WorldWideScience

Sample records for flags human hepatocytes

  1. Metabolism of lipoproteins by human fetal hepatocytes

    International Nuclear Information System (INIS)

    Carr, B.R.

    1987-01-01

    The rate of clearance of lipoproteins from plasma appears to play a role in the development of atherogenesis. The liver may account for as much as two thirds of the removal of low-density lipoprotein and one third of the clearance of high-density lipoprotein in certain animal species and humans, mainly by receptor-mediated pathways. The purpose of the present investigation was to determine if human fetal hepatocytes maintained in vitro take up and degrade lipoproteins. We first determined that the maximal binding capacity of iodine 125-iodo-LDL was approximately 300 ng of low-density lipoprotein protein/mg of membrane protein and an apparent dissociation constant of approximately 60 micrograms low-density lipoprotein protein/ml in membranes prepared from human fetal liver. We found that the maximal uptake of [ 125 I]iodo-LDL and [ 125 I]iodo-HDL by fetal hepatocytes occurred after 12 hours of incubation. Low-density lipoprotein uptake preceded the appearance of degradation products by 4 hours, and thereafter the degradation of low-density lipoprotein increased linearly for at least 24 hours. In contrast, high-density lipoprotein was not degraded to any extent by fetal hepatocytes. [ 125 I]Iodo-LDL uptake and degradation were inhibited more than 75% by preincubation with low-density lipoprotein but not significantly by high-density lipoprotein, whereas [ 125 I]iodo-HDL uptake was inhibited 70% by preincubation with high-density lipoprotein but not by low-density lipoprotein. In summary, human fetal hepatocytes take up and degrade low-density lipoprotein by a receptor-mediated process similar to that described for human extrahepatic tissues

  2. Long-term culture and expansion of primary human hepatocytes

    NARCIS (Netherlands)

    Levy, G.; Bomze, D.; Heinz, S.; Ramachandran, S.D.; Noerenberg, A.; Cohen, M.; Shibolet, O.; Sklan, E.; Braspenning, J.C.; Nahmias, Y.

    2015-01-01

    Hepatocytes have a critical role in metabolism, but their study is limited by the inability to expand primary hepatocytes in vitro while maintaining proliferative capacity and metabolic function. Here we describe the oncostatin M (OSM)-dependent expansion of primary human hepatocytes by low

  3. Comparison of the biological features between human fetal hepatocyte and immortalized L-02 hepatocyte in vitro

    International Nuclear Information System (INIS)

    Kong Weiwei; Teng Gaojun

    2004-01-01

    Objective: To evaluate the feasibilities of the potential donors in liver cell transplantation using the human fetal hepatocytes and immortalized L-02 hepatocytes by comparing their biological features. Methods: Human fetal hepatocytes were isolated from aborted fetal livers (gestational ages from 14 w to 24 w) by an improved two-stage perfusion method and cultured in a conditioned medium without any growth factors. α-fetal protein (AFP) and albumin (ALB) were detected by radioimmunoassay (RIA) and cytokeratin-19 (CK-19 ) was identified by cellular immunochemistry study. Immortalized L-02 hepatocytes were cultured in the same condition and the characteristic proteins were detected by the same methods. Results: The viability of human fetal hepatocytes was approximately 95% using the perfusion method, and the maximum survival time of the cultured hepatocytes was 3 weeks. The expression of AFP, ALB, and CK19 was detected at the same time, especially during Day 3 to Day 7 in the culture. By comparison, the proliferation ability of L-02 hepatocyte was greater, although with a lower level of ALB secretion. The expression of AFP and CK19 was not detected. Furthermore, during the long culture, L-02 hepatocytes may undergo a morphologic change and fail to express ALB. Conclusion: Human fetal hepatocyte may be a practical donor for hepatocyte transplantation with its high-level protein expression and potential bi-differentiation ability. In view of the absent expression of ALB and the morphologic change in culture, although with better proliferation, L-02 hepatocyte seems not useful for hepatocyte transplantation

  4. Generation of human hepatocytes by stem cell technology: definition of the hepatocyte.

    Science.gov (United States)

    Hengstler, Jan G; Brulport, Marc; Schormann, Wiebke; Bauer, Alexander; Hermes, Matthias; Nussler, Andreas K; Fandrich, Fred; Ruhnke, Maren; Ungefroren, Hendrik; Griffin, Louise; Bockamp, Ernesto; Oesch, Franz; von Mach, Marc-Alexander

    2005-06-01

    Since 1999, numerous articles have reported the generation of hepatocytes from different types of extrahepatic stem or precursor cells. This opens exciting new possibilities for pharmacology and toxicology, as well as for cell therapy. Hepatocyte marker expression, including albumin, cytokeratin 18, c-met, alpha-fetoprotein and cytochrome P450 3A4 and -2B6, has been observed after transplantation of different types of human stem cells into the liver of laboratory animals or in vitro after incubation with cytokines. These intriguing observations have prompted scientists to classify stem cell-derived cell populations as hepatocytes. However, this conclusion may be premature. It has been shown that factors of the liver microenvironment can induce expression of a limited number of hepatocyte marker genes in nonhepatic cell types. To conclude on the grounds of a limited number of markers that these cells are true hepatocytes is not indicated. In this case one should carefully evaluate crucial hepatocyte-defining enzymatic properties. The present article: i) reviews studies describing the fate of extrahepatic human stem and precursor cells in livers of laboratory animals, including the possibility of cell fusion; and ii) critically discusses the phenotype of stem cells after application of various differentiation protocols aimed at generating human hepatocytes. In addition, the necessary criteria needed for defining a true hepatocyte are suggested. Establishing the necessary properties for stem cell-derived hepatocytes is timely and reasonable, and thus avoids further misleading semantic confusion. Finally, it is essential to understand that the definition of a bona fide hepatocyte should not be limited to qualitative assays, such as reverse transcriptase polymerase chain reaction and immunohistochemistry, but has to include a quantitative analysis of enzymatic activities, which allows direct comparison with primary hepatocytes. Although the stem cell-derived-hepatocyte

  5. Hepatocyte specific expression of human cloned genes

    Energy Technology Data Exchange (ETDEWEB)

    Cortese, R

    1986-01-01

    A large number of proteins are specifically synthesized in the hepatocyte. Only the adult liver expresses the complete repertoire of functions which are required at various stages during development. There is therefore a complex series of regulatory mechanisms responsible for the maintenance of the differentiated state and for the developmental and physiological variations in the pattern of gene expression. Human hepatoma cell lines HepG2 and Hep3B display a pattern of gene expression similar to adult and fetal liver, respectively; in contrast, cultured fibroblasts or HeLa cells do not express most of the liver specific genes. They have used these cell lines for transfection experiments with cloned human liver specific genes. DNA segments coding for alpha1-antitrypsin and retinol binding protein (two proteins synthesized both in fetal and adult liver) are expressed in the hepatoma cell lines HepG2 and Hep3B, but not in HeLa cells or fibroblasts. A DNA segment coding for haptoglobin (a protein synthesized only after birth) is only expressed in the hepatoma cell line HepG2 but not in Hep3B nor in non hepatic cell lines. The information for tissue specific expression is located in the 5' flanking region of all three genes. In vivo competition experiments show that these DNA segments bind to a common, apparently limiting, transacting factor. Conventional techniques (Bal deletions, site directed mutagenesis, etc.) have been used to precisely identify the DNA sequences responsible for these effects. The emerging picture is complex: they have identified multiple, separate transcriptional signals, essential for maximal promoter activation and tissue specific expression. Some of these signals show a negative effect on transcription in fibroblast cell lines.

  6. Immortalized human hepatocytes as a tool for the study of hepatocytic (de-)differentiation

    NARCIS (Netherlands)

    Schippers, IJ; Moshage, H; Roelofsen, H; Muller, M; Heymans, HSA; Ruiters, M; Kuipers, F

    Primary human hepatocytes were immortalized by stable transfection with a recombinant plasmid containing the early region of simian virus (SV) 40. The cells were cultured in serum-free, hormonally defined medium during the immortalization procedure. Foci of dividing cells were seen after 3 months.

  7. Hepatocyte nuclear factor 4A improves hepatic differentiation of immortalized adult human hepatocytes and improves liver function and survival.

    Science.gov (United States)

    Hang, Hua-Lian; Liu, Xin-Yu; Wang, Hai-Tian; Xu, Ning; Bian, Jian-Min; Zhang, Jian-Jun; Xia, Lei; Xia, Qiang

    2017-11-15

    Immortalized human hepatocytes (IHH) could provide an unlimited supply of hepatocytes, but insufficient differentiation and phenotypic instability restrict their clinical application. This study aimed to determine the role of hepatocyte nuclear factor 4A (HNF4A) in hepatic differentiation of IHH, and whether encapsulation of IHH overexpressing HNF4A could improve liver function and survival in rats with acute liver failure (ALF). Primary human hepatocytes were transduced with lentivirus-mediated catalytic subunit of human telomerase reverse transcriptase (hTERT) to establish IHH. Cells were analyzed for telomerase activity, proliferative capacity, hepatocyte markers, and tumorigenicity (c-myc) expression. Hepatocyte markers, hepatocellular functions, and morphology were studied in the HNF4A-overexpressing IHH. Hepatocyte markers and karyotype analysis were completed in the primary hepatocytes using shRNA knockdown of HNF4A. Nuclear translocation of β-catenin was assessed. Rat models of ALF were treated with encapsulated IHH or HNF4A-overexpressing IHH. A HNF4A-positive IHH line was established, which was non-tumorigenic and conserved properties of primary hepatocytes. HNF4A overexpression significantly enhanced mRNA levels of genes related to hepatic differentiation in IHH. Urea levels were increased by the overexpression of HNF4A, as measured 24h after ammonium chloride addition, similar to that of primary hepatocytes. Chromosomal abnormalities were observed in primary hepatocytes transfected with HNF4A shRNA. HNF4α overexpression could significantly promote β-catenin activation. Transplantation of HNF4A overexpressing IHH resulted in better liver function and survival of rats with ALF compared with IHH. HNF4A improved hepatic differentiation of IHH. Transplantation of HNF4A-overexpressing IHH could improve the liver function and survival in a rat model of ALF. Copyright © 2017 Elsevier Inc. All rights reserved.

  8. Augmenter of liver regeneration (ALR) protects human hepatocytes against apoptosis

    International Nuclear Information System (INIS)

    Ilowski, Maren; Kleespies, Axel; Toni, Enrico N. de; Donabauer, Barbara; Jauch, Karl-Walter; Hengstler, Jan G.; Thasler, Wolfgang E.

    2011-01-01

    Research highlights: → ALR decreases cytochrome c release from mitochondria. → ALR protects hepatocytes against apoptosis induction by ethanol, TRAIL, anti-Apo, TGF-β and actinomycin D. → ALR exerts a liver-specific anti-apoptotic effect. → A possible medical usage of ALR regarding protection of liver cells during apoptosis inducing therapies. -- Abstract: Augmenter of liver regeneration (ALR) is known to support liver regeneration and to stimulate proliferation of hepatocytes. However, it is not known if ALR exerts anti-apoptotic effects in human hepatocytes and whether this protective effect is cell type specific. This is relevant, because compounds that protect the liver against apoptosis without undesired effects, such as protection of metastatic tumour cells, would be appreciated in several clinical settings. Primary human hepatocytes (phH) and organotypic cancer cell lines were exposed to different concentrations of apoptosis inducers (ethanol, TRAIL, anti-Apo, TGF-β, actinomycin D) and cultured with or without recombinant human ALR (rhALR). Apoptosis was evaluated by the release of cytochrome c from mitochondria and by FACS with propidium iodide (PI) staining. ALR significantly decreased apoptosis induced by ethanol, TRAIL, anti-Apo, TGF-β and actinomycin D. Further, the anti-apoptotic effect of ALR was observed in primary human hepatocytes and in HepG2 cells but not in bronchial (BC1), colonic (SW480), gastric (GC1) and pancreatic (L3.6PL) cell lines. Therefore, the hepatotrophic growth factor ALR acts in a liver specific manner with regards to both its mitogenic and its anti-apoptotic effect. Unlike the growth factors HGF and EGF, rhALR acts in a liver specific manner. Therefore, ALR is a promising candidate for further evaluation as a possible hepatoprotective factor in clinical settings.

  9. Augmenter of liver regeneration (ALR) protects human hepatocytes against apoptosis

    Energy Technology Data Exchange (ETDEWEB)

    Ilowski, Maren [Liver Regeneration Group, Department of Surgery, Grosshadern Hospital, Ludwig Maximilians University, Munich (Germany); Kleespies, Axel [Department of Surgery, Grosshadern Hospital, Ludwig Maximilians University, Munich (Germany); Toni, Enrico N. de [Department of Medicine II, Grosshadern Hospital, Ludwig Maximilians University, Munich (Germany); Donabauer, Barbara [Liver Regeneration Group, Department of Surgery, Grosshadern Hospital, Ludwig Maximilians University, Munich (Germany); Jauch, Karl-Walter [Department of Surgery, Grosshadern Hospital, Ludwig Maximilians University, Munich (Germany); Hengstler, Jan G. [Leibniz Research Centre for Working Environment and Human Factors, Technical University, Dortmund (Germany); Thasler, Wolfgang E., E-mail: wolfgang.thasler@med.uni-muenchen.de [Liver Regeneration Group, Department of Surgery, Grosshadern Hospital, Ludwig Maximilians University, Munich (Germany); Department of Surgery, Grosshadern Hospital, Ludwig Maximilians University, Munich (Germany)

    2011-01-07

    Research highlights: {yields} ALR decreases cytochrome c release from mitochondria. {yields} ALR protects hepatocytes against apoptosis induction by ethanol, TRAIL, anti-Apo, TGF-{beta} and actinomycin D. {yields} ALR exerts a liver-specific anti-apoptotic effect. {yields} A possible medical usage of ALR regarding protection of liver cells during apoptosis inducing therapies. -- Abstract: Augmenter of liver regeneration (ALR) is known to support liver regeneration and to stimulate proliferation of hepatocytes. However, it is not known if ALR exerts anti-apoptotic effects in human hepatocytes and whether this protective effect is cell type specific. This is relevant, because compounds that protect the liver against apoptosis without undesired effects, such as protection of metastatic tumour cells, would be appreciated in several clinical settings. Primary human hepatocytes (phH) and organotypic cancer cell lines were exposed to different concentrations of apoptosis inducers (ethanol, TRAIL, anti-Apo, TGF-{beta}, actinomycin D) and cultured with or without recombinant human ALR (rhALR). Apoptosis was evaluated by the release of cytochrome c from mitochondria and by FACS with propidium iodide (PI) staining. ALR significantly decreased apoptosis induced by ethanol, TRAIL, anti-Apo, TGF-{beta} and actinomycin D. Further, the anti-apoptotic effect of ALR was observed in primary human hepatocytes and in HepG2 cells but not in bronchial (BC1), colonic (SW480), gastric (GC1) and pancreatic (L3.6PL) cell lines. Therefore, the hepatotrophic growth factor ALR acts in a liver specific manner with regards to both its mitogenic and its anti-apoptotic effect. Unlike the growth factors HGF and EGF, rhALR acts in a liver specific manner. Therefore, ALR is a promising candidate for further evaluation as a possible hepatoprotective factor in clinical settings.

  10. Human hepatocyte depletion in the presence of HIV-1 infection in dual reconstituted humanized mice

    Science.gov (United States)

    Wang, Weimin; Cheng, Yan; Makarov, Edward; Ganesan, Murali; Gebhart, Catherine L.; Gorantla, Santhi; Osna, Natalia

    2018-01-01

    ABSTRACT Human immunodeficiency virus type 1 (HIV-1) infection impairs liver function, and liver diseases have become a leading cause of morbidity in infected patients. The immunopathology of liver damage caused by HIV-1 remains unclear. We used chimeric mice dually reconstituted with a human immune system and hepatocytes to address the relevance of the model to pathobiology questions related to human hepatocyte survival in the presence of systemic infection. TK-NOG males were transplanted with mismatched human hematopoietic stem/progenitor cells and hepatocytes, human albumin concentration and the presence of human immune cells in blood were monitored for hepatocytes and immune reconstitution, and mice were infected with HIV-1. HIV-1-infected animals showed a decline in human albumin concentration with a significant reduction in percentage of human hepatocytes compared to uninfected mice. The decrease in human albumin levels correlated with a decline in CD4+ cells in the liver and with an increase in HIV-1 viral load. HIV-1 infection elicited proinflammatory response in the immunological milieu of the liver in HIV-infected mice compared to uninfected animals, as determined by upregulation of IL23, CXCL10 and multiple toll-like receptor expression. The inflammatory reaction associated with HIV-1 infection in vivo could contribute to the depletion and dysfunction of hepatocytes. The dual reconstituted TK-NOG mouse model is a feasible platform to investigate hepatocyte-related HIV-1 immunopathogenesis. This article has an associated First Person interview with the first author of the paper. PMID:29361613

  11. Human hepatocyte depletion in the presence of HIV-1 infection in dual reconstituted humanized mice

    Directory of Open Access Journals (Sweden)

    Raghubendra Singh Dagur

    2018-02-01

    Full Text Available Human immunodeficiency virus type 1 (HIV-1 infection impairs liver function, and liver diseases have become a leading cause of morbidity in infected patients. The immunopathology of liver damage caused by HIV-1 remains unclear. We used chimeric mice dually reconstituted with a human immune system and hepatocytes to address the relevance of the model to pathobiology questions related to human hepatocyte survival in the presence of systemic infection. TK-NOG males were transplanted with mismatched human hematopoietic stem/progenitor cells and hepatocytes, human albumin concentration and the presence of human immune cells in blood were monitored for hepatocytes and immune reconstitution, and mice were infected with HIV-1. HIV-1-infected animals showed a decline in human albumin concentration with a significant reduction in percentage of human hepatocytes compared to uninfected mice. The decrease in human albumin levels correlated with a decline in CD4+ cells in the liver and with an increase in HIV-1 viral load. HIV-1 infection elicited proinflammatory response in the immunological milieu of the liver in HIV-infected mice compared to uninfected animals, as determined by upregulation of IL23, CXCL10 and multiple toll-like receptor expression. The inflammatory reaction associated with HIV-1 infection in vivo could contribute to the depletion and dysfunction of hepatocytes. The dual reconstituted TK-NOG mouse model is a feasible platform to investigate hepatocyte-related HIV-1 immunopathogenesis. This article has an associated First Person interview with the first author of the paper.

  12. Billion-scale production of hepatocyte-like cells from human induced pluripotent stem cells.

    Science.gov (United States)

    Yamashita, Tomoki; Takayama, Kazuo; Sakurai, Fuminori; Mizuguchi, Hiroyuki

    2018-02-19

    Human induced pluripotent stem (iPS) cell-derived hepatocyte-like cells are expected to be utilized in drug screening and regenerative medicine. However, hepatocyte-like cells have not been fully used in such applications because it is difficult to produce such cells on a large scale. In this study, we tried to establish a method to mass produce hepatocyte-like cells using a three-dimensional (3D) cell culture bioreactor called the Rotary Cell Culture System (RCCS). RCCS enabled us to obtain homogenous hepatocyte-like cells on a billion scale (>10 9  cells). The gene expression levels of some hepatocyte markers (alpha-1 antitrypsin, cytochrome (CYP) 1A2, CYP2D6, and hepatocyte nuclear factor 4alpha) were higher in 3D-cultured hepatocyte-like cells than in 2D-cultured hepatocyte-like cells. This result suggests that RCCS could provide more suitable conditions for hepatocyte maturation than the conventional 2D cell culture conditions. In addition, more than 90% of hepatocyte-like cells were positive for albumin and could uptake low-density lipoprotein in the culture medium. We succeeded in the large-scale production of homogenous and functional hepatocyte-like cells from human iPS cells. This technology will be useful in drug screening and regenerative medicine, which require enormous numbers of hepatocyte-like cells. Copyright © 2018 Elsevier Inc. All rights reserved.

  13. Generation and characterization of a human-mouse chimeric high-affinity antibody that detects the DYKDDDDK FLAG peptide.

    Science.gov (United States)

    Ikeda, Koki; Koga, Tomoaki; Sasaki, Fumiyuki; Ueno, Ayumi; Saeki, Kazuko; Okuno, Toshiaki; Yokomizo, Takehiko

    2017-05-13

    DYKDDDDK peptide (FLAG) is a useful tool for investigating the function and localization of proteins whose antibodies (Abs) are not available. We recently established a high-affinity monoclonal antibody (mAb) for FLAG (clone 2H8). The 2H8 Ab is highly sensitive for detecting FLAG-tagged proteins by flowcytometry and immunoprecipitation, but it can yield nonspecific signals in immunohistochemistry of mouse tissues because it is of mouse origin. In this study, we reduced nonspecific signals by generating a chimeric 2H8 Ab with Fc fragments derived from human immunoglobulin. We fused a 5' terminal cDNA fragments for the Fab region of 2H8 mAb with 3' terminal cDNA fragments for Fc region of human IgG1. We transfected both chimeric plasmids and purified the resulting human-mouse chimeric 2H8. The chimeric 2H8 Ab successfully detected FLAG-tagged proteins in flowcytometry with anti-human IgG secondary Ab with comparable sensitivity to 2H8 mAb. Importantly, chimeric 2H8 detected specific FLAG peptide signals without nonspecific signals in immunohistochemical analysis with mouse tissues. This human-mouse chimeric high-affinity anti-FLAG Ab will prove useful for future immunohistochemical analysis of mouse tissues. Copyright © 2017 Elsevier Inc. All rights reserved.

  14. HUMAN LIVER SLICES EXPRESS THE SAME LIDOCAINE BIOTRANSFORMATION RATE AS ISOLATED HUMAN HEPATOCYTES

    NARCIS (Netherlands)

    OLINGA, P; MEIJER, DKF; SLOOFF, MJH; GROOTHUIS, GMM; Merema, M.T.

    1993-01-01

    In order to investigate whether liver slices are a valuable tool for the assessment of drug metabolism in human liver, we compared the phase I metabolism of lidocaine in human liver slices and hepatocytes prepared from three human livers. Lidocaine is mainly metabolised to monoethylglycinexylidide

  15. Peroxisomal abnormalities in the immortalized human hepatocyte (IHH) cell line.

    Science.gov (United States)

    Klouwer, Femke C C; Koster, Janet; Ferdinandusse, Sacha; Waterham, Hans R

    2017-04-01

    The immortalized human hepatocyte (IHH) cell line is increasingly used for studies related to liver metabolism, including hepatic glucose, lipid, lipoprotein and triglyceride metabolism, and the effect of therapeutic interventions. To determine whether the IHH cell line is a good model to investigate hepatic peroxisomal metabolism, we measured several peroxisomal parameters in IHH cells and, for comparison, HepG2 cells and primary skin fibroblasts. This revealed a marked plasmalogen deficiency and a deficient fatty acid α-oxidation in the IHH cells, due to a defect of PEX7, a cytosolic receptor protein required for peroxisomal import of a subset of peroxisomal proteins. These abnormalities have consequences for the lipid homeostasis of these cells and thus should be taken into account for the interpretation of data previously generated by using this cell line and when considering using this cell line for future research.

  16. Bile acid-induced necrosis in primary human hepatocytes and in patients with obstructive cholestasis

    Energy Technology Data Exchange (ETDEWEB)

    Woolbright, Benjamin L.; Dorko, Kenneth [Department of Pharmacology, Toxicology & Therapeutics, University of Kansas Medical Center, Kansas City, KS (United States); Antoine, Daniel J.; Clarke, Joanna I. [MRC Centre for Drug Safety Science, Department of Molecular and Clinical Pharmacology, Institute of Translational Medicine, University of Liverpool, Liverpool (United Kingdom); Gholami, Parviz [Department of Internal Medicine, University of Kansas Medical Center, Kansas City, KS (United States); Li, Feng [Department of Pharmacology, Toxicology & Therapeutics, University of Kansas Medical Center, Kansas City, KS (United States); Kumer, Sean C.; Schmitt, Timothy M.; Forster, Jameson [Department of Surgery, University of Kansas Medical Center, Kansas City, KS (United States); Fan, Fang [Department of Pathology, University of Kansas Medical Center, Kansas City, KS (United States); Jenkins, Rosalind E.; Park, B. Kevin [MRC Centre for Drug Safety Science, Department of Molecular and Clinical Pharmacology, Institute of Translational Medicine, University of Liverpool, Liverpool (United Kingdom); Hagenbuch, Bruno [Department of Pharmacology, Toxicology & Therapeutics, University of Kansas Medical Center, Kansas City, KS (United States); Olyaee, Mojtaba [Department of Internal Medicine, University of Kansas Medical Center, Kansas City, KS (United States); Jaeschke, Hartmut, E-mail: hjaeschke@kumc.edu [Department of Pharmacology, Toxicology & Therapeutics, University of Kansas Medical Center, Kansas City, KS (United States)

    2015-03-15

    Accumulation of bile acids is a major mediator of cholestatic liver injury. Recent studies indicate bile acid composition between humans and rodents is dramatically different, as humans have a higher percent of glycine conjugated bile acids and increased chenodeoxycholate content, which increases the hydrophobicity index of bile acids. This increase may lead to direct toxicity that kills hepatocytes, and promotes inflammation. To address this issue, this study assessed how pathophysiological concentrations of bile acids measured in cholestatic patients affected primary human hepatocytes. Individual bile acid levels were determined in serum and bile by UPLC/QTOFMS in patients with extrahepatic cholestasis with, or without, concurrent increases in serum transaminases. Bile acid levels increased in serum of patients with liver injury, while biliary levels decreased, implicating infarction of the biliary tracts. To assess bile acid-induced toxicity in man, primary human hepatocytes were treated with relevant concentrations, derived from patient data, of the model bile acid glycochenodeoxycholic acid (GCDC). Treatment with GCDC resulted in necrosis with no increase in apoptotic parameters. This was recapitulated by treatment with biliary bile acid concentrations, but not serum concentrations. Marked elevations in serum full-length cytokeratin-18, high mobility group box 1 protein (HMGB1), and acetylated HMGB1 confirmed inflammatory necrosis in injured patients; only modest elevations in caspase-cleaved cytokeratin-18 were observed. These data suggest human hepatocytes are more resistant to human-relevant bile acids than rodent hepatocytes, and die through necrosis when exposed to bile acids. These mechanisms of cholestasis in humans are fundamentally different to mechanisms observed in rodent models. - Highlights: • Cholestatic liver injury is due to cytoplasmic bile acid accumulation in hepatocytes. • Primary human hepatocytes are resistant to BA-induced injury

  17. Activated human neutrophils release hepatocyte growth factor/scatter factor.

    LENUS (Irish Health Repository)

    McCourt, M

    2012-02-03

    BACKGROUND: Hepatocyte growth factor or scatter factor (HGF\\/SF) is a pleiotropic cytokine that has potent angiogenic properties. We have previously demonstrated that neutrophils (PMN) are directly angiogenic by releasing vascular endothelial growth factor (VEGF). We hypothesized that the acute inflammatory response can stimulate PMN to release HGF. AIMS: To examine the effects of inflammatory mediators on PMN HGF release and the effect of recombinant human HGF (rhHGF) on PMN adhesion receptor expression and PMN VEGF release. METHODS: In the first experiment, PMN were isolated from healthy volunteers and stimulated with tumour necrosis factor-alpha (TNF-alpha), lipopolysaccharide (LPS), interleukin-8 (IL-8), and formyl methionyl-leucyl-phenylalanine (fMLP). Culture supernatants were assayed for HGF using ELISA. In the second experiment, PMN were lysed to measure total HGF release and HGF expression in the PMN was detected by Western immunoblotting. Finally, PMN were stimulated with rhHGF. PMN CD 11a, CD 11b, and CD 18 receptor expression and VEGF release was measured using flow cytometry and ELISA respectively. RESULTS: TNF-alpha, LPS and fMLP stimulation resulted in significantly increased release of PMN HGF (755+\\/-216, 484+\\/-221 and 565+\\/-278 pg\\/ml, respectively) compared to controls (118+\\/-42 pg\\/ml). IL-8 had no effect. Total HGF release following cell lysis and Western blot suggests that HGF is released from intracellular stores. Recombinant human HGF did not alter PMN adhesion receptor expression and had no effect on PMN VEGF release. CONCLUSIONS: This study demonstrates that pro-inflammatory mediators can stimulate HGF release from a PMN intracellular store and that activated PMN in addition to secreting VEGF have further angiogenic potential by releasing HGF.

  18. Generation of human pluripotent stem cell-derived hepatocyte-like cells for drug toxicity screening.

    Science.gov (United States)

    Takayama, Kazuo; Mizuguchi, Hiroyuki

    2017-02-01

    Because drug-induced liver injury is one of the main reasons for drug development failures, it is important to perform drug toxicity screening in the early phase of pharmaceutical development. Currently, primary human hepatocytes are most widely used for the prediction of drug-induced liver injury. However, the sources of primary human hepatocytes are limited, making it difficult to supply the abundant quantities required for large-scale drug toxicity screening. Therefore, there is an urgent need for a novel unlimited, efficient, inexpensive, and predictive model which can be applied for large-scale drug toxicity screening. Human embryonic stem (ES) cells and induced pluripotent stem (iPS) cells are able to replicate indefinitely and differentiate into most of the body's cell types, including hepatocytes. It is expected that hepatocyte-like cells generated from human ES/iPS cells (human ES/iPS-HLCs) will be a useful tool for drug toxicity screening. To apply human ES/iPS-HLCs to various applications including drug toxicity screening, homogenous and functional HLCs must be differentiated from human ES/iPS cells. In this review, we will introduce the current status of hepatocyte differentiation technology from human ES/iPS cells and a novel method to predict drug-induced liver injury using human ES/iPS-HLCs. Copyright © 2016 The Japanese Society for the Study of Xenobiotics. Published by Elsevier Ltd. All rights reserved.

  19. Insulin infusion reduces hepatocyte growth factor in lean humans

    DEFF Research Database (Denmark)

    de Courten, Barbora; de Courten, Maximilian; Dougherty, Sonia

    2013-01-01

    OBJECTIVE: Plasma Hepatocyte Growth Factor (HGF) is significantly elevated in obesity and may contribute to vascular disease, metabolic syndrome or cancer in obese individuals. The current studies were done to determine if hyperinsulinemia increases plasma HGF. MATERIALS/METHODS: Twenty-two parti...

  20. Isolation of primary human hepatocytes from normal and diseased liver tissue: a one hundred liver experience.

    Directory of Open Access Journals (Sweden)

    Ricky H Bhogal

    2011-03-01

    Full Text Available Successful and consistent isolation of primary human hepatocytes remains a challenge for both cell-based therapeutics/transplantation and laboratory research. Several centres around the world have extensive experience in the isolation of human hepatocytes from non-diseased livers obtained from donor liver surplus to surgical requirement or at hepatic resection for tumours. These livers are an important but limited source of cells for therapy or research. The capacity to isolate cells from diseased liver tissue removed at transplantation would substantially increase availability of cells for research. However no studies comparing the outcome of human hepatocytes isolation from diseased and non-diseased livers presently exist. Here we report our experience isolating human hepatocytes from organ donors, non-diseased resected liver and cirrhotic tissue. We report the cell yields and functional qualities of cells isolated from the different types of liver and demonstrate that a single rigorous protocol allows the routine harvest of good quality primary hepatocytes from the most commonly accessible human liver tissue samples.

  1. Evaluation of perfluoroalkyl acid activity using primary mouse and human hepatocytes

    International Nuclear Information System (INIS)

    Rosen, Mitchell B.; Das, Kaberi P.; Wood, Carmen R.; Wolf, Cynthia J.; Abbott, Barbara D.; Lau, Christopher

    2013-01-01

    While perfluorooctanoic acid (PFOA) and perfluorooctane sulfonate (PFOS) have been studied at length, less is known about the biological activity of other perfluoroalkyl acids (PFAAs) detected in the environment. Using a transient transfection assay developed in COS-1 cells, our group has previously evaluated a variety of PFAAs for activity associated with activation of peroxisome proliferator-activated receptor alpha (PPARα). Here we use primary heptatocytes to further assess the biological activity of a similar group of PFAAs using custom designed Taqman Low Density Arrays. Primary mouse and human hepatoyctes were cultured for 48 h in the presence of varying concentrations of 12 different PFAAs or Wy14,643, a known activator of PPARα. Total RNA was collected and the expression of 48 mouse or human genes evaluated. Gene selection was based on either in-house liver microarray data (mouse) or published data using primary hepatocytes (human). Gene expression in primary mouse hepatocytes was more restricted than expected. Genes typically regulated in whole tissue by PPARα agonists were not altered in mouse cells including Acox1, Me1, Acaa1a, Hmgcs1, and Slc27a1. Cyp2b10, a gene regulated by the constitutive androstane receptor and a transcript normally up-regulated by in vivo exposure to PFAAs, was also unchanged in cultured mouse hepatocytes. Cyp4a14, Ehhadh, Pdk4, Cpt1b, and Fabp1 were regulated as expected in mouse cells. A larger group of genes were differentially expressed in human primary hepatocytes, however, little consistency was observed across compounds with respect to which genes produced a significant dose response making the determination of relative biological activity difficult. This likely reflects weaker activation of PPARα in human versus rodent cells as well as variation among individual cell donors. Unlike mouse cells, CYP2B6 was up-regulated in human hepatocytes by a number of PFAAs as was PPARδ. Rankings were conducted on the limited

  2. Xenobiotic-Metabolizing Enzyme and Transporter Gene Expression in Primary Cultures of Human Hepatocytes Modulated by Toxcast Chemicals

    Science.gov (United States)

    Primary human hepatocyte cultures are useful in vitro model systems of human liver because when cultured under appropriate conditions the hepatocytes retain liver-like functionality such as metabolism, transport, and cell signaling. This model system was used to characterize the ...

  3. Possibility of Undifferentiated Human Thigh Adipose Stem Cells Differentiating into Functional Hepatocytes

    Directory of Open Access Journals (Sweden)

    Jong Hoon Lee

    2012-11-01

    Full Text Available BackgroundThis study aimed to investigate the possibility of isolating mesenchymal stem cells (MSCs from human thigh adipose tissue and the ability of human thigh adipose stem cells (HTASCs to differentiate into hepatocytes.MethodsThe adipose-derived stem cells (ADSCs were isolated from thigh adipose tissue. Growth factors, cytokines, and hormones were added to the collagen coated dishes to induce the undifferentiated HTASCs to differentiate into hepatocyte-like cells. To confirm the experimental results, the expression of hepatocyte-specific markers on undifferentiated and differentiated HTASCs was analyzed using reverse transcription polymerase chain reaction and immunocytochemical staining. Differentiation efficiency was evaluated using functional tests such as periodic acid schiff (PAS staining and detection of the albumin secretion level using enzyme-linked immunosorbent assay (ELISA.ResultsThe majority of the undifferentiated HTASCs were changed into a more polygonal shape showing tight interactions between the cells. The differentiated HTASCs up-regulated mRNA of hepatocyte markers. Immunocytochemical analysis showed that they were intensely stained with anti-albumin antibody compared with undifferentiated HTASCs. PAS staining showed that HTASCs submitted to the hepatocyte differentiation protocol were able to more specifically store glycogen than undifferentiated HTASCs, displaying a purple color in the cytoplasm of the differentiated HTASCs. ELISA analyses showed that differentiated HTASCs could secrete albumin, which is one of the hepatocyte markers.ConclusionsMSCs were islolated from human thigh adipose tissue differentiate to heapatocytes. The source of ADSCs is not only abundant abdominal adipose tissue, but also thigh adipose tissue for cell therapy in liver regeneration and tissue regeneration.

  4. Effects of clofibric acid on mRNA expression profiles in primary cultures of rat, mouse and human hepatocytes

    International Nuclear Information System (INIS)

    Richert, Lysiane; Lamboley, Christelle; Viollon-Abadie, Catherine; Grass, Peter; Hartmann, Nicole; Laurent, Stephane; Heyd, Bruno; Mantion, Georges; Chibout, Salah-Dine; Staedtler, Frank

    2003-01-01

    The mRNA expression profile in control and clofibric acid (CLO)-treated mouse, rat, and human hepatocytes was analyzed using species-specific oligonucleotide DNA microarrays (Affymetrix). A statistical empirical Bayes procedure was applied in order to select the significantly differentially expressed genes. Treatment with the peroxisome proliferator CLO induced up-regulation of genes involved in peroxisome proliferation and in cell proliferation as well as down-regulation of genes involved in apoptosis in hepatocytes of rodent but not of human origin. CLO treatment induced up-regulation of microsomal cytochrome P450 4a genes in rodent hepatocytes and in two of six human hepatocyte cultures. In addition, genes encoding phenobarbital-inducible cytochrome P450s were also up-regulated by CLO in rodent and human hepatocyte cultures. Up-regulation of phenobarbital-inducible UDP-glucuronosyl-transferase genes by CLO was observed in both rat and human but not in mouse hepatocytes. CLO treatment induced up-regulation of L-fatty acid binding protein (L-FABP) gene in hepatocytes of both rodent and human origin. However, while genes of the cytosolic, microsomal, and mitochondrial pathways involved in fatty acid transport and metabolism were up-regulated by CLO in both rodent and human hepatocyte cultures, genes of the peroxisomal pathway of lipid metabolism were up-regulated in rodents only. An up-regulation of hepatocyte nuclear factor 1α (HNF1α) by CLO was observed only in human hepatocyte cultures, suggesting that this trans-activating factor may play a key role in the regulation of fatty acid metabolism in human liver as well as in the nonresponsiveness of human liver to CLO-induced regulation of cell proliferation and apoptosis

  5. Effects of clofibric acid on mRNA expression profiles in primary cultures of rat, mouse and human hepatocytes.

    Science.gov (United States)

    Richert, Lysiane; Lamboley, Christelle; Viollon-Abadie, Catherine; Grass, Peter; Hartmann, Nicole; Laurent, Stephane; Heyd, Bruno; Mantion, Georges; Chibout, Salah-Dine; Staedtler, Frank

    2003-09-01

    The mRNA expression profile in control and clofibric acid (CLO)-treated mouse, rat, and human hepatocytes was analyzed using species-specific oligonucleotide DNA microarrays (Affymetrix). A statistical empirical Bayes procedure was applied in order to select the significantly differentially expressed genes. Treatment with the peroxisome proliferator CLO induced up-regulation of genes involved in peroxisome proliferation and in cell proliferation as well as down-regulation of genes involved in apoptosis in hepatocytes of rodent but not of human origin. CLO treatment induced up-regulation of microsomal cytochrome P450 4a genes in rodent hepatocytes and in two of six human hepatocyte cultures. In addition, genes encoding phenobarbital-inducible cytochrome P450s were also up-regulated by CLO in rodent and human hepatocyte cultures. Up-regulation of phenobarbital-inducible UDP-glucuronosyl-transferase genes by CLO was observed in both rat and human but not in mouse hepatocytes. CLO treatment induced up-regulation of L-fatty acid binding protein (L-FABP) gene in hepatocytes of both rodent and human origin. However, while genes of the cytosolic, microsomal, and mitochondrial pathways involved in fatty acid transport and metabolism were up-regulated by CLO in both rodent and human hepatocyte cultures, genes of the peroxisomal pathway of lipid metabolism were up-regulated in rodents only. An up-regulation of hepatocyte nuclear factor 1alpha (HNF1alpha) by CLO was observed only in human hepatocyte cultures, suggesting that this trans-activating factor may play a key role in the regulation of fatty acid metabolism in human liver as well as in the nonresponsiveness of human liver to CLO-induced regulation of cell proliferation and apoptosis.

  6. Differentiation of hepatocytes from induced pluripotent stem cells derived from human hair follicle mesenchymal stem cells.

    Science.gov (United States)

    Shi, Xu; Lv, Shuang; He, Xia; Liu, Xiaomei; Sun, Meiyu; Li, Meiying; Chi, Guangfan; Li, Yulin

    2016-10-01

    Due to the limitations of organ donors and immune rejection in severe liver diseases, stem cell-based therapy presents a promising application for tissue repair and regeneration. As a novel cell source, mesenchymal stem cells separated from human hair follicles (HF-MSCs) are convenient to obtain and have no age limit. To date, the differentiation of HF-MSCs into hepatocytes has not been reported. In this study, we explored whether HF-MSCs and HF-MSC-derived-induced pluripotent stem cells (HF-iPS) could differentiate into hepatocytes in vitro. Flow cytometry, Oil Red O stain and Alizarin Red stain were used to identify the characteristics of HF-MSCs. The expression of liver-specific gene was detected by immunofluorescence and Quantitative Polymerase Chain Reaction. Periodic Acid-Schiff stain, Indocyanine Green stain and Low-Density Lipoprotein stain were performed to evaluate the functions of induced hepatocyte-like cells (HLCs). HF-MSCs were unable to differentiate into HLCs using previously reported procedures for MSCs from other tissues. However, HF-iPS efficiently induced the generation of HLCs that expressed hepatocyte markers and drug metabolism-related genes. HF-iPS can be used as novel and alternative cellular tools for inducing hepatocytes in vitro, simultaneously benefiting from utilizing HF-MSCs as a noninvasive and convenient cell source for reprogramming.

  7. Retroviral-mediated gene transfer and expression of human phenylalanine hydroxylase in primary mouse hepatocytes

    Energy Technology Data Exchange (ETDEWEB)

    Peng, H.; Armentano, D.; Mackenzie-Graham, L.; Shen, R.F.; Darlington, G.; Ledley, F.D.; Woo, S.L.C. (Baylor College of Medicine, Houston, TX (USA))

    1988-11-01

    Genetic therapy for phenylketonuria (severe phenylalanine hydroxylase deficiency) may require introduction of a normal phenylalanine hydroxylase gene into hepatic cells of patients. The authors report development of a recombinant retrovirus based on the N2 vector for gene transfer and expression of human phenylalanine hydroxylase cDNA in primary mouse hepatocytes. This construct contains an internal promoter of the human {alpha}{sub 1}-antitrypsin gene driving transcription of the phenylalanine hydroxylase cDNA. Primary mouse hepatocytes were isolated from newborn mice, infected with the recombinant virus, and selected for expression of the neomycin-resistance gene. Hepatocytes transformed with the recombinant virus contained high levels of human phenylalanine hydroxylase mRNA transcripts originating from the retroviral and internal promoters. These results demonstrate that the transcriptional regulatory elements of the {alpha}{sub 1} antitrypsin gene retain their tissue-specific function in the recombinant provirus and establish a method for efficient transfer and high-level expression of human phenylalanine hydroxylase in primary hepatocytes.

  8. Retroviral-mediated gene transfer and expression of human phenylalanine hydroxylase in primary mouse hepatocytes

    International Nuclear Information System (INIS)

    Peng, H.; Armentano, D.; Mackenzie-Graham, L.; Shen, R.F.; Darlington, G.; Ledley, F.D.; Woo, S.L.C.

    1988-01-01

    Genetic therapy for phenylketonuria (severe phenylalanine hydroxylase deficiency) may require introduction of a normal phenylalanine hydroxylase gene into hepatic cells of patients. The authors report development of a recombinant retrovirus based on the N2 vector for gene transfer and expression of human phenylalanine hydroxylase cDNA in primary mouse hepatocytes. This construct contains an internal promoter of the human α 1 -antitrypsin gene driving transcription of the phenylalanine hydroxylase cDNA. Primary mouse hepatocytes were isolated from newborn mice, infected with the recombinant virus, and selected for expression of the neomycin-resistance gene. Hepatocytes transformed with the recombinant virus contained high levels of human phenylalanine hydroxylase mRNA transcripts originating from the retroviral and internal promoters. These results demonstrate that the transcriptional regulatory elements of the α 1 antitrypsin gene retain their tissue-specific function in the recombinant provirus and establish a method for efficient transfer and high-level expression of human phenylalanine hydroxylase in primary hepatocytes

  9. Generation of hepatocyte- and endocrine pancreatic-like cells from human induced endodermal progenitor cells

    NARCIS (Netherlands)

    Sambathkumar, Rangarajan; Akkerman, Renate; Dastidar, Sumitava; Roelandt, Philip; Kumar, Manoj; Bajaj, Manmohan; Mestre Rosa, Ana Rita; Helsen, Nicky; Vanslembrouck, Veerle; Kalo, Eric; Khurana, Satish; Laureys, Jos; Gysemans, Conny; Faas, Marijke M; de Vos, Paul; Verfaillie, Catherine M

    2018-01-01

    Multipotent Adult Progenitor Cells (MAPCs) are one potential stem cell source to generate functional hepatocytes or β-cells. However, human MAPCs have less plasticity than pluripotent stem cells (PSCs), as their ability to generate endodermal cells is not robust. Here we studied the role of 14

  10. Resveratrol Differentially Regulates NAMPT and SIRT1 in Hepatocarcinoma Cells and Primary Human Hepatocytes

    Science.gov (United States)

    Schuster, Susanne; Penke, Melanie; Gorski, Theresa; Petzold-Quinque, Stefanie; Damm, Georg; Gebhardt, Rolf; Kiess, Wieland; Garten, Antje

    2014-01-01

    Resveratrol is reported to possess chemotherapeutic properties in several cancers. In this study, we wanted to investigate the molecular mechanisms of resveratrol-induced cell cycle arrest and apoptosis as well as the impact of resveratrol on NAMPT and SIRT1 protein function and asked whether there are differences in hepatocarcinoma cells (HepG2, Hep3B cells) and non-cancerous primary human hepatocytes. We found a lower basal NAMPT mRNA and protein expression in hepatocarcinoma cells compared to primary hepatocytes. In contrast, SIRT1 was significantly higher expressed in hepatocarcinoma cells than in primary hepatocytes. Resveratrol induced cell cycle arrest in the S- and G2/M- phase and apoptosis was mediated by activation of p53 and caspase-3 in HepG2 cells. In contrast to primary hepatocytes, resveratrol treated HepG2 cells showed a reduction of NAMPT enzymatic activity and increased p53 acetylation (K382). Resveratrol induced NAMPT release from HepG2 cells which was associated with increased NAMPT mRNA expression. This effect was absent in primary hepatocytes where resveratrol was shown to function as NAMPT and SIRT1 activator. SIRT1 inhibition by EX527 resembled resveratrol effects on HepG2 cells. Furthermore, a SIRT1 overexpression significantly decreased both p53 hyperacetylation and resveratrol-induced NAMPT release as well as S-phase arrest in HepG2 cells. We could show that NAMPT and SIRT1 are differentially regulated by resveratrol in hepatocarcinoma cells and primary hepatocytes and that resveratrol did not act as a SIRT1 activator in hepatocarcinoma cells. PMID:24603648

  11. Resveratrol differentially regulates NAMPT and SIRT1 in Hepatocarcinoma cells and primary human hepatocytes.

    Directory of Open Access Journals (Sweden)

    Susanne Schuster

    Full Text Available Resveratrol is reported to possess chemotherapeutic properties in several cancers. In this study, we wanted to investigate the molecular mechanisms of resveratrol-induced cell cycle arrest and apoptosis as well as the impact of resveratrol on NAMPT and SIRT1 protein function and asked whether there are differences in hepatocarcinoma cells (HepG2, Hep3B cells and non-cancerous primary human hepatocytes. We found a lower basal NAMPT mRNA and protein expression in hepatocarcinoma cells compared to primary hepatocytes. In contrast, SIRT1 was significantly higher expressed in hepatocarcinoma cells than in primary hepatocytes. Resveratrol induced cell cycle arrest in the S- and G2/M- phase and apoptosis was mediated by activation of p53 and caspase-3 in HepG2 cells. In contrast to primary hepatocytes, resveratrol treated HepG2 cells showed a reduction of NAMPT enzymatic activity and increased p53 acetylation (K382. Resveratrol induced NAMPT release from HepG2 cells which was associated with increased NAMPT mRNA expression. This effect was absent in primary hepatocytes where resveratrol was shown to function as NAMPT and SIRT1 activator. SIRT1 inhibition by EX527 resembled resveratrol effects on HepG2 cells. Furthermore, a SIRT1 overexpression significantly decreased both p53 hyperacetylation and resveratrol-induced NAMPT release as well as S-phase arrest in HepG2 cells. We could show that NAMPT and SIRT1 are differentially regulated by resveratrol in hepatocarcinoma cells and primary hepatocytes and that resveratrol did not act as a SIRT1 activator in hepatocarcinoma cells.

  12. Nuclear lactate dehydrogenase modulates histone modification in human hepatocytes

    Energy Technology Data Exchange (ETDEWEB)

    Castonguay, Zachary; Auger, Christopher; Thomas, Sean C.; Chahma, M’hamed; Appanna, Vasu D., E-mail: vappanna@laurentian.ca

    2014-11-07

    Highlights: • Nuclear LDH is up-regulated under oxidative stress. • SIRT1 is co-immunoprecipitated bound to nuclear LDH. • Nuclear LDH is involved in histone deacetylation and epigenetics. - Abstract: It is becoming increasingly apparent that the nucleus harbors metabolic enzymes that affect genetic transforming events. Here, we describe a nuclear isoform of lactate dehydrogenase (nLDH) and its ability to orchestrate histone deacetylation by controlling the availability of nicotinamide adenine dinucleotide (NAD{sup +}), a key ingredient of the sirtuin-1 (SIRT1) deacetylase system. There was an increase in the expression of nLDH concomitant with the presence of hydrogen peroxide (H{sub 2}O{sub 2}) in the culture medium. Under oxidative stress, the NAD{sup +} generated by nLDH resulted in the enhanced deacetylation of histones compared to the control hepatocytes despite no discernable change in the levels of SIRT1. There appeared to be an intimate association between nLDH and SIRT1 as these two enzymes co-immunoprecipitated. The ability of nLDH to regulate epigenetic modifications by manipulating NAD{sup +} reveals an intricate link between metabolism and the processing of genetic information.

  13. Chimeric mice transplanted with human hepatocytes as a model for prediction of human drug metabolism and pharmacokinetics.

    Science.gov (United States)

    Sanoh, Seigo; Ohta, Shigeru

    2014-03-01

    Preclinical studies in animal models are used routinely during drug development, but species differences of pharmacokinetics (PK) between animals and humans have to be taken into account in interpreting the results. Human hepatocytes are also widely used to examine metabolic activities mediated by cytochrome P450 (P450) and other enzymes, but such in vitro metabolic studies also have limitations. Recently, chimeric mice with humanized liver (h-chimeric mice), generated by transplantation of human donor hepatocytes, have been developed as a model for the prediction of metabolism and PK in humans, using both in vitro and in vivo approaches. The expression of human-specific metabolic enzymes and metabolic activities was confirmed in humanized liver of h-chimeric mice with high replacement ratios, and several reports indicate that the profiles of P450 and non-P450 metabolism in these mice adequately reflect those in humans. Further, the combined use of h-chimeric mice and r-chimeric mice, in which endogenous hepatocytes are replaced with rat hepatocytes, is a promising approach for evaluation of species differences in drug metabolism. Recent work has shown that data obtained in h-chimeric mice enable the semi-quantitative prediction of not only metabolites, but also PK parameters, such as hepatic clearance, of drug candidates in humans, although some limitations remain because of differences in the metabolic activities, hepatic blood flow and liver structure between humans and mice. In addition, fresh h-hepatocytes can be isolated reproducibly from h-chimeric mice for metabolic studies. Copyright © 2013 John Wiley & Sons, Ltd.

  14. Hepatitis B virus evasion from cGAS sensing in human hepatocytes.

    Science.gov (United States)

    Verrier, Eloi R; Yim, Seung-Ae; Heydmann, Laura; El Saghire, Houssein; Bach, Charlotte; Turon-Lagot, Vincent; Mailly, Laurent; Durand, Sarah C; Lucifora, Julie; Durantel, David; Pessaux, Patrick; Manel, Nicolas; Hirsch, Ivan; Zeisel, Mirjam B; Pochet, Nathalie; Schuster, Catherine; Baumert, Thomas F

    2018-04-20

    Chronic hepatitis B virus (HBV) infection is a major cause of chronic liver disease and cancer worldwide. The mechanisms of viral genome sensing and the evasion of innate immune responses by HBV infection are still poorly understood. Recently, the cyclic GMP-AMP synthase (cGAS) was identified as a DNA sensor. In this study, we aimed to investigate the functional role of cGAS in sensing of HBV infection and elucidate the mechanisms of viral evasion. We performed functional studies including loss- and gain-of-function experiments combined with cGAS effector gene expression profiling in an infectious cell culture model, primary human hepatocytes and HBV-infected human liver chimeric mice. Here we show that cGAS is expressed in the human liver, primary human hepatocytes and human liver chimeric mice. While naked relaxed-circular HBV DNA is sensed in a cGAS-dependent manner in hepatoma cell lines and primary human hepatocytes, host cell recognition of viral nucleic acids is abolished during HBV infection, suggesting escape from sensing, likely during packaging of the genome into the viral capsid. While the hepatocyte cGAS pathway is functionally active, as shown by reduction of viral cccDNA levels in gain-of-function studies, HBV infection suppressed cGAS expression and function in cell culture models and humanized mice. HBV exploits multiple strategies to evade sensing and antiviral activity of cGAS and its effector pathways. This article is protected by copyright. All rights reserved. © 2018 by the American Association for the Study of Liver Diseases.

  15. [Study on the interface of human hepatocyte/micropore polypropylene ultrafiltration membrane].

    Science.gov (United States)

    Peng, Cheng-Hong; Han, Bao-San; Gao, Chang-You; Ma, Zu-Wei; Zhao, Zhi-Ming; Wang, Yong; Liu, Hong; Zhang, Gui-di; Yang, Mei-Juan

    2004-09-02

    To found a new interface of human hepatocyte/micropore polypropylene ultrafiltration membrane (MPP) with good cytocompatibility so as to construct bioartificial bioreactor with polypropylene hollow fibers in future. MPP ultrafiltration membrane underwent chemical grafting modification through ultraviolet irradiation and Fe(2+) reduction. The contact angles of MPP and the modified MPP membranes were measured. Human hepatic cells L-02 were cultured. MPP and modified MPP membranes were spread on the wells of culture plate and human hepatic cells and cytodex 3 were inoculated on them. Different kinds of microscopy were used to observe the morphology of these cells. The water contact angle of MPP and the modified MPP membranes decreased from 78 degrees +/- 5 degrees to 27 degrees +/- 4 degrees (P < 0.05), which indicated that the hydrophilicity of the membrane was improved obviously after the grafting modification. Human hepatocyte L-02 did not adhere to and spread on the modified MPP membrane surface, and only grew on the microcarrier cytodex 3 with higher density and higher proliferation ratio measured by MTT. Grafting modification of acrylamide on MPP membrane is a good method to improve the human hepatocyte cytocompatibility with MPP ultrafiltration membrane.

  16. Efficient Generation of Functional Hepatocytes From Human Embryonic Stem Cells and Induced Pluripotent Stem Cells by HNF4α Transduction

    OpenAIRE

    Takayama, Kazuo; Inamura, Mitsuru; Kawabata, Kenji; Katayama, Kazufumi; Higuchi, Maiko; Tashiro, Katsuhisa; Nonaka, Aki; Sakurai, Fuminori; Hayakawa, Takao; Kusuda Furue, Miho; Mizuguchi, Hiroyuki

    2012-01-01

    Hepatocyte-like cells from human embryonic stem cells (ESCs) and induced pluripotent stem cells (iPSCs) are expected to be a useful source of cells drug discovery. Although we recently reported that hepatic commitment is promoted by transduction of SOX17 and HEX into human ESC- and iPSC-derived cells, these hepatocyte-like cells were not sufficiently mature for drug screening. To promote hepatic maturation, we utilized transduction of the hepatocyte nuclear factor 4α (HNF4α) gene, which is kn...

  17. Modulation of Mitochondrial DNA Copy Number to Induce Hepatocytic Differentiation of Human Amniotic Epithelial Cells.

    Science.gov (United States)

    Vaghjiani, Vijesh; Cain, Jason E; Lee, William; Vaithilingam, Vijayaganapathy; Tuch, Bernard E; St John, Justin C

    2017-10-15

    Mitochondrial deoxyribonucleic acid (mtDNA) copy number is tightly regulated during pluripotency and differentiation. There is increased demand of cellular adenosine triphosphate (ATP) during differentiation for energy-intensive cell types such as hepatocytes and neurons to meet the cell's functional requirements. During hepatocyte differentiation, mtDNA copy number should be synchronously increased to generate sufficient ATP through oxidative phosphorylation. Unlike bone marrow mesenchymal cells, mtDNA copy number failed to increase by 28 days of differentiation of human amniotic epithelial cells (hAEC) into hepatocyte-like cells (HLC) despite their expression of some end-stage hepatic markers. This was due to higher levels of DNA methylation at exon 2 of POLGA, the mtDNA-specific replication factor. Treatment with a DNA demethylation agent, 5-azacytidine, resulted in increased mtDNA copy number, reduced DNA methylation at exon 2 of POLGA, and reduced hepatic gene expression. Depletion of mtDNA followed by subsequent differentiation did not increase mtDNA copy number, but reduced DNA methylation at exon 2 of POLGA and increased expression of hepatic and pluripotency genes. We encapsulated hAEC in barium alginate microcapsules and subsequently differentiated them into HLC. Encapsulation resulted in no net increase of mtDNA copy number but a significant reduction in DNA methylation of POLGA. RNAseq analysis showed that differentiated HLC express hepatocyte-specific genes but also increased expression of inflammatory interferon genes. Differentiation in encapsulated cells showed suppression of inflammatory genes as well as increased expression of genes associated with hepatocyte function pathways and networks. This study demonstrates that an increase in classical hepatic gene expression can be achieved in HLC through encapsulation, although they fail to effectively regulate mtDNA copy number.

  18. Differentiation of human umbilical cord mesenchymal stromal cells into low immunogenic hepatocyte-like cells.

    Science.gov (United States)

    Zhao, Qinjun; Ren, Hongying; Li, Xiyuan; Chen, Zhong; Zhang, Xiangyu; Gong, Wei; Liu, Yongjun; Pang, Tianxiang; Han, Zhong Chao

    2009-01-01

    Mesenchymal stromal cells (MSC) isolated from several human tissues have been known to differentiate into the hepatic lineage in vitro, but the immunogenicity of the differentiated hepatocyte-like cells (DHC) has not been reported. Umbilical cord (UC) MSC are thought to be an attractive cell source for cell therapy because of their young age and low infection rate compared with adult tissue MSC. Hepatic differentiation of UC-MSC was induced with a 2-step protocol. The expressions of hepatic markers were detected by RT-PCR and immunofluorescence staining. Albumin production and urea secretion were measured by ELISA and colorimetric assay respectively. The immunosuppressive properties of DHC was detected by mixed lymphocyte culture. After incubation with specific growth factors, including hepatocyte growth factor (HGF) and basic fibroblast growth factor (bFGF), UC MSC exhibited a high hepatic differentiation ability in an adherent culture condition. The differentiated UC MSC showed hepatocyte-like morphology and expressed several liver-specific markers at gene and protein levels. Furthermore, the DHC exhibited hepatocyte-specific functions, including albumin secretion, low-density lipoprotein uptake and urea production. More importantly, DHC did not express major histocompatibility complex (MHC) II antigen and were not able to induce lymphocyte proliferation in mixed lymphocyte culture, as undifferentiated UC MSC did. Our results indicate that UC MSC are able to differentiate into functional hepatocyte-like cells that still retain their low immunogenicity in vitro. More importantly, DHC incorporated into the parenchyma of liver when transplanted into mice with CCl(4)-induced liver injury. Therefore, DHC may be an ideal source for cell therapy of liver diseases.

  19. Genome-wide binding and transcriptome analysis of human farnesoid X receptor in primary human hepatocytes.

    Directory of Open Access Journals (Sweden)

    Le Zhan

    Full Text Available Farnesoid X receptor (FXR, NR1H4 is a ligand-activated transcription factor, belonging to the nuclear receptor superfamily. FXR is highly expressed in the liver and is essential in regulating bile acid homeostasis. FXR deficiency is implicated in numerous liver diseases and mice with modulation of FXR have been used as animal models to study liver physiology and pathology. We have reported genome-wide binding of FXR in mice by chromatin immunoprecipitation - deep sequencing (ChIP-seq, with results indicating that FXR may be involved in regulating diverse pathways in liver. However, limited information exists for the functions of human FXR and the suitability of using murine models to study human FXR functions.In the current study, we performed ChIP-seq in primary human hepatocytes (PHHs treated with a synthetic FXR agonist, GW4064 or DMSO control. In parallel, RNA deep sequencing (RNA-seq and RNA microarray were performed for GW4064 or control treated PHHs and wild type mouse livers, respectively.ChIP-seq showed similar profiles of genome-wide FXR binding in humans and mice in terms of motif analysis and pathway prediction. However, RNA-seq and microarray showed more different transcriptome profiles between PHHs and mouse livers upon GW4064 treatment.In summary, we have established genome-wide human FXR binding and transcriptome profiles. These results will aid in determining the human FXR functions, as well as judging to what level the mouse models could be used to study human FXR functions.

  20. Cholesterol synthesis by human fetal hepatocytes: effect of lipoproteins

    International Nuclear Information System (INIS)

    Carr, B.R.; Simpson, E.R.

    1984-01-01

    The purpose of the present investigation was to determine the effect of various lipoproteins on the rate of cholesterol synthesis of human fetal liver cells maintained in culture. This was accomplished by measuring the rate of incorporation of tritium from tritiated water or carbon 14-labeled acetate into cholesterol in human fetal liver cells. Optimal conditions for each assay were determined. When human fetal liver cells were maintained in the presence of low-density lipoprotein, cholesterol synthesis was inhibited in a concentration-dependent fashion. Intermediate--density lipoprotein and very-low-density lipoprotein also suppressed cholesterol synthesis in human fetal liver cells. In contrast, high-density lipoprotein stimulated cholesterol synthesis in human fetal liver cells. The results of the present as well as our previous investigations suggest that multiple interrelationships exist between fetal liver cholesterol synthesis and lipoprotein-cholesterol utilization by the human fetal adrenal gland and that these processes serve to regulate the lipoprotein-cholesterol levels in fetal plasma

  1. Effect of honokiol on the induction of drug-metabolizing enzymes in human hepatocytes

    Directory of Open Access Journals (Sweden)

    Cho YY

    2014-11-01

    Full Text Available Yong-Yeon Cho,1 Hyeon-Uk Jeong,1 Jeong-Han Kim,2 Hye Suk Lee1 1College of Pharmacy, The Catholic University of Korea, Bucheon, Korea; 2Department of Agricultural Biotechnology, Seoul National University, Seoul, Korea Abstract: Honokiol, 2-(4-hydroxy-3-prop-2-enyl-phenyl-4-prop-2-enyl-phenol, an active component of Magnolia officinalis and Magnolia grandiflora, exerts various pharmacological activities such as antitumorigenic, antioxidative, anti-inflammatory, neurotrophic, and antithrombotic effects. To investigate whether honokiol acts as a perpetrator in drug interactions, messenger ribonucleic acid (mRNA levels of phase I and II drug-metabolizing enzymes, including cytochrome P450 (CYP, UDP-glucuronosyltransferase (UGT, and sulfotransferase 2A1 (SULT2A1, were analyzed by real-time reverse transcription polymerase chain reaction following 48-hour honokiol exposure in three independent cryopreserved human hepatocyte cultures. Honokiol treatment at the highest concentration tested (50 µM increased the CYP2B6 mRNA level and CYP2B6-catalyzed bupropion hydroxylase activity more than two-fold in three different hepatocyte cultures, indicating that honokiol induces CYP2B6 at higher concentrations. However, honokiol treatment (0.5–50 µM did not significantly alter the mRNA levels of phase I enzymes (CYP1A2, CYP3A4, CYP2C8, CYP2C9, and CYP2C19 or phase II enzymes (UGT1A1, UGT1A4, UGT1A9, UGT2B7, and SULT2A1 in cryopreserved human hepatocyte cultures. CYP1A2-catalyzed phenacetin O-deethylase and CYP3A4-catalyzed midazolam 1'-hydroxylase activities were not affected by 48-hour honokiol treatment in cryopreserved human hepatocytes. These results indicate that honokiol is a weak CYP2B6 inducer and is unlikely to increase the metabolism of concomitant CYP2B6 substrates and cause pharmacokinetic-based drug interactions in humans. Keywords: honokiol, human hepatocytes, drug interactions, cytochrome P450, UDP-glucuronosyltransferases

  2. Effects of human pharmaceuticals on cytotoxicity, EROD activity and ROS production in fish hepatocytes

    International Nuclear Information System (INIS)

    Laville, N.; Aiet-Aiessa, S.; Gomez, E.; Casellas, C.; Porcher, J.M.

    2004-01-01

    Pharmaceuticals are found in the aquatic environment but their potential effects on non-target species like fish remain unknown. This in vitro study is a first approach in the toxicity assessment of human drugs on fish. Nine pharmaceuticals were tested on two fish hepatocyte models: primary cultures of rainbow trout hepatocytes (PRTH) and PLHC-1 fish cell line. Cell viability, interaction with cytochrome P450 1A (CYP1A) enzyme and oxidative stress were assessed by using 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrasodium bromide tetrazolium (MTT), 7-ethoxyresorufin-o-deethylase (EROD) and dichlorofluorescein (DCFH-DA) assays, respectively. The tested drugs were clofibrate (CF), fenofibrate (FF), carbamazepine (CBZ), fluoxetine (FX), diclofenac (DiCF), propranolol (POH), sulfamethoxazole (SFX), amoxicillin (AMX) and gadolinium chloride (GdCl 3 ). All substances were cytotoxic, except AMX at concentration up to 500 μM. The calculated MTT EC 50 values ranged from 2 μM (CF) to 651 μM (CBZ) in PLHC-1, and from 53 μM (FF) to 962 μM (GdCl 3 ) in PRTH. CF, FF, and FX were the most cytotoxic drugs and induced oxidative stress before being cytotoxic. Compared to hepatocytes from human and dog, fish hepatocytes seemed to be more susceptible to the peroxisome proliferators (PPs) CF and FF. In PLHC-1 cells none of the tested drugs induced the EROD activity whereas POH appeared as a weak EROD inducer in PRTH. Moreover, in PRTH, SFX, DiCF, CBZ and to a lesser extend, FF and CF inhibited the basal EROD activity at clearly sublethal concentrations which may be of concern at the biological and chemical levels in a multipollution context

  3. Activation-dependent mitochondrial translocation of Foxp3 in human hepatocytes

    International Nuclear Information System (INIS)

    Rojas, Joselyn; Teran-Angel, Guillermo; Barbosa, Luisa; Peterson, Darrell L.; Berrueta, Lisbeth; Salmen, Siham

    2016-01-01

    Foxp3 is considered to be the master regulator for the development and function of regulatory T cells (Treg). Recently Foxp3, has been detected in extra lymphoid tissue, and in hepatocytes and has been associated with hepatocellular carcinoma (HCC), although its role has not been defined. Since it is expected that there is a relationship between protein localization, activity and cellular function, the aim of this study was to explore the subcellular localization of Foxp3 in resting and stimulated human hepatocytes. Foxp3 expression was measured by flow cytometry, subcellular fractioning, and immunofluorescence, and this data was used to track the shuttling of Foxp3 in different subcellular compartments in hepatocytes (HepG2 cell line), stimulated by using the PKC activators (PMA), core and preS1/2 antigen from hepatitis B virus (HBV). Our data shows that besides the nuclear location, mitochondrial translocation was detected after stimulation with PMA and at to a lesser extent, with preS1/2. In addition, Foxp3 is localizes at outer mitochondrial membrane. These results suggest a non-canonical role of Foxp3 in the mitochondrial compartment in human hepatocytes, and opens a new field about their role in liver damages during HBV infection. - Highlights: • The expression and subcellular distribution of Foxp3, is modulated by PMA and preS1/2. • PMA and preS1/2 increase Foxp3 expression on HepG2. • PMA and preS1/2 induce foxp3 enrichment at mitochondrial, microsomal and nuclear compartments. • Results suggest a non-canonical function of Foxp3 or a mitochondrial transcriptional activity.

  4. Activation-dependent mitochondrial translocation of Foxp3 in human hepatocytes

    Energy Technology Data Exchange (ETDEWEB)

    Rojas, Joselyn; Teran-Angel, Guillermo; Barbosa, Luisa [Instituto de Inmunología Clínica, Facultad de Medicina, Universidad de Los Andes, Merida (Venezuela, Bolivarian Republic of); Peterson, Darrell L. [Department of Biochemistry and Molecular Biology, Virginia Commonwealth University, Richmond, VA (United States); Berrueta, Lisbeth, E-mail: lberruet@ula.ve [Instituto de Inmunología Clínica, Facultad de Medicina, Universidad de Los Andes, Merida (Venezuela, Bolivarian Republic of); Division of Preventive Medicine, Brigham and Women' s Hospital, Harvard Medical School, Boston, MA (United States); Salmen, Siham, E-mail: sihamsa@ula.ve [Instituto de Inmunología Clínica, Facultad de Medicina, Universidad de Los Andes, Merida (Venezuela, Bolivarian Republic of)

    2016-05-01

    Foxp3 is considered to be the master regulator for the development and function of regulatory T cells (Treg). Recently Foxp3, has been detected in extra lymphoid tissue, and in hepatocytes and has been associated with hepatocellular carcinoma (HCC), although its role has not been defined. Since it is expected that there is a relationship between protein localization, activity and cellular function, the aim of this study was to explore the subcellular localization of Foxp3 in resting and stimulated human hepatocytes. Foxp3 expression was measured by flow cytometry, subcellular fractioning, and immunofluorescence, and this data was used to track the shuttling of Foxp3 in different subcellular compartments in hepatocytes (HepG2 cell line), stimulated by using the PKC activators (PMA), core and preS1/2 antigen from hepatitis B virus (HBV). Our data shows that besides the nuclear location, mitochondrial translocation was detected after stimulation with PMA and at to a lesser extent, with preS1/2. In addition, Foxp3 is localizes at outer mitochondrial membrane. These results suggest a non-canonical role of Foxp3 in the mitochondrial compartment in human hepatocytes, and opens a new field about their role in liver damages during HBV infection. - Highlights: • The expression and subcellular distribution of Foxp3, is modulated by PMA and preS1/2. • PMA and preS1/2 increase Foxp3 expression on HepG2. • PMA and preS1/2 induce foxp3 enrichment at mitochondrial, microsomal and nuclear compartments. • Results suggest a non-canonical function of Foxp3 or a mitochondrial transcriptional activity.

  5. A Nonhuman Primate Model of Human Radiation-Induced Venocclusive Liver Disease and Hepatocyte Injury

    Energy Technology Data Exchange (ETDEWEB)

    Yannam, Govardhana Rao [Department of Surgery, University of Nebraska Medical Center, Omaha, Nebraska (United States); Han, Bing [Department of Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania (United States); Department of Hepatobiliary Surgery, First Affiliated Hospital of Xi' an Jiaotong University, Xi' an, Shaanxi (China); Setoyama, Kentaro [Department of Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania (United States); Yamamoto, Toshiyuki [Department of Surgery, University of Nebraska Medical Center, Omaha, Nebraska (United States); Ito, Ryotaro; Brooks, Jenna M. [Department of Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania (United States); Guzman-Lepe, Jorge [Department of Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania (United States); Department of Pathology, Children' s Hospital of Pittsburgh, Pittsburgh, Pennsylvania (United States); Galambos, Csaba [Department of Pathology, Children' s Hospital of Pittsburgh, Pittsburgh, Pennsylvania (United States); Fong, Jason V. [Department of Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania (United States); Deutsch, Melvin; Quader, Mubina A. [Department of Radiation Oncology, Children' s Hospital of Pittsburgh, Pittsburgh, Pennsylvania (United States); Yamanouchi, Kosho [Department of Radiation Oncology, Albert Einstein College of Medicine, Bronx, New York (United States); Marion Bessin Liver Research Center, Albert Einstein College of Medicine, Bronx, New York (United States); Kabarriti, Rafi; Mehta, Keyur [Department of Radiation Oncology, Albert Einstein College of Medicine, Bronx, New York (United States); Soto-Gutierrez, Alejandro [Department of Pathology, Children' s Hospital of Pittsburgh, Pittsburgh, Pennsylvania (United States); McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania (United States); and others

    2014-02-01

    Background: Human liver has an unusual sensitivity to radiation that limits its use in cancer therapy or in preconditioning for hepatocyte transplantation. Because the characteristic veno-occlusive lesions of radiation-induced liver disease do not occur in rodents, there has been no experimental model to investigate the limits of safe radiation therapy or explore the pathogenesis of hepatic veno-occlusive disease. Methods and Materials: We performed a dose-escalation study in a primate, the cynomolgus monkey, using hypofractionated stereotactic body radiotherapy in 13 animals. Results: At doses ≥40 Gy, animals developed a systemic syndrome resembling human radiation-induced liver disease, consisting of decreased albumin, elevated alkaline phosphatase, loss of appetite, ascites, and normal bilirubin. Higher radiation doses were lethal, causing severe disease that required euthanasia approximately 10 weeks after radiation. Even at lower doses in which radiation-induced liver disease was mild or nonexistent, latent and significant injury to hepatocytes was demonstrated by asialoglycoprotein-mediated functional imaging. These monkeys developed hepatic failure with encephalopathy when they received parenteral nutrition containing high concentrations of glucose. Histologically, livers showed central obstruction via an unusual intimal swelling that progressed to central fibrosis. Conclusions: The cynomolgus monkey, as the first animal model of human veno-occlusive radiation-induced liver disease, provides a resource for characterizing the early changes and pathogenesis of venocclusion, for establishing nonlethal therapeutic dosages, and for examining experimental therapies to minimize radiation injury.

  6. A Nonhuman Primate Model of Human Radiation-Induced Venocclusive Liver Disease and Hepatocyte Injury

    International Nuclear Information System (INIS)

    Yannam, Govardhana Rao; Han, Bing; Setoyama, Kentaro; Yamamoto, Toshiyuki; Ito, Ryotaro; Brooks, Jenna M.; Guzman-Lepe, Jorge; Galambos, Csaba; Fong, Jason V.; Deutsch, Melvin; Quader, Mubina A.; Yamanouchi, Kosho; Kabarriti, Rafi; Mehta, Keyur; Soto-Gutierrez, Alejandro

    2014-01-01

    Background: Human liver has an unusual sensitivity to radiation that limits its use in cancer therapy or in preconditioning for hepatocyte transplantation. Because the characteristic veno-occlusive lesions of radiation-induced liver disease do not occur in rodents, there has been no experimental model to investigate the limits of safe radiation therapy or explore the pathogenesis of hepatic veno-occlusive disease. Methods and Materials: We performed a dose-escalation study in a primate, the cynomolgus monkey, using hypofractionated stereotactic body radiotherapy in 13 animals. Results: At doses ≥40 Gy, animals developed a systemic syndrome resembling human radiation-induced liver disease, consisting of decreased albumin, elevated alkaline phosphatase, loss of appetite, ascites, and normal bilirubin. Higher radiation doses were lethal, causing severe disease that required euthanasia approximately 10 weeks after radiation. Even at lower doses in which radiation-induced liver disease was mild or nonexistent, latent and significant injury to hepatocytes was demonstrated by asialoglycoprotein-mediated functional imaging. These monkeys developed hepatic failure with encephalopathy when they received parenteral nutrition containing high concentrations of glucose. Histologically, livers showed central obstruction via an unusual intimal swelling that progressed to central fibrosis. Conclusions: The cynomolgus monkey, as the first animal model of human veno-occlusive radiation-induced liver disease, provides a resource for characterizing the early changes and pathogenesis of venocclusion, for establishing nonlethal therapeutic dosages, and for examining experimental therapies to minimize radiation injury

  7. Metabolism of lysergic acid diethylamide (LSD) to 2-oxo-3-hydroxy LSD (O-H-LSD) in human liver microsomes and cryopreserved human hepatocytes.

    Science.gov (United States)

    Klette, K L; Anderson, C J; Poch, G K; Nimrod, A C; ElSohly, M A

    2000-10-01

    The metabolism of lysergic acid diethylamide (LSD) to 2-oxo-3-hydroxy lysergic acid diethylamide (O-H-LSD) was investigated in liver microsomes and cyropreserved hepatocytes from humans. Previous studies have demonstrated that O-H-LSD is present in human urine at concentrations 16-43 times greater than LSD, the parent compound. Additionally, these studies have determined that O-H-LSD is not generated during the specimen extraction and analytical processes or due to parent compound degradation in aqueous urine samples. However, these studies have not been conclusive in demonstrating that O-H-LSD is uniquely produced during in vivo metabolism. Phase I drug metabolism was investigated by incubating human liver microsomes and cryopreserved human hepatocytes with LSD. The reaction was quenched at various time points, and the aliquots were extracted using liquid partitioning and analyzed by liquid chromatography-mass spectrometry. O-H-LSD was positively identified in all human liver microsomal and human hepatocyte fractions incubated with LSD. In addition, O-H-LSD was not detected in any microsomal or hepatocyte fraction not treated with LSD nor in LSD specimens devoid of microsomes or hepatocytes. This study provides definitive evidence that O-H-LSD is produced as a metabolic product following incubation of human liver microsomes and hepatocytes with LSD.

  8. Expression profiling of interindividual variability following xenobiotic exposures in primary human hepatocyte cultures

    International Nuclear Information System (INIS)

    Goyak, Katy M.O.; Johnson, Mary C.; Strom, Stephen C.; Omiecinski, Curtis J.

    2008-01-01

    To examine the magnitude of human variability across the entire transcriptome after chemical challenge, we profiled gene expression responses to three different prototypic chemical inducers in primary human hepatocyte cultures from ten independent donors. Correlation between basal expression in any two hepatocyte donors ranged from r 2 values of 0.967 to 0.857, and chemical treatment tended to negatively impact correlation between donors. Including anticipated target genes, 10,812, 8373, and 7847 genes were changed in at least one donor by Aroclor 1254 (A1254), di(2-ethylhexyl) phthalate (DEHP), and phenobarbital (PB), respectively. A subset of these gene targets (n = 41) were altered with a high level of reproducibility in at least 9 donors, gene responses that correlated well with literature-reported mechanism of action. Filtering responses to the level of gene subsets clarified the biological impact associated with the respective chemical effectors, in lieu of substantial interindividual variation among donor responses. In these respects, the use of hierarchical clustering methods successfully grouped seven of the ten donors into chemical-specific rather than donor-specific clusters. However, at the whole-genome level, the magnitude of conserved gene expression changes among donors was surprisingly small, with fewer than 50% of the gene responses altered by a single chemical conserved in more than one donor. The use of higher level descriptors, such as those defined by the PANTHER classification system, may enable more consistent categorization of gene expression changes across individuals, as increased reproducibility was identified using this method

  9. Comparative metabolism of honokiol in mouse, rat, dog, monkey, and human hepatocytes.

    Science.gov (United States)

    Jeong, Hyeon-Uk; Kim, Ju-Hyun; Kong, Tae Yeon; Choi, Won Gu; Lee, Hye Suk

    2016-04-01

    Honokiol has antitumor, antioxidative, anti-inflammatory, and antithrombotic effects. Here we aimed to identify the metabolic profile of honokiol in mouse, rat, dog, monkey, and human hepatocytes and to characterize the enzymes responsible for the glucuronidation and sulfation of honokiol. Honokiol had a high hepatic extraction ratio in all five species, indicating that it was extensively metabolized. A total of 32 metabolites, including 17 common and 15 different metabolites, produced via glucuronidation, sulfation, and oxidation of honokiol allyl groups were tentatively identified using liquid chromatography-high resolution quadrupole Orbitrap mass spectrometry. Glucuronidation of honokiol to M8 (honokiol-4-glucuronide) and M9 (honokiol-2'-glucuronide) was the predominant metabolic pathway in hepatocytes of all five species; however, interspecies differences between 4- and 2'-glucuronidation of honokiol were observed. UGT1A1, 1A8, 1A9, 2B15, and 2B17 played major roles in M8 formation, whereas UGT1A7 and 1A9 played major roles in M9 formation. Human cDNA-expressed SULT1C4 played a major role in M10 formation (honokiol-2'-sulfate), whereas SULT1A1*1, 1A1*2, and 1A2 played major roles in M11 formation (honokiol-4-sulfate). In conclusion, honokiol metabolism showed interspecies differences.

  10. Human neutrophil peptide-1 promotes alcohol-induced hepatic fibrosis and hepatocyte apoptosis.

    Directory of Open Access Journals (Sweden)

    Rie Ibusuki

    Full Text Available Neutrophil infiltration of the liver is a typical feature of alcoholic liver injury. Human neutrophil peptide (HNP-1 is an antimicrobial peptide secreted by neutrophils. The aim of this study was to determine if HNP-1 affects ethanol-induced liver injury and to examine the mechanism of liver injury induced by HNP-1.Transgenic (TG mice expressing HNP-1 under the control of a β-actin-based promoter were established. Ethanol was orally administered to HNP-1 TG or wild-type C57BL/6N (WT mice. SK-Hep1 hepatocellular carcinoma cells were used to investigate the effect of HNP-1 on hepatocytes in vitro.After 24 weeks of ethanol intake, hepatic fibrosis and hepatocyte apoptosis were significantly more severe in TG mice than in WT mice. Levels of CD14, TLR4, and IL-6 in liver tissues were higher in TG mice than in WT mice. Apoptosis was accompanied by higher protein levels of caspase-3, caspase-8, and cleaved PARP in liver tissue. In addition, phosphorylated ASK1, ASK1, phosphorylated JNK, JNK1, JNK2, Bax, Bak and Bim were all more abundant in TG mice than in WT mice. In contrast, the level of anti-apoptotic Bcl2 in the liver was significantly lower in TG mice than in WT mice. Analysis of microRNAs in liver tissue showed that miR-34a-5p expression was significantly higher in TG mice than in WT mice. Furthermore, in the presence of ethanol, HNP-1 increased the apoptosis with the decreased level of Bcl2 in a concentration-dependent manner in vitro.HNP-1 secreted by neutrophils may exacerbate alcohol-induced hepatic fibrosis and hepatocyte apoptosis with a decrease in Bcl2 expression and an increase in miR-34a-5p expression.

  11. Mechanisms of acetaminophen-induced cell death in primary human hepatocytes

    Energy Technology Data Exchange (ETDEWEB)

    Xie, Yuchao; McGill, Mitchell R.; Dorko, Kenneth [Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, Kansas City, KS 66160 (United States); Kumer, Sean C.; Schmitt, Timothy M.; Forster, Jameson [Department of Surgery, University of Kansas Medical Center, Kansas City, KS 66160 (United States); Jaeschke, Hartmut, E-mail: hjaeschke@kumc.edu [Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, Kansas City, KS 66160 (United States)

    2014-09-15

    Acetaminophen (APAP) overdose is the most prevalent cause of drug-induced liver injury in western countries. Numerous studies have been conducted to investigate the mechanisms of injury after APAP overdose in various animal models; however, the importance of these mechanisms for humans remains unclear. Here we investigated APAP hepatotoxicity using freshly isolated primary human hepatocytes (PHH) from either donor livers or liver resections. PHH were exposed to 5 mM, 10 mM or 20 mM APAP over a period of 48 h and multiple parameters were assessed. APAP dose-dependently induced significant hepatocyte necrosis starting from 24 h, which correlated with the clinical onset of human liver injury after APAP overdose. Interestingly, cellular glutathione was depleted rapidly during the first 3 h. APAP also resulted in early formation of APAP-protein adducts (measured in whole cell lysate and in mitochondria) and mitochondrial dysfunction, indicated by the loss of mitochondrial membrane potential after 12 h. Furthermore, APAP time-dependently triggered c-Jun N-terminal kinase (JNK) activation in the cytosol and translocation of phospho-JNK to the mitochondria. Both co-treatment and post-treatment (3 h) with the JNK inhibitor SP600125 reduced JNK activation and significantly attenuated cell death at 24 h and 48 h after APAP. The clinical antidote N-acetylcysteine offered almost complete protection even if administered 6 h after APAP and a partial protection when given at 15 h. Conclusion: These data highlight important mechanistic events in APAP toxicity in PHH and indicate a critical role of JNK in the progression of injury after APAP in humans. The JNK pathway may represent a therapeutic target in the clinic. - Highlights: • APAP reproducibly causes cell death in freshly isolated primary human hepatocytes. • APAP induces adduct formation, JNK activation and mitochondrial dysfunction in PHH. • Mitochondrial adducts and JNK translocation are delayed in PHH compared to

  12. Effect of Microenvironment on Differentiation of Human Umbilical Cord Mesenchymal Stem Cells into Hepatocytes In Vitro and In Vivo

    Directory of Open Access Journals (Sweden)

    Gai Xue

    2016-01-01

    Full Text Available Human umbilical cord-derived mesenchymal stem cells (hUCMSCs are considered to be an ideal cell source for cell therapy of many diseases. The aim of this study was to investigate the contribution of the microenvironment to the hepatic differentiation potential of hUCMSCs in vitro and in vivo and to explore their therapeutic use in acute liver injury in rats. We established a new model to simulate the liver tissue microenvironment in vivo using liver homogenate supernatant (LHS in vitro. This induced environment could drive hUCMSCs to differentiate into hepatocyte-like cells within 7 days. The differentiated cells expressed hepatocyte-specific markers and demonstrated hepatocellular functions. We also injected hUCMSCs into rats with CCl4-induced acute hepatic injury. The hUCMSCs were detected in the livers of recipient rats and expressed the human hepatocyte-specific markers, suggesting that hUCMSCs could differentiate into hepatocyte-like cells in vivo in the liver tissue microenvironment. Levels of biochemistry markers improved significantly after transplantation of hUCMSCs compared with the nontransplantation group (P<0.05. In conclusion, this study demonstrated that the liver tissue microenvironment may contribute to the differentiation of hUCMSCs into hepatocytes both in vitro and in vivo.

  13. Effect of Microenvironment on Differentiation of Human Umbilical Cord Mesenchymal Stem Cells into Hepatocytes In Vitro and In Vivo

    Science.gov (United States)

    Xue, Gai; Han, Xiaolei; Ma, Xin; Wu, Honghai; Qin, Yabin; Liu, Jianfang; Hu, Yuqin; Hong, Yang; Hou, Yanning

    2016-01-01

    Human umbilical cord-derived mesenchymal stem cells (hUCMSCs) are considered to be an ideal cell source for cell therapy of many diseases. The aim of this study was to investigate the contribution of the microenvironment to the hepatic differentiation potential of hUCMSCs in vitro and in vivo and to explore their therapeutic use in acute liver injury in rats. We established a new model to simulate the liver tissue microenvironment in vivo using liver homogenate supernatant (LHS) in vitro. This induced environment could drive hUCMSCs to differentiate into hepatocyte-like cells within 7 days. The differentiated cells expressed hepatocyte-specific markers and demonstrated hepatocellular functions. We also injected hUCMSCs into rats with CCl4-induced acute hepatic injury. The hUCMSCs were detected in the livers of recipient rats and expressed the human hepatocyte-specific markers, suggesting that hUCMSCs could differentiate into hepatocyte-like cells in vivo in the liver tissue microenvironment. Levels of biochemistry markers improved significantly after transplantation of hUCMSCs compared with the nontransplantation group (P < 0.05). In conclusion, this study demonstrated that the liver tissue microenvironment may contribute to the differentiation of hUCMSCs into hepatocytes both in vitro and in vivo. PMID:27088093

  14. Small-Molecule-Directed Hepatocyte-Like Cell Differentiation of Human Pluripotent Stem Cells.

    Science.gov (United States)

    Mathapati, Santosh; Siller, Richard; Impellizzeri, Agata A R; Lycke, Max; Vegheim, Karianne; Almaas, Runar; Sullivan, Gareth J

    2016-08-17

    Hepatocyte-like cells (HLCs) generated in vitro from human pluripotent stem cells (hPSCs) provide an invaluable resource for basic research, regenerative medicine, drug screening, toxicology, and modeling of liver disease and development. This unit describes a small-molecule-driven protocol for in vitro differentiation of hPSCs into HLCs without the use of growth factors. hPSCs are coaxed through a developmentally relevant route via the primitive streak to definitive endoderm (DE) using the small molecule CHIR99021 (a Wnt agonist), replacing the conventional growth factors Wnt3A and activin A. The small-molecule-derived DE is then differentiated to hepatoblast-like cells in the presence of dimethyl sulfoxide. The resulting hepatoblasts are then differentiated to HLCs with N-hexanoic-Tyr, Ile-6 aminohexanoic amide (Dihexa, a hepatocyte growth factor agonist) and dexamethasone. The protocol provides an efficient and reproducible procedure for differentiation of hPSCs into HLCs utilizing small molecules. © 2016 by John Wiley & Sons, Inc. Copyright © 2016 John Wiley & Sons, Inc.

  15. Metabolism of oxycodone in human hepatocytes from different age groups and prediction of hepatic plasma clearance

    Directory of Open Access Journals (Sweden)

    Timo eKorjamo

    2012-01-01

    Full Text Available Oxycodone is commonly used to treat severe pain in adults and children. It is extensively metabolized in the liver in adults, but the maturation of metabolism is not well understood. Our aim was to study the metabolism of oxycodone in cryopreserved human hepatocytes from different age groups (3 days, 2 and 5 months, 4 years, adult pool and predict hepatic plasma clearance of oxycodone using these data. Oxycodone (0.1, 1 and 10 µM was incubated with hepatocytes for 4 hours, and 1 µM oxycodone also with CYP3A inhibitor ketoconazole (1 µM. Oxycodone and noroxycodone concentrations were determined at several time points with liquid chromatography-mass spectrometry. In vitro clearance of oxycodone was used to predict hepatic plasma clearance, using the well-stirred model and published physiological parameters. Noroxycodone was the major metabolite in all batches and ketoconazole inhibited the metabolism markedly in most cases. A clear correlation between in vitro oxycodone clearance and CYP3A4 activity was observed. The predicted hepatic plasma clearances were typically much lower than the published median total plasma clearance from pharmacokinetic studies. In general, this in vitro to in vivo extrapolation method provides valuable information on the maturation of oxycodone metabolism that can be utilized in the design of clinical pharmacokinetic studies in infants and young children.

  16. Protective effects of hesperidin against oxidative stress of tert-butyl hydroperoxide in human hepatocytes.

    Science.gov (United States)

    Chen, Mingcang; Gu, Honggang; Ye, Yiyi; Lin, Bing; Sun, Lijuan; Deng, Weiping; Zhang, Jingzhe; Liu, Jianwen

    2010-10-01

    Increasing evidence regarding free radical generating agents and the inflammatory process suggest that accumulation of reactive oxygen species (ROS) could involve hepatotoxicity. Hesperidin, a naturally occurring flavonoid presents in fruits and vegetables, has been reported to exert a wide range of pharmacological effects that include antioxidant, anti-inflammatory, antihypercholesterolemic, and anticarcinogenic actions. However, the cytoprotection and mechanism of hesperidin to neutralize oxidative stress in human hepatic L02 cells remain unclear. In this work, we assessed the capability of hesperidin to prevent tert-butyl hydroperoxide (t-BuOOH)-induced cell damage by augmenting cellular antioxidant defense. Hesperidin significantly protected hepatocytes against t-BuOOH-induced cell cytotoxicity, such as mitochondrial membrane potential (MMP) deplete and lactate dehydrogenase (LDH) release. Hesperidin also remarkably prevented indicators of oxidative stress, such as the ROS and lipid peroxidation level in a dose-dependent manner. Western blot showed that hesperidin facilitated ERK/MAPK phosphorylation which appeared to be responsible for nuclear translocation of Nrf2, thereby inducing cytoprotective heme oxygenase-1 (HO-1) expression. Based on the results described above, it suggested that hesperidin has potential as a therapeutic agent in the treatment of oxidative stress-related hepatocytes injury and liver dysfunctions. Copyright © 2010 Elsevier Ltd. All rights reserved.

  17. PPARα regulates the hepatotoxic biomarker alanine aminotransferase (ALT1) gene expression in human hepatocytes

    International Nuclear Information System (INIS)

    Thulin, Petra; Rafter, Ingalill; Stockling, Kenneth; Tomkiewicz, Celine; Norjavaara, Ensio; Aggerbeck, Martine; Hellmold, Heike; Ehrenborg, Ewa; Andersson, Ulf; Cotgreave, Ian; Glinghammar, Bjoern

    2008-01-01

    In this work, we investigated a potential mechanism behind the observation of increased aminotransferase levels in a phase I clinical trial using a lipid-lowering drug, the peroxisome proliferator-activated receptor (PPAR) α agonist, AZD4619. In healthy volunteers treated with AZD4619, serum alanine aminotransferase (ALT) and aspartate aminotransferase (AST) activities were elevated without an increase in other markers for liver injury. These increases in serum aminotransferases have previously been reported in some patients receiving another PPARα agonist, fenofibrate. In subsequent in vitro studies, we observed increased expression of ALT1 protein and mRNA in human hepatocytes after treatment with fenofibric acid. The PPAR effect on ALT1 expression was shown to act through a direct transcriptional mechanism involving at least one PPAR response element (PPRE) in the proximal ALT1 promoter, while no effect of fenofibrate and AZD4619 was observed on the ALT2 promoter. Binding of PPARs to the PPRE located at - 574 bp from the transcriptional start site was confirmed on both synthetic oligonucleotides and DNA in hepatocytes. These data show that intracellular ALT expression is regulated by PPAR agonists and that this mechanism might contribute to increased ALT activity in serum

  18. The effect of hepatocyte growth factor on secretory functions in human eosinophils.

    Science.gov (United States)

    Yamauchi, Yumiko; Ueki, Shigeharu; Konno, Yasunori; Ito, Wataru; Takeda, Masahide; Nakamura, Yuka; Nishikawa, Junko; Moritoki, Yuki; Omokawa, Ayumi; Saga, Tomoo; Hirokawa, Makoto

    2016-12-01

    Hepatocyte growth factor (HGF), originally identified as a potent mitogen for mature hepatocytes, is now recognized as a humoral mediator in inflammatory and immune responses. Previous studies indicated that HGF negatively regulated allergic airway inflammation. In view of eosinophils playing a role in the pathogenesis of asthma, especially in airway remodeling as a rich source of pro-fibrogenic mediators, the effects of HGF on the different types of eosinophil secretory functions were examined in this study. We found that HGF significantly inhibited IL-5-induced secretion of TGF-β and VEGF from human eosinophils. The inhibitory effect is not associated with TGF-β transcription; rather, it is associated with ultrastructural granule emptying and loss of intracellular TGF-β contents, indicating HGF inhibits the process of piecemeal degranulation. The effect of HGF on extracellular trap cell death (ETosis) that mediates cytolytic degranulation was also investigated; however, immobilized IgG- or phorbol myristate acetate-induced ETosis was only minimally attenuated by HGF. These results reveal the effect of HGF on the distinct pathways of eosinophil secretory functions and also provide novel insights into the role of HGF in the pathogenesis of allergic inflammation. Copyright © 2016 Elsevier Ltd. All rights reserved.

  19. Human hepatocyte growth factor promotes functional recovery in primates after spinal cord injury.

    Science.gov (United States)

    Kitamura, Kazuya; Fujiyoshi, Kanehiro; Yamane, Jun-Ichi; Toyota, Fumika; Hikishima, Keigo; Nomura, Tatsuji; Funakoshi, Hiroshi; Nakamura, Toshikazu; Aoki, Masashi; Toyama, Yoshiaki; Okano, Hideyuki; Nakamura, Masaya

    2011-01-01

    Many therapeutic interventions for spinal cord injury (SCI) using neurotrophic factors have focused on reducing the area damaged by secondary, post-injury degeneration, to promote functional recovery. Hepatocyte growth factor (HGF), which is a potent mitogen for mature hepatocytes and a mediator of the inflammatory responses to tissue injury, was recently highlighted as a potent neurotrophic factor in the central nervous system. We previously reported that introducing exogenous HGF into the injured rodent spinal cord using a herpes simplex virus-1 vector significantly reduces the area of damaged tissue and promotes functional recovery. However, that study did not examine the therapeutic effects of administering HGF after injury, which is the most critical issue for clinical application. To translate this strategy to human treatment, we induced a contusive cervical SCI in the common marmoset, a primate, and then administered recombinant human HGF (rhHGF) intrathecally. Motor function was assessed using an original open field scoring system focusing on manual function, including reach-and-grasp performance and hand placement in walking. The intrathecal rhHGF preserved the corticospinal fibers and myelinated areas, thereby promoting functional recovery. In vivo magnetic resonance imaging showed significant preservation of the intact spinal cord parenchyma. rhHGF-treatment did not give rise to an abnormal outgrowth of calcitonin gene related peptide positive fibers compared to the control group, indicating that this treatment did not induce or exacerbate allodynia. This is the first study to report the efficacy of rhHGF for treating SCI in non-human primates. In addition, this is the first presentation of a novel scale for assessing neurological motor performance in non-human primates after contusive cervical SCI.

  20. Human hepatocyte growth factor promotes functional recovery in primates after spinal cord injury.

    Directory of Open Access Journals (Sweden)

    Kazuya Kitamura

    Full Text Available Many therapeutic interventions for spinal cord injury (SCI using neurotrophic factors have focused on reducing the area damaged by secondary, post-injury degeneration, to promote functional recovery. Hepatocyte growth factor (HGF, which is a potent mitogen for mature hepatocytes and a mediator of the inflammatory responses to tissue injury, was recently highlighted as a potent neurotrophic factor in the central nervous system. We previously reported that introducing exogenous HGF into the injured rodent spinal cord using a herpes simplex virus-1 vector significantly reduces the area of damaged tissue and promotes functional recovery. However, that study did not examine the therapeutic effects of administering HGF after injury, which is the most critical issue for clinical application. To translate this strategy to human treatment, we induced a contusive cervical SCI in the common marmoset, a primate, and then administered recombinant human HGF (rhHGF intrathecally. Motor function was assessed using an original open field scoring system focusing on manual function, including reach-and-grasp performance and hand placement in walking. The intrathecal rhHGF preserved the corticospinal fibers and myelinated areas, thereby promoting functional recovery. In vivo magnetic resonance imaging showed significant preservation of the intact spinal cord parenchyma. rhHGF-treatment did not give rise to an abnormal outgrowth of calcitonin gene related peptide positive fibers compared to the control group, indicating that this treatment did not induce or exacerbate allodynia. This is the first study to report the efficacy of rhHGF for treating SCI in non-human primates. In addition, this is the first presentation of a novel scale for assessing neurological motor performance in non-human primates after contusive cervical SCI.

  1. A serine palmitoyltransferase inhibitor blocks hepatitis C virus replication in human hepatocytes.

    Science.gov (United States)

    Katsume, Asao; Tokunaga, Yuko; Hirata, Yuichi; Munakata, Tsubasa; Saito, Makoto; Hayashi, Hitohisa; Okamoto, Koichi; Ohmori, Yusuke; Kusanagi, Isamu; Fujiwara, Shinya; Tsukuda, Takuo; Aoki, Yuko; Klumpp, Klaus; Tsukiyama-Kohara, Kyoko; El-Gohary, Ahmed; Sudoh, Masayuki; Kohara, Michinori

    2013-10-01

    Host cell lipid rafts form a scaffold required for replication of hepatitis C virus (HCV). Serine palmitoyltransferases (SPTs) produce sphingolipids, which are essential components of the lipid rafts that associate with HCV nonstructural proteins. Prevention of the de novo synthesis of sphingolipids by an SPT inhibitor disrupts the HCV replication complex and thereby inhibits HCV replication. We investigated the ability of the SPT inhibitor NA808 to prevent HCV replication in cells and mice. We tested the ability of NA808 to inhibit SPT's enzymatic activity in FLR3-1 replicon cells. We used a replicon system to select for HCV variants that became resistant to NA808 at concentrations 4- to 6-fold the 50% inhibitory concentration, after 14 rounds of cell passage. We assessed the ability of NA808 or telaprevir to inhibit replication of HCV genotypes 1a, 1b, 2a, 3a, and 4a in mice with humanized livers (transplanted with human hepatocytes). NA808 was injected intravenously, with or without pegylated interferon alfa-2a and HCV polymerase and/or protease inhibitors. NA808 prevented HCV replication via noncompetitive inhibition of SPT; no resistance mutations developed. NA808 prevented replication of all HCV genotypes tested in mice with humanized livers. Intravenous NA808 significantly reduced viral load in the mice and had synergistic effects with pegylated interferon alfa-2a and HCV polymerase and protease inhibitors. The SPT inhibitor NA808 prevents replication of HCV genotypes 1a, 1b, 2a, 3a, and 4a in cultured hepatocytes and in mice with humanized livers. It might be developed for treatment of HCV infection or used in combination with pegylated interferon alfa-2a or HCV polymerase or protease inhibitors. Copyright © 2013 AGA Institute. Published by Elsevier Inc. All rights reserved.

  2. The effects of gender, age, ethnicity, and liver cirrhosis on cytochrome P450 enzyme activity in human liver microsomes and inducibility in cultured human hepatocytes

    International Nuclear Information System (INIS)

    Parkinson, Andrew; Mudra, Daniel R.; Johnson, Cory; Dwyer, Anne; Carroll, Kathleen M.

    2004-01-01

    We have measured cytochrome P450 (CYP) activity in nearly 150 samples of human liver microsomes and 64 samples of cryopreserved human hepatocytes, and we have performed induction studies in over 90 preparations of cultured human hepatocytes. We have analyzed these data to examine whether the expression of CYP enzyme activity in liver microsomes and isolated hepatocytes or the inducibility of CYP enzymes in cultured hepatocytes is influenced by the gender, age, or ethnicity of the donor (the latter being limited to Caucasians, African Americans, and Hispanics due to a paucity of livers from Asian donors). In human liver microsomes, there were no statistically significant differences (P > 0.05) in CYP activity as a function of age, gender, or ethnicity with one exception. 7-Ethoxyresorufin O-dealkylase (CYP1A2) activity was greater in males than females, which is consistent with clinical observation. Liver microsomal testosterone 6β-hydroxylase (CYP3A4) activity was slightly greater in females than males, but the difference was not significant. However, in cryopreserved human hepatocytes, the gender difference in CYP3A4 activity (females = twice males) did reach statistical significance, which supports the clinical observation that females metabolize certain CYP3A4 substrates faster than do males. Compared with those from Caucasians and African Americans, liver microsomes from Hispanics had about twice the average activity of CYP2A6, CYP2B6, and CYP2C8 and half the activity of CYP1A2, although this apparent ethnic difference may be a consequence of the relatively low number of Hispanic donors. Primary cultures of hepatocytes were treated with β-naphthoflavone, an inducer of CYP1A2, phenobarbital or rifampin, both of which induce CYP2B6, CYP2C9, CYP2C19, and CYP3A4, albeit it to different extents. Induction of these CYP enzymes in freshly cultured hepatocytes did not appear to be influenced by the gender or age of the donor. Furthermore, CYP3A4 induction in

  3. A survey of consumer attitudes to the supply and use of human hepatocytes in the United Kingdom.

    Science.gov (United States)

    Lloyd, Tom D R; Orr, Samantha; Dennison, Ashley R

    2003-11-01

    Human hepatocytes are the model of choice for pharmacotoxicological studies, but their acquisition is often problematic due to ethical and logistical difficulties. The UK Human Tissue Bank is a not-for-profit organisation that acquires and processes human tissue, with a specialist interest in the isolation of human hepatocytes. A recent in-house survey of the processing of liver tissue over 1 year revealed that freshly isolated hepatocytes were underutilised due to mismatched consumer demand, despite the published need for them. We present the results of a telephone survey to investigate the reasons behind this paradox. This survey highlighted some problem areas, including "out of hours" availability of cells and personnel difficulties, but overall, demonstrated the value of such a service, with numerous researchers taking advantage of available good quality human hepatocytes. Although further work is required in optimising long-term storage protocols through cryopreservation, we have demonstrated that tissue handling of this type can be successful and beneficial to the pharmaceutical and biotechnology industries.

  4. Adenoviral-mediated correction of methylmalonyl-CoA mutase deficiency in murine fibroblasts and human hepatocytes

    Directory of Open Access Journals (Sweden)

    Korson Mark

    2007-04-01

    Full Text Available Abstract Background Methylmalonic acidemia (MMA, a common organic aciduria, is caused by deficiency of the mitochondrial localized, 5'deoxyadenosylcobalamin dependent enzyme, methylmalonyl-CoA mutase (MUT. Liver transplantation in the absence of gross hepatic dysfunction provides supportive therapy and metabolic stability in severely affected patients, which invites the concept of using cell and gene delivery as future treatments for this condition. Methods To assess the effectiveness of gene delivery to restore the defective metabolism in this disorder, adenoviral correction experiments were performed using murine Mut embryonic fibroblasts and primary human methylmalonyl-CoA mutase deficient hepatocytes derived from a patient who harbored two early truncating mutations, E224X and R228X, in the MUT gene. Enzymatic and expression studies were used to assess the extent of functional correction. Results Primary hepatocytes, isolated from the native liver after removal subsequent to a combined liver-kidney transplantation procedure, or Mut murine fibroblasts were infected with a second generation recombinant adenoviral vector that expressed the murine methylmalonyl-CoA mutase as well as eGFP from distinct promoters. After transduction, [1-14C] propionate macromolecular incorporation studies and Western analysis demonstrated complete correction of the enzymatic defect in both cell types. Viral reconstitution of enzymatic expression in the human methylmalonyl-CoA mutase deficient hepatocytes exceeded that seen in fibroblasts or control hepatocytes. Conclusion These experiments provide proof of principle for viral correction in methylmalonic acidemia and suggest that hepatocyte-directed gene delivery will be an effective therapeutic treatment strategy in both murine models and in human patients. Primary hepatocytes from a liver that was unsuitable for transplantation provided an important resource for these studies.

  5. Two compartment model of diazepam biotransformation in an organotypical culture of primary human hepatocytes

    International Nuclear Information System (INIS)

    Acikgoez, Ali; Karim, Najibulla; Giri, Shibashish; Schmidt-Heck, Wolfgang; Bader, Augustinus

    2009-01-01

    Drug biotransformation is one of the most important parameters of preclinical screening tests for the registration of new drug candidates. Conventional existing tests rely on nonhuman models which deliver an incomplete metabolic profile of drugs due to the lack of proper CYP450 expression as seen in human liver in vivo. In order to overcome this limitation, we used an organotypical model of human primary hepatocytes for the biotransformation of the drug diazepam with special reference to metabolites in both the cell matrix phase and supernatant and its interaction of three inducers (phenobarbital, dexamethasone, aroclor 1254) in different time responses (1, 2, 4, 8, 24 h). Phenobarbital showed the strongest inducing effect in generating desmethyldiazepam and induced up to a 150 fold increase in oxazepam-content which correlates with the increased availability of the precursor metabolites (temazepam and desmethyldiazepam). Aroclor 1254 and dexamethasone had the strongest inducing effect on temazepam and the second strongest on oxazepam. The strong and overlapping inductive role of phenobarbital strengthens the participation of CYP2B6 and CYP3A in diazepam N-demethylation and CYP3A in temazepam formation. Aroclor 1254 preferentially generated temazepam due to the interaction with CYP3A and potentially CYP2C19. In parallel we represented these data in the form of a mathematical model with two compartments explaining the dynamics of diazepam metabolism with the effect of these other inducers in human primary hepatocytes. The model consists of ten differential equations, with one for each concentration c i,j (i = diazepam, temazepam, desmethyldiazepam, oxazepam, other metabolites) and one for each compartment (j = cell matrix phase, supernatant), respectively. The parameters p k (k = 1, 2, 3, 4, 13) are rate constants describing the biotransformation of diazepam and its metabolites and the other parameters (k = 5, 6, 7, 8, 9, 10, 11, 12, 14, 15) explain the

  6. Induction of highly functional hepatocytes from human umbilical cord mesenchymal stem cells by HNF4α transduction.

    Directory of Open Access Journals (Sweden)

    Hualian Hang

    Full Text Available To investigate the differentiation potential of human umbilical mesenchymal stem cells (HuMSCs and the key factors that facilitate hepatic differentiation.HuMSCs were induced to become hepatocyte-like cells according to a previously published protocol. The differentiation status of the hepatocyte-like cells was examined by observing the morphological changes under an inverted microscope and by immunofluorescence analysis. Hepatocyte nuclear factor 4 alpha (HNF4α overexpression was achieved by plasmid transfection of the hepatocyte-like cells. The expression of proteins and genes of interest was then examined by Western blotting and reverse transcription-polymerase chain reaction (RT-PCR or real-time RT-PCR methods.Our results demonstrated that HuMSCs can easily be induced into hepatocyte-like cells using a published differentiation protocol. The overexpression of HNF4α in the induced HuMSCs significantly enhanced the expression levels of hepatic-specific proteins and genes. HNF4α overexpression may be associated with liver-enriched transcription factor networks and the Wnt/β-Catenin pathway.The overexpression of HNF4α improves the hepatic differentiation of HuMSCs and is a simple way to improve cellular sources for clinical applications.

  7. Endogenous bile acid disposition in rat and human sandwich-cultured hepatocytes

    International Nuclear Information System (INIS)

    Marion, Tracy L.; Perry, Cassandra H.; St Claire, Robert L.; Brouwer, Kim L.R.

    2012-01-01

    Sandwich-cultured hepatocytes (SCH) are used commonly to investigate hepatic transport protein-mediated uptake and biliary excretion of substrates. However, little is known about the disposition of endogenous bile acids (BAs) in SCH. In this study, four endogenous conjugated BAs common to rats and humans [taurocholic acid (TCA), glycocholic acid (GCA), taurochenodeoxycholic acid (TCDCA), and glycochenodeoxycholic acid (GCDCA)], as well as two BA species specific to rodents (α- and β-tauromuricholic acid; α/β TMCA), were profiled in primary rat and human SCH. Using B-CLEAR ® technology, BAs were measured in cells + bile canaliculi, cells, and medium of SCH by LC-MS/MS. Results indicated that, just as in vivo, taurine-conjugated BA species were predominant in rat SCH, while glycine-conjugated BAs were predominant in human SCH. Total intracellular BAs remained relatively constant over days in culture in rat SCH. Total BAs in control (CTL) cells + bile, cells, and medium were approximately 3.4, 2.9, and 8.3-fold greater in human than in rat. The estimated intracellular concentrations of the measured total BAs were 64.3 ± 5.9 μM in CTL rat and 183 ± 56 μM in CTL human SCH, while medium concentrations of the total BAs measured were 1.16 ± 0.21 μM in CTL rat SCH and 9.61 ± 6.36 μM in CTL human SCH. Treatment of cells for 24 h with 10 μM troglitazone (TRO), an inhibitor of the bile salt export pump (BSEP) and the Na + -taurocholate cotransporting polypeptide (NTCP), had no significant effect on endogenous BAs measured at the end of the 24-h culture period, potentially due to compensatory mechanisms that maintain BA homeostasis. These data demonstrate that BAs in SCH are similar to in vivo, and that SCH may be a useful in vitro model to study alterations in BA disposition if species differences are taken into account. -- Highlights: ► Bile acids (BAs) were measured in rat and human sandwich-cultured hepatocytes (SCH). ► Cell and medium BA concentrations

  8. Endogenous bile acid disposition in rat and human sandwich-cultured hepatocytes

    Energy Technology Data Exchange (ETDEWEB)

    Marion, Tracy L., E-mail: tracylmarion@qualyst.com [Curriculum in Toxicology, UNC School of Medicine, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599-7270 (United States); Perry, Cassandra H., E-mail: cassandraperry@qualyst.com [Qualyst, Inc., Durham, NC 27713 (United States); St Claire, Robert L., E-mail: bobstclaire@qualyst.com [Qualyst, Inc., Durham, NC 27713 (United States); Brouwer, Kim L.R., E-mail: kbrouwer@unc.edu [Division of Pharmacotherapy and Experimental Therapeutics, UNC Eshelman School of Pharmacy, The University of North Carolina at Chapel Hill, CB 7569 Kerr Hall, Chapel Hill, NC 27599-7569 (United States)

    2012-05-15

    Sandwich-cultured hepatocytes (SCH) are used commonly to investigate hepatic transport protein-mediated uptake and biliary excretion of substrates. However, little is known about the disposition of endogenous bile acids (BAs) in SCH. In this study, four endogenous conjugated BAs common to rats and humans [taurocholic acid (TCA), glycocholic acid (GCA), taurochenodeoxycholic acid (TCDCA), and glycochenodeoxycholic acid (GCDCA)], as well as two BA species specific to rodents (α- and β-tauromuricholic acid; α/β TMCA), were profiled in primary rat and human SCH. Using B-CLEAR{sup ®} technology, BAs were measured in cells + bile canaliculi, cells, and medium of SCH by LC-MS/MS. Results indicated that, just as in vivo, taurine-conjugated BA species were predominant in rat SCH, while glycine-conjugated BAs were predominant in human SCH. Total intracellular BAs remained relatively constant over days in culture in rat SCH. Total BAs in control (CTL) cells + bile, cells, and medium were approximately 3.4, 2.9, and 8.3-fold greater in human than in rat. The estimated intracellular concentrations of the measured total BAs were 64.3 ± 5.9 μM in CTL rat and 183 ± 56 μM in CTL human SCH, while medium concentrations of the total BAs measured were 1.16 ± 0.21 μM in CTL rat SCH and 9.61 ± 6.36 μM in CTL human SCH. Treatment of cells for 24 h with 10 μM troglitazone (TRO), an inhibitor of the bile salt export pump (BSEP) and the Na{sup +}-taurocholate cotransporting polypeptide (NTCP), had no significant effect on endogenous BAs measured at the end of the 24-h culture period, potentially due to compensatory mechanisms that maintain BA homeostasis. These data demonstrate that BAs in SCH are similar to in vivo, and that SCH may be a useful in vitro model to study alterations in BA disposition if species differences are taken into account. -- Highlights: ► Bile acids (BAs) were measured in rat and human sandwich-cultured hepatocytes (SCH). ► Cell and medium BA

  9. Modulation of Xenobiotic Metabolizing Enzyme and Transporter Gene Expression in Primary Cultures of Human Hepatocytes by ToxCast Chemicals

    Science.gov (United States)

    ToxCast chemicals were assessed for induction or suppression of xenobiotic metabolizing enzyme and transporter gene expression using primary human hepatocytes. The mRNA levels of 14 target and 2 control genes were measured: ABCB1, ABCB11, ABCG2, SLCO1B1, CYP1A1, CYP1A2, CYP2B6, C...

  10. DIFFERENCES IN PROPIONATE-INDUCED INHIBITION OF CHOLESTEROL AND TRIACYLGLYCEROL SYNTHESIS BETWEEN HUMAN AND RAT HEPATOCYTES IN PRIMARY CULTURE

    NARCIS (Netherlands)

    LIN, YG; VONK, RJ; SLOOFF, MJH; KUIPERS, F; SMIT, MJ

    Propionate is a short-chain fatty acid formed in the colon and supposedly involved in the cholesterol-lowering effect of soluble fibre. To explore the underlying mechanism(s) of this fibre action, we have used human hepatocytes in primary culture to study the effects of propionate on hepatic lipid

  11. 3D cultured immortalized human hepatocytes useful to develop drugs for blood-borne HCV

    International Nuclear Information System (INIS)

    Aly, Hussein Hassan; Shimotohno, Kunitada; Hijikata, Makoto

    2009-01-01

    Due to the high polymorphism of natural hepatitis C virus (HCV) variants, existing recombinant HCV replication models have failed to be effective in developing effective anti-HCV agents. In the current study, we describe an in vitro system that supports the infection and replication of natural HCV from patient blood using an immortalized primary human hepatocyte cell line cultured in a three-dimensional (3D) culture system. Comparison of the gene expression profile of cells cultured in the 3D system to those cultured in the existing 2D system demonstrated an up-regulation of several genes activated by peroxisome proliferator-activated receptor alpha (PPARα) signaling. Furthermore, using PPARα agonists and antagonists, we also analyzed the effect of PPARα signaling on the modulation of HCV replication using this system. The 3D in vitro system described in this study provides significant insight into the search for novel anti-HCV strategies that are specific to various strains of HCV.

  12. Stiffness of hyaluronic acid gels containing liver extracellular matrix supports human hepatocyte function and alters cell morphology.

    Science.gov (United States)

    Deegan, Daniel B; Zimmerman, Cynthia; Skardal, Aleksander; Atala, Anthony; Shupe, Thomas D

    2015-03-01

    Tissue engineering and cell based liver therapies have utilized primary hepatocytes with limited success due to the failure of hepatocytes to maintain their phenotype in vitro. In order to overcome this challenge, hyaluronic acid (HA) cell culture substrates were formulated to closely mimic the composition and stiffness of the normal liver cellular microenvironment. The stiffness of the substrate was modulated by adjusting HA hydrogel crosslinking. Additionally, the repertoire of bioactive molecules within the HA substrate was bolstered by supplementation with normal liver extracellular matrix (ECM). Primary human hepatocyte viability and phenotype were determined over a narrow physiologically relevant range of substrate stiffnesses from 600 to 4600Pa in both the presence and absence of liver ECM. Cell attachment, viability, and organization of the actin cytoskeleton improved with increased stiffness up to 4600Pa. These differences were not evident in earlier time points or substrates containing only HA. However, gene expression for the hepatocyte markers hepatocyte nuclear factor 4 alpha (HNF4α) and albumin significantly decreased on the 4600Pa stiffness at day 7 indicating that cells may not have maintained their phenotype long-term at this stiffness. Function, as measured by albumin secretion, varied with both stiffness and time in culture and peaked at day 7 at the 1200Pa stiffness, slightly below the stiffness of normal liver ECM at 3000Pa. Overall, gel stiffness affected primary human hepatocyte cell adhesion, functional marker expression, and morphological characteristics dependent on both the presence of liver ECM in gel substrates and time in culture. Copyright © 2015 Elsevier Ltd. All rights reserved.

  13. Hepatocyte and keratinocyte growth factors and their receptors in human lung emphysema

    Directory of Open Access Journals (Sweden)

    Marchal Joëlle

    2005-10-01

    Full Text Available Abstract Background Hepatocyte and keratinocyte growth factors are key growth factors in the process of alveolar repair. We hypothesized that excessive alveolar destruction observed in lung emphysema involves impaired expression of hepatocyte and keratinocyte growth factors or their respective receptors, c-met and keratinocyte growth factor receptor. The aim of our study was to compare the expression of hepatocyte and keratinocyte growth factors and their receptors in lung samples from 3 groups of patients: emphysema; smokers without emphysema and non-smokers without emphysema. Methods Hepatocyte and keratinocyte growth factor proteins were analysed by immunoassay and western blot; mRNA expression was measured by real time quantitative polymerase chain reaction. Results Hepatocyte and keratinocyte growth factors, c-met and keratinocyte growth factor receptor mRNA levels were similar in emphysema and non-emphysema patients. Hepatocyte growth factor mRNA correlated negatively with FEV1 and the FEV1/FVC ratio both in emphysema patients and in smokers with or without emphysema. Hepatocyte and keratinocyte growth factor protein concentrations were similar in all patients' groups. Conclusion The expression of hepatocyte and keratinocyte growth factors and their receptors is preserved in patients with lung emphysema as compared to patients without emphysema. Hepatocyte growth factor mRNA correlates with the severity of airflow obstruction in smokers.

  14. A pump-free microfluidic 3D perfusion platform for the efficient differentiation of human hepatocyte-like cells.

    Science.gov (United States)

    Ong, Louis Jun Ye; Chong, Lor Huai; Jin, Lin; Singh, Pawan Kumar; Lee, Poh Seng; Yu, Hanry; Ananthanarayanan, Abhishek; Leo, Hwa Liang; Toh, Yi-Chin

    2017-10-01

    The practical application of microfluidic liver models for in vitro drug testing is partly hampered by their reliance on human primary hepatocytes, which are limited in number and have batch-to-batch variation. Human stem cell-derived hepatocytes offer an attractive alternative cell source, although their 3D differentiation and maturation in a microfluidic platform have not yet been demonstrated. We develop a pump-free microfluidic 3D perfusion platform to achieve long-term and efficient differentiation of human liver progenitor cells into hepatocyte-like cells (HLCs). The device contains a micropillar array to immobilize cells three-dimensionally in a central cell culture compartment flanked by two side perfusion channels. Constant pump-free medium perfusion is accomplished by controlling the differential heights of horizontally orientated inlet and outlet media reservoirs. Computational fluid dynamic simulation is used to estimate the hydrostatic pressure heads required to achieve different perfusion flow rates, which are experimentally validated by micro-particle image velocimetry, as well as viability and functional assessments in a primary rat hepatocyte model. We perform on-chip differentiation of HepaRG, a human bipotent progenitor cell, and discover that 3D microperfusion greatly enhances the hepatocyte differentiation efficiency over static 2D and 3D cultures. However, HepaRG progenitor cells are highly sensitive to the time-point at which microperfusion is applied. Isolated HepaRG cells that are primed as static 3D spheroids before being subjected to microperfusion yield a significantly higher proportion of HLCs (92%) than direct microperfusion of isolated HepaRG cells (62%). This platform potentially offers a simple and efficient means to develop highly functional microfluidic liver models incorporating human stem cell-derived HLCs. Biotechnol. Bioeng. 2017;114: 2360-2370. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  15. Metabolism of the synthetic cannabinoids AMB-CHMICA and 5C-AKB48 in pooled human hepatocytes and rat hepatocytes analyzed by UHPLC-(IMS)-HR-MSE

    DEFF Research Database (Denmark)

    Mardal, Marie; Dalsgaard, Petur Weihe; Qi, Bing

    2018-01-01

    metabolites of the synthetic cannabinoids, AMB-CHMICA and 5C-AKB48, using an in silico-assisted workflow with analytical data acquired using ultra-high-performance liquid chromatography–(ion mobility spectroscopy)–high resolution–mass spectrometry in data-independent acquisition mode (UHPLC......-(IMS)-HR-MSE). The metabolites were identified after incubation with rat and pooled human hepatocytes using UHPLC-HR-MSE, followed by UHPLC-IMS-HR-MSE. Metabolites of AMB-CHMICA and 5C-AKB48 were predicted with Meteor (Lhasa Ltd) and imported to the UNIFI software (Waters). The predicted metabolites were assigned to analytical...... components supported by the UNIFI in silico fragmentation tool. The main metabolic pathway of AMB-CHMICA was O-demethylation and hydroxylation of the methylhexyl moiety. For 5C-AKB48, the main metabolic pathways were hydroxylation(s) of the adamantyl moiety and oxidative dechlorination with subsequent...

  16. FLIP for FLAG model visualization

    Energy Technology Data Exchange (ETDEWEB)

    Wooten, Hasani Omar [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2017-11-15

    A graphical user interface has been developed for FLAG users. FLIP (FLAG Input deck Parser) provides users with an organized view of FLAG models and a means for efficiently and easily navigating and editing nodes, parameters, and variables.

  17. Electron microscopy and in vitro deneddylation reveal similar architectures and biochemistry of isolated human and Flag-mouse COP9 signalosome complexes

    International Nuclear Information System (INIS)

    Rockel, Beate; Schmaler, Tilo; Huang, Xiaohua; Dubiel, Wolfgang

    2014-01-01

    Highlights: • Deneddylation rates of human erythrocyte and mouse fibroblast CSN are very similar. • 3D models of native human and mouse CSN reveal common architectures. • The cryo-structure of native mammalian CSN shows a horseshoe subunit arrangement. - Abstract: The COP9 signalosome (CSN) is a regulator of the ubiquitin (Ub) proteasome system (UPS). In the UPS, proteins are Ub-labeled for degradation by Ub ligases conferring substrate specificity. The CSN controls a large family of Ub ligases called cullin-RING ligases (CRLs), which ubiquitinate cell cycle regulators, transcription factors and DNA damage response proteins. The CSN possesses structural similarities with the 26S proteasome Lid complex and the translation initiation complex 3 (eIF3) indicating similar ancestry and function. Initial structures were obtained 14 years ago by 2D electron microscopy (EM). Recently, first 3D molecular models of the CSN were created on the basis of negative-stain EM and single-particle analysis, mostly with recombinant complexes. Here, we compare deneddylating activity and structural features of CSN complexes purified in an elaborate procedure from human erythrocytes and efficiently pulled down from mouse Flag-CSN2 B8 fibroblasts. In an in vitro deneddylation assay both the human and the mouse CSN complexes deneddylated Nedd8-Cul1 with comparable rates. 3D structural models of the erythrocyte CSN as well as of the mouse Flag-CSN were generated by negative stain EM and by cryo-EM. Both complexes show a central U-shaped segment from which several arms emanate. This structure, called the horseshoe, is formed by the PCI domain subunits. CSN5 and CSN6 point away from the horseshoe. Compared to 3D models of negatively stained CSN complexes, densities assigned to CSN2 and CSN4 are better defined in the cryo-map. Because biochemical and structural results obtained with CSN complexes isolated from human erythrocytes and purified by Flag-CSN pulldown from mouse B8 fibroblasts

  18. Electron microscopy and in vitro deneddylation reveal similar architectures and biochemistry of isolated human and Flag-mouse COP9 signalosome complexes

    Energy Technology Data Exchange (ETDEWEB)

    Rockel, Beate [Department of Molecular Structural Biology, Max-Planck-Institute of Biochemistry, Am Klopferspitz 18, 82152 Martinsried (Germany); Schmaler, Tilo; Huang, Xiaohua [Division of Molecular Biology, Department of General, Visceral, Vascular and Thoracic Surgery, Charité – Universitätsmedizin Berlin, Charitéplatz 1, 10117 Berlin (Germany); Dubiel, Wolfgang, E-mail: Wolfgang.dubiel@charite.de [Division of Molecular Biology, Department of General, Visceral, Vascular and Thoracic Surgery, Charité – Universitätsmedizin Berlin, Charitéplatz 1, 10117 Berlin (Germany)

    2014-07-25

    Highlights: • Deneddylation rates of human erythrocyte and mouse fibroblast CSN are very similar. • 3D models of native human and mouse CSN reveal common architectures. • The cryo-structure of native mammalian CSN shows a horseshoe subunit arrangement. - Abstract: The COP9 signalosome (CSN) is a regulator of the ubiquitin (Ub) proteasome system (UPS). In the UPS, proteins are Ub-labeled for degradation by Ub ligases conferring substrate specificity. The CSN controls a large family of Ub ligases called cullin-RING ligases (CRLs), which ubiquitinate cell cycle regulators, transcription factors and DNA damage response proteins. The CSN possesses structural similarities with the 26S proteasome Lid complex and the translation initiation complex 3 (eIF3) indicating similar ancestry and function. Initial structures were obtained 14 years ago by 2D electron microscopy (EM). Recently, first 3D molecular models of the CSN were created on the basis of negative-stain EM and single-particle analysis, mostly with recombinant complexes. Here, we compare deneddylating activity and structural features of CSN complexes purified in an elaborate procedure from human erythrocytes and efficiently pulled down from mouse Flag-CSN2 B8 fibroblasts. In an in vitro deneddylation assay both the human and the mouse CSN complexes deneddylated Nedd8-Cul1 with comparable rates. 3D structural models of the erythrocyte CSN as well as of the mouse Flag-CSN were generated by negative stain EM and by cryo-EM. Both complexes show a central U-shaped segment from which several arms emanate. This structure, called the horseshoe, is formed by the PCI domain subunits. CSN5 and CSN6 point away from the horseshoe. Compared to 3D models of negatively stained CSN complexes, densities assigned to CSN2 and CSN4 are better defined in the cryo-map. Because biochemical and structural results obtained with CSN complexes isolated from human erythrocytes and purified by Flag-CSN pulldown from mouse B8 fibroblasts

  19. Marked stimulation of growth and motility of human keratinocytes by hepatocyte growth factor

    International Nuclear Information System (INIS)

    Matsumoto, K.; Hashimoto, K.; Yoshikawa, K.; Nakamura, T.

    1991-01-01

    Effect of hepatocyte growth factor (HGF) on normal human epidermal keratinocytes cultured under conditions of low Ca2+ (0.1 mM, growth-promoting condition) and physiological Ca2+ (1.8 mM, differentiation-promoting condition) was investigated. In low Ca2+, HGF markedly enhanced the migration of keratinocytes while it suppressed cell growth and DNA synthesis in a dose-dependent manner. In contrast, HGF enhanced the migration, cell growth, and DNA synthesis of keratinocytes cultured under conditions of physiological Ca2+. The maximal stimulation of DNA synthesis (2.4-fold stimulation) in physiological Ca2+ was seen at 2.5-5 ng/ml HGF and the stimulatory effect of HGF was suppressed by transforming growth factor-beta 1. Analysis of the HGF receptor using 125I-HGF as a ligand showed that human keratinocytes expressed a single class of specific, saturable receptor for HGF in both low and physiological Ca2+ conditions, exhibiting a Kd = 17.3 pM and approximately 690 binding sites/cell under physiological Ca2+. Thus, HGF is a potent factor which enhances growth and migration of normal human keratinocytes under conditions of physiological Ca2+. HGF may play an important role in epidermal tissue repair as it enhances both the migration and growth of keratinocytes

  20. Formation of human hepatocyte-like cells with different cellular phenotypes by human umbilical cord blood-derived cells in the human-rat chimeras

    International Nuclear Information System (INIS)

    Sun, Yan; Xiao, Dong; Zhang, Ruo-Shuang; Cui, Guang-Hui; Wang, Xin-Hua; Chen, Xi-Gu

    2007-01-01

    We took advantage of the proliferative and permissive environment of the developing pre-immune fetus to develop a noninjury human-rat xenograft small animal model, in which the in utero transplantation of low-density mononuclear cells (MNCs) from human umbilical cord blood (hUCB) into fetal rats at 9-11 days of gestation led to the formation of human hepatocyte-like cells (hHLCs) with different cellular phenotypes, as revealed by positive immunostaining for human-specific alpha-fetoprotein (AFP), cytokeratin 19 (CK19), cytokeratin 8 (CK8), cytokeratin 18 (CK18), and albumin (Alb), and with some animals exhibiting levels as high as 10.7% of donor-derived human cells in the recipient liver. More interestingly, donor-derived human cells stained positively for CD34 and CD45 in the liver of 2-month-old rat. Human hepatic differentiation appeared to partially follow the process of hepatic ontogeny, as evidenced by the expression of AFP gene at an early stage and albumin gene at a later stage. Human hepatocytes generated in this model retained functional properties of normal hepatocytes. In this xenogeneic system, the engrafted donor-derived human cells persisted in the recipient liver for at least 6 months after birth. Taken together, these findings suggest that the donor-derived human cells with different cellular phenotypes are found in the recipient liver and hHLCs hold biological activity. This humanized small animal model, which offers an in vivo environment more closely resembling the situations in human, provides an invaluable approach for in vivo investigating human stem cell behaviors, and further in vivo examining fundamental mechanisms controlling human stem cell fates in the future

  1. Metabolism of the synthetic cannabinoid 5F-PY-PICA by human and rat hepatocytes and identification of biliary analytical targets by directional efflux in sandwich-cultured rat hepatocytes using UHPLC-HR-MS/MS

    DEFF Research Database (Denmark)

    Mardal, Marie; Annaert, Pieter; Noble, Carolina

    2018-01-01

    Analytical strategies for detecting drugs in biological samples rely on information on metabolism and elimination. 5F-PY-PICA belongs to the group of synthetic cannabinoids that are known to undergo excretion into the bile. The aims of this study were the in vitro identification of metabolites of 5......F-PY-PICA and to determine which analytical targets are excreted into the bile and urine. Metabolites identified after incubation of 5F-PY-PICA with pooled human liver microsomes (pHLM), pooled human hepatocytes (pHH), or suspended and sandwich-cultured rat hepatocytes (SCRH). Rat hepatocytes were......-PY-PICA, M4, and M22 are proposed as analytical targets for bile analysis in forensic screening protocols, whereas M6 should be one of the main urinary targets for 5F-PY-PICA analysis....

  2. Stem Cells from Cryopreserved Human Dental Pulp Tissues Sequentially Differentiate into Definitive Endoderm and Hepatocyte-Like Cells in vitro.

    Science.gov (United States)

    Han, Young-Jin; Kang, Young-Hoon; Shivakumar, Sarath Belame; Bharti, Dinesh; Son, Young-Bum; Choi, Yong-Ho; Park, Won-Uk; Byun, June-Ho; Rho, Gyu-Jin; Park, Bong-Wook

    2017-01-01

    We previously described a novel tissue cryopreservation protocol to enable the safe preservation of various autologous stem cell sources. The present study characterized the stem cells derived from long-term cryopreserved dental pulp tissues (hDPSCs-cryo) and analyzed their differentiation into definitive endoderm (DE) and hepatocyte-like cells (HLCs) in vitro . Human dental pulp tissues from extracted wisdom teeth were cryopreserved as per a slow freezing tissue cryopreservation protocol for at least a year. Characteristics of hDPSCs-cryo were compared to those of stem cells from fresh dental pulps (hDPSCs-fresh). hDPSCs-cryo were differentiated into DE cells in vitro with Activin A as per the Wnt3a protocol for 6 days. These cells were further differentiated into HLCs in the presence of growth factors until day 30. hDPSCs-fresh and hDPSCs-cryo displayed similar cell growth morphology, cell proliferation rates, and mesenchymal stem cell character. During differentiation into DE and HLCs in vitro , the cells flattened and became polygonal in shape, and finally adopted a hepatocyte-like shape. The differentiated DE cells at day 6 and HLCs at day 30 displayed significantly increased DE- and hepatocyte-specific markers at the mRNA and protein level, respectively. In addition, the differentiated HLCs showed detoxification and glycogen storage capacities, indicating they could share multiple functions with real hepatocytes. These data conclusively show that hPDSCs-cryo derived from long-term cryopreserved dental pulp tissues can be successfully differentiated into DE and functional hepatocytes in vitro . Thus, preservation of dental tissues could provide a valuable source of autologous stem cells for tissue engineering.

  3. Evidence of a DHA Signature in the Lipidome and Metabolome of Human Hepatocytes

    Directory of Open Access Journals (Sweden)

    Veronica Ghini

    2017-02-01

    Full Text Available Cell supplementation with bioactive molecules often causes a perturbation in the whole intracellular environment. Omics techniques can be applied for the assessment of this perturbation. In this study, the overall effect of docosahexaenoic acid (DHA supplementation on cultured human hepatocyte lipidome and metabolome has been investigated using nuclear magnetic resonance (NMR in combination with traditional techniques. The effect of two additional bioactives sharing with DHA the lipid-lowering effect—propionic acid (PRO and protocatechuic acid (PCA—has also been evaluated in the context of possible synergism. NMR analysis of the cell lipid extracts showed that DHA supplementation, alone or in combination with PCA or PRO, strongly altered the cell lipid profile. The perfect discrimination between cells receiving DHA (alone or in combination and the other cells reinforced the idea of a global rearrangement of the lipid environment induced by DHA. Notably, gas chromatography and fluorimetric analyses confirmed the strong discrimination obtained by NMR. The DHA signature was evidenced not only in the cell lipidome, but also in the metabolome. Results reported herein indicate that NMR, combined with other techniques, represents a fundamental approach to studying the effect of bioactive supplementation, particularly in the case of molecules with a broad spectrum of mechanisms of action.

  4. Hepatocyte growth factor protects human endothelial cells against advanced glycation end products-induced apoposis

    International Nuclear Information System (INIS)

    Zhou Yijun; Wang Jiahe; Zhang Jin

    2006-01-01

    Advanced glycation end products (AGEs) form by a non-enzymatic reaction between reducing sugars and biological proteins, which play an important role in the pathogenesis of atherosclerosis. In this study, we assessed AGEs effects on human umbilical vein endothelial cells (HUVECs) growth, proliferation and apoptosis. Additionally, we investigated whether hepatocyte growth factor (HGF), an anti-apoptotic factor for endothelial cells, prevents AGEs-induced apoptosis of HUVECs. HUVECs were treated with AGEs in the presence or absence of HGF. Treatment of HUVECs with AGEs changed cell morphology, decreased cell viability, and induced DNA fragmentation, leading to apoptosis. Apoptosis was induced by AGEs in a dose- and time-dependent fashion. AGEs markedly elevated Bax and decreased NF-κB, but not Bcl-2 expression. Additionally, AGEs significantly inhibited cell growth through a pro-apoptotic action involving caspase-3 and -9 activations in HUVECs. Most importantly, pretreatment with HGF protected against AGEs-induced cytotoxicity in the endothelial cells. HGF significantly promoted the expression of Bcl-2 and NF-κB, while decreasing the activities of caspase-3 and -9 without affecting Bax level. Our data suggest that AGEs induce apoptosis in endothelial cells. HGF effectively attenuate AGEs-induced endothelial cell apoptosis. These findings provide new perspectives in the role of HGF in cardiovascular disease

  5. Total hepatocellular disposition profiling of rosuvastatin and pitavastatin in sandwich-cultured human hepatocytes.

    Science.gov (United States)

    Kanda, Katsuhiro; Takahashi, Ryosuke; Yoshikado, Takashi; Sugiyama, Yuichi

    2018-04-09

    This study describes the total disposition profiling of rosuvastatin (RSV) and pitavastatin (PTV) using a single systematic procedure called D-PREX (Disposition Profile Exploration) in sandwich-cultured human hepatocytes (SCHH). The biliary excretion fractions of both statins were clearly observed, which were significantly decreased dependent on the concentration of Ko143, an inhibitor for breast cancer resistance protein (BCRP). Ko143 also decreased the basolateral efflux fraction of RSV, whereas that of PTV was not significantly affected. To understand these phenomena, effects of Ko143 on biliary excretion (BCRP and multidrug resistance-associated protein (MRP) 2) and basolateral efflux (MRP3 and MRP4) transporters were examined using transporter-expressing membrane vesicles. BCRP, MRP3 and MRP4-mediated transport of RSV was observed, and Ko143 inhibited these transporters except MRP3. BCRP and MRP4 also mediated the transport of PTV, but the Ko143-mediated inhibition was only clear for BCRP. These results might explain the Ko143-mediated complete and partial inhibition of the biliary excretion and the basolateral efflux of RSV, respectively, in SCHH. In conclusion, D-PREX with sequential sampling of supernatants prior to cell lysis enables the evaluation of total drug disposition profiles resulting from complex interplays of intracellular pathways, which would provide high-throughput evaluation of drug disposition during drug discovery. Copyright © 2018 The Japanese Society for the Study of Xenobiotics. Published by Elsevier Ltd. All rights reserved.

  6. Similarities in the immunoglobulin response and VH gene usage in rhesus monkeys and humans exposed to porcine hepatocytes

    Directory of Open Access Journals (Sweden)

    Borie Dominic C

    2006-03-01

    Full Text Available Abstract Background The use of porcine cells and organs as a source of xenografts for human patients would vastly increase the donor pool; however, both humans and Old World primates vigorously reject pig tissues due to xenoantibodies that react with the polysaccharide galactose α (1,3 galactose (αGal present on the surface of many porcine cells. We previously examined the xenoantibody response in patients exposed to porcine hepatocytes via treatment(s with bioartficial liver devices (BALs, composed of porcine cells in a support matrix. We determined that xenoantibodies in BAL-treated patients are predominantly directed at porcine αGal carbohydrate epitopes, and are encoded by a small number of germline heavy chain variable region (VH immunoglobulin genes. The studies described in this manuscript were designed to identify whether the xenoantibody responses and the IgVH genes encoding antibodies to porcine hepatocytes in non-human primates used as preclinical models are similar to those in humans. Adult non-immunosuppressed rhesus monkeys (Macaca mulatta were injected intra-portally with porcine hepatocytes or heterotopically transplanted with a porcine liver lobe. Peripheral blood leukocytes and serum were obtained prior to and at multiple time points after exposure, and the immune response was characterized, using ELISA to evaluate the levels and specificities of circulating xenoantibodies, and the production of cDNA libraries to determine the genes used by B cells to encode those antibodies. Results Xenoantibodies produced following exposure to isolated hepatocytes and solid organ liver grafts were predominantly encoded by genes in the VH3 family, with a minor contribution from the VH4 family. Immunoglobulin heavy-chain gene (VH cDNA library screening and gene sequencing of IgM libraries identified the genes as most closely-related to the IGHV3-11 and IGHV4-59 germline progenitors. One of the genes most similar to IGHV3-11, VH3-11cyno, has

  7. Featured Article: Isolation, characterization, and cultivation of human hepatocytes and non-parenchymal liver cells

    Science.gov (United States)

    Pfeiffer, Elisa; Kegel, Victoria; Zeilinger, Katrin; Hengstler, Jan G; Nüssler, Andreas K; Seehofer, Daniel

    2015-01-01

    Primary human hepatocytes (PHH) are considered to be the gold standard for in vitro testing of xenobiotic metabolism and hepatotoxicity. However, PHH cultivation in 2D mono-cultures leads to dedifferentiation and a loss of function. It is well known that hepatic non-parenchymal cells (NPC), such as Kupffer cells (KC), liver endothelial cells (LEC), and hepatic stellate cells (HSC), play a central role in the maintenance of PHH functions. The aims of the present study were to establish a protocol for the simultaneous isolation of human PHH and NPC from the same tissue specimen and to test their suitability for in vitro co-culture. Human PHH and NPC were isolated from tissue obtained by partial liver resection by a two-step EDTA/collagenase perfusion technique. The obtained cell fractions were purified by Percoll density gradient centrifugation. KC, LEC, and HSC contained in the NPC fraction were separated using specific adherence properties and magnetic activated cell sorting (MACS®). Identified NPC revealed a yield of 1.9 × 106 KC, 2.7 × 105 LEC and 4.7 × 105 HSC per gram liver tissue, showing viabilities >90%. Characterization of these NPC showed that all populations went through an activation process, which influenced the cell fate. The activation of KC strongly depended on the tissue quality and donor anamnesis. KC became activated in culture in association with a loss of viability within 4–5 days. LEC lost specific features during culture, while HSC went through a transformation process into myofibroblasts. The testing of different culture conditions for HSC demonstrated that they can attenuate, but not prevent dedifferentiation in vitro. In conclusion, the method described allows the isolation and separation of PHH and NPC in high quality and quantity from the same donor. PMID:25394621

  8. Training warning flags

    International Nuclear Information System (INIS)

    Miller, Richard C.

    2003-01-01

    Problems in accredited training programmes at US nuclear stations have resulted in several programmes having their accreditation status designated as probationary. A limited probationary period allows time for problem resolution before the programmes are again reviewed by the National Nuclear Accrediting Board. A careful study of these problems has resulted in the identification of several 'Training Warning Flags' that singularly, or in concert, may indicate or predict degraded training programme effectiveness. These training warning flags have been used by several US nuclear stations as a framework for self-assessments, as a reference in making changes to training programmes, and as a tool in considering student and management feedback on training activities. Further analysis and consideration of the training warning flags has developed precursors for each of the training warning flags. Although more subjective than the training warning flags, the precursors may represent early indicators of factors that may lead to or contribute to degraded training programme effectiveness. Used as evaluative tools, the training warning flags and the precursors may help identify areas for improvements in training programmes and help prioritize training programme improvement efforts. (author)

  9. Immortalization of Human Fetal Hepatocyte by Ectopic Expression of Human Telomerase Reverse Transcriptase, Human Papilloma Virus (E7) and Simian Virus 40 Large T (SV40 T) Antigen Towards Bioartificial Liver Support.

    Science.gov (United States)

    Giri, Shibashish; Bader, Augustinus

    2014-09-01

    Generation of genetically stable and non-tumoric immortalization cell line from primary cells would be enormously useful for research and therapeutic purposes, but progress towards this goal has so far been limited. It is now universal acceptance that immortalization of human fetal hepatocytes based on recent advances of telomerase biology and oncogene, lead to unlimited population doubling could be the possible source for bioartificial liver device. Immortalization of human fetal hepatocytes cell line by ectopic expression of human telomerase reverse transcriptase (hTERT), human papilloma virus gene (E7) and simian virus 40 large T (SV40 T) antigens is main goal of present study. We used an inducible system containing human telomerase and E7, both of which are cloned into responder constructs controlled by doxycycline transactivator. We characterized the immortalized human fetal hepatocyte cells by analysis of green fluorescent cells (GFP) positive cells using flow cytometry (FACs) cell sorting and morphology, proliferative rate and antigen expression by immunohistochemical analysis. In addition to we analysized lactate formation, glucose consumption, albumin secretion and urea production of immortalized human fetal hepatocyte cells. After 25 attempts for transfection of adult primary hepatocytes by human telomerase and E7 to immortalize them, none of the transfection systems resulted in the production of a stable, proliferating cell line. Although the transfection efficiency was more than 70% on the first day, the vast majority of the transfected hepatocytes lost their signal within the first 5-7 days. The remaining transfected hepatocytes persisted for 2-4 weeks and divided one or two times without forming a clone. After 10 attempts of transfection human fetal hepatocytes using the same transfection system, we obtained one stable human fetal hepatocytes cell line which was able albumin secretion urea production and glucose consumption. We established a

  10. [Differentiation of human umbilical cord derived mesenchymal stem cells into low immunogenic and functional hepatocyte-like cells in vitro].

    Science.gov (United States)

    Ren, Hong-ying; Zhao, Qin-jun; Xing, Wen; Yang, Shao-guang; Lu, Shi-hong; Ren, Qian; Zhang, Lei; Han, Zhong-chao

    2010-04-01

    To investigate the biological function of hepatocyte-like cells derived from mesenchymal stem cells that isolated from human umbilical cord UC-MSCs in vitro, and to detect the changes in the immunogenicity of the differentiated hepatocyte-like cells (DHC). Transdifferentiation of UC-MSCs into hepatic lineage in vitro was induced in modified two-step induction medium. The expressions of hepatic specific markers were detected by RT-PCR analysis and immunofluorescence staining at different time points after induction. The levels of albumin and urea in the supernatants of cultures were measured by enzyme-linked immunosorbent assay. Furthermore, the immunosuppressive property of DHC was detected by one-way mixed lymphocyte culture. The mRNA and proteins of alpha fetoprotein (AFP), albumin (ALB),and cytokeratin-19 (CK-19) were expressed in naive UC-MSCs at low levels. DHC highly expressed hepatic markers AFP, ALB, CK-19, and tryptophan 2, 3-dioxygenase 14 and 28 days after hepatic differentiation and were accompanied by an increased production of ALB and urea in supernatant in a time-dependent manner. DHC did not express human leukocyte antigen DR antigen and significantly decreased the lymphocyte proliferation. UC-MSCs are able to differentiate into functional hepatocyte-like cells in vitro, while the immunogenicity of DHC remains low.

  11. Effect of remifentanil on mitochondrial oxygen consumption of cultured human hepatocytes.

    Directory of Open Access Journals (Sweden)

    Siamak Djafarzadeh

    remifentanil increases cellular respiration of human hepatocytes and prevents TNF-α-induced mitochondrial dysfunction. The results were not explained by uncoupling of mitochondrial respiration.

  12. Differential Expression Profile of lncRNAs from Primary Human Hepatocytes Following DEET and Fipronil Exposure

    Science.gov (United States)

    Wallace, Andrew D.; Hodgson, Ernest; Roe, R. Michael

    2017-01-01

    While the synthesis and use of new chemical compounds is at an all-time high, the study of their potential impact on human health is quickly falling behind, and new methods are needed to assess their impact. We chose to examine the effects of two common environmental chemicals, the insect repellent N,N-diethyl-m-toluamide (DEET) and the insecticide fluocyanobenpyrazole (fipronil), on transcript levels of long non-protein coding RNAs (lncRNAs) in primary human hepatocytes using a global RNA-Seq approach. While lncRNAs are believed to play a critical role in numerous important biological processes, many still remain uncharacterized, and their functions and modes of action remain largely unclear, especially in relation to environmental chemicals. RNA-Seq showed that 100 µM DEET significantly increased transcript levels for 2 lncRNAs and lowered transcript levels for 18 lncRNAs, while fipronil at 10 µM increased transcript levels for 76 lncRNAs and decreased levels for 193 lncRNAs. A mixture of 100 µM DEET and 10 µM fipronil increased transcript levels for 75 lncRNAs and lowered transcript levels for 258 lncRNAs. This indicates a more-than-additive effect on lncRNA transcript expression when the two chemicals were presented in combination versus each chemical alone. Differentially expressed lncRNA genes were mapped to chromosomes, analyzed by proximity to neighboring protein-coding genes, and functionally characterized via gene ontology and molecular mapping algorithms. While further testing is required to assess the organismal impact of changes in transcript levels, this initial analysis links several of the dysregulated lncRNAs to processes and pathways critical to proper cellular function, such as the innate and adaptive immune response and the p53 signaling pathway. PMID:28991164

  13. Pharmacokinetics and effects on serum cholinesterase activities of organophosphorus pesticides acephate and chlorpyrifos in chimeric mice transplanted with human hepatocytes.

    Science.gov (United States)

    Suemizu, Hiroshi; Sota, Shigeto; Kuronuma, Miyuki; Shimizu, Makiko; Yamazaki, Hiroshi

    2014-11-01

    Organophosphorus pesticides acephate and chlorpyrifos in foods have potential to impact human health. The aim of the current study was to investigate the pharmacokinetics of acephate and chlorpyrifos orally administered at lowest-observed-adverse-effect-level doses in chimeric mice transplanted with human hepatocytes. Absorbed acephate and its metabolite methamidophos were detected in serum from wild type mice and chimeric mice orally administered 150mg/kg. Approximately 70% inhibition of cholinesterase was evident in plasma of chimeric mice with humanized liver (which have higher serum cholinesterase activities than wild type mice) 1day after oral administrations of acephate. Adjusted animal biomonitoring equivalents from chimeric mice studies were scaled to human biomonitoring equivalents using known species allometric scaling factors and in vitro metabolic clearance data with a simple physiologically based pharmacokinetic (PBPK) model. Estimated plasma concentrations of acephate and chlorpyrifos in humans were consistent with reported concentrations. Acephate cleared similarly in humans and chimeric mice but accidental/incidental overdose levels of chlorpyrifos cleared (dependent on liver metabolism) more slowly from plasma in humans than it did in mice. The data presented here illustrate how chimeric mice transplanted with human hepatocytes in combination with a simple PBPK model can assist evaluations of toxicological potential of organophosphorus pesticides. Copyright © 2014 Elsevier Inc. All rights reserved.

  14. Transcriptional regulation of the human Liver X Receptor α gene by Hepatocyte Nuclear Factor 4α

    Energy Technology Data Exchange (ETDEWEB)

    Theofilatos, Dimitris; Anestis, Aristomenis [University of Crete Medical School and Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology of Hellas, Heraklion, 71003, Crete (Greece); Hashimoto, Koshi [Department of Preemptive Medicine and Metabolism, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-city, Tokyo, 113-8510 (Japan); Kardassis, Dimitris, E-mail: kardasis@imbb.forth.gr [University of Crete Medical School and Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology of Hellas, Heraklion, 71003, Crete (Greece)

    2016-01-15

    Liver X Receptors (LXRs) are sterol-activated transcription factors that play major roles in cellular cholesterol homeostasis, HDL biogenesis and reverse cholesterol transport. The aim of the present study was to investigate the mechanisms that control the expression of the human LXRα gene in hepatic cells. A series of reporter plasmids containing consecutive 5′ deletions of the hLXRα promoter upstream of the luciferase gene were constructed and the activity of each construct was measured in HepG2 cells. This analysis showed that the activity of the human LXRα promoter was significantly reduced by deleting the −111 to −42 region suggesting the presence of positive regulatory elements in this short proximal fragment. Bioinformatics data including motif search and ChIP-Seq revealed the presence of a potential binding motif for Hepatocyte Nuclear Factor 4 α (HNF-4α) in this area. Overexpression of HNF-4α in HEK 293T cells increased the expression of all LXRα promoter constructs except −42/+384. In line, silencing the expression of endogenous HNF-4α in HepG2 cells was associated with reduced LXRα protein levels and reduced activity of the −111/+384 LXRα promoter but not of the −42/+384 promoter. Using ChiP assays in HepG2 cells combined with DNAP assays we mapped the novel HNF-4α specific binding motif (H4-SBM) in the −50 to −40 region of the human LXRα promoter. A triple mutation in this H4-SBM abolished HNF-4α binding and reduced the activity of the promoter to 65% relative to the wild type. Furthermore, the mutant promoter could not be transactivated by HNF-4α. In conclusion, our data indicate that HNF-4α may have a wider role in cell and plasma cholesterol homeostasis by controlling the expression of LXRα in hepatic cells. - Highlights: • The human LXRα promoter contains a HNF-4α specific binding motif in the proximal −50/−40 region. • Mutations in this motif abolished HNF4α binding and transactivation of the h

  15. Transcriptional regulation of the human Liver X Receptor α gene by Hepatocyte Nuclear Factor 4α

    International Nuclear Information System (INIS)

    Theofilatos, Dimitris; Anestis, Aristomenis; Hashimoto, Koshi; Kardassis, Dimitris

    2016-01-01

    Liver X Receptors (LXRs) are sterol-activated transcription factors that play major roles in cellular cholesterol homeostasis, HDL biogenesis and reverse cholesterol transport. The aim of the present study was to investigate the mechanisms that control the expression of the human LXRα gene in hepatic cells. A series of reporter plasmids containing consecutive 5′ deletions of the hLXRα promoter upstream of the luciferase gene were constructed and the activity of each construct was measured in HepG2 cells. This analysis showed that the activity of the human LXRα promoter was significantly reduced by deleting the −111 to −42 region suggesting the presence of positive regulatory elements in this short proximal fragment. Bioinformatics data including motif search and ChIP-Seq revealed the presence of a potential binding motif for Hepatocyte Nuclear Factor 4 α (HNF-4α) in this area. Overexpression of HNF-4α in HEK 293T cells increased the expression of all LXRα promoter constructs except −42/+384. In line, silencing the expression of endogenous HNF-4α in HepG2 cells was associated with reduced LXRα protein levels and reduced activity of the −111/+384 LXRα promoter but not of the −42/+384 promoter. Using ChiP assays in HepG2 cells combined with DNAP assays we mapped the novel HNF-4α specific binding motif (H4-SBM) in the −50 to −40 region of the human LXRα promoter. A triple mutation in this H4-SBM abolished HNF-4α binding and reduced the activity of the promoter to 65% relative to the wild type. Furthermore, the mutant promoter could not be transactivated by HNF-4α. In conclusion, our data indicate that HNF-4α may have a wider role in cell and plasma cholesterol homeostasis by controlling the expression of LXRα in hepatic cells. - Highlights: • The human LXRα promoter contains a HNF-4α specific binding motif in the proximal −50/−40 region. • Mutations in this motif abolished HNF4α binding and transactivation of the h

  16. Metabolism of the synthetic cannabinoids AMB-CHMICA and 5C-AKB48 in pooled human hepatocytes and rat hepatocytes analyzed by UHPLC-(IMS)-HR-MSE.

    Science.gov (United States)

    Mardal, Marie; Dalsgaard, Petur Weihe; Qi, Bing; Mollerup, Christian Brinch; Annaert, Pieter; Linnet, Kristian

    2018-04-15

    The main analytical targets of synthetic cannabinoids are often metabolites. With the high number of new psychoactive substances entering the market, suitable workflows are needed for analytical target identification in biological samples. The aims of this study were to identify the main metabolites of the synthetic cannabinoids, AMB-CHMICA and 5C-AKB48, using an in silico-assisted workflow with analytical data acquired using ultra-high-performance liquid chromatography-(ion mobility spectroscopy)-high resolution-mass spectrometry in data-independent acquisition mode (UHPLC-(IMS)-HR-MS E ). The metabolites were identified after incubation with rat and pooled human hepatocytes using UHPLC-HR-MS E , followed by UHPLC-IMS-HR-MS E . Metabolites of AMB-CHMICA and 5C-AKB48 were predicted with Meteor (Lhasa Ltd) and imported to the UNIFI software (Waters). The predicted metabolites were assigned to analytical components supported by the UNIFI in silico fragmentation tool. The main metabolic pathway of AMB-CHMICA was O-demethylation and hydroxylation of the methylhexyl moiety. For 5C-AKB48, the main metabolic pathways were hydroxylation(s) of the adamantyl moiety and oxidative dechlorination with subsequent oxidation to the ω-COOH. The matrix components in the metabolite spectra were reduced with IMS, which improved the accuracy of the spectral interpretation; however, this left fewer fragment ions for assigning sites of metabolism. Meteor was able to predict the majority of the metabolites, with the most notable exception being the oxidative dechlorination and, consequently, all metabolites that underwent that transformation pathway. Oxidative dechlorination of ω-chloroalkanes in humans has not been previously reported in the literature. The postulated metabolites can be used for screening of biological samples, with four-dimensional identification based on retention time, collision cross section, precursor ion, and fragment ions. Copyright © 2018 Elsevier B.V. All

  17. Enzyme induction and cytotoxicity in human hepatocytes by chlorpyrifos and N,N-diethyl-m-toluamide (DEET).

    Science.gov (United States)

    Das, Parikshit C; Cao, Yan; Rose, Randy L; Cherrington, Nathan; Hodgson, Ernest

    2008-01-01

    Xenobiotics, including drugs and environmental chemicals, can influence cytochrome P450 (CYP) levels by altering the transcription of CYP genes. To minimize potential drug-pesticide and pesticide-pesticide interactions it is important to evaluate the potential of pesticides to induce CYP isoforms and to cause cytotoxicity in humans. The present study was designed to examine chlorpyrifos and DEET mediated induction of CYP isoforms and also to characterize their potential cytotoxic effects on primary human hepatocytes. DEET significantly induced CYP3A4, CYP2B6, CYP2A6 and CYP1A2 mRNA expression while chlorpyrifos induced CYP1A1, CYP1A2 and CYP3A4 mRNA, and to a lesser extent, CYP1B1 and CYP2B6 mRNA in primary human hepatocytes. Chlorpyrifos and DEET also mediated the expression of CYP isoforms, particularly CYP3A4, CYP2B6 and CYP1A1, as shown by CYP3A4-specific protein expression, testosterone metabolism and CYP1Al-specific activity assays. DEET is a mild, while chlorpyrifos is a relatively potent, inducer of adenylate kinase and caspase-3/7, an indicator of apoptosis, while inducing 15-20% and 25-30% cell death, respectively. Therefore, DEET and chlorpyrifos mediated induction of CYP mRNA and functional CYP isoforms together with their cytotoxic potential in human hepatocytes suggests that exposure to chlorpyrifos and/or DEET should be considered in human health impact analysis.

  18. Clearance Prediction Methodology Needs Fundamental Improvement: Trends Common to Rat and Human Hepatocytes/Microsomes and Implications for Experimental Methodology.

    Science.gov (United States)

    Wood, F L; Houston, J B; Hallifax, D

    2017-11-01

    Although prediction of clearance using hepatocytes and liver microsomes has long played a decisive role in drug discovery, it is widely acknowledged that reliably accurate prediction is not yet achievable despite the predominance of hepatically cleared drugs. Physiologically mechanistic methodology tends to underpredict clearance by several fold, and empirical correction of this bias is confounded by imprecision across drugs. Understanding the causes of prediction uncertainty has been slow, possibly reflecting poor resolution of variables associated with donor source and experimental methods, particularly for the human situation. It has been reported that among published human hepatocyte predictions there was a tendency for underprediction to increase with increasing in vivo intrinsic clearance, suggesting an inherent limitation using this particular system. This implied an artifactual rate limitation in vitro, although preparative effects on cell stability and performance were not yet resolved from assay design limitations. Here, to resolve these issues further, we present an up-to-date and comprehensive examination of predictions from published rat as well as human studies (where n = 128 and 101 hepatocytes and n = 71 and 83 microsomes, respectively) to assess system performance more independently. We report a clear trend of increasing underprediction with increasing in vivo intrinsic clearance, which is similar both between species and between in vitro systems. Hence, prior concerns arising specifically from human in vitro systems may be unfounded and the focus of investigation in the future should be to minimize the potential in vitro assay limitations common to whole cells and subcellular fractions. Copyright © 2017 by The American Society for Pharmacology and Experimental Therapeutics.

  19. Gene disruption of Plasmodium falciparum p52 results in attenuation of malaria liver stage development in cultured primary human hepatocytes.

    Directory of Open Access Journals (Sweden)

    Ben C L van Schaijk

    Full Text Available Difficulties with inducing sterile and long lasting protective immunity against malaria with subunit vaccines has renewed interest in vaccinations with attenuated Plasmodium parasites. Immunizations with sporozoites that are attenuated by radiation (RAS can induce strong protective immunity both in humans and rodent models of malaria. Recently, in rodent parasites it has been shown that through the deletion of a single gene, sporozoites can also become attenuated in liver stage development and, importantly, immunization with these sporozoites results in immune responses identical to RAS. The promise of vaccination using these genetically attenuated sporozoites (GAS depends on translating the results in rodent malaria models to human malaria. In this study, we perform the first essential step in this transition by disrupting, p52, in P. falciparum an ortholog of the rodent parasite gene, p36p, which we had previously shown can confer long lasting protective immunity in mice. These P. falciparum P52 deficient sporozoites demonstrate gliding motility, cell traversal and an invasion rate into primary human hepatocytes in vitro that is comparable to wild type sporozoites. However, inside the host hepatocyte development is arrested very soon after invasion. This study reveals, for the first time, that disrupting the equivalent gene in both P. falciparum and rodent malaria Plasmodium species generates parasites that become similarly arrested during liver stage development and these results pave the way for further development of GAS for human use.

  20. Comparison of the effects of the synthetic pyrethroid Metofluthrin and phenobarbital on CYP2B form induction and replicative DNA synthesis in cultured rat and human hepatocytes

    International Nuclear Information System (INIS)

    Hirose, Yukihiro; Nagahori, Hirohisa; Yamada, Tomoya; Deguchi, Yoshihito; Tomigahara, Yoshitaka; Nishioka, Kazuhiko; Uwagawa, Satoshi; Kawamura, Satoshi; Isobe, Naohiko; Lake, Brian G.; Okuno, Yasuyoshi

    2009-01-01

    High doses of Metofluthrin (MTF) have been shown to produce liver tumours in rats by a mode of action (MOA) involving activation of the constitutive androstane receptor leading to liver hypertrophy, induction of cytochrome P450 (CYP) forms and increased cell proliferation. The aim of this study was to compare the effects of MTF with those of the known rodent liver tumour promoter phenobarbital (PB) on the induction CYP2B forms and replicative DNA synthesis in cultured rat and human hepatocytes. Treatment with 50 μM MTF and 50 μM PB for 72 h increased CYP2B1 mRNA levels in male Wistar rat hepatocytes and CYP2B6 mRNA levels in human hepatocytes. Replicative DNA synthesis was determined by incorporation of 5-bromo-2'-deoxyuridine over the last 24 h of a 48 h treatment period. Treatment with 10-1000 μM MTF and 100-500 μM PB resulted in significant increases in replicative DNA synthesis in rat hepatocytes. While replicative DNA synthesis was increased in human hepatocytes treated with 5-50 ng/ml epidermal growth factor or 5-100 ng/ml hepatocyte growth factor, treatment with MTF and PB had no effect. These results demonstrate that while both MTF and PB induce CYP2B forms in both species, MTF and PB only induced replicative DNA synthesis in rat and not in human hepatocytes. These results provide further evidence that the MOA for MTF-induced rat liver tumour formation is similar to that of PB and some other non-genotoxic CYP2B form inducers and that the key event of increased cell proliferation would not occur in human liver

  1. Comparison of the effects of the synthetic pyrethroid Metofluthrin and phenobarbital on CYP2B form induction and replicative DNA synthesis in cultured rat and human hepatocytes.

    Science.gov (United States)

    Hirose, Yukihiro; Nagahori, Hirohisa; Yamada, Tomoya; Deguchi, Yoshihito; Tomigahara, Yoshitaka; Nishioka, Kazuhiko; Uwagawa, Satoshi; Kawamura, Satoshi; Isobe, Naohiko; Lake, Brian G; Okuno, Yasuyoshi

    2009-04-05

    High doses of Metofluthrin (MTF) have been shown to produce liver tumours in rats by a mode of action (MOA) involving activation of the constitutive androstane receptor leading to liver hypertrophy, induction of cytochrome P450 (CYP) forms and increased cell proliferation. The aim of this study was to compare the effects of MTF with those of the known rodent liver tumour promoter phenobarbital (PB) on the induction CYP2B forms and replicative DNA synthesis in cultured rat and human hepatocytes. Treatment with 50 microM MTF and 50 microM PB for 72 h increased CYP2B1 mRNA levels in male Wistar rat hepatocytes and CYP2B6 mRNA levels in human hepatocytes. Replicative DNA synthesis was determined by incorporation of 5-bromo-2'-deoxyuridine over the last 24 h of a 48 h treatment period. Treatment with 10-1000 microM MTF and 100-500 microM PB resulted in significant increases in replicative DNA synthesis in rat hepatocytes. While replicative DNA synthesis was increased in human hepatocytes treated with 5-50 ng/ml epidermal growth factor or 5-100 ng/ml hepatocyte growth factor, treatment with MTF and PB had no effect. These results demonstrate that while both MTF and PB induce CYP2B forms in both species, MTF and PB only induced replicative DNA synthesis in rat and not in human hepatocytes. These results provide further evidence that the MOA for MTF-induced rat liver tumour formation is similar to that of PB and some other non-genotoxic CYP2B form inducers and that the key event of increased cell proliferation would not occur in human liver.

  2. Predictivity of dog co-culture model, primary human hepatocytes and HepG2 cells for the detection of hepatotoxic drugs in humans

    International Nuclear Information System (INIS)

    Atienzar, Franck A.; Novik, Eric I.; Gerets, Helga H.; Parekh, Amit; Delatour, Claude; Cardenas, Alvaro; MacDonald, James; Yarmush, Martin L.; Dhalluin, Stéphane

    2014-01-01

    Drug Induced Liver Injury (DILI) is a major cause of attrition during early and late stage drug development. Consequently, there is a need to develop better in vitro primary hepatocyte models from different species for predicting hepatotoxicity in both animals and humans early in drug development. Dog is often chosen as the non-rodent species for toxicology studies. Unfortunately, dog in vitro models allowing long term cultures are not available. The objective of the present manuscript is to describe the development of a co-culture dog model for predicting hepatotoxic drugs in humans and to compare the predictivity of the canine model along with primary human hepatocytes and HepG2 cells. After rigorous optimization, the dog co-culture model displayed metabolic capacities that were maintained up to 2 weeks which indicates that such model could be also used for long term metabolism studies. Most of the human hepatotoxic drugs were detected with a sensitivity of approximately 80% (n = 40) for the three cellular models. Nevertheless, the specificity was low approximately 40% for the HepG2 cells and hepatocytes compared to 72.7% for the canine model (n = 11). Furthermore, the dog co-culture model showed a higher superiority for the classification of 5 pairs of close structural analogs with different DILI concerns in comparison to both human cellular models. Finally, the reproducibility of the canine system was also satisfactory with a coefficient of correlation of 75.2% (n = 14). Overall, the present manuscript indicates that the dog co-culture model may represent a relevant tool to perform chronic hepatotoxicity and metabolism studies. - Highlights: • Importance of species differences in drug development. • Relevance of dog co-culture model for metabolism and toxicology studies. • Hepatotoxicity: higher predictivity of dog co-culture vs HepG2 and human hepatocytes

  3. Predictivity of dog co-culture model, primary human hepatocytes and HepG2 cells for the detection of hepatotoxic drugs in humans

    Energy Technology Data Exchange (ETDEWEB)

    Atienzar, Franck A., E-mail: franck.atienzar@ucb.com [UCB Pharma SA, Non-Clinical Development, Chemin du Foriest, 1420 Braine-l' Alleud (Belgium); Novik, Eric I. [H mu rel Corporation, 675 U.S. Highway 1, North Brunswick, NJ 08902 (United States); Gerets, Helga H. [UCB Pharma SA, Non-Clinical Development, Chemin du Foriest, 1420 Braine-l' Alleud (Belgium); Parekh, Amit [H mu rel Corporation, 675 U.S. Highway 1, North Brunswick, NJ 08902 (United States); Delatour, Claude; Cardenas, Alvaro [UCB Pharma SA, Non-Clinical Development, Chemin du Foriest, 1420 Braine-l' Alleud (Belgium); MacDonald, James [Chrysalis Pharma Consulting, LLC, 385 Route 24, Suite 1G, Chester, NJ 07930 (United States); Yarmush, Martin L. [Department of Biomedical Engineering, Rutgers University, Piscataway, NJ 08854 (United States); Dhalluin, Stéphane [UCB Pharma SA, Non-Clinical Development, Chemin du Foriest, 1420 Braine-l' Alleud (Belgium)

    2014-02-15

    Drug Induced Liver Injury (DILI) is a major cause of attrition during early and late stage drug development. Consequently, there is a need to develop better in vitro primary hepatocyte models from different species for predicting hepatotoxicity in both animals and humans early in drug development. Dog is often chosen as the non-rodent species for toxicology studies. Unfortunately, dog in vitro models allowing long term cultures are not available. The objective of the present manuscript is to describe the development of a co-culture dog model for predicting hepatotoxic drugs in humans and to compare the predictivity of the canine model along with primary human hepatocytes and HepG2 cells. After rigorous optimization, the dog co-culture model displayed metabolic capacities that were maintained up to 2 weeks which indicates that such model could be also used for long term metabolism studies. Most of the human hepatotoxic drugs were detected with a sensitivity of approximately 80% (n = 40) for the three cellular models. Nevertheless, the specificity was low approximately 40% for the HepG2 cells and hepatocytes compared to 72.7% for the canine model (n = 11). Furthermore, the dog co-culture model showed a higher superiority for the classification of 5 pairs of close structural analogs with different DILI concerns in comparison to both human cellular models. Finally, the reproducibility of the canine system was also satisfactory with a coefficient of correlation of 75.2% (n = 14). Overall, the present manuscript indicates that the dog co-culture model may represent a relevant tool to perform chronic hepatotoxicity and metabolism studies. - Highlights: • Importance of species differences in drug development. • Relevance of dog co-culture model for metabolism and toxicology studies. • Hepatotoxicity: higher predictivity of dog co-culture vs HepG2 and human hepatocytes.

  4. Inhibition of bile salt transport by drugs associated with liver injury in primary hepatocytes from human, monkey, dog, rat, and mouse.

    Science.gov (United States)

    Zhang, Jie; He, Kan; Cai, Lining; Chen, Yu-Chuan; Yang, Yifan; Shi, Qin; Woolf, Thomas F; Ge, Weigong; Guo, Lei; Borlak, Jürgen; Tong, Weida

    2016-08-05

    Interference of bile salt transport is one of the underlying mechanisms for drug-induced liver injury (DILI). We developed a novel bile salt transport activity assay involving in situ biosynthesis of bile salts from their precursors in primary human, monkey, dog, rat, and mouse hepatocytes in suspension as well as LC-MS/MS determination of extracellular bile salts transported out of hepatocytes. Glycine- and taurine-conjugated bile acids were rapidly formed in hepatocytes and effectively transported into the extracellular medium. The bile salt formation and transport activities were time‒ and bile-acid-concentration‒dependent in primary human hepatocytes. The transport activity was inhibited by the bile salt export pump (BSEP) inhibitors ketoconazole, saquinavir, cyclosporine, and troglitazone. The assay was used to test 86 drugs for their potential to inhibit bile salt transport activity in human hepatocytes, which included 35 drugs associated with severe DILI (sDILI) and 51 with non-severe DILI (non-sDILI). Approximately 60% of the sDILI drugs showed potent inhibition (with IC50 values monkey, dog, rat and mouse hepatocytes. Species differences in potency were observed with mouse being less sensitive than other species to inhibition of bile salt transport. In summary, a novel assay has been developed using hepatocytes in suspension from human and animal species that can be used to assess the potential for drugs and/or drug-derived metabolites to inhibit bile salt transport and/or formation activity. Drugs causing sDILI, except those by immune-mediated mechanism, are highly associated with potent inhibition of bile salt transport. Published by Elsevier Ireland Ltd.

  5. The human hepatocyte cell lines IHH and HepaRG: models to study glucose, lipid and lipoprotein metabolism.

    Science.gov (United States)

    Samanez, Carolina Huaman; Caron, Sandrine; Briand, Olivier; Dehondt, Hélène; Duplan, Isabelle; Kuipers, Folkert; Hennuyer, Nathalie; Clavey, Véronique; Staels, Bart

    2012-07-01

    Metabolic diseases reach epidemic proportions. A better knowledge of the associated alterations in the metabolic pathways in the liver is necessary. These studies need in vitro human cell models. Several human hepatoma models are used, but the response of many metabolic pathways to physiological stimuli is often lost. Here, we characterize two human hepatocyte cell lines, IHH and HepaRG, by analysing the expression and regulation of genes involved in glucose and lipid metabolism. Our results show that the glycolysis pathway is activated by glucose and insulin in both lines. Gluconeogenesis gene expression is induced by forskolin in IHH cells and inhibited by insulin in both cell lines. The lipogenic pathway is regulated by insulin in IHH cells. Finally, both cell lines secrete apolipoprotein B-containing lipoproteins, an effect promoted by increasing glucose concentrations. These two human cell lines are thus interesting models to study the regulation of glucose and lipid metabolism.

  6. Effects of oral anorexiant sibutramine on the expression of cytochromes P450s in human hepatocytes and cancer cell lines.

    Science.gov (United States)

    Vrzal, Radim; Knoppová, Barbora; Bachleda, Petr; Dvořák, Zdeněk

    2013-12-01

    Sibutramine is a serotonin-norepinephrine reuptake inhibitor that was used for weight-loss management in obese patients. Even though it was officially withdrawn from the market in 2010, it is still present in some tainted weight-loss pills (as reported by US Food and Drug Administration). Thus, it is still reasonable to study the effects of this compound. The aim of this work was to investigate the potential of sibutramine to induce CYP1A1/CY3A4 in human cancer cell lines and CYP1A1/2, CYP2A6, CYP2B6, and CYP3A4 in human hepatocytes, a competent model of metabolically active cells. The levels of mRNA and protein of CYP1A1/1A2/3A4/2A6/2B6 were compared with the typical inducers, 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) and rifampicin (RIF) for CYP1A1/2 and for other CYPs, respectively. The mRNA and protein levels of all genes in either cancer cell lines or human hepatocytes were induced when treated with typical inducers but not with sibutramine. © 2013 Wiley Periodicals, Inc.

  7. Arsenite Effects on Mitochondrial Bioenergetics in Human and Mouse Primary Hepatocytes Follow a Nonlinear Dose Response

    Directory of Open Access Journals (Sweden)

    Hemantkumar Chavan

    2017-01-01

    Full Text Available Arsenite is a known carcinogen and its exposure has been implicated in a variety of noncarcinogenic health concerns. Increased oxidative stress is thought to be the primary cause of arsenite toxicity and the toxic effect is thought to be linear with detrimental effects reported at all concentrations of arsenite. But the paradigm of linear dose response in arsenite toxicity is shifting. In the present study we demonstrate that arsenite effects on mitochondrial respiration in primary hepatocytes follow a nonlinear dose response. In vitro exposure of primary hepatocytes to an environmentally relevant, moderate level of arsenite results in increased oxidant production that appears to arise from changes in the expression and activity of respiratory Complex I of the mitochondrial proton circuit. In primary hepatocytes the excess oxidant production appears to elicit adaptive responses that promote resistance to oxidative stress and a propensity to increased proliferation. Taken together, these results suggest a nonlinear dose-response characteristic of arsenite with low-dose arsenite promoting adaptive responses in a process known as mitohormesis, with transient increase in ROS levels acting as transducers of arsenite-induced mitohormesis.

  8. Direct induction of hepatocyte-like cells from immortalized human bone marrow mesenchymal stem cells by overexpression of HNF4α

    International Nuclear Information System (INIS)

    Hu, Xiaojun; Xie, Peiyi; Li, Weiqiang; Li, Zhengran; Shan, Hong

    2016-01-01

    Hepatocytes from human bone marrow-derived mesenchymal stem cells (hBM-MSCs) are expected to be a useful source for cell transplantation. However, relatively low efficiency and repeatability of hepatic differentiation of human BM-MSCs remains an obstacle for clinical translation. Hepatocyte nuclear factor 4 alpha (HNF4α), a critical transcription factor, plays an essential role in the entire process of liver development. In this study, immortalized hBM-MSCs, UE7T-13 cells were transduced with a lentiviral vector containing HNF4α. The typical fibroblast-like morphology of the MSCs changed, and polygonal, epithelioid cells grew out after HNF4α transduction. In hepatocyte culture medium, HNF4α-transduced MSCs (E7-hHNF4α cells) strongly expressed the albumin (ALB), CYP2B6, alpha-1 antitrypsin (AAT), and FOXA2 mRNA and exhibited morphology markedly similar to that of mature hepatocytes. The E7-hHNF4α cells showed hepatic functions such as Indocyanine green (ICG) uptake and release, glycogen storage, urea production and ALB secretion. Approximately 28% of E7-hHNF4α cells expressed both ALB and AAT. Furthermore, these E7-hHNF4α cells via superior mesenteric vein (SMV) injection expressed human ALB in mouse chronic injured liver. In conclusion, this study represents a novel strategy by directly inducing hepatocyte-like cells from MSCs. - Highlights: • We overexpressed HNF4α in immortalized BM-MSCs by lentiviral transduction. • HNF4α-transduced MSCs transdifferentiated into hepatocytes with mature hepatic metabolic functions. • Our study represents a novel strategy by direct induction of hepatocyte-like cells from MSCs.

  9. A Cell Culture Platform to Maintain Long-term Phenotype of Primary Human Hepatocytes and Endothelial Cells.

    Science.gov (United States)

    Ware, Brenton R; Durham, Mitchell J; Monckton, Chase P; Khetani, Salman R

    2018-03-01

    Modeling interactions between primary human hepatocytes (PHHs) and primary human liver sinusoidal endothelial cells (LSECs) in vitro can help elucidate human-specific mechanisms underlying liver physiology/disease and drug responses; however, existing hepatocyte/endothelial coculture models are suboptimal because of their use of rodent cells, cancerous cell lines, and/or nonliver endothelial cells. Hence, we sought to develop a platform that could maintain the long-term phenotype of PHHs and primary human LSECs. Primary human LSECs or human umbilical vein endothelial cells as the nonliver control were cocultivated with micropatterned PHH colonies (to control homotypic interactions) followed by an assessment of PHH morphology and functions (albumin and urea secretion, and cytochrome P-450 2A6 and 3A4 enzyme activities) over 3 weeks. Endothelial phenotype was assessed via gene expression patterns and scanning electron microscopy to visualize fenestrations. Hepatic responses in PHH/endothelial cocultures were benchmarked against responses in previously developed PHH/3T3-J2 fibroblast cocultures. Finally, PHH/fibroblast/endothelial cell tricultures were created and characterized as described previously. LSECs, but not human umbilical vein endothelial cells, induced PHH albumin secretion for ∼11 days; however, neither endothelial cell type could maintain PHH morphology and functions to the same magnitude/longevity as the fibroblasts. In contrast, both PHHs and endothelial cells displayed stable phenotype for 3 weeks in PHH/fibroblast/endothelial cell tricultures; furthermore, layered tricultures in which PHHs and endothelial cells were separated by a protein gel to mimic the space of Disse displayed similar functional levels as the coplanar tricultures. PHH/fibroblast/endothelial tricultures constitute a robust platform to elucidate reciprocal interactions between PHHs and endothelial cells in physiology, disease, and after drug exposure.

  10. Efavirenz and 8-hydroxyefavirenz induce cell death via a JNK- and BimEL-dependent mechanism in primary human hepatocytes

    Energy Technology Data Exchange (ETDEWEB)

    Bumpus, Namandje N., E-mail: nbumpus1@jhmi.edu

    2011-12-15

    Chronic use of efavirenz (EFV) has been linked to incidences of hepatotoxicity in patients receiving EFV to treat HIV-1. While recent studies have demonstrated that EFV stimulates hepatic cell death a role for the metabolites of efavirenz in this process has yet to be examined. In the present study, incubation of primary human hepatocytes with synthetic 8-hydroxyEFV (8-OHEFV), which is the primary metabolite of EFV, resulted in cell death, caspase-3 activation and reactive oxygen species formation. The metabolite exerted these effects at earlier time points and using lower concentrations than were required for the parent compound. In addition, pharmacological inhibition of cytochrome P450-dependent metabolism of EFV using 1-aminobenzotriazole markedly decreased reactive oxygen species formation and cell death. Treatment of primary human hepatocytes with EFV and 8-OHEFV also stimulated phosphorylation of c-Jun N-terminal kinase (JNK) as well as phosphorylation of the JNK substrate c-Jun. Further, the mRNA and protein expression of an isoform of Bim (Bcl-2 interacting mediator of cell death) denoted as BimEL, which is proapoptotic and has been shown to be modulated by JNK, was increased. Inhibition of JNK using SP600125 prevented the EFV- and 8-OHEFV-mediated cell death. Silencing of Bim using siRNA transfected into hepatocytes also prevented cell death resulting from 8-OHEFV-treatment. These data suggest that the oxidative metabolite 8-OHEFV is a more potent inducer of hepatic cell death than the parent compound EFV. Further, activation of the JNK signaling pathway and BimEL mRNA expression appear to be required for EFV- and 8-OHEFV-mediated hepatocyte death. -- Highlights: Black-Right-Pointing-Pointer 8-Hydroxyefavirenz is a more potent stimulator of cell death than efavirenz. Black-Right-Pointing-Pointer Efavirenz and 8-hydroxyefavirenz increase JNK activity and BimEL mRNA expression. Black-Right-Pointing-Pointer JNK and Bim are required for efavirenz- and 8

  11. First characterization of AKB-48 metabolism, a novel synthetic cannabinoid, using human hepatocytes and high-resolution mass spectrometry.

    Science.gov (United States)

    Gandhi, Adarsh S; Zhu, Mingshe; Pang, Shaokun; Wohlfarth, Ariane; Scheidweiler, Karl B; Liu, Hua-Fen; Huestis, Marilyn A

    2013-10-01

    Since the federal authorities scheduled the first synthetic cannabinoids, JWH-018 and JWH-073, new synthetic cannabinoids were robustly marketed. N-(1-Adamantyl)-1-pentylindazole-3-carboxamide (AKB-48), also known as APINACA, was recently observed in Japanese herbal smoking blends. The National Forensic Laboratory Information System registered 443 reports of AKB-48 cases in the USA from March 2010 to January 2013. In May 2013, the Drug Enforcement Administration listed AKB-48 as a Schedule I drug. Recently, AKB-48 was shown to have twice the CB1 receptor binding affinity than CB2. These pharmacological effects and the difficulty in detecting the parent compound in urine highlight the importance of metabolite identification for developing analytical methods for clinical and forensic investigations. Using human hepatocytes and TripleTOF mass spectrometry, we identified 17 novel phase I and II AKB-48 metabolites, products of monohydroxylation, dihydroxylation, or trihydroxylation on the aliphatic adamantane ring or N-pentyl side chain. Glucuronide conjugation of some mono- and dihydroxylated metabolites also occurred. Oxidation and dihydroxylation on the adamantane ring and N-pentyl side chain formed a ketone. More metabolites were identified after 3 h of incubation than at 1 h. For the first time, we present a AKB-48 metabolic scheme obtained from human hepatocytes and high-resolution mass spectrometry. These data are needed to develop analytical methods to identify AKB-48 consumption in clinical and forensic testing.

  12. Protocol for Isolation of Primary Human Hepatocytes and Corresponding Major Populations of Non-parenchymal Liver Cells

    Science.gov (United States)

    Pfeiffer, Elisa; Zeilinger, Katrin; Seehofer, Daniel; Damm, Georg

    2016-01-01

    Beside parenchymal hepatocytes, the liver consists of non-parenchymal cells (NPC) namely Kupffer cells (KC), liver endothelial cells (LEC) and hepatic Stellate cells (HSC). Two-dimensional (2D) culture of primary human hepatocyte (PHH) is still considered as the "gold standard" for in vitro testing of drug metabolism and hepatotoxicity. It is well-known that the 2D monoculture of PHH suffers from dedifferentiation and loss of function. Recently it was shown that hepatic NPC play a central role in liver (patho-) physiology and the maintenance of PHH functions. Current research focuses on the reconstruction of in vivo tissue architecture by 3D- and co-culture models to overcome the limitations of 2D monocultures. Previously we published a method to isolate human liver cells and investigated the suitability of these cells for their use in cell cultures in Experimental Biology and Medicine1. Based on the broad interest in this technique the aim of this article was to provide a more detailed protocol for the liver cell isolation process including a video, which will allow an easy reproduction of this technique. Human liver cells were isolated from human liver tissue samples of surgical interventions by a two-step EGTA/collagenase P perfusion technique. PHH were separated from the NPC by an initial centrifugation at 50 x g. Density gradient centrifugation steps were used for removal of dead cells. Individual liver cell populations were isolated from the enriched NPC fraction using specific cell properties and cell sorting procedures. Beside the PHH isolation we were able to separate KC, LEC and HSC for further cultivation. Taken together, the presented protocol allows the isolation of PHH and NPC in high quality and quantity from one donor tissue sample. The access to purified liver cell populations could allow the creation of in vivo like human liver models. PMID:27077489

  13. Differentiation of human-induced pluripotent stem cell under flow conditions to mature hepatocytes for liver tissue engineering

    DEFF Research Database (Denmark)

    Starokozhko, Viktoriia; Hemmingsen, Mette; Larsen, Layla

    2018-01-01

    and to perform functional comparisons with fresh human precision-cut liver slices (hPCLS), an excellent benchmark for the human liver in vivo. The majority of the mRNA expression of CYP isoenzymes and transporters and the tested CYP activities, Phase II metabolism, and albumin, urea, and bile acid synthesis...... in the hiPSC-derived cells reached values that overlap those of hPCLS, which indicates a higher degree of hepatic differentiation than observed until now. Differentiation under flow compared with static conditions had a strong inducing effect on Phase II metabolism and suppressed AFP expression but resulted...... in slightly lower activity of some of the Phase I metabolism enzymes. Gene expression data indicate that hiPSCs differentiated into both hepatic and biliary directions. In conclusion, the hiPSC differentiated under flow conditions towards hepatocytes express a wide spectrum of liver functions at levels...

  14. Therapeutic efficacy of human hepatocyte transplantation in a SCID/uPA mouse model with inducible liver disease.

    Directory of Open Access Journals (Sweden)

    Donna N Douglas

    2010-02-01

    Full Text Available Severe Combined Immune Deficient (SCID/Urokinase-type Plasminogen Activator (uPA mice undergo liver failure and are useful hosts for the propagation of transplanted human hepatocytes (HH which must compete with recipient-derived hepatocytes for replacement of the diseased liver parenchyma. While partial replacement by HH has proven useful for studies with Hepatitis C virus, complete replacement of SCID/uPA mouse liver by HH has never been achieved and limits the broader application of these mice for other areas of biomedical research. The herpes simplex virus type-1 thymidine kinase (HSVtk/ganciclovir (GCV system is a powerful tool for cell-specific ablation in transgenic animals. The aim of this study was to selectively eliminate murine-derived parenchymal liver cells from humanized SCID/uPA mouse liver in order to achieve mice with completely humanized liver parenchyma. Thus, we reproduced the HSVtk (vTK/GCV system of hepatic failure in SCID/uPA mice.In vitro experiments demonstrated efficient killing of vTK expressing hepatoma cells after GCV treatment. For in vivo experiments, expression of vTK was targeted to the livers of FVB/N and SCID/uPA mice. Hepatic sensitivity to GCV was first established in FVB/N mice since these mice do not undergo liver failure inherent to SCID/uPA mice. Hepatic vTK expression was found to be an integral component of GCV-induced pathologic and biochemical alterations and caused death due to liver dysfunction in vTK transgenic FVB/N and non-transplanted SCID/uPA mice. In SCID/uPA mice with humanized liver, vTK/GCV caused death despite extensive replacement of the mouse liver parenchyma with HH (ranging from 32-87%. Surprisingly, vTK/GCV-dependent apoptosis and mitochondrial aberrations were also localized to bystander vTK-negative HH.Extensive replacement of mouse liver parenchyma by HH does not provide a secure therapeutic advantage against vTK/GCV-induced cytotoxicity targeted to residual mouse hepatocytes

  15. A new splice variant of the major subunit of human asialoglycoprotein receptor encodes a secreted form in hepatocytes.

    Directory of Open Access Journals (Sweden)

    Jia Liu

    Full Text Available BACKGROUND: The human asialoglycoprotein receptor (ASGPR is composed of two polypeptides, designated H1 and H2. While variants of H2 have been known for decades, the existence of H1 variants has never been reported. PRINCIPAL FINDINGS: We identified two splice variants of ASGPR H1 transcripts, designated H1a and H1b, in human liver tissues and hepatoma cells. Molecular cloning of ASGPR H1 variants revealed that they differ by a 117 nucleotide segment corresponding to exon 2 in the ASGPR genomic sequence. Thus, ASGPR variant H1b transcript encodes a protein lacking the transmembrane domain. Using an H1b-specific antibody, H1b protein and a functional soluble ASGPR (sASGPR composed of H1b and H2 in human sera and in hepatoma cell culture supernatant were identified. The expression of ASGPR H1a and H1b in Hela cells demonstrated the different cellular loctions of H1a and H1b proteins at cellular membranes and in intracellular compartments, respectively. In vitro binding assays using fluorescence-labeled sASGPR or the substract ASOR revealed that the presence of sASGPR reduced the binding of ASOR to cells. However, ASOR itself was able to enhance the binding of sASGPR to cells expressing membrane-bound ASGPR. Further, H1b expression is reduced in liver tissues from patients with viral hepatitis. CONCLUSIONS: We conclude that two naturally occurring ASGPR H1 splice variants are produced in human hepatocytes. A hetero-oligomeric complex sASGPR consists of the secreted form of H1 and H2 and may bind to free substrates in circulation and carry them to liver tissue for uptake by ASGPR-expressing hepatocytes.

  16. Foxa1 reduces lipid accumulation in human hepatocytes and is down-regulated in nonalcoholic fatty liver.

    Directory of Open Access Journals (Sweden)

    Marta Moya

    Full Text Available Triglyceride accumulation in nonalcoholic fatty liver (NAFL results from unbalanced lipid metabolism which, in the liver, is controlled by several transcription factors. The Foxa subfamily of winged helix/forkhead box (Fox transcription factors comprises three members which play important roles in controlling both metabolism and homeostasis through the regulation of multiple target genes in the liver, pancreas and adipose tissue. In the mouse liver, Foxa2 is repressed by insulin and mediates fasting responses. Unlike Foxa2 however, the role of Foxa1 in the liver has not yet been investigated in detail. In this study, we evaluate the role of Foxa1 in two human liver cell models, primary cultured hepatocytes and HepG2 cells, by adenoviral infection. Moreover, human and rat livers were analyzed to determine Foxa1 regulation in NAFL. Results demonstrate that Foxa1 is a potent inhibitor of hepatic triglyceride synthesis, accumulation and secretion by repressing the expression of multiple target genes of these pathways (e.g., GPAM, DGAT2, MTP, APOB. Moreover, Foxa1 represses the fatty acid transporter protein FATP2 and lowers fatty acid uptake. Foxa1 also increases the breakdown of fatty acids by inducing peroxisomal fatty acid β-oxidation and ketone body synthesis. Finally, Foxa1 is able to largely up-regulate UCP1, thereby dissipating energy and consistently decreasing the mitochondria membrane potential. We also report that human and rat NAFL have a reduced Foxa1 expression, possibly through a protein kinase C-dependent pathway. We conclude that Foxa1 is an antisteatotic factor that coordinately tunes several lipid metabolic pathways to block triglyceride accumulation in hepatocytes. However, Foxa1 is down-regulated in human and rat NAFL and, therefore, increasing Foxa1 levels could protect from steatosis. Altogether, we suggest that Foxa1 could be a novel therapeutic target for NAFL disease and insulin resistance.

  17. Improved Survival and Initiation of Differentiation of Human Induced Pluripotent Stem Cells to Hepatocyte-Like Cells upon Culture in William's E Medium followed by Hepatocyte Differentiation Inducer Treatment.

    Directory of Open Access Journals (Sweden)

    Minoru Tomizawa

    Full Text Available Hepatocyte differentiation inducer (HDI lacks both glucose and arginine, but is supplemented with galactose and ornithine, and is added together with other reagents such as apoptosis inhibitor and oncostatin M. Although human induced pluripotent stem (iPS cells initiate hepatocyte differentiation, most die within 7 days. In this study, we investigated both HDI and conventional media for their potential to improve cell survival.201B7 iPS cells were cultured in conventional media. This consisted of three cycles of 5-day culture in William's E (WE medium, followed by a 2-day culture in HDI.Expression levels of α-feto protein (AFP were higher in cells cultured in WE and in Dulbecco's Modified Eagle's Medium/Nutrient F-12 Ham (DF12. 201B7 cells expressed the highest AFP and albumin (ALB when cultured in HDI for 2 days following 7-day culture in WE. After three cycles of 5-day culture in WE followed by 2 days in HDI, 201B7 cells expressed AFP and ALB 54 ± 2.3 (average ± standard deviation and 73 ± 15.1 times higher, respectively, than those cultured in ReproFF (feeder-free condition.201B7 cells survived culture in WE for 7 days followed HDI for 2 days. After three cycles of culture under these conditions, hepatocyte differentiation was enhanced, as evidenced by increased AFP and ALB expression.

  18. Mitochondrial protein adducts formation and mitochondrial dysfunction during N-acetyl-m-aminophenol (AMAP)-induced hepatotoxicity in primary human hepatocytes

    Energy Technology Data Exchange (ETDEWEB)

    Xie, Yuchao; McGill, Mitchell R.; Du, Kuo; Dorko, Kenneth [Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, Kansas City, KS 66160 (United States); Kumer, Sean C.; Schmitt, Timothy M. [Department of Surgery, University of Kansas Medical Center, Kansas City, KS 66160 (United States); Ding, Wen-Xing [Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, Kansas City, KS 66160 (United States); Jaeschke, Hartmut, E-mail: hjaeschke@kumc.edu [Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, Kansas City, KS 66160 (United States)

    2015-12-01

    3′-Hydroxyacetanilide or N-acetyl-meta-aminophenol (AMAP) is generally regarded as a non-hepatotoxic analog of acetaminophen (APAP). Previous studies demonstrated the absence of toxicity after AMAP in mice, hamsters, primary mouse hepatocytes and several cell lines. In contrast, experiments with liver slices suggested that it may be toxic to human hepatocytes; however, the mechanism of toxicity is unclear. To explore this, we treated primary human hepatocytes (PHH) with AMAP or APAP for up to 48 h and measured several parameters to assess metabolism and injury. Although less toxic than APAP, AMAP dose-dependently triggered cell death in PHH as indicated by alanine aminotransferase (ALT) release and propidium iodide (PI) staining. Similar to APAP, AMAP also significantly depleted glutathione (GSH) in PHH and caused mitochondrial damage as indicated by glutamate dehydrogenase (GDH) release and the JC-1 assay. However, unlike APAP, AMAP treatment did not cause relevant c-jun-N-terminal kinase (JNK) activation in the cytosol or phospho-JNK translocation to mitochondria. To compare, AMAP toxicity was assessed in primary mouse hepatocytes (PMH). No cytotoxicity was observed as indicated by the lack of lactate dehydrogenase release and no PI staining. Furthermore, there was no GSH depletion or mitochondrial dysfunction after AMAP treatment in PMH. Immunoblotting for arylated proteins suggested that AMAP treatment caused extensive mitochondrial protein adduct formation in PHH but not in PMH. In conclusion, AMAP is hepatotoxic in PHH and the mechanism involves the formation of mitochondrial protein adducts and mitochondrial dysfunction. - Highlights: • AMAP induces cell death in primary human hepatocytes (PHH). • AMAP does not cause cell death in primary mouse hepatocytes (PMH). • AMAP leads to mitochondria dysfunction in PHH but not PMH. • Protein adduct formation and dysfunction in mitochondria correlate with toxicity.

  19. Mitochondrial protein adducts formation and mitochondrial dysfunction during N-acetyl-m-aminophenol (AMAP)-induced hepatotoxicity in primary human hepatocytes

    International Nuclear Information System (INIS)

    Xie, Yuchao; McGill, Mitchell R.; Du, Kuo; Dorko, Kenneth; Kumer, Sean C.; Schmitt, Timothy M.; Ding, Wen-Xing; Jaeschke, Hartmut

    2015-01-01

    3′-Hydroxyacetanilide or N-acetyl-meta-aminophenol (AMAP) is generally regarded as a non-hepatotoxic analog of acetaminophen (APAP). Previous studies demonstrated the absence of toxicity after AMAP in mice, hamsters, primary mouse hepatocytes and several cell lines. In contrast, experiments with liver slices suggested that it may be toxic to human hepatocytes; however, the mechanism of toxicity is unclear. To explore this, we treated primary human hepatocytes (PHH) with AMAP or APAP for up to 48 h and measured several parameters to assess metabolism and injury. Although less toxic than APAP, AMAP dose-dependently triggered cell death in PHH as indicated by alanine aminotransferase (ALT) release and propidium iodide (PI) staining. Similar to APAP, AMAP also significantly depleted glutathione (GSH) in PHH and caused mitochondrial damage as indicated by glutamate dehydrogenase (GDH) release and the JC-1 assay. However, unlike APAP, AMAP treatment did not cause relevant c-jun-N-terminal kinase (JNK) activation in the cytosol or phospho-JNK translocation to mitochondria. To compare, AMAP toxicity was assessed in primary mouse hepatocytes (PMH). No cytotoxicity was observed as indicated by the lack of lactate dehydrogenase release and no PI staining. Furthermore, there was no GSH depletion or mitochondrial dysfunction after AMAP treatment in PMH. Immunoblotting for arylated proteins suggested that AMAP treatment caused extensive mitochondrial protein adduct formation in PHH but not in PMH. In conclusion, AMAP is hepatotoxic in PHH and the mechanism involves the formation of mitochondrial protein adducts and mitochondrial dysfunction. - Highlights: • AMAP induces cell death in primary human hepatocytes (PHH). • AMAP does not cause cell death in primary mouse hepatocytes (PMH). • AMAP leads to mitochondria dysfunction in PHH but not PMH. • Protein adduct formation and dysfunction in mitochondria correlate with toxicity.

  20. Quantitative Nuclease Protection Assays (qNPA) as Windows into Chemical-Induced Adaptive Response in Cultures of Primary Human Hepatocytes (Concentration and Time-Response)

    Science.gov (United States)

    Cultures of primary human hepatocytes have been shown to be dynamic in vitro model systems that retain liver-like functionality (e.g. metabolism, transport, induction). We have utilized these culture models to interrogate 309 ToxCast chemicals. The study design characterized both...

  1. Worker flag. Independent Electrical Policy

    International Nuclear Information System (INIS)

    Bahen, D.

    2000-01-01

    This work analyses the initiative of privatization of the Mexican Electric Industry and also it is showed the incoherence of this mistaken proposal. Along the same line is analysed tthe situation of the National Electric Sector and the working process for the distinct types of electric generation just as the syndical and labor situations. In consequence it is proposed an Independent Electrical Policy, which includes the integration of the Nationalized Electric Industry, the syndical union and the Unique Collective Contract. The purpose of this work is to contribute to the success of the electrical and nuclear struggle always maintaining in rising position the red flag of the proletariat. The author considers that the privatization means mercantilization of the human necessities. The privatization is not inevitable at condition of to exercise consequently the political actions necessary through alternatives includes: the worker control of production, research, and the National Electric strike. (Author)

  2. Determination of Drug Toxicity Using 3D Spheroids Constructed From an Immortal Human Hepatocyte Cell Line

    Science.gov (United States)

    Fey, Stephen J.; Wrzesinski, Krzysztof

    2012-01-01

    Numerous publications have documented that the immortal cells grown in three-dimensional (3D) cultures possess physiological behavior, which is more reminiscent of their parental organ than when the same cells are cultivated using classical two-dimensional (2D) culture techniques. The goal of this study was to investigate whether this observation could be extended to the determination of LD50 values and whether 3D data could be correlated to in vivo observations. We developed a noninvasive means to estimate the amount of protein present in a 3D spheroid from it is planar area (± 21%) so that a precise dose can be provided in a manner similar to in vivo studies. This avoided correction of the actual dose given based on a protein determination after treatment (when some cells may have lysed). Conversion of published in vitro LC50 data (mM) for six common drugs (acetaminophen, amiodarone, diclofenac, metformin, phenformin, and valproic acid) to LD50 data (mg compound/mg cellular protein) showed that the variation in LD50 values was generally less than that suggested by the original LC50 data. Toxicological analysis of these six compounds in 3D spheroid culture (either published or presented here) demonstrated similar LD50 values. Although in vitro 2D HepG2 data showed a poor correlation, the primary hepatocyte and 3D spheroid data resulted in a much higher degree of correlation with in vivo lethal blood plasma levels. These results corroborate that 3D hepatocyte cultures are significantly different from 2D cultures and are more representative of the liver in vivo. PMID:22454432

  3. 75 FR 34309 - Flag Day and National Flag Week, 2010

    Science.gov (United States)

    2010-06-16

    ... Nation to confront tyranny and oppression still flies today as an unequivocal emblem of freedom and... gatherings to private memorials, we gathered to salute our flag, and in doing so, renewed the eternal promise... recognize the American flag as a symbol of hope and inspiration to people at home and around the world--as a...

  4. Protective effect of curcumin and its analog on γ-radiation induced DNA damage and lipid peroxidation in cultured human lymphocytes and isolated rat hepatocytes in vitro

    International Nuclear Information System (INIS)

    Menon, Venugopal P.

    2007-01-01

    Ionizing radiation is known to induce oxidative stress through generation of reactive oxygen species (ROS) resulting in an imbalance of the pro-oxidant and antioxidant status in the cells, which is suggested to culminate in cell death. The present work was aimed to evaluate the radioprotective effect of curcumin and its analog on γ-radiation induced toxicity in cultured human lymphocytes and rat hepatocytes. Hepatocytes were isolated from the liver of rats by collagenase perfusion. The cellular changes were estimated using lipid peroxidative indices like thiobarbituric acid reactive substances (TBARS), the antioxidants superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GPx) and reduced glutathione (GSH). The DNA damage was analyzed by comet assay, cytokinesis blocked micro nucleus assay, dicentric aberrations and translocation frequency. Cell cycle distribution and measurement of the percentage of apoptotic cells were performed by flow cytometry analysis. To investigate whether the dietary agents like curcumin and its analog have a role on cell cycle regulation, we analyzed the changes in cell cycle profiles by using fluorescence activated cell sorter. The increase in the severity of DNA damage was observed with the increase dose (1, 2 and 4 Gy) of γ-radiation in cultured lymphocytes and hepatocytes. TBARS were increased significantly, whereas the levels of GSH and antioxidant enzymes were significantly decreased in γ-irradiated hepatocytes and lymphocytes. On pretreatment with curcumin and its analog (1, 5 and 10 μg/ml) showed a significant decrease in the levels of TBARS and DNA damage. The antioxidant enzymes were increased significantly along with the levels of GSH. The maximum protection of hepatocytes and lymphocytes was observed at 10 μg/ml curcumin and 5 μg/ml curcumin analog pretreatment. Thus, pretreatment with curcumin and its analog helps in protecting the normal hepatocytes and lymphocytes against γ-radiation induced cellular

  5. Effects of Adenovirus-Mediated Delivery of the Human Hepatocyte Growth Factor Gene in Experimental Radiation-Induced Heart Disease

    International Nuclear Information System (INIS)

    Hu Shunying; Chen Yundai; Li Libing; Chen Jinlong; Wu Bin; Zhou, Xiao; Zhi Guang; Li Qingfang; Wang Rongliang; Duan Haifeng; Guo Zikuan; Yang Yuefeng; Xiao Fengjun; Wang Hua; Wang Lisheng

    2009-01-01

    Purpose: Irradiation to the heart may lead to late cardiovascular complications. The purpose of this study was to investigate whether adenovirus-mediated delivery of the human hepatocyte growth factor gene could reduce post-irradiation damage of the rat heart and improve heart function. Methods and Materials: Twenty rats received single-dose irradiation of 20 Gy gamma ray locally to the heart and were randomized into two groups. Two weeks after irradiation, these two groups of rats received Ad-HGF or mock adenovirus vector intramyocardial injection, respectively. Another 10 rats served as sham-irradiated controls. At post-irradiation Day 120, myocardial perfusion was tested by myocardial contrast echocardiography with contrast agent injected intravenously. At post-irradiation Day 180, cardiac function was assessed using the Langendorff technique with an isolated working heart model, after which heart samples were collected for histological evaluation. Results: Myocardial blood flow was significantly improved in HGF-treated animals as measured by myocardial contrast echocardiography at post-irradiation Day 120 . At post-irradiation Day 180, cardiac function was significantly improved in the HGF group compared with mock vector group, as measured by left ventricular peak systolic pressure (58.80 ± 9.01 vs. 41.94 ± 6.65 mm Hg, p < 0.05), the maximum dP/dt (5634 ± 1303 vs. 1667 ± 304 mm Hg/s, p < 0.01), and the minimum dP/dt (3477 ± 1084 vs. 1566 ± 499 mm Hg/s, p < 0.05). Picrosirius red staining analysis also revealed a significant reduction of fibrosis in the HGF group. Conclusion: Based on the study findings, hepatocyte growth factor gene transfer can attenuate radiation-induced cardiac injury and can preserve cardiac function.

  6. Cell-surface associated with transformation of human hepatocytes to the malignant phenotype

    International Nuclear Information System (INIS)

    Wilson, B.; Ozturk, M.; Takahashi, H.; Motte, P.; Kew, M.; Isselbacher, K.J.; Wands, J.R.

    1988-01-01

    Hepatocellular carcinoma is one of the leading causes of cancer death in the world. To understand the cellular changes associated with transformation of hepatocytes to the malignant state, the authors have made several libraries of monoclonal antibodies against the hepatocellular carcinoma cell line FOCUS and have found six antibodies (AF-20, SF-25, SF-31, SF-90, XF-4, and XF-8) that recognize antigens expressed at consistently higher levels on hepatoma cells. They have studied malignant and nontransformed liver tissue from the same individual by using direct 125 I-labeled antibody binding and immunoperoxidase staining techniques. For each of these antibodies, they found striking increases in antigen expression on the transformed tissues. These antigens were found to be expressed throughout the tumor and on distant metastases, with little, if any, expression on the nontransformed adjacent liver. These antibodies demonstrate that hepatic transformation may be accompanied by stereotyped and predictable antigenic changes. The uniformity of such antigenic changes suggests an association between these cell-surface alterations and the malignant transformation process

  7. Rifampin modulation of xeno- and endobiotic conjugating enzyme mRNA expression and associated microRNAs in human hepatocytes.

    Science.gov (United States)

    Gufford, Brandon T; Robarge, Jason D; Eadon, Michael T; Gao, Hongyu; Lin, Hai; Liu, Yunlong; Desta, Zeruesenay; Skaar, Todd C

    2018-04-01

    Rifampin is a pleiotropic inducer of multiple drug metabolizing enzymes and transporters. This work utilized a global approach to evaluate rifampin effects on conjugating enzyme gene expression with relevance to human xeno- and endo-biotic metabolism. Primary human hepatocytes from 7 subjects were treated with rifampin (10 μmol/L, 24 hours). Standard methods for RNA-seq library construction, EZBead preparation, and NextGen sequencing were used to measure UDP-glucuronosyl transferase UGT, sulfonyltransferase SULT, N acetyltransferase NAT, and glutathione-S-transferase GST mRNA expression compared to vehicle control (0.01% MeOH). Rifampin-induced (>1.25-fold) mRNA expression of 13 clinically important phase II drug metabolizing genes and repressed (>1.25-fold) the expression of 3 genes ( P  accounting for simultaneous induction of both CYP3A4 and UGT1A4 predicted a ~10-fold decrease in parent midazolam exposure with only a ~2-fold decrease in midazolam N-glucuronide metabolite exposure. These data reveal differential effects of rifampin on the human conjugating enzyme transcriptome and potential associations with miRNAs that form the basis for future mechanistic studies to elucidate the interplay of conjugating enzyme regulatory elements.

  8. Activation of the constitutive androstane receptor inhibits gluconeogenesis without affecting lipogenesis or fatty acid synthesis in human hepatocytes

    Energy Technology Data Exchange (ETDEWEB)

    Lynch, Caitlin; Pan, Yongmei; Li, Linhao [Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, Baltimore, MD 21201 (United States); Heyward, Scott; Moeller, Timothy [Bioreclamation In Vitro Technologies, Baltimore, MD 21227 (United States); Swaan, Peter W. [Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, Baltimore, MD 21201 (United States); Wang, Hongbing, E-mail: hwang@rx.umaryland.edu [Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, Baltimore, MD 21201 (United States)

    2014-08-15

    Objective: Accumulating evidence suggests that activation of mouse constitutive androstane receptor (mCAR) alleviates type 2 diabetes and obesity by inhibiting hepatic gluconeogenesis, lipogenesis, and fatty acid synthesis. However, the role of human (h) CAR in energy metabolism is largely unknown. The present study aims to investigate the effects of selective hCAR activators on hepatic energy metabolism in human primary hepatocytes (HPH). Methods: Ligand-based structure–activity models were used for virtual screening of the Specs database ( (www.specs.net)) followed by biological validation in cell-based luciferase assays. The effects of two novel hCAR activators (UM104 and UM145) on hepatic energy metabolism were evaluated in HPH. Results: Real-time PCR and Western blotting analyses reveal that activation of hCAR by UM104 and UM145 significantly repressed the expression of glucose-6-phosphatase and phosphoenolpyruvate carboxykinase, two pivotal gluconeogenic enzymes, while exerting negligible effects on the expression of genes associated with lipogenesis and fatty acid synthesis. Functional experiments show that UM104 and UM145 markedly inhibit hepatic synthesis of glucose but not triglycerides in HPH. In contrast, activation of mCAR by 1,4-bis[2-(3,5-dichloropyridyloxy)]benzene, a selective mCAR activator, repressed the expression of genes associated with gluconeogenesis, lipogenesis, and fatty acid synthesis in mouse primary hepatocytes, which were consistent with previous observations in mouse model in vivo. Conclusion: Our findings uncover an important species difference between hCAR and mCAR in hepatic energy metabolism, where hCAR selectively inhibits gluconeogenesis without suppressing fatty acid synthesis. Implications: Such species selectivity should be considered when exploring CAR as a potential therapeutic target for metabolic disorders. - Highlights: • Novel hCAR activators were identified by computational and biological approaches. • The role

  9. Activation of the constitutive androstane receptor inhibits gluconeogenesis without affecting lipogenesis or fatty acid synthesis in human hepatocytes

    International Nuclear Information System (INIS)

    Lynch, Caitlin; Pan, Yongmei; Li, Linhao; Heyward, Scott; Moeller, Timothy; Swaan, Peter W.; Wang, Hongbing

    2014-01-01

    Objective: Accumulating evidence suggests that activation of mouse constitutive androstane receptor (mCAR) alleviates type 2 diabetes and obesity by inhibiting hepatic gluconeogenesis, lipogenesis, and fatty acid synthesis. However, the role of human (h) CAR in energy metabolism is largely unknown. The present study aims to investigate the effects of selective hCAR activators on hepatic energy metabolism in human primary hepatocytes (HPH). Methods: Ligand-based structure–activity models were used for virtual screening of the Specs database ( (www.specs.net)) followed by biological validation in cell-based luciferase assays. The effects of two novel hCAR activators (UM104 and UM145) on hepatic energy metabolism were evaluated in HPH. Results: Real-time PCR and Western blotting analyses reveal that activation of hCAR by UM104 and UM145 significantly repressed the expression of glucose-6-phosphatase and phosphoenolpyruvate carboxykinase, two pivotal gluconeogenic enzymes, while exerting negligible effects on the expression of genes associated with lipogenesis and fatty acid synthesis. Functional experiments show that UM104 and UM145 markedly inhibit hepatic synthesis of glucose but not triglycerides in HPH. In contrast, activation of mCAR by 1,4-bis[2-(3,5-dichloropyridyloxy)]benzene, a selective mCAR activator, repressed the expression of genes associated with gluconeogenesis, lipogenesis, and fatty acid synthesis in mouse primary hepatocytes, which were consistent with previous observations in mouse model in vivo. Conclusion: Our findings uncover an important species difference between hCAR and mCAR in hepatic energy metabolism, where hCAR selectively inhibits gluconeogenesis without suppressing fatty acid synthesis. Implications: Such species selectivity should be considered when exploring CAR as a potential therapeutic target for metabolic disorders. - Highlights: • Novel hCAR activators were identified by computational and biological approaches. • The role

  10. Identification of early target genes of aflatoxin B1 in human hepatocytes, inter-individual variability and comparison with other genotoxic compounds

    International Nuclear Information System (INIS)

    Josse, Rozenn; Dumont, Julie; Fautrel, Alain; Robin, Marie-Anne; Guillouzo, André

    2012-01-01

    Gene expression profiling has recently emerged as a promising approach to identify early target genes and discriminate genotoxic carcinogens from non-genotoxic carcinogens and non-carcinogens. However, early gene changes induced by genotoxic compounds in human liver remain largely unknown. Primary human hepatocytes and differentiated HepaRG cells were exposed to aflatoxin B1 (AFB1) that induces DNA damage following enzyme-mediated bioactivation. Gene expression profile changes induced by a 24 h exposure of these hepatocyte models to 0.05 and 0.25 μM AFB1 were analyzed by using oligonucleotide pangenomic microarrays. The main altered signaling pathway was the p53 pathway and related functions such as cell cycle, apoptosis and DNA repair. Direct involvement of the p53 protein in response to AFB1 was verified by using siRNA directed against p53. Among the 83 well-annotated genes commonly modulated in two pools of three human hepatocyte populations and HepaRG cells, several genes were identified as altered by AFB1 for the first time. In addition, a subset of 10 AFB1-altered genes, selected upon basis of their function or tumor suppressor role, was tested in four human hepatocyte populations and in response to other chemicals. Although they exhibited large variable inter-donor fold-changes, several of these genes, particularly FHIT, BCAS3 and SMYD3, were found to be altered by various direct and other indirect genotoxic compounds and unaffected by non-genotoxic compounds. Overall, this comprehensive analysis of early gene expression changes induced by AFB1 in human hepatocytes identified a gene subset that included several genes representing potential biomarkers of genotoxic compounds. -- Highlights: ► Gene expression profile changes induced by aflatoxin B1 in human hepatocytes. ► AFB1 modulates various genes including tumor suppressor genes and proto-oncogenes. ► Important inter-individual variations in the response to AFB1. ► Some genes also altered by other

  11. Omeprazole and lansoprazole enantiomers induce CYP3A4 in human hepatocytes and cell lines via glucocorticoid receptor and pregnane X receptor axis.

    Science.gov (United States)

    Novotna, Aneta; Dvorak, Zdenek

    2014-01-01

    Benzimidazole drugs lansoprazole and omeprazole are used for treatment of various gastrointestinal pathologies. Both compounds cause drug-drug interactions because they activate aryl hydrocarbon receptor and induce CYP1A genes. In the current paper, we examined the effects of lansoprazole and omeprazole enantiomers on the expression of key drug-metabolizing enzyme CYP3A4 in human hepatocytes and human cancer cell lines. Lansoprazole enantiomers, but not omeprazole, were equipotent inducers of CYP3A4 mRNA in HepG2 cells. All forms (S-, R-, rac-) of lansoprazole and omeprazole induced CYP3A4 mRNA and protein in human hepatocytes. The quantitative profiles of CYP3A4 induction by individual forms of lansoprazole and omeprazole exerted enantiospecific patterns. Lansoprazole dose-dependently activated pregnane X receptor PXR in gene reporter assays, and slightly modulated rifampicin-inducible PXR activity, with similar potency for each enantiomer. Omeprazole dose-dependently activated PXR and inhibited rifampicin-inducible PXR activity. The effects of S-omeprazole were much stronger as compared to those of R-omeprazole. All forms of lansoprazole, but not omeprazole, slightly activated glucocorticoid receptor and augmented dexamethasone-induced GR transcriptional activity. Omeprazole and lansoprazole influenced basal and ligand inducible expression of tyrosine aminotransferase, a GR-target gene, in HepG2 cells and human hepatocytes. Overall, we demonstrate here that omeprazole and lansoprazole enantiomers induce CYP3A4 in HepG2 cells and human hepatocytes. The induction comprises differential interactions of omeprazole and lansoprazole with transcriptional regulators PXR and GR, and some of the effects were enantiospecific. The data presented here might be of toxicological and clinical importance, since the effects occurred in therapeutically relevant concentrations.

  12. Data on gene and protein expression changes induced by apabetalone (RVX-208 in ex vivo treated human whole blood and primary hepatocytes

    Directory of Open Access Journals (Sweden)

    Sylwia Wasiak

    2016-09-01

    Full Text Available Apabetalone (RVX-208 inhibits the interaction between epigenetic regulators known as bromodomain and extraterminal (BET proteins and acetyl-lysine marks on histone tails. Data presented here supports the manuscript published in Atherosclerosis “RVX-208, a BET-inhibitor for Treating Atherosclerotic Cardiovascular Disease, Raises ApoA-I/HDL and Represses Pathways that Contribute to Cardiovascular Disease” (Gilham et al., 2016 [1]. It shows that RVX-208 and a comparator BET inhibitor (BETi JQ1 increase mRNA expression and production of apolipoprotein A-I (ApoA-I, the main protein component of high density lipoproteins, in primary human and African green monkey hepatocytes. In addition, reported here are gene expression changes from a microarray-based analysis of human whole blood and of primary human hepatocytes treated with RVX-208. Keywords: Bromodomain, BET proteins, BET inhibitor, RVX-208, JQ1, Vascular inflammation, ApoA-I, Apolipoprotein A-I, African green monkey, Primary human hepatocytes, Gene expression, Microarrays

  13. Human hepatocytes loaded in 3D bioprinting generate mini-liver.

    Science.gov (United States)

    Zhong, Cheng; Xie, Hai-Yang; Zhou, Lin; Xu, Xiao; Zheng, Shu-Sen

    2016-10-01

    Because of an increasing discrepancy between the number of potential liver graft recipients and the number of organs available, scientists are trying to create artificial liver to mimic normal liver function and therefore, to support the patient's liver when in dysfunction. 3D printing technique meets this purpose. The present study was to test the feasibility of 3D hydrogel scaffolds for liver engineering. We fabricated 3D hydrogel scaffolds with a bioprinter. The biocompatibility of 3D hydrogel scaffolds was tested. Sixty nude mice were randomly divided into four groups, with 15 mice in each group: control, hydrogel, hydrogel with L02 (cell line HL-7702), and hydrogel with hepatocyte growth factor (HGF). Cells were cultured and deposited in scaffolds which were subsequently engrafted into livers after partial hepatectomy and radiation-induced liver damage (RILD). The engrafted tissues were examined after two weeks. The levels of alanine aminotransferase (ALT), aspartate aminotransferase (AST), albumin, total bilirubin, CYP1A2, CYP2C9, glutathione S-transferase (a-GST), and UDP-glucuronosyl transferase (UGT-2) were compared among the groups. Hematoxylin-eosin (HE) staining and immunohistochemistry of cKit and cytokeratin 18 (CK18) of engrafted tissues were evaluated. The survival time of the mice was also compared among the four groups. 3D hydrogel scaffolds did not impact the viability of cells. The levels of ALT, AST, albumin, total bilirubin, CYP1A2, CYP2C9, a-GST and UGT-2 were significantly improved in mice engrafted with 3D scaffold loaded with L02 compared with those in control and scaffold only (P<0.05). HE staining showed clear liver tissue and immunohistochemistry of cKit and CK18 were positive in the engrafted tissue. Mice treated with 3D scaffold+L02 cells had longer survival time compared with those in control and scaffold only (P<0.05). 3D scaffold has the potential of recreating liver tissue and partial liver functions and can be used in the

  14. Human hepatocytes support the hypertrophic but not the hyperplastic response to the murine nongenotoxic hepatocarcinogen sodium phenobarbital in an in vivo study using a chimeric mouse with humanized liver.

    Science.gov (United States)

    Yamada, Tomoya; Okuda, Yu; Kushida, Masahiko; Sumida, Kayo; Takeuchi, Hayato; Nagahori, Hirohisa; Fukuda, Takako; Lake, Brian G; Cohen, Samuel M; Kawamura, Satoshi

    2014-11-01

    High doses of sodium phenobarbital (NaPB), a constitutive androstane receptor (CAR) activator, have been shown to produce hepatocellular tumors in rodents by a mitogenic mode of action (MOA) involving CAR activation. The effect of 1-week dietary treatment with NaPB on liver weight and histopathology, hepatic CYP2B enzyme activity and CYP2B/3A mRNA expression, replicative DNA synthesis and selected genes related to cell proliferation, and functional transcriptomic and metabolomic analyses was studied in male CD-1 mice, Wistar Hannover (WH) rats, and chimeric mice with human hepatocytes. The treatment of chimeric mice with 1000-1500-ppm NaPB resulted in plasma levels around 3-5-fold higher than those observed in human subjects given therapeutic doses of NaPB. NaPB produced dose-dependent increases in hepatic CYP2B activity and CYP2B/3A mRNA levels in all animal models. Integrated functional metabolomic and transcriptomic analyses demonstrated that the responses to NaPB in the human liver were clearly different from those in rodents. Although NaPB produced a dose-dependent increase in hepatocyte replicative DNA synthesis in CD-1 mice and WH rats, no increase in replicative DNA synthesis was observed in human hepatocyte-originated areas of chimeric mice. In addition, treatment with NaPB had no effect on Ki-67, PCNA, GADD45β, and MDM2 mRNA expression in chimeric mice, whereas significant increases were observed in CD-1 mice and/or WH rats. However, increases in hepatocyte replicative DNA synthesis were observed in chimeric mice both in vivo and in vitro after treatment epidermal growth factor. Thus, although NaPB could activate CAR in both rodent and human hepatocytes, NaPB did not increase replicative DNA synthesis in human hepatocytes of chimeric mice, whereas it was mitogenic to rat and mouse hepatocytes. As human hepatocytes are refractory to the mitogenic effects of NaPB, the MOA for NaPB-induced rodent liver tumor formation is thus not relevant for humans. © The

  15. Romania's flag raised at CERN

    CERN Multimedia

    Corinne Pralavorio

    2016-01-01

    A ceremony was held for the raising of the Romanian flag alongside the flags of CERN’s 21 other Member States.   The Romanian flag is raised alongside the flags of CERN’s other Member States, in the presence of the Romanian President, CERN’s Director-General, the President of the CERN Council and a large Romanian delegation. (Image: Maximilien Brice/ Sophia Bennett/CERN) On Monday, 5 September, the Romanian flag was raised in front of CERN for the first time, marking the country’s accession to Membership of the Organization. The blue, yellow and red flag joined those of the other 21 Member States of CERN in a ceremony attended by the President of Romania, Klaus Iohannis, the Romanian Minister for Education and Scientific Research, Mircea Dumitru, and several other members of the President’s office, the government and academia in Romania. The country officially became a CERN Member State on 17 July 2016, after 25 years of collaboration between the...

  16. Long-term exposure to abnormal glucose levels alters drug metabolism pathways and insulin sensitivity in primary human hepatocytes

    Science.gov (United States)

    Davidson, Matthew D.; Ballinger, Kimberly R.; Khetani, Salman R.

    2016-06-01

    Hyperglycemia in type 2 diabetes mellitus has been linked to non-alcoholic fatty liver disease, which can progress to inflammation, fibrosis/cirrhosis, and hepatocellular carcinoma. Understanding how chronic hyperglycemia affects primary human hepatocytes (PHHs) can facilitate the development of therapeutics for these diseases. Conversely, elucidating the effects of hypoglycemia on PHHs may provide insights into how the liver adapts to fasting, adverse diabetes drug reactions, and cancer. In contrast to declining PHH monocultures, micropatterned co-cultures (MPCCs) of PHHs and 3T3-J2 murine embryonic fibroblasts maintain insulin-sensitive glucose metabolism for several weeks. Here, we exposed MPCCs to hypo-, normo- and hyperglycemic culture media for ~3 weeks. While albumin and urea secretion were not affected by glucose level, hypoglycemic MPCCs upregulated CYP3A4 enzyme activity as compared to other glycemic states. In contrast, hyperglycemic MPCCs displayed significant hepatic lipid accumulation in the presence of insulin, while also showing decreased sensitivity to insulin-mediated inhibition of glucose output relative to a normoglycemic control. In conclusion, we show for the first time that PHHs exposed to hypo- and hyperglycemia can remain highly functional, but display increased CYP3A4 activity and selective insulin resistance, respectively. In the future, MPCCs under glycemic states can aid in novel drug discovery and mechanistic investigations.

  17. Disturbance of gene expression in primary human hepatocytes by hepatotoxic pyrrolizidine alkaloids: A whole genome transcriptome analysis.

    Science.gov (United States)

    Luckert, Claudia; Hessel, Stefanie; Lenze, Dido; Lampen, Alfonso

    2015-10-01

    1,2-unsaturated pyrrolizidine alkaloids (PA) are plant metabolites predominantly occurring in the plant families Asteraceae and Boraginaceae. Acute and chronic PA poisoning causes severe hepatotoxicity. So far, the molecular mechanisms of PA toxicity are not well understood. To analyze its mode of action, primary human hepatocytes were exposed to a non-cytotoxic dose of 100 μM of four structurally different PA: echimidine, heliotrine, senecionine, senkirkine. Changes in mRNA expression were analyzed by a whole genome microarray. Employing cut-off values with a |fold change| of 2 and a q-value of 0.01, data analysis revealed numerous changes in gene expression. In total, 4556, 1806, 3406 and 8623 genes were regulated by echimidine, heliotrine, senecione and senkirkine, respectively. 1304 genes were identified as commonly regulated. PA affected pathways related to cell cycle regulation, cell death and cancer development. The transcription factors TP53, MYC, NFκB and NUPR1 were predicted to be activated upon PA treatment. Furthermore, gene expression data showed a considerable interference with lipid metabolism and bile acid flow. The associated transcription factors FXR, LXR, SREBF1/2, and PPARα/γ/δ were predicted to be inhibited. In conclusion, though structurally different, all four PA significantly regulated a great number of genes in common. This proposes similar molecular mechanisms, although the extent seems to differ between the analyzed PA as reflected by the potential hepatotoxicity and individual PA structure. Copyright © 2015 Elsevier Ltd. All rights reserved.

  18. Unscheduled DNA synthesis in human hair follicles after in vitro exposure to 11 chemicals: comparison with unscheduled DNA synthesis in rat hepatocytes.

    Science.gov (United States)

    van Erp, Y H; Koopmans, M J; Heirbaut, P R; van der Hoeven, J C; Weterings, P J

    1992-06-01

    A new method is described to investigate unscheduled DNA synthesis (UDS) in human tissue after exposure in vitro: the human hair follicle. A histological technique was applied to assess cytotoxicity and UDS in the same hair follicle cells. UDS induction was examined for 11 chemicals and the results were compared with literature findings for UDS in rat hepatocytes. Most chemicals inducing UDS in rat hepatocytes raised DNA repair at comparable concentrations in the hair follicle. However, 1 of 9 chemicals that gave a positive response in the rat hepatocyte UDS test, 2-acetylaminofluorene, failed to induce DNA repair in the hair follicle. Metabolizing potential of hair follicle cells was shown in experiments with indirectly acting compounds, i.e., benzo[a]pyrene, 7,12-dimethylbenz[a]anthracene and dimethylnitrosamine. The results support the conclusion that the test in its present state is valuable as a screening assay for the detection of unscheduled DNA synthesis. Moreover, the use of human tissues may result in a better extrapolation to man.

  19. Lung fibroblasts accelerate wound closure in human alveolar epithelial cells through hepatocyte growth factor/c-Met signaling.

    Science.gov (United States)

    Ito, Yoko; Correll, Kelly; Schiel, John A; Finigan, Jay H; Prekeris, Rytis; Mason, Robert J

    2014-07-01

    There are 190,600 cases of acute lung injury/acute respiratory distress syndrome (ALI/ARDS) each year in the United States, and the incidence and mortality of ALI/ARDS increase dramatically with age. Patients with ALI/ARDS have alveolar epithelial injury, which may be worsened by high-pressure mechanical ventilation. Alveolar type II (ATII) cells are the progenitor cells for the alveolar epithelium and are required to reestablish the alveolar epithelium during the recovery process from ALI/ARDS. Lung fibroblasts (FBs) migrate and proliferate early after lung injury and likely are an important source of growth factors for epithelial repair. However, how lung FBs affect epithelial wound healing in the human adult lung has not been investigated in detail. Hepatocyte growth factor (HGF) is known to be released mainly from FBs and to stimulate both migration and proliferation of primary rat ATII cells. HGF is also increased in lung tissue, bronchoalveolar lavage fluid, and serum in patients with ALI/ARDS. Therefore, we hypothesized that HGF secreted by FBs would enhance wound closure in alveolar epithelial cells (AECs). Wound closure was measured using a scratch wound-healing assay in primary human AEC monolayers and in a coculture system with FBs. We found that wound closure was accelerated by FBs mainly through HGF/c-Met signaling. HGF also restored impaired wound healing in AECs from the elderly subjects and after exposure to cyclic stretch. We conclude that HGF is the critical factor released from FBs to close wounds in human AEC monolayers and suggest that HGF is a potential strategy for hastening alveolar repair in patients with ALI/ARDS. Copyright © 2014 the American Physiological Society.

  20. Hepatic esterase activity is increased in hepatocyte-like cells derived from human embryonic stem cells using a 3D culture system.

    Science.gov (United States)

    Choi, Young-Jun; Kim, Hyemin; Kim, Ji-Woo; Yoon, Seokjoo; Park, Han-Jin

    2018-05-01

    The aim of the study is to generate a spherical three-dimensional (3D) aggregate of hepatocyte-like cells (HLCs) differentiated from human embryonic stem cells and to investigate the effect of the 3D environment on hepatic maturation and drug metabolism. Quantitative real-time PCR analysis indicated that gene expression of mature hepatocyte markers, drug-metabolizing enzymes, and hepatic transporters was significantly higher in HLCs cultured in the 3D system than in those cultured in a two-dimensional system (p formation, were increased in HLCs cultured in the 3D system. In particular, 3D spheroidal culture increased expression of CES1 and BCHE, which encode hepatic esterases (p 3D spheroidal culture enhances the maturation and drug metabolism of stem cell-derived HLCs, and this may help to optimize hepatic differentiation protocols for hepatotoxicity testing.

  1. Antioxidative and apoptotic properties of polyphenolic extracts from edible part of artichoke (Cynara scolymus L.) on cultured rat hepatocytes and on human hepatoma cells.

    Science.gov (United States)

    Miccadei, Stefania; Di Venere, Donato; Cardinali, Angela; Romano, Ferdinando; Durazzo, Alessandra; Foddai, Maria Stella; Fraioli, Rocco; Mobarhan, Sohrab; Maiani, Giuseppe

    2008-01-01

    Cultured rat hepatocytes and human hepatoma HepG2 cells were used to evaluate the hepatoprotective properties of polyphenolic extracts from the edible part of artichoke (AE). The hepatocytes were exposed to H2O2generated in situ by glucose oxidase and were treated with either AE, or pure chlorogenic acid (ChA) or with the well known antioxidant, N, N'-diphenyl-p-phenilenediamine (DPPD). Addition of glucose oxidase to the culture medium caused depletion of intracellular glutathione (GSH) content, accumulation of malondialdehyde (MDA) in the cultures, as a lipid peroxidation indicator, and cell death. These results demonstrated that AE protected cells from the oxidative stress caused by glucose oxidase, comparable to DPPD. Furthermore, AE, as well as ChA, prevented the loss of total GSH and the accumulation of MDA. Treatment of HepG2 cells for 24 h with AE reduced cell viability in a dose-dependent manner, however, ChA had no prominent effects on the cell death rate. Similarly, AE rather than ChA induced apoptosis, measured by flow cytometric analysis of annexin and by activation of caspase-3, in HepG2 cells. Our findings indicate that AE had a marked antioxidative potential that protects hepatocytes from an oxidative stress. Furthermore, AE reduced cell viability and had an apoptotic activity on a human liver cancer cell line.

  2. Differential effects of omeprazole and lansoprazole enantiomers on aryl hydrocarbon receptor in human hepatocytes and cell lines.

    Science.gov (United States)

    Novotna, Aneta; Srovnalova, Alzbeta; Svecarova, Michaela; Korhonova, Martina; Bartonkova, Iveta; Dvorak, Zdenek

    2014-01-01

    Proton pump inhibitors omeprazole and lansoprazole contain chiral sulfur atom and they are administered as a racemate, i.e. equimolar mixture of S- and R-enantiomers. The enantiopure drugs esomeprazole and dexlansoprazole have been developed and introduced to clinical practice due to their improved clinical and therapeutic properties. Since omeprazole and lansoprazole are activators of aryl hydrocarbon receptor (AhR) and inducers of CYP1A genes, we examined their enantiospecific effects on AhR-CYP1A pathway in human cancer cells and primary human hepatocytes. We performed gene reporter assays for transcriptional activity of AhR, RT-PCR analyses for CYP1A1/2 mRNAs, western blots for CYP1A1/2 proteins and EROD assay for CYP1A1/2 catalytic activity. Lansoprazole and omeprazole enantiomers displayed differential effects on AhR-CYP1A1/2 pathway. In general, S-enantiomers were stronger activators of AhR and inducers of CYP1A genes as compared to R-enantiomers in lower concentrations, i.e. 1-10 µM for lansoprazole and 10-100 µM for omeprazole. In contrast, R-enantiomers were stronger AhR activators and CYP1A inducers than S-enantiomers in higher concentrations, i.e. 100 µM for lansoprazole and 250 µM for omeprazole. In conclusion, we provide the first evidence of enantiospecific effects of omeprazole and lansoprazole on AhR signaling pathway.

  3. Study on differential transcriptional profile in human hepatocyte exposed to different doses γ ray

    International Nuclear Information System (INIS)

    Li Jianguo; Wen Jianhua; Duan Zhikai; Tian Yu; Wang Fang; Zuo Yahui

    2009-01-01

    The study analyzed the differential transcriptional profile of normal human hepatic cell and human hepatic cell radiated with three different doses (0.5 Gy, 2 Gy, 4 Gy γ ray) by gene chip technique. The results showed that the whole differentially expressed genes of three different doses have 284 in 14112 human genes analyzed, in which 261 genes were up-regulated and 23 genes were down-regulated. These genes are mainly associated with interferon receptor, mitochondrial regulation, homo sapiens hepatitis A virus cellular receptor, cell cycle regulation, kinase and zinc finger protein etc. RT-PCR results indicated that up-regulated expression of gene HAVcr-1, HAVcr-2, MFTC, MOAP1 and down-regulated expression of gene TRIP12, DCN are consistent with gene chip data. (authors)

  4. Study of differential gene expression in human hepatocyte exposed to 50 cGy γ ray

    International Nuclear Information System (INIS)

    Wen Jianhua; Li Jianguo; Tian Huancheng; Li Yanling; Wang Xiaoli; Zuo Yanhui

    2008-01-01

    The study analyzed the differential transcriptional profile of the normal human hepatic cell and the human hepatic cell radiated with 50 cGy γ ray by gene chip technique. The results showed that there were 614 differentially expressed genes among 14 112 human genes analyzed, in which 521 genes were up-regulated and 93 genes down-regulated. These genes are associated with mitochondrial regulation, homo sapiens hepatitis A virus cellular receptor, tumor necrosis factor, cell cycle regulation, kinase and zinc finger protein etc. RT-PCR results indicated that up-regulated expression of gene HAVcr-1, HAVcr-2, MFTC, MOAP1 and down-regulated expression of gene TRIP12, DCN were consistent with gene chip data. (authors)

  5. Multiplicity of nuclear receptor activation by PFOA and PFOS in primary human and rodent hepatocytes

    International Nuclear Information System (INIS)

    Bjork, J.A.; Butenhoff, J.L.; Wallace, K.B.

    2011-01-01

    Perfluorooctanoate (PFOA) and perfluorooctanesulfonate (PFOS) are surface active fluorochemicals that, due to their exceptional stability to degradation, are persistent in the environment. Both PFOA and PFOS are eliminated slowly in humans, with geometric mean serum elimination half-lives estimated at 3.5 and 4.8 years, respectively. The biological activity of PFOA and PFOS in rodents is attributed primarily to transactivation of the nuclear receptor peroxisome proliferator activated receptor alpha (PPARA), which is an important regulator of lipid and carbohydrate metabolism. However, there are significant species-specific differences in the response to PFOA and PFOS exposure; non-rodent species, including humans, are refractory to several but not all of these effects. Many of the metabolic effects have been attributed to the activation of PPARA; however, recent studies using PPARα knockout mice demonstrate residual PPARA-independent effects, some of which may involve the activation of alternate nuclear receptors, including NR1I2 (PXR), NR1I3 (CAR), NR1H3 (LXRA), and NR1H4 (FXR). The objective of this investigation was to characterize the activation of multiple nuclear receptors and modulation of metabolic pathways associated with exposure to PFOA and PFOS, and to compare and contrast the effects between rat and human primary liver cells using quantitative reverse transcription PCR (RT-qPCR). Our results demonstrate that multiple nuclear receptors participate in the metabolic response to PFOA and PFOS exposure resulting in a substantial shift from carbohydrate metabolism to fatty acid oxidation and hepatic triglyceride accumulation in rat liver cells. This shift in intermediary metabolism was more pronounced for PFOA than PFOS. Furthermore, while there is some similarity in the activation of metabolic pathways between rat and humans, particularly in PPARA regulated responses; the changes in primary human cells were more subtle and possibly reflect an adaptive

  6. Leflunomide or A77 1726 protect from acetaminophen-induced cell injury through inhibition of JNK-mediated mitochondrial permeability transition in immortalized human hepatocytes

    International Nuclear Information System (INIS)

    Latchoumycandane, Calivarathan; Seah, Quee Ming; Tan, Rachel C.H.; Sattabongkot, Jetsumon; Beerheide, Walter; Boelsterli, Urs A.

    2006-01-01

    Leflunomide, a disease-modifying anti-rheumatic drug, protects against T-cell-mediated liver injury by poorly understood mechanisms. The active metabolite of leflunomide, A77 1726 (teriflunomide) has been shown to inhibit stress-activated protein kinases (JNK pathway), which are key regulators of mitochondria-mediated cell death. Therefore, we hypothesized that leflunomide may protect from drugs that induce the mitochondrial permeability transition (mPT) by blocking the JNK signaling pathway. To this end, we exposed cultured immortalized human hepatocytes (HC-04) to the standard protoxicant drug acetaminophen (APAP), which induces CsA-sensitive mPT-mediated cell death. We determined the effects of leflunomide on the extent of APAP-induced hepatocyte injury and the upstream JNK-mediated mitochondrial signaling pathways. We found that leflunomide or A77 1726 concentration-dependently protected hepatocytes from APAP (1 mM)-induced mitochondrial permeabilization and lethal cell injury. This was not due to proximal inhibition of CYP-catalyzed APAP bioactivation to its thiol-reactive metabolite. Instead, we demonstrate that leflunomide (20 μM) inhibited the APAP-induced early (3 h) activation (phosphorylation) of JNK1/2, thus inhibiting phosphorylation of the anti-apoptotic protein Bcl-2 and preventing P-Bcl-2-mediated induction of the mPT. This greatly attenuated mitochondrial cytochrome c release, which we used as a marker for mitochondrial permeabilization. The specific JNK2 inhibitor SP600125 similarly protected from APAP-induced cell death. In conclusion, these findings are consistent with our hypothesis that leflunomide protects from protoxicant-induced hepatocyte injury by inhibiting JNK signaling and preventing mPT induction

  7. 76 FR 35087 - Flag Day and National Flag Week, 2011

    Science.gov (United States)

    2011-06-15

    ... flag with thirteen stripes and thirteen stars to represent our Nation, one star for each of our founding colonies. The stars were set upon a blue field, in the words of the Congress's resolution, ``representing a new constellation'' in the night sky. What was then a fledgling democracy has flourished and...

  8. Strategies to distinguish new synthetic cannabinoid FUBIMINA (BIM-2201) intake from its isomer THJ-2201: metabolism of FUBIMINA in human hepatocytes.

    Science.gov (United States)

    Diao, Xingxing; Scheidweiler, Karl B; Wohlfarth, Ariane; Zhu, Mingshe; Pang, Shaokun; Huestis, Marilyn A

    Since 2013, a new drugs-of-abuse trend attempts to bypass drug legislation by marketing isomers of scheduled synthetic cannabinoids (SCs), e.g., FUBIMINA (BIM-2201) and THJ-2201. It is much more challenging to confirm a specific isomer's intake and distinguish it from its structural analog because the isomers and their major metabolites usually have identical molecular weights and display the same product ions. Here, we investigated isomers FUBIMINA and THJ-2201 and propose strategies to distinguish their consumption. THJ-2201 was scheduled in the US, Japan, and Europe; however, FUBIMINA is easily available on the Internet. We previously investigated THJ-2201 metabolism in human hepatocytes, but human FUBIMINA metabolism is unknown. We aim to characterize FUBIMINA metabolism in human hepatocytes, recommend optimal metabolites to confirm its consumption, and propose strategies to distinguish between intakes of FUBIMINA and THJ-2201. FUBIMINA (10 μM) was incubated in human hepatocytes for 3 h, and metabolites were characterized with high-resolution mass spectrometry (HR-MS). We identified 35 metabolites generated by oxidative defluorination, further carboxylation, hydroxylation, dihydrodiol formation, glucuronidation, and their combinations. We recommend 5'-OH-BIM-018 (M34), BIM-018 pentanoic acid (M33), and BIM-018 pentanoic acid dihydrodiol (M7) as FUBIMINA specific metabolites. THJ-2201 produced specific metabolite markers 5'-OH-THJ-018 (F26), THJ-018 pentanoic acid (F25), and hydroxylated THJ-2201 (F13). Optimized chromatographic conditions to achieve different retention times and careful selection of specific product ion spectra enabled differentiation of isomeric metabolites, in this case FUBIMINA from THJ-2201. Our HR-MS approach should be applicable for differentiating future isomeric SCs, which is especially important when different isomers have different legal status.

  9. Oleate ameliorates palmitate-induced reduction of NAMPT activity and NAD levels in primary human hepatocytes and hepatocarcinoma cells.

    Science.gov (United States)

    Penke, Melanie; Schuster, Susanne; Gorski, Theresa; Gebhardt, Rolf; Kiess, Wieland; Garten, Antje

    2017-10-03

    Nicotinamide phosphoribosyltransferase (NAMPT) and nicotinamide adenine dinucleotide (NAD) levels are crucial for liver function. The saturated fatty acid palmitate and the unsaturated fatty acid oleate are the main free fatty acids in adipose tissue and human diet. We asked how these fatty acids affect cell survival, NAMPT and NAD levels in HepG2 cells and primary human hepatocytes. HepG2 cells were stimulated with palmitate (0.5mM), oleate (1mM) or a combination of both (0.5mM/1mM) as well as nicotinamide mononucleotide (NMN) (0.5 mM) or the specific NAMPT inhibitor FK866 (10nM). Cell survival was measured by WST-1 assay and Annexin V/propidium iodide staining. NAD levels were determined by NAD/NADH Assay or HPLC. Protein and mRNA levels were analysed by Western blot analyses and qPCR, respectively. NAMPT enzyme activity was measured using radiolabelled 14 C-nicotinamide. Lipids were stained by Oil red O staining. Palmitate significantly reduced cell survival and induced apoptosis at physiological doses. NAMPT activity and NAD levels significantly declined after 48h of palmitate. In addition, NAMPT mRNA expression was enhanced which was associated with increased NAMPT release into the supernatant, while intracellular NAMPT protein levels remained stable. Oleate alone did not influence cell viability and NAMPT activity but ameliorated the negative impact of palmitate on cell survival, NAMPT activity and NAD levels, as well as the increased NAMPT mRNA expression and secretion. NMN was able to normalize intracellular NAD levels but did not ameliorate cell viability after co-stimulation with palmitate. FK866, a specific NAMPT inhibitor did not influence lipid accumulation after oleate-treatment. Palmitate targets NAMPT activity with a consequent cellular depletion of NAD. Oleate protects from palmitate-induced apoptosis and variation of NAMPT and NAD levels. Palmitate-induced cell stress leads to an increase of NAMPT mRNA and accumulation in the supernatant. However

  10. Biguanide-induced mitochondrial dysfunction yields increased lactate production and cytotoxicity of aerobically-poised HepG2 cells and human hepatocytes in vitro

    International Nuclear Information System (INIS)

    Dykens, James A.; Jamieson, Joseph; Marroquin, Lisa; Nadanaciva, Sashi; Billis, Puja A.; Will, Yvonne

    2008-01-01

    As a class, the biguanides induce lactic acidosis, a hallmark of mitochondrial impairment. To assess potential mitochondrial impairment, we evaluated the effects of metformin, buformin and phenformin on: 1) viability of HepG2 cells grown in galactose, 2) respiration by isolated mitochondria, 3) metabolic poise of HepG2 and primary human hepatocytes, 4) activities of immunocaptured respiratory complexes, and 5) mitochondrial membrane potential and redox status in primary human hepatocytes. Phenformin was the most cytotoxic of the three with buformin showing moderate toxicity, and metformin toxicity only at mM concentrations. Importantly, HepG2 cells grown in galactose are markedly more susceptible to biguanide toxicity compared to cells grown in glucose, indicating mitochondrial toxicity as a primary mode of action. The same rank order of potency was observed for isolated mitochondrial respiration where preincubation (40 min) exacerbated respiratory impairment, and was required to reveal inhibition by metformin, suggesting intramitochondrial bio-accumulation. Metabolic profiling of intact cells corroborated respiratory inhibition, but also revealed compensatory increases in lactate production from accelerated glycolysis. High (mM) concentrations of the drugs were needed to inhibit immunocaptured respiratory complexes, supporting the contention that bioaccumulation is involved. The same rank order was found when monitoring mitochondrial membrane potential, ROS production, and glutathione levels in primary human hepatocytes. In toto, these data indicate that biguanide-induced lactic acidosis can be attributed to acceleration of glycolysis in response to mitochondrial impairment. Indeed, the desired clinical outcome, viz., decreased blood glucose, could be due to increased glucose uptake and glycolytic flux in response to drug-induced mitochondrial dysfunction

  11. The International Atomic Energy Agency Flag Code

    International Nuclear Information System (INIS)

    1999-01-01

    The document reproduces the text of the IAEA Flag Code which was promulgated by the Director General on 15 September 1999, pursuant to the decision of the Board of Governors on 10 June 1999 to adopt an Agency flag as described in document GOV/1999/41 and its use in accordance with a flag code to be promulgated by the Director General

  12. The International Atomic Energy Agency Flag Code

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-11-17

    The document reproduces the text of the IAEA Flag Code which was promulgated by the Director General on 15 September 1999, pursuant to the decision of the Board of Governors on 10 June 1999 to adopt an Agency flag as described in document GOV/1999/41 and its use in accordance with a flag code to be promulgated by the Director General.

  13. Factor VIIa binding and internalization in hepatocytes

    DEFF Research Database (Denmark)

    Hjortoe, G; Sorensen, B B; Petersen, L C

    2005-01-01

    The liver is believed to be the primary clearance organ for coagulation proteases, including factor VIIa (FVIIa). However, at present, clearance mechanisms for FVIIa in liver are unknown. To obtain information on the FVIIa clearance mechanism, we investigated the binding and internalization...... no effect. HEPG2 cells internalized FVIIa with a rate of 10 fmol 10(-5) cells h(-1). In contrast to HEPG2 cells, FVIIa binding to primary rat hepatocytes was completely independent of TF, and excess unlabeled FVIIa partly reduced the binding of 125I-FVIIa to rat hepatocytes. Further, compared with HEPG2...... cells, three- to fourfold more FVIIa bound to rat primary hepatocytes, and the bound FVIIa was internalized at a faster rate. Similar FVIIa binding and internalization profiles were observed in primary human hepatocytes. Plasma inhibitors had no effect on FVIIa binding and internalization in hepatocytes...

  14. The right choice of antihypertensives protects primary human hepatocytes from ethanol- and recombinant human TGF-β1-induced cellular damage

    Directory of Open Access Journals (Sweden)

    Ehnert S

    2013-03-01

    Full Text Available Sabrina Ehnert,1 Teresa Lukoschek,2 Anastasia Bachmann,2 Juan J Martínez Sánchez,1 Georg Damm,3 Natascha C Nussler,4 Stefan Pscherer,5 Ulrich Stöckle,1 Steven Dooley,2 Sebastian Mueller,6 Andreas K Nussler11Eberhard Karls Universität Tübingen, BG Trauma Center, Tübingen, Germany; 2Mol Hepatology - Alcohol Associated Diseases, Department of Medicine II, Medical Faculty, Mannheim, Germany; 3Department of General, Visceral, and Transplantation Surgery, Charité University Medicine, Berlin, Germany; 4Clinic for General, Visceral, Endocrine Surgery and Coloproctology, Clinic Neuperlach, Städtisches Klinikum München GmbH, Munich, Germany; 5Department of Diabetology, Klinikum Traunstein, Kliniken Südostbayern AG, Traunstein, Germany; 6Department of Medicine, Salem Medical Center, Ruprecht-Karls-Universität, Heidelberg, GermanyBackground: Patients with alcoholic liver disease (ALD often suffer from high blood pressure and rely on antihypertensive treatment. Certain antihypertensives may influence progression of chronic liver disease. Therefore, the aim of this study is to investigate the impact of the commonly used antihypertensives amlodipine, captopril, furosemide, metoprolol, propranolol, and spironolactone on alcohol-induced damage toward human hepatocytes (hHeps.Methods: hHeps were isolated by collagenase perfusion. Reactive oxygen species (ROS were measured by fluorescence-based assays. Cellular damage was determined by lactate-dehydrogenase (LDH-leakage. Expression analysis was performed by reverse-transcription polymerase chain reaction and Western blot. Transforming growth factor (TGF-β signaling was investigated by a Smad3/4-responsive luciferase-reporter assay.Results: Ethanol and TGF-β1 rapidly increased ROS in hHeps, causing a release of 40%–60% of total LDH after 72 hours. All antihypertensives dose dependently reduced ethanol-mediated oxidative stress and cellular damage. Similar results were observed for TGF-β1-dependent

  15. Obeticholic acid, a selective farnesoid X receptor agonist, regulates bile acid homeostasis in sandwich-cultured human hepatocytes.

    Science.gov (United States)

    Zhang, Yuanyuan; Jackson, Jonathan P; St Claire, Robert L; Freeman, Kimberly; Brouwer, Kenneth R; Edwards, Jeffrey E

    2017-08-01

    Farnesoid X receptor (FXR) is a master regulator of bile acid homeostasis through transcriptional regulation of genes involved in bile acid synthesis and cellular membrane transport. Impairment of bile acid efflux due to cholangiopathies results in chronic cholestasis leading to abnormal elevation of intrahepatic and systemic bile acid levels. Obeticholic acid (OCA) is a potent and selective FXR agonist that is 100-fold more potent than the endogenous ligand chenodeoxycholic acid (CDCA). The effects of OCA on genes involved in bile acid homeostasis were investigated using sandwich-cultured human hepatocytes. Gene expression was determined by measuring mRNA levels. OCA dose-dependently increased fibroblast growth factor-19 (FGF-19) and small heterodimer partner (SHP) which, in turn, suppress mRNA levels of cholesterol 7-alpha-hydroxylase (CYP7A1), the rate-limiting enzyme for de novo synthesis of bile acids. Consistent with CYP7A1 suppression, total bile acid content was decreased by OCA (1 μmol/L) to 42.7 ± 20.5% relative to control. In addition to suppressing de novo bile acids synthesis, OCA significantly increased the mRNA levels of transporters involved in bile acid homeostasis. The bile salt excretory pump (BSEP), a canalicular efflux transporter, increased by 6.4 ± 0.8-fold, and the basolateral efflux heterodimer transporters, organic solute transporter α (OST α ) and OST β increased by 6.4 ± 0.2-fold and 42.9 ± 7.9-fold, respectively. The upregulation of BSEP and OST α and OST β, by OCA reduced the intracellular concentrations of d 8 -TCA, a model bile acid, to 39.6 ± 8.9% relative to control. These data demonstrate that OCA does suppress bile acid synthesis and reduce hepatocellular bile acid levels, supporting the use of OCA to treat bile acid-induced toxicity observed in cholestatic diseases. © 2017 Intercept Pharmaceuticals. Pharmacology Research & Perspectives published by John Wiley & Sons Ltd, British Pharmacological Society and

  16. Effects of L-carnitine against oxidative stress in human hepatocytes: involvement of peroxisome proliferator-activated receptor alpha

    Directory of Open Access Journals (Sweden)

    Li Jin-Lian

    2012-03-01

    Full Text Available Abstract Background Excessive oxidative stress and lipid peroxidation have been demonstrated to play important roles in the production of liver damage. L-carnitine is a natural substance and acts as a carrier for fatty acids across the inner mitochondrial membrane for subsequent beta-oxidation. It is also an antioxidant that reduces metabolic stress in the cells. Recent years L-carnitine has been proposed for treatment of various kinds of disease, including liver injury. This study was conducted to evaluate the protective effect of L-carnitine against hydrogen peroxide (H2O2-induced cytotoxicity in a normal human hepatocyte cell line, HL7702. Methods We analyzed cytotoxicity using MTT assay and lactate dehydrogenase (LDH release. Antioxidant activity and lipid peroxidation were estimated by reactive oxygen species (ROS levels, activities and protein expressions of superoxide dismutase (SOD and catalase (CAT, and malondialdehyde (MDA formation. Expressions of peroxisome proliferator-activated receptor (PPAR-alpha and its target genes were evaluated by RT-PCR or western blotting. The role of PPAR-alpha in L-carnitine-enhanced expression of SOD and CAT was also explored. Statistical analysis was performed by a one-way analysis of variance, and its significance was assessed by Dennett's post-hoc test. Results The results showed that L-carnitine protected HL7702 cells against cytotoxity induced by H2O2. This protection was related to the scavenging of ROS, the promotion of SOD and CAT activity and expression, and the prevention of lipid peroxidation in cultured HL7702 cells. The decreased expressions of PPAR-alpha, carnitine palmitoyl transferase 1 (CPT1 and acyl-CoA oxidase (ACOX induced by H2O2 can be attenuated by L-carnitine. Besides, we also found that the promotion of SOD and CAT protein expression induced by L-carnitine was blocked by PPAR-alpha inhibitor MK886. Conclusions Taken together, our findings suggest that L-carnitine could protect HL

  17. Monoacylglycerol O-acyltransferase 1 is regulated by peroxisome proliferator-activated receptor γ in human hepatocytes and increases lipid accumulation

    International Nuclear Information System (INIS)

    Yu, Jung Hwan; Lee, Yoo Jeong; Kim, Hyo Jung; Choi, Hyeonjin; Choi, Yoonjeong; Seok, Jo Woon; Kim, Jae-woo

    2015-01-01

    Monoacylglycerol O-acyltransferase (MGAT) is an enzyme that is involved in triglyceride synthesis by catalyzing the formation of diacylglycerol from monoacylglycerol and fatty acyl CoAs. Recently, we reported that MGAT1 has a critical role in hepatic TG accumulation and that its suppression ameliorates hepatic steatosis in a mouse model. However, the function of MGAT enzymes in hepatic lipid accumulation has not been investigated in humans. Unlike in rodents, MGAT3 as well as MGAT1 and MGAT2 are present in humans. In this study, we evaluated the differences between MGAT subtypes and their association with peroxisome proliferator-activated receptor γ (PPARγ), a regulator of mouse MGAT1 expression. In human primary hepatocytes, basal expression of MGAT1 was lower than that of MGAT2 or MGAT3, but was strongly induced by PPARγ overexpression. A luciferase assay as well as an electromobility shift assay revealed that human MGAT1 promoter activity is driven by PPARγ by direct binding to at least two regions of the promoter in 293T and HepG2 cells. Moreover, siRNA-mediated suppression of MGAT1 expression significantly attenuated lipid accumulation by PPARγ overexpression in HepG2 cells, as evidenced by oil-red-O staining. These results suggest that human MGAT1 has an important role in fatty liver formation as a target gene of PPARγ, and blocking MGAT1 activity could be an efficient therapeutic way to reduce nonalcoholic fatty liver diseases in humans. - Highlights: • PPARγ promotes MGAT1 expression in human primary hepatocytes. • PPARγ directly regulates MGAT1 promoter activity. • Human MGAT1 promoter has at least two PPARγ-binding elements. • Inhibition of MGAT1 expression attenuates hepatic lipid accumulation in humans

  18. Monoacylglycerol O-acyltransferase 1 is regulated by peroxisome proliferator-activated receptor γ in human hepatocytes and increases lipid accumulation

    Energy Technology Data Exchange (ETDEWEB)

    Yu, Jung Hwan [Department of Biochemistry and Molecular Biology, Integrated Genomic Research Center for Metabolic Regulation, Institute of Genetic Science, Yonsei University College of Medicine, Seoul 120-752 (Korea, Republic of); Brain Korea 21 PLUS Project for Medical Science, Yonsei University, Seoul 120-752 (Korea, Republic of); Lee, Yoo Jeong [Division of Metabolic Disease, Center for Biomedical Sciences, National Institutes of Health, Cheongwon-gun, Chungbuk 363-951 (Korea, Republic of); Kim, Hyo Jung; Choi, Hyeonjin [Department of Biochemistry and Molecular Biology, Integrated Genomic Research Center for Metabolic Regulation, Institute of Genetic Science, Yonsei University College of Medicine, Seoul 120-752 (Korea, Republic of); Choi, Yoonjeong; Seok, Jo Woon [Department of Biochemistry and Molecular Biology, Integrated Genomic Research Center for Metabolic Regulation, Institute of Genetic Science, Yonsei University College of Medicine, Seoul 120-752 (Korea, Republic of); Brain Korea 21 PLUS Project for Medical Science, Yonsei University, Seoul 120-752 (Korea, Republic of); Kim, Jae-woo, E-mail: japol13@yuhs.ac [Department of Biochemistry and Molecular Biology, Integrated Genomic Research Center for Metabolic Regulation, Institute of Genetic Science, Yonsei University College of Medicine, Seoul 120-752 (Korea, Republic of); Brain Korea 21 PLUS Project for Medical Science, Yonsei University, Seoul 120-752 (Korea, Republic of); Severance Biomedical Science Institute, Yonsei University College of Medicine, Seoul 120-752 (Korea, Republic of)

    2015-05-08

    Monoacylglycerol O-acyltransferase (MGAT) is an enzyme that is involved in triglyceride synthesis by catalyzing the formation of diacylglycerol from monoacylglycerol and fatty acyl CoAs. Recently, we reported that MGAT1 has a critical role in hepatic TG accumulation and that its suppression ameliorates hepatic steatosis in a mouse model. However, the function of MGAT enzymes in hepatic lipid accumulation has not been investigated in humans. Unlike in rodents, MGAT3 as well as MGAT1 and MGAT2 are present in humans. In this study, we evaluated the differences between MGAT subtypes and their association with peroxisome proliferator-activated receptor γ (PPARγ), a regulator of mouse MGAT1 expression. In human primary hepatocytes, basal expression of MGAT1 was lower than that of MGAT2 or MGAT3, but was strongly induced by PPARγ overexpression. A luciferase assay as well as an electromobility shift assay revealed that human MGAT1 promoter activity is driven by PPARγ by direct binding to at least two regions of the promoter in 293T and HepG2 cells. Moreover, siRNA-mediated suppression of MGAT1 expression significantly attenuated lipid accumulation by PPARγ overexpression in HepG2 cells, as evidenced by oil-red-O staining. These results suggest that human MGAT1 has an important role in fatty liver formation as a target gene of PPARγ, and blocking MGAT1 activity could be an efficient therapeutic way to reduce nonalcoholic fatty liver diseases in humans. - Highlights: • PPARγ promotes MGAT1 expression in human primary hepatocytes. • PPARγ directly regulates MGAT1 promoter activity. • Human MGAT1 promoter has at least two PPARγ-binding elements. • Inhibition of MGAT1 expression attenuates hepatic lipid accumulation in humans.

  19. FlagHouse Forum: You Say "Tomato"... and I Use a Communicator

    Science.gov (United States)

    Exceptional Parent, 2011

    2011-01-01

    This month's "FlagHouse Forum" focuses on how to choose the communicator best-suited to a child's special need. FlagHouse--a premier global supplier of resources for special needs, education, physical activity and recreation--is pleased to partner with "Exceptional Parent" to bring its readers this informational forum. Humans communicate with each…

  20. CYP Suppression in Human Hepatocytes by Monomethyl Auristatin E, the Payload in Brentuximab Vedotin (Adcetris®), is Associated with Microtubule Disruption.

    Science.gov (United States)

    Wolenski, Francis S; Xia, Cindy Q; Ma, Bingli; Han, Tae H; Shyu, Wen C; Balani, Suresh K

    2018-06-01

    Monomethyl auristatin E (MMAE), the toxin linked to CD30-specific monoclonal antibody of Adcetris ® (brentuximab vedotin), is a potent anti-microtubule agent. Brentuximab vedotin has been approved for the treatment of relapsed or refractory Hodgkin lymphoma and anaplastic large cell lymphoma. Cytochrome P450 (CYP) induction assessment of MMAE was conducted in human hepatocytes to assess DDI potentials and its translation to clinic. MMAE was incubated at 1-1000 nM with cultured primary human hepatocytes for 72 h, and CYP1A2, CYP2B6, and CYP3A4 mRNA expression was assessed by quantitative reverse transcription-polymerase chain reaction and CYP-specific probe substrate by liquid chromatography coupled with mass spectrometry, along with microtubule disruption by immunofluorescence staining using anti-β-tubulin antibody and imaging. MMAE up to 10 nM had no significant effect on CYP1A2, CYP2B6, and CYP3A4 mRNA expression and activity, whereas at higher concentrations of 100- and 1000-nM MMAE, the CYP mRNA expression and activity were diminished substantially. Further investigation showed that the degree of CYP suppression was paralleled by that of microtubule disruption by MMAE, as measured by increase in the number of β-tubulin-positive aggregates. At the clinical dose, the concentration of MMAE was 7 nM which did not show any significant CYP suppression or microtubule disruption in hepatocytes. MMAE was not a CYP inducer in human hepatocytes. However, it caused a concentration-dependent CYP mRNA suppression and activity. The CYP suppression was associated with microtubule disruption, supporting the reports that intact microtubule architecture is required for CYP regulations. The absence of CYP suppression and microtubule disruption in vitro at the clinical plasma concentrations of MMAE (< 10 nM) explains the lack of pharmacokinetic drug interaction between brentuximab vedotin and midazolam, a sensitive CYP3A substrate, reported in patients.

  1. Human extrahepatic portal vein obstruction correlates with decreased factor VII and protein C transcription but increased hepatocyte proliferation.

    Science.gov (United States)

    Chiu, Bill; Melin-Aldana, Hector; Superina, Riccardo A

    2007-10-01

    A 3-year-old girl developed extrahepatic portal vein obstruction (EHPVO) after a liver transplant. She had sequelae of portal hypertension that required another transplantation. The circumstances allowed for comparison of liver-dependent coagulation factor production between the second donor liver and the explanted liver with EHPVO. Liver samples from the explanted first graft and the second transplant were obtained. Fresh tissue was used to perform reverse transcription-polymerase chain reaction with primers against factors V, VII, as well as VIII, protein C, and paraffin-embedded sections for hepatocyte proliferation using Ki-67 antibody as well as for apoptosis using TUNEL assay. The transcription of factor VII and that of protein C were decreased in the explant as compared with the newly transplanted liver (factor VII, 77% of the donor; protein C, 88% of the donor). The transcription of factor V and that of factor VIII were unchanged. The explant had a greater percentage of proliferating hepatocytes than the new organ (0.85% +/- 0.75% vs 0.11% +/- 0.21%). The percentage of apoptotic cells was similar between the 2 livers (0.09% +/- 0.13% vs 0.09% +/- 0.13%). Idiopathic EHPVO is associated with a reduction in liver-dependent coagulation factor transcription and an increase in hepatocyte proliferation. Portal blood flow deprivation alters hepatic homeostasis and initiates mechanisms that attempt to restore liver-dependent coagulation factors.

  2. Human hepatocytes apoptosis induced by replication of hepatitis B virus subgenotypes F1b and F4: Role of basal core promoter and preCore mutations.

    Science.gov (United States)

    Elizalde, María Mercedes; Sevic, Ina; González López Ledesma, María Mora; Campos, Rodolfo Héctor; Barbini, Luciana; Flichman, Diego Martin

    2018-01-01

    In the context of pathogenesis of HBV infection, HBV genotypes and mutants have been shown to affect the natural course of chronic infection and treatment outcomes. In this work, we studied the induction of apoptosis by the replication of HBV subgenotypes F1b and F4, and the naturally occurring mutants BCP and preCore. Both subgenotypes F1b and F4 HBV genome transfections induced cell death by apoptosis in human hepatocytes. The BCPdm (A1762T/G1764A) and preCore (G1896A) mutants induced higher levels of apoptosis than the wt virus. This increase in apoptosis was not associated with the enhanced viral replication of the variants. HBV-mediated apoptosis was independent of viral subgenotypes, and associated with the modulation of members of the regulatory Bcl-2 family proteins expression in the mitochondrial apoptotic pathway. Finally, the apoptosis induction increase observed for the preCore mutants suggests that HBeAg might have an anti-apoptotic effect in human hepatocytes. Copyright © 2017 Elsevier Inc. All rights reserved.

  3. Three-dimensional polymer scaffolds for enhanced differentiation of human mesenchymal stem cells to hepatocyte-like cells: a comparative study.

    Science.gov (United States)

    Chitrangi, Swati; Nair, Prabha; Khanna, Aparna

    2017-08-01

    Stem cell-based tissue engineering has emerged as a promising avenue for the treatment of liver diseases and as drug metabolism and toxicity models in drug discovery and development. The in vitro simulation of a micro-environmental niche for hepatic differentiation remains elusive, due to lack of information about crucial factors for the stem cell niche. For generation of functional hepatocytes, an in vivo three-dimensional (3D) micro-environment and architecture should be reproduced. Towards this, we fabricated three scaffolds as dextran-gelatin (DG1), chitosan-hyaluronic acid (CH1) and gelatin-vinyl acetate (GEVAC). Hepatic differentiation of human umbilical cord-derived mesenchymal stem cells (hUC-MSCs) was induced by culturing hUC-MSCs on these scaffolds. The scaffolds support hepatic differentiation by mimicking the native extracellular matrix (ECM) micro-environment and architecture to facilitate 3D cell-cell and cell-matrix interactions. The expression of hepatic markers, glycogen storage, urea production, albumin secretion and cytochrome P450 (CYP450) activity indicated the hepatic differentiation of hUC-MSCs. The differentiated hUC-MSCs on the 3D scaffolds formed hepatospheroids (3D hepatocyte aggregates), as illustrated by scanning electron microscopy (SEM), confocal microscopy and cytoskeleton organization. It was observed that the 3D scaffolds supported improved cell morphology, expression of hepatic markers and metabolic activities, as compared to Matrigel-coated plates. To the best of our knowledge, this is the first report demonstrating the use of a well-characterized scaffold (GEVAC) for enhanced differentiation of hUC-MSCs to hepatocyte-like cells (HLCs). Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.

  4. Met-Independent Hepatocyte Growth Factor-mediated regulation of cell adhesion in human prostate cancer cells

    Directory of Open Access Journals (Sweden)

    Davis Rodney

    2006-07-01

    Full Text Available Abstract Background Prostate cancer cells communicate reciprocally with the stromal cells surrounding them, inside the prostate, and after metastasis, within the bone. Each tissue secretes factors for interpretation by the other. One stromally-derived factor, Hepatocyte Growth Factor (HGF, was found twenty years ago to regulate invasion and growth of carcinoma cells. Working with the LNCaP prostate cancer progression model, we found that these cells could respond to HGF stimulation, even in the absence of Met, the only known HGF receptor. The new HGF binding partner we find on the cell surface may help to clarify conflicts in the past literature about Met expression and HGF response in cancer cells. Methods We searched for Met or any HGF binding partner on the cells of the PC3 and LNCaP prostate cancer cell models, using HGF immobilized on agarose beads. By using mass spectrometry analyses and sequencing we have identified nucleolin protein as a novel HGF binding partner. Antibodies against nucleolin (or HGF were able to ameliorate the stimulatory effects of HGF on met-negative prostate cancer cells. Western blots, RT-PCR, and immunohistochemistry were used to assess nucleolin levels during prostate cancer progression in both LNCaP and PC3 models. Results We have identified HGF as a major signaling component of prostate stromal-conditioned media (SCM and have implicated the protein nucleolin in HGF signal reception by the LNCaP model prostate cancer cells. Antibodies that silence either HGF (in SCM or nucleolin (on the cell surfaces eliminate the adhesion-stimulatory effects of the SCM. Likewise, addition of purified HGF to control media mimics the action of SCM. C4-2, an LNCaP lineage-derived, androgen-independent human prostate cancer cell line, responds to HGF in a concentration-dependent manner by increasing its adhesion and reducing its migration on laminin substratum. These HGF effects are not due to shifts in the expression levels of

  5. Met-Independent Hepatocyte Growth Factor-mediated regulation of cell adhesion in human prostate cancer cells

    International Nuclear Information System (INIS)

    Tate, Amanda; Isotani, Shuji; Bradley, Michael J; Sikes, Robert A; Davis, Rodney; Chung, Leland WK; Edlund, Magnus

    2006-01-01

    Prostate cancer cells communicate reciprocally with the stromal cells surrounding them, inside the prostate, and after metastasis, within the bone. Each tissue secretes factors for interpretation by the other. One stromally-derived factor, Hepatocyte Growth Factor (HGF), was found twenty years ago to regulate invasion and growth of carcinoma cells. Working with the LNCaP prostate cancer progression model, we found that these cells could respond to HGF stimulation, even in the absence of Met, the only known HGF receptor. The new HGF binding partner we find on the cell surface may help to clarify conflicts in the past literature about Met expression and HGF response in cancer cells. We searched for Met or any HGF binding partner on the cells of the PC3 and LNCaP prostate cancer cell models, using HGF immobilized on agarose beads. By using mass spectrometry analyses and sequencing we have identified nucleolin protein as a novel HGF binding partner. Antibodies against nucleolin (or HGF) were able to ameliorate the stimulatory effects of HGF on met-negative prostate cancer cells. Western blots, RT-PCR, and immunohistochemistry were used to assess nucleolin levels during prostate cancer progression in both LNCaP and PC3 models. We have identified HGF as a major signaling component of prostate stromal-conditioned media (SCM) and have implicated the protein nucleolin in HGF signal reception by the LNCaP model prostate cancer cells. Antibodies that silence either HGF (in SCM) or nucleolin (on the cell surfaces) eliminate the adhesion-stimulatory effects of the SCM. Likewise, addition of purified HGF to control media mimics the action of SCM. C4-2, an LNCaP lineage-derived, androgen-independent human prostate cancer cell line, responds to HGF in a concentration-dependent manner by increasing its adhesion and reducing its migration on laminin substratum. These HGF effects are not due to shifts in the expression levels of laminin-binding integrins, nor can they be linked to

  6. Improved human endometrial stem cells differentiation into functional hepatocyte-like cells on a glycosaminoglycan/collagen-grafted polyethersulfone nanofibrous scaffold.

    Science.gov (United States)

    Khademi, Farzaneh; Ai, Jafar; Soleimani, Masoud; Verdi, Javad; Mohammad Tavangar, Seyed; Sadroddiny, Esmaeil; Massumi, Mohammad; Mahmoud Hashemi, Seyed

    2017-11-01

    Liver tissue engineering (TE) is rapidly emerging as an effective technique which combines engineering and biological processes to compensate for the shortage of damaged or destroyed liver tissues. We examined the viability, differentiation, and integration of hepatocyte-like cells on an electrospun polyethersulfone (PES) scaffold, derived from human endometrial stem cells (hEnSCs). Natural polymers were separately grafted on plasma-treated PES nanofibers, that is, collagen, heparan sulfate (HS) and collagen-HS. Galactosilated PES (PES-Gal) nanofibrous were created. The engineering and cell growth parameters were considered and compared with each sample. The cellular studies revealed increased cell survival, attachment, and normal morphology on the bioactive natural polymer-grafted scaffolds after 30 days of hepatic differentiation. The chemical and molecular assays displayed hepatocyte differentiation. These cells were also functional, showing glycogen storage, α-fetoprotein, and albumin secretion. The HS nanoparticle-grafted PES nanofibers demonstrated a high rate of cell proliferation, differentiation, and integration. Based on the observations mentioned above, engineered tissue is a good option in the future, for the commercial production of three-dimensional liver tissues for clinical purposes. © 2016 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 105B: 2516-2529, 2017. © 2016 Wiley Periodicals, Inc.

  7. Human Adipose-Derived Mesenchymal Stem Cells Are Resistant to HBV Infection during Differentiation into Hepatocytes in Vitro

    Directory of Open Access Journals (Sweden)

    Ying Wang

    2014-04-01

    Full Text Available The therapeutic methods for chronic hepatitis B are limited. The shortage of organ donors and hepatitis B virus (HBV reinfection obstruct the clinical application of orthotopic liver transplantation (OLT. In the present study, adipose-derived mesenchymal stem cells (AD-MSCs and bone marrow-derived mesenchymal stem cells (BM-MSCs were isolated from chronic hepatitis B patients and characterized for morphology, growth potency, surface phenotype and the differentiation potential. The results showed that both MSCs had adipogenic, osteogenic and neuron differentiation potential, and nearly all MSCs expressed CD105, CD44 and CD29. Compared with AD-MSCs, BM-MSCs of chronic hepatitis B patients proliferated defectively. In addition, the ability of AD-MSCs to differentiate into hepatocyte was evaluated and the susceptibility to HBV infection were assessed. AD-MSCs could differentiate into functional hepatocyte-like cells. These cells express the hepatic-specific markers and have glycogen production and albumin secretion function. AD-MSCs and hepatic differentiation AD-MSCs were not susceptible to infection by HBV in vitro. Compared with BM-MSCs, AD-MSCs may be alternative stem cells for chronic hepatitis B patients.

  8. Bioprinting of human pluripotent stem cells and their directed differentiation into hepatocyte-like cells for the generation of mini-livers in 3D.

    Science.gov (United States)

    Faulkner-Jones, Alan; Fyfe, Catherine; Cornelissen, Dirk-Jan; Gardner, John; King, Jason; Courtney, Aidan; Shu, Wenmiao

    2015-10-21

    We report the first investigation into the bioprinting of human induced pluripotent stem cells (hiPSCs), their response to a valve-based printing process as well as their post-printing differentiation into hepatocyte-like cells (HLCs). HLCs differentiated from both hiPSCs and human embryonic stem cells (hESCs) sources were bioprinted and examined for the presence of hepatic markers to further validate the compatibility of the valve-based bioprinting process with fragile cell transfer. Examined cells were positive for nuclear factor 4 alpha and were demonstrated to secrete albumin and have morphology that was also found to be similar to that of hepatocytes. Both hESC and hiPSC lines were tested for post-printing viability and pluripotency and were found to have negligible difference in terms of viability and pluripotency between the printed and non-printed cells. hESC-derived HLCs were 3D printed using alginate hydrogel matrix and tested for viability and albumin secretion during the remaining differentiation and were found to be hepatic in nature. 3D printed with 40-layer of HLC-containing alginate structures reached peak albumin secretion at day 21 of the differentiation protocol. This work demonstrates that the valve-based printing process is gentle enough to print human pluripotent stem cells (hPSCs) (both hESCs and hiPSCs) while either maintaining their pluripotency or directing their differentiation into specific lineages. The ability to bioprint hPSCs will pave the way for producing organs or tissues on demand from patient specific cells which could be used for animal-free drug development and personalized medicine.

  9. Bioprinting of human pluripotent stem cells and their directed differentiation into hepatocyte-like cells for the generation of mini-livers in 3D

    International Nuclear Information System (INIS)

    Faulkner-Jones, Alan; Cornelissen, Dirk-Jan; Shu, Wenmiao; Fyfe, Catherine; Gardner, John; King, Jason; Courtney, Aidan

    2015-01-01

    We report the first investigation into the bioprinting of human induced pluripotent stem cells (hiPSCs), their response to a valve-based printing process as well as their post-printing differentiation into hepatocyte-like cells (HLCs). HLCs differentiated from both hiPSCs and human embryonic stem cells (hESCs) sources were bioprinted and examined for the presence of hepatic markers to further validate the compatibility of the valve-based bioprinting process with fragile cell transfer. Examined cells were positive for nuclear factor 4 alpha and were demonstrated to secrete albumin and have morphology that was also found to be similar to that of hepatocytes. Both hESC and hiPSC lines were tested for post-printing viability and pluripotency and were found to have negligible difference in terms of viability and pluripotency between the printed and non-printed cells. hESC-derived HLCs were 3D printed using alginate hydrogel matrix and tested for viability and albumin secretion during the remaining differentiation and were found to be hepatic in nature. 3D printed with 40-layer of HLC-containing alginate structures reached peak albumin secretion at day 21 of the differentiation protocol. This work demonstrates that the valve-based printing process is gentle enough to print human pluripotent stem cells (hPSCs) (both hESCs and hiPSCs) while either maintaining their pluripotency or directing their differentiation into specific lineages. The ability to bioprint hPSCs will pave the way for producing organs or tissues on demand from patient specific cells which could be used for animal-free drug development and personalized medicine. (paper)

  10. Modulation of nuclear T3 binding by T3 in a human hepatocyte cell-line (Chang-liver) - T3 stimulation of cell growth but not of malic enzyme, glucose-6-phosphatdehydrogenase or 6-phosphogluconate-dehydrogenase

    DEFF Research Database (Denmark)

    Matzen, L E; Kristensen, S R; Kvetny, J

    1991-01-01

    The T3 modulation of nuclear T3 binding (NBT3), the T3 effect on cell growth, and the T3 and insulin effects on malic enzyme (ME), glucose-6-phosphat-dehydrogenase (G6PD) and 6-phosphogluconat-dehydrogenase (G6PD) were studied in a human hepatocyte cell-line (Chang-liver). T3 was bound to a high ...

  11. Hepatobiliary Clearance Prediction: Species Scaling From Monkey, Dog, and Rat, and In Vitro-In Vivo Extrapolation of Sandwich-Cultured Human Hepatocytes Using 17 Drugs.

    Science.gov (United States)

    Kimoto, Emi; Bi, Yi-An; Kosa, Rachel E; Tremaine, Larry M; Varma, Manthena V S

    2017-09-01

    Hepatobiliary elimination can be a major clearance pathway dictating the pharmacokinetics of drugs. Here, we first compared the dose eliminated in bile in preclinical species (monkey, dog, and rat) with that in human and further evaluated single-species scaling (SSS) to predict human hepatobiliary clearance. Six compounds dosed in bile duct-cannulated (BDC) monkeys showed biliary excretion comparable to human; and the SSS of hepatobiliary clearance with plasma fraction unbound correction yielded reasonable predictions (within 3-fold). Although dog SSS also showed reasonable predictions, rat overpredicted hepatobiliary clearance for 13 of 24 compounds. Second, we evaluated the translatability of in vitro sandwich-cultured human hepatocytes (SCHHs) to predict human hepatobiliary clearance for 17 drugs. For drugs with no significant active uptake in SCHH studies (i.e., with or without rifamycin SV), measured intrinsic biliary clearance was directly scalable with good predictability (absolute average fold error [AAFE] = 1.6). Drugs showing significant active uptake in SCHH, however, showed improved predictability when scaled based on extended clearance term (AAFE = 2.0), which incorporated sinusoidal uptake along with a global scaling factor for active uptake and the canalicular efflux clearance. In conclusion, SCHH is a useful tool to predict human hepatobiliary clearance, whereas BDC monkey model may provide further confidence in the prospective predictions. Copyright © 2017 American Pharmacists Association®. Published by Elsevier Inc. All rights reserved.

  12. Mangifera indica L. extract and mangiferin modulate cytochrome P450 and UDP-glucuronosyltransferase enzymes in primary cultures of human hepatocytes.

    Science.gov (United States)

    Rodeiro, Idania; José Gómez-Lechón, M; Perez, Gabriela; Hernandez, Ivones; Herrera, José Alfredo; Delgado, Rene; Castell, José V; Teresa Donato, M

    2013-05-01

    The aqueous stem bark extract of Mangifera indica L. (MSBE) has been reported to have antioxidant, anti-inflammatory and analgesic properties. In previous studies, we showed that MSBE and mangiferin, its main component, lower the activity of some cytochrome P-450 (P450) enzymes in rat hepatocytes and human liver microsomes. In the present study, the effects of MSBE and mangiferin on several P450 enzymes and UDP-glucuronosyltransferases (UGTs) in human-cultured hepatocytes have been examined. After hepatocytes underwent a 48-h treatment with sub-cytotoxic concentrations of the products (50-250 µg/mL), a concentration-dependent decrease of the activity of the five P450 enzymes measured (CYP1A2, 2A6, 2C9, 2D6 and 3A4) was observed. For all the activities, a reduction of at least 50% at the highest concentration (250 µg/mL) was observed. In addition, UGT activities diminished. MSBE considerably reduced UGT1A9 activity (about 60% at 250 µg/mL) and lesser effects on the other UGTs. In contrast, 250 µg/mL mangiferin had greater effects on UGT1A1 and 2B7 than on UGT1A9 (about 55% vs. 35% reduction, respectively). Quantification of specific mRNAs revealed reduced CYP3A4 and 3A5 mRNAs content, and an increase in CYP1A1, CYP1A2, UGT1A1 and UGT1A9 mRNAs. No remarkable effects on the CYP2A6, 2B6, 2C9, 2C19, 2D6 and 2E1 levels were observed. Our results suggest that the activity and/or expression of major P450 and UGT enzymes is modulated by MSBE and that potential herb-drugs interactions could arise after a combined intake of this extract with conventional medicines. Therefore, the potential safety risks of this natural product derived by altering the ADMET properties of co-administered drugs should be examined. Copyright © 2012 John Wiley & Sons, Ltd.

  13. Human circulating monocytes internalize 125I-insulin in a similar fashion to rat hepatocytes: relevance to receptor regulation in target and nontarget tissues

    International Nuclear Information System (INIS)

    Grunberger, G.; Robert, A.; Carpentier, J.L.; Dayer, J.M.; Roth, A.; Stevenson, H.C.; Orci, L.; Gorden, P.

    1985-01-01

    Circulating monocytes bind 125 I-insulin in a specific fashion and have been used to analyze the ambient receptor status in humans. When freshly isolated circulating monocytes are incubated with 125 I-insulin and examined by electron microscopic autoradiography, approximately 18% of the labeled material is internalized after 15 minutes at 37 degrees C. By 2 hours at 37 degrees C, approximately one half of the 125 I-insulin is internalized. Internalization occurs also at 15 degrees C but at a slower rate. Furthermore, the monocytes bind and internalize 125 I-insulin in a manner that mirrors that of major target tissues, such as rat hepatocytes. These data suggest that the insulin receptor of the circulating monocyte might be regulated by adsorptive endocytosis in a manner analogous to that of target tissue, such as the liver

  14. Selective insulin resistance in hepatocyte senescence

    International Nuclear Information System (INIS)

    Aravinthan, Aloysious; Challis, Benjamin; Shannon, Nicholas; Hoare, Matthew; Heaney, Judith; Alexander, Graeme J.M.

    2015-01-01

    Insulin resistance has been described in association with chronic liver disease for decades. Hepatocyte senescence has been demonstrated in chronic liver disease and as many as 80% of hepatocytes show a senescent phenotype in advanced liver disease. The aim of this study was to understand the role of hepatocyte senescence in the development of insulin resistance. Senescence was induced in HepG2 cells via oxidative stress. The insulin metabolic pathway was studied in control and senescent cells following insulin stimulation. GLUT2 and GLUT4 expressions were studied in HepG2 cells and human liver tissue. Further, GLUT2 and GLUT4 expressions were studied in three independent chronic liver disease cohorts. Signalling impairment distal to Akt in phosphorylation of AS160 and FoxO1 was evident in senescent HepG2 cells. Persistent nuclear localisation of FoxO1 was demonstrated in senescent cells despite insulin stimulation. Increased GLUT4 and decreased GLUT2 expressions were evident in senescent cells, human cirrhotic liver tissue and publically available liver disease datasets. Changes in GLUT expressions were associated with a poor clinical prognosis. In conclusion, selective insulin resistance is evident in senescent HepG2 cells and changes in GLUT expressions can be used as surrogate markers of hepatocyte senescence. - Highlights: • Senescent hepatocytes demonstrate selective insulin resistance. • GLUT changes act as markers of hepatocyte senescence and have prognostic value. • Study offers insight into long noticed intimacy of cirrhosis and insulin resistance

  15. Selective insulin resistance in hepatocyte senescence

    Energy Technology Data Exchange (ETDEWEB)

    Aravinthan, Aloysious [Division of Gastroenterology and Hepatology, Department of Medicine, University of Cambridge, Cambridge (United Kingdom); Challis, Benjamin [Institute of Metabolic Sciences, University of Cambridge, Cambridge (United Kingdom); Shannon, Nicholas [Cancer Research UK Cambridge Institute, Cambridge (United Kingdom); Hoare, Matthew [Division of Gastroenterology and Hepatology, Department of Medicine, University of Cambridge, Cambridge (United Kingdom); Cancer Research UK Cambridge Institute, Cambridge (United Kingdom); Heaney, Judith [Division of Gastroenterology and Hepatology, Department of Medicine, University of Cambridge, Cambridge (United Kingdom); Foundation for Liver Research, Institute of Hepatology, London (United Kingdom); Alexander, Graeme J.M., E-mail: gja1000@doctors.org.uk [Division of Gastroenterology and Hepatology, Department of Medicine, University of Cambridge, Cambridge (United Kingdom)

    2015-02-01

    Insulin resistance has been described in association with chronic liver disease for decades. Hepatocyte senescence has been demonstrated in chronic liver disease and as many as 80% of hepatocytes show a senescent phenotype in advanced liver disease. The aim of this study was to understand the role of hepatocyte senescence in the development of insulin resistance. Senescence was induced in HepG2 cells via oxidative stress. The insulin metabolic pathway was studied in control and senescent cells following insulin stimulation. GLUT2 and GLUT4 expressions were studied in HepG2 cells and human liver tissue. Further, GLUT2 and GLUT4 expressions were studied in three independent chronic liver disease cohorts. Signalling impairment distal to Akt in phosphorylation of AS160 and FoxO1 was evident in senescent HepG2 cells. Persistent nuclear localisation of FoxO1 was demonstrated in senescent cells despite insulin stimulation. Increased GLUT4 and decreased GLUT2 expressions were evident in senescent cells, human cirrhotic liver tissue and publically available liver disease datasets. Changes in GLUT expressions were associated with a poor clinical prognosis. In conclusion, selective insulin resistance is evident in senescent HepG2 cells and changes in GLUT expressions can be used as surrogate markers of hepatocyte senescence. - Highlights: • Senescent hepatocytes demonstrate selective insulin resistance. • GLUT changes act as markers of hepatocyte senescence and have prognostic value. • Study offers insight into long noticed intimacy of cirrhosis and insulin resistance.

  16. 49 CFR 218.37 - Flag protection.

    Science.gov (United States)

    2010-10-01

    ... 49 Transportation 4 2010-10-01 2010-10-01 false Flag protection. 218.37 Section 218.37..., DEPARTMENT OF TRANSPORTATION RAILROAD OPERATING PRACTICES Protection of Trains and Locomotives § 218.37 Flag protection. (a) After August 1, 1977, each railroad must have in effect an operating rule which complies with...

  17. Critical role of free cytosolic calcium, but not uncoupling, in mitochondrial permeability transition and cell death induced by diclofenac oxidative metabolites in immortalized human hepatocytes

    International Nuclear Information System (INIS)

    Lim, M.S.; Lim, Priscilla L.K.; Gupta, Rashi; Boelsterli, Urs A.

    2006-01-01

    Diclofenac is a widely used nonsteroidal anti-inflammatory drug that has been associated with rare but serious hepatotoxicity. Experimental evidence indicates that diclofenac targets mitochondria and induces the permeability transition (mPT) which leads to apoptotic cell death in hepatocytes. While the downstream effector mechanisms have been well characterized, the more proximal pathways leading to the mPT are not known. The purpose of this study was to explore the role of free cytosolic calcium (Ca 2+ c ) in diclofenac-induced cell injury in immortalized human hepatocytes. We show that exposure to diclofenac caused time- and concentration-dependent cell injury, which was prevented by the specific mPT inhibitor cyclosporin A (CsA, 5 μM). At 8 h, diclofenac caused increases in [Ca 2+ ] c (Fluo-4 fluorescence), which was unaffected by CsA. Combined exposure to diclofenac/BAPTA (Ca 2+ chelator) inhibited cell injury, indicating that Ca 2+ plays a critical role in precipitating mPT. Diclofenac decreased the mitochondrial membrane potential, ΔΨ m (JC-1 fluorescence), even in the presence of CsA or BAPTA, indicating that mitochondrial depolarization was not a consequence of the mPT or elevated [Ca 2+ ] c . The CYP2C9 inhibitor sulphaphenazole (10 μM) protected from diclofenac-induced cell injury and prevented increases in [Ca 2+ ] c , while it had no effect on the dissipation of the ΔΨ m . Finally, diclofenac exposure greatly increased the mitochondria-selective superoxide levels secondary to the increases in [Ca 2+ ] c . In conclusion, these data demonstrate that diclofenac has direct depolarizing effects on mitochondria which does not lead to cell injury, while CYP2C9-mediated bioactivation causes increases in [Ca 2+ ] c , triggering the mPT and precipitating cell death

  18. Generation of Hepatocyte-like Cells from Human Induced Pluripotent Stem (iPS) Cells By Co-culturing Embryoid Body Cells with Liver Non-parenchymal Cell Line TWNT-1

    International Nuclear Information System (INIS)

    Javed, M. S.; Yaqoob, N.; Iwamuro, M.; Kobayashi, N.; Fujiwara, T.

    2014-01-01

    Objective: To generate a homogeneous population of patient-specific hepatocyte-like cells (HLCs) from human iPS cells those show the morphologic and phenotypic properties of primary human hepatocytes. Study Design: An experimental study. Place and Duration of Study: Department of Surgery, Okayama University, Graduate School of Medicine, Japan, from April to December 2011. Methodology: Human iPS cells were generated and maintained on ES qualified matrigel coated plates supplemented with mTeSR medium or alternatively on mitotically inactivated MEF feeder layer in DMEM/F12 medium containing 20% KOSR, 4ng/ml bFGF-2, 1 x 10-4 M 2-mercaptoethanol, 1 mmol/L NEAA, 2mM L-glutamine and 1% penicillin-streptomycin. iPS cells were differentiated to HLCs by sequential culture using a four step differentiation protocol: (I) Generation of embryoid bodies (EBs) in suspension culture; (II) Induction of definitive endoderm (DE) from 2 days old EBs by growth in human activin-A (100 ng/ml) and basic fibroblasts growth factor (bFGF2) (100 ng/ml) on matrigel coated plates; (III) Induction of hepatic progenitors by co-culture with non-parenchymal human hepatic stellate cell line (TWNT-1); and (IV) Maturation by culture in dexamethasone. Characterization was performed by RT-PCR and functional assays. Results: The generated HLCs showed microscopically morphological phenotype of human hepatocytes, expressed liver specific genes (ASGPR, Albumin, AFP, Sox17, Fox A2), secreted human liver-specific proteins such as albumin, synthesized urea and metabolized ammonia. Conclusion: Functional HLCs were generated from human iPS cells, which could be used for autologus hepatocyte transplantation for liver failure and as in vitro model for determining the metabolic and toxicological properties of drug compounds. (author)

  19. The potential of induced pluripotent stem cell derived hepatocytes.

    Science.gov (United States)

    Hannoun, Zara; Steichen, Clara; Dianat, Noushin; Weber, Anne; Dubart-Kupperschmitt, Anne

    2016-07-01

    Orthotopic liver transplantation remains the only curative treatment for liver disease. However, the number of patients who die while on the waiting list (15%) has increased in recent years as a result of severe organ shortages; furthermore the incidence of liver disease is increasing worldwide. Clinical trials involving hepatocyte transplantation have provided encouraging results. However, transplanted cell function appears to often decline after several months, necessitating liver transplantation. The precise aetiology of the loss of cell function is not clear, but poor engraftment and immune-mediated loss appear to be important factors. Also, primary human hepatocytes (PHH) are not readily available, de-differentiate, and die rapidly in culture. Hepatocytes are available from other sources, such as tumour-derived human hepatocyte cell lines and immortalised human hepatocyte cell lines or porcine hepatocytes. However, all these cells suffer from various limitations such as reduced or differences in functions or risk of zoonotic infections. Due to their significant potential, one possible inexhaustible source of hepatocytes is through the directed differentiation of human induced pluripotent stem cells (hiPSCs). This review will discuss the potential applications and existing limitations of hiPSC-derived hepatocytes in regenerative medicine, drug screening, in vitro disease modelling and bioartificial livers. Copyright © 2016 European Association for the Study of the Liver. Published by Elsevier B.V. All rights reserved.

  20. Design of a Vitronectin-Based Recombinant Protein as a Defined Substrate for Differentiation of Human Pluripotent Stem Cells into Hepatocyte-Like Cells.

    Directory of Open Access Journals (Sweden)

    Masato Nagaoka

    Full Text Available Maintenance and differentiation of human pluripotent stem cells (hPSCs usually requires culture on a substrate for cell adhesion. A commonly used substratum is Matrigel purified from Engelbreth-Holm-Swarm sarcoma cells, and consists of a complex mixture of extracellular matrix proteins, proteoglycans, and growth factors. Several studies have successfully induced differentiation of hepatocyte-like cells from hPSCs. However, most of these studies have used Matrigel as a cell adhesion substrate, which is not a defined culture condition. In an attempt to generate a substratum that supports undifferentiated properties and differentiation into hepatic lineage cells, we designed novel substrates consisting of vitronectin fragments fused to the IgG Fc domain. hPSCs adhered to these substrates via interactions between integrins and the RGD (Arg-Gly-Asp motif, and the cells maintained their undifferentiated phenotypes. Using a previously established differentiation protocol, hPSCs were efficiently differentiated into mesendodermal and hepatic lineage cells on a vitronectin fragment-containing substrate. We found that full-length vitronectin did not support stable cell adhesion during the specification stage. Furthermore, the vitronectin fragment with the minimal RGD-containing domain was sufficient for differentiation of human induced pluripotent stem cells into hepatic lineage cells under completely defined conditions that facilitate the clinical application of cells differentiated from hPSCs.

  1. A refined characterisation of the NeoHepatocyte phenotype necessitates a reappraisal of the transdifferentiation hypothesis.

    Science.gov (United States)

    Riquelme, Paloma; Wundt, Judith; Hutchinson, James A; Brulport, Marc; Jun, Yu; Sotnikova, Anna; Girreser, Ulrich; Braun, Felix; Gövert, Felix; Soria, Bernat; Nüssler, Andreas; Clement, Bernd; Hengstler, Jan G; Fändrich, Fred

    2009-03-01

    Under certain culture conditions human peripheral blood monocytes may be induced to express phenotypic markers of non-haematopoietic lineages, including hepatocyte-defining traits. One such example, the NeoHepatocyte, was previously shown to express a broad panel of hepatocyte-like marker antigens and metabolic activities, both in vitro and following engraftment in the liver of immunodeficient mice. In this report, a refined description of NeoHepatocytes, with regard to their expression of xenobiotic-metabolising enzymes, morphology, hepatocyte marker expression and cell surface phenotype, is presented in comparison with human macrophages in defined states of activation. Contrary to prior assertions, it would seem more likely that NeoHepatocytes express particular hepatocyte-defining genes during a normal programme of macrophage differentiation rather than undergoing a process of transdifferentiation to become hepatocyte-like cells.

  2. Pseudo-Kaehler quantization on flag manifolds

    International Nuclear Information System (INIS)

    Karabegov, A.V.

    1997-07-01

    A unified approach to geometric, symbol and deformation quantizations on a generalized flag manifold endowed with an invariant pseudo-Kaehler structure is proposed. In particular cases we arrive at Berezin's quantization via covariant and contravariant symbols. (author). 16 refs

  3. Cyber Flag: A Realistic Cyberspace Training Construct

    National Research Council Canada - National Science Library

    Hansen, Andrew P

    2008-01-01

    .... Red Flag provides dominant training within the air domain and now with the evolution of cyberspace, a comprehensive training environment is necessary to meet this growing and broadening threat...

  4. 46 CFR 282.11 - Ranking of flags.

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 8 2010-10-01 2010-10-01 false Ranking of flags. 282.11 Section 282.11 Shipping... COMMERCE OF THE UNITED STATES Foreign-Flag Competition § 282.11 Ranking of flags. The operators under each... priority of costs which are representative of the flag. For liner cargo vessels, the ranking of operators...

  5. Curcumin attenuates quinocetone induced apoptosis and inflammation via the opposite modulation of Nrf2/HO-1 and NF-kB pathway in human hepatocyte L02 cells.

    Science.gov (United States)

    Dai, Chongshan; Li, Bin; Zhou, Yan; Li, Daowen; Zhang, Shen; Li, Hui; Xiao, Xilong; Tang, Shusheng

    2016-09-01

    The potential toxicity of quinocetone (QCT) has raised widely concern, but its mechanism is still unclear. This study aimed to investigate the protective effect of curcumin on QCT induced apoptosis and the underlying mechanism in human hepatocyte L02 cells. The results showed that QCT treatment significantly decreased the cell viability of L02 cell and increased the release of lactate dehydrogenase (LDH), which was attenuated by curcumin pre-treatment at 1.25, 2.5 and 5 μM. Compared to the QCT alone group, curcumin pre-treatment significantly attenuated QCT induced oxidative stress, mitochondrial dysfunction and apoptosis. In addition, curcumin pretreatment markedly attenuated QCT-induced increase of iNOS activity and NO production in a dose-dependent manner. Meanwhile, curcumin pretreatment markedly down-regulated the expression of nuclear factor -kB (NF-kB) and iNOS mRNAs, but up-regulated the expressions of Nrf2 and HO-1 mRNAs, compared to the QCT alone group. Zinc protoporphyrin IX, a HO-1 inhibitor, markedly partly abolished the cytoprotective effect of curcumin against QCT-induced caspase activation, NF-kB mRNA expression. These results indicate that curcumin could effectively inhibit QCT induced apoptosis and inflammatory response in L02 cells, which may involve the activation of Nrf2/HO-1 and inhibition of NF-kB pathway. Copyright © 2016 Elsevier Ltd. All rights reserved.

  6. Adenovirus-mediated transfer of hepatocyte growth factor gene to human dental pulp stem cells under good manufacturing practice improves their potential for periodontal regeneration in swine.

    Science.gov (United States)

    Cao, Yu; Liu, Zhenhai; Xie, Yilin; Hu, Jingchao; Wang, Hua; Fan, Zhipeng; Zhang, Chunmei; Wang, Jingsong; Wu, Chu-Tse; Wang, Songlin

    2015-12-15

    Periodontitis is one of the most widespread infectious diseases in humans. We previously promoted significant periodontal tissue regeneration in swine models with the transplantation of autologous periodontal ligament stem cells (PDLSCs) and PDLSC sheet. We also promoted periodontal tissue regeneration in a rat model with a local injection of allogeneic bone marrow mesenchymal stem cells. The purpose of the present study is to investigate the roles of the hepatocyte growth factor (HGF) and human dental pulp stem cells (DPSCs) in periodontal tissue regeneration in swine. In the present study, we transferred an adenovirus that carried HGF gene into human DPSCs (HGF-hDPSCs) under good manufacturing practice (GMP) conditions. These cells were then transplanted into a swine model for periodontal regeneration. Twenty miniature pigs were used to generate periodontitis with bone defect of 5 mm in width, 7 mm in length, and 3 mm in depth. After 12 weeks, clinical, radiological, quantitative and histological assessment of regenerated periodontal tissues was performed to compare periodontal regeneration in swine treated with cell implantation. Our study showed that injecting HGF-hDPSCs into this large animal model could significantly improve periodontal bone regeneration and soft tissue healing. A hDPSC or HGF-hDPSC sheet showed superior periodontal tissue regeneration compared to the injection of dissociated cells. However, the sheets required surgical placement; thus, they were suitable for surgically-managed periodontitis treatments. The adenovirus-mediated transfer of the HGF gene markedly decreased hDPSC apoptosis in a hypoxic environment or in serum-free medium, and it increased blood vessel regeneration. This study indicated that HGF-hDPSCs produced under GMP conditions significantly improved periodontal bone regeneration in swine; thus, this method represents a potential clinical application for periodontal regeneration.

  7. The human hepatocyte cell lines IHH and HepaRG : models to study glucose, lipid and lipoprotein metabolism

    NARCIS (Netherlands)

    Samanez, Carolina Huaman; Caron, Sandrine; Briand, Olivier; Dehondt, Helene; Duplan, Isabelle; Kuipers, Folkert; Hennuyer, Nathalie; Clavey, Veronique; Staels, Bart

    Metabolic diseases reach epidemic proportions. A better knowledge of the associated alterations in the metabolic pathways in the liver is necessary. These studies need in vitro human cell models. Several human hepatoma models are used, but the response of many metabolic pathways to physiological

  8. Diffuse glomerular nodular lesions in diabetic pigs carrying a dominant-negative mutant hepatocyte nuclear factor 1-alpha, an inheritant diabetic gene in humans.

    Directory of Open Access Journals (Sweden)

    Satoshi Hara

    Full Text Available Glomerular nodular lesions, known as Kimmelstiel-Wilson nodules, are a pathological hallmark of progressive human diabetic nephropathy. We have induced severe diabetes in pigs carrying a dominant-negative mutant hepatocyte nuclear factor 1-alpha (HNF1α P291fsinsC, a maturity-onset diabetes of the young type-3 (MODY3 gene in humans. In this model, glomerular pathology revealed that formation of diffuse glomerular nodules commenced as young as 1 month of age and increased in size and incidence until the age of 10 months, the end of the study period. Immunohistochemistry showed that the nodules consisted of various collagen types (I, III, IV, V and VI with advanced glycation end-product (AGE and Nε-carboxymethyl-lysine (CML deposition, similar to those in human diabetic nodules, except for collagen type I. Transforming growth factor-beta (TGF-β was also expressed exclusively in the nodules. The ultrastructure of the nodules comprised predominant interstitial-type collagen deposition arising from the mesangial matrices. Curiously, these nodules were found predominantly in the deep cortex. However, diabetic pigs failed to show any of the features characteristic of human diabetic nephropathy; e.g., proteinuria, glomerular basement membrane thickening, exudative lesions, mesangiolysis, tubular atrophy, interstitial fibrosis, and vascular hyalinosis. The pigs showed only Armanni-Ebstein lesions, a characteristic tubular manifestation in human diabetes. RT-PCR analysis showed that glomeruli in wild-type pigs did not express endogenous HNF1α and HNF1β, indicating that mutant HNF1α did not directly contribute to glomerular nodular formation in diabetic pigs. In conclusion, pigs harboring the dominant-negative mutant human MODY3 gene showed reproducible and distinct glomerular nodules, possibly due to AGE- and CML-based collagen accumulation. Although the pathology differed in several respects from that of human glomerular nodular lesions, the

  9. Definition of metabolism-dependent xenobiotic toxicity with co-cultures of human hepatocytes and mouse 3T3 fibroblasts in the novel integrated discrete multiple organ co-culture (IdMOC) experimental system: results with model toxicants aflatoxin B1, cyclophosphamide and tamoxifen.

    Science.gov (United States)

    Li, Albert P; Uzgare, Aarti; LaForge, Yumiko S

    2012-07-30

    The integrated discrete multiple organ co-culture system (IdMOC) allows the co-culturing of multiple cell types as physically separated cells interconnected by a common overlying medium. We report here the application of IdMOC with two cell types: the metabolically competent primary human hepatocytes, and a metabolically incompetent cell line, mouse 3T3 fibroblasts, in the definition of the role of hepatic metabolism on the cytotoxicity of three model toxicants: cyclophosphamide (CPA), aflatoxin B1 (AFB) and tamoxifen (TMX). The presence of hepatic metabolism in IdMOC with human hepatocytes was demonstrated by the metabolism of the P450 isoform 3A4 substrate, luciferin-IPA. The three model toxicants showed three distinct patterns of cytotoxic profile: TMX was cytotoxic to 3T3 cells in the absence of hepatocytes, with slightly lower cytotoxicity towards both 3T3 cells and hepatocytes in the IdMOC. AFB was selective toxic towards the human hepatocytes and relatively noncytotoxic towards 3T3 cells both in the presence and absence of the hepatocytes. CPA cytotoxicity to the 3T3 cells was found to be significantly enhanced by the presence of the hepatocytes, with the cytotoxicity dependent of the number of hepatocytes, and with the cytotoxicity attenuated by the presence of a non-specific P450 inhibitor, 1-aminobenzotriazole. We propose here the following classification of toxicants based on the role of hepatic metabolism as defined by the human hepatocyte-3T3 cell IdMOC assay: type I: direct-acting cytotoxicants represented by TMX as indicated by cytotoxicity in 3T3 cells in the absence of hepatocytes; type II: metabolism-dependent cytotoxicity represented by AFB1 with effects localized within the site of metabolic activation (i. e. hepatocytes); and type III: metabolism-dependent cytotoxicity with metabolites that can diffuse out of the hepatocytes to cause toxicity in cells distal from the site of metabolism, as exemplified by CPA. Copyright © 2012 Elsevier Ireland

  10. Differentiation of human-induced pluripotent stem cell under flow conditions to mature hepatocytes for liver tissue engineering

    DEFF Research Database (Denmark)

    Starokozhko, Viktoriia; Hemmingsen, Mette; Larsen, Layla

    2018-01-01

    Hepatic differentiation of human-induced pluripotent stem cells (hiPSCs) under flow conditions in a 3D scaffold is expected to be a major step forward for construction of bioartificial livers. The aims of this study were to induce hepatic differentiation of hiPSCs under perfusion conditions...... and to perform functional comparisons with fresh human precision-cut liver slices (hPCLS), an excellent benchmark for the human liver in vivo. The majority of the mRNA expression of CYP isoenzymes and transporters and the tested CYP activities, Phase II metabolism, and albumin, urea, and bile acid synthesis...... in the hiPSC-derived cells reached values that overlap those of hPCLS, which indicates a higher degree of hepatic differentiation than observed until now. Differentiation under flow compared with static conditions had a strong inducing effect on Phase II metabolism and suppressed AFP expression but resulted...

  11. Property of hepatitis B virus replication in Tupaia belangeri hepatocytes

    International Nuclear Information System (INIS)

    Sanada, Takahiro; Tsukiyama-Kohara, Kyoko; Yamamoto, Naoki; Ezzikouri, Sayeh; Benjelloun, Soumaya; Murakami, Shuko; Tanaka, Yasuhito; Tateno, Chise; Kohara, Michinori

    2016-01-01

    The northern treeshrew (Tupaia belangeri) has been reported to be an effective candidate for animal infection model with hepatitis B virus (HBV). The objective of our study was to analyze the growth characteristics of HBV in tupaia hepatocytes and the host response to HBV infection. We established primary tupaia hepatocytes (3–6-week old tupaia) and infected them with HBV genotypes A, B and C, and all the genotypes proliferated as well as those in human primary hepatocytes (>10"5 copies/ml in culture supernatant). We next generated a chimeric mouse with tupaia liver by transplantation of tupaia primary hepatocytes to urokinase-type plasminogen activator cDNA (cDNA-uPA)/severe combined immunodeficient (SCID) mice and the replacement ratio with tupaia hepatocytes was found to be more than 95%. Infection of chimeric mice with HBV (genotypes B, C, and D) resulted in HBV-DNA level of 10"4-10"6 copies/ml after 8 weeks of infection, which were almost similar to that in humanized chimeric mouse. In contrast, serum HBV level in adult tupaia (1-year-old tupaia) was quite low (<10"3 copies/ml). Understanding the differences in the response to HBV infection in primary tupaia hepatocytes, chimeric mouse, and adult tupaia will contribute to elucidating the mechanism of persistent HBV infection and viral eradication. Thus, T. belangeri was found to be efficient for studying the host response to HBV infection, thereby providing novel insight into the pathogenesis of HBV. - Highlights: • Primary hepatocytes were established from tupaia that is a novel HBV infection model. • Tupaia primary hepatocytes were susceptible for HBV infection. • The immunodeficient chimeric mice with tupaia hepatocytes were established. • The chimeric mice with tupaia hepatocytes were susceptible for HBV infection.

  12. Property of hepatitis B virus replication in Tupaia belangeri hepatocytes

    Energy Technology Data Exchange (ETDEWEB)

    Sanada, Takahiro [Department of Microbiology and Cell Biology, Tokyo Metropolitan Institute of Medical Science, 2-1-6, Kamikitazawa, Setagaya-ku, Tokyo 156-8506 (Japan); Tsukiyama-Kohara, Kyoko, E-mail: kkohara@vet.kagoshima-u.ac.jp [Transboundary Animal Diseases Centre, Joint Faculty of Veterinary Medicine, Kagoshima University, 1-21-24, Korimoto, Kagoshima-city, Kagoshima 890-0065 (Japan); Laboratory of Animal Hygiene, Joint Faculty of Veterinary Medicine, Kagoshima University, 1-21-24, Korimoto, Kagoshima, Kagoshima 890-0065 (Japan); Yamamoto, Naoki [Department of Microbiology and Cell Biology, Tokyo Metropolitan Institute of Medical Science, 2-1-6, Kamikitazawa, Setagaya-ku, Tokyo 156-8506 (Japan); Ezzikouri, Sayeh; Benjelloun, Soumaya [Viral Hepatitis Laboratory, Virology Unit, Institut Pasteur du Maroc, 1, Louis Pasteur, Casablanca 20360 (Morocco); Murakami, Shuko; Tanaka, Yasuhito [Department of Virology and Liver Unit, Nagoya City University Graduate School of Medical Sciences, Kawasumi 1, Mizuho-ku, Nagoya, Aichi 467-8601 (Japan); Tateno, Chise [PhoenixBio Co. Ltd., 3-4-1, Kagamiyama, Higashi-Hiroshima, Hiroshima 739-0046 (Japan); Kohara, Michinori, E-mail: kohara-mc@igakuken.or.jp [Department of Microbiology and Cell Biology, Tokyo Metropolitan Institute of Medical Science, 2-1-6, Kamikitazawa, Setagaya-ku, Tokyo 156-8506 (Japan)

    2016-01-08

    The northern treeshrew (Tupaia belangeri) has been reported to be an effective candidate for animal infection model with hepatitis B virus (HBV). The objective of our study was to analyze the growth characteristics of HBV in tupaia hepatocytes and the host response to HBV infection. We established primary tupaia hepatocytes (3–6-week old tupaia) and infected them with HBV genotypes A, B and C, and all the genotypes proliferated as well as those in human primary hepatocytes (>10{sup 5} copies/ml in culture supernatant). We next generated a chimeric mouse with tupaia liver by transplantation of tupaia primary hepatocytes to urokinase-type plasminogen activator cDNA (cDNA-uPA)/severe combined immunodeficient (SCID) mice and the replacement ratio with tupaia hepatocytes was found to be more than 95%. Infection of chimeric mice with HBV (genotypes B, C, and D) resulted in HBV-DNA level of 10{sup 4}-10{sup 6} copies/ml after 8 weeks of infection, which were almost similar to that in humanized chimeric mouse. In contrast, serum HBV level in adult tupaia (1-year-old tupaia) was quite low (<10{sup 3} copies/ml). Understanding the differences in the response to HBV infection in primary tupaia hepatocytes, chimeric mouse, and adult tupaia will contribute to elucidating the mechanism of persistent HBV infection and viral eradication. Thus, T. belangeri was found to be efficient for studying the host response to HBV infection, thereby providing novel insight into the pathogenesis of HBV. - Highlights: • Primary hepatocytes were established from tupaia that is a novel HBV infection model. • Tupaia primary hepatocytes were susceptible for HBV infection. • The immunodeficient chimeric mice with tupaia hepatocytes were established. • The chimeric mice with tupaia hepatocytes were susceptible for HBV infection.

  13. Phenotypic and functional analyses show stem cell-derived hepatocyte-like cells better mimic fetal rather than adult hepatocytes.

    Science.gov (United States)

    Baxter, Melissa; Withey, Sarah; Harrison, Sean; Segeritz, Charis-Patricia; Zhang, Fang; Atkinson-Dell, Rebecca; Rowe, Cliff; Gerrard, Dave T; Sison-Young, Rowena; Jenkins, Roz; Henry, Joanne; Berry, Andrew A; Mohamet, Lisa; Best, Marie; Fenwick, Stephen W; Malik, Hassan; Kitteringham, Neil R; Goldring, Chris E; Piper Hanley, Karen; Vallier, Ludovic; Hanley, Neil A

    2015-03-01

    Hepatocyte-like cells (HLCs), differentiated from pluripotent stem cells by the use of soluble factors, can model human liver function and toxicity. However, at present HLC maturity and whether any deficit represents a true fetal state or aberrant differentiation is unclear and compounded by comparison to potentially deteriorated adult hepatocytes. Therefore, we generated HLCs from multiple lineages, using two different protocols, for direct comparison with fresh fetal and adult hepatocytes. Protocols were developed for robust differentiation. Multiple transcript, protein and functional analyses compared HLCs to fresh human fetal and adult hepatocytes. HLCs were comparable to those of other laboratories by multiple parameters. Transcriptional changes during differentiation mimicked human embryogenesis and showed more similarity to pericentral than periportal hepatocytes. Unbiased proteomics demonstrated greater proximity to liver than 30 other human organs or tissues. However, by comparison to fresh material, HLC maturity was proven by transcript, protein and function to be fetal-like and short of the adult phenotype. The expression of 81% phase 1 enzymes in HLCs was significantly upregulated and half were statistically not different from fetal hepatocytes. HLCs secreted albumin and metabolized testosterone (CYP3A) and dextrorphan (CYP2D6) like fetal hepatocytes. In seven bespoke tests, devised by principal components analysis to distinguish fetal from adult hepatocytes, HLCs from two different source laboratories consistently demonstrated fetal characteristics. HLCs from different sources are broadly comparable with unbiased proteomic evidence for faithful differentiation down the liver lineage. This current phenotype mimics human fetal rather than adult hepatocytes. Copyright © 2014 European Association for the Study of the Liver. Published by Elsevier B.V. All rights reserved.

  14. On national flags and language tags: Effects of flag-language congruency in bilingual word recognition.

    Science.gov (United States)

    Grainger, Jonathan; Declerck, Mathieu; Marzouki, Yousri

    2017-07-01

    French-English bilinguals performed a generalized lexical decision experiment with mixed lists of French and English words and pseudo-words. In Experiment 1, each word/pseudo-word was superimposed on the picture of the French or UK flag, and flag-word congruency was manipulated. The flag was not informative with respect to either the lexical decision response or the language of the word. Nevertheless, lexical decisions to word stimuli were faster following the congruent flag compared with the incongruent flag, but only for French (L1) words. Experiment 2 replicated this flag-language congruency effect in a priming paradigm, where the word and pseudo-word targets followed the brief presentation of the flag prime, and this time effects were seen in both languages. We take these findings as evidence for a mechanism that automatically processes linguistic and non-linguistic information concerning the presence or not of a given language. Language membership information can then modulate lexical processing, in line with the architecture of the BIA model, but not the BIA+ model. Copyright © 2017 Elsevier B.V. All rights reserved.

  15. In Vitro Model for Hepatotoxicity Studies Based on Primary Human Hepatocyte Cultivation in a Perfused 3D Bioreactor System.

    Science.gov (United States)

    Knöspel, Fanny; Jacobs, Frank; Freyer, Nora; Damm, Georg; De Bondt, An; van den Wyngaert, Ilse; Snoeys, Jan; Monshouwer, Mario; Richter, Marco; Strahl, Nadja; Seehofer, Daniel; Zeilinger, Katrin

    2016-04-16

    Accurate prediction of the potential hepatotoxic nature of new pharmaceuticals remains highly challenging. Therefore, novel in vitro models with improved external validity are needed to investigate hepatic metabolism and timely identify any toxicity of drugs in humans. In this study, we examined the effects of diclofenac, as a model substance with a known risk of hepatotoxicity in vivo, in a dynamic multi-compartment bioreactor using primary human liver cells. Biotransformation pathways of the drug and possible effects on metabolic activities, morphology and cell transcriptome were evaluated. Formation rates of diclofenac metabolites were relatively stable over the application period of seven days in bioreactors exposed to 300 µM diclofenac (300 µM bioreactors (300 µM BR)), while in bioreactors exposed to 1000 µM diclofenac (1000 µM BR) metabolite concentrations declined drastically. The biochemical data showed a significant decrease in lactate production and for the higher dose a significant increase in ammonia secretion, indicating a dose-dependent effect of diclofenac application. The microarray analyses performed revealed a stable hepatic phenotype of the cells over time and the observed transcriptional changes were in line with functional readouts of the system. In conclusion, the data highlight the suitability of the bioreactor technology for studying the hepatotoxicity of drugs in vitro.

  16. In Vitro Model for Hepatotoxicity Studies Based on Primary Human Hepatocyte Cultivation in a Perfused 3D Bioreactor System

    Directory of Open Access Journals (Sweden)

    Fanny Knöspel

    2016-04-01

    Full Text Available Accurate prediction of the potential hepatotoxic nature of new pharmaceuticals remains highly challenging. Therefore, novel in vitro models with improved external validity are needed to investigate hepatic metabolism and timely identify any toxicity of drugs in humans. In this study, we examined the effects of diclofenac, as a model substance with a known risk of hepatotoxicity in vivo, in a dynamic multi-compartment bioreactor using primary human liver cells. Biotransformation pathways of the drug and possible effects on metabolic activities, morphology and cell transcriptome were evaluated. Formation rates of diclofenac metabolites were relatively stable over the application period of seven days in bioreactors exposed to 300 µM diclofenac (300 µM bioreactors (300 µM BR, while in bioreactors exposed to 1000 µM diclofenac (1000 µM BR metabolite concentrations declined drastically. The biochemical data showed a significant decrease in lactate production and for the higher dose a significant increase in ammonia secretion, indicating a dose-dependent effect of diclofenac application. The microarray analyses performed revealed a stable hepatic phenotype of the cells over time and the observed transcriptional changes were in line with functional readouts of the system. In conclusion, the data highlight the suitability of the bioreactor technology for studying the hepatotoxicity of drugs in vitro.

  17. Race Discourse and the US Confederate Flag

    Science.gov (United States)

    Holyfield, Lori; Moltz, Matthew Ryan; Bradley, Mindy S.

    2009-01-01

    Research reveals that racial hierarchies and "color-blind" racism is maintained through discourse. The current study utilizes exploratory data from focus groups in a predominantly white southern university in the United States to examine race talk, the Confederate Flag, and the construction of southern white identity. Drawing from…

  18. Induction of glutathione synthesis in human hepatocytes by acute and chronic arsenic exposure: Differential roles of mitogen-activated protein kinases

    International Nuclear Information System (INIS)

    Hou, Yongyong; Wang, Yi; Wang, Huihui; Xu, Yuanyuan

    2014-01-01

    Highlights: • Arsenic exposure increased intracellular levels of glutathione. • Mitogen-activated protein kinases were involved in glutathione homeostasis. • ERK contributed to glutathione synthesis during acute arsenic exposure. • Glutathione synthesis was regulated by p38 at least in part independent of NRF2 during chronic arsenic exposure. - Abstract: Glutathione (GSH) is a vital component of antioxidant defense which protects cells from toxic insults. Previously we found intracellular GSH was involved in cell resistance against arsenic-induced cytotoxicity. However, molecular mechanisms of GSH homeostasis during arsenic exposure are largely undefined. Here, we investigated roles of mitogen-activated protein kinases (MAPKs) in GSH synthesis pathway with two arsenic exposure strategies by using Chang human hepatocytes. In one strategy, acute arsenic exposure (20 μM, 24 h) was applied, as MAPK signaling is generally considered to be transient. In the other one, chronic arsenic exposure (500 nM, 20 weeks) was applied, which mimicked the general human exposure to arsenic. We found that acute arsenic exposure activated extracellular signal-regulated 1/2 kinases (ERK1/2) and c-Jun N-terminal kinase (JNK) in parallel with increased transcription and nuclear translocation of factor-erythroid 2-related factor 2 (NRF2) and enhanced expression of γ-glutamyl cysteine ligase catalytic subunit (GCLC), resulting in elevated intracellular GSH levels. Specific ERK inhibitor abolished arsenic-induced NRF2 nuclear translocation and GSH synthesis. During chronic arsenic exposure which induced a malignant cellular phenotype, continuous p38 activation and NRF2 nuclear translocation were observed with enhanced GSH synthesis. Specific p38 inhibitor attenuated arsenic-enhanced GSH synthesis without changing NRF2 nuclear translocation. Taken together, our results indicate MAPK pathways play an important role in cellular GSH homeostasis in response to arsenic. However, the

  19. Decrease in Dengue virus-2 infection and reduction of cytokine/chemokine production by Uncaria guianensis in human hepatocyte cell line Huh-7

    Directory of Open Access Journals (Sweden)

    Cíntia da Silva Mello

    Full Text Available ABSTRACT BACKGROUND Dengue fever may present hemorrhages and cavitary effusions as result of exacerbated immune responses. We investigated hydro-alcoholic extracts from leaves (UGL and bark (UGB of the medicinal species Uncaria guinanensis with respect to antiviral effects in Dengue virus (DENV infection and in immunological parameters associated with in vivo physiopathological features. METHODS Chemical profiles from UGB or UGL were compared in thin layer chromatography and 1H nuclear magnetic resonance using flavonoid compounds and a pentacyclic oxindole alkaloid-enriched fraction as references. DENV-2-infected hepatocytes (Huh-7 were treated with extracts. Cell viability, DENV antigens and immunological factors were detected by enzyme-linked immunosorbent assay (ELISA or flow cytometry. FINDINGS The UGL mainly differed from UGB by selectively containing the flavonoid kaempferitrin. UGB and UGL improved hepatocyte viability. Both extracts reduced intracellular viral antigen and inhibited the secretion of viral non-structural protein (NS1, which is indicative of viral replication. Reduction in secretion of macrophage migration inhibitory factor was achieved by UGB, of interleukin-6 by UGL, and of interleukin-8 by both UGB and UGL. MAIN CONCLUSIONS The U. guianensis extracts presented, antiviral and immunomodulatory effects for DENV and possibly a hepatocyte-protective activity. Further studies may be performed to consider these products as potential candidates for the development of an herbal product for the future treatment of dengue.

  20. Decrease in Dengue virus-2 infection and reduction of cytokine/chemokine production by Uncaria guianensis in human hepatocyte cell line Huh-7.

    Science.gov (United States)

    Mello, Cíntia da Silva; Valente, Ligia Maria Marino; Wolff, Thiago; Lima-Junior, Raimundo Sousa; Fialho, Luciana Gomes; Marinho, Cintia Ferreira; Azeredo, Elzinandes Leal; Oliveira-Pinto, Luzia Maria; Pereira, Rita de Cássia Alves; Siani, Antonio Carlos; Kubelka, Claire Fernandes

    2017-06-01

    Dengue fever may present hemorrhages and cavitary effusions as result of exacerbated immune responses. We investigated hydro-alcoholic extracts from leaves (UGL) and bark (UGB) of the medicinal species Uncaria guinanensis with respect to antiviral effects in Dengue virus (DENV) infection and in immunological parameters associated with in vivo physiopathological features. Chemical profiles from UGB or UGL were compared in thin layer chromatography and 1H nuclear magnetic resonance using flavonoid compounds and a pentacyclic oxindole alkaloid-enriched fraction as references. DENV-2-infected hepatocytes (Huh-7) were treated with extracts. Cell viability, DENV antigens and immunological factors were detected by enzyme-linked immunosorbent assay (ELISA) or flow cytometry. The UGL mainly differed from UGB by selectively containing the flavonoid kaempferitrin. UGB and UGL improved hepatocyte viability. Both extracts reduced intracellular viral antigen and inhibited the secretion of viral non-structural protein (NS1), which is indicative of viral replication. Reduction in secretion of macrophage migration inhibitory factor was achieved by UGB, of interleukin-6 by UGL, and of interleukin-8 by both UGB and UGL. MAIN. The U. guianensis extracts presented, antiviral and immunomodulatory effects for DENV and possibly a hepatocyte-protective activity. Further studies may be performed to consider these products as potential candidates for the development of an herbal product for the future treatment of dengue.

  1. Anomalous Hydrodynamic Drafting of Interacting Flapping Flags

    Science.gov (United States)

    Ristroph, Leif; Zhang, Jun

    2008-11-01

    In aggregates of objects moving through a fluid, bodies downstream of a leader generally experience reduced drag force. This conventional drafting holds for objects of fixed shape, but interactions of deformable bodies in a flow are poorly understood, as in schools of fish. In our experiments on “schooling” flapping flags, we find that it is the leader of a group who enjoys a significant drag reduction (of up to 50%), while the downstream flag suffers a drag increase. This counterintuitive inverted drag relationship is rationalized by dissecting the mutual influence of shape and flow in determining drag. Inverted drafting has never been observed with rigid bodies, apparently due to the inability to deform in response to the altered flow field of neighbors.

  2. Equivelar toroids with few flag-orbits

    OpenAIRE

    Collins, José; Montero, Antonio

    2018-01-01

    An $(n+1)$-toroid is a quotient of a tessellation of the $n$-dimensional Euclidean space with a lattice group. Toroids are generalizations of maps in the torus on higher dimensions and also provide examples of abstract polytopes. Equivelar toroids are those that are induced by regular tessellations. In this paper we present a classification of equivelar $(n+1)$-toroids with at most $n$ flag-orbits; in particular, we discuss a classification of $2$-orbit toroids of arbitrary dimension.

  3. Phloem Transport Of Arsenic Species From Flag Leaf To Grain During Grain Filling

    Science.gov (United States)

    Strategies to reduce arsenic (As) in rice grain, below concentrations that represent a serious human health concern, require that the mechanisms of As accumulation within grain be established. Therefore, retranslocation of As species from flag leaves into filling rice grain was ...

  4. Repolarization of hepatocytes in culture.

    Science.gov (United States)

    Talamini, M A; Kappus, B; Hubbard, A

    1997-01-01

    We have evaluated the biochemical, morphological, and functional redevelopment of polarity in freshly isolated hepatocytes cultured using a double layer collagen gel sandwich technique. Western blot analysis showed increased cellular levels of the cell adhesion protein uvomorulin as cultured hepatocytes repolarized. Immunofluorescence studies using antibodies against domain-specific membrane proteins showed polarity as early as 48 hours, although the pattern of the polymeric Immunoglobulin-A receptor (pIgA-R) differed from in vivo liver. Electron microscopy showed developing bile canaliculi at 1 day. However, the functional presence of tight junctions was absent at 1 day, but present at 5 days. We further showed functional polarity to be present at 4 days by documenting the ability of cultured hepatocytes to metabolize and excrete fluorescein diacetate into visible bile canaliculi. We conclude that hepatocytes cultured appropriately develop morphological and functional polarity. Hepatocyte culture is therefore a useful tool for the study of mechanisms responsible for the development of polarized function.

  5. Pegylated interferons Lambda-1a and alfa-2a display different gene induction and cytokine and chemokine release profiles in whole blood, human hepatocytes and peripheral blood mononuclear cells.

    Science.gov (United States)

    Freeman, J; Baglino, S; Friborg, J; Kraft, Z; Gray, T; Hill, M; McPhee, F; Hillson, J; Lopez-Talavera, J C; Wind-Rotolo, M

    2014-06-01

    Pegylated interferon-lambda-1a (Lambda), a type III interferon (IFN) in clinical development for the treatment of chronic HCV infection, has shown comparable efficacy and an improved safety profile to a regimen based on pegylated IFN alfa-2a (alfa). To establish a mechanistic context for this improved profile, we investigated the ex vivo effects of Lambda and alfa on cytokine and chemokine release, and on expression of IFN-stimulated genes (ISGs) in primary human hepatocytes and peripheral blood mononuclear cells (PBMCs) from healthy subjects. Our findings were further compared with changes observed in blood analysed from HCV-infected patients treated with Lambda or alfa in clinical studies. mRNA transcript and protein expression of the IFN-λ-limiting receptor subunit was lower compared with IFN-α receptor subunits in all cell types. Upon stimulation, alfa and Lambda induced ISG expression in hepatocytes and PBMCs, although in PBMCs Lambda-induced ISG expression was modest. Furthermore, alfa and Lambda induced release of cytokines and chemokines from hepatocytes and PBMCs, although differences in their kinetics of induction were observed. In HCV-infected patients, alfa treatment induced ISG expression in whole blood after single and repeat dosing. Lambda treatment induced modest ISG expression after single dosing and showed no induction after repeat dosing. Alfa and Lambda treatment increased IP-10, iTAC, IL-6, MCP-1 and MIP-1β levels in serum, with alfa inducing higher levels of all mediators compared with Lambda. Overall, ex vivo and in vivo induction profiles reported in this analysis strongly correlate with clinical observations of fewer related adverse events for Lambda vs those typically associated with alfa. © 2014 John Wiley & Sons Ltd.

  6. Interaction of hepatocyte nuclear factors in transcriptional regulation of tissue specific hormonal expression of human multidrug resistance-associated protein 2 (abcc2)

    International Nuclear Information System (INIS)

    Qadri, Ishtiaq; Hu, L.-J.; Iwahashi, Mieko; Al-Zuabi, Subhi; Quattrochi, Linda C.; Simon, Francis R.

    2009-01-01

    Multidrug resistance-associated protein 2 (MRP2) (ABCC2) is an ATP-binding cassette membrane protein located primarily on apical surface of hepatocytes that mediates transport of conjugated xenobiotics and endogenous compounds into bile. MRP2 is highly expressed in hepatocytes, and at lower levels in small intestines, stomach and kidney. Previous reports have characterized mammalian MRP2 promoters, but none have established the molecular mechanism(s) involved in liver enriched expression. This study aims to investigate the mechanism of hepatic MRP2 regulation. A 2130 bp of MRP2 promoter was cloned from PAC-1 clone P108G1-7, to identify putative liver specific/hormone responsive functional DNA binding sites. Using deletion analysis, site specific mutagenesis and co-transfection studies, liver specific expression was determined. MRP2 promoter-LUC constructs were highly expressed in liver cell lines compared to non-liver cells. The region extending from - 3 to+ 458 bp of MRP2 promoter starting from AUG contained the potential binding sites for CAAATT box enhancer binding protein (C/EBP), hepatocytes nuclear factor 1, 3 and 4 (HNF1, HNF3, and HNF4. Only HNF1 and HNF4 co-transfection with MRP2 luciferase increased expression. Site specific mutational analysis of HNF1 binding site indicated an important role for HNF1α. HNF4α induction of MRP2 was independent of HNF1 binding site. C/EBP, HNF3, and HNF6 inhibited HNF1α while HNF4α induced MRP2 luciferase expression and glucocorticoids stimulated MRP2 expression. This study emphasizes the complex regulation of MRP2 with HNF1α and HNF4α playing a central role. The coordinated regulation of xenobiotic transporters and oxidative conjugation may determine the adaptive responses to cellular detoxification processes

  7. Metabolic fate of desomorphine elucidated using rat urine, pooled human liver preparations, and human hepatocyte cultures as well as its detectability using standard urine screening approaches.

    Science.gov (United States)

    Richter, Lilian H J; Kaminski, Yeda Rumi; Noor, Fozia; Meyer, Markus R; Maurer, Hans H

    2016-09-01

    Desomorphine is an opioid misused as "crocodile", a cheaper alternative to heroin. It is a crude synthesis product homemade from codeine with toxic byproducts. The aim of the present work was to investigate the metabolic fate of desomorphine in vivo using rat urine and in vitro using pooled human liver microsomes and cytosol as well as human liver cell lines (HepG2 and HepaRG) by Orbitrap-based liquid chromatography-high resolution-tandem mass spectrometry or hydrophilic interaction liquid chromatography. According to the identified metabolites, the following metabolic steps could be proposed: N-demethylation, hydroxylation at various positions, N-oxidation, glucuronidation, and sulfation. The cytochrome P450 (CYP) initial activity screening revealed CYP3A4 to be the only CYP involved in all phase I steps. UDP-glucuronyltransferase (UGT) initial activity screening showed that UGT1A1, UGT1A8, UGT1A9, UGT1A10, UGT2B4, UGT2B7, UGT2B15, and UGT2B17 formed desomorphine glucuronide. Among the tested in vitro models, HepaRG cells were identified to be the most suitable tool for prediction of human hepatic phase I and II metabolism of drugs of abuse. Finally, desomorphine (crocodile) consumption should be detectable by all standard urine screening approaches mainly via the parent compound and/or its glucuronide assuming similar kinetics in rats and humans.

  8. Hepatocyte polyploidization and its association with pathophysiological processes.

    Science.gov (United States)

    Wang, Min-Jun; Chen, Fei; Lau, Joseph T Y; Hu, Yi-Ping

    2017-05-18

    A characteristic cellular feature of the mammalian liver is the progressive polyploidization of the hepatocytes, where individual cells acquire more than two sets of chromosomes. Polyploidization results from cytokinesis failure that takes place progressively during the course of postnatal development. The proportion of polyploidy also increases with the aging process or with cellular stress such as surgical resection, toxic stimulation, metabolic overload, or oxidative damage, to involve as much as 90% of the hepatocytes in mice and 40% in humans. Hepatocyte polyploidization is generally considered an indicator of terminal differentiation and cellular senescence, and related to the dysfunction of insulin and p53/p21 signaling pathways. Interestingly, the high prevalence of hepatocyte polyploidization in the aged mouse liver can be reversed when the senescent hepatocytes are serially transplanted into young mouse livers. Here we review the current knowledge on the mechanism of hepatocytes polyploidization during postnatal growth, aging, and liver diseases. The biologic significance of polyploidization in senescent reversal, within the context of new ways to think of liver aging and liver diseases is considered.

  9. Nonylphenol-mediated CYP induction is PXR-dependent: The use of humanized mice and human hepatocytes suggests that hPXR is less sensitive than mouse PXR to nonylphenol treatment

    International Nuclear Information System (INIS)

    Mota, Linda C.; Barfield, Christina; Hernandez, Juan P.; Baldwin, William S.

    2011-01-01

    Nonylphenol (NP), a by-product of alkylphenol ethoxylates, is a pervasive surfactant that activates the xenosensing nuclear receptor, the pregnane X-receptor (PXR) in transactivation assays in vitro. We are interested in determining if NP activates PXR in vivo, determining if hPXR and mPXR act similarly, and investigating the role of PXR in protecting individuals from NP. Wild-type (WT), PXR-null, and humanized PXR (hPXR) mice were treated with NP at 0, 50 or 75 mg/kg/day for one week, and cytochrome P450 (CYP) induction, liver histopathology, and serum NP concentrations were examined. WT mice treated with NP showed induction of Cyp2b, and male-specific induction of Cyp2c and Cyp3a. CYPs were not induced in PXR-null mice, demonstrating that PXR is necessary for NP-mediated CYP induction. CAR-mediated CYP induction was not observed in the PXR-null mice despite previous data demonstrating that NP is also a CAR activator. hPXR mice only showed moderate Cyp induction, suggesting that hPXR is not as sensitive to NP as mPXR in vivo. NP-mediated Cyp3a induction from three human hepatocyte donors was not significant, confirming that hPXR is not very sensitive to NP-mediated CYP induction. Lastly, mice with PXR (mPXR and hPXR) showed lower NP serum concentrations than PXR-null mice treated with NP suggesting that PXR plays a role in decreasing liver toxicity by basally regulating phase I-III detoxification enzymes that promote the metabolism and elimination of NP. In summary, PXR is required for NP-mediated CYP-induction, mPXR mediates greater CYP induction than hPXR in vivo, and the presence of PXR, especially mPXR, is associated with altered histopathology and increased clearance of NP.

  10. Worker flag. Independent Electrical Policy; Bandera Obrera. Politica Electrica Independiente

    Energy Technology Data Exchange (ETDEWEB)

    Bahen, D [Sindicato Unico de Trabajadores de la Industria Nuclear, Salazar, Estado de Mexico C.P. 52045 (Mexico)

    2000-07-01

    This work analyses the initiative of privatization of the Mexican Electric Industry and also it is showed the incoherence of this mistaken proposal. Along the same line is analysed tthe situation of the National Electric Sector and the working process for the distinct types of electric generation just as the syndical and labor situations. In consequence it is proposed an Independent Electrical Policy, which includes the integration of the Nationalized Electric Industry, the syndical union and the Unique Collective Contract. The purpose of this work is to contribute to the success of the electrical and nuclear struggle always maintaining in rising position the red flag of the proletariat. The author considers that the privatization means mercantilization of the human necessities. The privatization is not inevitable at condition of to exercise consequently the political actions necessary through alternatives includes: the worker control of production, research, and the National Electric strike. (Author)

  11. And another thing - flags of convenience

    International Nuclear Information System (INIS)

    Flatern, R. von

    2002-01-01

    Crude oil being shipped around the world, when spilled, is a threat to the environment unlike any other commodity, save perhaps for radioactive materials. Therefore, if the oil industry expects to be taken seriously in its role of protecting the environment, it must assume responsibility for its product from wellhead to consumer. Whilst there are many operators paying considerable attention to transportation issues - the largest of them using their own double-hulled tanker fleets - there still too many using ships unsuitable for the purpose, either because of age or the fact that they are single hulled vessels. These derelicts are kept in business by owners who have registered them in country's where inspections are a local joke, registration requires only a fraction of the fee charged by more conscientious nations, and taxes are low. Ships flying flags of convenience have no ties to any country, including the ones in which they are registered. The author says that it is up to the oil industry to clean up their act, for instance they could refuse to use ships that sail under a flag of convenience or single hulled vessels to move their product. The major and large independent companies learned some time ago that taking care of the environment is very much in their interest, and further that only they can do it effectively

  12. Phloem Transport of Arsenic Species from Flag Leaf to Grain During Grain Filling

    Energy Technology Data Exchange (ETDEWEB)

    A Carey; G Norton; C Deacon; K Scheckel; E Lombi; T Punshon; M Guerinot; A Lanzirotti; M Newville; et al.

    2011-12-31

    Strategies to reduce arsenic (As) in rice grain, below concentrations that represent a serious human health concern, require that the mechanisms of As accumulation within grain be established. Therefore, retranslocation of As species from flag leaves into filling rice grain was investigated. Arsenic species were delivered through cut flag leaves during grain fill. Spatial unloading within grains was investigated using synchrotron X-ray fluorescence (SXRF) microtomography. Additionally, the effect of germanic acid (a silicic acid analog) on grain As accumulation in arsenite-treated panicles was examined. Dimethylarsinic acid (DMA) and monomethylarsonic acid (MMA) were extremely efficiently retranslocated from flag leaves to rice grain; arsenate was poorly retranslocated, and was rapidly reduced to arsenite within flag leaves; arsenite displayed no retranslocation. Within grains, DMA rapidly dispersed while MMA and inorganic As remained close to the entry point. Germanic acid addition did not affect grain As in arsenite-treated panicles. Three-dimensional SXRF microtomography gave further information on arsenite localization in the ovular vascular trace (OVT) of rice grains. These results demonstrate that inorganic As is poorly remobilized, while organic species are readily remobilized, from leaves to grain. Stem translocation of inorganic As may not rely solely on silicic acid transporters.

  13. Phloem transport of arsenic species from flag leaf to grain during grain filling

    Energy Technology Data Exchange (ETDEWEB)

    Carey, Anne-Marie; Norton, Gareth J.; Deacon, Claire; Scheckel, Kirk G.; Lombi, Enzo; Punshon, Tracy; Guerinot, Mary Lou; Lanzirotti, Antonio; Newville, Matt; Choi, Yongseong; Price, Adam H.; Meharg, Andrew A. (EPA); (U. South Australia); (Aberdeen); (UC); (Dartmouth)

    2011-09-20

    Strategies to reduce arsenic (As) in rice grain, below concentrations that represent a serious human health concern, require that the mechanisms of As accumulation within grain be established. Therefore, retranslocation of As species from flag leaves into filling rice grain was investigated. Arsenic species were delivered through cut flag leaves during grain fill. Spatial unloading within grains was investigated using synchrotron X-ray fluorescence (SXRF) microtomography. Additionally, the effect of germanic acid (a silicic acid analog) on grain As accumulation in arsenite-treated panicles was examined. Dimethylarsinic acid (DMA) and monomethylarsonic acid (MMA) were extremely efficiently retranslocated from flag leaves to rice grain; arsenate was poorly retranslocated, and was rapidly reduced to arsenite within flag leaves; arsenite displayed no retranslocation. Within grains, DMA rapidly dispersed while MMA and inorganic As remained close to the entry point. Germanic acid addition did not affect grain As in arsenite-treated panicles. Three-dimensional SXRF microtomography gave further information on arsenite localization in the ovular vascular trace (OVT) of rice grains. These results demonstrate that inorganic As is poorly remobilized, while organic species are readily remobilized, from leaves to grain. Stem translocation of inorganic As may not rely solely on silicic acid transporters.

  14. Controlled cell morphology and liver-specific function of engineered primary hepatocytes by fibroblast layer cell densities.

    Science.gov (United States)

    Sakai, Yusuke; Koike, Makiko; Kawahara, Daisuke; Hasegawa, Hideko; Murai, Tomomi; Yamanouchi, Kosho; Soyama, Akihiko; Hidaka, Masaaki; Takatsuki, Mitsuhisa; Fujita, Fumihiko; Kuroki, Tamotsu; Eguchi, Susumu

    2018-03-05

    Engineered primary hepatocytes, including co-cultured hepatocyte sheets, are an attractive to basic scientific and clinical researchers because they maintain liver-specific functions, have reconstructed cell polarity, and have high transplantation efficiency. However, co-culture conditions regarding engineered primary hepatocytes were suboptimal in promoting these advantages. Here we report that the hepatocyte morphology and liver-specific function levels are controlled by the normal human diploid fibroblast (TIG-118 cell) layer cell density. Primary rat hepatocytes were plated onto TIG-118 cells, previously plated 3 days before at 1.04, 5.21, and 26.1×10 3  cells/cm 2 . Hepatocytes plated onto lower TIG-118 cell densities expanded better during the early culture period. The hepatocytes gathered as colonies and only exhibited small adhesion areas because of the pushing force from proliferating TIG-118 cells. The smaller areas of each hepatocyte result in the development of bile canaliculi. The highest density of TIG-118 cells downregulated albumin synthesis activity of hepatocytes. The hepatocytes may have undergone apoptosis associated with high TGF-β1 concentration and necrosis due to a lack of oxygen. These occurrences were supported by apoptotic chromatin condensation and high expression of both proteins HIF-1a and HIF-1b. Three types of engineered hepatocyte/fibroblast sheets comprising different TIG-118 cell densities were harvested after 4 days of hepatocyte culture and showed a complete cell sheet format without any holes. Hepatocyte morphology and liver-specific function levels are controlled by TIG-118 cell density, which helps to design better engineered hepatocytes for future applications such as in vitro cell-based assays and transplantable hepatocyte tissues. Copyright © 2018 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  15. Hepatitis C virus expressing flag-tagged envelope protein 2 has unaltered infectivity and density, is specifically neutralized by flag antibodies and can be purified by affinity chromatography

    DEFF Research Database (Denmark)

    Prentø, Jannick Cornelius; Bukh, Jens

    2011-01-01

    to the original virus. Flag-tagged virus was susceptible to flag-specific antibody neutralization, and infected cells could be immuno-stained by anti-flag antibodies. Using affinity chromatography with anti-flag resin we repeatedly obtained ~30% recovery of infectious particles. The full viability and unaltered...

  16. Poly (Ethylene Glycol-Block-Brush Poly (L-Lysine Copolymer as an Efficient Nanocarrier for Human Hepatocyte Growth Factor with Enhanced Bioavailability and Anti-Ischemia Reperfusion Injury Efficacy

    Directory of Open Access Journals (Sweden)

    Fei Tong

    2017-08-01

    Full Text Available Background/Aims: The aim of this study was to assess the effect of human hepatocyte growth factor (hHGF-loaded poly (ethylene glycol-b-brush poly (l-lysine (PEG-b-P(ELG-g-PLL copolymer on ischemia/reperfusion (I/R injury to different organs. Methods: The isoelectric point (pI of hHGF is 5.5, and hHGF combined with PEG-b-P(ELG-g-PLL copolymer via electrostatic interactions at pH 7.4. The synthesized PEG-b-P(ELG-g-PLL copolymer was analyzed using 1H nuclear magnetic resonance (1H NMR and gel permeation chromatography (GPC. The hHGF/PEG-b-P(ELG-g-PLL complex was evaluated using a nanoparticle size instrument and transmission electron microscopy (TEM. In addition, vivo performance of hHGF/PEG-b-P(ELG-g-PLL complex was evaluated using plasma hHGF concentration and different organs ischemia reperfusion injury in rats. Results: An in vitro investigation showed that PEG-b-P(ELG-g-PLL could serve as a potential hHGF nanocarrier with efficient encapsulation and sustained release. An additional in vivo investigation revealed that the hHGF/PEG-b-P(ELG-g-PLL complex could prolong increases in plasma hHGF concentration and protect different organs (the brain, heart and kidney against I/R injury. Conclusion: Poly (ethylene glycol-block-brush poly (l-lysine copolymer as an efficient nanocarrier for human hepatocyte growth factor with enhanced bioavailability and anti-ischemia reperfusion injury efficacy.

  17. FIRE! A Red Flag Tap in Reclaiming Intervention

    Science.gov (United States)

    Bodnar, Brian

    2007-01-01

    "Red Flag Interventions" address problems which are imported from elsewhere and acted out towards persons who are in effect innocent bystanders. This is commonly seen as students "carry in" problems from the home or street to school, or they "carry over" conflicts from one class to the next. A third variation of Red Flag intervention is when a…

  18. Soap films burst like flapping flags.

    Science.gov (United States)

    Lhuissier, Henri; Villermaux, Emmanuel

    2009-07-31

    When punctured, a flat soap film bursts by opening a hole driven by liquid surface tension. The hole rim does not, however, remain smooth but soon develops indentations at the tip of which ligaments form, ultimately breaking and leaving the initially connex film into a mist of disjointed drops. We report on original observations showing that these indentations result from a flaglike instability between the film and the surrounding atmosphere inducing an oscillatory motion out of its plane. Just like a flag edge flaps in the wind, the film is successively accelerated on both sides perpendicularly to its plane, inducing film thickness modulations and centrifuging liquid ligaments that finally pinch off to form the observed spray. This effect exemplifies how the dynamics of fragile objects such as thin liquid films is sensitive to their embedding medium.

  19. Interspecies differences in metabolism of arsenic by cultured primary hepatocytes

    International Nuclear Information System (INIS)

    Drobna, Zuzana; Walton, Felecia S.; Harmon, Anne W.; Thomas, David J.; Styblo, Miroslav

    2010-01-01

    Biomethylation is the major pathway for the metabolism of inorganic arsenic (iAs) in many mammalian species, including the human. However, significant interspecies differences have been reported in the rate of in vivo metabolism of iAs and in yields of iAs metabolites found in urine. Liver is considered the primary site for the methylation of iAs and arsenic (+3 oxidation state) methyltransferase (As3mt) is the key enzyme in this pathway. Thus, the As3mt-catalyzed methylation of iAs in the liver determines in part the rate and the pattern of iAs metabolism in various species. We examined kinetics and concentration-response patterns for iAs methylation by cultured primary hepatocytes derived from human, rat, mice, dog, rabbit, and rhesus monkey. Hepatocytes were exposed to [ 73 As]arsenite (iAs III ; 0.3, 0.9, 3.0, 9.0 or 30 nmol As/mg protein) for 24 h and radiolabeled metabolites were analyzed in cells and culture media. Hepatocytes from all six species methylated iAs III to methylarsenic (MAs) and dimethylarsenic (DMAs). Notably, dog, rat and monkey hepatocytes were considerably more efficient methylators of iAs III than mouse, rabbit or human hepatocytes. The low efficiency of mouse, rabbit and human hepatocytes to methylate iAs III was associated with inhibition of DMAs production by moderate concentrations of iAs III and with retention of iAs and MAs in cells. No significant correlations were found between the rate of iAs methylation and the thioredoxin reductase activity or glutathione concentration, two factors that modulate the activity of recombinant As3mt. No associations between the rates of iAs methylation and As3mt protein structures were found for the six species examined. Immunoblot analyses indicate that the superior arsenic methylation capacities of dog, rat and monkey hepatocytes examined in this study may be associated with a higher As3mt expression. However, factors other than As3mt expression may also contribute to the interspecies differences

  20. RFI flagging implications for short-duration transients

    Science.gov (United States)

    Cendes, Y.; Prasad, P.; Rowlinson, A.; Wijers, R. A. M. J.; Swinbank, J. D.; Law, C. J.; van der Horst, A. J.; Carbone, D.; Broderick, J. W.; Staley, T. D.; Stewart, A. J.; Huizinga, F.; Molenaar, G.; Alexov, A.; Bell, M. E.; Coenen, T.; Corbel, S.; Eislöffel, J.; Fender, R.; Grießmeier, J.-M.; Jonker, P.; Kramer, M.; Kuniyoshi, M.; Pietka, M.; Stappers, B.; Wise, M.; Zarka, P.

    2018-04-01

    With their wide fields of view and often relatively long coverage of any position in the sky in imaging survey mode, modern radio telescopes provide a data stream that is naturally suited to searching for rare transients. However, Radio Frequency Interference (RFI) can show up in the data stream in similar ways to such transients, and thus the normal pre-treatment of filtering RFI (flagging) may also remove astrophysical transients from the data stream before imaging. In this paper we investigate how standard flagging affects the detectability of such transients by examining the case of transient detection in an observing mode used for Low Frequency Array (LOFAR; van Haarlem et al., 2013) surveys. We quantify the fluence range of transients that would be detected, and the reduction of their SNR due to partial flagging. We find that transients with a duration close to the integration sampling time, as well as bright transients with durations on the order of tens of seconds, are completely flagged. For longer transients on the order of several tens of seconds to minutes, the flagging effects are not as severe, although part of the signal is lost. For these transients, we present a modified flagging strategy which mitigates the effect of flagging on transient signals. We also present a script which uses the differences between the two strategies, and known differences between transient RFI and astrophysical transients, to notify the observer when a potential transient is in the data stream.

  1. Property of hepatitis B virus replication in Tupaia belangeri hepatocytes.

    Science.gov (United States)

    Sanada, Takahiro; Tsukiyama-Kohara, Kyoko; Yamamoto, Naoki; Ezzikouri, Sayeh; Benjelloun, Soumaya; Murakami, Shuko; Tanaka, Yasuhito; Tateno, Chise; Kohara, Michinori

    2016-01-08

    The northern treeshrew (Tupaia belangeri) has been reported to be an effective candidate for animal infection model with hepatitis B virus (HBV). The objective of our study was to analyze the growth characteristics of HBV in tupaia hepatocytes and the host response to HBV infection. We established primary tupaia hepatocytes (3-6-week old tupaia) and infected them with HBV genotypes A, B and C, and all the genotypes proliferated as well as those in human primary hepatocytes (>10(5) copies/ml in culture supernatant). We next generated a chimeric mouse with tupaia liver by transplantation of tupaia primary hepatocytes to urokinase-type plasminogen activator cDNA (cDNA-uPA)/severe combined immunodeficient (SCID) mice and the replacement ratio with tupaia hepatocytes was found to be more than 95%. Infection of chimeric mice with HBV (genotypes B, C, and D) resulted in HBV-DNA level of 10(4)-10(6) copies/ml after 8 weeks of infection, which were almost similar to that in humanized chimeric mouse. In contrast, serum HBV level in adult tupaia (1-year-old tupaia) was quite low (<10(3) copies/ml). Understanding the differences in the response to HBV infection in primary tupaia hepatocytes, chimeric mouse, and adult tupaia will contribute to elucidating the mechanism of persistent HBV infection and viral eradication. Thus, T. belangeri was found to be efficient for studying the host response to HBV infection, thereby providing novel insight into the pathogenesis of HBV. Copyright © 2015 The Authors. Published by Elsevier Inc. All rights reserved.

  2. Flags of the night sky when astronomy meets national pride

    CERN Document Server

    Bordeleau, André G

    2014-01-01

    Many national flags display astronomical features–Sun, Moon, stars–but are they really based on existing astronomical objects? The United States flag sports 50 stars, one for each state, however none of them are linked to real stars. Further, the lunar crescent is often shaped like the Sun being eclipsed by the Moon. At times, stars are seen right next to the crescent, where the darkened disc of the moon should be! This book will present true astronomical objects and patterns highlighted on national flags and link informative capsules about these objects to the political reasons why they were chosen to adorn such an important symbol.

  3. An anisotropic elastoplasticity model implemented in FLAG

    Energy Technology Data Exchange (ETDEWEB)

    Buechler, Miles Allen [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Canfield, Thomas R. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2017-10-12

    Many metals, including Tantalum and Zirconium, exhibit anisotropic elastoplastic behavior at the single crystal level, and if components are manufactured from these metals through forming processes the polycrystal (component) may also exhibit anisotropic elastoplastic behavior. This is because the forming can induce a preferential orientation of the crystals in the polycrystal. One example is a rolled plate of Uranium where the sti /strong orientation of the crystal (c-axis) tends to align itself perpendicular to the rolling direction. If loads are applied to this plate in di erent orientations the sti ness as well as the ow strength of the material will be greater in the through thickness direction than in other directions. To better accommodate simulations of such materials, an anisotropic elastoplasticity model has been implemented in FLAG. The model includes an anisotropic elastic stress model as well as an anisotropic plasticity model. The model could represent single crystals of any symmetry, though it should not be confused with a high- delity crystal plasticity model with multiple slip planes and evolutions. The model is most appropriate for homogenized polycrystalline materials. Elastic rotation of the material due to deformation is captured, so the anisotropic models are appropriate for arbitrary large rotations, but currently they do not account for signi cant change in material texture beyond the elastic rotation of the entire polycrystal.

  4. Co-operation of the transcription factor hepatocyte nuclear factor-4 with Sp1 or Sp3 leads to transcriptional activation of the human haem oxygenase-1 gene promoter in a hepatoma cell line.

    Science.gov (United States)

    Takahashi, Shigeru; Matsuura, Naomi; Kurokawa, Takako; Takahashi, Yuji; Miura, Takashi

    2002-11-01

    We reported previously that the 5'-flanking region (nucleotides -1976 to -1655) of the human haem oxygenase-1 ( hHO-1 ) gene enhances hHO-1 promoter activity in human hepatoma HepG2 cells, but not in HeLa cells [Takahashi, Takahashi, Ito, Nagano, Shibahara and Miura (1999) Biochim. Biophys. Acta 1447, 231-235]. To define more precisely the regulatory elements involved, in the present study we have functionally dissected this region and localized the enhancer to a 50 bp fragment (-1793 to -1744). Site-direct mutagenesis analysis revealed that two regions were responsible for this enhancer activity, i.e. a hepatocyte nuclear factor-4 (HNF-4) homologous region and a GC box motif homologous region. Mutation in either region alone moderately decreased enhancer activity. However, mutations in both regions reduced promoter activity to the basal level. Electrophoretic mobility-shift assays demonstrated that the P5-2 fragment (-1793 to -1744) interacted with at least two nuclear factors, i.e. HNF-4 and Sp1/Sp3. Co-transfection experiments using Drosophila SL2 cells revealed that HNF-4 and Sp1/Sp3 synergistically stimulated the enhancer activity of the P5-2 fragment. These results indicate that co-operation of HNF-4 with Sp1 or Sp3 leads to the activation of hHO-1 gene expression in hepatoma cells.

  5. Pseudo-Kähler Quantization on Flag Manifolds

    Science.gov (United States)

    Karabegov, Alexander V.

    A unified approach to geometric, symbol and deformation quantizations on a generalized flag manifold endowed with an invariant pseudo-Kähler structure is proposed. In particular cases we arrive at Berezin's quantization via covariant and contravariant symbols.

  6. No evidence for protective erythropoietin alpha signalling in rat hepatocytes

    Directory of Open Access Journals (Sweden)

    Frede Stilla

    2009-04-01

    Full Text Available Abstract Background Recombinant human erythropoietin alpha (rHu-EPO has been reported to protect the liver of rats and mice from ischemia-reperfusion injury. However, direct protective effects of rHu-EPO on hepatocytes and the responsible signalling pathways have not yet been described. The aim of the present work was to study the protective effect of rHu-EPO on warm hypoxia-reoxygenation and cold-induced injury to hepatocytes and the rHu-EPO-dependent signalling involved. Methods Loss of viability of isolated rat hepatocytes subjected to hypoxia/reoxygenation or incubated at 4°C followed by rewarming was determined from released lactate dehydrogenase activity in the absence and presence of rHu-EPO (0.2–100 U/ml. Apoptotic nuclear morphology was assessed by fluorescence microscopy using the nuclear fluorophores H33342 and propidium iodide. Erythropoietin receptor (EPOR, EPO and Bcl-2 mRNAs were quantified by real time PCR. Activation of JAK-2, STAT-3 and STAT-5 in hepatocytes and rat livers perfused in situ was assessed by Western blotting. Results In contrast to previous in vivo studies on ischemia-reperfusion injury to the liver, rHu-EPO was without any protective effect on hypoxic injury, hypoxia-reoxygenation injury and cold-induced apoptosis to isolated cultured rat hepatocytes. EPOR mRNA was identified in these cells but specific detection of the EPO receptor protein was not possible due to the lack of antibody specificity. Both, in the cultured rat hepatocytes (10 U/ml for 15 minutes and in the rat liver perfused in situ with rHu-EPO (8.9 U/ml for 15 minutes no evidence for EPO-dependent signalling was found as indicated by missing effects of rHu-EPO on phosphorylation of JAK-2, STAT-3 and STAT-5 and on the induction of Bcl-2 mRNA. Conclusion Together, these results indicate the absence of any protective EPO signalling in rat hepatocytes. This implies that the protection provided by rHu-EPO in vivo against ischemia-reperfusion and

  7. New psychoactive substances: Studies on the metabolism of XLR-11, AB-PINACA, FUB-PB-22, 4-methoxy-α-PVP, 25-I-NBOMe, and meclonazepam using human liver preparations in comparison to primary human hepatocytes, and human urine.

    Science.gov (United States)

    Richter, Lilian H J; Maurer, Hans H; Meyer, Markus R

    2017-10-05

    New psychoactive substances (NPS) are an increasing problem in clinical and forensic toxicology. The knowledge of their metabolism is important for toxicological risk assessment and for developing toxicological urine screenings. Considering the huge numbers of NPS annually appearing on the market, metabolism studies should be realized in a fast, simple, cost efficient, and reliable way. Primary human hepatocytes (PHH) were recommended to be the gold standard for in vitro metabolism studies as they are expected to contain natural enzyme clusters, co-substrates, and drug transporters. In addition, they were already successfully used for metabolism studies of NPS. However, they also have disadvantages such as high costs and limited applicability without special equipment. The aims of the present study were therefore first to investigate exemplarily the phase I and phase II metabolism of six NPS (XLR-11, AB-PINACA, FUB-PB-22, 4-methoxy-α-PVP, 25-I-NBOMe, and meclonazepam) from different drug classes using pooled human S9 fraction (pS9) or pooled human liver microsomes combined with cytosol (pHLM/pHLC) after addition of the co-substrates for the main metabolic phase I and II reactions. Second to compare results to published data generated using primary human hepatocytes and human urine samples. Results of the incubations with pS9 or pHLM/pHLC were comparable in number and abundance of metabolites. Formation of metabolites, particularly after multi-step reactions needed a longer incubation time. However, incubations using human liver preparations resulted in a lower number of total detected metabolites compared to PHH, but they were still able to allow the identification of the main human urinary excretion products. Human liver preparations and particularly the pooled S9 fraction could be shown to be a sufficient and more cost-efficient alternative in context of metabolism studies also for developing toxicological urine screenings. It might be recommended to use the

  8. Aniline Induces Oxidative Stress and Apoptosis of Primary Cultured Hepatocytes

    Directory of Open Access Journals (Sweden)

    Yue Wang

    2016-11-01

    Full Text Available The toxicity and carcinogenicity of aniline in humans and animals have been well documented. However, the molecular mechanism involved in aniline-induced liver toxicity and carcinogenesis remains unclear. In our research, primary cultured hepatocytes were exposed to aniline (0, 1.25, 2.50, 5.0 and 10.0 μg/mL for 24 h in the presence or absence of N-acetyl-l-cysteine (NAC. Levels of reactive oxygen species (ROS, malondialdehyde (MDA, and glutathione (GSH, activities of superoxide dismutase (SOD and catalase (CAT, mitochondrial membrane potential, DNA damage, cell viability, and apoptosis were detected. Levels of ROS and MDA were significantly increased and levels of GSH and CAT, activity of SOD, and mitochondrial membrane potential in hepatocytes were significantly decreased by aniline compared with the negative control group. The tail moment and DNA content of the tail in exposed groups were significantly higher than those in the negative control group. Cell viability was reduced and apoptotic death was induced by aniline in a concentration-dependent manner. The phenomena of ROS generation, oxidative damage, loss of mitochondrial membrane potential, DNA damage and apoptosis could be prevented if ROS inhibitor NAC was added. ROS generation is involved in the loss of mitochondrial membrane potential and DNA injury, which may play a role in aniline-induced apoptosis in hepatocytes. Our study provides insight into the mechanism of aniline-induced toxicity and apoptosis of hepatocytes.

  9. RNAi screening in primary human hepatocytes of genes implicated in genome-wide association studies for roles in type 2 diabetes identifies roles for CAMK1D and CDKAL1, among others, in hepatic glucose regulation.

    Directory of Open Access Journals (Sweden)

    Steven Haney

    Full Text Available Genome-wide association (GWA studies have described a large number of new candidate genes that contribute to of Type 2 Diabetes (T2D. In some cases, small clusters of genes are implicated, rather than a single gene, and in all cases, the genetic contribution is not defined through the effects on a specific organ, such as the pancreas or liver. There is a significant need to develop and use human cell-based models to examine the effects these genes may have on glucose regulation. We describe the development of a primary human hepatocyte model that adjusts glucose disposition according to hormonal signals. This model was used to determine whether candidate genes identified in GWA studies regulate hepatic glucose disposition through siRNAs corresponding to the list of identified genes. We find that several genes affect the storage of glucose as glycogen (glycolytic response and/or affect the utilization of pyruvate, the critical step in gluconeogenesis. Of the genes that affect both of these processes, CAMK1D, TSPAN8 and KIF11 affect the localization of a mediator of both gluconeogenesis and glycolysis regulation, CRTC2, to the nucleus in response to glucagon. In addition, the gene CDKAL1 was observed to affect glycogen storage, and molecular experiments using mutant forms of CDK5, a putative target of CDKAL1, in HepG2 cells show that this is mediated by coordinate regulation of CDK5 and PKA on MEK, which ultimately regulates the phosphorylation of ribosomal protein S6, a critical step in the insulin signaling pathway.

  10. Cell therapy from bench to bedside: Hepatocytes from fibroblasts - the truth and myth of transdifferentiation.

    Science.gov (United States)

    Sanal, Madhusudana Girija

    2015-06-07

    Hepatocyte transplantation is an alternative to liver transplantation in certain disorders such as inherited liver diseases and liver failure. It is a relatively less complicated surgical procedure, and has the advantage that it can be repeated several times if unsuccessful. Another advantage is that hepatocytes can be isolated from partly damaged livers which are not suitable for liver transplantation. Despite these advantages hepatocyte transplantation is less popular. Important issues are poor engraftment of the transplanted cells and the scarcity of donor hepatocytes. Generation of "hepatocyte like cells"/iHeps from embryonic stem cells (ES) and induced pluripotent stem cells (iPSCs) by directed differentiation is an emerging solution to the latter issue. Direct conversation or trans-differentiation of fibroblasts to "hepatocyte like cells" is another way which is, being explored. However this method has several inherent and technical disadvantages compared to the directed differentiation from ES or iPSC. There are several methods claiming to be "highly efficient" for generating "highly functional" "hepatocyte like cells". Currently different groups are working independently and coming up with differentiation protocols and each group claiming an advantage for their protocol. Directed differentiation protocols need to be designed, compared, analyzed and tweaked systematically and logically than empirically. There is a need for a well-coordinated global initiative comparable to the Human Genome Project to achieve this goal in the near future.

  11. Acrolein cytotoxicity in hepatocytes involves endoplasmic reticulum stress, mitochondrial dysfunction and oxidative stress

    OpenAIRE

    Mohammad, Mohammad K; Avila, Diana; Zhang, Jingwen; Barve, Shirish; Arteel, Gavin; McClain, Craig; Joshi-Barve, Swati

    2012-01-01

    Acrolein is a common environmental, food and water pollutant and a major component of cigarette smoke. Also, it is produced endogenously via lipid peroxidation and cellular metabolism of certain amino acids and drugs. Acrolein is cytotoxic to many cell types including hepatocytes; however the mechanisms are not fully understood. We examined the molecular mechanisms underlying acrolein hepatotoxicity in primary human hepatocytes and hepatoma cells. Acrolein, at pathophysiological concentration...

  12. Metabolism of six CYP probe substrates in fetal hepatocytes

    Directory of Open Access Journals (Sweden)

    Abdul Naveed Shaik

    2016-06-01

    Full Text Available Cytochrome P-450 (CYP are the most common drug metabolizing enzymes and are abundantly expressed in liver apart from kidney, lungs, intestine, brain etc. Their expression levels change with physiological conditions and disease states. The expression of these CYPs is less in human foetus and neonates compared to adults, which results in lower clearance of xenobiotics in infants and neonates compared to adults. Hepatocytes are the cells which are largely used to study these CYPs. We have isolated hepatocytes from aborted foetus to study the metabolism of six probe substrates: phenacetin, diclofenac, S-mephenytoin, dextromethorphan, nifedipine and testosterone. The results obtained show the expression of various CYPs (CYP1A2, CYP2C19, CYP2C9, CYP2D6, and CYP3A4 in human foetus and their involvement in metabolism of CYP probe substrates.

  13. Hepatocyte transplantation and advancements in alternative cell sources for liver-based regenerative medicine.

    Science.gov (United States)

    Lee, Charlotte A; Sinha, Siddharth; Fitzpatrick, Emer; Dhawan, Anil

    2018-06-01

    Human hepatocyte transplantation has been actively perused as an alternative to liver replacement for acute liver failure and liver-based metabolic defects. Current challenges in this field include a limited cell source, reduced cell viability following cryopreservation and poor engraftment of cells into the recipient liver with consequent limited life span. As a result, alternative stem cell sources such as pluripotent stem cells, fibroblasts, hepatic progenitor cells, amniotic epithelial cells and mesenchymal stem/stromal cells (MSCs) can be used to generate induced hepatocyte like cells (HLC) with each technique exhibiting advantages and disadvantages. HLCs may have comparable function to primary human hepatocytes and could offer patient-specific treatment. However, long-term functionality of transplanted HLCs and the potential oncogenic risks of using stem cells have yet to be established. The immunomodulatory effects of MSCs are promising, and multiple clinical trials are investigating their effect in cirrhosis and acute liver failure. Here, we review the current status of hepatocyte transplantation, alternative cell sources to primary human hepatocytes and their potential in liver regeneration. We also describe recent clinical trials using hepatocytes derived from stem cells and their role in improving the phenotype of several liver diseases.

  14. High explosive programmed burn in the FLAG code

    Energy Technology Data Exchange (ETDEWEB)

    Mandell, D.; Burton, D.; Lund, C.

    1998-02-01

    The models used to calculate the programmed burn high-explosive lighting times for two- and three-dimensions in the FLAG code are described. FLAG uses an unstructured polyhedra grid. The calculations were compared to exact solutions for a square in two dimensions and for a cube in three dimensions. The maximum error was 3.95 percent in two dimensions and 4.84 percent in three dimensions. The high explosive lighting time model described has the advantage that only one cell at a time needs to be considered.

  15. Transplant of Hepatocytes, Undifferentiated Mesenchymal Stem Cells, and In Vitro Hepatocyte-Differentiated Mesenchymal Stem Cells in a Chronic Liver Failure Experimental Model: A Comparative Study.

    Science.gov (United States)

    El Baz, Hanan; Demerdash, Zeinab; Kamel, Manal; Atta, Shimaa; Salah, Faten; Hassan, Salwa; Hammam, Olfat; Khalil, Heba; Meshaal, Safa; Raafat, Inas

    2018-02-01

    Liver transplant is the cornerstone line of treatment for chronic liver diseases; however, the long list of complications and obstacles stand against this operation. Searching for new modalities for treatment of chronic liver illness is a must. In the present research, we aimed to compare the effects of transplant of undifferentiated human mesenchymal stem cells, in vitro differentiated mesenchymal stem cells, and adult hepatocytes in an experimental model of chronic liver failure. Undifferentiated human cord blood mesenchymal stem cells were isolated, pro-pagated, and characterized by morphology, gene expression analysis, and flow cytometry of surface markers and in vitro differentiated into hepatocyte-like cells. Rat hepatocytes were isolated by double perfusion technique. An animal model of chronic liver failure was developed, and undifferentiated human cord blood mesenchymal stem cells, in vitro hepato-genically differentiated mesenchymal stem cells, or freshly isolated rat hepatocytes were transplanted into a CCL4 cirrhotic experimental model. Animals were killed 3 months after transplant, and liver functions and histopathology were assessed. Compared with the cirrhotic control group, the 3 cell-treated groups showed improved alanine aminotransferase, aspartate aminotransferase, albumin, and bilirubin levels, with best results shown in the hepatocyte-treated group. Histopathologic examination of the treated groups showed improved fibrosis, with best results obtained in the undifferentiated mesenchymal stem cell-treated group. Both adult hepatocytes and cord blood mesenchymal stem cells proved to be promising candidates for cell-based therapy in liver regeneration on an experimental level. Improved liver function was evident in the hepatocyte-treated group, and fibrosis control was more evident in the undifferentiated mesenchymal stem cell-treated group.

  16. Disposition and metabolism of the bisphenol analogue, bisphenol S, in Harlan Sprague Dawley rats and B6C3F1/N mice and in vitro in hepatocytes from rats, mice, and humans.

    Science.gov (United States)

    Waidyanatha, Suramya; Black, Sherry R; Snyder, Rodney W; Yueh, Yun Lan; Sutherland, Vicki; Patel, Purvi R; Watson, Scott L; Fennell, Timothy R

    2018-05-10

    With the removal of bisphenol A (BPA) from many consumer products, the potential use of alternatives such as bisphenol S (BPS) and its derivatives is causing some concerns. These studies investigated the comparative in vitro hepatic clearance and metabolism of BPS and derivatives and the disposition and metabolism of BPS in rats and mice following gavage and intravenous administration. The clearance of BPS and its derivatives was slower in human hepatocytes than in rodents. In male rats following gavage administration of 50, 150, and 500 mg/kg [ 14 C]BPS the main route of excretion was via urine; the urinary excretion decreased (72 to 48%) and the fecal excretion increased (16 to 30%) with increasing dose. The disposition was similar in female rats and male and female mice following gavage administration. Radioactivity remaining in tissues at 72 h in both species and sexes was ≤2.4%. In bile duct cannulated rats 53% of a gavage dose was secreted in bile suggesting extensive enterohepatic recirculation of [ 14 C]BPS. Following an intravenous dose in rats and mice, the pattern of excretion was similar to gavage. These data suggest that the dose excreted in feces folowing gavage administration is likely the absorbed dose. Urinary metabolites included the glucuronide and sulfate conjugates with a moderate amount of parent. The pattern of in vitro hepatic metabolsim was similar to in vivo with some difference among derivatives. These data suggest that similar to other bisphenol analogues, BPS was well absorbed following oral expsosure and extensively excreted with minimal tissue retention. Copyright © 2017. Published by Elsevier Inc.

  17. Testing ALE code FLAG with analytical self-similar solutions of 2D magnetized implosion

    Energy Technology Data Exchange (ETDEWEB)

    Bereznyak, Andrey [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Gianakon, Thomas Arthur [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Rousculp, Christopher L. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Cooley, James Hamilton [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Giuliani, John [Naval Research Lab. (NRL), Washington, DC (United States)

    2018-01-04

    The goal of this collaboration was to provide a mechanism to verify the MHD implementation in FLAG and improve the FLAG MHD packages as need to meet broader LANL institutional goals. These three Magnetic Noh problems are proving immensely useful.

  18. Knowledge and Utilization of Red Flags by Physiotherapists in the ...

    African Journals Online (AJOL)

    DR. BASHIR BELLO

    majority of the physiotherapists 44 (88%) had knowledge of red flags but only 14 (28%) ... documented, while medical history of cancer, HIV status, as well as history of fever were .... The main objective of this study was to determine the level.

  19. THE STATE PRESIDENT'S FLAG SINCE 4 SEPTEMBER 1984

    African Journals Online (AJOL)

    The heraldic description of the flag reads as follows: a rectangular tricolour, ratio three by two, with three triangular fields (top to bottom) in orange, white and blue. The white charged in the hoist with the coat of arms of the Republic of. South Africa. Above the coat of arms the letter. 'SP' are ensigned in gold with black ...

  20. General and Flag Officer Careers: Consequences of Increased Tenure

    National Research Council Canada - National Science Library

    Thie, Harry

    2001-01-01

    .... As a result of these concerns, Congress asked the Secretary of Defense to review the career patterns of flag-rank officers. It requested specific data about average time-in-grade both when selected and when promoted as well as the length of tours. It also asked the Secretary to assess the appropriateness of mandatory retirement at 35 years.

  1. 14 CFR 1221.106 - Establishment of the NASA Flag.

    Science.gov (United States)

    2010-01-01

    ... 14 Aeronautics and Space 5 2010-01-01 2010-01-01 false Establishment of the NASA Flag. 1221.106 Section 1221.106 Aeronautics and Space NATIONAL AERONAUTICS AND SPACE ADMINISTRATION THE NASA SEAL AND OTHER DEVICES, AND THE CONGRESSIONAL SPACE MEDAL OF HONOR NASA Seal, NASA Insignia, NASA Logotype, NASA...

  2. 14 CFR 1221.113 - Use of the NASA Flags.

    Science.gov (United States)

    2010-01-01

    ... 14 Aeronautics and Space 5 2010-01-01 2010-01-01 false Use of the NASA Flags. 1221.113 Section 1221.113 Aeronautics and Space NATIONAL AERONAUTICS AND SPACE ADMINISTRATION THE NASA SEAL AND OTHER DEVICES, AND THE CONGRESSIONAL SPACE MEDAL OF HONOR NASA Seal, NASA Insignia, NASA Logotype, NASA Program...

  3. Exposure to the American flag polarizes democratic-republican ideologies.

    Science.gov (United States)

    Chan, Eugene Y

    2017-12-01

    Some prior research has suggested that exposure to the American flag tilts Americans towards Republicanism, while others have proffered that it brings outs a common 'together' perspective instead. We explore a third possibility - that it may actually polarize Americans' political ideology. It is generally accepted that exposure to an environmental cue can shift attitudes and behaviours, at least partly or temporarily, in a manner that is consistent with that cue. Yet, the same cue can mean different things to different people. In the same vein, given how national identity and political ideology are intertwined in the United States, we hypothesize that the American flag should heighten different political beliefs depending on individuals' political ideology. To Democrats, being American is to support Democratic values, but to Republicans, being American is to support Republican values. The American flag thus should heighten Democrats of their Democratic identity, and it should heighten Republicans of their Republican one. The results of an experiment with 752 American respondents who were representative of the US population supported this polarizing effect of the American flag. The theoretical and policy implications of the findings are offered. © 2017 The British Psychological Society.

  4. Swedish Seafarers' Commitment to Work in Times of Flagging out

    Directory of Open Access Journals (Sweden)

    C. Hult

    2014-03-01

    Full Text Available This study takes its departure in the difficulties to recruit and retain qualified senior seafarers in the Swedish shipping sector. The study focus is on seafarers' motivation at work for the specific shipping company (organizational commitment, and seafarers' motivation towards their occupation (occupational commitment, in times of flagging out. It was hypothesized that the youngest seafarers and the oldest may be most sensitive to foreign registration of ships. Statistical analyses were employed, using a survey material of 1,309 Swedish seafarers randomly collected in 2010 from a national register of seafarers. The results of the analyses show that flagging-out imposes a significant decline in organizational commitment for all seafarers. This decline is related to the perception of the social composition of crew. In addition, the oldest seafarers (age 55+ demonstrate diminished occupational commitment under a foreign flag. This decline is related to the degree of satisfaction with the social security structure. Occupational commitment among the youngest seafarers (age 19-30 is not affected by the nationality of flag. However, this type of commitment is decreasing by the time served on the same ship. This effect is partly related to a decline in satisfaction with the work content. In the concluding discussion, the findings are discussed in more details and recommendations are put forward.

  5. Modifying Flag Football for Gender Equitable Engagement in Secondary Schools

    Science.gov (United States)

    Kahan, David

    2008-01-01

    Flag or touch football is a popular activity unit in American secondary physical education curricula. However, unlike other sports its stigmatization as a masculine-typed activity and frequent inequitable distribution of game play opportunities at the skill positions (e.g., receiver, quarterback) results in the marginalization of female…

  6. Quantum cohomology of flag manifolds and Toda lattices

    International Nuclear Information System (INIS)

    Givental, A.; Kim, B.

    1995-01-01

    We discuss relations of Vafa's quantum cohomology with Floer's homology theory, introduce equivariant quantum cohomology, formulate some conjectures about its general properties and, on the basis of these conjectures, compute quantum cohomology algebras of the flag manifolds. The answer turns out to coincide with the algebra of regular functions on an invariant lagrangian variety of a Toda lattice. (orig.)

  7. Subtoxic Alterations in Hepatocyte-Derived Exosomes: An Early Step in Drug-Induced Liver Injury?

    Science.gov (United States)

    Holman, Natalie S; Mosedale, Merrie; Wolf, Kristina K; LeCluyse, Edward L; Watkins, Paul B

    2016-06-01

    Drug-induced liver injury (DILI) is a significant clinical and economic problem in the United States, yet the mechanisms that underlie DILI remain poorly understood. Recent evidence suggests that signaling molecules released by stressed hepatocytes can trigger immune responses that may be common across DILI mechanisms. Extracellular vesicles released by hepatocytes, principally hepatocyte-derived exosomes (HDEs), may constitute one such signal. To examine HDE alterations as a function of drug-induced stress, this work utilized prototypical hepatotoxicant acetaminophen (APAP) in male Sprague-Dawley (SD) rats, SD rat hepatocytes, and primary human hepatocytes. HDE were isolated using ExoQuick precipitation reagent and analyzed by quantification of the liver-specific RNAs albumin and microRNA-122 (miR-122). In vivo, significant elevations in circulating exosomal albumin mRNA were observed at subtoxic APAP exposures. Significant increases in exosomal albumin mRNA were also observed in primary rat hepatocytes at subtoxic APAP concentrations. In primary human hepatocytes, APAP elicited increases in both exosomal albumin mRNA and exosomal miR-122 without overt cytotoxicity. However, the number of HDE produced in vitro in response to APAP did not increase with exosomal RNA quantity. We conclude that significant drug-induced alterations in the liver-specific RNA content of HDE occur at subtoxic APAP exposures in vivo and in vitro, and that these changes appear to reflect selective packaging rather than changes in exosome number. The current findings demonstrate that translationally relevant HDE alterations occur in the absence of overt hepatocellular toxicity, and support the hypothesis that HDE released by stressed hepatocytes may mediate early immune responses in DILI. © The Author 2016. Published by Oxford University Press on behalf of the Society of Toxicology. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  8. Determination of acute lethal and chronic lethal dose thresholds of valproic acid using 3D spheroids constructed from the immortal human hepatocyte cell line HepG2/C3A

    DEFF Research Database (Denmark)

    Fey, S. J.; Wrzesinski, K.

    2013-01-01

    describe here a culture system based on 3D spheroid culture of immortal hepatocytes which can determine the toxicity of valproic acid (or structurally or functionally related molecules) in vitro. The spheroids were used to follow changes in ATP production, glucose uptake and adenylate kinase following...

  9. Hepatocyte produced matrix metalloproteinases are regulated by CD147 in liver fibrogenesis.

    Science.gov (United States)

    Calabro, Sarah R; Maczurek, Annette E; Morgan, Alison J; Tu, Thomas; Wen, Victoria W; Yee, Christine; Mridha, Auvro; Lee, Maggie; d'Avigdor, William; Locarnini, Stephen A; McCaughan, Geoffrey W; Warner, Fiona J; McLennan, Susan V; Shackel, Nicholas A

    2014-01-01

    The classical paradigm of liver injury asserts that hepatic stellate cells (HSC) produce, remodel and turnover the abnormal extracellular matrix (ECM) of fibrosis via matrix metalloproteinases (MMPs). In extrahepatic tissues MMP production is regulated by a number of mechanisms including expression of the glycoprotein CD147. Previously, we have shown that CD147 is expressed on hepatocytes but not within the fibrotic septa in cirrhosis [1]. Therefore, we investigated if hepatocytes produce MMPs, regulated by CD147, which are capable of remodelling fibrotic ECM independent of the HSC. Non-diseased, fibrotic and cirrhotic livers were examined for MMP activity and markers of fibrosis in humans and mice. CD147 expression and MMP activity were co-localised by in-situ zymography. The role of CD147 was studied in-vitro with siRNA to CD147 in hepatocytes and in-vivo in mice with CCl4 induced liver injury using ãCD147 antibody intervention. In liver fibrosis in both human and mouse tissue MMP expression and activity (MMP-2, -9, -13 and -14) increased with progressive injury and localised to hepatocytes. Additionally, as expected, MMPs were abundantly expressed by activated HSC. Further, with progressive fibrosis there was expression of CD147, which localised to hepatocytes but not to HSC. Functionally significant in-vitro regulation of hepatocyte MMP production by CD147 was demonstrated using siRNA to CD147 that decreased hepatocyte MMP-2 and -9 expression/activity. Further, in-vivo α-CD147 antibody intervention decreased liver MMP-2, -9, -13, -14, TGF-β and α-SMA expression in CCl4 treated mice compared to controls. We have shown that hepatocytes produce active MMPs and that the glycoprotein CD147 regulates hepatocyte MMP expression. Targeting CD147 regulates hepatocyte MMP production both in-vitro and in-vivo, with the net result being reduced fibrotic matrix turnover in-vivo. Therefore, CD147 regulation of hepatocyte MMP is a novel pathway that could be targeted by

  10. Hepatocyte produced matrix metalloproteinases are regulated by CD147 in liver fibrogenesis.

    Directory of Open Access Journals (Sweden)

    Sarah R Calabro

    Full Text Available The classical paradigm of liver injury asserts that hepatic stellate cells (HSC produce, remodel and turnover the abnormal extracellular matrix (ECM of fibrosis via matrix metalloproteinases (MMPs. In extrahepatic tissues MMP production is regulated by a number of mechanisms including expression of the glycoprotein CD147. Previously, we have shown that CD147 is expressed on hepatocytes but not within the fibrotic septa in cirrhosis [1]. Therefore, we investigated if hepatocytes produce MMPs, regulated by CD147, which are capable of remodelling fibrotic ECM independent of the HSC.Non-diseased, fibrotic and cirrhotic livers were examined for MMP activity and markers of fibrosis in humans and mice. CD147 expression and MMP activity were co-localised by in-situ zymography. The role of CD147 was studied in-vitro with siRNA to CD147 in hepatocytes and in-vivo in mice with CCl4 induced liver injury using ãCD147 antibody intervention.In liver fibrosis in both human and mouse tissue MMP expression and activity (MMP-2, -9, -13 and -14 increased with progressive injury and localised to hepatocytes. Additionally, as expected, MMPs were abundantly expressed by activated HSC. Further, with progressive fibrosis there was expression of CD147, which localised to hepatocytes but not to HSC. Functionally significant in-vitro regulation of hepatocyte MMP production by CD147 was demonstrated using siRNA to CD147 that decreased hepatocyte MMP-2 and -9 expression/activity. Further, in-vivo α-CD147 antibody intervention decreased liver MMP-2, -9, -13, -14, TGF-β and α-SMA expression in CCl4 treated mice compared to controls.We have shown that hepatocytes produce active MMPs and that the glycoprotein CD147 regulates hepatocyte MMP expression. Targeting CD147 regulates hepatocyte MMP production both in-vitro and in-vivo, with the net result being reduced fibrotic matrix turnover in-vivo. Therefore, CD147 regulation of hepatocyte MMP is a novel pathway that could be

  11. A Rotational Crofton Formula for Flagged Intrinsic Volumes of Sets of Positive Reach

    DEFF Research Database (Denmark)

    Auneau, Jeremy Michel

    A rotational Crofton formula is derived relating the flagged intrinsic volumes of a compact set of positive reach with the flagged intrinsic volumes measured on sections passing through a fixed point. In particular cases, the flagged intrinsic volumes defined in the present paper are identical...

  12. 76 FR 39885 - Risk-Based Targeting of Foreign Flagged Mobile Offshore Drilling Units (MODUs)

    Science.gov (United States)

    2011-07-07

    ... Foreign Flagged Mobile Offshore Drilling Units (MODUs) AGENCY: Coast Guard, DHS. ACTION: Notice of... 11-06, Risk-Based Targeting of Foreign Flagged Mobile Offshore Drilling Units (MODUs). This policy... applicable regulations, every foreign-flagged mobile offshore drilling unit (MODU) must undergo a Coast Guard...

  13. YAP Inhibition Restores Hepatocyte Differentiation in Advanced HCC, Leading to Tumor Regression

    Directory of Open Access Journals (Sweden)

    Julien Fitamant

    2015-03-01

    Full Text Available Defective Hippo/YAP signaling in the liver results in tissue overgrowth and development of hepatocellular carcinoma (HCC. Here, we uncover mechanisms of YAP-mediated hepatocyte reprogramming and HCC pathogenesis. YAP functions as a rheostat in maintaining metabolic specialization, differentiation, and quiescence within the hepatocyte compartment. Increased or decreased YAP activity reprograms subsets of hepatocytes to different fates associated with deregulation of the HNF4A, CTNNB1, and E2F transcriptional programs that control hepatocyte quiescence and differentiation. Importantly, treatment with small interfering RNA-lipid nanoparticles (siRNA-LNPs targeting YAP restores hepatocyte differentiation and causes pronounced tumor regression in a genetically engineered mouse HCC model. Furthermore, YAP targets are enriched in an aggressive human HCC subtype characterized by a proliferative signature and absence of CTNNB1 mutations. Thus, our work reveals Hippo signaling as a key regulator of the positional identity of hepatocytes, supports targeting of YAP using siRNA-LNPs as a paradigm of differentiation-based therapy, and identifies an HCC subtype that is potentially responsive to this approach.

  14. AR42J-B-13 cell: An expandable progenitor to generate an unlimited supply of functional hepatocytes

    International Nuclear Information System (INIS)

    Wallace, Karen; Fairhall, Emma A.; Charlton, Keith A.; Wright, Matthew C.

    2010-01-01

    Hepatocytes are the preparation of choice for Toxicological research in vitro. However, despite the fact that hepatocytes proliferate in vivo during liver regeneration, they are resistant to proliferation in vitro, do not tolerate sub-culture and tend to enter a de-differentiation program that results in a loss of hepatic function. These limitations have resulted in the search for expandable rodent and human cells capable of being directed to differentiate into functional hepatocytes. Research with stem cells suggests that it may be possible to provide the research community with hepatocytes in vitro although to date, significant challenges remain, notably generating a sufficiently pure population of hepatocytes with a quantitative functionality comparable with hepatocytes. This paper reviews work with the AR42J-B-13 (B-13) cell line. The B-13 cell was cloned from the rodent AR42J pancreatic cell line, express genes associated with pancreatic acinar cells and readily proliferates in simple culture media. When exposed to glucocorticoid, 75-85% of the cells trans-differentiate into hepatocyte-like (B-13/H) cells functioning at a level quantitatively similar to freshly isolated rat hepatocytes (with the remaining cells retaining the B-13 phenotype). Trans-differentiation of pancreatic acinar cells also appears to occur in vivo in rats treated with glucocorticoid; in mice with elevated circulating glucocorticoid and in humans treated for long periods with glucocorticoid. The B-13 response to glucocorticoid therefore appears to be related to a real pathophysiological response of a pancreatic cell to glucocorticoid. An understanding of how this process occurs and if it can be generated or engineered in human cells would result in a cell line with the ability to generate an unlimited supply of functional human hepatocytes in a cost effective manner.

  15. Hepatocyte polarization is essential for the productive entry of the hepatitis B virus.

    Science.gov (United States)

    Schulze, Andreas; Mills, Kerry; Weiss, Thomas S; Urban, Stephan

    2012-02-01

    Human hepatitis B virus (HBV) is characterized by a high species specificity and a distinct liver tropism. Within the liver, HBV replication occurs in differentiated and polarized hepatocytes. Accordingly, the in vitro HBV infection of primary human hepatocytes (PHHs) and the human hepatoma cell line, HepaRG, is restricted to differentiated, hepatocyte-like cells. Though preparations of PHH contain up to 100% hepatic cells, cultures of differentiated HepaRG cells are a mixture of hepatocyte-like and biliary-like epithelial cells. We used PHH and HepaRG cells and compared the influence of virus inoculation dose, cell differentiation, and polarization on productive HBV infection. At multiplicities of genome equivalents (mge) >8,000, almost 100% of PHHs could be infected. In contrast, only a subset of HepaRG cells stained positive for HBcAg at comparable or even higher mge. Infection predominantly occurred at the edges of islands of hepatocyte-like HepaRG cells. This indicates a limited accessibility of the HBV receptor, possibly as a result of its polar sorting. Multidrug resistance protein 2 (MRP2), a marker selectively transported to the apical (i.e., canalicular) cell membrane, revealed two polarization phenotypes of HepaRG cells. HBV infection within the islands of hepatocyte-like HepaRG cells preferentially occurred in cells that resemble PHH, exhibiting canalicular structures. However, disruption of cell-cell junctions allowed the additional infection of cells that do not display a PHH-like polarization. HBV enters hepatocytes via the basolateral membrane. This model, at least partially, explains the difference of PHH and HepaRG cells in infection efficacy, provides insights into natural HBV infection, and establishes a basis for optimization of the HepaRG infection system. Copyright © 2011 American Association for the Study of Liver Diseases.

  16. Effects of bisphenol A-related diphenylalkanes on vitellogenin production in male carp (Cyprinus carpio) hepatocytes and aromatase (CYP19) activity in human H295r adrenocortical carcinoma cells

    International Nuclear Information System (INIS)

    Letcher, Robert J.; Sanderson, J. Thomas; Bokkers, Abraham; Giesy, John P.; Berg, Martin van den

    2005-01-01

    The present study investigated the effects of the known xenoestrogen bisphenol A (BPA) relative to eight BPA-related diphenylalkanes on estrogen receptor (ER)-mediated vitellogenin (vtg) production in hepatocytes from male carp (Cyprinus carpio), and on aromatase (CYP19) activity in the human adrenocortical H295R carcinoma cell line. Of the eight diphenylalkanes, only 4,4'-(hexafluoropropylidene)diphenol (BHF) and 2,2'-bis(4-hydroxy-3-methylphenyl)propane (BPRO) induced vtg, i.e., to a maximum of 3% to 4% (at 100 μM) compared with 8% for BPA relative to the maximum induction by 17β-estradiol (E2, 1 μM). Bisphenol A diglycidyl ether (BADGE) was a potent antagonist of vtg production with an IC50 of 5.5 μM, virtually 100% inhibition of vtg at 20 μM, and an inhibitive (IC50) potency about one-tenth that of the known ER antagonist tamoxifen (IC50, 0.6 μM). 2,2'-Diallyl bisphenol A, 4,4'-(1,4-phenylene-diisopropylidene)bisphenol, BPRO, and BHF were much less inhibitory with IC50 concentrations of 20-70 μM, and relative potencies of 0.03 and 0.009 with tamoxifen. Bisphenol ethoxylate showed no anti-estrogenicity (up to 100 μM), and 4,4'-isopropylidene-diphenol diacetate was only antagonistic at 100 μM. When comparing the (anti)estrogenic potencies of these bisphenol A analogues/diphenylalkanes, anti-estrogenicity occurred at lower concentrations than estrogenicity. 4,4'-Isopropylidenebis(2,6-dimethylphenol) (IC50, 2.0 μM) reduced E2-induced (EC50, 100 nM) vtg production due to concentration-dependent cytotoxicity as indicated by a parallel decrease in MTT activity and vtg, whereas the remaining diphenylalkanes did not cause any cytotoxicity relative to controls. None of the diphenylalkanes (up to 100 μM) induced EROD activity indicating that concentration-dependent, CYP1A enzyme-mediated metabolism of E2, or any Ah-receptor-mediated interaction with the ER, was not a likely explanation for the observed anti-estrogenic effects. At concentrations as great as 100

  17. Experimental investigation of flow field around the elastic flag flapping in periodic state

    Science.gov (United States)

    Jia, Yongxia; Jia, Lichao; Su, Zhuang; Yuan, Huijing

    2018-05-01

    The flapping of a flag in the wind is a classical fluid-structure problem that concerns the interaction of elastic bodies with ambient fluid. We focus on the desirable experimental results of the flow around the flapping flag. By immersing the elastic yet self-supporting heavy flag into water flow, we use particle image velocimetry (PIV) techniques to obtain the whole flow field around the midspan of the flag interacting with a fluid in periodic state. A unique PIV image processing method is used to measure near-wall flow velocities around a moving elastic flag. There exists a thin flow circulation region on the suction side of the flag in periodic state. This observation suggests that viscous flow models may be needed to improve the theoretical predictions of the flapping flag in periodic state, especially in a large amplitude.

  18. Metabolism of flavonolignans in human hepatocytes

    Czech Academy of Sciences Publication Activity Database

    Vrba, J.; Papoušková, B.; Roubalová, L.; Zatloukalová, M.; Biedermann, David; Křen, Vladimír; Valentová, Kateřina; Ulrichová, J.; Vacek, J.

    2018-01-01

    Roč. 152, APR 15 2018 (2018), s. 94-101 ISSN 0731-7085 R&D Projects: GA ČR(CZ) GA15-03037S Institutional support: RVO:61388971 Keywords : Silybin * Silymarin * Cytochrome P450; Subject RIV: CE - Biochemistry OBOR OECD: Biochemistry and molecular biology Impact factor: 3.255, year: 2016

  19. Flag varieties an interplay of geometry, combinatorics, and representation theory

    CERN Document Server

    Lakshmibai, V

    2009-01-01

    Flag varieties are important geometric objects and their study involves an interplay of geometry, combinatorics, and representation theory. This book is detailed account of this interplay. In the area of representation theory, the book presents a discussion of complex semisimple Lie algebras and of semisimple algebraic groups; in addition, the representation theory of symmetric groups is also discussed. In the area of algebraic geometry, the book gives a detailed account of the Grassmannian varieties, flag varieties, and their Schubert subvarieties. Because of the connections with root systems, many of the geometric results admit elegant combinatorial description, a typical example being the description of the singular locus of a Schubert variety. This is shown to be a consequence of standard monomial theory (abbreviated SMT). Thus the book includes SMT and some important applications - singular loci of Schubert varieties, toric degenerations of Schubert varieties, and the relationship between Schubert variet...

  20. Evaluation and optimization of hepatocyte culture media factors by design of experiments (DoE) methodology.

    Science.gov (United States)

    Dong, Jia; Mandenius, Carl-Fredrik; Lübberstedt, Marc; Urbaniak, Thomas; Nüssler, Andreas K N; Knobeloch, Daniel; Gerlach, Jörg C; Zeilinger, Katrin

    2008-07-01

    Optimization of cell culture media based on statistical experimental design methodology is a widely used approach for improving cultivation conditions. We applied this methodology to refine the composition of an established culture medium for growth of a human hepatoma cell line, C3A. A selection of growth factors and nutrient supplements were systematically screened according to standard design of experiments (DoE) procedures. The results of the screening indicated that the medium additives hepatocyte growth factor, oncostatin M, and fibroblast growth factor 4 significantly influenced the metabolic activities of the C3A cell line. Surface response methodology revealed that the optimum levels for these factors were 30 ng/ml for hepatocyte growth factor and 35 ng/ml for oncostatin M. Additional experiments on primary human hepatocyte cultures showed high variance in metabolic activities between cells from different individuals, making determination of optimal levels of factors more difficult. Still, it was possible to conclude that hepatocyte growth factor, epidermal growth factor, and oncostatin M had decisive effects on the metabolic functions of primary human hepatocytes.

  1. β-Adrenergic induction of lipolysis in hepatocytes is inhibited by ethanol exposure.

    Science.gov (United States)

    Schott, Micah B; Rasineni, Karuna; Weller, Shaun G; Schulze, Ryan J; Sletten, Arthur C; Casey, Carol A; McNiven, Mark A

    2017-07-14

    In liver steatosis ( i.e. fatty liver), hepatocytes accumulate many large neutral lipid storage organelles known as lipid droplets (LDs). LDs are important in the maintenance of energy homeostasis, but the signaling mechanisms that stimulate LD metabolism in hepatocytes are poorly defined. In adipocytes, catecholamines target the β-adrenergic (β-AR)/cAMP pathway to activate cytosolic lipases and induce their recruitment to the LD surface. Therefore, the goal of this study was to determine whether hepatocytes, like adipocytes, also undergo cAMP-mediated lipolysis in response to β-AR stimulation. Using primary rat hepatocytes and human hepatoma cells, we found that treatment with the β-AR agent isoproterenol caused substantial LD loss via activation of cytosolic lipases adipose triglyceride lipase (ATGL) and hormone-sensitive lipase (HSL). β-Adrenergic stimulation rapidly activated PKA, which led to the phosphorylation of ATGL and HSL and their recruitment to the LD surface. To test whether this β-AR-dependent lipolysis pathway was altered in a model of alcoholic fatty liver, primary hepatocytes from rats fed a 6-week EtOH-containing Lieber-DeCarli diet were treated with cAMP agonists. Compared with controls, EtOH-exposed hepatocytes showed a drastic inhibition in β-AR/cAMP-induced LD breakdown and the phosphorylation of PKA substrates, including HSL. This observation was supported in VA-13 cells, an EtOH-metabolizing human hepatoma cell line, which displayed marked defects in both PKA activation and isoproterenol-induced ATGL translocation to the LD periphery. In summary, these findings suggest that β-AR stimulation mobilizes cytosolic lipases for LD breakdown in hepatocytes, and perturbation of this pathway could be a major consequence of chronic EtOH insult leading to fatty liver.

  2. Efficient derivation of functional hepatocytes from mouse induced pluripotent stem cells by a combination of cytokines and sodium butyrate

    Institute of Scientific and Technical Information of China (English)

    ZHANG Qi; YANG Yang; ZHANG Jian; WANG Guo-ying; LIU Wei; QIU Dong-bo; HEI Zi-qing; YING Qi-long; CHEN Gui-hua

    2011-01-01

    Background Hepatocyte transplantation has been proposed as an alternative to whole-organ transplantation to support many forms of hepatic insufficiency.Unfortunately,the lack of donor livers makes it difficult to obtain enough viable human hepatocytes for hepatocyte-based therapies.Therefore,it is urgent to find new ways to provide ample hepatocytes.Induced pluripotent stem (iPS) cells,a breakthrough in stem cell research,may terminate these hinders for cell transplantation.For the promise of iPS cells to be realized in liver diseases,it is necessary to determine if and how efficient they can be differentiated into functional hepatocytes.Methods In this study,we directly compared the hepatic-differentiation capacity of mouse iPS cells and embryonic stem (ES) cells with three different induction approaches:conditions via embryonic body (EB) formation plus cytokines,conditions by combination of dimethyl sulfoxide and sodium butyrate and chemically defined,serum free monolayer conditions.Among these three induction conditions,more homogenous populations can be promoted under chemically defined,serum free conditions.The cells generated under these conditions exhibited hepatic functions in vitro,including glycogen storage,indocynine green (ICG) uptake and release as well as urea secretion.Although efficient hepatocytes differentiation from mouse iPS cells were observed,mouse iPS cells showed relatively lower hepatic induction efficiency compared with mouse ES cells.Results Mouse iPS cells would be efficiently differentiated into functional hepatocytes in vitro,which may be helpful in facilitating the development of hepatocytes for transplantation and for research on drug discovery.Conclusion We demonstrate that mouse iPS cells retain full potential for fetal liver development and describe procedures that facilitates the efficient generation of highly differentiated human hepatocyte-like cells from iPS cells in vitro.

  3. QTL mapping of flag leaf-related traits in wheat (Triticum aestivum L.).

    Science.gov (United States)

    Liu, Kaiye; Xu, Hao; Liu, Gang; Guan, Panfeng; Zhou, Xueyao; Peng, Huiru; Yao, Yingyin; Ni, Zhongfu; Sun, Qixin; Du, Jinkun

    2018-04-01

    QTL controlling flag leaf length, flag leaf width, flag leaf area and flag leaf angle were mapped in wheat. This study aimed to advance our understanding of the genetic mechanisms underlying morphological traits of the flag leaves of wheat (Triticum aestivum L.). A recombinant inbred line (RIL) population derived from ND3331 and the Tibetan semi-wild wheat Zang1817 was used to identify quantitative trait loci (QTLs) controlling flag leaf length (FLL), flag leaf width (FLW), flag leaf area (FLA), and flag leaf angle (FLANG). Using an available simple sequence repeat genetic linkage map, 23 putative QTLs for FLL, FLW, FLA, and FLANG were detected on chromosomes 1B, 2B, 3A, 3D, 4B, 5A, 6B, 7B, and 7D. Individual QTL explained 4.3-68.52% of the phenotypic variance in different environments. Four QTLs for FLL, two for FLW, four for FLA, and five for FLANG were detected in at least two environments. Positive alleles of 17 QTLs for flag leaf-related traits originated from ND3331 and 6 originated from Zang1817. QTLs with pleiotropic effects or multiple linked QTL were also identified on chromosomes 1B, 4B, and 5A; these are potential target regions for fine-mapping and marker-assisted selection in wheat breeding programs.

  4. Transcriptome of extracellular vesicles released by hepatocytes.

    Directory of Open Access Journals (Sweden)

    Felix Royo

    Full Text Available The discovery that the cells communicate through emission of vesicles has opened new opportunities for better understanding of physiological and pathological mechanisms. This discovery also provides a novel source for non-invasive disease biomarker research. Our group has previously reported that hepatocytes release extracellular vesicles with protein content reflecting the cell-type of origin. Here, we show that the extracellular vesicles released by hepatocytes also carry RNA. We report the messenger RNA composition of extracellular vesicles released in two non-tumoral hepatic models: primary culture of rat hepatocytes and a progenitor cell line obtained from a mouse foetal liver. We describe different subpopulations of extracellular vesicles with different densities and protein and RNA content. We also show that the RNA cargo of extracellular vesicles released by primary hepatocytes can be transferred to rat liver stellate-like cells and promote their activation. Finally, we provide in vitro and in vivo evidence that liver-damaging drugs galactosamine, acetaminophen, and diclofenac modify the RNA content of these vesicles. To summarize, we show that the extracellular vesicles secreted by hepatocytes contain various RNAs. These vesicles, likely to be involved in the activation of stellate cells, might become a new source for non-invasive identification of the liver toxicity markers.

  5. Hepatocytes Determine the Hypoxic Microenvironment and Radiosensitivity of Colorectal Cancer Cells Through Production of Nitric Oxide That Targets Mitochondrial Respiration

    Energy Technology Data Exchange (ETDEWEB)

    Jiang, Heng; Verovski, Valeri N.; Leonard, Wim; Law, Ka Lun; Vermeersch, Marieke; Storme, Guy; Van den Berge, Dirk; Gevaert, Thierry; Sermeus, Alexandra [Department of Radiotherapy, Universitair Ziekenhuis Brussel, Vrije Universiteit Brussel, Brussels (Belgium); De Ridder, Mark, E-mail: mark.deridder@uzbrussel.be [Department of Radiotherapy, Universitair Ziekenhuis Brussel, Vrije Universiteit Brussel, Brussels (Belgium)

    2013-03-01

    Purpose: To determine whether host hepatocytes may reverse hypoxic radioresistance through nitric oxide (NO)-induced oxygen sparing, in a model relevant to colorectal cancer (CRC) liver metastases. Methods and Materials: Hepatocytes and a panel of CRC cells were incubated in a tissue-mimetic coculture system with diffusion-limited oxygenation, and oxygen levels were monitored by an oxygen-sensing fluorescence probe. To activate endogenous NO production, cocultures were exposed to a cytokine mixture, and the expression of inducible nitric oxide synthase was analyzed by reverse transcription–polymerase chain reaction, Western blotting, and NO/nitrite production. The mitochondrial targets of NO were examined by enzymatic activity. To assess hypoxic radioresponse, cocultures were irradiated and reseeded for colonies. Results: Resting hepatocytes consumed 10-40 times more oxygen than mouse CT26 and human DLD-1, HT29, HCT116, and SW480 CRC cells, and thus seemed to be the major effectors of hypoxic conditioning. As a result, hepatocytes caused uniform radioprotection of tumor cells at a 1:1 ratio. Conversely, NO-producing hepatocytes radiosensitized all CRC cell lines more than 1.5-fold, similar to the effect of selective mitochondrial inhibitors. The radiosensitizing effect was associated with a respiratory self-arrest of hepatocytes at the level of aconitase and complex II, which resulted in profound reoxygenation of tumor cells through oxygen sparing. Nitric oxide–producing hepatocytes were at least 10 times more active than NO-producing macrophages to reverse hypoxia-induced radioresistance. Conclusions: Hepatocytes were the major determinants of the hypoxic microenvironment and radioresponse of CRC cells in our model of metabolic hypoxia. We provide evidence that reoxygenation and radiosensitization of hypoxic CRC cells can be achieved through oxygen sparing induced by endogenous NO production in host hepatocytes.

  6. Hepatocytes Determine the Hypoxic Microenvironment and Radiosensitivity of Colorectal Cancer Cells Through Production of Nitric Oxide That Targets Mitochondrial Respiration

    International Nuclear Information System (INIS)

    Jiang, Heng; Verovski, Valeri N.; Leonard, Wim; Law, Ka Lun; Vermeersch, Marieke; Storme, Guy; Van den Berge, Dirk; Gevaert, Thierry; Sermeus, Alexandra; De Ridder, Mark

    2013-01-01

    Purpose: To determine whether host hepatocytes may reverse hypoxic radioresistance through nitric oxide (NO)-induced oxygen sparing, in a model relevant to colorectal cancer (CRC) liver metastases. Methods and Materials: Hepatocytes and a panel of CRC cells were incubated in a tissue-mimetic coculture system with diffusion-limited oxygenation, and oxygen levels were monitored by an oxygen-sensing fluorescence probe. To activate endogenous NO production, cocultures were exposed to a cytokine mixture, and the expression of inducible nitric oxide synthase was analyzed by reverse transcription–polymerase chain reaction, Western blotting, and NO/nitrite production. The mitochondrial targets of NO were examined by enzymatic activity. To assess hypoxic radioresponse, cocultures were irradiated and reseeded for colonies. Results: Resting hepatocytes consumed 10-40 times more oxygen than mouse CT26 and human DLD-1, HT29, HCT116, and SW480 CRC cells, and thus seemed to be the major effectors of hypoxic conditioning. As a result, hepatocytes caused uniform radioprotection of tumor cells at a 1:1 ratio. Conversely, NO-producing hepatocytes radiosensitized all CRC cell lines more than 1.5-fold, similar to the effect of selective mitochondrial inhibitors. The radiosensitizing effect was associated with a respiratory self-arrest of hepatocytes at the level of aconitase and complex II, which resulted in profound reoxygenation of tumor cells through oxygen sparing. Nitric oxide–producing hepatocytes were at least 10 times more active than NO-producing macrophages to reverse hypoxia-induced radioresistance. Conclusions: Hepatocytes were the major determinants of the hypoxic microenvironment and radioresponse of CRC cells in our model of metabolic hypoxia. We provide evidence that reoxygenation and radiosensitization of hypoxic CRC cells can be achieved through oxygen sparing induced by endogenous NO production in host hepatocytes

  7. Discovering "The Italian Flag" by Fernando Melani (1907-1985).

    Science.gov (United States)

    Carlesi, Serena; Bartolozzi, Giovanni; Cucci, Costanza; Marchiafava, Veronica; Picollo, Marcello; La Nasa, Jacopo; Di Girolamo, Francesca; Dilillo, Marialaura; Modugno, Francesca; Degano, Ilaria; Colombini, Maria Perla; Legnaioli, Stefano; Lorenzetti, Giulia; Palleschi, Vincenzo

    2016-11-05

    In the occasion of the celebrations for the 150th anniversary of the founding of Italy (1861-2011), it was decided to analyse the artwork "The Italian Flag" (La Bandiera Italiana) created by the artist Fernando Melani (Pistoia, 1907-1985), one of the precursors of the Poor Art artistic movement in Italy. This project is a follow-up to a previous study which was mainly focused on the pigments and dyes found in his home-studio. The main goal of this paper is to identify a correct diagnostic plan, based on the use of a combination of non-invasive and micro-invasive methodologies, in order to determine the state of preservation and define the best conservation procedures for a contemporary artwork. Visible, infrared and infrared false colour images as well as the Fibre Optic Reflectance Spectroscopy (FORS) technique were applied in situ to analyse The Italian Flag. Laser Induced Breakdown Spectroscopy (LIBS), Fourier Transform Infrared (FT-IR) and micro-Raman spectroscopies, Pyrolysis-Gas Chromatography/Mass Spectroscopy (Py-GC/MS), High Performance Liquid Chromatography with Diode Arrays Detection (HPLC-DAD) and Mass Spectrometric Detection (HPLC-ESI-Q-ToF) were all applied to three small samples detached from the three painted (green-blue, white and red-yellow, respectively) areas of the flag. The combination of the data obtained with all these techniques made possible a comprehensive understanding of both the chemical composition and physical behaviour of the materials used by the artist and supported curators in defining the preventive conservation of this artwork. Copyright © 2016 Elsevier B.V. All rights reserved.

  8. Discovering "The Italian Flag" by Fernando Melani (1907-1985)

    Science.gov (United States)

    Carlesi, Serena; Bartolozzi, Giovanni; Cucci, Costanza; Marchiafava, Veronica; Picollo, Marcello; La Nasa, Jacopo; Di Girolamo, Francesca; Dilillo, Marialaura; Modugno, Francesca; Degano, Ilaria; Colombini, Maria Perla; Legnaioli, Stefano; Lorenzetti, Giulia; Palleschi, Vincenzo

    2016-11-01

    In the occasion of the celebrations for the 150th anniversary of the founding of Italy (1861-2011), it was decided to analyse the artwork ;The Italian Flag; (La Bandiera Italiana) created by the artist Fernando Melani (Pistoia, 1907-1985), one of the precursors of the Poor Art artistic movement in Italy. This project is a follow-up to a previous study which was mainly focused on the pigments and dyes found in his home-studio. The main goal of this paper is to identify a correct diagnostic plan, based on the use of a combination of non-invasive and micro-invasive methodologies, in order to determine the state of preservation and define the best conservation procedures for a contemporary artwork. Visible, infrared and infrared false colour images as well as the Fibre Optic Reflectance Spectroscopy (FORS) technique were applied in situ to analyse The Italian Flag. Laser Induced Breakdown Spectroscopy (LIBS), Fourier Transform Infrared (FT-IR) and micro-Raman spectroscopies, Pyrolysis-Gas Chromatography/Mass Spectroscopy (Py-GC/MS), High Performance Liquid Chromatography with Diode Arrays Detection (HPLC-DAD) and Mass Spectrometric Detection (HPLC-ESI-Q-ToF) were all applied to three small samples detached from the three painted (green-blue, white and red-yellow, respectively) areas of the flag. The combination of the data obtained with all these techniques made possible a comprehensive understanding of both the chemical composition and physical behaviour of the materials used by the artist and supported curators in defining the preventive conservation of this artwork.

  9. The epidemiology of injuries in contact flag football.

    Science.gov (United States)

    Kaplan, Yonatan; Myklebust, Grethe; Nyska, Meir; Palmanovich, Ezequiel; Victor, Jan; Witvrouw, Erik

    2013-01-01

    To characterize the epidemiology of injuries in post-high school male and female athletes in the rapidly growing international sport of contact flag football. Prospective injury-observational study. Kraft Stadium, Jerusalem, Israel. A total of 1492 players, consisting of men (n = 1252, mean age, 20.49 ± 5.11) and women (n = 240, mean age, 21.32 ± 8.95 years), participated in 1028 games over a 2-season period (2007-2009). All time-loss injuries sustained in game sessions were recorded by the off-the-field medical personnel and followed up by a more detailed phone injury surveillance questionnaire. One hundred sixty-three injuries were reported, comprising 1 533 776 athletic exposures (AEs). The incidence rate was 0.11 [95% confidence interval (CI), 0.09-0.12] per 1000 AEs, and incidence proportion was 10.66% (95% CI, 9.10-12.22). Seventy-six percent of the injuries were extrinsic in nature. Thirty percent of the injuries were to the fingers, thumb, and wrist, 17% to the knee, 17% to the head/face, 13% to the ankle, and 11% to the shoulder. Contact flag football results in a significant amount of moderate to severe injuries. These data may be used in the development of a formal American flag football injury database and in the development and implementation of a high-quality, randomized, prospective injury prevention study. This study should include the enforcement of the no-pocket rule, appropriate headgear, self-fitting mouth guards, the use of ankle braces, and changing the blocking rules of the game.

  10. First hoisting of the Portuguese flag at CERN

    CERN Multimedia

    Unknown, Unknown

    1986-01-01

    First hoisting of the Portuguese flag at CERN, following the country's membership. Photo taken on January 22 (or 23), 1986. From left to right: António Costa Lobo (Portugal's ambassador to the UN in Geneva), Gaspar Barreira, Karin Wall (José Mariano Gago's wife), José Mariano Gago (Portugal's JNICT president), Catarina Wall Gago (José Mariano Gago's daughter), João Varela, Herwig Schopper (CERN's Director-General), Eduardo Arantes e Oliveira (Portugal's Secretary of State for Science), , Margarida Nesbitt Rebelo, , Mário Pimenta, , Gustavo Castelo Branco, João Seixas, Sérgio Ramos, and Peter Sonderegger.

  11. Generation, characterization and potential therapeutic applications of mature and functional hepatocytes from stem cells.

    Science.gov (United States)

    Zhang, Zhenzhen; Liu, Jianfang; Liu, Yang; Li, Zheng; Gao, Wei-Qiang; He, Zuping

    2013-02-01

    Liver cancer is the sixth most common tumor in the world and the majority of patients with this disease usually die within 1 year. The effective treatment for end-stage liver disease (also known as liver failure), including liver cancer or cirrhosis, is liver transplantation. However, there is a severe shortage of liver donors worldwide, which is the major handicap for the treatment of patients with liver failure. Scarcity of liver donors underscores the urgent need of using stem cell therapy to the end-stage liver disease. Notably, hepatocytes have recently been generated from hepatic and extra-hepatic stem cells. We have obtained mature and functional hepatocytes from rat hepatic stem cells. Here, we review the advancements on hepatic differentiation from various stem cells, including hepatic stem cells, embryonic stem cells, the induced pluripotent stem cells, hematopoietic stem cells, mesenchymal stem cells, and probably spermatogonial stem cells. The advantages, disadvantages, and concerns on differentiation of these stem cells into hepatic cells are highlighted. We further address the methodologies, phenotypes, and functional characterization on the differentiation of numerous stem cells into hepatic cells. Differentiation of stem cells into mature and functional hepatocytes, especially from an extra-hepatic stem cell source, would circumvent the scarcity of liver donors and human hepatocytes, and most importantly it would offer an ideal and promising source of hepatocytes for cell therapy and tissue engineering in treating liver disease. Copyright © 2012 Wiley Periodicals, Inc.

  12. Support for the Confederate Battle Flag in the Southern United States: Racism or Southern Pride?

    Directory of Open Access Journals (Sweden)

    Joshua D. Wright

    2017-05-01

    Full Text Available Supporters of the Confederate battle flag often argue that their support is driven by pride in the South, not negative racial attitudes. Opponents of the Confederate battle flag often argue that the flag represents racism, and that support for the flag is an expression of racism and an attempt to maintain oppression of Blacks in the Southern United States. We evaluate these two competing views in explaining attitudes toward the Confederate battle flag in the Southern United States through a survey of 526 Southerners. In the aggregate, our latent variable model suggests that White support for the flag is driven by Southern pride, political conservatism, and blatant negative racial attitudes toward Blacks. Using cluster-analysis we were able to distinguish four distinct sub-groups of White Southerners: Cosmopolitans, New Southerners, Traditionalists, and Supremacists. The greatest support for the Confederate battle flag is seen among Traditionalists and Supremacists; however, Traditionalists do not display blatant negative racial attitudes toward Blacks, while Supremacists do. Traditionalists make up the majority of Confederate battle flag supporters in our sample, weakening the claim that supporters of the flag are generally being driven by negative racial attitudes toward Blacks.

  13. Bone morphogenetic protein-2 is a negative regulator of hepatocyte proliferation downregulated in the regenerating liver

    NARCIS (Netherlands)

    Xu, Cui-Ping; Ji, Wen-Min; van den Brink, Gijs R.; Peppelenbosch, Maikel P.

    2006-01-01

    To characterize the expression and dynamic changes of bone morphogenetic protein (BMP)-2 in hepatocytes in the regenerating liver in rats after partial hepatectomy (PH), and examine the effects of BMP-2 on proliferation of human Huh7 hepatoma cells. Fifty-four adult male Wistar rats were randomly

  14. Bone morphogenetic protein-2 is a negative regulator of hepatocyte proliferation downregulated in the regenerating liver

    NARCIS (Netherlands)

    Xu, Cui-Ping; Ji, Wen-Min; van den Brink, Gijs R.; Peppelenbosch, Maikel P.

    2006-01-01

    AIM: To characterize the expression and dynamic changes of bone morphogenetic protein (BMP)-2 in hepatocytes in the regenerating liver in rats after partial hepatectomy (PH), and examine the effects of BMP-2 on proliferation of human Huh7 hepatoma cells. METHODS: Fifty-four adult male Wistar rats

  15. Development of MAPC derived induced endodermal progenitors : Generation of pancreatic beta cells and hepatocytes

    NARCIS (Netherlands)

    Sambathkumar, Rangarajan

    2017-01-01

    Multipotent Adult Progenitor Cells (MAPCs) are one potential stem cell source to generate functional hepatocytes or β-cells. However, human MAPCs have less plasticity than pluripotent stem cells (PSCs), as their ability to generate endodermal cells is not robust. Here we studied the role of 14

  16. Recovery of important physiological functions in 3D culture of immortal hepatocytes

    DEFF Research Database (Denmark)

    Wrzesinski, Krzysztof; Fey, S. J.

    2011-01-01

    to grow human liver cells in ‘3 dimensional’ cultures so that they behave very similar to the liver in our bodies. By growing the immortal hepatocytes in specially designed bioreactors they form small pieces of ‘pseudotissue’ which exhibit several of the functions seen in the adult liver. We have grown...

  17. Hepatocyte caspase-8 is an essential modulator of steatohepatitis in rodents

    NARCIS (Netherlands)

    Hatting, M.; Zhao, G.; Schumacher, F.; Sellge, G.; Masaoudi, Al M.; Gaßler, N.; Boekschoten, M.V.; Müller, M.R.; Liedtke, C.; Cubero, F.J.; Trautwein, C.

    2013-01-01

    In human and murine models of nonalcoholic steatohepatitis (NASH), increased hepatocyte apoptosis is a critical mechanism contributing to inflammation and fibrogenesis. Caspase 8 (Casp8) is essential for death-receptor-mediated apoptosis activity and therefore its modulation might be critical for

  18. Hepatocyte growth factor inhibitor-2 prevents shedding of matritpase

    DEFF Research Database (Denmark)

    Larsen, Brian R; Steffensen, Simon D; Nielsen, Nis V L

    2013-01-01

    Hepatocyte growth factor activator inhibitor-2 (HAI-2) is an inhibitor of many proteases in vitro, including the membrane-bound serine protease, matriptase. Studies of knock-out mice have shown that HAI-2 is essential for placental development only in mice expressing matriptase, suggesting that HAI......-2 is important for regulation of matriptase. Previous studies have shown that recombinant expression of matriptase was unsuccessful unless co-expressed with another HAI, HAI-1. In the present study we show that when human matriptase is recombinantly expressed alone in the canine cell line MDCK......, then human matriptase mRNA can be detected and the human matriptase ectodomain is shed to the media, suggesting that matriptase expressed alone is rapidly transported through the secretory pathway and shed. Whereas matriptase expressed together with HAI-1 or HAI-2 accumulates on the plasma membrane where...

  19. Hepatocyte Growth Factor Reduces Free Cholesterol-Mediated Lipotoxicity in Primary Hepatocytes by Countering Oxidative Stress

    Directory of Open Access Journals (Sweden)

    Mayra Domínguez-Pérez

    2016-01-01

    Full Text Available Cholesterol overload in the liver has shown toxic effects by inducing the aggravation of nonalcoholic fatty liver disease to steatohepatitis and sensitizing to damage. Although the mechanism of damage is complex, it has been demonstrated that oxidative stress plays a prominent role in the process. In addition, we have proved that hepatocyte growth factor induces an antioxidant response in hepatic cells; in the present work we aimed to figure out the protective effect of this growth factor in hepatocytes overloaded with free cholesterol. Hepatocytes from mice fed with a high-cholesterol diet were treated or not with HGF, reactive oxygen species present in cholesterol overloaded hepatocytes significantly decreased, and this effect was particularly associated with the increase in glutathione and related enzymes, such as γ-gamma glutamyl cysteine synthetase, GSH peroxidase, and GSH-S-transferase. Our data clearly indicate that HGF displays an antioxidant response by inducing the glutathione-related protection system.

  20. Swelling of rat hepatocytes stimulates glycogen synthesis

    NARCIS (Netherlands)

    Baquet, A.; Hue, L.; Meijer, A. J.; van Woerkom, G. M.; Plomp, P. J.

    1990-01-01

    In hepatocytes from fasted rats, several amino acids are known to stimulate glycogen synthesis via activation of glycogen synthase. The hypothesis that an increase in cell volume resulting from amino acid uptake may be involved in the stimulation of glycogen synthesis is supported by the following

  1. 75 FR 66125 - Federal Land Managers' Air Quality Related Values Work Group (FLAG)

    Science.gov (United States)

    2010-10-27

    ... pollutants that could affect the health and status of resources in areas managed by the three agencies... Work Group (FLAG) AGENCY: National Park Service, Interior. ACTION: Notice of availability of final... Public Comments document. The Federal Land Managers' Air Quality Related Values Work Group (FLAG) was...

  2. 46 CFR 252.22 - Substantiality and extent of foreign-flag competition.

    Science.gov (United States)

    2010-10-01

    ... January 1 of the subsidized year, by surveying a data file known as “Merchant Fleets of the World” that is... total tonnage in the range. (e) Largest foreign flag not competitor. In the event that the Board... competitor of any particular operator, the Board may determine the foreign-flag competition in a manner that...

  3. Hepatocyte transplants improve liver function and encephalopathy in portacaval shunted rats.

    Science.gov (United States)

    Fogel, Wieslawa Agnieszka; Stasiak, Anna; Maksymowicz, Michał; Kobos, Jozef; Unzeta, Mercedes; Mussur, Miroslaw

    2014-07-01

    Rats with portacaval shunt (PCS) are useful experimental models of human hepatic encephalopathy in chronic liver dysfunction. We have previously shown that PCS modifies amine neurotransmitter systems in the CNS and increases voluntary alcohol intake by rats. Hepatocyte transplantation, used in acute liver failure, has recently also been applied to chronic liver diseases, which prompted us to investigate whether the altered brain amine system and the drinking behavior in long-term shunted rats could be normalized by hepatocyte transplants. Hepatocytes, isolated from syngeneic donors by collagenase digestion, were injected (3 × 10(6) cells/rat) into the pancreatic tail region, 6 months after PCS. Hepatic function was evaluated by measuring urine urea and plasma L-histidine concentrations. A free choice test with two bottles (tap water and 10% ethyl alcohol) was performed for 3 days to assess the rats' preference for alcohol. The rats were euthanized 2 months posttransplantation. Brain histamine and 5-hydroxyindoleacetic acid (5-HIAA) levels were measured by radioenzymatic assay and by HPLC-EC, respectively, N-tele-methylhistamine by GC/MS while MAOA and MAOB activities by isotopic procedures. Portacaval shunt rats with hepatocyte transplants gave more urea than before transplantation, with lower plasma L-His levels and higher body weight versus the PCS counterparts. Also, those rats consumed less alcohol. The CNS amines and 5-HIAA concentrations, as well as MAO-B activity, being abnormally high in untreated PCS rats, significantly reduced after PCS hepatocyte treatment. The results support the therapeutic values of hepatocyte transplants in chronic liver diseases and the temporary character of PCS-exerted CNS dysfunctions. © 2014 John Wiley & Sons Ltd.

  4. Usage of adenovirus expressing thymidine kinase mediated hepatocellular damage for enabling mouse liver repopulation with allogenic or xenogenic hepatocytes.

    Directory of Open Access Journals (Sweden)

    Daniel Moreno

    Full Text Available It has been shown that the liver of immunodeficient mice can be efficiently repopulated with human hepatocytes when subjected to chronic hepatocellular damage. Mice with such chimeric livers represent useful reagents for medical and clinical studies. However all previously reported models of humanized livers are difficult to implement as they involve cross-breeding of immunodeficient mice with mice exhibiting genetic alterations causing sustained hepatic injury. In this paper we attempted to create chimeric livers by inducing persistent hepatocellular damage in immunodeficient Rag2(-/- γc(-/- mice using an adenovirus encoding herpes virus thymidine kinase (AdTk and two consecutive doses of ganciclovir (GCV. We found that this treatment resulted in hepatocellular damage persisting for at least 10 weeks and enabled efficient engraftment and proliferation within the liver of either human or allogenic hepatocytes. Interestingly, while the nodules generated from the transplanted mouse hepatocytes were well vascularized, the human hepatocytes experienced progressive depolarization and exhibited reduced numbers of murine endothelial cells inside the nodules. In conclusion, AdTk/GCV-induced liver damage licenses the liver of immunodeficient mice for allogenic and xenogenic hepatocyte repopulation. This approach represents a simple alternative strategy for chimeric liver generation using immunodeficient mice without additional genetic manipulation of the germ line.

  5. Hanging Drop, A Best Three-Dimensional (3D) Culture Method for Primary Buffalo and Sheep Hepatocytes.

    Science.gov (United States)

    Shri, Meena; Agrawal, Himanshu; Rani, Payal; Singh, Dheer; Onteru, Suneel Kumar

    2017-04-26

    Livestock, having close resemblance to humans, could be a better source of primary hepatocytes than rodents. Herein, we successfully developed three-dimensional (3D) culturing system for primary sheep and buffalo hepatocytes. The 3D-structures of sheep hepatocytes were formed on the fifth-day and maintained until the tenth-day on polyHEMA-coated plates and in hanging drops with William's E media (HDW). Between the cultured and fresh cells, we observed a similar expression of GAPDH, HNF4α, ALB, CYP1A1, CK8 and CK18. Interestingly, a statistically significant increase was noted in the TAT, CPS, AFP, AAT, GSP and PCNA expression. In buffalo hepatocytes culture, 3D-like structures were formed on the third-day and maintained until the sixth-day on polyHEMA and HDW. The expression of HNF4α, GSP, CPS, AFP, AAT, PCNA and CK18 was similar between cultured and fresh cells. Further, a statistically significant increase in the TAT and CK8 expression, and a decrease in the GAPDH, CYP1A1 and ALB expression were noted. Among the culture systems, HDW maintained the liver transcript markers more or less similar to the fresh hepatocytes of the sheep and buffalo for ten and six days, respectively. Taken together, hanging drop is an efficient method for 3D culturing of primary sheep and buffalo hepatocytes.

  6. Endothelial cell-derived matrix promotes the metabolic functional maturation of hepatocyte via integrin-Src signalling.

    Science.gov (United States)

    Guo, Xinyue; Li, Weihong; Ma, Minghui; Lu, Xin; Zhang, Haiyan

    2017-11-01

    The extracellular matrix (ECM) microenvironment is involved in the regulation of hepatocyte phenotype and function. Recently, the cell-derived extracellular matrix has been proposed to represent the bioactive and biocompatible materials of the native ECM. Here, we show that the endothelial cell-derived matrix (EC matrix) promotes the metabolic maturation of human adipose stem cell-derived hepatocyte-like cells (hASC-HLCs) through the activation of the transcription factor forkhead box protein A2 (FOXA2) and the nuclear receptors hepatocyte nuclear factor 4 alpha (HNF4α) and pregnane X receptor (PXR). Reducing the fibronectin content in the EC matrix or silencing the expression of α5 integrin in the hASC-HLCs inhibited the effect of the EC matrix on Src phosphorylation and hepatocyte maturation. The inhibition of Src phosphorylation using the inhibitor PP2 or silencing the expression of Src in hASC-HLCs also attenuated the up-regulation of the metabolic function of hASC-HLCs in a nuclear receptor-dependent manner. These data elucidate integrin-Src signalling linking the extrinsic EC matrix signals and metabolic functional maturation of hepatocyte. This study provides a model for studying the interaction between hepatocytes and non-parenchymal cell-derived matrix. © 2017 The Authors. Journal of Cellular and Molecular Medicine published by John Wiley & Sons Ltd and Foundation for Cellular and Molecular Medicine.

  7. Endocrine disruption screening by protein and gene expression of vitellogenin in freshly isolated and cryopreserved rainbow trout hepatocytes.

    Science.gov (United States)

    Markell, Lauren K; Mingoia, Robert T; Peterson, Heather M; Yao, Jianhong; Waters, Stephanie M; Finn, James P; Nabb, Diane L; Han, Xing

    2014-08-18

    Xenobiotics may activate the estrogen receptor, resulting in alteration of normal endocrine functions in animals and humans. Consequently, this necessitates development of assay end points capable of identifying estrogenic xenobiotics. In the present study, we screened the potential estrogenicity of chemicals via their ability to induce vitellogenin (VTG) expression in cultured primary hepatocytes from male trout. A routine method for VTG detection measures the secretion of the protein by enzyme-linked immunosorbent assay (ELISA) in freshly isolated trout hepatocytes. However, this lengthy (6 days) culturing procedure requires that hepatocyte isolation is performed each time the assay is run. We optimized this methodology by investigating the utility of cryopreserved hepatocytes, shortening the incubation time, performing a quantitative real-time PCR (qPCR) method for VTG quantification, and verifying the model system with reference chemicals 17β-estradiol, estrone, diethylstilbestrol, hexestrol, genistein, and a negative control, corticosterone. To test the performance of both freshly isolated and cryopreserved hepatocytes, mRNA was collected from hepatocytes following 24 h treatment for VTG gene expression analysis, whereas cell culture media was collected for a VTG ELISA 96 h post-treatment. EC50 values were obtained for each reference chemical except for corticosterone, which exhibited no induction of VTG gene or protein level. Our results show linear concordance between ELISA and qPCR detection methods. Although there was approximately 50% reduction in VTG inducibility following cryopreservation, linear concordance of EC50 values was found between freshly isolated and cryopreserved hepatocytes, indicating that cryopreservation does not alter the functional assessment of estrogen receptor activation and therefore VTG expression. These studies demonstrate that qPCR is a sensitive and specific method for detecting VTG gene expression that can be used together

  8. Biotransformation of hydralazine (HDZ) in monolayer cultures of rabbit hepatocytes

    International Nuclear Information System (INIS)

    McQueen, C.A.; Rosado, R.R.

    1990-01-01

    Adverse reactions to HDZ have been associated with the acetylator polymorphism; slow acetylators are more likely to develop HDZ-induced lupus erythematosus. In studying the role of this polymorphism in susceptibility to HDZ toxicity, the biotransformation of HDZ was investigated in rabbit hepatocytes. New Zealand white rabbits, like humans, are classified as rapid or slow acetylators. Heptocytes were isolated from rapid acetylator rabbits by collagenase perfusion. Monolayer cultures were initiated and exposed to 14 C-HDZ. Since HDZ is unstable at neutral pH, parallel incubations were done in the absence of cells. Metabolites in the media were determined by reverse phase HPLC. Phthalazine (P), phthalazinone (PZ), triazoloph-thalazine (TP), methyl TP (MTP) and 3-hydroxy MTP were identified. In the absence of cells, more TP was formed than MTP, probably resulting from reaction of HDZ with components in the medium. In the presence of cells, there was a three-fold increase in MTP, while the amount of TP was relatively constant. Only trace amounts of P, PZ 3-hydroxy MTP were detected. These data indicate that monolayer cultures of rapid acetylator rabbit hepatocytes were capable of metabolizing HDZ with acetylation playing a major role. These studies are being extended to cells from slow acetylator rabbits

  9. Hyperinsulinemia is associated with increased soluble insulin receptors release from hepatocytes

    Directory of Open Access Journals (Sweden)

    Marcia eHiriart

    2014-06-01

    Full Text Available It has been generally assumed that insulin circulates freely in blood. However it can also interact with plasma proteins. Insulin receptors are located in the membrane of target cells and consist of an alpha and beta subunits with a tyrosine kinase cytoplasmic domain. The ectodomain, called soluble insulin receptor (SIR has been found elevated in patients with diabetes mellitus. We explored if insulin binds to SIRs in circulation under physiological conditions and hypothesize that this SIR may be released by hepatocytes in response to high insulin concentrations. The presence of SIR in rat and human plasmas and the culture medium of hepatocytes was explored using Western blot analysis. A purification protocol was performed to isolated SIR using affinity, gel filtration and ion exchange chromatographies. A modified reverse hemolytic plaque assay was used to measure SIR release from cultured hepatocytes. Incubation with 1 nmol l-1 insulin induces the release of the insulin receptor ectodomains from normal rat hepatocytes. This effect can be partially prevented by blocking protease activity. Furthermore, plasma levels of SIR were higher in a model of metabolic syndrome, where rats are hyperinsulinemic. We also found increased SIR levels in hyperinsulinemic humans. SIR may be an important regulator of the amount of free insulin in circulation. In hyperinsulinemia the amount of this soluble receptor increases, this could lead to higher amounts of insulin bound to this receptor, rather than free insulin, which is the biologically active form of the hormone. This observation could enlighten the mechanisms of insulin resistance.

  10. Hepatocyte-based in vitro model for assessment of drug-induced cholestasis

    International Nuclear Information System (INIS)

    Chatterjee, Sagnik; Richert, Lysiane; Augustijns, Patrick; Annaert, Pieter

    2014-01-01

    Early detection of drug-induced cholestasis remains a challenge during drug development. We have developed and validated a biorelevant sandwich-cultured hepatocytes- (SCH) based model that can identify compounds causing cholestasis by altering bile acid disposition. Human and rat SCH were exposed (24–48 h) to known cholestatic and/or hepatotoxic compounds, in the presence or in the absence of a concentrated mixture of bile acids (BAs). Urea assay was used to assess (compromised) hepatocyte functionality at the end of the incubations. The cholestatic potential of the compounds was expressed by calculating a drug-induced cholestasis index (DICI), reflecting the relative residual urea formation by hepatocytes co-incubated with BAs and test compound as compared to hepatocytes treated with test compound alone. Compounds with clinical reports of cholestasis, including cyclosporin A, troglitazone, chlorpromazine, bosentan, ticlopidine, ritonavir, and midecamycin showed enhanced toxicity in the presence of BAs (DICI ≤ 0.8) for at least one of the tested concentrations. In contrast, the in vitro toxicity of compounds causing hepatotoxicity by other mechanisms (including diclofenac, valproic acid, amiodarone and acetaminophen), remained unchanged in the presence of BAs. A safety margin (SM) for drug-induced cholestasis was calculated as the ratio of lowest in vitro concentration for which was DICI ≤ 0.8, to the reported mean peak therapeutic plasma concentration. SM values obtained in human SCH correlated well with reported % incidence of clinical drug-induced cholestasis, while no correlation was observed in rat SCH. This in vitro model enables early identification of drug candidates causing cholestasis by disturbed BA handling. - Highlights: • Novel in vitro assay to detect drug-induced cholestasis • Rat and human sandwich-cultured hepatocytes (SCH) as in vitro models • Cholestatic compounds sensitize SCH to toxic effects of accumulating bile acids • Drug

  11. Hepatocyte-based in vitro model for assessment of drug-induced cholestasis

    Energy Technology Data Exchange (ETDEWEB)

    Chatterjee, Sagnik, E-mail: Sagnik.Chatterjee@pharm.kuleuven.be [Drug Delivery and Disposition, KU Leuven Department of Pharmaceutical and Pharmacological Sciences, O and N2, Herestraat 49 — bus 921, 3000 Leuven (Belgium); Richert, Lysiane, E-mail: l.richert@kaly-cell.com [KaLy-Cell, 20A rue du Général Leclerc, 67115 Plobsheim (France); Augustijns, Patrick, E-mail: Patrick.Augustijns@pharm.kuleuven.be [Drug Delivery and Disposition, KU Leuven Department of Pharmaceutical and Pharmacological Sciences, O and N2, Herestraat 49 — bus 921, 3000 Leuven (Belgium); Annaert, Pieter, E-mail: Pieter.Annaert@pharm.kuleuven.be [Drug Delivery and Disposition, KU Leuven Department of Pharmaceutical and Pharmacological Sciences, O and N2, Herestraat 49 — bus 921, 3000 Leuven (Belgium)

    2014-01-01

    Early detection of drug-induced cholestasis remains a challenge during drug development. We have developed and validated a biorelevant sandwich-cultured hepatocytes- (SCH) based model that can identify compounds causing cholestasis by altering bile acid disposition. Human and rat SCH were exposed (24–48 h) to known cholestatic and/or hepatotoxic compounds, in the presence or in the absence of a concentrated mixture of bile acids (BAs). Urea assay was used to assess (compromised) hepatocyte functionality at the end of the incubations. The cholestatic potential of the compounds was expressed by calculating a drug-induced cholestasis index (DICI), reflecting the relative residual urea formation by hepatocytes co-incubated with BAs and test compound as compared to hepatocytes treated with test compound alone. Compounds with clinical reports of cholestasis, including cyclosporin A, troglitazone, chlorpromazine, bosentan, ticlopidine, ritonavir, and midecamycin showed enhanced toxicity in the presence of BAs (DICI ≤ 0.8) for at least one of the tested concentrations. In contrast, the in vitro toxicity of compounds causing hepatotoxicity by other mechanisms (including diclofenac, valproic acid, amiodarone and acetaminophen), remained unchanged in the presence of BAs. A safety margin (SM) for drug-induced cholestasis was calculated as the ratio of lowest in vitro concentration for which was DICI ≤ 0.8, to the reported mean peak therapeutic plasma concentration. SM values obtained in human SCH correlated well with reported % incidence of clinical drug-induced cholestasis, while no correlation was observed in rat SCH. This in vitro model enables early identification of drug candidates causing cholestasis by disturbed BA handling. - Highlights: • Novel in vitro assay to detect drug-induced cholestasis • Rat and human sandwich-cultured hepatocytes (SCH) as in vitro models • Cholestatic compounds sensitize SCH to toxic effects of accumulating bile acids • Drug

  12. Yellow flag scores in a compensable New Zealand cohort suffering acute low back pain

    Directory of Open Access Journals (Sweden)

    Karen Grimmer-Somers

    2008-12-01

    Full Text Available Karen Grimmer-Somers1, Mathew Prior1, Jim Robertson21Centre for Allied Health Evidence, University of South Australia, City East Campus, North Tce, Adelaide, South Australia, Australia; 2New Zealand Accident Compensation Corporation, Auckland, New ZealandBackground: Despite its high prevalence, most acute low back pain (ALBP is nonspecific, self-limiting with no definable pathology. Recurrence is prevalent, as is resultant chronicity. Psychosocial factors (yellow flags comprising depression and anxiety, negative pain beliefs, job dissatisfaction are associated with the development of chronic LBP.Methods: A national insurer (Accident Compensation Corporation, New Zealand [NZ], in conjunction with a NZ primary health organization, piloted a strategy for more effective management of patients with ALBP, by following the NZ ALBP Guideline. The guidelines recommend the use of a psychosocial screening instrument (Yellow Flags Screening Instrument, a derivative of Örebro Musculoskeletal Pain Questionnaire. This instrument was recommended for administration on the second visit to a general medical practitioner (GP. This paper tests whether published cut-points of yellow flag scores to predict LBP claims length and costs were valid in this cohort.Results: Data was available for 902 claimants appropriately enrolled into the pilot. 25% claimants consulted the GP once only, and thus were not requested to provide a yellow flag score. Yellow flag scores were provided by 48% claimants who consumed two or more GP services. Approximately 60% LBP presentations resolved within five GP visits. Yellow flag scores were significantly and positively associated with treatment costs and service use, although the association was nonlinear. Claimants with moderate yellow flag scores were similarly likely to incur lengthy claims as claimants with at-risk scores.Discussion: Capturing data on psychosocial factors for compensable patients with ALBP has merit in predicting

  13. Commercially available media for flushing extracorporeal bioartificial liver systems prior to connection to the patient's circulation: an in vitro comparative study in two and three dimensional porcine hepatocyte cultures

    NARCIS (Netherlands)

    Flendrig, L. M.; Sommeijer, D.; Ladiges, N. C.; te Velde, A. A.; Maas, M. A.; Jörning, G. G.; Daalhuisen, J.; Chamuleau, R. A.

    1998-01-01

    Extracorporeal bioartificial liver (BAL) systems based on hepatocytes need to be flushed before clinical application, as hepatocyte culture media are not approved for medical use. Commercially available 0.9% NaCl solution and hemofiltration solution (both supplemented with 10% human albumin) were

  14. Independent, parallel pathways to CXCL10 induction in HCV-infected hepatocytes.

    Science.gov (United States)

    Brownell, Jessica; Wagoner, Jessica; Lovelace, Erica S; Thirstrup, Derek; Mohar, Isaac; Smith, Wesley; Giugliano, Silvia; Li, Kui; Crispe, I Nicholas; Rosen, Hugo R; Polyak, Stephen J

    2013-10-01

    The pro-inflammatory chemokine CXCL10 is induced by HCV infection in vitro and in vivo, and is associated with outcome of IFN (interferon)-based therapy. We studied how hepatocyte sensing of early HCV infection via TLR3 (Toll-like receptor 3) and RIG-I (retinoic acid inducible gene I) led to expression of CXCL10. CXCL10, type I IFN, and type III IFN mRNAs and proteins were measured in PHH (primary human hepatocytes) and hepatocyte lines harboring functional or non-functional TLR3 and RIG-I pathways following HCV infection or exposure to receptor-specific stimuli. HuH7 human hepatoma cells expressing both TLR3 and RIG-I produced maximal CXCL10 during early HCV infection. Neutralization of type I and type III IFNs had no impact on virus-induced CXCL10 expression in TLR3+/RIG-I+ HuH7 cells, but reduced CXCL10 expression in PHH. PHH cultures were positive for monocyte, macrophage, and dendritic cell mRNAs. Immunodepletion of non-parenchymal cells (NPCs) eliminated marker expression in PHH cultures, which then showed no IFN requirement for CXCL10 induction during HCV infection. Immunofluorescence studies also revealed a positive correlation between intracellular HCV Core and CXCL10 protein expression (r(2) = 0.88, p ≤ 0.001). While CXCL10 induction in hepatocytes during the initial phase of HCV infection is independent of hepatocyte-derived type I and type III IFNs, NPC-derived IFNs contribute to CXCL10 induction during HCV infection in PHH cultures. Copyright © 2013 European Association for the Study of the Liver. Published by Elsevier B.V. All rights reserved.

  15. Acrolein cytotoxicity in hepatocytes involves endoplasmic reticulum stress, mitochondrial dysfunction and oxidative stress

    Science.gov (United States)

    Mohammad, Mohammad K; Avila, Diana; Zhang, Jingwen; Barve, Shirish; Arteel, Gavin; McClain, Craig; Joshi-Barve, Swati

    2012-01-01

    Acrolein is a common environmental, food and water pollutant and a major component of cigarette smoke. Also, it is produced endogenously via lipid peroxidation and cellular metabolism of certain amino acids and drugs. Acrolein is cytotoxic to many cell types including hepatocytes; however the mechanisms are not fully understood. We examined the molecular mechanisms underlying acrolein hepatotoxicity in primary human hepatocytes and hepatoma cells. Acrolein, at pathophysiological concentrations, caused a dose-dependent loss of viability of hepatocytes. The death was apoptotic at moderate and necrotic at high concentrations of acrolein. Acrolein exposure rapidly and dramatically decreased intracellular glutathione and overall antioxidant capacity, and activated the stress-signaling MAP-kinases JNK, p42/44 and p38. Our data demonstrate for the first time in human hepatocytes, that acrolein triggered endoplasmic reticulum (ER) stress and activated eIF2α, ATF-3 and -4, and Gadd153/CHOP, resulting in cell death. Notably, the protective/adaptive component of ER stress was not activated, and acrolein failed to up-regulate the protective ER-chaperones, GRP78 and GRP94. Additionally, exposure to acrolein disrupted mitochondrial integrity/function, and led to the release of pro-apoptotic proteins and ATP depletion. Acrolein-induced cell death was attenuated by N-acetyl cysteine, phenyl-butyric acid, and caspase and JNK inhibitors. Our data demonstrate that exposure to acrolein induces a variety of stress responses in hepatocytes, including GSH depletion, oxidative stress, mitochondrial dysfunction and ER stress (without ER-protective responses) which together contribute to acrolein toxicity. Our study defines basic mechanisms underlying liver injury caused by reactive aldehyde pollutants such as acrolein. PMID:23026831

  16. The iconography of the flags of Charles V: examples and documents

    Directory of Open Access Journals (Sweden)

    Jesús F. Pascual Molina

    2017-03-01

    Full Text Available The Emperor Charles V formed an important group of arms and armor in his armory at Valladolid. In 1556, during his last journey to Spain, new pieces were sent to this royal armory; after his death they passed to Philip II, who sent them to Madrid, where he ordered a new building especially for the collection. Among these pieces was an important group of flags linked to major episodes of the Emperor’s life. The author describes the flags and their iconography, providing as well unpublished archival materials, which permit a better understanding of the flags used in times of Caesar Charles and their meanings.

  17. Inhibition of hepatocyte gap junctional intercellular communication by tumor promoters

    International Nuclear Information System (INIS)

    Ruch, R.J.

    1988-01-01

    The mechanisms by which tumor promoters enhance neoplasia are poorly understood. One effect common to most tumor promoters is their ability to inhibit the cell-to-cell exchange of small molecules and ions through gap junctions, i.e., gap junctional intercellular communication (IC). IC maybe necessary for normal growth control and the loss of IC may predispose cells to enhanced growth. In the present studies, the effects of liver tumor promoters and other agents on IC between rodent hepatocytes in primary culture has been studied. IC was detected between hepatocytes: (1) autoradiographically following the passage and incorporation of [5- 3 H]uridine nucleotides from pre-labeled donor hepatocytes to non-labeled, adjacent recipient hepatocytes and (2) by fluorescence microscopy after microinjection of fluorescent Lucifer Yellow CH dye into hepatocytes and visualizing dye spread into adjacent hepatocytes

  18. Hepatocyte heterogeneity in the metabolism of carbohydrates.

    Science.gov (United States)

    Jungermann, K; Thurman, R G

    1992-01-01

    Periportal and perivenous hepatocytes possess different amounts and activities of the rate-generating enzymes of carbohydrate and oxidative energy metabolism and thus different metabolic capacities. This is the basis of the model of metabolic zonation, according to which periportal cells catalyze predominantly the oxidative catabolism of fatty and amino acids as well as glucose release and glycogen formation via gluconeogenesis, and perivenous cells carry out preferentially glucose uptake for glycogen synthesis and glycolysis coupled to liponeogenesis. The input of humoral and nervous signals into the periportal and perivenous zones is different; gradients of oxygen, substrates and products, hormones and mediators and nerve densities exist which are important not only for the short-term regulation of carbohydrate metabolism but also for the long-term regulation of zonal gene expression. The specialization of periportal and perivenous hepatocytes in carbohydrate metabolism has been well characterized. In vivo evidence is provided by the complex metabolic situation termed the 'glucose paradox' and by zonal flux differences calculated on the basis of the distribution of enzymes and metabolites. In vitro evidence is given by the different flux rates determined with classical invasive techniques, e.g. in periportal-like and perivenous-like hepatocytes in cell culture, in periportal- and perivenous-enriched hepatocyte populations and in perfused livers during orthograde and retrograde flow, as well as with noninvasive techniques using miniature oxygen electrodes, e.g. in livers perfused in either direction. Differences of opinion in the interpretation of studies with invasive and noninvasive techniques by the authors are discussed. The declining gradient in oxygen concentrations, the decreasing glucagon/insulin ratio and the different innervation could be important factors in the zonal expression of the genes of carbohydrate-metabolizing enzymes. While it is clear that

  19. Hepatitis C virus core protein expression leads to biphasic regulation of the p21 cdk inhibitor and modulation of hepatocyte cell cycle

    International Nuclear Information System (INIS)

    Nguyen, Hau; Mudryj, Maria; Guadalupe, Moraima; Dandekar, Satya

    2003-01-01

    Hepatitis C virus (HCV) Core protein is implicated in viral pathogenesis by the modulation of hepatocyte gene expression and function. To determine the effect of Core protein on the cell-cycle control of hepatocytes, a HepG2 cell line containing a Flag-tagged Core under the control of an inducible promoter was generated. Initial Core protein expression included the presence of unprocessed (191 aa) and processed (173 aa) forms of the Core proteins with the processed form becoming dominant later. Expression of the 191 aa form of Core protein corresponded to an increase in the expression of the p21, a decrease in cdk2-dependent kinase activity, and a decrease in the percentage of cells in S-phase along with an accumulation of cells in the G 0 /G 1 phase of the cell cycle. As the processed form accumulated, the p21 levels started to decline, suggesting that Core protein regulates p21 expression in a biphasic manner. These findings implicate Core protein in potentially modulating hepatocyte cell cycle differentially in the early stages of infection through biphasic regulation of p21 cdk kinase inhibitor

  20. Augmentation of DHCR24 expression by hepatitis C virus infection facilitates viral replication in hepatocytes.

    Science.gov (United States)

    Takano, Takashi; Tsukiyama-Kohara, Kyoko; Hayashi, Masahiro; Hirata, Yuichi; Satoh, Masaaki; Tokunaga, Yuko; Tateno, Chise; Hayashi, Yukiko; Hishima, Tsunekazu; Funata, Nobuaki; Sudoh, Masayuki; Kohara, Michinori

    2011-09-01

    We characterized the role of 24-dehydrocholesterol reductase (DHCR24) in hepatitis C virus infection (HCV). DHCR24 is a cholesterol biosynthetic enzyme and cholesterol is a major component of lipid rafts, which is reported to play an important role in HCV replication. Therefore, we examined the potential of DHCR24 as a target for novel HCV therapeutic agents. We examined DHCR24 expression in human hepatocytes in both the livers of HCV-infected patients and those of chimeric mice with human hepatocytes. We targeted DHCR24 with siRNA and U18666A which is an inhibitor of both DHCR24 and cholesterol synthesis. We measured the level of HCV replication in these HCV replicon cell lines and HCV infected cells. U18666A was administrated into chimeric mice with humanized liver, and anti-viral effects were assessed. Expression of DHCR24 was induced by HCV infection in human hepatocytes in vitro, and in human hepatocytes of chimeric mouse liver. Silencing of DHCR24 by siRNA decreased HCV replication in replicon cell lines and HCV JFH-1 strain-infected cells. Treatment with U18666A suppressed HCV replication in the replicon cell lines. Moreover, to evaluate the anti-viral effect of U18666A in vivo, we administrated U18666A with or without pegylated interferon to chimeric mice and observed an inhibitory effect of U18666A on HCV infection and a synergistic effect with interferon. DHCR24 is an essential host factor which augmented its expression by HCV infection, and plays a significant role in HCV replication. DHCR24 may serve as a novel anti-HCV drug target. Copyright © 2010 European Association for the Study of the Liver. Published by Elsevier B.V. All rights reserved.

  1. The colors of the Brazilian flag in different lighting scenarios

    Directory of Open Access Journals (Sweden)

    Lenizia Ferreira Silva

    2017-08-01

    Full Text Available Aiming to clarify concepts related to Optics and its teaching methodologies, above all on the perception of objects when illuminated with light sources in certain colors or bands of the light spectrum, an analysis was developed focusing on the problem of visual perception of Brazilian flag colors, considering different lighting scenarios. This question, usually applied in the teachers' daily routine, has presented conflicting answers in some relevant tools in the teaching-learning of Physics. The tools, in which were obtained  such results, contemplate didactic books of the discipline of Physics of High School; One of the selection tests of the Mestrado Nacional Profissional em Ensino de Física – MNPEF (2015, from Sociedade Brasileira de Física – SBF; As well as, digital simulations conceived in the software Cores - Óptica, belonging to the project Acessa Física. As a proposal to solve the doubts identified during the comparison of these resources, in the context of the Programa de Educação Tutorial – PET, the experimentation was adopted, through a practice with simple and accessible materials. The results demonstrated the importance of the experiments, as a way of elucidating conflicting concepts, deepening the analysis of the issue discussed and promoting a new perspective for the study of colors.

  2. The prevention of injuries in contact flag football.

    Science.gov (United States)

    Kaplan, Yonatan; Myklebust, Grethe; Nyska, Meir; Palmanovich, Ezequiel; Victor, Jan; Witvrouw, Erik

    2014-01-01

    American flag football is a non-tackle, contact sport with many moderate to severe contact-type injuries reported. A previous prospective injury surveillance study by the authors revealed a high incidence of injuries to the fingers, face, knee, shoulder and ankle. The objectives of the study were to conduct a pilot-prospective injury prevention study in an attempt to significantly reduce the incidence and the severity of injuries as compared to a historical cohort, as well as to provide recommendations for a future prospective injury prevention study. A prospective injury prevention study was conducted involving 724 amateur male (mean age: 20.0 ± 3.1 years) and 114 female (mean age: 21.2 ± 7.2 years) players. Four prevention measures were implemented: the no-pocket rule, self-fitting mouth guards, ankle braces (for those players with recurrent ankle sprains) and an injury treatment information brochure. An injury surveillance questionnaire was administered to record all time-loss injuries sustained in game sessions. There was a statistically significant reduction in the number of injured players, the number of finger/hand injuries, the incidence rate and the incidence proportion between the two cohorts (p football. Prevention strategies for a longer, prospective, randomised-controlled injury prevention study should include the strict enforcement of the no-pocket rule, appropriate head gear, the use of comfortable-fitting ankle braces and mouth guards, and changing the blocking rules of the game.

  3. An algorithm for applying flagged Sysmex XE-2100 absolute neutrophil counts in clinical practice

    DEFF Research Database (Denmark)

    Friis-Hansen, Lennart; Saelsen, Lone; Abildstrøm, Steen Z

    2008-01-01

    BACKGROUND: Even though most differential leukocyte counts are performed by automated hematology platforms, turn-around time is often prolonged as flagging of test results trigger additional confirmatory manual procedures. However, frequently only the absolute neutrophil count (ANC) is needed. We...... therefore examined if an algorithm could be developed to identify samples in which the automated ANC is valid despite flagged test results. METHODS: During a 3-wk period, a training set consisting of 1448 consecutive flagged test-results from the Sysmex XE-2100 system and associated manual differential...... counts was collected. The training set was used to determine which alarms were associated with valid ANCs. The algorithm was then tested on a new set of 1371 test results collected during a later 3-wk period. RESULTS: Analysis of the training set data revealed that the ANC from test results flagged...

  4. FLAG Simulations of the Elasticity Test Problem of Gavrilyuk et al.

    Energy Technology Data Exchange (ETDEWEB)

    Kamm, James R. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Runnels, Scott R. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Canfield, Thomas R. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Carney, Theodore C. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2014-04-23

    This report contains a description of the impact problem used to compare hypoelastic and hyperelastic material models, as described by Gavrilyuk, Favrie & Saurel. That description is used to set up hypoelastic simulations in the FLAG hydrocode.

  5. The Explicit Construction of Einstein Finsler Metrics with Non-Constant Flag Curvature

    Directory of Open Access Journals (Sweden)

    Enli Guo

    2009-04-01

    Full Text Available By using the Hawking Taub-NUT metric, this note gives an explicit construction of a 3-parameter family of Einstein Finsler metrics of non-constant flag curvature in terms of navigation representation.

  6. Air Quality Flags Program, U.S., 2017, EPA/OAR/OAQPS/OID

    Data.gov (United States)

    U.S. Environmental Protection Agency — This map service contains participants in EPA's Air Quality Flags Program. The map service also includes the current day's AQI forecast for each participant in the...

  7. Artist's rendering of astronaut Neil Armstrong planting U.S. flag on Moon

    Science.gov (United States)

    1969-01-01

    Artist's Concept: Apollo 11 astronaut Neil Armstrong, after stepping onto the lunar surface, will plant the United States flag in its soil. The flag will be made of nylone, size 3- by 5 feet on a staff 8 feet long. During flight it will be stowed in two 4-foot sections strapped to the Lunar Module ladder. Armstrong's first assignment after stepping off the ladder is to pull a 'D' ring to start a television camera. The second assignment is to erect the U.S. flag. The flag will appear to be flying in a breeze. This is done with a spring-loaded wire in the nylon cloth. With everything is working normally, this will be observed on live television.

  8. Reliance communications' flag telecom to provide ethernet link between CERN and TIFR

    CERN Multimedia

    2007-01-01

    "Flag Telecom Group Limited (Flag), the undersea cable network arm of Anil Ambani-le Reliance Communications, has announced a landmark deal with CERn (Conseil Européen pour la Recheche Nucléaire), the European organisation for nuclear research based in Geneva, Switzerland and the Tata institute of Fundamental Research (TIFR) in Mumbai to provide gigabit Ethernet connectivity between the two." (1 page)

  9. Using atypical symptoms and red flags to identify non-demyelinating disease.

    LENUS (Irish Health Repository)

    Kelly, Siobhan B

    2012-01-01

    Red flags and atypical symptoms have been described as being useful in suggesting alternative diagnoses to multiple sclerosis (MS) and clinically isolated syndrome (CIS); however, their diagnostic utility has not been assessed. The aim of this study was to establish the predictive value of red flags and the typicality\\/atypicality of symptoms at presentation in relation to the final diagnosis of patients referred with suspected MS.

  10. Hepatocyte transplantation improves early survival after partial hepatic resection and irradiation

    International Nuclear Information System (INIS)

    Guha, C.; Sharma, A.; Alfieri, A.; Guha, U.; Sokhi, R.; Gagandeep, S.; Gupta, S.; Vikram, B.; RoyChowdhury, J.

    1997-01-01

    Purpose: Radiation therapy (RT) is limited in its role as an adjuvant therapy of intrahepatic malignancies because of lower tolerance of human liver to irradiation (TD (5(5)) -TD (50(5)) ∼ 30-40 Gy). Although, surgical resection of primary or metastatic hepatic tumors has been shown to prolong survival, it is often limited by the presence of residual disease. RT could potentially improve survival of patients with positive surgical margins. However, radiation damage to the liver may be enhanced by hepatocellular proliferation induced by partial hepatic (PH) resection. We hypothesize that hepatocyte transplantation would be able to provide metabolic support and modulate the development of radiation-induced liver disease post-resection. The present study was designed to test the potential of hepatocyte transplantation in modifying the outcome of hepatocellular damage induced by PH and RT. Methods: Adult male Fischer 344 rats (Charles River) received hepatic irradiation of 50 Gy in a single fraction, after surgical exposure and shielding of the stomach and intestine, using a 320 MGC Philips orthovoltage unit. Immediately following irradiation, a two-third partial hepatectomy was performed. Four days post-radiation, the treatment group was injected with 5 x 10 6 syngeneic hepatocytes into the splenic pulp after a left subcostal incision, which allows homogeneous liver engraftment of the transplanted hepatocytes. Hematoxylin and eosin stains of liver biopsies, performed at various time points (3 days, 1, 2, 3 weeks or, anytime when animals died) were used for histologic evaluation. Time-adjusted survival was calculated from the date of irradiation by the product-limit Kaplan-Meier method, adjusting the denominator at every time point for the number of rats at risk. Results: Eight weeks after RT, 30% (n = 11) of the control animals (PH + 50 Gy) were alive compared to 100% (n = 9) of the transplant recipients (p <0.05). The median survival of the control group was 15

  11. Stathmin Mediates Hepatocyte Resistance to Death from Oxidative Stress by down Regulating JNK

    Science.gov (United States)

    Zhao, Enpeng; Amir, Muhammad; Lin, Yu; Czaja, Mark J.

    2014-01-01

    Stathmin 1 performs a critical function in cell proliferation by regulating microtubule polymerization. This proliferative function is thought to explain the frequent overexpression of stathmin in human cancer and its correlation with a bad prognosis. Whether stathmin also functions in cell death pathways is unclear. Stathmin regulates microtubules in part by binding free tubulin, a process inhibited by stathmin phosphorylation from kinases including c-Jun N-terminal kinase (JNK). The involvement of JNK activation both in stathmin phosphorylation, and in hepatocellular resistance to oxidative stress, led to an examination of the role of stathmin/JNK crosstalk in oxidant-induced hepatocyte death. Oxidative stress from menadione-generated superoxide induced JNK-dependent stathmin phosphorylation at Ser-16, Ser-25 and Ser-38 in hepatocytes. A stathmin knockdown sensitized hepatocytes to both apoptotic and necrotic cell death from menadione without altering levels of oxidant generation. The absence of stathmin during oxidative stress led to JNK overactivation that was the mechanism of cell death as a concomitant knockdown of JNK1 or JNK2 blocked death. Hepatocyte death from JNK overactivation was mediated by the effects of JNK on mitochondria. Mitochondrial outer membrane permeabilization occurred in stathmin knockdown cells at low concentrations of menadione that triggered apoptosis, whereas mitochondrial β-oxidation and ATP homeostasis were compromised at higher, necrotic menadione concentrations. Stathmin therefore mediates hepatocyte resistance to death from oxidative stress by down regulating JNK and maintaining mitochondrial integrity. These findings demonstrate a new mechanism by which stathmin promotes cell survival and potentially tumor growth. PMID:25285524

  12. Stathmin mediates hepatocyte resistance to death from oxidative stress by down regulating JNK.

    Directory of Open Access Journals (Sweden)

    Enpeng Zhao

    Full Text Available Stathmin 1 performs a critical function in cell proliferation by regulating microtubule polymerization. This proliferative function is thought to explain the frequent overexpression of stathmin in human cancer and its correlation with a bad prognosis. Whether stathmin also functions in cell death pathways is unclear. Stathmin regulates microtubules in part by binding free tubulin, a process inhibited by stathmin phosphorylation from kinases including c-Jun N-terminal kinase (JNK. The involvement of JNK activation both in stathmin phosphorylation, and in hepatocellular resistance to oxidative stress, led to an examination of the role of stathmin/JNK crosstalk in oxidant-induced hepatocyte death. Oxidative stress from menadione-generated superoxide induced JNK-dependent stathmin phosphorylation at Ser-16, Ser-25 and Ser-38 in hepatocytes. A stathmin knockdown sensitized hepatocytes to both apoptotic and necrotic cell death from menadione without altering levels of oxidant generation. The absence of stathmin during oxidative stress led to JNK overactivation that was the mechanism of cell death as a concomitant knockdown of JNK1 or JNK2 blocked death. Hepatocyte death from JNK overactivation was mediated by the effects of JNK on mitochondria. Mitochondrial outer membrane permeabilization occurred in stathmin knockdown cells at low concentrations of menadione that triggered apoptosis, whereas mitochondrial β-oxidation and ATP homeostasis were compromised at higher, necrotic menadione concentrations. Stathmin therefore mediates hepatocyte resistance to death from oxidative stress by down regulating JNK and maintaining mitochondrial integrity. These findings demonstrate a new mechanism by which stathmin promotes cell survival and potentially tumor growth.

  13. Hepatocyte membrane injury and bleb formation following low dose comfrey toxicity in rats.

    Science.gov (United States)

    Yeong, M L; Wakefield, S J; Ford, H C

    1993-04-01

    Comfrey, a popular herbal remedy, contains hepatotoxic pyrrolizidine alkaloids and has been implicated in recent human toxicity. Although alkaloids from other plant sources have been extensively researched, studies on the hepatotoxic effects of comfrey alkaloids are scant. The effects of high dose comfrey toxicity have been studied and the present investigation was undertaken to identify changes associated with relatively low dose toxicity. Eight young adult rats were dosed weekly for six weeks with 50 mg/kg of comfrey derived alkaloids. The animals were dissected one week after the last dose and the livers examined by light and electron microscopy. Changes at the light microscopic level showed vascular congestion, mild zone 3 necrosis and loss of definition of hepatocyte cellular membranes. Extensive ultrastructural abnormalities were identified in the form of endothelial sloughing and the loss of hepatocyte microvilli. A striking finding was florid bleb formation on the sinusoidal borders of hepatocytes. Many blebs were shed into the space of Disse and extruded to fill, and sometimes occlude, sinusoidal lumina. Platelets were frequently found in areas of bleb formation. There was evidence of late damage in collagenization of Disse's space. Hepatocyte bleb formation is known to occur under a variety of pathological conditions but there is little to no information in the literature on the effects, if any, of bleb formation on fibrogenesis and the microcirculation and its role in the pathogenesis of liver disease. The pyrrolizidine alkaloids of comfrey may serve as an experimental tool to study the process of bleb formation and the intimate relationship between hepatocyte and sinusoidal injury in the liver.

  14. Evaluating the uptake and intracellular fate of polystyrene nanoparticles by primary and hepatocyte cell lines in vitro

    International Nuclear Information System (INIS)

    Johnston, Helinor J.; Semmler-Behnke, Manuela; Brown, David M.; Kreyling, Wolfgang; Tran, Lang; Stone, Vicki

    2010-01-01

    Nanoparticles (NPs) are being used within diverse applications such as medicines, clothing, cosmetics and food. In order to promote the safe development of such nanotechnologies it is essential to assess the potential adverse health consequences associated with human exposure. The liver is recognised as a target site for NP toxicity, due to NP accumulation within this organ subsequent to injection, inhalation or instillation. The uptake of fluorescent polystyrene carboxylated particles (20 nm or 200 nm diameter) by hepatocytes was determined using confocal microscopy; with cells imaged 'live' during particle exposure or after exposure within fixed cells. Comparisons between the uptake of polystyrene particles by primary rat hepatocytes, and human hepatocyte cell lines (C3A and HepG2) were made. Uptake of particles by hepatocytes was size, time, and serum dependent. Specifically, the uptake of 200 nm particles was limited, but 20 nm NPs were internalised by all cell types from 10 min onwards. At 10 min, 20 nm NP fluorescence co-localised with the tubulin cytoskeleton staining; after 30 min NP fluorescence compartmentalised into structures located within and/or between cells. The fate of internalised NPs was considered and they were not contained within early endosomes or lysosomes, but within mitochondria of cell lines. NPs accumulated within bile canaliculi to a limited extent, which suggests that NPs can be eliminated within bile. This is in keeping with the finding that gold NPs were eliminated in bile following intravenous injection into rats. The findings were, in the main, comparable between primary rat hepatocytes and the different human hepatocyte cell lines.

  15. Inhibition of Drp1 protects against senecionine-induced mitochondria-mediated apoptosis in primary hepatocytes and in mice

    Directory of Open Access Journals (Sweden)

    Xiao Yang

    2017-08-01

    Full Text Available Pyrrolizidine alkaloids (PAs are a group of compounds found in various plants and some of them are widely consumed in the world as herbal medicines and food supplements. PAs are potent hepatotoxins that cause irreversible liver injury in animals and humans. However, the mechanisms by which PAs induce liver injury are not clear. In the present study, we determined the hepatotoxicity and molecular mechanisms of senecionine, one of the most common toxic PAs, in primary cultured mouse and human hepatocytes as well as in mice. We found that senecionine administration increased serum alanine aminotransferase levels in mice. H&E and TUNEL staining of liver tissues revealed increased hemorrhage and hepatocyte apoptosis in liver zone 2 areas. Mechanistically, senecionine induced loss of mitochondrial membrane potential, release of mitochondrial cytochrome c as well as mitochondrial JNK translocation and activation prior to the increased DNA fragmentation and caspase-3 activation in primary cultured mouse and human hepatocytes. SP600125, a specific JNK inhibitor, and ZVAD-fmk, a general caspase inhibitor, alleviated senecionine-induced apoptosis in primary hepatocytes. Interestingly, senecionine also caused marked mitochondria fragmentation in hepatocytes. Pharmacological inhibition of dynamin-related protein1 (Drp1, a protein that is critical to regulate mitochondrial fission, blocked senecionine-induced mitochondrial fragmentation and mitochondrial release of cytochrome c and apoptosis. More importantly, hepatocyte-specific Drp1 knockout mice were resistant to senecionine-induced liver injury due to decreased mitochondrial damage and apoptosis. In conclusion, our results uncovered a novel mechanism of Drp1-mediated mitochondrial fragmentation in senecionine-induced liver injury. Targeting Drp1-mediated mitochondrial fragmentation and apoptosis may be a potential avenue to prevent and treat hepatotoxicity induced by PAs. Keywords: Senecionine, Drp1

  16. Acrolein cytotoxicity in hepatocytes involves endoplasmic reticulum stress, mitochondrial dysfunction and oxidative stress

    International Nuclear Information System (INIS)

    Mohammad, Mohammad K.; Avila, Diana; Zhang, Jingwen; Barve, Shirish; Arteel, Gavin; McClain, Craig; Joshi-Barve, Swati

    2012-01-01

    Acrolein is a common environmental, food and water pollutant and a major component of cigarette smoke. Also, it is produced endogenously via lipid peroxidation and cellular metabolism of certain amino acids and drugs. Acrolein is cytotoxic to many cell types including hepatocytes; however the mechanisms are not fully understood. We examined the molecular mechanisms underlying acrolein hepatotoxicity in primary human hepatocytes and hepatoma cells. Acrolein, at pathophysiological concentrations, caused a dose-dependent loss of viability of hepatocytes. The death was apoptotic at moderate and necrotic at high concentrations of acrolein. Acrolein exposure rapidly and dramatically decreased intracellular glutathione and overall antioxidant capacity, and activated the stress-signaling MAP-kinases JNK, p42/44 and p38. Our data demonstrate for the first time in human hepatocytes, that acrolein triggered endoplasmic reticulum (ER) stress and activated eIF2α, ATF-3 and -4, and Gadd153/CHOP, resulting in cell death. Notably, the protective/adaptive component of ER stress was not activated, and acrolein failed to up-regulate the protective ER-chaperones, GRP78 and GRP94. Additionally, exposure to acrolein disrupted mitochondrial integrity/function, and led to the release of pro-apoptotic proteins and ATP depletion. Acrolein-induced cell death was attenuated by N-acetyl cysteine, phenyl-butyric acid, and caspase and JNK inhibitors. Our data demonstrate that exposure to acrolein induces a variety of stress responses in hepatocytes, including GSH depletion, oxidative stress, mitochondrial dysfunction and ER stress (without ER-protective responses) which together contribute to acrolein toxicity. Our study defines basic mechanisms underlying liver injury caused by reactive aldehyde pollutants such as acrolein. -- Highlights: ► Human primary hepatocytes and cultured cell lines are used. ► Multiple cell death signaling pathways are activated by acrolein. ► Novel finding of

  17. Acrolein cytotoxicity in hepatocytes involves endoplasmic reticulum stress, mitochondrial dysfunction and oxidative stress

    Energy Technology Data Exchange (ETDEWEB)

    Mohammad, Mohammad K. [Department of Medicine, University of Louisville (United States); Alcohol Research Center, University of Louisville (United States); Avila, Diana [Department of Medicine, University of Louisville (United States); Department of Pharmacology and Toxicology, University of Louisville (United States); Alcohol Research Center, University of Louisville (United States); Zhang, Jingwen [Department of Medicine, University of Louisville (United States); Alcohol Research Center, University of Louisville (United States); Barve, Shirish [Department of Medicine, University of Louisville (United States); Department of Pharmacology and Toxicology, University of Louisville (United States); Alcohol Research Center, University of Louisville (United States); Arteel, Gavin [Department of Pharmacology and Toxicology, University of Louisville (United States); Alcohol Research Center, University of Louisville (United States); McClain, Craig [Department of Medicine, University of Louisville (United States); Department of Pharmacology and Toxicology, University of Louisville (United States); Alcohol Research Center, University of Louisville (United States); Robley Rex VAMC, Louisville, KY (United States); Joshi-Barve, Swati, E-mail: s0josh01@louisville.edu [Department of Medicine, University of Louisville (United States); Department of Pharmacology and Toxicology, University of Louisville (United States); Alcohol Research Center, University of Louisville (United States)

    2012-11-15

    Acrolein is a common environmental, food and water pollutant and a major component of cigarette smoke. Also, it is produced endogenously via lipid peroxidation and cellular metabolism of certain amino acids and drugs. Acrolein is cytotoxic to many cell types including hepatocytes; however the mechanisms are not fully understood. We examined the molecular mechanisms underlying acrolein hepatotoxicity in primary human hepatocytes and hepatoma cells. Acrolein, at pathophysiological concentrations, caused a dose-dependent loss of viability of hepatocytes. The death was apoptotic at moderate and necrotic at high concentrations of acrolein. Acrolein exposure rapidly and dramatically decreased intracellular glutathione and overall antioxidant capacity, and activated the stress-signaling MAP-kinases JNK, p42/44 and p38. Our data demonstrate for the first time in human hepatocytes, that acrolein triggered endoplasmic reticulum (ER) stress and activated eIF2α, ATF-3 and -4, and Gadd153/CHOP, resulting in cell death. Notably, the protective/adaptive component of ER stress was not activated, and acrolein failed to up-regulate the protective ER-chaperones, GRP78 and GRP94. Additionally, exposure to acrolein disrupted mitochondrial integrity/function, and led to the release of pro-apoptotic proteins and ATP depletion. Acrolein-induced cell death was attenuated by N-acetyl cysteine, phenyl-butyric acid, and caspase and JNK inhibitors. Our data demonstrate that exposure to acrolein induces a variety of stress responses in hepatocytes, including GSH depletion, oxidative stress, mitochondrial dysfunction and ER stress (without ER-protective responses) which together contribute to acrolein toxicity. Our study defines basic mechanisms underlying liver injury caused by reactive aldehyde pollutants such as acrolein. -- Highlights: ► Human primary hepatocytes and cultured cell lines are used. ► Multiple cell death signaling pathways are activated by acrolein. ► Novel finding of

  18. Cytochrome P450IID6 recognized by LKM1 antibody is not exposed on the surface of hepatocytes.

    Science.gov (United States)

    Yamamoto, A M; Mura, C; De Lemos-Chiarandini, C; Krishnamoorthy, R; Alvarez, F

    1993-06-01

    LKM1 autoantibody, directed against P450IID6, is accepted as a marker of a particular type of autoimmune hepatitis, but its role in the pathogenesis of the disease is controversial. Localization of P450IID6 on the cell surface of rat hepatocytes was previously reported, suggesting that membrane-bound P450IID6 could be the target of LKM1 antibodies, thus allowing immune lysis of hepatocytes. The objective of the present study was to determine, using various methods, the cell localization of P450IID6 in human and rat hepatocytes. Incubation of rat and human hepatocytes with LKM1-positive serum showed slight, if any, cell membrane staining using immunofluorescence, immunoperoxidase and immunoelectron microscopic studies. No staining of the plasma membrane of human hepatocytes was observed when incubations were carried out with immunoaffinity-purified antibody directed against peptide 254-271, the main epitope of P450IID6 recognized by all LKM1 sera tested. Chinese hamster ovary cells, transfected with the complete P450IID6 cDNA and incubated with the supernatant from a B cell lymphoblastoid cell line prepared with the lymphocytes of a LKM1-positive patient, did not show any staining of the cell surface by immunofluorescence. Incubation of rat microsomal fraction vesicles with LKM1-positive serum, followed by protein A-gold immunoelectron microscopy, displayed a staining of almost all vesicles, confirming that P450IID6 is present on the cytoplasmic side of the microsomal membrane, which makes it unable to be expressed on the cell surface even if it were transported from the endoplasmic reticulum (ER). Sulpho NHS Biotin labelling of rat hepatocyte cell membranes did not show the presence of a 50-kD molecule that could have reacted with LKM1 antibody. DNA sequencing of exon 1 of the CYP2D6 gene of a patient positive for LKM1 antibody did not show any difference from that of the normal published sequence of the gene. This does not favour an alteration of the NH2 terminal

  19. Scintigraphic evidence of transplanted hepatocytes in spleen and liver

    International Nuclear Information System (INIS)

    Henne-Bruns, D.; Kremer, B.; Gramminger, K.; Broelsch, C.

    1986-01-01

    In rats suffering from hepatic enzymatic deficiency transplanted hepatocytes could be evidenced scintigraphically in liver, spleen and granulomas. In pigs, however, it is very difficult to demonstrate transplanted hepatocytes by scintiscanning because of the thickness of the tissues and the high background radiation in large animals

  20. Targeted deletion of hepatocyte Ikkβ confers growth advantages

    International Nuclear Information System (INIS)

    Koch, Katherine S.; Maeda, Shin; He, Guobin; Karin, Michael; Leffert, Hyam L.

    2009-01-01

    Mice lacking hepatocyte IKKβ (Ikkβ Δhep ) are defective in TNFα-activation of hepatocellular transcription factor NF-κB, and highly susceptible to hepatotoxicity. Following diethylnitrosamine (DEN) exposure, Ikkβ Δhep mice develop more hepatocellular carcinoma (HCC) than control mice due partly to enhanced DEN-induced hepatocyte death. Here we show that Ikkβ Δhep hepatocytes display growth advantages over normal hepatocytes consisting of precocious PCNA and cyclin D1 expression during liver regeneration (shortened hepatocyte G 0 → G 1 transitions), and enhanced recovery efficiency, cyclin D1 expression and cell proliferation after plating. Ex vivo deletion of Ikkβ also accelerates hepatocyte growth. Ikkβ Δhep hepatocyte proliferative responses show heightened sensitivity to TGFα and TNFα, and heightened expression of fibronectin, collagens I/III, nidogen, β-actin and integrin β1 mRNAs. These findings suggest that altered mitogen signaling and expression of extracellular matrix and its associated components underlie growth advantages. Increased HCC development in Ikkβ Δhep mice may also be caused by growth advantages of surviving Ikkβ-deleted hepatocytes.

  1. Cell swelling and glycogen metabolism in hepatocytes from fasted rats

    NARCIS (Netherlands)

    Gustafson, L. A.; Jumelle-Laclau, M. N.; van Woerkom, G. M.; van Kuilenburg, A. B.; Meijer, A. J.

    1997-01-01

    Cell swelling is known to increase net glycogen production from glucose in hepatocytes from fasted rats by activating glycogen synthase. Since both active glycogen synthase and phosphorylase are present in hepatocytes, suppression of flux through phosphorylase may also contribute to the net increase

  2. Expression of hepatocyte growth factor and the proto-oncogenic receptor c-Met in canine osteosarcoma

    NARCIS (Netherlands)

    Fieten, H; Spee, B; Ijzer, J; Kik, M J; Penning, L C; Kirpensteijn, J

    Hepatocyte growth factor (HGF) and the proto-oncogenic receptor c-Met are implicated in growth, invasion, and metastasis in human cancer. Little information is available on the expression and role of both gene products in canine osteosarcoma. We hypothesized that the expression of c-Met is

  3. Ketose induced respiratory inhibition in isolated hepatocytes.

    Science.gov (United States)

    Martínez, P; Carrascosa, J M; Núñez de Castro, I

    1987-06-01

    The addition of 10 mM fructose or 10 mM tagatose to a suspension of hepatocytes caused respiratory inhibition, whereas no change in oxygen uptake was observed following the addition of glucose. However, incubations in the presence of fructose showed a high, aerobic glycolytic activity. Tagatose is phosphorylated to tagatose 1-phosphate but is not further metabolized by cell free liver extract. Moreover, the addition of fructose to glucagon treated cells also caused the Crabtree-like effect. The concentration of adenine nucleotides and inorganic phosphate (Pi) in the mitochondrial and cytosolic compartments during incubation (time 30 min) was determined by the digitonin fractionation procedure. In the presence of 10 mM fructose or tagatose, the total adenine nucleotide pools decreased by 40%; however, glucose produced no change. The addition of ketoses diminished the asymmetric distribution of extramitochondrial (ATP/ADP)e ratio and intramitochondrial (ATP/ADP)i ratio. At the same time the total mitochondrial Pi fell from 17 mM to 6-7 mM. The mitochondrial membrane potential (-161 mV) in the presence of fructose showed no changes during the 30 min experimental period. An increase in the NADH/NAD+ ratio was observed. These results suggest that in hepatocytes the inhibition of respiration is not necessarily linked with the enhanced aerobic glycolysis, by competition for common substrates.

  4. Insulin internalization in isolated rat hepatocytes

    International Nuclear Information System (INIS)

    Galan, J.; Trankina, M.; Noel, R.; Ward, W.

    1990-01-01

    This project was designed to determine whether neomycin, an aminoglycoside antibiotic, has a significant effect upon the pathways of ligand endocytosis in isolated rat hepatocytes. The pathways studied include receptor-mediated endocytosis and fluid-phase endocytosis. Neomycin causes a dose-dependent acceleration of 125 I-insulin internalization. Since fluid-phase endocytosis can also be a significant factor in 125 I-insulin internalization, lucifer yellow (LY), a marker for fluid-phase endocytosis, was incorporated into an assay similar to the 125 I-insulin internalization procedure. In the presence of 5 mM neomycin, a significant increase in LY uptake was evident at 0.2 and 0.4 mg/ml of LY. At 0.8 mg/ml, a decrease in LY uptake was observed. The increased rate of 125 I-insulin internalization in the presence of neomycin was intriguing. Since one action of neomycin is to inhibit phosphoinositidase C, it suggests that the phosphotidylinositol cycle may be involved in ligand internalization by hepatocytes. At low insulin concentrations, receptor-mediated uptake predominates. Fluid-phase uptake can become an important uptake route as insulin concentrations are increased. Since neomycin stimulates fluid-phase endocytosis, it must also be taken into account when measuring ligand internalization

  5. Mechanism of free radical generation in platelets and primary hepatocytes: A novel electron spin resonance study.

    Science.gov (United States)

    Wang, Chiun-Lang; Yang, Po-Sheng; Tsao, Jeng-Ting; Jayakumar, Thanasekaran; Wang, Meng-Jiy; Sheu, Joen-Rong; Chou, Duen-Suey

    2018-01-01

    Oxygen free radicals have been implicated in the pathogenesis of toxic liver injury and are thought to be involved in cardiac dysfunction in the cirrhotic heart. Therefore, direct evidence for the electron spin resonance (ESR) detection of how D‑galactosamine (GalN), an established experimental hepatotoxic substance, induced free radicals formation in platelets and primary hepatocytes is presented in the present study. ESR results demonstrated that GalN induced hydroxyl radicals (OH•) in a resting human platelet suspension; however, radicals were not produced in a cell free Fenton reaction system. The GalN‑induced OH• formation was significantly inhibited by the cyclooxygenase (COX) inhibitor indomethasin, though it was not affected by the lipoxygenase (LOX) or cytochrome P450 inhibitors, AA861 and 1‑aminobenzotriazole (ABT), in platelets. In addition, the present study demonstrated that baicalein induced semiquinone free radicals in platelets, which were significantly reduced by the COX inhibitor without affecting the formed OH•. In the mouse primary hepatocytes, the formation of arachidonic acid (AA) induced carbon‑centered radicals that were concentration dependently enhanced by GalN. These radicals were inhibited by AA861, though not affected by indomethasin or ABT. In addition, GalN did not induce platelet aggregation prior to or following collagen pretreatment in human platelets. The results of the present study indicated that GalN and baicalein may induce OH• by COX and LOX in human platelets. GalN also potentiated AA induced carbon‑centered radicals in hepatocytes via cytochrome P450. The present study presented the role of free radicals in the pathophysiological association between platelets and hepatocytes.

  6. Temperature shift and host cell contact up-regulate sporozoite expression of Plasmodium falciparum genes involved in hepatocyte infection.

    Directory of Open Access Journals (Sweden)

    Anthony Siau

    Full Text Available Plasmodium sporozoites are deposited in the skin by Anopheles mosquitoes. They then find their way to the liver, where they specifically invade hepatocytes in which they develop to yield merozoites infective to red blood cells. Relatively little is known of the molecular interactions during these initial obligatory phases of the infection. Recent data suggested that many of the inoculated sporozoites invade hepatocytes an hour or more after the infective bite. We hypothesised that this pre-invasive period in the mammalian host prepares sporozoites for successful hepatocyte infection. Therefore, the genes whose expression becomes modified prior to hepatocyte invasion would be those likely to code for proteins implicated in the subsequent events of invasion and development. We have used P. falciparum sporozoites and their natural host cells, primary human hepatocytes, in in vitro co-culture system as a model for the pre-invasive period. We first established that under co-culture conditions, sporozoites maintain infectivity for an hour or more, in contrast to a drastic loss in infectivity when hepatocytes were not included. Thus, a differential transcriptome of salivary gland sporozoites versus sporozoites co-cultured with hepatocytes was established using a pan-genomic P. falciparum microarray. The expression of 532 genes was found to have been up-regulated following co-culture. A fifth of these genes had no orthologues in the genomes of Plasmodium species used in rodent models of malaria. Quantitative RT-PCR analysis of a selection of 21 genes confirmed the reliability of the microarray data. Time-course analysis further indicated two patterns of up-regulation following sporozoite co-culture, one transient and the other sustained, suggesting roles in hepatocyte invasion and liver stage development, respectively. This was supported by functional studies of four hitherto uncharacterized proteins of which two were shown to be sporozoite surface

  7. GLP-1 analogs reduce hepatocyte steatosis and improve survival by enhancing the unfolded protein response and promoting macroautophagy.

    Directory of Open Access Journals (Sweden)

    Shvetank Sharma

    Full Text Available Nonalcoholic fatty liver disease (NAFLD is a known outcome of hepatosteatosis. Free fatty acids (FFA induce the unfolded protein response (UPR or endoplasmic reticulum (ER stress that may induce apoptosis. Recent data indicate ER stress to be a major player in the progression of fatty liver to more aggressive lesions. Autophagy on the other hand has been demonstrated to be protective against ER stress-induced cell death. We hypothesized that exendin-4 (GLP-1 analog treatment of fat loaded hepatocytes can reduce steatosis by autophagy which leads to reduced ER stress-related hepatocyte apoptosis.Primary human hepatocytes were loaded with saturated, cis- and trans-unsaturated fatty acids (palmitic, oleic and elaidic acid respectively. Steatosis, induced with all three fatty acids, was significantly resolved after exendin-4 treatment. Exendin-4 sustained levels of GRP78 expression in fat-loaded cells when compared to untreated fat-loaded cells alone. In contrast, CHOP (C/EBP homologous protein; the penultimate protein that leads to ER stress-related cell death was significantly decreased by exendin-4 in hepatocytes loaded with fatty acids. Finally, exendin-4 in fat loaded hepatocytes clearly promoted gene products associated with macroautophagy as measured by enhanced production of both Beclin-1 and LC3B-II, markers for autophagy; and visualized by transmission electron microscopy (TEM. Similar observations were made in mouse liver lysates after mice were fed with high fat high fructose diet and treated with a long acting GLP-1 receptor agonist, liraglutide.GLP-1 proteins appear to protect hepatocytes from fatty acid-related death by prohibition of a dysfunctional ER stress response; and reduce fatty acid accumulation, by activation of both macro-and chaperone-mediated autophagy. These findings provide a novel role for GLP-1 proteins in halting the progression of more aggressive lesions from underlying steatosis in humans afflicted with NAFLD.

  8. Hepatic Stellate Cell-Derived Microvesicles Prevent Hepatocytes from Injury Induced by APAP/H2O2

    Directory of Open Access Journals (Sweden)

    Renwei Huang

    2016-01-01

    Full Text Available Hepatic stellate cells (HSCs, previously described for liver-specific mesenchymal stem cells (MSCs, appear to contribute to liver regeneration. Microvesicles (MVs are nanoscale membrane fragments, which can regulate target cell function by transferring contents from their parent cells. The aim of this study was to investigate the effect of HSC-derived MVs on xenobiotic-induced liver injury. Rat and human hepatocytes, BRL-3A and HL-7702, were used to build hepatocytes injury models by n-acetyl-p-aminophenol n-(APAP or H2O2 treatment. MVs were prepared from human and rat HSCs, LX-2, and HST-T6 and, respectively, added to injured BRL-3A and HL-7702 hepatocytes. MTT assay was utilized to determine cell proliferation. Cell apoptosis was analyzed by flow cytometry and hoechst33258 staining. Western blot was used for analyzing the expression of activated caspase-3. Liver injury indicators, alanine aminotransferase (ALT, aspartate aminotransferase (AST, and lactate dehydrogenase (LDH in culture medium were also assessed. Results showed that (1 HSC-MVs derived from LX-2 and HST-T6 were positive to CD90 and annexin V surface markers; (2 HSC-MVs dose-dependently improved the viability of hepatocytes in both injury models; (3 HSC-MVs dose-dependently inhibited the APAP/H2O2 induced hepatocytes apoptosis and activated caspase-3 expression and leakage of LDH, ALT, and AST. Our results demonstrate that HSC-derived MVs protect hepatocytes from toxicant-induced injury.

  9. Effects of Cd2+ on chlorophyll content in flag and grain yield of wheats

    International Nuclear Information System (INIS)

    Zhu Zhiyong; Li Youjun; Liu Yingjie; Duan Youqiang; Li Qiang; Hao Yufen; Guo Jia

    2011-01-01

    A field experiment was conducted with wheat cultivars Luohan 6 and Yumai 18 to investigate the effects of Cd 2+ stress on chlorophyll contents in flag leaves, flag leave area, thousand kernel weight, kernel filling velocity and yield of wheat. Results indicated that, under low Cd 2+ stress (10 mg/kg), the average contents of chlorophyll a + b of Luohan 6 reduced by 1.6%, however, its average area of flag leave and yield increased by 3.8% and 1.6%, respectively. At the same time, the average content of chlorophyll a + b, area of flag leave yield of Yumai 18 reduced 8.0%, 9.6% and 5.4%. Under high Cd 2+ stress (100 mg/kg), the average contents of chlorophyll a + b, areas of flag leaves and yields of Luohan 6 and Yumai 18 reduced by 29.2% and 30.5%, 6.3% and 17.4%, 16.7% and 36.7%, respectively. The results demonstrated that Cd 2+ restrained synthesis and accumulation of chlorophyll and its components. This study even showed that within a range of Cd 2+ concentration could promote the growth of flag leaves, and it also had an equal positive effect on yield of wheat if the Cd 2+ concentration in grains were not out of limit. The growth of flag leave and yield of wheat would be limited when Cd 2+ concentration exceed that range. Overall, Yumai 18 bore more poison from Cd 2+ than Luohan 6. (authors)

  10. Customization of Advia 120 thresholds for canine erythrocyte volume and hemoglobin concentration, and effects on morphology flagging results.

    Science.gov (United States)

    Grimes, Carolyn N; Fry, Michael M

    2014-12-01

    This study sought to develop customized morphology flagging thresholds for canine erythrocyte volume and hemoglobin concentration [Hgb] on the ADVIA 120 hematology analyzer; compare automated morphology flagging with results of microscopic blood smear evaluation; and examine effects of customized thresholds on morphology flagging results. Customized thresholds were determined using data from 52 clinically healthy dogs. Blood smear evaluation and automated morphology flagging results were correlated with mean cell volume (MCV) and cellular hemoglobin concentration mean (CHCM) in 26 dogs. Customized thresholds were applied retroactively to complete blood (cell) count (CBC) data from 5 groups of dogs, including a reference sample group, clinical cases, and animals with experimentally induced iron deficiency anemia. Automated morphology flagging correlated more highly with MCV or CHCM than did blood smear evaluation; correlation with MCV was highest using customized thresholds. Customized morphology flagging thresholds resulted in more sensitive detection of microcytosis, macrocytosis, and hypochromasia than default thresholds.

  11. Preparation of Degradable Biological Carrier With LCC and its Application in Culture of Hepatocytes

    Science.gov (United States)

    Zhao, H. K.; Chen, X. K.; Wu, H. F.; Li, J. L.; Xie, Y. M.

    2018-05-01

    The purpose of this article is to extract lignin-carbohydrate complexes (LCC) with poplar as raw material, which was used to prepare bio-carrier by freeze-drying method. The chemical properties and morphological of LCC porous biological carriers were analyzed by GPC, FT-IR, scanning electron microscopy (SEM) and optical microscopy. The FT-IR spectrum results indicated that LCC which are composed of lignin and polysaccharide, with a typical LCC structure. Galactose have a specific ability to recognize liver cells owing to the presence of receptors on hepatocytes. Cell counting results showed that the cells increases fastest while the proliferation rate of the liver cell in LCC is obviously higher than that of control group. These results indicated that poplar LCC is very biocompatible, in which it might be a great potential biological carrier material for human hepatocyte culture.

  12. Evaluation of Medicinal Plant Hepatotoxicity in Co-cultures of Hepatocytes and Monocytes

    Directory of Open Access Journals (Sweden)

    Bashar Saad

    2006-01-01

    Full Text Available Non-parenchymal cells might play an important role in the modulation of xenobiotic metabolism in liver and its pharmacological and toxicological consequences. Therefore, the role of cell-to-cell interactions in herbal induced liver toxicity was investigated in monocultures of cells from the human hepatocyte cell line (HepG2 and in co-cultures of cells from the HepG2 cell line and cells from the human monocyte cell line (THP1. Cells were treated with various concentrations (1–500 µg ml−1 of extracts of Pistacia palaestina, Juglans regia and Quercus ithaburensis for 24 h. Extracts from Cleome droserifolia, a known toxic plant, were taken as positive control. In the co-culture system, toxic effects were observed after exposure to extracts of Pistacia palestina and C. droserifolia. These two extracts significantly reduced by cell viability as measured the MTT test and the LDH assay. Whereas in hepatocyte cultures, only extracts of C. droserifolia were found to affect the cell viability. The production levels of albumin from hepatocytes were not affected by treatment with plant extracts in both culture systems. It seems that the observed reduction in cell viability after exposure to extracts of P. palestina in co-cultures but not in monocultures is a result of monocyte-derived factors. The use of liver cell co-cultures is therefore a useful approach to investigate the influence of intercellular communication on xenobiotic metabolism in liver.

  13. Hepatocyte growth factor profile with breast cancer

    Directory of Open Access Journals (Sweden)

    Hoda A EL-Attar

    2011-01-01

    Full Text Available Background: The multifunctional hepatocyte growth factor (HGF is the ligand of c-Met receptor; it plays important role in mammary differentiation. HGF-Met signaling is a critical downstream function of c-Src-Stat3 pathway in mammalian tumorigenesis. Aim: Evaluation of tissue c-Met receptor hepatocyte growth factor receptor (HGFR and serum level of HGF in female breast ductal carcinoma. Materials and Methods: Sixty-eight premenopausal females were divided as 30 control females subdivided into: [Group 1] 15 healthy volunteer females and [Group 2] five with fibrocystic disease and 10 having fibroadenoma of the breast and patients group [Group 3] consisted of 38 female patients with breast ductal carcinoma. Thorough clinical examination, preoperative fine needle aspiration cytology, estimation of fasting serum glucose, urea, creatinine, and uric acid levels, alanine aminotransferase activities, C-reactive protein, HGF level, before surgery and histopathological examination of the breast masses, and immunohistochemical detection of HGFR were done. Results and Conclusions: Significant increase in serum HGF levels were found in patients with breast cancer as compared with controls. Significant increase was also seen in patients with breast cancer with and without lymph node metastasis when each subgroup was compared with controls. Serum level of HGF is an independent prognostic indicator of breast cancer. Fibrocystic disease of the breast showed weak HGFR expression, while in normal tissue, HGFR was scanty; meanwhile, breast invasive ductal carcinoma showed homogenous strong reaction to HGFR. HGF is only one of a number of key factors involved in breast cancer and preoperative high serum HGF levels and malignancy occur usually together.

  14. Purification and fluorescent labeling of the human serotonin transporter

    DEFF Research Database (Denmark)

    Rasmussen, Søren G F; Gether, Ulrik

    2005-01-01

    To establish a purification procedure for the human serotonin transporter (hSERT) we expressed in Sf9 insect cells an epitope-tagged version of the transporter containing a FLAG epitope at the N-terminus and a polyhistidine tail at the C-terminus (FLAG-hSERT-12H). For purification, the transporter...

  15. The flagellar protein FLAG1/SMP1 is a candidate for Leishmania-sand fly interaction.

    Science.gov (United States)

    Di-Blasi, Tatiana; Lobo, Amanda R; Nascimento, Luanda M; Córdova-Rojas, Jose L; Pestana, Karen; Marín-Villa, Marcel; Tempone, Antonio J; Telleria, Erich L; Ramalho-Ortigão, Marcelo; McMahon-Pratt, Diane; Traub-Csekö, Yara M

    2015-03-01

    Leishmaniasis is a serious problem that affects mostly poor countries. Various species of Leishmania are the agents of the disease, which take different clinical manifestations. The parasite is transmitted by sandflies, predominantly from the Phlebotomus genus in the Old World and Lutzomyia in the New World. During development in the gut, Leishmania must survive various challenges, which include avoiding being expelled with blood remnants after digestion. It is believed that attachment to the gut epithelium is a necessary step for vector infection, and molecules from parasites and sand flies have been implicated in this attachment. In previous work, monoclonal antibodies were produced against Leishmania. Among these an antibody was obtained against Leishmania braziliensis flagella, which blocked the attachment of Leishmania panamensis flagella to Phlebotomus papatasi guts. The protein recognized by this antibody was identified and named FLAG1, and the complete FLAG1 gene sequence was obtained. This protein was later independently identified as a small, myristoylated protein and called SMP1, so from now on it will be denominated FLAG1/SMP1. The FLAG1/SMP1 gene is expressed in all developmental stages of the parasite, but has higher expression in promastigotes. The anti-FLAG1/SMP1 antibody recognized the flagellum of all Leishmania species tested and generated the expected band by western blots. This antibody was used in attachment and infection blocking experiments. Using the New World vector Lutzomyia longipalpis and Leishmania infantum chagasi, no inhibition of attachment ex vivo or infection in vivo was seen. On the other hand, when the Old World vectors P. papatasi and Leishmania major were used, a significant decrease of both attachment and infection were seen in the presence of the antibody. We propose that FLAG1/SMP1 is involved in the attachment/infection of Leishmania in the strict vector P. papatasi and not the permissive vector L. longipalpis.

  16. Knockdown of autophagy enhances innate immune response in hepatitis C virus infected hepatocytes

    Science.gov (United States)

    Shrivastava, Shubham; Raychoudhuri, Amit; Steele, Robert; Ray, Ranjit; Ray, Ratna B.

    2010-01-01

    The role of autophagy in disease pathogenesis following viral infection is beginning to be elucidated. We have previously reported that hepatitis C virus (HCV) infection in hepatocytes induces autophagy. However, the biological significance of HCV induced autophagy has not been clarified. Autophagy has recently been identified as a novel component of innate immune system against viral infection. In the present study, we have shown that knockdown of autophagy related protein Beclin1 or ATG7 in immortalized human hepatocytes (IHH) inhibited HCV growth. Beclin1 or ATG7 knockdown IHH when infected with HCV exhibited an increased expression of IFN-β, OAS-1, IFN-α and IFI27 mRNAs of the interferon signaling pathways as compared to infection of control IHH. Subsequent study demonstrated that HCV infection in autophagy impaired IHH displayed caspase activation, PARP cleavage and apoptotic cell death. Conclusion The disruption of autophagy machinery in HCV infected hepatocytes activated IFN signaling pathway, and induced apoptosis. Together, these results suggest that HCV induced autophagy impairs innate immune response. PMID:21274862

  17. Exosome RNA Released by Hepatocytes Regulates Innate Immune Responses to Hepatitis B Virus Infection

    Directory of Open Access Journals (Sweden)

    Takahisa Kouwaki

    2016-08-01

    Full Text Available The innate immune system is essential for controlling viral infection. Hepatitis B virus (HBV persistently infects human hepatocytes and causes hepatocellular carcinoma. However, the innate immune response to HBV infection in vivo remains unclear. Using a tree shrew animal model, we showed that HBV infection induced hepatic interferon (IFN-γ expression during early infection. Our in vitro study demonstrated that hepatic NK cells produced IFN-γ in response to HBV only in the presence of hepatic F4/80+ cells. Moreover, extracellular vesicles released from HBV-infected hepatocytes contained viral nucleic acids and induced NKG2D ligand expression in macrophages by stimulating MyD88, TICAM-1, and MAVS-dependent pathways. In addition, depletion of exosomes from extracellular vesicles markedly reduced NKG2D ligand expression, suggesting the importance of exosomes for NK cell activation. In contrast, infection of hepatocytes with HBV increased immunoregulatory microRNA levels in extracellular vesicles and exosomes, which were transferred to macrophages, thereby suppressing IL-12p35 mRNA expression in macrophages to counteract the host innate immune response. IFN-γ increased the hepatic expression of DDX60 and augmented the DDX60-dependent degradation of cytoplasmic HBV RNA. Our results elucidated the crucial role of exosomes in antiviral innate immune response against HBV.

  18. Cholesterol crystallization within hepatocyte lipid droplets and its role in murine NASH.

    Science.gov (United States)

    Ioannou, George N; Subramanian, Savitha; Chait, Alan; Haigh, W Geoffrey; Yeh, Matthew M; Farrell, Geoffrey C; Lee, Sum P; Savard, Christopher

    2017-06-01

    We recently reported that cholesterol crystals form in hepatocyte lipid droplets (LDs) in human and experimental nonalcoholic steatohepatitis. Herein, we assigned WT C57BL/6J mice to a high-fat (15%) diet for 6 months, supplemented with 0%, 0.25%, 0.5%, 0.75%, or 1% dietary cholesterol. Increasing dietary cholesterol led to cholesterol loading of the liver, but not of adipose tissue, resulting in fibrosing steatohepatitis at a dietary cholesterol concentration of ≥0.5%, whereas mice on lower-cholesterol diets developed only simple steatosis. Hepatic cholesterol crystals and crown-like structures also developed at a dietary cholesterol concentration ≥0.5%. Crown-like structures consisted of activated Kupffer cells (KCs) staining positive for NLRP3 and activated caspase 1, which surrounded and processed cholesterol crystal-containing remnant LDs of dead hepatocytes. The KCs processed LDs at the center of crown-like structures in the extracellular space by lysosomal enzymes, ultimately transforming into lipid-laden foam cells. When HepG2 cells were exposed to LDL cholesterol, they developed cholesterol crystals in LD membranes, which caused activation of THP1 cells (macrophages) grown in coculture; upregulation of TNF-alpha , NLRP3, and interleukin 1beta ( IL1β ) mRNA; and secretion of IL-1beta. In conclusion, cholesterol crystals form on the LD membrane of hepatocytes and cause activation and cholesterol loading of KCs that surround and process these LDs by lysosomal enzymes.

  19. CNNs flag recognition preprocessing scheme based on gray scale stretching and local binary pattern

    Science.gov (United States)

    Gong, Qian; Qu, Zhiyi; Hao, Kun

    2017-07-01

    Flag is a rather special recognition target in image recognition because of its non-rigid features with the location, scale and rotation characteristics. The location change can be handled well by the depth learning algorithm Convolutional Neural Networks (CNNs), but the scale and rotation changes are quite a challenge for CNNs. Since it has good rotation and gray scale invariance, the local binary pattern (LBP) is combined with grayscale stretching and CNNs to make LBP and grayscale stretching as CNNs pretreatment, which can not only significantly improve the efficiency of flag recognition, but can also evaluate the recognition effect through ROC, accuracy, MSE and quality factor.

  20. A Preliminary Assessment of the SURF Reactive Burn Model Implementation in FLAG

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, Carl Edward [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); McCombe, Ryan Patrick [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Carver, Kyle [United States Air Force, Washington, DC (United States)

    2017-09-18

    Properly validated and calibrated reactive burn models (RBM) can be useful engineering tools for assessing high explosive performance and safety. Experiments with high explosives are expensive. Inexpensive RBM calculations are increasingly relied on for predictive analysis for performance and safety. This report discusses the validation of Menikoff and Shaw’s SURF reactive burn model, which has recently been implemented in the FLAG code. The LANL Gapstick experiment is discussed as is its’ utility in reactive burn model validation. Data obtained from pRad for the LT-63 series is also presented along with FLAG simulations using SURF for both PBX 9501 and PBX 9502. Calibration parameters for both explosives are presented.

  1. Frobenius splitting of thick flag manifolds of Kac-Moody algebras

    OpenAIRE

    Kato, Syu

    2017-01-01

    We explain that the Pl\\"ucker relations provide the defining equations of the thick flag manifold associated to a Kac-Moody algebra. This naturally transplant the result of Kumar-Mathieu-Schwede about the Frobenius splitting of thin flag manifolds to the thick case. As a consequence, we provide a description of the global sections of line bundles of a thick Schubert variety as conjectured in Kashiwara-Shimozono [Duke Math. J. 148 (2009)]. This also yields the existence of a compatible basis o...

  2. Flag-dipole and flagpole spinor fluid flows in Kerr spacetimes

    Energy Technology Data Exchange (ETDEWEB)

    Rocha, Roldão da, E-mail: roldao.rocha@ufabc.edu.br [Universidade Federal do ABC, CMCC (Brazil); Cavalcanti, R. T., E-mail: rogerio.cavalcanti@ufabc.edu.br [Universidade Federal do ABC, CCNH (Brazil)

    2017-03-15

    Flagpole and flag-dipole spinors are particular classes of spinor fields that has been recently used in different branches of theoretical physics. In this paper, we study the possibility and consequences of these spinor fields to induce an underlying fluid flow structure in the background of Kerr spacetimes. We show that flag-dipole spinor fields are solutions of the equations of motion in this context. To our knowledge, this is the second time that this class of spinor field appears as a physical solution, the first one occurring as a solution of the Dirac equation in ESK gravities.

  3. Red flags to screen for malignancy and fracture in patients with low back pain: systematic review

    DEFF Research Database (Denmark)

    Downie, A.; Williams, C.M.; Henschke, N.

    2013-01-01

    Objective: To review the evidence on diagnostic accuracy of red flag signs and symptoms to screen for fracture or malignancy in patients presenting with low back pain to primary, secondary, or tertiary care. Design: Systematic review. Data sources: Medline, OldMedline, Embase, and CINAHL from......-test probability for detection of spinal malignancy was history of malignancy (33%, 22% to 46%). Conclusions: While several red flags are endorsed in guidelines to screen for fracture or malignancy, only a small subset of these have evidence that they are indeed informative. These findings suggest a need...

  4. RNA synthesis in primary cultures of adult rat hepatocytes

    International Nuclear Information System (INIS)

    Fugassa, E.; Gallo, G.; Voci, A.; Cordone, A.

    1983-01-01

    The ability of hepatocyte monolayers to synthesize RNA was investigated by measuring [3H]orotic acid incorporation into RNA and the total nuclear RNA polymerase activity as a function of the time in culture. The results demonstrate that primary cultures of hepatocytes maintained in a chemically defined serum- and hormone-free medium are able to synthesize RNA actively. This ability increases within the first 2 d of culture, despite the concomitant decrease in [3H]orotic acid uptake, and decreases only after 3 d. Factors such as serum, insulin, and dexamethasone, known to improve maintenance of functional hepatocytes, markedly stimulate the uptake of labeled precursor without apparently affecting the rate of RNA synthesis by cultured cells. It is suggested that the culture of adult rat hepatocytes provides a useful experimental model for the studies of hormonal regulation of transcription in liver

  5. 50 CFR 216.46 - U.S. citizens on foreign flag vessels operating under the International Dolphin Conservation...

    Science.gov (United States)

    2010-10-01

    ... 50 Wildlife and Fisheries 7 2010-10-01 2010-10-01 false U.S. citizens on foreign flag vessels operating under the International Dolphin Conservation Program. 216.46 Section 216.46 Wildlife and Fisheries....46 U.S. citizens on foreign flag vessels operating under the International Dolphin Conservation...

  6. 48 CFR 47.403-1 - Availability and unavailability of U.S.-flag air carrier service.

    Science.gov (United States)

    2010-10-01

    ... farthest interchange point on a usually traveled route. (2) When an origin or interchange point is not... interchange point on a usually traveled route to connect with U.S.-flag air carrier service. (3) When a U.S... travel by a foreign-flag air carrier. (e) For travel between two points outside the United States, the...

  7. Metabolism of para-aminophenol by rat hepatocytes.

    Science.gov (United States)

    Yan, Z; Nikelly, J G; Killmer, L; Tarloff, J B

    2000-08-01

    Autoxidation of para-aminophenol (PAP) has been proposed to account for the selective nephrotoxicity of this compound. However, other studies suggest that hepatic metabolites of PAP rather than the parent compound may be responsible for renal damage. These studies were designed to investigate PAP metabolism in isolated hepatocytes. We synthesized several proposed metabolites for analysis by HPLC/mass spectrometry and compared those results with HPLC/mass spectrometric analyses of metabolites found after incubating hepatocytes with PAP. Hepatocytes prepared from male Sprague-Dawley rats were incubated in Krebs-Henseleit buffer at 37 degrees C for 5 h with 2.3 mM PAP under an atmosphere of 5% CO2/95% O2. Aliquots were withdrawn at 0.1 h of incubation and then hourly through 5 h of incubation. Reactions were terminated by the addition of acetonitrile. Hepatocyte viability was unaltered with PAP present in the incubation medium. We found that hepatocytes converted PAP to two major metabolites (PAP-GSH conjugates and PAP-N-acetylcysteine conjugates) and several minor metabolites [PAP-O-glucuronide, acetaminophen (APAP), APAP-O-glucuronide, APAP-GSH conjugates, and 4-hydroxyformanilide]. Preincubating hepatoyctes with 1-aminobenzotriazole, an inhibitor of cytochromes P450, did not alter the pattern of PAP metabolism. In conclusion, we found that PAP was metabolized in hepatocytes predominantly to PAP-GSH conjugates and PAP-N-acetylcysteine conjugates in sufficient quantities to account for the nephrotoxicity of PAP.

  8. Functional assessment of hepatocytes after transplantation into rat spleen

    International Nuclear Information System (INIS)

    Woods, R.J.; Fuller, B.J.; Attenburrow, V.D.; Nutt, L.H.; Hobbs, K.E.

    1982-01-01

    The retention of structural integrity and metabolic function by isolated hepatocytes after ectopic transplantation has been investigated in autografted rats. Rats were partially hepatectomized and isolated hepatocytes prepared from the excised liver lobes were implanted into their spleens. Histological examination of the spleens 7 or more weeks after implantation revealed aggregates of hepatocytes in the red pulp. Two tests of biochemical function were applied to the hepatocytes after transplantation. In the first the hepatobiliary imaging agent technetium-99m N-[N'-(2, 6-dimethylphenyl)carbamoylmethyl]iminodiacetic acid (99mTc HIDA), which was shown to be avidly taken up by isolated hepatocytes in vitro, was infused into the tail veins of autograft and control rats. Radioactivity accumulating in the spleens of autografted rats was markedly greater than that in controls implanted with lethally damaged cells or in nontransplanted rats. In the second the presence of bilirubin metabolites was sought in autograft spleens after intravenous infusion of bilirubin. Both mono- and diglucuronides of bilirubin were recovered from the spleens of autograft rats but no conjugates were recovered from the spleens of unoperated controls. We conclude that after autotransplantation isolated hepatocytes retain their morphology and at least some of their functional activities

  9. alpha-Amanitin induced apoptosis in primary cultured dog hepatocytes.

    Directory of Open Access Journals (Sweden)

    Adam Szelag

    2010-06-01

    Full Text Available Amatoxin poisoning is caused by mushroom species belonging to the genera Amanita, Galerina and Lepiota with the majority of lethal mushroom exposures attributable to Amanita phalloides. High mortality rate in intoxications with these mushrooms is principally a result of the acute liver failure following significant hepatocyte damage due to hepatocellular uptake of amatoxins. A wide variety of amatoxins have been isolated; however, alpha-amanitin (alpha-AMA appears to be the primary toxin. Studies in vitro and in vivo suggest that alpha-AMA does not only cause hepatocyte necrosis, but also may lead to apoptotic cell death. The objective of this study was to evaluate the complex hepatocyte apoptosis in alpha-AMA cytotoxicity. All experiments were performed on primary cultured canine hepatocytes. The cells were incubated for 12 h with alpha-AMA at a final concentration of 1, 5, 10 and 20 microM. Viability test (MTT assay, apoptosis evaluation (TUNEL reaction, detection of DNA laddering and electron microscopy were performed at 6 and 12 h of exposure to alpha-AMA. There was a clear correlation between hepatocyte viability, concentration of alpha-AMA and time of exposure to this toxin. The decline in cultured dog hepatocyte viability during the exposure to alpha-AMA is most likely preceded by enhanced cellular apoptosis. Our results demonstrate that apoptosis might contribute to pathogenesis of the severe liver injury in the course of amanitin intoxication, particularly during the early phase of poisoning.

  10. China Report, Red Flag, Number 8, 16 April 1986.

    Science.gov (United States)

    1986-06-02

    principles of Marxism and to the destiny of our socialist litera- ture and art. Over the past few years, Comrade Liu Zaifu has published a series of theses...teristics of this figure are the ideological embryo of the modern theory of human nature and humanism, and the contradiction between his democratic

  11. JPRS Report, China Red Flag No 17, 1 September 1987

    Science.gov (United States)

    1987-12-17

    but maintained its atmosphere, while expanding the space in describing the morality and ethics , or the psychology of love of soldiers in the course...led astray by the "universal love" in humanism or the so-called "rational egoism " in humanism. This explains that only Marxist philosophy on man is

  12. Hepatocyte growth factor in renal failure: promise and reality.

    Science.gov (United States)

    Vargas, G A; Hoeflich, A; Jehle, P M

    2000-04-01

    Can science discover some secrets of Greek mythology? In the case of Prometheus, we can now suppose that his amazing hepatic regeneration was caused by a peptide growth factor called hepatocyte growth factor (HGF). Increasing evidence indicates that HGF acts as a multifunctional cytokine on different cell types. This review addresses the molecular mechanisms that are responsible for the pleiotropic effects of HGF. HGF binds with high affinity to its specific tyrosine kinase receptor c-met, thereby stimulating not only cell proliferation and differentiation, but also cell migration and tumorigenesis. The three fundamental principles of medicine-prevention, diagnosis, and therapy-may be benefited by the rational use of HGF. In renal tubular cells, HGF induces mitogenic and morphogenetic responses. In animal models of toxic or ischemic acute renal failure, HGF acts in a renotropic and nephroprotective manner. HGF expression is rapidly up-regulated in the remnant kidney of nephrectomized rats, inducing compensatory growth. In a mouse model of chronic renal disease, HGF inhibits the progression of tubulointerstitial fibrosis and kidney dysfunction. Increased HGF mRNA transcripts were detected in mesenchymal and tubular epithelial cells of rejecting kidney. In transplanted patients, elevated HGF levels may indicate renal rejection. When HGF is considered as a therapeutic agent in human medicine, for example, to stimulate kidney regeneration after acute injury, strategies need to be developed to stimulate cell regeneration and differentiation without an induction of tumorigenesis.

  13. Hepatocyte spheroids as a competent in vitro system for drug biotransformation studies: nevirapine as a bioactivation case study.

    Science.gov (United States)

    Pinheiro, Pedro F; Pereira, Sofia A; Harjivan, Shrika G; Martins, Inês L; Marinho, Aline T; Cipriano, Madalena; Jacob, Cristina C; Oliveira, Nuno G; Castro, Matilde F; Marques, M Matilde; Antunes, Alexandra M M; Miranda, Joana P

    2017-03-01

    The development of metabolically competent in vitro models is of utmost importance for predicting adverse drug reactions, thereby preventing attrition-related economical and clinical burdens. Using the antiretroviral drug nevirapine (NVP) as a model, this work aimed to validate rat hepatocyte 3D spheroid cultures as competent in vitro systems to assess drug metabolism and bioactivation. Hepatocyte spheroids were cultured for 12 days in a stirred tank system (3D cultures) and exposed to equimolar dosages of NVP and its two major Phase I metabolites, 12-OH-NVP and 2-OH-NVP. Phase I NVP metabolites were detected in the 3D cultures during the whole culture time in the same relative proportions reported in in vivo studies. Moreover, the modulation of SULT1A1 activity by NVP and 2-OH-NVP was observed for the first time, pointing their synergistic effect as a key factor in the formation of the toxic metabolite (12-sulfoxy-NVP). Covalent adducts formed by reactive NVP metabolites with N-acetyl-L-cysteine and bovine serum albumin were also detected by high-resolution mass spectrometry, providing new evidence on the relative role of the reactive NVP metabolites, 12-sulfoxy-NVP, and NVP quinone methide, in toxicity versus excretion pathways. In conclusion, these results demonstrate the validity of the 3D culture system to evaluate drug bioactivation, enabling the identification of potential biomarkers of bioactivation/toxicity, and providing new evidence to the mechanisms underlying NVP-induced toxic events. This model, integrated with the analytical strategies described herein, is of anticipated usefulness to the pharmaceutical industry, as an upstream methodology for flagging drug safety alerts in early stages of drug development.

  14. Comparison of Species and Cell-Type Differences in Fraction Unbound of Liver Tissues, Hepatocytes, and Cell Lines.

    Science.gov (United States)

    Riccardi, Keith; Ryu, Sangwoo; Lin, Jian; Yates, Phillip; Tess, David; Li, Rui; Singh, Dhirender; Holder, Brian R; Kapinos, Brendon; Chang, George; Di, Li

    2018-04-01

    Fraction unbound ( f u ) of liver tissue, hepatocytes, and other cell types is an essential parameter used to estimate unbound liver drug concentration and intracellular free drug concentration. f u,liver and f u,cell are frequently measured in multiple species and cell types in drug discovery and development for various applications. A comparison study of 12 matrices for f u,liver and f u,cell of hepatocytes in five different species (mouse, rat, dog, monkey, and human), as well as f u,cell of Huh7 and human embryonic kidney 293 cell lines, was conducted for 22 structurally diverse compounds with the equilibrium dialysis method. Using an average bioequivalence approach, our results show that the average difference in binding to liver tissue, hepatocytes, or different cell types was within 2-fold of that of the rat f u,liver Therefore, we recommend using rat f u,liver as a surrogate for liver binding in other species and cell types in drug discovery. This strategy offers the potential to simplify binding studies and reduce cost, thereby enabling a more effective and practical determination of f u for liver tissues, hepatocytes, and other cell types. In addition, f u under hepatocyte stability incubation conditions should not be confused with f u,cell , as one is a diluted f u and the other is an undiluted f u Cell density also plays a critical role in the accurate measurement of f u,cell . Copyright © 2018 by The American Society for Pharmacology and Experimental Therapeutics.

  15. 75 FR 13645 - Inventory of U.S.-Flag Launch Barges

    Science.gov (United States)

    2010-03-22

    ... Qualified Launch Barges, the Interim Final Rule requires that the Maritime Administration publish a notice... DEPARTMENT OF TRANSPORTATION Maritime Administration [Docket No. MARAD-2010 0023] Inventory of U.S.-Flag Launch Barges AGENCY: Maritime Administration, Department of Transportation. ACTION: Inventory of...

  16. 76 FR 20080 - Inventory of U.S.-Flag Launch Barges

    Science.gov (United States)

    2011-04-11

    ... Administration publish a notice in the Federal Register requesting that owners or operators (or potential owners... DEPARTMENT OF TRANSPORTATION Maritime Administration [Docket Number MARAD 2011 0030] Inventory of U.S.-Flag Launch Barges AGENCY: Maritime Administration, Department of Transportation. ACTION...

  17. Red flags to screen for malignancy and fracture in patients with low back pain : systematic review

    NARCIS (Netherlands)

    Downie, Aron; Williams, Christopher M.; Henschke, Nicholas; Hancock, Mark J.; Ostelo, Raymond W J G; de Vet, Henrica C W; Macaskill, Petra; Irwig, Les; van Tulder, Maurits W; Koes, Bart W; Maher, Christopher G.

    2013-01-01

    OBJECTIVE: To review the evidence on diagnostic accuracy of red flag signs and symptoms to screen for fracture or malignancy in patients presenting with low back pain to primary, secondary, or tertiary care. DESIGN: Systematic review. DATA SOURCES: Medline, OldMedline, Embase, and CINAHL from

  18. 38 CFR 1.9 - Description, use, and display of VA seal and flag.

    Science.gov (United States)

    2010-07-01

    ... stars represent the five branches of military service. The crossed flags represent our nation's history... employees. (D) Official VA signs. (E) Official publications or graphics issued by and attributed to VA, or...) Souvenir or novelty items. (iii) Toys or commercial gifts or premiums. (iv) Letterhead design, except on...

  19. The Full Kostant-Toda Hierarchy on the Positive Flag Variety

    Science.gov (United States)

    Kodama, Yuji; Williams, Lauren

    2015-04-01

    We study some geometric and combinatorial aspects of the solution to the full Kostant-Toda (f-KT) hierarchy, when the initial data is given by an arbitrary point on the totally non-negative (tnn) flag variety of . The f-KT flows on the tnn flag variety are complete, and we show that their asymptotics are completely determined by the cell decomposition of the tnn flag variety given by Rietsch (Total positivity and real flag varieties. Ph.D. Thesis, Massachusetts Institute of Technology, Cambridge, 1998). Our results represent the first results on the asymptotics of the f-KT hierarchy (and even the f-KT lattice); moreover, our results are not confined to the generic flow, but cover non-generic flows as well. We define the f-KT flow on the weight space via the moment map, and show that the closure of each f-KT flow forms an interesting convex polytope which we call a Bruhat interval polytope. In particular, the Bruhat interval polytope for the generic flow is the permutohedron of the symmetric group . We also prove analogous results for the full symmetric Toda hierarchy, by mapping our f-KT solutions to those of the full symmetric Toda hierarchy. In the appendix we show that Bruhat interval polytopes are generalized permutohedra, in the sense of Postnikov (Int. Math. Res. Not. IMRN (6):1026-1106, 2009).

  20. Red flags in detecting credit cooperative fraud: the perceptions of internal auditors

    Directory of Open Access Journals (Sweden)

    Cristian Baú Dal Magro

    2017-07-01

    Full Text Available Purpose – Red flags are mechanisms that can be used by internal auditors for early detection of possible fraud. In this context, the aim of this study was to identify the relevance credit unions’ internal auditors attribute to red flags in assessing fraud risk. Design/methodology/approach – This article is characterized as descriptive concerning its goals, as a survey as to is procedures, and as quantitative in reference to its approach to the problem. The sample onsists of 51 internal auditors working in Credit Union Centers in southern Brazil. Findings – Results indicate that, in the assessment of fraud risk, internal auditors attribute greater importance to red flags referring to operational activities and internal control procedures. In addition, it is suggested that internal auditors are not impartial concerning their perception of relevance of most of the warning signs of the possibility of fraud. Originality/value – The findings contribute by demonstrating to internal auditors the need for greater attention to the use of red flags as auditing tools.

  1. Constructing and Validating the Foreign Language Attitudes and Goals Survey (FLAGS)

    Science.gov (United States)

    Cid, Eva; Granena, Gisela; Tragant, Elsa

    2009-01-01

    The present study describes the process that was followed in the construction and validation of the foreign language attitudes and goals survey (FLAGS), a new questionnaire based on qualitative data from Tragant and Munoz [Tragant, Munoz, C., 2000. "La motivacion y su relacion con la edad en un contexto escolar de aprendizaje de una lengua…

  2. Psychometric Analysis of the Systematic Observation of Red Flags for Autism Spectrum Disorder in Toddlers

    Science.gov (United States)

    Dow, Deanna; Guthrie, Whitney; Stronach, Sheri T.; Wetherby, Amy M.

    2017-01-01

    The purpose of this study was to examine the utility of the Systematic Observation of Red Flags as an observational level-two screening measure to detect risk for autism spectrum disorder in toddlers when used with a video-recorded administration of the Communication and Symbolic Behavior Scales. Psychometric properties of the Systematic…

  3. An unusual case of seed dispersal in an invasive aquatic; yellow flag iris (Iris pseudacorus)

    Science.gov (United States)

    Understanding reproductive mode of invasive plants can help managers plan more efficacious control. Invasive aquatics typically reproduce primarily through vegetative means. Yellow flag iris is an invasive plant species often growing as an emergent aquatic. There have been contradictory reports of i...

  4. Hepatocyte DACH1 Is Increased in Obesity via Nuclear Exclusion of HDAC4 and Promotes Hepatic Insulin Resistance

    Directory of Open Access Journals (Sweden)

    Lale Ozcan

    2016-06-01

    Full Text Available Defective insulin signaling in hepatocytes is a key factor in type 2 diabetes. In obesity, activation of calcium/calmodulin-dependent protein kinase II (CaMKII in hepatocytes suppresses ATF6, which triggers a PERK-ATF4-TRB3 pathway that disrupts insulin signaling. Elucidating how CaMKII suppresses ATF6 is therefore essential to understanding this insulin resistance pathway. We show that CaMKII phosphorylates and blocks nuclear translocation of histone deacetylase 4 (HDAC4. As a result, HDAC4-mediated SUMOylation of the corepressor DACH1 is decreased, which protects DACH1 from proteasomal degradation. DACH1, together with nuclear receptor corepressor (NCOR, represses Atf6 transcription, leading to activation of the PERK-TRB3 pathway and defective insulin signaling. DACH1 is increased in the livers of obese mice and humans, and treatment of obese mice with liver-targeted constitutively nuclear HDAC4 or DACH1 small hairpin RNA (shRNA increases ATF6, improves hepatocyte insulin signaling, and protects against hyperglycemia and hyperinsulinemia. Thus, DACH1-mediated corepression in hepatocytes emerges as an important link between obesity and insulin resistance.

  5. Liver tissue engineering based on aggregate assembly: efficient formation of endothelialized rat hepatocyte aggregates and their immobilization with biodegradable fibres

    International Nuclear Information System (INIS)

    Pang, Y; Shinohara, M; Komori, K; Sakai, Y; Montagne, K

    2012-01-01

    To realize long-term in vitro culture of hepatocytes at a high density while maintaining a high hepatic function for aggregate-based liver tissue engineering, we report here a novel culture method whereby endothelialized rat hepatocyte aggregates were formed using a PDMS microwell device and cultured in a perfusion bioreactor by introducing spacers between aggregates to improve oxygen and nutrient supply. Primary rat hepatocyte aggregates around 100 µm in diameter coated with human umbilical vein endothelial cells were spontaneously and quickly formed after 12 h of incubation, thanks to the continuous supply of oxygen by diffusion through the PDMS honeycomb microwell device. Then, the recovered endothelialized rat hepatocyte aggregates were mixed with biodegradable poly-l-lactic acid fibres in suspension and packed into a PDMS-based bioreactor. Perfusion culture of 7 days was successfully achieved with more than 73.8% cells retained in the bioreactor. As expected, the fibres acted as spacers between aggregates, which was evidenced from the enhanced albumin production and more spherical morphology compared with fibre-free packing. In summary, this study shows the advantages of using PDMS-based microwells to form heterotypic aggregates and also demonstrates the feasibility of spacing tissue elements for improving oxygen and nutrient supply to tissue engineering based on modular assembly. (paper)

  6. Force spectroscopy of hepatocytic extracellular matrix components

    Energy Technology Data Exchange (ETDEWEB)

    Yongsunthon, R., E-mail: YongsuntR@Corning.com [Corning Incorporated, SP-FR-01, R1S32D, Corning, NY 14831 (United States); Baker, W.A.; Bryhan, M.D.; Baker, D.E.; Chang, T.; Petzold, O.N.; Walczak, W.J.; Liu, J.; Faris, R.A.; Senaratne, W.; Seeley, L.A.; Youngman, R.E. [Corning Incorporated, SP-FR-01, R1S32D, Corning, NY 14831 (United States)

    2009-07-15

    We present atomic force microscopy and force spectroscopy data of live hepatocytes (HEPG2/C3A liver cell line) grown in Eagle's Minimum Essential Medium, a complex solution of salts and amino acids commonly used for cell culture. Contact-mode imaging and force spectroscopy of this system allowed correlation of cell morphology and extracellular matrix (ECM) properties with substrate properties. Force spectroscopy analysis of cellular 'footprints' indicated that the cells secrete large polymers (e.g., 3.5 {mu}m contour length and estimated MW 1000 kDa) onto their substrate surface. Although definitive identification of the polymers has not yet been achieved, fluorescent-labeled antibody staining has specified the presence of ECM proteins such as collagen and laminin in the cellular footprints. The stretched polymers appear to be much larger than single molecules of known ECM components, such as collagen and heparan sulfate proteoglycan, thus suggesting that the cells create larger entangled, macromolecular structures from smaller components. There is strong evidence which suggests that the composition of the ECM is greatly influenced by the hydrophobicity of the substrate surface, with preferential production and/or adsorption of larger macromolecules on hydrophobic surfaces.

  7. Low back pain and physiotherapy use of red flags: the evidence from Scotland.

    Science.gov (United States)

    Ferguson, Fraser; Holdsworth, Lesley; Rafferty, Danny

    2010-12-01

    Red flags are recognised as indicators of possible serious spinal pathology, and their use is indicated by numerous guidelines. Similar to other countries worldwide, Scotland lacked a national view about the overall quality of the physiotherapy management of low back pain and the use of red flags. Anecdotal evidence suggested that practice varied considerably. To improve the use and documentation of red flags by physiotherapists during the assessment and management of low back pain. Prospective, multicentred, national data collection and improvement initiative. National Health Service (NHS) health boards in Scotland (n=14) plus two private provider sites. One hundred and eighty-six individual NHS provider sites and two private provider sites, with in excess of 360 physiotherapists providing services to low back pain patients. Measurement of documented practice in line with evidence- and consensus-based recommendations from guidelines collected via a web-based tool over two 5-week audit cycles interspersed with an improvement phase over 1 year (2008-2009). Data from 2147 patients showed improvement in the documentation of all red flags assessed from 33% (n=709) to 65% (n=1396), and improvement in the documentation of cauda equina syndrome from 60% (n=1288) to 84% (n=1804) over the two cycles. Only two regions provided evidence of 100% documentation of all components of cauda equina syndrome, with wide variation across the country. This national initiative resulted in considerable improvement in the documentation of red flags. Despite this, however, one in five patients did not receive optimal management as recommended by guidance. This has significant implications for patient safety and highlights the need for ongoing education of physiotherapists in this area. Copyright © 2010 Chartered Society of Physiotherapy. Published by Elsevier Ltd. All rights reserved.

  8. Potential synergy between the Ionospheric Disturbance Flag and NeQuick-G for single frequency users

    Science.gov (United States)

    Aragon-Angel, Angela; Fortuny, Joaquim

    2016-04-01

    The document describing the particular ionospheric model developed for the Galileo satellite navigation system has been very recently released, the official Ionospheric Correction Algorithm for Galileo Single Frequency Users document (from here on-wards named Galileo-Iono), available at www.gsc-europa.eu/system/files/galileo_documents/Galileo_Ionospheric_Model.pdf. This publication allows GNSS receiver manufacturers to start the implementation of the specific algorithm targeted for their Galileo related products in order to be compliant with the Galileo system. As indicated in the Galileo OS SIS ICD, among the parameters that are broadcast in the Galileo navigation message, parameters that are sent within both F/NAV and I/NAV, one can find five Ionospheric Disturbance Flags for Regions 1 to 5 (SF1, SF2, SF3, SF4 and SF5). Nevertheless, in the current version of the model presented in the Galileo-Iono document, the Ionospheric Disturbance flags are "not used" within the Galileo ionospheric correction calculation. In this work, a potential approach to account for this information is being investigated. This plan includes the update of the Galileo ionospheric, NeQuick-G, correction model by specifying the use of these flags. Hence a customized version of the NeQuick-G model has been developed and tested. Specific scenarios will be considered to test whether this approach of considering the added value information of the Ionospheric Disturbance Flags is translated into the positioning domain. In order to assess the improvement obtained using the proposed approach five stations displaced in the five regions are used. Different days of data have been collected in nominal and disturbed conditions; the evaluation is carried out comparing the performance of the proposed approach with respect to the classical approach. The benefits of the use of the disturbance flags information are evaluated comparing the performance in similar geometry conditions.

  9. Role of macrophages in the immune response to hepatocytes

    International Nuclear Information System (INIS)

    Bumgardner, G.L.; Chen, S.; Almond, S.P.; Ascher, N.L.; Payne, W.D.; Matas, A.J.

    1990-01-01

    The purpose of this study was to determine the role of host macrophages in the development of allospecific cytolytic T cells (allo-CTLs) in response to purified allogeneic MHC Class I+, Class II- hepatocytes in vivo in hepatocyte sponge matrix allografts (HC-SMA). Depletion of antigen-presenting cells (APCs) from responder splenocytes in mixed lymphocyte hepatocyte culture (MLHC) inhibits the development of allo-CTLs in response to purified hepatocytes. First the ability of sponge macrophages to function as accessory cells in indirect presentation of hepatocyte Class I antigen was tested in MLHC. We found that addition of irradiated sponge cells (a source of sponge macrophages) restored the development of allo-CTLs in MLHC depleted of responder APCs. Therefore, radioresistant sponge macrophages can function as accessory cells in MLHC. We next employed silica as an immunotherapy targeted against host macrophages and assessed the effect on development of allo-CTLs in HC-SMA. We found that local (intrasponge) silica treatment completely inhibited the development of allo-CTLs in HC-SMA. Combined local and systemic silica treatment resulted in inhibition of allocytotoxicity comparable to local silica treatment alone in the doses tested. We conclude that host macrophages which infiltrate HC-SMA can function as accessory cells in vitro in MLHC and that both infiltrating host macrophages and lymphocytes participate in the development of an alloimmune response to purified hepatocytes in vivo. This interaction may involve indirect antigen presentation of hepatocyte Class I antigen by macrophages to host lymphocytes which accumulate in HC-SMA

  10. Effects of edaravone, a radical scavenger, on hepatocyte transplantation.

    Science.gov (United States)

    Hayashi, Chihiro; Ito, Masahiro; Ito, Ryoutaro; Murakumo, Akiko; Yamamoto, Naoki; Hiramatsu, Noriko; Fox, Ira J; Horiguchi, Akihiko

    2014-12-01

    Hepatocyte transplantation (HTx) has yielded significant improvements in liver function and survival in experimentally induced acute liver failure and liver-based metabolic disease. However, transplantation is inefficient, and it is thought that transplanted hepatocytes have a shortened lifespan because of inflammation involving excess nitric oxide (NO). The present study aimed to clarify whether edaravone, a free radical scavenger used to treat ischemic stroke, could reduce ischemic changes in hepatocyte-transplanted livers. Edaravone (3 mg/kg) was administered intravenously 24 h before HTx to Nagase analbuminemic rats (NARs). Hepatocytes were isolated, and 30 × 10(6) cells were injected in a 1.0-ml volume directly into the spleens of NARs. All experimental groups studied received FK506 to control rejection. Animals in Group A received medium-only; Group B received HTx only; and Group C received HTx and edaravone. Forty-eight hours after transplantation, the hepatocytes from animals were isolated and analyzed for staining with propidium iodide- and annexin-V using flow cytometry. Liver sections were also studied by immunostaining for albumin, and TUNEL. Peripheral blood serum albumin levels were measured on post-transplant days 0, 3, 5, 7, 10 and 14 using ELISA. The edaravone-treated animals demonstrated an increased number of engrafted donor hepatocytes in the liver. The edaravone-treated liver sections also contained fewer TUNEL-positive cells and animals that received edaravone had higher serum albumin levels post-transplantation. Hepatocytes were also found to have increased in numbers 2 weeks following treatment with edaravone. Edaravone administration during HTx can suppress apoptosis near the transplanted cells, increasing engraftment. These studies indicate its potential usefulness for future clinical application. © 2014 Japanese Society of Hepato-Biliary-Pancreatic Surgery.

  11. Water and nonelectrolyte permeability of isolated rat hepatocytes

    International Nuclear Information System (INIS)

    Alpini, G.; Garrick, R.A.; Jones, M.J.; Nunes, R.; Tavoloni, N.

    1986-01-01

    We have measured the diffusive permeability coefficients of isolated rat hepatocytes to 3 H 2 O, [ 14 C]urea, [ 14 C]erythritol, [ 14 C]mannitol, [ 3 H]sucrose, and [ 3 H]inulin, employing a technique previously developed for erythrocytes (Redwood et al., J. Gen. Physiol 64:706-729, 1974). Diffusion coefficients for the tracer molecules were measured in packed hepatocytes, supernatant fluid, and intracellular medium (lysed hepatocytes) and were calculated assuming one-dimensional semi-infinite diffusion through a homogeneous medium. By applying the series-parallel pathway model, the following permeability coefficients (10(-5) cm/sec) for the hepatocyte plasma membrane were obtained. 3 H 2 O, 98.6 +/- 18.4; [ 14 C]urea, 18.2 +/- 5.3; [ 14 C]erythritol, 4.8 +/- 1.6; [ 14 C]mannitol, 3.1 +/- 1.4; [ 3 H]sucrose, 0; [ 3 H]inulin, 0. These results indicate that isolated rat hepatocytes are highly permeable to water and polar nonelectrolytes, when compared with other transporting epithelia. This relatively high cellular permeability is consistent with a model in which nonelectrolyte permeation is via an aqueous pathway of equivalent pore diameter of 8-12 A. The finding that [ 14 C]erythritol and [ 14 C]mannitol cross the hepatocyte plasma membrane indicates that these molecules enter the bile canaliculus through the transcellular route. Conversely, the failure of [ 3 H]sucrose and [ 3 H]inulin to permeate the hepatocyte in the isolated condition supports the concept that biliary entry of these large carbohydrates, at least that fraction which cannot be accounted for by a vesicular mechanism, must occur via the transjunctional shunt pathway

  12. Dose Response of Endotoxin on Hepatocyte and Muscle Mitochondrial Respiration In Vitro

    Science.gov (United States)

    Brandt, Sebastian; Porta, Francesca; Jakob, Stephan M.; Takala, Jukka; Djafarzadeh, Siamak

    2015-01-01

    Introduction. Results on mitochondrial dysfunction in sepsis are controversial. We aimed to assess effects of LPS at wide dose and time ranges on hepatocytes and isolated skeletal muscle mitochondria. Methods. Human hepatocellular carcinoma cells (HepG2) were exposed to placebo or LPS (0.1, 1, and 10 μg/mL) for 4, 8, 16, and 24 hours and primary human hepatocytes to 1 μg/mL LPS or placebo (4, 8, and 16 hours). Mitochondria from porcine skeletal muscle samples were exposed to increasing doses of LPS (0.1–100 μg/mg) for 2 and 4 hours. Respiration rates of intact and permeabilized cells and isolated mitochondria were measured by high-resolution respirometry. Results. In HepG2 cells, LPS reduced mitochondrial membrane potential and cellular ATP content but did not modify basal respiration. Stimulated complex II respiration was reduced time-dependently using 1 μg/mL LPS. In primary human hepatocytes, stimulated mitochondrial complex II respiration was reduced time-dependently using 1 μg/mL LPS. In isolated porcine skeletal muscle mitochondria, stimulated respiration decreased at high doses (50 and 100 μg/mL LPS). Conclusion. LPS reduced cellular ATP content of HepG2 cells, most likely as a result of the induced decrease in membrane potential. LPS decreased cellular and isolated mitochondrial respiration in a time-dependent, dose-dependent and complex-dependent manner. PMID:25649304

  13. Pertussis toxin, an inhibitor of G(αi PCR, inhibits bile acid- and cytokine-induced apoptosis in primary rat hepatocytes.

    Directory of Open Access Journals (Sweden)

    Golnar Karimian

    Full Text Available Excessive hepatocyte apoptosis is a common event in acute and chronic liver diseases leading to loss of functional liver tissue. Approaches to prevent apoptosis have therefore high potential for the treatment of liver disease. G-protein coupled receptors (GPCR play crucial roles in cell fate (proliferation, cell death and act through heterotrimeric G-proteins. G(αiPCRs have been shown to regulate lipoapoptosis in hepatocytes, but their role in inflammation- or bile acid-induced apoptosis is unknown. Here, we analyzed the effect of inhibiting G(αiPCR function, using pertussis toxin (PT, on bile acid- and cytokine-induced apoptosis in hepatocytes. Primary rat hepatocytes, HepG2-rNtcp cells (human hepatocellular carcinoma cells or H-4-II-E cells (rat hepatoma cells were exposed to glycochenodeoxycholic acid (GCDCA or tumor necrosis factor-α (TNFα/actinomycin D (ActD. PT (50-200 nmol/L was added 30 minutes prior to the apoptotic stimulus. Apoptosis (caspase-3 activity, acridine orange staining and necrosis (sytox green staining were assessed. PT significantly reduced GCDCA- and TNFα/ActD-induced apoptosis in rat hepatocytes (-60%, p<0.05 in a dose-dependent manner (with no shift to necrosis, but not in HepG2-rNtcp cells or rat H-4-II-E cells. The protective effect of pertussis toxin was independent of the activation of selected cell survival signal transduction pathways, including ERK, p38 MAPK, PI3K and PKC pathways, as specific protein kinase inhibitors did not reverse the protective effects of pertussis toxin in GCDCA-exposed hepatocytes.Pertussis toxin, an inhibitor of G(αiPCRs, protects hepatocytes, but not hepatocellular carcinoma cells, against bile acid- and cytokine-induced apoptosis and has therapeutic potential as primary hepatoprotective drug, as well as adjuvant in anti-cancer therapy.

  14. Remembering Benedict Anderson through his Under Three Flags

    DEFF Research Database (Denmark)

    Ivarsson, Søren

    2016-01-01

    This is a revised version of a public lecture delivered at Faculty of Humanities, Chiang Mai University, on 10th February 2016. Drawing on a broad section of Anderson’s texts, I seek to qualify his analysis of the rise of anticolonial nationalism. Hereby I will not only be challenging the critique...

  15. In vitro culture of functionally active buffalo hepatocytes isolated by using a simplified manual perfusion method.

    Directory of Open Access Journals (Sweden)

    Santanu Panda

    Full Text Available In farm animals, there is no suitable cell line available to understand liver-specific functions. This has limited our understanding of liver function and metabolism in farm animals. Culturing and maintenance of functionally active hepatocytes is difficult, since they survive no more than few days. Establishing primary culture of hepatocytes can help in studying cellular metabolism, drug toxicity, hepatocyte specific gene function and regulation. Here we provide a simple in vitro method for isolation and short-term culture of functionally active buffalo hepatocytes.Buffalo hepatocytes were isolated from caudate lobes by using manual enzymatic perfusion and mechanical disruption of liver tissue. Hepatocyte yield was (5.3 ± 0.66×107 cells per gram of liver tissue with a viability of 82.3 ± 3.5%. Freshly isolated hepatocytes were spherical with well contrasted border. After 24 hours of seeding onto fibroblast feeder layer and different extracellular matrices like dry collagen, matrigel and sandwich collagen coated plates, hepatocytes formed confluent monolayer with frequent clusters. Cultured hepatocytes exhibited typical cuboidal and polygonal shape with restored cellular polarity. Cells expressed hepatocyte-specific marker genes or proteins like albumin, hepatocyte nuclear factor 4α, glucose-6-phosphatase, tyrosine aminotransferase, cytochromes, cytokeratin and α1-antitrypsin. Hepatocytes could be immunostained with anti-cytokeratins, anti-albumin and anti α1-antitrypsin antibodies. Abundant lipid droplets were detected in the cytosol of hepatocytes using oil red stain. In vitro cultured hepatocytes could be grown for five days and maintained for up to nine days on buffalo skin fibroblast feeder layer. Cultured hepatocytes were viable for functional studies.We developed a convenient and cost effective technique for hepatocytes isolation for short-term culture that exhibited morphological and functional characteristics of active hepatocytes

  16. Whole-body γ-irradiation decelerates rat hepatocyte polyploidization.

    Science.gov (United States)

    Ikhtiar, Adnan M

    2015-07-01

    To characterize hepatocyte polyploidization induced by intermediate dose of γ-ray. Male Wistar strain rats were whole-body irradiated (WBI) with 2 Gy of γ-ray at the age of 1 month, and 5-6 rats were sacrificed monthly at 0-25 months after irradiation. The nuclear DNA content of individual hepatocytes was measured by flow cytometry, then hepatocytes were classified into various ploidy classes. Survival percentage, after exposure up to the end of the study, did not indicate any differences between the irradiated groups and controls. The degree of polyploidization in hepatocytes of irradiated rats, was significantly lower than that for the control after 1 month of exposure, and it continued to be lower after up to 8 months. Thereafter, the degree of polyploidization in the irradiated group slowly returned to the control level when the irradiated rats reached the age of 10 months. Intermediate dose of ionizing radiation, in contrast to high doses, decelerate hepatocyte polyploidization, which may coincides with the hypothesis of the beneficial effects of low doses of ionizing radiation.

  17. Field evidence of social influence in the expression of political preferences: the case of secessionists flags in Barcelona.

    Science.gov (United States)

    Parravano, Antonio; Noguera, José A; Hermida, Paula; Tena-Sánchez, Jordi

    2015-01-01

    Models of social influence have explored the dynamics of social contagion, imitation, and diffusion of different types of traits, opinions, and conducts. However, few behavioral data indicating social influence dynamics have been obtained from direct observation in "natural" social contexts. The present research provides that kind of evidence in the case of the public expression of political preferences in the city of Barcelona, where thousands of citizens supporting the secession of Catalonia from Spain have placed a Catalan flag in their balconies and windows. Here we present two different studies. 1) During July 2013 we registered the number of flags in 26% of the electoral districts in the city of Barcelona. We find that there is a large dispersion in the density of flags in districts with similar density of pro-independence voters. However, by comparing the moving average to the global mean we find that the density of flags tends to be fostered in electoral districts where there is a clear majority of pro-independence vote, while it is inhibited in the opposite cases. We also show that the distribution of flags in the observed districts deviates significantly from that of an equivalent random distribution. 2) During 17 days around Catalonia's 2013 national holiday we observed the position at balcony resolution of the flags displayed in the facades of a sub-sample of 82 blocks. We compare the 'clustering index' of flags on the facades observed each day to thousands of equivalent random distributions. Again we provide evidence that successive hangings of flags are not independent events but that a local influence mechanism is favoring their clustering. We also find that except for the national holiday day the density of flags tends to be fostered in facades located in electoral districts where there is a clear majority of pro-independence vote.

  18. The role of hepatocyte nuclear factor 4-alpha in perfluorooctanoic acid- and perfluorooctanesulfonic acid-induced hepatocellular dysfunction

    Energy Technology Data Exchange (ETDEWEB)

    Beggs, Kevin M., E-mail: kbeggs2@kumc.edu [Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, 3901 Rainbow Blvd, 4052 HLSIC, Kansas City, KS 66160 (United States); McGreal, Steven R., E-mail: smcgreal@kumc.edu [Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, 3901 Rainbow Blvd, 4052 HLSIC, Kansas City, KS 66160 (United States); McCarthy, Alex [Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, 3901 Rainbow Blvd, 4052 HLSIC, Kansas City, KS 66160 (United States); Gunewardena, Sumedha, E-mail: sgunewardena@kumc.edu [Department of Molecular and Integrative Physiology, University of Kansas Medical Center, 3901 Rainbow Blvd, 2027 HLSIC, Kansas City, KS 66160 (United States); Lampe, Jed N., E-mail: jlampe@kumc.edu [Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, 3901 Rainbow Blvd, 4052 HLSIC, Kansas City, KS 66160 (United States); Lau, Christoper, E-mail: lau.christopher@epa.gov [Developmental Toxicology Branch, Toxicity Assessment Division, National Health and Environmental Effects Research Laboratory, Office of Research and Development, US Environmental Protection Agency, Research Triangle Park, NC 27711 (United States); Apte, Udayan, E-mail: uapte@kumc.edu [Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, 3901 Rainbow Blvd, 4052 HLSIC, Kansas City, KS 66160 (United States)

    2016-08-01

    Perfluorooctanoic acid (PFOA) and perfluorooctanesulfonic acid (PFOS), chemicals present in a multitude of consumer products, are persistent organic pollutants. Both compounds induce hepatotoxic effects in rodents, including steatosis, hepatomegaly and liver cancer. The mechanisms of PFOA- and PFOS-induced hepatic dysfunction are not completely understood. We present evidence that PFOA and PFOS induce their hepatic effects via targeting hepatocyte nuclear factor 4-alpha (HNF4α). Human hepatocytes treated with PFOA and PFOS at a concentration relevant to occupational exposure caused a decrease in HNF4α protein without affecting HNF4α mRNA or causing cell death. RNA sequencing analysis combined with Ingenuity Pathway Analysis of global gene expression changes in human hepatocytes treated with PFOA or PFOS indicated alterations in the expression of genes involved in lipid metabolism and tumorigenesis, several of which are regulated by HNF4α. Further investigation of specific HNF4α target gene expression revealed that PFOA and PFOS could promote cellular dedifferentiation and increase cell proliferation by down regulating positive targets (differentiation genes such as CYP7A1) and inducing negative targets of HNF4α (pro-mitogenic genes such as CCND1). Furthermore, in silico docking simulations indicated that PFOA and PFOS could directly interact with HNF4α in a similar manner to endogenous fatty acids. Collectively, these results highlight HNF4α degradation as novel mechanism of PFOA and PFOS-mediated steatosis and tumorigenesis in human livers. - Highlights: • PFOA and PFOS cause decreased HNF4α protein expression in human hepatocytes. • PFOA and PFOS promote changes associated with lipid metabolism and carcinogenesis. • PFOA and PFOS induced changes in gene expression associated with cellular dedifferentiation. • PFOA and PFOS induce expression of Nanog, a transcription factor involved in stem cell development.

  19. Determination of metabolic stability using cryopreserved hepatocytes from rainbow trout (Oncorhynchus mykiss)

    Science.gov (United States)

    Standard protocols for isolating, cryopreserving, and thawing rainbow trout hepatocytes are described, along with procedures for using fresh or cryopreserved hepatocytes to assess chemical metabolic stability in fish by means of a substrate depletion approach. Variations on thes...

  20. Alternative Cell Sources to Adult Hepatocytes for Hepatic Cell Therapy.

    Science.gov (United States)

    Pareja, Eugenia; Gómez-Lechón, María José; Tolosa, Laia

    2017-01-01

    Adult hepatocyte transplantation is limited by scarce availability of suitable donor liver tissue for hepatocyte isolation. New cell-based therapies are being developed to supplement whole-organ liver transplantation, to reduce the waiting-list mortality rate, and to obtain more sustained and significant metabolic correction. Fetal livers and unsuitable neonatal livers for organ transplantation have been proposed as potential useful sources of hepatic cells for cell therapy. However, the major challenge is to use alternative cell sources for transplantation that can be derived from reproducible methods. Different types of stem cells with hepatic differentiation potential are eligible for generating large numbers of functional hepatocytes for liver cell therapy to treat degenerative disorders, inborn hepatic metabolic diseases, and organ failure. Clinical trials are designed to fully establish the safety profile of such therapies and to define target patient groups and standardized protocols.

  1. Fibrates down-regulate IL-1-stimulated C-reactive protein gene expression in hepatocytes by reducing nuclear p50-NFκB-C/EBP-β complex formation

    NARCIS (Netherlands)

    Kleemann, R.; Gervois, P.P.; Verschuren, L.; Staels, B.; Princen, H.M.G.; Kooistra, T.

    2003-01-01

    C-reactive protein (CRP) is a major acute-phase protein in humans. Elevated plasma CRP levels are a risk factor for cardiovascular disease. CRP is predominantly expressed in hepatocytes and is induced by interleukin-1 (IL-1) and IL-6 under inflammatory situations, such as the acute phase. Fibrates

  2. Microencapsulation of Hepatocytes and Mesenchymal Stem Cells for Therapeutic Applications.

    Science.gov (United States)

    Meier, Raphael P H; Montanari, Elisa; Morel, Philippe; Pimenta, Joël; Schuurman, Henk-Jan; Wandrey, Christine; Gerber-Lemaire, Sandrine; Mahou, Redouan; Bühler, Leo H

    2017-01-01

    Encapsulated hepatocyte transplantation and encapsulated mesenchymal stem cell transplantation are newly developed potential treatments for acute and chronic liver diseases, respectively. Cells are microencapsulated in biocompatible semipermeable alginate-based hydrogels. Microspheres protect cells against antibodies and immune cells, while allowing nutrients, small/medium size proteins and drugs to diffuse inside and outside the polymer matrix. Microencapsulated cells are assessed in vitro and designed for experimental transplantation and for future clinical applications.Here, we describe the protocol for microencapsulation of hepatocytes and mesenchymal stem cells within hybrid poly(ethylene glycol)-alginate hydrogels.

  3. Analysis of historical and recent PBX 9404 cylinder tests using FLAG

    Energy Technology Data Exchange (ETDEWEB)

    Wooten, Hasani Omar [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Whitley, Von Howard [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2017-01-31

    Cylinder test experiments using aged PBX-9404 were recently conducted. When compared to similar historical tests using the same materials, but different diagnostics, the data indicate that PBX 9404 imparts less energy to surrounding copper. The purpose of this work was to simulate historical and recent cylinder tests using the Lagrangian hydrodynamics code, FLAG, and identify any differences in the energetic behavior of the material. Nine experiments spanning approximately 4.5 decades were simulated, and radial wall expansions and velocities were compared. Equation-of-state parameters were adjusted to obtain reasonable matches with experimental data. Pressure-volume isentropes were integrated, and resultant energies at specific volume expansions were compared. FLAG simulations matched to experimental data indicate energetic changes of approximately -0.57% to -0.78% per decade.

  4. Fluid-structure-interaction of a flag in a channel flow

    Science.gov (United States)

    Liu, Yingzheng; Yu, Yuelong; Zhou, Wenwu; Wang, Weizhe

    2017-11-01

    The unsteady flow field and flapping dynamics of an inverted flag in water channel are investigated using time resolved particle image velocimetry (TR-PIV) measurements. The dynamically deformed profiles of the inverted flag are determined by a novel algorithm that combines morphological image processing and principle component analysis. Instantaneous flow field, phase averaged vorticity, time-mean flow field and turbulent kinematic energy are addressed for the flow. Four modes are discovered as the dimensionless bending stiffness decreases, i.e., the straight mode, the biased mode, the flapping mode and the deflected mode. Among all modes, the flapping mode is characterized by large flapping amplitude and the reverse von Kármán vortex street wake, which is potential to enhance heat transfer remarkably. National Natural Science Foundation of China.

  5. Red Flags for Low Back Pain Are Not Always Really Red: A Prospective Evaluation of the Clinical Utility of Commonly Used Screening Questions for Low Back Pain.

    Science.gov (United States)

    Premkumar, Ajay; Godfrey, William; Gottschalk, Michael B; Boden, Scott D

    2018-03-07

    Low back pain has a high prevalence and morbidity, and is a source of substantial health-care spending. Numerous published guidelines support the use of so-called red flag questions to screen for serious pathology in patients with low back pain. This paper examines the effectiveness of red flag questions as a screening tool for patients presenting with low back pain to a multidisciplinary academic spine center. We conducted a retrospective review of the cases of 9,940 patients with a chief complaint of low back pain. The patients completed a questionnaire that included several red flag questions during their first physician visit. Diagnostic data for the same clinical episode were collected from medical records and were corroborated with imaging reports. Patients who were diagnosed as having a vertebral fracture, malignancy, infection, or cauda equina syndrome were classified as having a red flag diagnosis. Specific individual red flags and combinations of red flags were associated with an increased probability of underlying serious spinal pathology, e.g., recent trauma and an age of >50 years were associated with vertebral fracture. The presence or absence of other red flags, such as night pain, was unrelated to any particular diagnosis. For instance, for patients with no recent history of infection and no fever, chills, or sweating, the presence of night pain was a false-positive finding for infection >96% of the time. In general, the absence of red flag responses did not meaningfully decrease the likelihood of a red flag diagnosis; 64% of patients with spinal malignancy had no associated red flags. While a positive response to a red flag question may indicate the presence of serious disease, a negative response to 1 or 2 red flag questions does not meaningfully decrease the likelihood of a red flag diagnosis. Clinicians should use caution when utilizing red flag questions as screening tools.

  6. Descent of line bundles to GIT quotients of flag varieties by maximal torus

    OpenAIRE

    Kumar, Shrawan

    2007-01-01

    Let L be a homogeneous ample line bundle on any flag variety G/P and let T be a maximal torus of G. We prove a general necessary and sufficient condition for L to descend as a line bundle on the GIT quotient of G/P by T. We use this result to explicitly determine exactly which L descend to the GIT quotient for any simple complex algebraic group G and any parabolic subgroup P.

  7. Strategies Used In Capture The Flag Events Contributing To Team Performance

    Science.gov (United States)

    2016-03-01

    words) Capture-the-flag (CTF) exercises are useful pedagogical tools and have been employed, both formally and informally, by academic institutions...Much like their physical counterparts, cyber CTF exercises hold pedagogical value and are gaining wide popularity. Existing studies on CTF exercises...examined either how they benefit learning, or are best conducted. To our knowledge, no formal study has yet looked at the relationship between the

  8. Algorithms on Flag Manifolds for Knowledge Discovery in N-way Arrays

    Science.gov (United States)

    2015-11-20

    subspace representations. For instance, the d- dimensional subspace in the flag corresponds to the extrinsic manifold mean. When the set of subspaces is...one-dimensional subspace of V and let θ(L, Vi) denote the principal angle between L and Vi. Motivated by a problem in data analysis, we seek an L that...appear less frequently in the literature may be more appropriate for certain tasks. The extrinsic manifold mean, the L 2-median, and the ag mean are

  9. Inducibility of carbamoylphosphate synthetase (ammonia) in cultures of embryonic hepatocytes: ontogenesis of the responsiveness to hormones

    NARCIS (Netherlands)

    Lamers, W. H.; Zonneveld, D.; Charles, R.

    1984-01-01

    Glucocorticosteroids and cyclic AMP induce carbamoylphosphate synthetase (ammonia) (CPS) in rat hepatocytes. Using an enzyme immunoassay applied to hepatocyte cultures fixed in situ, it has been demonstrated that the capacity of hepatocytes to synthesize CPS in the presence of both hormones is

  10. File list: His.Liv.10.AllAg.Hepatocytes [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available His.Liv.10.AllAg.Hepatocytes hg19 Histone Liver Hepatocytes SRX1013892,SRX1013890,S...RX1013888,SRX1013889,SRX1013891 http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/His.Liv.10.AllAg.Hepatocytes.bed ...

  11. File list: NoD.Liv.50.AllAg.Hepatocytes [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available NoD.Liv.50.AllAg.Hepatocytes mm9 No description Liver Hepatocytes ERX113003,ERX1129...,ERX113010,ERX008753,ERX113014,ERX008723 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/NoD.Liv.50.AllAg.Hepatocytes.bed ...

  12. File list: NoD.Liv.50.AllAg.Hepatocytes [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available NoD.Liv.50.AllAg.Hepatocytes hg19 No description Liver Hepatocytes SRX815538,SRX477...15539,ERX008754,ERX008736 http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/NoD.Liv.50.AllAg.Hepatocytes.bed ...

  13. File list: Oth.Liv.05.AllAg.Hepatocytes [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Oth.Liv.05.AllAg.Hepatocytes hg19 TFs and others Liver Hepatocytes SRX530184,SRX530...186 http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/Oth.Liv.05.AllAg.Hepatocytes.bed ...

  14. File list: NoD.Liv.05.AllAg.Hepatocytes [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available NoD.Liv.05.AllAg.Hepatocytes mm9 No description Liver Hepatocytes ERX008721,ERX1129...,ERX008753,ERX008747,ERX008746,ERX113010 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/NoD.Liv.05.AllAg.Hepatocytes.bed ...

  15. File list: ALL.Liv.20.AllAg.Hepatocytes [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available ALL.Liv.20.AllAg.Hepatocytes mm9 All antigens Liver Hepatocytes ERX113003,SRX103898...010,ERX008753 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/ALL.Liv.20.AllAg.Hepatocytes.bed ...

  16. File list: NoD.Liv.20.AllAg.Hepatocytes [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available NoD.Liv.20.AllAg.Hepatocytes mm9 No description Liver Hepatocytes ERX113003,SRX1038...,ERX113014,ERX008746,ERX113010,ERX008753 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/NoD.Liv.20.AllAg.Hepatocytes.bed ...

  17. File list: NoD.Liv.10.AllAg.Hepatocytes [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available NoD.Liv.10.AllAg.Hepatocytes hg19 No description Liver Hepatocytes SRX815538,SRX815...08749,ERX025732,ERX008736 http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/NoD.Liv.10.AllAg.Hepatocytes.bed ...

  18. File list: ALL.Liv.05.AllAg.Hepatocytes [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available ALL.Liv.05.AllAg.Hepatocytes mm9 All antigens Liver Hepatocytes ERX008721,ERX112964...746,ERX113010 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/ALL.Liv.05.AllAg.Hepatocytes.bed ...

  19. File list: NoD.Liv.20.AllAg.Hepatocytes [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available NoD.Liv.20.AllAg.Hepatocytes hg19 No description Liver Hepatocytes SRX815538,SRX477...08749,ERX025732,ERX008736 http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/NoD.Liv.20.AllAg.Hepatocytes.bed ...

  20. File list: NoD.Liv.10.AllAg.Hepatocytes [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available NoD.Liv.10.AllAg.Hepatocytes mm9 No description Liver Hepatocytes ERX113003,ERX1130...,ERX113014,ERX008744,ERX008746,ERX113010 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/NoD.Liv.10.AllAg.Hepatocytes.bed ...

  1. File list: InP.Liv.20.AllAg.Hepatocytes [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available InP.Liv.20.AllAg.Hepatocytes hg19 Input control Liver Hepatocytes SRX530185,SRX5301...83 http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/InP.Liv.20.AllAg.Hepatocytes.bed ...

  2. File list: Pol.Liv.20.AllAg.Hepatocytes [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Pol.Liv.20.AllAg.Hepatocytes mm9 RNA polymerase Liver Hepatocytes ERX204069,ERX2040...60,ERX204064 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/Pol.Liv.20.AllAg.Hepatocytes.bed ...

  3. File list: Oth.Liv.50.AllAg.Hepatocytes [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Oth.Liv.50.AllAg.Hepatocytes mm9 TFs and others Liver Hepatocytes SRX019007,SRX1169...04059,ERX204068,ERX204062,ERX204061,ERX204067,ERX204065,SRX019006,ERX204058 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/Oth.Liv.50.AllAg.Hepatocytes.bed ...

  4. File list: Oth.Liv.10.AllAg.Hepatocytes [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Oth.Liv.10.AllAg.Hepatocytes hg19 TFs and others Liver Hepatocytes SRX530184,SRX530...186 http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/Oth.Liv.10.AllAg.Hepatocytes.bed ...

  5. File list: InP.Liv.05.AllAg.Hepatocytes [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available InP.Liv.05.AllAg.Hepatocytes mm9 Input control Liver Hepatocytes SRX019015,SRX55553...3,SRX1334843 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/InP.Liv.05.AllAg.Hepatocytes.bed ...

  6. File list: ALL.Liv.10.AllAg.Hepatocytes [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available ALL.Liv.10.AllAg.Hepatocytes mm9 All antigens Liver Hepatocytes ERX113003,ERX113015...746,ERX113010 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/ALL.Liv.10.AllAg.Hepatocytes.bed ...

  7. File list: Pol.Liv.05.AllAg.Hepatocytes [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Pol.Liv.05.AllAg.Hepatocytes mm9 RNA polymerase Liver Hepatocytes ERX204060,ERX2040...69,ERX204064 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/Pol.Liv.05.AllAg.Hepatocytes.bed ...

  8. File list: Oth.Liv.20.AllAg.Hepatocytes [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Oth.Liv.20.AllAg.Hepatocytes mm9 TFs and others Liver Hepatocytes ERX204070,SRX0190...04059,SRX116909,ERX204065,ERX204063,SRX116906,SRX555532,SRX019006,ERX204058 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/Oth.Liv.20.AllAg.Hepatocytes.bed ...

  9. File list: ALL.Liv.20.AllAg.Hepatocytes [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available ALL.Liv.20.AllAg.Hepatocytes hg19 All antigens Liver Hepatocytes SRX815538,SRX47792...RX1013893,SRX1013888,SRX1013891,SRX1013889 http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/ALL.Liv.20.AllAg.Hepatocytes.bed ...

  10. File list: InP.Liv.50.AllAg.Hepatocytes [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available InP.Liv.50.AllAg.Hepatocytes mm9 Input control Liver Hepatocytes SRX019015,SRX55553...3,SRX1334843 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/InP.Liv.50.AllAg.Hepatocytes.bed ...

  11. File list: ALL.Liv.05.AllAg.Hepatocytes [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available ALL.Liv.05.AllAg.Hepatocytes hg19 All antigens Liver Hepatocytes ERX008749,SRX81553...RX1013893,SRX1013888,SRX1013889,SRX1013891 http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/ALL.Liv.05.AllAg.Hepatocytes.bed ...

  12. File list: InP.Liv.20.AllAg.Hepatocytes [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available InP.Liv.20.AllAg.Hepatocytes mm9 Input control Liver Hepatocytes SRX019015,SRX13348...43,SRX555533 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/InP.Liv.20.AllAg.Hepatocytes.bed ...

  13. File list: NoD.Liv.05.AllAg.Hepatocytes [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available NoD.Liv.05.AllAg.Hepatocytes hg19 No description Liver Hepatocytes ERX008749,SRX815...08760,ERX008728,ERX008736 http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/NoD.Liv.05.AllAg.Hepatocytes.bed ...

  14. File list: InP.Liv.50.AllAg.Hepatocytes [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available InP.Liv.50.AllAg.Hepatocytes hg19 Input control Liver Hepatocytes SRX530185,SRX5301...83 http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/InP.Liv.50.AllAg.Hepatocytes.bed ...

  15. File list: Oth.Liv.50.AllAg.Hepatocytes [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Oth.Liv.50.AllAg.Hepatocytes hg19 TFs and others Liver Hepatocytes SRX530184,SRX530...186 http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/Oth.Liv.50.AllAg.Hepatocytes.bed ...

  16. File list: InP.Liv.10.AllAg.Hepatocytes [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available InP.Liv.10.AllAg.Hepatocytes mm9 Input control Liver Hepatocytes SRX019015,SRX55553...3,SRX1334843 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/InP.Liv.10.AllAg.Hepatocytes.bed ...

  17. File list: ALL.Liv.10.AllAg.Hepatocytes [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available ALL.Liv.10.AllAg.Hepatocytes hg19 All antigens Liver Hepatocytes SRX815538,SRX81553...RX1013893,SRX1013888,SRX1013889,SRX1013891 http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/ALL.Liv.10.AllAg.Hepatocytes.bed ...

  18. File list: ALL.Liv.50.AllAg.Hepatocytes [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available ALL.Liv.50.AllAg.Hepatocytes mm9 All antigens Liver Hepatocytes ERX113003,ERX112977...014,ERX008723 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/ALL.Liv.50.AllAg.Hepatocytes.bed ...

  19. File list: ALL.Liv.50.AllAg.Hepatocytes [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available ALL.Liv.50.AllAg.Hepatocytes hg19 All antigens Liver Hepatocytes SRX815538,SRX47792...,SRX1013891,SRX1013889,ERX008736 http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/ALL.Liv.50.AllAg.Hepatocytes.bed ...

  20. File list: Pol.Liv.10.AllAg.Hepatocytes [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Pol.Liv.10.AllAg.Hepatocytes mm9 RNA polymerase Liver Hepatocytes ERX204060,ERX2040...69,ERX204064 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/Pol.Liv.10.AllAg.Hepatocytes.bed ...

  1. File list: Oth.Liv.05.AllAg.Hepatocytes [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Oth.Liv.05.AllAg.Hepatocytes mm9 TFs and others Liver Hepatocytes SRX019007,SRX1169...19009,SRX116906,ERX204061,ERX204058,SRX019006,SRX555532,ERX204067,ERX204065 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/Oth.Liv.05.AllAg.Hepatocytes.bed ...

  2. File list: Oth.Liv.20.AllAg.Hepatocytes [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Oth.Liv.20.AllAg.Hepatocytes hg19 TFs and others Liver Hepatocytes SRX530184,SRX530...186 http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/Oth.Liv.20.AllAg.Hepatocytes.bed ...

  3. Developing an early alert system for metastatic spinal cord compression (MSCC): Red Flag credit cards.

    Science.gov (United States)

    Turnpenney, Jackie; Greenhalgh, Sue; Richards, Lena; Crabtree, Annamaria; Selfe, James

    2015-01-01

    To produce a user-friendly list of metastatic spinal cord compression (MSCC) Red Flags for non-specialist 'generalist' front-line clinicians working in primary-care settings. The issue of identifying MSCC early to prevent serious long-term disability was a key theme identified by the Task and Finish Group at Greater Manchester and Cheshire Cancer Network (GMCCN) in 2009. It was this group who initially brokered and then coordinated the current development as part of their strategic approach to improving care for MSCC patients. A consensus-building approach that considered the essential minimum data requirements to raise the index of suspicion suggestive of MSCC was adopted. This followed a model of cross-boundary working to facilitate the mutual sharing of expertise across a variety of relevant clinical specialisms. A guideline aimed at helping clinicians to identify the early signs and symptoms of MSCC was produced in the form of a credit card. This credit card includes key statements about MSCC, signposting to key sources of additional information and a user-friendly list of Red Flags which has been developed into an eight-item Red Flag mnemonic. To date, an excess of 120,000 cards have been printed by a variety of organisations and the distribution of the cards is ongoing across the United Kingdom and the Republic of Ireland.

  4. Red flags in children with chronic abdominal pain and Crohn's disease-a single center experience.

    Science.gov (United States)

    El-Chammas, Khalil; Majeskie, Angela; Simpson, Pippa; Sood, Manu; Miranda, Adrian

    2013-04-01

    To compare history and symptoms at initial presentation of patients with chronic abdominal pain (CAP) and Crohn's disease (CD). Red flags are used to help determine which patients with CAP are likely to have an underlying disease such as CD. However, red flags have not been validated and pediatric studies are lacking. Patients seen in the outpatient Pediatric Gastroenterology Clinic at Children's Hospital of Wisconsin between 2005 and 2008 prospectively completed a demographic, history, and symptom questionnaire. Patients with abdominal pain for at least 1 month and no evidence of organic disease were compared with patients diagnosed with CD confirmed by mucosal biopsies. Data were collected on 606 patients (128 with CD and 478 with functional gastrointestinal disorders). Patients with functional gastrointestinal disorders had more stressors (P pain were no different between groups. Anemia, hematochezia, and weight loss were most predictive of CD (cumulative sensitivity of 94%). The presence of anemia, hematochezia, and weight loss help identify patients with CAP who require further work-up and referral to a pediatric gastroenterologist. Furthermore, waking from sleep or joint pain occurred similarly between groups and should not be considered as "red flags." Copyright © 2013. Published by Mosby, Inc.

  5. Microcystin-LR induces anoikis resistance to the hepatocyte uptake transporter OATP1B3-expressing cell lines

    International Nuclear Information System (INIS)

    Takano, Hiroyuki; Takumi, Shota; Ikema, Satoshi; Mizoue, Nozomi; Hotta, Yuki; Shiozaki, Kazuhiro; Sugiyama, Yasumasa; Furukawa, Tatsuhiko; Komatsu, Masaharu

    2014-01-01

    Microcystin-LR is a cyclic peptide released by several bloom-forming cyanobacteria. Understanding the mechanism of microcystin-LR toxicity is important, because of the both potencies of its acute cytotoxicity and tumor-promoting activity in hepatocytes of animals and humans. Recently, we have reported that the expression of human hepatocyte uptake transporter OATP1B3 was critical for the selective uptake of microcystin-LR into hepatocytes and for induction of its fatal cytotoxicity. In this study, we demonstrated a novel function of microcystin-LR which induced bipotential changes including anoikis resistance and cytoskeleton reorganization to OATP1B3-transfected HEK293 cells (HEK293-OATP1B3). After exposure to microcystin-LR, HEK293-OATP1B3 cells were divided to the floating cells and remaining adherent cells. After collection and reseeding the floating cells into a fresh flask, cells were confluently proliferated (HEK293-OATP1B3-FL) under the microcystin-LR-free condition. Both the proliferated HEK293-OATP1B3-FL and remaining adherent HEK293-OATP1B3-AD cells changed the character with down- and up-regulation of E-cadherin, respectively. Additionally, these cells acquired resistance to microcystin-LR. These results suggest that microcystin-LR could be associated with not only tumor promotion, but also epithelial–mesenchymal transition-mediated cancer metastasis. Furthermore, microcystin-LR might induce the cytoskeleton reorganization be accompanied epithelial–mesenchymal transition

  6. Radiation-induced PKC signaling system in cultured rat hepatocytes

    International Nuclear Information System (INIS)

    Nakajima, Tetsuo; Yukawa, Osami

    1998-01-01

    Radiation effects on living organisms are mainly caused through reactive oxygen species (ROS) on living cells. It is known that ROS damages various membranes and the bio membranes play an important role in cellular signal transduction pathways. The effects of radiation on cellular signal transduction pathways in cultured rat hepatocytes have been studied

  7. The use of pig hepatocytes for biotransformation and toxicity studies

    NARCIS (Netherlands)

    Hoogenboom, L.A.P.

    1991-01-01

    The three main objectives of this study were, (1) to investigate the possibility to isolate viable hepatocytes from liver samples of pigs, (2) to study their use for biotransformation and toxicity studies, and (3) to demonstrate the value of this model, in particular in the field of residue

  8. Hepatocytes in the development of liver support systems

    NARCIS (Netherlands)

    I.H.M. Borel Rinkes (Inne)

    1993-01-01

    textabstractThis thesis focuses on the development of alternative strategies in the treatment of patients with acute fulminant hepatic failure and inborn errors of metabolism, using hepatocytes as the basis of liver support. When compared with transplantation of the liver as an organ, the

  9. Hepatocyte heterogeneity in the metabolism of amino acids and ammonia

    NARCIS (Netherlands)

    Häussinger, D.; Lamers, W. H.; Moorman, A. F.

    1992-01-01

    With respect to hepatocyte heterogeneity in ammonia and amino acid metabolism, two different patterns of sublobular gene expression are distinguished: 'gradient-type' and 'strict- or compartment-type' zonation. An example for strict-type zonation is the reciprocal distribution of carbamoylphosphate

  10. Induction of hepatocyte polyploidization in rats of different age by ionizing radiation of different LET

    International Nuclear Information System (INIS)

    Gil'yano, N.Ya.; Malinovskij, O.V.; Khair, M.B.

    1992-01-01

    A decrease in the effectiveness of neutron-irradiation with respect to fusion of nonproliferating hepatocytes of animals with age was shown by the method of flow cytometry. There was an inverse relationship between the effectiveness of induction of non-proliferating hepatocytes fusion and neutron energy. The process of hepatocyte fusion induced by neutrons was inhibited by uranyl acetate. No age-dependent changes were noted in the induction of polyploidization of proliferating hepatocytes by sparsely ionizing radiation. A hypothesis is proposed concerning a membrane nature of the target responsible for hepatocyte polyploidization induced by densely ionizing radiation. (authors). 8 refs., 4 figs., 5 tabs

  11. Induction of hepatocyte polyploidization in rats of different age by ionizing radiation of different LET

    International Nuclear Information System (INIS)

    Gil'yano, N.Ya.; Malinovskij, O.V.; Khair, M.B.

    1990-01-01

    A decrease in the effectiveness of neutron-irradiation with respect to fusion of nonproliferating hepatocytes of animals with age was shown by the method of flow cytometry. There was an inverse relationship between the effectiveness of induction of non-proliferating hepatocytes fusion and neutron energy. The process of hepatocyte fusion induced by neutrons was inhibited by uranyl acetate. No age-dependent changes were noted in the induction of polyploidization of proliferating hepatocytes by sparsely ionizing radiation. A hypothesis is proposed concerning a membrane nature of the target responsible for hepatocyte polyploidization induced by densely ionizing radiation

  12. Bile canaliculi formation and biliary transport in 3D sandwich-cultured hepatocytes in dependence of the extracellular matrix composition.

    Science.gov (United States)

    Deharde, Daniela; Schneider, Christin; Hiller, Thomas; Fischer, Nicolas; Kegel, Victoria; Lübberstedt, Marc; Freyer, Nora; Hengstler, Jan G; Andersson, Tommy B; Seehofer, Daniel; Pratschke, Johann; Zeilinger, Katrin; Damm, Georg

    2016-10-01

    Primary human hepatocytes (PHH) are still considered as gold standard for investigation of in vitro metabolism and hepatotoxicity in pharmaceutical research. It has been shown that the three-dimensional (3D) cultivation of PHH in a sandwich configuration between two layers of extracellular matrix (ECM) enables the hepatocytes to adhere three dimensionally leading to formation of in vivo like cell-cell contacts and cell-matrix interactions. The aim of the present study was to investigate the influence of different ECM compositions on morphology, cellular arrangement and bile canaliculi formation as well as bile excretion processes in PHH sandwich cultures systematically. Freshly isolated PHH were cultured for 6 days between two ECM layers made of collagen and/or Matrigel in four different combinations. The cultures were investigated by phase contrast microscopy and immunofluorescence analysis with respect to cell-cell connections, repolarization as well as bile canaliculi formation. The influence of the ECM composition on cell activity and viability was measured using the XTT assay and a fluorescent dead or alive assay. Finally, the bile canalicular transport was analyzed by live cell imaging to monitor the secretion and accumulation of the fluorescent substance CDF in bile canaliculi. Using collagen and Matrigel in different compositions in sandwich cultures of hepatocytes, we observed differences in morphology, cellular arrangement and cell activity of PHH in dependence of the ECM composition. Sandwich-cultured hepatocytes with an underlay of collagen seem to represent the best in vivo tissue architecture in terms of formation of trabecular cell arrangement. Cultures overlaid with collagen were characterized by the formation of abundant bile canaliculi, while the bile canaliculi network in hepatocytes cultured on a layer of Matrigel and overlaid with collagen showed the most branched and stable canalicular network. All cultures showed a time-dependent leakage of

  13. Gender differences in methionine accumulation and metabolism in freshly isolated mouse hepatocytes: Potential roles in toxicity

    International Nuclear Information System (INIS)

    Dever, Joseph T.; Elfarra, Adnan A.

    2009-01-01

    L-Methionine (Met) is hepatotoxic at high concentrations. Because Met toxicity in freshly isolated mouse hepatocytes is gender-dependent, the goal of this study was to assess the roles of Met accumulation and metabolism in the increased sensitivity of male hepatocytes to Met toxicity compared with female hepatocytes. Male hepatocytes incubated with Met (30 mM) at 37 o C exhibited higher levels of intracellular Met at 0.5, 1.0, and 1.5 h, respectively, compared to female hepatocytes. Conversely, female hepatocytes had higher levels of S-adenosyl-L-methionine compared to male hepatocytes. Female hepatocytes also exhibited higher L-methionine-L-sulfoxide levels relative to control hepatocytes, whereas the increases in L-methionine-D-sulfoxide (Met-D-O) levels were similar in hepatocytes of both genders. Addition of aminooxyacetic acid (AOAA), an inhibitor of Met transamination, significantly increased Met levels at 1.5 h and increased Met-D-O levels at 1.0 and 1.5 h only in Met-exposed male hepatocytes. No gender differences in cytosolic Met transamination activity by glutamine transaminase K were detected. However, female mouse liver cytosol exhibited higher methionine-DL-sulfoxide (MetO) reductase activity than male mouse liver cytosol at low (0.25 and 0.5 mM) MetO concentrations. Collectively, these results suggest that increased cellular Met accumulation, decreased Met transmethylation, and increased Met and MetO transamination in male mouse hepatocytes may be contributing to the higher sensitivity of the male mouse hepatocytes to Met toxicity in comparison with female mouse hepatocytes.

  14. Reversibility of hepatocyte nuclear modifications in mice fed on genetically modified soybean

    Directory of Open Access Journals (Sweden)

    M Malatesta

    2009-06-01

    Full Text Available In the literature, the reports on the effects of a genetically modified (GM diet are scanty and heterogeneous; in particular, no direct evidence has so far been reported that GM food may affect human or animal health. Hepatocytes represent a suitable model for monitoring the effects of a GM diet, the liver potentially being a primary target. In a previous study, we demonstrated that some modifications occur in hepatocyte nuclei of mice fed on GM soybean. In order to elucidate whether such modifications can be reversed, in the present study, 3 months old mice fed on GM soybean since their weaning were submitted to a diet containing wild type soybean only, for one month. In parallel, to investigate the influence of GM soybean on adult individuals, mice fed on wild type soybean were changed to a GM diet, for the same time. Using immunoelectron microscopy, we demonstrated that a one-month diet reversion can influence some nuclear features in adult mice, restoring typical characteristics of controls in GM-fed animals, and inducing in control mice modifications similar to those observed in animals fed on GM soybean from weaning. This suggests that the modifications related to GM soybean are potentially reversible, but also that some modifications are inducible in adult organisms in a short time.

  15. Structure of anti-FLAG M2 Fab domain and its use in the stabilization of engineered membrane proteins

    International Nuclear Information System (INIS)

    Roosild, Tarmo P.; Castronovo, Samantha; Choe, Senyon

    2006-01-01

    The X-ray crystallographic analysis of anti-FLAG M2 Fab is reported and the implications of the structure on FLAG epitope binding are described as a first step in the development of a tool for the structural and biophysical study of membrane proteins. The inherent difficulties of stabilizing detergent-solubilized integral membrane proteins for biophysical or structural analysis demand the development of new methodologies to improve success rates. One proven strategy is the use of antibody fragments to increase the ‘soluble’ portion of any membrane protein, but this approach is limited by the difficulties and expense associated with producing monoclonal antibodies to an appropriate exposed epitope on the target protein. Here, the stabilization of a detergent-solubilized K + channel protein, KvPae, by engineering a FLAG-binding epitope into a known loop region of the protein and creating a complex with Fab fragments from commercially available anti-FLAG M2 monoclonal antibodies is reported. Although well diffracting crystals of the complex have not yet been obtained, during the course of crystallization trials the structure of the anti-FLAG M2 Fab domain was solved to 1.86 Å resolution. This structure, which should aid future structure-determination efforts using this approach by facilitating molecular-replacement phasing, reveals that the binding pocket appears to be specific only for the first four amino acids of the traditional FLAG epitope, namely DYKD. Thus, the use of antibody fragments for improving the stability of target proteins can be rapidly applied to the study of membrane-protein structure by placing the short DKYD motif within a predicted peripheral loop of that protein and utilizing commercially available anti-FLAG M2 antibody fragments

  16. The Individual and Combined Effects of Deoxynivalenol and Aflatoxin B1 on Primary Hepatocytes of Cyprinus Carpio

    Science.gov (United States)

    He, Cheng-Hua; Fan, Yan-Hong; Wang, Ying; Huang, Chao-Ying; Wang, Xi-Chun; Zhang, Hai-Bin

    2010-01-01

    Aflatoxin B1 (AFB1) and deoxynivalenol (DON) are important food-borne mycotoxins that have been implicated in animal and human health. In this study, individual and combinative effects of AFB1 and DON were tested in primary hepatocytes of Cyprinus carpio. The results indicated that the combinative effects of AFB1 and DON (0.01 μg/mL AFB1 and 0.25 μg/mL DON; 0.02 μg/mL AFB1 and 0.25 μg/mL DON; 0.02 μg/mL AFB1 and 0.5 μg/mL DON) were higher than that of individual mycotoxin (P < 0.05). The activity of AST, ALT and LDH in cell supernatant was higher than that of control group (P < 0.05) when the mycotoxins were exposed to primary hepatocytes for 4 h. The decreased cell number was observed in tested group by inverted light microscopy. The mitochondrial swelling, endoplasmic reticulum dilation and a lot of lipid droplets were observed in primary hepatocytes by transmission electron microscope. Therefore, this combination was classified as an additive response of the two mycotoxins. PMID:21152299

  17. Flag beat

    DEFF Research Database (Denmark)

    Trento, Stefano; Serafin, Stefania

    2013-01-01

    This paper describes the development of a prototype of a sonic toy for pre-scholar kids. The device, which is a modified version of a football ratchet, is based on the spinning gesture and it allows to experience four different types of auditory feedback. These algorithms let a kid play with music...

  18. A High Throughput, 384-Well, Semi-Automated, Hepatocyte Intrinsic Clearance Assay for Screening New Molecular Entities in Drug Discovery.

    Science.gov (United States)

    Heinle, Lance; Peterkin, Vincent; de Morais, Sonia M; Jenkins, Gary J; Badagnani, Ilaria

    2015-01-01

    A high throughput, semi-automated clearance screening assay in hepatocytes was developed allowing a scientist to generate data for 96 compounds in one week. The 384-well format assay utilizes a Thermo Multidrop Combi and an optimized LC-MS/MS method. The previously reported LCMS/ MS method reduced the analytical run time by 3-fold, down to 1.2 min injection-to-injection. The Multidrop was able to deliver hepatocytes to 384-well plates with minimal viability loss. Comparison of results from the new 384-well and historical 24-well assays yielded a correlation of 0.95. In addition, results obtained for 25 marketed drugs with various metabolism pathways had a correlation of 0.75 when compared with literature values. Precision was maintained in the new format as 8 compounds tested in ≥39 independent experiments had coefficients of variation ≤21%. The ability to predict in vivo clearances using the new stability assay format was also investigated using 22 marketed drugs and 26 AbbVie compounds. Correction of intrinsic clearance values with binding to hepatocytes (in vitro data) and plasma (in vivo data) resulted in a higher in vitro to in vivo correlation when comparing 22 marketed compounds in human (0.80 vs 0.35) and 26 AbbVie Discovery compounds in rat (0.56 vs 0.17), demonstrating the importance of correcting for binding in clearance studies. This newly developed high throughput, semi-automated clearance assay allows for rapid screening of Discovery compounds to enable Structure Activity Relationship (SAR) analysis based on high quality hepatocyte stability data in sufficient quantity and quality to drive the next round of compound synthesis.

  19. Sodium sulfite promotes the assembly and secretion of very low-density lipoprotein in HL-7702 hepatocytes

    Directory of Open Access Journals (Sweden)

    Jianying Bai

    Full Text Available This study investigated the effects of Na2SO3 on the fat metabolism in human normal diploid HL-7702 (referred as L-02 hepatocytes. After 24 h and 48 h, treatment with different concentrations of Na2SO3, the intra and extra-hepatocellular triglyceride (TG contents of L-02 were determined using chemical-enzymatic method. The contents of very low-density lipoprotein (VLDL and apolipoprotein B100 (apoB100 in the culture supernatants were determined using enzyme-linked immunosorbent assay (ELISA. Western blot was applied to detect the expressions of fatty acid oxidation and fat synthesis related proteins, VLDL assembly and secretion in L-02 cells. Results: Na2SO3 treatment (10 mM, 24 h/48 h significantly increased the intra TG level in the hepatocytes. Different concentrations of Na2SO3 increased the extra-hepatocellular TG content. After 24 h exposure, the extracellular VLDL levels and secretions of apoB100 in 0.1–10 mM Na2SO3 groups were significantly higher than that of the negative control (P < 0.05. Meanwhile, the expression of CPT1 and SREBP1 protein were significantly reduced by Na2SO3. MTP and TGH protein expressions were significantly elevated in each Na2SO3 treatment group. The expression level of LDLR in hepatocytes was reduced by Na2SO3. Conclusion: Na2SO3 exposure may promote the hepatocellular VLDL assembly and secretion, through increasing of MTP and TGH expressions and inhibiting the uptake of extracelluar VLDL. Keywords: Sodium sulfite, Hepatocytes, VLDL, Fatty acid oxidation, Fat synthesis, VLDL uptake

  20. Flag varieties, toric varieties, and suspensions: Three instances of infinite transitivity

    International Nuclear Information System (INIS)

    Arzhantsev, Ivan V; Zaidenberg, M G; Kuyumzhiyan, Karine G

    2012-01-01

    We say that a group G acts infinitely transitively on a set X if for every m element of N the induced diagonal action of G is transitive on the cartesian mth power X m backslash Δ with the diagonals removed. We describe three classes of affine algebraic varieties such that their automorphism groups act infinitely transitively on their smooth loci. The first class consists of normal affine cones over flag varieties, the second of nondegenerate affine toric varieties, and the third of iterated suspensions over affine varieties with infinitely transitive automorphism groups. Bibliography: 42 titles.

  1. Adaptation of PyFlag to Efficient Analysis of Overtaken Computer Data Storage

    Directory of Open Access Journals (Sweden)

    Aleksander Byrski

    2010-03-01

    Full Text Available Based on existing software aimed at investigation support in the analysis of computer data storage overtaken during investigation (PyFlag, an extension is proposed involving the introduction of dedicated components for data identification and filtering. Hash codes for popular software contained in NIST/NSRL database are considered in order to avoid unwanted files while searching and to classify them into several categories. The extension allows for further analysis, e.g. using artificial intelligence methods. The considerations are illustrated by the overview of the system's design.

  2. An Evaluation of the FLAG Friction Model frictmultiscale2 using the Experiments of Juanicotena and Szarynski

    Energy Technology Data Exchange (ETDEWEB)

    Zocher, Marvin Anthony [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Hammerberg, James Edward [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2017-11-15

    The experiments of Juanicotena and Szarynski, namely T101, T102, and T105 are modeled for purposes of gaining a better understanding of the FLAG friction model frictmultiscale2. This exercise has been conducted as a first step toward model validation. It is shown that with inclusion of the friction model in the numerical analysis, the results of Juanicotena and Szarynski are predicted reasonably well. Without the friction model, simulation results do not match the experimental data nearly as well. Suggestions for follow-on work are included.

  3. U.S. BICENTENNIAL EXPOSITION & PAINTING OF AMERICAN FLAG ON VAB

    Science.gov (United States)

    1976-01-01

    Transformation of the U. S. Bicentennial on Science and Technology from an artist's concept to reality is well underway at KSC. At lower right are stages of the Saturn V rocket which will form part of the Exposition. Four of the 15 domes erected to house exhibits by 16 federal agencies and numerous industrial firms are visible in the foreground. At left center, workmen on a scaffold can be seen completing the blue field on the American flag being painted on the Vehicle Assembly Building. The Exposition will be open to the public from May 30 through September 7.

  4. Vortex dynamics and heat transfer behind self-oscillating inverted flags of various lengths in channel flow

    Science.gov (United States)

    Yu, Yuelong; Liu, Yingzheng; Chen, Yujia

    2018-04-01

    The influence of an inverted flag's length-to-channel-width ratio (C* = L/W) on its oscillating behavior in a channel flow and the resultant vortex dynamics and heat transfer are determined experimentally. Three systems with C* values of 0.125, 0.250, and 0.375 were chosen for comparison. The interaction of highly unsteady flow with the inverted flag is measured with time-resolved particle image velocimetry. Variations in the underlying flow physics are discussed in terms of the statistical flow quantities, flag displacement, phase-averaged flow field, and vortex dynamics. The results show that the increase in C* shifts the occurrence of the flapping regime at high dimensionless bending stiffness. With the flag in the flapping region, three distinct vortex dynamics—the von Kármán vortex street, the G mode, and the singular mode—are identified at C* values of 0.375, 0.250, and 0.125, respectively. Finally, the heat transfer enhancement from the self-oscillating inverted flag is measured to serve as complementary information to quantify the cause-and-effect relationship between vortex dynamics and wall heat transfer. The increase in C* strongly promotes wall heat removal because disruption of the boundary layer by the energetic vortices is substantially intensified. Among all systems, wall heat transfer removal is most efficient at the intermediate C* value of 0.250.

  5. The cytoskeleton of digitonin-treated rat hepatocytes.

    Science.gov (United States)

    Fiskum, G; Craig, S W; Decker, G L; Lehninger, A L

    1980-06-01

    Treatment of isolated rat hepatocptes with low concentrations of digitonin increases the permeability of the plsma membrane to cytosolic proteins without causing release of organelles such as mitochondria into the surrounding medium. Electron microscopy showed that treatment of the cells with increasing concentations of digitonin results in a progressive loss in the continuity of the plasma membrane, while most other aspects of cellular morphology remain normal. Depletion of background staining material from the cytosol by digitonin treatment of the cells greatly enhances the visualization of the cytoskeleton. The use of this technique, together with immunofluorescent light microscopy, has verified the presence of an actin-containing filamentous network at the hepatocyte cortex as well as intermediate filaments distributed throughout the cell. Digitonin is thus useful both for selectively permeabilizing the plasma membrane and for intensifying the appearance of intracellular structures such as microfilaments that are normally difficult to observe in cells such as hepatocytes.

  6. [Current status and future perspectives of hepatocyte transplantation].

    Science.gov (United States)

    Pareja, Eugenia; Cortés, Miriam; Gómez-Lechón, M José; Maupoey, Javier; San Juan, Fernando; López, Rafael; Mir, Jose

    2014-02-01

    The imbalance between the number of potential beneficiaries and available organs, originates the search for new therapeutic alternatives, such as Hepatocyte transplantation (HT).Even though this is a treatment option for these patients, the lack of unanimity of criteria regarding indications and technique, different cryopreservation protocols, as well as the different methodology to assess the response to this therapy, highlights the need of a Consensus Conference to standardize criteria and consider future strategies to improve the technique and optimize the results.Our aim is to review and update the current state of hepatocyte transplantation, emphasizing the future research attempting to solve the problems and improve the results of this treatment. Copyright © 2013 AEC. Published by Elsevier Espana. All rights reserved.

  7. Ultrastructure of hepatocyte nuclei in irradiated, adrenalectomized rats

    Energy Technology Data Exchange (ETDEWEB)

    Orkisz, S.; Bartel, H.; Kmiec, B. (Military Medical Academy, Lodz (Poland))

    1984-01-01

    A cytochemical study of hepatocyte nuclei of adrenalectomized and irradiated rats was performed. After irradiation alone, the behaviour of the ribonucleoprotein components was studied according to Bernhard. The findings suggest that a delay occurs in the synthesis of preribosomal RNA in the nucleoli and in the transport of messenger RNA to the cytoplasm. The indirect effect of ionizing radiation on nuclear RNA synthesis is assumed to occur through the influence of cortical steroid hormones on the transcription process.

  8. Insulin-induced CARM1 upregulation facilitates hepatocyte proliferation

    Energy Technology Data Exchange (ETDEWEB)

    Yeom, Chul-gon; Kim, Dong-il; Park, Min-jung; Choi, Joo-hee [College of Veterinary Medicine, Chonnam National University, Gwangju 500-757 (Korea, Republic of); Jeong, Jieun; Wi, Anjin; Park, Whoashig [Jeollanamdo Forest Resources Research Institute, Naju 520-833 (Korea, Republic of); Han, Ho-jae [College of Veterinary Medicine, Seoul National University, Seoul 151-741 (Korea, Republic of); Park, Soo-hyun, E-mail: parksh@chonnam.ac.kr [College of Veterinary Medicine, Chonnam National University, Gwangju 500-757 (Korea, Republic of)

    2015-06-05

    Previously, we reported that CARM1 undergoes ubiquitination-dependent degradation in renal podocytes. It was also reported that CARM1 is necessary for fasting-induced hepatic gluconeogenesis. Based on these reports, we hypothesized that treatment with insulin, a hormone typically present under the ‘fed’ condition, would inhibit gluconeogenesis via CARM1 degradation. HepG2 cells, AML-12 cells, and rat primary hepatocytes were treated with insulin to confirm CARM1 downregulation. Surprisingly, insulin treatment increased CARM1 expression in all cell types examined. Furthermore, treatment with insulin increased histone 3 methylation at arginine 17 and 26 in HepG2 cells. To elucidate the role of insulin-induced CARM1 upregulation, the HA-CARM1 plasmid was transfected into HepG2 cells. CARM1 overexpression did not increase the expression of lipogenic proteins generally increased by insulin signaling. Moreover, CARM1 knockdown did not influence insulin sensitivity. Insulin is known to facilitate hepatic proliferation. Like insulin, CARM1 overexpression increased CDK2 and CDK4 expression. In addition, CARM1 knockdown reduced the number of insulin-induced G2/M phase cells. Moreover, GFP-CARM1 overexpression increased the number of G2/M phase cells. Based on these results, we concluded that insulin-induced CARM1 upregulation facilitates hepatocyte proliferation. These observations indicate that CARM1 plays an important role in liver pathophysiology. - Highlights: • Insulin treatment increases CARM1 expression in hepatocytes. • CARM1 overexpression does not increase the expression of lipogenic proteins. • CARM1 knockdown does not influence insulin sensitivity. • Insulin-induced CARM1 upregulation facilitates hepatocyte proliferation.

  9. Insulin-induced CARM1 upregulation facilitates hepatocyte proliferation

    International Nuclear Information System (INIS)

    Yeom, Chul-gon; Kim, Dong-il; Park, Min-jung; Choi, Joo-hee; Jeong, Jieun; Wi, Anjin; Park, Whoashig; Han, Ho-jae; Park, Soo-hyun

    2015-01-01

    Previously, we reported that CARM1 undergoes ubiquitination-dependent degradation in renal podocytes. It was also reported that CARM1 is necessary for fasting-induced hepatic gluconeogenesis. Based on these reports, we hypothesized that treatment with insulin, a hormone typically present under the ‘fed’ condition, would inhibit gluconeogenesis via CARM1 degradation. HepG2 cells, AML-12 cells, and rat primary hepatocytes were treated with insulin to confirm CARM1 downregulation. Surprisingly, insulin treatment increased CARM1 expression in all cell types examined. Furthermore, treatment with insulin increased histone 3 methylation at arginine 17 and 26 in HepG2 cells. To elucidate the role of insulin-induced CARM1 upregulation, the HA-CARM1 plasmid was transfected into HepG2 cells. CARM1 overexpression did not increase the expression of lipogenic proteins generally increased by insulin signaling. Moreover, CARM1 knockdown did not influence insulin sensitivity. Insulin is known to facilitate hepatic proliferation. Like insulin, CARM1 overexpression increased CDK2 and CDK4 expression. In addition, CARM1 knockdown reduced the number of insulin-induced G2/M phase cells. Moreover, GFP-CARM1 overexpression increased the number of G2/M phase cells. Based on these results, we concluded that insulin-induced CARM1 upregulation facilitates hepatocyte proliferation. These observations indicate that CARM1 plays an important role in liver pathophysiology. - Highlights: • Insulin treatment increases CARM1 expression in hepatocytes. • CARM1 overexpression does not increase the expression of lipogenic proteins. • CARM1 knockdown does not influence insulin sensitivity. • Insulin-induced CARM1 upregulation facilitates hepatocyte proliferation

  10. [Crabtree effect caused by ketoses in isolated rat hepatocytes].

    Science.gov (United States)

    Martínez, P; Carrascosa, J M; Núñez de Castro, I

    1982-01-01

    Oxygen uptake and glycolytic activity were studied in hepatocytes isolated from fed rats. The addition of fructose or tagatose resulted in a 38% and 31% inhibition of cellular respiration respectively. The addition of 10 mM D-glyceraldehyde caused a slight Crabtree effect. Glucose, L-sorbose, or glycerol failed to modify oxygen consumption. Only incubation in the presence of fructose showed a high aerobic glycolysis measured by lactate production.

  11. Hepatocyte polyploidization and its association with pathophysiological processes

    OpenAIRE

    Wang, Min-Jun; Chen, Fei; Lau, Joseph T Y; Hu, Yi-Ping

    2017-01-01

    A characteristic cellular feature of the mammalian liver is the progressive polyploidization of the hepatocytes, where individual cells acquire more than two sets of chromosomes. Polyploidization results from cytokinesis failure that takes place progressively during the course of postnatal development. The proportion of polyploidy also increases with the aging process or with cellular stress such as surgical resection, toxic stimulation, metabolic overload, or oxidative damage, to involve as ...

  12. Functional activity of the rats’ hepatocytes under cancerogenesis

    Directory of Open Access Journals (Sweden)

    V. V. Ivchuk

    2007-10-01

    Full Text Available Enzymatic activity in rat’s hepatocytes under carcinoma Geuren T8 development as well as after introduction of rhenium compounds and cis-platin were studied. It has been determined that the decrease of enzymatic activity contrary to the control animals has been observed under simultaneous injection of cis-platin and cluster rhenium compounds in a liposome form. That confirms possible hepatoprotective properties of the rhenium compounds.

  13. Cholangiocarcinoma in Cirrhosis: Value of Hepatocyte Specific Magnetic Resonance Imaging.

    Science.gov (United States)

    Piscaglia, Fabio; Iavarone, Massimo; Galassi, Marzia; Vavassori, Sara; Renzulli, Matteo; Forzenigo, Laura Virginia; Granito, Alessandro; Salvatore, Veronica; Sangiovanni, Angelo; Golfieri, Rita; Colombo, Massimo; Bolondi, Luigi

    2015-10-01

    The diagnosis of intrahepatic cholangiocellular carcinoma (ICC) remains elusive at imaging, which is a critical issue in cirrhotic patients in whom a diagnosis of hepatocellular carcinoma (HCC) can be established only by imaging. The aim of the study was to evaluate the potential of MRI in the diagnosis of ICC in cirrhosis using 'hepatocyte-specific' Gadolinium (Gd)-based contrast agents. Sixteen histologically proven and retrospectively identified ICCs on cirrhosis were investigated with hepatocyte-specific magnetic resonance contrast agents (6 in Bologna with Gd-EOB-DTPA and 10 in Milan with Gd-BOPTA). The control group consisted of 41 consecutively and prospectively collected nodules (31 HCCs) imaged with Gd-EOB-DTPA. Fifteen ICC nodules (94%) displayed hypointensity in the hepatobiliary phase, suggesting malignancy. Thirteen cholangiocarcinomas (81%) showed hyperenhancement in the venous phase. Only 2 cholangiocarcinoma nodules showed hypoenhancement in the venous phase, corresponding to washout, in both cases preceded by rim enhancement in arterial phase. All the hepatocarcinomas showed hypointensity in hepatobiliary phase, but was always preceded by hypointensity in the venous phase; arterial rim enhancement was never observed in any hepatocarcinoma or regenerative nodule. MRI with hepatocyte-specific Gd-based contrast agents showed a pattern of malignancy in almost all the ICCs, concurrently avoiding misdiagnosis with hepatocarcinoma. These findings suggest a greater diagnostic capacity for this technique compared with the results of MRI with conventional contrast agents reported in the literature in this setting. © 2015 S. Karger AG, Basel.

  14. A fast and robust hepatocyte quantification algorithm including vein processing

    Directory of Open Access Journals (Sweden)

    Homeyer André

    2010-03-01

    Full Text Available Abstract Background Quantification of different types of cells is often needed for analysis of histological images. In our project, we compute the relative number of proliferating hepatocytes for the evaluation of the regeneration process after partial hepatectomy in normal rat livers. Results Our presented automatic approach for hepatocyte (HC quantification is suitable for the analysis of an entire digitized histological section given in form of a series of images. It is the main part of an automatic hepatocyte quantification tool that allows for the computation of the ratio between the number of proliferating HC-nuclei and the total number of all HC-nuclei for a series of images in one processing run. The processing pipeline allows us to obtain desired and valuable results for a wide range of images with different properties without additional parameter adjustment. Comparing the obtained segmentation results with a manually retrieved segmentation mask which is considered to be the ground truth, we achieve results with sensitivity above 90% and false positive fraction below 15%. Conclusions The proposed automatic procedure gives results with high sensitivity and low false positive fraction and can be applied to process entire stained sections.

  15. Adropin induction of lipoprotein lipase expression in tilapia hepatocytes.

    Science.gov (United States)

    Lian, Anji; Wu, Keqiang; Liu, Tianqiang; Jiang, Nan; Jiang, Quan

    2016-01-01

    The peptide hormone adropin plays a role in energy homeostasis. However, biological actions of adropin in non-mammalian species are still lacking. Using tilapia as a model, we examined the role of adropin in lipoprotein lipase (LPL) regulation in hepatocytes. To this end, the structural identity of tilapia adropin was established by 5'/3'-rapid amplification of cDNA ends (RACE). The transcripts of tilapia adropin were ubiquitously expressed in various tissues with the highest levels in the liver and hypothalamus. The prolonged fasting could elevate tilapia hepatic adropin gene expression, whereas no effect of fasting was observed on hypothalamic adropin gene levels. In primary cultures of tilapia hepatocytes, synthetic adropin was effective in stimulating LPL release, cellular LPL content, and total LPL production. The increase in LPL production also occurred with parallel rises in LPL gene levels. In parallel experiments, adropin could elevate cAMP production and up-regulate protein kinase A (PKA) and PKC activities. Using a pharmacological approach, cAMP/PKA and PLC/inositol trisphosphate (IP3)/PKC cascades were shown to be involved in adropin-stimulated LPL gene expression. Parallel inhibition of p38MAPK and Erk1/2, however, were not effective in these regards. Our findings provide, for the first time, evidence that adropin could stimulate LPL gene expression via direct actions in tilapia hepatocytes through the activation of multiple signaling mechanisms. © 2016 Society for Endocrinology.

  16. Homocysteine inhibits hepatocyte proliferation via endoplasmic reticulum stress.

    Directory of Open Access Journals (Sweden)

    Xue Yu

    Full Text Available Homocysteine is an independent risk factor for coronary, cerebral, and peripheral vascular diseases. Recent studies have shown that levels of homocysteine are elevated in patients with impaired hepatic function, but the precise role of homocysteine in the development of hepatic dysfunction is unclear. In this study, we examined the effect of homocysteine on hepatocyte proliferation in vitro. Our results demonstrated that homocysteine inhibited hepatocyte proliferation by up-regulating protein levels of p53 as well as mRNA and protein levels of p21(Cip1 in primary cultured hepatocytes. Homocysteine induced cell growth arrest in p53-positive hepatocarcinoma cell line HepG2, but not in p53-null hepatocarcinoma cell line Hep3B. A p53 inhibitor pifithrin-α inhibited the expression of p21(Cip1 and attenuated homocysteine-induced cell growth arrest. Homocysteine induced TRB3 expression via endoplasmic reticulum stress pathway, resulting in Akt dephosphorylation. Knock-down of endogenous TRB3 significantly suppressed the inhibitory effect of homocysteine on cell proliferation and the phosphorylation of Akt. LiCl reversed homocysteine-mediated cell growth arrest by inhibiting TRB3-mediated Akt dephosphorylation. These results demonstrate that both TRB3 and p21(Cip1 are critical molecules in the homocysteine signaling cascade and provide a mechanistic explanation for impairment of liver regeneration in hyperhomocysteinemia.

  17. Evaluation of the human relevance of the constitutive androstane receptor-mediated mode of action for rat hepatocellular tumor formation by the synthetic pyrethroid momfluorothrin.

    Science.gov (United States)

    Okuda, Yu; Kushida, Masahiko; Kikumoto, Hiroko; Nakamura, Yoshimasa; Higuchi, Hashihiro; Kawamura, Satoshi; Cohen, Samuel M; Lake, Brian G; Yamada, Tomoya

    2017-01-01

    High dietary levels of the non-genotoxic synthetic pyrethroid momfluorothrin increased the incidence of hepatocellular tumors in male and female Wistar rats. Mechanistic studies have demonstrated that the mode of action (MOA) for momfluorothrin-induced hepatocellular tumors is constitutive androstane receptor (CAR)-mediated. In the present study, to evaluate the potential human carcinogenic risk of momfluorothrin, the effects of momfluorothrin (1-1,000 µM) and a major metabolite Z-CMCA (5-1,000 µM) on hepatocyte replicative DNA synthesis and CYP2B mRNA expression were examined in cultured rat and human hepatocyte preparations. The effect of sodium phenobarbital (NaPB), a prototypic rodent hepatocarcinogen with a CAR-mediated MOA, was also investigated. Human hepatocyte growth factor (hHGF) produced a concentration-dependent increase in replicative DNA synthesis in rat and human hepatocytes. However, while NaPB and momfluorothrin increased replicative DNA synthesis in rat hepatocytes, NaPB, momfluorothrin and Z-CMCA did not increase replicative DNA synthesis in human hepatocytes. NaPB, momfluorothrin and Z-CMCA increased CYP2B1/2 mRNA levels in rat hepatocytes. NaPB and momfluorothrin also increased CYP2B6 mRNA levels in human hepatocytes. Overall, while momfluorothrin and NaPB activated CAR in cultured human hepatocytes, neither chemical increased replicative DNA synthesis. Furthermore, to confirm whether the findings observed in vitro were also observed in vivo, a humanized chimeric mouse study was conducted. Replicative DNA synthesis was not increased in human hepatocytes of chimeric mice treated with momfluorothrin or its close structural analogue metofluthrin. As human hepatocytes are refractory to the mitogenic effects of momfluorothrin, in contrast to rat hepatocytes, the data support the hypothesis that the MOA for momfluorothrin-induced rat liver tumor formation is not relevant for humans.

  18. A CERN flag is set to wave up in the Himalayas

    CERN Multimedia

    Roberto Cantoni

    2010-01-01

    On 18 October, Hubert Reymond, from the Industrial Controls and Engineering group of the EN Department, will be leaving to Nepal with a CERN flag in his backpack. He will place it at the highest point of his trek across the Annapurna mountains in the Himalayas, Thorong La pass, at 5,416 m above sea level.   A view of the Annapurna mountains (source: www.flickr.com/minutesalone) “Is there any official CERN flag I can carry with me during my trek through Nepal?” Some days ago, the Press Office was confronted with this unusual (but see box) question from Hubert Reymond. From 18 October to 10 November, Reymond, who works as an industrial computing engineer in the EN Department, will be trekking across the 55 km-long Annapurna massif in the Himalayas, whose highest point lies at 8,091 m (making it the 10th-highest summit in the world). The area is well-known to trekkers from around the world, as it includes several world-class circuits, including the Annapurna circuit which Reym...

  19. Flagging optically shallow pixels for improved analysis of ocean color data

    Science.gov (United States)

    McKinna, L. I. W.; Werdell, J.; Knowles, D., Jr.

    2016-02-01

    Ocean color remote-sensing is routinely used to derive marine geophysical parameters from sensor-observed water-leaving radiances. However, in clear geometrically shallow regions, traditional ocean color algorithms can be confounded by light reflected from the seafloor. Such regions are typically referred to as "optically shallow". When performing spatiotemporal analyses of ocean color datasets, optically shallow features such as coral reefs can lead to unexpected regional biases. Benthic contamination of the water-leaving radiance is dependent on bathymetry, water clarity and seafloor albedo. Thus, a prototype ocean color processing flag called OPTSHAL has been developed that takes all three variables into account. In the method described here, the optical depth of the water column at 547 nm, ζ(547), is predicted from known bathymetry and estimated inherent optical properties. If ζ(547) is less then the pre-defined threshold, a pixel is flagged as optically shallow. Radiative transfer modeling was used to identify the appropriate threshold value of ζ(547) for a generic benthic sand albedo. OPTSHAL has been evaluated within the NASA Ocean Biology Processing Group's L2GEN code. Using MODIS Aqua imagery, OPTSHAL was tested in two regions: (i) the Pedro Bank south-west of Jamaica, and (ii) the Great Barrier Reef, Australia. It is anticipated that OPTSHAL will benefit end-users when quality controlling derived ocean color products. Further, OPTSHAL may prove useful as a mechanism for switching between optically deep and shallow algorithms during ocean color processing.

  20. The blood-stained flags of liberty – The struggle for adequate signs of identity in New Caledonia

    Directory of Open Access Journals (Sweden)

    Lindenmann, Peter

    2014-09-01

    Full Text Available The Nouméa treaty of 1998 that created the framework for the transition of New Caledonia from a French overseas territory towards emancipation provided also for the creation of new identity markers. Lacking a shared understanding of history and a common vision for the future, the process of adopting a flag was blocked for more than ten years. As an intermediate solution the flag of the Kanak independence movement is hoisted side by side to the French tricolour since 2010. While some loyalist parties continue to campaign for a common flag, pro-independence parties are waiting to descend the tricolour, and others would favor the status quo. The unresolved question of the right symbol is also a reflection of the uncertain political future as the referendum on independence looms.

  1. Regulation of the G1/S Transition in Hepatocytes: Involvement of the Cyclin-Dependent Kinase Cdk1 in the DNA Replication

    Directory of Open Access Journals (Sweden)

    Anne Corlu

    2012-01-01

    Full Text Available A singular feature of adult differentiated hepatocytes is their capacity to proliferate allowing liver regeneration. This review emphasizes the literature published over the last 20 years that established the most important pathways regulating the hepatocyte cell cycle. Our article also aimed at illustrating that many discoveries in this field benefited from the combined use of in vivo models of liver regeneration and in vitro models of primary cultures of human and rodent hepatocytes. Using these models, our laboratory has contributed to decipher the different steps of the progression into the G1 phase and the commitment to S phase of proliferating hepatocytes. We identified the mitogen dependent restriction point located at the two-thirds of the G1 phase and the concomitant expression and activation of both Cdk1 and Cdk2 at the G1/S transition. Furthermore, we demonstrated that these two Cdks contribute to the DNA replication. Finally, we provided strong evidences that Cdk1 expression and activation is correlated to extracellular matrix degradation upon stimulation by the pro-inflammatory cytokine TNFα leading to the identification of a new signaling pathway regulating Cdk1 expression at the G1/S transition. It also further confirms the well-orchestrated regulation of liver regeneration via multiple extracellular signals and pathways.

  2. Differential Impacts of Soybean and Fish Oils on Hepatocyte Lipid Droplet Accumulation and Endoplasmic Reticulum Stress in Primary Rabbit Hepatocytes

    OpenAIRE

    Zhu, Xueping; Xiao, Zhihui; Xu, Yumin; Zhao, Xingli; Cheng, Ping; Cui, Ningxun; Cui, Mingling; Li, Jie; Zhu, Xiaoli

    2016-01-01

    Parenteral nutrition-associated liver disease (PNALD) is a severe ailment associated with long-term parenteral nutrition. Soybean oil-based lipid emulsions (SOLE) are thought to promote PNALD development, whereas fish oil-based lipid emulsions (FOLE) are thought to protect against PNALD. This study aimed to investigate the effects of SOLE and FOLE on primary rabbit hepatocytes. The results reveal that SOLE caused significant endoplasmic reticulum (ER) and mitochondrial damage, ultimately resu...

  3. Physiological and Biochemical Characteristics in Flag Leaves of the C Liangyou Series of Hybrid Rice Combinations at Late Growth Stages

    Directory of Open Access Journals (Sweden)

    Wen-bang TANG

    2010-12-01

    Full Text Available The contents of chlorophyll, soluble sugars, soluble proteins and thiobarbituric acid reaction substance (TBARS, chlorophyll fluorescence parameters, net photosynthetic rate as well as the activities of superoxide dismutase (SOD and peroxidase (POD of flag leaves at the late growth stages were studied by using C Liangyou series of hybrid rice combinitions as material and Shanyou 63 as control. The C Liangyou series of hybrid rice combinations used in the experiment included C Liangyou 396, C Liangyou 87, C Liangyou 755 and C Liangyou 34, which all used C815S as male sterile line. The contents of chlorophyll, soluble sugars and soluble proteins in flag leaves of the C Liangyou series combinations at the late growth stages were higher than those of the control, whereas the TBARS content was lower than that of the control. The activities of SOD and POD were significantly higher than those of the control on the 7th day after heading, and then decreased slowly. FPSII value and qP value of flag leaves decreased at the late growth stages, and these two parameters in flag leaves of the C Liangyou series combinations were higher than those of the control, while the qN value increased at the late growth stages and was lower than that of the control. The net photosynthetic rate of flag leaves at the late growth stage was higher compared with the control. These results suggest that slow senescence and strong photosynthetic capability in flag leaves at the late growth stages are the physiological basis of the C Liangyou series combinations.

  4. Differential Impacts of Soybean and Fish Oils on Hepatocyte Lipid Droplet Accumulation and Endoplasmic Reticulum Stress in Primary Rabbit Hepatocytes

    Directory of Open Access Journals (Sweden)

    Xueping Zhu

    2016-01-01

    Full Text Available Parenteral nutrition-associated liver disease (PNALD is a severe ailment associated with long-term parenteral nutrition. Soybean oil-based lipid emulsions (SOLE are thought to promote PNALD development, whereas fish oil-based lipid emulsions (FOLE are thought to protect against PNALD. This study aimed to investigate the effects of SOLE and FOLE on primary rabbit hepatocytes. The results reveal that SOLE caused significant endoplasmic reticulum (ER and mitochondrial damage, ultimately resulting in lipid droplets accumulation and ER stress. While these deleterious events induce hepatocyte injury, FOLE at high doses cause only minor ER and mitochondrial damage, which has no effect on hepatic function. SOLE also significantly upregulated glucose-regulated protein 94 mRNA and protein expression. These data indicate that SOLE, but not FOLE, damage the ER and mitochondria, resulting in lipid droplets accumulation and ER stress and, finally, hepatocyte injury. This likely contributes to the differential impacts of SOLE and FOLE on PNALD development and progression.

  5. Development of a high-throughput in vitro assay using a novel Caco-2/rat hepatocyte system for the prediction of oral plasma area under the concentration versus time curve (AUC) in rats.

    Science.gov (United States)

    Cheng, K-C; Li, Cheng; Hsieh, Yunsheng; Montgomery, Diana; Liu, Tongtong; White, Ronald E

    2006-01-01

    Previously, we have shown that a novel Caco-2/human hepatocyte system is a useful model for the prediction of oral bioavailability in humans. In this study, we attempted to use a similar system in a high-throughput screening mode for the selection of new compound entities (NCE) in drug discovery. A total of 72 compounds randomly selected from three different chemotypes were dosed orally in rats. In vivo plasma area under the concentration versus time curve (AUC) from 0-6 h of the parent compound was determined. The same compounds were also tested in the Caco-2/rat hepatocyte system. In vitro AUC from 0-3 h in the Caco-2 rat hepatocyte system was determined. The predictive usefulness of the Caco-2/rat hepatocyte system was evaluated by comparing the in vivo plasma AUC and the in vitro AUC. Linear regression analysis showed a reasonable correlation (R2 = 0.5) between the in vivo AUC and the in vitro AUC. Using 0.4 microM h in vivo AUC as a cut-off, compounds were categorized as either low or high AUC. The in vitro AUC successfully matched the corresponding in vivo category for sixty-three out of seventy-two compounds. The results presented in this study suggest that the Caco-2/rat hepatocyte system may be used as a high-throughput screen in drug discovery for pharmacokinetic behaviors of compounds in rats.

  6. Superstring field theories on super-flag manifolds: superdiff S1/S1 and superdiff S1/super S1

    International Nuclear Information System (INIS)

    Zhao Zhiyong; Wu, Ke; Saito, Takesi

    1987-01-01

    We generalize the geometric approach of Bowick and Rajeev [BR] to superstring field theories. The anomaly is identified with nonvanishing of the Ricci curvature of the super-flag manifold. We explicitly calculate the curvatures of superdiff S 1 /S 1 and superdiff S 1 /superS 1 using super-Toeplitz operator techniques. No regularization is needed in this formalism. The critical dimension D=10 is rediscovered as a result of vanishing curvature of the product bundle over the super-flag manifold. (orig.)

  7. Lipidomic profiling of patient-specific iPSC-derived hepatocyte-like cells

    Directory of Open Access Journals (Sweden)

    Mostafa Kiamehr

    2017-09-01

    Full Text Available Hepatocyte-like cells (HLCs differentiated from human induced pluripotent stem cells (iPSCs offer an alternative model to primary human hepatocytes to study lipid aberrations. However, the detailed lipid profile of HLCs is yet unknown. In the current study, functional HLCs were differentiated from iPSCs generated from dermal fibroblasts of three individuals by a three-step protocol through the definitive endoderm (DE stage. In parallel, detailed lipidomic analyses as well as gene expression profiling of a set of lipid-metabolism-related genes were performed during the entire differentiation process from iPSCs to HLCs. Additionally, fatty acid (FA composition of the cell culture media at different stages was determined. Our results show that major alterations in the molecular species of lipids occurring during DE and early hepatic differentiation stages mainly mirror the quality and quantity of the FAs supplied in culture medium at each stage. Polyunsaturated phospholipids and sphingolipids with a very long FA were produced in the cells at a later stage of differentiation. This work uncovers the previously unknown lipid composition of iPSC-HLCs and its alterations during the differentiation in conjunction with the expression of key lipid-associated genes. Together with biochemical, functional and gene expression measurements, the lipidomic analyses allowed us to improve our understanding of the concerted influence of the exogenous metabolite supply and cellular biosynthesis essential for iPSC-HLC differentiation and function. Importantly, the study describes in detail a cell model that can be applied in exploring, for example, the lipid metabolism involved in the development of fatty liver disease or atherosclerosis.

  8. Basal transcription of APOBEC3G is regulated by USF1 gene in hepatocyte

    Energy Technology Data Exchange (ETDEWEB)

    Zeng, Yanli [Department of Infectious Diseases, Zhengzhou University People' s Hospital (Henan Provincial People' s Hospital), Zhengzhou, 450003 (China); Li, Hui [The Central Hospital of Wuhan, Tongji Medical College Huazhong University of Science Technology, Wuhan, 430000 (China); Zhang, Xiaoju [Department of Respiratory Medicine, Zhengzhou University People' s Hospital (Henan Provincial People' s Hospital), Zhengzhou, 450003 (China); Shang, Jia [Department of Infectious Diseases, Zhengzhou University People' s Hospital (Henan Provincial People' s Hospital), Zhengzhou, 450003 (China); Kang, Yi, E-mail: kykangyi@163.com [Department of Infectious Diseases, Zhengzhou University People' s Hospital (Henan Provincial People' s Hospital), Zhengzhou, 450003 (China)

    2016-01-29

    Apolipoprotein B mRNA-editing enzyme catalytic polypeptide-like 3G (APOBEC3G, A3G) exert antiviral defense as an important factor of innate immunity. A variety of cytokines such as IFN-γ,IL2,IL15,IL7 could induce the transcription of A3G. However, the regulation of other nuclear factor on the transcription of A3G have not been reported at the present. To gain new insights into the transcriptional regulation of this restriction factor, we cloned and characterized the promoter region of A3G and investigate the modulation of USF1 gene on the transcription of A3G. We identified a 232 bp region that was sufficient to regulate the activity of full promoter. Transcriptional start sites (TSS) were identified by the luciferase reporter assays of plasmids containing full or shorter fragments of the A3G promoter. The results demonstrated that the core promoter of A3G is located within the region -159/-84 relative to the TSS. Transcriptional activity of A3G core promoter regulated by USF1 was dependent on an E-box (located at position -91/-86 relative to the major TSS) and was abolished after mutation of this DNA element. USF1 gene can take part in basal transcription regulation of the human A3G gene in hepatocyte, and the identified E-box represented a binding site for the USF1. - Highlights: • The core promoter of A3G is located within the region −159/−84 relative to the TSS. • Transcriptional activity of A3G core promoter regulated by USF1 was dependent on an E-box (located at position −91/−86 relative to the major TSS). • USF1 gene can take part in basal transcription regulation of the human A3G gene in hepatocyte.

  9. Differential gene expression analysis of in vitro duck hepatitis B virus infected primary duck hepatocyte cultures

    Directory of Open Access Journals (Sweden)

    Issac Aneesh

    2011-07-01

    Full Text Available Abstract Background The human hepatitis B virus (HBV, a member of the hepadna viridae, causes acute or chronic hepatitis B, and hepatocellular carcinoma (HCC. The duck hepatitis B virus (DHBV infection, a dependable and reproducible model for hepadna viral studies, does not result in HCC unlike chronic HBV infection. Information on differential gene expression in DHBV infection might help to compare corresponding changes during HBV infection, and to delineate the reasons for this difference. Findings A subtractive hybridization cDNA library screening of in vitro DHBV infected, cultured primary duck hepatocytes (PDH identified cDNAs of 42 up-regulated and 36 down-regulated genes coding for proteins associated with signal transduction, cellular respiration, transcription, translation, ubiquitin/proteasome pathway, apoptosis, and membrane and cytoskeletal organization. Those coding for both novel as well as previously reported proteins in HBV/DHBV infection were present in the library. An inverse modulation of the cDNAs of ten proteins, reported to play role in human HCC, such as that of Y-box binding protein1, Platelet-activating factor acetylhydrolase isoform 1B, ribosomal protein L35a, Ferritin, α-enolase, Acid α-glucosidase and Caspase 3, copper-zinc superoxide dismutase (CuZnSOD, Filamin and Pyruvate dehydrogenase, was also observed in this in vitro study. Conclusions The present study identified cDNAs of a number of genes that are differentially modulated in in vitro DHBV infection of primary duck hepatocytes. Further correlation of this differential gene expression in in vivo infection models would be valuable to understand the little known aspects of the hepadnavirus biology.

  10. Basal transcription of APOBEC3G is regulated by USF1 gene in hepatocyte

    International Nuclear Information System (INIS)

    Zeng, Yanli; Li, Hui; Zhang, Xiaoju; Shang, Jia; Kang, Yi

    2016-01-01

    Apolipoprotein B mRNA-editing enzyme catalytic polypeptide-like 3G (APOBEC3G, A3G) exert antiviral defense as an important factor of innate immunity. A variety of cytokines such as IFN-γ,IL2,IL15,IL7 could induce the transcription of A3G. However, the regulation of other nuclear factor on the transcription of A3G have not been reported at the present. To gain new insights into the transcriptional regulation of this restriction factor, we cloned and characterized the promoter region of A3G and investigate the modulation of USF1 gene on the transcription of A3G. We identified a 232 bp region that was sufficient to regulate the activity of full promoter. Transcriptional start sites (TSS) were identified by the luciferase reporter assays of plasmids containing full or shorter fragments of the A3G promoter. The results demonstrated that the core promoter of A3G is located within the region -159/-84 relative to the TSS. Transcriptional activity of A3G core promoter regulated by USF1 was dependent on an E-box (located at position -91/-86 relative to the major TSS) and was abolished after mutation of this DNA element. USF1 gene can take part in basal transcription regulation of the human A3G gene in hepatocyte, and the identified E-box represented a binding site for the USF1. - Highlights: • The core promoter of A3G is located within the region −159/−84 relative to the TSS. • Transcriptional activity of A3G core promoter regulated by USF1 was dependent on an E-box (located at position −91/−86 relative to the major TSS). • USF1 gene can take part in basal transcription regulation of the human A3G gene in hepatocyte.

  11. DNA synthesis in periportal and perivenous hepatocytes of intact and hepatectomized young mice.

    Science.gov (United States)

    Fernández-Blanco, A; Inda, A M; Errecalde, A L

    2015-01-01

    DNA synthesis of hepatocytes in two areas of Intact and Hepatectomized young mice liver along a circadian period was studied. DNA synthesis was significantly different at all analyzed time points in Intact and Hepatectomized animals. Differences between periportal and perivenous hepatocytes were found in hepatectomized animals at 04/42 and 08/46 hr of day/hour post-hepatectomy. DNAs peak in periportal hepatocytes regenerating liver occurs 4 hr earlier than in perivenous hepatocytes, probably reflecting their shorter G1 phase. Besides, daily mean values of regenerating livers were higher than those observed in Intact animals, as a consequence of surgical removal.

  12. Cholesterol Enhances the Toxic Effect of Ethanol and Acetaldehyde in Primary Mouse Hepatocytes

    Directory of Open Access Journals (Sweden)

    Anayelly López-Islas

    2016-01-01

    Full Text Available Obesity and alcohol consumption are risk factors for hepatic steatosis, and both commonly coexist. Our objective was to evaluate the effect of ethanol and acetaldehyde on primary hepatocytes obtained from mice fed for two days with a high cholesterol (HC diet. HC hepatocytes increased lipid and cholesterol content. HC diet sensitized hepatocytes to the toxic effect of ethanol and acetaldehyde. Cyp2E1 content increased with HC diet, as well as in those treated with ethanol or acetaldehyde, while the activity of this enzyme determined in microsomes increased in the HC and in all ethanol treated hepatocytes, HC and CW. Oxidized proteins were increased in the HC cultures treated or not with the toxins. Transmission electron microscopy showed endoplasmic reticulum (ER stress and megamitochondria in hepatocytes treated with ethanol as in HC and the ethanol HC treated hepatocytes. ER stress determined by PERK content was increased in ethanol treated hepatocytes from HC mice and CW. Nuclear translocation of ATF6 was observed in HC hepatocytes treated with ethanol, results that indicate that lipids overload and ethanol treatment favor ER stress. Oxidative stress, ER stress, and mitochondrial damage underlie potential mechanisms for increased damage in steatotic hepatocyte treated with ethanol.

  13. Lack of direct mitogenic activity of dichloroacetate and trichloroacetate in cultured rat hepatocytes

    International Nuclear Information System (INIS)

    Walgren, Jennie L.; Kurtz, David T.; McMillan, JoEllyn M.

    2005-01-01

    Dichloroacetate (DCA) and trichloroacetate (TCA) are hepatocarcinogenic metabolites of the common groundwater contaminant, 1,1,2-trichloroethylene. DCA and TCA have been shown to induce hepatocyte proliferation in vivo, but it is not known if this response is the result of direct mitogenic activity or whether cell replication occurs indirectly in response to tissue injury or inflammation. In this study we used primary cultures of rat hepatocytes, a species susceptible to DCA- but not TCA-induced hepatocarcinogenesis, to determine whether DCA and TCA are direct hepatocyte mitogens. Rat hepatocytes, cultured in growth factor-free medium, were treated with 0.01-1.0 mM DCA or TCA for 10-40 h; cell replication was then assessed by measuring incorporation of 3 H-thymidine into DNA and by cell counts. DCA or TCA treatment did not alter 3 H-thymidine incorporation in the cultured hepatocytes. Although an increase in cell number was not observed, DCA treatment significantly abrogated the normal background cell loss, suggesting an ability to inhibit apoptotic cell death in primary hepatocyte cultures. Furthermore, treatment with DCA synergistically enhanced the mitogenic response to epidermal growth factor. The data indicate that DCA and TCA are not direct mitogens in hepatocyte cultures, which is of interest in view of their ability to stimulate hepatocyte replication in vivo. Nevertheless, the synergistic enhancement of epidermal growth factor-induced hepatocyte replication by DCA is of particular interest and warrants further study

  14. Gel entrapment culture of rat hepatocytes for investigation of tetracycline-induced toxicity

    International Nuclear Information System (INIS)

    Shen Chong; Meng Qin; Schmelzer, Eva; Bader, Augustinus

    2009-01-01

    This paper aimed to explore three-dimensionally cultured hepatocytes for testing drug-induced nonalcoholic steatohepatitis. Gel entrapped rat hepatocytes were applied for investigation of the tetracycline-induced steatohepatitis, while hepatocyte monolayer was set as a control. The toxic responses of hepatocytes were systematically evaluated by measuring cell viability, liver-specific function, lipid accumulation, oxidative stress, adenosine triphosphate content and mitochondrial membrane potential. The results suggested that gel entrapped hepatocytes showed cell death after 96 h of tetracycline treatment at 25 μM which is equivalent to toxic serum concentration in rats, while hepatocyte monolayer showed cell death at a high dose of 200 μM. The concentration-dependent accumulation of lipid as well as mitochondrial damage were regarded as two early events for tetracycline hepatotoxicity in gel entrapment culture due to their detectability ahead of subsequent increase of oxidative stress and a final cell death. Furthermore, the potent protection of fenofibrate and fructose-1,6-diphosphate were evidenced in only gel entrapment culture with higher expressions on the genes related to β-oxidation than hepatocyte monolayer, suggesting the mediation of lipid metabolism and mitochondrial damage in tetracycline toxicity. Overall, gel entrapped hepatocytes in three-dimension reflected more of the tetracycline toxicity in vivo than hepatocyte monolayer and thus was suggested as a more relevant system for evaluating steatogenic drugs.

  15. Donor-Dependent and Other Nondefined Factors Have Greater Influence on the Hepatic Phenotype Than the Starting Cell Type in Induced Pluripotent Stem Cell Derived Hepatocyte-Like Cells.

    Science.gov (United States)

    Heslop, James A; Kia, Richard; Pridgeon, Christopher S; Sison-Young, Rowena L; Liloglou, Triantafillos; Elmasry, Mohamed; Fenwick, Stephen W; Mills, John S; Kitteringham, Neil R; Goldring, Chris E; Park, Bong K

    2017-05-01

    Drug-induced liver injury is the greatest cause of post-marketing drug withdrawal; therefore, substantial resources are directed toward triaging potentially dangerous new compounds at all stages of drug development. One of the major factors preventing effective screening of new compounds is the lack of a predictive in vitro model of hepatotoxicity. Primary human hepatocytes offer a metabolically relevant model for which the molecular initiating events of hepatotoxicity can be examined; however, these cells vary greatly between donors and dedifferentiate rapidly in culture. Induced pluripotent stem cell (iPSC)-derived hepatocyte-like cells (HLCs) offer a reproducible, physiologically relevant and genotypically normal model cell; however, current differentiation protocols produce HLCs with a relatively immature phenotype. During the reprogramming of somatic cells, the epigenome undergoes dramatic changes; however, this "resetting" is a gradual process, resulting in an altered differentiation propensity, skewed toward the lineage of origin, particularly in early passage cultures. We, therefore, performed a comparison of human hepatocyte- and dermal fibroblast-derived iPSCs, assessing the impact of epigenetic memory at all stages of HLC differentiation. These results provide the first isogenic assessment of the starting cell type in human iPSC-derived HLCs. Despite a trend toward improvement in hepatic phenotype in albumin secretion and gene expression, few significant differences in hepatic differentiation capacity were found between hepatocyte and fibroblast-derived iPSCs. We conclude that the donor and inter-clonal differences have a greater influence on the hepatocyte phenotypic maturity than the starting cell type. Therefore, it is not necessary to use human hepatocytes for generating iPSC-derived HLCs. Stem Cells Translational Medicine 2017;6:1321-1331. © 2017 The Authors Stem Cells Translational Medicine published by Wiley Periodicals, Inc. on behalf of Alpha

  16. Magnetic cell labeling of primary and stem cell-derived pig hepatocytes for MRI-based cell tracking of hepatocyte transplantation.

    Directory of Open Access Journals (Sweden)

    Dwayne R Roach

    Full Text Available Pig hepatocytes are an important investigational tool for optimizing hepatocyte transplantation schemes in both allogeneic and xenogeneic transplant scenarios. MRI can be used to serially monitor the transplanted cells, but only if the hepatocytes can be labeled with a magnetic particle. In this work, we describe culture conditions for magnetic cell labeling of cells from two different pig hepatocyte cell sources; primary pig hepatocytes (ppHEP and stem cell-derived hepatocytes (PICM-19FF. The magnetic particle is a micron-sized iron oxide particle (MPIO that has been extensively studied for magnetic cell labeling for MRI-based cell tracking. ppHEP could endocytose MPIO with labeling percentages as high as 70%, achieving iron content as high as ~55 pg/cell, with >75% viability. PICM-19FF had labeling >97%, achieving iron content ~38 pg/cell, with viability >99%. Extensive morphological and functional assays indicated that magnetic cell labeling was benign to the cells. The results encourage the use of MRI-based cell tracking for the development and clinical use of hepatocyte transplantation methodologies. Further, these results generally highlight the importance of functional cell assays in the evaluation of contrast agent biocompatibility.

  17. Early protection events in swine immunized with an experimental live attenuated classical swine fever marker vaccine, FlagT4G.

    Directory of Open Access Journals (Sweden)

    Lauren G Holinka

    Full Text Available Prophylactic vaccination using live attenuated classical swine fever (CSF vaccines has been a very effective method to control the disease in endemic regions and during outbreaks in previously disease-free areas. These vaccines confer effective protection against the disease at early times post-vaccination although the mechanisms mediating the protection are poorly characterized. Here we present the e