal spraying of Zn-Al coatings

    International Nuclear Information System (INIS)

    Gorlach, I.A.

    2009-01-01

    This paper presents the development of the thermal spraying system built on the principles of the high velocity air flame (HVAF) process. HVAF sprayed coatings showed considerably higher bond strength than coatings obtained by the conventional methods, indicating the advantage of this method in areas where the adhesion strength is critically important. The highly dense structure of the coating obtained with HVAF eliminates a need for a top paint coat, which is typically applied on metal sprayed coatings to extend service life. The thermal sprayed coatings were characterized by the standard techniques, such as light microscopy, scanning electron microscopy with energy-dispersive spectroscopy, X-ray diffraction, salt spray and bond strength tests. The results show that thermal sprayed coatings have a dense structure, low presence of oxides and high resistance to corrosion. High spray rate and good coating quality make the HVAF thermal spray method a viable alternative to the conventional thermal spraying technologies, such as Wire Flame and Twin-Wire Arc.

  9. Note: Automatic layer-by-layer spraying system for functional thin film coatings

    Science.gov (United States)

    Seo, Seongmin; Lee, Sangmin; Park, Yong Tae

    2016-03-01

    In this study, we have constructed an automatic spray machine for producing polyelectrolyte multilayer films containing various functional materials on wide substrates via the layer-by-layer (LbL) assembly technique. The proposed machine exhibits advantages in terms of automation, process speed, and versatility. Furthermore, it has several features that allow a fully automated spraying operation, such as various two-dimensional spraying paths, control of the flow rate and operating speed, air-assist fan-shaped twin-fluid nozzles, and an optical display. The robot uniformly sprays aqueous mixtures containing complementary (e.g., oppositely charged, capable of hydrogen bonding, or capable of covalent bonding) species onto a large-area substrate. Between each deposition of opposite species, samples are spray-rinsed with deionized water and blow-dried with air. The spraying, rinsing, and drying areas and times are adjustable by a computer program. Twenty-bilayer flame-retardant thin films were prepared in order to compare the performance of the spray-assisted LbL assembly with a sample produced by conventional dipping. The spray-coated film exhibited a reduction of afterglow time in vertical flame tests, indicating that the spray-LbL technique is a simple method to produce functional thin film coatings.

  10. Unsteady Flame Embedding

    KAUST Repository

    El-Asrag, Hossam A.; Ghoniem, Ahmed F.

    2011-01-01

    simulation, one must introduce a dynamic subgrid model that accounts for the multiscale nature of the problem using information available on a resolvable grid. Here, we discuss a model that captures unsteady flow-flame interactions- including extinction, re

  11. Synthesis of TiO2 nanoparticles containing Fe, Si, and V using multiple diffusion flames and catalytic oxidation capability of carbon-coated nanoparticles

    KAUST Repository

    Ismail, Mohamed

    2016-01-19

    Titanium dioxide (TiO2) nanoparticles containing iron, silicon, and vanadium are synthesized using multiple diffusion flames. The growth of carbon-coated (C–TiO2), carbon-coated with iron oxide (Fe/C–TiO2), silica-coated (Si–TiO2), and vanadium-doped (V–TiO2) TiO2 nanoparticles is demonstrated using a single-step process. Hydrogen, oxygen, and argon are utilized to establish the flame, with titanium tetraisopropoxide (TTIP) as the precursor for TiO2. For the growth of Fe/C–TiO2 nanoparticles, TTIP is mixed with xylene and ferrocene. While for the growth of Si–TiO2 and V–TiO2, TTIP is mixed with hexamethyldisiloxane (HMDSO) and vanadium (V) oxytriisopropoxide, respectively. The synthesized nanoparticles are characterized using high-resolution transmission electron microscopy (HRTEM) with energy-filtered TEM for elemental mapping (of Si, C, O, and Ti), X-ray diffraction (XRD), Raman spectroscopy, X-ray photoelectron spectroscopy (XPS), nitrogen adsorption BET surface area analysis, and thermogravimetric analysis. Anatase is the dominant phase for the C–TiO2, Fe/C–TiO2, and Si–TiO2 nanoparticles, whereas rutile is the dominant phase for the V–TiO2 nanoparticles. For C–TiO2 and Fe/C–TiO2, the nanoparticles are coated with about 3-5-nm thickness of carbon. The iron-based TiO2 nanoparticles significantly improve the catalytic oxidation of carbon, where complete oxidation of carbon occurs at a temperature of 470 °C (with iron) compared to 610 °C (without iron). Enhanced catalytic oxidation properties are also observed for model soot particles, Printex-U, when mixed with Fe/C-TiO2. With regards to Si–TiO2 nanoparticles, a uniform coating of 3 to 8 nm of silicon dioxide is observed around the TiO2 particles. This coating mainly occurs due to variance in the chemical reaction rates of the precursors. Finally, with regards to V–TiO2, vanadium is doped within the TiO2 nanoparticles as visualized by HRTEM and XPS further confirms the formation of

  12. Synthesis of TiO{sub 2} nanoparticles containing Fe, Si, and V using multiple diffusion flames and catalytic oxidation capability of carbon-coated nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Ismail, Mohamed A. [King Abdullah University of Science and Technology (KAUST), Clean Combustion Research Center (Saudi Arabia); Memon, Nasir K., E-mail: nmemon@qf.org.qa [HBKU, Qatar Foundation, Qatar Environment and Energy Research Institute (QEERI) (Qatar); Hedhili, Mohamed N.; Anjum, Dalaver H. [KAUST, Imaging and Characterization Lab (Saudi Arabia); Chung, Suk Ho [King Abdullah University of Science and Technology (KAUST), Clean Combustion Research Center (Saudi Arabia)

    2016-01-15

    Titanium dioxide (TiO{sub 2}) nanoparticles containing iron, silicon, and vanadium are synthesized using multiple diffusion flames. The growth of carbon-coated (C–TiO{sub 2}), carbon-coated with iron oxide (Fe/C–TiO{sub 2}), silica-coated (Si–TiO{sub 2}), and vanadium-doped (V–TiO{sub 2}) TiO{sub 2} nanoparticles is demonstrated using a single-step process. Hydrogen, oxygen, and argon are utilized to establish the flame, with titanium tetraisopropoxide (TTIP) as the precursor for TiO{sub 2}. For the growth of Fe/C–TiO{sub 2} nanoparticles, TTIP is mixed with xylene and ferrocene. While for the growth of Si–TiO{sub 2} and V–TiO{sub 2}, TTIP is mixed with hexamethyldisiloxane (HMDSO) and vanadium (V) oxytriisopropoxide, respectively. The synthesized nanoparticles are characterized using high-resolution transmission electron microscopy (HRTEM) with energy-filtered TEM for elemental mapping (of Si, C, O, and Ti), X-ray diffraction (XRD), Raman spectroscopy, X-ray photoelectron spectroscopy (XPS), nitrogen adsorption BET surface area analysis, and thermogravimetric analysis. Anatase is the dominant phase for the C–TiO{sub 2}, Fe/C–TiO{sub 2}, and Si–TiO{sub 2} nanoparticles, whereas rutile is the dominant phase for the V–TiO{sub 2} nanoparticles. For C–TiO{sub 2} and Fe/C–TiO{sub 2}, the nanoparticles are coated with about 3-5-nm thickness of carbon. The iron-based TiO{sub 2} nanoparticles significantly improve the catalytic oxidation of carbon, where complete oxidation of carbon occurs at a temperature of 470 °C (with iron) compared to 610 °C (without iron). Enhanced catalytic oxidation properties are also observed for model soot particles, Printex-U, when mixed with Fe/C-TiO{sub 2}. With regards to Si–TiO{sub 2} nanoparticles, a uniform coating of 3 to 8 nm of silicon dioxide is observed around the TiO{sub 2} particles. This coating mainly occurs due to variance in the chemical reaction rates of the precursors. Finally, with regards

  13. Synthesis of TiO2 nanoparticles containing Fe, Si, and V using multiple diffusion flames and catalytic oxidation capability of carbon-coated nanoparticles

    KAUST Repository

    Ismail, Mohamed; Memon, Nasir K.; Hedhili, Mohamed N.; Anjum, Dalaver H.; Chung, Suk-Ho

    2016-01-01

    Titanium dioxide (TiO2) nanoparticles containing iron, silicon, and vanadium are synthesized using multiple diffusion flames. The growth of carbon-coated (C–TiO2), carbon-coated with iron oxide (Fe/C–TiO2), silica-coated (Si–TiO2), and vanadium-doped (V–TiO2) TiO2 nanoparticles is demonstrated using a single-step process. Hydrogen, oxygen, and argon are utilized to establish the flame, with titanium tetraisopropoxide (TTIP) as the precursor for TiO2. For the growth of Fe/C–TiO2 nanoparticles, TTIP is mixed with xylene and ferrocene. While for the growth of Si–TiO2 and V–TiO2, TTIP is mixed with hexamethyldisiloxane (HMDSO) and vanadium (V) oxytriisopropoxide, respectively. The synthesized nanoparticles are characterized using high-resolution transmission electron microscopy (HRTEM) with energy-filtered TEM for elemental mapping (of Si, C, O, and Ti), X-ray diffraction (XRD), Raman spectroscopy, X-ray photoelectron spectroscopy (XPS), nitrogen adsorption BET surface area analysis, and thermogravimetric analysis. Anatase is the dominant phase for the C–TiO2, Fe/C–TiO2, and Si–TiO2 nanoparticles, whereas rutile is the dominant phase for the V–TiO2 nanoparticles. For C–TiO2 and Fe/C–TiO2, the nanoparticles are coated with about 3-5-nm thickness of carbon. The iron-based TiO2 nanoparticles significantly improve the catalytic oxidation of carbon, where complete oxidation of carbon occurs at a temperature of 470 °C (with iron) compared to 610 °C (without iron). Enhanced catalytic oxidation properties are also observed for model soot particles, Printex-U, when mixed with Fe/C-TiO2. With regards to Si–TiO2 nanoparticles, a uniform coating of 3 to 8 nm of silicon dioxide is observed around the TiO2 particles. This coating mainly occurs due to variance in the chemical reaction rates of the precursors. Finally, with regards to V–TiO2, vanadium is doped within the TiO2 nanoparticles as visualized by HRTEM and XPS further confirms the formation of

  14. Optical fuel spray measurements

    Energy Technology Data Exchange (ETDEWEB)

    Hillamo, H.

    2011-07-01

    Diesel fuel sprays, including fuel/air mixing and the physics of two-phase jet formation, are discussed in the thesis. The fuel/air mixing strongly affects emissions formation in spray combustion processes where the local combustion conditions dictate the emission formation. This study comprises optical measurements both in pressurized spray test rigs and in a running engine.The studied fuel injection was arranged with a common rail injection system and the injectors were operated with a solenoid-based injection valve. Both marine and heavy-duty diesel engine injectors were used in the study. Optical fuel spray measurements were carried out with a laser-based double-framing camera system. This kind of equipments is usually used for flow field measurements with Particle Image Velocimetry technique (PIV) as well as for backlight imaging. Fundamental fuel spray properties and spray formation were studied in spray test rigs. These measurements involved studies of mixing, atomization, and the flow field. Test rig measurements were used to study the effect of individual injection parameters and component designs. Measurements of the fuel spray flow field, spray penetration, spray tip velocity, spray angle, spray structure, droplet accumulation, and droplet size estimates are shown. Measurement campaign in a running optically accessible large-bore medium-speed engine was also carried out. The results from engine tests were compared with equivalent test rig measurements, as well as computational results, to evaluate the level of understanding of sprays. It was shown that transient spray has an acceleration and a deceleration phase. Successive flow field measurements (PIV) in optically dense diesel spray resulted in local and average velocity data of diesel sprays. Processing fuel spray generates a flow field to surrounding gas and entrainment of surrounding gas into fuel jet was also seen at the sides of the spray. Laser sheet imaging revealed the inner structure of diesel

  15. 3-D volume rendering visualization for calculated distributions of diesel spray; Diesel funmu kyodo suchi keisan kekka no sanjigen volume rendering hyoji

    Energy Technology Data Exchange (ETDEWEB)

    Yoshizaki, T; Imanishi, H; Nishida, K; Yamashita, H; Hiroyasu, H; Kaneda, K [Hiroshima University, Hiroshima (Japan)

    1997-10-01

    Three dimensional visualization technique based on volume rendering method has been developed in order to translate calculated results of diesel combustion simulation into realistically spray and flame images. This paper presents an overview of diesel combustion model which has been developed at Hiroshima University, a description of the three dimensional visualization technique, and some examples of spray and flame image generated by this visualization technique. 8 refs., 8 figs., 1 tab.

  16. Synthesis of nickel oxide nanospheres by a facile spray drying method and their application as anode materials for lithium ion batteries

    Energy Technology Data Exchange (ETDEWEB)

    Xiao, Anguo, E-mail: hixiaoanguo@126.com; Zhou, Shibiao; Zuo, Chenggang; Zhuan, Yongbing; Ding, Xiang

    2015-10-15

    Graphical abstract: NiO nanospheres prepared by a facile spray drying method show high lithium ion storage performance as anode of lithium ion battery. - Highlights: • NiO nanospheres are prepared by a spray drying method. • NiO nanospheres are composed of interconnected nanoparticles. • NiO nanospheres show good lithium ion storage properties. - Abstract: Fabrication of advanced anode materials is indispensable for construction of high-performance lithium ion batteries. In this work, nickel oxide (NiO) nanospheres are fabricated by a facial one-step spray drying method. The as-prepared NiO nanospheres show diameters ranging from 100 to 600 nm and are composed of nanoparticles of 30–50 nm. As an anode for lithium ion batteries, the electrochemical properties of the NiO nanospheres are investigated by cyclic voltammetry (CV) and galvanostatic charge/discharge tests. The specific reversible capacity of NiO nanospheres is 656 mA h g{sup −1} at 0.1 C, and 476 mA h g{sup −1} at 1 C. The improvement of electrochemical properties is attributed to nanosphere structure with large surface area and short ion/electron transfer path.

  17. Synthesis of nickel oxide nanospheres by a facile spray drying method and their application as anode materials for lithium ion batteries

    International Nuclear Information System (INIS)

    Xiao, Anguo; Zhou, Shibiao; Zuo, Chenggang; Zhuan, Yongbing; Ding, Xiang

    2015-01-01

    Graphical abstract: NiO nanospheres prepared by a facile spray drying method show high lithium ion storage performance as anode of lithium ion battery. - Highlights: • NiO nanospheres are prepared by a spray drying method. • NiO nanospheres are composed of interconnected nanoparticles. • NiO nanospheres show good lithium ion storage properties. - Abstract: Fabrication of advanced anode materials is indispensable for construction of high-performance lithium ion batteries. In this work, nickel oxide (NiO) nanospheres are fabricated by a facial one-step spray drying method. The as-prepared NiO nanospheres show diameters ranging from 100 to 600 nm and are composed of nanoparticles of 30–50 nm. As an anode for lithium ion batteries, the electrochemical properties of the NiO nanospheres are investigated by cyclic voltammetry (CV) and galvanostatic charge/discharge tests. The specific reversible capacity of NiO nanospheres is 656 mA h g −1 at 0.1 C, and 476 mA h g −1 at 1 C. The improvement of electrochemical properties is attributed to nanosphere structure with large surface area and short ion/electron transfer path

  18. Fixed automated spray technology.

    Science.gov (United States)

    2011-04-19

    This research project evaluated the construction and performance of Boschungs Fixed Automated : Spray Technology (FAST) system. The FAST system automatically sprays de-icing material on : the bridge when icing conditions are about to occur. The FA...

  19. Hair spray poisoning

    Science.gov (United States)

    ... this page: //medlineplus.gov/ency/article/002705.htm Hair spray poisoning To use the sharing features on this page, please enable JavaScript. Hair spray poisoning occurs when someone breathes in (inhales) ...

  20. Remotely controlled spray gun

    Science.gov (United States)

    Cunningham, William C. (Inventor)

    1987-01-01

    A remotely controlled spray gun is described in which a nozzle and orifice plate are held in precise axial alignment by an alignment member, which in turn is held in alignment with the general outlet of the spray gun by insert. By this arrangement, the precise repeatability of spray patterns is insured.

  1. Experimental and numerical analysis of the cooling performance of water spraying systems during a fire.

    Directory of Open Access Journals (Sweden)

    YaoHan Chen

    Full Text Available The water spray systems are effective protection systems in the confined or unconfined spaces to avoid the damage to building structures since the high temperature when fires occur. NFPA 15 and 502 have suggested respectively that the factories or vehicle tunnels install water spray systems to protect the machinery and structures. This study discussed the cooling effect of water spray systems in experimental and numerical analyses. The actual combustion of woods were compared with the numerical simulations. The results showed that although the flame continued, the cooling effects by water spraying process within 120 seconds were obvious. The results also indicated that the simulation results of the fifth version Fire Dynamics Simulator (FDS overestimated the space temperature before water spraying in the case of the same water spray system.

  2. Atomic spectrometry based on metallic tube atomizers heated by flame: Innovative strategies from fundamentals to analysis

    International Nuclear Information System (INIS)

    Arruda, Marco Aurelio Zezzi; Figueiredo, Eduardo Costa

    2009-01-01

    This review describes recent developments in atomic absorption spectrometry using metallic tube atomizers heated by flames. Sample introduction in spray or gaseous form is emphasized, describing some proposed systems for this task and the fundamentals involved in each context. The latest challenges and future possibilities for use of metallic tubes in atomic/mass spectrometry are also considered.

  3. Transition of carbon nanostructures in heptane diffusion flames

    Energy Technology Data Exchange (ETDEWEB)

    Hu, Wei-Chieh [National Cheng Kung University, Department of Mechanical Engineering (China); Hou, Shuhn-Shyurng [Kun Shan University, Department of Mechanical Engineering (China); Lin, Ta-Hui, E-mail: thlin@mail.ncku.edu.tw [National Cheng Kung University, Department of Mechanical Engineering (China)

    2017-02-15

    The flame synthesis has high potential in industrial production of carbon nanostructure (CNS). Unfortunately, the complexity of combustion chemistry leads to less controlling of synthesized products. In order to improve the understanding of the relation between flames and CNSs synthesized within, experiments were conducted through heptane flames in a stagnation-point liquid-pool system. The operating parameters for the synthesis include oxygen supply, sampling position, and sampling time. Two kinds of nanostructures were observed, carbon nanotube (CNT) and carbon nano-onion (CNO). CNTs were synthesized in a weaker flame near extinction. CNOs were synthesized in a more sooty flame. The average diameter of CNTs formed at oxygen concentration of 15% was in the range of 20–30 nm. For oxygen concentration of 17%, the average diameter of CNTs ranged from 24 to 27 nm, while that of CNOs was around 28 nm. For oxygen concentration of 19%, the average diameter of CNOs produced at the sampling position 0.5 mm below the flame front was about 57 nm, while the average diameters of CNOs formed at the sampling positions 1–2.5 mm below the flame front were in the range of 20–25 nm. A transition from CNT to CNO was observed by variation of sampling position in a flame. We found that the morphology of CNS is directly affected by the presence of soot layer due to the carbonaceous environment and the growth mechanisms of CNT and CNO. The sampling time can alter the yield of CNSs depending on the temperature of sampling position, but the morphology of products is not affected.

  4. Strained flamelets for turbulent premixed flames II: Laboratory flame results

    Energy Technology Data Exchange (ETDEWEB)

    Kolla, H.; Swaminathan, N. [Department of Engineering, Cambridge University, Cambridge CB2 1PZ (United Kingdom)

    2010-07-15

    The predictive ability of strained flamelets model for turbulent premixed flames is assessed using Reynolds Averaged Navier Stokes (RANS) calculations of laboratory flames covering a wide range of conditions. Reactant-to-product (RtP) opposed flow laminar flames parametrised using the scalar dissipation rate of reaction progress variable are used as strained flamelets. Two turbulent flames: a rod stabilised V-flame studied by Robin et al. [Combust. Flame 153 (2008) 288-315] and a set of pilot stabilised Bunsen flames studied by Chen et al. [Combust. Flame 107 (1996) 223-244] are calculated using a single set of model parameters. The V-flame corresponds to the corrugated flamelets regime. The strained flamelet model and an unstrained flamelet model yield similar predictions which are in good agreement with experimental measurements for this flame. On the other hand, for the Bunsen flames which are in the thin reaction zones regime, the unstrained flamelet model predicts a smaller flame brush compared to experiment. The predictions of the strained flamelets model allowing for fluid-dynamics stretch induced attenuation of the chemical reaction are in good agreement with the experimental data. This model predictions of major and minor species are also in good agreement with experimental data. The results demonstrate that the strained flamelets model using the scalar dissipation rate can be used across the combustion regimes. (author)

  5. Bulk synthesis by spray forming of Al–Cu–Fe and Al–Cu–Fe–Sn alloys containing a quasicrystalline phase

    International Nuclear Information System (INIS)

    Srivastava, V.C.; Huttunen-Saarivirta, E.; Cui, C.; Uhlenwinkel, V.; Schulz, A.; Mukhopadhyay, N.K.

    2014-01-01

    Highlights: • 40 kg Bulk material spray formed based on Al–Cu–Fe and Al–Cu–Fe + Sn. • Deposited Al–Cu–Fe alloy showed single phase bulk quasicrystals(QC). • DSC, XRD and microscopic analyses were done to ascertain the QC nature. • Sn does not help in single phase quasicrystal formation in the deposit. • The possible structural evolution mechanisms have been discussed in detail. - Abstract: In this study, Al–Cu–Fe alloys without and with the addition of Sn and containing a quasicrystalline phase were spray deposited. The spray-deposited bulk materials were characterized in terms of microstructure and hardness. The results showed that the Al 62.5 Cu 25 Fe 12.5 alloy contains the icosahedral quasicrystalline phase (i-phase) along with the minor λ-Al 13 Fe 4 phase, whereas the Al 62.5 Cu 25 Fe 12.5 + Sn alloy contains five phases: the major i-phase and the crystalline phases of Sn, θ-Al 2 Cu, λ-Al 13 Fe 4 and β-AlFe(Cu) phases. These results have been corroborated by X-ray diffraction (XRD), scanning and transmission electron microscopies (SEM and TEM) and differential scanning calorimetry (DSC). The hardness value of the Al–Cu–Fe alloy reached 10.5 GPa at 50 g load and then decreased steadily with increase in the applied load, while that for Al–Cu–Fe–Sn alloy it was originally somewhat lower, then decreased dramatically with slight increase in the applied load but stayed constant with further load increase. The hardness indentations in Al–Cu–Fe alloy introduced cracking in the material, whereas in the case of Al–Cu–Fe–Sn alloy the Sn-rich areas inhibited the crack growth. The present study provides an insight into the mechanism of phase and microstructural evolutions during spray forming of the studied alloys. Furthermore, the role of Sn in terms of microstructure and properties is highlighted

  6. ZrO2 coatings on stainless steel by aerosol thermal spraying

    International Nuclear Information System (INIS)

    Di Giampaolo, A.R.; Reveron, H.; Ruiz, H.; Poirier, T.; Lira, J.

    1998-01-01

    Zirconia coatings, with a wide range of thickness (1 to 80 μ) have been obtained by spraying a ZrO 2 sol with an oxyacetylenic flame, on stainless steel substrates. The sol was prepared by mixing Zr-n-propoxide and acetic acid in order to obtain a zirconium oxyacetate precipitate, which was filtrated, washed with 1-propanol, dryed and subjected to an hydrothermal treatment. A new sol-gel based ceramic deposition process , aerosol thermal spraying was developed based on previous thermal spray work. A compressed air spray gun was used to produce a fine aerosol flow which was injected in the flame of the thermal spray torch and deposited on polished and sand blasted substrates. This original technique allows simultaneous spraying, drying and partial sintering of the zirconia nanometric particles. The maximum working temperature necessary to yield a resistant coating is 1000 deg C. This method produced crack-free homogeneous layers of monoclinic ZrO 2 with good adhesion to the substrate and low porosity, as shown by X-ray diffraction and scanning electron microscopy. Oxidation test, carried out by heat treatments in air atmosphere at 800 deg C indicated good protection, mainly for low thickness coatings deposited in polished substrates. This original deposition technique offers several advantages when compared with classical thermal spraying techniques, such as plasma spraying. Copyright (1998) AD-TECH - International Foundation for the Advancement of Technology Ltd

  7. A novel lead imprinted polymer as the selective solid phase for extraction and trace detection of lead ions by flame atomic absorption spectrophotometry: Synthesis, characterization and analytical application

    Directory of Open Access Journals (Sweden)

    Homeira Ebrahimzadeh

    2017-05-01

    Full Text Available A novel ion imprinted polymer as the selective solid phase combined with flame atomic absorption spectrometry (FAAS was applied for preconcentration and determination of lead in real samples. In the first step, Pb(II-IIP was synthesized by copolymerization of 2-vinyl pyridine as the functional monomer, ethylene glycol dimethacrylate as the cross-linker, 2,2-azobisisobutyronitrile as the initiator that imprinted with Pb(II as the template ion, 2-amino pyridine as the ligand. Subsequently, the imprinted Pb(II was completely removed by leaching the dried and powdered imprinted polymer with HCl (2 mol L−1. This polymer was characterized by Fourier Transform Infrared (FT-IR spectrometer. The effect of different variables on the extraction efficiency such as type and volume of eluent for extraction, solution’s pH for adsorption, sorption and desorption times was evaluated. Under the optimum conditions: type of eluent, HCl (2 mol L−1; volume of eluent, 5 mL; solution’s pH for sorption, 5; sorption time, 90 min; desorption time, 125 min and breakthrough volume of 750 mL were obtained. Preconcentration factor of the method was about 150. The limit of detection was obtained 0.75 μg L−1 and a dynamic linear range (DLR of 3–150 μg L−1 was found. The maximum sorption retention capacity of Pb(II ions on the imprinted polymer was 85.6 mg g−1. The prepared ion-imprinted polymer particles have an increased selectivity toward Pb(II ions over a range of competing metal ions with the same charge and similar ionic radius. Performance of the present method was evaluated for extraction and determination of Pb(II in water samples at microgram per liter concentration and satisfactory results were obtained (RSD = 2.7%.

  8. Aligned, plasma sprayed SmCo5 deposits

    International Nuclear Information System (INIS)

    Kumar, K.; Das, D.

    1986-01-01

    Highly aligned SmCo 5 deposits were produced using plasma spraying. c-axis alignment, normal to the plane of the deposit, was achieved by depositing the Sm-Co alloys on steel substrates maintained at high temperatures. The substrates were heated by the plasma flame to obtain the high temperatures. The attainment of a range of substrate temperatures was made possible through control over the geometry of the substrate

  9. Development & characterization of alumina coating by atmospheric plasma spraying

    Science.gov (United States)

    Sebastian, Jobin; Scaria, Abyson; Kurian, Don George

    2018-03-01

    Ceramic coatings are applied on metals to prevent them from oxidation and corrosion at room as well as elevated temperatures. The service environment, mechanisms of protection, chemical and mechanical compatibility, application method, control of coating quality and ability of the coating to be repaired are the factors that need to be considered while selecting the required coating. The coatings based on oxide materials provides high degree of thermal insulation and protection against oxidation at high temperatures for the underlying substrate materials. These coatings are usually applied by the flame or plasma spraying methods. The surface cleanliness needs to be ensured before spraying. Abrasive blasting can be used to provide the required surface roughness for good adhesion between the substrate and the coating. A pre bond coat like Nickel Chromium can be applied on to the substrate material before spraying the oxide coating to avoid chances of poor adhesion between the oxide coating and the metallic substrate. Plasma spraying produces oxide coatings of greater density, higher hardness, and smooth surface finish than that of the flame spraying process Inert gas is often used for generation of plasma gas so as to avoid the oxidation of the substrate material. The work focuses to develop, characterize and optimize the parameters used in Al2O3 coating on transition stainless steel substrate material for minimizing the wear rate and maximizing the leak tightness using plasma spray process. The experiment is designed using Taguchi’s L9 orthogonal array. The parameters that are to be optimized are plasma voltage, spraying distance and the cooling jet pressure. The characterization techniques includes micro-hardness and porosity tests followed by Grey relational analysis of the results.

  10. Synthesis and characterization of ZnO–CuO nanocomposites powder by modified perfume spray pyrolysis method and its antimicrobial investigation

    Science.gov (United States)

    Saravanakkumar, D.; Sivaranjani, S.; Kaviyarasu, K.; Ayeshamariam, A.; Ravikumar, B.; Pandiarajan, S.; Veeralakshmi, C.; Jayachandran, M.; Maaza, M.

    2018-03-01

    Pure ZnO, ZnO–CuO nanocomposites can be synthesized by using a modified perfume spray pyrolysis method (MSP). The crystallite size of the nanoparticles (NPs) has been observed by X-ray diffraction pattern and is nearly 36 nm. Morphological studies have been analyzed by using Field Emission Scanning Electron Microscopy (FESEM) and its elemental analysis was reported by Elemental X-ray Analysis (EDX); these studies confirmed that ZnO and CuO have hexagonal structure and monoclinic structure respectively. Fourier Transform Infrared (FTIR) spectra revealed that the presence of functional frequencies of ZnO and CuO were observed at 443 and 616 cm‑1. The average bandgap value at 3.25 eV using UV–vis spectra for the entitled composite has described a blue shift that has been observed here. The antibacterial study against both gram positive and negative bacteria has been studied by the disc diffusion method. To the best of our knowledge, it is the first report on ZnO–CuO nanocomposite synthesized by a modified perfume spray pyrolysis method.

  11. Flaming on YouTube

    NARCIS (Netherlands)

    Moor, Peter J.; Heuvelman, A.; Verleur, R.

    2010-01-01

    In this explorative study, flaming on YouTube was studied using surveys of YouTube users. Flaming is defined as displaying hostility by insulting, swearing or using otherwise offensive language. Three general conclusions were drawn. First, although many users said that they themselves do not flame,

  12. CFD simulations on marine burner flames

    DEFF Research Database (Denmark)

    Cafaggi, Giovanni; Jensen, Peter Arendt; Glarborg, Peter

    The marine industry is changing with new demands concerning high energy efficiency, fuel flexibility and lower emissions of NOX and SOX. A collaboration between the company Alfa Laval and Technical University of Denmark has been established to support the development of the next generation...... of marine burners. The resulting auxiliary boilers shall be compact and able to operate with different fuel types, while reducing NOX emissions. The specific boiler object of this study uses a swirl stabilized liquid fuel burner, with a pressure swirl spill-return atomizer (Fig.1). The combustion chamber...... is enclosed in a water jacket used for water heating and evaporation, and a convective heat exchanger at the furnace outlet super-heats the steam. The purpose of the present study is to gather detailed knowledge about the influence of fuel spray conditions on marine utility boiler flames. The main goal...

  13. Stratified turbulent Bunsen flames : flame surface analysis and flame surface density modelling

    NARCIS (Netherlands)

    Ramaekers, W.J.S.; Oijen, van J.A.; Goey, de L.P.H.

    2012-01-01

    In this paper it is investigated whether the Flame Surface Density (FSD) model, developed for turbulent premixed combustion, is also applicable to stratified flames. Direct Numerical Simulations (DNS) of turbulent stratified Bunsen flames have been carried out, using the Flamelet Generated Manifold

  14. Direct numerical simulation of two-phases turbulent combustion: application to study of propagation and structure of flames; Simulation numerique directe de la combustion turbulente diphasique: application a l'etude de la propagation et de la structure des flammes

    Energy Technology Data Exchange (ETDEWEB)

    Canneviere, K.

    2003-12-15

    This work is devoted to the study of the propagation and the structure of two-phases turbulent flames. To this end, Direct Numerical Simulations (DNS) are used. First, numerical systems for two-phases flow simulations is presented along with a specific chemical model. Then, a study of laminar spray flames is carried out. An analytical study related to the dynamics of evaporation of droplets is first proposed where the influence on the equivalence ratio of the ratio between the heating delay of the droplet and the evaporation delay is detailed. The simulation of a propagating flame through a cloud of droplets is carried out and a pulsating behavior is highlighted. A study of these flames according to the topology of liquid fuel enabled us to characterize a double flame structure composed of a premixed flame and a diffusion flame. Our last study is devoted to spray turbulent flames. Two-phase combustion of turbulent jets has been simulated. By varying the spray injection parameters (density, equivalence ratio), a database has been generated. This database allowed us to describe local and global flame regimes appearing in the combustion of sprays. They have been categorized in four main structures: open and closed external regime, group combustion and mixed combustion. Eventually, a combustion diagram has been developed. It involves the spray vaporization time, the mean inter-space between droplets or group of droplets and eventually the injected equivalence ratio. (author)

  15. Vision-aided Monitoring and Control of Thermal Spray, Spray Forming, and Welding Processes

    Science.gov (United States)

    Agapakis, John E.; Bolstad, Jon

    1993-01-01

    Vision is one of the most powerful forms of non-contact sensing for monitoring and control of manufacturing processes. However, processes involving an arc plasma or flame such as welding or thermal spraying pose particularly challenging problems to conventional vision sensing and processing techniques. The arc or plasma is not typically limited to a single spectral region and thus cannot be easily filtered out optically. This paper presents an innovative vision sensing system that uses intense stroboscopic illumination to overpower the arc light and produce a video image that is free of arc light or glare and dedicated image processing and analysis schemes that can enhance the video images or extract features of interest and produce quantitative process measures which can be used for process monitoring and control. Results of two SBIR programs sponsored by NASA and DOE and focusing on the application of this innovative vision sensing and processing technology to thermal spraying and welding process monitoring and control are discussed.

  16. Direct Flame Impingement

    Energy Technology Data Exchange (ETDEWEB)

    None

    2005-09-01

    During the DFI process, high velocity flame jets impinge upon the material being heated, creating a high heat transfer rate. As a result, refractory walls and exhaust gases are cooler, which increases thermal efficiency and lowers NOx emissions. Because the jet nozzles are located a few inches from the load, furnace size can be reduced significantly.

  17. Synthesis, characterization and decomposition studies of tris(N,N-dibenzyldithiocarbamato)indium(III): chemical spray deposition of polycrystalline CuInS2 on copper films

    International Nuclear Information System (INIS)

    Hehemann, David G.; Lau, J. Eva; Harris, Jerry D.; Hoops, Michael D.; Duffy, Norman V.; Fanwick, Philip E.; Khan, Osman; Jin, Michael H.-C.; Hepp, Aloysius F.

    2005-01-01

    Tris(bis(phenylmethyl)carbamodithioato-S,S'), commonly referred to as tris(N,N-dibenzyldithiocarbamato)indium(III), In(S 2 CNBz 2 ) 3 , was synthesized and characterized by single crystal X-ray crystallography. The compound crystallizes in the triclinic space group P1-bar with two molecules per unit cell. The material was further characterized using a novel analytical system employing the combined powers of thermogravimetric analysis, gas chromatography/mass spectrometry, and Fourier transform infrared (FT-IR) spectroscopy to investigate its potential use as a precursor for the chemical vapor deposition (CVD) of thin film materials for photovoltaic applications. Upon heating, the material thermally decomposes to release CS 2 and benzyl moieties in to the gas phase, resulting in bulk In 2 S 3 . Preliminary spray CVD experiments indicate that In(S 2 CNBz 2 ) 3 decomposed on a Cu substrate reacts to produce stoichiometric CuInS 2 films

  18. Synthesis, Characterization and Decomposition Studies of Tris(N,N-dibenzyldithiocarbamato) Indium(III): Chemical Spray Deposition of Polycrystalline CuInS2 on Copper Films

    Science.gov (United States)

    Hehemann, David G.; Lau, J. Eva; Harris, Jerry D.; Hoops, Michael D.; Duffy, Norman V.; Fanwick, Philip E.; Khan, Osman; Jin, Michael H.-C.; Hepp, Aloysius F.

    2005-01-01

    Tris(bis(phenylmethyl)carbamodithioato-S,S ), commonly referred to as tris(N,Ndibenzyldithiocarbamato) indium(III), In(S2CNBz2)3, was synthesized and characterized by single crystal X-ray crystallography. The compound crystallizes in the triclinic space group P1 bar with two molecules per unit cell. The material was further characterized using a novel analytical system employing the combined powers of thermogravimetric analysis, gas chromatography/mass spectrometry and Fourier-Transform infrared spectroscopy to investigate its potential use as a precursor for the chemical vapor deposition (CVD) of thin film materials for photovoltaic applications. Upon heating, the material thermally decomposes to release CS2 and benzyl moieties in to the gas phase, resulting in bulk In2S3. Preliminary spray CVD experiments indicate that In(S2CNBz2)3 decomposed on a Cu substrate reacts to produce stoichiometric CuInS2 films.

  19. Flame visualization in power stations

    Energy Technology Data Exchange (ETDEWEB)

    Hulshof, H J.M.; Thus, A W; Verhage, A J.L. [KEMA - Fossil Power Plants, Arnhem (Netherlands)

    1993-01-01

    The shapes and temperature of flames in power stations, fired with powder coal and gas, have been measured optically. Spectral information in the visible and near infrared is used. Coal flames are visualized in the blue part of the spectrum, natural gas flames are viewed in the light of CH-emission. Temperatures of flames are derived from the best fit of the Planck-curve to the thermal radiation spectrum of coal and char, or to that of soot in the case of gas flames. A measuring method for the velocity distribution inside a gas flame is presented, employing pulsed alkali salt injection. It has been tested on a 100 kW natural gas flame. 3 refs., 9 figs.

  20. Structural and photocatalytic characteristics of TiO2 coatings produced by various thermal spray techniques

    Czech Academy of Sciences Publication Activity Database

    Ctibor, Pavel; Štengl, Václav; Pala, Zdeněk

    2013-01-01

    Roč. 2, č. 3 (2013), s. 218-226 ISSN 2226-4108 R&D Projects: GA ČR(CZ) GAP108/12/1872 Institutional support: RVO:61389021 ; RVO:61388980 Keywords : plasma spraying * high velocity oxy–fuel (HVOF) spraying * flame spraying * titanium dioxide (TiO2) * photocatalysis * band gap Subject RIV: BL - Plasma and Gas Discharge Physics; CA - Inorganic Chemistry (UACH-T) http://www.springerlink.com/openurl.asp?genre=article&id=doi:10.1007/s40145-013-0063-z

  1. 3rd International Workshop on Turbulent Spray Combustion

    CERN Document Server

    Gutheil, Eva

    2014-01-01

    This book reflects the results of the 2nd and 3rd International Workshops on Turbulent Spray Combustion. The focus is on progress in experiments and numerical simulations for two-phase flows, with emphasis on spray combustion. Knowledge of the dominant phenomena and their interactions allows development of predictive models and their use in combustor and gas turbine design. Experts and young researchers present the state-of-the-art results, report on the latest developments and exchange ideas in the areas of experiments, modelling and simulation of reactive multiphase flows. The first chapter reflects on flame structure, auto-ignition and atomization with reference to well-characterized burners, to be implemented by modellers with relative ease. The second chapter presents an overview of first simulation results on target test cases, developed at the occasion of the 1st International Workshop on Turbulent Spray Combustion. In the third chapter, evaporation rate modelling aspects are covered, while the fourth ...

  2. Gas-phase synthesis of magnetic metal/polymer nanocomposites

    Science.gov (United States)

    Starsich, Fabian H. L.; Hirt, Ann M.; Stark, Wendelin J.; Grass, Robert N.

    2014-12-01

    Highly magnetic metal Co nanoparticles were produced via reducing flame spray pyrolysis, and directly coated with an epoxy polymer in flight. The polymer content in the samples varied between 14 and 56 wt% of nominal content. A homogenous dispersion of Co nanoparticles in the resulting nanocomposites was visualized by electron microscopy. The size and crystallinity of the metallic fillers was not affected by the polymer, as shown by XRD and magnetic hysteresis measurements. The good control of the polymer content in the product nanocomposite was shown by elemental analysis. Further, the successful polymerization in the gas phase was demonstrated by electron microscopy and size measurements. The presented effective, dry and scalable one-step synthesis method for highly magnetic metal nanoparticle/polymer composites presented here may drastically decrease production costs and increase industrial yields.

  3. Spray combustion of Jet-A and diesel fuels in a constant volume combustion chamber

    KAUST Repository

    Jing, Wei

    2015-01-01

    This work investigates the spray combustion of Jet-A fuel in an optical constant-volume combustion chamber under different ambient initial conditions. Ambient temperature was varied at 800 K, 1000 K, and 1200 K and five different ambient O2 concentrations were used, spanning 10-21%. These ambient conditions can be used to mimic practical diesel engine working conditions under different fuel injection timings and exhaust gas recirculation (EGR) levels. Both transient and quasi-steady state analyses were conducted. The transient analysis focused on the flame development from the beginning to the end of the combustion process, illustrating how the flame structure evolves with time. The quasi-steady state analysis concentrated on the stable flame structure and compared the flame emissions in terms of spatially integrated intensity, flame effective area, and intensity per pixel. The transient analysis was based on measurements using high-speed imaging of both OH∗ chemiluminescence and broadband natural luminosity (NL). For the quasi-steady state analysis, three flame narrow-band emissions (OH∗ at 310 nm, Band A at 430 nm and Band B at 470 nm) were captured using an ICCD camera. Based on the current Jet-A data and diesel data obtained from previous experiments, a comparison between Jet-A and diesel was made in terms of flame development during the transient state and spatially integrated intensity, flame effective area, and intensity per pixel during the quasi-steady state. For the transient results, Jet-A shares a similar flame development trend to diesel, but featuring a narrower region of NL and a wider region of OH∗ with the increase of ambient temperature and O2 concentration. The soot cloud is oxidized more quickly for Jet-A than diesel at the end of combustion, evident by comparing the area of NL, especially under high O2 concentration. The quasi-steady state results suggest that soot is oxidized effectively under high O2 concentration conditions by the

  4. Cold spray nozzle design

    Science.gov (United States)

    Haynes, Jeffrey D [Stuart, FL; Sanders, Stuart A [Palm Beach Gardens, FL

    2009-06-09

    A nozzle for use in a cold spray technique is described. The nozzle has a passageway for spraying a powder material, the passageway having a converging section and a diverging section, and at least the diverging section being formed from polybenzimidazole. In one embodiment of the nozzle, the converging section is also formed from polybenzimidazole.

  5. Development of Combustion Tube for Gaseous, Liquid, and Solid Fuels to Study Flame Acceleration and DDT

    Science.gov (United States)

    Graziano, Tyler J.

    An experimental combustion tube of 20 ft. in length and 10.25 in. in internal diameter was designed and fabricated in order to perform combustion tests to study deflagration rates, flame acceleration, and the possibility of DDT. The experiment was designed to allow gaseous, liquid, or solid fuels, or any combination of the three to produce a homogenous fuel/air mixture within the tube. Combustion tests were initiated with a hydrogen/oxygen torch igniter and the resulting flame behavior was measured with high frequency ion probes and pressure transducers. Tests were performed with a variety of gaseous and liquid fuels in an unobstructed tube with a closed ignition end and open muzzle. The flame performance with the gaseous fuels is loosely correlated with the expansion ratio, while there is a stronger correlation with the laminar flame speed. The strongest correlation to flame performance is the run-up distance scaling factor. This trend was not observed with the liquid fuels. The reason for this is likely due to incomplete evaporation of the liquid fuel droplets resulting in a partially unburned mixture, effectively altering the intended equivalence ratio. Results suggest that the simple theory for run-up distance and flame acceleration must be modified to more accurately predict the behavior of gaseous fuels. Also, it is likely that more complex spray combustion modeling is required to accurately predict the flame behavior for liquid fuels.

  6. Antimony: a flame fighter

    Science.gov (United States)

    Wintzer, Niki E.; Guberman, David E.

    2015-01-01

    Antimony is a brittle, silvery-white semimetal that conducts heat poorly. The chemical compound antimony trioxide (Sb2O3) is widely used in plastics, rubbers, paints, and textiles, including industrial safety suits and some children’s clothing, to make them resistant to the spread of flames. Also, sodium antimonate (NaSbO3) is used during manufacturing of high-quality glass, which is found in cellular phones.

  7. Residual stress determination in thermally sprayed metallic deposits by neutron diffraction

    International Nuclear Information System (INIS)

    Keller, Thomas; Margadant, Nikolaus; Pirling, Thilo; Riegert-Escribano, Maria J.; Wagner, Werner

    2004-01-01

    Neutron diffraction was used to obtain spatially resolved strain and stress profiles in thermally sprayed metallic 'NiCrAlY' deposits (chemical composition 67 wt.% Ni, 22 wt.% Cr, 10 wt.% Al, 1 wt.% Y) and the underlying steel substrates. Samples of four different spray techniques were analyzed: atmospheric and water stabilized plasma spraying (APS and WSP), flame spraying (FS) and wire arc spraying (WAS). The results are quantitatively compared with the average in-plane residual stress determined by complementary bending tests and the hole drilling technique. While the stress profiles from the surface to the interface in the deposits are similar for all investigated spray techniques, their absolute values and gradients vary strongly. This is attributed to different quenching stresses from the impinging particles, different thermal histories the deposit/substrate systems undergo during the spraying and subsequent cooling, and also to different coating properties. In the water stabilized plasma sprayed and the wire arc sprayed deposits, a gradient in the stress-free lattice parameter was observed. Crack formation is found to be a dominant mechanism for stress relaxation in the surface plane

  8. Residual stress determination in thermally sprayed metallic deposits by neutron diffraction

    Energy Technology Data Exchange (ETDEWEB)

    Keller, Thomas; Margadant, Nikolaus; Pirling, Thilo; Riegert-Escribano, Maria J.; Wagner, Werner

    2004-05-25

    Neutron diffraction was used to obtain spatially resolved strain and stress profiles in thermally sprayed metallic 'NiCrAlY' deposits (chemical composition 67 wt.% Ni, 22 wt.% Cr, 10 wt.% Al, 1 wt.% Y) and the underlying steel substrates. Samples of four different spray techniques were analyzed: atmospheric and water stabilized plasma spraying (APS and WSP), flame spraying (FS) and wire arc spraying (WAS). The results are quantitatively compared with the average in-plane residual stress determined by complementary bending tests and the hole drilling technique. While the stress profiles from the surface to the interface in the deposits are similar for all investigated spray techniques, their absolute values and gradients vary strongly. This is attributed to different quenching stresses from the impinging particles, different thermal histories the deposit/substrate systems undergo during the spraying and subsequent cooling, and also to different coating properties. In the water stabilized plasma sprayed and the wire arc sprayed deposits, a gradient in the stress-free lattice parameter was observed. Crack formation is found to be a dominant mechanism for stress relaxation in the surface plane.

  9. Aluminium-12wt% silicon coating prepared by thermal spraying technique: Part 1 optimization of spray condition based on a design of experiment

    Directory of Open Access Journals (Sweden)

    Jiansirisomboon, S.

    2006-03-01

    Full Text Available At present, thermal spray technology is used for maintenance parts of various machines in many industries. This technology can be used to improve the surface wear resistance. Therefore, this technology can significantly reduce cost of manufacturing. Al-12wt%Si alloy is an interesting and popular material used in the automotive industry. This research studies the suitable condition for spraying of Al-12wt%Si powder. This powder was sprayed by a flame spray technique onto low carbon steel substrates. The suitable conditions for spraying can be achieved by a design of experiment (DOE principle, which provided statistical data defined at 90% confidence. This research used control factors, which were oxygen flow rate, acetylene flow rate and spray distance. The satisfaction levels of these factors were set at 3 levels, i.e. low, medium and high, in order to determine suitable responses, which were hardness, thickness, wear rate and percentage volume fraction of porosity. It was found that the optimized condition for spraying Al-12wt%Si powder consisted of 38 ft3/hr (1.026 m3/hr of oxygen flow rate, 27 ft3/hr (0.729 m3/hr of acetylene flow rate and 58 mm of spray distance.

  10. Subwoofer and nanotube butterfly acoustic flame extinction

    NARCIS (Netherlands)

    Aliev, Ali E.; Mayo, Nathanael K.; Baughman, Ray H.; Mills, Brent T.; Habtour, Ed

    2017-01-01

    Nonchemical flame control using acoustic waves from a subwoofer and a lightweight carbon nanotube thermoacoustic projector was demonstrated. The intent was to manipulate flame intensity, direction and propagation. The mechanisms of flame suppression using low frequency acoustic waves were discussed.

  11. Invited Review. Combustion instability in spray-guided stratified-charge engines. A review

    Energy Technology Data Exchange (ETDEWEB)

    Fansler, Todd D. [Univ. of Wisconsin, Madison, WI (United States); Reuss, D. L. [Univ. of Michigan, Ann Arbor, MI (United States); Sandia National Lab. (SNL-CA), Livermore, CA (United States); Sick, V. [Univ. of Michigan, Ann Arbor, MI (United States); Dahms, R. N. [Sandia National Lab. (SNL-CA), Livermore, CA (United States)

    2015-02-02

    Our article reviews systematic research on combustion instabilities (principally rare, random misfires and partial burns) in spray-guided stratified-charge (SGSC) engines operated at part load with highly stratified fuel -air -residual mixtures. Results from high-speed optical imaging diagnostics and numerical simulation provide a conceptual framework and quantify the sensitivity of ignition and flame propagation to strong, cyclically varying temporal and spatial gradients in the flow field and in the fuel -air -residual distribution. For SGSC engines using multi-hole injectors, spark stretching and locally rich ignition are beneficial. Moreover, combustion instability is dominated by convective flow fluctuations that impede motion of the spark or flame kernel toward the bulk of the fuel, coupled with low flame speeds due to locally lean mixtures surrounding the kernel. In SGSC engines using outwardly opening piezo-electric injectors, ignition and early flame growth are strongly influenced by the spray's characteristic recirculation vortex. For both injection systems, the spray and the intake/compression-generated flow field influence each other. Factors underlying the benefits of multi-pulse injection are identified. Finally, some unresolved questions include (1) the extent to which piezo-SGSC misfires are caused by failure to form a flame kernel rather than by flame-kernel extinction (as in multi-hole SGSC engines); (2) the relative contributions of partially premixed flame propagation and mixing-controlled combustion under the exceptionally late-injection conditions that permit SGSC operation on E85-like fuels with very low NOx and soot emissions; and (3) the effects of flow-field variability on later combustion, where fuel-air-residual mixing within the piston bowl becomes important.

  12. On the theory of turbulent flame velocity

    OpenAIRE

    Bychkov, Vitaly; Akkerman, Vyacheslav; Petchenko, Arkady

    2012-01-01

    The renormalization ideas of self-similar dynamics of a strongly turbulent flame front are applied to the case of a flame with realistically large thermal expansion of the burning matter. In that case a flame front is corrugated both by external turbulence and the intrinsic flame instability. The analytical formulas for the velocity of flame propagation are obtained. It is demonstrated that the flame instability is of principal importance when the integral turbulent length scale is much large...

  13. Investigation of a flame holder geometry effect on flame structure in non-premixed combustion

    International Nuclear Information System (INIS)

    Hashemi, S. A.; Hajialigol, N.; Fattahi, A.; Heydari, R.; Mazaheri, K.

    2013-01-01

    In this paper the effect of flame holder geometry on flame structure is studied. The obtained numerical results using realizable k-ε and β-PDF models show a good agreement with experimental data. The results show that increasing in flame holder length decreases flame length and increases flame temperature. Additionally, it is observed that flame lengths decrease by increasing in flame holder radius and increase for larger radii. Furthermore in various radii, the flame temperature is higher for smaller flame lengths. It was found that behavior of flame structure is mainly affected by the mass flow rate of hot gases that come near the reactant by the recirculation zone.

  14. Investigation of a flame holder geometry effect on flame structure in non-premixed combustion

    Energy Technology Data Exchange (ETDEWEB)

    Hashemi, S. A.; Hajialigol, N.; Fattahi, A.; Heydari, R. [University of Kashan, Kashan (Iran, Islamic Republic of); Mazaheri, K. [University of Tarbiat Moddares, Tehran (Iran, Islamic Republic of)

    2013-11-15

    In this paper the effect of flame holder geometry on flame structure is studied. The obtained numerical results using realizable k-ε and β-PDF models show a good agreement with experimental data. The results show that increasing in flame holder length decreases flame length and increases flame temperature. Additionally, it is observed that flame lengths decrease by increasing in flame holder radius and increase for larger radii. Furthermore in various radii, the flame temperature is higher for smaller flame lengths. It was found that behavior of flame structure is mainly affected by the mass flow rate of hot gases that come near the reactant by the recirculation zone.

  15. Electrostatically atomised hydrocarbon sprays

    Energy Technology Data Exchange (ETDEWEB)

    Yule, A.J.; Shrimpton, J.S.; Watkins, A.P.; Balachandran, W.; Hu, D. [UMIST, Manchester (United Kingdom). Thermofluids Division, Dept. of Mechanical Engineering

    1995-07-01

    A burner using an electrostatic method to produce and control a fuel spray is investigated for non-burning sprays. The burner has a charge injection nozzle and the liquid flow rate and charge injection rate are varied using hydrocarbon liquids of differing viscosities, surface tensions and electrical conductivities (kerosene, white spirit and diesel oil). Droplet size distributions are measured and it is shown how the dropsize, spray pattern, breakup mechanism and breakup length depend on the above variables, and in particular on the specific charge achieved in the spray. The data are valuable for validating two computer models under development. One predicts the electric field and flow field inside the nozzle as a function of emitter potential, geometry and flow rate. The other predicts the effect of charge on spray dispersion, with a view to optimizing spray combustion. It is shown that electrostatic disruptive forces can be used to atomize oils at flow rates commensurate with practical combustion systems and that the charge injection technique is particularly suitable for highly resistive liquids. Possible limitations requiring further research include the need to control the wide spray angle, which may provide fuel-air mixtures too lean near the nozzle, and the need to design for maximum charge injection rate, which is thought to be limited by corona breakdown in the gas near the nozzle orifice. 30 refs., 15 figs., 1 tab.

  16. Thermal Arc Spray Overview

    Science.gov (United States)

    Hafiz Abd Malek, Muhamad; Hayati Saad, Nor; Kiyai Abas, Sunhaji; Mohd Shah, Noriyati

    2013-06-01

    Usage of protective coating for corrosion protection was on highly demand during the past decade; and thermal spray coating played a major part during that time. In recent years, the thermal arc spray coating becomes a popular coating. Many big players in oil and gas such as PETRONAS, EXXON MOBIL and SHELL in Malaysia tend to use the coating on steel structure as a corrosion protection. Further developments in coating processes, the devices, and raw materials have led to expansion of functional coatings and applications scope from conventional coating to specialized industries. It is widely used because of its ability to withstand high process temperature, offer advantages in efficiency, lower cost and acts as a corrosion protection. Previous research also indicated that the thermal arc spray offers better coating properties compared to other methods of spray. This paper reviews some critical area of thermal spray coating by discussing the process/parameter of thermal arc spray technology and quality control of coating. Coating performance against corrosion, wear and special characteristic of coating are also described. The field application of arc spray technology are demonstrated and reviewed.

  17. Thermal Arc Spray Overview

    International Nuclear Information System (INIS)

    Malek, Muhamad Hafiz Abd; Saad, Nor Hayati; Abas, Sunhaji Kiyai; Shah, Noriyati Mohd

    2013-01-01

    Usage of protective coating for corrosion protection was on highly demand during the past decade; and thermal spray coating played a major part during that time. In recent years, the thermal arc spray coating becomes a popular coating. Many big players in oil and gas such as PETRONAS, EXXON MOBIL and SHELL in Malaysia tend to use the coating on steel structure as a corrosion protection. Further developments in coating processes, the devices, and raw materials have led to expansion of functional coatings and applications scope from conventional coating to specialized industries. It is widely used because of its ability to withstand high process temperature, offer advantages in efficiency, lower cost and acts as a corrosion protection. Previous research also indicated that the thermal arc spray offers better coating properties compared to other methods of spray. This paper reviews some critical area of thermal spray coating by discussing the process/parameter of thermal arc spray technology and quality control of coating. Coating performance against corrosion, wear and special characteristic of coating are also described. The field application of arc spray technology are demonstrated and reviewed.

  18. Reactor container spray device

    International Nuclear Information System (INIS)

    Yanai, Ryoichi.

    1980-01-01

    Purpose: To enable decrease in the heat and the concentration of radioactive iodine released from the reactor vessel into the reactor container in the spray device of BWR type reactors. Constitution: A plurality of water receiving trays are disposed below the spray nozzle in the dry well and communicated to a pressure suppression chamber by way of drain pipeways passing through a diaphragm floor. When the recycling system is ruptured and coolants in the reactor vessel and radioactive iodine in the reactor core are released into the dry well, spray water is discharged from the spray nozzle to eliminate the heat and the radioactive iodine in the dry well. In this case, the receiving trays collect the portions of spray water whose absorption power for the heat and radioactive iodine is nearly saturated and falls them into the pool water of the pressure suppression chamber. Consequently, other portions of the spray water that still possess absorption power can be jetted with no hindrance, to increase the efficiency for the removal of the heat and iodine of the spray droplets. (Horiuchi, T.)

  19. Laser-induced incandescence of titania nanoparticles synthesized in a flame

    Science.gov (United States)

    Cignoli, F.; Bellomunno, C.; Maffi, S.; Zizak, G.

    2009-09-01

    Laser induced incandescence experiments were carried out in a flame reactor during titania nanoparticle synthesis. The structure of the reactor employed allowed for a rather smooth particle growth along the flame axis, with limited mixing of different size particles. Particle incandescence was excited by the 4th harmonic of a Nd:YAG laser. The radiation emitted from the particles was recorded in time and checked by spectral analysis. Results were compared with measurements from transmission electron microscopy of samples taken at the same locations probed by incandescence. This was done covering a portion of the flame length within which a particle size growth of a factor of about four was detected . The incandescence decay time was found to increase monotonically with particle size. The attainment of a process control tool in nanoparticle flame synthesis appears to be realistic.

  20. Dynamics of flare sprays

    International Nuclear Information System (INIS)

    Tandberg-Hanssen, E.; Hansen, R.T.

    1980-01-01

    During solar cycle No. 20 new insight into the flare-spray phenomenon has been attained due to several innovations in solar optical-observing techniques (higher spatial resolution cinema-photography, tunable pass-band filters, multi-slit spectroscopy and extended angular field coronographs). From combined analysis of 13 well-observed sprays which occured between 1969-1974 we conclude that (i) the spray material originates from a preexisting active region filament which undergoes increased absorption some tens of minutes prior to the abrupt chromospheric brightening at the 'flare-start', and (ii) the spray material is confined within a steadily expanding, loop-shaped (presumably magnetically controlled) envelope with part of the material draining back down along one or both legs of the loop. (orig.)

  1. Triamcinolone Nasal Spray

    Science.gov (United States)

    ... class of medications called corticosteroids. It works by blocking the release of certain natural substances that cause ... 5 sprays into the air away from the face. If you have not used it for 2 ...

  2. Beclomethasone Nasal Spray

    Science.gov (United States)

    ... class of medications called corticosteroids. It works by blocking the release of certain natural substances that cause ... your thumb. Point the applicator away from your face. If you are using the spray for the ...

  3. Flunisolide Nasal Spray

    Science.gov (United States)

    ... class of medications called corticosteroids. It works by blocking the release of certain natural substances that cause ... your thumb. Point the applicator away from your face. If you are using the spray for the ...

  4. ROTARY SPRAY DUSTER

    Directory of Open Access Journals (Sweden)

    E. S. Nechaeva

    2013-01-01

    Full Text Available Results of researches of hydraulic resistance, ablation of splashes and efficiency of dedusting in the rotor spray dust collector are given. Influence of frequency of rotation of the spray, the specified speed of gas and diameter of spattering holes on hydraulic resistance, size ablation of splashes and efficiency of a dedusting the device by diameter 0,25 m is investigated. As model liquid water is used. Results of mathematical processing are presented.

  5. Dynamics and structure of stretched flames

    Energy Technology Data Exchange (ETDEWEB)

    Law, C.K. [Princeton Univ., NJ (United States)

    1993-12-01

    This program aims to gain fundamental understanding on the structure, geometry, and dynamics of laminar premixed flames, and relate these understanding to the practical issues of flame extinction and stabilization. The underlying fundamental interest here is the recent recognition that the response of premixed flames can be profoundly affected by flame stretch, as manifested by flow nonuniformity, flame curvature, and flame/flow unsteadiness. As such, many of the existing understanding on the behavior of premixed flames need to be qualitatively revised. The research program consists of three major thrusts: (1) detailed experimental and computational mapping of the structure of aerodynamically-strained planar flames, with emphasis on the effects of heat loss, nonequidiffusion, and finite residence time on the flame thickness, extent of incomplete reaction, and the state of extinction. (2) Analytical study of the geometry and dynamics of stretch-affected wrinkled flame sheets in simple configurations, as exemplified by the Bunsen flame and the spatially-periodic flame, with emphasis on the effects of nonlinear stretch, the phenomena of flame cusping, smoothing, and tip opening, and their implications on the structure and burning rate of turbulent flames. (3) Stabilization and blowoff of two-dimensional inverted premixed and stabilization and determining the criteria governing flame blowoff. The research is synergistically conducted through the use of laser-based diagnostics, computational simulation of the flame structure with detailed chemistry and transport, and mathematical analysis of the flame dynamics.

  6. Understanding and predicting soot generation in turbulent non-premixed jet flames.

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Hai (University of Southern California, Los Angeles, CA); Kook, Sanghoon; Doom, Jeffrey; Oefelein, Joseph Charles; Zhang, Jiayao; Shaddix, Christopher R.; Schefer, Robert W.; Pickett, Lyle M.

    2010-10-01

    This report documents the results of a project funded by DoD's Strategic Environmental Research and Development Program (SERDP) on the science behind development of predictive models for soot emission from gas turbine engines. Measurements of soot formation were performed in laminar flat premixed flames and turbulent non-premixed jet flames at 1 atm pressure and in turbulent liquid spray flames under representative conditions for takeoff in a gas turbine engine. The laminar flames and open jet flames used both ethylene and a prevaporized JP-8 surrogate fuel composed of n-dodecane and m-xylene. The pressurized turbulent jet flame measurements used the JP-8 surrogate fuel and compared its combustion and sooting characteristics to a world-average JP-8 fuel sample. The pressurized jet flame measurements demonstrated that the surrogate was representative of JP-8, with a somewhat higher tendency to soot formation. The premixed flame measurements revealed that flame temperature has a strong impact on the rate of soot nucleation and particle coagulation, but little sensitivity in the overall trends was found with different fuels. An extensive array of non-intrusive optical and laser-based measurements was performed in turbulent non-premixed jet flames established on specially designed piloted burners. Soot concentration data was collected throughout the flames, together with instantaneous images showing the relationship between soot and the OH radical and soot and PAH. A detailed chemical kinetic mechanism for ethylene combustion, including fuel-rich chemistry and benzene formation steps, was compiled, validated, and reduced. The reduced ethylene mechanism was incorporated into a high-fidelity LES code, together with a moment-based soot model and models for thermal radiation, to evaluate the ability of the chemistry and soot models to predict soot formation in the jet diffusion flame. The LES results highlight the importance of including an optically-thick radiation

  7. Mechanistic aspects of ionic reactions in flames

    DEFF Research Database (Denmark)

    Egsgaard, H.; Carlsen, L.

    1993-01-01

    Some fundamentals of the ion chemistry of flames are summarized. Mechanistic aspects of ionic reactions in flames have been studied using a VG PlasmaQuad, the ICP-system being substituted by a simple quartz burner. Simple hydrocarbon flames as well as sulfur-containing flames have been investigated...

  8. Partially premixed prevalorized kerosene spray combustion in turbulent flow

    Energy Technology Data Exchange (ETDEWEB)

    Chrigui, M.; Ahmadi, W.; Sadiki, A.; Janicka, J. [Institute for Energy and Powerplant Technology, TU Darmstadt, Petersenstr. 30, 64287 Darmstadt (Germany); Moesl, K. [Lehrstuhl fuer Thermodynamik, TU Muenchen, Boltzmannstr. 15, D-85747 Garching (Germany)

    2010-04-15

    A detailed numerical simulation of kerosene spray combustion was carried out on a partially premixed, prevaporized, three-dimensional configuration. The focus was on the flame temperature profile dependency on the length of the pre-vaporization zone. The results were analyzed and compared to experimental data. A fundamental study was performed to observe the temperature variation and flame flashback. Changes were made to the droplet diameter, kerosene flammability limits, a combustion model parameter and the location of the combustion initialization. Investigations were performed for atmospheric pressure, inlet air temperature of 90 C and a global equivalence ratio of 0.7. The simulations were carried out using the Eulerian Lagrangian procedure under a fully two-way coupling. The Bray-Moss-Libby model was adjusted to account for the partially premixed combustion. (author)

  9. Spray and Combustion Characteristics of a Novel Multi-circular Jet Plate in Air-assisted Atomizer

    Directory of Open Access Journals (Sweden)

    Hisham Amirnordin Shahrin

    2017-01-01

    Full Text Available Atomization of liquid fuel in air-assisted atomizer is highly dependent on air mixing, which can be enhanced using turbulent generators, such as multi-circular jet (MCJ plates and swirler. This study aims to determine the effects of novel MCJ plates on the spray and combustion characteristics of an air-assisted atomizer by evaluating spray and flame parameters, such as penetration length, cone angle, and cone area. MCJ 30 and MCJ 45, with inclined jets at 30° and 45°, respectively, were used in the experiment. A swirler was also used for comparison. The spray and flame images were recorded at different equivalence ratios through direct photography and analyzed using image J software. Flame temperature was determined using a thermal infrared camera, and burning chamber and flue gas temperatures were measured using thermocouples. The spray and flame characteristics of MCJ 30 exhibited performance comparable with those of the MCJ 45 and swirler. The integration of turbulence and swirling motion concept into the novel MCJ plates can enhance the mixing formation and thus improve the performance of burner combustion.

  10. Role of the outer-edge flame on flame extinction in nitrogen-diluted non-premixed counterflow flames with finite burner diameters

    KAUST Repository

    Chung, Yong Ho; Park, Daegeun; Park, Jeong; Kwon, Oh Boong; Yun, Jin Han; Keel, Sang In

    2013-01-01

    This study of nitrogen-diluted non-premixed counterflow flames with finite burner diameters investigates the important role of the outer-edge flame on flame extinction through experimental and numerical analyses. It explores flame stability diagrams

  11. Physical and Chemical Processes in Turbulent Flames

    Science.gov (United States)

    2015-06-23

    equiangular sectors, defined as the ratio of the actual flame length to the length of a circular-arc of radius equal to the average flame radius. Assuming... flame length ratio obtained directly from the experiments, without any assumption. As explained earlier (Eq. 2.8) the length ratio, (LR=dl(G0)/dl0) is...spherically expanding flames, with the length ratio on the measurement plane, at predefined equiangular sectors, defined as the ratio of the actual flame length to

  12. Numerical case studies of vertical wall fire protection using water spray

    Directory of Open Access Journals (Sweden)

    L.M. Zhao

    2014-11-01

    Full Text Available Studies of vertical wall fire protection are evaluated with numerical method. Typical fire cases such as heated dry wall and upward flame spread have been validated. Results predicted by simulations are found to agree with experiment results. The combustion behavior and flame development of vertical polymethylmethacrylate slabs with different water flow rates are explored and discussed. Water spray is found to be capable of strengthening the fire resistance of combustible even under high heat flux radiation. Provided result and data are expected to provide reference for fire protection methods design and development of modern buildings.

  13. Spray boom for selectively spraying a herbicidal composition onto dicots

    DEFF Research Database (Denmark)

    2012-01-01

    There is provided a method and spray boom for discriminating cereal crop (monocot) and weeds (dicots). The spray boom includes means for digitally recording an image of a selected area to be treated by a nozzle on the spray boom, whereby a plant material is identified based on a segmentation proc...

  14. Droplets and sprays

    CERN Document Server

    Sazhin, Sergei

    2014-01-01

    Providing a clear and systematic description of droplets and spray dynamic models, this book maximises reader insight into the underlying physics of the processes involved, outlines the development of new physical and mathematical models, and broadens understanding of interactions between the complex physical processes which take place in sprays. Complementing approaches based on the direct application of computational fluid dynamics (CFD), Droplets and Sprays treats both theoretical and practical aspects of internal combustion engine process such as the direct injection of liquid fuel, subcritical heating and evaporation. Includes case studies that illustrate the approaches relevance to automotive applications,  it is also anticipated that the described models can find use in other areas such as in medicine and environmental science.

  15. Neurotoxicity of brominated flame retardants

    Science.gov (United States)

    Polybrominated diphenyl ethers (PBDEs) have been commonly used as commercial flame retardants in a variety of products including plastics and textiles. Despite their decreasing usage worldwide, congeners continue to accumulate in the environment, including soil, dust, food, anima...

  16. Extinction of laminar partially premixed flames

    Energy Technology Data Exchange (ETDEWEB)

    Aggarwal, Suresh K. [Department of Mechanical and Industrial Engineering, University of Illinois at Chicago, 842 W. Taylor Street, Room 2039, MC-251, Chicago, IL 60607-7022 (United States)

    2009-12-15

    Flame extinction represents one of the classical phenomena in combustion science. It is important to a variety of combustion systems in transportation and power generation applications. Flame extinguishment studies are also motivated from the consideration of fire safety and suppression. Such studies have generally considered non-premixed and premixed flames, although fires can often originate in a partially premixed mode, i.e., fuel and oxidizer are partially premixed as they are transported to the reaction zone. Several recent investigations have considered this scenario and focused on the extinction of partially premixed flames (PPFs). Such flames have been described as hybrid flames possessing characteristics of both premixed and non-premixed flames. This paper provides a review of studies dealing with the extinction of PPFs, which represent a broad family of flames, including double, triple (tribrachial), and edge flames. Theoretical, numerical and experimental studies dealing with the extinction of such flames in coflow and counterflow configurations are discussed. Since these flames contain both premixed and non-premixed burning zones, a brief review of the dilution-induced extinction of premixed and non-premixed flames is also provided. For the coflow configuration, processes associated with flame liftoff and blowout are described. Since lifted non-premixed jet flames often contain a partially premixed or an edge-flame structure prior to blowout, the review also considers such flames. While the perspective of this review is broad focusing on the fundamental aspects of flame extinction and blowout, results mostly consider flame extinction caused by the addition of a flame suppressant, with relevance to fire suppression on earth and in space environment. With respect to the latter, the effect of gravity on the extinction of PPFs is discussed. Future research needs are identified. (author)

  17. Sprayed concrete linings

    Energy Technology Data Exchange (ETDEWEB)

    Hindle, D.

    1999-12-01

    Sprayed concrete, or shotcrete, was invented in the 1920s for preserving dinosaur skeletons and was used underground initially in coalmines for the preservation and fine proofing of timber supports. Its use as a support lining in rock tunnelling was developed in the 1950s and 60s. The article surveys equipment available from major manufacturers and suppliers of concrete spraying equipment (Aliva, Cifa, GIA, Industri, Ingersoll Rand, etc.), specialist cement and additive manufacturers (Castle, Cement, Moria Carbotech). manufacturers of lattice girders and fibre reinforcement, and manufacturers of instrumentation for tunnel linings. 5 tabs., 9 photos.

  18. SPRAY code user's report

    International Nuclear Information System (INIS)

    Shire, P.R.

    1977-03-01

    The SPRAY computer code has been developed to model the effects of postulated sodium spray release from LMFBR piping within containment chambers. The calculation method utilizes gas convection, heat transfer and droplet combustion theory to calculate the pressure and temperature effects within the enclosure. The applicable range is 0-21 mol percent oxygen and .02-.30 inch droplets with or without humidity. Droplet motion and large sodium surface area combine to produce rapid heat release and pressure rise within the enclosed volume

  19. Edge flame instability in low-strain-rate counterflow diffusion flames

    Energy Technology Data Exchange (ETDEWEB)

    Park, June Sung; Hwang, Dong Jin; Park, Jeong; Kim, Jeong Soo; Kim, Sungcho [School of Mechanical and Aerospace Engineering, Sunchon National University, 315 Maegok-dong, Suncheon, Jeonnam 540-742 (Korea, Republic of); Keel, Sang In [Environment & amp; Energy Research Division, Korea Institute of Machinery and Materials, P.O. Box 101, Yusung-gu, Taejon 305-343 (Korea, Republic of); Kim, Tae Kwon [School of Mechanical & amp; Automotive Engineering, Keimyung University, 1000 Sindang-dong, Dalseo-gu, Daegu 704-701 (Korea, Republic of); Noh, Dong Soon [Energy System Research Department, Korea Institute of Energy Research, 71-2 Jang-dong, Yusung-gu, Taejon 305-343 (Korea, Republic of)

    2006-09-15

    Experiments in low-strain-rate methane-air counterflow diffusion flames diluted with nitrogen have been conducted to study flame extinction behavior and edge flame oscillation in which flame length is less than the burner diameter and thus lateral conductive heat loss, in addition to radiative loss, could be high at low global strain rates. The critical mole fraction at flame extinction is examined in terms of velocity ratio and global strain rate. Onset conditions of the edge flame oscillation and the relevant modes are also provided with global strain rate and nitrogen mole fraction in the fuel stream or in terms of fuel Lewis number. It is observed that flame length is intimately relevant to lateral heat loss, and this affects flame extinction and edge flame oscillation considerably. Lateral heat loss causes flame oscillation even at fuel Lewis number less than unity. Edge flame oscillations, which result from the advancing and retreating edge flame motion of the outer flame edge of low-strain-rate flames, are categorized into three modes: a growing, a decaying, and a harmonic-oscillation mode. A flame stability map based on the flame oscillation modes is also provided for low-strain-rate flames. The important contribution of lateral heat loss even to edge flame oscillation is clarified finally. (author)

  20. Flame analysis using image processing techniques

    Science.gov (United States)

    Her Jie, Albert Chang; Zamli, Ahmad Faizal Ahmad; Zulazlan Shah Zulkifli, Ahmad; Yee, Joanne Lim Mun; Lim, Mooktzeng

    2018-04-01

    This paper presents image processing techniques with the use of fuzzy logic and neural network approach to perform flame analysis. Flame diagnostic is important in the industry to extract relevant information from flame images. Experiment test is carried out in a model industrial burner with different flow rates. Flame features such as luminous and spectral parameters are extracted using image processing and Fast Fourier Transform (FFT). Flame images are acquired using FLIR infrared camera. Non-linearities such as thermal acoustic oscillations and background noise affect the stability of flame. Flame velocity is one of the important characteristics that determines stability of flame. In this paper, an image processing method is proposed to determine flame velocity. Power spectral density (PSD) graph is a good tool for vibration analysis where flame stability can be approximated. However, a more intelligent diagnostic system is needed to automatically determine flame stability. In this paper, flame features of different flow rates are compared and analyzed. The selected flame features are used as inputs to the proposed fuzzy inference system to determine flame stability. Neural network is used to test the performance of the fuzzy inference system.

  1. Stratified turbulent Bunsen flames: flame surface analysis and flame surface density modelling

    Science.gov (United States)

    Ramaekers, W. J. S.; van Oijen, J. A.; de Goey, L. P. H.

    2012-12-01

    In this paper it is investigated whether the Flame Surface Density (FSD) model, developed for turbulent premixed combustion, is also applicable to stratified flames. Direct Numerical Simulations (DNS) of turbulent stratified Bunsen flames have been carried out, using the Flamelet Generated Manifold (FGM) reduction method for reaction kinetics. Before examining the suitability of the FSD model, flame surfaces are characterized in terms of thickness, curvature and stratification. All flames are in the Thin Reaction Zones regime, and the maximum equivalence ratio range covers 0.1⩽φ⩽1.3. For all flames, local flame thicknesses correspond very well to those observed in stretchless, steady premixed flamelets. Extracted curvature radii and mixing length scales are significantly larger than the flame thickness, implying that the stratified flames all burn in a premixed mode. The remaining challenge is accounting for the large variation in (subfilter) mass burning rate. In this contribution, the FSD model is proven to be applicable for Large Eddy Simulations (LES) of stratified flames for the equivalence ratio range 0.1⩽φ⩽1.3. Subfilter mass burning rate variations are taken into account by a subfilter Probability Density Function (PDF) for the mixture fraction, on which the mass burning rate directly depends. A priori analysis point out that for small stratifications (0.4⩽φ⩽1.0), the replacement of the subfilter PDF (obtained from DNS data) by the corresponding Dirac function is appropriate. Integration of the Dirac function with the mass burning rate m=m(φ), can then adequately model the filtered mass burning rate obtained from filtered DNS data. For a larger stratification (0.1⩽φ⩽1.3), and filter widths up to ten flame thicknesses, a β-function for the subfilter PDF yields substantially better predictions than a Dirac function. Finally, inclusion of a simple algebraic model for the FSD resulted only in small additional deviations from DNS data

  2. Trial manufacture of flame retardant and radiation resistant cables

    Energy Technology Data Exchange (ETDEWEB)

    Oshima, Yunosuke; Hagiwara, Miyuki (Japan Atomic Energy Research Inst., Takasaki, Gunma. Takasaki Radiation Chemistry Research Establishment); Oda, Eisuke

    1983-04-01

    High radiation resistance as well as incombustibility is required for the wires and cables used for nuclear facilities such as nuclear power stations. In order to give such performance to general purpose insulation materials such as ethylene-propylene copolymerized rubber, acenaphthylene bromide condensation product was developed anew. Moreover, by the use of this agent, the new flame retardant and radiation resistant cables were manufactured for trial, which are not different from ordinary plastic rubber cables in the handling such as flexibility, and withstand the radiation nearly up to 1000 Mrad. The requirement for the agent giving flame retardant and radiation resistant properties is explained. The synthesis of acenaphthylene bromide and its condensation product and the effect of giving flame retardant and radiation resistant properties are described. The test resultd of the prevention of spread of flame, the endurance in LOCA-simulating environment, and radiation resistance for the cables manufactured for trial are reported. It was confirmed that the cables of this type are suitable to the use in which the maintenance of mechanical properties after radiation exposure is required.

  3. Development of flame retardant, radiation resistant insulating materials

    Energy Technology Data Exchange (ETDEWEB)

    Hagiwara, M.

    1984-01-01

    On the cables used for nuclear power stations, in particular those ranked as IE class, flame retardation test, simulated LOCA environment test, radiation resistance test and so on are imposed. The results of the evaluation of performance by these tests largely depend on the insulating materials mainly made of polymers. Ethylene propylene copolymer rubber has been widely used as cable insulator because of its electrical characteristics, workability, economy and relatively good radiation resistance, but it is combustible, therefore, in the practical use, it is necessary to make it fire resistant. The author et al. have advanced the research on the molecular design of new fire retarding materials, and successfully developed acenaphthylene bromide condensate, which is not only fire resistant but also effective for improving radiation resistance. The condition of flame retardant, radiation resistant auxiliary agents is explained, and there are additive type and reaction type in fire retarding materials. The synthesis of acenaphthylene bromide condensate and its effect of giving flame retardant and radiation resistant properties are reported. The characteristics of the cables insulated with the flame retardant ethylene propylene rubber containing acenaphthylene bromide condensate were tested, and the results are shown. (Kako, I.).

  4. A multi-scalar PDF approach for LES of turbulent spray combustion

    Science.gov (United States)

    Raman, Venkat; Heye, Colin

    2011-11-01

    A comprehensive joint-scalar probability density function (PDF) approach is proposed for large eddy simulation (LES) of turbulent spray combustion and tests are conducted to analyze the validity and modeling requirements. The PDF method has the advantage that the chemical source term appears closed but requires models for the small scale mixing process. A stable and consistent numerical algorithm for the LES/PDF approach is presented. To understand the modeling issues in the PDF method, direct numerical simulation of a spray flame at three different fuel droplet Stokes numbers and an equivalent gaseous flame are carried out. Assumptions in closing the subfilter conditional diffusion term in the filtered PDF transport equation are evaluated for various model forms. In addition, the validity of evaporation rate models in high Stokes number flows is analyzed.

  5. Thermal spray for commercial shipbuilding

    Science.gov (United States)

    Rogers, F. S.

    1997-09-01

    Thermal spraying of steel with aluminum to protect it from corrosion is a technology that has been proven to work in the marine environment. The thermal spray coating system includes a paint sealer that is applied over the thermally sprayed aluminum. This extends the service life of the coating and provides color to the end product. The thermal spray system protects steel both through the principle of isolation (as in painting) and galvanizing. With this dual protection mechanism, steel is protected from corrosion even when the coating is damaged. The thermal- sprayed aluminum coating system has proved the most cost- effective corrosion protection system for the marine environment. Until recently, however, the initial cost of application has limited its use for general application. Arc spray technology has reduced the application cost of thermal spraying of aluminum to below that of painting. Commercial shipbuilders could use this technology to enhance their market position in the marine industry.

  6. Research on flame retardation of wool fibers

    International Nuclear Information System (INIS)

    Enomoto, Ichiro; Ametani, Kazuo; Sawai, Takeshi

    1990-01-01

    Flame retardant, vinyl phosphonate oligomer, was uniformly impregnated in wool fibers, and by irradiating low energy electron beam or cobalt-60 gamma ray, the flame retardation of fabrics was attempted, as the results, the following knowledges were obtained. At the rate of sticking of flame retardant lower than that in cotton fabrics, sufficient flame retarding property can be given. The flame retarding property withstands 30 times of washing. The lowering of strength due to the processing hardly arose. For the flame retardation, gamma-ray was more effective than electron beam. Since the accidents of burning clothes have occurred frequently, their flame retardation has been demanded. So far the flame retardation of cotton fabrics has been advanced, but this time the research on the flame retardation of wool fabrics was carried out by the same method. The experimental method is explained. As for the performance of the processed fabrics, the rate of sticking of the flame retardant, the efficiency of utilization, the flame retarding property, the endurance in washing and the tensile and tearing strength were examined. As the oxygen index was higher, the flame retarding property was higher, and in the case of the index being more than 27, the flame retarding property is sufficient, that is, the rate of sticking of 6% in serge and 5% in muslin. (K.I.)

  7. Solvent-free Hydrodeoxygenation of Bio-oil Model Compounds Cyclopentanone and Acetophenone over Flame-made Bimetallic Pt-Pd/ZrO2 Catalysts

    Science.gov (United States)

    Jiang, Yijiao; Büchel, Robert; Huang, Jun; Krumeich, Frank; Pratsinis, Sotiris E.; Baiker, Alfons

    2013-01-01

    Bimetallic Pt-Pd/ZrO2 catalysts with different Pt/Pd atomic ratio and homogeneous dispersion of the metal nanoparticles were prepared in a single step by flame-spray pyrolysis. The catalysts show high activity and tuneable product selectivity for the solvent-free hydrodeoxygenation of the bio-oil model compounds cyclopentanone and acetophenone. PMID:22674738

  8. Flame visualization in power stations

    Energy Technology Data Exchange (ETDEWEB)

    Hulshof, H J.M.; Thus, A W; Verhage, A J.L. [KEMA Fossil Generation, Arnhem (Netherlands)

    1994-01-01

    The study on the title subject is aimed at the determination of the form of the flame and the radiation temperature of the flames of the burners in electric power plants. The adjustment of the burners in a boiler is assessed on the basis of the total performance, in which the NO[sub x]- and CO-concentrations in the flue gases are normative. By comparing the burners mutually, deviating adjustments can be observed, applying optical monitoring techniques. Measurements have been carried out of the coal flames in the unit Gelderland13 of the Dutch energy production company EPON and of the gas flames at the Claus plant A and B of the Dutch energy company EPZ. The final aim of the title study is to draft guidelines, based on the measured flame data, by means of which for every individual burner the adjustment of the fuel supply, the relation with the air supply and the swirl of the combustion air can be optimized

  9. Role of the outer-edge flame on flame extinction in nitrogen-diluted non-premixed counterflow flames with finite burner diameters

    KAUST Repository

    Chung, Yong Ho

    2013-03-01

    This study of nitrogen-diluted non-premixed counterflow flames with finite burner diameters investigates the important role of the outer-edge flame on flame extinction through experimental and numerical analyses. It explores flame stability diagrams mapping the flame extinction response of nitrogen-diluted non-premixed counterflow flames to varying global strain rates in terms of burner diameter, burner gap, and velocity ratio. A critical nitrogen mole fraction exists beyond which the flame cannot be sustained; the critical nitrogen mole fraction versus global strain rate curves have C-shapes for various burner diameters, burner gaps, and velocity ratios. At sufficiently high strain-rate flames, these curves collapse into one curve; therefore, the flames follow the one-dimensional flame response of a typical diffusion flame. Low strain-rate flames are significantly affected by radial conductive heat loss, and therefore flame length. Three flame extinction modes are identified: flame extinction through shrinkage of the outer-edge flame with or without oscillations at the outer-edge flame prior to the extinction, and flame extinction through a flame hole at the flame center. The extinction modes are significantly affected by the behavior of the outer-edge flame. Detailed explanations are provided based on the measured flame-surface temperature and numerical evaluation of the fractional contribution of each term in the energy equation. Radial conductive heat loss at the flame edge to ambience is the main mechanism of extinction through shrinkage of the outer-edge flame in low strain-rate flames. Reduction of the burner diameter can extend the flame extinction mode by shrinking the outer-edge flame in higher strain-rate flames. © 2012 Elsevier Ltd. All rights reserved.

  10. Flame Spread and Group-Combustion Excitation in Randomly Distributed Droplet Clouds with Low-Volatility Fuel near the Excitation Limit: a Percolation Approach Based on Flame-Spread Characteristics in Microgravity

    Science.gov (United States)

    Mikami, Masato; Saputro, Herman; Seo, Takehiko; Oyagi, Hiroshi

    2018-03-01

    Stable operation of liquid-fueled combustors requires the group combustion of fuel spray. Our study employs a percolation approach to describe unsteady group-combustion excitation based on findings obtained from microgravity experiments on the flame spread of fuel droplets. We focus on droplet clouds distributed randomly in three-dimensional square lattices with a low-volatility fuel, such as n-decane in room-temperature air, where the pre-vaporization effect is negligible. We also focus on the flame spread in dilute droplet clouds near the group-combustion-excitation limit, where the droplet interactive effect is assumed negligible. The results show that the occurrence probability of group combustion sharply decreases with the increase in mean droplet spacing around a specific value, which is termed the critical mean droplet spacing. If the lattice size is at smallest about ten times as large as the flame-spread limit distance, the flame-spread characteristics are similar to those over an infinitely large cluster. The number density of unburned droplets remaining after completion of burning attained maximum around the critical mean droplet spacing. Therefore, the critical mean droplet spacing is a good index for stable combustion and unburned hydrocarbon. In the critical condition, the flame spreads through complicated paths, and thus the characteristic time scale of flame spread over droplet clouds has a very large value. The overall flame-spread rate of randomly distributed droplet clouds is almost the same as the flame-spread rate of a linear droplet array except over the flame-spread limit.

  11. Flame Retardants Used in Flexible Polyurethane Foam

    Science.gov (United States)

    The partnership project on flame retardants in furniture seeks to update the health and environmental profiles of flame-retardant chemicals that meet fire safety standards for upholstered consumer products with polyurethane foam

  12. Thermal spraying of polyethylene-based polymers: Processing and characterization

    Science.gov (United States)

    Otterson, David Mark

    This research explores the development of a flame-spray process map as it relates to polymers. This work provides a more complete understanding of the thermal history of the coating material from injection, to deposition and finally to cooling. This was accomplished through precise control of the processing conditions during deposition. Mass flow meters were used to monitor air and fuel flows as they were systematically changed, while temperatures were simultaneously monitored along the length of the flame. A process model was then implemented that incorporated this information along with measured particle velocities, particle size distribution, the polymer's melting temperature and its enthalpy of melting. This computational model was then used to develop a process map that described particle softening, melting and decomposition phenomena as a function of particle size and standoff distance. It demonstrated that changes in particle size caused significant variations in particle states achieved in-flight. A series of experiments were used to determine the range of spray parameters within which a cohesive coating without visible signs of degradation could be sprayed. These results provided additional information that complimented the computational processing map. The boundaries established by these results were the basis for a Statistical Design of Experiments that tested the effects that subtle processing changes had on coating properties. A series of processing maps were developed that combined the computational and the experimental results to describe the manner in which processing parameters interact to determine the degree of melting, polymer degradation and coating porosity. Strong interactions between standoff distance and traverse rate can cause the polymer to degrade and form pores in the coating. A clear picture of the manner in which particle size and standoff distance interact to determine particle melting was provided by combining the computational

  13. Experiment and Simulation of Autoignition in Jet Flames and its Relevance to Flame Stabilization and Structure

    KAUST Repository

    Al-Noman, Saeed M.

    2016-01-01

    temperature coflow air were studied numerically. Several flame configurations were investigated by varying the initial temperature and fuel mole fraction. Characteristics of chemical kinetics structures for autoignited lifted flames were discussed based on the kinetic structures of homogeneous autoignition and flame propagation of premixed mixtures. Results showed that for autoignited lifted flame with tribrachial structure, a transition from autoignition to flame propagation modes occurs for reasonably stoichiometric mixtures. Characteristics of Mild combustion can be treated as an autoignited lean premixed lifted flame. Transition behavior from Mild combustion to a nozzle-attached flame was also investigated by increasing the fuel mole fraction.

  14. Flame emission, atomic absorption and fluorescence spectrometry

    International Nuclear Information System (INIS)

    Horlick, G.

    1980-01-01

    Six hundred and thirty references are cited in this review. The information in the review is divided into 12 major areas: books, reviews, and bibliographies; fundamental studies in flames; developments in instrumentation; measurement techniques and procedure; flame emission spectrometry; flame atomic absorption spectrometry; flame molecular absorption spectrometry; electrothermal atomization atomic absorption spectroscopy; hydride generation techniques; graphite furnace atomic emission spectrometry; atomic fluorescence spectrometry; and analytical comparisons

  15. Numerical modelling of fuel sprays

    Energy Technology Data Exchange (ETDEWEB)

    Bergstroem, C.

    1999-06-01

    The way the fuel is introduced into the combustion chamber is one of the most important parameters for the power output and the generation of emissions in the combustion of liquid fuels. The interaction between the turbulent gas flow field and the liquid fuel droplets, the vaporisation of them and the mixing of the gaseous fuel with the ambient air that are vital parameters in the combustion process. The use of numerical calculations is an important tool to better understand these complex interacting phenomena. This thesis reports on the numerical modelling of fuel sprays in non-reacting cases using an own developed spray module. The spray module uses the stochastic parcel method to represent the spray. The module was made in such manner that it could by coupled with different gas flow solver. Results obtained from four different gas flow solvers are presented in the thesis, including the use of two different kinds of turbulence models. In the first part the spray module is coupled with a k-{eta} based 2-D cylindrical gas flow solver. A thorough sensitivity analysis was performed on the spray and gas flow solver parameters, such as grid size dependence and sensitivity to initial values of k-{eta}. The results of the spray module were also compared to results from other spray codes, e.g. the well known KIVA code. In the second part of this thesis the spray was injected into a turbulent and fully developed crossflow studied. The spray module was attached to a LES (Large Eddy Simulation) based flow solvers enabling the study of the complex structures and time dependent phenomena involved in spray in crossflows. It was found that the spray performs an oscillatory motion and that the Strouhal number in the wake was about 0.1. Different spray breakup models were evaluated by comparing with experimental results 66 refs, 56 figs

  16. Sea Spray Aerosols

    DEFF Research Database (Denmark)

    Butcher, Andrew Charles

    emissions produced directly from bubble bursting as the result of air entrainment from breaking waves and particles generated from secondary emissions of volatile organic compounds. In the first paper, we study the chemical properties of particles produced from several sea water proxies with the use...... of a cloud condensation nuclei ounter. Proxy solutions with high inorganic salt concentrations and some organics produce sea spray aerosol particles with little change in cloud condensation activity relative to pure salts. Comparison is made between a frit based method for bubble production and a plunging...... a relationship between plunging jet particle ux, oceanic particle ux, and energy dissipation rate in both systems. Previous sea spray aerosol studies dissipate an order of magnitude more energy for the same particle ux production as the open ocean. A scaling factor related to the energy expended in air...

  17. Plasma sprayed thermoregulating coatings

    International Nuclear Information System (INIS)

    Kudinov, V.V.; Puzanov, A.A.; Zambrzhitskij, A.P.; Soboleva, V.V.

    1979-01-01

    Shown is the possibility of plasma spraying application for thermoregulating coating formation. Given are test results of service properties of BeO, Al 2 O 2 plasma coatings on the substrates of the MA2-1 magnesium alloy. Described is a device for studying durability of coating optical parameters under ultraviolet irradiation in deep vacuum. Dynamics of absorption coefficient, growth caused by an increase in absorption centers amount under such irradiation is investigated

  18. Emulsions from Aerosol Sprays

    Science.gov (United States)

    Hengelmolen; Vincent; Hassall

    1997-12-01

    An electrostatic emulsification apparatus has been designed for the purpose of studying diffusion from oil droplets which have a mean size in the range of approximately 1.5-3.5 &mgr;m, with standard deviations of 40-50%. The emulsification technique involves the collection of a spray of electrically charged oil droplets onto a rotating water film which is sustained from a reservoir. In this way, emulsions with volume fractions of approximately 10(-3) are produced within several minutes at oil flow rates of around 10(-2) ml min-1. Phase-Doppler anemometry (PDA) was used to assess droplet size distributions for the sprays and emulsions. Results show that the mean emulsion droplet size was smaller than the mean spray droplet size by several orders of magnitude. At flow rates around 10(-2) ml min-1, the spray droplet size distribution was little affected by the applied potential between about -4.20 and -4.65 kV (mean droplet size between approximately 7.6 and 7.8 &mgr;m, with standard deviations of approximately 20%), whereas the mean droplet size of the corresponding emulsion decreased more rapidly with applied potential. Above an applied potential of approximately -4.30 kV, which corresponded to an emulsion droplet size below approximately 2 &mgr;m, the measured volume fraction of the emulsion decreased with respect to the volume fraction as calculated on the basis of total amount of injected oil. Copyright 1997 Academic Press. Copyright 1997Academic Press

  19. Radiolysis of spray solutions

    International Nuclear Information System (INIS)

    Habersbergerova, A.; Janovsky, I.

    1985-01-01

    The factors were studied affecting thiosulfate radiolysis in the so-called spray solution for nuclear power plant containments. The reaction mechanism of primary radiolytic reactions leading to thiosulfate decomposition was studied using pulse radiolysis. Also measured was hydrazine loss in the irradiation of the bubbling solution intended for the capture of volatile chemical forms of radioiodine. Pulse radiolysis was used to study the kinetics of hydrazine reaction with elemental iodine. (author)

  20. 30 CFR 14.20 - Flame resistance.

    Science.gov (United States)

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Flame resistance. 14.20 Section 14.20 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR TESTING, EVALUATION, AND APPROVAL OF... § 14.20 Flame resistance. Conveyor belts for use in underground coal mines must be flame-resistant and...

  1. TURBULENT OXYGEN FLAMES IN TYPE Ia SUPERNOVAE

    International Nuclear Information System (INIS)

    Aspden, A. J.; Bell, J. B.; Woosley, S. E.

    2011-01-01

    In previous studies, we examined turbulence-flame interactions in carbon-burning thermonuclear flames in Type Ia supernovae. In this study, we consider turbulence-flame interactions in the trailing oxygen flames. The two aims of the paper are to examine the response of the inductive oxygen flame to intense levels of turbulence, and to explore the possibility of transition to detonation in the oxygen flame. Scaling arguments analogous to the carbon flames are presented and then compared against three-dimensional simulations for a range of Damkoehler numbers (Da 16 ) at a fixed Karlovitz number. The simulations suggest that turbulence does not significantly affect the oxygen flame when Da 16 16 >1, turbulence enhances heat transfer and drives the propagation of a flame that is narrower than the corresponding inductive flame would be. Furthermore, burning under these conditions appears to occur as part of a combined carbon-oxygen turbulent flame with complex compound structure. The simulations do not appear to support the possibility of a transition to detonation in the oxygen flame, but do not preclude it either.

  2. Hysteresis and transition in swirling nonpremixed flames

    NARCIS (Netherlands)

    Tummers, M.J.; Hübner, A.W.; van Veen, E.H.; Hanjalic, K.; van der Meer, Theodorus H.

    2009-01-01

    Strongly swirling nonpremixed flames are known to exhibit a hysteresis when transiting from an attached long, sooty, yellow flame to a short lifted blue flame, and vice versa. The upward transition (by increasing the air and fuel flow rates) corresponds to a vortex breakdown, i.e. an abrupt change

  3. Experimental characterization of methane inverse diffusion flame

    KAUST Repository

    Elbaz, Ayman M.

    2014-06-26

    This article presents 10-kHz images of OH-PLIF simultaneously with 2-D PIV measurements in an inverse methane diffusion flame. Under a constant fuel flow rate, the central air jet Re was varied, leading to air to fuel velocity ratio, Vr, to vary from 8.3 to 66.5. Starting from Vr = 20.7, the flame is commonly characterized by three distinct zones. The length of the lower fuel entrainment region is inversely proportional to Vr. The flames investigated resemble a string shear layer confining this zone, and converging into the second distinct region, the flame neck zone. The third region is the rest of the flame, which spreads in a jet-like manner. The inverse diffusion flames exhibit varying degrees of partial premixing, depending upon on the velocity ratio Vr, and this region of partial premixing evolves into a well-mixed reaction zone along the flame centerline. The OH distribution correlated with the changes in the mean characteristics of the flow through reduction in the local Reynolds number due to heat release. The existence of a flame suppresses or laminarizes the turbulence at early axial locations and promotes fluctuations at the flame tip for flames with Vr < 49.8. In addition, the flame jet width can be correlated to the OH distribution. In upstream regions of the flames, the breaks in OH are counterbalanced by flame closures and are governed by edge flame propagation. These local extinctions were found to occur at locations where large flow structures were impinging on the flame and are associated with a locally higher strain rate or correlated to the local high strain rates at the flame hole edges without this flow impinging. Another contributor to re-ignition was found to be growing flame kernels. As the flames approach global blow-off, these kernels become the main mechanism for re-ignition further downstream of the flames. At low Vr, laminarization within the early regions of the flame provides an effective shield, preventing the jet flow from

  4. The role of nano-particles in the field of thermal spray coating technology

    Science.gov (United States)

    Siegmann, Stephan; Leparoux, Marc; Rohr, Lukas

    2005-06-01

    Nano-particles play not only a key role in recent research fields, but also in the public discussions about health and safety in nanotechnology. Nevertheless, the worldwide activities in nano-particles research increased dramatically during the last 5 to 10 years. There are different potential routes for the future production of nano-particles at large scale. The main directions envisaged are mechanical milling, wet chemical reactions or gas phase processes. Each of the processes has its specific advantages and limitations. Mechanical milling and wet chemical reactions are typically time intensive and batch processes, whereas gas phase productions by flames or plasma can be carried out continuously. Materials of interest are mainly oxide ceramics, carbides, nitrides, and pure metals. Nano-ceramics are interesting candidates for coating technologies due to expected higher coating toughness, better thermal shock and wear resistance. Especially embedded nano-carbides and-nitrides offer homogenously distributed hard phases, which enhance coatings hardness. Thermal spraying, a nearly 100 years old and world wide established coating technology, gets new possibilities thanks to optimized, nano-sized and/or nano-structured powders. Latest coating system developments like high velocity flame spraying (HVOF), cold gas deposition or liquid suspension spraying in combination with new powder qualities may open new applications and markets. This article gives an overview on the latest activities in nano-particle research and production in special relation to thermal spray coating technology.

  5. A Numerical Comparison of Spray Combustion between Raw and Water-in-Oil Emulsified Fuel

    Directory of Open Access Journals (Sweden)

    D. Tarlet

    2010-03-01

    Full Text Available Heavy fuel-oils, used engine oils and animal fat can be used as dense, viscous combustibles within industrial boilers. Burning these combustibles in the form of an emulsion with water enables to decrease the flame length and the formation of carbonaceous residue, in comparison with raw combustibles. These effects are due to the secondary atomization among the spray, which is a consequence of the micro-explosion phenomenon. This phenomenon acts in a single emulsion droplet by the fast (< 0.1 ms vaporization of the inside water droplets, leading to complete disintegration of the whole emulsion droplet. First, the present work demonstrates a model of spray combustion of raw fuel. Secondly, the spray combustion of water-in-oil emulsified fuel is exposed to the same burning conditions, taking into account the micro-explosion phenomenon. Finally, the comparison between the results with and without second atomization shows some similar qualitative tendencies with experimental measurements from the literature.

  6. PTV analysis of the entrained air into the diesel spray at high-pressure injection

    Science.gov (United States)

    Toda, Naoki; Yamashita, Hayato; Mashida, Makoto

    2014-08-01

    In order to clarify the effect of high-pressure injection on soot reduction in terms of the air entrainment into spray, the air flow surrounding the spray and set-off length indicating the distance from the nozzle tip to the flame region in diffusion diesel combustion were investigated using 300MPa injection of a multi-hole injector. The measurement of the air entrainment flow was carried out at non-evaporating condition using consecutive PTV (particle tracking velocimetry) method with a high-speed camera and a high-frequency pulse YAG laser. The set-off length was measured at highpressure and high-temperature using the combustion bomb of constant volume and optical system of shadow graph method. And the amount of air entrainment into spray until reaching set-off length in diffusion combustion was studied as a factor of soot formation.

  7. The VLT FLAMES Tarantula Survey

    NARCIS (Netherlands)

    Evans, C.; Taylor, W.; Sana, H.; Hénault-Brunet, V.; Bagnoli, T.; Bastian, N.; Bestenlehner, J.; Bonanos, A.; Bressert, E.; Brott, I.; Campbell, M.; Cantiello, M.; Carraro, G.; Clark, S.; Costa, E.; Crowther, P.; de Koter, A.; de Mink, S.; Doran, E.; Dufton, P.; Dunstall, P.; Garcia, M.; Gieles, M.; Gräfener, G.; Herrero, A.; Howarth, I.; Izzard, R.; Köhler, K.; Langer, N.; Lennon, D.; Maíz Apellániz, J.; Markova, N.; Najarro, P.; Puls, J.; Ramirez, O.; Sabín-Sanjulián, C.; Simón-Díaz, S.; Smartt, S.; Stroud, V.; van Loon, J.; Vink, J.S.; Walborn, N.

    2011-01-01

    We introduce the VLT FLAMES Tarantula Survey, an ESO Large Programme from which we have obtained optical spectroscopy of over 800 massive stars in the spectacular 30 Doradus region of the Large Magellanic Cloud. A key feature is the use of multi-epoch observations to provide strong constraints on

  8. Flex-flame burner and combustion method

    Science.gov (United States)

    Soupos, Vasilios; Zelepouga, Serguei; Rue, David M.; Abbasi, Hamid A.

    2010-08-24

    A combustion method and apparatus which produce a hybrid flame for heating metals and metal alloys, which hybrid flame has the characteristic of having an oxidant-lean portion proximate the metal or metal alloy and having an oxidant-rich portion disposed above the oxidant lean portion. This hybrid flame is produced by introducing fuel and primary combustion oxidant into the furnace chamber containing the metal or metal alloy in a substoichiometric ratio to produce a fuel-rich flame and by introducing a secondary combustion oxidant into the furnace chamber above the fuel-rich flame in a manner whereby mixing of the secondary combustion oxidant with the fuel-rich flame is delayed for a portion of the length of the flame.

  9. Process-based quality for thermal spray via feedback control

    Science.gov (United States)

    Dykhuizen, R. C.; Neiser, R. A.

    2006-09-01

    Quality control of a thermal spray system manufacturing process is difficult due to the many input variables that need to be controlled. Great care must be taken to ensure that the process remains constant to obtain a consistent quality of the parts. Control is greatly complicated by the fact that measurement of particle velocities and temperatures is a noisy stochastic process. This article illustrates the application of quality control concepts to a wire flame spray process. A central feature of the real-time control system is an automatic feedback control scheme that provides fine adjustments to ensure that uncontrolled variations are accommodated. It is shown how the control vectors can be constructed from simple process maps to independently control particle velocity and temperature. This control scheme is shown to perform well in a real production environment. We also demonstrate that slight variations in the feed wire curvature can greatly influence the process. Finally, the geometry of the spray system and sensor must remain constant for the best reproducibility.

  10. Suspension thermal spraying of hydroxyapatite: microstructure and in vitro behaviour.

    Science.gov (United States)

    Bolelli, Giovanni; Bellucci, Devis; Cannillo, Valeria; Lusvarghi, Luca; Sola, Antonella; Stiegler, Nico; Müller, Philipp; Killinger, Andreas; Gadow, Rainer; Altomare, Lina; De Nardo, Luigi

    2014-01-01

    In cementless fixation of metallic prostheses, bony ingrowth onto the implant surface is often promoted by osteoconductive plasma-sprayed hydroxyapatite coatings. The present work explores the use of the innovative High Velocity Suspension Flame Spraying (HVSFS) process to coat Ti substrates with thin homogeneous hydroxyapatite coatings. The HVSFS hydroxyapatite coatings studied were dense, 27-37μm thick, with some transverse microcracks. Lamellae were sintered together and nearly unidentifiable, unlike conventional plasma-sprayed hydroxyapatite. Crystallinities of 10%-70% were obtained, depending on the deposition parameters and the use of a TiO2 bond coat. The average hardness of layers with low (hydroxyapatite, with a Weibull modulus of ≈3.3. During soaking in simulated body fluid, glassy coatings were progressively resorbed and replaced by a new, precipitated hydroxyapatite layer, whereas coatings with 70% crystallinity were stable up to 14days of immersion. The interpretation of the precipitation behaviour was also assisted by surface charge assessments, performed through Z-potential measurements. During in vitro tests, HA coatings showed no cytotoxicity towards the SAOS-2 osteoblast cell line, and surface cell proliferation was comparable with proliferation on reference polystyrene culture plates. © 2013.

  11. Simulation of flame surface density and burning rate of a premixed turbulent flame using contour advection

    Energy Technology Data Exchange (ETDEWEB)

    Tang, B.H.Y.; Chan, C.K. [Department of Applied Mathematics, The Hong Kong Polytechnic University, Hung Hom, Kowloon (Hong Kong)

    2006-10-15

    In this paper, a 2-dimensional rod-stabilized V-shaped flame is simulated using contour advection with surgery as well as the random vortex method. Effects of turbulence on various quantities, such as flame brush thickness and flame surface density, are investigated. The flame surface density S is estimated using the Bray-Moss-Libby formulation, which involves the use of a mean orientation factor {sigma}{sub c}. As a comparison, values of S are also obtained using Shepherd's model, which employs the values of mean flame surface area and mean flame length. Local flame structure is characterized in terms of turbulent flame brush, orientation factor, and flame surface density. Profiles of S obtained using the two different models are compared and show that discrepancy is more evident with increasing turbulence intensity. (author)

  12. Study on spraying water soluble resin to reduce pollution for Fukushima daiichi NPP accident

    International Nuclear Information System (INIS)

    Zhang Qiong; Guo Ruiping; Zhang Chunming; Han Fujuan; Hua Jie; Zhang Jiankui

    2012-01-01

    After Fukushima nuclear accident, Tokyo electric power company used the method of spraying water soluble resin synthesis at the scene of the accident, to restrain and control the spread of the radioactive dust, by forming consolidation layer in pollution area surface. This paper briefly introduced the accident, motivation of spraying water soluble resin, spraying range and implementation process. According to the relevant report on Fukushima nuclear accident, the effect of spraying water soluble resin for reducing pollution was analyzed. The mechanism of reducing pollution for water soluble resin and the application prospect were discussed. Spraying water soluble resin for fixing radioactive dust has reasonable reducing pollution effect. It is worth to use as reference and study in China. (authors)

  13. Spray-formed tooling

    Science.gov (United States)

    McHugh, K. M.; Key, J. F.

    The United States Council for Automotive Research (USCAR) has formed a partnership with the Idaho National Engineering Laboratory (INEL) to develop a process for the rapid production of low-cost tooling based on spray forming technology developed at the INEL. Phase 1 of the program will involve bench-scale system development, materials characterization, and process optimization. In Phase 2, prototype systems will be designed, constructed, evaluated, and optimized. Process control and other issues that influence commercialization will be addressed during this phase of the project. Technology transfer to USCAR, or a tooling vendor selected by USCAR, will be accomplished during Phase 3. The approach INEL is using to produce tooling, such as plastic injection molds and stamping dies, combines rapid solidification processing and net-shape materials processing into a single step. A bulk liquid metal is pressure-fed into a de Laval spray nozzle transporting a high velocity, high temperature inert gas. The gas jet disintegrates the metal into fine droplets and deposits them onto a tool pattern made from materials such as plastic, wax, clay, ceramics, and metals. The approach is compatible with solid freeform fabrication techniques such as stereolithography, selective laser sintering, and laminated object manufacturing. Heat is extracted rapidly, in-flight, by convection as the spray jet entrains cool inert gas to produce undercooled and semi-solid droplets. At the pattern, the droplets weld together while replicating the shape and surface features of the pattern. Tool formation is rapid; deposition rates in excess of 1 ton/h have been demonstrated for bench-scale nozzles.

  14. A flame particle tracking analysis of turbulence–chemistry interaction in hydrogen–air premixed flames

    KAUST Repository

    Uranakara, Harshavardhana A.; Chaudhuri, Swetaprovo; Dave, Himanshu L.; Arias, Paul G.; Im, Hong G.

    2015-01-01

    Interactions of turbulence, molecular transport, and energy transport, coupled with chemistry play a crucial role in the evolution of flame surface geometry, propagation, annihilation, and local extinction/re-ignition characteristics of intensely turbulent premixed flames. This study seeks to understand how these interactions affect flame surface annihilation of lean hydrogen–air premixed turbulent flames. Direct numerical simulations (DNSs) are conducted at different parametric conditions with a detailed reaction mechanism and transport properties for hydrogen–air flames. Flame particle tracking (FPT) technique is used to follow specific flame surface segments. An analytical expression for the local displacement flame speed (Sd) of a temperature isosurface is considered, and the contributions of transport, chemistry, and kinematics on the displacement flame speed at different turbulence-flame interaction conditions are identified. In general, the displacement flame speed for the flame particles is found to increase with time for all conditions considered. This is because, eventually all flame surfaces and their resident flame particles approach annihilation by reactant island formation at the end of stretching and folding processes induced by turbulence. Statistics of principal curvature evolving in time, obtained using FPT, suggest that these islands are ellipsoidal on average enclosing fresh reactants. Further examinations show that the increase in Sd is caused by the increased negative curvature of the flame surface and eventual homogenization of temperature gradients as these reactant islands shrink due to flame propagation and turbulent mixing. Finally, the evolution of the normalized, averaged, displacement flame speed vs. stretch Karlovitz number are found to collapse on a narrow band, suggesting that a unified description of flame speed dependence on stretch rate may be possible in the Lagrangian description.

  15. A flame particle tracking analysis of turbulence–chemistry interaction in hydrogen–air premixed flames

    KAUST Repository

    Uranakara, Harshavardhana A.

    2015-11-21

    Interactions of turbulence, molecular transport, and energy transport, coupled with chemistry play a crucial role in the evolution of flame surface geometry, propagation, annihilation, and local extinction/re-ignition characteristics of intensely turbulent premixed flames. This study seeks to understand how these interactions affect flame surface annihilation of lean hydrogen–air premixed turbulent flames. Direct numerical simulations (DNSs) are conducted at different parametric conditions with a detailed reaction mechanism and transport properties for hydrogen–air flames. Flame particle tracking (FPT) technique is used to follow specific flame surface segments. An analytical expression for the local displacement flame speed (Sd) of a temperature isosurface is considered, and the contributions of transport, chemistry, and kinematics on the displacement flame speed at different turbulence-flame interaction conditions are identified. In general, the displacement flame speed for the flame particles is found to increase with time for all conditions considered. This is because, eventually all flame surfaces and their resident flame particles approach annihilation by reactant island formation at the end of stretching and folding processes induced by turbulence. Statistics of principal curvature evolving in time, obtained using FPT, suggest that these islands are ellipsoidal on average enclosing fresh reactants. Further examinations show that the increase in Sd is caused by the increased negative curvature of the flame surface and eventual homogenization of temperature gradients as these reactant islands shrink due to flame propagation and turbulent mixing. Finally, the evolution of the normalized, averaged, displacement flame speed vs. stretch Karlovitz number are found to collapse on a narrow band, suggesting that a unified description of flame speed dependence on stretch rate may be possible in the Lagrangian description.

  16. Microplasma sprayed hydroxyapatite coatings

    CERN Document Server

    Dey, Arjun

    2015-01-01

    ""This unique book on development of microplasma sprayed HAp coating has been organized in a very compact yet comprehensive manner. This book also highlights the horizons of future research that invites the attention of global community, particularly those in bio-medical materials and bio-medical engineering field. This book will surely act as a very useful reference material for both graduate/post-graduate students and researchers in the field of biomedical, orthopedic and manufacturing engineering and research. I truly believ that this is the first ever effort which covers almost all the

  17. Theoretical analysis of the conical premixed flame response to upstream velocity disturbances considering flame speed development effects

    OpenAIRE

    Ghazaleh Esmaeelzade; Mohammad Reza Khani; Rouzbeh Riazi; Mohammad Hossein Sabour

    2017-01-01

    The effect of upstream velocity perturbations on the response of a premixed flame was investigated in terms of the flame transfer function dependency on excitation frequency. In this study, the assumption of constant flame speed was extended and the effect of flame speed development was considered; i.e., the flame speed would grow with the time after ignition or with the distance from a flame-holder. In the present study, the kinematics of a conical flame was investigated by linearization of ...

  18. Spray combustion of Jet-A and diesel fuels in a constant volume combustion chamber

    International Nuclear Information System (INIS)

    Jing, Wei; Roberts, William L.; Fang, Tiegang

    2015-01-01

    This work investigates the spray combustion of Jet-A fuel in an optical constant-volume combustion chamber under different ambient initial conditions. Ambient temperature was varied at 800 K, 1000 K, and 1200 K and five different ambient O 2 concentrations were used, spanning 10–21%. These ambient conditions can be used to mimic practical diesel engine working conditions under different fuel injection timings and exhaust gas recirculation (EGR) levels. Both transient and quasi-steady state analyses were conducted. The transient analysis focused on the flame development from the beginning to the end of the combustion process, illustrating how the flame structure evolves with time. The quasi-steady state analysis concentrated on the stable flame structure and compared the flame emissions in terms of spatially integrated intensity, flame effective area, and intensity per pixel. The transient analysis was based on measurements using high-speed imaging of both OH ∗ chemiluminescence and broadband natural luminosity (NL). For the quasi-steady state analysis, three flame narrow-band emissions (OH ∗ at 310 nm, Band A at 430 nm and Band B at 470 nm) were captured using an ICCD camera. Based on the current Jet-A data and diesel data obtained from previous experiments, a comparison between Jet-A and diesel was made in terms of flame development during the transient state and spatially integrated intensity, flame effective area, and intensity per pixel during the quasi-steady state. For the transient results, Jet-A shares a similar flame development trend to diesel, but featuring a narrower region of NL and a wider region of OH ∗ with the increase of ambient temperature and O 2 concentration. The soot cloud is oxidized more quickly for Jet-A than diesel at the end of combustion, evident by comparing the area of NL, especially under high O 2 concentration. The quasi-steady state results suggest that soot is oxidized effectively under high O 2 concentration conditions by

  19. Spray rolling aluminum alloy strip

    Energy Technology Data Exchange (ETDEWEB)

    McHugh, Kevin M.; Delplanque, J.-P.; Johnson, S.B.; Lavernia, E.J.; Zhou, Y.; Lin, Y

    2004-10-10

    Spray rolling combines spray forming with twin-roll casting to process metal flat products. It consists of atomizing molten metal with a high velocity inert gas, cooling the resultant droplets in flight and directing the spray between mill rolls. In-flight convection heat transfer from atomized droplets teams with conductive cooling at the rolls to rapidly remove the alloy's latent heat. Hot deformation of the semi-solid material in the rolls results in fully consolidated, rapidly solidified product. While similar in some ways to twin-roll casting, spray rolling has the advantage of being able to process alloys with broad freezing ranges at high production rates. This paper describes the process and summarizes microstructure and tensile properties of spray-rolled 2124 and 7050 aluminum alloy strips. A Lagrangian/Eulerian poly-dispersed spray flight and deposition model is described that provides some insight into the development of the spray rolling process. This spray model follows droplets during flight toward the rolls, through impact and spreading, and includes oxide film formation and breakup when relevant.

  20. Characterization of Sodium Spray Aerosols

    Energy Technology Data Exchange (ETDEWEB)

    Nelson, C. T.; Koontz, R. L.; Silberberg, M. [Atomics International, North American Rockwell Corporation, Canoga Park, CA (United States)

    1968-12-15

    The consequences of pool and spray fires require evaluation in the safety analysis of liquid metal-cooled fast breeder reactors. Sodium spray fires are characterized by high temperature and pressure, produced during the rapid combustion of sodium in air. Following the initial energy release, some fraction of the reaction products are available as aerosols which follow the normal laws of agglomeration, growth, settling, and plating. An experimental study is underway at Atomics International to study the characteristics of high concentration sprays of liquid sodium in reduced oxygen atmospheres and in air. The experiments are conducted in a 31.5 ft{sup 3} (2 ft diam. by 10 ft high) vessel, certified for a pressure of 100 lb/in{sup 2} (gauge). The spray injection apparatus consists of a heated sodium supply pot and a spray nozzle through which liquid sodium is driven by nitrogen pressure. Spray rate and droplet size can be varied by the injection velocity (nozzle size, nitrogen pressure, and sodium temperature). Aerosols produced in 0, 4, and 10 vol. % oxygen environments have been studied. The concentration and particle size distribution of the material remaining in the air after the spray injection and reaction period are measured. Fallout rates are found to be proportional to the concentration of aerosol which remains airborne following the spray period. (author)

  1. Large eddy simulation of n-heptane spray combustion in partially premixed combustion regime with linear eddy model

    International Nuclear Information System (INIS)

    Xiao, Gang; Jia, Ming; Wang, Tianyou

    2016-01-01

    Spray combustion of n-heptane in a constant-volume vessel under engine-relevant conditions was investigated using linear eddy model in the framework of large eddy simulation. In this numerical approach, turbulent mixing was traced by an innovative stochastic approach instead of the conventional gradient diffusion model. Chemical reaction rates were calculated with the consideration of the sub-grid scale spatial fluctuations of reactive scalars. Turbulence-chemistry interactions were represented by the separated treatments of the underlying processes including turbulent stirring, chemical reaction, and molecular diffusion. The model was validated against the experimental data of ignition delay times, chemiluminescence images, and soot images from Sandia National Laboratories. Numerical results showed that the ignition process changed from the temperature-controlled regime to the mixing-controlled regime as the initial ambient temperature increased from 800 K to 1000 K. The premixed flame and the diffusion flame coexisted, while the gross heat release rate was found to be dominated by the premixed flame. The temperature fluctuation was mainly observed around the spray jet due to the cooling effect of the fuel vaporization. The fluctuations were more significantly smoothed out by the high-temperature flame than the low-temperature flame. The mean temperature would be overpredicted if the sub-grid temperature fluctuation was neglected. - Highlights: • Turbulent mixing is traced by stochastic method instead of gradient diffusion model. • Sub-grid scale fluctuations of reactive scalars are captured. • Ignition process varies from temperature-controlled to mixing-controlled regime. • Temperature fluctuation can be smoothed out by high-temperature flame. • The heat release rate is dominated by the premixed flame.

  2. Spray pyrolysis synthesis of γ-Al_2O_3 supported metal and metal phosphide catalysts and their activity in the hydrodeoxygenation of a bio-oil model compound

    International Nuclear Information System (INIS)

    Ly, Hoang Vu; Im, Kyungmin; Go, Youngchae; Galiwango, Emmanuel; Kim, Seung-Soo; Kim, Jinsoo; Choi, Jae Hyung; Woo, Hee Chul

    2016-01-01

    Highlights: • Spherical γ-Al_2O_3 supported metal and metal phosphide catalysts were synthesized by spray pyrolysis method. • Hydrodeoxygenation (HDO) of 2-furyl methyl ketone (FMK) was conducted using metal/metal phosphide catalysts. • FMK was converted into 2-allyl furan and methyl cyclohexane. • The highest FMK conversion of 83% was achieved over 10 wt% Ni/γ-Al_2O_3 catalysts at reaction temperature of 400 °C. - Abstract: In this study, spherical γ-Al_2O_3 supported metal and metal phosphide (Ni, Co, Ni_2P and CoP) catalysts were successfully prepared by combining sol-gel and spray pyrolysis methods. First boehmite sol was prepared based on the Yoldas process and then the corresponding metal salts were added to the sol at the desired concentration, followed by spray pyrolysis of the mixed solution. As the well-mixed solution was transformed to spherical γ-Al_2O_3 supported metal and metal phosphide catalysts during spray pyrolysis process, the metal species were uniformly distributed in the mesoporous γ-Al_2O_3 supports. The product catalysts were investigated under different conditions for hydrodeoxygenation of bio-oil model compound, 2-furyl methyl ketone (FMK), which is the main component of the bio-oil product from pyrolysis of Saccharina japonica. Among the investigated catalysts, the 10 wt% Ni/γ-Al_2O_3 catalyst after calcination at 800 °C showed the highest FMK conversion of 83.02% at the reaction temperature of 400 °C. The gas and liquid products were analyzed by gas chromatography (GC) with TCD/FID detectors and GC–MS, respectively, to determine the product compositions.

  3. Substrate system for spray forming

    Energy Technology Data Exchange (ETDEWEB)

    Chu, Men G. (Export, PA); Chernicoff, William P. (Harrisburg, PA)

    2002-01-01

    A substrate system for receiving a deposit of sprayed metal droplets including a movable outer substrate on which the sprayed metal droplets are deposited. The substrate system also includes an inner substrate disposed adjacent the outer substrate where the sprayed metal droplets are deposited on the outer substrate. The inner substrate includes zones of differing thermal conductivity to resist substrate layer porosity and to resist formation of large grains and coarse constituent particles in a bulk layer of the metal droplets which have accumulated on the outer substrate. A spray forming apparatus and associated method of spray forming a molten metal to form a metal product using the substrate system of the invention is also provided.

  4. Flame propagation in two-dimensional solids: Particle-resolved studies with complex plasmas

    Science.gov (United States)

    Yurchenko, S. O.; Yakovlev, E. V.; Couëdel, L.; Kryuchkov, N. P.; Lipaev, A. M.; Naumkin, V. N.; Kislov, A. Yu.; Ovcharov, P. V.; Zaytsev, K. I.; Vorob'ev, E. V.; Morfill, G. E.; Ivlev, A. V.

    2017-10-01

    Using two-dimensional (2D) complex plasmas as an experimental model system, particle-resolved studies of flame propagation in classical 2D solids are carried out. Combining experiments, theory, and molecular dynamics simulations, we demonstrate that the mode-coupling instability operating in 2D complex plasmas reveals all essential features of combustion, such as an activated heat release, two-zone structure of the self-similar temperature profile ("flame front"), as well as thermal expansion of the medium and temperature saturation behind the front. The presented results are of relevance for various fields ranging from combustion and thermochemistry, to chemical physics and synthesis of materials.

  5. Effect of flame-tube head structure on combustion chamber performance

    Science.gov (United States)

    Gu, Minqqi

    1986-01-01

    The experimental combustion performance of a premixed, pilot-type flame tube with various head structures is discussed. The test study covers an extensive area: efficiency of the combustion chamber, quality of the outlet temperature field, limit of the fuel-lean blowout, ignition performance at ground starting, and carbon deposition. As a result of these tests, a nozzle was found which fits the premixed pilot flame tube well. The use of this nozzle optimized the performance of the combustion chamber. The tested models had premixed pilot chambers with two types of air-film-cooling structures, six types of venturi-tube structures, and secondary fuel nozzles with two small spray-cone angles.

  6. Spray deposition and spray drift in orchard spraying by multiple row sprayers

    NARCIS (Netherlands)

    Wenneker, M.; Zande, van de J.C.; Michielsen, J.G.P.; Stallinga, H.; Velde, van P.

    2016-01-01

    The evaluation of the latest data on spray drift in orchard spraying in the Netherlands, and measurements of surface water quality parameters show that the current legislation and measures are insufficient to protect the surface water. To meet the national and European objectives regarding surface

  7. Suspension thermal spraying of hydroxyapatite: Microstructure and in vitro behaviour

    Energy Technology Data Exchange (ETDEWEB)

    Bolelli, Giovanni, E-mail: giovanni.bolelli@unimore.it [Department of Engineering “Enzo Ferrari”, Università di Modena e Reggio Emilia, Via Vignolese 905, 41125 Modena, MO (Italy); Bellucci, Devis; Cannillo, Valeria; Lusvarghi, Luca; Sola, Antonella [Department of Engineering “Enzo Ferrari”, Università di Modena e Reggio Emilia, Via Vignolese 905, 41125 Modena, MO (Italy); Stiegler, Nico; Müller, Philipp; Killinger, Andreas; Gadow, Rainer [Institute for Manufacturing Technologies of Ceramic Components and Composites (IMTCCC), Universität Stuttgart, Allmandring 7b, 70569 Stuttgart (Germany); Altomare, Lina; De Nardo, Luigi [Dipartimento di Chimica, Materiali e Ingegneria Chimica “G. Natta”, Politecnico di Milano, Via Mancinelli 7, I-20131 Milano (Italy)

    2014-01-01

    In cementless fixation of metallic prostheses, bony ingrowth onto the implant surface is often promoted by osteoconductive plasma-sprayed hydroxyapatite coatings. The present work explores the use of the innovative High Velocity Suspension Flame Spraying (HVSFS) process to coat Ti substrates with thin homogeneous hydroxyapatite coatings. The HVSFS hydroxyapatite coatings studied were dense, 27–37 μm thick, with some transverse microcracks. Lamellae were sintered together and nearly unidentifiable, unlike conventional plasma-sprayed hydroxyapatite. Crystallinities of 10%–70% were obtained, depending on the deposition parameters and the use of a TiO{sub 2} bond coat. The average hardness of layers with low (< 24%) and high (70%) crystallinity was ≈ 3.5 GPa and ≈ 4.5 GPa respectively. The distributions of hardness values, all characterised by Weibull modulus in the 5–7 range, were narrower than that of conventional plasma-sprayed hydroxyapatite, with a Weibull modulus of ≈ 3.3. During soaking in simulated body fluid, glassy coatings were progressively resorbed and replaced by a new, precipitated hydroxyapatite layer, whereas coatings with 70% crystallinity were stable up to 14 days of immersion. The interpretation of the precipitation behaviour was also assisted by surface charge assessments, performed through Z-potential measurements. During in vitro tests, HA coatings showed no cytotoxicity towards the SAOS-2 osteoblast cell line, and surface cell proliferation was comparable with proliferation on reference polystyrene culture plates. - Highlights: • Thin, dense HA layers were originated by HVSFS deposition of molten agglomerates of ≈ 1 μm. • Tensile adhesion strength of HVSFS HA onto Ti well above the threshold of ISO 13779-2 • Crystallinity (10–70%) is determined by system temperature during deposition. • Crystallinity controls the reactivity during immersion in simulated body fluid. • SAOS-2 osteoblast-like cells adhered well and

  8. Impact of flame-wall interaction on premixed flame dynamics and transfer function characteristics

    KAUST Repository

    Kedia, K.S.; Altay, H.M.; Ghoniem, A.F.

    2011-01-01

    In this paper, we numerically investigate the response of a perforated-plate stabilized laminar methane-air premixed flame to imposed inlet velocity perturbations. A flame model using detailed chemical kinetics mechanism is applied and heat exchange

  9. Extinction of corrugated hydrogen/air flames

    International Nuclear Information System (INIS)

    Mizomoto, M.; Asaka, Y.; Ikai, S.; Law, C.K.

    1982-01-01

    Recent studies on flammability limits reveal the importance of flow nonuniformity, flame curvature, and molecular and thermal diffusivities in determining the extinguishability and the associated limits of premixed fuel/air flames. In particular, it is found that conditions which favor extinction of a lean flame may cause intensification of a rich flame. In the present study the authors have experimentally determined the extinction characteristics and limits of highly curved hydrogen/air flames as represented by the opening of bunsen flame tips. Results show that the tip opens at a constant fuel equivalence ratio of phi = 1.15, regardless of the velocity and uniformity of the upstream flow. This critical mixture concentration, while being rich, is still on the lean side of that corresponding to the maximum burning velocity (phi = 1.8), implying that for highly diffusive systems, the relevant reference concentration is that for maximum burning velocity instead of stoichiometry

  10. Flame Motion In Gas Turbine Burner From Averages Of Single-Pulse Flame Fronts

    Energy Technology Data Exchange (ETDEWEB)

    Tylli, N.; Hubschmid, W.; Inauen, A.; Bombach, R.; Schenker, S.; Guethe, F. [Alstom (Switzerland); Haffner, K. [Alstom (Switzerland)

    2005-03-01

    Thermo acoustic instabilities of a gas turbine burner were investigated by flame front localization from measured OH laser-induced fluorescence single pulse signals. The average position of the flame was obtained from the superposition of the single pulse flame fronts at constant phase of the dominant acoustic oscillation. One observes that the flame position varies periodically with the phase angle of the dominant acoustic oscillation. (author)

  11. Characteristics of Oscillating Flames in a Coaxial Confined Jet

    Directory of Open Access Journals (Sweden)

    Min Suk Cha

    2010-12-01

    Full Text Available Flame characteristics when a non-premixed n-butane jet is ejected into a coaxial cylindrical tube are investigated experimentally. Flame stability depends mainly on the characteristics of flame propagation as well as air entrainment which depend on the jet momentum and on the distance between the nozzle exit and the base of a confined tube. As flow rate increases, the flame lifts off from a nozzle attached diffusion flame and a stationary lifted flame can be stabilized. The liftoff height increases nearly linearly with the average velocity at the nozzle exit. The lifted flame has a tribrachial flame structure, which consists of a rich premixed flame, a lean premixed flame, and a diffusion flame, all extending from a single location. As flow rate further increases, periodically oscillating flames are observed inside the confined tube. Once flame oscillation occurs, the flame undergoes relatively stable oscillation such that it has nearly constant oscillation amplitude and frequency. The criteria of flame oscillation are mapped as functions of nozzle diameter, the distance between nozzle and tube, and jet velocity. This type of flame oscillation can be characterized by Strouhal number in terms of flame oscillation amplitude, frequency, and jet velocity. Buoyancy driven flame oscillation which is one of the viable mechanism for flame oscillation is modeled and the results agrees qualitatively with experimental results, suggesting that the oscillation is due to periodic blowoff and flashback under the influence of buoyancy.

  12. Indoor spray measurement of spray drift potential using a spray drift test bench : effect of drift-reducing nozzle types, spray boom height, nozzle spacing and forward speed

    NARCIS (Netherlands)

    Moreno Ruiz, J.R.

    2014-01-01

    In a series of indoor experiments spray drift potential was assessed when spraying over a spray drift testbench with two different driving speeds, 2m/s and 4m/s, two different spray boom heights, 30 cm and 50 cm, and two different nozzle spacing, 25 cm and 50 cm, for six different nozzle types. The

  13. Fuel properties to enable lifted-flame combustion

    Energy Technology Data Exchange (ETDEWEB)

    Kurtz, Eric [Ford Motor Company, Dearborn, MI (United States)

    2015-03-15

    The Fuel Properties to Enable Lifted-Flame Combustion project responded directly to solicitation DE-FOA-0000239 AOI 1A, Fuels and Lubricants for Advanced Combustion Regimes. This subtopic was intended to encompass clean and highly-efficient, liquid-fueled combustion engines to achieve extremely low engine-out nitrogen oxides (NOx) and particulate matter (PM) as a target and similar efficiency as state-of-the-art direct injection diesel engines. The intent of this project was to identify how fuel properties can be used to achieve controllable Leaner Lifted Flame Combustion (LLFC) with low NOx and PM emissions. Specifically, this project was expected to identify and test key fuel properties to enable LLFC and their compatibility with current fuel systems and to enhance combustion models to capture the effect of fuel properties on advanced combustion. Successful demonstration of LLFC may reduce the need for after treatment devices, thereby reducing costs and improving thermal efficiency. The project team consisted of key technical personnel from Ford Motor Company (FMC), the University of Wisconsin-Madison (UW), Sandia National Laboratories (SNL) and Lawrence Livermore National Laboratories (LLNL). Each partner had key roles in achieving project objectives. FMC investigated fuel properties relating to LLFC and sooting tendency. Together, FMC and UW developed and integrated 3D combustion models to capture fuel property combustion effects. FMC used these modeling results to develop a combustion system and define fuel properties to support a single-cylinder demonstration of fuel-enabled LLFC. UW investigated modeling the flame characteristics and emissions behavior of different fuels, including those with different cetane number and oxygen content. SNL led spray combustion experiments to quantify the effect of key fuel properties on combustion characteristics critical for LLFC, as well as single cylinder optical engine experiments to improve fundamental

  14. Pole solutions for flame front propagation

    CERN Document Server

    Kupervasser, Oleg

    2015-01-01

    This book deals with solving mathematically the unsteady flame propagation equations. New original mathematical methods for solving complex non-linear equations and investigating their properties are presented. Pole solutions for flame front propagation are developed. Premixed flames and filtration combustion have remarkable properties: the complex nonlinear integro-differential equations for these problems have exact analytical solutions described by the motion of poles in a complex plane. Instead of complex equations, a finite set of ordinary differential equations is applied. These solutions help to investigate analytically and numerically properties of the flame front propagation equations.

  15. Gravitational Effects on Cellular Flame Structure

    Science.gov (United States)

    Dunsky, C. M.; Fernandez-Pello, A. C.

    1991-01-01

    An experimental investigation has been conducted of the effect of gravity on the structure of downwardly propagating, cellular premixed propane-oxygen-nitrogen flames anchored on a water-cooled porous-plug burner. The flame is subjected to microgravity conditions in the NASA Lewis 2.2-second drop tower, and flame characteristics are recorded on high-speed film. These are compared to flames at normal gravity conditions with the same equivalence ratio, dilution index, mixture flow rate, and ambient pressure. The results show that the cellular instability band, which is located in the rich mixture region, changes little under the absence of gravity. Lifted normal-gravity flames near the cellular/lifted limits, however, are observed to become cellular when gravity is reduced. Observations of a transient cell growth period following ignition point to heat loss as being an important mechanism in the overall flame stability, dominating the stabilizing effect of buoyancy for these downwardly-propagating burner-anchored flames. The pulsations that are observed in the plume and diffusion flame generated downstream of the premixed flame in the fuel rich cases disappear in microgravity, verifying that these fluctuations are gravity related.

  16. Mechanisms of spray formation and combustion from a multi-hole injector with E85 and gasoline

    Energy Technology Data Exchange (ETDEWEB)

    Aleiferis, P.G.; Serras-Pereira, J.; van Romunde, Z. [Department of Mechanical Engineering, University College London (United Kingdom); Caine, J. [Ford Motor Company, Dunton Engineering Centre (United Kingdom); Wirth, M. [Ford Werke GmbH, Merkenich, Cologne (Germany)

    2010-04-15

    The spray formation and combustion characteristics of gasoline and E85 (85% ethanol, 15% gasoline) have been investigated using a multi-hole injector with asymmetric nozzle-hole arrangement. Experiments were carried out in a quiescent optical chamber using high-speed shadowgraphy (9 kHz) to characterise the spray sensitivity to both injector temperature and ambient pressure in the range of 20-120 C and 0.5, 1.0 bar. Spray-tip penetrations and 'umbrella' spray cone angles were calculated for all conditions. Phase Doppler Anemometry was also used to measure droplet sizes in the core of one of the spray plumes, 25 mm below the injector tip. To study the effect of fuel properties on vaporisation and mixture preparation under realistic operating conditions, a separate set of experiments was carried out in a direct-injection spark-ignition optical engine. The engine was run at 1500 RPM under cold and fully warmed-up conditions (20 C and 90 C) at part load and full load (0.5 and 1.0 bar intake pressure). Floodlit laser Mie-scattering images of the sprays on two orthogonal planes corresponding to the swirl and tumble planes of in-cylinder flow motion were acquired to study the full injection event and post-injection mixing stage. These were used to make comparisons with the static chamber sprays and to quantify the liquid-to-vapour phase evaporation process for both fuels by calculating the projected 'footprint' of the sprays at different conditions. Analysis of the macroscopic structure and turbulent primary break-up properties of the sprays was undertaken in light of jet exit conditions described in terms of non-dimensional numbers. The effects on stoichiometric combustion were investigated by imaging the natural flame chemiluminescence through the engine's piston crown (swirl plane) and by post-processing to derive flame growth rates and trajectories of flame motion. (author)

  17. Theoretical analysis of the conical premixed flame response to upstream velocity disturbances considering flame speed development effects

    Directory of Open Access Journals (Sweden)

    Ghazaleh Esmaeelzade

    2017-03-01

    Full Text Available The effect of upstream velocity perturbations on the response of a premixed flame was investigated in terms of the flame transfer function dependency on excitation frequency. In this study, the assumption of constant flame speed was extended and the effect of flame speed development was considered; i.e., the flame speed would grow with the time after ignition or with the distance from a flame-holder. In the present study, the kinematics of a conical flame was investigated by linearization of the front tracking equation of flame to uniform and convected fluctuations of the flow velocity and the response was compared with that of a V-shaped flame and the experimental data in the previous studies. The results show that the effect of flame speed development could influence a decreasing gain and increase the phase of the flame response to the uniform velocity oscillations in low and moderate frequencies. Comparing the variations in the gain of flame response upon normalized frequency, show that a conical flame has lower values than the V-flame. In other words, these flames might be less susceptible to combustion instabilities than the V-flames. Furthermore, the variations in phase of the V-flames responses, which show a quasi-linear behavior with normalized frequency, have higher values than the saturated behavior in phase of the conical flame responses. Also, considering that the flame speed development induces an increase in the gain and phase of the conical flame response to the convected velocity oscillations in certain frequencies; because the developed flame front has longer length in comparison to the flame front in constant flame speed model. Therefore, the flame length may be longer than convective wavelength and the heat release would be generated in different points of the flame; consequently the flow oscillations might exert a stronger impact on the unsteady heat release fluctuations.

  18. Method and closing pores in a thermally sprayed doped lanthanum chromite interconnection layer

    Science.gov (United States)

    Singh, Prabhakar; Ruka, Roswell J.

    1995-01-01

    A dense, substantially gas-tight electrically conductive interconnection layer is formed on an air electrode structure of an electrochemical cell by (A) providing an air electrode surface; (B) forming on a selected portion of the electrode surface, a layer of doped LaCrO.sub.3 particles doped with an element or elements selected from Ca, Sr, Ba, Mg, Co, Ni, Al and mixtures thereof by thermal spraying doped LaCrO.sub.3 particles, either by plasma arc spraying or flame spraying; (C) depositing a mixture of CaO and Cr.sub.2 O.sub.3 on the surface of the thermally sprayed layer; and (D) heating the doped LaCrO.sub.3 layer coated with CaO and Cr.sub.2 O.sub.3 surface deposit at from about 1000.degree. C. to 1200.degree. C. to substantially close the pores, at least at a surface, of the thermally sprayed doped LaCrO.sub.3 layer. The result is a dense, substantially gas-tight, highly doped, electrically conductive interconnection material bonded to the electrode surface. A solid electrolyte layer can be applied to the nonselected portion of the air electrode. A fuel electrode can be applied to the solid electrolyte, to form an electrochemical cell, for example for generation of electrical power.

  19. Sodium spray and jet fire model development within the CONTAIN-LMR code

    International Nuclear Information System (INIS)

    Scholtyssek, W.

    1993-01-01

    An assessment was made of the sodium spray fire model implemented in the CONTAIN code. The original droplet burn model, which was based on the NACOM code, was improved in several aspects, especially concerning evaluation of the droplet burning rate, reaction chemistry and heat balance, spray geometry and droplet motion, and consistency with CONTAIN standards of gas property evaluation. An additional droplet burning model based on a proposal by Krolikowski was made available to include the effect of the chemical equilibrium conditions at the flame temperature. The models were validated against single-droplet burn experiments as well as spray and jet fire experiments. Reasonable agreement was found between the two burn models and experimental data. When the gas temperature in the burning compartment reaches high values, the Krolikowski model seems to be preferable. Critical parameters for spray fire evaluation were found to be the spray characterization, especially the droplet size, which largely determines the burning efficiency, and heat transfer conditions at the interface between the atmosphere and structures, which controls the thermal hydraulic behavior in the burn compartment

  20. Development and validation of an n-dodecane skeletal mechanism for spray combustion applications

    KAUST Repository

    Luo, Zhaoyu

    2014-03-04

    n-Dodecane is a promising surrogate fuel for diesel engine study because its physicochemical properties are similar to those of the practical diesel fuels. In the present study, a skeletal mechanism for n-dodecane with 105 species and 420 reactions was developed for spray combustion simulations. The reduction starts from the most recent detailed mechanism for n-alkanes consisting of 2755 species and 11,173 reactions developed by the Lawrence Livermore National Laboratory. An algorithm combining direct relation graph with expert knowledge (DRGX) and sensitivity analysis was employed for the present skeletal reduction. The skeletal mechanism was first extensively validated in 0-D and 1-D combustion systems, including auto-ignition, jet stirred reactor (JSR), laminar premixed flame and counter flow diffusion flame. Then it was coupled with well-established spray models and further validated in 3-D turbulent spray combustion simulations under engine-like conditions. These simulations were compared with the recent experiments with n-dodecane as a surrogate for diesel fuels. It can be seen that combustion characteristics such as ignition delay and flame lift-off length were well captured by the skeletal mechanism, particularly under conditions with high ambient temperatures. Simulations also captured the transient flame development phenomenon fairly well. The results further show that ignition delay may not be the only factor controlling the stabilisation of the present flames since a good match in ignition delay does not necessarily result in improved flame lift-off length prediction. The work of Zhaoyu Luo, Sibendu Som, Max Plomer, William J. Pitz, Douglas E. Longman and Tianfeng Lu was authored as part of their official duties as Employees of the United States Government and is therefore a work of the United States Government. In accordance with 17 USC. 105, no copyright protection is available for such works under US Law. S. Mani Sarathy hereby waives his right to

  1. Diesel CPO for SOFC. Development of a cold-flame assisted CPO reactor coupled to a SOFC

    Energy Technology Data Exchange (ETDEWEB)

    Van Dijk, H.A.J.; Ouweltjes, J.P.; Nyqvist, R.G. [ECN Hydrogen and Clean Fossil Fuels, Petten (Netherlands)

    2009-07-15

    Within the research program 'Reforming of liquid fuels for fuel-cells', ECN started a project on the development of a diesel CPO (catalytic partial oxidation) reformer for SOFC (solid oxide fuel cell) in 2005. The application in mind is a small scale (5kWe) diesel fed auxiliary power unit (APU). The goal of the project is to develop the technology required to transform a liquid logistic fuel into a reformat suitable for the operation of a SOFC. The emphasis of this work is on the development of a cold-flame assisted evaporator/mixer coupled to a catalytic CPO reformer. The application of cold-flame evaporation and mixing allows the reformat to be directly fed to the SOFC without further heating or cooling. Moreover, once cold-flames are ignited and stabilized, pre-heating of the air and fuel becomes obsolete. These aspects justify the development described in this report. In the cold-flame evaporator/mixer, the cold-flames are stabilized by means of a recirculation tube. The momentum of the fuel spray of the nozzle induces the required recirculation. The cold flame evaporator/mixer was coupled to a catalytic reformer reactor, transforming the hydrocarbon+air feed into a CO+H2 rich reformate. The reformer was coupled to a SOFC to be able to verify the quality of the reformat obtained with this reformer. The SOFC therefore served as an analysis tool. Characteristically, the reformat was held at 800C all the way towards the SOFC. For this, high temperature flange connections and steel-ceramic expansion connections were successfully applied. It is demonstrated that cold-flame evaporation of liquid fuels is a feasible means of feed preparation for a catalytic reforming reactor. The quality of the resulting reformat is adequate to be fed to the SOFC. The reformat quality, however, decreased with time-on-stream due to fouling of the reformer by carbon-depositions. These carbon-depositions were essentially located on the fuel injector, which is the coldest part

  2. Modifications Of A Commercial Spray Gun

    Science.gov (United States)

    Allen, Peter B.

    1993-01-01

    Commercial spray gun modified to increase spray rate and make sprayed coats more nearly uniform. Consists of gun head and pneumatic actuator. Actuator opens valves for two chemical components, called "A" and "B," that react to produce foam. Components flow through orifices, into mixing chamber in head. Mixture then flows through control orifice to spray tip. New spray tip tapered to reduce area available for accumulation of foam and makes tip easier to clean.

  3. Experimental studies of flame stability limits of biogas flame

    International Nuclear Information System (INIS)

    Dai Wanneng; Qin Chaokui; Chen Zhiguang; Tong Chao; Liu Pengjun

    2012-01-01

    Highlights: ► Premixed biogas flame stability for RTBs was studied on different conditions. ► An unusual “float off” phenomenon was observed. ► Decrease of port diameter or gas temperature or methane content motivates lifting. ► Increase of methane content or gas temperature or port diameter motivates yellow tipping. ► Lifting curves become straight lines when semi-logarithmic graph paper is applied. - Abstract: Flame stability of premixed biogas flame for Reference Test Burner (RTB) was investigated. In this study, six kinds of test gases were used to simulate biogas in which CO 2 volume fraction varied from 30% to 45%. A series of experiments were conducted on two RTBs with different port diameters and at different outlet unburned mixture temperatures. It was found that the lifting and yellow tipping limits show similar trends regardless of the biogas components, port diameters and mixture temperatures. A “float off” phenomenon could be observed at low gas flow rate and low primary air ratio. Low mixture temperature, small ports and high CO 2 concentration in biogas can lead to the unstable condition of “float off”. The lifting limits are enhanced with an increase of port diameter or mixture temperature and with a decrease of CO 2 concentration. The yellow tipping limits are extended with an increase of CO 2 concentration and with a decrease of mixture temperature or port diameter. In addition, the lifting limit curve becomes a straight line when semi-logarithmic graph paper is applied. The intercept increases with a decrease of the CO 2 concentration in biogas and with an increase of port diameter or gas temperature.

  4. Measurements of non-reacting and reacting flow fields of a liquid swirl flame burner

    Science.gov (United States)

    Chong, Cheng Tung; Hochgreb, Simone

    2015-03-01

    The understanding of the liquid fuel spray and flow field characteristics inside a combustor is crucial for designing a fuel efficient and low emission device. Characterisation of the flow field of a model gas turbine liquid swirl burner is performed by using a 2-D particle imaging velocimetry(PIV) system. The flow field pattern of an axial flow burner with a fixed swirl intensity is compared under confined and unconfined conditions, i.e., with and without the combustor wall. The effect of temperature on the main swirling air flow is investigated under open and non-reacting conditions. The result shows that axial and radial velocities increase as a result of decreased flow density and increased flow volume. The flow field of the main swirling flow with liquid fuel spray injection is compared to non-spray swirling flow. Introduction of liquid fuel spray changes the swirl air flow field at the burner outlet, where the radial velocity components increase for both open and confined environment. Under reacting condition, the enclosure generates a corner recirculation zone that intensifies the strength of radial velocity. The reverse flow and corner recirculation zone assists in stabilizing the flame by preheating the reactants. The flow field data can be used as validation target for swirl combustion modelling.

  5. Flame dynamics of a meso-scale heat recirculating combustor

    Energy Technology Data Exchange (ETDEWEB)

    Vijayan, V.; Gupta, A.K. [Department of Mechanical Engineering, University of Maryland, College Park, MD 20742 (United States)

    2010-12-15

    The dynamics of premixed propane-air flame in a meso-scale ceramic combustor has been examined here. The flame characteristics in the combustor were examined by measuring the acoustic emissions and preheat temperatures together with high-speed cinematography. For the small-scale combustor, the volume to surface area ratio is small and hence the walls have significant effect on the global flame structure, flame location and flame dynamics. In addition to the flame-wall thermal coupling there is a coupling between flame and acoustics in the case of confined flames. Flame-wall thermal interactions lead to low frequency flame fluctuations ({proportional_to}100 Hz) depending upon the thermal response of the wall. However, the flame-acoustic interactions can result in a wide range of flame fluctuations ranging from few hundred Hz to few kHz. Wall temperature distribution is one of the factors that control the amount of reactant preheating which in turn effects the location of flame stabilization. Acoustic emission signals and high-speed flame imaging confirmed that for the present case flame-acoustic interactions have more significant effect on flame dynamics. Based on the acoustic emissions, five different flame regimes have been identified; whistling/harmonic mode, rich instability mode, lean instability mode, silent mode and pulsating flame mode. (author)

  6. Absorption/desorption in sprays

    International Nuclear Information System (INIS)

    Naimpally, A.

    1987-01-01

    This survey paper shall seek to present the present state of knowledge concerning absorption and desorption in spray chambers. The first part of the paper presents the theories and formulas for the atomization and break-up of sprays in nozzles. Formulas for the average (sauter-mean) diameters are then presented. For the case of absorption processes, the formulas for the dimensionless mass transfer coefficients is in drops. The total; mass transfer is the total of the transfer in individual drops. For the case of desorption of sparingly soluble gases from liquids in a spray chamber, the mass transfer occurs in the spray just at the point of break-up of the jet. Formulas for the desorption of gases are presented

  7. Magnesium Repair by Cold Spray

    National Research Council Canada - National Science Library

    Champagne, V. K; Leyman, P.F; Helfritch, D. J

    2008-01-01

    .... Army Research Laboratory has developed a cold spray process to reclaim magnesium components that shows significant improvement over existing methods and is in the process of qualification for use on rotorcraft...

  8. Tulip flames: changes in shape of premixed flames propagating in closed tubes

    Science.gov (United States)

    Dunn-Rankin, D.; Sawyer, R. F.

    The experimental results that are the subject of this communication provide high-speed schlieren images of the closed-tube flame shape that has come to be known as the tulip flame. The schlieren images, along with in-chamber pressure records, help demonstrate the effects of chamber length, equivalence ratio, and igniter geometry on formation of the tulip flame. The pressure/time records show distinct features which correlate with flame shape changes during the transition to tulip. The measurements indicate that the basic tulip flame formation is a robust phenomenon that depends on little except the overall geometry of the combustion vessel.

  9. High temperature oxidation and corrosion in marine environments of thermal spray deposited coatings

    International Nuclear Information System (INIS)

    Chaliampalias, D.; Vourlias, G.; Pavlidou, E.; Stergioudis, G.; Skolianos, S.; Chrissafis, K.

    2008-01-01

    Flame spraying is a widely used technique for depositing a great variety of materials in order to enforce the mechanical or the anticorrosion characteristics of the substrate. Its high rate application is due to the rapidity of the process, its effectiveness and its low cost. In this work, flame-sprayed Al coatings are deposited on low carbon steels in order to enhance their anticorrosion performance. The main adhesion mechanism of the coating is mechanical anchorage, which can provide the necessary protection to steel used in several industrial and constructive applications. To evaluate the corrosion resistance of the coating, the as-coated samples are subjected in a salt spray chamber and in elevated temperature environments. The examination and characterization of the corroded samples is done by scanning electron microscopy and X-ray diffraction analysis. The as-formed coatings are extremely rough and have a lamellic homogeneous morphology. It is also found that Al coatings provide better protection in marine atmospheres, while at elevated temperatures a thick oxide layer is formed, which can delaminate after long oxidation periods due to its low adherence to the underlying coating, thus eliminating the substrate protection

  10. Evaluation of different flamelet tabulation methods for laminar spray combustion

    Science.gov (United States)

    Luo, Yujuan; Wen, Xu; Wang, Haiou; Luo, Kun; Fan, Jianren

    2018-05-01

    In this work, three different flamelet tabulation methods for spray combustion are evaluated. Major differences among these methods lie in the treatment of the temperature boundary conditions of the flamelet equations. Particularly, in the first tabulation method ("M1"), both the fuel and oxidizer temperature boundary conditions are set to be fixed. In the second tabulation method ("M2"), the fuel temperature boundary condition is varied while the oxidizer temperature boundary condition is fixed. In the third tabulation method ("M3"), both the fuel and oxidizer temperature boundary conditions are varied and set to be equal. The focus of this work is to investigate whether the heat transfer between the droplet phase and gas phase can be represented by the studied tabulation methods through a priori analyses. To this end, spray flames stabilized in a three-dimensional counterflow are first simulated with detailed chemistry. Then, the trajectory variables are calculated from the detailed chemistry solutions. Finally, the tabulated thermo-chemical quantities are compared to the corresponding values from the detailed chemistry solutions. The comparisons show that the gas temperature cannot be predicted by "M1" with only a mixture fraction and reaction progress variable being the trajectory variables. The gas temperature can be correctly predicted by both "M2" and "M3," in which the total enthalpy is introduced as an additional manifold. In "M2," variations of the oxidizer temperature are considered with a temperature modification technique, which is not required in "M3." Interestingly, it is found that the mass fractions of the reactants and major products are not sensitive to the representation of the interphase heat transfer in the flamelet chemtables, and they can be correctly predicted by all tabulation methods. By contrast, the intermediate species CO and H2 in the premixed flame reaction zone are over-predicted by all tabulation methods.

  11. Propagation and diffusion-limited extinction of nonadiabatic heterogeneous flame in the SHS process

    International Nuclear Information System (INIS)

    Makino, Atsushi

    1994-01-01

    Nonadiabatic heterogeneous flame propagation and extinction in self-propagating high-temperature synthesis (SHS) are analyzed based on a premixed mode of propagation for the bulk flame supported by the nonpremixed reaction of dispersed nonmetals in the liquid metal. The formulation allows for volumetric heat loss throughout the bulk flame, finite-rate Arrhenius reaction at the particle surface, and temperature-sensitive Arrhenius mass diffusion in the liquid. Results show that, subsequent to melting of the metal, the flame structure consists of a relatively thin diffusion-consumption/convection zone followed by a relatively thick convection-loss zone, that the flame propagation rate decreases with increasing heat loss, that at a critical heat-loss rate the flame extinguishes as indicated by the characteristic turning-point behavior, that the surface reaction is diffusion limited such that the nonlinear, temperature-sensitive nature of the system is actually a consequence of the Arrhenius mass diffusion, and that extinction is sensitively affected by the mixture ratio, the degree of dilution, the initial temperature of the compact, and the size of the nonmetal particles. An explicit expression is derived for the normalized mass burning rate, which exhibits the characteristic turning point and shows that extinction occurs when this value is reduced to e -1/2 , which is the same as that for the nonadiabatic gaseous premixed flame. It is further shown that the theoretical results agree well with available experimental data, indicating that the present formulation captures the essential features of the nonadiabatic heterogeneous SHS processes and its potential for extension to describe other SHS phenomena

  12. Improvement of flame resistance of non-flame retardant cables by applying fire protection measures

    International Nuclear Information System (INIS)

    Takemura, Yujiro; Segoshi, Yoshinori; Jinno, Susumu; Mii, Kazuki

    2017-01-01

    The new regulatory requirements, which were put in force after the Fukushima Daiichi accident, impose the use of flame retardant cables on the plant components having safety functions for the purpose of fire protection. However, some Japanese nuclear power plants built in the early days use non-flame retardant cables that do not pass the demonstration test to check for the flame resistance. To cope with the new regulatory requirements, a fire protection measure for non-flame retardant cables was introduced to assure flame resistance of non-flame retardant cables equivalent to or higher than that of flame retardant cables. To illustrate the fire protection measure, both non-flame retardant cables and its cable tray are covered with fire protection sheet fabricated from incombustible material to form an assembly. Considering the demonstration test results, it can be concluded that flame resistance performance of non-flame retardant cables equivalent to or higher than that of flame retardant cables can be assured by forming the assembly even if an external fire outside the assembly and internal cable fire inside the assembly are assumed. This paper introduces the design of the assembly consisting of a bundle of cables and a cable tray and summarizes the results of demonstration tests. (author)

  13. Impact of flame-wall interaction on premixed flame dynamics and transfer function characteristics

    KAUST Repository

    Kedia, K.S.

    2011-01-01

    In this paper, we numerically investigate the response of a perforated-plate stabilized laminar methane-air premixed flame to imposed inlet velocity perturbations. A flame model using detailed chemical kinetics mechanism is applied and heat exchange between the burner plate and the gas mixture is incorporated. Linear transfer functions, for low mean inlet velocity oscillations, are analyzed for different equivalence ratio, mean inlet velocity, plate thermal conductivity and distance between adjacent holes. The oscillations of the heat exchange rate at the top of the burner surface plays a critical role in driving the growth of the perturbations over a wide range of conditions, including resonance. The flame response to the perturbations at its base takes the form of consumption speed oscillations in this region. Flame stand-off distance increases/decreases when the flame-wall interaction strengthens/weakens, impacting the overall dynamics of the heat release. The convective lag between the perturbations and the flame base response govern the phase of heat release rate oscillations. There is an additional convective lag between the perturbations at the flame base and the flame tip which has a weaker impact on the heat release rate oscillations. At higher frequencies, the flame-wall interaction is weaker and the heat release oscillations are driven by the flame area oscillations. The response of the flame to higher amplitude oscillations are used to gain further insight into the mechanisms. © 2010 Published by Elsevier Inc. on behalf of The Combustion Institute. All rights reserved.

  14. Recent Developments in Organophosphorus Flame Retardants Containing P-C Bond and Their Applications

    Directory of Open Access Journals (Sweden)

    Sophie Wendels

    2017-07-01

    Full Text Available Organophosphorus compounds containing P-C bonds are increasingly developed as flame retardant additives due to their excellent thermal and hydrolytic stability and ease of synthesis. The latest development (since 2010 in organophosphorus flame retardants containing P-C bonds summarized in this review. In this review, we have broadly classified such phosphorus compounds based on the carbon unit linked to the phosphorus atom i.e., could be a part of either an aliphatic or an aromatic unit. We have only considered those published literature where a P-C bond was created as a part of synthetic strategy to make either an intermediate or a final organophosphorus compound with an aim to use it as a flame retardant. General synthetic strategies to create P-C bonds are briefly discussed. Most popular synthetic strategies used for developing P-C containing phosphorus based flame retardants include Michael addition, Michaelis–Arbuzov, Friedels–Crafts and Grignard reactions. In general, most flame retardant derivatives discussed in this review have been prepared via a one- to two-step synthetic strategy with relatively high yields greater than 80%. Specific examples of P-C containing flame retardants synthesized via suitable synthetic strategy and their applications on various polymer systems are described in detail. Aliphatic phosphorus compounds being liquids or low melting solids are generally applied in polymers via coatings (cellulose or are incorporated in the bulk of the polymers (epoxy, polyurethanes during their polymerization as reactive or non-reactive additives. Substituents on the P atoms and the chemistry of the polymer matrix greatly influence the flame retardant behavior of these compounds (condensed phase vs. the gas phase. Recently, aromatic DOPO based phosphinate flame retardants have been developed with relatively higher thermal stabilities (>250 °C. Such compounds have potential as flame retardants for high temperature processable

  15. Tabulated Combustion Model Development For Non-Premixed Flames

    Science.gov (United States)

    Kundu, Prithwish

    D diffusion flame solver. The proposed model did not use progress variables like the traditional chemistry tabulation methods. The resulting model demonstrated an order of magnitude computational speed up over the RIF model. The results were validated across a wide range of operating conditions for diesel injections and the results were in close agreement to those of the experimental data. History of scalar dissipation rates plays a very important role in non premixed flames. However, tabulated methods have not been able to incorporate this physics in their models. A comparative approach is developed that can quantify these effects and find correlations with flow variables. A new model is proposed to include these effects in tabulated combustion models. The model is initially validated for 1D counterflow diffusion flame problems at engine conditions. The model is further implemented and validated in a 3D RANS code across a range of operating conditions for spray flames.

  16. Flame surface statistics of constant-pressure turbulent expanding premixed flames

    Science.gov (United States)

    Saha, Abhishek; Chaudhuri, Swetaprovo; Law, Chung K.

    2014-04-01

    In this paper we investigate the local flame surface statistics of constant-pressure turbulent expanding flames. First the statistics of local length ratio is experimentally determined from high-speed planar Mie scattering images of spherically expanding flames, with the length ratio on the measurement plane, at predefined equiangular sectors, defined as the ratio of the actual flame length to the length of a circular-arc of radius equal to the average radius of the flame. Assuming isotropic distribution of such flame segments we then convolute suitable forms of the length-ratio probability distribution functions (pdfs) to arrive at the corresponding area-ratio pdfs. It is found that both the length ratio and area ratio pdfs are near log-normally distributed and shows self-similar behavior with increasing radius. Near log-normality and rather intermittent behavior of the flame-length ratio suggests similarity with dissipation rate quantities which stimulates multifractal analysis.

  17. Simulations of flame generated particles

    KAUST Repository

    Patterson, Robert

    2016-01-05

    The nonlinear structure of the equations describing the evolution of a population of coagulating particles in a flame make the use of stochastic particle methods attractive for numerical purposes. I will present an analysis of the stochastic fluctuations inherent in these numerical methods leading to an efficient sampling technique for steady-state problems. I will also give some examples where stochastic particle methods have been used to explore the effect of uncertain parameters in soot formation models. In conclusion I will try to indicate some of the issues in optimising these methods for the study of uncertain model parameters.

  18. Simulations of flame generated particles

    KAUST Repository

    Patterson, Robert

    2016-01-01

    The nonlinear structure of the equations describing the evolution of a population of coagulating particles in a flame make the use of stochastic particle methods attractive for numerical purposes. I will present an analysis of the stochastic fluctuations inherent in these numerical methods leading to an efficient sampling technique for steady-state problems. I will also give some examples where stochastic particle methods have been used to explore the effect of uncertain parameters in soot formation models. In conclusion I will try to indicate some of the issues in optimising these methods for the study of uncertain model parameters.

  19. Nonequilibrium theory of flame propagation

    International Nuclear Information System (INIS)

    Merzhanov, A.G.

    1995-01-01

    The nonequilibrium theory of flame propagation is considered as applied to the following three processes of wave propagation: the combustion waves of the second kind, the combustion waves with broad reaction zones, and the combustion waves with chemical stages. Kinetic and combustion wave parameters are presented for different in composition mixtures of boron and transition metals, such as Zr, Hf, Ti, Nb, Ta, Mo, as well as for the Ta-N, Zr-C-H, Nb-B-O systems to illustrate specific features of the above-mentioned processes [ru

  20. Chemical processes in the HNF flame

    NARCIS (Netherlands)

    Ermolin, N.E.; Zarko, V.E.; Keizers, H.L.J.

    2006-01-01

    Results of modeling the HNF flame structure are presented. From an analysis of literature data on the thermal decomposition and combustion of HNF, it is concluded that the dissociative vaporization of HNF proceeds via the route HNFliq → (N2H4)g + (HC(NO 2)3)g. The flame structure is modeled using a

  1. Laser Doppler thermometry in flat flames

    NARCIS (Netherlands)

    Maaren, van A.; Goey, de L.P.H.

    1994-01-01

    Laser Doppler Velocimetry measurements are performed in flat flames, stabilized on a newly developed flat-flame burner. It is shown that the velocity component perpendicular to the main flow direction, induced by expansion in the reaction zone and buoyancy in the burnt gas, is significant. A method

  2. Development of PIV for Microgravity Diffusion Flames

    Science.gov (United States)

    Greenberg, Paul S.; Wernet, Mark P.; Yanis, William; Urban, David L.; Sunderland, Peter B.

    2003-01-01

    Results are presented from the application of Particle Image Velocimetry(PIV) to the overfire region of a laminar gas jet diffusion flame in normal gravity. A methane flame burning in air at 0.98 bar was considered. The apparatus demonstrated here is packaged in a drop rig designed for use in the 2.2 second drop tower.

  3. Realistic generation of natural phenomena based on video synthesis

    Science.gov (United States)

    Wang, Changbo; Quan, Hongyan; Li, Chenhui; Xiao, Zhao; Chen, Xiao; Li, Peng; Shen, Liuwei

    2009-10-01

    Research on the generation of natural phenomena has many applications in special effects of movie, battlefield simulation and virtual reality, etc. Based on video synthesis technique, a new approach is proposed for the synthesis of natural phenomena, including flowing water and fire flame. From the fire and flow video, the seamless video of arbitrary length is generated. Then, the interaction between wind and fire flame is achieved through the skeleton of flame. Later, the flow is also synthesized by extending the video textures using an edge resample method. Finally, we can integrate the synthesized natural phenomena into a virtual scene.

  4. Large-Eddy Simulations of Reacting Liquid Spray

    Science.gov (United States)

    Lederlin, Thomas; Sanjose, Marlene; Gicquel, Laurent; Cuenot, Benedicte; Pitsch, Heinz; Poinsot, Thierry

    2008-11-01

    Numerical simulation, which is commonly used in many stages of aero-engine design, still has to demonstrate its predictive capability for two-phase reacting flows. This study is a collaboration between Stanford University and CERFACS to perform LES of a realistic spray combustor installed at ONERA, Toulouse. The experimental configuration is computed on the same unstructured mesh with two different solvers: Stanford's CDP code and CERFACS's AVBP code. CDP uses a low-Mach, variable-density solver with implicit time advancement. Droplets are tracked in a Lagrangian point-particle framework. The combustion model uses a flamelet approach, based on two transported scalars, mixture fraction and reaction progress variable. AVBP is a fully compressible solver with explicit time advancement. The liquid phase is described with an Eulerian method. The flame-turbulence interaction is modeled using a dynamically-thickened flame. Results are compared with experimental data for three regimes: purely gaseous non-reacting flow, non-reacting flow with evaporating droplets, reacting flow with droplets. Both simulations show a good agreement with experimental data and also stress the difference and relative advantages of the numerical methods.

  5. Spray Lakes reclamation project

    International Nuclear Information System (INIS)

    Zacaruk, M.R.

    1996-01-01

    When the level of the Spray Lakes (Alberta) reservoir was lowered by four metres, 208 ha of shoreline was exposed offering little to no wildlife benefit and only limited recreation potential. A reclamation plan for 128 ha of shoreline was therefore developed. A wild life-palatable, self-sustaining vegetation cover was established. Approximately 90 ha was scarified, and/or had tree stumps removed prior to seeding, while approximately 40 ha was seeded and fertilized only. The remaining 80 ha of shoreline was not revegetated due to limited access; these areas will be allowed to re-establish naturally from the forested edge. The species were selected based on their adaptation to alkaline soils, drought tolerance, persistence in a stand and rooting characteristics, as well as palatability to wildlife. Alfalfa, white clover and fall rye were seeded. In general, all areas of the reclamation plan are successfully revegetated. Areas which were recontoured are stable and non-eroding. Success was most significant in areas which had been scarified, then seeded and trackpacked. Areas that were seeded and fertilized only were less well established at the end of the first year, but showed improvement in the second and third years. The area will be monitored to ensure the reclaimed vegetation is self-sustaining

  6. Aerodynamic features of flames in premixed gases

    Science.gov (United States)

    Oppenheim, A. K.

    1984-01-01

    A variety of experimentally established flame phenomena in premixed gases are interpreted by relating them to basic aerodynamic properties of the flow field. On this basis the essential mechanism of some well known characteristic features of flames stabilized in the wake of a bluff-body or propagating in ducts are revealed. Elementary components of the flame propagation process are shown to be: rotary motion, self-advancement, and expansion. Their consequences are analyzed under a most strict set of idealizations that permit the flow field to be treated as potential in character, while the flame is modelled as a Stefan-like interface capable of exerting a feed-back effect upon the flow field. The results provide an insight into the fundamental fluid-mechanical reasons for the experimentally observed distortions of the flame front, rationalizing in particular its ability to sustain relatively high flow velocities at amazingly low normal burning speeds.

  7. Flame spread along thermally thick horizontal rods

    Science.gov (United States)

    Higuera, F. J.

    2002-06-01

    An analysis is carried out of the spread of a flame along a horizontal solid fuel rod, for which a weak aiding natural convection flow is established in the underside of the rod by the action of the axial gradient of the pressure variation that gravity generates in the warm gas surrounding the flame. The spread rate is determined in the limit of infinitely fast kinetics, taking into account the effect of radiative losses from the solid surface. The effect of a small inclination of the rod is discussed, pointing out a continuous transition between upward and downward flame spread. Flame spread along flat-bottomed solid cylinders, for which the gradient of the hydrostatically generated pressure drives the flow both along and across the direction of flame propagation, is also analysed.

  8. Slurry spray distribution within a simulated laboratory scale spray dryer

    International Nuclear Information System (INIS)

    Bertone, P.C.

    1979-01-01

    It was found that the distribution of liquid striking the sides of a simulated room temperature spray dryer was not significantly altered by the choice of nozles, nor by a variation in nozzle operating conditions. Instead, it was found to be a function of the spray dryer's configuration. A cocurrent flow of air down the drying cylinder, not possible with PNL's closed top, favorably altered the spray distribution by both decreasing the amount of liquid striking the interior of the cylinder from 72 to 26% of the feed supplied, and by shifting the zone of maximum impact from 1.0 to 1.7 feet from the nozzle. These findings led to the redesign of the laboratory scale spray dryer to be tested at the Savannah River Plant. The diameter of the drying chamber was increased from 5 to 8 inches, and a cocurrent flow of air was established with a closed recycle. Finally, this investigation suggested a drying scheme which offers all the advantages of spray drying without many of its limitations

  9. Plasma Sprayed Hydroxyapatite Coatings: Influence of Spraying Power on Microstructure

    International Nuclear Information System (INIS)

    Mohd, S. M.; Abd, M. Z.; Abd, A. N.

    2010-01-01

    The plasma sprayed hydroxyapatite (HA) coatings are used on metallic implants to enhance the bonding between the implant and bone in human body. The coating process was implemented at different spraying power for each spraying condition. The coatings formed from a rapid solidification of molten and partly molten particles that impact on the surface of substrate at high velocity and high temperature. The study was concentrated on different spraying power that is between 23 to 31 kW. The effect of different power on the coatings microstructure was investigated using scanning electron microscope (SEM) and phase composition was evaluated using X-ray diffraction (XRD) analysis. The coatings surface morphology showed distribution of molten, partially melted particles and some micro-cracks. The produced coatings were found to be porous as observed from the cross-sectional morphology. The coatings XRD results indicated the presence of crystalline phase of HA and each of the patterns was similar to the initial powder. Regardless of different spraying power, all the coatings were having similar XRD patterns.

  10. Flame Structure and Emissions of Strongly-Pulsed Turbulent Diffusion Flames with Swirl

    Science.gov (United States)

    Liao, Ying-Hao

    This work studies the turbulent flame structure, the reaction-zone structure and the exhaust emissions of strongly-pulsed, non-premixed flames with co-flow swirl. The fuel injection is controlled by strongly-pulsing the fuel flow by a fast-response solenoid valve such that the fuel flow is completely shut off between pulses. This control strategy allows the fuel injection to be controlled over a wide range of operating conditions, allowing the flame structure to range from isolated fully-modulated puffs to interacting puffs to steady flames. The swirl level is controlled by varying the ratio of the volumetric flow rate of the tangential air to that of the axial air. For strongly-pulsed flames, both with and without swirl, the flame geometry is strongly impacted by the injection time. Flames appear to exhibit compact, puff-like structures for short injection times, while elongated flames, similar in behaviors to steady flames, occur for long injection times. The flames with swirl are found to be shorter for the same fuel injection conditions. The separation/interaction level between flame puffs in these flames is essentially governed by the jet-off time. The separation between flame puffs decreases as swirl is imposed, consistent with the decrease in flame puff celerity due to swirl. The decreased flame length and flame puff celerity are consistent with an increased rate of air entrainment due to swirl. The highest levels of CO emissions are generally found for compact, isolated flame puffs, consistent with the rapid quenching due to rapid dilution with excess air. The imposition of swirl generally results in a decrease in CO levels, suggesting more rapid and complete fuel/air mixing by imposing swirl in the co-flow stream. The levels of NO emissions for most cases are generally below the steady-flame value. The NO levels become comparable to the steady-flame value for sufficiently short jet-off time. The swirled co-flow air can, in some cases, increase the NO

  11. Experiment and Simulation of Autoignition in Jet Flames and its Relevance to Flame Stabilization and Structure

    KAUST Repository

    Al-Noman, Saeed M.

    2016-06-01

    Autoignition characteristics of pre-vaporized iso-octane, primary reference fuels, gasolines, and dimethyl ether (DME) have been investigated experimentally in a coflow with elevated temperature of air. With the coflow air at relatively low initial temperatures below autoignition temperature Tauto, an external ignition source was required to stabilize the flame. Non-autoignited lifted flames had tribrachial edge structures and their liftoff heights correlated well with the jet velocity scaled by the stoichiometric laminar burning velocity, indicating the importance of the edge propagation speed on flame stabilization balanced with local flow velocity. At high initial temperatures over Tauto, the autoignited flames were stabilized without requiring an external ignition source. The autoignited lifted flames exhibited either tribrachial edge structures or Mild combustion behaviors depending on the level of fuel dilution. For the iso-octane and n-heptane fuels, two distinct transition behaviors were observed in the autoignition regime from a nozzle-attached flame to a lifted tribrachial-edge flame and then a sudden transition to lifted Mild combustion as the jet velocity increased at a certain fuel dilution level. The liftoff data of the autoignited flames with tribrachial edges were analyzed based on calculated ignition delay times for the pre-vaporized fuels. Analysis of the experimental data suggested that ignition delay time may be much less sensitive to initial temperature under atmospheric pressure conditions as compared with predictions. For the gasoline fuels for advanced combustion engines (FACEs), and primary reference fuels (PRFs), autoignited liftoff data were correlated with Research Octane Number and Cetane Number. For the DME fuel, planar laser-induced fluorescence (PLIF) of formaldehyde (CH2O) and CH* chemiluminescence were visualized qualitatively. In the autoignition regime for both tribrachial structure and mild combustion, formaldehyde were found

  12. Analysis of flame shapes in turbulent hydrogen jet flames with coaxial air

    International Nuclear Information System (INIS)

    Moon, Hee Jang

    2009-01-01

    This paper addresses the characteristics of flame shapes and flame length in three types of coaxial air flames realizable by varying coaxial air and/or fuel velocity. Forcing coaxial air into turbulent jet flames induces substantial changes in flame shapes and NOx emissions through the complex flow interferences that exist within the mixing region. Mixing enhancement driven by coaxial air results in flame volume decrease, and such a diminished flame volume finally reduces NOx emissions significantly by decreasing NOx formation zone where a fuel/air mixture burns. It is found that mixing in the vicinity of high temperature zone mainly results from the increase of diffusive flux than the convective flux, and that the increase of mass diffusion is amplified as coaxial air is increased. Besides, it is reaffirmed that nonequilibrium chemistry including HO 2 /H 2 O 2 should be taken into account for NOx prediction and scaling analysis by comparing turbulent combustion models. In addition, it is found that coaxial air can break down the self-similarity law of flames by changing mixing mechanism, and that EINOx scaling parameters based on the self-similarity law of simple jet flames may not be eligible in coaxial air flames

  13. Analysis of flame shapes in turbulent hydrogen jet flames with coaxial air

    Energy Technology Data Exchange (ETDEWEB)

    Moon, Hee Jang [Korea Aerospace University, Goyang (Korea, Republic of)

    2009-06-15

    This paper addresses the characteristics of flame shapes and flame length in three types of coaxial air flames realizable by varying coaxial air and/or fuel velocity. Forcing coaxial air into turbulent jet flames induces substantial changes in flame shapes and NOx emissions through the complex flow interferences that exist within the mixing region. Mixing enhancement driven by coaxial air results in flame volume decrease, and such a diminished flame volume finally reduces NOx emissions significantly by decreasing NOx formation zone where a fuel/air mixture burns. It is found that mixing in the vicinity of high temperature zone mainly results from the increase of diffusive flux than the convective flux, and that the increase of mass diffusion is amplified as coaxial air is increased. Besides, it is reaffirmed that nonequilibrium chemistry including HO{sub 2}/H{sub 2}O{sub 2} should be taken into account for NOx prediction and scaling analysis by comparing turbulent combustion models. In addition, it is found that coaxial air can break down the self-similarity law of flames by changing mixing mechanism, and that EINOx scaling parameters based on the self-similarity law of simple jet flames may not be eligible in coaxial air flames

  14. Flame Structure and Chemiluminescence Emissions of Inverse Diffusion Flames under Sinusoidally Driven Plasma Discharges

    Directory of Open Access Journals (Sweden)

    Maria Grazia De Giorgi

    2017-03-01

    Full Text Available Reduction of nitric oxides (NOx in aircraft engines and in gas turbines by lean combustion is of great interest in the design of novel combustion systems. However, the stabilization of the flame under lean conditions is a main issue. In this context, the present work investigates the effects of sinusoidal dielectric barrier discharge (DBD on a lean inverse diffusive methane/air flame in a Bunsen-type burner under different actuation conditions. The flame appearance was investigated with fixed methane loading (mass flux, but with varying inner airflow rate. High-speed flame imaging was done by using an intensified (charge-coupled device CCD camera equipped with different optical filters in order to selectively record signals from the chemiluminescent species OH*, CH*, or CO2* to evaluate the flame behavior in presence of plasma actuation. The electrical power consumption was less than 33 W. It was evident that the plasma flame enhancement was significantly influenced by the plasma discharges, particularly at high inner airflow rates. The flame structure changes drastically when the dissipated plasma power increases. The flame area decreases due to the enhancement of mixing and chemical reactions that lead to a more anchored flame on the quartz exit with a reduction of the flame length.

  15. Thermal-diffusional Instability in White Dwarf Flames: Regimes of Flame Pulsation

    Energy Technology Data Exchange (ETDEWEB)

    Xing, Guangzheng; Zhao, Yibo; Zhou, Cheng; Gao, Yang; Law, Chung K. [Center for Combustion Energy, Tsinghua University, Beijing 100084 (China); Modestov, Mikhail, E-mail: gaoyang-00@mails.tsinghua.edu.cn [Nordita, KTH Royal Institute of Technology and Stockholm University, SE-10691, Stockholm (Sweden)

    2017-05-20

    Thermal-diffusional pulsation behaviors in planar as well as outwardly and inwardly propagating white dwarf (WD) carbon flames are systematically studied. In the 1D numerical simulation, the asymptotic degenerate equation of state and simplified one-step reaction rates for nuclear reactions are used to study the flame propagation and pulsation in WDs. The numerical critical Zel’dovich numbers of planar flames at different densities ( ρ = 2, 3, and 4 × 10{sup 7} g cm{sup −3}) and of spherical flames (with curvature c = −0.01, 0, 0.01, and 0.05) at a particular density ( ρ = 2 × 10{sup 7} g cm{sup −3}) are presented. Flame front pulsation in different environmental densities and temperatures are obtained to form the regime diagram of pulsation, showing that carbon flames pulsate in the typical density of 2 × 10{sup 7} g cm{sup −3} and temperature of 0.6 × 10{sup 9} K. While being stable at higher temperatures, at relatively lower temperatures, the amplitude of the flame pulsation becomes larger. In outwardly propagating spherical flames the pulsation instability is enhanced and flames are also easier to quench due to pulsation at small radius, while the inwardly propagating flames are more stable.

  16. Magnetic-luminescent spherical particles synthesized by ultrasonic spray pyrolysis

    International Nuclear Information System (INIS)

    Michel, Norma L; Hirata, Gustavo A; Flores, Dora L

    2015-01-01

    The combination of magnetic and luminescent properties in a single particle system, opens-up a wide range of potential applications in biotechnology and biomedicine. In this work, we performed the synthesis of magnetic-luminescent Gd 2 O 3 :Eu 3+ @Fe 2 O 3 particles by ultrasonic spray pyrolysis performed in a tubular furnace. In order to achieve the composite formation, commercial superparamagnetic Fe 3 O 4 nanoparticles were coated with a luminescent Eu 3+ -doped Gd 2 O 3 shell in a low-cost one-step process. The spray pyrolysis method yields deagglomerated spherical shape magneto/luminescent particles. The photoluminescence spectra under UV excitation (λ Exc = 265 nm) of the magnetic Gd 2 O 3 :Eu 3+ @Fe 2 O 3 compound showed the characteristic red emission of Eu 3+ (λ Em = 612 nm). This magneto/luminescent system will find applications in biomedicine and biotechnology. (paper)

  17. X-rays characterisation of thermal sprayed bioceramics and composites

    International Nuclear Information System (INIS)

    Khor, K.A.; Cheang, P.; White, T.

    2000-01-01

    Materials characterization using x-rays plays an important role in the ongoing endeavour to develop superior materials for biomedical devices. Current emphasis on biomaterials worldwide has highlighted the prominence of materials in successful implementation of implants to improve the quality of human lives. A clear example can be seen in the artificial hip implant where a layer of bioactive material, hydroxyapatite (HA), drastically aids the pain during the post-operation recovery process. Thermal spray is a process whereby powders are injected into a high temperature flame. Instantaneous melting takes place and the molten droplets are projected at a very high velocities onto a suitably prepared substrate. The adoption of this process by most biomedical companies manufacturing artificial hip implants is based on the efficacy of the process and the economic benefits such as high production rate and relatively low installation cost. However, material decomposition often occurs in the high temperature environment of thermal spray. Subsequent development of proper process parameters, customised powder characteristics and better process control nonetheless help mitigate this effect. A constant demand in the escalating usage of biomaterials in human body is reliability. Implants should preferably remain in the body for at least 5-10 years with minimal occurrences of revision. To ensure an acceptable level of reliability, materials characterisation is needed at practically every stage of its development and manufacture. The role that x-rays play in biomaterials development can be categorised as: (1) phase identification and structural determination and (2) chemical analysis. This paper will present the characterisation of biomaterials using x-rays in the development of new generation of biomaterials and composites that posses superior properties than the present group of materials. Specifically, this paper will highlight the problems encountered in phase identification

  18. Plasma spraying process of disperse carbides for spraying and facing

    International Nuclear Information System (INIS)

    Blinkov, I.V.; Vishnevetskaya, I.A.; Kostyukovich, T.G.; Ostapovich, A.O.

    1989-01-01

    A possibility to metallize carbides in plasma of impulsing capacitor discharge is considered. Powders granulation occurs during plasma spraying process, ceramic core being completely capped. X-ray phase and chemical analyses of coatings did not show considerable changes of carbon content in carbides before and after plasma processing. This distinguishes the process of carbides metallization in impulsing plasma from the similar processing in arc and high-frequency plasma generator. Use of powder composites produced in the impulsing capacitor discharge, for plasma spraying and laser facing permits 2-3 times increasing wear resistance of the surface layer as against the coatings produced from mechanical powders mixtures

  19. The atomization and the flame structure in the combustion of residual fuel oils; La atomizacion y estructura de flama en la combustion de combustibles residuales

    Energy Technology Data Exchange (ETDEWEB)

    Bolado Estandia, Ramon [Instituto de Investigaciones Electricas, Cuernavaca (Mexico)

    1986-12-31

    In this article a research on the combustion of heavy residual fuel oils is presented. The type of flames studied were obtained by means of the burning of sprays produced by an atomizer designed and calibrated specially for the research purpose. The flame characteristics that were analyzed are its length, its luminosity, the temperature, the distribution of the droplets size and mainly the burning regime of the droplets in the flame. The experimental techniques that were used for these studies were shadow micro-photography, suction pyrometry and of total radiation, laser diffraction, 35 mm photography, and impact push. The analysis of the experimental results, together with the results of the application of a mathematical model, permitted to establish two parameters, that quantitatively related determine the burning regime of the droplets in a flame of sprays of residual heavy fuel oil. [Espanol] En este articulo se presenta una investigacion sobre la combustion de combustibles residuales pesados. El tipo de flamas estudiadas se obtuvieron mediante el quemado de sprays producidos por un atomizador disenado y calibrado especialmente para el proposito de la investigacion. Las caracteristicas de flama que se analizaron son la longitud, la luminosidad, la temperatura, la distribucion de tamano de gotas y, principalmente, el regimen de quemado de gotas en la flama. Las tecnicas experimentales que se usaron para estos estudios fueron microfotografia de sombras, pirometria de succion y de radiacion total, difraccion laser, fotografia de 35 mm y empuje de impacto. El analisis de resultados experimentales, junto con los resultados de la aplicacion de un modelo matematico, permitio establecer dos parametros, que relacionados cuantitativamente, determinan el regimen de quemado de gotas en una flama de sprays de combustible residual pesado.

  20. The atomization and the flame structure in the combustion of residual fuel oils; La atomizacion y estructura de flama en la combustion de combustibles residuales

    Energy Technology Data Exchange (ETDEWEB)

    Bolado Estandia, Ramon [Instituto de Investigaciones Electricas, Cuernavaca (Mexico)

    1985-12-31

    In this article a research on the combustion of heavy residual fuel oils is presented. The type of flames studied were obtained by means of the burning of sprays produced by an atomizer designed and calibrated specially for the research purpose. The flame characteristics that were analyzed are its length, its luminosity, the temperature, the distribution of the droplets size and mainly the burning regime of the droplets in the flame. The experimental techniques that were used for these studies were shadow micro-photography, suction pyrometry and of total radiation, laser diffraction, 35 mm photography, and impact push. The analysis of the experimental results, together with the results of the application of a mathematical model, permitted to establish two parameters, that quantitatively related determine the burning regime of the droplets in a flame of sprays of residual heavy fuel oil. [Espanol] En este articulo se presenta una investigacion sobre la combustion de combustibles residuales pesados. El tipo de flamas estudiadas se obtuvieron mediante el quemado de sprays producidos por un atomizador disenado y calibrado especialmente para el proposito de la investigacion. Las caracteristicas de flama que se analizaron son la longitud, la luminosidad, la temperatura, la distribucion de tamano de gotas y, principalmente, el regimen de quemado de gotas en la flama. Las tecnicas experimentales que se usaron para estos estudios fueron microfotografia de sombras, pirometria de succion y de radiacion total, difraccion laser, fotografia de 35 mm y empuje de impacto. El analisis de resultados experimentales, junto con los resultados de la aplicacion de un modelo matematico, permitio establecer dos parametros, que relacionados cuantitativamente, determinan el regimen de quemado de gotas en una flama de sprays de combustible residual pesado.

  1. Development and validation of spray models for investigating diesel engine combustion and emissions

    Science.gov (United States)

    Som, Sibendu

    combusting data from Sandia National Laboratory. The KH-ACT model is observed to provide better predictions for spray dispersion, axial velocity decay, sauter mean diameter, and liquid and lift-off length interplay which is attributed to the enhanced primary breakup predicted by this model. In addition, experimentally observed trends with changing nozzle conicity could only be captured by the KH-ACT model. Results further indicate that the combustion under diesel engine conditions is characterized by a double-flame structure with a rich premixed reaction zone near the flame stabilization region and a non-premixed reaction zone further downstream. Finally, the differences in inner nozzle flow and spray characteristics of petrodiesel and biodiesel are quantified. The improved modeling capability developed in this work can be used for extensive diesel engine simulations to further optimize injection, spray, combustion, and emission processes.

  2. The FLAME project in Atomki

    International Nuclear Information System (INIS)

    Hunyadi, M.; Iski, N.

    2011-01-01

    Complete text of publication follows. Eleven regions of eight Central European countries have launched the FLAME Project in 2010 (Future Laboratory for the diffusion and Application of innovation in Material Sciences and Engineering) to start and manage a new initiative of a network for innovation activities in the MS and E sector. The project aimed at supporting actors in the field of materials science and exploiting their research and commercial potentials. FLAME partners encourage trans-regional cooperation between R and D centres, universities, start-ups and SMEs by helping companies to distribute their innovations and supporting research in transferring results to the market. The project will implement a new cooperation model: the 'Future Lab', where duly trained 'regional facilitation coaches' will assist SMEs in accessing the whole Central European MS and E market and research potential. Each Future Lab will be specialized on thematic fields and help to make efficient use of local and regional potentials. The three Future Labs will be hosted by the Austrian, Italian and Slovenian partner organizations. Figure 1. Competence and innovation landscape on the FLAME website. Source: http://www.flameurope.eu/mse-actors-145.html As the first step of project implementation in 2011 the competence and innovation maps within the participating regions were elaborated in order to list the relevant actors in the MS and E sector (Figure 1). In 2011, each project partner delegated two regional professionals as facilitation coaches to attend four training weeks across Europe. The facilitation coaches play an active role in the exchange of information and in motivating collaboration between research institutions and enterprises on technology based projects. The training sessions were located at four of the project partners: Kapfenberg/Austria (lead partner - Area m Styria); Warsaw/Poland (PP2 - Warsaw University of Technology); Debrecen/Hungary (PP5 - Atomki); Milan/Italy (PP

  3. Large-eddy simulation of ethanol spray combustion using a finite-rate combustion model

    Energy Technology Data Exchange (ETDEWEB)

    Li, K.; Zhou, L.X. [Tsinghua Univ., Beijing (China). Dept. of Engineering Mechanics; Chan, C.K. [Hong Kong Polytechnic Univ. (China). Dept. of Applied Mathematics

    2013-07-01

    Large-eddy simulation of spray combustion is under its rapid development, but the combustion models are less validated by detailed experimental data. In this paper, large-eddy simulation of ethanol-air spray combustion was made using an Eulerian-Lagrangian approach, a subgrid-scale kinetic energy stress model, and a finite-rate combustion model. The simulation results are validated in detail by experiments. The LES obtained statistically averaged temperature is in agreement with the experimental results in most regions. The instantaneous LES results show the coherent structures of the shear region near the high-temperature flame zone and the fuel vapor concentration map, indicating the droplets are concentrated in this shear region. The droplet sizes are found to be in the range of 20-100{mu}m. The instantaneous temperature map shows the close interaction between the coherent structures and the combustion reaction.

  4. The dilution effect on the extinction of wall diffusion flame

    Directory of Open Access Journals (Sweden)

    Ghiti Nadjib

    2014-12-01

    Full Text Available The dynamic process of the interaction between a turbulent jet diffusion methane flame and a lateral wall was experimentally studied. The evolution of the flame temperature field with the Nitrogen dilution of the methane jet flame was examined. The interaction between the diffusion flame and the lateral wall was investigated for different distance between the wall and the central axes of the jet flame. The dilution is found to play the central role in the flame extinction process. The flame response as the lateral wall approaches from infinity and the increasing of the dilution rate make the flame extinction more rapid than the flame without dilution, when the nitrogen dilution rate increase the flame temperature decrease.

  5. Prediction of flame formation in highly preheated air combustion

    International Nuclear Information System (INIS)

    Yang, Jang Sik; Choi, Gyung Min; Kim, Duck Jool; Katsuki, Masashi

    2008-01-01

    Fundamental information about the ignition position and shape of a flame in highly preheated air combustion was obtained, and the suitability of the suggested reduced kinetic mechanism that reflects the characteristics of the highly preheated air combustion was demonstrated. Flame lift height and flame length with variations of premixed air temperature and oxygen concentration were measured by CH chemiluminescence intensity, and were computed with a reduced kinetic mechanism. Flame attached near a fuel nozzle started to lift when preheated air temperature became close to auto-ignition temperature and/or oxygen concentration reduced. The flame lift height increased but the flame length decreased with decreasing preheated air temperature and flame length reversed after a minimum value. Calculated results showed good agreement with those of experiment within tolerable error. Flame shape shifted from diffusion flame shape to partial premixed flame shape with increasing lift height and this tendency was also observed in the computation results

  6. Prediction of flame formation in highly preheated air combustion

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Jang Sik; Choi, Gyung Min; Kim, Duck Jool [Pusan National University, Busan (Korea, Republic of); Katsuki, Masashi [Osaka University, Osaka (Japan)

    2008-11-15

    Fundamental information about the ignition position and shape of a flame in highly preheated air combustion was obtained, and the suitability of the suggested reduced kinetic mechanism that reflects the characteristics of the highly preheated air combustion was demonstrated. Flame lift height and flame length with variations of premixed air temperature and oxygen concentration were measured by CH chemiluminescence intensity, and were computed with a reduced kinetic mechanism. Flame attached near a fuel nozzle started to lift when preheated air temperature became close to auto-ignition temperature and/or oxygen concentration reduced. The flame lift height increased but the flame length decreased with decreasing preheated air temperature and flame length reversed after a minimum value. Calculated results showed good agreement with those of experiment within tolerable error. Flame shape shifted from diffusion flame shape to partial premixed flame shape with increasing lift height and this tendency was also observed in the computation results

  7. Flame Speed and Self-Similar Propagation of Expanding Turbulent Premixed Flames

    Science.gov (United States)

    Chaudhuri, Swetaprovo; Wu, Fujia; Zhu, Delin; Law, Chung K.

    2012-01-01

    In this Letter we present turbulent flame speeds and their scaling from experimental measurements on constant-pressure, unity Lewis number expanding turbulent flames, propagating in nearly homogeneous isotropic turbulence in a dual-chamber, fan-stirred vessel. It is found that the normalized turbulent flame speed as a function of the average radius scales as a turbulent Reynolds number to the one-half power, where the average radius is the length scale and the thermal diffusivity is the transport property, thus showing self-similar propagation. Utilizing this dependence it is found that the turbulent flame speeds from the present expanding flames and those from the Bunsen geometry in the literature can be unified by a turbulent Reynolds number based on flame length scales using recent theoretical results obtained by spectral closure of the transformed G equation.

  8. Center for Cold Spray Research and Development

    Data.gov (United States)

    Federal Laboratory Consortium — This is the only DoD facility capable of cold spray research and development, production, and field-repair. It features three stationary cold spray systems used for...

  9. Systems and methods for controlling flame instability

    KAUST Repository

    Cha, Min Suk

    2016-07-21

    A system (62) for controlling flame instability comprising: a nozzle (66) coupled to a fuel supply line (70), an insulation housing (74) coupled to the nozzle, a combustor (78) coupled to the nozzle via the insulation housing, where the combustor is grounded (80), a pressure sensor (82) coupled to the combustor and configured to detect pressure in the combustor, and an instability controlling assembly coupled to the pressure sensor and to an alternating current power supply (86), where, the instability controlling assembly can control flame instability of a flame in the system based on pressure detected by the pressure sensor.

  10. Aromatics oxidation and soot formation in flames

    Energy Technology Data Exchange (ETDEWEB)

    Howard, J.B.; Pope, C.J.; Shandross, R.A.; Yadav, T. [Massachusetts Institute of Technology, Cambridge (United States)

    1993-12-01

    This project is concerned with the kinetics and mechanisms of aromatics oxidation and soot and fullerenes formation in flames. The scope includes detailed measurements of profiles of stable and radical species concentrations in low-pressure one-dimensional premixed flames. Intermediate species identifications and mole fractions, fluxes, and net reaction rates calculated from the measured profiles are used to test postulated reaction mechanisms. Particular objectives are to identify and to determine or confirm rate constants for the main benzene oxidation reactions in flames, and to characterize fullerenes and their formation mechanisms and kinetics.

  11. Spray casting project final report

    International Nuclear Information System (INIS)

    Churnetski, S.R.; Thompson, J.E.

    1996-08-01

    Lockheed Martin Energy Systems, Inc. (Energy Systems), along with other participating organizations, has been exploring the feasibility of spray casting depleted uranium (DU) to near-net shape as a waste minimization effort. Although this technology would be useful in a variety of applications where DU was the material of choice, this effort was aimed primarily at gamma-shielding components for use in storage and transportation canisters for high-level radioactive waste, particularly in the Multipurpose Canister (MPC) application. In addition to the waste-minimization benefits, spray casting would simplify the manufacturing process by allowing the shielding components for MPC to be produced as a single component, as opposed to multiple components with many fabrication and assembly steps. In earlier experiments, surrogate materials were used to simulate the properties (specifically reactivity and density) of DU. Based on the positive results from those studies, the project participants decided that further evaluation of the issues and concerns that would accompany spraying DU was warranted. That evaluation occupied substantially all of Fiscal Year 1995, yielding conceptual designs for both an intermediate facility and a production facility and their associated engineering estimates. An intermediate facility was included in this study to allow further technology development in spraying DU. Although spraying DU to near-net shape seems to be feasible, a number of technical, engineering, and safety issues would need to be evaluated before proceeding with a production facility. This report is intended to document the results from the spray-casting project and to provide information needed by anyone interested in proceeding to the next step

  12. Structure of diffusion flames from a vertical burner

    Science.gov (United States)

    Mark A. Finney; Dan Jimenez; Jack D. Cohen; Isaac C. Grenfell; Cyle Wold

    2010-01-01

    Non-steady and turbulent flames are commonly observed to produce flame contacts with adjacent fuels during fire spread in a wide range of fuel bed depths. A stationary gas-fired burner (flame wall) was developed to begin study of flame edge variability along an analagous vertical fuel source. This flame wall is surrogate for a combustion interface at the edge of a deep...

  13. Direct numerical simulations of non-premixed ethylene-air flames: Local flame extinction criterion

    KAUST Repository

    Lecoustre, Vivien R.

    2014-11-01

    Direct Numerical Simulations (DNS) of ethylene/air diffusion flame extinctions in decaying two-dimensional turbulence were performed. A Damköhler-number-based flame extinction criterion as provided by classical large activation energy asymptotic (AEA) theory is assessed for its validity in predicting flame extinction and compared to one based on Chemical Explosive Mode Analysis (CEMA) of the detailed chemistry. The DNS code solves compressible flow conservation equations using high order finite difference and explicit time integration schemes. The ethylene/air chemistry is simulated with a reduced mechanism that is generated based on the directed relation graph (DRG) based methods along with stiffness removal. The numerical configuration is an ethylene fuel strip embedded in ambient air and exposed to a prescribed decaying turbulent flow field. The emphasis of this study is on the several flame extinction events observed in contrived parametric simulations. A modified viscosity and changing pressure (MVCP) scheme was adopted in order to artificially manipulate the probability of flame extinction. Using MVCP, pressure was changed from the baseline case of 1 atm to 0.1 and 10 atm. In the high pressure MVCP case, the simulated flame is extinction-free, whereas in the low pressure MVCP case, the simulated flame features frequent extinction events and is close to global extinction. Results show that, despite its relative simplicity and provided that the global flame activation temperature is correctly calibrated, the AEA-based flame extinction criterion can accurately predict the simulated flame extinction events. It is also found that the AEA-based criterion provides predictions of flame extinction that are consistent with those provided by a CEMA-based criterion. This study supports the validity of a simple Damköhler-number-based criterion to predict flame extinction in engineering-level CFD models. © 2014 The Combustion Institute.

  14. Diesel spray characterization; Dieselmoottorin polttoainesuihkujen ominaisuudet

    Energy Technology Data Exchange (ETDEWEB)

    Pitkaenen, J.; Turunen, R.; Paloposki, T.; Rantanen, P.; Virolainen, T. [Helsinki Univ. of Technology, Otaniemi (Finland). Internal Combustion Engine Lab.

    1997-10-01

    Fuel injection of diesel engines will be studied using large-scale models of fuel injectors. The advantage of large-scale models is that the measurement of large-scale diesel sprays will be easier than the measurement of actual sprays. The objective is to study the break-up mechanism of diesel sprays and to measure drop size distributions in the inner part of the spray. The results will be used in the development of diesel engines and diesel fuels. (orig.)

  15. Synthesis of Li{sub 2}MnO{sub 3}-stabilized LiCoO{sub 2} cathode material by spray-drying method and its high-voltage performance

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Zhiguo; Wang, Zhixing, E-mail: zxwang.csu@hotmail.com; Guo, Huajun; Peng, Wenjie; Li, Xinhai

    2015-03-25

    Highlights: • Li{sub 2}MnO{sub 3} is introduced to stabilize the structure of LiCoO{sub 2} at high voltages. • xLi{sub 2}MnO{sub 3}·(1−x)LiCoO{sub 2} with fine particles prepared by a simple spray-drying method. • The modified sample exhibits enhanced high-voltage electrochemical performance. • Possible kinetic behaviors of the electrode surface are discussed. - Abstract: xLi{sub 2}MnO{sub 3}⋅(1 − x)LiCoO{sub 2} (x = 0, 0.02, 0.05, 0.1) as a cathode material for lithium ion batteries has been prepared by a spray-drying assisted solid-state method. The effects of Li{sub 2}MnO{sub 3} content on crystal structure, morphology, and high-voltage electrochemical performance of LiCoO{sub 2} have been characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDS) and galvanostatic charge–discharge test. XRD results reveal that all samples have a well-ordered layered structure. SEM and EDS analyses confirm that homogeneous powders with a primary particle size of about 2 μm are observed and the elementals distribute uniformly in the particles. Electrochemical tests demonstrate that the modified samples exhibit obviously enhanced cycling stability in the voltage ranges of 3.0–4.5 V and 3.0–4.6 V, although they deliver somewhat lower discharge capacity. Specifically, 0.02Li{sub 2}MnO{sub 3}⋅0.98LiCoO{sub 2} delivers the initial discharge capacity of 189.0, 216.8 mA h g{sup −1} at 0.1 C in the voltage range of 3.0–4.5 V and 3.0–4.6 V, respectively, and excellent cycling behaviors at 1 C are achieved.

  16. CONCHAS-SPRAY, Reactive Flows with Fuel Sprays

    International Nuclear Information System (INIS)

    Cloutman, L.D.; Dukowicz, J.K.; Ramshaw, J.D.; Amsden, A.A.

    2001-01-01

    Description of program or function: CONCHAS-SPRAY solves the equations of transient, multicomponent, chemically reactive fluid dynamics, together with those for the dynamics of an evaporating liquid spray. The program was developed with applications to internal combustion engines in mind. The formulation is spatially two-dimensional, and encompasses both planar and axisymmetric geometries. In the latter case, the flow is permitted to swirl about the axis of symmetry. CONCHAS-SPRAY is a time-marching, finite- difference program that uses a partially implicit numerical scheme. Spatial differences are formed with respect to a generalized two- dimensional mesh of arbitrary quadrilaterals whose corner locations are specified functions of time. This feature allows a Lagrangian, Eulerian, or mixed description, and is particularly useful for representing curved or moving boundary surfaces. Arbitrary numbers of species and chemical reactions are allowed. The latter are subdivided into kinetic and equilibrium reactions, which are treated by different algorithms. A turbulent law-of-the-wall boundary layer option is provided. CONCHAS-SPRAY calls a number of LANL system subroutines to display graphic or numerical information on microfiche. These routines are not included, but are described in the reference report. Several routines called from LINPACK and SLATEC1.0 are included

  17. Albendazole Microparticles Prepared by Spray Drying Technique ...

    African Journals Online (AJOL)

    Purpose: To enhance the dissolution of albendazole (ABZ) using spray-drying technique. Method: ABZ binary mixtures with Kollicoat IR® (KL) and polyvinyl pyrrolidone (PVP) in various drug to polymer ratios (1: 1, 1: 2 and 1; 4) were prepared by spray-drying. The spray-dried particles were characterized for particle shape, ...

  18. 14 CFR 23.239 - Spray characteristics.

    Science.gov (United States)

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Spray characteristics. 23.239 Section 23.239 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT... Handling Characteristics § 23.239 Spray characteristics. Spray may not dangerously obscure the vision of...

  19. 14 CFR 29.239 - Spray characteristics.

    Science.gov (United States)

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Spray characteristics. 29.239 Section 29... AIRWORTHINESS STANDARDS: TRANSPORT CATEGORY ROTORCRAFT Flight Ground and Water Handling Characteristics § 29.239 Spray characteristics. If certification for water operation is requested, no spray characteristics...

  20. 14 CFR 27.239 - Spray characteristics.

    Science.gov (United States)

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Spray characteristics. 27.239 Section 27... AIRWORTHINESS STANDARDS: NORMAL CATEGORY ROTORCRAFT Flight Ground and Water Handling Characteristics § 27.239 Spray characteristics. If certification for water operation is requested, no spray characteristics...

  1. A new method for spray deposit assessment

    Science.gov (United States)

    Chester M. Himel; Leland Vaughn; Raymond P. Miskus; Arthur D. Moore

    1965-01-01

    Solid fluorescent particles suspended in a spray liquid are distributed in direct proportion to the size of the spray droplets. Use of solid fluorescent particles is the basis of a new method for visual recognition of the size and number of droplets impinging on target and nontarget portions of sprayed areas.

  2. Effect of cylindrical confinement on the determination of laminar flame speeds using outwardly propagating flames

    Energy Technology Data Exchange (ETDEWEB)

    Burke, Michael P.; Chen, Zheng; Ju, Yiguang; Dryer, Frederick L. [Department of Mechanical and Aerospace Engineering, Princeton University, Princeton, NJ 08544 (United States)

    2009-04-15

    The effect of nonspherical (i.e. cylindrical) bomb geometry on the evolution of outwardly propagating flames and the determination of laminar flame speeds using the conventional constant-pressure technique is investigated experimentally and theoretically. The cylindrical chamber boundary modifies the propagation rate through the interaction of the wall with the flow induced by thermal expansion across the flame (even with constant pressure), which leads to significant distortion of the flame surface for large flame radii. These departures from the unconfined case, especially the resulting nonzero burned gas velocities, can lead to significant errors in flame speeds calculated using the conventional assumptions, especially for large flame radii. For example, at a flame radius of 0.5 times the wall radius, the flame speed calculated neglecting confinement effects can be low by {proportional_to}15% (even with constant pressure). A methodology to estimate the effect of nonzero burned gas velocities on the measured flame speed in cylindrical chambers is presented. Modeling and experiments indicate that the effect of confinement can be neglected for flame radii less than 0.3 times the wall radius while still achieving acceptable accuracy (within 3%). The methodology is applied to correct the flame speed for nonzero burned gas speeds, in order to extend the range of flame radii useful for flame speed measurements. Under the proposed scaling, the burned gas speed can be well approximated as a function of only flame radius for a given chamber geometry - i.e. the correction function need only be determined once for an apparatus and then it can be used for any mixture. Results indicate that the flow correction can be used to extract flame speeds for flame radii up to 0.5 times the wall radius with somewhat larger, yet still acceptable uncertainties for the cases studied. Flow-corrected burning velocities are measured for hydrogen and syngas mixtures at atmospheric and

  3. Prediction of soot and thermal radiation in a model gas turbine combustor burning kerosene fuel spray at different swirl levels

    Science.gov (United States)

    Ghose, Prakash; Patra, Jitendra; Datta, Amitava; Mukhopadhyay, Achintya

    2016-05-01

    Combustion of kerosene fuel spray has been numerically simulated in a laboratory scale combustor geometry to predict soot and the effects of thermal radiation at different swirl levels of primary air flow. The two-phase motion in the combustor is simulated using an Eulerian-Lagragian formulation considering the stochastic separated flow model. The Favre-averaged governing equations are solved for the gas phase with the turbulent quantities simulated by realisable k-ɛ model. The injection of the fuel is considered through a pressure swirl atomiser and the combustion is simulated by a laminar flamelet model with detailed kinetics of kerosene combustion. Soot formation in the flame is predicted using an empirical model with the model parameters adjusted for kerosene fuel. Contributions of gas phase and soot towards thermal radiation have been considered to predict the incident heat flux on the combustor wall and fuel injector. Swirl in the primary flow significantly influences the flow and flame structures in the combustor. The stronger recirculation at high swirl draws more air into the flame region, reduces the flame length and peak flame temperature and also brings the soot laden zone closer to the inlet plane. As a result, the radiative heat flux on the peripheral wall decreases at high swirl and also shifts closer to the inlet plane. However, increased swirl increases the combustor wall temperature due to radial spreading of the flame. The high incident radiative heat flux and the high surface temperature make the fuel injector a critical item in the combustor. The injector peak temperature increases with the increase in swirl flow mainly because the flame is located closer to the inlet plane. On the other hand, a more uniform temperature distribution in the exhaust gas can be attained at the combustor exit at high swirl condition.

  4. Numerical studies of spray combustion processes of palm oil biodiesel and diesel fuels using reduced chemical kinetic mechanisms

    KAUST Repository

    Kuti, Olawole

    2014-04-01

    Spray combustion processes of palm oil biodiesel (PO) and conventional diesel fuels were simulated using the CONVERGE CFD code. Thermochemical and reaction kinetic data (115 species and 460 reactions) by Luo et al. (2012) and Lu et al. (2009) (68 species and 283 reactions) were implemented in the CONVERGE CFD to simulate the spray and combustion processes of the two fuels. Tetradecane (C14H30) and n- heptane (C7H 16) were used as surrogates for diesel. For the palm biodiesel, the mixture of methyl decanoate (C11H20O2), methyl-9-decenoate (C11H19O2) and n-heptane was used as surrogate. The palm biodiesel surrogates were combined in proportions based on the previous GC-MS results for the five major biodiesel components namely methyl palmitate, methyl stearate, methyl oleate, methyl linoleate and methyl linolenate. The Favre-Averaged Navier Stokes based simulation using the renormalization group (RNG) k-ε turbulent model was implemented in the numerical calculations of the spray formation processes while the SAGE chemical kinetic solver is used for the detailed kinetic modeling. The SAGE chemical kinetic solver is directly coupled with the gas phase calculations by renormalization group (RNG) k-ε turbulent model using a well-stirred reactor model. Validations of the spray liquid length, ignition delay and flame lift-off length data were performed against previous experimental results. The simulated liquid length, ignition delay and flame lift-off length were validated at an ambient density of 15kg/m3, and injection pressure conditions of 100, 200 and 300 MPa were utilized. The predicted liquid length, ignition delay and flame lift-off length agree with the trends obtained in the experimental data at all injection conditions. Copyright © 2014 SAE International.

  5. Synthesis of Spherical Al-Doping LiMn2O4 via a High-Pressure Spray-Drying Method as Cathode Materials for Lithium-Ion Batteries

    Science.gov (United States)

    Zhang, Yannan; Zhang, Yingjie; Zhang, Mingyu; Xu, Mingli; Li, Xue; Yu, Xiaohua; Dong, Peng

    2018-05-01

    Uniform and spherical LiAl0.075Mn1.925O4 particles have been successfully synthesized by the high-pressure spray-drying method. The structures and electrochemical properties of the particles were characterized by various techniques. Benefiting from the sphere-like morphology and Al-doping, LiAl0.075Mn1.925O4 delivers a capacity retention of 81.6% after 1000 cycles at 2°C, while LiMn2O4 exhibits a capacity retention of only 32.2%. The rate capability and reversible cycling performance are also improved. Furthermore, this work significantly alleviates the dissolution of Mn in LiMn2O4 materials, and effectively improves the transfer rate of lithium ions at the electrode/electrolyte interface. The spherical LiAl0.075Mn1.925O4 prepared by a facile method shows great potential for practical application in low-cost and long-life lithium-ion batteries.

  6. Gas-Flame Brazing of Metals

    National Research Council Canada - National Science Library

    Asinovskaya, G

    1964-01-01

    .... Since a gas flame implies the presence of considerable heat, the term brazing will be used in this translation save where low heats are specifically indicated, or where both high and low heats...

  7. Systems and methods for controlling flame instability

    KAUST Repository

    Cha, Min; Xiong, Yuan; Chung, Suk-Ho

    2016-01-01

    A system (62) for controlling flame instability comprising: a nozzle (66) coupled to a fuel supply line (70), an insulation housing (74) coupled to the nozzle, a combustor (78) coupled to the nozzle via the insulation housing, where the combustor

  8. Nanocellular foam with solid flame retardant

    Science.gov (United States)

    Chen, Liang; Kelly-Rowley, Anne M.; Bunker, Shana P.; Costeux, Stephane

    2017-11-21

    Prepare nanofoam by (a) providing an aqueous solution of a flame retardant dissolved in an aqueous solvent, wherein the flame retardant is a solid at 23.degree. C. and 101 kiloPascals pressure when in neat form; (b) providing a fluid polymer composition selected from a solution of polymer dissolved in a water-miscible solvent or a latex of polymer particles in a continuous aqueous phase; (c) mixing the aqueous solution of flame retardant with the fluid polymer composition to form a mixture; (d) removing water and, if present, solvent from the mixture to produce a polymeric composition having less than 74 weight-percent flame retardant based on total polymeric composition weight; (e) compound the polymeric composition with a matrix polymer to form a matrix polymer composition; and (f) foam the matrix polymer composition into nanofoam having a porosity of at least 60 percent.

  9. Distribution of electric potential in hydrocarbon flames

    Energy Technology Data Exchange (ETDEWEB)

    Fialkov, B.S.; Shcherbakov, N.D.; Plitsyn, V.T.

    1978-01-01

    A study was made of the distribution of electrical potential and temperatures in laminar methane and propane--butane flames when the excess air coefficient in the mixture is changed from 0 to 1.2. 7 references, 3 figures.

  10. CloudFlame: Cyberinfrastructure for combustion research

    KAUST Repository

    Goteng, Gokop; Nettyam, Naveena; Sarathy, Mani

    2013-01-01

    Combustion experiments and chemical kinetics simulations generate huge data that is computationally and data intensive. A cloud-based cyber infrastructure known as Cloud Flame is implemented to improve the computational efficiency, scalability

  11. Numerical modelling of ion transport in flames

    KAUST Repository

    Han, Jie; Belhi, Memdouh; Bisetti, Fabrizio; Sarathy, Mani

    2015-01-01

    that changes in polarizability propagate with decreasing effect from binary transport coefficients to species number densities. We conclude that the chosen polarizability value has a limited effect on the ion distribution in freely propagating flames. We expect

  12. Characterization of flame radiosity in shrubland fires

    Science.gov (United States)

    Miguel G. Cruz; Bret W. Butler; Domingos X. Viegas; Pedro Palheiro

    2011-01-01

    The present study is aimed at quantifying the flame radiosity vertical profile and gas temperature in moderate to high intensity spreading fires in shrubland fuels. We report on the results from 11 experimental fires conducted over a range of fire rate of spread and frontal fire intensity varying respectively between 0.04-0.35ms-1 and 468-14,973kWm-1. Flame radiosity,...

  13. Spray solidification of nuclear waste

    International Nuclear Information System (INIS)

    Bonner, W.F.; Blair, H.T.; Romero, L.S.

    1976-08-01

    The spray calciner is a relatively simple machine. Operation is simple and is easily automated. Startup and shutdown can be performed in less than an hour. A wide variety of waste compositions and concentrations can be calcined under easily maintainable conditions. Spray calcination of high-level and mixed high- and intermediate-level liquid wastes has been demonstrated. Waste concentrations of from near infinite dilution to less than 225 liters per tonne of fuel are calcinable. Wastes have been calcined containing over 2M sodium. Feed concentration, composition, and flowrate can vary rapidly by over a factor of two without requiring operator action. Wastes containing mainly sodium cations can be spray calcined by addition of finely divided silica to the feedstock. A remotely replaceable atomizing nozzle has been developed for use in plant-scale equipment. Calciner capacity of over 75 l/h has been demonstrated in pilot-scale equipment. Sintered stainless steel filters are effective in deentraining over 99.9 percent of the solids that result from calcining the feedstock. The volume of recycle required from the effluent treatment system is very small. Vibrator action maintains the calcine holdup in the calciner at less than 1 kg. Successful remote operation and maintenance of a heated-wall spray calciner have been demonstrated while processing high-level waste. Radionuclide volatilization was acceptably low

  14. Transdermal Spray in Hormone Delivery

    African Journals Online (AJOL)

    market for the delivery system and ongoing development of transdermal sprays for hormone ... (DOAJ), African Journal Online, Bioline International, Open-J-Gate and Pharmacy Abstracts ... patches and gels have been very popular owing ... This product was developed for ... In a safety announcement, the US Food and.

  15. No Heat Spray Drying Technology

    Energy Technology Data Exchange (ETDEWEB)

    Beetz, Charles [ZoomEssence, Inc., Hebron, KY (United States)

    2016-06-15

    No Heat Spray Drying Technology. ZoomEssence has developed our Zooming™ spray drying technology that atomizes liquids to powders at ambient temperature. The process of drying a liquid into a powder form has been traditionally achieved by mixing a heated gas with an atomized (sprayed) fluid within a vessel (drying chamber) causing the solvent to evaporate. The predominant spray drying process in use today employs air heated up to 400° Fahrenheit to dry an atomized liquid into a powder. Exposing sensitive, volatile liquid ingredients to high temperature causes molecular degradation that negatively impacts solubility, stability and profile of the powder. In short, heat is detrimental to many liquid ingredients. The completed award focused on several areas in order to advance the prototype dryer to a commercial scale integrated pilot system. Prior to the award, ZoomEssence had developed a prototype ‘no-heat’ dryer that firmly established the feasibility of the Zooming™ process. The award focused on three primary areas to improve the technology: (1) improved ability to formulate emulsions for specific flavor groups and improved understanding of the relationship of emulsion properties to final dry particle properties, (2) a new production atomizer, and (3) a dryer controls system.

  16. NO concentration imaging in turbulent nonpremixed flames

    Energy Technology Data Exchange (ETDEWEB)

    Schefer, R.W. [Sandia National Laboratories, Livermore, CA (United States)

    1993-12-01

    The importance of NO as a pollutant species is well known. An understanding of the formation characteristics of NO in turbulent hydrocarbon flames is important to both the desired reduction of pollutant emissions and the validation of proposed models for turbulent reacting flows. Of particular interest is the relationship between NO formation and the local flame zone, in which the fuel is oxidized and primary heat release occurs. Planar imaging of NO provides the multipoint statistics needed to relate NO formation to the both the flame zone and the local turbulence characteristics. Planar imaging of NO has been demonstrated in turbulent flames where NO was seeded into the flow at high concentrations (2000 ppm) to determine the gas temperature distribution. The NO concentrations in these experiments were significantly higher than those expected in typical hydrocarbon-air flames, which require a much lower detectability limit for NO measurements. An imaging technique based on laser-induced fluorescence with sufficient sensitivity to study the NO formation mechanism in the stabilization region of turbulent lifted-jet methane flames.

  17. Conical quarl swirl stabilized non-premixed flames: flame and flow field interaction

    KAUST Repository

    Elbaz, Ayman M.; Roberts, William L.

    2017-01-01

    The flame-flow field interaction is studied in non-premixed methane swirl flames stabilized in quartz quarl via simultaneous measurements of the flow field using a stereo PIV and OH-PLIF at 5 KHz repetition rate. Under the same swirl intensity, two flames with different fuel jet velocity were investigated. The time-averaged flow field shows a unique flow pattern at the quarl exit, where two recirculation vortices are formed; a strong recirculation zone formed far from the quarl exit and a larger recirculation zone extending inside the quarl. However, the instantaneous images show that, the flow pattern near the quarl exit plays a vital role in the spatial location and structure of the reaction zone. In the low fuel jet velocity flame, a pair of vortical structures, located precisely at the corners of the quarl exit, cause the flame to roll up into the central region of low speed flow, where the flame sheet then tracks the axial velocity fluctuations. The vorticity field reveals a vortical structure surrounding the reaction zones, which reside on a layer of low compressive strain adjacent to that vortical structure. In the high fuel jet velocity flame, initially a laminar flame sheet resides at the inner shear layer of the main jet, along the interface between incoming fresh gas and high temperature recirculating gas. Further downstream, vortex breakdown alters the flame sheet path toward the central flame region. The lower reaction zones show good correlation to the regions of maximum vorticity and track the regions of low compressive strain associated with the inner shear layer of the jet flow. In both flames the reactions zones conform the passage of the large structure while remaining inside the low speed regions or at the inner shear layer.

  18. Conical quarl swirl stabilized non-premixed flames: flame and flow field interaction

    KAUST Repository

    Elbaz, Ayman M.

    2017-09-19

    The flame-flow field interaction is studied in non-premixed methane swirl flames stabilized in quartz quarl via simultaneous measurements of the flow field using a stereo PIV and OH-PLIF at 5 KHz repetition rate. Under the same swirl intensity, two flames with different fuel jet velocity were investigated. The time-averaged flow field shows a unique flow pattern at the quarl exit, where two recirculation vortices are formed; a strong recirculation zone formed far from the quarl exit and a larger recirculation zone extending inside the quarl. However, the instantaneous images show that, the flow pattern near the quarl exit plays a vital role in the spatial location and structure of the reaction zone. In the low fuel jet velocity flame, a pair of vortical structures, located precisely at the corners of the quarl exit, cause the flame to roll up into the central region of low speed flow, where the flame sheet then tracks the axial velocity fluctuations. The vorticity field reveals a vortical structure surrounding the reaction zones, which reside on a layer of low compressive strain adjacent to that vortical structure. In the high fuel jet velocity flame, initially a laminar flame sheet resides at the inner shear layer of the main jet, along the interface between incoming fresh gas and high temperature recirculating gas. Further downstream, vortex breakdown alters the flame sheet path toward the central flame region. The lower reaction zones show good correlation to the regions of maximum vorticity and track the regions of low compressive strain associated with the inner shear layer of the jet flow. In both flames the reactions zones conform the passage of the large structure while remaining inside the low speed regions or at the inner shear layer.

  19. Preparation of Flame Retardant Modified with Titanate for Asphalt Binder

    Directory of Open Access Journals (Sweden)

    Bo Li

    2014-01-01

    Full Text Available Improving the compatibility between flame retardant and asphalt is a difficult task due to the complex nature of the materials. This study explores a low dosage compound flame retardant and seeks to improve the compatibility between flame retardants and asphalt. An orthogonal experiment was designed taking magnesium hydroxide, ammonium polyphosphate, and melamine as factors. The oil absorption and activation index were tested to determine the effect of titanate on the flame retardant additive. The pavement performance test was conducted to evaluate the effect of the flame retardant additive. Oxygen index test was conducted to confirm the effect of flame retardant on flame ability of asphalt binder. The results of this study showed that the new composite flame retardant is more effective in improving the compatibility between flame retardant and asphalt and reducing the limiting oxygen index of asphalt binder tested in this study.

  20. Blowoff dynamics of bluff body stabilized turbulent premixed flames

    Energy Technology Data Exchange (ETDEWEB)

    Chaudhuri, Swetaprovo; Kostka, Stanislav; Renfro, Michael W.; Cetegen, Baki M. [Department of Mechanical Engineering, University of Connecticut, 191 Auditorium Road, U-3139, Storrs, CT 06269 (United States)

    2010-04-15

    This article concerns the flame dynamics of a bluff body stabilized turbulent premixed flame as it approaches lean blowoff. Time resolved chemiluminescence imaging along with simultaneous particle image velocimetry and OH planar laser-induced fluorescence were utilized in an axisymmetric bluff body stabilized, propane-air flame to determine the sequence of events leading to blowoff and provide a quantitative analysis of the experimental results. It was found that as lean blowoff is approached by reduction of equivalence ratio, flame speed decreases and the flame shape progressively changes from a conical to a columnar shape. For a stably burning conical flame away from blowoff, the flame front envelopes the shear layer vortices. Near blowoff, the columnar flame front and shear layer vortices overlap to induce high local stretch rates that exceed the extinction stretch rates instantaneously and in the mean, resulting in local flame extinction along the shear layers. Following shear layer extinction, fresh reactants can pass through the shear layers to react within the recirculation zone with all other parts of the flame extinguished. This flame kernel within the recirculation zone may survive for a few milliseconds and can reignite the shear layers such that the entire flame is reestablished for a short period. This extinction and reignition event can happen several times before final blowoff which occurs when the flame kernel fails to reignite the shear layers and ultimately leads to total flame extinguishment. (author)

  1. Air/fuel ratio visualization in a diesel spray

    Science.gov (United States)

    Carabell, Kevin David

    1993-01-01

    To investigate some features of high pressure diesel spray ignition, we have applied a newly developed planar imaging system to a spray in an engine-fed combustion bomb. The bomb is designed to give flow characteristics similar to those in a direct injection diesel engine yet provide nearly unlimited optical access. A high pressure electronic unit injector system with on-line manually adjustable main and pilot injection features was used. The primary scalar of interest was the local air/fuel ratio, particularly near the spray plumes. To make this measurement quantitative, we have developed a calibration LIF technique. The development of this technique is the key contribution of this dissertation. The air/fuel ratio measurement was made using biacetyl as a seed in the air inlet to the engine. When probed by a tripled Nd:YAG laser the biacetyl fluoresces, with a signal proportional to the local biacetyl concentration. This feature of biacetyl enables the fluorescent signal to be used as as indicator of local fuel vapor concentration. The biacetyl partial pressure was carefully controlled, enabling estimates of the local concentration of air and the approximate local stoichiometry in the fuel spray. The results indicate that the image quality generated with this method is sufficient for generating air/fuel ratio contours. The processes during the ignition delay have a marked effect on ignition and the subsequent burn. These processes, vaporization and pre-flame kinetics, very much depend on the mixing of the air and fuel. This study has shown that poor mixing and over-mixing of the air and fuel will directly affect the type of ignition. An optimal mixing arrangement exists and depends on the swirl ratio in the engine, the number of holes in the fuel injector and the distribution of fuel into a pilot and main injection. If a short delay and a diffusion burn is desired, the best mixing parameters among those surveyed would be a high swirl ratio, a 4-hole nozzle and a

  2. Flame Structure of Vitiated Fuel-Rich Inverse Diffusion Flames in a Cross-Flow (Postprint)

    Science.gov (United States)

    2011-12-01

    downstream of the slot. The flame length increases as the blowing ratio increases as a result of the greater mass of air which reacts. Ignition of...attributed to the greater penetration of the jet into the cross-stream. It is noted that the flame lengths are similar for the different blowing ratios

  3. Laminar Flame Speeds of Gasoline Surrogates Measured with the Flat Flame Method

    KAUST Repository

    Liao, Y.-H.; Roberts, William L.

    2016-01-01

    © 2016 American Chemical Society. The adiabatic, laminar flame speeds of gasoline surrogates at atmospheric pressure over a range of equivalence ratios of = 0.8-1.3 and unburned gas temperatures of 298-400 K are measured with the flat flame method

  4. On the dynamics of flame edges in diffusion-flame/vortex interactions

    Energy Technology Data Exchange (ETDEWEB)

    Hermanns, Miguel; Linan, Amable [Departamento de Motopropulsion y Termofluidodinamica, Universidad Politecnica de Madrid, Pza. Cardenal Cisneros 3, 28040 Madrid (Spain); Vera, Marcos [Area de Mecanica de Fluidos, Universidad Carlos III de Madrid, 28911 Leganes (Spain)

    2007-04-15

    We analyze the local flame extinction and reignition of a counterflow diffusion flame perturbed by a laminar vortex ring. Local flame extinction leads to the appearance of flame edges separating the burning and extinguished regions of the distorted mixing layer. The dynamics of these edges is modeled based on previous numerical results, with heat release effects fully taken into account, which provide the propagation velocity of triple and edge flames in terms of the upstream unperturbed value of the scalar dissipation. The temporal evolution of the mixing layer is determined using the classical mixture fraction approach, with both unsteady and curvature effects taken into account. Although variable density effects play an important role in exothermic reacting mixing layers, in this paper the description of the mixing layer is carried out using the constant density approximation, leading to a simplified analytical description of the flow field. The mathematical model reveals the relevant nondimensional parameters governing diffusion-flame/vortex interactions and provides the parameter range for the more relevant regime of local flame extinction followed by reignition via flame edges. Despite the simplicity of the model, the results show very good agreement with previously published experimental results. (author)

  5. Turbulence-flame interactions in DNS of a laboratory high Karlovitz premixed turbulent jet flame

    Science.gov (United States)

    Wang, Haiou; Hawkes, Evatt R.; Chen, Jacqueline H.

    2016-09-01

    In the present work, direct numerical simulation (DNS) of a laboratory premixed turbulent jet flame was performed to study turbulence-flame interactions. The turbulent flame features moderate Reynolds number and high Karlovitz number (Ka). The orientations of the flame normal vector n, the vorticity vector ω and the principal strain rate eigenvectors ei are examined. The in-plane and out-of-plane angles are introduced to quantify the vector orientations, which also measure the flame geometry and the vortical structures. A general observation is that the distributions of these angles are more isotropic downstream as the flame and the flow become more developed. The out-of-plane angle of the flame normal vector, β, is a key parameter in developing the correction of 2D measurements to estimate the corresponding 3D quantities. The DNS results show that the correction factor is unity at the inlet and approaches its theoretical value of an isotropic distribution downstream. The alignment characteristics of n, ω and ei, which reflect the interactions of turbulence and flame, are also studied. Similar to a passive scalar gradient in non-reacting flows, the flame normal has a tendency to align with the most compressive strain rate, e3, in the flame, indicating that turbulence contributes to the production of scalar gradient. The vorticity dynamics are examined via the vortex stretching term, which was found to be the predominant source of vorticity generation balanced by dissipation, in the enstrophy transport equation. It is found that although the vorticity preferentially aligns with the intermediate strain rate, e2, the contribution of the most extensive strain rate, e1, to vortex stretching is comparable with that of the intermediate strain rate, e2. This is because the eigenvalue of the most extensive strain rate, λ1, is always large and positive. It is confirmed that the vorticity vector is preferentially positioned along the flame tangential plane, contributing

  6. Flame Quenching Dynamics of High Velocity Flames in Rectangular Cross-section Channels

    KAUST Repository

    Mahuthannan, Ariff Magdoom; Lacoste, Deanna; Damazo, Jason; Kwon, Eddie; Roberts, William L.

    2017-01-01

    Understanding flame quenching for different conditions is necessary to develop safety devices like flame arrestors. In practical applications, the speed of a deflagration in the lab-fixed reference frame will be a strong function of the geometry through which the deflagration propagates. This study reports on the effect of the flame speed, at the entrance of a quenching section, on the quenching distance. A 2D rectangular channel joining two main spherical vessels is considered for studying this effect. Two different velocity regimes are investigated and referred to as configurations A, and B. For configuration A, the velocity of the flame is 20 m/s, while it is about 100 m/s for configuration B. Methane-air stoichiometric mixtures at 1 bar and 298 K are used. Simultaneous dynamic pressure measurements along with schlieren imaging are used to analyze the quenching of the flame. Risk assessment of re-ignition is also reported and analyzed.

  7. Flame Quenching Dynamics of High Velocity Flames in Rectangular Cross-section Channels

    KAUST Repository

    Mahuthannan, Ariff Magdoom

    2017-01-05

    Understanding flame quenching for different conditions is necessary to develop safety devices like flame arrestors. In practical applications, the speed of a deflagration in the lab-fixed reference frame will be a strong function of the geometry through which the deflagration propagates. This study reports on the effect of the flame speed, at the entrance of a quenching section, on the quenching distance. A 2D rectangular channel joining two main spherical vessels is considered for studying this effect. Two different velocity regimes are investigated and referred to as configurations A, and B. For configuration A, the velocity of the flame is 20 m/s, while it is about 100 m/s for configuration B. Methane-air stoichiometric mixtures at 1 bar and 298 K are used. Simultaneous dynamic pressure measurements along with schlieren imaging are used to analyze the quenching of the flame. Risk assessment of re-ignition is also reported and analyzed.

  8. Radiation Effects on the Thermodiffusive Instability of Premixed Flames on a Cylindrical Porous Flame Holder

    Science.gov (United States)

    Du, Minglong; Yang, Lijun

    2017-10-01

    A linear analysis method was used to investigate the mechanics of radiation heat loss and mass transfer in the porous wall of premixed annular flames and their effect on thermodiffusive instability. The dispersion relation between the disturbance wave growth rate and wavenumber was calculated numerically. Results showed that radiation heat loss elevated the annular flame slightly away from the porous wall. In the annular flame with small Lewis numbers, radiation heat loss changed the thermodiffusive instability from a pulsating to a cellular state, while for the large Lewis numbers, only the pulsating instability was represented. Increasing radiation heat loss and the radius of the porous wall enhanced the instability of the annular flames. Heat losses decreased with the continued increase in thickness of the porous wall and the decrease in porosity. Annular flames with long-wave mode along the angular direction were more unstable than the shortwave mode.

  9. A, a Brominated Flame Retardant

    Directory of Open Access Journals (Sweden)

    Tomomi Takeshita

    2013-01-01

    Full Text Available Tetrabromobisphenol A (TBBPA, a brominated flame retardant, has been found to exacerbate pneumonia in respiratory syncytial virus- (RSV- infected mice. We examined the effect of Brazilian propolis (AF-08 on the exacerbation of RSV infection by TBBPA exposure in mice. Mice were fed a powdered diet mixed with 1% TBBPA alone, 0.02% AF-08 alone, or 1% TBBPA and 0.02% AF-08 for four weeks and then intranasally infected with RSV. TBBPA exposure increased the pulmonary virus titer and level of IFN-γ, a representative marker of pneumonia due to RSV infection, in the lungs of infected mice without toxicity. AF-08 was significantly effective in reducing the virus titers and IFN-γ level increased by TBBPA exposure. Also, AF-08 significantly reduced proinflammatory cytokine (TNF-α and IL-6 levels in the lungs of RSV-infected mice with TBBPA exposure, but Th2 cytokine (IL-4 and IL-10 levels were not evidently increased. Neither TBBPA exposure nor AF-08 treatment affected the anti-RSV antibody production in RSV-infected mice. In flow cytometry analysis, AF-08 seemed to be effective in reducing the ratio of pulmonary CD8a+ cells in RSV-infected mice with TBBPA exposure. TBBPA and AF-08 did not exhibit anti-RSV activity in vitro. Thus, AF-08 probably ameliorated pneumonia exacerbated by TBBPA exposure in RSV-infected mice by limiting excess cellular immune responses.

  10. Enhancement of flame development by microwave-assisted spark ignition in constant volume combustion chamber

    KAUST Repository

    Wolk, Benjamin; DeFilippo, Anthony; Chen, Jyh-Yuan; Dibble, Robert; Nishiyama, Atsushi; Ikeda, Yuji

    2013-01-01

    -thermal chemical kinetic enhancement from energy deposition to free electrons in the flame front and (2) induced flame wrinkling from excitation of flame (plasma) instability. The enhancement of flame development by microwaves diminishes as the initial pressure

  11. Preparation of high critical temperature YBa2Cu3O7 superconducting coatings by thermal spray

    International Nuclear Information System (INIS)

    Lacombe, Jacques

    1991-01-01

    The objective of this research thesis is the elaboration of YBa 2 Cu 3 O 7 superconducting coatings by thermal spray. These coatings must have a high adherence, a high cohesion, and the best possible electrical characteristics. The author first briefly presents physical-chemical characteristics of this ceramic, and proposes a bibliographical synthesis on thick coatings prepared by thermal spray. In the next parts, he studies and describes conditions of elaboration of poly-granular coatings of YBa 2 Cu 3 O 7 , and their structural and electric characteristics [fr

  12. High Frequency Combustion Instabilities of LOx/CH4 Spray Flames in Rocket Engine Combustion Chambers

    NARCIS (Netherlands)

    Sliphorst, M.

    2011-01-01

    Ever since the early stages of space transportation in the 1940’s, and the related liquid propellant rocket engine development, combustion instability has been a major issue. High frequency combustion instability (HFCI) is the interaction between combustion and the acoustic field in the combustion

  13. Optical investigations on Diesel spray dynamics and in-flame soot formation

    OpenAIRE

    Xuan, Tiemin

    2018-01-01

    En las últimas décadas ha avanzado mucho la comprensión científica sobre el proceso de combustión de los chorros diesel de inyección directa gracias al desarrollo de todo tipo de técnicas e instalaciones ópticas. Además, se han desarrollado y mejorado una gran cantidad de modelos de Dinámica de Fluidos Computacional (CFD), los cuales se usan para el desarrollo de motores altamente eficientes y con bajas emisiones. Sin embargo, debido a la complejidad de los procesos físicos y químicos involuc...

  14. Narrow band flame emission from dieseline and diesel spray combustion in a constant volume combustion chamber

    KAUST Repository

    Wu, Zengyang; Jing, Wei; Zhang, Weibo; Roberts, William L.; Fang, Tiegang

    2016-01-01

    emissions were studied. Ambient oxygen concentration was varied from 12% to 21% and three ambient temperatures were selected: 800 K, 1000 K and 1200 K. An intensified CCD camera coupled with bandpass filters was employed to capture the quasi-steady state

  15. NOx emissions from high swirl turbulent spray flames with highly oxygenated fuels

    KAUST Repository

    Bohon, Myles; Roberts, William L.

    2013-01-01

    Combustion of fuels with fuel bound oxygen is of interest from both a practical and a fundamental viewpoint. While a great deal of work has been done studying the effect of oxygenated additives in diesel and gasoline engines, much less has been done

  16. Sooting turbulent jet flame: characterization and quantitative soot measurements

    Science.gov (United States)

    Köhler, M.; Geigle, K. P.; Meier, W.; Crosland, B. M.; Thomson, K. A.; Smallwood, G. J.

    2011-08-01

    Computational fluid dynamics (CFD) modelers require high-quality experimental data sets for validation of their numerical tools. Preferred features for numerical simulations of a sooting, turbulent test case flame are simplicity (no pilot flame), well-defined boundary conditions, and sufficient soot production. This paper proposes a non-premixed C2H4/air turbulent jet flame to fill this role and presents an extensive database for soot model validation. The sooting turbulent jet flame has a total visible flame length of approximately 400 mm and a fuel-jet Reynolds number of 10,000. The flame has a measured lift-off height of 26 mm which acts as a sensitive marker for CFD model validation, while this novel compiled experimental database of soot properties, temperature and velocity maps are useful for the validation of kinetic soot models and numerical flame simulations. Due to the relatively simple burner design which produces a flame with sufficient soot concentration while meeting modelers' needs with respect to boundary conditions and flame specifications as well as the present lack of a sooting "standard flame", this flame is suggested as a new reference turbulent sooting flame. The flame characterization presented here involved a variety of optical diagnostics including quantitative 2D laser-induced incandescence (2D-LII), shifted-vibrational coherent anti-Stokes Raman spectroscopy (SV-CARS), and particle image velocimetry (PIV). Producing an accurate and comprehensive characterization of a transient sooting flame was challenging and required optimization of these diagnostics. In this respect, we present the first simultaneous, instantaneous PIV, and LII measurements in a heavily sooting flame environment. Simultaneous soot and flow field measurements can provide new insights into the interaction between a turbulent vortex and flame chemistry, especially since soot structures in turbulent flames are known to be small and often treated in a statistical manner.

  17. Control of confined nonpremixed flames using a microjet

    International Nuclear Information System (INIS)

    Sinha, Ashok; Ganguly, Ranjan; Puri, Ishwar K.

    2005-01-01

    Industrial burners, such as those used in materials processing furnaces, require precise control over the flame length, width, overall shape and other physical flame attributes. The mechanism used to control the flame topology should be relatively simple, safe, and devoid of an emissions penalty. We have explored the feasibility of hydrodynamic control of confined nonpremixed flames by injecting air through a high-momentum microjet. An innovative strategy for the control of flame shape and luminosity is demonstrated based on a high-momentum coaxial microjet injected along the center of a confined nonpremixed flame burning in a coflowing oxidizer stream. The introduction of the microjet shortens a nonpremixed flame and reduces the amplitude of the buoyancy-induced flickering. For a microjet-assisted flame, the flame length is more sensitive to the fuel flowrate than for laminar or turbulent nonpremixed flames. This provides greater flexibility for the dynamic control of their flame lengths. Measurements of NO x and CO emissions show that the method is robust. Effective flame control without an emissions penalty is possible over a large range of microjet velocities that significantly alter the flame shape. Since the influence of the microjet is primarily of a hydrodynamic nature, inert microjet fluids like recirculated exhaust gas can also be used in practical devices

  18. Control of confined nonpremixed flames using a microjet

    Energy Technology Data Exchange (ETDEWEB)

    Sinha, A.; Puri, I.K. [Virginia Polytechnic Inst. and State Univ., Blacksburg, VA (United States). Dept. of Engineering Science and Mechanics; Ganguly, R. [Virginia Polytechnic Inst. and State Univ., Blacksburg, VA (United States). Dept. of Engineering Science and Mechanics; Jadavpur Univ., Calcutta (India). Dept. of Power Engineering

    2005-06-01

    Industrial burners, such as those used in materials processing furnaces, require precise control over the flame length, width, overall shape and other physical flame attributes. The mechanism used to control the flame topology should be relatively simple, safe, and devoid of an emissions penalty. We have explored the feasibility of hydrodynamic control of confined nonpremixed flames by injecting air through a high-momentum microjet. An innovative strategy for the control of flame shape and luminosity is demonstrated based on a high-momentum coaxial microjet injected along the center of a confined nonpremixed flame burning in a coflowing oxidizer stream. The introduction of the microjet shortens a nonpremixed flame and reduces the amplitude of the buoyancy-induced flickering. For a microjet-assisted flame, the flame length is more sensitive to the fuel flowrate than for laminar or turbulent nonpremixed flames. This provides greater flexibility for the dynamic control of their flame lengths. Measurements of NO{sub x} and CO emissions show that the method is robust. Effective flame control without an emissions penalty is possible over a large range of microjet velocities that significantly alter the flame shape. Since the influence of the microjet is primarily of a hydrodynamic nature, inert microjet fluids like recirculated exhaust gas can also be used in practical devices. (Author)

  19. Sprays and Cartan projective connections

    Science.gov (United States)

    Saunders, D. J.

    2004-10-01

    Around 80 years ago, several authors (for instance H. Weyl, T.Y. Thomas, J. Douglas and J.H.C. Whitehead) studied the projective geometry of paths, using the methods of tensor calculus. The principal object of study was a spray, namely a homogeneous second-order differential equation, or more generally a projective equivalence class of sprays. At around the same time, E. Cartan studied the same topic from a different point of view, by imagining a projective space attached to a manifold, or, more generally, attached to a `manifold of elements'; the infinitesimal `glue' may be interpreted in modern language as a Cartan projective connection on a principal bundle. This paper describes the geometrical relationship between these two points of view.

  20. Characteristics of diffusion flames with accelerated motion

    Directory of Open Access Journals (Sweden)

    Lou Bo

    2016-01-01

    Full Text Available The aim of this work is to present an experiment to study the characteristics of a laminar diffusion flame under acceleration. A Bunsen burner (nozzle diameter 8 mm, using liquefied petroleum gas as its fuel, was ignited under acceleration. The temperature field and the diffusion flame angle of inclination were visualised with the assistance of the visual display technology incorporated in MATLAB™. Results show that the 2-d temperature field under different accelerations matched the variation in average temperatures: they both experience three variations at different time and velocity stages. The greater acceleration has a faster change in average temperature with time, due to the accumulation of combustion heat: the smaller acceleration has a higher average temperature at the same speed. No matter what acceleration was used, in time, the flame angle of inclination increased, but the growth rate decreased until an angle of 90°: this could be explained by analysis of the force distribution within the flame. It is also found that, initially, the growth rate of angle with velocity under the greater acceleration was always smaller than that at lower accelerations; it was also different in flames with uniform velocity fire conditions.

  1. Chaotic radiation/turbulence interactions in flames

    Energy Technology Data Exchange (ETDEWEB)

    Menguec, M.P.; McDonough, J.M.

    1998-11-01

    In this paper, the authors present a review of their recent efforts to model chaotic radiation-turbulence interactions in flames. The main focus is to characterize soot volume fraction fluctuations in turbulent diffusion flames, as they strongly contribute to these interaction. The approach is based on the hypothesis that the fluctuations of properties in turbulent flames are deterministic in nature, rather than random. The authors first discuss the theoretical details and then they briefly outline the experiments conducted to measure the scattered light signals from fluctuating soot particles along the axis of an ethylene-air diffusion flame. They compare the power spectra and time series obtained from experiments against the ad-hoc and rigorous models derived using a series of logistic maps. These logistic maps can be used in simulation of the fluctuations in these type of flames, without extensive computational effort or sacrifice of physical detail. Availability of accurate models of these kinds allows investigation of radiation-turbulence interactions at a more fundamental level than it was previously possible.

  2. Spray calcination of nuclear wastes

    International Nuclear Information System (INIS)

    Bonner, W.F.; Blair, H.T.; Romero, L.S.

    1976-01-01

    The spray calciner is a relatively simple machine; operation is simple and is easily automated. Startup and shutdown can be performed in less than an hour. A wide variety of waste compositions and concentrations can be calcined under easily maintainable conditions. Spray calcination of all commercial fuel reprocessor high-level liquid wastes and mixed high and intermediate-level wastes have been demonstrated. Wastes have been calcined containing over 2M sodium. Thus waste generated during plant startup and shutdown can be blended with normal waste and calcined. Spray calcination of ILLW has also been demonstrated. A remotely replaceable atomizing nozzle has been developed for use in plant scale equipment. The 6 mm (0.25 inch) orifice and ceramic tip offer freedom from plugging and erosion thus nozzle replacement should be required only after several months operation. Calciner capacity of over 75 l/h (20 gal/h) has been demonstrated in pilot scale equipment. Sintered stainless steel filters are effective in deentraining over 99.9 percent of the solids that result from calcining the feedstock. Since such a small amount of radionuclides escape the calciner the volume of recycle required from the effluent treatment system is very small. The noncondensable off-gas volume is also low, less than 0.5 m 3 /min (15 scfm) for a liquid feedrate of 75 l/hr (20 gal/hr). Calcine holdup in the calciner is less than 1 kg, thus the liquid feedrate is directly relatable to calcine flowrate. The calcine produced is very fine and reactive. Successful remote operation and maintenance of a heated wall spray calciner has been demonstrated while processing actual high-level waste. During these operations radionuclide volatilization from the calciner was acceptably low. 8 figures

  3. The 2016 Thermal Spray Roadmap

    Czech Academy of Sciences Publication Activity Database

    Vardelle, A.; Moreau, Ch.; Akedo, J.; Ashrafizadeh, H.; Berndt, C. C.; Berghaus-Oberste, J.; Boulos, M.; Brogan, J.; Bourtsalas, A.C.; Dolatabadi, A.; Dorfman, M.; Eden, T.J.; Fauchais, P.; Fisher, G.; Gaertner, F.; Gindrat, M.; Henne, R.; Hyland, M.; Irissou, E.; Jordan, E.H.; Khor, K.A.; Killinger, A.; Lau, Y.C.; Li, C.-J.; Li, L.; Longtin, J.; Markocsan, N.; Masset, P.J.; Matějíček, Jiří; Mauer, G.; McDonald, A.; Mostaghimi, J.; Sampath, S.; Schiller, G.; Shinoda, K.; Smith, M.F.; Syed, A.A.; Themelis, N.J.; Toma, F.-L.; Trelles, J.P.; Vassen, R.; Vuoristo, P.

    2016-01-01

    Roč. 25, č. 8 (2016), s. 1376-1440 ISSN 1059-9630 Institutional support: RVO:61389021 Keywords : anti-wear and anti-corrosion coatings * biomedical * electronics * energy generation * functional coatings * gas turbines * thermal spray processes Subject RIV: JK - Corrosion ; Surface Treatment of Materials Impact factor: 1.488, year: 2016 http://dx.doi.org/10.1007/s11666-016-0473-x

  4. Uniform-droplet spray forming

    Energy Technology Data Exchange (ETDEWEB)

    Blue, C.A.; Sikka, V.K. [Oak Ridge National Lab., TN (United States); Chun, Jung-Hoon [Massachusetts Institute of Technology, Cambridge, MA (United States); Ando, T. [Tufts Univ., Medford, MA (United States)

    1997-04-01

    The uniform-droplet process is a new method of liquid-metal atomization that results in single droplets that can be used to produce mono-size powders or sprayed-on to substrates to produce near-net shapes with tailored microstructure. The mono-sized powder-production capability of the uniform-droplet process also has the potential of permitting engineered powder blends to produce components of controlled porosity. Metal and alloy powders are commercially produced by at least three different methods: gas atomization, water atomization, and rotating disk. All three methods produce powders of a broad range in size with a very small yield of fine powders with single-sized droplets that can be used to produce mono-size powders or sprayed-on substrates to produce near-net shapes with tailored microstructures. The economical analysis has shown the process to have the potential of reducing capital cost by 50% and operating cost by 37.5% when applied to powder making. For the spray-forming process, a 25% savings is expected in both the capital and operating costs. The project is jointly carried out at Massachusetts Institute of Technology (MIT), Tuffs University, and Oak Ridge National Laboratory (ORNL). Preliminary interactions with both finished parts and powder producers have shown a strong interest in the uniform-droplet process. Systematic studies are being conducted to optimize the process parameters, understand the solidification of droplets and spray deposits, and develop a uniform-droplet-system (UDS) apparatus appropriate for processing engineering alloys.

  5. Spray combustion of biomass-based renewable diesel fuel using multiple injection strategy in a constant volume combustion chamber

    KAUST Repository

    Jing, Wei

    2016-05-26

    Effect of a two-injection strategy associated with a pilot injection on the spray combustion process was investigated under conventional diesel combustion conditions (1000 K and 21% O2 concentration) for a biomass-based renewable diesel fuel, i.e., biomass to liquid (BTL), and a regular No. 2 diesel in a constant volume combustion chamber using multiband flame measurement and two-color pyrometry. The spray combustion flame structure was visualized by using multiband flame measurement to show features of soot formation, high temperature and low temperature reactions, which can be characterized by the narrow-band emissions of radicals or intermediate species such as OH, HCHO, and CH. The objective of this study was to identify the details of multiple injection combustion, including a pilot and a main injection, and to provide further insights on how the two injections interact. For comparison, three injection strategies were considered for both fuels including a two-injection strategy (Case TI), single injection strategy A (Case SA), and single injection strategy B (Case SB). Multiband flame results show a strong interaction, indicated by OH emissions between the pilot injection and the main injection for Case TI while very weak connection is found for the narrow-band emissions acquired through filters with centerlines of 430 nm and 470 nm. A faster flame development is found for the main injection of Case TI compared to Cases SA and SB, which could be due to the high temperature environment and large air entrainment from the pilot injection. A lower soot level is observed for the BTL flame compared to the diesel flame for all three injection types. Case TI has a lower soot level compared to Cases SA and SB for the BTL fuel, while the diesel fuel maintains a similar soot level among all three injection strategies. Soot temperature of Case TI is lower for both fuels, especially for diesel. Based on these results, it is expected that the two-injection strategy could be

  6. Flame-vortex interaction and mixing behaviors of turbulent non-premixed jet flames under acoustic forcing

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Munki; Choi, Youngil; Oh, Jeongseog; Yoon, Youngbin [School of Mechanical and Aerospace Engineering, Seoul National University, Seoul (Korea)

    2009-12-15

    This study examines the effect of acoustic excitation using forced coaxial air on the flame characteristics of turbulent hydrogen non-premixed flames. A resonance frequency was selected to acoustically excite the coaxial air jet due to its ability to effectively amplify the acoustic amplitude and reduce flame length and NO{sub x} emissions. Acoustic excitation causes the flame length to decrease by 15% and consequently, a 25% reduction in EINO{sub x} is achieved, compared to coaxial air flames without acoustic excitation at the same coaxial air to fuel velocity ratio. Moreover, acoustic excitation induces periodical fluctuation of the coaxial air velocity, thus resulting in slight fluctuation of the fuel velocity. From phase-lock PIV and OH PLIF measurement, the local flow properties at the flame surface were investigated under acoustic forcing. During flame-vortex interaction in the near field region, the entrainment velocity and the flame surface area increased locally near the vortex. This increase in flame surface area and entrainment velocity is believed to be a crucial factor in reducing flame length and NO{sub x} emission in coaxial jet flames with acoustic excitation. Local flame extinction occurred frequently when subjected to an excessive strain rate, indicating that intense mass transfer of fuel and air occurs radially inward at the flame surface. (author)

  7. On the Experimental and Theoretical Investigations of Lean Partially Premixed Combustion, Burning Speed, Flame Instability and Plasma Formation of Alternative Fuels at High Temperatures and Pressures

    Science.gov (United States)

    Askari, Omid

    This dissertation investigates the combustion and injection fundamental characteristics of different alternative fuels both experimentally and theoretically. The subjects such as lean partially premixed combustion of methane/hydrogen/air/diluent, methane high pressure direct-injection, thermal plasma formation, thermodynamic properties of hydrocarbon/air mixtures at high temperatures, laminar flames and flame morphology of synthetic gas (syngas) and Gas-to-Liquid (GTL) fuels were extensively studied in this work. These subjects will be summarized in three following paragraphs. The fundamentals of spray and partially premixed combustion characteristics of directly injected methane in a constant volume combustion chamber have been experimentally studied. The injected fuel jet generates turbulence in the vessel and forms a turbulent heterogeneous fuel-air mixture in the vessel, similar to that in a Compressed Natural Gas (CNG) Direct-Injection (DI) engines. The effect of different characteristics parameters such as spark delay time, stratification ratio, turbulence intensity, fuel injection pressure, chamber pressure, chamber temperature, Exhaust Gas recirculation (EGR) addition, hydrogen addition and equivalence ratio on flame propagation and emission concentrations were analyzed. As a part of this work and for the purpose of control and calibration of high pressure injector, spray development and characteristics including spray tip penetration, spray cone angle and overall equivalence ratio were evaluated under a wide range of fuel injection pressures of 30 to 90 atm and different chamber pressures of 1 to 5 atm. Thermodynamic properties of hydrocarbon/air plasma mixtures at ultra-high temperatures must be precisely calculated due to important influence on the flame kernel formation and propagation in combusting flows and spark discharge applications. A new algorithm based on the statistical thermodynamics was developed to calculate the ultra-high temperature plasma

  8. Early structure of LPG partially premixed conically stabilized flames

    KAUST Repository

    Elbaz, Ayman M.

    2013-01-01

    This paper presents experimental investigation of LPG partially premixed turbulent flames stabilized within a conical nozzle burner under constant degree of partial premixing. The stability limits and mean flame structure are presented based

  9. Mode Selection in Flame-Vortex driven Combustion Instabilities

    KAUST Repository

    Speth, Ray; Hong, Seung Hyuck; Shanbogue, Santosh; Ghoniem, Ahmed

    2011-01-01

    is governed by a combustion-related time delay inversely proportional to the flame speed. Our model predicts the transition between distinct operating modes. We introduce non-dimensional parameters characterizing the flame speed and stretch rate, and develop a

  10. Effect of hydrogen addition on autoignited methane lifted flames

    KAUST Repository

    Choin, Byung Chul; Chung, Suk-Ho

    2012-01-01

    Autoignited lifted flames in laminar jets with hydrogen-enriched methane fuels have been investigated experimentally in heated coflow air. The results showed that the autoignited lifted flame of the methane/hydrogen mixture, which had an initial

  11. Ion measurements in premixed methane-oxygen flames

    KAUST Repository

    Alquaity, Awad; Hourani, Nadim; Chahine, May; Selim, Hatem; Sarathy, Mani; Farooq, Aamir

    2014-01-01

    Mass Spectrometer (MBMS) is utilized to measure ion concentration profiles in premixed methane-oxygen-argon burner-stabilized flames. Lean, stoichiometric and rich flames at atmospheric pressure are used to study the dependence of ion chemistry

  12. Visualization of ionic wind in laminar jet flames

    KAUST Repository

    Park, Daegeun

    2017-07-03

    Electric field, when it is applied to hydrocarbon flames, generates ionic wind due to the electric body force on charge carrying species. Ionic wind has been shown to influence soot emission, propagation speed, and stability of flames; however, a detailed behavior of ionic wind and its effects on flames is still not clear. Here, we investigated the dynamic behaviors of flames and ionic wind in the presence of direct current (DC) and alternating current (AC) electric fields in nonpremixed and premixed jet flames with a jet nozzle placed between two parallel electrodes. We observed a skewed flame toward a lower potential electrode with DC and lower frequency AC (e.g., 10Hz) and a steady flame with higher frequencies AC (1000Hz), while we found that the ionic wind blew toward both the anode and cathode regardless of flame type (nonpremixed or premixed) or the source of the electric field (DC and AC).

  13. Beam steering effects in turbulent high pressure flames

    Energy Technology Data Exchange (ETDEWEB)

    Hemmerling, B; Kaeppeli, B [Paul Scherrer Inst. (PSI), Villigen (Switzerland)

    1997-06-01

    The propagation of a laser beam through a flame is influenced by variations of the optical density. Especially in turbulent high pressure flames this may seriously limit the use of laser diagnostic methods. (author) 1 fig., 2 refs.

  14. Flame acceleration in the early stages of burning in tubes

    Energy Technology Data Exchange (ETDEWEB)

    Bychkov, Vitaly; Fru, Gordon; Petchenko, Arkady [Institute of Physics, Umeaa University, S-901 87 Umeaa (Sweden); Akkerman, V' yacheslav [Institute of Physics, Umeaa University, S-901 87 Umeaa (Sweden); Nuclear Safety Institute (IBRAE) of Russian Academy of Sciences, B. Tulskaya 52, 115191 Moscow (Russian Federation); Eriksson, Lars-Erik [Department of Applied Mechanics, Chalmers University of Technology, 412 96 Goeteborg (Sweden)

    2007-09-15

    Acceleration of premixed laminar flames in the early stages of burning in long tubes is considered. The acceleration mechanism was suggested earlier by Clanet and Searby [Combust. Flame 105 (1996) 225]. Acceleration happens due to the initial ignition geometry at the tube axis when a flame develops to a finger-shaped front, with surface area growing exponentially in time. Flame surface area grows quite fast but only for a short time. The analytical theory of flame acceleration is developed, which determines the growth rate, the total acceleration time, and the maximal increase of the flame surface area. Direct numerical simulations of the process are performed for the complete set of combustion equations. The simulations results and the theory are in good agreement with the previous experiments. The numerical simulations also demonstrate flame deceleration, which follows acceleration, and the so-called ''tulip flames''. (author)

  15. High quality ceramic coatings sprayed by high efficiency hypersonic plasma spraying gun

    International Nuclear Information System (INIS)

    Zhu Sheng; Xu Binshi; Yao JiuKun

    2005-01-01

    This paper introduced the structure of the high efficiency hypersonic plasma spraying gun and the effects of hypersonic plasma jet on the sprayed particles. The optimised spraying process parameters for several ceramic powders such as Al 2 O 3 , Cr 2 O 3 , ZrO 2 , Cr 3 C 2 and Co-WC were listed. The properties and microstructure of the sprayed ceramic coatings were investigated. Nano Al 2 O 3 -TiO 2 ceramic coating sprayed by using the high efficiency hypersonic plasma spraying was also studied. Compared with the conventional air plasma spraying, high efficiency hypersonic plasma spraying improves greatly the ceramic coatings quality but at low cost. (orig.)

  16. 1994 Thermal spray industrial applications: Proceedings

    International Nuclear Information System (INIS)

    Berndt, C.C.; Sampath, S.

    1994-01-01

    The 7th National Thermal Spray Conference met on June 20--24, 1994, in Boston, Massachusetts. The conference was sponsored by the Thermal Spray Division of ASM International and co-sponsored by the American Welding Society, Deutscher Verband fur Schweisstechnik e.V., High Temperature Society of Japan, International Thermal Spray Association, and Japanese Thermal Spraying Society. The conference covered applications for automobiles, aerospace, petrochemicals, power generation, and biomedical needs. Materials included metals, ceramics, and composites with a broad range of process developments and diagnostics. Other sections included modeling and systems control; spray forming and reactive spraying; post treatment; process, structure and property relationships; mechanical properties; and testing, characterization and wear. One hundred and seventeen papers have been processed separately for inclusion on the data base

  17. Effectiveness of containment sprays in containment management

    International Nuclear Information System (INIS)

    Nourbakhsh, H.P.; Perez, S.E.; Lehner, J.R.

    1993-05-01

    A limited study has been performed assessing the effectiveness of containment sprays-to mitigate particular challenges which may occur during a severe accident. Certain aspects of three specific topics related to using sprays under severe accident conditions were investigated. The first was the effectiveness of sprays connected to an alternate water supple and pumping source because the actual containment spray pumps are inoperable. This situation could occur during a station blackout. The second topic concerned the adverse as well as beneficial effects of using containment sprays during severe accident scenario where the containment atmosphere contains substantial quantities of hydrogen along with steam. The third topic was the feasibility of using containment sprays to moderate the consequences of DCH

  18. Multiphysics modelling of the spray forming process

    International Nuclear Information System (INIS)

    Mi, J.; Grant, P.S.; Fritsching, U.; Belkessam, O.; Garmendia, I.; Landaberea, A.

    2008-01-01

    An integrated, multiphysics numerical model has been developed through the joint efforts of the University of Oxford (UK), University of Bremen (Germany) and Inasmet (Spain) to simulate the spray forming process. The integrated model consisted of four sub-models: (1) an atomization model simulating the fragmentation of a continuous liquid metal stream into droplet spray during gas atomization; (2) a droplet spray model simulating the droplet spray mass and enthalpy evolution in the gas flow field prior to deposition; (3) a droplet deposition model simulating droplet deposition, splashing and re-deposition behavior and the resulting preform shape and heat flow; and (4) a porosity model simulating the porosity distribution inside a spray formed ring preform. The model has been validated against experiments of the spray forming of large diameter IN718 Ni superalloy rings. The modelled preform shape, surface temperature and final porosity distribution showed good agreement with experimental measurements

  19. In situ measurement of the mass concentration of flame-synthesized nanoparticles using quartz-crystal microbalance

    International Nuclear Information System (INIS)

    Hevroni, A; Golan, H; Fialkov, A; Tsionsky, V; Markovich, G; Cheskis, S; Rahinov, I

    2011-01-01

    A novel in situ method for measurement of mass concentration of nanoparticles (NPs) formed in flames is proposed. In this method, the deposition rate of NPs collected by a molecular beam sampling system is measured by quartz-crystal microbalance (QCM). It is the only existing method which allows direct measurement of NP mass concentration profiles in flames. The feasibility of the method was demonstrated by studying iron oxide NP formation in low-pressure methane/oxygen/nitrogen flames doped with iron pentacarbonyl. The system was tested under fuel-lean and fuel-rich flame conditions. Good agreement between measured QCM deposition rates and their estimations obtained by the transmission electron microscopy analysis of samples collected from the molecular beam has been demonstrated. The sensitivity of the method is comparable to that of particle mass spectrometry (PMS). Combination of the QCM technique with PMS and/or optical measurements can provide new qualitative information which is important for elucidation of the mechanisms governing the NP flame synthesis

  20. Flame Driving of Longitudinal Instabilities in Liquid Fueled Dump Combustors

    Science.gov (United States)

    1988-10-01

    for the first * natural frequency of 80 Hz. As the flame length is much smaller than the acoustic wavelength at 80 Hz the pressure is constant over...release at different locations along the flame. The reason for this is that the flame length is equivalent to several vortical wavelengths as is evident...pressure minimum there was a large radla- flame length . In all cases, it was ?ound that the tion signal at the driving frequency. On the theory

  1. Acoustic Signature from Flames as a Combustion Diagnostic Tool

    Science.gov (United States)

    1983-11-01

    empirical visual flame length had to be input to the computer for the inversion method to give good results. That is, if the experiment cnd inversion...method were asked to yield the flame length , poor results were obtained. Since this wa3 part of the information sought for practical application of the...to small experimental uncertainty. The method gave reasonably good results for the open flame but substantial input (the flame length ) had to be

  2. Effects of wind velocity and slope on flame properties

    Science.gov (United States)

    David R. Weise; Gregory S. Biging

    1996-01-01

    Abstract: The combined effects of wind velocity and percent slope on flame length and angle were measured in an open-topped, tilting wind tunnel by burning fuel beds composed of vertical birch sticks and aspen excelsior. Mean flame length ranged from 0.08 to 1.69 m; 0.25 m was the maximum observed flame length for most backing fires. Flame angle ranged from -46o to 50o...

  3. Experimental Studies of Hydrocarbon Flame Phenomena: Enabling Combustion Control

    Science.gov (United States)

    2016-07-30

    flames," Physics of Fluids , vol. 7, no. 6, pp. 1447-54, 1995. [8] K. Lyons, " Toward an understanding of the stabilization mechanisms of lifted...Experimental Studies of Hydrocarbon Flame Phenomena: Enabling Combustion Control This report summarizes the research accomplished in the project...34Experimental Studies of Hydrocarbon Flame Phenomena: Enabling Combustion Control". The main areas of activity are: a) electrostatic flame and flow

  4. Ion structure and sequence of ion formation in acetylene flames

    Energy Technology Data Exchange (ETDEWEB)

    Larionova, I.A.; Fialkov, B.S.; Kalinich, K.YA.; Fialkov, A.B.; Ospanov, B.S.

    1993-06-01

    Results of a study of the ion composition of acetylene-air flames burning at low pressures are reported. Data on ion formation are compared for flames of saturated hydrocarbons, oxygen-containing fuels, and acetylene. It is shown that the characteristics of ion formation in the flame front and directly ahead of it are similar to those observed in flames of other fuels. These characteristics, however, are different in the low-temperature region. 9 refs.

  5. Effectiveness of Flame Retardants in TufFoam.

    Energy Technology Data Exchange (ETDEWEB)

    Abelow, Alexis Elizabeth [Sandia National Lab. (SNL-CA), Livermore, CA (United States); Nissen, April [Sandia National Lab. (SNL-CA), Livermore, CA (United States); Massey, Lee Taylor [Sandia National Lab. (SNL-CA), Livermore, CA (United States); Whinnery, LeRoy L. [Sandia National Lab. (SNL-CA), Livermore, CA (United States)

    2017-12-01

    An investigation of polyurethane foam filled with known flame retardant fillers including hydroxides, melamine, phosphate-containing compounds, and melamine phosphates was carried out to produce a low-cost material with high flame retardant efficiency. The impact of flame retardant fillers on the physical properties such a s composite foam density, glass transition temperature, storage modulus, and thermal expansion of composite foams was investigated with the goal of synthesizing a robust rigid foam with excellent flame retardant properties.

  6. White Flame Energy switches to backhoes

    Energy Technology Data Exchange (ETDEWEB)

    Fiscor, S.

    2005-06-01

    The mountaintop coal operator, White Flame Energy has switched to different truck-shovel arrangement. Along with many surface mining operations throughout central Appalachia, the company is using hoe-configured hydraulic excavators as opposed to the traditional front-shovel arrangements. Located in Varney, WV, White Flame Energy uses two Terex O & K mining shovels, an RH170 and an RH 200, which have the capacity to move 2 million cu yards per month from five seams, primarily the Coalburg, Stockton, and No 5 Block and associated rider seams. The article records conversations on the operations with Mike Vines, the general manager, and Don Nicewonder, the owner of White Flame Energy. 2 photos.

  7. Aerothermodynamic properties of stretched flames in enclosures

    Science.gov (United States)

    Rotman, D. A.; Oppenheim, A. K.

    Flames are stretched by being pulled along their frontal surface by the flow field in which they reside. Their trajectories tend to approach particle paths, acquiring eventually the role of contact boundaries, -interfaces between the burnt and unburnt medium that may broaden solely as a consequence of diffusion. Fundamental properties of flow fields governing such flames are determined here on the basis of the zero Mach number model, providng a rational method of approach to the computational analysis of combustion fields in enclosures where, besides the aerodynamic properties flow, the thermodynamic process of compression must be taken into account. To illustrate its application, the method is used to reveal the mechanism of formation of a tulip-shape flame in a rectangular enclosure under nonturbulent flow conditions.

  8. Numerical modelling of ion transport in flames

    KAUST Repository

    Han, Jie

    2015-10-20

    This paper presents a modelling framework to compute the diffusivity and mobility of ions in flames. The (n, 6, 4) interaction potential is adopted to model collisions between neutral and charged species. All required parameters in the potential are related to the polarizability of the species pair via semi-empirical formulas, which are derived using the most recently published data or best estimates. The resulting framework permits computation of the transport coefficients of any ion found in a hydrocarbon flame. The accuracy of the proposed method is evaluated by comparing its predictions with experimental data on the mobility of selected ions in single-component neutral gases. Based on this analysis, the value of a model constant available in the literature is modified in order to improve the model\\'s predictions. The newly determined ion transport coefficients are used as part of a previously developed numerical approach to compute the distribution of charged species in a freely propagating premixed lean CH4/O2 flame. Since a significant scatter of polarizability data exists in the literature, the effects of changes in polarizability on ion transport properties and the spatial distribution of ions in flames are explored. Our analysis shows that changes in polarizability propagate with decreasing effect from binary transport coefficients to species number densities. We conclude that the chosen polarizability value has a limited effect on the ion distribution in freely propagating flames. We expect that the modelling framework proposed here will benefit future efforts in modelling the effect of external voltages on flames. Supplemental data for this article can be accessed at http://dx.doi.org/10.1080/13647830.2015.1090018. © 2015 Taylor & Francis.

  9. Laminar flame properties and flame acceleration prediction of hydrogen-methane mixtures

    Energy Technology Data Exchange (ETDEWEB)

    Coudoro, K. [Inst. de Combustion, Aerothermique, Reactivite et Environnement CNRS Orleans (France); Inst. de Radioprotection et de Surete Nucleaire, DSR/SAGR, Fontenay-aux-Roses (France); Chaumeix, N. [Inst. de Combustion, Aerothermique, Reactivite et Environnement CNRS Orleans (France); Bentaib, A. [Inst. de Radioprotection et de Surete Nucleaire, DSR/SAGR, Fontenay-aux-Roses (France); Paillard, C-E. [Inst. de Combustion, Aerothermique, Reactivite et Environnement CNRS Orleans (France)

    2011-07-01

    The combustion of a binary mixture of methane and hydrogen has been studied using 2 different experimental setups: the spherical bomb to investigate the fundamental flame properties of this mixture with air, initially at 100 kPa, at different initial temperatures (300 - 363 K) and for a wide range of equivalence ratios (0.8 - 1.4); ENACCEF to investigate the flame acceleration phenomena in smooth tube for mixtures initially at ambient conditions and for equivalence ratios ranging between 0.57 and 0.84. A detailed kinetic mechanism has been used to derive the activation energies needed for the flame acceleration analysis. (author)

  10. Experimental Investigation of Turbulent Flames in Hypersonic Flows

    Science.gov (United States)

    2015-09-01

    the flow direction and (b) typical flame length scales seen in the OH-PLIF image with Mach 4.5 freestream (high turbulence) at P0 = 0.65 bar, T0...flame structures (3 mm) are observed at the upstream location of area 1 where the combustion localization first appears. The typical flame length scale

  11. Brominated flame retardants: occurrence, dietary intake and risk assessment

    NARCIS (Netherlands)

    Winter-Sorkina R de; Bakker MI; Wolterink G; Zeijlmaker MJ; SIR

    2006-01-01

    Brominated flame retardants have entered the human food chain. For the time being the occurrence of these chemicals in Dutch food does not pose a human health risk. However, this might easily change at increasing contents of flame retardants in Dutch food. The monitoring of brominated flame

  12. 30 CFR 75.600-1 - Approved cables; flame resistance.

    Science.gov (United States)

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Approved cables; flame resistance. 75.600-1 Section 75.600-1 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR COAL MINE... cables; flame resistance. Cables shall be accepted or approved by MSHA as flame resistant. [57 FR 61223...

  13. Head spray nozzle in reactor pressure vessel

    International Nuclear Information System (INIS)

    Hatano, Shun-ichi.

    1990-01-01

    In a reactor pressure vessel of a BWR type reactor, a head spray nozzle is used for cooling the head of the pressure vessel and, in view of the thermal stresses, it is desirable that cooling is applied as uniformly as possible. A conventional head spray is constituted by combining full cone type nozzles. Since the sprayed water is flown down upon water spraying and the sprayed water in the vertical direction is overlapped, the flow rate distribution has a high sharpness to form a shape as having a maximum value near the center and it is difficult to obtain a uniform flow rate distribution in the circumferential direction. Then, in the present invention, flat nozzles each having a spray water cross section of laterally long shape, having less sharpness in the circumferential distribution upon spraying water to the inner wall of the pressure vessel and having a wide angle of water spray are combined, to make the flow rate distribution of spray water uniform in the inner wall of the pressure vessel. Accordingly, the pressure vessel can be cooled uniformly and thermal stresses upon cooling can be decreased. (N.H.)

  14. Thermally sprayed coatings: Aluminum on lead

    International Nuclear Information System (INIS)

    Usmani, S.; Czajkowski, C.J.; Zatorski, R.

    1999-01-01

    An experimental program to determine the feasibility of thermally spraying aluminum on a lead substrate was initiated in support of the accelerator production of tritium (APT) Project for the US Department of Energy. The program consisted of two distinct parts: (1) the characterization of the thermally sprayed coatings, including microhardness testing, effects of heating, and microstructure and porosity determinations, and (2) effects of mercury doping and heat treatments on the thermally sprayed composite. The project determined that aluminum could successfully be thermally sprayed onto the lead. The coatings had a dense microstructure, with a Vicker's Pyramid Hardness (VPH) of about 60, and a maximum porosity (found in strips on the samples) of 12%

  15. Flexible PVC flame retarded with expandable graphite

    CSIR Research Space (South Africa)

    Focke, WW

    2014-02-01

    Full Text Available this outstanding fire resistance. Thus flame-retardant (FR) and smoke-suppressant (SS) additives must be incorporated in order to meet product test specifications such as oxygen index, heat release rate, smoke evolution, or the extent of burning [1]. Levchik... plot for the composites fabricated in this work. For a material to be effectively flame retarded both the fire load and the fire growth index should assume low values. Figure 11 shows a dramatic decrease for all the EG composites relative to the neat...

  16. Flame-Vortex Interactions Imaged in Microgravity - To Assess the Theory Flame Stretch

    Science.gov (United States)

    Driscoll, James F.

    2001-01-01

    The goals of this research are to: 1) Assess the Theory of Flame Stretch by operating a unique flame-vortex experiment under microgravity conditions in the NASA Glenn 2.2 Second Drop Tower (drops to identify operating conditions have been completed); 2) Obtain high speed shadowgraph images (500-1000 frames/s) using the drop rig (images were obtained at one-g, and the NASA Kodak RO camera is being mounted on the drop rig); 3) Obtain shadowgraph and PIV images at 1-g while varying the effects of buoyancy by controlling the Froude number (completed); 4) Numerically model the inwardly-propagating spherical flame that is observed in the experiment using full chemistry and the RUN 1DL code (completed); 5) Send images of the flame shape to Dr. G. Patniak at NRL who is numerically simulating the entire flame-vortex interaction of the present experiment (data transfer completed); and 6) Assess the feasibility of obtaining PIV velocity field images in the drop rig, which would be useful (but not required) for our assessment of the Theory of Flame Stretch (PIV images were obtained at one-g using same low laser power that is available from fiber optic cable in drop tower). The motivation for the work is to obtain novel measurement needed to develop a physically accurate model of turbulent combustion that can help in the control of engine pollutants. The unique experiment allows, for the first time, the detailed study of a negatively-curved (negatively stretched) flame, which is one of the five fundamental types of premixed flames. While there have been studies of flat flames, positively-curved (outwardly-propagating) cases and positively-strained (counterflow) cases, this is the first detailed study of a negatively-curved (inwardly-propagating) flame. The first set of drops in the 2.2 Second Drop Tower showed that microgravity provides more favorable conditions for achieving inwardly-propagating flames (IPFs) than 1-g. A vortex interacts with a flame and creates a spherical

  17. Effects of nozzle type and spray angle on spray deposition in ivy pot plants.

    Science.gov (United States)

    Foqué, Dieter; Nuyttens, David

    2011-02-01

    Fewer plant protection products are now authorised for use in ornamental growings. Frequent spraying with the same product or a suboptimal technique can lead to resistance in pests and diseases. Better application techniques could improve the sustainable use of the plant protection products still available. Spray boom systems--instead of the still predominantly used spray guns--might improve crop protection management in greenhouses considerably. The effect of nozzle type, spray pressure and spray angle on spray deposition and coverage in ivy pot plants was studied, with a focus on crop penetration and spraying the bottom side of the leaves in this dense crop. The experiments showed a significant and important effect of collector position on deposition and coverage in the plant. Although spray deposition and coverage on the bottom side of the leaves are generally low, they could be improved 3.0-4.9-fold using the appropriate application technique. When using a spray boom in a dense crop, the nozzle choice, spray pressure and spray angle should be well considered. The hollow-cone, the air-inclusion flat-fan and the standard flat-fan nozzle with an inclined spray angle performed best because of the effect of swirling droplets, droplets with a high momentum and droplet direction respectively. Copyright © 2010 Society of Chemical Industry.

  18. Effect of spray application technique on spray deposition in greenhouse strawberries and tomatoes.

    Science.gov (United States)

    Braekman, Pascal; Foque, Dieter; Messens, Winy; Van Labeke, Marie-Christine; Pieters, Jan G; Nuyttens, David

    2010-02-01

    Increasingly, Flemish greenhouse growers are using spray booms instead of spray guns to apply plant protection products. Although the advantages of spray booms are well known, growers still have many questions concerning nozzle choice and settings. Spray deposition using a vertical spray boom in tomatoes and strawberries was compared with reference spray equipment. Five different settings of nozzle type, size and pressure were tested with the spray boom. In general, the standard vertical spray boom performed better than the reference spray equipment in strawberries (spray gun) and in tomatoes (air-assisted sprayer). Nozzle type and settings significantly affected spray deposition and crop penetration. Highest overall deposits in strawberries were achieved using air-inclusion or extended-range nozzles. In tomatoes, the extended-range nozzles and the twin air-inclusion nozzles performed best. Using smaller-size extended-range nozzles above the recommended pressure range resulted in lower deposits, especially inside the crop canopy. The use of a vertical spray boom is a promising technique for applying plant protection products in a safe and efficient way in tomatoes and strawberries, and nozzle choice and setting should be carefully considered.

  19. NOx formation from the combustion of monodisperse n-heptane sprays doped with fuel-nitrogen additives

    Science.gov (United States)

    Sarv, Hamid; Cernansky, Nicholas P.

    1989-01-01

    A series of experiments with simulated synthetic fuels were conducted in order to investigate the effect of droplet size on the conversion of fuel-nitrogen to NOx. Pyridine and pyrrole were added to n-heptane as nitrogen-containing additives and burned as monodisperse fuel droplets under various operating conditions in a spray combustion facility. The experimental results indicate that under stoichiometric and fuel-rich conditions, reducing the droplet size increases the efficiency of fuel-N conversion to NOx. This observation is associated with improved oxidation of the pyrolysis fragments of the additive by better oxygen penetration through the droplet flame zone. The dominant reactions by which fuel-N is transformed to NOx were also considered analytically by a premixed laminar flame code. The calculations are compared to the small droplet size results.

  20. Wear behaviour of coating of aluminium matrix composites fabricated by thermal spray method; Comportamiento a desgaste de recubrimientos de material compuesto de matriz de aluminio fabricados por proyeccion termica

    Energy Technology Data Exchange (ETDEWEB)

    Campo, M.; Escalera, M. D.; Torres, B.; Rams, J.; Urena, A.

    2007-07-01

    In this work, the wear behaviour of coatings made of aluminium matrix composites reinforced with 20% of SiC particles and manufactured by thermal spray method with oxyacetylene flame has been investigated. the wear behaviour between coating with uncoated particles and sol-gel silica coated ones heat treated at 500 degree centigree and 725 degree centigree have been compared. The sprayed coatings with silica coated particles are more homogeneous and less porous due to increase of wettability by molten aluminium that takes place on coated particles. The microstructure of the sprayed coatings, the wear surfaces and the wear debris have been analysed using optical microscopy, scanning electron microscopy and micro-analysis techniques (EDX). The results show a smaller wear rate, a lower friction coefficient and more reduced loss of mass for the coatings sprayed with particles with sol-gel silica coatings than those made with uncoated particles. (Author) 15 refs.