WorldWideScience

Sample records for fixed field intensity

  1. Fixed or adapted conditioning intensity for repeated conditioned pain modulation.

    Science.gov (United States)

    Hoegh, M; Petersen, K K; Graven-Nielsen, T

    2017-12-29

    Aims Conditioned pain modulation (CPM) is used to assess descending pain modulation through a test stimulation (TS) and a conditioning stimulation (CS). Due to potential carry-over effects, sequential CPM paradigms might alter the intensity of the CS, which potentially can alter the CPM-effect. This study aimed to investigate the difference between a fixed and adaptive CS intensity on CPM-effect. Methods On the dominant leg of 20 healthy subjects the cuff pressure detection threshold (PDT) was recorded as TS and the pain tolerance threshold (PTT) was assessed on the non-dominant leg for estimating the CS. The difference in PDT before and during CS defined the CPM-effect. The CPM-effect was assessed four times using a CS with intensities of 70% of baseline PTT (fixed) or 70% of PTT measured throughout the session (adaptive). Pain intensity of the conditioning stimulus was assessed on a numeric rating scale (NRS). Data were analyzed with repeated-measures ANOVA. Results No difference was found comparing the four PDTs assessed before CSs for the fixed and the adaptive paradigms. The CS pressure intensity for the adaptive paradigm was increasing during the four repeated assessments (P CPM-effect was higher using the fixed condition compared with the adaptive condition (P CPM paradigms using a fixed conditioning stimulus produced an increased CPM-effect compared with adaptive and increasing conditioning intensities.

  2. Effects of distance from center of a weld to fixed end on residual stress and stress intensity factor of a piping weld. Evaluation of SCC growth under residual stress field. Report 1

    International Nuclear Information System (INIS)

    Miyazaki, Katsumasa; Numata, Masanori; Saito, Koichi; Mochizuki, Masahito

    2006-01-01

    The fixed conditions of butt welds between straight pipe and valve or pump in the actual piping system are different from those of straight pipes. However, the effect of fixed condition on the residual stress and the stress intensity factor for evaluation of structural integrity of cracked piping was not clear. In this study, the finite element analyses were conducted by considering the differences in the distance from the center of weld to the fixed end L to clarify the effect of fixed condition on the residual stress and the stress intensity factor. For the 600 A piping, the axial residual stress distribution was not affected by the distance L. Furthermore, the stress intensity factor of circumferential crack under the residual stress field with fixed condition could be estimated by using the existing simplified solution for piping. (author)

  3. Intense field stabilization in circular polarization: Three-dimensional time-dependent dynamics

    International Nuclear Information System (INIS)

    Choi, Dae-Il; Chism, Will

    2002-01-01

    We investigate the stabilization of hydrogen atoms in a circularly polarized laser field. We use a three-dimensional, time-dependent approach to study the quantum dynamics of hydrogen atoms subject to high-intensity, short-wavelength, laser pulses. We find an enhanced survival probability as the field is increased under fixed envelope conditions. We also confirm wave packet behaviors previously seen in two-dimensional time-dependent computations

  4. Vertical orbit excursion fixed field alternating gradient accelerators

    Directory of Open Access Journals (Sweden)

    Stephen Brooks

    2013-08-01

    Full Text Available Fixed field alternating gradient (FFAG accelerators with vertical orbit excursion (VFFAGs provide a promising alternative design for rings with fixed-field superconducting magnets. They have a vertical magnetic field component that increases with height in the vertical aperture, yielding a skew quadrupole focusing structure. Scaling-type VFFAGs are found with fixed tunes and no intrinsic limitation on momentum range. This paper presents the first multiparticle tracking of such machines. Proton driver rings to accelerate the 800 MeV beam from the ISIS synchrotron are presented, in terms of both magnet field geometry and longitudinal behavior during acceleration with space charge. The 12 GeV ring produces an output power of at least 2.18 MW. Possible applications of VFFAGs to waste transmutation, hadron therapy, and energy-recovery electron accelerators are also discussed.

  5. Optimal field splitting for large intensity-modulated fields

    International Nuclear Information System (INIS)

    Kamath, Srijit; Sahni, Sartaj; Ranka, Sanjay; Li, Jonathan; Palta, Jatinder

    2004-01-01

    The multileaf travel range limitations on some linear accelerators require the splitting of a large intensity-modulated field into two or more adjacent abutting intensity-modulated subfields. The abutting subfields are then delivered as separate treatment fields. This workaround not only increases the treatment delivery time but it also increases the total monitor units (MU) delivered to the patient for a given prescribed dose. It is imperative that the cumulative intensity map of the subfields is exactly the same as the intensity map of the large field generated by the dose optimization algorithm, while satisfying hardware constraints of the delivery system. In this work, we describe field splitting algorithms that split a large intensity-modulated field into two or more intensity-modulated subfields with and without feathering, with optimal MU efficiency while satisfying the hardware constraints. Compared to a field splitting technique (without feathering) used in a commercial planning system, our field splitting algorithm (without feathering) shows a decrease in total MU of up to 26% on clinical cases and up to 63% on synthetic cases

  6. Left-sided breast cancer irradiation using rotational and fixed-field radiotherapy

    International Nuclear Information System (INIS)

    Qi, X. Sharon; Liu, Tian X.; Liu, Arthur K.; Newman, Francis; Rabinovitch, Rachel; Kavanagh, Brian; Hu, Y. Angie

    2014-01-01

    The 3-dimensional conformal radiotherapy (3DCRT) technique is the standard for breast cancer radiotherapy. During treatment planning, not only the coverage of the planning target volume (PTV) but also the minimization of the dose to critical structures, such as the lung, heart, and contralateral breast tissue, need to be considered. Because of the complexity and variations of patient anatomy, more advanced radiotherapy techniques are sometimes desired to better meet the planning goals. In this study, we evaluated external-beam radiation treatment techniques for left breast cancer using various delivery platforms: fixed-field including TomoDirect (TD), static intensity-modulated radiotherapy (sIMRT), and rotational radiotherapy including Elekta volumetric-modulated arc therapy (VMAT) and tomotherapy helical (TH). A total of 10 patients with left-sided breast cancer who did or did not have positive lymph nodes and were previously treated with 3DCRT/sIMRT to the entire breast were selected, their treatment was planned with Monaco VMAT, TD, and TH. Dosimetric parameters including PTV coverage, organ-at-risk (OAR) sparing, dose-volume histograms, and target minimum/maximum/mean doses were evaluated. It is found that for plans providing comparable PTV coverage, the Elekta VMAT plans were generally more inhomogeneous than the TH and TD plans. For the cases with regional node involvement, the average mean doses administered to the heart were 9.2 (± 5.2) and 8.8 (± 3.0) Gy in the VMAT and TH plans compared with 11.9 (± 6.4) and 11.8 (± 9.2) Gy for the 3DCRT and TD plans, respectively, with slightly higher doses given to the contralateral lung or breast or both. On average, the total monitor units for VMAT plans are 11.6% of those TH plans. Our studies have shown that VMAT and TH plans offer certain dosimetric advantages over fixed-field IMRT plans for advanced breast cancer requiring regional nodal treatment. However, for early-stage breast cancer fixed-field

  7. Comparison of RapidArc plans and fixed field intensity modulated radiotherapy planning in cervical cancer radiotherapy

    International Nuclear Information System (INIS)

    Liu Xiangyu; Liu Xianfeng; He Ya'nan; Yin Wenjuan; Wu Yongzhong

    2011-01-01

    Objective: To explore the advantages and disadvantages between the RapidArc plans and fixed-field IMRT plan (IMRT). Methods: Ten cases of cervical cancer,aged 55 (36-70), who were to receive post-operative radiotherapy were selected randomly. Single arc (Arc 1), two arcs (Arc 2), and three arc (Arc 3) RapidArc plans and fixed-field IMRT plan were designed respectively in the Eclipse 8.6 planning system. The designing, treatment time, target area, and dose distribution of organs at risk by these 4 planning techniques were compared. Results: The values of average planned treatment time by the Arc 1, Arc 2, and Arc 3 ten cases was 98, 155, 185, and 46 min, respectively. The values of average treatment time in the Varian IX accelerator were 2.15, 3.32, 4.48, and 6.95 min, respectively. The average mean doses were (48.99±1.08),(49.40±0.51), (49.51±0.62), and (48.65±0.92) Gy, respectively. The values of homogeneity index (HI) of target were 1.11±0.07, 1.07±0.02, 1.06±0.02, and 1.12±0.05, respectively. The values of conformal index (CI) of target were 0.73±0.13, 0.87±0.06, 0.87±0.06, and 0.79±0.06, respectively. The doses at rectum, bladder, and small intestine calculated by IMRT plan were the lowest, and the doses at the femoral neck calculated by these 4 plans were similar. Conclusions: The RapidArc plan is superior in dose distribution at target, HI, CI, and treatment time to IMRT, but IMRT plan is superior to RapidArc in planned dose calculation time and protection of organs at risk. However, in general, the RapidArc plan is better in clinical application than IMRT plan. (authors)

  8. A study on fixing force generation mechanism of ER gel

    International Nuclear Information System (INIS)

    Tanaka, H; Kakinuma, Y; Aoyama, T; Anzai, H

    2009-01-01

    Electro-rheological Gel (ERG) is a new functional elastomer which changes its surface frictional and adhesive property according to the intensity of applied electrical field. This unique property is called ERG effect. The upper sliding electrode placed on the surface of ERG is fixed by the adhesive effect of ERG under electrical field. Variable fixing forces due to adhesion are generated by this effect. However, relationship between physical factors and generated fixing force has not yet been clarified. In this study, physical mechanism of fixing phenomenon is elucidated experimentally from the view point of frictional force and adhesive force. From the results, empirical equation of generated fixing force is originally derived to establish the theory of ERG effect.

  9. A study on fixing force generation mechanism of ER gel

    Energy Technology Data Exchange (ETDEWEB)

    Tanaka, H; Kakinuma, Y; Aoyama, T [School of Integrated Design Engineering, Keio University, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama 223-8522 (Japan); Anzai, H [Fujikura kasei Co., Ltd., 2-6-15 Shibakouen, Minato-ku, Tokyo (Japan)], E-mail: h-tanaka@ina.sd.keio.ac.jp

    2009-02-01

    Electro-rheological Gel (ERG) is a new functional elastomer which changes its surface frictional and adhesive property according to the intensity of applied electrical field. This unique property is called ERG effect. The upper sliding electrode placed on the surface of ERG is fixed by the adhesive effect of ERG under electrical field. Variable fixing forces due to adhesion are generated by this effect. However, relationship between physical factors and generated fixing force has not yet been clarified. In this study, physical mechanism of fixing phenomenon is elucidated experimentally from the view point of frictional force and adhesive force. From the results, empirical equation of generated fixing force is originally derived to establish the theory of ERG effect.

  10. Stochastic quantization and gauge-fixing of the linearized gravitational field

    International Nuclear Information System (INIS)

    Hueffel, H.; Rumpf, H.

    1984-01-01

    Due to the indefiniteness of the Euclidean gravitational action the Parisi-Wu stochastic quantization scheme fails in the case of the gravitational field. Therefore we apply a recently proposed modification of stochastic quantization that works in Minkowski space and preserves all the advantages of the original Parisi-Wu method; in particular no gauge-fixing is required. Additionally stochastic gauge-fixing may be introduced and is also studied in detail. The graviton propagators obtained with and without stochastic gauge-fixing all exhibit a noncausal contribution, but apart from this effect the gauge-invariant quantities are the same as those of standard quantization. (Author)

  11. Transverse beam dynamics in non-linear Fixed Field Alternating Gradient accelerators

    Energy Technology Data Exchange (ETDEWEB)

    Haj, Tahar M. [Brookhaven National Lab. (BNL), Upton, NY (United States); Meot, F. [Brookhaven National Lab. (BNL), Upton, NY (United States)

    2016-03-02

    In this paper, we present some aspects of the transverse beam dynamics in Fixed Field Ring Accelerators (FFRA): we start from the basic principles in order to derive the linearized transverse particle equations of motion for FFRA, essentially FFAGs and cyclotrons are considered here. This is a simple extension of a previous work valid for linear lattices that we generalized by including the bending terms to ensure its correctness for FFAG lattice. The space charge term (contribution of the internal coulombian forces of the beam) is contained as well, although it is not discussed here. The emphasis is on the scaling FFAG type: a collaboration work is undertaken in view of better understanding the properties of the 150 MeV scaling FFAG at KURRI in Japan, and progress towards high intensity operation. Some results of the benchmarking work between different codes are presented. Analysis of certain type of field imperfections revealed some interesting features about this machine that explain some of the experimental results and generalize the concept of a scaling FFAG to a non-scaling one for which the tune variations obey a well-defined law.

  12. The resolution of field identification fixed points in diagonal coset theories

    International Nuclear Information System (INIS)

    Fuchs, J.; Schellekens, B.; Schweigert, C.

    1995-09-01

    The fixed point resolution problem is solved for diagonal coset theories. The primary fields into which the fixed points are resolved are described by submodules of the branching spaces, obtained as eigenspaces of the automorphisms that implement field identification. To compute the characters and the modular S-matrix we use ''orbit Lie algebras'' and ''twining characters'', which were introduced in a previous paper. The characters of the primary fields are expressed in terms branching functions of twining characters. This allows us to express the modular S-matrix through the S-matrices of the orbit Lie algebras associated to the identification group. Our results can be extended to the larger class of ''generalized diagonal cosets''. (orig.)

  13. Vacuum in intensive gauge fields

    International Nuclear Information System (INIS)

    Matinian, S.G.

    1977-12-01

    The behaviour of vacuum in a covariantly constant Yang-Mills field is considered. The expressions for the effective Lagrangian in an intensive field representing the asymptotic freedom of the theory are found

  14. Fixed-Charge Atomistic Force Fields for Molecular Dynamics Simulations in the Condensed Phase: An Overview.

    Science.gov (United States)

    Riniker, Sereina

    2018-03-26

    In molecular dynamics or Monte Carlo simulations, the interactions between the particles (atoms) in the system are described by a so-called force field. The empirical functional form of classical fixed-charge force fields dates back to 1969 and remains essentially unchanged. In a fixed-charge force field, the polarization is not modeled explicitly, i.e. the effective partial charges do not change depending on conformation and environment. This simplification allows, however, a dramatic reduction in computational cost compared to polarizable force fields and in particular quantum-chemical modeling. The past decades have shown that simulations employing carefully parametrized fixed-charge force fields can provide useful insights into biological and chemical questions. This overview focuses on the four major force-field families, i.e. AMBER, CHARMM, GROMOS, and OPLS, which are based on the same classical functional form and are continuously improved to the present day. The overview is aimed at readers entering the field of (bio)molecular simulations. More experienced users may find the comparison and historical development of the force-field families interesting.

  15. Fixed field alternating gradient accelerator with small orbit shift and tune excursion

    Directory of Open Access Journals (Sweden)

    Suzanne L. Sheehy

    2010-04-01

    Full Text Available A new design principle of a nonscaling fixed field alternating gradient accelerator is proposed. It is based on optics that produce approximate scaling properties. A large field index k is chosen to squeeze the orbit shift as much as possible by setting the betatron oscillation frequency in the second stability region of Hill’s equation. Then, the lattice magnets and their alignment are simplified. To simplify the magnets, we expand the field profile of r^{k} into multipoles and keep only a few lower order terms. A rectangular-shaped magnet is assumed with lines of constant field parallel to the magnet axis. The lattice employs a triplet of rectangular magnets for focusing, which are parallel to one another to simplify alignment. These simplifications along with fringe fields introduce finite chromaticity and the fixed field alternating gradient accelerator is no longer a scaling one. However, the tune excursion of the whole ring can be within half an integer and we avoid the crossing of strong resonances.

  16. Clinically practical intensity modulation for complex head and neck lesions using multiple, static MLC fields

    International Nuclear Information System (INIS)

    Verhey, L.J.; Xia, P.; Akazawa, P.

    1997-01-01

    Purpose: A number of different beam delivery methods have been proposed for implementing intensity modulated radiotherapy (IMRT), including fixed gantry with multiple static MLC fields (MSMLC - often referred to as 'stop and shoot'), fixed gantry with dynamic MLC (DMLC), intensity modulated arc therapy (IMAT), Tomotherapy and Peacock MIMiC. Using two complex head and neck cases as examples, we have compared dose distributions achievable with 3-D conformal radiotherapy (3DCRT) to those which can be achieved using IMRT delivered with MSMLC, DMLC and Peacock MIMiC. The goal is to demonstrate the potential value of IMRT in the treatment of complex lesions in the head and neck and to determine whether MSMLC, the simplest of the proposed IMRT methods, can produce dose distributions which are competitive with dynamic IMRT methods and which can be implemented in clinically acceptable times. Materials and Methods: Two patients with nasopharyngeal carcinoma were selected from the archives of the Department of Radiation Oncology at the University of California, San Francisco (UCSF). These patients were previously planned and treated with CT-based 3-D treatment planning methods which are routinely used at UCSF, including non-axial beam directions and partial transmission blocks when indicated. The CT data tapes were then read into a test version of CORVUS, an inverse treatment planning program being developed by NOMOS Corporation, target volumes and critical normal structures were outlined on axial CT slices and dose goals and limits were defined for the targets and normal tissues of interest. Optimized dose plans were then obtained for each delivery method including MSMLC (4 or 5 hand-selected beams with 3 levels of intensity), DMLC (9 evenly spaced axial beams with 10 levels of intensity) and Peacock MIMiC (55 axial beams spanning 270 degrees with 10 levels of intensity). Dose-volume histograms (DVH's) for all IMRT plans were then compared with the 3DCRT plans. Treatment

  17. Atom ionization in a nonclassical intense electromagnetic field

    International Nuclear Information System (INIS)

    Popov, A.M.; Tikhonova, O.V.

    2002-01-01

    The atoms ionization process in the intense nonclassical electromagnetic field is considered. It is shown that depending on the field quantum state the probability of ionization may essentially change even by one and the same average quantum number in the radiation mode, whereby the difference in the ionization rates is especially significant in the case, when the ionization process is of a multiphoton character. It is demonstrates in particular, that the nonclassical field may be considerably more intensive from the viewpoint of the atoms ionization, than the classical field with the same intensity. The peculiarities of the decay, related to the atomic system state in the strong nonclassical field beyond the perturbation theory frames are studied [ru

  18. Fragmentation of dimethyl ether in femtosecond intense field

    Science.gov (United States)

    Zhu, Jingyi; Guo, Wei; Wang, Yanqiu; Wang, Li

    2006-08-01

    The fragmentation of dimethyl ether (DME) in intense femtosecond laser field has been studied at 810, 405 and 270 nm with intensities up to 2.48 × 10 15, 3.86 × 10 15 and 1.62 × 10 14 W/cm 2, respectively. At 405 nm, DME is possibly firstly ionized by multiphoton absorption, and then parent ion DME + dissociates into fragments via filed-induced dissociation. For 810 and 270 nm laser fields, DME firstly dissociates into CH 3O and CH 3 fragments and then these neutral fragments are ionized by field tunneling. Another possible way for DME to dissociate at 810 and 270 nm is that DME is ionized by intense field ejection of inner valance electron and then the excited DME + dissociates into fragment ions. Ultrafast rearrangement of DME or DME + in intense field may be responsible to the unpredictable fragment ions, CHO+/C2H5+andH2+.

  19. Body fixed frame, rigid gauge rotations and large N random fields in QCD

    International Nuclear Information System (INIS)

    Levit, S.

    1995-01-01

    The ''body fixed frame'' with respect to local gauge transformations is introduced. Rigid gauge ''rotations'' in QCD and their Schroedinger equation are studied for static and dynamic quarks. Possible choices of the rigid gauge field configuration corresponding to a non-vanishing static colormagnetic field in the ''body fixed'' frame are discussed. A gauge invariant variational equation is derived in this frame. For large number N of colors the rigid gauge field configuration is regarded as random with maximally random probability distribution under constraints on macroscopic-like quantities. For the uniform magnetic field the joint probability distribution of the field components is determined by maximizing the appropriate entropy under the area law constraint for the Wilson loop. In the quark sector the gauge invariance requires the rigid gauge field configuration to appear not only as a background but also as inducing an instantaneous quark-quark interaction. Both are random in the large N limit. (orig.)

  20. Positron-electron annihilation in a field of a fixed electric dipole

    International Nuclear Information System (INIS)

    Butkevich, E.R.; Sabirov, R.Kh.

    1989-01-01

    Positron annihilation from dipole Ps state conditioned by simultaneous localization of positron and electron in the field of fixed electric dipole is considered. Calculation of annihilation γ-quantum angular correlation curve is performed. For the fixed value of the dipole moment the correlation curve half-width is reduced with the reduction of dipole charges. Correlation curve narrowing takes place with the growth of dipole moment. It is stressed that when interpreting the narrow component one should be careful when choosing the appropriate annihilation mechanism. Experimental result analysis is given

  1. Interplanetary magnetic field associated changes in cosmic ray intensity and geomagnetic field during 1973-75

    International Nuclear Information System (INIS)

    Singh, R.L.; Shukla, J.P.; Shukla, A.K.; Sharma, S.M.; Agrawal, S.P.

    1979-01-01

    The effects of interplanetary magnetic field (IMF) B and its Bsub(z) component on cosmic ray intensity and geomagnetic field variations have been examined for the period 1973-75. It is observed that: (1) B >= 10γ (magnetic blobs) is pre-requisite in producing cosmic ray intensity and geomagnetic field variations of varying magnitudes, (2) the longer existence of magnetic blobs on successive days produces larger decreases in cosmic ray intensity and geomagnetic field and (3) the southward component (Bsub(z)) of IMF generally gives rise to large Asub(p) changes, though it is not effective in producing cosmic ray intensity decreases. (auth.)

  2. Spin and radiation in intense laser fields

    International Nuclear Information System (INIS)

    Walser, M.W.; Urbach, D.J.; Hatsagortsyan, K.Z.; Hu, S.X.; Keitel, C.H.

    2002-01-01

    The spin dynamics and its reaction on the particle motion are investigated for free and bound electrons in intense linearly polarized laser fields. Employing both classical and quantum treatments we analytically evaluate the spin oscillation of free electrons in intense laser fields and indicate the effect of spin-orbit coupling on the motion of the electron. In Mott scattering an estimation for the spin oscillation is derived. In intense laser ion dynamics spin signatures are studied in detail with emphasis on high-order harmonic generation in the tunneling regime. First- and second-order calculations in the ratio of electron velocity and the speed of light show spin signatures in the radiation spectrum and spin-orbit effects in the electron polarization

  3. Hydrogen atom in intense magnetic field.

    Science.gov (United States)

    Canuto, V.; Kelly, D. C.

    1972-01-01

    The structure of a hydrogen atom situated in an intense magnetic field is investigaged. Three approaches are employed. An elementary Bohr picture establishes a crucial magnetic field strength, H sub a approximately equal to 5 x 10 to the 9th G. Fields in excess of H sub a are intense in that they are able to modify the characteristic atomic scales of length and binding energy. A second approach solves the Schrodinger equation by a combination of variational methods and perturbation theory. It yields analytic expressions for the wave functions and energy eigenvalues. A third approach determines the energy eigenvalues by reducing the Schrodinger equation to a one-dimensional wave equation, which is then solved numerically. Energy eigenvalues are tabulated for field strengths of 2 x 10 to the 10th G and 2 x 10 to the 12th G. It is found that at 2 x 10 to the 12th G the lowest energy eigenvalue is changed from -13.6 to about -180 eV in agreement with previous variational computations.

  4. Particle physics in intense electromagnetic fields

    International Nuclear Information System (INIS)

    Kurilin, A.V.

    1999-01-01

    The quantum field theory in the presence of classical background electromagnetic field is reviewed giving a pedagogical introduction to the Feynman-Furry method of describing non-perturbative interactions with very strong electromagnetic fields. A particular emphasis is given to the case of the plane-wave electromagnetic field for which the charged particles' wave functions and propagators are presented. Some general features of quantum processes proceeding in the intense electromagnetic background are argued. The possibilities of searching new physics through the investigations of quantum phenomena induced by a strong electromagnetic environment are also discussed

  5. Dosimetric Comparison of Split Field and Fixed Jaw Techniques for Large IMRT Target Volumes in the Head and Neck

    International Nuclear Information System (INIS)

    Srivastava, Shiv P.; Das, Indra J.; Kumar, Arvind; Johnstone, Peter A.S.

    2011-01-01

    Some treatment planning systems (TPSs), when used for large-field (>14 cm) intensity-modulated radiation therapy (IMRT), create split fields that produce excessive multiple-leaf collimator segments, match-line dose inhomogeneity, and higher treatment times than nonsplit fields. A new method using a fixed-jaw technique (FJT) forces the jaw to stay at a fixed position during optimization and is proposed to reduce problems associated with split fields. Dosimetric comparisons between split-field technique (SFT) and FJT used for IMRT treatment is presented. Five patients with head and neck malignancies and regional target volumes were studied and compared with both techniques. Treatment planning was performed on an Eclipse TPS using beam data generated for Varian 2100C linear accelerator. A standard beam arrangement consisting of nine coplanar fields, equally spaced, was used in both techniques. Institutional dose-volume constraints used in head and neck cancer were kept the same for both techniques. The dosimetric coverage for the target volumes between SFT and FJT for head and neck IMRT plan is identical within ±1% up to 90% dose. Similarly, the organs at risk (OARs) have dose-volume coverage nearly identical for all patients. When the total monitor unit (MU) and segments were analyzed, SFT produces statistically significant higher segments (17.3 ± 6.3%) and higher MU (13.7 ± 4.4%) than the FJT. There is no match line in FJT and hence dose uniformity in the target volume is superior to the SFT. Dosimetrically, SFT and FJT are similar for dose-volume coverage; however, the FJT method provides better logistics, lower MU, shorter treatment time, and better dose uniformity. The number of segments and MU also has been correlated with the whole body radiation dose with long-term complications. Thus, FJT should be the preferred option over SFT for large target volumes.

  6. Supersonic acoustic intensity with statistically optimized near-field acoustic holography

    DEFF Research Database (Denmark)

    Fernandez Grande, Efren; Jacobsen, Finn

    2011-01-01

    The concept of supersonic acoustic intensity was introduced some years ago for estimating the fraction of the flow of energy radiated by a source that propagates to the far field. It differs from the usual (active) intensity by excluding the near-field energy resulting from evanescent waves...... to the information provided by the near-field acoustic holography technique. This study proposes a version of the supersonic acoustic intensity applied to statistically optimized near-field acoustic holography (SONAH). The theory, numerical results and an experimental study are presented. The possibility of using...

  7. Archeomagnetic Intensity Spikes: Global or Regional Geomagnetic Field Features?

    Directory of Open Access Journals (Sweden)

    Monika Korte

    2018-03-01

    Full Text Available Variations of the geomagnetic field prior to direct observations are inferred from archeo- and paleomagnetic experiments. Seemingly unusual variations not seen in the present-day and historical field are of particular interest to constrain the full range of core dynamics. Recently, archeomagnetic intensity spikes, characterized by very high field values that appear to be associated with rapid secular variation rates, have been reported from several parts of the world. They were first noted in data from the Levant at around 900 BCE. A recent re-assessment of previous and new Levantine data, involving a rigorous quality assessment, interprets the observations as an extreme local geomagnetic high with at least two intensity spikes between the 11th and 8th centuries BCE. Subsequent reports of similar features from Asia, the Canary Islands and Texas raise the question of whether such features might be common occurrences, or whether they might even be part of a global magnetic field feature. Here we use spherical harmonic modeling to test two hypotheses: firstly, whether the Levantine and other potential spikes might be associated with higher dipole field intensity than shown by existing global field models around 1,000 BCE, and secondly, whether the observations from different parts of the world are compatible with a westward drifting intense flux patch. Our results suggest that the spikes originate from intense flux patches growing and decaying mostly in situ, combined with stronger and more variable dipole moment than shown by previous global field models. Axial dipole variations no more than 60% higher than observed in the present field, probably within the range of normal geodynamo behavior, seem sufficient to explain the observations.

  8. High energy bremsstrahlung in an intense laser field

    International Nuclear Information System (INIS)

    Schlessinger, L.; Wright, J.A.

    1980-02-01

    The cross section for bremsstrahlung emission and absorption by electrons in an intense laser field has been calculated in the Born approximation for the electron-ion potential. Typical numerical results are presented as a function of the ratio of the electron guiver energy to its energy and the ratio of the bremsstrahlung energy to the electron energy. The intense field correction factor for the rate of bremsstrahlung emission and absorption for electrons with a Boltzmann distribution of energies has been calculated. Numerical results for the correction factor are presented for the Boltzmann case as a function of the ratio of the electron quiver energy to its thermal energy and the ratio of the bremsstrahlung energy to the thermal energy. For typical laser fusion parameters, this correction factor which is the ratio of the thermal bremsstrahlung emission rate in the intense laser field to the rate at zero field can be quite significant. For a laser of wavelength 1.06 μm at an intensity of 3 x 10 15 w/cm 2 and an electron temperature of 1 keV, the correction factor varies from 0.98 at a bremsstrahlung energy of 100 V to greater than 5 at a bremsstrahlung energy of 10 keV

  9. Spin currents from Helium in intense-field photo-ionization

    International Nuclear Information System (INIS)

    Bhattacharyya, S; Mukherjee, Mahua; Chakrabarti, J; Faisal, F H M

    2007-01-01

    Spin dynamics is studied by computing spin-dependent ionization current of He in intense laser field in relativistic field theoretic method. Spin-flip and spin-asymmetry in current generation is obtained with circularly polarized light. The spin-flip is a dynamical effect of intense laser field on an ionized spinning electron. Transformation properties of the up and down spin ionization amplitudes show that the sign of spin can be controlled by a change of helicity of the laser photons from outside

  10. A fixed-jaw method to protect critical organs during intensity-modulated radiotherapy

    International Nuclear Information System (INIS)

    Chen, Jiayun; Chen, Xinyuan; Huang, Manni; Dai, Jianrong

    2014-01-01

    Intensity-modulated radiotherapy (IMRT) plays an important role in cancer radiotherapy. For some patients being treated with IMRT, the extremely low tolerances of critical organs (such as lens, ovaries, and testicles) cannot be met during treatment planning. The aim of this article is to introduce a new planning method to overcome that problem. In current planning practice, jaw positions are automatically set to cover all target volumes by the planning system (e.g., Pinnacle 3 system). Because of such settings, critical organs may be fully blocked by the multileaf collimator (MLC), but they still sit in the field that is shaped by collimator jaws. These critical organs receive doses from the transmission and leakage of MLC leaves. We manually fixed jaw positions to block them to further reduce such doses. This method has been used for different treatment sites in our clinic, and it was thoroughly evaluated in patients with radical hysterectomy plus ovarian transposition after surgery. For each patient, 2 treatment plans were designed with the same optimization parameters: the original plan with automatically chosen jaw positions (called O-plan) and the plan with fixed-jaw positions (named F-plan). In the F-plan, the jaws were manually fixed to block the ovaries. For target coverage, the mean conformity index (CI) of the F-plan (1.28 ± 0.02) was remarkably lower than that of the O-plan (1.53 ± 0.09) (p < 0.05). The F-plan and the O-plan performed similarly in target dose homogeneity. Meanwhile, for the critical organ sparing, the mean dose of both ovaries were much lower in the F-plan than that in the O-plan (p < 0.05). The V 20 , V 30 , and V 40 of bladder were also lower in the F-plan (93.57 ± 1.98, 73.99 ± 5.76, and 42.33 ± 3.7, respectively) than those in the O-plan (97.98 ± 1.11, 85.07 ± 4.04, and 49.71 ± 3.63, respectively) (p < 0.05). The maximum dose to the spinal cord planning organ at risk (OAR) volume (PRV) in the O-plan (3940.24 ± 102.8) was

  11. Experimental Investigation of Integrated Optical Intensive Impulse Electric Field Sensors

    International Nuclear Information System (INIS)

    Bao, Sun; Fu-Shen, Chen

    2009-01-01

    We design and fabricate an integrated optical electric field sensor with segmented electrode for intensive impulse electric field measurement. The integrated optical sensor is based on a Mach–Zehnder interferometer with segmented electrodes. The output/input character of the sensing system is analysed and measured. The maximal detectable electric field range (−75 kV/m to 245 kV/m) is obtained by analysing the results. As a result, the integrated optics electric field sensing system is suitable for transient intensive electric field measurement investigation

  12. Gauge-invariant intense-field approximations to all orders

    International Nuclear Information System (INIS)

    Faisal, F H M

    2007-01-01

    We present a gauge-invariant formulation of the so-called strong-field KFR approximations in the 'velocity' and 'length' gauges and demonstrate their equivalence in all orders. The theory thus overcomes a longstanding discrepancy between the strong-field velocity and the length-gauge approximations for non-perturbative processes in intense laser fields. (fast track communication)

  13. Intense laser field effects on a Woods-Saxon potential quantum well

    Science.gov (United States)

    Restrepo, R. L.; Morales, A. L.; Akimov, V.; Tulupenko, V.; Kasapoglu, E.; Ungan, F.; Duque, C. A.

    2015-11-01

    This paper presents the results of the theoretical study of the effects of non-resonant intense laser field and electric and magnetic fields on the optical properties in an quantum well (QW) make with Woods-Saxon potential profile. The electric field and intense laser field are applied along the growth direction of the Woods-Saxon quantum well and the magnetic field is oriented perpendicularly. To calculate the energy and the wave functions of the electron in the Woods-Saxon quantum well, the effective mass approximation and the method of envelope wave function are used. The confinement in the Woods-Saxon quantum well is changed drastically by the application of intense laser field or either the effect of electric and magnetic fields. The optical properties are calculated using the compact density matrix.

  14. Moderate and high intensity pulsed electric fields

    OpenAIRE

    Timmermans, Rian Adriana Hendrika

    2018-01-01

    Pulsed Electric Field (PEF) processing has gained a lot of interest the last decades as mild processing technology as alternative to thermal pasteurisation, and is suitable for preservation of liquid food products such as fruit juices. PEF conditions typically applied at industrial scale for pasteurisation are high intensity pulsed electric fields aiming for minimal heat load, with an electric field strength (E) in the range of 15 − 20 kV/cm and pulse width (τ) between 2 − 20 μs. Alternativel...

  15. Intensity of evaporation fields of metals in an electrical field and sputtering of metals at an ionic bombardment

    International Nuclear Information System (INIS)

    Kajbichev, A.V.; Pastukhov, Eh.A.; Kajbichev, I.A.; Aleshina, S.N.

    2001-01-01

    The electric field intensity for liquid metal evaporation is calculated. The correlation is established between the evaporating field intensity, ion sputtering and boiling temperatures for a number of metals (W, Nb, Mo, Ti, Co, Ni) with accounting for the fact that above-mentioned parameters characterize the expenditure of energy for removal of one-charge ions. It is shown that the dependence of evaporating field intensity on the number of the metal in the Periodic system is of oscillating nature. The disagreement between evaporating field intensity and Ar + ion sputtering for such metals as Cr, Ag, Cu can be explained by multi-charge type of sputtered particles [ru

  16. Fundamental flavours, fields and fixed points: a brief account

    Energy Technology Data Exchange (ETDEWEB)

    Kundu, Arnab [Theory Division, Saha Institute of Nuclear Physics,1/AF Bidhannagar, Kolkata 700064 (India); Homi Bhaba National Institute, Training School Complex,Anushakti Nagar, Mumbai 400085 (India); Kundu, Nilay [Center for Gravitational Physics, Yukawa Institute for Theoretical Physics (YITP),Kyoto University,Kyoto 606-8502 (Japan)

    2017-03-13

    In this article we report on a preliminary study, via Holography, of infrared fixed points in a putative strongly coupled SU(N{sub c}) gauge theory, with N{sub f} fundamental matter, in the presence of additional fields in the fundamental sector, e.g. density or a magnetic field. In an inherently effective or a bottom up approach, we work with a simple system: Einstein-gravity with a negative cosmological constant, coupled to a Dirac-Born-Infeld (DBI) matter. We obtain a class of exact solutions, dual to candidate grounds states in the infrared (IR), with a scaling ansatz for various fields. These solutions are of two kinds: AdS{sub m}×ℝ{sup n}-type, which has appeared in the literature before; and AdS{sub m}×EAdS{sub n}-type, where m and n are suitable integers. Both these classes of solutions are non-perturbative in back-reaction. The AdS{sub m}×EAdS{sub n}-type contains examples of Bianchi type-V solutions. We also construct explicit numerical flows from an AdS{sub 5} ultraviolet to both an AdS{sub 2} and an AdS{sub 3} IR.

  17. A Novel Hysteresis Model of Magnetic Field Strength Determined by Magnetic Induction Intensity for Fe-3% Si Electrical Steel Applied in Cigarette Making Machines

    Directory of Open Access Journals (Sweden)

    Hao Wang

    2016-01-01

    Full Text Available Hysteresis characteristics of grain-oriented electrical steel were studied through the hysteresis loop. Existing hysteresis fitting simulation methods were summarized, and new Fe-3% Si grain-oriented electrical steel hysteresis loop model was proposed. Undetermined coefficients of the magnetic field intensity and magnetic flux density were determined by both the fixed angle method and the least squares method, and the hysteresis loop model was validated with high fitting degree by experimental data.

  18. Relativistic degenerate electron plasma in an intense magnetic field

    International Nuclear Information System (INIS)

    Delsante, A.E.; Frankel, N.E.

    1978-01-01

    The dielectric response function for a dense, ultra-degenerate relativistic electron plasma in an intense uniform magnetic field is presented. Dispersion relations for plasma oscillations parallel and perpendicular to the magnetic field are obtained

  19. Nuclear beta decay induced by intense electromagnetic fields: Forbidden transition examples

    International Nuclear Information System (INIS)

    Reiss, H.R.

    1983-01-01

    A formalism developed earlier for the effect on nuclear beta decay of an intense plane-wave electromagnetic field is applied to three examples of forbidden beta transitions. The examples represent cases where the nuclear ''fragment'' contains one, two, and three nucleons; where the nuclear fragment is defined to be that smallest sub-unit of the nucleus containing the nucleon which undergoes beta decay plus any other nucleons directly angular-momentum coupled to it in initial or final states. The single-nucleon-fragment example is 113 Cd, which has a fourth-forbidden transition. The two-nucleon-fragment example is 90 Sr, which is first-forbidden. The three-nucleon-fragment example is 87 Rb, which is third-forbidden. An algebraic closed-form transition probability is found in each case. At low external-field intensity, the transition probability is proportional to z/sup L/, where z is the field intensity parameter and L is the degree of forbiddenness. At intermediate intensities, the transition probability behaves as z/sup L/-(1/2). At higher intensities, the transition probability contains the z/sup L/-(1/2) factor, a declining exponential factor, and an alternating polynomial in z. This high-intensity transition probability possesses a maximum value, which is found for each of the examples. A general rule, z = q 2 (2L-1), where q is the number of particles in the fragment, is found for giving an upper limit on the intensity at which the maximum transition probability occurs. Field-induced beta decay half-lives for all the examples are dramatically reduced from natural half-lives when evaluated at the optimum field intensity. Relative half-life reduction is greater the higher the degree of forbiddenness

  20. Near-field enhanced electron acceleration from dielectric nanospheres in intense few-cycle laser fields

    International Nuclear Information System (INIS)

    Zherebtsov, S.; Znakovskaya, I.; Wirth, A.; Herrwerth, O.; Suessmann, F.; Ahmad, I.; Trushin, S.; Fennel, Th.; Plenge, J.; Antonsson, E.

    2010-01-01

    Complete text of publication follows. The interaction of nanostructured materials with few-cycle laser light has attracted significant attention lately. This interest is driven by both the quest for fundamental insight into the real-time dynamics of many-electron systems and a wide range of far-reaching applications, such as, e.g. ultrafast computation and information storage on the nanoscale and the generation of XUV frequency combs. We investigated the above-threshold electron emission from isolated SiO 2 nanoparticles in waveform controlled few-cycle laser fields at intensities close to the tunneling regime. The enhancement of the electron acceleration from the silica nanoparticles was explored as a function of the particle size (ranging from 50 to 147 nm) and the laser peak intensity (1 - 4x10 13 W/cm 2 ). Obtained cut-off values in the kinetic energy spectra are displayed in Fig. 1. The cut-off values show a linear dependence with intensity within the studied intensity range, with the average cut-off energy being 53 U P , indicated by the black line. Quasi-classical simulations of the emission process reveal that electron rescattering in the locally enhanced near-field of the particle is responsible for the large energy gain. The observed near-field enhancement offers promising new routes for pushing the limits of strong-field phenomena relying on electron rescattering, such as, high-harmonic generation and molecular imaging.

  1. Report of the Fixed-Target Proton-Accelerator Group

    International Nuclear Information System (INIS)

    Abe, K.; Bunce, G.; Fisk, G.

    1982-01-01

    The fixed target proton accelerator group divided itself into two roughly equal parts. One sub-group concentrated on a high intensity (10 14 protons/sec) moderate energy (30 GeV) machine while the other worked on a moderate intensity (5 x 10 11 protons/sec) very high energy (20 TeV) machine. For experiments where the total available energy is adequate, the fixed target option added to a anti p p 20 TeV collider ring has several attractive features: (1) high luminosity afforded by intense beams striking thick solid targets; (2) secondary beams of hadrons, photons, and leptons; and (3) the versatility of a fixed target facility, where many experiments can be performed independently. The proposed experiments considered by the subgroup, including neutrino, photon, hadron, and very short lived particle beams were based both on scaled up versions of similar experiments proposed for Tevatron II at Fermilab and on the 400 GeV fixed target programs at Fermilab and CERN

  2. The effects of intense laser field and applied electric and magnetic fields on optical properties of an asymmetric quantum well

    Energy Technology Data Exchange (ETDEWEB)

    Restrepo, R.L., E-mail: pfrire@eia.edu.co [Department of Physics, Cumhuriyet University, 58140 Sivas (Turkey); Escuela de Ingeniería de Antioquia-EIA, Envigado (Colombia); Grupo de Materia Condensada-UdeA, Instituto de Física, Facultad de Ciencias Exactas y Naturales, Universidad de Antioquia-UdeA, Calle 70 No. 52-21, Medellín (Colombia); Ungan, F.; Kasapoglu, E. [Department of Physics, Cumhuriyet University, 58140 Sivas (Turkey); Mora-Ramos, M.E. [Facultad de Ciencias, Universidad Autonóma del Estado de Morelos, Ave. Universidad 1001, CP 62209, Cuernavaca, Morelos (Mexico); Morales, A.L.; Duque, C.A. [Grupo de Materia Condensada-UdeA, Instituto de Física, Facultad de Ciencias Exactas y Naturales, Universidad de Antioquia-UdeA, Calle 70 No. 52-21, Medellín (Colombia)

    2015-01-15

    This paper presents the results of the theoretical study of the effects of non-resonant intense laser field and electric and magnetic fields on the optical properties (the linear and third-order nonlinear refractive index and absorption coefficients) in an asymmetric quantum well. The electric field and intense laser field are applied along the growth direction of the asymmetric quantum well and the magnetic field is oriented perpendicularly. To calculate the energy and the wave functions of the electron in the asymmetric quantum well, the effective mass approximation and the method of envelope wave function are used. The asymmetric quantum well is constructed by using different aluminium concentrations in both right and left barriers. The confinement in the quantum well is changed drastically by either the effect of electric and magnetic fields or by the application of intense laser field. The optical properties are calculated using the compact density matrix approach. The results show that the effect of the intense laser field competes with the effects of the electric and magnetic fields. Consequently, peak position shifts to lower photon energies due to the effect of the intense laser field and it shifts to higher photon energies by the effects of electric and magnetic fields. In general, it is found that the concentration of aluminum, electric and magnetic fields and intense laser field are external agents that modify the optical responses in the asymmetric quantum well.

  3. Generation of intense transient magnetic fields

    International Nuclear Information System (INIS)

    Benjamin, R.F.

    1983-01-01

    In a laser system, the return current of a laser generated plasma is conducted near a target to subject that target to a magnetic field. The target may be either a small non-fusion object for testing under the magnetic field or a laser-fusion pellet. In the laser-fusion embodiment, the laser-fusion pellet is irradiated during the return current flow and the intense transient magnetic field is used to control the hot electrons thereof to hinder them from striking and heating the core of the irradiated laser-fusion pellet. An emitter, e.g. a microballoon of glass, metal or plastics, is subjected to a laser pulse to generate the plasma from which the return current flows into a wire cage or a coil and then to earth. (author)

  4. Orienting Paramecium with intense static magnetic fields

    Science.gov (United States)

    Valles, James M., Jr.; Guevorkian, Karine; Quindel, Carl

    2004-03-01

    Recent experiments on cell division suggest the application of intense static magnetic fields as a novel tool for the manipulation of biological systems [1]. The magnetic field appears to couple to the intrinsic anisotropies in the diamagnetic components of the cells. Here, we present measurements of the intrinsic average diamagnetic anisotropy of the whole single celled ciliate, Paramecium Caudatum. Magnetic fields, 2.5 T Paramecium Caudatum that were suspended in a density matched medium. The organisms align with their long axis parallel to the applied magnetic field. Their intrinsic diamagnetic anisotropy is 3x10-11 in cgs units. We will discuss the implications of these results for employing magnetic fields to probe the behavior of swimming Paramecium. [1] J. M. Valles, Jr. et al., Expt. Cell Res.274, 112-118 (2002).

  5. Multiphoton processes for atoms in intense electromagnetic fields

    Energy Technology Data Exchange (ETDEWEB)

    Collins, L.A.; Abdallah, J.; Csanak, G.

    1995-12-31

    Lasers from table-top to giant ICF facilities that produce intense electromagnetic fields (10{sup 14}-10{sup 21} W/cm{sup 2}) have become important tools in probing the intricate nature of matter-radiation interactions. At such intensities, the laser field equals or exceeds that which binds electrons to an atom or molecule, and a new realm of physics opens in which perturbation theory may no longer suffice. We are developing several sophisticated techniques for treating atoms in such a regime, concentrating on two-photon X-ray absorption in intermediate-weight atoms and on laser-assisted electron-atom collisions. We perform most calculations in a time-independent frame in which field-free scattering formalisms can be invoked. We also investigate time-dependent methods in order to study transient effects. This is the final report of a three-year Laboratory-Directed Research and Development (LDRD) project at the Los Alamos National Laboratory (LANL).

  6. Relativistic derivation of the ponderomotive force produced by two intense laser fields

    International Nuclear Information System (INIS)

    Stroscio, M.A.

    1985-01-01

    The ponderomotive force plays a fundamental role in the absorption of laser light on self-consistent plasma density profiles, in multiple-photon ionization, and in intense field electrodynamics. The relativistic corrections to the ponderomotive force of a transversely polarized electromagnetic wave lead to an approximately 20-percent reduction in the single particle ponderomotive force produced by a 10-γm 10 16 -W/cm 2 laser field. Recent experimental investigations are based on using two intense laser fields to produce desired lasermatter interactions. This paper presents the first derivation of the nonlinear relativistic ponderomotive force produced by two intense laser fields. The results demonstrate that relativistic ponderomotive forces are not additive

  7. h-Adaptive Mesh Generation using Electric Field Intensity Value as a Criterion (in Japanese)

    OpenAIRE

    Toyonaga, Kiyomi; Cingoski, Vlatko; Kaneda, Kazufumi; Yamashita, Hideo

    1994-01-01

    Finite mesh divisions are essential to obtain accurate solution of two dimensional electric field analysis. It requires the technical knowledge to generate a suitable fine mesh divisions. In electric field problem, analysts are usually interested in the electric field intensity and its distribution. In order to obtain electric field intensity with high-accuracy, we have developed and adaptive mesh generator using electric field intensity value as a criterion.

  8. A Dosimetric Evaluation of Conventional Helmet Field Irradiation Versus Two-Field Intensity-Modulated Radiotherapy Technique

    International Nuclear Information System (INIS)

    Yu, James B.; Shiao, Stephen L.; Knisely, Jonathan

    2007-01-01

    Purpose: To compare dosimetric differences between conventional two-beam helmet field irradiation (external beam radiotherapy, EBRT) of the brain and a two-field intensity-modulated radiotherapy (IMRT) technique. Methods and Materials: Ten patients who received helmet field irradiation at our institution were selected for study. External beam radiotherapy portals were planned per usual practice. Intensity-modulated radiotherapy fields were created using the identical field angles as the EBRT portals. Each brain was fully contoured along with the spinal cord to the bottom of the C2 vertebral body. This volume was then expanded symmetrically by 0.5 cm to construct the planning target volume. An IMRT plan was constructed using uniform optimization constraints. For both techniques, the nominal prescribed dose was 3,000 cGy in 10 fractions of 300 cGy using 6-MV photons. Comparative dose-volume histograms were generated for each patient and analyzed. Results: Intensity-modulated radiotherapy improved dose uniformity over EBRT for whole brain radiotherapy. The mean percentage of brain receiving >105% of dose was reduced from 29.3% with EBRT to 0.03% with IMRT. The mean maximum dose was reduced from 3,378 cGy (113%) for EBRT to 3,162 cGy (105%) with IMRT. The mean percent volume receiving at least 98% of the prescribed dose was 99.5% for the conventional technique and 100% for IMRT. Conclusions: Intensity-modulated radiotherapy reduces dose inhomogeneity, particularly for the midline frontal lobe structures where hot spots occur with conventional two-field EBRT. More study needs to be done addressing the clinical implications of optimizing dose uniformity and its effect on long-term cognitive function in selected long-lived patients

  9. Exotic behavior of molecules in intense laser light fields. New research directions

    Energy Technology Data Exchange (ETDEWEB)

    Yamanouchi, Kaoru [Tokyo Univ., Department of Chemistry, Tokyo (Japan)

    2002-08-01

    The recent investigation of the dynamical behavior of molecules and clusters in intense laser fields has afforded us invaluable opportunities to understand fundamentals of the interaction between molecular species and light fields as well as to manipulate molecules and their dynamical pathways by taking advantage of characteristics of coherent ultrashort laser light fields. In the present report, new directions of this rapidly growing interdisciplinary research fields called molecular science in intense laser fields are discussed by referring to our recent studies. (author)

  10. Intensity of low-frequency radiations and the interplanetary magnetic field

    International Nuclear Information System (INIS)

    Larkina, V.I.; Likhter, Ya.I.

    1983-01-01

    The data of measurements of ELF/VLF radiations at ''Interkosmos-13'' artificial Earth satellite in auroral latitudes and in the polar cap in the vernal equinox of 1975 are compared with characteristics of interplanetary magnetic field (IMF). The absence of north-south asymmetry of variations of ELF/VLF-radiation Intensity in the outer ionosphere versus the IMF characteristics is noted. The intensity of natural ELF- and VLF-radiations depends in a complex way on parameters of the magnetospheric plasma: composition and concentration of ''cold'' particles, geomagnetic field intensity, properties of energetic particle fluxes. The considered variations in the radiation amplitude versus the IMF characteristics show the predominant role of the sector structure polarity and IMF Bsub(y) component sign

  11. Fixed target beams

    CERN Document Server

    Kain, V; Cettour-Cave, S; Cornelis, K; Fraser, M A; Gatignon, L; Goddard, B; Velotti, F

    2017-01-01

    The CERN SPS (Super Proton Synchrotron) serves asLHC injector and provides beam for the North Area fixedtarget experiments. At low energy, the vertical acceptancebecomes critical with high intensity large emittance fixed tar-get beams. Optimizing the vertical available aperture is a keyingredient to optimize transmission and reduce activationaround the ring. During the 2016 run a tool was developed toprovide an automated local aperture scan around the entirering.The flux of particles slow extracted with the1/3inte-ger resonance from the Super Proton Synchrotron at CERNshould ideally be constant over the length of the extractionplateau, for optimum use of the beam by the fixed target ex-periments in the North Area. The extracted intensity is con-trolled in feed-forward correction of the horizontal tune viathe main SPS quadrupoles. The Mains power supply noiseat 50 Hz and harmonics is also corrected in feed-forwardby small amplitude tune modulation at the respective fre-quencies with a dedicated additional quad...

  12. Double ionization of molecule H2 in intense ultrashort laser fields

    International Nuclear Information System (INIS)

    Le, Thu-Thuy; Nguyen, Ngoc-Ty

    2015-01-01

    By solving numerically the time-dependent Schrödinger equation (TDSE), we have calculated the double ionization probability when a vibrating hydrogen molecule interacts with intense ultrashort laser pulses. The results show that in the case of vibrating nuclei the double ionization probability is higher than that of the fixed nuclei. Additionally, the double ionization probability is larger if the molecule is vibrating in a higher level. This is due to the decreasing of ionization potential when the inter-nuclei separation increases. (paper)

  13. Synchrotron Intensity Gradients as Tracers of Interstellar Magnetic Fields

    Energy Technology Data Exchange (ETDEWEB)

    Lazarian, A.; Yuen, Ka Ho; Lee, Hyeseung; Cho, J. [Department of Astronomy, University of Wisconsin-Madison, 2535 Sterling Hall, 475 North Charter Street, Madison, WI 53706-1507 (United States)

    2017-06-10

    On the basis of the modern understanding of MHD turbulence, we propose a new way of using synchrotron radiation: using synchrotron intensity gradients (SIGs) for tracing astrophysical magnetic fields. We successfully test the new technique using synthetic data obtained with 3D MHD simulations and provide the demonstration of the practical utility of the technique by comparing the directions of magnetic fields that are obtained with PLANCK synchrotron intensity data to the directions obtained with PLANCK synchrotron polarization data. We demonstrate that the SIGs can reliably trace magnetic fields in the presence of noise and can provide detailed maps of magnetic field directions. We also show that the SIGs are relatively robust for tracing magnetic fields while the low spatial frequencies of the synchrotron image are removed. This makes the SIGs applicable to the tracing of magnetic fields using interferometric data with single-dish measurement absent. We discuss the synergy of using the SIGs together with synchrotron polarization in order to find the actual direction of the magnetic fields and quantify the effects of Faraday rotation as well as with other ways of studying astrophysical magnetic fields. We test our method in the presence of noise and the resolution effects. We stress the complementary nature of the studies using the SIG technique and those employing the recently introduced velocity gradient techniques that trace magnetic fields using spectroscopic data.

  14. Synchrotron Intensity Gradients as Tracers of Interstellar Magnetic Fields

    International Nuclear Information System (INIS)

    Lazarian, A.; Yuen, Ka Ho; Lee, Hyeseung; Cho, J.

    2017-01-01

    On the basis of the modern understanding of MHD turbulence, we propose a new way of using synchrotron radiation: using synchrotron intensity gradients (SIGs) for tracing astrophysical magnetic fields. We successfully test the new technique using synthetic data obtained with 3D MHD simulations and provide the demonstration of the practical utility of the technique by comparing the directions of magnetic fields that are obtained with PLANCK synchrotron intensity data to the directions obtained with PLANCK synchrotron polarization data. We demonstrate that the SIGs can reliably trace magnetic fields in the presence of noise and can provide detailed maps of magnetic field directions. We also show that the SIGs are relatively robust for tracing magnetic fields while the low spatial frequencies of the synchrotron image are removed. This makes the SIGs applicable to the tracing of magnetic fields using interferometric data with single-dish measurement absent. We discuss the synergy of using the SIGs together with synchrotron polarization in order to find the actual direction of the magnetic fields and quantify the effects of Faraday rotation as well as with other ways of studying astrophysical magnetic fields. We test our method in the presence of noise and the resolution effects. We stress the complementary nature of the studies using the SIG technique and those employing the recently introduced velocity gradient techniques that trace magnetic fields using spectroscopic data.

  15. Measurements of magnetic fields generated in underdense plasmas by intense lasers

    International Nuclear Information System (INIS)

    Najmudin, Z.; Walton, B. R.; Mangles, S. P. D.; Dangor, A. E.; Krushelnick, K.; Fritzler, S.; Malka, V.; Faure, J.; Tatarakis, M.

    2006-01-01

    Measurements have been made of the magnetic field generated by the passage of high intensity short laser pulses through underdense plasmas. For a 30 fs, 1 J, 800 nm linearly-polarised laser pulse, an azimuthal magnetic field is observed at a radial extent of approximately 200 μm. The field is found to exceed 2.8 MG. For a 1 ps, 40 J, 1054 nm circularly-polarised laser pulse, a solenoidal field is observed that can exceed 7 MG. This solenoidal field is absent with linear polarised light, and hence can be considered as an Inverse Faraday effect. Both types of field are found to decay on the picosecond timescale. For both the azimuthal and solenoidal fields produced by such intense lasers, the production of energetic electrons by the interaction is thought to be vital for magnetic field generation

  16. Hadron cancer therapy complex using nonscaling fixed field alternating gradient accelerator and gantry design

    Directory of Open Access Journals (Sweden)

    E. Keil

    2007-05-01

    Full Text Available Nonscaling fixed field alternating gradient (FFAG rings for cancer hadron therapy offer reduced physical aperture and large dynamic aperture as compared to scaling FFAGs. The variation of tune with energy implies the crossing of resonances during acceleration. Our design avoids intrinsic resonances, although imperfection resonances must be crossed. We consider a system of three nonscaling FFAG rings for cancer therapy with 250 MeV protons and 400   MeV/u carbon ions. Hadrons are accelerated in a common radio frequency quadrupole and linear accelerator, and injected into the FFAG rings at v/c=0.1294. H^{+}/C^{6+} ions are accelerated in the two smaller/larger rings to 31 and 250  MeV/68.8 and 400   MeV/u kinetic energy, respectively. The lattices consist of doublet cells with a straight section for rf cavities. The gantry with triplet cells accepts the whole required momentum range at fixed field. This unique design uses either high-temperature superconductors or superconducting magnets reducing gantry magnet size and weight. Elements with a variable field at the beginning and at the end set the extracted beam at the correct position for a range of energies.

  17. Fixed-head star tracker magnitude calibration on the solar maximum mission

    Science.gov (United States)

    Pitone, Daniel S.; Twambly, B. J.; Eudell, A. H.; Roberts, D. A.

    1990-01-01

    The sensitivity of the fixed-head star trackers (FHSTs) on the Solar Maximum Mission (SMM) is defined as the accuracy of the electronic response to the magnitude of a star in the sensor field-of-view, which is measured as intensity in volts. To identify stars during attitude determination and control processes, a transformation equation is required to convert from star intensity in volts to units of magnitude and vice versa. To maintain high accuracy standards, this transformation is calibrated frequently. A sensitivity index is defined as the observed intensity in volts divided by the predicted intensity in volts; thus, the sensitivity index is a measure of the accuracy of the calibration. Using the sensitivity index, analysis is presented that compares the strengths and weaknesses of two possible transformation equations. The effect on the transformation equations of variables, such as position in the sensor field-of-view, star color, and star magnitude, is investigated. In addition, results are given that evaluate the aging process of each sensor. The results in this work can be used by future missions as an aid to employing data from star cameras as effectively as possible.

  18. Limit on Excitation and Stabilization of Atoms in Intense Optical Laser Fields.

    Science.gov (United States)

    Zimmermann, H; Meise, S; Khujakulov, A; Magaña, A; Saenz, A; Eichmann, U

    2018-03-23

    Atomic excitation in strong optical laser fields has been found to take place even at intensities exceeding saturation. The concomitant acceleration of the atom in the focused laser field has been considered a strong link to, if not proof of, the existence of the so-called Kramers-Henneberger (KH) atom, a bound atomic system in an intense laser field. Recent findings have moved the importance of the KH atom from being purely of theoretical interest toward real world applications; for instance, in the context of laser filamentation. Considering this increasing importance, we explore the limits of strong-field excitation in optical fields, which are basically imposed by ionization through the spatial field envelope and the field propagation.

  19. Control of Goos-Hänchen shift via input probe field intensity

    Science.gov (United States)

    Ziauddin; Lee, Ray-Kuang; Qamar, Sajid

    2016-11-01

    We suggest a scheme to control Goos-Hänchen (GH) shift in an ensemble of strongly interacting Rydberg atoms, which act as super-atoms due to the dipole blockade mechanism. The ensemble of three-level cold Rydberg-dressed (87Rb) atoms follows a cascade configurations where two fields, i.e, a strong control and a weak field are employed [D. Petrosyan, J. Otterbach, and M. Fleischhauer, Phys. Rev. Lett. 107, 213601 (2011)]. The propagation of probe field is influenced by two-photon correlation within the blockade distance, which are damped due to the saturation of super-atoms. The amplitude of GH shift in the reflected light depends on the intensity of probe field. We observe large negative GH shift in the reflected light for small values of the probe field intensities.

  20. Time evolution of the vacuum - pair production in high intensity laser fields

    Energy Technology Data Exchange (ETDEWEB)

    Woellert, Anton; Bauke, Heiko; Keitel, Christoph H. [Max-Planck-Institut fuer Kernphysik, Heidelberg (Germany)

    2013-07-01

    Interaction between the vacuum and high intensity lasers will lead to new possibilities in high-field physics. We present numerical ab initio studies for time evolution of the vacuum state into multiple pair states. The high intensity laser field of two counter-propagating beams is treated classically and in the non-perturbative regime (E{sub 0}/ω ∝ 1). In this regime, the time needed by an electron to become relativistic in presence of a static field E{sub 0} is of same order as the period of the laser field. Pair state probabilities as well as correlations are investigated in real-time depending on polarization and field strength.

  1. Theory of the Auger effect in an intense acoustic noise field

    International Nuclear Information System (INIS)

    Doan Nhat Quang.

    1995-10-01

    A study is given of the effect on Auger processes produced by an intense acoustic noise flux affecting charge carriers via deformation-potential interaction. The calculation of Auger coefficients is carried out within a semiclassical approach to the acoustic noise field and non-degenerate carrier statistics. Simple analytic expressions are then obtained, which expose an exponential dependence of the Auger coefficients on flux intensity. The Auger recombination is found, in analogy with the case of piezoelectric noise field, to be strongly enhanced as compared to that in no-noise conditions by up to several orders of magnitude at high flux intensity, short acoustic wavelength, small carrier concentration and low temperature. (author). 29 refs, 4 figs, 1 tab

  2. Self magnetic field effects on energy deposition by intense relativistic electron beams

    International Nuclear Information System (INIS)

    Nardi, E.; Peleg, E.; Zinamon, Z.

    1977-01-01

    The effect of the penetration of the self magnetic field of an intense relativsistic electron beam on the process of beam-target interaction is calculated. The diffusion of the magnetic field and the hydrodynamic expansion of the target are dynamically taken into account. It is found that at beam intensities of interest for pellet fusion considerable range shortening occurs by magnetic stopping. (author)

  3. Simulation and Efficient Measurements of Intensities for Complex Imaging Sequences

    DEFF Research Database (Denmark)

    Jensen, Jørgen Arendt; Rasmussen, Morten Fischer; Stuart, Matthias Bo

    2014-01-01

    on the sequence to simulate both intensity and mechanical index (MI) according to FDA rules. A 3 MHz BK Medical 8820e convex array transducer is used with the SARUS scanner. An Onda HFL-0400 hydrophone and the Onda AIMS III system measures the pressure field for three imaging schemes: a fixed focus, single...

  4. Estimate of symbiotically fixed nitrogen in field grown soybeans using variations in 15N natural abundance

    International Nuclear Information System (INIS)

    Amarger, N.; Durr, J.C.; Bourguignon, C.; Lagacherie, B.; Mariotti, A.; Mariotti, F.

    1979-01-01

    The use of variations in natural abundance of 15 N between nitrogen fixing and non nitrogen fixing soybeans was investigated for quantitative estimate of symbiotic nitrogen fixation. Isotopic analysis of 4 varieties of inoculated and non-inoculated soybeans growing under field conditions, with and without N-fertilizer was determined. It was found that inoculated soybeans had a significantly lower 15 N content than non-inoculated ones. Estimates of the participation of fixed N to the total nitrogen content of inoculated soybeans were calculated from these differences. They were compared to estimates calculated from differences in N yield between inoculated and non-inoculated plants and to the nitrogenase activity, measured by the C 2 H 2 reduction assay over the growing season. Estimates given by the 15 N measurements were correlated with the C 2 H 2 reducing activity but not with the differences in the N yield. This shows that the isotopic composition was dependent on the amount of fixed nitrogen and consequently that the estimates of fixed nitrogen based on natural 15 N abundance should be reliable. The absence of correlation between estimates based on 15 N content and estimates based on N yield was explained by differences in the uptake of soil nitrogen between inoculated and non inoculated soybeans. (Auth.)

  5. Quantum chaos in the Henon-Heiles oscillator under intense laser fields. IT-1

    International Nuclear Information System (INIS)

    Gupta, Neetu; Deb, B.M.

    2004-01-01

    Full text: The quantum domain behaviour of the classically chaotic Henon-Heiles oscillator (HHO) has been studied earlier by several workers, without invoking either a weak or strong time- dependent external perturbation. This work looks at the motion of an electron moving in the HH potential under intense laser fields. The time-dependent Schroedinger equation is numerically solved in order to study the sensitivity of the system to initial conditions. The similarities in responses between the HHO and atoms/molecules to intense laser fields are examined; from this one might speculate that atoms/molecules in intense laser fields might exhibit quantum chaos

  6. Radiation corrections to quantum processes in an intense electromagnetic field

    International Nuclear Information System (INIS)

    Narozhny, N.B.

    1979-01-01

    A derivation of an asymptotic expression for the mass correction of order α to the electron propagator in an intense electromagnetic field is presented. It is used for the calculation of radiation corrections to the electron and photon elastic scattering amplitudes in the α 3 approximation. All proper diagrams contributing to the amplitudes and containing the above-mentioned correction to the propagator were considered, but not those which include vertex corrections. It is shown that the expansion parameter of the perturbation theory of quantum electrodynamics in intense fields grows not more slowly than αchi/sup 1/3/ at least for the electron amplitude, where chi = [(eF/sub μν/p/sub ν/) 2 ] 12 /m 3 , p is a momentum of the electron, and F is the electromagnetic field tensor

  7. Renormalization group flows and fixed points for a scalar field in curved space with nonminimal F (ϕ )R coupling

    Science.gov (United States)

    Merzlikin, Boris S.; Shapiro, Ilya L.; Wipf, Andreas; Zanusso, Omar

    2017-12-01

    Using covariant methods, we construct and explore the Wetterich equation for a nonminimal coupling F (ϕ )R of a quantized scalar field to the Ricci scalar of a prescribed curved space. This includes the often considered nonminimal coupling ξ ϕ2R as a special case. We consider the truncations without and with scale- and field-dependent wave-function renormalization in dimensions between four and two. Thereby the main emphasis is on analytic and numerical solutions of the fixed point equations and the behavior in the vicinity of the corresponding fixed points. We determine the nonminimal coupling in the symmetric and spontaneously broken phases with vanishing and nonvanishing average fields, respectively. Using functional perturbative renormalization group methods, we discuss the leading universal contributions to the RG flow below the upper critical dimension d =4 .

  8. Nonlinear photoresponse of field effect transistors terahertz detectors at high irradiation intensities

    International Nuclear Information System (INIS)

    But, D. B.; Drexler, C.; Ganichev, S. D.; Sakhno, M. V.; Sizov, F. F.; Dyakonova, N.; Drachenko, O.; Gutin, A.; Knap, W.

    2014-01-01

    Terahertz power dependence of the photoresponse of field effect transistors, operating at frequencies from 0.1 to 3 THz for incident radiation power density up to 100 kW/cm 2 was studied for Si metal–oxide–semiconductor field-effect transistors and InGaAs high electron mobility transistors. The photoresponse increased linearly with increasing radiation intensity up to the kW/cm 2 range. Nonlinearity followed by saturation of the photoresponse was observed for all investigated field effect transistors for intensities above several kW/cm 2 . The observed photoresponse nonlinearity is explained by nonlinearity and saturation of the transistor channel current. A theoretical model of terahertz field effect transistor photoresponse at high intensity was developed. The model explains quantitative experimental data both in linear and nonlinear regions. Our results show that dynamic range of field effect transistors is very high and can extend over more than six orders of magnitudes of power densities (from ∼0.5 mW/cm 2 to ∼5 kW/cm 2 )

  9. TLS FIELD DATA BASED INTENSITY CORRECTION FOR FOREST ENVIRONMENTS

    Directory of Open Access Journals (Sweden)

    J. Heinzel

    2016-06-01

    Full Text Available Terrestrial laser scanning (TLS is increasingly used for forestry applications. Besides the three dimensional point coordinates, the 'intensity' of the reflected signal plays an important role in forestry and vegetation studies. The benefit of the signal intensity is caused by the wavelength of the laser that is within the near infrared (NIR for most scanners. The NIR is highly indicative for various vegetation characteristics. However, the intensity as recorded by most terrestrial scanners is distorted by both external and scanner specific factors. Since details about system internal alteration of the signal are often unknown to the user, model driven approaches are impractical. On the other hand, existing data driven calibration procedures require laborious acquisition of separate reference datasets or areas of homogenous reflection characteristics from the field data. In order to fill this gap, the present study introduces an approach to correct unwanted intensity variations directly from the point cloud of the field data. The focus is on the variation over range and sensor specific distortions. Instead of an absolute calibration of the values, a relative correction within the dataset is sufficient for most forestry applications. Finally, a method similar to time series detrending is presented with the only pre-condition of a relative equal distribution of forest objects and materials over range. Our test data covers 50 terrestrial scans captured with a FARO Focus 3D S120 scanner using a laser wavelength of 905 nm. Practical tests demonstrate that our correction method removes range and scanner based alterations of the intensity.

  10. Main Ring bunch spreaders: Past, 1987/1988 fixed target run, and proposed future

    International Nuclear Information System (INIS)

    Jackson, G.P.

    1989-01-01

    During the last 1987--1988 fixed target running period beam intensity was limited many times by coherent instabilities in both the Main Ring and in the Tevatron. The intensity thresholds for instabilities are generally inversely proportional to the proton bunch length. Since fixed target operations are insensitive to the longitudinal phase space emittance of the beam, bunch spreaders are employed to increase this emittance, and hence the bunch length. As a result, more beam intensity can be delivered to the fixed target experiments. This paper starts with a short history behind the old Main Ring bunch spreader. After discussing the physics of stimulated emittance growth, the design and performance of the 1987--1988 fixed target run Main Ring bunch spreader is discussed. Finally, designs of improved Main Ring and Tevatron bunch spreaders for the next fixed target run are proposed. 23 figs

  11. Application of low field intensity joint MRI in ankle injury

    International Nuclear Information System (INIS)

    Zhang Zhenyu; Wang Wei

    2011-01-01

    Objective: To observe the diagnostic value of the low field intensity joint magnetic resonance imaging (MRI) in traumatic ankles. Methods: Through a retrospective examination and collection of 50 cases with complete information and checked by arthroscope or/and operated from Jan 2007 to Jun 2010, the diagnostic value ligament of the ankle joint, bone contusion,occult fracture, talus cartilage, and tendon could be evaluated. Cases of fracture for which could be diagnosed by X rays and CT were not included in this research. Results: The special low field intensity joint MRI had a high diagnostic sensitivity of 88.9% to ligamentum talofibulare anterius, but was only 50% sensitive to ligamentum calcaneofibulare. Its sensitivity to injury of ligamentum deltoideum and distal tibiofibular syndesmosis was up to 100%. Tendon injury, bone contusion and occult fracture could be exactly diagnosed. Its total sensitivity on talus cartilage traumatism was 70.6%. Its diagnosis sensitivity to talus cartilage traumatism at the 3rd-5th period by Mintz was 90%, with a lower one of 42.9% at the 1st-2nd period. Talus cartilage traumatism could be exactly predicted by osseous tissue dropsy below cartilage. Conclusion: The special low field intensity joint MRI is highly applicable to the diagnosis on ankle joint traumatism and facilitates clinical treatment. (authors)

  12. Electron scattering in the presence of an intense electromagnetic field

    International Nuclear Information System (INIS)

    Mohan, M.; Chand, P.

    1977-03-01

    The general theory of electron scattering in the presence of an external electromagnetic field, provided by an intense laser beam, accompanied by absorption of n photons, each with energy hω, is discussed. The calculation leads to many summations over intermediate states. A general method for exactly evaluating several sums is described in detail. Numerical results show that the cross-section varies with intensity in a power law fashion

  13. Atomic electron correlations in intense laser fields

    International Nuclear Information System (INIS)

    DiMauro, L.F.; Sheehy, B.; Walker, B.; Agostini, P.A.

    1998-01-01

    This talk examines two distinct cases in strong optical fields where electron correlation plays an important role in the dynamics. In the first example, strong coupling in a two-electron-like system is manifested as an intensity-dependent splitting in the ionized electron energy distribution. This two-electron phenomenon (dubbed continuum-continuum Autler-Townes effect) is analogous to a strongly coupled two-level, one-electron atom but raises some intriguing questions regarding the exact nature of electron-electron correlation. The second case examines the evidence for two-electron ionization in the strong-field tunneling limit. Although their ability to describe the one-electron dynamics has obtained a quantitative level of understanding, a description of the two (multiple) electron ionization remains unclear

  14. Fixed target physics at high energies

    International Nuclear Information System (INIS)

    Kirk, T.B.

    1984-01-01

    The number and type of fixed target experiments that can be pursued at a proton synchrotron are very large. The advent of the Fermilab superconducting accelerator, the Tevatron, will extend and improve the results which are given here from recent CERN and Fermilab experiments. The sample of experiments given in this paper is neither meant to be inclusive nor intensive. Hopefully, it will give the flavor of contemporary fixed target physics to a predominantly cosmic ray oriented audience. (author)

  15. Direct and inverse scattering at fixed energy for massless charged Dirac fields by Kerr-Newman-de Sitter black holes

    CERN Document Server

    Daudé, Thierry

    2017-01-01

    In this paper, the authors study the direct and inverse scattering theory at fixed energy for massless charged Dirac fields evolving in the exterior region of a Kerr-Newman-de Sitter black hole. In the first part, they establish the existence and asymptotic completeness of time-dependent wave operators associated to our Dirac fields. This leads to the definition of the time-dependent scattering operator that encodes the far-field behavior (with respect to a stationary observer) in the asymptotic regions of the black hole: the event and cosmological horizons. The authors also use the miraculous property (quoting Chandrasekhar)-that the Dirac equation can be separated into radial and angular ordinary differential equations-to make the link between the time-dependent scattering operator and its stationary counterpart. This leads to a nice expression of the scattering matrix at fixed energy in terms of stationary solutions of the system of separated equations. In a second part, the authors use this expression of ...

  16. Estimate of symbiotically fixed nitrogen in field grown soybeans using variations in /sup 15/N natural abundance

    Energy Technology Data Exchange (ETDEWEB)

    Amarger, N; Durr, J C; Bourguignon, C; Lagacherie, B [INRA Centre de Recherches de Dijon, 21 (France). Lab. de Microbiologie des Sols; Mariotti, A; Mariotti, F [Paris-6 Univ., 75 (France). Lab. de Geologie Dynamique

    1979-07-01

    The use of variations in natural abundance of /sup 15/N between nitrogen fixing and non nitrogen fixing soybeans was investigated for quantitative estimate of symbiotic nitrogen fixation. Isotopic analysis of 4 varieties of inoculated and non-inoculated soybeans growing under field conditions, with and without N-fertilizer was determined. It was found that inoculated soybeans had a significantly lower /sup 15/N content than non-inoculated ones. Estimates of the participation of fixed N to the total nitrogen content of inoculated soybeans were calculated from these differences. They were compared to estimates calculated from differences in N yield between inoculated and non-inoculated plants and to the nitrogenase activity, measured by the C/sub 2/H/sub 2/ reduction assay over the growing season. Estimates given by the /sup 15/N measurements were correlated with the C/sub 2/H/sub 2/ reducing activity but not with the differences in the N yield. This shows that the isotopic composition was dependent on the amount of fixed nitrogen and consequently that the estimates of fixed nitrogen based on natural /sup 15/N abundance should be reliable. The absence of correlation between estimates based on /sup 15/N content and estimates based on N yield was explained by differences in the uptake of soil nitrogen between inoculated and non inoculated soybeans.

  17. High-intensity pulsed electric field variables affecting Staphylococcus aureus inoculated in milk.

    Science.gov (United States)

    Sobrino-López, A; Raybaudi-Massilia, R; Martín-Belloso, O

    2006-10-01

    Staphylococcus aureus is an important milk-related pathogen that is inactivated by high-intensity pulsed electric fields (HIPEF). In this study, inactivation of Staph. aureus suspended in milk by HIPEF was studied using a response surface methodology, in which electric field intensity, pulse number, pulse width, pulse polarity, and the fat content of milk were the controlled variables. It was found that the fat content of milk did not significantly affect the microbial inactivation of Staph. aureus. A maximum value of 4.5 log reductions was obtained by applying 150 bipolar pulses of 8 mus each at 35 kV/cm. Bipolar pulses were more effective than those applied in the monopolar mode. An increase in electric field intensity, pulse number, or pulse width resulted in a drop in the survival fraction of Staph. aureus. Pulse widths close to 6.7 micros lead to greater microbial death with a minimum number of applied pulses. At a constant treatment time, a greater number of shorter pulses achieved better inactivation than those treatments performed at a lower number of longer pulses. The combined action of pulse number and electric field intensity followed a similar pattern, indicating that the same fraction of microbial death can be reached with different combinations of the variables. The behavior and relationship among the electrical variables suggest that the energy input of HIPEF processing might be optimized without decreasing the microbial death.

  18. Effect of high-hydrostatic pressure and moderate-intensity pulsed electric field on plum.

    Science.gov (United States)

    García-Parra, J; González-Cebrino, F; Delgado-Adámez, J; Cava, R; Martín-Belloso, O; Élez-Martínez, P; Ramírez, R

    2018-03-01

    Moderate intensity pulse electric fields were applied in plum with the aim to increase bioactive compounds content of the fruit, while high-hydrostatic pressure was applied to preserve the purées. High-hydrostatic pressure treatment was compared with an equivalent thermal treatment. The addition of ascorbic acid during purée manufacture was also evaluated. The main objective of this study was to assess the effects on microorganisms, polyphenoloxidase, color and bioactive compounds of high-hydrostatic pressure, or thermal-processed plum purées made of moderate intensity pulse electric field-treated or no-moderate intensity pulse electric field-treated plums, after processing during storage. The application of moderate intensity pulse electric field to plums slightly increased the levels of anthocyanins and the antioxidant activity of purées. The application of Hydrostatic-high pressure (HHP) increased the levels of bioactive compounds in purées, while the thermal treatment preserved better the color during storage. The addition of ascorbic acid during the manufacture of plum purée was an important factor for the final quality of purées. The color and the bioactive compounds content were better preserved in purées with ascorbic acid. The no inactivation of polyphenoloxidase enzyme with treatments applied in this study affected the stability purées. Probably more intense treatments conditions (high-hydrostatic pressure and thermal treatment) would be necessary to reach better quality and shelf life during storage.

  19. Simulation of geomagnetic field variations during an intensive magnetic storm

    International Nuclear Information System (INIS)

    Fel'dshtejn, Ya.I.; Dremukhin, L.A.; Veshcherova, U.B.

    1993-01-01

    The intensity of asymmetric part of magnetic field of ring current is closely linked with energy flow entering the magnetosphere from solar wind. Quantitative description assumes usage of data on parameters of solar wind before few hours

  20. Infra-red fixed points in supersymmetry

    Indian Academy of Sciences (India)

    ¾c /font>, and c stands for the color quadratic Casimir of the field. Fixed points arise when R* ¼ or when R*. /nobr>. ´S-½. µ ´r ·b¿µ. The stability of the solutions may be tested by linearizing the system about the fixed points. For the non-trivial fixed points we need to consider the eigenvalues of the stability matrix whose ...

  1. Angular intensity of a gas-phase field ionization source

    International Nuclear Information System (INIS)

    Orloff, J.; Swanson, L.W.

    1979-01-01

    Angular intensities of 1 μA sr -1 have been measured for a gas-phase field ionization source in an optical column under practical operating conditions. The source, which was differentially pumped and cooled to 77 K, utilized a -oriented iridium emitter and precooled hydrogen gas at 10 -2 Torr. The ion beam was collimated with an electrostatic lens and detected below an aperture subtending 0.164 msr. A transmitted current of approx.10 -10 A was measured at voltages corresponding to a field of approx. =2.2 V/A at the emitter

  2. Aligning molecules with intense nonresonant laser fields

    DEFF Research Database (Denmark)

    Larsen, J.J.; Safvan, C.P.; Sakai, H.

    1999-01-01

    Molecules in a seeded supersonic beam are aligned by the interaction between an intense nonresonant linearly polarized laser field and the molecular polarizability. We demonstrate the general applicability of the scheme by aligning I2, ICl, CS2, CH3I, and C6H5I molecules. The alignment is probed...... by mass selective two dimensional imaging of the photofragment ions produced by femtosecond laser pulses. Calculations on the degree of alignment of I2 are in good agreement with the experiments. We discuss some future applications of laser aligned molecules....

  3. Origin of intense magnetic fields near black holes due to non-minimal gravitational-electromagnetic coupling

    International Nuclear Information System (INIS)

    Souza, Rafael S. de; Opher, Reuven

    2011-01-01

    The origin of magnetic fields in astrophysical objects is a challenging problem in astrophysics. Throughout the years, many scientists have suggested that non-minimal gravitational-electromagnetic coupling (NMGEC) could be the origin of the ubiquitous astrophysical magnetic fields. We investigate the possible origin of intense magnetic fields by NMGEC near rotating black holes, connected with quasars and gamma-ray bursts. Whereas these intense magnetic fields are difficult to explain astrophysically, we find that they are easily explained by NMGEC.

  4. Intensity-modulated stereotactic radiosurgery using dynamic micro-multileaf collimation

    International Nuclear Information System (INIS)

    Benedict, Stanley H.; Cardinale, Robert M.; Wu Qiuwen; Zwicker, Robert D.; Broaddus, William C.; Mohan, Radhe

    2001-01-01

    Purpose: The implementation of dynamic leaf motion on a micro-multileaf collimator system provides the capability for intensity-modulated stereotactic radiosurgery (IMSRS), and the consequent potential for improved dose distributions for irregularly shaped tumor volumes adjacent to critical organs. This study explores the use of IMSRS to provide improved tumor coverage and normal tissue sparing for small cranial tumors relative to plans based on multiple fixed uniform-intensity beams or traditional circular collimator arc-based stereotactic techniques. Methods and Materials: Four patient cases involving small brain lesions are presented and analyzed. The cases were chosen to include a representative selection of target shapes, number of targets, and adjacent critical areas. Patient plans generated for these comparisons include standard arcs with multiple circular collimators, and fixed noncoplanar static fields with uniform-intensity beams and IMSRS. Parameters used for evaluation of the plans include the percentage of irradiated volume to tumor volume (PITV), normal tissue dose-volume histograms, and dose-homogeneity ratios. All IMSRS plans were computed using previously established IMRT techniques adapted for use with the BrainLAB M3 micro-multileaf collimator. The algorithms comprising the IMRT system for optimization of intensity distributions and conversion into leaf trajectories of the BrainLab M3 were developed at our institution. The ADAC Pinnacle 3 radiation treatment-planning system was used for dose calculations and for input of contours for target volumes and normal critical structures. Results: For all cases, the IMSRS plans showed a high degree of conformity of the dose distribution with the target shape. The IMSRS plans provided either (1) a smaller volume of normal tissue irradiated to significant dose levels, generally taken as doses greater than 50% of the prescription, or (2) a lower dose to an important adjacent critical organ. The reduction in

  5. Combined effects of intense laser field, electric and magnetic fields on the nonlinear optical properties of the step-like quantum well

    Energy Technology Data Exchange (ETDEWEB)

    Kasapoglu, E., E-mail: ekasap@cumhuriyet.edu.tr [Department of Physics, Cumhuriyet University, 58140 Sivas (Turkey); Duque, C.A. [Grupo de Materia Condensada-UdeA, Instituto de Física, Facultad de Ciencias Exactas y Naturales, Universidad de Antioquia-UdeA, Calle 70 No. 52-21, Medellín (Colombia); Mora-Ramos, M.E. [Facultad de Ciencias, Universidad Autónoma del Estado de Morelos, Ave. Universidad 1001, CP 62209, Cuernavaca, Morelos (Mexico); Restrepo, R.L. [Department of Physics, Cumhuriyet University, 58140 Sivas (Turkey); Grupo de Materia Condensada-UdeA, Instituto de Física, Facultad de Ciencias Exactas y Naturales, Universidad de Antioquia-UdeA, Calle 70 No. 52-21, Medellín (Colombia); Escuela de Ingeniería de Antioquia-EIA, Medellín (Colombia); Ungan, F.; Yesilgul, U.; Sari, H. [Department of Physics, Cumhuriyet University, 58140 Sivas (Turkey); Sökmen, I. [Department of Physics, Dokuz Eylül University, 35160 Buca, İzmir (Turkey)

    2015-03-15

    In the present work, the effects of the intense laser field on total optical absorption coefficient (the linear and third-order nonlinear) and total refractive index change for transition between two lower-lying electronic levels in the step-like GaAs/Ga{sub 1−x}Al{sub x}As quantum well under external electric and magnetic fields are investigated. The calculations were performed within the compact density-matrix formalism with the use of the effective mass and parabolic band approximations. The obtained results show that both total absorption coefficient and refractive index change are sensitive to the well dimensions and the effects of external fields. By changing the intensities of the electric, magnetic and non-resonant intense laser fields together with the well dimensions, we can obtain the blue or red shift, without the need for the growth of many different samples. - Highlights: • Augmentation of laser-field results in red shift in total AC spectra. • Magnetic field induces a blue-shift in the resonant peak. • Resonant peak position shifts to red with effect of electric field. • Resonant peak of total AC shifts to the higher photon energies with increasing well width.

  6. Combined effects of intense laser field, electric and magnetic fields on the nonlinear optical properties of the step-like quantum well

    International Nuclear Information System (INIS)

    Kasapoglu, E.; Duque, C.A.; Mora-Ramos, M.E.; Restrepo, R.L.; Ungan, F.; Yesilgul, U.; Sari, H.; Sökmen, I.

    2015-01-01

    In the present work, the effects of the intense laser field on total optical absorption coefficient (the linear and third-order nonlinear) and total refractive index change for transition between two lower-lying electronic levels in the step-like GaAs/Ga 1−x Al x As quantum well under external electric and magnetic fields are investigated. The calculations were performed within the compact density-matrix formalism with the use of the effective mass and parabolic band approximations. The obtained results show that both total absorption coefficient and refractive index change are sensitive to the well dimensions and the effects of external fields. By changing the intensities of the electric, magnetic and non-resonant intense laser fields together with the well dimensions, we can obtain the blue or red shift, without the need for the growth of many different samples. - Highlights: • Augmentation of laser-field results in red shift in total AC spectra. • Magnetic field induces a blue-shift in the resonant peak. • Resonant peak position shifts to red with effect of electric field. • Resonant peak of total AC shifts to the higher photon energies with increasing well width

  7. Band Gap Distortion in Semiconductors Strongly Driven by Intense Mid-Infrared Laser Fields

    Science.gov (United States)

    Kono, J.; Chin, A. H.

    2000-03-01

    Crystalline solids non-resonantly driven by intense time-periodic electric fields are predicted to exhibit unusual band-gap distortion.(e.g., Y. Yacoby, Phys. Rev. 169, 610 (1968); L.C.M. Miranda, Solid State Commun. 45, 783 (1983); J.Z. Kaminski, Acta Physica Polonica A 83, 495(1993).) Such non-perturbative effects have not been observed to date because of the unavoidable sample damage due to the very high intensity required using conventional lasers ( 1 eV photon energy). Here, we report the first clear evidence of laser-induced bandgap shrinkage in semiconductors under intense mid-infrared (MIR) laser fields. The use of long-wavelength light reduces the required intensity and prohibits strong interband absorption, thereby avoiding the damage problem. The significant sub-bandgap absorption persists only during the existence of the MIR laser pulse, indicating the virtual nature of the effect. We show that this particular example of non-perturbative behavior, known as the dynamical Franz-Keldysh effect, occurs when the effective ponderomotive potential energy is comparable to the photon energy of the applied field. This work was supported by ONR, NSF, JST and NEDO.

  8. S-matrix analysis of vibrational and alignment effects in intense-field multiphoton ionization of molecules

    International Nuclear Information System (INIS)

    Requate, A.

    2007-03-01

    Theoretical analysis of the vibrational excitation of small molecules during multiphoton ionization in intense laser fields of optical and infrared frequencies. Analysis of the alignment dependence of the electron impact ionization of diatomic molecules in the presence of an intense laser field as the final step in the process of Nonsequential Double Ionization. Quantum mechanical description using S-matrix theory in Strong Field Approximation (SFA), i.e. beyond perturbation theory. (orig.)

  9. S-matrix analysis of vibrational and alignment effects in intense-field multiphoton ionization of molecules

    Energy Technology Data Exchange (ETDEWEB)

    Requate, A

    2007-03-15

    Theoretical analysis of the vibrational excitation of small molecules during multiphoton ionization in intense laser fields of optical and infrared frequencies. Analysis of the alignment dependence of the electron impact ionization of diatomic molecules in the presence of an intense laser field as the final step in the process of Nonsequential Double Ionization. Quantum mechanical description using S-matrix theory in Strong Field Approximation (SFA), i.e. beyond perturbation theory. (orig.)

  10. Three dimensional alignment of molecules using elliptically polarized laser fields

    DEFF Research Database (Denmark)

    Larsen, J.J.; Bjerre, N.; Hald, K.

    2000-01-01

    We demonstrate, theoretically and experimentally, that an intense, elliptically polarized, nonresonant laser field can simultaneously force all three axes of a molecule to align along given axes fixed in space, thus inhibiting the free rotation in all three Euler angles. Theoretically, the effect...

  11. Improvement of the methods for company’s fixed assets analysis

    Directory of Open Access Journals (Sweden)

    T. A. Zhurkina

    2018-01-01

    Full Text Available Fixed assets are an integral component of the productive capacity of any enterprise. The financial results of the enterprise largely depend on their intensity and efficiency of use. The analysis of fixed assets is usually carried out using an integrated and systematic approach, based on their availability, their movement, efficiency of use (including their active part. In the opinion of some authors, the traditional methods of analyzing fixed assets have a number of shortcomings, since they do not take into account the life cycle of an enterprise, the ecological aspects of the operation of fixed assets, the operation specifics of the individual divisions of a company and its branches. In order to improve the methodology for analyzing fixed assets, the authors proposed to use formalized and nonformalized criteria for analyzing the risks associated with the fixed asset use. A survey questionnaire was designed to determine the likelihood of the risk of economic losses associated with the use of fixed assets. The authors propose using the integral indicator for the purpose of analyzing the risk of using fixed assets in dynamics. In order to improve the procedure for auditing, the authors proposed segregation of economic transactions with fixed assets according to their cycles in accordance with the stage of their reproduction. Operational analysis is important for managing the efficiency of the fixed asset use, especially during a critical period. Using the analysis of the regularity in grain combines performance would reduce losses during harvesting, implement the work within strictly defined time frame and remunerate the employees for high-quality and intensive performance of their tasks.

  12. Relativistic electron beam - plasma interaction with intense self-fields

    International Nuclear Information System (INIS)

    Davidson, R.C.

    1984-01-01

    The major interest in the equilibrium, stability and radiation properties of relativistic electron beams and in beam-plasma interactions originates from several diverse research areas. It is well known that a many-body collection of charged particles in which there is not overall charge neutrality and/or current neutrality can be characterized by intense self-electric fields and/or self-magnetic fields. Moreover, the intense equilibrium self-fields associated with the lack of charge neutrality and/or current neutrality can have a large effect on particle trajectories and on detailed equilibrium and stability behavior. The main emphasis in Sections 9.1.2-9.1.5 of this chapter is placed on investigations of the important influence of self-fields on the equilibrium and stability properties of magnetically confined electron beam-plasma systems. Atomic processes and discrete particle interactions (binary collisions) are omitted from the analysis, and collective processes are assumed to dominate on the time and length scales of interest. Moreover, both macroscopic (Section 9.1.2) and kinetic (Sections 9.1.3-9.1.5) theoretical models are developed and used to investigate equilibrium and stability properties in straight cylindrical geometry. Several of the classical waves and instabilities characteristic of nonneutral plasmas and beam-plasma systems are analyzed in Sections 9.1.2-9.1.5, including stable surface oscillation on a nonneutral electron beam, the ion resonance instability, the diocotron instability, two-stream instabilities between beam electrons and plasma electrons and between beam electrons and plasma ions, the filamentation instability, the modified two-stream instability, etc

  13. Influence of constant, alternating and cyclotron low-intensity electromagnetic fields on fibroblast proliferative activity in vitro.

    Science.gov (United States)

    Afinogenov, Gennadi; Afinogenova, Anna; Kalinin, Andrey

    2009-12-16

    Available data allow assuming the presence of stimulation of reparative processes under influence of low-intensity electromagnetic field, commensurable with a magnetic field of the Earth. Research of effects of low-intensity electromagnetic fields on fibroblast proliferative activity in human lungs in cell culture was performed.The influence of a constant electromagnetic field, an alternating electromagnetic field by frequency of 50 Hz and cyclotron electromagnetic field with identical intensity for all kinds of fields - 80 mcTl - on value of cellular mass and a correlation of live and dead cells in culture is investigated in three series of experiments. We used the universal electromagnetic radiator generating all three kinds of fields and supplied by a magnetometer which allows measuring the intensity of accurate within 0.1 mcTl including taking into account the Earth's magnetic field intensity.The peak value for stimulation cellular proliferation in the present experiences was two-hour influence by any of the specified kinds of electromagnetic fields. The irradiation by cyclotron electromagnetic field conducts positive dynamics in growth of live cells (up to 206+/-22%) and decreases the number of dead cells (down to 31+/-6%). Application of cyclotron magnetic fields promoted creation of optimum conditions for proliferation. As a result of researches we observed the reliable 30% increase of nitro-tetrazolium index (in nitro-tetrazolium blue test) after irradiation by cyclotron electromagnetic field in experience that testifies to strengthening of the cell breathing of living cells.In our opinion, it is necessary to pay attention not only to a pure gain of cells, but also to reduction of number dead cells that can be criterion of creation of optimum conditions for their specific development and valuable functioning.

  14. Multiple ionization dynamics of molecules in intense laser fields

    International Nuclear Information System (INIS)

    Ichimura, Atsushi; Ohyama-Yamaguchi, Tomoko

    2005-01-01

    A classical field-ionization model is developed for sequential multiple ionization of diatomic and linear triatomic molecules exposed to intense (∼ 10 15 W/cm 2 ) laser fields. The distance R ion of Coulomb explosion is calculated for a combination of fragment charges, by considering nonadiabatic excitation followed by field ionization associated with the inner and outer saddle points. For diatomic molecules (N 2 , NO, and I 2 ), the model explains behaviors observed in experiments, as R ion (21→31) ion (21→22) between competing charge-asymmetric and symmetric channels, and even-odd fluctuation along a principal pathway. For a triatomic molecule CO 2 , a comparison of the model with an experiment suggests that charge-symmetric (or nearly symmetric) channels are dominantly populated. (author)

  15. Intense auroral field-aligned currents and electrojets detected by rocket-borne fluxgate magnetometer

    International Nuclear Information System (INIS)

    Tohyama, Fumio; Fukunishi, Hiroshi; Takahashi, Takao; Kokubun, Susumu; Fujii, Ryoichi; Yamagishi, Hisao.

    1988-01-01

    The S-310JA-11 and S-310JA-12 rockets, having a vector magnetometer with high sensitivity (1.8 nT) and high sampling frequency (100 Hz), were launched into the aurora on May 29 and July 12, 1985, from Syowa Station, Antarctica. The S-310JA-11 rocket penetrated twice quiet arcs, while the S-310JA-12 rocket traversed across intense and active auroral arcs during a large magnetic substorm. In the S-310JA-12 rocket experiment, intense field-aligned currents of 400 - 600 nT were observed when the rocket penetrated an active arc during the descending flight. The magnetometer on board the S-310JA-12 rocket also detected intense electrojet currents with a center at 110 km on the upward leg and at 108 km on the downward leg. The magnetometer data of the S-310JA-11 rocket showed no distinguished magnetic field variation due to field-aligned current and electrojet. (author)

  16. A study on liquid lithium flow in rectangular duck perpendicular to a intense magnetic field

    International Nuclear Information System (INIS)

    Shen Xiuzhong; Chen Ke; Liu Yang; Zhang Qinshun

    2001-01-01

    A research on high-speed liquid-metal lithium flow through a non-expanding rectangular duck under uniform intense magnetic field is presented. A equations set with Poisson equation and Helmholtz equation, which control the electrical field and flow field respectively, has been deduced by analysis and PHsolver, a program to solve the equations set, has also been finished. The current density distribution and flow field in the non-expanding rectangular channel with intense magnetic field have been obtained from PHsolver by applying the wall-function in the boundary wall. The velocity profile in the duck appears M-shaped

  17. High energy pair production in arbitrary configuration of intense electromagnetic fields

    International Nuclear Information System (INIS)

    Ayasli, S.; Hacinliyan, A.

    1978-01-01

    The photon attenuation coefficient for pair production in intense electric and magnetic fields of arbitrary confiquration is derived. The results are applied to a cascade calculation of electromagnetic processes in pulsars. (author)

  18. Atomic motion in a high-intensity standing wave laser field

    International Nuclear Information System (INIS)

    Saez Ramdohr, L.F.

    1987-01-01

    This work discusses the effect of a high-intensity standing wave laser field on the motion of neutral atoms moving with a relatively high velocity. The analysis involves a detailed calculation of the force acting on the atoms and the calculation of the diffusion tensor associated with the fluctuations of the quantum force operator. The high-intensity laser field limit corresponds to a Rabi frequency much greater than the natural rate of the atom. The general results are valid for any atomic velocity. Results are then specialized to the case of slow and fast atoms where the Doppler shift of the laser frequency due to the atomic motion is either smaller or larger than the natural decay rate of the atom. The results obtained for the force and diffusion tensor are applied to a particular ideal experiment that studies the evolution of a fast atomic beam crossing a high-intensity laser beam. The theories developed previously, for a similar laser configuration, discuss only the low atomic velocities case and not the more realistic case of fast atoms. Here, an approximate solution of the equation for the distribution is obtained. Starting from the approximate distribution function, the deflection angle and dispersion angle for the atomic beam with respect to the free motion are calculated

  19. Intense transient electric field sensor based on the electro-optic effect of LiNbO{sub 3}

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Qing, E-mail: yangqing@cqu.edu.cn; Sun, Shangpeng; Han, Rui; Sima, Wenxia; Liu, Tong [State Key Laboratory of Power Transmission Equipment & System Security and New Technology, Chongqing University, Shapingba District, Chongqing, 400044 (China)

    2015-10-15

    Intense transient electric field measurements are widely applied in various research areas. An optical intense E-field sensor for time-domain measurements, based on the electro-optic effect of lithium niobate, has been studied in detail. Principles and key issues in the design of the sensor are presented. The sensor is insulated, small in size (65 mm × 15 mm × 15 mm), and suitable for high-intensity (<801 kV/m) electric field measurements over a wide frequency band (10 Hz–10 MHz). The input/output characteristics of the sensor were obtained and the sensor calibrated. Finally, an application using this sensor in testing laboratory lightning impulses and in measuring transient electric fields during switch-on of a disconnector confirmed that the sensor is expected to find widespread use in transient intense electric field measurement applications.

  20. Muonic atoms in super-intense laser fields

    Energy Technology Data Exchange (ETDEWEB)

    Shahbaz, Atif

    2009-01-28

    Nuclear effects in hydrogenlike muonic atoms exposed to intense high-frequency laser fields have been studied. Systems of low nuclear charge number are considered where a nonrelativistic description applies. By comparing the radiative response for different isotopes we demonstrate characteristic signatures of the finite nuclear mass, size and shape in the high-harmonic spectra. Cutoff energies in the MeV domain can be achieved, offering prospects for the generation of ultrashort coherent {gamma}-ray pulses. Also, the nucleus can be excited while the laser-driven muon moves periodically across it. The nuclear transition is caused by the time-dependent Coulomb field of the oscillating charge density of the bound muon. A closed-form analytical expression for electric multipole transitions is derived within a fully quantum mechanical approach and applied to various isotopes. The excitation probabilities are in general very small. We compare the process with other nuclear excitation mechanisms through coupling with atomic shells and discuss the prospects to observe it in experiment. (orig.)

  1. Muonic atoms in super-intense laser fields

    International Nuclear Information System (INIS)

    Shahbaz, Atif

    2009-01-01

    Nuclear effects in hydrogenlike muonic atoms exposed to intense high-frequency laser fields have been studied. Systems of low nuclear charge number are considered where a nonrelativistic description applies. By comparing the radiative response for different isotopes we demonstrate characteristic signatures of the finite nuclear mass, size and shape in the high-harmonic spectra. Cutoff energies in the MeV domain can be achieved, offering prospects for the generation of ultrashort coherent γ-ray pulses. Also, the nucleus can be excited while the laser-driven muon moves periodically across it. The nuclear transition is caused by the time-dependent Coulomb field of the oscillating charge density of the bound muon. A closed-form analytical expression for electric multipole transitions is derived within a fully quantum mechanical approach and applied to various isotopes. The excitation probabilities are in general very small. We compare the process with other nuclear excitation mechanisms through coupling with atomic shells and discuss the prospects to observe it in experiment. (orig.)

  2. Dose profile analysis of small fields in intensity modulated radiotherapy

    Energy Technology Data Exchange (ETDEWEB)

    Medel B, E. [IMSS, Centro Medico Nacional Manuel Avila Camacho, Calle 2 Nte. 2004, Barrio de San Francisco, 72090 Puebla, Pue. (Mexico); Tejeda M, G.; Romero S, K., E-mail: romsakaren@gmail.com [Benemerita Universidad Autonoma de Puebla, Facultad de Ciencias Fisico Matematicas, Av. San Claudio y 18 Sur, Ciudad Universitaria, 72570 Puebla, Pue.(Mexico)

    2015-10-15

    Full text: Small field dosimetry is getting a very important worldwide task nowadays. The use of fields of few centimeters is more common with the introduction of sophisticated techniques of radiation therapy, as Intensity Modulated Radiotherapy (IMRT). In our country the implementation of such techniques is just getting started and whit it the need of baseline data acquisition. The dosimetry under small field conditions represents a challenge for the physicists community. In this work, a dose profile analysis was done, using various types of dosimeters for further comparisons. This analysis includes the study of quality parameters as flatness, symmetry, penumbra, and other in-axis measurements. (Author)

  3. A Template for an Intensive Ecohydrology Field Course

    Science.gov (United States)

    Emanuel, R. E.; McGlynn, B. L.; Riveros-Iregui, D. A.

    2014-12-01

    Many of the greatest challenges in the earth and environmental sciences are complex and interdisciplinary in nature. Ecohydrology exemplifies the type of holistic inquiry needed to address these challenges because it spans and integrates earth science, biological science and, often, social science. Ecohydrology courses can prepare the next generation of scientists, decision-makers and informed citizens to understand and address these challenges, and field courses in particular can play an important role in this preparation. Ecohydrology field course instructors have unique opportunities to convey interwoven theoretical and applied principles through a variety of modes that include lecture, discussion, immersion, and hands-on activity. In this presentation, we report on our experience co-teaching the Mountain Ecohydrology Field Course, a full-credit course taught 3 times in the past 5 years to more than 30 students representing 6 universities. The course, which has ranged from 1-2 weeks in length, has given students in-depth exposure to intensively instrumented ecohydrological field sites in the southern Appalachian and northern Rocky Mountains. Students learn fundamental principles in ecohydrology and related fields of watershed hydrology, soil biogeochemistry, micrometeorology and plant ecophysiology. They gain hands-on experience in a variety of cutting edge field techniques, tools and analyses while practicing presentation and communication of science. Students and instructors deal with real-world challenges of conducting fieldwork in remote settings. We offer our experience as one potential template for others interested in developing or refining ecohydrology field courses elsewhere.

  4. Self-guiding of high-intensity laser pulses for laser wake field acceleration

    International Nuclear Information System (INIS)

    Umstader, D.; Liu, X.

    1992-01-01

    A means of self-guiding an ultrashort and high-intensity laser pulse is demonstrated both experimentally and numerically. Its relevance to the laser wake field accelerator concept is discussed. Self-focusing and multiple foci formation are observed when a high peak power (P>100 GW), 1 μm, subpicosecond laser is focused onto various gases (air or hydrogen). It appears to result from the combined effects of self-focusing by the gas, and de-focusing both by diffraction and the plasma formed in the central high-intensity region. Quasi-stationary computer simulations show the same multiple foci behavior as the experiments. The results suggest much larger nonlinear electronic susceptibilities of a gas near or undergoing ionization in the high field of the laser pulse. Although self-guiding of a laser beam by this mechanism appears to significantly extend its high-intensity focal region, small-scale self-focusing due to beam non-uniformity is currently a limitation

  5. New lens system using toroidal magnetic field for intense ion beam

    International Nuclear Information System (INIS)

    Mohri, Akihiro; Ikuta, Kazunari; Fujita, Junji.

    1976-11-01

    The use of toroidal magnetic field as a lens system is proposed for producing intense ion beam. The characteristics of the lens system are obtained both analytically and numerically. Some examples of ray-trajectories are presented for different focal lengths. The system is applicable to neutral beam injection heating and micro-pellet implosion for nuclear fusion, and to the other fields such as ion beam X-ray lasers. (auth.)

  6. Fixed-point signal processing

    CERN Document Server

    Padgett, Wayne T

    2009-01-01

    This book is intended to fill the gap between the ""ideal precision"" digital signal processing (DSP) that is widely taught, and the limited precision implementation skills that are commonly required in fixed-point processors and field programmable gate arrays (FPGAs). These skills are often neglected at the university level, particularly for undergraduates. We have attempted to create a resource both for a DSP elective course and for the practicing engineer with a need to understand fixed-point implementation. Although we assume a background in DSP, Chapter 2 contains a review of basic theory

  7. Relativistic hadrodynamics with field-strength dependent coupling of the scalar fields in Hartree and Hartree-Fock approximation

    International Nuclear Information System (INIS)

    Lindner, J.

    1992-09-01

    In this thesis in the framework of our model of the field-strength dependent coupling the properties of infinitely extended, homogeneous, static, spin- and isospin-saturated nuclear matter are studied. Thereby we use the Hartree-Mean-Field and the Hartree-Fock approximation, whereby the influence of the antiparticle states in the Fermi sea is neglected. In chapter 2 the Lagrangian density basing to our model is fixed. Starting from the Walecka model we modify in the Lagrangian density the Linear coupling of the scalar field to the scalar density as follows g S φanti ψψ→g S f(φ) anti ψψ. In chapter 3 we fix three different functions f(φ). For these three cases and for the Walecka model with f(φ)=φ nuclear-matter calculations are performed. In chapter 4 for the Hartree-Fock calculations, but also very especially regarding the molecular-dynamics calculations, the properties of the Dirac spinors in the plane-wave representation are intensively studied. (orig.)

  8. The intensity of the Earth's magnetic field over the past 160 million years

    NARCIS (Netherlands)

    Juárez, M.T.; Tauxe, Lisa; Gee, J.S.; Pick, T.

    1998-01-01

    In contrast to our detailed knowledge of the directional behaviour of the Earth's magnetic field during geological and historical times, data constraining the past intensity of the field remain relatively scarce. This is mainly due to the difficulty in obtaining reliable palaeointensity

  9. Orbit and optics distortion in fixed field alternating gradient muon accelerators

    Directory of Open Access Journals (Sweden)

    Shinji Machida

    2007-11-01

    Full Text Available In a linear nonscaling fixed field alternating gradient (FFAG accelerator, betatron tunes vary over a wide range and a beam has to cross integer and half-integer tunes several times. Although it is plausible to say that integer and half-integer resonances are not harmful if the crossing speed is fast, no quantitative argument exists. With tracking simulation, we studied orbit and optics distortion due to alignment and magnet errors. It was found that the concept of integer and half-integer resonance crossing is irrelevant to explain beam behavior in a nonscaling FFAG when acceleration is fast and betatron tunes change quickly. In a muon FFAG accelerator, it takes 17 turns for acceleration and the betatron tunes change more than 10, for example. Instead, the orbit and optics distortion is excited by random dipole and quadrupole kicks. The latter causes beam size growth because the beam starts tumbling in phase space, but not necessarily with emittance growth.

  10. Magnetic fields in a neonatal intensive care unit

    International Nuclear Information System (INIS)

    Aasen, S.E.; Johansson, A.; Cristensen, T.

    1995-06-01

    In this study the magnetic flux density in and around the infant incubators of a neonatal intensive care unit were registered and mapped. The mean 50 Hz magnetic flux densities in an incubator was typically in the region 0.2 - l μT, with maximum values around 1.5μT. The field levels are quite varying dependent on type of incubator, position in the incubator, position of the electronic surveillance and treatment equipment and the position of the 220 V main plugs. 8 refs., 21 figs., 2 tabs

  11. Comparing topological charge definitions using topology fixing actions

    International Nuclear Information System (INIS)

    Bruckmann, Falk; Gruber, Florian; Jansen, Karl; Marinkovic, Marina; Urbach, Carsten; Wagner, Marc

    2009-05-01

    We investigate both the hyperbolic action and the determinant ratio action designed to fix the topological charge on the lattice. We show to what extent topology is fixed depending on the parameters of these actions, keeping the physical situation fixed. At the same time the agreement between different definitions of topological charge - the field theoretic and the index definition - is directly correlated to the degree topology is fixed. Moreover, it turns out that the two definitions agree very well. We also study finite volume effects arising in the static potential and related quantities due to topology fixing. (orig.)

  12. A Method of Estimating Pressure and Intensity Distributions of Multielement Phased Array High Intensity Focused Ultrasonic Field at Full Power Using a Needle Hydrophone

    International Nuclear Information System (INIS)

    Yu Ying; Shen Guofeng; Bai Jingfeng; Chen Yazhu

    2011-01-01

    The pressure and intensity distribution of high intensity focused ultrasound (HIFU) fields at full power are critical for predicting heating patterns and ensuring safety of the therapy. With the limitations of maximum pressure at the hydrophone and damage from cavitation or thermal effects, it is hard to measure pressure and intensity directly when HIFU is at full power. HIFU-phased arrays are usually composed of large numbers of small elements and the sound power radiated from some of them at full power is measureable using a hydrophone, we grouped them based on the limitation of maximum permissible pressure at the hydrophone and the characteristics of the element arrangement in the array. Then sound field measurement of the group was carried out at full power level. Using the acoustic coherence principle, the pressure and intensity distribution of the array at full power level can be calculated from corresponding values from the groups. With this method, computer simulations and sound field measurement of a 65-element concentric distributed phased array was carried out. The simulation results demonstrate theoretically the feasibility of this method. Measurements on the 65-element phased array also verify the effectiveness of this method for estimating the pressure and intensity distribution of phased array at full power level using a needle hydrophone.

  13. Modeling high-intensity pulsed electric field inactivation of a lipase from Pseudomonas fluorescens.

    Science.gov (United States)

    Soliva-Fortuny, R; Bendicho-Porta, S; Martín-Belloso, O

    2006-11-01

    The inactivation kinetics of a lipase from Pseudomonas fluorescens (EC 3.1.1.3.) were studied in a simulated skim milk ultrafiltrate treated with high-intensity pulsed electric fields. Samples were subjected to electric field intensities ranging from 16.4 to 27.4 kV/cm for up to 314.5 micros, thus achieving a maximum inactivation of 62.1%. The suitability of describing experimental data using mechanistic first-order kinetics and an empirical model based on the Weibull distribution function is discussed. In addition, different mathematical expressions relating the residual activity values to field strength and treatment time are supplied. A first-order fractional conversion model predicted residual activity with good accuracy (A(f) = 1.018). A mechanistic insight of the model kinetics was that experimental values were the consequence of different structural organizations of the enzyme, with uneven resistance to the pulsed electric field treatments. The Weibull model was also useful in predicting the energy density necessary to achieve lipase inactivation.

  14. Nonthermal fixed points and the functional renormalization group

    International Nuclear Information System (INIS)

    Berges, Juergen; Hoffmeister, Gabriele

    2009-01-01

    Nonthermal fixed points represent basic properties of quantum field theories, in addition to vacuum or thermal equilibrium fixed points. The functional renormalization group on a closed real-time path provides a common framework for their description. For the example of an O(N) symmetric scalar theory it reveals a hierarchy of fixed point solutions, with increasing complexity from vacuum and thermal equilibrium to nonequilibrium

  15. Fixed target electroweak and hard scattering physics

    International Nuclear Information System (INIS)

    Brock, R.; Brown, C.N.; Montgomery, H.E.; Corcoran, M.D.

    1990-02-01

    The possibilities for future physics and experiments involving weak and electromagnetic interactions, neutrino oscillations, general hard scattering and experiments involving nuclear targets were explored. The studies were limited to the physics accessible using fixed target experimentation. While some of the avenues explored turn out to be relatively unrewarding in the light of competition elsewhere in the world, there are a number of positive conclusions reached about experimentation in the energy range available to the Main Injector and Tevatron. Some of the experiments would benefit from the increased intensity available from the Tevatron utilizing the Main Injector, while some require this increase. Finally, some of the experiments would use the Main Injector low energy, high intensity extracted beams directly. A program of electroweak and hard scattering experiments at fixed target energies retains the potential for important contributions to physics. The key to major parts of this program would appear to be the existence of the Main Injector. 115 refs, 17 figs

  16. Document page structure learning for fixed-layout e-books using conditional random fields

    Science.gov (United States)

    Tao, Xin; Tang, Zhi; Xu, Canhui

    2013-12-01

    In this paper, a model is proposed to learn logical structure of fixed-layout document pages by combining support vector machine (SVM) and conditional random fields (CRF). Features related to each logical label and their dependencies are extracted from various original Portable Document Format (PDF) attributes. Both local evidence and contextual dependencies are integrated in the proposed model so as to achieve better logical labeling performance. With the merits of SVM as local discriminative classifier and CRF modeling contextual correlations of adjacent fragments, it is capable of resolving the ambiguities of semantic labels. The experimental results show that CRF based models with both tree and chain graph structures outperform the SVM model with an increase of macro-averaged F1 by about 10%.

  17. Phase control of the probability of electronic transitions in the non-perturbative laser field intensity

    International Nuclear Information System (INIS)

    Yokoyama, Keiichi; Sugita, Akihiro; Yamada, Hidetaka; Teranishi, Yoshiaki; Yokoyama, Atsushi

    2007-01-01

    A preparatory study on the quantum control of the selective transition K(4S 1/2 ) → K(4P J ) (J=1/2, 3/2) in intense laser field is reported. To generate high average power femtosecond laser pulses with enough field intensity, a Ti:Sapphire regenerative amplifier system with a repetition rate of 1 kHz is constructed. The bandwidth and pulse energy are shown to qualify the required values for the completely selective transition with 100% population inversion. A preliminary experiment of the selective excitation shows that the fringe pattern formed by a phase related pulse pair depends on the laser intensity, indicating that the perturbative behavior of the excitation probabilities is not valid any more and the laser intensity reaches a non-perturbative region. (author)

  18. Photoionization cross-section of donor impurity in spherical quantum dots under electric and intense laser fields

    International Nuclear Information System (INIS)

    Burileanu, L.M.

    2014-01-01

    Using a perturbative method we have investigated the behavior of the binding energy and photoionization cross-section of a donor impurity in spherical GaAs–GaAlAs quantum dots under the influence of electric and intense high-frequency laser fields. The dependencies of the binding energy and photoionization cross-section on electric and laser field strength, dot radius and impurity position were investigated. Our results show that the amplitude of photoionization cross-section grows with the dot radius increase and the peak of the cross-section blue shifts with the laser intensity increment. We have found that the binding energy is not a monotonically function of laser intensity: it decreases or increases depending on electric field regime. The studied effects are even more pronounced as the quantum dot radius is smaller. -- Highlights: • A photoionization cross-section study in quantum dots under laser and electric fields. • The photoionization cross-section peaks are red shifted by the electric field. • The photoionization cross-section peaks are blue shifted by the laser field. • The combined effects of applied fields strongly affect the binding energy

  19. Orbital Noise of the Earth Causes Intensity Fluctuation in the Geomagnetic Field

    Science.gov (United States)

    Liu, Han-Shou; Kolenkiewicz, R.; Wade, C., Jr.

    2003-01-01

    Orbital noise of Earth's obliquity can provide an insight into the core of the Earth that causes intensity fluctuations in the geomagnetic field. Here we show that noise spectrum of the obliquity frequency have revealed a series of frequency periods centered at 250-, 1OO-, 50-, 41-, 30-, and 26-kyr which are almost identical with the observed spectral peaks from the composite curve of 33 records of relative paleointensity spanning the past 800 kyr (Sint-800 data). A continuous record for the past two million years also reveals the presence of the major 100 kyr periodicity in obliquity noise and geomagnetic intensity fluctuations. These results of correlation suggest that obliquity noise may power the dynamo, located in the liquid outer core of the Earth, which generates the geomagnetic field.

  20. Fixed points of quantum gravity in extra dimensions

    International Nuclear Information System (INIS)

    Fischer, Peter; Litim, Daniel F.

    2006-01-01

    We study quantum gravity in more than four dimensions with renormalisation group methods. We find a non-trivial ultraviolet fixed point in the Einstein-Hilbert action. The fixed point connects with the perturbative infrared domain through finite renormalisation group trajectories. We show that our results for fixed points and related scaling exponents are stable. If this picture persists at higher order, quantum gravity in the metric field is asymptotically safe. We discuss signatures of the gravitational fixed point in models with low scale quantum gravity and compact extra dimensions

  1. Water intensity assessment of shale gas resources in the Wattenberg field in northeastern Colorado.

    Science.gov (United States)

    Goodwin, Stephen; Carlson, Ken; Knox, Ken; Douglas, Caleb; Rein, Luke

    2014-05-20

    Efficient use of water, particularly in the western U.S., is an increasingly important aspect of many activities including agriculture, urban, and industry. As the population increases and agriculture and energy needs continue to rise, the pressure on water and other natural resources is expected to intensify. Recent advances in technology have stimulated growth in oil and gas development, as well as increasing the industry's need for water resources. This study provides an analysis of how efficiently water resources are used for unconventional shale development in Northeastern Colorado. The study is focused on the Wattenberg Field in the Denver-Julesberg Basin. The 2000 square mile field located in a semiarid climate with competing agriculture, municipal, and industrial water demands was one of the first fields where widespread use of hydraulic fracturing was implemented. The consumptive water intensity is measured using a ratio of the net water consumption and the net energy recovery and is used to measure how efficiently water is used for energy extraction. The water and energy use as well as energy recovery data were collected from 200 Noble Energy Inc. wells to estimate the consumptive water intensity. The consumptive water intensity of unconventional shale in the Wattenberg is compared with the consumptive water intensity for extraction of other fuels for other energy sources including coal, natural gas, oil, nuclear, and renewables. 1.4 to 7.5 million gallons is required to drill and hydraulically fracture horizontal wells before energy is extracted in the Wattenberg Field. However, when the large short-term total freshwater-water use is normalized to the amount of energy produced over the lifespan of a well, the consumptive water intensity is estimated to be between 1.8 and 2.7 gal/MMBtu and is similar to surface coal mining.

  2. Fixed-point data-collection method of video signal

    International Nuclear Information System (INIS)

    Tang Yu; Yin Zejie; Qian Weiming; Wu Xiaoyi

    1997-01-01

    The author describes a Fixed-point data-collection method of video signal. The method provides an idea of fixed-point data-collection, and has been successfully applied in the research of real-time radiography on dose field, a project supported by National Science Fund

  3. Effect of linear chirp on strong field photodissociation of H+2

    International Nuclear Information System (INIS)

    Prabhudesai, Vaibhav; Natan, Adi; Bruner, Barry; Silberberg, Yaron; Lev, Uri; Heber, Oded; Strasser, Daniel; Schwalm, Dirk; Zajfman, Daniel; Ben-Itzhak, Itzik

    2011-01-01

    We report the experimental findings of a systematic study of the effect of linear chirp on strong field photodissociation of H + 2 . For vibrational levels around or above the one photon crossing, the effect manifests itself in terms of a shift in the kinetic energy release (KER) peaks. The peaks shift up for negative chirp whereas they shift down for positive chirp. The measurements are carried out by varying two of the three laser pulse characteristics, energy, pulse peak intensity and linear chirp, while keeping the third constant. The shifts in the KER peaks are found to be intensity dependent for a given value of chirp. However, in the last two cases (i.e., fixed pulsed energy and fixed pulse peak intensity), they are found to be independent of the chirp magnitude. The results are understood on the basis of saturation of photodissociation probabilities for these levels.

  4. About Applications of the Fixed Point Theory

    Directory of Open Access Journals (Sweden)

    Bucur Amelia

    2017-06-01

    Full Text Available The fixed point theory is essential to various theoretical and applied fields, such as variational and linear inequalities, the approximation theory, nonlinear analysis, integral and differential equations and inclusions, the dynamic systems theory, mathematics of fractals, mathematical economics (game theory, equilibrium problems, and optimisation problems and mathematical modelling. This paper presents a few benchmarks regarding the applications of the fixed point theory. This paper also debates if the results of the fixed point theory can be applied to the mathematical modelling of quality.

  5. Optical properties of a multibarrier structure under intense laser fields

    Science.gov (United States)

    Ospina, D. A.; Akimov, V.; Mora-Ramos, M. E.; Morales, A. L.; Tulupenko, V.; Duque, C. A.

    2015-11-01

    Using the diagonalization method and within the effective mass and parabolic band approximations, the energy spectrum and the wave functions are investigated in biased multibarrier structure taking into account the effects of nonresonant intense laser fields. We calculated the optical properties from the susceptibility using a nonperturbative formalism recently reported. We study the changes in the intersubband optical absorption coefficients and refraction index for several values of the dressing laser parameter and for some specific values of the electric field applied along the growth direction of the heterostructure. It is concluded from our study that the peaks in the optical absorption spectrum have redshifts or blueshifts as a function of the laser parameter and the electric field. These parameters could be suitable tools for tuning the electronic and optical properties of the multibarrier structure.

  6. The eigenfunction method and the mass operator in intense-field quantum electrodynamics

    International Nuclear Information System (INIS)

    Ritus, V.I.

    1987-01-01

    A method is given for calculating radiation effects in constant intense-field quantum electrodynamics; this method is based on the use of the eigenfunctions of the mass operator and diagonalization of the latter. A compact expression is found for the eigenvalue of the mass operator of the electron in a random constant field together with the corresponding elastic scattering amplitude. The anomalous electric moment that arises in the field with a pseudoscalar EH not equal to O is found and investigated in detail together with the anomalous magnetic moment in the electrical field that approaches the double Schwinger value with an increase in the field together with the mass shift and the rate of decay of the ground state of the electron in the electrical field

  7. Branes, superpotentials and superconformal fixed points

    International Nuclear Information System (INIS)

    Aharony, O.

    1997-01-01

    We analyze various brane configurations corresponding to field theories in three, four and five dimensions. We find brane configurations which correspond to three-dimensional N=2 and four-dimensional N=1 supersymmetric QCD theories with quartic superpotentials, in which what appear to be ''hidden parameters'' play an important role. We discuss the construction of five-dimensional N=1 supersymmetric gauge theories and superconformal fixed points using branes, which leads to new five-dimensional N=1 superconformal field theories. The same five-dimensional theories are also used, in a surprising way, to describe new superconformal fixed points of three-dimensional N=2 supersymmetric theories, which have both ''electric'' and ''magnetic'' Coulomb branches. (orig.)

  8. On the role of magnetic field intensity for better micro-structural characterization during Barkhausen Noise analysis

    Science.gov (United States)

    Yusufzai, Mohd Zaheer Khan; Vashista, M.

    2018-04-01

    Barkhausen Noise analysis is a popular and preferred technique for micro-structural characterization. The root mean square value and peak value of Barkhausen Noise burst are important parameters to assess the micro-hardness and residual stress. Barkhausen Noise burst can be enveloped using a curve known as Barkhausen Noise profile. Peak position of profile changes with change in micro-structure. In the present work, raw signal of Barkhausen Noise burst was obtained from Ni based sample at various magnetic field intensity to observe the effect of variation in field intensity on Barkhausen Noise burst. Raw signal was opened using MATLAB to further process for microstructure analysis. Barkhausen Noise analysis parameters such as magnetizing frequency, number of burst, high pass and low pass filter frequency were kept constant and magnetizing field was varied in wide range between 200 Oe to 1200 Oe. The processed profiles of Barkhausen Noise burst obtained at various magnetizing field intensity clearly reveals requirement of optimum magnetic field strength for better characterization of micro-structure.

  9. Photoneutron intensity variation with field size around radiotherapy linear accelerator 18-MeV X-ray beam

    Energy Technology Data Exchange (ETDEWEB)

    Al-Ghamdi, H.; Fazal-ur-Rehman [Physics Department, King Fahd University of Petroleum and Minerals, Dhahran 31261 (Saudi Arabia); Al-Jarallah, M.I. [Physics Department, King Fahd University of Petroleum and Minerals, Dhahran 31261 (Saudi Arabia)], E-mail: mibrahim@kfupm.edu.sa; Maalej, N. [Physics Department, King Fahd University of Petroleum and Minerals, Dhahran 31261 (Saudi Arabia)

    2008-08-15

    In X-ray radiotherapy accelerators, neutrons are produced mainly by ({gamma},n) reaction when high energy X-rays interact with high Z materials of the linear accelerator head. These materials include the lead (Pb) used as shielding in the collimator, tungsten (W) target used for the production of X-rays and iron (Fe) in the accelerator head. These unwanted neutrons contaminate the therapeutic beam and contribute to the patient dose during the treatment of a cancer patient. Knowing the neutron distribution around the radiotherapy accelerator is therefore desired. CR-39 nuclear track detectors (NTDs) were used to study the variation of fast and thermal neutron relative intensities around an 18 MeV linear accelerator X-ray beam with the field sizes of 0, 10x10, 20x20, 30x30 and 40x40cm{sup 2}. For fast neutron detection, bare NTDs were used. For thermal neutron detection, NTDs were covered with lithium tetra borate (Li{sub 2}B{sub 4}O{sub 7}) converters. The NTDs were placed at different locations in the direction perpendicular to the treatment couch (transversal) and in the direction parallel to the treatment couch (longitudinal) with respect to the isocenter of the accelerator. The fast neutron relative intensity is symmetrical about the beam axis and exhibits an exponential-like drop with distance from the isocenter of the accelerator for all the field sizes. At the primary beam (isocenter), the relative fast neutron intensity is highest for 40x40cm{sup 2} field size and decreases linearly with the decrease in the field size. However, fast neutron intensities do not change significantly with beam size for the measurements outside the primary beam. The fast neutron intensity in the longitudinal direction outside the primary beam decreases linearly with the field size. The thermal neutron intensity, at any location, was found to be almost independent of the field size.

  10. Electron Raman scattering in a double quantum well tuned by an external nonresonant intense laser field

    Science.gov (United States)

    Tiutiunnyk, A.; Mora-Ramos, M. E.; Morales, A. L.; Duque, C. M.; Restrepo, R. L.; Ungan, F.; Martínez-Orozco, J. C.; Kasapoglu, E.; Duque, C. A.

    2017-02-01

    In this work we shall present a study of inelastic light scattering involving inter-subband electron transitions in coupled GaAs-(Ga,Al)As quantum wells. Calculations include the electron related Raman differential cross section and Raman gain. The effects of an external nonresonant intense laser field are used in order to tune these output properties. The confined electron states will be described by means of a diagonalization procedure within the effective mass and parabolic band approximations. It is shown that the application of the intense laser field can produce values of the intersubband electron Raman gain above 400 cm-1. The system proposed here is an alternative choice for the development of AlxGa1-xAs semiconductor laser diodes that can be tuned via an external nonresonant intense laser field.

  11. Global changes in intensity of the Earth's magnetic field during the past 800kyr

    NARCIS (Netherlands)

    Guyodo, Yohan; Valet, Jean-Pierre

    1999-01-01

    Recent advances in palaeomagnetic and dating techniques have led to increasingly precise records of the relative intensity of the Earth’s past magnetic field at numerous field sites. The compilation and analysis of these records can provide important constraints on changes in global magnetic

  12. Metallic and antiferromagnetic fixed points from gravity

    Science.gov (United States)

    Paul, Chandrima

    2018-06-01

    We consider SU(2) × U(1) gauge theory coupled to matter field in adjoints and study RG group flow. We constructed Callan-Symanzik equation and subsequent β functions and study the fixed points. We find there are two fixed points, showing metallic and antiferromagnetic behavior. We have shown that metallic phase develops an instability if certain parametric conditions are satisfied.

  13. Gauge fixing problem in the conformal QED

    International Nuclear Information System (INIS)

    Ichinose, Shoichi

    1986-01-01

    The gauge fixing problem in the conformal (spinor and scalar) QED is examined. For the analysis, we generalize Dirac's manifestly conformal-covariant formalism. It is shown that the (vector and matter) fields must obey a certain mixed (conformal and gauge) type of transformation law in order to fix the local gauge symmetry preserving the conformal invariance in the Lagrangian. (orig.)

  14. The maximum possible stress intensity factor for a crack in an unknown residual stress field

    International Nuclear Information System (INIS)

    Coules, H.E.; Smith, D.J.

    2015-01-01

    Residual and thermal stress fields in engineering components can act on cracks and structural flaws, promoting or inhibiting fracture. However, these stresses are limited in magnitude by the ability of materials to sustain them elastically. As a consequence, the stress intensity factor which can be applied to a given defect by a self-equilibrating stress field is also limited. We propose a simple weight function method for determining the maximum stress intensity factor which can occur for a given crack or defect in a one-dimensional self-equilibrating stress field, i.e. an upper bound for the residual stress contribution to K I . This can be used for analysing structures containing defects and subject to residual stress without any information about the actual stress field which exists in the structure being analysed. A number of examples are given, including long radial cracks and fully-circumferential cracks in thick-walled hollow cylinders containing self-equilibrating stresses. - Highlights: • An upper limit to the contribution of residual stress to stress intensity factor. • The maximum K I for self-equilibrating stresses in several geometries is calculated. • A weight function method can determine this maximum for 1-dimensional stress fields. • Simple MATLAB scripts for calculating maximum K I provided as supplementary material.

  15. Ab initio simulation of stimulated bremsstrahlung in an intense laser field

    International Nuclear Information System (INIS)

    Volkova, E.A.; Popov, A.M.; Popovicheva, O.B.

    1992-01-01

    Numerical solution of the time-dependent Schroedinger equation for a quantum system in the field of an electromagnetic wave is used to study a one-dimensional model of stimulated bremsstrahlung (absorption or emission of photons by a field in connection with Coulomb scattering of an electron). The time dependence of the stimulated bremsstrahlung effect is analyzed for various laser radiation intensities. The process of stimulated photorecombination is examined. The results of the calculation are compared with the analytical theory of the stimulated bremsstrahlung effect. 14 refs., 6 figs

  16. FIRST SIMULTANEOUS DETECTION OF MOVING MAGNETIC FEATURES IN PHOTOSPHERIC INTENSITY AND MAGNETIC FIELD DATA

    International Nuclear Information System (INIS)

    Lim, Eun-Kyung; Yurchyshyn, Vasyl; Goode, Philip

    2012-01-01

    The formation and the temporal evolution of a bipolar moving magnetic feature (MMF) was studied with high-spatial and temporal resolution. The photometric properties were observed with the New Solar Telescope at Big Bear Solar Observatory using a broadband TiO filter (705.7 nm), while the magnetic field was analyzed using the spectropolarimetric data obtained by Hinode. For the first time, we observed a bipolar MMF simultaneously in intensity images and magnetic field data, and studied the details of its structure. The vector magnetic field and the Doppler velocity of the MMF were also studied. A bipolar MMF with its positive polarity closer to the negative penumbra formed, accompanied by a bright, filamentary structure in the TiO data connecting the MMF and a dark penumbral filament. A fast downflow (≤2 km s –1 ) was detected at the positive polarity. The vector magnetic field obtained from the full Stokes inversion revealed that a bipolar MMF has a U-shaped magnetic field configuration. Our observations provide a clear intensity counterpart of the observed MMF in the photosphere, and strong evidence of the connection between the MMF and the penumbral filament as a serpentine field.

  17. Quantitative studies of electric field intensity on atom diffusion of Cu/Ta/Si stacks during annealing

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Lei, E-mail: ray521252@gmail.com [Institute of Material Science and Engineering, Jiangsu University of Science and Technology, Zhenjiang 212003 (China); Stomatology Department, Nanjing General Hospital, Nanjing University, Medical School, Nanjing, 210002 (China); Asempah, Isaac; Dong, Song-Tao; Yin, Pian-Pian [Institute of Material Science and Engineering, Jiangsu University of Science and Technology, Zhenjiang 212003 (China); Jin, Lei, E-mail: ljin@nju.edu.cn [Stomatology Department, Nanjing General Hospital, Nanjing University, Medical School, Nanjing, 210002 (China)

    2017-03-31

    Highlights: • The electric field intensity accelerates the atom diffusion of Cu/Ta/Si stacks at 650 °C. • The acceleration effect is enhanced with an increment of electric field intensity. • An acceleration factor (1 + a·a{sup E/0.8}){sup 2} accelerating diffusion coefficient is determined by quantitative analysis. - Abstract: It has been shown that enhanced electric field intensity (0–4.0 kV/cm) has an obvious effect on accelerating atom diffusion in Cu/Ta/Si interconnect stacks at 650 °C. The theoretical deduction proves that diffusion coefficient is accelerated proportional to an acceleration factor (1 + a·α{sup E/0.8}){sup 2}. The analysis indicates that the accelerating effect is mainly attributed to the perturbation of the electric state of the defects and enhanced vacancy and dislocation densities.

  18. Renormalization group fixed points of foliated gravity-matter systems

    Energy Technology Data Exchange (ETDEWEB)

    Biemans, Jorn [Institute for Mathematics, Astrophysics and Particle Physics (IMAPP),Radboud University Nijmegen,Heyendaalseweg 135, 6525 AJ Nijmegen (Netherlands); Platania, Alessia [Institute for Mathematics, Astrophysics and Particle Physics (IMAPP),Radboud University Nijmegen,Heyendaalseweg 135, 6525 AJ Nijmegen (Netherlands); Department of Physics and Astronomy, University of Catania,Via S. Sofia 63, 95123 Catania (Italy); INFN, Catania section,Via S. Sofia 64, 95123, Catania (Italy); INAF, Catania Astrophysical Observatory,Via S. Sofia 78, 95123, Catania (Italy); Saueressig, Frank [Institute for Mathematics, Astrophysics and Particle Physics (IMAPP),Radboud University Nijmegen,Heyendaalseweg 135, 6525 AJ Nijmegen (Netherlands)

    2017-05-17

    We employ the Arnowitt-Deser-Misner formalism to study the renormalization group flow of gravity minimally coupled to an arbitrary number of scalar, vector, and Dirac fields. The decomposition of the gravitational degrees of freedom into a lapse function, shift vector, and spatial metric equips spacetime with a preferred (Euclidean) “time”-direction. In this work, we provide a detailed derivation of the renormalization group flow of Newton’s constant and the cosmological constant on a flat Friedmann-Robertson-Walker background. Adding matter fields, it is shown that their contribution to the flow is the same as in the covariant formulation and can be captured by two parameters d{sub g}, d{sub λ}. We classify the resulting fixed point structure as a function of these parameters finding that the existence of non-Gaussian renormalization group fixed points is rather generic. In particular the matter content of the standard model and its most common extensions gives rise to one non-Gaussian fixed point with real critical exponents suitable for Asymptotic Safety. Moreover, we find non-Gaussian fixed points for any number of scalar matter fields, making the scenario attractive for cosmological model building.

  19. Impact of high-intensity pulsed electric fields on carotenoids profile of tomato juice made of moderate-intensity pulsed electric field-treated tomatoes.

    Science.gov (United States)

    Vallverdú-Queralt, Anna; Odriozola-Serrano, Isabel; Oms-Oliu, Gemma; Lamuela-Raventós, Rosa M; Elez-Martínez, Pedro; Martín-Belloso, Olga

    2013-12-01

    The effect of pulsed electric fields (PEF) on the carotenoid content of tomato juices was studied. First, moderate-intensity PEF (MIPEF) was applied to raw tomatoes. Afterwards, MIPEF-treated and untreated tomatoes were immediately refrigerated at 4 °C for 24 h and then, they were separately ground to produce tomato juices. Juices were treated by heat treatments or by high-intensity PEF (HIPEF) and stored under refrigeration for 56 days. MIPEF treatment of tomatoes increased the content of carotenoid compounds in tomato juices. An enhancement of 63-65% in 15-cis-lycopene was observed in juices prepared with MIPEF-treated tomatoes. A slight increase in cis-lycopene isomers was observed over time, whereas other carotenoids slightly decreased. However, HIPEF treated tomato juices maintained higher carotenoid content (10-20%) through the storage time than thermally and untreated juices. The combination of MIPEF and HIPEF treatments could be used not only to produce tomato juices with high carotenoid content but also, to maintain higher the carotenoid content during storage time. Copyright © 2013 Elsevier Ltd. All rights reserved.

  20. Matching Intensity-Modulated Radiation Therapy to an Anterior Low Neck Field

    International Nuclear Information System (INIS)

    Amdur, Robert J.; Liu, Chihray; Li, Jonathan; Mendenhall, William; Hinerman, Russell

    2007-01-01

    When using intensity-modulated radiation therapy (IMRT) to treat head and neck cancer with the primary site above the level of the larynx, there are two basic options for the low neck lymphatics: to treat the entire neck with IMRT, or to match the IMRT plan to a conventional anterior 'low neck' field. In view of the potential advantages of using a conventional low neck field, it is important to look for ways to minimize or manage the problems of matching IMRT to a conventional radiotherapy field. Treating the low neck with a single anterior field and the standard larynx block decreases the dose to the larynx and often results in a superior IMRT plan at the primary site. The purpose of this article is to review the most applicable studies and to discuss our experience with implementing a technique that involves moving the position of the superior border of the low neck field several times during a single treatment fraction

  1. The importance of Rydberg orbitals in dissociative ionization of small hydrocarbon molecules in intense laser fields.

    Science.gov (United States)

    Jochim, Bethany; Siemering, R; Zohrabi, M; Voznyuk, O; Mahowald, J B; Schmitz, D G; Betsch, K J; Berry, Ben; Severt, T; Kling, Nora G; Burwitz, T G; Carnes, K D; Kling, M F; Ben-Itzhak, I; Wells, E; de Vivie-Riedle, R

    2017-06-30

    Much of our intuition about strong-field processes is built upon studies of diatomic molecules, which typically have electronic states that are relatively well separated in energy. In polyatomic molecules, however, the electronic states are closer together, leading to more complex interactions. A combined experimental and theoretical investigation of strong-field ionization followed by hydrogen elimination in the hydrocarbon series C 2 D 2 , C 2 D 4 and C 2 D 6 reveals that the photofragment angular distributions can only be understood when the field-dressed orbitals rather than the field-free orbitals are considered. Our measured angular distributions and intensity dependence show that these field-dressed orbitals can have strong Rydberg character for certain orientations of the molecule relative to the laser polarization and that they may contribute significantly to the hydrogen elimination dissociative ionization yield. These findings suggest that Rydberg contributions to field-dressed orbitals should be routinely considered when studying polyatomic molecules in intense laser fields.

  2. Effect of linear chirp on strong field photodissociation of H{sup +}{sub 2}

    Energy Technology Data Exchange (ETDEWEB)

    Prabhudesai, Vaibhav; Natan, Adi; Bruner, Barry; Silberberg, Yaron; Lev, Uri; Heber, Oded; Strasser, Daniel; Schwalm, Dirk; Zajfman, Daniel [Weizmann Institute of Science, 76100 (Israel); Ben-Itzhak, Itzik [Kansas State University, Kansas (United States)

    2011-10-15

    We report the experimental findings of a systematic study of the effect of linear chirp on strong field photodissociation of H{sup +}{sub 2}. For vibrational levels around or above the one photon crossing, the effect manifests itself in terms of a shift in the kinetic energy release (KER) peaks. The peaks shift up for negative chirp whereas they shift down for positive chirp. The measurements are carried out by varying two of the three laser pulse characteristics, energy, pulse peak intensity and linear chirp, while keeping the third constant. The shifts in the KER peaks are found to be intensity dependent for a given value of chirp. However, in the last two cases (i.e., fixed pulsed energy and fixed pulse peak intensity), they are found to be independent of the chirp magnitude. The results are understood on the basis of saturation of photodissociation probabilities for these levels.

  3. Solar activity effects on cosmic ray intensity and geomagnetic field variation

    International Nuclear Information System (INIS)

    Shukla, A.K.; Shukla, J.P.; Sharma, S.M.; Singh, R.L.; Agrawal, S.P.

    1978-01-01

    An analysis has been performed to statistically correlate the date of solar flare occurrence and its importance with the short term cosmic ray intensity decreases (observed by the high latitude neutron monitors) as well as with the geomagnetic field fluctuation indices (Asub(p) and Dsub(st)), during the period 1973-1976. This period has the particular advantage of being close to a solar minimum to avoid the ambiguity due to closely spaced solar flares. It is found that the intensity decrease starts at least 2-3 days after the date of bright solar flares of Imp 1B, 2B or 3B and the amplitude of the decrease increases with the importance of the solar flare. (author)

  4. Intersubband optical absorption coefficients and refractive index changes in a graded quantum well under intense laser field: Effects of hydrostatic pressure, temperature and electric field

    International Nuclear Information System (INIS)

    Ungan, F.; Restrepo, R.L.; Mora-Ramos, M.E.; Morales, A.L.; Duque, C.A.

    2014-01-01

    The effects of hydrostatic pressure, temperature, and electric field on the optical absorption coefficients and refractive index changes associated with intersubband transition in a typical GaAs/Ga 0.7 Al 0.3 As graded quantum well under intense laser field have been investigated theoretically. The electron energy eigenvalues and the corresponding eigenfunctions of the graded quantum well are calculated within the effective mass approximation and envelope wave function approach. The analytical expressions of the optical properties are obtained using the compact density-matrix approach and the iterative method. The numerical results show that the linear and nonlinear optical properties depend strongly on the intense laser field and electric field but weakly on the hydrostatic pressure and temperature. Additionally, it has been found that the electronic and optical properties in a GaAs/Ga 0.7 Al 0.3 As graded quantum well under the intense laser field can be tuned by changing these external inputs. Thus, these results give a new degree of freedom in the devices applications

  5. Intersubband optical absorption coefficients and refractive index changes in a graded quantum well under intense laser field: Effects of hydrostatic pressure, temperature and electric field

    Energy Technology Data Exchange (ETDEWEB)

    Ungan, F., E-mail: fungan@cumhuriyet.edu.tr [Department of Physics, Cumhuriyet University, 58140 Sivas (Turkey); Grupo de Materia Condensade-UdeA, Instituto de Fisica, Facultad de Ciencias Exactas y Naturales, Universidad de Antioquia UdeA, Calle 70 No. 52-21, Medellín (Colombia); Restrepo, R.L. [Grupo de Materia Condensade-UdeA, Instituto de Fisica, Facultad de Ciencias Exactas y Naturales, Universidad de Antioquia UdeA, Calle 70 No. 52-21, Medellín (Colombia); Escuela de Ingeniería de Antioquia AA 7516, Medellín (Colombia); Mora-Ramos, M.E. [Grupo de Materia Condensade-UdeA, Instituto de Fisica, Facultad de Ciencias Exactas y Naturales, Universidad de Antioquia UdeA, Calle 70 No. 52-21, Medellín (Colombia); Facultad de Ciencias, Universidad Autonoma del Estado de Morelos, Ave. Universidad 1001, CP 62209, Cuernavaca, Morelos (Mexico); Morales, A.L.; Duque, C.A. [Grupo de Materia Condensade-UdeA, Instituto de Fisica, Facultad de Ciencias Exactas y Naturales, Universidad de Antioquia UdeA, Calle 70 No. 52-21, Medellín (Colombia)

    2014-02-01

    The effects of hydrostatic pressure, temperature, and electric field on the optical absorption coefficients and refractive index changes associated with intersubband transition in a typical GaAs/Ga{sub 0.7}Al{sub 0.3}As graded quantum well under intense laser field have been investigated theoretically. The electron energy eigenvalues and the corresponding eigenfunctions of the graded quantum well are calculated within the effective mass approximation and envelope wave function approach. The analytical expressions of the optical properties are obtained using the compact density-matrix approach and the iterative method. The numerical results show that the linear and nonlinear optical properties depend strongly on the intense laser field and electric field but weakly on the hydrostatic pressure and temperature. Additionally, it has been found that the electronic and optical properties in a GaAs/Ga{sub 0.7}Al{sub 0.3}As graded quantum well under the intense laser field can be tuned by changing these external inputs. Thus, these results give a new degree of freedom in the devices applications.

  6. THE EFFECT OF MAGNETIC FIELD ON THE EFFICIENCY OF A SILICON SOLAR CELL UNDER AN INTENSE LIGHT CONCENTRATION

    Directory of Open Access Journals (Sweden)

    Zoungrana Martial

    2017-06-01

    Full Text Available This work put in evidence, magnetic field effect the electrical parameters of a silicon solar cell illuminated by an intense light concentration: external load electric power, conversion efficiency, fill factor, external optimal charge load. Due to the high photogeneration of carrier in intense light illumination mode, in addition of magnetic field, we took into account the carrier gradient electric field in the base of the solar cell. Taking into account this electric field and the applied magnetic field in our model led to new analytical expressions of the continuity equation, the photocurrent and the photovoltage.

  7. Detection of magnetic field intensity gradient by homing pigeons (Columba livia in a novel "virtual magnetic map" conditioning paradigm.

    Directory of Open Access Journals (Sweden)

    Cordula V Mora

    Full Text Available It has long been thought that birds may use the Earth's magnetic field not only as a compass for direction finding, but that it could also provide spatial information for position determination analogous to a map during navigation. Since magnetic field intensity varies systematically with latitude and theoretically could also provide longitudinal information during position determination, birds using a magnetic map should be able to discriminate magnetic field intensity cues in the laboratory. Here we demonstrate a novel behavioural paradigm requiring homing pigeons to identify the direction of a magnetic field intensity gradient in a "virtual magnetic map" during a spatial conditioning task. Not only were the pigeons able to detect the direction of the intensity gradient, but they were even able to discriminate upward versus downward movement on the gradient by differentiating between increasing and decreasing intensity values. Furthermore, the pigeons typically spent more than half of the 15 second sampling period in front of the feeder associated with the rewarded gradient direction indicating that they required only several seconds to make the correct choice. Our results therefore demonstrate for the first time that pigeons not only can detect the presence and absence of magnetic anomalies, as previous studies had shown, but are even able to detect and respond to changes in magnetic field intensity alone, including the directionality of such changes, in the context of spatial orientation within an experimental arena. This opens up the possibility for systematic and detailed studies of how pigeons could use magnetic intensity cues during position determination as well as how intensity is perceived and where it is processed in the brain.

  8. A review of the Fermilab fixed-target program

    Energy Technology Data Exchange (ETDEWEB)

    Rameika, R. [Fermi National Accelerator Lab., Batavia, IL (United States)

    1994-12-01

    All eyes are now on the Fermilab collider program as the intense search for the top quark continues. Nevertheless, Fermilab`s long tradition of operating a strong, diverse physics program depends not only on collider physics but also on effective use of the facilities the Laboratory was founded on, the fixed-target beamlines. In this talk the author presents highlights of the Fermilab fixed-target program from its (not too distant) past, (soon to be) present, and (hopefully, not too distant) future program. The author concentrates on those experiments which are unique to the fixed-target program, in particular hadron structure measurements which use the varied beams and targets available in this mode and the physics results from kaon, hyperon and high statistics charm experiments which are not easily accessible in high p{sub T} hadron collider detectors.

  9. Comparative diversity and composition of nitrogen-fixing ...

    African Journals Online (AJOL)

    Three contrasting land use systems: reserve forests, rice fields and coal fields located at Upper Assam region of North East India were explored for documenting diversity and species composition of N2-fixing cyanobacteria. Altogether 24 taxa (16 heterocystous and 8 non-heterocystous) belonging to nine different genera ...

  10. Study of neutron fields around an intense neutron generator.

    Science.gov (United States)

    Kicka, L; Machrafi, R; Miller, A

    2017-12-01

    Neutron fields in the vicinity of the newly built neutron facility, at the University of Ontario Institute of Technology (UOIT), have been investigated in a series of Monte Carlo simulations and measurements. The facility hosts a P-385 neutron generator based on a deuterium-deuterium fusion reaction. The neutron fluence at different locations around the neutron generator facility has been simulated using MCNPX 2.7E Monte Carlo particle transport program. To characterize neutron fields, three neutron sources were modeled with distributions corresponding to different incident deuteron energies of 90kV, 110kV, and 130kV. Measurements have been carried out to determine the dose rate at locations adjacent to the generator using bubble detectors (BDs). The neutron intensity was evaluated and the total dose rates corresponding to different applied acceleration potentials were estimated at various locations. Copyright © 2017 Elsevier Ltd. All rights reserved.

  11. Investments in fixed assets and depreciation of fixed assets: theoretical and practical aspects of study and analysis

    Directory of Open Access Journals (Sweden)

    Irina D. Demina

    2017-01-01

    Full Text Available It is indicated that domestic economy is experiencing a shortage of investment.The acceleration of the processes of import substitution is one of the most important challenges facing the domestic economy at present.Investments, especially capital investments and related investment relations constitute the basis for the development of the national economy and improving the efficiency of social production as a whole. A problem of formation of the amortization fundremains actual at the moment. In the modern scientific and educational literature amortization fund means the fund, including the use of funds to complete the restoration and repair of the fixed assets. This paper makesthe analysis of the situation in the area of investment in the fixed capital, which has developed in Russia for the past severalyears. The aim of this paper is to study the investment climate in the country based on the analysis of investments in the fixed capital by the sources of financing and types of the economic activity. The work is based on dynamic and structural analysis of analytical and statistical information on the processes occurring in this field.As a result, it can be noted that in spite of a number of efforts being made, in general, there are low growth rates in industry, there is a deficit of investments in the fixed assets. Most of the investments in fixed assets are carried out at the expense of the organizations’ own funds. A significant number of economic entities do not have the means, necessary for the technological renewal. Unfortunately, the regulatory framework in the field of accounting for the fixed assets and accrual of depreciation does not imply the use of a special account for the accumulation, and, most importantly, for the purposeful control of the use of the depreciation fund.First of all, it is necessary for companies with state participation and monopoly organizations. The lack of control over the targeted use of the depreciation fund

  12. Fixed point theory in metric type spaces

    CERN Document Server

    Agarwal, Ravi P; O’Regan, Donal; Roldán-López-de-Hierro, Antonio Francisco

    2015-01-01

    Written by a team of leading experts in the field, this volume presents a self-contained account of the theory, techniques and results in metric type spaces (in particular in G-metric spaces); that is, the text approaches this important area of fixed point analysis beginning from the basic ideas of metric space topology. The text is structured so that it leads the reader from preliminaries and historical notes on metric spaces (in particular G-metric spaces) and on mappings, to Banach type contraction theorems in metric type spaces, fixed point theory in partially ordered G-metric spaces, fixed point theory for expansive mappings in metric type spaces, generalizations, present results and techniques in a very general abstract setting and framework. Fixed point theory is one of the major research areas in nonlinear analysis. This is partly due to the fact that in many real world problems fixed point theory is the basic mathematical tool used to establish the existence of solutions to problems which arise natur...

  13. Scattering in an intense radiation field: Time-independent methods

    International Nuclear Information System (INIS)

    Rosenberg, L.

    1977-01-01

    The standard time-independent formulation of nonrelativistic scattering theory is here extended to take into account the presence of an intense external radiation field. In the case of scattering by a static potential the extension is accomplished by the introduction of asymptotic states and intermediate-state propagators which account for the absorption and induced emission of photons by the projectile as it propagates through the field. Self-energy contributions to the propagator are included by a systematic summation of forward-scattering terms. The self-energy analysis is summarized in the form of a modified perturbation expansion of the type introduced by Watson some time ago in the context of nuclear-scattering theory. This expansion, which has a simple continued-fraction structure in the case of a single-mode field, provides a generally applicable successive approximation procedure for the propagator and the asymptotic states. The problem of scattering by a composite target is formulated using the effective-potential method. The modified perturbation expansion which accounts for self-energy effects is applicable here as well. A discussion of a coupled two-state model is included to summarize and clarify the calculational procedures

  14. Change in carrier type in high-k gate carbon nanotube field-effect transistors by interface fixed charges

    International Nuclear Information System (INIS)

    Moriyama, N; Ohno, Y; Kitamura, T; Kishimoto, S; Mizutani, T

    2010-01-01

    We study the phenomenon of change in carrier type in carbon nanotube field-effect transistors (CNFETs) caused by the atomic layer deposition (ALD) of a HfO 2 gate insulator. When a HfO 2 layer is deposited on a CNFET, the type of carrier changes from p-type to n-type. The so-obtained n-type device has good performance and stability in air. The conductivity of such a device with a channel length of 0.7 μm is 11% of the quantum conductance 4e 2 /h. The contact resistance for electron current is estimated to be 14 kΩ. The n-type conduction of this CNFET is maintained for more than 100 days. The change in carrier type is attributed to positive fixed charges introduced at the interface between the HfO 2 and SiO 2 layers. We also propose a novel technique to control the type of conduction by utilizing interface fixed charges; this technique is compatible with Si CMOS process technology.

  15. Behaviour of the interplanetary and magnetospheric electric fields during very intense storms

    International Nuclear Information System (INIS)

    Wu, Lei; Gendrin, R.; Higel, B.

    1982-01-01

    A study is made of the role which a positive (northward) component of the interplanetary magnetic field (IMF) Bsub(z) may play in triggering large magnetic storms. The study is made over a 15 year period (1964-1978) by selecting storms with Ksub(p) >= 7 0 and which are preceded by a Sudden Commencement (Ssc). The correlation between the geomagnetic index Ksub(m) and the three-hourly averaged Bsub(z) is established both on a statistical basis and on a case-by-case study. Storms associated with Bsub(z) > 0 are found to be less intense than those associated with Bsub(z) < 0, but major storms can be also triggered by solar wind events associated with a northward IMF. The relation-ship between interplanetary electric field Esub(γ) and Ksub(m) is also given. By using this relation together with the one between Esub(M) and Ksub(m) which has been established in previous studies (where Esub(M) is the magnetospheric convection electric field), it is possible to study the transfer efficiency of the magnetosphere. It is found that the transfer coefficient ΔEsub(M)/ΔEsub(γ) is much smaller for intense storms than for moderate ones, the latter having been studied in a previous paper (Wu Lei et al., 1981)

  16. Experimental platform for investigations of high-intensity laser plasma interactions in the magnetic field of a pulsed power generator

    Science.gov (United States)

    Ivanov, V. V.; Maximov, A. V.; Swanson, K. J.; Wong, N. L.; Sarkisov, G. S.; Wiewior, P. P.; Astanovitskiy, A. L.; Covington, A. M.

    2018-03-01

    An experimental platform for the studying of high-intensity laser plasma interactions in strong magnetic fields has been developed based on the 1 MA Zebra pulsed power generator coupled with the 50-TW Leopard laser. The Zebra generator produces 100-300 T longitudinal and transverse magnetic fields with different types of loads. The Leopard laser creates plasma at an intensity of 1019 W/cm2 in the magnetic field of coil loads. Focusing and targeting systems are integrated in the vacuum chamber of the pulsed power generator and protected from the plasma debris and strong mechanical shock. The first experiments with plasma at laser intensity >2 × 1018 W/cm2 demonstrated collimation of the laser produced plasma in the axial magnetic field strength >100 T.

  17. The flow field investigations of no load conditions in axial flow fixed-blade turbine

    Science.gov (United States)

    Yang, J.; Gao, L.; Wang, Z. W.; Zhou, X. Z.; Xu, H. X.

    2014-03-01

    During the start-up process, the strong instabilities happened at no load operation in a low head axial flow fixed-blade turbine, with strong pressure pulsation and vibration. The rated speed can not reach until guide vane opening to some extent, and stable operation could not be maintained under the rated speed at some head, which had a negative impact on the grid-connected operation of the unit. In order to find the reason of this phenomenon, the unsteady flow field of the whole flow passage at no load conditions was carried out to analyze the detailed fluid field characteristics including the pressure pulsation and force imposed on the runner under three typical heads. The main hydraulic cause of no load conditions instability was described. It is recommended that the power station should try to reduce the no-load running time and go into the high load operation as soon as possible when connected to grid at the rated head. Following the recommendations, the plant operation practice proved the unstable degree of the unit was reduced greatly during start up and connect to the power grid.

  18. Size measurement of radioactive aerosol particles in intense radiation fields using wire screens and imaging plates

    Energy Technology Data Exchange (ETDEWEB)

    Oki, Yuichi; Tanaka, Toru; Takamiya, Koichi; Ishi, Yoshihiro; UesugI, Tomonori; Kuriyama, Yasutoshi; Sakamoto, Masaaki; Ohtsuki, Tsutomu [Kyoto University Research Reactor Institute, Osaka (Japan); Nitta, Shinnosuke [Graduate School of Engineering, Kyoto University, Kyoto (Japan); Osada, Naoyuki [Advanced Science Research Center, Okayama University, Okayama (Japan)

    2016-09-15

    Very fine radiation-induced aerosol particles are produced in intense radiation fields, such as high-intensity accelerator rooms and containment vessels such as those in the Fukushima Daiichi nuclear power plant (FDNPP). Size measurement of the aerosol particles is very important for understanding the behavior of radioactive aerosols released in the FDNPP accident and radiation safety in high-energy accelerators. A combined technique using wire screens and imaging plates was developed for size measurement of fine radioactive aerosol particles smaller than 100 nm in diameter. This technique was applied to the radiation field of a proton accelerator room, in which radioactive atoms produced in air during machine operation are incorporated into radiation-induced aerosol particles. The size of 11C-bearing aerosol particles was analyzed using the wire screen technique in distinction from other positron emitters in combination with a radioactive decay analysis. The size distribution for 11C-bearing aerosol particles was found to be ca. 70 μm in geometric mean diameter. The size was similar to that for 7Be-bearing particles obtained by a Ge detector measurement, and was slightly larger than the number-based size distribution measured with a scanning mobility particle sizer. The particle size measuring method using wire screens and imaging plates was successfully applied to the fine aerosol particles produced in an intense radiation field of a proton accelerator. This technique is applicable to size measurement of radioactive aerosol particles produced in the intense radiation fields of radiation facilities.

  19. Nanoscale electron manipulation in metals with intense THz electric fields

    Science.gov (United States)

    Takeda, Jun; Yoshioka, Katsumasa; Minami, Yasuo; Katayama, Ikufumi

    2018-03-01

    Improved control over the electromagnetic properties of metals on a nanoscale is crucial for the development of next-generation nanoelectronics and plasmonic devices. Harnessing the terahertz (THz)-electric-field-induced nonlinearity for the motion of electrons is a promising method of manipulating the local electromagnetic properties of metals, while avoiding undesirable thermal effects and electronic transitions. In this review, we demonstrate the manipulation of electron delocalization in ultrathin gold (Au) films with nanostructures, by intense THz electric-field transients. On increasing the electric-field strength of the THz pulses, the transmittance in the THz-frequency region abruptly decreases around the percolation threshold. The observed THz-electric-field-induced nonlinearity is analysed, based on the Drude-Smith model. The results suggest that ultrafast electron delocalization occurs by electron tunnelling across the narrow insulating bridge between the Au nanostructures, without material breakdown. In order to quantitatively discuss the tunnelling process, we perform scanning tunnelling microscopy with carrier-envelope phase (CEP)-controlled single-cycle THz electric fields. By applying CEP-controlled THz electric fields to the 1 nm nanogap between a metal nanotip and graphite sample, many electrons could be coherently driven through the quantum tunnelling process, either from the nanotip to the sample or vice versa. The presented concept, namely, electron tunnelling mediated by CEP-controlled single-cycle THz electric fields, can facilitate the development of nanoscale electron manipulation, applicable to next-generation ultrafast nanoelectronics and plasmonic devices.

  20. The behaviour of hydrogen-like atoms in an intense long-wave field

    International Nuclear Information System (INIS)

    Brodsky, A.M.

    1979-01-01

    The equations, which permit the calculation by means of regular operations of multiphoton photoionisation cross sections and the dynamic polarisabilities in an intense classical long-wave electromagnetic field, are considered for a hydrogen atom. The calculations have been performed for a circularly polarised field. A quantitative expression has been derived for the Lamb shift analogue, which can be verified experimentally. Within the framework of the problem the interaction at small distances is self-compensated and reduced to a constant potential. This conclusion is of general interest for the theory of strong interactions. (author)

  1. Bandwidth Limitations in Characterization of High Intensity Focused Ultrasound Fields in the Presence of Shocks

    Science.gov (United States)

    Khokhlova, V. A.; Bessonova, O. V.; Soneson, J. E.; Canney, M. S.; Bailey, M. R.; Crum, L. A.

    2010-03-01

    Nonlinear propagation effects result in the formation of weak shocks in high intensity focused ultrasound (HIFU) fields. When shocks are present, the wave spectrum consists of hundreds of harmonics. In practice, shock waves are modeled using a finite number of harmonics and measured with hydrophones that have limited bandwidths. The goal of this work was to determine how many harmonics are necessary to model or measure peak pressures, intensity, and heat deposition rates of the HIFU fields. Numerical solutions of the Khokhlov-Zabolotskaya-Kuznetzov-type (KZK) nonlinear parabolic equation were obtained using two independent algorithms, compared, and analyzed for nonlinear propagation in water, in gel phantom, and in tissue. Measurements were performed in the focus of the HIFU field in the same media using fiber optic probe hydrophones of various bandwidths. Experimental data were compared to the simulation results.

  2. Dosimetry of a prototype retractable eMLC for fixed-beam electron therapy

    International Nuclear Information System (INIS)

    Hogstrom, Kenneth R.; Boyd, Robert A.; Antolak, John A.; Svatos, Michelle M.; Faddegon, Bruce A.; Rosenman, Julian G.

    2004-01-01

    An electron multileaf collimator (eMLC) has been designed that is unique in that it retracts to 37 cm from the isocenter [63-cm source-to-collimator distance (SCD)] and can be deployed to distances of 20 and 10 cm from the isocenter (80 and 90 cm SCD, respectively). It is expected to be capable of arc therapy at 63 cm SCD; isocentric, fixed-beam therapy at 80 cm SCD; and source-to-surface distance (SSD), fixed-beam therapy at 90 cm SCD. In all positions, its leaves could be used for unmodulated or intensity-modulated therapy. Our goal in the present work is to describe the general characteristics of the eMLC and to demonstrate that its leakage characteristics and dosimetry are adequate for SSD, fixed-beam therapy as an alternative to Cerrobend cutouts with applicators once the prototype's leaves are motorized. Our eMLC data showed interleaf electron leakage at 15 MeV to be less than 0.1% based on a 0.0025 cm manufacturing tolerance, and lateral electron leakage at 5 and 15 MeV to be less than 2%. X-ray leakage through the leaves was 1.6% at 15 MeV. Our data showed that beam penumbra was independent of direction and leaf position. The dosimetric properties of square fields formed by the eMLC were very consistent with those formed by Cerrobend inserts in the 20x20 cm 2 applicator. Output factors exhibited similar field-size dependence. Airgap factors exhibited almost identical field-size dependence at two SSDs (105 and 110 cm), consistent with the common assumption that airgap factors are applicator independent. Percent depth-dose curves were similar, but showed variations up to 3% in the buildup region. The pencil-beam algorithm (PBA) fit measured data from the eMLC and applicator-cutout systems equally well, and the resulting two-dimensional (2-D) dose distributions, as predicted by the PBA, agreed well at common airgap distance. Simulating patient setups for breast and head and neck treatments showed that almost all fields could be treated using similar SSDs as

  3. Detection of Magnetic Field Intensity Gradient by Homing Pigeons (Columba livia) in a Novel “Virtual Magnetic Map” Conditioning Paradigm

    Science.gov (United States)

    Mora, Cordula V.; Bingman, Verner P.

    2013-01-01

    It has long been thought that birds may use the Earth's magnetic field not only as a compass for direction finding, but that it could also provide spatial information for position determination analogous to a map during navigation. Since magnetic field intensity varies systematically with latitude and theoretically could also provide longitudinal information during position determination, birds using a magnetic map should be able to discriminate magnetic field intensity cues in the laboratory. Here we demonstrate a novel behavioural paradigm requiring homing pigeons to identify the direction of a magnetic field intensity gradient in a “virtual magnetic map” during a spatial conditioning task. Not only were the pigeons able to detect the direction of the intensity gradient, but they were even able to discriminate upward versus downward movement on the gradient by differentiating between increasing and decreasing intensity values. Furthermore, the pigeons typically spent more than half of the 15 second sampling period in front of the feeder associated with the rewarded gradient direction indicating that they required only several seconds to make the correct choice. Our results therefore demonstrate for the first time that pigeons not only can detect the presence and absence of magnetic anomalies, as previous studies had shown, but are even able to detect and respond to changes in magnetic field intensity alone, including the directionality of such changes, in the context of spatial orientation within an experimental arena. This opens up the possibility for systematic and detailed studies of how pigeons could use magnetic intensity cues during position determination as well as how intensity is perceived and where it is processed in the brain. PMID:24039812

  4. Determination of beam intensity in a single step for IMRT inverse planning

    International Nuclear Information System (INIS)

    Chuang, Keh-Shih; Chen, Tzong-Jer; Kuo, Shan-Chi; Jan, Meei-Ling; Hwang, Ing-Ming; Chen, Sharon; Lin, Ying-Chuan; Wu, Jay

    2003-01-01

    In intensity modulated radiotherapy (IMRT), targets are treated by multiple beams at different orientations each with spatially-modulated beam intensities. This approach spreads the normal tissue dose to a greater volume and produces a higher dose conformation to the target. In general, inverse planning is used for IMRT treatment planning. The inverse planning requires iterative calculation of dose distribution in order to optimize the intensity profile for each beam and is very computation intensive. In this paper, we propose a single-step method utilizing a figure of merit (FoM) to estimate the beam intensities for IMRT treatment planning. The FoM of a ray is defined as the ratio between the delivered tumour dose and normal tissue dose and is a good index for the dose efficacy of the ray. To maximize the beam utility, it is natural to irradiate the tumour with intensity of each ray proportional to the value of the FoM. The nonuniform beam intensity profiles are then fixed and the weights of the beam are determined iteratively in order to yield a uniform tumour dose. In this study, beams are employed at equispaced angles around the patient. Each beam with its field size that just covers the tumour is divided into a fixed number of beamlets. The FoM is calculated for each beamlet and this value is assigned to be the beam intensity. Various weighting factors are incorporated in the FoM computation to accommodate different clinical considerations. Two clinical datasets are used to test the feasibility of the algorithm. The resultant dose-volume histograms of this method are presented and compared to that of conformal therapy. Preliminary results indicate that this method reduces the critical organ doses at a small expense of uniformity in tumour dose distribution. This method estimates the beam intensity in one single step and the computation time is extremely fast and can be finished in less than one minute using a regular PC

  5. Sampling design and procedures for fixed surface-water sites in the Georgia-Florida coastal plain study unit, 1993

    Science.gov (United States)

    Hatzell, H.H.; Oaksford, E.T.; Asbury, C.E.

    1995-01-01

    The implementation of design guidelines for the National Water-Quality Assessment (NAWQA) Program has resulted in the development of new sampling procedures and the modification of existing procedures commonly used in the Water Resources Division of the U.S. Geological Survey. The Georgia-Florida Coastal Plain (GAFL) study unit began the intensive data collection phase of the program in October 1992. This report documents the implementation of the NAWQA guidelines by describing the sampling design and procedures for collecting surface-water samples in the GAFL study unit in 1993. This documentation is provided for agencies that use water-quality data and for future study units that will be entering the intensive phase of data collection. The sampling design is intended to account for large- and small-scale spatial variations, and temporal variations in water quality for the study area. Nine fixed sites were selected in drainage basins of different sizes and different land-use characteristics located in different land-resource provinces. Each of the nine fixed sites was sampled regularly for a combination of six constituent groups composed of physical and chemical constituents: field measurements, major ions and metals, nutrients, organic carbon, pesticides, and suspended sediments. Some sites were also sampled during high-flow conditions and storm events. Discussion of the sampling procedure is divided into three phases: sample collection, sample splitting, and sample processing. A cone splitter was used to split water samples for the analysis of the sampling constituent groups except organic carbon from approximately nine liters of stream water collected at four fixed sites that were sampled intensively. An example of the sample splitting schemes designed to provide the sample volumes required for each sample constituent group is described in detail. Information about onsite sample processing has been organized into a flowchart that describes a pathway for each of

  6. Fixed Points in Discrete Models for Regulatory Genetic Networks

    Directory of Open Access Journals (Sweden)

    Orozco Edusmildo

    2007-01-01

    Full Text Available It is desirable to have efficient mathematical methods to extract information about regulatory iterations between genes from repeated measurements of gene transcript concentrations. One piece of information is of interest when the dynamics reaches a steady state. In this paper we develop tools that enable the detection of steady states that are modeled by fixed points in discrete finite dynamical systems. We discuss two algebraic models, a univariate model and a multivariate model. We show that these two models are equivalent and that one can be converted to the other by means of a discrete Fourier transform. We give a new, more general definition of a linear finite dynamical system and we give a necessary and sufficient condition for such a system to be a fixed point system, that is, all cycles are of length one. We show how this result for generalized linear systems can be used to determine when certain nonlinear systems (monomial dynamical systems over finite fields are fixed point systems. We also show how it is possible to determine in polynomial time when an ordinary linear system (defined over a finite field is a fixed point system. We conclude with a necessary condition for a univariate finite dynamical system to be a fixed point system.

  7. Topological fixed point theory of multivalued mappings

    CERN Document Server

    Górniewicz, Lech

    1999-01-01

    This volume presents a broad introduction to the topological fixed point theory of multivalued (set-valued) mappings, treating both classical concepts as well as modern techniques. A variety of up-to-date results is described within a unified framework. Topics covered include the basic theory of set-valued mappings with both convex and nonconvex values, approximation and homological methods in the fixed point theory together with a thorough discussion of various index theories for mappings with a topologically complex structure of values, applications to many fields of mathematics, mathematical economics and related subjects, and the fixed point approach to the theory of ordinary differential inclusions. The work emphasises the topological aspect of the theory, and gives special attention to the Lefschetz and Nielsen fixed point theory for acyclic valued mappings with diverse compactness assumptions via graph approximation and the homological approach. Audience: This work will be of interest to researchers an...

  8. A Design Method for Graded Insulation of Transformers by Transient Electric Field Intensity Analysis

    OpenAIRE

    Yamashita, Hideo; Cingoski, Vlatko; Namera, Akihiro; Nakamae, Eihachiro; Kitamura, Hideo

    2000-01-01

    In this paper, a calculation method for transient electric field distribution inside a transformer impressed with voltage is proposed: The concentrated electric network for the transformer is constructed by dividing transformer windings into several blocks, and the transient voltage and electric field intensity distributions inside the transformer are calculated by using the axisymmetrical finite element method. Moreover, an animated display of the distributions is realized: The visualization...

  9. Some Design Considerations on the Electrostatically Actuated Fixed-Fixed End Type MEMS Switches

    International Nuclear Information System (INIS)

    Sadeghian, Hamed; Rezazadeh, Ghader; Sani, Ebrahim Abbaspour

    2006-01-01

    The nonlinear electrostatic pull-in behaviour of MEMS Switches in micro-electromechanical systems (MEMS) is investigated in this article. We used the distributed model when the electrostatic pressure didn't apply at the whole of the beam and applied only in the mid-part of the beam. In this part the electrostatic area is different from two other parts. The model uses Euler-Bernoulli beam theory for fixed-fixed end type beams. The finite difference method was used to solve the nonlinear equation. The proposed model includes the fringing effects of the electrical field, residual stress and varying electrostatic area effects. The numerical results reveal that the profile deflection of the MEMS Switch may not only influence the distribution of the electrostatic force but also considerably change the nonlinear pull-in voltage

  10. Pseudo-invariant Eigen-Operator Method for Solving Field-Intensity-Dependent Jaynes-Cummings Model

    International Nuclear Information System (INIS)

    Yu Taxi; Fan Hongyi

    2010-01-01

    By using the pseudo invariant eigen-operator method we analyze the field-intensity-dependent Jaynes-Gumming (JC) model. The pseudo-invariant eigen-operator is found in terms of the supersymmetric generators. The energy-level gap of this JC Hamiltonian is derived. This approach seems concise. (general)

  11. Energy levels and far-infrared optical absorption of impurity doped semiconductor nanorings: Intense laser and electric fields effects

    Energy Technology Data Exchange (ETDEWEB)

    Barseghyan, M.G., E-mail: mbarsegh@ysu.am

    2016-11-10

    Highlights: • The electron-impurity interaction on energy levels in nanoring have been investigated. • The electron-impurity interaction on far-infrared absorption have been investigated. • The energy levels are more stable for higher values of electric field. - Abstract: The effects of electron-impurity interaction on energy levels and far-infrared absorption in semiconductor nanoring under the action of intense laser and lateral electric fields have been investigated. Numerical calculations are performed using exact diagonalization technique. It is found that the electron-impurity interaction and external fields change the energy spectrum dramatically, and also have significant influence on the absorption spectrum. Strong dependence on laser field intensity and electric field of lowest energy levels, also supported by the Coulomb interaction with impurity, is clearly revealed.

  12. Dissociation of acetaldehyde in intense laser field: Coulomb explosion or field-assisted dissociation?

    Science.gov (United States)

    Elshakre, Mohamed E.; Gao, Lirong; Tang, Xiaoping; Wang, Sufan; Shu, Yafei; Kong, Fanao

    2003-09-01

    Dissociation of acetaldehyde in moderate strong laser field of 1013-1014W/cm2 was investigated. Singly charged parent ion CH3CHO+ and fragmental ions CH3+, CHO+, C2H4+, O+, CH2CHO+, and H+ were produced by 800 nm laser of 100 fs pulse duration and recorded by time-of-flight mass spectrometer. The CH3+ fragment further dissociated to CH2+, CH+, and C+ ions at higher intensity. Ab initio calculated results show that the singly-, doubly-, and triply charged parent ions are stable. So, the dissociation mechanism was not due to Coulomb explosion of multicharged ion. A field-assisted dissociation (FAD) theory, which assumes that only one bond undergoes dissociation while the rest of the molecular geometry stays unchanged, was employed to treat the dissociation dynamics. Accordingly, the dressed potential energy surfaces of the ground state for the parent and the fragment ions were calculated. Corresponding quasiclassical trajectory calculations show that the bond ruptures take place in the order of C-C, C-O, and C-H, agreeing with the observation. The observed angular dependence and charge distribution of the product ions can also be interpreted by the FAD theory.

  13. THE EFFECT OF ELECTRO MAGNETIC FIELD INTENSITY TO BIODIESEL CHARACTERISTICS

    Directory of Open Access Journals (Sweden)

    T. H. Nufus

    2017-07-01

    Full Text Available Various studies of diesel fuel optimization have been done, one of them by using a permanent magnet on the fuel line, the lack of magnetic field intensity decreases along with time increasing by using an electromagnetic field. The purpose of this study is to analyse the biodiesel fuel characteristics due to exposure of electromagnetic fields in terms of the viscosity and vibration of these fuel molecules. Electromagnetic field is generated from wire coil of 5000-9000 on galvanum pipe with diameter of 1.5 cm and length of 10 cm and connected to 12 V batteries. Here, biodiesel fuel is inserted in a galvanum tube, magnetized for 1200 s, and tested its viscosity of the falling ball system by viscometer. Fuel functional groups as well as vibrations between fuel molecules are tested with FTIR. The results show that the magnetized fuel changes. The viscosity of fuels from 2933 to 2478 and an increasing in the absorption of fuel molecules ranges from 13-58%. Therefore, the increasing of vibrating fuel molecules decreases its molecular attraction tug. These indicate that the magnetized fuel molecule causes a changing in the fuel molecule, cluster becomes de-clustered. It is a potential method to clarify the phenomenon of fuel magnetization due to its efficient combustion process.

  14. Permanent-magnet Faraday isolator with the field intensity of 25 kOe

    Energy Technology Data Exchange (ETDEWEB)

    Mironov, E A; Snetkov, I L; Voitovich, A V; Palashov, O V [Institute of Applied Physics, Russian Academy of Sciences, Nizhnii Novgorod (Russian Federation)

    2013-08-31

    A Faraday isolator with a single magneto-optical element is constructed and experimentally tested. It provides the isolation ratio of 30 dB at an average laser radiation power of 650 W. These parameters are obtained by increasing the field intensity in the magnetic system of the isolator and employing a low-absorption magneto-optical element. (elements of laser devices)

  15. Two-color phase control of high-order harmonic generation in intense laser fields

    International Nuclear Information System (INIS)

    Telnov, D.A.; Wang, J.; Chu, S.

    1995-01-01

    We present a time-independent generalized Floquet approach for nonperturbative treatment of high-order harmonic generation (HG) in intense onea (i) determination of the complex quasienergy eigenvalue and eigenfunction by means of the non-Hermitian Floquet formalism, wherein the Floquet Hamiltonian is discretized by the complex-scaling generalized pseudospectral technique [Wang, Chu, and Laughlin, Phys. Rev. A 50, 3208 (1994)], and (ii) calculation of the HG rates based on the approach that implies the classical treatment of the electromagnetic field and quantal treatment of the atom. The method is applied to the nonperturbative study of HG by the hydrogen atom in strong laser fields with the fundamental frequencies 532 and 775 nm and their third harmonics. The results show a strong dependence on the relative phase δ between the fundamental frequency field and its harmonic. For the intensities used in calculations (1x10 13 and 5x10 13 W/cm 2 for the fundamental frequency 532 nm and 1x10 13 and 3x10 13 W/cm 2 for the fundamental frequency 775 nm, the harmonic intensity being 10 and 100 times weaker), the total photon emission rate has its maximum at δ=0 and minimum at δ=π. However, this tendency, while valid for the first several HG peaks, is reversed for the higher HG peaks. The HG spectrum for δ=π is broader and the peak heights decrease more slowly compared to the case of δ=0. These results have their analog in the multiphoton above-threshold detachment study performed recently for H - ions [Telnov, Wang, and Chu, Phys. Rev. A 51, 4797 (1995)

  16. Axial electric wake field inside the induction gap exited by the intense electron beam

    International Nuclear Information System (INIS)

    Zhang Kaizhi; Zhang Huang; Long Jidong; Yang Guojun; He Xiaozhong; Wang Huacen

    2008-01-01

    While an intense electron beam passes through the accelerating gaps of a linear induction accelerator, a strong wake field will be excited. In this paper a relatively simple model is established based on the interaction between the transverse magnetic wake field and the electron beam, and the numerical calculation in succession generates a magnetic wake field distribution along the accelerator and along the beam pulse as well. The axial electric wake field is derived based on the relation between field components of a resonant mode. According to some principles in existence, the influence of this field on the high voltage properties of the induction gap is analyzed. The Dragon-I accelerator is taken as an example, and its maximum electric wake field is about 17 kV/cm, which means the effect of the wake field is noticeable. (authors)

  17. Temperature and exchange field dependences of the magnetic and magnetooptical properties of Y3Fe5O12 under low and intense magnetic field

    International Nuclear Information System (INIS)

    Guillot, M.; Le Gall, H.

    1976-01-01

    Faraday rotation (phi/sub F/) measurements are reported in YIG at 1.15 and 0.6328 microns wavelengths under low and very intense magnetic fields (up to 4 mega-Oersteds). These results are discussed from the applied field and temperature dependences of the magnetooptical (M.O.) coefficients induced by the light beam in both the octahedral (a) and tetrahedral (d) sites. It is shown that under very intense magnetic field and in the visible range the M.O. coefficients A/sub m/ and D/sub m/ induced by the magnetic dipole transitions are independent on the applied field and phi/sup m/ follows the usual evolution of the magnetic structure which shows a first-order transition (ferri → non colinear structure) near H/sub a/ = 1.7 mega-Oersteds. On the other hand in the near infrared A/sub m/ and D/sub m/ have a strong magnetic field dependence in the mega-Oersteds range with increasing the dc field. It is shown that the magnetic and electric parts of phi/sub F/ are increasing and decreasing respectively when increasing the dc field and the experimental data are in agreement with a molecular field model where the magnetic intra-sublattices interactions J/sub aa/ and J/sub dd/ are vanishing

  18. Revisiting the dilatation operator of the Wilson-Fisher fixed point

    Energy Technology Data Exchange (ETDEWEB)

    Liendo, Pedro [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany). Theory Group

    2017-01-15

    We revisit the order ε dilatation operator of the Wilson-Fisher fixed point obtained by Kehrein, Pismak, and Wegner in light of recent results in conformal field theory. Our approach is algebraic and based only on symmetry principles. The starting point of our analysis is that the first correction to the dilatation operator is a conformal invariant, which implies that its form is fixed up to an infinite set of coefficients associated with the scaling dimensions of higher-spin currents. These coefficients can be fixed using well-known perturbative results, however, they were recently re-obtained using CFT arguments without relying on perturbation theory. Our analysis then implies that all order-ε scaling dimensions of the Wilson-Fisher fixed point can be fixed by symmetry.

  19. A fixed-dose approach to conducting emamectin benzoate tolerance assessments on field-collected sea lice, Lepeophtheirus salmonis.

    Science.gov (United States)

    Whyte, S K; Westcott, J D; Elmoslemany, A; Hammell, K L; Revie, C W

    2013-03-01

    In New Brunswick, Canada, the sea louse, Lepeophtheirus salmonis, poses an on-going management challenge to the health and productivity of commercially cultured Atlantic salmon, Salmo salar. While the in-feed medication, emamectin benzoate (SLICE® ; Merck), has been highly effective for many years, evidence of increased tolerance has been observed in the field since late 2008. Although bioassays on motile stages are a common tool to monitor sea lice sensitivity to emamectin benzoate in field-collected sea lice, they require the collection of large numbers of sea lice due to inherent natural variability in the gender and stage response to chemotherapeutants. In addition, sensitive instruments such as EC(50) analysis may be unnecessarily complex to characterize susceptibility subsequent to a significant observed decline in efficacy. This study proposes an adaptation of the traditional, dose-response format bioassay to a fixed-dose method. Analysis of 657 bioassays on preadult and adult stages of sea lice over the period 2008-2011 indicated a population of sea lice in New Brunswick with varying degrees of susceptibility to emamectin benzoate. A seasonal and spatial effect was observed in the robustness of genders and stages of sea lice, which suggest that mixing different genders and stages of lice within a single bioassay may result in pertinent information being overlooked. Poor survival of adult female lice in bioassays, particularly during May/June, indicates it may be prudent to consider excluding this stage from bioassays conducted at certain times of the year. This work demonstrates that fixed-dose bioassays can be a valuable technique in detecting reduced sensitivity in sea lice populations with varying degrees of susceptibility to emamectin benzoate treatments. © 2013 Blackwell Publishing Ltd.

  20. Measured electric field intensities near electric cloud discharges detected by the Kennedy Space Center's Lightning Detection and Ranging System, LDAR

    Science.gov (United States)

    Poehler, H. A.

    1977-01-01

    For a summer thunderstorm, for which simultaneous, airborne electric field measurements and Lightning Detection and Ranging (LDAR) System data was available, measurements were coordinated to present a picture of the electric field intensity near cloud electrical discharges detected by the LDAR System. Radar precipitation echos from NOAA's 10 cm weather radar and measured airborne electric field intensities were superimposed on LDAR PPI plots to present a coordinated data picture of thunderstorm activity.

  1. The effects of the intense laser field on the nonlinear optical properties of a cylindrical Ga{sub 1−x}Al{sub x}As/GaAs quantum dot under applied electric field

    Energy Technology Data Exchange (ETDEWEB)

    Kasapoglu, E., E-mail: ekasap@cumhuriyet.edu.tr [Department of Physics, Cumhuriyet University, 58140 Sivas (Turkey); Duque, C.A. [Grupo de Materia Condensada-UdeA, Instituto de Física, Facultad de Ciencias Exactas y Naturales, Universidad de Antioquia UdeA, Calle 70 No. 52-21, Medellín (Colombia); Mora-Ramos, M.E. [Centro de Investigación en Ciencias, Instituto de Ciencias Básicas y Aplicadas, Universidad Autóonoma del Estado de Morelos, Av. Universidad 1001, CP 62209 Cuernavaca, Morelos (Mexico); Sökmen, I. [Department of Physics, Dokuz Eylül University, 35160 Buca, İzmir (Turkey)

    2015-10-01

    In the present work, the effects of the intense laser field on total optical absorption coefficient (the linear and third-order nonlinear) and total refractive index change (the linear and third-order nonlinear) for transitions between different intersubbands in the Ga{sub 1−x}Al{sub x}As/GaAs cylindrical quantum dot under external electric field are investigated. The calculations were performed within the compact density-matrix formalism with the use of the effective mass approximation. The obtained results show that both total absorption coefficient and refractive index change are sensitive to the electric and intense laser fields. By changing the intensities of the electric and laser fields, we can obtain the blue or red shift, without the need for the growth of many different samples. - Highlights: • The effects of the non-resonant intense laser field and electric field on the nonlinear optical properties of cylindrical quantum dot are investigated. • The both total absorption coefficient and refractive index change are sensitive to dot dimensions and the effects of external fields. • By changing the external fields together with dot dimensions a blue or red shift can be obtained.

  2. Electrons in a relativistic-intensity laser field: generation of zeptosecond electromagnetic pulses and energy spectrum of the accelerated electrons

    International Nuclear Information System (INIS)

    Andreev, A A; Galkin, A L; Kalashnikov, M P; Korobkin, V V; Romanovsky, Mikhail Yu; Shiryaev, O B

    2011-01-01

    We study the motion of an electron and emission of electromagnetic waves by an electron in the field of a relativistically intense laser pulse. The dynamics of the electron is described by the Newton equation with the Lorentz force in the right-hand side. It is shown that the electrons may be ejected from the interaction region with high energy. The energy spectrum of these electrons and the technique of using the spectrum to assess the maximal intensity in the focus are analysed. It is found that electromagnetic radiation of an electron moving in an intense laser field occurs within a small angle around the direction of the electron trajectory tangent. The tangent quickly changes its direction in space; therefore, electromagnetic radiation of the electron in the far-field zone in a certain direction in the vicinity of the tangent is a short pulse with a duration as short as zeptoseconds. The calculation of the temporary and spectral distribution of the radiation field is carried out. (superintense laser fields)

  3. Monopole dynamics of yang-mills theory without gauge-fixing

    International Nuclear Information System (INIS)

    Jia Duojie; Li Xiguo

    2003-01-01

    A new off-shell decomposition of SU(2) gauge field without any gauge fixing is proposed. This decomposition yields, for an appropriate gauge-fixing, a Skyme-Faddeev-like Wilsonian action and confirms the presence of high-order derivatives of a color-unit-vector at the classical level. The 't Hooft's conjecture that 'monopole' dynamics of infrared Yang-Mills theory is projection independent is also independently demonstrated

  4. The photonics collapse-revival's of intensity-dependent coupling of lambda atoms and fields

    International Nuclear Information System (INIS)

    Hajivandi, J.; Golshan, M. M.

    2007-01-01

    In this paper, we extend the intensity-dependent coupling of the interaction of two-level atoms and an electromagnetic field, originated by Sivakumar, to that of Λ-type atoms. In addition, we assume that the interaction occurs in a Kerr medium. In the present model we allow the Λ-type atom to interact with two quantized electromagnetic fields, one of which is initially coherent while the other one is not. We thus report the effect of such coupling and the medium on the collapse-revival's of the photonic mean numbers.

  5. Electron-related nonlinearities in GaAs-Ga{sub 1-x}Al{sub x}As double quantum wells under the effects of intense laser field and applied electric field

    Energy Technology Data Exchange (ETDEWEB)

    Mora-Ramos, M.E. [Facultad de Ciencias, Universidad Autonoma del Estado de Morelos, Ave. Universidad 1001, CP 62209, Cuernavaca, Morelos, Mexico (Mexico); Instituto de Fisica, Universidad de Antioquia, AA 1226 Medellin (Colombia); Duque, C.A., E-mail: cduque_echeverri@yahoo.es [Instituto de Fisica, Universidad de Antioquia, AA 1226 Medellin (Colombia); Kasapoglu, E.; Sari, H. [Cumhuriyet University, Physics Department, 58140 Sivas (Turkey); Soekmen, I. [Dokuz Eyluel University, Physics Department, 35160 Buca, Izmir (Turkey)

    2013-03-15

    The combined effects of intense laser radiation and applied electric fields on the intersubband-related linear and nonlinear optical properties in GaAs-based quantum wells are discussed. It is shown that for asymmetric double quantum well, the increasing laser field intensity causes progressive redshifts in the peak positions of the second and third harmonic coefficients. However, the resonant peaks of the nonlinear optical rectification can suffer a blueshift or a redshift, depending on the laser strengths. The same feature appears in the case of the resonant peaks corresponding to the total coefficients of optical absorption and relative change in the refractive index. - Highlights: Black-Right-Pointing-Pointer Nonlinear optical properties in double quantum wells. Black-Right-Pointing-Pointer Increasing laser field intensity causes redshifts in the peak positions. Black-Right-Pointing-Pointer Resonant peak of second order nonlinearities can be blue-shifted. Black-Right-Pointing-Pointer Relative change in refractive index depends of the applied electric field. Black-Right-Pointing-Pointer The energy position depends of the laser field parameter.

  6. Slope stability improvement using low intensity field electrosmosis

    Science.gov (United States)

    Armillotta, Pasquale

    2014-05-01

    The electrosmosis technique has been introduced in the past for slope stabilization. However, its application to real cases has been scarce due to several drawbacks mostly related to the high intensity electric field needed (1.0 V/cm or higher): the rapid degradation of the electrodes, the high system management cost, the heating and cracking of the soil and the reduction of its colloidal fraction. Thanks to the introduction of new materials, the technique is currently applied to decrease the consolidation time of saturated clay soils (forcing the elimination of water), consequently improving its mechanical strength. In clay soils, the volume variation is influenced by the presence of smectites. The clay compressibility decreases with the increasing of electrolytes concentration. Soil containing smectites that have interacted with calcium showed a reduction or the absence of swelling during hydration with distilled water and a positive increase of their shear strength. The different values of pH between the anode (acid) and the cathode (basic), induced by the electrosmosis create the conditions for the precipitation of CaCO3 near the cathode. The injection of solutions containing calcium in soils and their diffusion induced by the electrosmosis, lead to calcium precipitation and consequential increase of the shear strength. The material technological advances and the laboratory experiences described in this paper, demonstrate that the use low electric field (0.1 V/cm or lower) intensity electrosmosis (LEFE in acronym) can be effective for soil dewatering and shear strength increase while reducing its adverse effect. The LEFE can be used to: reduce the potential for swelling of active clay minerals through the introduction of ions and the precipitation of hardening substances; induce the "dewatering" in cohesive soils. Several Lab activities were carried out, using custom made electrosmosis equipment. These activities can be divided in two phases: Phase 1

  7. Free-charged-particle behavior in intense laser fields. Technical progress report, July 15, 1980-July 14, 1981

    International Nuclear Information System (INIS)

    Fradkin, D.M.

    1982-01-01

    The effects of intense laser fields on electrons, and what features might arise in the electrons' behavior as a result of the interaction are studied. Earlier work involving a classical treatment through second order of the Lorentz-Dirac equation indicated that with just a laser field, and no auxiliary fields, radiation reaction effects allowed an asymptotic transfer of energy-momentum from an intense laser pulse to a charged particle itself. This work was extended to third order, and explicit expressions for the particle's maximum energy gain per pulse show that it depends primarily on the total pulse energy per unit area of pulse front, and that the influence of laser polarization and frequency (which only come into play in a third-order treatment) are not very significant

  8. IR fixed points in SU(3 gauge theories

    Directory of Open Access Journals (Sweden)

    K.-I. Ishikawa

    2015-09-01

    Full Text Available We propose a novel RG method to specify the location of the IR fixed point in lattice gauge theories and apply it to the SU(3 gauge theories with Nf fundamental fermions. It is based on the scaling behavior of the propagator through the RG analysis with a finite IR cutoff, which we cannot remove in the conformal field theories in sharp contrast to the confining theories. The method also enables us to estimate the anomalous mass dimension in the continuum limit at the IR fixed point. We perform the program for Nf=16,12,8 and Nf=7 and indeed identify the location of the IR fixed points in all cases.

  9. Intensity modulated radiotherapy with fixed collimator jaws for locoregional left-sided breast cancer irradiation.

    Science.gov (United States)

    Wang, Juanqi; Yang, Zhaozhi; Hu, Weigang; Chen, Zhi; Yu, Xiaoli; Guo, Xiaomao

    2017-05-16

    The purpose of this study is to evaluate the intensity modulated radiotherapy (IMRT) with the fixed collimator jaws technique (FJT) for the left breast and regional lymph node. The targeted breast tissue and the lymph nodes, and the normal tissues were contoured for 16 left-sided breast cancer patients previously treated with radiotherapy after lumpectomy. For each patient, treatment plans using different planning techniques, i.e., volumetric modulated arc therapy (VMAT), tangential IMRT (tangential-IMRT), and IMRT with FJT (FJT-IMRT) were developed for dosimetric comparisons. A dose of 50Gy was prescribed to the planning target volume. The dose-volume histograms were generated, and the paired t-test was used to analyze the dose differences. FJT-IMRT had similar mean heart volume receiving 30Gy (V30 Gy) with tangential-IMRT (1.5% and 1.6%, p = 0.41), but inferior to the VMAT (0.8%, p < 0.001). In the average heart mean dose comparison, FJT-IMRT had the lowest value, and it was 0.6Gy lower than that for the VMAT plans (p < 0.01). A significant dose increase in the contralateral breast and lung was observed in VMAT plans. Compared with tangential-IMRT and VMAT plans, FJT-IMRT reduced the mean dose of thyroid, humeral head and cervical esophageal by 47.6% (p < 0.01) and 45.7% (p < 0.01), 74.3% (p =< 0.01) and 73% (p =< 0.01), and 26.7% (p =< 0.01) and 29.2% (p =< 0.01). In conclusion, compared with tangential-IMRT and VMAT, FJT-IMRT plan has the lowest thyroid, humeral head and cervical esophageal mean dose and it can be a reasonable treatment option for a certain subgroup of patients, such as young left-breast cancer patients and/or patients with previous thyroid disease.

  10. Molecular spectrum of laterally coupled quantum rings under intense terahertz radiation.

    Science.gov (United States)

    Baghramyan, Henrikh M; Barseghyan, Manuk G; Laroze, David

    2017-09-05

    We study the influence of intense THz laser radiation and electric field on molecular states of laterally coupled quantum rings. Laser radiation shows the capability to dissociate quantum ring molecule and add 2-fold degeneracy to the molecular states at the fixed value of the overlapping size between rings. It is shown that coupled to decoupled molecular states phase transition points form almost a straight line with a slope equal to two. In addition, the electric field direction dependent energy spectrum shows unexpected oscillations, demonstrating strong coupling between molecular states. Besides, intraband absorption is considered, showing both blue and redshifts in its spectrum. The obtained results can be useful for the controlling of degeneracy of the discrete energy spectrum of nanoscale structures and in the tunneling effects therein.

  11. On the multiphoton emission during U.V. and X-ray absorption by atoms in intense laser fields

    International Nuclear Information System (INIS)

    Miranda, L.C.M.

    1981-09-01

    A discussion of the u.v. and x-ray absorption cross section by a hydrogen atom in the presence of an intense i.r. laser field is presented, taking into account the influence of laser field on the electronic states. (Author) [pt

  12. Universal self-similar dynamics of relativistic and nonrelativistic field theories near nonthermal fixed points

    Science.gov (United States)

    Piñeiro Orioli, Asier; Boguslavski, Kirill; Berges, Jürgen

    2015-07-01

    We investigate universal behavior of isolated many-body systems far from equilibrium, which is relevant for a wide range of applications from ultracold quantum gases to high-energy particle physics. The universality is based on the existence of nonthermal fixed points, which represent nonequilibrium attractor solutions with self-similar scaling behavior. The corresponding dynamic universality classes turn out to be remarkably large, encompassing both relativistic as well as nonrelativistic quantum and classical systems. For the examples of nonrelativistic (Gross-Pitaevskii) and relativistic scalar field theory with quartic self-interactions, we demonstrate that infrared scaling exponents as well as scaling functions agree. We perform two independent nonperturbative calculations, first by using classical-statistical lattice simulation techniques and second by applying a vertex-resummed kinetic theory. The latter extends kinetic descriptions to the nonperturbative regime of overoccupied modes. Our results open new perspectives to learn from experiments with cold atoms aspects about the dynamics during the early stages of our universe.

  13. A four-component Dirac theory of ionization of a hydrogen molecular ion in a super-intense laser field

    International Nuclear Information System (INIS)

    Faisal, F H M

    2009-01-01

    In this communication, a four-component Dirac theory of ionization of a hydrogen molecular ion, H + 2 , in a super-intense laser field is presented. Analytic expressions for the spin-specific as well as the total ionization currents emitted from the ground state of the ion are derived. The results are given for arbitrary intensity, frequency, wavenumber and polarization of the field, and for the up or down spin of the bound and ionized states of the electron. They also apply for the case of inner-shell ionization of analogous heavier diatomic molecular ions. The presence of molecular two-slit interference effect, first found in the non-relativistic case, the spin-flip ionization current, and an asymmetry of the up- and down-spin currents similar to that predicted in the atomic case, is found to hold for the present relativistic molecular ionic case as well. The possibility of controlling the spin of the dominant ionization current in any direction by simply selecting the handedness of a circularly polarized incident laser field is pointed out. Finally, we note that the present results obtained within the strong field 'KFR' ansatz open up the way for an analogous fully relativistic four-component treatment for ionization of polyatomic molecules and clusters in super-intense laser fields. (fast track communication)

  14. An investigation into possible quantum chaos in the H2 molecule under intense laser fields via Ehrenfest phase space (EPS) trajectories.

    Science.gov (United States)

    Sadhukhan, Mainak; Deb, B M

    2018-06-21

    By employing the Ehrenfest "phase space" trajectory method for studying quantum chaos, developed in our laboratory, the present study reveals that the H 2 molecule under intense laser fields of three different intensities, I = 1 × 10 14  W/cm 2 , 5 × 10 14  W/cm 2 , and 1 × 10 15  W/cm 2 , does not show quantum chaos. A similar conclusion is also reached through the Loschmidt echo (also called quantum fidelity) calculations reported here for the first time for a real molecule under intense laser fields. Thus, a long-standing conjecture about the possible existence of quantum chaos in atoms and molecules under intense laser fields has finally been tested and not found to be valid in the present case.

  15. Extensive and intensive margins and the choice of exchange rate regimes

    OpenAIRE

    Masashige Hamano; Pierre M. Picard

    2013-01-01

    This paper studies how the choice of fixed or flexible exchange rate regimes is affected by the existence of intensive and extensive margins. We study two models where firms enter during or before each period of production. We show how the the choice of those regimes depend on the level and the volatily of the intensive and extensive margins as well as on the congruence between consumers' preferences and the supply and diversity of products. We show that fixed exchange rate regimes are prefer...

  16. High intensity pulsed electric field as an innovative technique for extraction of bioactive compounds-A review.

    Science.gov (United States)

    Yan, Liang-Gong; He, Lang; Xi, Jun

    2017-09-02

    How to extract bioactive compounds safely and efficiently is one of the problems for the food and pharmaceutical industry. In recent years, several novel extraction techniques have been proposed. To pursue a more efficient method for industrial production, high intensity pulsed electric field (HIPEF) extraction technique has been developed. HIPEF extraction technique, which is based on the conventional pulsed electric field (PEF), provided higher electric field intensity and a special continuous extraction system, and it has confirmed less extraction time, higher extraction yield, and mild processing temperature. So this innovative technique is promising for application of industrial production. This review was devoted to introducing the recent achievement of HIPEF extraction technique, including novel HIPEF continuous extraction system, principles and mechanisms; the critical process factors influencing its performance applications; and comparison of HIPEF extraction with other extraction techniques. In the end, the defects and future trends of HIPEF extraction were also discussed.

  17. Self-generated magnetic fields and energy transport by ultra-intense laser-plasma interaction

    International Nuclear Information System (INIS)

    Abudurexiti, A.; Tuniyazi, P.; Wang Qian

    2011-01-01

    The electromagnetic instability (Weibel instability) and its mechanism in ultra-intense laser-plasma interactions are studied by using three-dimensional particle-in-cell simulations. The transport of energy in electron thermal conduction is analyzed by the Spitzer-Harm theory, and the election's vertical pyrogenation phenomenon that resulted from anisotropic heating of laser is observed. The results indicate that the strong magnetic field excited by Weibel instability makes the electron beam deposit its energy within a very short distance, and it restrains the electron thermal flux formed when the laser ponderomotive force bursts through the electron. With the increase of the self-generated magnetic field, the electron will be seized by the wave of magnetic field, and the transport of heat will be restricted. (authors)

  18. First archaeomagnetic field intensity data from Ethiopia, Africa (1615 ± 12 AD)

    Science.gov (United States)

    Osete, María Luisa; Catanzariti, Gianluca; Chauvin, Annick; Pavón-Carrasco, Francisco Javier; Roperch, Pierrick; Fernández, Víctor M.

    2015-05-01

    First archaeointensity determinations have been obtained from Ethiopia. Seven bricks (34 specimens) from the Däbsan archaeological remains were subjected to archaeointensity determination by means of classical Thellier-Thellier experiment including tests for magnetic anisotropy and magnetic cooling rate dependency. The age of the Däbsan Palace is well controlled by historical information: between 1603, when land grants were conceded to the Jesuits and the Catholicism was established as the official religion in Ethiopia, and the age of the Palace foundation in 1626-27. Successful archaeointensity determinations were obtained in 27 specimens from five individual bricks revealing an average field value of 33.5 ± 1.1 μT, which is 11-26% lower than expected values from global geomagnetic models based on historical and archaeomagnetic data. Global models for 1615 AD predict a low in central-southern Africa related to past location of the present Southern Atlantic Anomaly (SAA). Our results suggest that the field intensity in central Africa may have been slightly lower than global model predictions. This would indicate that the low could be probably more extended towards central-eastern Africa (or more intense) than previously considered. Further data from this region are especially welcome to delineate the evolution of the SAA.

  19. Intensity fluctuations of mid-latitude background VLF-noises and the interplanetary magnetic field

    International Nuclear Information System (INIS)

    Gorshkov, Yu.N.; Klejmenova, N.G.

    1986-01-01

    Influence of interplanetary magnetic field (IMF) sector structure polarity and also variations of solar wind velocity and density on the intensity of mid-latitude VLF background noises are studied. For analysis continuous observations of VLF radiations in Magadan Observatory (phi=53.7 deg, L=2.7) from November, 1972 to June, 1973 were used. It is shown that IMF sector sign has no sufficient effect on the level of mid-latitude VLF background noises at the frequences f < 4-5 kHz. In magnetoperturbed periods when IMF Bsub(z)-component was directed to the South and the Earth was in the region of high-speed plasma flux, in mid-latitudes abatement of intensity of VLF background noises was seen

  20. 'Tongue-and-groove' effect in intensity modulated radiotherapy with static multileaf collimator fields

    International Nuclear Information System (INIS)

    Que, W; Kung, J; Dai, J

    2004-01-01

    The 'tongue-and-groove problem' in step-and-shoot delivery of intensity modulated radiotherapy is investigated. A 'tongue-and-groove' index (TGI) is introduced to quantify the 'tongue-and-groove' effect in step-and-shoot delivery. Four different types of leaf sequencing methods are compared. The sliding window method and the reducing level method use the same number of field segments to deliver the same intensity map, but the TGI is much less for the reducing level method. The leaf synchronization method of Van Santvoort and Heijmen fails in step-and-shoot delivery, but a new method inspired by the method of Van Santvoort and Heijmen is shown to eliminate 'tongue-and-groove' underdosage completely

  1. Whole abdomen radiation therapy in ovarian cancers: a comparison between fixed beam and volumetric arc based intensity modulation

    Directory of Open Access Journals (Sweden)

    Clivio Alessandro

    2010-11-01

    Full Text Available Abstract Purpose A study was performed to assess dosimetric characteristics of volumetric modulated arcs (RapidArc, RA and fixed field intensity modulated therapy (IMRT for Whole Abdomen Radiotherapy (WAR after ovarian cancer. Methods and Materials Plans for IMRT and RA were optimised for 5 patients prescribing 25 Gy to the whole abdomen (PTV_WAR and 45 Gy to the pelvis and pelvic nodes (PTV_Pelvis with Simultaneous Integrated Boost (SIB technique. Plans were investigated for 6 MV (RA6, IMRT6 and 15 MV (RA15, IMRT15 photons. Objectives were: for both PTVs V90% > 95%, for PTV_Pelvis: Dmax Results IMRT and RapidArc resulted comparable for target coverage. For PTV_WAR, V90% was 99.8 ± 0.2% and 93.4 ± 7.3% for IMRT6 and IMRT15, and 98.4 ± 1.7 and 98.6 ± 0.9% for RA6 and RA15. Target coverage resulted improved for PTV_Pelvis. Dose homogeneity resulted slightly improved by RA (Uniformity was defined as U5-95% = D5%-D95%/Dmean. U5-95% for PTV_WAR was 0.34 ± 0.05 and 0.32 ± 0.06 (IMRT6 and IMRT15, 0.30 ± 0.03 and 0.26 ± 0.04 (RA6 and RA15; for PTV_Pelvis, it resulted equal to 0.1 for all techniques. For organs at risk, small differences were observed between the techniques. MU resulted 3130 ± 221 (IMRT6, 2841 ± 318 (IMRT15, 538 ± 29 (RA6, 635 ± 139 (RA15; the average measured treatment time was 18.0 ± 0.8 and 17.4 ± 2.2 minutes (IMRT6 and IMRT15 and 4.8 ± 0.2 (RA6 and RA15. GAIIMRT6 = 97.3 ± 2.6%, GAIIMRT15 = 94.4 ± 2.1%, GAIRA6 = 98.7 ± 1.0% and GAIRA15 = 95.7 ± 3.7%. Conclusion RapidArc showed to be a solution to WAR treatments offering good dosimetric features with significant logistic improvements compared to IMRT.

  2. The levels of the first excited configuration of one-electron ions in intensive alternating field

    International Nuclear Information System (INIS)

    Klimchitskaya, G.L.

    1984-01-01

    The relativistic generalization of the quasi-energy method is applied for the calculation of the influence of spatjally-homogeneous electric field with the periodic time dependence on the energy levels of the first excited configuration of one-electron multiply charged ions. The dependence is found of the corresponding quasi-energy levels on the amplitude and frequency of intensive external field which wholly mixes the levels of fine structure

  3. Effects of 60 Hz electric fields on operant and social stress behavior of nonhuman primates. Quarterly technical progress report No. 20, September 28-December 20, 1985

    Energy Technology Data Exchange (ETDEWEB)

    Rogers, W.R.

    1986-01-03

    This research program will evaluate the aversive character of exposure to 60 Hz electric fields by determining the threshold intensity which produces avoidance or escape responses, will estimate the threshold intensity for detection of 60 Hz electric fields, will assess effects of chronic exposure to 60 Hz electric fields on the performance of two operant conditioning tasks, fixed ratio and differential reinforcement of low rate responding, will investigate, using the systematic quantitative observational sampling methods of primatology, the possible stress-inducing effects of chronic exposure to 60 Hz electric fields on the behavior of baboons living in small social groups. In all experiments, the electric fields will be described, characterized, and controlled to account for recognized artifacts associated with high intensity 60 Hz electric fields and the health of all subjects will be described using the methods of primate veterinary medicine.

  4. Split-field vs extended-field intensity-modulated radiation therapy plans for oropharyngeal cancer: Which spares the larynx? Which spares the thyroid?

    Energy Technology Data Exchange (ETDEWEB)

    Yu, Yao; Chen, Josephine [Department of Radiation Oncology, University of California, San Francisco, San Francisco, CA (United States); Leary, Celeste I. [Department of Radiation Medicine, Oregon Health Sciences University, Portland, OR (United States); Shugard, Erin [Department of Radiation Oncology, University of California, San Francisco, San Francisco, CA (United States); Yom, Sue S., E-mail: yoms@radonc.ucsf.edu [Department of Radiation Oncology, University of California, San Francisco, San Francisco, CA (United States); Department of Otolaryngology—Head and Neck Surgery, University of California, San Francisco, San Francisco, CA (United States)

    2016-07-01

    Radiation of the low neck can be accomplished using split-field intensity-modulated radiation therapy (sf-IMRT) or extended-field intensity-modulated radiation therapy (ef-IMRT). We evaluated the effect of these treatment choices on target coverage and thyroid and larynx doses. Using data from 14 patients with cancers of the oropharynx, we compared the following 3 strategies for radiating the low neck: (1) extended-field IMRT, (2) traditional split-field IMRT with an initial cord-junction block to 40 Gy, followed by a full-cord block to 50 Gy, and (3) split-field IMRT with a full-cord block to 50 Gy. Patients were planned using each of these 3 techniques. To facilitate comparison, extended-field plans were normalized to deliver 50 Gy to 95% of the neck volume. Target coverage was assessed using the dose to 95% of the neck volume (D{sub 95}). Mean thyroid and larynx doses were computed. Extended-field IMRT was used as the reference arm; the mean larynx dose was 25.7 ± 7.4 Gy, and the mean thyroid dose was 28.6 ± 2.4 Gy. Split-field IMRT with 2-step blocking reduced laryngeal dose (mean larynx dose 15.2 ± 5.1 Gy) at the cost of a moderate reduction in target coverage (D{sub 95} 41.4 ± 14 Gy) and much higher thyroid dose (mean thyroid dose 44.7 ± 3.7 Gy). Split-field IMRT with initial full-cord block resulted in greater laryngeal sparing (mean larynx dose 14.2 ± 5.1 Gy) and only a moderately higher thyroid dose (mean thyroid dose 31 ± 8 Gy) but resulted in a significant reduction in target coverage (D{sub 95} 34.4 ± 15 Gy). Extended-field IMRT comprehensively covers the low neck and achieves acceptable thyroid and laryngeal sparing. Split-field IMRT with a full-cord block reduces laryngeal doses to less than 20 Gy and spares the thyroid, at the cost of substantially reduced coverage of the low neck. Traditional 2-step split-field IMRT similarly reduces the laryngeal dose but also reduces low-neck coverage and delivers very high doses to the thyroid.

  5. Photoelectron angular distributions from strong-field ionization of oriented molecules

    DEFF Research Database (Denmark)

    Holmegaard, Lotte; Hansen, Jonas Lerche; Kalhøj, Line

    2010-01-01

    The combination of ultrafast light sources with detection of molecular-frame photoelectron angular distributions (MFPADs) is setting new standards for detailed interrogation of molecular dynamics. However, until recently measurement of MFPADs relied on determining the molecular orientation after...... ionization, which is limited to species and processes where ionization leads to fragmentation. An alternative is to fix the molecular frame before ionization. The only demonstrations of such spatial orientation involved aligned small linear nonpolar molecules. Here we extend these techniques to the general...... class of polar molecules. Carbonylsulphide and benzonitrile molecules, fixed in space by combined laser and electrostatic fields, are ionized with intense, circularly polarized 30-fs laser pulses. For carbonylsulphide and benzonitrile oriented in one dimension, the MFPADs exhibit pronounced anisotropies...

  6. Effect of high-intensity pulsed electric fields processing and conventional heat treatment on orange-carrot juice carotenoids.

    Science.gov (United States)

    Torregrosa, Francisco; Cortés, Clara; Esteve, María J; Frígola, Ana

    2005-11-30

    Liquid chromatography (LC) was the method of choice for quantification of carotenoids (including geometrical isomers) to evaluate the effects of high-intensity pulsed electric field (HIPEF), a nonthermal preservation method, with different parameters (electric field intensities and treatment times), on an orange-carrot juice mixture (80:20, v/v). In parallel, a conventional heat treatment (98 degrees C, 21 s) was applied to the juice. HIPEF processing generally caused a significant increase in the concentrations of the carotenoids identified as treatment time increased. HIPEF treatment at 25 and 30 kV/cm provided a vitamin A concentration higher than that found in the pasteurized juice.

  7. The PyZgoubi framework and the simulation of dynamic aperture in fixed-field alternating-gradient accelerators

    International Nuclear Information System (INIS)

    Tygier, S.; Appleby, R.B.; Garland, J.M.; Hock, K.; Owen, H.; Kelliher, D.J.; Sheehy, S.L.

    2015-01-01

    We present PyZgoubi, a framework that has been developed based on the tracking engine Zgoubi to model, optimise and visualise the dynamics in particle accelerators, especially fixed-field alternating-gradient (FFAG) accelerators. We show that PyZgoubi abstracts Zgoubi by wrapping it in an easy-to-use Python framework in order to allow simple construction, parameterisation, visualisation and optimisation of FFAG accelerator lattices. Its object oriented design gives it the flexibility and extensibility required for current novel FFAG design. We apply PyZgoubi to two example FFAGs; this includes determining the dynamic aperture of the PAMELA medical FFAG in the presence of magnet misalignments, and illustrating how PyZgoubi may be used to optimise FFAGs. We also discuss a robust definition of dynamic aperture in an FFAG and show its implementation in PyZgoubi

  8. The PyZgoubi framework and the simulation of dynamic aperture in fixed-field alternating-gradient accelerators

    Energy Technology Data Exchange (ETDEWEB)

    Tygier, S., E-mail: sam.tygier@hep.manchester.ac.uk [Cockcroft Accelerator Group, The University of Manchester (United Kingdom); Appleby, R.B., E-mail: robert.appleby@manchester.ac.uk [Cockcroft Accelerator Group, The University of Manchester (United Kingdom); Garland, J.M. [Cockcroft Accelerator Group, The University of Manchester (United Kingdom); Hock, K. [University of Liverpool (United Kingdom); Owen, H. [Cockcroft Accelerator Group, The University of Manchester (United Kingdom); Kelliher, D.J.; Sheehy, S.L. [STFC Rutherford Appleton Laboratory (United Kingdom)

    2015-03-01

    We present PyZgoubi, a framework that has been developed based on the tracking engine Zgoubi to model, optimise and visualise the dynamics in particle accelerators, especially fixed-field alternating-gradient (FFAG) accelerators. We show that PyZgoubi abstracts Zgoubi by wrapping it in an easy-to-use Python framework in order to allow simple construction, parameterisation, visualisation and optimisation of FFAG accelerator lattices. Its object oriented design gives it the flexibility and extensibility required for current novel FFAG design. We apply PyZgoubi to two example FFAGs; this includes determining the dynamic aperture of the PAMELA medical FFAG in the presence of magnet misalignments, and illustrating how PyZgoubi may be used to optimise FFAGs. We also discuss a robust definition of dynamic aperture in an FFAG and show its implementation in PyZgoubi.

  9. A model of the enhancement of coal combustion using high intensity acoustic fields

    International Nuclear Information System (INIS)

    Yavuzkurt, S.; Ha, M.Y.; Koopmann, G.H.; Scaroni, A.

    1989-01-01

    In this paper a model for the enhancement of coal combustion in the presence of high intensity acoustics is developed. A high intensity acoustic field induces an oscillating velocity over pulverized coal particles otherwise entrained in the main gas stream, resulting in increased heat and mass transfer. The augmented heat and mass transfer coefficients, expressed as space- and time-averaged Nusselt and Sherwood numbers for the oscillating flow, were implemented in an existing computer code (PCGC-2) capable of predicting various aspects of pulverized coal combustion and gasification. Increases in the Nusselt and Sherwood numbers of about 45, 60 and 82.5% at sound pressure levels of 160, 165, and 170 dB for 100 μm coal particles were obtained due to increases in the acoustic slop velocity associated with the increased sound pressure levels. The main effect of the acoustic field was observed during the char combustion phase in a diffusionally controlled situation. A decrease in the char burnout length (time) of 15.7% at 160 dB and 30.2% at 170 dB was obtained compared to the case with no sound for the 100 μm coal particles

  10. Fixed Field Alternating Gradient (FFAG)accelerators and their medical application in proton therapy

    International Nuclear Information System (INIS)

    Fourrier, J.

    2008-10-01

    Radiotherapy uses particle beams to irradiate and kill cancer tumors while sparing healthy tissues. Bragg peak shape of the proton energy loss in matter allows a ballistic improvement of the dose deposition compared with X rays. Thus, the irradiated volume can be precisely adjusted to the tumour. This thesis, in the frame of the RACCAM project, aims to the study and the design of a proton therapy installation based on a fixed field alternating gradient (FFAG) accelerator in order to build a spiral sector FFAG magnet for validation. First, we present proton therapy to define medical specifications leading to the technical specifications of a proton therapy installation. Secondly, we introduce FFAG accelerators through their past and on-going projects which are on their way around the world before developing the beam dynamic theories in the case of invariant focusing optics (scaling FFAG). We describe modelling and simulation tools developed to study the dynamics in a spiral scaling FFAG accelerator. Then we explain the spiral optic parameter search which has leaded to the construction of a magnet prototype. Finally, we describe the RACCAM project proton therapy installation starting from the injector cyclotron and ending with the extraction system. (author)

  11. Further studies on the problems of geomagnetic field intensity determination from archaeological baked clay materials

    Science.gov (United States)

    Kostadinova-Avramova, M.; Kovacheva, M.

    2015-10-01

    Archaeological baked clay remains provide valuable information about the geomagnetic field in historical past, but determination of the geomagnetic field characteristics, especially intensity, is often a difficult task. This study was undertaken to elucidate the reasons for unsuccessful intensity determination experiments obtained from two different Bulgarian archaeological sites (Nessebar - Early Byzantine period and Malenovo - Early Iron Age). With this aim, artificial clay samples were formed in the laboratory and investigated. The clay used for the artificial samples preparation differs according to its initial state. Nessebar clay was baked in the antiquity, but Malenovo clay was raw, taken from the clay deposit near the site. The obtained artificial samples were repeatedly heated eight times in known magnetic field to 700 °C. X-ray diffraction analyses and rock-magnetic experiments were performed to obtain information about the mineralogical content and magnetic properties of the initial and laboratory heated clays. Two different protocols were applied for the intensity determination-Coe version of Thellier and Thellier method and multispecimen parallel differential pTRM protocol. Various combinations of laboratory fields and mutual positions of the directions of laboratory field and carried thermoremanence were used in the performed Coe experiment. The obtained results indicate that the failure of this experiment is probably related to unfavourable grain sizes of the prevailing magnetic carriers combined with the chosen experimental conditions. The multispecimen parallel differential pTRM protocol in its original form gives excellent results for the artificial samples, but failed for the real samples (samples coming from previously studied kilns of Nessebar and Malenovo sites). Obviously the strong dependence of this method on the homogeneity of the used subsamples hinders its implementation in its original form for archaeomaterials. The latter are often

  12. Wall shear stress fixed points in cardiovascular fluid mechanics.

    Science.gov (United States)

    Arzani, Amirhossein; Shadden, Shawn C

    2018-05-17

    Complex blood flow in large arteries creates rich wall shear stress (WSS) vectorial features. WSS acts as a link between blood flow dynamics and the biology of various cardiovascular diseases. WSS has been of great interest in a wide range of studies and has been the most popular measure to correlate blood flow to cardiovascular disease. Recent studies have emphasized different vectorial features of WSS. However, fixed points in the WSS vector field have not received much attention. A WSS fixed point is a point on the vessel wall where the WSS vector vanishes. In this article, WSS fixed points are classified and the aspects by which they could influence cardiovascular disease are reviewed. First, the connection between WSS fixed points and the flow topology away from the vessel wall is discussed. Second, the potential role of time-averaged WSS fixed points in biochemical mass transport is demonstrated using the recent concept of Lagrangian WSS structures. Finally, simple measures are proposed to quantify the exposure of the endothelial cells to WSS fixed points. Examples from various arterial flow applications are demonstrated. Copyright © 2018 Elsevier Ltd. All rights reserved.

  13. Celestial Navigation Fix Based on Particle Swarm Optimization

    Directory of Open Access Journals (Sweden)

    Tsou Ming-Cheng

    2015-09-01

    Full Text Available A technique for solving celestial fix problems is proposed in this study. This method is based on Particle Swarm Optimization from the field of swarm intelligence, utilizing its superior optimization and searching abilities to obtain the most probable astronomical vessel position. In addition to being applicable to two-body fix, multi-body fix, and high-altitude observation problems, it is also less reliant on the initial dead reckoning position. Moreover, by introducing spatial data processing and display functions in a Geographical Information System, calculation results and chart work used in Circle of Position graphical positioning can both be integrated. As a result, in addition to avoiding tedious and complicated computational and graphical procedures, this work has more flexibility and is more robust when compared to other analytical approaches.

  14. Enhanced biohydrogen production by the N{sub 2}-fixing cyanobacterium Anabaena siamensis strain TISTR 8012

    Energy Technology Data Exchange (ETDEWEB)

    Khetkorn, Wanthanee [Program of Biotechnology, Faculty of Science, Chulalongkorn University, Bangkok, 10330 (Thailand); Laboratory of Cyanobacterial Biotechnology, Department of Biochemistry, Faculty of Science, Chulalongkorn University, Phayathai Road, Bangkok, 10330 (Thailand); Department of Photochemistry and Molecular Science, Uppsala University, Box 523, SE-75120, Uppsala (Sweden); Lindblad, Peter [Department of Photochemistry and Molecular Science, Uppsala University, Box 523, SE-75120, Uppsala (Sweden); Incharoensakdi, Aran [Laboratory of Cyanobacterial Biotechnology, Department of Biochemistry, Faculty of Science, Chulalongkorn University, Phayathai Road, Bangkok, 10330 (Thailand)

    2010-12-15

    The efficiency of hydrogen production depends on several factors. We focused on external conditions leading to enhanced hydrogen production when using the N{sub 2}-fixing cyanobacterium Anabaena siamensis TISTR 8012, a novel strain isolated from a rice paddy field in Thailand. In this study, we controlled key factors affecting hydrogen production such as cell age, light intensity, time of light incubation and source of carbon. Our results showed an enhanced hydrogen production when cells, at log phase, were adapted under N{sub 2}-fixing condition using 0.5% fructose as carbon source and a continuous illumination of 200 {mu}E m{sup -2} s{sup -1} for 12 h under anaerobic incubation. The maximum hydrogen production rate was 32 {mu}mol H{sub 2} mg chl a{sup -1} h{sup -1}. This rate was higher than that observed in the model organisms Anabaena PCC 7120, Nostoc punctiforme ATCC 29133 and Synechocystis PCC 6803. This higher production was likely caused by a higher nitrogenase activity since we observed an upregulation of nifD. The production did not increase after 12 h which was probably due to an increased activity of the uptake hydrogenase as evidenced by an increased hupL transcript level. Interestingly, a proper adjustment of light conditions such as intensity and duration is important to minimize both the photodamage of the cells and the uptake hydrogenase activity. Our results indicate that A. siamensis TISTR 8012 has a high potential for hydrogen production with the ability to utilize sugars as substrate to produce hydrogen. (author)

  15. Gauge fixing of Chern-Simons N-extended supergravity

    Energy Technology Data Exchange (ETDEWEB)

    Ney, W G [Centro Brasileiro de Pesquisas Fisicas (CBPF), Rio de Janeiro, RJ (Brazil); Centro Federal de Educacao Tecnologica (CEFET), Campos dos Goytacazes, RJ (Brazil); Piguet, O [Universidade Federal do Espirito Santo (UFES), ES 29000-001, Vitoria (Brazil); Spalenza, W [Centro Brasileiro de Pesquisas Fisicas (CBPF), Rio de Janeiro, RJ (Brazil)

    2004-08-01

    We treat N-extended supergravity in 2+1 space-time dimensions as a Yang-Mills gauge field with Chern-Simons action associated to the N-extended Poincare supergroup. We fix the gauge of this theory within the Batalin-Vilkovisky scheme. (orig.)

  16. Gauge fixing of Chern-Simons N-extended supergravity

    International Nuclear Information System (INIS)

    Ney, W.G.; Piguet, O.; Spalenza, W.

    2004-01-01

    We treat N-extended supergravity in 2+1 space-time dimensions as a Yang-Mills gauge field with Chern-Simons action associated to the N-extended Poincare supergroup. We fix the gauge of this theory within the Batalin-Vilkovisky scheme. (orig.)

  17. Weathering model in paleomagnetic field intensity measurements on ancient fired clays

    International Nuclear Information System (INIS)

    Singalas, I.; Gangas, N-H.J.; Danon, J.

    1978-03-01

    Nonlinearities observed in Thellier's plots are explained in terms of a weathering model. This model is based on the reduction in size of the originaly present iron oxide particles, due to leaching. In the general case, the slope of the Thellier's plot is a function of the particle size destributions of the magnetic particles, both newly formed and leached ones. In the special case in which the newly formed magnetic particles are superparamagnetic, the limiting value of the slope of th Thellier's plot towards the magnetic ordering temperature is equal to the ratio of the ancient field intensity to the modern one

  18. Intense laser effects on nonlinear optical absorption and optical rectification in single quantum wells under applied electric and magnetic field

    International Nuclear Information System (INIS)

    Duque, C.A.; Kasapoglu, E.; Sakiroglu, S.; Sari, H.; Soekmen, I.

    2011-01-01

    In this work the effects of intense laser on the electron-related nonlinear optical absorption and nonlinear optical rectification in GaAs-Ga 1-x Al x As quantum wells are studied under, applied electric and magnetic field. The electric field is applied along the growth direction of the quantum well whereas the magnetic field has been considered to be in-plane. The calculations were performed within the density matrix formalism with the use of the effective mass and parabolic band approximations. The intense laser effects are included through the Floquet method, by modifying the confining potential associated to the heterostructure. Results are presented for the nonlinear optical absorption, the nonlinear optical rectification and the resonant peak of these two optical processes. Several configurations of the dimensions of the quantum well, the applied electric and magnetic fields, and the incident intense laser radiation have been considered. The outcome of the calculation suggests that the nonlinear optical absorption and optical rectification are non-monotonic functions of the dimensions of the heterostructure and of the external perturbations considered in this work.

  19. Dependence of Moessbauer resonance intensities on vibrational lattice anisotropy in case of an axial electric field gradient

    International Nuclear Information System (INIS)

    Friedt, J.M.

    1976-01-01

    The change in the hyperfine line intensities is discussed for various Moessbauer transitions in cases involving axial vibrational lattice anisotropy and axial electric field gradient at the resonant nucleus. The change in the relative intensities of the spectral components has been calculed numerically for the different types of Moessbauer transitions. Polynomial expansions are given to describe the functional dependence of the relative intensities on the magnitude of the vibration anisotropy. They may be used to extract the relevant parameters from experimental data without requiring the numerical integrations implied in the description of the Goldanskii-Karyagin effect [fr

  20. Fixed Pupillary Light Reflex due to Peripheral Neuropathy after Liver Transplantation

    Directory of Open Access Journals (Sweden)

    Kwan Hyung Kim

    2015-08-01

    Full Text Available A 46-year-old female patient was admitted to the intensive care unit (ICU after liver transplantation. About an hour later after the ICU admission, she had no pupillary light reflex. Both pupils were also fixed at 5 mm. Patients who undergo liver transplantation are susceptible to neurologic disorders including hepatic encephalopathy, thromboembolism and intracranial hemorrhage. Abnormal pupillary light reflex usually indicates a serious neurologic emergency in these patients; however, benign neurologic disorders such as peripheral autonomic neuropathy or Holmes-Adie syndrome should also be considered. We experienced a case of fixed pupillary light reflex after liver transplantation diagnosed as peripheral autonomic neuropathy.

  1. Correction of inhomogeneous RF field using multiple SPGR signals for high-field spin-echo MRI

    International Nuclear Information System (INIS)

    Ishimori, Yoshiyuki; Monma, Masahiko; Yamada, Kazuhiro; Kimura, Hirohiko; Uematsu, Hidemasa; Fujiwara, Yasuhiro; Yamaguchi, Isao

    2007-01-01

    The purpose of this study was to propose a simple and useful method for correcting nonuniformity of high-field (3 Tesla) T 1 -weighted spin-echo (SE) images based on a B1 field map estimated from gradient recalled echo (GRE) signals. The method of this study was to estimate B1 inhomogeneity, spoiled gradient recalled echo (SPGR) images were collected using a fixed repetition time of 70 ms, flip angles of 45 and 90 degrees, and echo times of 4.8 and 10.4 ms. Selection of flip angles was based on the observation that the relative intensity changes in SPGR signals were very similar among different tissues at larger flip angles than the Ernst angle. Accordingly, spatial irregularity that was observed on a signal ratio map of the SPGR images acquired with these 2 flip angles was ascribed to inhomogeneity of the B1 field. Dual echo time was used to eliminate T 2 * effects. The ratio map that was acquired was scaled to provide an intensity correction map for SE images. Both phantom and volunteer studies were performed using a 3T magnetic resonance scanner to validate the method. In the phantom study, the uniformity of the T 1 -weighted SE image improved by 23%. Images of human heads also showed practically sufficient improvement in the image uniformity. The present method improves the image uniformity of high-field T 1 -weighted SE images. (author)

  2. Temperature-dependent of Nonlinear Optical Conductance of Graphene-based Systems in High-intensity Terahertz Field

    Institute of Scientific and Technical Information of China (English)

    Jing Lv; Rui-yang Yuan; Hui Yan

    2014-01-01

    For multi-photon processed with the linear dispersion in the high-intensity terahertz(THz) field,we have systematically investigated the temperature-dependent nonlinear optical response of graphene-based systems, including single layer graphene, graphene superlattice and gapped graphene. In the intrinsic single layer graphene system, it demonstrates that, at low temperature, nonlinear optical conductivities of the thirdand fifth-order are respectively five and ten orders of magnitude larger than the universal conductivity with high-intensity and low frequency THz wave.In the graphene superlattice and gapped graphene systems, the optical responses enhanced because of the anisotropic massless and massive Dirac fermions.

  3. Fixed expressions and the production of idioms

    NARCIS (Netherlands)

    Sprenger, S.A.

    2003-01-01

    This PhD-thesis explores the mental representations of Fixed Expressions (FEs). Chapter 1 gives an introduction to the field of FEs and provides an overview of Chapters 2-5. In Chapter 2, research on the frequency of Dutch FEs is reported. The results suggest that about 7% of written Dutch language

  4. Practicing Reiki does not appear to routinely produce high-intensity electromagnetic fields from the heart or hands of Reiki practitioners.

    Science.gov (United States)

    Baldwin, Ann Linda; Rand, William Lee; Schwartz, Gary E

    2013-06-01

    The study objective was to determine whether Reiki practice increases the electromagnetic field strength from the heart and hands of Reiki practitioners. This study repeated experiments performed 20 years ago that detected exceptionally high-strength electromagnetic fields (100 nT) from the hands of several energy healers. The equipment used was far more sensitive than in the original studies. Using a Magnes 2500 WH SQUID, the electromagnetic field from the hands and heart of each of 3 Reiki masters was measured when they were (1) not practicing Reiki, (2) sending Reiki to a distant person, and (3) sending Reiki to a person in the room. Similar measurements were made on 4 Reiki-naïve volunteers before and after they received a Reiki training/attunement enabling them to self-administer Reiki. The study setting was the Scripps Institute, San Diego, CA. Magnetic field intensity of hands and heart recorded over 5-minute sessions with corresponding frequency spectra. For all subjects, under all conditions, sensors closest to the heart and the hands produced spikes of 2 pT corresponding to the heartbeat. Recordings from 2 Masters and 1 volunteer showed a low-intensity sine wave oscillation of 0.25-0.3 Hz (intensity 0.1-0.5 pT) whether or not they were practicing Reiki. This oscillation probably reflected respiratory sinus arrhythmia, judged by comparison with recent previous studies. These signals were not detected in the original studies. In the current study, no electromagnetic field intensities greater than 3 pT were observed in any of the recordings. Practicing Reiki does not appear to routinely produce high-intensity electromagnetic fields from the heart or hands. Alternatively, it is possible that energy healing is stimulated by tuning into an external environmental radiation, such as the Schumann resonance, which was blocked in the present study by the strong magnetic shielding surrounding the SQUID.

  5. A study of the path-integral quantization of Abelian gauge theories when no explicit gauge-fixing term is included in the bilinear part of the gauge-field action

    International Nuclear Information System (INIS)

    Phillips, S.

    1985-01-01

    The mathematical problem of inverting the operator Δ x μν ≡ g μν g αβ δ x α δ x β -δ x μ δ x ν , as it arises in the path-integral quantization of an Abelian gauge theory, such as quantum electrodynamics, when no gauge-fixing Lagrangian field density is included, is studied in this article. Making use of the fact that the Schwinger source functions, which are introduced for the purpose of generating Green's functions, are free of divergence, a result that follows from the conversion of the exponentiated action into a Gaussian form, the apparently noninvertible partial differential equation, Δ x μν L ν (x) J μ (x), can, by the addition and subsequent subtraction of terms containing the divergence of the source function, be cast into a form that does possess a Green's function solution. The gauge-field propagator is the same as that obtained by the conventional technique, which involves gauge fixing when the gauge parameter, α, is set equal to one. Such an analysis suggests also that, provided the effect of fictitious particles that propagate only in closed loops are included for the study of Green's functions in non-Abelian gauge theories in Landau-type gauges, then, in quantizing either Abelian gauge theories or non-Abelian gauge theories in this generic kind of gauge, it is not necessary to add an explicit gauge-fixing term to the bilinear part of the gauge-field action

  6. Confined electron assemblies in intense electric and magnetic fields and a generalization of Emden's equation

    International Nuclear Information System (INIS)

    March, N.H.

    2003-09-01

    The Feynman propagator, and its parallel in statistical mechanics, namely the canonical density matrix, are first used to treat both homogeneous and confined electron assemblies in the presence of a static electric field of arbitrary strength. The models are relevant to plasmas having variable electron density and degeneracy. The second topic concerns atomic ions in intense magnetic fields. Semiclassical theory is here applied, non-relativistic and relativistic approximations being invoked. Both treatments are shown to be embraced by a generalization of Emden's equation. (author)

  7. Measurement and numerical simulation of high intensity focused ultrasound field in water

    Science.gov (United States)

    Lee, Kang Il

    2017-11-01

    In the present study, the acoustic field of a high intensity focused ultrasound (HIFU) transducer in water was measured by using a commercially available needle hydrophone intended for HIFU use. To validate the results of hydrophone measurements, numerical simulations of HIFU fields were performed by integrating the axisymmetric Khokhlov-Zabolotskaya-Kuznetsov (KZK) equation from the frequency-domain perspective with the help of a MATLAB-based software package developed for HIFU simulation. Quantitative values for the focal waveforms, the peak pressures, and the size of the focal spot were obtained in various regimes of linear, quasilinear, and nonlinear propagation up to the source pressure levels when the shock front was formed in the waveform. The numerical results with the HIFU simulator solving the KZK equation were compared with the experimental data and found to be in good agreement. This confirms that the numerical simulation based on the KZK equation is capable of capturing the nonlinear pressure field of therapeutic HIFU transducers well enough to make it suitable for HIFU treatment planning.

  8. Isocentric integration of intensity-modulated radiotherapy with electron fields improves field junction dose uniformity in postmastectomy radiotherapy.

    Science.gov (United States)

    Wright, Pauliina; Suilamo, Sami; Lindholm, Paula; Kulmala, Jarmo

    2014-08-01

    In postmastectomy radiotherapy (PMRT), the dose coverage of the planning target volume (PTV) with additional margins, including the chest wall, supraclavicular, interpectoral, internal mammary and axillar level I-III lymph nodes, is often compromised. Electron fields may improve the medial dose coverage while maintaining organ at risk (OAR) doses at an acceptable level, but at the cost of hot and cold spots at the electron and photon field junction. To improve PMRT dose coverage and uniformity, an isocentric technique combining tangential intensity-modulated (IM)RT fields with one medial electron field was implemented. For 10 postmastectomy patients isocentric IMRT with electron plans were created and compared with a standard electron/photon mix and a standard tangent technique. PTV dose uniformity was evaluated based on the tolerance range (TR), i.e. the ratio of the standard deviation to the mean dose, a dice similarity coefficient (DSC) and the 90% isodose coverage and the hot spot volumes. OAR and contralateral breast doses were also recorded. IMRT with electrons significantly improved the PTV dose homogeneity and conformity based on the TR and DSC values when compared with the standard electron/photon and tangent technique (p < 0.02). The 90% isodose coverage improved to 86% compared with 82% and 80% for the standard techniques (p < 0.02). Compared with the standard electron/photon mix, IMRT smoothed the dose gradient in the electron and photon field junction and the volumes receiving a dose of 110% or more were reduced by a third. For all three strategies, the OAR and contralateral breast doses were within clinically tolerable limits. Based on these results two-field IMRT combined with an electron field is a suitable strategy for PMRT.

  9. High-resolution records of non-dipole variations in the intensity of the Earth's magnetic field

    NARCIS (Netherlands)

    de Groot, L.V.

    2013-01-01

    Our understanding of the short-term behavior of the Earth’s magnetic field is currently mainly hampered by a lack of high-resolution records of geomagnetic intensity variations that are well distributed over the globe and cover the same timespan. Over the past decades many efforts have been made to

  10. The Lagrangian function of an intense electromagnetic field and quantum electrodynamics at short distances

    International Nuclear Information System (INIS)

    Ritus, V.I.

    1987-01-01

    This chapter gives methods of formulating the Lagrangian function of an intense field and its asymptotic properties are investigated. Section 2 gives a derivation of the correction pounds to the Lagrangian function resulting from the change in the radiation interaction of the vacuum electrons induced by a constant external field. Section 3 is devoted to the renormalization of the external field as well as the charge and mass of the electron. Like charge renormalization, mass renormalization is performed within the scope of the calculation of the Lagrangian function of the electromagnetic field (without separate consideration of the mass operator or the position of the pole of the Green function of the electron) using a general physical renormalization principle requiring vanishing of the radiation corrections to the observed charge and mass when the field is switched off. This calculation process is performed explicitly in Section 4 where the imaginary part of the Lagrangian function is calculated for weak and strong fields. Here it is noted that the asymptotic behavior of the Lagrangian function with large fields coincides with logarithmic accuracy to the asymptotic behavior of a polarized function with large momenta

  11. Whole abdomen radiation therapy in ovarian cancers: a comparison between fixed beam and volumetric arc based intensity modulation

    International Nuclear Information System (INIS)

    Mahantshetty, Umesh; Shrivastava, Shyamkishore; Cozzi, Luca; Jamema, Swamidas; Engineer, Reena; Deshpande, Deepak; Sarin, Rajiv; Fogliata, Antonella; Nicolini, Giorgia; Clivio, Alessandro; Vanetti, Eugenio

    2010-01-01

    A study was performed to assess dosimetric characteristics of volumetric modulated arcs (RapidArc, RA) and fixed field intensity modulated therapy (IMRT) for Whole Abdomen Radiotherapy (WAR) after ovarian cancer. Plans for IMRT and RA were optimised for 5 patients prescribing 25 Gy to the whole abdomen (PTV-WAR) and 45 Gy to the pelvis and pelvic nodes (PTV-Pelvis) with Simultaneous Integrated Boost (SIB) technique. Plans were investigated for 6 MV (RA6, IMRT6) and 15 MV (RA15, IMRT15) photons. Objectives were: for both PTVs V 90% > 95%, for PTV-Pelvis: D max < 105%; for organs at risk, maximal sparing was required. The MU and delivery time measured treatment efficiency. Pre-treatment Quality assurance was scored with Gamma Agreement Index (GAI) with 3% and 3 mm thresholds. IMRT and RapidArc resulted comparable for target coverage. For PTV-WAR, V 90% was 99.8 ± 0.2% and 93.4 ± 7.3% for IMRT6 and IMRT15, and 98.4 ± 1.7 and 98.6 ± 0.9% for RA6 and RA15. Target coverage resulted improved for PTV-Pelvis. Dose homogeneity resulted slightly improved by RA (Uniformity was defined as U 5-95% = D 5% -D 95% /D mean ). U 5 - 95% for PTV-WAR was 0.34 ± 0.05 and 0.32 ± 0.06 (IMRT6 and IMRT15), 0.30 ± 0.03 and 0.26 ± 0.04 (RA6 and RA15); for PTV-Pelvis, it resulted equal to 0.1 for all techniques. For organs at risk, small differences were observed between the techniques. MU resulted 3130 ± 221 (IMRT6), 2841 ± 318 (IMRT15), 538 ± 29 (RA6), 635 ± 139 (RA15); the average measured treatment time was 18.0 ± 0.8 and 17.4 ± 2.2 minutes (IMRT6 and IMRT15) and 4.8 ± 0.2 (RA6 and RA15). GAI IMRT6 = 97.3 ± 2.6%, GAI IMRT15 = 94.4 ± 2.1%, GAI RA6 = 98.7 ± 1.0% and GAI RA15 = 95.7 ± 3.7%. RapidArc showed to be a solution to WAR treatments offering good dosimetric features with significant logistic improvements compared to IMRT

  12. Masking functions and fixed-signal functions for low-level 1000-Hz tones.

    Science.gov (United States)

    Shepherd, Daniel; Hautus, Michael J; Jesteadt, Walt

    2013-06-01

    Masking functions and fixed-signal functions were constructed using a narrow range of pedestal intensities for 10-ms, 1000-Hz gated tones. Data from three experiments agreed with previously reported data, clearly demonstrating negative masking and the pedestal effect. The data extend earlier findings by showing (1) the resilience of the pedestal effect when a background noise masker is introduced; (2) a possible indifference of the fixed-signal function to stimulus duration; (3) the ability of a set of psychometric functions to produce both masking and fixed-signal functions; (4) depending on method, the impact of unit choice on the interpretation of both the pedestal effect and negative masking data. Results are discussed in relation to current psychophysical models, and suggest that accounting for the auditory system's sensitivity to differences in low-level sounds remains a challenge.

  13. Maximizing Energy Capture of Fixed-Pitch Variable-Speed Wind Turbines

    Energy Technology Data Exchange (ETDEWEB)

    Pierce, K.; Migliore, P.

    2000-08-01

    Field tests of a variable-speed, stall-regulated wind turbine were conducted at a US Department of Energy Laboratory. A variable-speed generating system, comprising a doubly-fed generator and series-resonant power converter, was installed on a 275-kW, downwind, two-blade wind turbine. Gearbox, generator, and converter efficiency were measured in the laboratory so that rotor aerodynamic efficiency could be determined from field measurement of generator power. The turbine was operated at several discrete rotational speeds to develop power curves for use in formulating variable-speed control strategies. Test results for fixed-speed and variable-speed operation are presented along with discussion and comparison of the variable-speed control methodologies. Where possible, comparisons between fixed-speed and variable-speed operation are shown.

  14. Intensity dependence of nonsequential double ionization of helium in IR+XUV two-color laser fields

    International Nuclear Information System (INIS)

    Jin, Facheng; Wang, Bingbing; Chen, Jing; Yang, Yujun; Yan, Zong-Chao

    2016-01-01

    By applying the frequency-domain theory, we investigate the dependence of momentum spectra on laser intensity in a nonsequential double ionization (NSDI) process of helium in infrared (IR) and extreme ultraviolet (XUV) two-color laser fields. We find that the two-color laser fields play distinct roles in an NSDI process, where the IR laser field mainly determines the width of each band, and the XUV laser field mainly plays a role on the NSDI probability. Furthermore, an NSDI process can be decoupled into a two-step process: an above-threshold ionization (ATI), followed by a laser-assisted collision (LAC). It is found that, the IR laser field is responsible for broadening the peak in the ATI process and providing additional momenta to the two ionized electrons in the LAC process; while the XUV laser field plays a crucial role on the strength of the spectrum in the ATI process, and influences the radii of orbits in momentum space in the LAC process. (paper)

  15. Three-dimensional inhomogeneous rain fields: implications for the distribution of intensity and polarization of the microwave thermal radiation.

    Science.gov (United States)

    Ilyushin, Yaroslaw; Kutuza, Boris

    Observations and mapping of the upwelling thermal radiation of the Earth is the very promising remote sensing technique for the global monitoring of the weather and precipitations. For reliable interpretation of the observation data, numerical model of the microwave radiative transfer in the precipitating atmosphere is necessary. In the present work, numerical simulations of thermal microwave radiation in the rain have been performed at three wavelengths (3, 8 and 22 mm). Radiative properties of the rain have been simulated using public accessible T-matrix codes (Mishchenko, Moroz) for non-spherical particles of fixed orientation and realistic raindrop size distributions (Marshall-Palmer) within the range of rain intensity 1-100 mm/h. Thermal radiation of infinite flat slab medium and isolated rain cell of kilometer size has been simulated with finite difference scheme for the vectorial radiative transfer equation (VRTE) in dichroic scattering medium. Principal role of cell structure of the rain field in the formation of angular and spatial distribution of the intensity and polarization of the upwelling thermal radiation has been established. Possible approaches to interpretation of satellite data are also discussed. It is necessary that spatial resolution of microwave radiometers be less than rain cell size. At the present time the resolution is approximately 15 km. It can be considerably improved, for example by two-dimensional synthetic aperture millimeter-wave radiometric interferometer for measuring full-component Stokes vector of emission from hydrometeors. The estimates show that in millimeter band it is possible to develop such equipment with spatial resolution of the order of 1-2 km, which is significantly less than the size of rain cell, with sensitivity 0.3-0.5 K. Under this condition the second Stokes parameter may by successfully measured and may be used for investigation of precipitation regions. Y-shaped phased array antenna is the most promising to

  16. High-intensity laser physics

    International Nuclear Information System (INIS)

    Mohideen, U.

    1993-01-01

    This thesis is a study of the effect of high intensity lasers on atoms, free electrons and the generation of X-rays from solid density plasmas. The laser produced 50 milli Joule 180 femto sec pulses at 5 Hz. This translates to a maximum intensity of 5 x 10 18 W/cm 2 . At such high fields the AC stark shifts of atoms placed at the focus is much greater than the ionization energy. The characteristics of multiphoton ionization of atoms in intense laser fields was studied by angle resolved photoelectron spectroscopy. Free electrons placed in high intensity laser fields lead to harmonic generation. This phenomenon of Nonlinear Compton Scattering was theoretically investigated. Also, when these high intensity pulses are focused on solids a hot plasma is created. This plasma is a bright source of a short X-ray pulse. The pulse-width of X-rays from these solid density plasmas was measured by time-resolved X-ray spectroscopy

  17. Simple method for the characterization of intense Laguerre-Gauss vector vortex beams

    Science.gov (United States)

    Allahyari, E.; JJ Nivas, J.; Cardano, F.; Bruzzese, R.; Fittipaldi, R.; Marrucci, L.; Paparo, D.; Rubano, A.; Vecchione, A.; Amoruso, S.

    2018-05-01

    We report on a method for the characterization of intense, structured optical fields through the analysis of the size and surface structures formed inside the annular ablation crater created on the target surface. In particular, we apply the technique to laser ablation of crystalline silicon induced by femtosecond vector vortex beams. We show that a rapid direct estimate of the beam waist parameter is obtained through a measure of the crater radii. The variation of the internal and external radii of the annular crater as a function of the laser pulse energy, at fixed number of pulses, provides another way to evaluate the beam spot size through numerical fitting of the obtained experimental data points. A reliable estimate of the spot size is of paramount importance to investigate pulsed laser-induced effects on the target material. Our experimental findings offer a facile way to characterize focused, high intensity complex optical vector beams which are more and more applied in laser-matter interaction experiments.

  18. Nonperturbative theory of single/multiphoton processes in atoms and molecules induced by intense laser fields

    International Nuclear Information System (INIS)

    Lau, A.M.F.

    1975-04-01

    A quantum nonperturbative theory is given for the problem of a general n discrete-level atomic/molecular system interacting with a strong single-mode/multimode radiation field. The atomic/molecular energy-level structures are modified due to interaction with the laser field. These energy level shifts are derived in the rigorous solution to the adiabatic eigenvalue problem of the charge--field system, involving a simple iterative procedure. The task of solution is simplified by recurrence relations between matrices connecting probability amplitudes of successive photon numbers. New formulae for calculating probability of single/multiphoton transitions between three resonant shifted levels and between some cases of two near-resonant shifted levels are derived. This general formalism can be applied to calculate transition probabilities of various atomic/molecular photo processes of interest. Numerical values are obtained for the inelastic cross section of the slow-collisional process Li + H and for dissociation cross section of LiH molecule. The transition probabilities of Na (3s → 5s by absorption of two photon of lambda = 0.60233μ -- 0.602396 μ) and of Li (2s → 3s by absorption of eight photons of lambda = 2.9406 μ -- 2.945 μ) irradiated by a strong pulse are calculated. Finally, a parametric study is carried out for the process where a molecular system is interacting with two intense radiation fields of different wavelengths. Owing to potential barrier shift due to the much more intense field, the molecular system penetrates into an otherwise inaccessible region in the potential level where it is allowed to radiate to a lower level by emitting photons at a second wavelength. (12 figures, 6 tables) (U.S.)

  19. Stability of krypton fixed in zeolite-3A and -5A

    International Nuclear Information System (INIS)

    Matsuoka, Shingo; Nakamura, Hirone; Tamura, Takaaki; Takano, Takemi; Ito, Yasuo; Sugawara, Ichiro.

    1986-01-01

    The fixation operation was carried out at 450 ∼ 650 deg C, 1,000 atm for 24 h. The amount of fixed Kr was measured using thermal neutron activation analysis. For zeolite-3A the amount of Kr fixed decreased from 20 to 5 w/o as the fixation temperature rose. In the case of zeolite-5A, Kr fixation was observed at 550 deg C and above, and the amount increased to 15 w/o as the temperature rose to 650 deg C. The diffusion coefficient of Kr in the zeolite was determined from the result of heating tests. The value obtained was substituted in a diffusion equation, enabling us to predict the Kr release behavior at any temperature in a dry atmosphere. Both the samples of zeolite-3A fixed below 525 deg C and of zeolite-5A below 625 deg C showed an intensive Kr release in water that would not be expected from the release behavior under dry conditions. However, such unexpected release was not observed in either sample fixed above these respective temperatures. This could be accounted for by the fact that zeolite cations move easily when zeolite is moisturized. (author)

  20. [Micro-simulation of firms' heterogeneity on pollution intensity and regional characteristics].

    Science.gov (United States)

    Zhao, Nan; Liu, Yi; Chen, Ji-Ning

    2009-11-01

    In the same industrial sector, heterogeneity of pollution intensity exists among firms. There are some errors if using sector's average pollution intensity, which are calculated by limited number of firms in environmental statistic database to represent the sector's regional economic-environmental status. Based on the production function which includes environmental depletion as input, a micro-simulation model on firms' operational decision making is proposed. Then the heterogeneity of firms' pollution intensity can be mechanically described. Taking the mechanical manufacturing sector in Deyang city, 2005 as the case, the model's parameters were estimated. And the actual COD emission intensities of environmental statistic firms can be properly matched by the simulation. The model's results also show that the regional average COD emission intensity calculated by the environmental statistic firms (0.002 6 t per 10 000 yuan fixed asset, 0.001 5 t per 10 000 yuan production value) is lower than the regional average intensity calculated by all the firms in the region (0.003 0 t per 10 000 yuan fixed asset, 0.002 3 t per 10 000 yuan production value). The difference among average intensities in the six counties is significant as well. These regional characteristics of pollution intensity attribute to the sector's inner-structure (firms' scale distribution, technology distribution) and its spatial deviation.

  1. Forecasting intense geomagnetic activity using interplanetary magnetic field data

    Science.gov (United States)

    Saiz, E.; Cid, C.; Cerrato, Y.

    2008-12-01

    Southward interplanetary magnetic fields are considered traces of geoeffectiveness since they are a main agent of magnetic reconnection of solar wind and magnetosphere. The first part of this work revises the ability to forecast intense geomagnetic activity using different procedures available in the literature. The study shows that current methods do not succeed in making confident predictions. This fact led us to develop a new forecasting procedure, which provides trustworthy results in predicting large variations of Dst index over a sample of 10 years of observations and is based on the value Bz only. The proposed forecasting method appears as a worthy tool for space weather purposes because it is not affected by the lack of solar wind plasma data, which usually occurs during severe geomagnetic activity. Moreover, the results obtained guide us to provide a new interpretation of the physical mechanisms involved in the interaction between the solar wind and the magnetosphere using Faraday's law.

  2. Gaussian point count statistics for families of curves over a fixed finite field

    OpenAIRE

    Kurlberg, Par; Wigman, Igor

    2010-01-01

    We produce a collection of families of curves, whose point count statistics over F_p becomes Gaussian for p fixed. In particular, the average number of F_p points on curves in these families tends to infinity.

  3. A Spaceborne Synthetic Aperture Radar Partial Fixed-Point Imaging System Using a Field- Programmable Gate Array-Application-Specific Integrated Circuit Hybrid Heterogeneous Parallel Acceleration Technique.

    Science.gov (United States)

    Yang, Chen; Li, Bingyi; Chen, Liang; Wei, Chunpeng; Xie, Yizhuang; Chen, He; Yu, Wenyue

    2017-06-24

    With the development of satellite load technology and very large scale integrated (VLSI) circuit technology, onboard real-time synthetic aperture radar (SAR) imaging systems have become a solution for allowing rapid response to disasters. A key goal of the onboard SAR imaging system design is to achieve high real-time processing performance with severe size, weight, and power consumption constraints. In this paper, we analyse the computational burden of the commonly used chirp scaling (CS) SAR imaging algorithm. To reduce the system hardware cost, we propose a partial fixed-point processing scheme. The fast Fourier transform (FFT), which is the most computation-sensitive operation in the CS algorithm, is processed with fixed-point, while other operations are processed with single precision floating-point. With the proposed fixed-point processing error propagation model, the fixed-point processing word length is determined. The fidelity and accuracy relative to conventional ground-based software processors is verified by evaluating both the point target imaging quality and the actual scene imaging quality. As a proof of concept, a field- programmable gate array-application-specific integrated circuit (FPGA-ASIC) hybrid heterogeneous parallel accelerating architecture is designed and realized. The customized fixed-point FFT is implemented using the 130 nm complementary metal oxide semiconductor (CMOS) technology as a co-processor of the Xilinx xc6vlx760t FPGA. A single processing board requires 12 s and consumes 21 W to focus a 50-km swath width, 5-m resolution stripmap SAR raw data with a granularity of 16,384 × 16,384.

  4. A Spaceborne Synthetic Aperture Radar Partial Fixed-Point Imaging System Using a Field- Programmable Gate Array−Application-Specific Integrated Circuit Hybrid Heterogeneous Parallel Acceleration Technique

    Directory of Open Access Journals (Sweden)

    Chen Yang

    2017-06-01

    Full Text Available With the development of satellite load technology and very large scale integrated (VLSI circuit technology, onboard real-time synthetic aperture radar (SAR imaging systems have become a solution for allowing rapid response to disasters. A key goal of the onboard SAR imaging system design is to achieve high real-time processing performance with severe size, weight, and power consumption constraints. In this paper, we analyse the computational burden of the commonly used chirp scaling (CS SAR imaging algorithm. To reduce the system hardware cost, we propose a partial fixed-point processing scheme. The fast Fourier transform (FFT, which is the most computation-sensitive operation in the CS algorithm, is processed with fixed-point, while other operations are processed with single precision floating-point. With the proposed fixed-point processing error propagation model, the fixed-point processing word length is determined. The fidelity and accuracy relative to conventional ground-based software processors is verified by evaluating both the point target imaging quality and the actual scene imaging quality. As a proof of concept, a field- programmable gate array−application-specific integrated circuit (FPGA-ASIC hybrid heterogeneous parallel accelerating architecture is designed and realized. The customized fixed-point FFT is implemented using the 130 nm complementary metal oxide semiconductor (CMOS technology as a co-processor of the Xilinx xc6vlx760t FPGA. A single processing board requires 12 s and consumes 21 W to focus a 50-km swath width, 5-m resolution stripmap SAR raw data with a granularity of 16,384 × 16,384.

  5. Statistical analysis of geomagnetic field intensity differences between ASM and VFM instruments onboard Swarm constellation

    Science.gov (United States)

    De Michelis, Paola; Tozzi, Roberta; Consolini, Giuseppe

    2017-02-01

    From the very first measurements made by the magnetometers onboard Swarm satellites launched by European Space Agency (ESA) in late 2013, it emerged a discrepancy between scalar and vector measurements. An accurate analysis of this phenomenon brought to build an empirical model of the disturbance, highly correlated with the Sun incidence angle, and to correct vector data accordingly. The empirical model adopted by ESA results in a significant decrease in the amplitude of the disturbance affecting VFM measurements so greatly improving the vector magnetic data quality. This study is focused on the characterization of the difference between magnetic field intensity measured by the absolute scalar magnetometer (ASM) and that reconstructed using the vector field magnetometer (VFM) installed on Swarm constellation. Applying empirical mode decomposition method, we find the intrinsic mode functions (IMFs) associated with ASM-VFM total intensity differences obtained with data both uncorrected and corrected for the disturbance correlated with the Sun incidence angle. Surprisingly, no differences are found in the nature of the IMFs embedded in the analyzed signals, being these IMFs characterized by the same dominant periodicities before and after correction. The effect of correction manifests in the decrease in the energy associated with some IMFs contributing to corrected data. Some IMFs identified by analyzing the ASM-VFM intensity discrepancy are characterized by the same dominant periodicities of those obtained by analyzing the temperature fluctuations of the VFM electronic unit. Thus, the disturbance correlated with the Sun incidence angle could be still present in the corrected magnetic data. Furthermore, the ASM-VFM total intensity difference and the VFM electronic unit temperature display a maximal shared information with a time delay that depends on local time. Taken together, these findings may help to relate the features of the observed VFM-ASM total intensity

  6. Non-isochronous spiral orbit particle accelerator and fixed frequency closed orbit particle accelerator

    International Nuclear Information System (INIS)

    Fujisawa, Takashi; Hattori, Toshiyuki

    2006-01-01

    One of the present inventions provides a spiral orbit charged particle accelerator in which the magnetic field increases as the radius increases more rapidly than an isochronous magnetic field distribution, and the distribution of fixed-frequency accelerating RF voltage is formed so that a harmonic number changes in integer for every particle revolution. The other invention realizes to make the closed orbit charged particle accelerator having a fixed frequency amplitude modulator that is able to modulate amplitude of the RF voltage so that a harmonic number decreases in integer in an every particle revolution. (author)

  7. Fourier acceleration in lattice gauge theories. I. Landau gauge fixing

    International Nuclear Information System (INIS)

    Davies, C.T.H.; Batrouni, G.G.; Katz, G.R.; Kronfeld, A.S.; Lepage, G.P.; Wilson, K.G.; Rossi, P.; Svetitsky, B.

    1988-01-01

    Fourier acceleration is a useful technique which can be applied to many different numerical algorithms in order to alleviate the problem of critical slowing down. Here we describe its application to an optimization problem in the simulation of lattice gauge theories, that of gauge fixing a configuration of link fields to the Landau gauge (partial/sub μ/A/sup μ/ = 0). We find that a steepest-descents method of gauge fixing link fields at β = 5.8 on an 8 4 lattice can be made 5 times faster using Fourier acceleration. This factor will grow as the volume of the lattice is increased. We also discuss other gauges that are useful to lattice-gauge-theory simulations, among them one that is a combination of the axial and Landau gauges. This seems to be the optimal gauge to impose for the Fourier acceleration of two other important algorithms, the inversion of the fermion matrix and the updating of gauge field configurations

  8. Intense picosecond pulsed electric fields induce apoptosis through a mitochondrial-mediated pathway in HeLa cells

    Science.gov (United States)

    HUA, YUAN-YUAN; WANG, XIAO-SHU; ZHANG, YU; YAO, CHEN-GUO; ZHANG, XI-MING; XIONG, ZHENG-AI

    2012-01-01

    The application of pulsed electric fields (PEF) is emerging as a new technique for tumor therapy. Picosecond pulsed electric fields (psPEF) can be transferred to target deep tissue non-invasively and precisely, but the research of the biological effects of psPEF on cells is limited. Electric theory predicts that intense psPEF will target mitochondria and lead to changes in transmembrane potential, therefore, it is hypothesized that it can induce mitochondrial-mediated apoptosis. HeLa cells were exposed to psPEF in this study to investigate this hypothesis. MTT assay demonstrated that intense psPEF significantly inhibited the proliferation of HeLa cells in a dose-dependent manner. Typical characteristics of apoptosis in HeLa cells were observed, using transmission electron microscopy. Loss of mitochondrial transmembrane potential was explored using laser scanning confocal microscopy with Rhodamine-123 (Rh123) staining. Furthermore, the mitochondrial apoptotic events were also confirmed by western blot analysis for the release of cytochrome C and apoptosis-inducing factor from mitochondria into the cytosol. In addition, activation of caspase-3, caspase-9, upregulation of Bax, p53 and downregulation of Bcl-2 were observed in HeLa cells also indicating apoptosis. Taken together, these results demonstrate that intense psPEF induce cell apoptosis through a mitochondrial-mediated pathway. PMID:22307872

  9. Recent heavy flavor physics results from fixed target experiments

    International Nuclear Information System (INIS)

    Spiegel, L.

    1991-11-01

    Recent results from fixed target experiments in the field of heavy quark flavors, as published or otherwise disseminated in the last year, are reviewed. Emphasis is placed on distilling the main conclusions from these results. 35 refs., 5 figs., 4 tabs

  10. Recent heavy flavor physics results from fixed target experiments

    Energy Technology Data Exchange (ETDEWEB)

    Spiegel, L.

    1991-11-01

    Recent results from fixed target experiments in the field of heavy quark flavors, as published or otherwise disseminated in the last year, are reviewed. Emphasis is placed on distilling the main conclusions from these results. 35 refs., 5 figs., 4 tabs.

  11. Specific Intensity Direct Current (DC) Electric Field Improves Neural Stem Cell Migration and Enhances Differentiation towards βIII-Tubulin+ Neurons

    Science.gov (United States)

    Zhao, Huiping; Steiger, Amanda; Nohner, Mitch; Ye, Hui

    2015-01-01

    Control of stem cell migration and differentiation is vital for efficient stem cell therapy. Literature reporting electric field–guided migration and differentiation is emerging. However, it is unknown if a field that causes cell migration is also capable of guiding cell differentiation—and the mechanisms for these processes remain unclear. Here, we report that a 115 V/m direct current (DC) electric field can induce directional migration of neural precursor cells (NPCs). Whole cell patching revealed that the cell membrane depolarized in the electric field, and buffering of extracellular calcium via EGTA prevented cell migration under these conditions. Immunocytochemical staining indicated that the same electric intensity could also be used to enhance differentiation and increase the percentage of cell differentiation into neurons, but not astrocytes and oligodendrocytes. The results indicate that DC electric field of this specific intensity is capable of promoting cell directional migration and orchestrating functional differentiation, suggestively mediated by calcium influx during DC field exposure. PMID:26068466

  12. Response of Cultured Neuronal Network Activity After High-Intensity Power Frequency Magnetic Field Exposure

    Directory of Open Access Journals (Sweden)

    Atsushi Saito

    2018-03-01

    Full Text Available High-intensity and low frequency (1–100 kHz time-varying electromagnetic fields stimulate the human body through excitation of the nervous system. In power frequency range (50/60 Hz, a frequency-dependent threshold of the external electric field-induced neuronal modulation in cultured neuronal networks was used as one of the biological indicator in international guidelines; however, the threshold of the magnetic field-induced neuronal modulation has not been elucidated. In this study, we exposed rat brain-derived neuronal networks to a high-intensity power frequency magnetic field (hPF-MF, and evaluated the modulation of synchronized bursting activity using a multi-electrode array (MEA-based extracellular recording technique. As a result of short-term hPF-MF exposure (50–400 mT root-mean-square (rms, 50 Hz, sinusoidal wave, 6 s, the synchronized bursting activity was increased in the 400 mT-exposed group. On the other hand, no change was observed in the 50–200 mT-exposed groups. In order to clarify the mechanisms of the 400 mT hPF-MF exposure-induced neuronal response, we evaluated it after blocking inhibitory synapses using bicuculline methiodide (BMI; subsequently, increase in bursting activity was observed with BMI application, and the response of 400 mT hPF-MF exposure disappeared. Therefore, it was suggested that the response of hPF-MF exposure was involved in the inhibitory input. Next, we screened the inhibitory pacemaker-like neuronal activity which showed autonomous 4–10 Hz firing with CNQX and D-AP5 application, and it was confirmed that the activity was reduced after 400 mT hPF-MF exposure. Comparison of these experimental results with estimated values of the induced electric field (E-field in the culture medium revealed that the change in synchronized bursting activity occurred over 0.3 V/m, which was equivalent to the findings of a previous study that used the external electric fields. In addition, the results suggested that

  13. Behaviour of large-area avalanche photodiodes under intense magnetic fields for VUV- visible- and X-ray photon detection

    International Nuclear Information System (INIS)

    Fernandes, L.M.P.; Antognini, A.; Boucher, M.; Conde, C.A.N.; Huot, O.; Knowles, P.; Kottmann, F.; Ludhova, L.; Mulhauser, F.; Pohl, R.; Schaller, L.A.; Santos, J.M.F. dos; Taqqu, D.; Veloso, J.F.C.A.

    2003-01-01

    The behaviour of large-area avalanche photodiodes for X-rays, visible and vacuum-ultra-violet (VUV) light detection in magnetic fields up to 5 T is described. For X-rays and visible light detection, the photodiode pulse amplitude and energy resolution were unaffected from 0 to 5 T, demonstrating the insensitivity of this type of detector to strong magnetic fields. For VUV light detection, however, the photodiode relative pulse amplitude decreases with increasing magnetic field intensity reaching a reduction of about 24% at 5 T, and the energy resolution degrades noticeably with increasing magnetic field

  14. Fixed Points

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 5; Issue 5. Fixed Points - From Russia with Love - A Primer of Fixed Point Theory. A K Vijaykumar. Book Review Volume 5 Issue 5 May 2000 pp 101-102. Fulltext. Click here to view fulltext PDF. Permanent link:

  15. Traffic flow model at fixed control signals with discrete service time distribution

    Directory of Open Access Journals (Sweden)

    Lucky I. Igbinosun

    2016-04-01

    Full Text Available Most of the models of road traffic flow at fixed-cycle controlled intersection assume stationary distributions and provide steady state results. The assumption that a constant number of vehicles can leave the system during the green phase is unrealistic in real life situations. A discrete time queuing model was developed to describe the operation of traffic flow at a road intersection with fixed-cycle signalized control and to account for the randomness in the number of vehicles that can leave the system. The results show the expected queue size in the system when the traffic is light and for a busy period, respectively. For the light period, when the traffic intensity is less than one, it takes a shorter green cycle time for vehicles to clear up than during high traffic intensity (the road junction is saturated. Increasing the number of cars that can leave the junction at the turn of the green phase reduces the number of cycle times before the queue is cleared.

  16. Comparative study of energy of particles ejected from coulomb explosion of rare gas and metallic clusters irradiated by intense femtosecond laser field

    Science.gov (United States)

    Boucerredj, N.; Beggas, K.

    2016-10-01

    We present our study of high intensity femtosecond laser field interaction with large cluster of Kr and Na (contained 2.103 to 2.107 atoms). When laser intensity is above a critical value, it blows off all of electrons from the cluster and forms a non neutral ion cloud. The irradiation of these clusters by the intense laser field leads to highly excitation energy which can be the source of energetic electrons, electronic emission, highly charge, energetic ions and fragmentation process. During the Coulomb explosion of the resulting highly ionized, high temperature nanoplasma, ions acquire again their energy. It is shown that ultra fast ions are produced. The goal of our study is to investigate in detail a comparative study of the expansion and explosion then the ion energy of metallic and rare gas clusters irradiated by an intense femtosecond laser field. We have found that ions have a kinetic energy up to 105 eV and the Coulomb pressure is little than the hydrodynamic pressure. The Coulomb explosion of a cluster may provide a new high energy ion source.

  17. Droplet size characteristics and energy input requirements of emulsions formed using high-intensity-pulsed electric fields

    International Nuclear Information System (INIS)

    Scott, T.C.; Sisson, W.G.

    1987-01-01

    Experimental methods have been developed to measure droplet size characteristics and energy inputs associated with the rupture of aqueous droplets by high-intensity-pulsed electric fields. The combination of in situ microscope optics and high-speed video cameras allows reliable observation of liquid droplets down to 0.5 μm in size. Videotapes of electric-field-created emulsions reveal that average droplet sizes of less than 5 μm are easily obtained in such systems. Analysis of the energy inputs into the fluids indicates that the electric field method requires less than 1% of the energy required from mechanical agitation to create comparable droplet sizes. 11 refs., 3 figs., 2 tabs

  18. Predicting the effects of organ motion on the dose delivered by dynamic intensity modulation

    International Nuclear Information System (INIS)

    Yu, C.X.; Jaffray, David; Martinez, A.A.; Wong, J.W.

    1997-01-01

    of several breathing cycles. To simplify the analysis, the three-dimensional target was projected to one depth level and the movements of the target along beam direction were assumed to have negligible effects. Results: The dose variations in the target due to the interplay of the target motion and the movement of the beam aperture can be large, over 100% (peak-to-peak) for a clinically realistic range of the speed of collimator travel and size of field segments. Predictions using the numerical model agreed with results measured with a moving phantom. The magnitude of the dose variations in the target showed strong dependence on the collimator speed relative to the speed of the target motion, and the size of field segments relative to the amplitude of target motion. The dose variation was small when the speed of field boundary variation is very low. The dose variation decreased with the size of the field segments. When the treatment was delivered in multiple fractions, the desired beam intensities were smoothed, defeating the purpose of intensity modulation. Conclusion: A simple model was developed to analyze the dosimetric effects of target movement during delivery of dynamic intensity modulation. The dose distributions in a moving target can be predicted before an intensity-modulated treatment is delivered. In regions where the target moves during irradiation, the detrimental dosimetric effects could be significant and cannot be neglected. In such cases, methods of fixing the target position, such as gating or breathing control, are required for dynamic intensity modulation to be delivered

  19. What have we learned from intensive atmospheric sampling field programmes of CO2

    International Nuclear Information System (INIS)

    Lin, J.C.; Wofsy, S.C.; Daube, B.C.; Matross, D.M.; Chow, V.Y.; Gottlieb, E.; Pathmathevan, M.; Munger, J.W.

    2006-01-01

    The spatial and temporal gradients in atmospheric CO 2 contain signatures of carbon fluxes, and as part of inverse studies,these signatures have been combined with atmospheric models to infer carbon sources and sinks. However, such studies have yet to yield finer-scale, regional fluxes over the continent that can be linked to ecosystem processes and ground-based observations. The reasons for this gap are twofold: lack of atmospheric observations over the continent and model deficiencies in interpreting such observations. This paper describes a series of intensive atmospheric sampling field programmes designed as pilot experiments to bridge the observational gap over the continent and to help test and develop models to interpret these observations. We summarize recent results emerging from this work,outlining the role of the intensive atmospheric programmes in collecting CO 2 data in both the vertical and horizontal dimensions. These data: (1) quantitatively establish the spatial variability of CO 2 and the associated errors from neglecting this variability in models; (2) directly measure regional carbon fluxes from airmass-following experiments and (3) challenge models to reduce and account for uncertainties in atmospheric transport. We conclude with a look towards the future, outlining ways in which intensive atmospheric sampling can contribute towards advancing carbon science

  20. Electric Field Measurement of the Living Human Body for Biomedical Applications: Phase Measurement of the Electric Field Intensity

    Directory of Open Access Journals (Sweden)

    Ichiro Hieda

    2013-01-01

    Full Text Available The authors are developing a technique for conducting measurements inside the human body by applying a weak electric field at a radio frequency (RF. Low RF power is fed to a small antenna, and a similar antenna located 15–50 cm away measures the electric field intensity. Although the resolution of the method is low, it is simple, safe, cost-effective, and able to be used for biomedical applications. One of the technical issues suggested by the authors' previous studies was that the signal pattern acquired from measurement of a human body was essentially different from that acquired from a phantom. To trace the causes of this difference, the accuracy of the phase measurements was improved. This paper describes the new experimental system that can measure the signal phase and amplitude and reports the results of experiments measuring a human body and a phantom. The results were analyzed and then discussed in terms of their contribution to the phase measurement.

  1. The Frame of Fixed Stars in Relational Mechanics

    Science.gov (United States)

    Ferraro, Rafael

    2017-01-01

    Relational mechanics is a gauge theory of classical mechanics whose laws do not govern the motion of individual particles but the evolution of the distances between particles. Its formulation gives a satisfactory answer to Leibniz's and Mach's criticisms of Newton's mechanics: relational mechanics does not rely on the idea of an absolute space. When describing the behavior of small subsystems with respect to the so called "fixed stars", relational mechanics basically agrees with Newtonian mechanics. However, those subsystems having huge angular momentum will deviate from the Newtonian behavior if they are described in the frame of fixed stars. Such subsystems naturally belong to the field of astronomy; they can be used to test the relational theory.

  2. Gauge fixing conditions for the SU(3) gauge theory

    International Nuclear Information System (INIS)

    Ragiadakos, Ch.; Viswanathan, K.S.

    1979-01-01

    SU(3) gauge theory is quantized in the temporal gauge A 0 =0. Gauge fixing conditions are imposed completely on the electric field components, conjugate to the vector potential Ssub(i) that belongs to the subalgebra SO(3) of SU(3). The generating functional in terms of the independent variables is derived. It is ghost-free and may be regarded as a theory of (non-relativistic) spin-0, 1, 2, and 3 fields. (Auth.)

  3. High intensity proton beam transportation through fringe field of 70 MeV compact cyclotron to beam line targets

    Science.gov (United States)

    Zhang, Xu; Li, Ming; Wei, Sumin; Xing, Jiansheng; Hu, Yueming; Johnson, Richard R.; Piazza, Leandro; Ryjkov, Vladimir

    2016-06-01

    From the stripping points, the high intensity proton beam of a compact cyclotron travels through the fringe field area of the machine to the combination magnet. Starting from there the beams with various energy is transferred to the switching magnet for distribution to the beam line targets. In the design of the extraction and transport system for the compact proton cyclotron facilities, such as the 70 MeV in France and the 100 MeV in China, the space charge effect as the beam crosses the fringe field has not been previously considered; neither has the impact on transverse beam envelope coupled from the longitudinal direction. Those have been concerned much more with the higher beam-power because of the beam loss problem. In this paper, based on the mapping data of 70 MeV cyclotron including the fringe field by BEST Cyclotron Inc (BEST) and combination magnet field by China Institute of Atomic Energy (CIAE), the beam extraction and transport are investigated for the 70 MeV cyclotron used on the SPES project at Istituto Nazionale di Fisica Nucleare, Laboratori Nazionali di Legnaro (INFN-LNL). The study includes the space charge effect and longitudinal and transverse coupling mentioned above, as well as the matching of beam optics using the beam line for medical isotope production as an example. In addition, the designs of the ±45° switching magnets and the 60° bending magnet for the extracted beam with the energy from 35 MeV to 70 MeV have been made. Parts of the construction and field measurements of those magnets have been done as well. The current result shows that, the design considers the complexity of the compact cyclotron extraction area and fits the requirements of the extraction and transport for high intensity proton beam, especially at mA intensity levels.

  4. High intensity proton beam transportation through fringe field of 70 MeV compact cyclotron to beam line targets

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Xu, E-mail: emmazhang103@gmail.com [China Institute of Atomic Energy (China); Li, Ming; Wei, Sumin; Xing, Jiansheng; Hu, Yueming [China Institute of Atomic Energy (China); Johnson, Richard R.; Piazza, Leandro; Ryjkov, Vladimir [BEST Cyclotron Inc (Canada)

    2016-06-01

    From the stripping points, the high intensity proton beam of a compact cyclotron travels through the fringe field area of the machine to the combination magnet. Starting from there the beams with various energy is transferred to the switching magnet for distribution to the beam line targets. In the design of the extraction and transport system for the compact proton cyclotron facilities, such as the 70 MeV in France and the 100 MeV in China, the space charge effect as the beam crosses the fringe field has not been previously considered; neither has the impact on transverse beam envelope coupled from the longitudinal direction. Those have been concerned much more with the higher beam-power because of the beam loss problem. In this paper, based on the mapping data of 70 MeV cyclotron including the fringe field by BEST Cyclotron Inc (BEST) and combination magnet field by China Institute of Atomic Energy (CIAE), the beam extraction and transport are investigated for the 70 MeV cyclotron used on the SPES project at Istituto Nazionale di Fisica Nucleare, Laboratori Nazionali di Legnaro (INFN–LNL). The study includes the space charge effect and longitudinal and transverse coupling mentioned above, as well as the matching of beam optics using the beam line for medical isotope production as an example. In addition, the designs of the ±45° switching magnets and the 60° bending magnet for the extracted beam with the energy from 35 MeV to 70 MeV have been made. Parts of the construction and field measurements of those magnets have been done as well. The current result shows that, the design considers the complexity of the compact cyclotron extraction area and fits the requirements of the extraction and transport for high intensity proton beam, especially at mA intensity levels.

  5. Locating irregularly shaped clusters of infection intensity

    DEFF Research Database (Denmark)

    Yiannakoulias, Niko; Wilson, Shona; Kariuki, H. Curtis

    2010-01-01

    of infection intensity identifies two small areas within the study region in which infection intensity is elevated, possibly due to local features of the physical or social environment. Collectively, our results show that the "greedy growth scan" is a suitable method for exploratory geographical analysis...... for cluster detection. Real data are based on samples of hookworm and S. mansoni from Kitengei, Makueni district, Kenya. Our analysis of simulated data shows how methods able to find irregular shapes are more likely to identify clusters along rivers than methods constrained to fixed geometries. Our analysis...

  6. Sky-distribution of intensity of synchrotron radio emission of relativistic electrons trapped in Earth’s magnetic field

    Directory of Open Access Journals (Sweden)

    Klimenko V.V.

    2017-12-01

    Full Text Available This paper presents the calculations of synchrotron radio emission intensity from Van Allen belts with Gaussian space distribution of electron density across L-shells of a dipole magnetic field, and with Maxwell’s relativistic electron energy distribution. The results of these calculations come to a good agreement with measurements of the synchrotron emission intensity of the artificial radiation belt’s electrons during the Starfish nuclear test. We have obtained two-dimensional distributions of radio brightness in azimuth — zenith angle coordinates for an observer on Earth’s surface. The westside and eastside intensity maxima exceed several times the maximum level of emission in the meridian plane. We have also constructed two-dimensional distributions of the radio emission intensity in decibels related to the background galactic radio noise level. Isotropic fluxes of relativistic electrons (Е~1 MeV should be more than 107 cm–2s–1 for the synchrotron emission intensity in the meridian plane to exceed the cosmic noise level by 0.1 dB (riometer sensitivity threshold.

  7. Kinetic description of intense nonneutral beam propagation through a periodic solenoidal focusing field based on the nonlinear Vlasov-Maxwell equations

    International Nuclear Information System (INIS)

    Davidson, R.C.; Chen, C.

    1997-08-01

    A kinetic description of intense nonneutral beam propagation through a periodic solenoidal focusing field B sol (rvec x) is developed. The analysis is carried out for a thin beam with characteristic beam radius r b much-lt S, and directed axial momentum γ b mβ b c (in the z-direction) large compared with the transverse momentum and axial momentum spread of the beam particles. Making use of the nonlinear Vlasov-Maxwell equations for general distribution function f b (rvec x,rvec p,t) and self-consistent electrostatic field consistent with the thin-beam approximation, the kinetic model is used to investigate detailed beam equilibrium properties for a variety of distribution functions. Examples are presented both for the case of a uniform solenoidal focusing field B z (z) = B 0 = const. and for the case of a periodic solenoidal focusing field B z (z + S) = B z (z). The nonlinear Vlasov-Maxwell equations are simplified in the thin-beam approximation, and an alternative Hamiltonian formulation is developed that is particularly well-suited to intense beam propagation in periodic focusing systems. Based on the present analysis, the Vlasov-Maxwell description of intense nonneutral beam propagation through a periodic solenoidal focusing field rvec B sol (rvec x) is found to be remarkably tractable and rich in physics content. The Vlasov-Maxwell formalism developed here can be extended in a straightforward manner to investigate detailed stability behavior for perturbations about specific choices of beam equilibria

  8. Precise prediction for the light MSSM Higgs-boson mass combining effective field theory and fixed-order calculations

    Energy Technology Data Exchange (ETDEWEB)

    Bahl, Henning; Hollik, Wolfgang [Max-Planck-Institut fuer Physik (Werner-Heisenberg-Institut), Munich (Germany)

    2016-09-15

    In the Minimal Supersymmetric Standard Model heavy superparticles introduce large logarithms in the calculation of the lightest CP-even Higgs-boson mass. These logarithmic contributions can be resummed using effective field theory techniques. For light superparticles, however, fixed-order calculations are expected to be more accurate. To gain a precise prediction also for intermediate mass scales, the two approaches have to be combined. Here, we report on an improvement of this method in various steps: the inclusion of electroweak contributions, of separate electroweakino and gluino thresholds, as well as resummation at the NNLL level. These improvements can lead to significant numerical effects. In most cases, the lightest CP-even Higgs-boson mass is shifted downwards by about 1 GeV. This is mainly caused by higher-order corrections to the MS top-quark mass. We also describe the implementation of the new contributions in the code FeynHiggs. (orig.)

  9. Redundancy of the quantum level gauge fixing condition

    International Nuclear Information System (INIS)

    Kachkachi, H.; Kachkachi, M.

    1992-07-01

    We regard the manifold Γ-circumflex defined by the equations of motion (EM) of the gauge and ghost fields w.r.t. the gauge-fixed action as a fiber bundle over the manifold Γ defined by the EM of the gauge fields only w.r.t. the classical action. Accordingly, the BRST operator is interpreted as the nilpotent exterior derivative on Γ; the ghost field appears as the differential 1-form. This fiber bundle setup allows us to prove that any gauge condition on Γ-circumflex is equivalent to another one on the base manifold Γ and does not break the BRST symmetry of the quantized theory. (author). 11 refs

  10. Pixels Intensity Evolution to Describe the Plastic Films Deformation

    Directory of Open Access Journals (Sweden)

    Juan C. Briñez-De León

    2013-11-01

    Full Text Available This work proposes an approach for mechanical behavior description in the plastic film deformation using techniques for the images analysis, which are based on the intensities evolution of fixed pixels applied to an images sequence acquired through polarizing optical assembly implemented around the platform of the plastic film deformation. The pixels intensities evolution graphs, and mechanical behavior graphic of the deformation has dynamic behaviors zones which could be associated together.

  11. Growth and apoptosis of HeLa cells induced by intense picosecond pulsed electric field

    Directory of Open Access Journals (Sweden)

    Yuan-yuan HUA

    2011-07-01

    Full Text Available Objective To investigate the growth and apoptosis of HeLa cells induced by intense picosecond pulsed electric field(PEF in vitro.Methods HeLa cells cultured in vitro were divided into experimental group and control group(with or without intense picosecond PEF.With constant pulse width,frequency and voltage,the cells in experimental group were divided into 6 sub-groups according to the number of pulse(100,200,500,1000,1500,2000,the growth inhibition of HeLa cells by PEF and the dose-effect relationship were analyzed by MTT.Caspase 3 protein activity was detected in the cells in 500,1000 and 2000 sub-groups.Mitochondrial transmembrane potential was detected by rhodamine 123 staining with the cells in 2000 sub-groups.Results MTT assay demonstrated that intense picosecond PEF significantly inhibited the proliferation of HeLa cells in dose-dependent manner.The survival rates of cells declined along with the increase in pulse number,and were 96.23%±0.76%,94.11%±2.42%,90.31%±1.77%,64.59%±1.59%,32.95%±0.73%,23.85%±2.38% and 100%,respectively,in 100,200,500,1000,1500,2000 sub-groups and control group(P < 0.01.The Caspase 3 protein activity was significantly enhanced by intense picosecond PEF,and the absorbancy indexes(A were 0.174±0.012,0.232±0.017,0.365±0.016 and 0.122±0.011,respectively,in 500,1000,2000 sub-groups and control group(P < 0.05.The mitochondrial transmembrane potential of HeLa cells was significantly inhibited by intense picosecond PEF,and the fluorescence intensity in 2000 sub-group(76.66±13.38 was much lower than that in control group(155.81±2.33,P < 0.05.Conclusion Intense picosecond PEF may significantly inhibit the growth of HeLa cells,and induce cell apoptosis via mitochondrial pathway.

  12. Testing effective string models of black holes with fixed scalars

    International Nuclear Information System (INIS)

    Krasnitz, M.; Klebanov, I.R.

    1997-01-01

    We solve the problem of mixing between the fixed scalar and metric fluctuations. First, we derive the decoupled fixed scalar equation for the four-dimensional black hole with two different charges. We proceed to the five-dimensional black hole with different electric (one-brane) and magnetic (five-brane) charges, and derive two decoupled equations satisfied by appropriate mixtures of the original fixed scalar fields. The resulting greybody factors are proportional to those that follow from coupling to dimension (2,2) operators on the effective string. In general, however, the string action also contains couplings to chiral operators of dimension (1,3) and (3,1), which cause disagreements with the semiclassical absorption cross sections. Implications of this for the effective string models are discussed. copyright 1997 The American Physical Society

  13. Dehydrogenation involved Coulomb explosion of molecular C2H4FBr in an intense laser field

    Science.gov (United States)

    Pei, Minjie; Yang, Yan; Zhang, Jian; Sun, Zhenrong

    2018-04-01

    The dissociative double ionization (DDI) of molecular 1-fluo-2-bromoethane (FBE) in an intense laser field has been investigated by dc-slice imaging technology. The DDI channels involved with dehydrogenation are revealed and it's believed both the charge distribution and the bound character of real potential energy surfaces of parent ions play important roles in the dissociation process. The relationship between the potential energy surfaces of the precursor species and the photofragment ejection angles are also discussed and analyzed. Furthermore, the competition between the DDI channels has been studied and the Csbnd C bond cleavages dominate the DDI process at relative higher laser intensity.

  14. A quantum-mechanical study of atom-diatom collisions in a laser field

    International Nuclear Information System (INIS)

    Chang, Sintarng.

    1989-01-01

    A quantum-mechanical formalism, in both space-fixed (SF) and body-fixed (BF) coordinate systems, is developed for describing an S-state structureless atom (A) colliding with a Estate vibrating rotor diatomic molecule (BC) in the presence of a laser field. The additional Hamiltonians H rad and H int , which describe the laser field and its interaction with the atom-diatom collision system, have been added to the field-free Hamiltonian Ho. And the collision problem can be solved by this extended Hamiltonian. The laser field Hamiltonian is represented by the number state representation. The interaction Hamiltonian is expressed by rvec μ BC . rvec ε, where rvec μ BC is the dipole moment of the diatomic molecule BC, and rvec ε is the electric field strength of the laser field. Since the field-free total angular momentum J is coupling with the laser field, J and its z-axis projection M are no longer conserved. To facilitate the collision problem, the laser field is restricted to a single mode, and its interaction with the collision only involves dipole allowed transitions in which a single photon is absorbed or emitted. For convenience, the coupled-channel equations are solved by the real boundary conditions instead of the complex boundary conditions. On applying the real boundary conditions, the author obtains the K-matrix, which is related to the S-matrix by S = (I + iK)(I - iK) -1 . A model calculation is discussed for the Ar + CO collision system in a laser intensity of 10 9 W/cm 2

  15. The summertime Boreal forest field measurement intensive (HUMPPA-COPEC-2010): an overview of meteorological and chemical influences

    NARCIS (Netherlands)

    Williams, J.; Crowley, J.; Fischer, H.; Harder, H.; Martinez, M.; Ouwersloot, H.G.; Vilà-Guerau de Arellano, J.; Ganzeveld, L.N.; Lelieveld, J.

    2011-01-01

    This paper describes the background, instrumentation, goals, and the regional influences on the HUMPPACOPEC intensive field measurement campaign, conducted at the Boreal forest research station SMEAR II (Station for Measuring Ecosystem-Atmosphere Relation) in Hyyti¨al¨a, Finland from 12 July–12

  16. Electromagnetic Fields and Public Health: Mobile Phones

    Science.gov (United States)

    ... waves through a network of fixed antennas called base stations. Radiofrequency waves are electromagnetic fields, and unlike ionizing radiation ... waves through a network of fixed antennas called base stations. Radiofrequency waves are electromagnetic fields, and unlike ionizing radiation ...

  17. Electromagnetic scattering and emission by a fixed multi-particle object in local thermal equilibrium: General formalism.

    Science.gov (United States)

    Mishchenko, Michael I

    2017-10-01

    The majority of previous studies of the interaction of individual particles and multi-particle groups with electromagnetic field have focused on either elastic scattering in the presence of an external field or self-emission of electromagnetic radiation. In this paper we apply semi-classical fluctuational electrodynamics to address the ubiquitous scenario wherein a fixed particle or a fixed multi-particle group is exposed to an external quasi-polychromatic electromagnetic field as well as thermally emits its own electromagnetic radiation. We summarize the main relevant axioms of fluctuational electrodynamics, formulate in maximally rigorous mathematical terms the general scattering-emission problem for a fixed object, and derive such fundamental corollaries as the scattering-emission volume integral equation, the Lippmann-Schwinger equation for the dyadic transition operator, the multi-particle scattering-emission equations, and the far-field limit. We show that in the framework of fluctuational electrodynamics, the computation of the self-emitted component of the total field is completely separated from that of the elastically scattered field. The same is true of the computation of the emitted and elastically scattered components of quadratic/bilinear forms in the total electromagnetic field. These results pave the way to the practical computation of relevant optical observables.

  18. Enhancing the diversity of breeding invertebrates within field margins of intensively managed grassland: Effects of alternative management practices.

    Science.gov (United States)

    Fritch, Rochelle A; Sheridan, Helen; Finn, John A; McCormack, Stephen; Ó hUallacháin, Daire

    2017-11-01

    Severe declines in biodiversity have been well documented for many taxonomic groups due to intensification of agricultural practices. Establishment and appropriate management of arable field margins can improve the diversity and abundance of invertebrate groups; however, there is much less research on field margins within grassland systems. Three grassland field margin treatments (fencing off the existing vegetation "fenced"; fencing with rotavation and natural regeneration "rotavated" and; fencing with rotavation and seeding "seeded") were compared to a grazed control in the adjacent intensively managed pasture. Invertebrates were sampled using emergence traps to investigate species breeding and overwintering within the margins. Using a manipulation experiment, we tested whether the removal of grazing pressure and nutrient inputs would increase the abundance and richness of breeding invertebrates within grassland field margins. We also tested whether field margin establishment treatments, with their different vegetation communities, would change the abundance and richness of breeding invertebrates in the field margins. Exclusion of grazing and nutrient inputs led to increased abundance and richness in nearly all invertebrate groups that we sampled. However, there were more complex effects of field margin establishment treatment on the abundance and richness of invertebrate taxa. Each of the three establishment treatments supported a distinct invertebrate community. The removal of grazing from grassland field margins provided a greater range of overwintering/breeding habitat for invertebrates. We demonstrate the capacity of field margin establishment to increase the abundance and richness in nearly all invertebrate groups in study plots that were located on previously more depauperate areas of intensively managed grassland. These results from grassland field margins provide evidence to support practical actions that can inform Greening (Pillar 1) and agri

  19. An improved permanent magnet quadrupole design with larger good field region for high intensity proton linacs

    Energy Technology Data Exchange (ETDEWEB)

    Mathew, Jose V., E-mail: josev.mathew@gmail.com; Rao, S.V.L.S.; Krishnagopal, S.; Singh, P.

    2013-11-01

    The Low Energy High Intensity Proton Accelerator (LEHIPA), being developed at the Bhabha Atomic Research Centre (BARC) will produce a 20 MeV, 30 mA, continuous wave (CW) proton beam. At these low velocities, space-charge forces dominate, and could lead to larger beam sizes and beam halos. Hence in the design of the focusing lattice of the LEHIPA drift tube linac (DTL) using permanent magnet quadrupoles (PMQs), a larger good field region is preferred. Here we study, using the two dimensional (2D) and three dimensional (3D) simulation codes PANDIRA and RADIA, four different types of cylindrical PMQ designs: 16-segment trapezoidal Halbach configuration, bullet-nosed geometry and 8- and 16-segment rectangular geometries. The trapezoidal Halbach geometry is used in a variety of accelerators since it provides very high field gradients in small bores, while the bullet-nosed geometry, which is a combination of the trapezoidal and rectangular designs, is used in some DTLs. This study shows that a larger good field region is possible in the 16-segment rectangular design as compared to the Halbach and bullet-nosed designs, making it more attractive for high-intensity proton linacs. An improvement in good-field region by ∼16% over the Halbach design is obtained in the optimized 16-segment rectangular design, although the field gradient is lower by ∼20%. Tolerance studies show that the rectangular segment PMQ design is substantially less sensitive to the easy axis orientation errors and hence will be a better choice for DTLs. -- Highlights: • An improved permanent magnet quadrupole (PMQ) design with larger good field region is proposed. • We investigate four PMQ designs, including the widely used Halbach and bullet nosed designs. • Analytical calculations are backed by 2D as well as 3D numerical solvers, PANDIRA and RADIA. • The optimized 16 segment rectangular PMQ design is identified to exhibit the largest good field region. • The effect of easy axis orientation

  20. An improved permanent magnet quadrupole design with larger good field region for high intensity proton linacs

    International Nuclear Information System (INIS)

    Mathew, Jose V.; Rao, S.V.L.S.; Krishnagopal, S.; Singh, P.

    2013-01-01

    The Low Energy High Intensity Proton Accelerator (LEHIPA), being developed at the Bhabha Atomic Research Centre (BARC) will produce a 20 MeV, 30 mA, continuous wave (CW) proton beam. At these low velocities, space-charge forces dominate, and could lead to larger beam sizes and beam halos. Hence in the design of the focusing lattice of the LEHIPA drift tube linac (DTL) using permanent magnet quadrupoles (PMQs), a larger good field region is preferred. Here we study, using the two dimensional (2D) and three dimensional (3D) simulation codes PANDIRA and RADIA, four different types of cylindrical PMQ designs: 16-segment trapezoidal Halbach configuration, bullet-nosed geometry and 8- and 16-segment rectangular geometries. The trapezoidal Halbach geometry is used in a variety of accelerators since it provides very high field gradients in small bores, while the bullet-nosed geometry, which is a combination of the trapezoidal and rectangular designs, is used in some DTLs. This study shows that a larger good field region is possible in the 16-segment rectangular design as compared to the Halbach and bullet-nosed designs, making it more attractive for high-intensity proton linacs. An improvement in good-field region by ∼16% over the Halbach design is obtained in the optimized 16-segment rectangular design, although the field gradient is lower by ∼20%. Tolerance studies show that the rectangular segment PMQ design is substantially less sensitive to the easy axis orientation errors and hence will be a better choice for DTLs. -- Highlights: • An improved permanent magnet quadrupole (PMQ) design with larger good field region is proposed. • We investigate four PMQ designs, including the widely used Halbach and bullet nosed designs. • Analytical calculations are backed by 2D as well as 3D numerical solvers, PANDIRA and RADIA. • The optimized 16 segment rectangular PMQ design is identified to exhibit the largest good field region. • The effect of easy axis orientation

  1. Direct monitoring of erythrocytes aggregation under the effect of the low-intensity magnetic field by measuring light transmission at wavelength 800 nm

    Science.gov (United States)

    Elblbesy, Mohamed A.

    2017-12-01

    Interacting electromagnetic field with the living organisms and cells became of the great interest in the last decade. Erythrocytes are the most common types of the blood cells and have unique rheological, electrical, and magnetic properties. Aggregation is one of the important characteristics of the erythrocytes which has a great impact in some clinical cases. The present study introduces a simple method to monitor the effect of static magnetic field on erythrocytes aggregation using light transmission. Features were extracted from the time course curve of the light transmission through the whole blood under different intensities of the magnetic field. The findings of this research showed that static magnetic field could influence the size and the rate of erythrocytes aggregation. The strong correlations confirmed these results between the static magnetic field intensity and both the time of aggregation and sedimentation of erythrocytes. From this study, it can be concluded that static magnetic field can be used to modify the mechanisms of erythrocytes aggregation.

  2. Efficacy and safety of a fixed combination of tramadol and paracetamol (acetaminophen) as pain therapy within palliative medicine.

    Science.gov (United States)

    Husic, Samir; Izic, Senad; Matic, Srecko; Sukalo, Aziz

    2015-02-01

    The goal of the research was to determine the efficacy of a fixed combination of tramadol and paracetamol (acetaminophen) in the treatment of pain of patients with the advanced stage of cancer. A prospective study was conducted at the Center for Palliative Care, University Clinical Center Tuzla, Bosnia and Herzegovina, from January 1(st) to December 31(st) 2013. A total of 353 patients who were treated with a fixed combination of tramadol and acetaminophen (37.5 mg and 325 mg) at the initial dosage 3x1 tablet (112.5 mg tramadol and 975 mg acetaminophen) for pain intensity 4, up to 4x2 tablets (300 mg of tramadol and 2600 mg paracetamol) for pain intensity 7 and 8. If the patient during previous day has two or more pain episodes that required a "rescue dose" of tramadol, increased was the dose of fixed combination tramadol and acetaminophen to a maximum of 8 tablets daily (300 mg of tramadol and 2600 mg paracetamol). Statistical analysis was performed by biomedical software MedCalc for Windows version 9.4.2.0. The difference was considered significant for Pparacetamol). Side effects, in the treatment of pain with a fixed combination tramadol and acetaminophen, were found in 29.18% of patients, with a predominance of nausea and vomiting. Fixed combination of tramadol and acetaminophen can be used as an effective combination in the treatment of chronic cancer pain, with frequent dose evaluation and mild side effects.

  3. The fixed point structure of lattice field theories

    International Nuclear Information System (INIS)

    Baier, R.; Reusch, H.J.; Lang, C.B.

    1989-01-01

    Monte-Carlo renormalization group methods allow to analyze lattice regularized quantum field theories. The properties of the quantized field theory in the continuum may be recovered at a critical point of the lattice model. This requires a study of the phase diagram and the renormalization flow structure of the coupling constants. As an example the authors discuss the results of a recent MCRG investigation of the SU(2) adjoint Higgs model, where they find evidence for the existence of a tricritical point at finite values of the inverse gauge coupling β

  4. Effect of intense high-frequency laser field on the linear and nonlinear intersubband optical absorption coefficients and refractive index changes in a parabolic quantum well under the applied electric field

    Energy Technology Data Exchange (ETDEWEB)

    Yesilgul, U., E-mail: uyesilgul@cumhuriyet.edu.tr [Cumhuriyet University, Physics Department, 58140 Sivas (Turkey); Ungan, F. [Cumhuriyet University, Physics Department, 58140 Sivas (Turkey); Sakiroglu, S. [Dokuz Eylül University, Physics Department, 35160 Buca, İzmir (Turkey); Mora-Ramos, M.E. [Facultad de Ciencias Universidad Autonoma del Estado de Morelos, Ave. Universidad 1001, C.P. 62209 Cuernavaca, Morelos (Mexico); Duque, C.A. [Grupo de Materia Condensada-UdeA, Instituto de Física, Facultad de Ciencias Exactas y Naturales, Universidad de Antioquia UdeA, Calle 70 No. 52-21, Medellín (Colombia); Kasapoglu, E.; Sarı, H. [Cumhuriyet University, Physics Department, 58140 Sivas (Turkey); Sökmen, I. [Dokuz Eylül University, Physics Department, 35160 Buca, İzmir (Turkey)

    2014-01-15

    The effects of the intense high-frequency laser field on the optical absorption coefficients and the refractive index changes in a GaAs/GaAlAs parabolic quantum well under the applied electric field have been investigated theoretically. The electron energy levels and the envelope wave functions of the parabolic quantum well are calculated within the effective mass approximation. Analytical expressions for optical properties are obtained using the compact density-matrix approach. The numerical results show that the intense high-frequency laser field has a large effect on the optical characteristics of these structures. Also we can observe that the refractive index and absorption coefficient changes are very sensitive to the electric field in large dimension wells. Thus, this result gives a new degree of freedom in the optoelectronic device applications. -- Highlights: • ILF has a large effect on the optical properties of parabolic quantum wells. • The total absorption coefficients increase as the ILF increases. • The RICs increase as the ILF increases.

  5. Interrogation of orbital structure by elliptically polarized intense femtosecond laser pulses

    International Nuclear Information System (INIS)

    Abu-samha, M.; Madsen, L. B.

    2011-01-01

    We solve the three-dimensional time-dependent Schroedinger equation and present investigations of the imprint of the orbital angular node in photoelectron momentum distributions of an aligned atomic p-type orbital following ionization by an intense elliptically polarized laser pulse of femtosecond duration. We investigate the role of light ellipticity and the alignment angle of the major polarization axis of the external field relative to the probed orbital by studying radial and angular momentum distributions, the latter at a fixed narrow interval of final momenta close to the peak of the photoelectron momentum distribution. In general only the angular distributions carry a clear signature of the orbital symmetry. Our study shows that circular polarization gives the most clear imprints of orbital nodes. These findings are insensitive to pulse duration.

  6. Organic matter decomposition and microarthropod community structure in corn fields under low input and intensive management in Guaíra (SP

    Directory of Open Access Journals (Sweden)

    G.S Rodrigues

    1997-01-01

    Full Text Available The rate of organic matter decomposition and the structure of the communities of microarthropods were compared between two corn fields receiving contrasting agricultural management practices (low input and intensive farming. The rate of decomposition tended to be higher in the intensively managed field in the beginning of the growing season, but decreased to a level significantly lower than the observed in the low input field by the end of the growing season. This suggested that the biological community associated with the decomposition process could be negatively influenced in the intensively managed field. Analyses of the structure of microarthropod communities indicated differences between the two areas. The microarthropod populations present in the intensively managed field suffered abrupt decrease in numbers as the season progressed.A taxa de decomposição da matéria orgânica e a estrutura da comunidade de microartrópodes foram comparadas entre dois campos cultivados com milho mas recebendo manejos distintos, sendo um campo manejado intensivamente e outro com baixo uso de insumos. A taxa de decomposição foi mais alta no campo intensivamente manejado no início da cultura, mas decresceu para um nível significativamente inferior àquela observada no campo com baixo uso de insumos ao final da estação. Tal tendência sugeriu que a estrutura da comunidade dos organismos associados ao processo de decomposição poderia estar sendo negativamente influenciada no campo intensivamente manejado. Análises da estrutura das comunidades de microartrópodes indicaram que diferentes comunidades estavam presentes nos dois campos. As populações de microartrópodes presentes no campo sob manejo intensivo sofreram queda abrupta em números, sendo praticamente eliminadas já no segundo mês de desenvolvimento da cultura.

  7. Application of the Speed-Duration Relationship to Normalize the Intensity of High-Intensity Interval Training

    Science.gov (United States)

    Ferguson, Carrie; Wilson, John; Birch, Karen M.; Kemi, Ole J.

    2013-01-01

    The tolerable duration of continuous high-intensity exercise is determined by the hyperbolic Speed-tolerable duration (S-tLIM) relationship. However, application of the S-tLIM relationship to normalize the intensity of High-Intensity Interval Training (HIIT) has yet to be considered, with this the aim of present study. Subjects completed a ramp-incremental test, and series of 4 constant-speed tests to determine the S-tLIM relationship. A sub-group of subjects (n = 8) then repeated 4 min bouts of exercise at the speeds predicted to induce intolerance at 4 min (WR4), 6 min (WR6) and 8 min (WR8), interspersed with bouts of 4 min recovery, to the point of exercise intolerance (fixed WR HIIT) on different days, with the aim of establishing the work rate that could be sustained for 960 s (i.e. 4×4 min). A sub-group of subjects (n = 6) also completed 4 bouts of exercise interspersed with 4 min recovery, with each bout continued to the point of exercise intolerance (maximal HIIT) to determine the appropriate protocol for maximizing the amount of high-intensity work that can be completed during 4×4 min HIIT. For fixed WR HIIT tLIM of HIIT sessions was 399±81 s for WR4, 892±181 s for WR6 and 1517±346 s for WR8, with total exercise durations all significantly different from each other (PHIIT, there was no difference in tLIM of each of the 4 bouts (Bout 1: 229±27 s; Bout 2: 262±37 s; Bout 3: 235±49 s; Bout 4: 235±53 s; P>0.050). However, there was significantly less high-intensity work completed during bouts 2 (153.5±40. 9 m), 3 (136.9±38.9 m), and 4 (136.7±39.3 m), compared with bout 1 (264.9±58.7 m; P>0.050). These data establish that WR6 provides the appropriate work rate to normalize the intensity of HIIT between subjects. Maximal HIIT provides a protocol which allows the relative contribution of the work rate profile to physiological adaptations to be considered during alternative intensity-matched HIIT protocols. PMID:24244266

  8. Temp erature-dep endent of Nonlinear Optical Conductance of Graphene-based Systems in High-intensity Terahertz Field

    Institute of Scientific and Technical Information of China (English)

    Jing Lv; Rui-yang Yuan; Hui Yan

    2014-01-01

    For multi-photon processed with the linear dispersion in the high-intensity terahertz (THz) field, we have systematically investigated the temperature-dependent nonlinear optical response of graphene-based systems, including single layer graphene, graphene superlattice and gapped graphene. In the intrinsic single layer graphene system, it demonstrates that, at low temperature, nonlinear optical conductivities of the third-and fifth-order are respectively five and ten orders of magnitude larger than the universal conductivity with high-intensity and low frequency THz wave.In the graphene superlattice and gapped graphene systems, the optical responses enhanced because of the anisotropic massless and massive Dirac fermions.

  9. Boundary Fixed Points, Enhanced Gauge Symmetry and Singular Bundles on K3

    CERN Document Server

    Fuchs, J; Lerche, Wolfgang; Lütken, C A; Schweigert, C; Walcher, J

    2001-01-01

    We investigate certain fixed points in the boundary conformal field theory representation of type IIA D-branes on Gepner points of K3. They correspond geometrically to degenerate brane configurations, and physically lead to enhanced gauge symmetries on the world-volume. Non-abelian gauge groups arise if the stabilizer group of the fixed points is realized projectively, which is similar to D-branes on orbifolds with discrete torsion. Moreover, the fixed point boundary states can be resolved into several irreducible components. These correspond to bound states at threshold and can be viewed as (non-locally free) sub-sheaves of semi-stable sheaves. Thus, the BCFT fixed points appear to carry two-fold geometrical information: on the one hand they probe the boundary of the instanton moduli space on K3, on the other hand they probe discrete torsion in D-geometry.

  10. ASPUN: design for an Argonne super-intense pulsed neutron source

    International Nuclear Information System (INIS)

    Khoe, T.K.; Kustom, R.L.

    1983-01-01

    Argonne pioneered the pulsed spallation neutron source with the ZING-P and IPNS-I concepts. IPNS-I is now a reliable and actively used source for pulsed spallation neutrons. The accelerator is a 500-MeV, 8 to 9 μa, 30-Hz rapid-cycling proton synchrotron. Other proton spallation sources are now in operation or in construction. These include KENS-I at the National Laboratory for High Energy Physics in Japan, the WNR/PSR at Los Alamos National Laboratory in the USA, and the SNS at the Rutherford Appleton Laboratory in England. Newer and bolder concepts are being developed for more-intense pulsed spallation neutron sources. These include SNQ at the KFA Laboratory in Juelich, Germany, ASTOR at the Swiss Institute for Nuclear Physics in Switzerland, and ASPUN, the Argonne concept. ASPUN is based on the Fixed-Field Alternating Gradient concept. The design goal is to provide a time-averaged beam of 3.5 ma at 1100 MeV on a spallation target in intense bursts, 100 to 200 nanoseconds long, at a repetition rate of no more than 60 to 85 Hz

  11. Theory and measurements of electrophoretic effects in monolith, fixed-bed, and fluidized-bed plasma reactors

    International Nuclear Information System (INIS)

    Morin, T.J.

    1989-01-01

    Pressure gradients and secondary flow fields generated by the passage of electrical current in a d.c. gas discharge or gas laser are topics of longstanding interest in the gaseous electronics literature. These hydrodynamic effects of space charge fields and charged particle density gradients have been principally exploited in the development of gas separation and purification processes. In recent characterization studies of fixed-bed and fluidized-bed plasma reactors several anomalous flow features have been observed. These reactors involve the contacting of a high-frequency, resonantly-sustained, disperse gas discharge with granular solids in a fixed or fluidized bed. Anomalies in the measured pressure drops and fluidization velocities have motivated the development of an appropriate theoretical approach to, and some additional experimental investigations of electrophoretic effects in disperse gas discharges. In this paper, a theory which includes the effects of space charge and diffusion is used to estimate the electric field and charged particle density profiles. These profiles are then used to calculate velocity fields and gas flow rates for monolith, fixed-bed, and fluidized-bed reactors. These results are used to rationalize measurements of gas flow rates and axial pressure gradients in high-frequency disperse gas discharges with and without an additional d.c. axial electric field

  12. Macroscopic Magnetization Control by Symmetry Breaking of Photoinduced Spin Reorientation with Intense Terahertz Magnetic Near Field

    Science.gov (United States)

    Kurihara, Takayuki; Watanabe, Hiroshi; Nakajima, Makoto; Karube, Shutaro; Oto, Kenichi; Otani, YoshiChika; Suemoto, Tohru

    2018-03-01

    We exploit an intense terahertz magnetic near field combined with femtosecond laser excitation to break the symmetry of photoinduced spin reorientation paths in ErFeO3 . We succeed in aligning macroscopic magnetization reaching up to 80% of total magnetization in the sample to selectable orientations by adjusting the time delay between terahertz and optical pump pulses. The spin dynamics are well reproduced by equations of motion, including time-dependent magnetic potential. We show that the direction of the generated magnetization is determined by the transient direction of spin tilting and the magnetic field at the moment of photoexcitation.

  13. Low-intensity pulsed ultrasound (LIPUS) and pulsed electromagnetic field (PEMF) treatments affect degeneration of cultured articular cartilage explants

    NARCIS (Netherlands)

    Tan, Lijun; Ren, Yijin; van Kooten, Theo G.; Grijpma, Dirk W.; Kuijer, Roelof

    PURPOSE: Articular cartilage has some capacity for self-repair. Clinically used low-intensity pulsed ultrasound (LIPUS) and pulsed electromagnetic field (PEMF) treatments were compared in their potency to prevent degeneration using an explant model of porcine cartilage. METHODS: Explants of porcine

  14. Low-intensity pulsed ultrasound (LIPUS) and pulsed electromagnetic field (PEMF) treatments affect degeneration of cultured articular cartilage explants

    NARCIS (Netherlands)

    Tan, Lijun; Tan, Lijun; Ren, Yijin; van Kooten, Theo G.; Grijpma, Dirk W.; Kuijer, Roel

    2015-01-01

    Purpose: Articular cartilage has some capacity for self-repair. Clinically used low-intensity pulsed ultrasound (LIPUS) and pulsed electromagnetic field (PEMF) treatments were compared in their potency to prevent degeneration using an explant model of porcine cartilage. Methods: Explants of porcine

  15. Tracking Energy Flow Using a Volumetric Acoustic Intensity Imager (VAIM)

    Science.gov (United States)

    Klos, Jacob; Williams, Earl G.; Valdivia, Nicolas P.

    2006-01-01

    A new measurement device has been invented at the Naval Research Laboratory which images instantaneously the intensity vector throughout a three-dimensional volume nearly a meter on a side. The measurement device consists of a nearly transparent spherical array of 50 inexpensive microphones optimally positioned on an imaginary spherical surface of radius 0.2m. Front-end signal processing uses coherence analysis to produce multiple, phase-coherent holograms in the frequency domain each related to references located on suspect sound sources in an aircraft cabin. The analysis uses either SVD or Cholesky decomposition methods using ensemble averages of the cross-spectral density with the fixed references. The holograms are mathematically processed using spherical NAH (nearfield acoustical holography) to convert the measured pressure field into a vector intensity field in the volume of maximum radius 0.4 m centered on the sphere origin. The utility of this probe is evaluated in a detailed analysis of a recent in-flight experiment in cooperation with Boeing and NASA on NASA s Aries 757 aircraft. In this experiment the trim panels and insulation were removed over a section of the aircraft and the bare panels and windows were instrumented with accelerometers to use as references for the VAIM. Results show excellent success at locating and identifying the sources of interior noise in-flight in the frequency range of 0 to 1400 Hz. This work was supported by NASA and the Office of Naval Research.

  16. Exciton properties in zincblende InGaN-GaN quantum wells under the effects of intense laser fields.

    Science.gov (United States)

    Duque, Carlos M; Mora-Ramos, Miguel E; Duque, Carlos A

    2012-08-31

    : In this work, we study the exciton states in a zincblende InGaN/GaN quantum well using a variational technique. The system is considered under the action of intense laser fields with the incorporation of a direct current electric field as an additional external probe. The effects of these external influences as well as of the changes in the geometry of the heterostructure on the exciton binding energy are discussed in detail.

  17. Composite magnetorheological elastomers as dielectrics for plane capacitors: Effects of magnetic field intensity

    Directory of Open Access Journals (Sweden)

    Maria Balasoiu

    Full Text Available The fabrication of composite magnetorheological elastomers (MRECs based on silicone rubber, carbonyl iron microparticles (10% vol. and polyurethane elastomer doped with 0%, 10% and 20% volume concentration TiO2 microparticles is presented. The obtained MRECs have the shape of thin foils and are used as dielectric materials for manufacturing plane capacitors. Using the plane capacitor method and expression of capacitance as a function of magnetic field intensity, combined with linear elasticity theory, the static magnetoelastic model of the composite is obtained and analyzed. Keywords: Magnetorheological elastomer, TiO2 microparticles, Silicone rubber, Carbonyl iron, Plane capacitor, Magnetoelasticity

  18. Microcanonical quantum field theory

    International Nuclear Information System (INIS)

    Strominger, A.

    1983-01-01

    Euclidean quantum field theory is equivalent to the equilibrium statistical mechanics of classical fields in 4+1 dimensions at temperature h. It is well known in statistical mechanics that the theory of systems at fixed temperature is embedded within the more general and fundamental theory of systems at fixed energy. We therefore develop, in precise analogy, a fixed action (macrocanonical) formulation of quantum field theory. For the case of ordinary renormalizable field theories, we show (with one exception) that the microcanonical is entirely equivalent to the canonical formulation. That is, for some particular fixed value of the total action, the Green's functions of the microcanonical theory are equal, in the bulk limit, to those of the canonical theory. The microcanonical perturbation expansion is developed in some detail for lambdaphi 4 . The particular value of the action for which the two formulations are equivalent can be calculated to all orders in perturbation theory. We prove, using Lehmann's Theorem, that this value is one-half Planck unit per degree of freedom, if fermionic degrees of freedom are counted negatively. This is the 4+1 dimensional analog of the equipartition theorem. The one exception to this is supersymmetric theories. A microcanonical formulation exists if and only if supersymmetry is broken. In statistical mechanics and in field theory there are systems for which the canonical description is pathological, but the microcanonical is not. An example of such a field theory is found in one dimension. A semiclassical expansion of the microcanonical theory is well defined, while an expansion of the canonical theory is hoplessly divergent

  19. Synthesis and operation of an FFT-decoupled fixed-order reversed-field pinch plasma control system based on identification data

    Energy Technology Data Exchange (ETDEWEB)

    Olofsson, K Erik J; Brunsell, Per R; Drake, James R [School of Electrical Engineering, Royal Institute of Technology (KTH), Association EURATOM-VR, Stockholm (Sweden); Witrant, Emmanuel, E-mail: erik.olofsson@ee.kth.s [Control Systems Department, UJF/GIPSA-lab, INPG/UJF Grenoble University (France)

    2010-10-15

    Recent developments and applications of system identification methods for the reversed-field pinch (RFP) machine EXTRAP T2R have yielded plasma response parameters for decoupled dynamics. These data sets are fundamental for a real-time implementable fast Fourier transform (FFT) decoupled discrete-time fixed-order strongly stabilizing synthesis as described in this work. Robustness is assessed over the data set by bootstrap calculation of the sensitivity transfer function worst-case H{sub {infinity}}-gain distribution. Output tracking and magnetohydrodynamic mode m = 1 tracking are considered in the same framework simply as two distinct weighted traces of a performance channel output-covariance matrix as derived from the closed-loop discrete-time Lyapunov equation. The behaviour of the resulting multivariable controller is investigated with dedicated T2R experiments.

  20. Gauge fixing, BRS invariance and Ward identities for randomly stirred flows

    International Nuclear Information System (INIS)

    Berera, Arjun; Hochberg, David

    2009-01-01

    The Galilean invariance of the Navier-Stokes equation is shown to be akin to a global gauge symmetry familiar from quantum field theory. This symmetry leads to a multiple counting of infinitely many inertial reference frames in the path integral approach to randomly stirred fluids. This problem is solved by fixing the gauge, i.e., singling out one reference frame. The gauge fixed theory has an underlying Becchi-Rouet-Stora (BRS) symmetry which leads to the Ward identity relating the exact inverse response and vertex functions. This identification of Galilean invariance as a gauge symmetry is explored in detail, for different gauge choices and by performing a rigorous examination of a discretized version of the theory. The Navier-Stokes equation is also invariant under arbitrary rectilinear frame accelerations, known as extended Galilean invariance (EGI). We gauge fix this extended symmetry and derive the generalized Ward identity that follows from the BRS invariance of the gauge-fixed theory. This new Ward identity reduces to the standard one in the limit of zero acceleration. This gauge-fixing approach unambiguously shows that Galilean invariance and EGI constrain only the zero mode of the vertex but none of the higher wavenumber modes.

  1. Gauge fixing, BRS invariance and Ward identities for randomly stirred flows

    Energy Technology Data Exchange (ETDEWEB)

    Berera, Arjun [School of Physics and Astronomy, University of Edinburgh, Edinburgh, EH9 3JZ (United Kingdom)], E-mail: ab@ph.ed.ac.uk; Hochberg, David [Centro de Astrobiologia (CSIC-INTA), Ctra. Ajalvir Km. 4, 28850 Torrejon de Ardoz, Madrid (Spain)], E-mail: hochbergd@inta.es

    2009-06-21

    The Galilean invariance of the Navier-Stokes equation is shown to be akin to a global gauge symmetry familiar from quantum field theory. This symmetry leads to a multiple counting of infinitely many inertial reference frames in the path integral approach to randomly stirred fluids. This problem is solved by fixing the gauge, i.e., singling out one reference frame. The gauge fixed theory has an underlying Becchi-Rouet-Stora (BRS) symmetry which leads to the Ward identity relating the exact inverse response and vertex functions. This identification of Galilean invariance as a gauge symmetry is explored in detail, for different gauge choices and by performing a rigorous examination of a discretized version of the theory. The Navier-Stokes equation is also invariant under arbitrary rectilinear frame accelerations, known as extended Galilean invariance (EGI). We gauge fix this extended symmetry and derive the generalized Ward identity that follows from the BRS invariance of the gauge-fixed theory. This new Ward identity reduces to the standard one in the limit of zero acceleration. This gauge-fixing approach unambiguously shows that Galilean invariance and EGI constrain only the zero mode of the vertex but none of the higher wavenumber modes.

  2. In vitro magnetic stimulation: a simple stimulation device to deliver defined low intensity electromagnetic fields

    Directory of Open Access Journals (Sweden)

    Stephanie Grehl

    2016-11-01

    Full Text Available Non-invasive electromagnetic field brain stimulation (NIBS appears to benefit human neurological and psychiatric conditions, although the optimal stimulation parameters and underlying mechanisms remain unclear. Although in vitro studies have begun to elucidate cellular mechanisms, stimulation is delivered by a range of coils (from commercially available human stimulation coils to laboratory-built circuits so that the electromagnetic fields induced within the tissue to produce the reported effects are ill-defined.Here we develop a simple in vitro stimulation device with plug-and-play features that allow delivery of a range of stimulation parameters. We chose to test low intensity repetitive magnetic stimulation (LI-rMS delivered at 3 frequencies to hindbrain explant cultures containing the olivocerebellar pathway. We used computational modelling to define the parameters of a stimulation circuit and coil that deliver a unidirectional homogeneous magnetic field of known intensity and direction, and therefore a predictable electric field, to the target. We built the coil to be compatible with culture requirements: stimulation within an incubator; a flat surface allowing consistent position and magnetic field direction; location outside the culture plate to maintain sterility and no heating or vibration. Measurements at the explant confirmed the induced magnetic field was homogenous and matched the simulation results. To validate our system we investigated biological effects following LI-rMS at 1 Hz, 10 Hz and biomimetic high frequency (BHFS, which we have previously shown induces neural circuit reorganisation. We found that gene expression was modified by LI-rMS in a frequency-related manner. Four hours after a single 10-minute stimulation session, the number of c-fos positive cells increased, indicating that our stimulation activated the tissue. Also, after 14 days of LI-rMS, the expression of genes normally present in the tissue was differentially

  3. Physical-Mathematical Model for Fixed-Bed Solid Fuel Gasification Process Simulation

    Directory of Open Access Journals (Sweden)

    Slyusarskiy Konstantin V.

    2017-01-01

    Full Text Available Phycial-mathmatical model for fixed-bed coal gasification process simulation is proposed. The heterogeneous carbon oxidation chemical reactions were simulated via Arrhenius equation while homogeneous reactions in gas phase were calculated using Gibbs free energy minimization procedure. The syngas component concentration field and fuel conversion distribution as well as syngas final temperature and composition were defined for fixed bed gasification of T-grade coal of Kuznetskiy deposit. The optimal fuel residence time and gasifyer specific productivity were defined. The prevail reactions in oxidizing and reduction zones together with its height were defined.

  4. Calculation of back-reflected intensities of a Na-atom beam by standing evanescent E-M field

    International Nuclear Information System (INIS)

    Murphy, J.; Goodman, P.; Smith, A.

    1992-01-01

    A method is described for the computation of the back-scattered intensities of atomic beams, diffracted from the evanescent field generated outside an optical plate by internal counter-propagating laser beams. The method derives from a procedure developed for the similar but importantly differing problem of Low Energy Electron Diffraction, (Lynch and Smith, 1983). Modifications to that theory required for the present problem bring the equations closer to the RHEED solution proposed by Ichimiya (1983). Results from multi-slicing from the same narrow field depth (2 Aangstroems) in this strong field case show the success and also limitations of the program in its present form. Computation to greater depth in the strong field leads to numerical instabilities due to the incorporation of very large tunnelling terms. This requires the application of boundary conditions at each slice rather than the end of the multi-slice calculation. 7 refs., 3 figs

  5. Fuel rod fixing system

    International Nuclear Information System (INIS)

    Christiansen, D.W.

    1982-01-01

    This is a reusable system for fixing a nuclear reactor fuel rod to a support. An interlock cap is fixed to the fuel rod and an interlock strip is fixed to the support. The interlock cap has two opposed fingers, which are shaped so that a base is formed with a body part. The interlock strip has an extension, which is shaped so that this is rigidly fixed to the body part of the base. The fingers of the interlock cap are elastic in bending. To fix it, the interlock cap is pushed longitudinally on to the interlock strip, which causes the extension to bend the fingers open in order to engage with the body part of the base. To remove it, the procedure is reversed. (orig.) [de

  6. INVESTIGATION OF DENTURE REMOVAL PROCESS BY MEANS OF DESTRUCTION OF FIXING CEMENT BY ULTRASOUND ACTION

    Directory of Open Access Journals (Sweden)

    M. G. Kiselev

    2007-01-01

    Full Text Available The paper contains results of experimental investigations in respect of denture removal processes using as models so natural teeth as well and this removal process presupposes destruction of fixing cement by ultrasound action. It has been established that the best conditions for separation of a denture from a tooth body are ensured while ultrasound is acting on non-removable denture structure in liquid phase (water. At the expense of sound-capillary effect water fills in porous structure of fixing cement at high speed and a cavitation that appears in it leads to intensive cement destruction (dispersion.

  7. In vitro study of relationship between signal intensity and gadolinium-DTPA concentration at high magnetic field strength

    International Nuclear Information System (INIS)

    Shahbazi-Gahrouei, D.; Williams, M.; Allen, B.J.

    2001-01-01

    Although gadolinium-diethylene triamine pentaacetic acid (Gd-DTPA) has been used as a contrast material in MRI, it is known that the contrast enhancement effect is not uniform for high concentrations of Gd-DTPA. In order to evaluate the proper pulse sequences for dynamic MRI in aqueous solutions of Gd-DTPA, blood samples and melanoma cells, the signal intensity for several concentrations of Gd-DTPA were measured under inversion recovery T 1 -weighted) at high magnetic field strength (7.0 Tesla). For aqueous solutions of Gd-DTPA, signal intensity correlated linearly with the concentration of Gd-DTPA between 0 mmol/L and 4 mmol/L. Using blood and melanoma cells, signal intensity correlated non-linearly with the concentration of Gd-DTPA between 0 mmol/L and 1.5 mmol/L. For concentrations of more than 4 mmol/L in aqueous solutions of Gd-DTPA, 1 mmol/L in blood and 1.5 mmol/L in melanoma, signal intensity decreased with increased Gd-DTPA concentration. Copyright (2001) Blackwell Science Pty Ltd

  8. An expression of interest in a Super Fixed Target Beauty Facility (SFT) at the Superconducting Super Collider

    International Nuclear Information System (INIS)

    1990-01-01

    The concept of a Super Fixed Target Beauty Facility (SFT) which uses a relatively low intensity 20 TeV proton beam as a generator of very high momenta B's is an exciting prospect which is very competitive with other B factory ideas. The yields of B's in such a facility are quite high (3 x 10 10 → 10 11 B's per year). At this level of statistics, CP violation measurements will be possible in many modes. In addition, the fixed target configuration, because of the high momenta of the produced B's and the resulting long decay lengths, facilitates the detection and reconstruction of B's and offers unique opportunities for observation of the B decays. The limited solid angle coverage required for the fixed target spectrometer makes the cost of the facility much cheaper than other e + e - or hadron collider options under consideration. The relatively low intensity 20 TeV beam (1 → 2 x 10 8 protons/second) needed for the SFT makes it possible to consider an extraction system which operates concurrently and in a non-interfering manner with the other collider experiments. One possible method for generating such a beam, crystal channeling, is discussed

  9. Interaction of an atom subject to an intense laser field with its own radiation field and nonlocality of electromagnetic interaction

    International Nuclear Information System (INIS)

    Gainutdinov, R Kh; Mutygullina, A A

    2009-01-01

    We discuss the interaction of an atom subject to an intense driving laser field with its own radiation field. In contrast to the states of bare atoms, the energy difference between some dressed states with the same total angular momentum, its projection and parity may be very small. The self-interaction of a combined atom-laser system associated with nonradiative transitions between such states is effectively strong. We show that the contribution to the radiative shift of the sidebands of the Mollow spectrum, which comes from such processes, is very significant and may be much larger than the trivial Lamb shift, which is the simple redistribution of the Lamb shifts of the corresponding bare states. In the final part, we discuss the possibility that in the Mollow spectrum nonlocality of electromagnetic interaction, which in other cases is hidden in the regularization and renormalization procedures, can manifest itself explicitly.

  10. Contrasting Effects of Cattle Grazing Intensity on Upland-Nesting Duck Production at Nest and Field Scales in the Aspen Parkland, Canada

    Directory of Open Access Journals (Sweden)

    Jeffrey M. Warren

    2008-12-01

    Full Text Available The Aspen Parkland of Canada is one of the most important breeding areas for temperate nesting ducks in North America. The region is dominated by agricultural land use, with approximately 9.3 million ha in pasture land for cattle grazing. However, the effects of using land for cattle grazing on upland-nesting duck production are poorly understood. The current study was undertaken during 2001 and 2002 to investigate how nest density and nesting success of upland-nesting ducks varied with respect to the intensity of cattle grazing in the Aspen Parkland. We predicted that the removal and trampling of vegetation through cattle grazing would reduce duck nest density. Both positive and negative responses of duck nesting success to grazing have been reported in previous studies, leading us to test competing hypotheses that nesting success would (1 decline linearly with grazing intensity or (2 peak at moderate levels of grazing. Nearly 3300 ha of upland cover were searched during the study. Despite extensive and severe drought, nest searches located 302 duck nests. As predicted, nest density was higher in fields with lower grazing intensity and higher pasture health scores. A lightly grazed field with a pasture score of 85 out of a possible 100 was predicted to have 16.1 nests/100 ha (95% CI = 11.7-22.1, more than five times the predicted nest density of a heavily grazed field with a pasture score of 58 (3.3 nests/100 ha, 95% CI = 2.2-4.5. Nesting success was positively related to nest-site vegetation density across most levels of grazing intensity studied, supporting our hypothesis that reductions in vegetation caused by grazing would negatively affect nesting success. However, nesting success increased with grazing intensity at the field scale. For example, nesting success for a well-concealed nest in a lightly grazed field was 11.6% (95% CI = 3.6-25.0%, whereas nesting success for a nest with the same level of nest-site vegetation in a heavily grazed

  11. New Late Neolithic (c. 7000-5000 BC) archeointensity data from Syria. Reconstructing 9000 years of archeomagnetic field intensity variations in the Middle East

    Science.gov (United States)

    Gallet, Yves; Molist Montaña, Miquel; Genevey, Agnès; Clop García, Xavier; Thébault, Erwan; Gómez Bach, Anna; Le Goff, Maxime; Robert, Béatrice; Nachasova, Inga

    2015-01-01

    We present new archeomagnetic intensity data from two Late Neolithic archeological sites (Tell Halula and Tell Masaïkh) in Syria. These data, from 24 groups of potsherds encompassing 15 different time levels, are obtained using the Triaxe experimental protocol, which takes into account both the thermoremanent magnetization anisotropy and cooling rate effects on intensity determinations. They allow us to recover the geomagnetic intensity variations in the Middle East, between ∼7000 BC and ∼5000 BC, i.e. during the so-called pre-Halaf, proto-Halaf, Halaf and Halaf-Ubaid Transitional cultural phases. The data are compared with previous archeointensity results of similar ages from Northern Iraq (Yarim Tepe II and Tell Sotto) and Bulgaria. We find that previous dating of the Iraqi material was in error. When corrected, all northern Mesopotamian data show a relatively good consistency and also reasonably match with the Bulgarian archeointensity dataset. Using a compilation of available data, we construct a geomagnetic field intensity variation curve for the Middle East encompassing the past 9000 years, which makes it presently the longest known regional archeomagnetic intensity record. We further use this compilation to constrain variations in dipole field moment over most of the Holocene. In particular, we discuss the possibility that a significant dipole moment maximum occurred during the third millennium BC, which cannot easily be identified in available time-varying global geomagnetic field reconstructions.

  12. Tumour Cell Membrane Poration and Ablation by Pulsed Low-Intensity Electric Field with Carbon Nanotubes

    Directory of Open Access Journals (Sweden)

    Lijun Wang

    2015-03-01

    Full Text Available Electroporation is a physical method to increase permeabilization of cell membrane by electrical pulses. Carbon nanotubes (CNTs can potentially act like “lighting rods” or exhibit direct physical force on cell membrane under alternating electromagnetic fields thus reducing the required field strength. A cell poration/ablation system was built for exploring these effects of CNTs in which two-electrode sets were constructed and two perpendicular electric fields could be generated sequentially. By applying this system to breast cancer cells in the presence of multi-walled CNTs (MWCNTs, the effective pulse amplitude was reduced to 50 V/cm (main field/15 V/cm (alignment field at the optimized pulse frequency (5 Hz of 500 pulses. Under these conditions instant cell membrane permeabilization was increased to 38.62%, 2.77-fold higher than that without CNTs. Moreover, we also observed irreversible electroporation occurred under these conditions, such that only 39.23% of the cells were viable 24 h post treatment, in contrast to 87.01% cell viability without presence of CNTs. These results indicate that CNT-enhanced electroporation has the potential for tumour cell ablation by significantly lower electric fields than that in conventional electroporation therapy thus avoiding potential risks associated with the use of high intensity electric pulses.

  13. Comparison of high-order-harmonic generation on single-layer graphene flakes with armchair and zigzag types in an intense laser field

    Science.gov (United States)

    Guo, Jing; Zhong, Huiying; Yan, Bing; Chen, Yi; Jiang, Yuanfei; Wang, Ting-feng; Shao, Jun-feng; Zheng, Chang-bin; Liu, Xue-Shen

    2016-03-01

    The high-order-harmonic generation (HHG) of graphene in an intense laser field is investigated using the strong-field approximation method. The initial wave function is presented by gaussian and gamess software. The molecular structure along the x and y axes represents different types of graphene: armchair and zigzag, respectively. The results show that the HHG intensity of the armchair type of graphene is two magnitudes higher than that of the zigzag type in the plateau area. The ionization yield and electron density distribution are also presented to further explain this difference. Finally, by superposing a properly selected range of harmonics, a main pulse with the duration of 91 and 99 attoseconds accompanied by weak satellite pulses will be generated for the case of armchair and zigzag graphene, respectively, and the corresponding intensity from armchair graphene is much higher than that from zigzag graphene.

  14. THE FIXED MEANS: AN ACCOUNTING CONCEPT OR A FISCAL ONE?

    Directory of Open Access Journals (Sweden)

    Aristita Rotila

    2014-12-01

    Full Text Available Starting from the analysis of the accounting regulations applied to the economic operators, in their evolution after 1989, the specific accounting regulations for certain fields of activity and for certain categories of entities and starting from the fiscal rules and some paper works, we want to clarify in this study some conceptual issues referring to the fixed means, the tangible fixed assets components, of impacting financial information, respectively, on taxation. Is the concept of “fixed means” an accounting one or a fiscal one? We try to answer to this question and also to formulate an opinion on whether it is longer justified to use this concept in the accounting vocabulary and hence in the production of information presented in financial statements or in the fiscal vocabulary and implicitly in the work done to produce information provided in the fiscal reports.

  15. The influence of fixed-route taxi on road accidents and air pollution

    Directory of Open Access Journals (Sweden)

    V. Fedotov

    2006-03-01

    Full Text Available The development of market economy in Russia expands the need for movement of groups of people of large mega cities on time to a place at simultaneous reduction of the number of groups with identical purposes. Therefore for many cities a wide use of fixed-route taxis the service of passengers at a constant increase of the numbers of routes and the numbers of transport units was characteristic. At the certain intensity of the movement of fixed-route taxis on separate sites of city highways the transport stream and the changing quality of environment raises the risk of road accident and becomes ecologically unsafe. The results of the estimation of the negative influence of fixed-route taxis in comparison with other categories of vehicles are presented. The research was made on city highways running through the zones with a greater number of cultural and community places, shopping centers and administrative establishments. Perspective ways of the increase of traffic safety and the decrease of concentration of harmful emissions are offered.

  16. Efficacy and Safety of a Fixed Combination of Tramadol and Paracetamol (Acetaminophen) as Pain Therapy Within Palliative Medicine

    Science.gov (United States)

    Husic, Samir; Izic, Senad; Matic, Srecko; Sukalo, Aziz

    2015-01-01

    Goal: The goal of the research was to determine the efficacy of a fixed combination of tramadol and paracetamol (acetaminophen) in the treatment of pain of patients with the advanced stage of cancer. Material and methods: A prospective study was conducted at the Center for Palliative Care, University Clinical Center Tuzla, Bosnia and Herzegovina, from January 1st to December 31st 2013. A total of 353 patients who were treated with a fixed combination of tramadol and acetaminophen (37.5 mg and 325 mg) at the initial dosage 3x1 tablet (112.5 mg tramadol and 975 mg acetaminophen) for pain intensity 4, up to 4x2 tablets (300 mg of tramadol and 2600 mg paracetamol) for pain intensity 7 and 8. If the patient during previous day has two or more pain episodes that required a “rescue dose” of tramadol, increased was the dose of fixed combination tramadol and acetaminophen to a maximum of 8 tablets daily (300 mg of tramadol and 2600 mg paracetamol). Statistical analysis was performed by biomedical software MedCalc for Windows version 9.4.2.0. The difference was considered significant for Ppain score was significantly lower (ppain with a fixed combination tramadol and acetaminophen, were found in 29.18% of patients, with a predominance of nausea and vomiting. Conclusion: Fixed combination of tramadol and acetaminophen can be used as an effective combination in the treatment of chronic cancer pain, with frequent dose evaluation and mild side effects. PMID:25870531

  17. 331 cases of clinically node-negative supraglottic carcinoma of the larynx: a study of a modest size fixed field radiotherapy approach

    International Nuclear Information System (INIS)

    Sykes, Andrew J.; Slevin, Nicholas J.; Gupta, Nirmal K.; Brewster, Allison E.

    2000-01-01

    Purpose: For node-negative supraglottic carcinoma of the larynx, radiotherapy with surgery in reserve commonly provides very good results in terms of both local control and survival, while preserving function. However uncertainty exists over the treatment of the node-negative neck. Elective whole neck radiotherapy, while effective, may be associated with significant morbidity. The purpose of this study was to examine our practice of treating a modest size, fixed field to a high biologically effective dose and compare it with the patterns of recurrence from other centers that use different dose/volume approaches. Methods and Materials: Over a 10-year period 331 patients with node-negative supraglottic carcinoma of the larynx were treated with radiotherapy at the Christie Hospital Manchester. Patients were treated with doses of 50-55 Gy in 16 fractions over 3 weeks. Data were collected retrospectively for local and regional control, survival, and morbidity. Results: Overall local control, after surgical salvage in 17 cases, was 79% (T1-92%, T2-81%, T3-67%, T4-73%). Overall regional lymph node control, after surgical salvage in 13 cases, was 84% (T1-91%, T2-88%, T3-81%, T4-72%). Five-year crude survival was 50%, but after correcting for intercurrent deaths was 70% (T1-83%, T2-78%, T3-53%, T4-61%). Serious morbidity requiring surgery was seen in 7 cases (2.1%) and was related to prescribed dose (50 Gy-0%, 52.5 Gy-1.3%, 55 Gy-3.4%). Discussion: Our results confirm that treating a modest size, fixed field to a high biologically effective dose is highly effective. It enables preservation of the larynx in most cases, with acceptable regional control and no loss of survival compared to whole neck radiotherapy regimes

  18. Laboratory and Field-Based Evaluation of Short-Term Effort with Maximal Intensity in Individuals with Intellectual Disabilities

    Directory of Open Access Journals (Sweden)

    Lencse-Mucha Judit

    2015-12-01

    Full Text Available Results of previous studies have not indicated clearly which tests should be used to assess short-term efforts of people with intellectual disabilities. Thus, the aim of the present study was to evaluate laboratory and field-based tests of short-term effort with maximal intensity of subjects with intellectual disabilities. Twenty four people with intellectual disability, who trained soccer, participated in this study. The 30 s Wingate test and additionally an 8 s test with maximum intensity were performed on a bicycle ergometer. The fatigue index, maximal and mean power, relative maximal and relative mean power were measured. Overall, nine field-based tests were conducted: 5, 10 and 20 m sprints, a 20 m shuttle run, a seated medicine ball throw, a bent arm hang test, a standing broad jump, sit-ups and a hand grip test. The reliability of the 30 s and 8 s Wingate tests for subjects with intellectual disability was confirmed. Significant correlation was observed for mean power between the 30 s and 8 s tests on the bicycle ergometer at a moderate level (r >0.4. Moreover, significant correlations were indicated between the results of laboratory tests and field tests, such as the 20 m sprint, the 20 m shuttle run, the standing long jump and the medicine ball throw. The strongest correlation was in the medicine ball throw. The 30 s Wingate test is a reliable test assessing maximal effort in subjects with intellectual disability. The results of this research confirmed that the 8 s test on a bicycle ergometer had a moderate correlation with the 30 s Wingate test in this population, thus, this comparison needs further investigation to examine alternativeness of the 8 s to 30 s Wingate tests. The non-laboratory tests could be used to indirectly assess performance in short-term efforts with maximal intensity.

  19. Laboratory and Field-Based Evaluation of Short-Term Effort with Maximal Intensity in Individuals with Intellectual Disabilities

    Science.gov (United States)

    Lencse-Mucha, Judit; Molik, Bartosz; Marszałek, Jolanta; Kaźmierska-Kowalewska, Kalina; Ogonowska-Słodownik, Anna

    2015-01-01

    Results of previous studies have not indicated clearly which tests should be used to assess short-term efforts of people with intellectual disabilities. Thus, the aim of the present study was to evaluate laboratory and field-based tests of short-term effort with maximal intensity of subjects with intellectual disabilities. Twenty four people with intellectual disability, who trained soccer, participated in this study. The 30 s Wingate test and additionally an 8 s test with maximum intensity were performed on a bicycle ergometer. The fatigue index, maximal and mean power, relative maximal and relative mean power were measured. Overall, nine field-based tests were conducted: 5, 10 and 20 m sprints, a 20 m shuttle run, a seated medicine ball throw, a bent arm hang test, a standing broad jump, sit-ups and a hand grip test. The reliability of the 30 s and 8 s Wingate tests for subjects with intellectual disability was confirmed. Significant correlation was observed for mean power between the 30 s and 8 s tests on the bicycle ergometer at a moderate level (r >0.4). Moreover, significant correlations were indicated between the results of laboratory tests and field tests, such as the 20 m sprint, the 20 m shuttle run, the standing long jump and the medicine ball throw. The strongest correlation was in the medicine ball throw. The 30 s Wingate test is a reliable test assessing maximal effort in subjects with intellectual disability. The results of this research confirmed that the 8 s test on a bicycle ergometer had a moderate correlation with the 30 s Wingate test in this population, thus, this comparison needs further investigation to examine alternativeness of the 8 s to 30 s Wingate tests. The non-laboratory tests could be used to indirectly assess performance in short-term efforts with maximal intensity. PMID:26834874

  20. Pulse low-intensity electromagnetic field as prophylaxis of heterotopic ossification in patients with traumatic spinal cord injury

    Directory of Open Access Journals (Sweden)

    Đurović Aleksandar

    2009-01-01

    Full Text Available Background/Aim. Heterotopic ossification (HO is an important complication of head and spinal cord injuries (SCI. Pulse low-intensity electromagnetic field (PLIMF therapy increases blood flow to an area of pain or inflammation, bringing more oxygen to that area and helps to remove toxic substances. The aim of this study was to determine the effect of PLIMF as prophylaxis of HO in patients with SCI. Methods. This prospective random control clinical study included 29 patients with traumatic SCI. The patients were randomly divided into experimental (n = 14 and control group (n = 15. The patients in the experimental group, besides exercise and range of motion therapy, were treated by PLIMF of the following characteristics: induction of 10 mT, frequency of 25 Hz and duration of 30 min. Pulse low-intensity electromagnetic field therapy started in the 7th week after the injury and lasted 4 weeks. The presence or absence of HO around the patients hips we checked by a plane radiography and Brookers classification. Functional capabilities and motor impairment were checked by Functional Independent Measure (FIM, Barthel index and American Spinal Injury Association (ASIA impairment class. Statistic analysis included Kolmogorov-Smirnov test, Shapiro-Wilk test, Mann Whitney Exact test, Exact Wilcoxon signed rank test and Fischer Exact test. Statistical significance was set up to p < 0.05. Results. At the end of the treatment no patient from the experimental group had HO. In the control group, five patients (33.3% had HO. At the end of the treatment the majority of the patients from the experimental group (57.14% moved from ASIA-A to ASIA-B class. Conclusion. Pulse low-intensity electromagnetic field therapy could help as prophylaxis of HO in patients with traumatic SCI.

  1. [XIGDUO - fixed combination of the active ingredients dapagliflozin and metformin].

    Science.gov (United States)

    Edelsberger, Tomáš

    2016-03-01

    Fixed dose combination of two different drugs in the same or related indications are successfully used in various medical fields including diabetology. This article deals with the combination therapy comprising metformin and dapagliflozin in a single preparation, molecules affecting different pathophysiological mechanisms of type 2 diabetes, particularly insulin resistance and increased glucose reabsorption in the kidney. Most patients with type 2 diabetes does not achieve target glycemic control when treated with single antidiabetics and need for proper control of diabetes combination of several different drugs. Using the fixed combination leads to improved patients adherence and utilization of the full therapeutic potential of selected drugs.

  2. Characterizing fixed points

    Directory of Open Access Journals (Sweden)

    Sanjo Zlobec

    2017-04-01

    Full Text Available A set of sufficient conditions which guarantee the existence of a point x⋆ such that f(x⋆ = x⋆ is called a "fixed point theorem". Many such theorems are named after well-known mathematicians and economists. Fixed point theorems are among most useful ones in applied mathematics, especially in economics and game theory. Particularly important theorem in these areas is Kakutani's fixed point theorem which ensures existence of fixed point for point-to-set mappings, e.g., [2, 3, 4]. John Nash developed and applied Kakutani's ideas to prove the existence of (what became known as "Nash equilibrium" for finite games with mixed strategies for any number of players. This work earned him a Nobel Prize in Economics that he shared with two mathematicians. Nash's life was dramatized in the movie "Beautiful Mind" in 2001. In this paper, we approach the system f(x = x differently. Instead of studying existence of its solutions our objective is to determine conditions which are both necessary and sufficient that an arbitrary point x⋆ is a fixed point, i.e., that it satisfies f(x⋆ = x⋆. The existence of solutions for continuous function f of the single variable is easy to establish using the Intermediate Value Theorem of Calculus. However, characterizing fixed points x⋆, i.e., providing answers to the question of finding both necessary and sufficient conditions for an arbitrary given x⋆ to satisfy f(x⋆ = x⋆, is not simple even for functions of the single variable. It is possible that constructive answers do not exist. Our objective is to find them. Our work may require some less familiar tools. One of these might be the "quadratic envelope characterization of zero-derivative point" recalled in the next section. The results are taken from the author's current research project "Studying the Essence of Fixed Points". They are believed to be original. The author has received several feedbacks on the preliminary report and on parts of the project

  3. K-FIX: a computer program for transient, two-dimensional, two-fluid flow

    International Nuclear Information System (INIS)

    Rivard, W.C.; Torrey, M.D.

    1976-11-01

    The transient dynamics of two-dimensional, two-phase flow with interfacial exchange are calculated at all flow speeds using the K-FIX program. Each phase is described in terms of its own density, velocity, and temperature. The six field equations for the two phases couple through mass, momentum, and energy exchange. The equations are solved using an Eulerian finite difference technique that implicitly couples the rates of phase transitions, momentum, and energy exchange to determination of the pressure, density, and velocity fields. The implicit solution is accomplished iteratively without linearizing the equations, thus eliminating the need for numerous derivative terms. K-FIX is written in a highly modular form to be easily adaptable to a variety of problems. It is applied to growth of an isolated steam bubble in a superheated water pool

  4. Free-time and fixed end-point multi-target optimal control theory: Application to quantum computing

    International Nuclear Information System (INIS)

    Mishima, K.; Yamashita, K.

    2011-01-01

    Graphical abstract: The two-state Deutsch-Jozsa algortihm used to demonstrate the utility of free-time and fixed-end point multi-target optimal control theory. Research highlights: → Free-time and fixed-end point multi-target optimal control theory (FRFP-MTOCT) was constructed. → The features of our theory include optimization of the external time-dependent perturbations with high transition probabilities, that of the temporal duration, the monotonic convergence, and the ability to optimize multiple-laser pulses simultaneously. → The advantage of the theory and a comparison with conventional fixed-time and fixed end-point multi-target optimal control theory (FIFP-MTOCT) are presented by comparing data calculated using the present theory with those published previously [K. Mishima, K. Yamashita, Chem. Phys. 361 (2009) 106]. → The qubit system of our interest consists of two polar NaCl molecules coupled by dipole-dipole interaction. → The calculation examples show that our theory is useful for minor adjustment of the external fields. - Abstract: An extension of free-time and fixed end-point optimal control theory (FRFP-OCT) to monotonically convergent free-time and fixed end-point multi-target optimal control theory (FRFP-MTOCT) is presented. The features of our theory include optimization of the external time-dependent perturbations with high transition probabilities, that of the temporal duration, the monotonic convergence, and the ability to optimize multiple-laser pulses simultaneously. The advantage of the theory and a comparison with conventional fixed-time and fixed end-point multi-target optimal control theory (FIFP-MTOCT) are presented by comparing data calculated using the present theory with those published previously [K. Mishima, K. Yamashita, Chem. Phys. 361, (2009), 106]. The qubit system of our interest consists of two polar NaCl molecules coupled by dipole-dipole interaction. The calculation examples show that our theory is useful for minor

  5. Effects of 60 Hz electric fields on operant and social stress behaviors of nonhuman primates

    Energy Technology Data Exchange (ETDEWEB)

    Rogers, W.R.; Coelho, A.M. Jr.; Easley, S.P.; Lucas, J.H.; Moore, G.T.; Orr, J.L.; Smith, H.D.; Taylor, L.L.; Tuttle, M.L.

    1987-10-24

    The objective of this program is to investigate, using the baboon as a nonhuman primate surrogate for the human, possible behavioral effects associated with exposure to high intensity 60 Hz electric fields. Results from this program, along with information from experiments conducted elsewhere, will be used by the Department of Energy (DOE) to estimate and evaluate the likelihood of deleterious consequences resulting from exposure of humans to the electric fields associated with power transmission over high voltage lines. This research program consists of four major research projects, all of which have been successfully completed. The first project evaluated the potentially aversive character of exposure to 60 Hz electric fields by determining the threshold intensity that produces escape or avoidance responses. The second project estimated the threshold intensity for detection threshold was 12 kV/m; the range of means was 6 to 16 kV/m. The third project assessed, in separate experiments conducted at 30 and 60 kV/m, effects of chronic exposure to electric fields on the performance of two operant conditioning tasks, fixed ratio (FR), and differential reinforcement of low rate (DRL). In the same two experiments, the fourth project investigated, using the systematic quantitative observational sampling methods of primatology, the possible stress-inducing effects of chronic exposure to 60 Hz electric fields on the behavior of baboons living in small social groups. 131 refs., 87 figs., 123 tabs.

  6. Numerical investigation of symmetry breaking and critical behavior of the acoustic streaming field in high-intensity discharge lamps

    International Nuclear Information System (INIS)

    Baumann, Bernd; Schwieger, Joerg; Wolff, Marcus; Manders, Freddy; Suijker, Jos

    2015-01-01

    For energy efficiency and material cost reduction it is preferred to drive high-intensity discharge lamps at frequencies of approximately 300 kHz. However, operating lamps at these high frequencies bears the risk of stimulating acoustic resonances inside the arc tube, which can result in low frequency light flicker and even lamp destruction. The acoustic streaming effect has been identified as the link between high frequency resonances and low frequency flicker. A highly coupled three-dimensional multiphysics model has been set up to calculate the acoustic streaming velocity field inside the arc tube of high-intensity discharge lamps. It has been found that the velocity field suffers a phase transition to an asymmetrical state at a critical acoustic streaming force. In certain respects the system behaves similar to a ferromagnet near the Curie point. It is discussed how the model allows to investigate the light flicker phenomenon. Concerning computer resources the procedure is considerably less demanding than a direct approach with a transient model. (paper)

  7. Linear fixed-field multipass arcs for recirculating linear accelerators

    Directory of Open Access Journals (Sweden)

    V. S. Morozov

    2012-06-01

    Full Text Available Recirculating linear accelerators (RLA’s provide a compact and efficient way of accelerating particle beams to medium and high energies by reusing the same linac for multiple passes. In the conventional scheme, after each pass, the different energy beams coming out of the linac are separated and directed into appropriate arcs for recirculation, with each pass requiring a separate fixed-energy arc. In this paper we present a concept of an RLA return arc based on linear combined-function magnets, in which two and potentially more consecutive passes with very different energies are transported through the same string of magnets. By adjusting the dipole and quadrupole components of the constituting linear combined-function magnets, the arc is designed to be achromatic and to have zero initial and final reference orbit offsets for all transported beam energies. We demonstrate the concept by developing a design for a droplet-shaped return arc for a dogbone RLA capable of transporting two beam passes with momenta different by a factor of 2. We present the results of tracking simulations of the two passes and lay out the path to end-to-end design and simulation of a complete dogbone RLA.

  8. Ripple structure in degenerate electron-gas-dominated stars with intense magnetic fields

    International Nuclear Information System (INIS)

    Wilkes, J.M.

    1988-01-01

    We investigate the implications of ripple structure, i.e., the appearance of oscillating and discontinuous slopes in the thermodynamic variables of a degenerate electron gas, for models of magnetic stars dominated by such a gas. We also examine the effects in these models of the recent discovery by R.L. Ingraham that strong magnetic fields can inhibit degeneracy in an electron gas. The thesis begins with the presentation of a theory of self-gravitating fluids based upon recent work in modern continuum mechanics and thermodynamics on electromagnetic interactions in continuous media. Our theory predicts as a general result the existence of an anisotropic pressure tensor in such a fluid, which is in agreement with the one known to occur in the special case of a free-electron gas in a magnetic field. Furthermore, the theory clarifies the relation between this pressure tensor and the scalar thermodynamic pressure, and provides an unambiguous prescription for the incorporation of these and other variables, such as the magnetization, in the fluid equations of motion. We next show that under suitable assumptions the usual thermodynamic equilibrium and stability conditions for such a fluid follow from the general theory. A definition of local thermodynamic equilibrium is then introduced, and used to develop a local equilibrium statistical mechanics of ideal gases. From this we derive the equations of state for an ideal free-electron gas in a magnetic field. Finally, these equations of state are used in a simplified system of structure equations for model stars in intense magnetic fields. We find the effects of degeneracy-inhibition to be small in these simple models

  9. Infrared fixed points and fixed lines in the top-bottom-tau sector in supersymmetric grand unification

    International Nuclear Information System (INIS)

    Schrempp, B.

    1994-10-01

    The two loop 'top-down' renormalization group flow for the top, bottom and tau Yukawa couplings, from μ=M GUT ≅O(10 16 GeV) to μ≅m t , is explored in the framework of supersymmetric grand unification; reproduction of the physical bottom and tau masses is required. Instead of following the recent trend of implementing exact Yukawa coupling unification i) a search for infrared (IR) fixed lines and fixed points in the m t pole -tan β plane is performed and ii) the extent to which these imply approximate Yukawa unification is determined. In the m t pole -tan β plane two IR fixed lines, intersecting in an IR fixed point, are located. The more attractive fixed line has a branch of almost constant top mass, m t pole ≅168≅180 GeV (close to the experimental value), for the large interval 2.5 GUT approximately. The less attractive fixed line as well as the fixed point at m t pole ≅170 GeV, tan β≅55 implement approximate top-bottom Yukawa unification at all scales μ. The renormalization group flow is attracted towards the IR fixed point by way of the more attractive IR fixed line. The fixed point and lines are distinct from the much quoted effective IR fixed point m t pole ≅O(200 GeV) sin β. (orig.)

  10. Determination of acoustic fields in acidic suspensions of peanut shell during pretreatment with high-intensity ultrasound

    Directory of Open Access Journals (Sweden)

    Tiago Carregari Polachini

    Full Text Available Abstract The benefits of high-intensity ultrasound in diverse processes have stimulated many studies based on biomass pretreatment. In order to improve processes involving ultrasound, a calorimetric method has been widely used to measure the real power absorbed by the material as well as the cavitation effects. Peanut shells, a byproduct of peanut processing, were immersed in acidified aqueous solutions and submitted to an ultrasonic field. Acoustic power absorbed, acoustic intensity and power yield were obtained through specific heat determination and experimental data were modeled in different conditions. Specific heat values ranged from 3537.0 to 4190.6 J·kg-1·K-1, with lower values encountered for more concentrated biomass suspensions. The acoustic power transmitted and acoustic intensity varied linearly with the applied power and quadratically with solids concentration, reaching maximum values at higher applied nominal power and for less concentrated suspensions. A power yield of 82.7% was reached for dilute suspensions at 320 W, while 6.4% efficiency was observed for a concentrated suspension at low input energy (80 W.

  11. Physics with a high-intensity proton accelerator below 30 GeV

    International Nuclear Information System (INIS)

    Hoffman, C.M.

    1982-01-01

    The types of physics that would be pursued at a high-intensity, moderate-energy proton accelerator are discussed. The discussion is drawn from the deliberations of the 30-GeV subgroup of the Fixed-Target Group at this workshop

  12. Fixed point of the parabolic renormalization operator

    CERN Document Server

    Lanford III, Oscar E

    2014-01-01

    This monograph grew out of the authors' efforts to provide a natural geometric description for the class of maps invariant under parabolic renormalization and for the Inou-Shishikura fixed point itself as well as to carry out a computer-assisted study of the parabolic renormalization operator. It introduces a renormalization-invariant class of analytic maps with a maximal domain of analyticity and rigid covering properties and presents a numerical scheme for computing parabolic renormalization of a germ, which is used to compute the Inou-Shishikura renormalization fixed point.   Inside, readers will find a detailed introduction into the theory of parabolic bifurcation,  Fatou coordinates, Écalle-Voronin conjugacy invariants of parabolic germs, and the definition and basic properties of parabolic renormalization.   The systematic view of parabolic renormalization developed in the book and the numerical approach to its study will be interesting to both experts in the field as well as graduate students wishi...

  13. Chrome tannage using high-intensity ultrasonic field.

    Science.gov (United States)

    Mäntysalo, E; Marjoniemi, M; Kilpeläinen, M

    1997-04-01

    The process time in chrome tannage in leather making, using an elastic compression cycle followed by irradiation by high-intensity ultrasound, is quite short lasting only a few minutes, compared with a process time of several hours in modern chrome tannage. After ultrasonic irradiation, samples were basified in 17 h in chrome liquor at a pH of 4.0 and the shrinkage temperature was measured. The determination of the efficiency for the chrome liquor penetrating into the hides can be based on the steepness of the shrinkage temperature-processing time curve. An approximate value of 20 degrees C min(-1) can be evaluated for the initial slope of the curve when elastic compression and high-intensity ultrasonic irradiation is used, and a processing time of 2 min is required in chrome liquor (plus 17 h basification and 24 h storage time) to obtain leather stable to boiling. Usually, hides are kept in chrome liquor for 2 h.

  14. Perturbation theory for quantized string fields

    International Nuclear Information System (INIS)

    Thorn, C.B.; Florida Univ., Gainesville

    1987-01-01

    We discuss the problem of gauge fixing in string field theory. We show that BRST invariance requires the gauge-fixed action to contain terms cubic in the ghost... of ghost of ghost fields. The final BRST invariant gauge-fixed action for the gauge b 0 A=0 is extremely simple: with the proper interpretation (as given in this article), it is essentially the one anticipated earlier in the work of Giddings, Martinec, and Witten in their analysis of the BRST invariant world-sheet approach to string theory. We derive the Feynman rules from this action and explain in detail how the sum over sufaces of the BRST first-quantized string is reproduced. This result depends crucially on the correct assignment for the Grassmann character of the string field and its ghost... of ghost of ghost string fields. If all these fields are unified in a single string field Φ containing all ghost numbers, the requirements is that Φ be uniformly Grassmann odd. Finally, we do some sample calculations which provide some simple checks on our general results. (orig.)

  15. Influence of an Intensive, Field-Based Life Science Course on Preservice Teachers' Self-Efficacy for Environmental Science Teaching

    Science.gov (United States)

    Trauth-Nare, Amy

    2015-01-01

    Personal and professional experiences influence teachers' perceptions of their ability to implement environmental science curricula and to positively impact students' learning. The purpose of this study was twofold: to determine what influence, if any, an intensive field-based life science course and service learning had on preservice teachers'…

  16. Spatial electromagnetic field intensity modelling of global system for mobile communication base stations in the Istanbul Technical University Ayazaga campus area.

    Science.gov (United States)

    Boz, Kubra; Denli, Hayri Hakan

    2018-05-07

    The rapid development of the global system for mobile communication services and the consequent increased electromagnetic field (EMF) exposure to the human body have generated debate on the potential danger with respect to human health. The many research studies focused on this subject have, however, not provided any certain evidence about harmful consequences due to mobile communication systems. On the other hand, there are still views suggesting such exposure might affect the human body in different ways. To reduce such effects to a minimum, the International Commission on Non-Ionizing Radiation Protection (ICNIRP) has declared boundary values for the energy released by the base stations, which are the main source of the electromagnetic fields. These values are accepted by many countries in various parts of the world. The aim of this study was to create EMF intensity maps for the area covered by Istanbul Technical University (ITU) and find areas of potential risk with regard to health considering the current situation and future trends. In this study, the field intensities of electromagnetic signals issued at the frequencies of 900 and 1800 MHz were measured in V/m at 29 pre-specified survey points using a spectrum analyzer (Spectran HF-6065). Geographic information systems and spatial interpolation techniques were used to produce EMF intensity maps. Three different spatial interpolation methods, minimum mean square error, Radial Basis and Empirical Bayesian Kriging, were compared. The results were geographically analyzed and the measurements expressed as heat maps covering the study area. Using these maps, the values measured were compared with the EMF intensity standards issued by ICNIRP. The results showed that the exposure levels to the EMF intensities were all within the ICNIRP limits at the ITU study area. However, since the EMF intensity level with respect to human health is not known, it is not possible to confirm if these levels are safe or not.

  17. Spatial electromagnetic field intensity modelling of global system for mobile communication base stations in the Istanbul Technical University Ayazaga campus area

    Directory of Open Access Journals (Sweden)

    Kubra Boz

    2018-05-01

    Full Text Available The rapid development of the global system for mobile communication services and the consequent increased electromagnetic field (EMF exposure to the human body have generated debate on the potential danger with respect to human health. The many research studies focused on this subject have, however, not provided any certain evidence about harmful consequences due to mobile communication systems. On the other hand, there are still views suggesting such exposure might affect the human body in different ways. To reduce such effects to a minimum, the International Commission on Non-Ionizing Radiation Protection (ICNIRP has declared boundary values for the energy released by the base stations, which are the main source of the electromagnetic fields. These values are accepted by many countries in various parts of the world. The aim of this study was to create EMF intensity maps for the area covered by Istanbul Technical University (ITU and find areas of potential risk with regard to health considering the current situation and future trends. In this study, the field intensities of electromagnetic signals issued at the frequencies of 900 and 1800 MHz were measured in V/m at 29 pre-specified survey points using a spectrum analyzer (Spectran HF-6065. Geographic information systems and spatial interpolation techniques were used to produce EMF intensity maps. Three different spatial interpolation methods, minimum mean square error, Radial Basis and Empirical Bayesian Kriging, were compared. The results were geographically analyzed and the measurements expressed as heat maps covering the study area. Using these maps, the values measured were compared with the EMF intensity standards issued by ICNIRP. The results showed that the exposure levels to the EMF intensities were all within the ICNIRP limits at the ITU study area. However, since the EMF intensity level with respect to human health is not known, it is not possible to confirm if these levels are safe

  18. Near resonant absorption by atoms in intense, fluctuating fields: [Progress report

    International Nuclear Information System (INIS)

    1989-01-01

    During the present grant period preparations for photon echo studies of the role of phase fluctuations of an optical driving field resonant with the 1 S 0 - 3 P 1 transition in 174 Yb are moving forward. This experimental study emphasizes the role of fluctuations as a decorrelating mechanism on a phased array of excited atoms. Improvements in laser stabilization and in the quality of the fluctuation spectrum have been carried out and the first spectroscopic measurements will be carried out during this grant year. In response to an important recent theoretical study we have also applied the phase fluctuation synthesizing capability to the study of the atomic sodium resonance fluorescence line profile, driven by a phase fluctuating laser. The measured fluctuations in the fluorescence, characterized in terms of the standard deviation of the fluorescence intensity, have an unexpected and strong dependence on detuning of the driving laser

  19. Fourth Order Nonlinear Intensity and the corresponding Refractive ...

    African Journals Online (AJOL)

    Nonlinear effects occur whenever the optical fields associated with one or more intense light such as from laser beams propagating in a crystal are large enough to produce polarization fields. This paper describes how the fourth order nonlinear intensity and the corresponding effective refractive index that is intensity ...

  20. Field grown Acacia Mangium: how intensive is root growth?

    International Nuclear Information System (INIS)

    Wan Rasidah Kadir; Azizol Abdul Kadir; Van Cleemput, O.; Zaharah Abdul Rahman

    1998-01-01

    Under rainfed conditions, root development of trees can be very unpredictable and variable, depending on the amount and distribution of rainfall received. This becomes more critical when the rainfall is seasonal and the soil has a high clay content. Our investigation dealt with the root development of Acacia mangium established as plantation forest on a soil with heavy clay texture in Kemasul Forest Reserve, Malaysia. The distribution of active roots was measured at 9- and 21- month-old plantations using the radioactive P injection method. Growth at different distances from the tree base and at different soil depths was studied. After nine months of field planting, we found that roots were mostly concentrated at the surface within 1000 mm distance from the tree base. At one year after the first measurement, roots were traced as far as 6400 mm away. A large part of these roots, however, were detected within 3700 mm distance in the upper 300 mm soil. At this stage, roots can still did not go deeper than 450 mm depth, probably due to the high clay content at lower depth and low pH. This rapid root growth indicates that below-ground competition can be very intense if this species is established as a mixed-species plantation

  1. General Series Solutions for Stresses and Displacements in an Inner-fixed Ring

    Science.gov (United States)

    Jiao, Yongshu; Liu, Shuo; Qi, Dexuan

    2018-03-01

    The general series solution approach is provided to get the stress and displacement fields in the inner-fixed ring. After choosing an Airy stress function in series form, stresses are expressed by infinite coefficients. Displacements are obtained by integrating the geometric equations. For an inner-fixed ring, the arbitrary loads acting on outer edge are extended into two sets of Fourier series. The zero displacement boundary conditions on inner surface are utilized. Then the stress (and displacement) coefficients are expressed by loading coefficients. A numerical example shows the validity of this approach.

  2. Incremental Nonlinear Dynamic Inversion and Multihole Pressure Probes for Disturbance Rejection Control of Fixed-wing Micro Air Vehicles

    NARCIS (Netherlands)

    Smeur, E.J.J.; Remes, B.D.W.; de Wagter, C.; Chu, Q.; J.-M. Moschetta G. Hattenberger, H. de Plinval

    2017-01-01

    Maintaining stable flight during high turbulence intensities is challenging for fixed-wing micro air vehicles (MAV). Two methods are proposed
    to improve the disturbance rejection performance of the MAV: incremental nonlinear dynamic inversion (INDI) control and phaseadvanced pitch probes. INDI

  3. Far-field detection of sub-wavelength Tetris without extra near-field metal parts based on phase prints of time-reversed fields with intensive background interference.

    Science.gov (United States)

    Chen, Yingming; Wang, Bing-Zhong

    2014-07-14

    Time-reversal (TR) phase prints are first used in far-field (FF) detection of sub-wavelength (SW) deformable scatterers without any extra metal structure positioned in the vicinity of the target. The 2D prints derive from discrete short-time Fourier transform of 1D TR electromagnetic (EM) signals. Because the time-invariant intensive background interference is effectively centralized by TR technique, the time-variant weak indication from FF SW scatterers can be highlighted. This method shows a different use of TR technique in which the focus peak of TR EM waves is unusually removed and the most useful information is conveyed by the other part.

  4. The intensely sweet herb, Lippia dulcis Trev.: historical uses, field inquiries, and constituents.

    Science.gov (United States)

    Compadre, C M; Robbins, E F; Kinghorn, A D

    1986-01-01

    Lippia dulcis Trev. (Verbenaceae) is the source of hernandulcin, the first known intensely sweet sesquiterpenoid, a compound which is a volatile oil constituent. The literature on the uses of this species, dating back to early colonial times in Mexico, has been examined. This plant began to be used as an official drug in the late 19th century for the treatment of coughs and bronchitis, and at that time preliminary phytochemical investigations were undertaken. Field work carried out in Mexico in 1981 and 1982 has indicated that there is still an active trade involving L. dulcis, which is sold primarily in market places for its alleged abortifacient activity. We have obtained no evidence, either from the literature or from field inquiries, that L. dulcis has ever been used for sweetening foods or beverages. Fourteen L. dulcis volatile oil constituents, mainly mono- and sesquiterpenoids, were identified by gas chromatography/mass spectrometry. The toxic compound, camphor, was found to constitute 53% w/w of the volatile oil of this species. The potential use of L. dulcis for the extraction of hernandulcin is discussed.

  5. Field-aligned currents observed by CHAMP during the intense 2003 geomagnetic storm events

    Directory of Open Access Journals (Sweden)

    H. Wang

    2006-03-01

    Full Text Available This study concentrates on the characteristics of field-aligned currents (FACs in both hemispheres during the extreme storms in October and November 2003. High-resolution CHAMP magnetic data reflect the dynamics of FACs during these geomagnetic storms, which are different from normal periods. The peak intensity and most equatorward location of FACs in response to the storm phases are examined separately for both hemispheres, as well as for the dayside and nightside. The corresponding large-scale FAC peak densities are, on average, enhanced by about a factor of 5 compared to the quiet-time FACs' strengths. And the FAC densities on the dayside are, on average, 2.5 times larger in the Southern (summer than in the Northern (winter Hemisphere, while the observed intensities on the nightside are comparable between the two hemispheres. Solar wind dynamic pressure is correlated with the FACs strength on the dayside. However, the latitudinal variations of the FACs are compared with the variations in Dst and the interplanetary magnetic field component Bz, in order to determine how these parameters control the large-scale FACs' configuration in the polar region. We have determined that (1 the equatorward shift of FACs on the dayside is directly controlled by the southward IMF Bz and there is a saturation of the latitudinal displacement for large value of negative Bz. In the winter hemisphere this saturation occurs at higher latitudes than in the summer hemisphere. (2 The equatorward expansion of the nightside FACs is delayed with respect to the solar wind input. The poleward recovery of FACs on the nightside is slower than on the dayside. The latitudinal variations on the nightside are better described by the variations of the Dst index. (3 The latitudinal width of the FAC region on the nightside spreads over a wide range of about 25° in latitude.

  6. Contribution of the pre-ionized H2 and the ionized H2+ subsystems to the HHG Spectra of H2 in intense laser fields

    Science.gov (United States)

    Iravani, Hossein; Sabzyan, Hassan; Vafaee, Mohsen; Buzari, Behnaz

    2018-04-01

    Contributions of the pre-ionized H2 (PI-H2) and ionized {{{H}}}2+ subsystems of the two-electron H2 system to its high-order harmonic generation in eight-cycle sin2-like ultrafast intense laser pulses are calculated and analyzed based on the solution of the time-dependent Schrödinger equation for the one-dimensional two-electronic H2 system with fixed nuclei. The laser pulses have λ = 390 and 532 nm wavelengths and I = 1 × 1014, 5 × 1014, 1 × 1015 and 5 × 1015 W cm‑2 intensities. It is found that at the two lower intensities, the PI-H2 subsystem dominantly produces the HHG spectra. However, at the two higher intensities, both PI-H2 and ionized {{{H}}}2+ subsystems contribute comparably to the HHG spectra. In the {{{H}}}2+ subsystem, the symmetry of the populations of {{{H}}}2+(I) and {{{H}}}2+(II) regions (left and right regions of {{{H}}}2+ subsystem) is broken by increasing the laser intensity. Complex patterns and even harmonics also appear at these two higher intensities. For instance, at 1 × 1015 W cm‑2 intensity and λ = 532 nm wavelength, the even harmonics are appeared near cutoff region. Interestingly, at 5 × 1015 W cm‑2 intensity and λ = 390 nm wavelength, the even harmonics replaced by the odd harmonics with red shift. At λ = 390 and 532 nm wavelengths and I = 1 × 1015 intensity, the two-electron cutoffs corresponding to nonsequential double-recombination with maximum return kinetic energy of 4.70Up are detected. The HHG spectra of the whole H2 system obtained with and without nuclear dynamics treated classically are approximately similar. However, at 1 × 1015 W cm‑2 intensity and λ = 532 nm wavelength, if we take into account nuclear dynamics, the even harmonics which are appeared near cutoff region, replaced by the odd harmonics with blue shift.

  7. MHD accelerated motion on a body placed symmetrical to the flow in the presence of transverse magnetic field fixed relative to the body

    International Nuclear Information System (INIS)

    Goyal, Mamta; Bansal, J.L.

    1993-01-01

    The growth of the boundary layer in an accelerated flow of an electricity conducting fluid past a symmetrical placed body in the presence of uniform transverse magnetic field fixed relative to the body has been studied. The boundary layer equation has been solved by using a method previously developed by Pozzi, based on expressing the unknown velocity in term of an error function and on using differential and integral relations obtained from the balance equation. As examples, the impulsive flow past a circular cylinder and uniformly accelerated flow over a flat plate are considered. It is found that the effect of the magnetic field is to decelerate the fluid motion which results in an earlier boundary layer separation in the impulsive flow past a circular cylinder. The results show a good agreement with the numerical data available in the literature. (author). 30 refs., 4 figs., 2 tabs

  8. Lineshape-asymmetry elimination in weak atomic transitions driven by an intense standing wave field

    Science.gov (United States)

    Antypas, Dionysios; Fabricant, Anne; Budker, Dmitry

    2018-05-01

    Owing to the ac-Stark effect, the lineshape of a weak optical transition in an atomic beam can become significantly distorted, when driven by an intense standing wave field. We use an Yb atomic beam to study the lineshape of the 6s2 1S0 -> 5d6s 3D1 transition, which is excited with light circulating in a Fabry-Perot resonator. We demonstrate two methods to avoid the distortion of the transition profile. Of these, one relies on the operation of the resonator in multiple longitudinal modes, and the other in multiple transverse modes.

  9. Compton scattering at high intensities

    Energy Technology Data Exchange (ETDEWEB)

    Heinzl, Thomas, E-mail: thomas.heinzl@plymouth.ac.u [University of Plymouth, School of Mathematics and Statistics, Drake Circus, Plymouth PL4 8AA (United Kingdom)

    2009-12-01

    High-intensity Compton scattering takes place when an electron beam is brought into collision with a high power laser. We briefly review the main intensity signatures using the formalism of strong-field quantum electrodynamics.

  10. Spectral fitting method for the solution of time-dependent Schroedinger equations: Applications to atoms in intense laser fields

    International Nuclear Information System (INIS)

    Qiao Haoxue; Cai Qingyu; Rao Jianguo; Li Baiwen

    2002-01-01

    A spectral fitting method for solving the time-dependent Schroedinger equation has been developed and applied to the atom in intense laser fields. This method allows us to obtain a highly accurate time-dependent wave function with a contribution from the high-order term of Δt. Moreover, the time-dependent wave function is determined on a small number of discrete mesh points, thus making calculations simple and accurate. This method is illustrated by computing wave functions and harmonic generation spectra of a model atom in laser fields

  11. Dosimetric comparison of field in field intensity-modulated radiotherapy technique with conformal radiotherapy techniques in breast cancer

    International Nuclear Information System (INIS)

    Ercan, T.; Alco, G.; Zengin, F.; Atilla, S.; Dincer, M.; Igdem, S.; Okkan, S.

    2010-01-01

    The aim of this study was to be able to implement the field-in-field intensity-modulated radiotherapy (FiF) technique in our daily practice for breast radiotherapy. To do this, we performed a dosimetric comparison. Treatment plans were produced for 20 consecutive patients. FiF plans and conformal radiotherapy (CRT) plans were compared for doses in the planning target volume (PTV), the dose homogeneity index (DHI), doses in irradiated soft tissue outside the target volume (SST), ipsilateral lung and heart doses for left breast irradiation, and the monitor unit counts (MU) required for treatment. Averaged values were compared using Student's t-test. With FiF, the DHI is improved 7.0% and 5.7%, respectively (P<0.0001) over the bilateral and lateral wedge CRT techniques. When the targeted volumes received 105% and 110% of the prescribed dose in the PTV were compared, significant decreases are found with the FiF technique. With the 105% dose, the SST, heart, and ipsilateral lung doses and the MU counts were also significantly lower with the FiF technique. The FiF technique, compared to CRT, for breast radiotherapy enables significantly better dose distribution in the PTV. Significant differences are also found for soft tissue volume, the ipsilateral lung dose, and the heart dose. Considering the decreased MUs needed for treatment, the FiF technique is preferred over tangential CRT. (author)

  12. Investigation and application of intense magnetic fields to welding of stainless steel tubes

    International Nuclear Information System (INIS)

    Gallizzi, H.

    1986-05-01

    Conventional welding techniques are not always suitable for stainless steels and for a number of other alloys with highly interesting properties, so that new methods must be developed. The purpose of this work was to experiment with a high velocity impact welding method using intense magnetic fields produced in a coil supplied by an electric pulse generator. Nondestructive and destructive tests demonstrated the quality of the resulting weld. Metallurgical analysis of the weld zone confirmed the properties characterizing a satisfactory weld in the solid state with interdiffusion. Potential industrial applications of this technique may be considered after upgrading the pulse generator utilized and in particular for joints of fuel pins for fast reactors [fr

  13. An application to model traffic intensity of agricultural machinery at field scale

    Science.gov (United States)

    Augustin, Katja; Kuhwald, Michael; Duttmann, Rainer

    2017-04-01

    Several soil-pressure-models deal with the impact of agricultural machines on soils. In many cases, these models were used for single spots and consider a static machine configuration. Therefore, a statement about the spatial distribution of soil compaction risk for entire working processes is limited. The aim of the study is the development of an application for the spatial modelling of traffic lanes from agricultural vehicles including wheel load, ground pressure and wheel passages at the field scale. The application is based on Open Source software, application and data formats, using python programming language. Minimum input parameters are GPS-positions, vehicles and tires (producer and model) and the tire inflation pressure. Five working processes were distinguished: soil tillage, manuring, plant protection, sowing and harvest. Currently, two different models (Diserens 2009, Rücknagel et al. 2015) were implemented to calculate the soil pressure. The application was tested at a study site in Lower Saxony, Germany. Since 2015, field traffic were recorded by RTK-GPS and used machine set ups were noted. Using these input information the traffic lanes, wheel load and soil pressure were calculated for all working processes. For instance, the maize harvest in 2016 with a crop chopper and one transport vehicle crossed about 55 % of the total field area. At some places the machines rolled over up to 46 times. Approximately 35 % of the total area was affected by wheel loads over 7 tons and soil pressures between 163 and 193 kPa. With the information about the spatial distribution of wheel passages, wheel load and soil pressure it is possible to identify hot spots of intensive field traffic. Additionally, the use of the application enables the analysis of soil compaction risk induced by agricultural machines for long- and short-term periods.

  14. Paul trap experiment to simulate intense nonneutral beam propagation through a periodic focusing field configuration

    CERN Document Server

    Davidson, R C; Majeski, R; Qin, H; Shvets, G

    2001-01-01

    This paper describes the design concept for a compact Paul trap experimental configuration that fully simulates the collective processes and nonlinear transverse dynamics of an intense charged particle beam that propagates over large distances through a periodic quadrupole magnetic field. To summarize, a long nonneutral plasma column (L>=r sub p) is confined axially by applied DC voltages V[circ]=const. on end cylinders at z=+-L, and transverse confinement is provided by segmented cylindrical electrodes (at radius r sub w) with applied oscillatory voltages +-V sub 0 (t) over 90 deg. segments. Because the transverse focusing force is similar in waveform to that produced by a discrete set of periodic quadrupole magnets in a frame moving with the beam, the Paul trap configuration offers the possibility of simulating intense beam propagation in a compact experimental facility. The nominal operating parameters in the experimental design are: barium ions (A=137); plasma column length 2L=2 m; wall radius r sub w =10...

  15. Fixed, object-specific intensity compensation for cone beam optical CT radiation dosimetry

    Science.gov (United States)

    Dekker, Kurtis H.; Hazarika, Rubin; Silveira, Matheus A.; Jordan, Kevin J.

    2018-03-01

    Optical cone beam computed tomography (CT) scanning of radiochromic gel dosimeters, using a CCD camera and a low stray light convergent source, provides fast, truly 3D radiation dosimetry with high accuracy. However, a key limiting factor in radiochromic gel dosimetry at large (⩾10 cm diameter) volumes is the initial attenuation of the dosimeters. It is not unusual to observe a 5–10×  difference in signal intensity through the dosimeter center versus through the surrounding medium in pre-irradiation images. Thus, all dosimetric information in a typical experiment is measured within the lower 10%–20% of the camera sensor’s range, and re-use of gels is often not possible due to a lack of transmission. To counteract this, in this note we describe a simple method to create source compensators by printing on transparent films. This technique, which is easily implemented and inexpensive, is an optical analogue to the bowtie filter in x-ray CT. We present transmission images and solution phantom reconstructions to demonstrate that (1) placing compensators beyond the focal zone of the imaging lens prevents high spatial frequency features of the printed films from generating reconstruction artifacts, and (2) object-specific compensation considerably reduces the range of intensities measured in projection images. This will improve the measurable dose range in optical CT dosimetry, and will enable imaging of larger gel volumes (∼15 cm diameter). Additionally, it should enable re-use of dosimeters by printing a new compensator for a second experiment.

  16. Sputtering and emission intensity of copper alloys in a Grimm glow lamp

    International Nuclear Information System (INIS)

    Yamada, T.; Kashima, J.; Naganuma, K.

    1981-01-01

    The effects of the metallurgical structure and the aluminium content of copper-aluminium alloy (1-12% Al) on the sputtering and intensities of spectral lines in the Grimm glow lamp are reported. The electrical current and sputtering yield decreased linearly with increasing aluminium content; the intensities of the Al I lines depended linearly on the amount of aluminium in the sputtering yield at a fixed voltage and argon pressure. The structure affected the intensities of the Al I and Cu I lines but not the intensity ratio (Al I/Cu I) for about 100 s after burn-off. Working curves for aluminium for samples of different structure were very similar. (Auth.)

  17. Emitter spacing effects on field emission properties of laser-treated single-walled carbon nanotube buckypapers

    Energy Technology Data Exchange (ETDEWEB)

    Chen Yiwen; Miao, Hsin-Yuan; Zhang Mei; Liang, Richard; Zhang, Chuck; Wang, Ben [High-Performance Materials Institute, Florida State University, Tallahassee, FL 32310 (United States); Lin, Ryan Jiyao, E-mail: kenymiao@thu.edu.tw, E-mail: mzhang@eng.fsu.edu [Department of Electrical and Computer Engineering, Rose-Hulman Institute of Technology, Terre Haute, IN 47803 (United States)

    2010-12-10

    Carbon nanotube (CNT) emitters on buckypaper were activated by laser treatment and their field emission properties were investigated. The pristine buckypapers and CNT emitters' height, diameter, and spacing were characterized through optical analysis. The emitter spacing directly impacted the emission results when the laser power and treatment times were fixed. The increasing emitter density increased the enhanced field emission current and luminance. However, a continuous and excessive increase of emitter density with spacing reduction generated the screening effect. As a result, the extended screening effect from the smaller spacing eventually crippled the field emission effectiveness. Luminance intensity and uniformity of field emission suggest that the highly effective buckypaper will have a density of 2500 emission spots cm{sup -2}, which presents an effective field enhancement factor of 3721 and a moderated screening effect of 0.005. Proper laser treatment is an effective post-treatment process for optimizing field emission, luminance, and durability performance for buckypaper cold cathodes.

  18. Long, partial-short, and special conformal fields

    Energy Technology Data Exchange (ETDEWEB)

    Metsaev, R.R. [Department of Theoretical Physics, P.N. Lebedev Physical Institute,Leninsky prospect 53, Moscow 119991 (Russian Federation)

    2016-05-17

    In the framework of metric-like approach, totally symmetric arbitrary spin bosonic conformal fields propagating in flat space-time are studied. Depending on the values of conformal dimension, spin, and dimension of space-time, we classify all conformal field as long, partial-short, short, and special conformal fields. An ordinary-derivative (second-derivative) Lagrangian formulation for such conformal fields is obtained. The ordinary-derivative Lagrangian formulation is realized by using double-traceless gauge fields, Stueckelberg fields, and auxiliary fields. Gauge-fixed Lagrangian invariant under global BRST transformations is obtained. The gauge-fixed BRST Lagrangian is used for the computation of partition functions for all conformal fields. Using the result for the partition functions, numbers of propagating D.o.F for the conformal fields are also found.

  19. Improvement of dose distributions in abutment regions of intensity modulated radiation therapy and electron fields

    International Nuclear Information System (INIS)

    Dogan, Nesrin; Leybovich, Leonid B.; Sethi, Anil; Emami, Bahman

    2002-01-01

    In recent years, intensity modulated radiation therapy (IMRT) is used to radiate tumors that are in close proximity to vital organs. Targets consisting of a deep-seated region followed by a superficial one may be treated with abutting photon and electron fields. However, no systematic study regarding matching of IMRT and electron beams was reported. In this work, a study of dose distributions in the abutment region between tomographic and step-and-shoot IMRT and electron fields was carried out. A method that significantly improves dose homogeneity between abutting tomographic IMRT and electron fields was developed and tested. In this method, a target region that is covered by IMRT was extended into the superficial target area by ∼2.0 cm. The length and shape of IMRT target extension was chosen such that high isodose lines bent away from the region treated by the electrons. This reduced the magnitude of hot spots caused by the 'bulging effect' of electron field penumbra. To account for the uncertainties in positioning of the IMRT and electron fields, electron field penumbra was modified using conventional (photon) multileaf collimator (MLC). The electron beam was delivered in two steps: half of the dose delivered with MLCs in retracted position and another half with MLCs extended to the edge of electron field that abuts tomographic IMRT field. The experimental testing of this method using film dosimetry has demonstrated that the magnitude of the hot spots was reduced from ∼45% to ∼5% of the prescription dose. When an error of ±1.5 mm in field positioning was introduced, the dose inhomogeneity in the abutment region did not exceed ±15% of the prescription dose. With step-and-shoot IMRT, the most homogeneous dose distribution was achieved when there was a 3 mm gap between the IMRT and electron fields

  20. Paul Trap Simulator Experiment (PTSX) to simulate intense beam propagation through a periodic focusing quadrupole field

    International Nuclear Information System (INIS)

    Davidson, Ronald C.; Efthimion, Philip C.; Gilson, Erik; Majeski, Richard; Qin, Hong

    2002-01-01

    The Paul Trap Simulator Experiment (PTSX) is under construction at the Princeton Plasma Physics Laboratory to simulate intense beam propagation through a periodic quadrupole magnetic field. In the Paul trap configuration, a long nonneutral plasma column is confined axially by dc voltages on end cylinders at z=+L and z=-L, and transverse confinement is provided by segmented cylindrical electrodes with applied oscillatory voltages ±V 0 (t) over 90 deg. segments. Because the transverse focusing force is similar in waveform to that produced by a discrete set of periodic quadrupole magnets in a frame moving with the beam, the Paul trap configuration offers the possibility of simulating intense beam propagation in a compact laboratory facility. The experimental layout is described, together with the planned experiments to study beam mismatch, envelope instabilities, halo particle production, and collective wave excitations

  1. Paul Trap Simulator Experiment (PTSX) to simulate intense beam propagation through a periodic focusing quadrupole field

    Science.gov (United States)

    Davidson, Ronald C.; Efthimion, Philip C.; Gilson, Erik; Majeski, Richard; Qin, Hong

    2002-01-01

    The Paul Trap Simulator Experiment (PTSX) is under construction at the Princeton Plasma Physics Laboratory to simulate intense beam propagation through a periodic quadrupole magnetic field. In the Paul trap configuration, a long nonneutral plasma column is confined axially by dc voltages on end cylinders at z=+L and z=-L, and transverse confinement is provided by segmented cylindrical electrodes with applied oscillatory voltages ±V0(t) over 90° segments. Because the transverse focusing force is similar in waveform to that produced by a discrete set of periodic quadrupole magnets in a frame moving with the beam, the Paul trap configuration offers the possibility of simulating intense beam propagation in a compact laboratory facility. The experimental layout is described, together with the planned experiments to study beam mismatch, envelope instabilities, halo particle production, and collective wave excitations.

  2. Magnetic Field Calculator

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Magnetic Field Calculator will calculate the total magnetic field, including components (declination, inclination, horizontal intensity, northerly intensity,...

  3. Muscle and intensity based hamstring exercise classification in elite female track and field athletes: implications for exercise selection during rehabilitation

    Science.gov (United States)

    Tsaklis, Panagiotis; Malliaropoulos, Nikos; Mendiguchia, Jurdan; Korakakis, Vasileios; Tsapralis, Kyriakos; Pyne, Debasish; Malliaras, Peter

    2015-01-01

    Background Hamstring injuries are common in many sports, including track and field. Strains occur in different parts of the hamstring muscle but very little is known about whether common hamstring loading exercises specifically load different hamstring components. The purpose of this study was to investigate muscle activation of different components of the hamstring muscle during common hamstring loading exercises. Methods Twenty elite female track and field athletes were recruited into this study, which had a single-sample, repeated-measures design. Each athlete performed ten hamstring loading exercises, and an electromyogram (EMG) was recorded from the biceps femoris and semitendinosus components of the hamstring. Hamstring EMG during maximal voluntary isometric contraction (MVIC) was used to normalize the mean data across ten repetitions of each exercise. An electrogoniometer synchronized to the EMG was used to determine whether peak EMG activity occurred during muscle-tendon unit lengthening, shortening, or no change in length. Mean EMG values were compared between the two recording sites for each exercise using the Student’s t-test. Results The lunge, dead lift, and kettle swings were low intensity (hamstring bridge, and hamstring curl were all medium intensity exercises (≥50% or hamstrings. Low, medium, and high intensity exercises were demonstrated. This information enables the clinician, strength and conditioning coach and physiotherapist to better understand intensity- and muscle-specific activation during hamstring muscle rehabilitation. Therefore, these results may help in designing progressive strengthening and rehabilitation and prevention programs. PMID:26170726

  4. Out-of-Field Cell Survival Following Exposure to Intensity-Modulated Radiation Fields

    International Nuclear Information System (INIS)

    Butterworth, Karl T.; McGarry, Conor K.; Trainor, Colman; O'Sullivan, Joe M.; Hounsell, Alan R.; Prise, Kevin M.

    2011-01-01

    Purpose: To determine the in-field and out-of-field cell survival of cells irradiated with either primary field or scattered radiation in the presence and absence of intercellular communication. Methods and Materials: Cell survival was determined by clonogenic assay in human prostate cancer (DU145) and primary fibroblast (AGO1552) cells following exposure to different field configurations delivered using a 6-MV photon beam produced with a Varian linear accelerator. Results: Nonuniform dose distributions were delivered using a multileaf collimator (MLC) in which half of the cell population was shielded. Clonogenic survival in the shielded region was significantly lower than that predicted from the linear quadratic model. In both cell lines, the out-of-field responses appeared to saturate at 40%-50% survival at a scattered dose of 0.70 Gy in DU-145 cells and 0.24 Gy in AGO1522 cells. There was an approximately eightfold difference in the initial slopes of the out-of-field response compared with the α-component of the uniform field response. In contrast, cells in the exposed part of the field showed increased survival. These observations were abrogated by direct physical inhibition of cellular communication and by the addition of the inducible nitric oxide synthase inhibitor aminoguanidine known to inhibit intercellular bystander effects. Additional studies showed the proportion of cells irradiated and dose delivered to the shielded and exposed regions of the field to impact on response. Conclusions: These data demonstrate out-of-field effects as important determinants of cell survival following exposure to modulated irradiation fields with cellular communication between differentially irradiated cell populations playing an important role. Validation of these observations in additional cell models may facilitate the refinement of existing radiobiological models and the observations considered important determinants of cell survival.

  5. Analysis rbs of CdS thin films grown by cbd to different intensities of the magnetic field and temperature of the chemical bath

    International Nuclear Information System (INIS)

    Pedrero, E.; Vigil, O.

    1999-01-01

    Depth and composition of CdS thin films grown by chemical bath deposition under different temperature and magnetic DC field conditions, were determined by Rutherford Backscattering Spectrometry. The above parameters were evaluated as a function of the bath temperature and the intensity of the induction magnetic field applied

  6. Application and appreciation of chemical sand fixing agent-poly (aspartic acid) and its composites

    Energy Technology Data Exchange (ETDEWEB)

    Yang Jun; Cao Hui; Wang Fang [Beijing Key Laboratory of Bioprocess, Beijing University of Chemical Technology, Beijing 100029 (China); Tan Tianwei [Beijing Key Laboratory of Bioprocess, Beijing University of Chemical Technology, Beijing 100029 (China)], E-mail: twtan@mail.buct.edu.cn

    2007-12-15

    The sand fixing agent-poly (aspartic acid) (PASP) and its composites were applied in the field by two forms (spraying around by PASP solution and PASP powder directly). It was found that the sand fixing effect in powder form was not as good as in solution form, but it was more practical in dry region. It needed 9, 6 and 7 days for PASP, xanthan gum-PASP (X2) and ethyl cellulose-PASP (E3) to attain the maximal mechanical strength after they were applied, respectively. The sand fixing effect decreased when the material was subjected to repeated hydration-dehydration cycles and the material had no negative influence on plant growth. The PASP and its composites had water-retaining ability and could reduce the water evaporation. - The sand fixing agent was applied in powder form and it had no negative influence on plant growth.

  7. Dynamics of atomic clusters in intense optical fields of ultrashort ...

    Indian Academy of Sciences (India)

    J. Chem. Sci. Vol. 124, No. 1, January 2012, pp. 75–81. c Indian Academy of Sciences. ... Consequently, exposure of atoms and molecules to such intense pulses inevitably leads to single and multiple ... Coulomb explosion, giving rise to ejection of fast Ar-ions. .... intense laser pulses of only a few femtoseconds dura-.

  8. Enhanced collective focusing of intense neutralized ion beam pulses in the presence of weak solenoidal magnetic fields

    International Nuclear Information System (INIS)

    Dorf, Mikhail A.; Davidson, Ronald C.; Kaganovich, Igor D.; Startsev, Edward A.

    2012-01-01

    The design of ion drivers for warm dense matter and high energy density physics applications and heavy ion fusion involves transverse focusing and longitudinal compression of intense ion beams to a small spot size on the target. To facilitate the process, the compression occurs in a long drift section filled with a dense background plasma, which neutralizes the intense beam self-fields. Typically, the ion bunch charge is better neutralized than its current, and as a result a net self-pinching (magnetic) force is produced. The self-pinching effect is of particular practical importance, and is used in various ion driver designs in order to control the transverse beam envelope. In the present work we demonstrate that this radial self-focusing force can be significantly enhanced if a weak (B ∼ 100 G) solenoidal magnetic field is applied inside the neutralized drift section, thus allowing for substantially improved transport. It is shown that in contrast to magnetic self-pinching, the enhanced collective self-focusing has a radial electric field component and occurs as a result of the overcompensation of the beam charge by plasma electrons, whereas the beam current becomes well-neutralized. As the beam leaves the neutralizing drift section, additional transverse focusing can be applied. For instance, in the neutralized drift compression experiments (NDCX) a strong (several Tesla) final focus solenoid is used for this purpose. In the present analysis we propose that the tight final focus in the NDCX experiments may possibly be achieved by using a much weaker (few hundred Gauss) magnetic lens, provided the ion beam carries an equal amount of co-moving neutralizing electrons from the preceding drift section into the lens. In this case the enhanced focusing is provided by the collective electron dynamics strongly affected by a weak applied magnetic field.

  9. Spin structure factors of Heisenberg spin chain in the presence of anisotropy and magnetic field

    Energy Technology Data Exchange (ETDEWEB)

    Rezania, H., E-mail: rezania.hamed@gmail.com

    2017-02-01

    We have theoretically studied the spin structure factors of spin chain in the presence of longitudinal field and transverse anisotropy. The possible effects of easy axis magnetization are investigated in terms of anisotropy in the Heisenberg interactions. This anisotropy is considered for exchange coupling constants perpendicular to magnetic field direction. The original spin model hamiltonian is mapped to a bosonic model via a hard core bosonic transformation where an infinite hard core repulsion is imposed to constrain one boson occupation per site. Using Green's function approach, the energy spectrum of quasiparticle excitation has been obtained. The spectrum of the bosonic gas has been implemented in order to obtain two particle propagator which corresponds to spin structure factor of original Heisenberg chain model Hamiltonian. The results show the position of peak in the longitudinal structure factor at fixed value for anisotropy moves to higher frequency with magnetic field. Also the intensity of dynamical structure factor decreases with magnetic field. A small dependence of longitudinal dynamical spin structure factor on the anisotropy is observed for fixed value of magnetic field. Our results show longitudinal static structure factor is found to be monotonically increasing with magnetic field due to increase of spins aligning along magnetic field. Furthermore the dispersion behaviors of static longitudinal and transverse structure factors for different magnetic fields and anisotropy parameters are addressed. - Highlights: • Theoretical calculation of spin structure factors of Heisenberg chain. • The investigation of the effect of anisotropy spin structure factors of Heisenberg chain. • The investigation of the effect of magnetic field on spin structure factors of Heisenberg chain.

  10. Spin structure factors of Heisenberg spin chain in the presence of anisotropy and magnetic field

    International Nuclear Information System (INIS)

    Rezania, H.

    2017-01-01

    We have theoretically studied the spin structure factors of spin chain in the presence of longitudinal field and transverse anisotropy. The possible effects of easy axis magnetization are investigated in terms of anisotropy in the Heisenberg interactions. This anisotropy is considered for exchange coupling constants perpendicular to magnetic field direction. The original spin model hamiltonian is mapped to a bosonic model via a hard core bosonic transformation where an infinite hard core repulsion is imposed to constrain one boson occupation per site. Using Green's function approach, the energy spectrum of quasiparticle excitation has been obtained. The spectrum of the bosonic gas has been implemented in order to obtain two particle propagator which corresponds to spin structure factor of original Heisenberg chain model Hamiltonian. The results show the position of peak in the longitudinal structure factor at fixed value for anisotropy moves to higher frequency with magnetic field. Also the intensity of dynamical structure factor decreases with magnetic field. A small dependence of longitudinal dynamical spin structure factor on the anisotropy is observed for fixed value of magnetic field. Our results show longitudinal static structure factor is found to be monotonically increasing with magnetic field due to increase of spins aligning along magnetic field. Furthermore the dispersion behaviors of static longitudinal and transverse structure factors for different magnetic fields and anisotropy parameters are addressed. - Highlights: • Theoretical calculation of spin structure factors of Heisenberg chain. • The investigation of the effect of anisotropy spin structure factors of Heisenberg chain. • The investigation of the effect of magnetic field on spin structure factors of Heisenberg chain.

  11. Optical gain for the interband optical transition in InAsP/InP quantum well wire in the influence of laser field intensity

    Energy Technology Data Exchange (ETDEWEB)

    Saravanan, S. [Dept.of Physics, GTN Arts College, Dindigul-624 005. India (India); Peter, A. John, E-mail: a.john.peter@gmail.com [P.G & Research Dept.of Physics, Government Arts College, Melur-625 106. Madurai. India (India)

    2016-05-23

    Intense high frequency laser field induced electronic and optical properties of heavy hole exciton in the InAs{sub 0.8}P{sub 0.2}/InP quantum wire is studied taking into account the geometrical confinement effect. Laser field related exciton binding energies and the optical band gap in the InAs{sub 0.8}P{sub 0.2}/InP quantum well wire are investigated. The optical gain, for the interband optical transition, as a function of photon energy, in the InAs{sub 0.8}P{sub 0.2}/InP quantum wire, is obtained in the presence of intense laser field. The compact density matrix method is employed to obtain the optical gain. The obtained optical gain in group III-V narrow quantum wire can be applied for achieving the preferred telecommunication wavelength.

  12. Effect on High-Intensity Fields of a Tough Hydrophone With Hydrothermal PZT Thick-Film Vibrator and Titanium Front Layer.

    Science.gov (United States)

    Okada, Nagaya; Takeuchi, Shinichi

    2017-07-01

    A novel tough hydrophone was fabricated by depositing hydrothermally synthesized lead zirconate titanate polycrystalline film on the back-side surface of a titanium plate. Our developed tough hydrophone resisted damage in a high-pressure field (15 MPa) at a focal point of a sinusoidal continuous wave driven by a concave high-intensity focused ultrasound (HIFU) transducer with up to 50 W of power input to the sound source. The hydrophone was suitable for the HIFU field, even though the hydrophone has a flat-shape tip of 3.5 mm diameter, which is slightly larger than the wavelength of a few megahertz. In this paper, experiments are performed to assess the effect on the HIFU field of changing the shape of the tough hydrophone, with the aim of developing a tough hydrophone. The spatial distribution of the acoustic bubbles around the focal point was visualized by using ultrasonic diagnostic equipment with the tough hydrophone located at the focal point of the HIFU transducer. From the visualization, the trapped acoustic bubbles were seen to arise from the standing wave, which implies that the acoustic pressure is reduced by this cloud of acoustic bubbles that appeared during hydrophone measurement. Although cavitation and acoustic bubbles may be unavoidable when using high-intensity ultrasound, the estimated result of evaluating acoustic fields without misunderstanding by acoustic bubbles can be obtained by the aid of visualizing bubbles around the tough hydrophone.

  13. Study on Computerized Treatment Plan of Field-in-Field Intensity Modulated Radiation Therapy and Conventional Radiation Therapy according to PBC Algorithm and AAA on Breast Cancer Tangential Beam

    International Nuclear Information System (INIS)

    Yeom, Mi Suk; Bae, Seong Soo; Kim, Dae Sup; Back, Geum Mun

    2012-01-01

    Anisotropic Analytical Algorithm (AAA) provides more accurate dose calculation regarding impact on scatter and tissue inhomogeneity in comparison to Pencil Beam Convolution (PBC) algorithm. This study tries to analyze the difference of dose distribution according to PBC algorithm and dose calculation algorithm of AAA on breast cancer tangential plan. Computerized medical care plan using Eclipse treatment planning system (version 8.9, VARIAN, USA) has been established for the 10 breast cancer patients using 6 MV energy of Linac (CL-6EX, VARIAN, USA). After treatment plan of Conventional Radiation Therapy plan (Conventional plan) and Field-in-Field Intensity Modulated Radiation Therapy plan (FiF plan) using PBC algorithm has been established, MU has been fixed, implemented dose calculation after changing it to AAA, and compared and analyzed treatment plan using Dose Volume Histogram (DVH). Firstly, as a result of evaluating PBC algorithm of Conventional plan and the difference according to AAA, the average difference of CI value on target volume has been highly estimated by 0.295 on PBC algorithm and as a result of evaluating dose of lung, V 47 Gy and has been highly evaluated by 5.83% and 4.04% each, Mean dose, V 20 , V 5 , V 3 Gy has been highly evaluated 0.6%, 0.29%, 6.35%, 10.23% each on AAA. Secondly, in case of FiF plan, the average difference of CI value on target volume has been highly evaluated on PBC algorithm by 0.165, and dose on ipsilateral lung, V 47 , V 45 Gy, Mean dose has been highly evaluated 6.17%, 3.80%, 0.15% each on PBC algorithm, V 20 , V 5 , V 3 Gy has been highly evaluated 0.14%, 4.07%, 4.35% each on AAA. When calculating with AAA on breast cancer tangential plan, compared to PBC algorithm, Conformity on target volume of Conventional plan, FiF plan has been less evaluated by 0.295, 0.165 each. For the reason that dose of high dose region of ipsilateral lung has been showed little amount, and dose of low dose region has been showed much amount

  14. Shaped superconductor cylinder retains intense magnetic field

    Science.gov (United States)

    Hildebrandt, A. F.; Wahlquist, H.

    1964-01-01

    The curve of the inner walls of a superconducting cylinder is plotted from the flux lines of the magnetic field to be contained. This shaping reduces maximum flux densities and permits a stronger and more uniform magnetic field.

  15. MRI intensity inhomogeneity correction by combining intensity and spatial information

    International Nuclear Information System (INIS)

    Vovk, Uros; Pernus, Franjo; Likar, Bostjan

    2004-01-01

    We propose a novel fully automated method for retrospective correction of intensity inhomogeneity, which is an undesired phenomenon in many automatic image analysis tasks, especially if quantitative analysis is the final goal. Besides most commonly used intensity features, additional spatial image features are incorporated to improve inhomogeneity correction and to make it more dynamic, so that local intensity variations can be corrected more efficiently. The proposed method is a four-step iterative procedure in which a non-parametric inhomogeneity correction is conducted. First, the probability distribution of image intensities and corresponding second derivatives is obtained. Second, intensity correction forces, condensing the probability distribution along the intensity feature, are computed for each voxel. Third, the inhomogeneity correction field is estimated by regularization of all voxel forces, and fourth, the corresponding partial inhomogeneity correction is performed. The degree of inhomogeneity correction dynamics is determined by the size of regularization kernel. The method was qualitatively and quantitatively evaluated on simulated and real MR brain images. The obtained results show that the proposed method does not corrupt inhomogeneity-free images and successfully corrects intensity inhomogeneity artefacts even if these are more dynamic

  16. High-intensity, focused ultrasonic fields

    DEFF Research Database (Denmark)

    Jensen, Leif Bjørnø

    1988-01-01

    The use of extracorporeal shock wave lithotripsy (ESWL) for disintegration of body stones has increased considerably during recent years. A worldwide activity in this field is reflected in a growing number of international publications and in the development and manufacturing of several ESWL...... essential pressure wave parameters, their relation to the focal system data, and their significance to stone disintegration efficiency....

  17. Fixed-film processes. Part 1

    International Nuclear Information System (INIS)

    Canziani, R.

    1999-01-01

    Recently, full scale fixed-film or mixed suspended and fixed biomass bioreactors have been applied in many wastewater treatments plants. These process no longer depend on biomass settle ability and can be used to improve the performance of existing plants as required by more stringent discharge permit limits, especially for nutrients and suspended solid. Also, processes may work at high rates making it possible to build small footprint installations. Fixed-film process include trickling filter, moving bed reactors fluidized bed reactors. In the first part, the theoretical base governing fixed-film processes are briefly outlined with some simple examples of calculations underlining the main differences with conventional activated sludge processes [it

  18. Variations of radiation intensity as a function of position in radiation field of a mammographic unit of 760 mm SID with Mo anode and 20 μm Mo added filter

    International Nuclear Information System (INIS)

    Noriah Jamal

    2001-01-01

    There are many effects that contribute to radiation field nonuniformity in mammography, including the heel effect and shorter source to image distance (SID), inverse square law and different photon path lengths through various attenuating media (the x-ray tube beryllium window, the added filter, the mirror, and the compression paddle) throughout the field. Variations of radiation intensity was investigated as a function of position in the radiation field (with compression paddle in place)of a mammographic unit in 760 mm SID with Mo anode and 20 μm Mo added filter. Reduction in radiation intensity along central axis of up to 19.40%, 19.13% and 19.34% were noted at 24, 26 and 28 kVp respectively. Radiation intensity also drops off to the left and right of the central axis. As a function of position in the field, we also found that the variations of optical density correlate well with the measured radiation intensity changes. (Author)

  19. Correlated Keldysh-Faisal-Reiss theory of above-threshold double ionization of He in intense laser fields

    International Nuclear Information System (INIS)

    Becker, A.; Faisal, F.H.M.

    1994-01-01

    We have developed a correlated Keldysh-Faisal-Reiss theory of laser-induced double ionization of a two-electron atom. The basic N-photon T matrix and the expression for N-photon triple-differential rates or cross sections (TDCS's) are derived. The theory is applied to investigate the TDCS's for very-high-order multiphoton double ionization of He with lasers of wavelength λ=248 nm and λ=617 nm. Comparison with the uncorrelated results reveals a dramatic influence of the final-state e-e correlation on the above-threshold TDCS's to be measured in coincidence experiments in intense laser fields. The limiting case of the TDCS's for weak-field double ionization of He by a synchrotron photon is also investigated; the results confirm the earlier theoretical findings and recent experimental results in that case

  20. US long-term energy intensity: Backcast and projection

    International Nuclear Information System (INIS)

    Dowlatabadi, Hadi; Oravetz, Matthew A.

    2006-01-01

    Energy intensity of the economy is often modeled as being determined by the combined effect of a fixed price elasticity of demand, and an exogenously specified, fixed technical change parameter denoted as the autonomous energy efficiency improvement (AEEI). Typically, the AEEI rate is set to 0.5-1.5% improvement per annum. Here, we study historic aggregate energy intensity trends for the US from 1954 to 1994. We show that the historic trends are inconsistent with an autonomous model of improved energy efficiency-especially when the model is used to inform policies that impact energy prices. As an alternative we propose a model of price-induced efficiency, π, in which aggregate energy intensity trends respond to changes in energy prices beyond price elasticity of demand ε. Our exercise reveals that the aggregate price elasticity of energy demand of the US economy has declined by roughly 15% over the past four decades. But beyond this decline, bringing our simulations and historical data into close correspondence requires π to change sign before and after 1974. Before 1974, after accounting for price elasticity of demand, the economy was growing less energy efficient. After 1974, after accounting for the price elasticity of demand, the economy was growing more energy efficient. Furthermore, since 1984, the rate of energy efficiency gain has been declining. When projections of long-term energy use are compared, those with a price-induced energy efficiency formulation generate significantly more price sensitive energy use and emissions trajectories. When in the business as usual scenario energy prices are expected to be rising, climate policies involve lower shadow carbon prices with π than with AEEI formulations. In scenarios where energy prices are relatively flat, energy intensity rises leading to CO 2 emissions far higher than standard business as usual projections utilizing AEEI assumptions

  1. US long-term energy intensity: backcast and projection

    International Nuclear Information System (INIS)

    Dowlatabadi, H.; Oravetz, M.A.

    2006-01-01

    Energy intensity of the economy is often modeled as being determined by the combined effect of a fixed price elasticity of demand, and an exogenously specified, fixed technical change parameter denoted as the autonomous energy efficiency improvement (AEEI). Typically, the AEEI rate is set to 0.5-1.5% improvement per annum. Here, we study historic aggregate energy intensity trends for the US from 1954 to 1994. We show that the historic trends are inconsistent with an autonomous model of improved energy efficiency - especially when the model is used to inform policies that impact energy prices. As an alternative we propose a model of price-induced efficiency, π, in which aggregate energy intensity trends respond to changes in energy prices beyond price elasticity of demandε. Our exercise reveals that the aggregate price elasticity of energy demand of the US economy has declined by roughly 15% over the past four decades. But beyond this decline, bringing our simulations and historical data into close correspondence requires π to change sign before and after 1974. Before 1974, after accounting for price elasticity of demand, the economy was growing less energy efficient. After 1974, after accounting for the price elasticity of demand, the economy was growing more energy efficient. Furthermore, since 1984, the rate of energy efficiency gain has been declining. When projections of long-term energy use are compared, those with a price-induced energy efficiency formulation generate significantly more price sensitive energy use and emissions trajectories. When in the business as usual scenario energy prices are expected to be rising, climate policies involve lower shadow carbon prices with π than with AEEI formulations. In scenarios where energy prices are relatively flat, energy intensity rises leading to CO 2 emissions far higher than standard business as usual projections utilizing AEEI assumptions. (Author)

  2. US long-term energy intensity: backcast and projection

    Energy Technology Data Exchange (ETDEWEB)

    Dowlatabadi, H. [University of British Columbia, Vancouver (Canada); Oravetz, M.A. [International Energy Agency, Paris (France)

    2006-11-15

    Energy intensity of the economy is often modeled as being determined by the combined effect of a fixed price elasticity of demand, and an exogenously specified, fixed technical change parameter denoted as the autonomous energy efficiency improvement (AEEI). Typically, the AEEI rate is set to 0.5-1.5% improvement per annum. Here, we study historic aggregate energy intensity trends for the US from 1954 to 1994. We show that the historic trends are inconsistent with an autonomous model of improved energy efficiency - especially when the model is used to inform policies that impact energy prices. As an alternative we propose a model of price-induced efficiency, {pi}, in which aggregate energy intensity trends respond to changes in energy prices beyond price elasticity of demand{epsilon}. Our exercise reveals that the aggregate price elasticity of energy demand of the US economy has declined by roughly 15% over the past four decades. But beyond this decline, bringing our simulations and historical data into close correspondence requires {pi} to change sign before and after 1974. Before 1974, after accounting for price elasticity of demand, the economy was growing less energy efficient. After 1974, after accounting for the price elasticity of demand, the economy was growing more energy efficient. Furthermore, since 1984, the rate of energy efficiency gain has been declining. When projections of long-term energy use are compared, those with a price-induced energy efficiency formulation generate significantly more price sensitive energy use and emissions trajectories. When in the business as usual scenario energy prices are expected to be rising, climate policies involve lower shadow carbon prices with {pi} than with AEEI formulations. In scenarios where energy prices are relatively flat, energy intensity rises leading to CO{sub 2} emissions far higher than standard business as usual projections utilizing AEEI assumptions. (Author)

  3. Enhanced self-magnetic field by atomic polarization in partially stripped plasma produced by a short and intense laser pulse

    International Nuclear Information System (INIS)

    Hu Qianglin; Liu Shibing; Jiang, Y.J.; Zhang Jie

    2005-01-01

    The enhancement and redistribution of a self-generated quasistatic magnetic field, due to the presence of the polarization field induced by partially ionized atoms, are analytically revealed when a linearly polarized intense and short pulse laser propagates in a partially stripped plasma with higher density. In particular, the shorter wavelength of the laser pulse can evidently intensify the amplitude of the magnetic field. These enhancement and redistribution of the magnetic field are considered physically as a result of the competition of the electrostatic field (electron-ion separation) associated with the plasma wave, the atomic polarization field, and the pondoromotive potential associated with the laser field. This competition leads to the generation of a positive, large amplitude magnetic field in the zone of the pulse center, which forms a significant difference in partially and fully stripped plasmas. The numerical result shows further that the magnetic field is resonantly modulated by the plasma wave when the pulse length is the integer times the plasma wavelength. This apparently implies that the further enhancement and restructure of the large amplitude self-magnetic field can evidently impede the acceleration and stable transfer of the hot-electron beam

  4. DeepFix: A Fully Convolutional Neural Network for Predicting Human Eye Fixations.

    Science.gov (United States)

    Kruthiventi, Srinivas S S; Ayush, Kumar; Babu, R Venkatesh

    2017-09-01

    Understanding and predicting the human visual attention mechanism is an active area of research in the fields of neuroscience and computer vision. In this paper, we propose DeepFix, a fully convolutional neural network, which models the bottom-up mechanism of visual attention via saliency prediction. Unlike classical works, which characterize the saliency map using various hand-crafted features, our model automatically learns features in a hierarchical fashion and predicts the saliency map in an end-to-end manner. DeepFix is designed to capture semantics at multiple scales while taking global context into account, by using network layers with very large receptive fields. Generally, fully convolutional nets are spatially invariant-this prevents them from modeling location-dependent patterns (e.g., centre-bias). Our network handles this by incorporating a novel location-biased convolutional layer. We evaluate our model on multiple challenging saliency data sets and show that it achieves the state-of-the-art results.

  5. Supersymmetric interactions of a six-dimensional self-dual tensor and fixed-shape second quantized strings

    Science.gov (United States)

    Ganor, Ori J.

    2018-02-01

    "Curvepole (2,0)-theory" is a deformation of the (2,0)-theory with nonlocal interactions. A curvepole is defined as a two-dimensional generalization of a dipole. It is an object of fixed two-dimensional shape of which the boundary is a charged curve that interacts with a 2-form gauge field. Curvepole theory was previously only defined indirectly via M-theory. Here, we propose a supersymmetric Lagrangian, constructed explicitly up to quartic terms, for an "Abelian" curvepole theory, which is an interacting deformation of the free (2,0) tensor multiplet. This theory contains fields of which the quanta are curvepoles (i.e., fixed-shape strings). Supersymmetry is preserved (at least up to quartic terms) if the shape of the curvepoles is (two-dimensional) planar. This nonlocal six-dimensional quantum field theory may also serve as a UV completion for certain (local) five-dimensional gauge theories.

  6. [Analysis of projects received and funded in fields of emergency and intensive care medicine/trauma/burns/plastic surgery from National Natural Science Foundation of China during 2010-2013].

    Science.gov (United States)

    Xiong, Kun; Wang, Linlin; Chen, Xulin; Cao, Yongqian; Xiang, Chuan; Xue, Lixiang; Yan, Zhangcai

    2014-01-01

    To summarized the projects received and funded in the fields of emergency and intensive care medicine/trauma/burns/plastic surgery from National Natural Science Foundation of China (NSFC) during 2010-2013, put forward the thinking and perspective of this future trend in these fields. The number of the funded project and total funding in the fields of emergency and intensive care medicine/trauma/burns/plastic surgery from NSFC during 2010-2013 had been statistical analyzed, in the meantime, the overview situation of various branches in basic research and further preliminary analysis the research frontier and hot issues have been analyzed. (1) The number of funded project were 581 in H15 of NSFC during 2010-2013, total funding reached to 277.13 million RMB, including 117 projects in H1511 (emergency and intensive care medicine/trauma/burns/plastic surgery and other science issue), 96 projects in H1507 (wound healing and scar), 88 projects in H1502 (multi-organ failure), 71 projects in H1505 (burn), 61 projects in H1504 (trauma). (2) The top 10 working unit for project funding in the field of emergency and intensive care medicine/trauma/burns/plastic surgery present as Third Military Medical University (70), Shanghai Jiao tong University (69), Second Military Medical University (40), Chinese PLA General Hospital (36), Forth Military Medical University (35), Zhejiang University (22), Sun Yat-Sen University (18), Southern Medical University (14), China Medical University (11), Capital Medical University (11) respectively, the number of funded project positive correlated with funding. (3) The funded research field in H15 covered almost all important organs and system injury or repair research, our scientists reached a fairly high level in some research field, for example, sepsis, trauma, repair, et al. "Sepsis" was funded 112 projects in H15 for 4 years, the growth rate became rapid and stable comparing to shock, burns and cardiopulmonary resuscitation funded projects

  7. Effect of external magnetic field on the Kβ/Kα X-ray intensity ratios of TixNi1-x alloys excited by 59.54 and 22.69keV photons.

    Science.gov (United States)

    Perişanoğlu, Ufuk; Alım, Bünyamin; Uğurlu, Mine; Demir, Lütfü

    2016-09-01

    The effects of external magnetic field and exciting photon energies on the Kβ/Kα X-ray intensity ratios of various alloy compositions of Ti-Ni transition metal alloys have been investigated in this work using X-ray fluorescence spectroscopy. The spectrum of characteristic K-X-ray photons from pure Ti, pure Ni and TixNi1-x (x=0.30; 0.40; 0.50; 0.60; 0.70) alloys were detected with a high resolution Si (Li) solid-state detector. Firstly, Kβ/Kα X-ray intensity ratios of pure Ti, pure Ni and TixNi1-x alloys were measured following excitation by 59.54keV γ-rays from a 200mCi (241)Am radioactive point source without any magnetic field and under 0.5 and 1T external magnetic fields, separately. Later, the same measurements were repeated under the same experimental conditions for 22.69keV X-rays from a 370 MBq(1)(0)(9)Cd radioactive point source. The results obtained for Kβ/Kα X-ray intensity ratios of pure Ti, pure Ni, Ti and Ni in various Ti-Ni alloys were evaluated in terms of both external magnetic field effect and exciting photon energy effect. When the results obtained for both exciting photon energies are evaluated in terms of changing of Kβ/Kα X-ray intensity ratios depending on the alloy composition, the tendency of these changes are observed to be similar. Also, Kβ/Kα X-ray intensity ratios for all samples examined have changed with increasing external magnetic field. Therefore, the results obtained have shown that Kβ/Kα X-ray intensity ratios of Ti and Ni in TixNi1-x alloys are connected with the external magnetic field. The present study makes it possible to perform reliable interpretation of experimental Kβ/Kα X-ray intensity ratios for Ti, Ni and TixNi1-x alloys and can also provide quantitative information about the changes of the Kβ/Kα X-ray intensity ratios of these metals with alloy composition. Copyright © 2016 Elsevier Ltd. All rights reserved.

  8. Lattice gauge fixing as quenching and the violation of spectral positivity

    International Nuclear Information System (INIS)

    Aubin, C.; Ogilvie, Michael C.

    2004-01-01

    Lattice Landau gauge and other related lattice gauge-fixing schemes are known to violate spectral positivity. The most direct sign of the violation is the rise of the effective mass as a function of distance. The origin of this phenomenon lies in the quenched character of the auxiliary field g used to implement lattice gauge-fixing, and is similar to quenched QCD in this respect. This is best studied using the Parrinello Jona-Lasinio Zwanziger formalism, leading to a class of covariant gauges similar to the one-parameter class of covariant gauges commonly used in continuum gauge theories. Soluble models are used to illustrate the origin of the violation of spectral positivity. The phase diagram of the lattice theory, as a function of the gauge coupling β and the gauge-fixing parameter α, is similar to that of the unquenched theory, a Higgs model of a type first studied by Fradkin and Shenker. The gluon propagator is interpreted as yielding bound states in the confined phase, and a mixture of fundamental particles in the Higgs phase, but lattice simulation shows the two phases are connected. Gauge-field propagators from the simulation of an SU(2) lattice gauge theory on a 20 4 lattice are well described by a quenched mass-mixing model. The mass of the lightest state, which we interpret as the gluon mass, appears to be independent of α for sufficiently large α

  9. The field-matching problem as it applies to the peacock three dimensional conformal system for intensity modulation

    International Nuclear Information System (INIS)

    Carol, Mark; Grant, Walter H.; Bleier, Alan R.; Kania, Alex A.; Targovnik, Harris S.; Butler, E. Brian; Shiao, W. Woo

    1996-01-01

    Purpose: Intensity modulated beam systems have been developed as a means of creating a high-dose region that closely conforms to the prescribed target volume while also providing specific sparing of organs at risk within complex treatment geometries. The slice-by-slice treatment paradigm used by one such system for delivering intensity modulated fields introduces regions of dose nonuniformity where each pair of treatment slices abut. A study was designed to evaluate whether or not the magnitude of the nonuniformity that results from this segmental delivery paradigm is significant relative to the overall dose nonuniformity present in the intensity modulation technique itself. An assessment was also made as to the increase in nonuniformity that would result if errors were made in indexing during treatment delivery. Methods and Materials: Treatment plans were generated to simulate correctly indexed and incorrectly indexed treatments of 4, 10, and 18 cm diameter targets. Indexing errors of from 0.1 to 2.0 mm were studied. Treatment plans were also generated for targets of the same diameter but of lengths that did not require indexing of the treatment couch. Results: The nonuniformity that results from the intensity modulation delivery paradigm is 11-16% for targets where indexing is not required. Correct indexing of the couch adds an additional 1-2% in nonuniformity. However, a couch indexing error of as little as 1 mm can increase the total nonuniformity to as much as 25%. All increases in nonuniformity from indexing are essentially independent of target diameter. Conclusions: The dose nonuniformity introduced by the segmental strip delivery paradigm is small relative to the nonuniformity present in the intensity modulation paradigm itself. A positioning accuracy of better than 0.5 mm appears to be required when implementing segmental intensity modulated treatment plans

  10. The intense neutron generator

    Energy Technology Data Exchange (ETDEWEB)

    Lewis, W B

    1966-07-01

    The presentation discusses both the economic and research contexts that would be served by producing neutrons in gram quantities at high intensities by electrical means without uranium-235. The revenue from producing radioisotopes is attractive. The array of techniques introduced by the multipurpose 65 megawatt Intense Neutron Generator project includes liquid metal cooling, superconducting magnets for beam bending and focussing, super-conductors for low-loss high-power radiofrequency systems, efficient devices for producing radiofrequency power, plasma physics developments for producing and accelerating hydrogen, ions at high intensity that are still far out from established practice, a multimegawatt high voltage D.C. generating machine that could have several applications. The research fields served relate principally to materials science through neutron-phonon and other quantum interactions as well as through neutron diffraction. Nuclear physics is served through {mu}-, {pi}- and K-meson production. Isotope production enters many fields of applied research. (author)

  11. The intense neutron generator

    International Nuclear Information System (INIS)

    Lewis, W.B.

    1966-01-01

    The presentation discusses both the economic and research contexts that would be served by producing neutrons in gram quantities at high intensities by electrical means without uranium-235. The revenue from producing radioisotopes is attractive. The array of techniques introduced by the multipurpose 65 megawatt Intense Neutron Generator project includes liquid metal cooling, superconducting magnets for beam bending and focussing, super-conductors for low-loss high-power radiofrequency systems, efficient devices for producing radiofrequency power, plasma physics developments for producing and accelerating hydrogen, ions at high intensity that are still far out from established practice, a multimegawatt high voltage D.C. generating machine that could have several applications. The research fields served relate principally to materials science through neutron-phonon and other quantum interactions as well as through neutron diffraction. Nuclear physics is served through μ-, π- and K-meson production. Isotope production enters many fields of applied research. (author)

  12. Fixed-Point Configurable Hardware Components

    Directory of Open Access Journals (Sweden)

    Rocher Romuald

    2006-01-01

    Full Text Available To reduce the gap between the VLSI technology capability and the designer productivity, design reuse based on IP (intellectual properties is commonly used. In terms of arithmetic accuracy, the generated architecture can generally only be configured through the input and output word lengths. In this paper, a new kind of method to optimize fixed-point arithmetic IP has been proposed. The architecture cost is minimized under accuracy constraints defined by the user. Our approach allows exploring the fixed-point search space and the algorithm-level search space to select the optimized structure and fixed-point specification. To significantly reduce the optimization and design times, analytical models are used for the fixed-point optimization process.

  13. Beyond the Floquet theorem: generalized Floquet formalisms and quasienergy methods for atomic and molecular multiphoton processes in intense laser fields

    International Nuclear Information System (INIS)

    Chu, S.-I.; Telnov, D.A.

    2004-01-01

    The advancement of high-power and short-pulse laser technology in the past two decades has generated considerable interest in the study of multiphoton and very high-order nonlinear optical processes of atomic and molecular systems in intense and superintense laser fields, leading to the discovery of a host of novel strong-field phenomena which cannot be understood by the conventional perturbation theory. The Floquet theorem and the time-independent Floquet Hamiltonian method are powerful theoretical framework for the study of bound-bound multiphoton transitions driven by periodically time-dependent fields. However, there are a number of significant strong-field processes cannot be directly treated by the conventional Floquet methods. In this review article, we discuss several recent developments of generalized Floquet theorems, formalisms, and quasienergy methods, beyond the conventional Floquet theorem, for accurate nonperturbative treatment of a broad range of strong-field atomic and molecular processes and phenomena of current interests. Topics covered include (a) artificial intelligence (AI)-most-probable-path approach (MPPA) for effective treatment of ultralarge Floquet matrix problem; (b) non-Hermitian Floquet formalisms and complex quasienergy methods for nonperturbative treatment of bound-free and free-free processes such as multiphoton ionization (MPI) and above-threshold ionization (ATI) of atoms and molecules, multiphoton dissociation (MPD) and above-threshold dissociation (ATD) of molecules, chemical bond softening and hardening, charge-resonance enhanced ionization (CREI) of molecular ions, and multiple high-order harmonic generation (HHG), etc.; (c) many-mode Floquet theorem (MMFT) for exact treatment of multiphoton processes in multi-color laser fields with nonperiodic time-dependent Hamiltonian; (d) Floquet-Liouville supermatrix (FLSM) formalism for exact nonperturbative treatment of time-dependent Liouville equation (allowing for relaxations and

  14. Beyond the Floquet theorem: generalized Floquet formalisms and quasienergy methods for atomic and molecular multiphoton processes in intense laser fields

    Science.gov (United States)

    Chu, Shih-I.; Telnov, Dmitry A.

    2004-02-01

    The advancement of high-power and short-pulse laser technology in the past two decades has generated considerable interest in the study of multiphoton and very high-order nonlinear optical processes of atomic and molecular systems in intense and superintense laser fields, leading to the discovery of a host of novel strong-field phenomena which cannot be understood by the conventional perturbation theory. The Floquet theorem and the time-independent Floquet Hamiltonian method are powerful theoretical framework for the study of bound-bound multiphoton transitions driven by periodically time-dependent fields. However, there are a number of significant strong-field processes cannot be directly treated by the conventional Floquet methods. In this review article, we discuss several recent developments of generalized Floquet theorems, formalisms, and quasienergy methods, beyond the conventional Floquet theorem, for accurate nonperturbative treatment of a broad range of strong-field atomic and molecular processes and phenomena of current interests. Topics covered include (a) artificial intelligence (AI)-most-probable-path approach (MPPA) for effective treatment of ultralarge Floquet matrix problem; (b) non-Hermitian Floquet formalisms and complex quasienergy methods for nonperturbative treatment of bound-free and free-free processes such as multiphoton ionization (MPI) and above-threshold ionization (ATI) of atoms and molecules, multiphoton dissociation (MPD) and above-threshold dissociation (ATD) of molecules, chemical bond softening and hardening, charge-resonance enhanced ionization (CREI) of molecular ions, and multiple high-order harmonic generation (HHG), etc.; (c) many-mode Floquet theorem (MMFT) for exact treatment of multiphoton processes in multi-color laser fields with nonperiodic time-dependent Hamiltonian; (d) Floquet-Liouville supermatrix (FLSM) formalism for exact nonperturbative treatment of time-dependent Liouville equation (allowing for relaxations and

  15. Effects of nuclear vibration on the ionization process of H2+ in ultrashort intense laser field

    International Nuclear Information System (INIS)

    Phan, Ngoc-Loan; Nguyen, Ngoc-Ty; Truong, Tran-Chau

    2015-01-01

    By numerically solving the time-dependent Schrödinger equation, we calculate the ionization probability of a vibrating H 2 + exposed to ultrashort intense laser fields. The results show that the ionization probability increases by time and gets a saturation value. We also find that with some first vibration levels, the ionization probability from a higher vibration level is larger than that from a lower one. However, with higher vibration levels, at a certain level the ionization probability will take maximum and decrease with next levels. (paper)

  16. MHD shear flows with non-constant transverse magnetic field

    International Nuclear Information System (INIS)

    Núñez, Manuel

    2012-01-01

    Viscous conducting flows parallel to a fixed plate are studied. In contrast with the Hartmann setting, the problem is not linearized near a fixed transverse magnetic field, although the field tends to be transversal far from the wall. While general solutions may be formally obtained for all cases, their behavior is far more clear when the magnetic Prandtl number equals one. We consider two different instances: a fixed magnetic field at the wall, or an insulating sheet. The evolution of the flow and the magnetic field both near the plate and far from it are detailed, analyzing the possibility of reverse flow and instability of the solutions. -- Highlights: ► A conducting shear flow does not leave a transverse magnetic field invariant. ► Solutions are found for all cases, but these are more useful when kinetic and magnetic diffusivities coincide. ► Dirichlet and Neumann conditions on the magnetic field are studied. ► Reverse flow, and eventual instability, are possible.

  17. Quantum processes in an intense electromagnetic field

    International Nuclear Information System (INIS)

    Gitman, D.M.

    1976-01-01

    An approach is proposed to the consideration of processes in an external electromagnetic field which produces real pairs. Interaction with the field is taken into account precisely with the aid of solutions of the Dirac's equation. Processes of arbitrary order with respect to electron-photon interaction are considered

  18. Linear Fixed-Field Multi-Pass Arcs for Recirculating Linear Accelerators

    International Nuclear Information System (INIS)

    Morozov, V.S.; Bogacz, S.A.; Roblin, Y.R.; Beard, K.B.

    2012-01-01

    Recirculating Linear Accelerators (RLA's) provide a compact and efficient way of accelerating particle beams to medium and high energies by reusing the same linac for multiple passes. In the conventional scheme, after each pass, the different energy beams coming out of the linac are separated and directed into appropriate arcs for recirculation, with each pass requiring a separate fixed-energy arc. In this paper we present a concept of an RLA return arc based on linear combined-function magnets, in which two and potentially more consecutive passes with very different energies are transported through the same string of magnets. By adjusting the dipole and quadrupole components of the constituting linear combined-function magnets, the arc is designed to be achromatic and to have zero initial and final reference orbit offsets for all transported beam energies. We demonstrate the concept by developing a design for a droplet-shaped return arc for a dog-bone RLA capable of transporting two beam passes with momenta different by a factor of two. We present the results of tracking simulations of the two passes and lay out the path to end-to-end design and simulation of a complete dog-bone RLA.

  19. Behavioral effects of microwave reinforcement schedules and variations in microwave intensity on albino rats

    Energy Technology Data Exchange (ETDEWEB)

    Vitulli, W.F.; Lambert, J.K.; Brown, S.W.; Quinn, J.M.

    1987-12-01

    The objective of this exploratory investigation was to determine the interactive effects of fixed-ratio scheduling of microwave reinforcement in tandem with changes in microwave intensity. Nine albino rats were conditioned to regulate their thermal environment with microwave radiation while living in a Skinner (operant conditioning) Box in which the ambient temperature was about 27.13 degrees F at the beginning of the session. Each rat obtained a 6-sec. exposure of microwave radiation on a fixed-ratio schedule of MW reinforcement, the values of which varied from FR-1 to FR-30. Intensities of MW radiation were 62.5 W, 125 W, 250 W, and 437.5 W. Sessions lasted for 8 to 9 hr. over an approximate 13-mo. period. The effects of the intensity of microwave reinforcement varied as a function of the ratio value of the schedule used. Continuous reinforcement (FR-1) produced the lowest over-all rates, whereas FR-15, and FR-25 produced the highest over-all rates. Relatively higher thermal-behavior rates occurred under 62.5 W than under any of the other MW intensities for FR-1, FR-15, and FR-25, whereas FR-10 and FR-30 ratios produced intermediate rates of thermal responding which were constant for all values of MW intensity. These data are explained in terms of interactive effects between the local satiation or deprivation properties of the MW intensity and the ratio requirements of the schedule of MW reinforcement.

  20. Interaction of rare gas clusters in intense laser field

    International Nuclear Information System (INIS)

    Dobosz, Sandrine

    1998-01-01

    Rare gas cluster jet targets have only been scarcely studied in strong laser fields. This is surprising since their properties are particularly appealing. Although considered as a gas phase target, the local density within clusters is comparable to that of the bulk. Intense irradiation of clusters produces a plasma thereby giving rise to strong collisional heating. This explains, in particular, the observation of very high fragment charge states and the generation of X-rays in the keV energy range. The complete set of our experimental results shows that the intra-cluster atoms are first ionised by tunnel ionisation followed by massive electron impact ionisation. Thus, for Xenon clusters, we have observed up to 30-fold charged. The most energetic electrons leave the cluster which contributes to a positive charge build-up on the cluster surface. The plasma expands under the combined action of the Coulomb and kinetic pressures. The contribution of each pressure depends on the cluster size and we show that the Coulomb pressure is prevailing for the smallest sizes. This scenario explains the ejection of fragments with energies of up to lMeV. We have also performed a high resolution X-ray study to explore in situ the properties of the plasma. These studies underline the importance of electron-ion collisions and allow to deterrnine the mean charge states of the emitting ions. Finally, we have developed a model, describing the cluster expansion, which confirms our experimental observations. (author) [fr

  1. Stability and semiclassics in self-generated fields

    DEFF Research Database (Denmark)

    Erdös, Laszlo; Fournais, Søren; Solovej, Jan Philip

    2013-01-01

    We consider non-interacting particles subject to a fixed external potential V and a self-generated magnetic field B. The total energy includes the field energy β∫B^2 and we minimize over all particle states and magnetic fields. In the case of spin-1/2 particles this minimization leads...... measuring the field strength in the semiclassical limit is κ=βh. We are not able to give the exact leading order semiclassical asymptotics uniformly in κ or even for fixed κ. We do however give upper and lower bounds on E with almost matching dependence on κ. In the simultaneous limit h→0 and κ→∞ we show...

  2. Fixed-time stability of dynamical systems and fixed-time synchronization of coupled discontinuous neural networks.

    Science.gov (United States)

    Hu, Cheng; Yu, Juan; Chen, Zhanheng; Jiang, Haijun; Huang, Tingwen

    2017-05-01

    In this paper, the fixed-time stability of dynamical systems and the fixed-time synchronization of coupled discontinuous neural networks are investigated under the framework of Filippov solution. Firstly, by means of reduction to absurdity, a theorem of fixed-time stability is established and a high-precision estimation of the settling-time is given. It is shown by theoretic proof that the estimation bound of the settling time given in this paper is less conservative and more accurate compared with the classical results. Besides, as an important application, the fixed-time synchronization of coupled neural networks with discontinuous activation functions is proposed. By designing a discontinuous control law and using the theory of differential inclusions, some new criteria are derived to ensure the fixed-time synchronization of the addressed coupled networks. Finally, two numerical examples are provided to show the effectiveness and validity of the theoretical results. Copyright © 2017 Elsevier Ltd. All rights reserved.

  3. Small Angle Neutron Scattering (sans) Studies on "SIDE-END FIXED" and "SIDE-ON FIXED" Liquid Crystal Polymers

    Science.gov (United States)

    Hardouin, F.; Noirez, L.; Keller, P.; Leroux, N.; Cotton, J. P.

    The following sections are included: * Introduction * Experimental * Results and discussion * Determination of the backbone conformation in the nematic and smectic A phases of "side-end fixed" L.C. polymethacrylates (PMA) or polyacrylates (PA) * Determination of the global and backbone conformation in the nematic and smectic A phases of "side-end fixed" L.C. polysiloxanes (PMS) * Determination of the backbone conformation in the unique nematic phase (without smectic A phase) or in the reentrant nematic phase (below smectic A phase) of "side-end fixed" L.C. polyacrylates (PA) * Determination of the global conformation in the nematic phase of "side-on fixed" L.C. polysiloxanes (PMS) * Determination of the global conformation in the nematic phase of "diluted side-on fixed" L.C. copolysiloxanes * Determination of the backbone conformation in the nematic phase of "side-on fixed" L.C. polyacrylates * Conclusions * References

  4. Electrons and atoms in intense laser fields

    International Nuclear Information System (INIS)

    Davidovich, L.

    1982-11-01

    Several non-linear effects that show up when electrons and atoms interact with strong laser fields are considered. Thomson scattering, electron potential scattering in the presence of a laser beam, atomic ionization by strong laser fields, the refraction of electrons by laser beams and the Kapitza-Dirac effect are discussed. (Author) [pt

  5. Electrons and atoms in intense laser fields

    International Nuclear Information System (INIS)

    Davidovich, L.

    1982-01-01

    Several non-linear effects that show up when electrons and atoms interact with strong laser fields are considered. Thomson scattering, electron potential scattering in the presence of a laser beam, atomic ionization by strong laser fields, the refraction of electrons by laser beams and the Kapitza-Dirac effect are discussed. (Author) [pt

  6. Intensity-modulated radiotherapy (IMRT) for carcinoma of the maxillary sinus: A comparison of IMRT planning systems

    International Nuclear Information System (INIS)

    Ahmed, Raef S.; Ove, Roger; Duan, Jun; Popple, Richard; Cobb, Glenn

    2006-01-01

    The treatment of maxillary sinus carcinoma with forward planning can be technically difficult when the neck also requires radiotherapy. This difficulty arises because of the need to spare the contralateral face while treating the bilateral neck. There is considerable potential for error in clinical setup and treatment delivery. We evaluated intensity-modulated radiotherapy (IMRT) as an improvement on forward planning, and compared several inverse planning IMRT platforms. A composite dose-volume histogram (DVH) was generated from a complex forward planned case. We compared the results with those generated by sliding window fixed field dynamic multileaf collimator (MLC) IMRT, using sets of coplanar beams. All setups included an anterior posterior (AP) beam, and 3-, 5-, 7-, and 9-field configurations were evaluated. The dose prescription and objective function priorities were invariant. We also evaluated 2 commercial tomotherapy IMRT delivery platforms. DVH results from all of the IMRT approaches compared favorably with the forward plan. Results for the various inverse planning approaches varied considerably across platforms, despite an attempt to prescribe the therapy similarly. The improvement seen with the addition of beams in the fixed beam sliding window case was modest. IMRT is an effective means of delivering radiotherapy reliably in the complex setting of maxillary sinus carcinoma with neck irradiation. Differences in objective function definition and optimization algorithms can lead to unexpected differences in the final dose distribution, and our evaluation suggests that these factors are more significant than the beam arrangement or number of beams

  7. Target volume delineation and field setup. A practical guide for conformal and intensity-modulated radiation therapy

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Nancy Y. [Memorial Sloan-Kettering Cancer Center, New York, NY (United States). Radiation Oncology; Lu, Jiade J. (eds.) [National Univ. Health System, Singapore (Singapore). Dept. of Radiation Oncology; National Univ. of Singapore (Singapore). Dept. of Medicine

    2013-03-01

    Practical handbook on selection and delineation of tumor volumes and fields for conformal radiation therapy, including IMRT. Helpful format facilitating use on a step-by-step basis in daily practice. Designed to ensure accurate coverage of commonly encountered tumors along their routes of spread. This handbook is designed to enable radiation oncologists to appropriately and confidently delineate tumor volumes/fields for conformal radiation therapy, including intensity-modulated radiation therapy (IMRT), in patients with commonly encountered cancers. The orientation of this handbook is entirely practical, in that the focus is on the illustration of clinical target volume (CTV) delineation for each major malignancy. Each chapter provides guidelines and concise knowledge on CTV selection for a particular disease, explains how the anatomy of lymphatic drainage shapes the selection of the target volume, and presents detailed illustrations of volumes, slice by slice, on planning CT images. While the emphasis is on target volume delineation for three-dimensional conformal therapy and IMRT, information is also provided on conventional radiation therapy field setup and planning for certain malignancies for which IMRT is not currently suitable.

  8. A new laser vibrometry-based 2D selective intensity method for source identification in reverberant fields: part II. Application to an aircraft cabin

    International Nuclear Information System (INIS)

    Revel, G M; Martarelli, M; Chiariotti, P

    2010-01-01

    The selective intensity technique is a powerful tool for the localization of acoustic sources and for the identification of the structural contribution to the acoustic emission. In practice, the selective intensity method is based on simultaneous measurements of acoustic intensity, by means of a couple of matched microphones, and structural vibration of the emitting object. In this paper high spatial density multi-point vibration data, acquired by using a scanning laser Doppler vibrometer, have been used for the first time. Therefore, by applying the selective intensity algorithm, the contribution of a large number of structural sources to the acoustic field radiated by the vibrating object can be estimated. The selective intensity represents the distribution of the acoustic monopole sources on the emitting surface, as if each monopole acted separately from the others. This innovative selective intensity approach can be very helpful when the measurement is performed on large panels in highly reverberating environments, such as aircraft cabins. In this case the separation of the direct acoustic field (radiated by the vibrating panels of the fuselage) and the reverberant one is difficult by traditional techniques. The work shown in this paper is the application of part of the results of the European project CREDO (Cabin Noise Reduction by Experimental and Numerical Design Optimization) carried out within the framework of the EU. Therefore the aim of this paper is to illustrate a real application of the method to the interior acoustic characterization of an Alenia Aeronautica ATR42 ground test facility, Alenia Aeronautica being a partner of the CREDO project

  9. Parallel Fixed Point Implementation of a Radial Basis Function Network in an FPGA

    Directory of Open Access Journals (Sweden)

    Alisson C. D. de Souza

    2014-09-01

    Full Text Available This paper proposes a parallel fixed point radial basis function (RBF artificial neural network (ANN, implemented in a field programmable gate array (FPGA trained online with a least mean square (LMS algorithm. The processing time and occupied area were analyzed for various fixed point formats. The problems of precision of the ANN response for nonlinear classification using the XOR gate and interpolation using the sine function were also analyzed in a hardware implementation. The entire project was developed using the System Generator platform (Xilinx, with a Virtex-6 xc6vcx240t-1ff1156 as the target FPGA.

  10. Effects of high intensity pulsed electric field and thermal treatments on a lipase from Pseudomonas fluorescens.

    Science.gov (United States)

    Bendicho, S; Estela, C; Giner, J; Barbosa-Cánovas, G V; Martin, O

    2002-01-01

    Milk and dairy products may contain microorganisms capable of secreting lipases that cause sensory defects and technological problems in the dairy industry. In this study, the effects of thermal and high-intensity pulsed electric field (HIPEF) treatments on an extracellular lipase from Pseudomonas fluorescens, suspended in a simulated skim milk ultrafiltrate (SMUF) have been evaluated. Heat treatments applied were up to 30 min from 50 to 90 degrees C. HIPEF treatments were carried out using pilot plant facilities in a batch or continuous flow mode, where treatment chambers consisted of parallel and coaxial configuration, respectively. Samples were subjected to up to 80 pulses at electric field intensities ranging from 16.4 to 37.3 kV/cm. This resulted in a lipase that was quite resistant to heat and also to HIPEF. High (75 degrees C-15 s) and low pasteurization treatments (63 degrees C-30 min) led to inactivations of 5 and 20%, respectively. Using the batch-mode HIPEF equipment, a 62.1% maximum activity depletion was achieved after 80 pulses at 27.4 kV/cm. However, when HIPEF treatments were applied in the continuous flow mode, an inactivation rate of just 13% was achieved, after applying 80 pulses at 37.3 kV/cm and 3.5 Hz. The results of both heat and HIPEF treatments on enzyme inactivation were adjusted with good agreement to a first-order kinetic model (R2 > 62.3%).

  11. The stark effect in intense field. 2

    International Nuclear Information System (INIS)

    Popov, V.S.; Mur, V.D.; Sergeev, A.V.; Weinberg, V.M.

    1987-01-01

    The problem of hydrogen atom in homogeneous electric field is considered. The Stark shifts and widths of atomic levels are computed by summation of divergent perturbation series and by 1/n-expansion - up to E values comparable with the field on the electron orbit. The results of the calculations are presented for the following sequences of states: |n 1 ,0,0>, |0,n 2 ,0>, |n 1 ,n 1 ,0>, as well as for all states with n=2 and 3 (n is the principal quantum number). The Stark shifts and widths of Rydberg states (with n=15-30) in electric field which exceeds the classical ionization threshold are computed. The results of our calculations agree with experiment

  12. Ejection dynamics of hydrogen molecular ions from methanol in intense laser fields

    International Nuclear Information System (INIS)

    Okino, T; Furukawa, Y; Liu, P; Ichikawa, T; Itakura, R; Hoshina, K; Yamanouchi, K; Nakano, H

    2006-01-01

    The ejection of hydrogen molecular ions from two-body Coulomb explosion processes of methanol (CH 3 OH, CD 3 OH and CH 3 OD) in an intense laser field (800 nm, 60 fs, 0.2 PW cm -2 ) is investigated by a coincidence momentum imaging method. From the coincidence momentum maps, the ejection processes of hydrogen molecular ions, CH 3 OH 2+ → H m + + CH (3-m) OH + (m = 2, 3), CD 3 OH 2+ → D m + + CH (3-m) OH + (m = 2, 3) and CH 3 OD 2+ → H m + + CH (3-m) OD + (m = 2, 3), are identified. Based on the results obtained with isotopically substituted methanol, the isotope effect on the ejection process of hydrogen molecular ions is discussed. Furthermore, the ejection of H/D exchanged hydrogen molecular ions (HD + , HD 2 + and H 2 D + ) is identified, and the timescales for the H/D exchanging processes are estimated from the extent of anisotropy in the ejection directions

  13. Classical and quantum mechanical studies of HF in an intense laser field

    International Nuclear Information System (INIS)

    Dardi, P.S.; Gray, S.K.

    1982-01-01

    The behavior of an HF molecule in an intense laser field is investigated with both classical trajectories and quantum dynamics. Vibration-rotation transition probabilities and energy absorption as a function of laser pulse time are calculated for the diatomic initially in its ground state. For comparison, results are also reported for a model nonrotating HF molecule. It is found that classical mechanics does not predict the correct time behavior of the system, nor does it predict the correct rotational state distributions. Classical mechanics does, however, predict pulse time averaged quantities to be the correct order of magnitude. There is also a correct general trend of increased multiphoton excitation for laser frequencies red-shifted from the one-photon resonance, although multiphoton resonance peaks are not observed in the classical results and far too little multiphoton excitation is predicted. The effect of laser phase has also been investigated and shown to be relatively unimportant in both the classical and quantum dynamics

  14. Possible signature of the magnetic fields related to quasi-periodic oscillations observed in microquasars

    Science.gov (United States)

    Kološ, Martin; Tursunov, Arman; Stuchlík, Zdeněk

    2017-12-01

    The study of quasi-periodic oscillations (QPOs) of X-ray flux observed in the stellar-mass black hole binaries can provide a powerful tool for testing of the phenomena occurring in the strong gravity regime. Magnetized versions of the standard geodesic models of QPOs can explain the observationally fixed data from the three microquasars. We perform a successful fitting of the HF QPOs observed for three microquasars, GRS 1915+105, XTE 1550-564 and GRO 1655-40, containing black holes, for magnetized versions of both epicyclic resonance and relativistic precession models and discuss the corresponding constraints of parameters of the model, which are the mass and spin of the black hole and the parameter related to the external magnetic field. The estimated magnetic field intensity strongly depends on the type of objects giving the observed HF QPOs. It can be as small as 10^{-5} G if electron oscillatory motion is relevant, but it can be by many orders higher for protons or ions (0.02-1 G), or even higher for charged dust or such exotic objects as lighting balls, etc. On the other hand, if we know by any means the magnetic field intensity, our model implies strong limit on the character of the oscillating matter, namely its specific charge.

  15. Possible signature of the magnetic fields related to quasi-periodic oscillations observed in microquasars

    Energy Technology Data Exchange (ETDEWEB)

    Kolos, Martin; Tursunov, Arman; Stuchlik, Zdenek [Silesian University in Opava, Institute of Physics and Research Centre of Theoretical Physics and Astrophysics, Faculty of Philosophy and Science, Opava (Czech Republic)

    2017-12-15

    The study of quasi-periodic oscillations (QPOs) of X-ray flux observed in the stellar-mass black hole binaries can provide a powerful tool for testing of the phenomena occurring in the strong gravity regime. Magnetized versions of the standard geodesic models of QPOs can explain the observationally fixed data from the three microquasars. We perform a successful fitting of the HF QPOs observed for three microquasars, GRS 1915+105, XTE 1550-564 and GRO 1655-40, containing black holes, for magnetized versions of both epicyclic resonance and relativistic precession models and discuss the corresponding constraints of parameters of the model, which are the mass and spin of the black hole and the parameter related to the external magnetic field. The estimated magnetic field intensity strongly depends on the type of objects giving the observed HF QPOs. It can be as small as 10{sup -5} G if electron oscillatory motion is relevant, but it can be by many orders higher for protons or ions (0.02-1 G), or even higher for charged dust or such exotic objects as lighting balls, etc. On the other hand, if we know by any means the magnetic field intensity, our model implies strong limit on the character of the oscillating matter, namely its specific charge. (orig.)

  16. Changing intensity of interaction can resolve prisoner's dilemmas

    Science.gov (United States)

    Li, Jiaqi; Zhang, Chunyan; Sun, Qinglin; Chen, Zengqiang; Zhang, Jianlei

    2016-03-01

    We put forward a computational model which mainly focuses on the effect of changing the intensity of interaction between individuals to study the evolutionary prisoner's dilemma game in social networks. In this model, an individual will unilaterally increase the intensity of interaction from it to some of its neighbors in case it is satisfied with the current income which it obtains from the neighbor; conversely, the individual will unilaterally reduce the intensity of interaction from it to its neighbor. We show that this simple evolutionary rule can effectively shift the survival barrier of cooperators and drastically facilitate the emergence of cooperation. Interestingly, for a fixed temptation to defect, there exists the smallest increment of intensity of interaction, resulting in a plateau of high cooperation level due to the positive feedback mechanism. Furthermore, we find good agreement between simulation results and theoretical predictions obtained from an extended pair-approximation method. Meanwhile, we illustrate the dynamical evolution of cooperators on the network, and investigate the impact of noise during the strategy updates.

  17. Expansion of a stochastic stationary optical field at a fixed point

    International Nuclear Information System (INIS)

    Martinez-Herrero, R.; Mejias, P.M.

    1984-01-01

    An important problem in single and multifold photoelectron statistics is to determine the statistical properties of a totally polarized optical field at some point →r from the photoelectron counts registered by the detector. The solution to this problem may be found in the determination of the statistical properties of an integral over a stochastic process; a complicated and formidable task. This problem can be solved in some cases of interest by expanding the process V(t) (which represents the field at →r) in a set of complete orthonormal deterministic functions, resulting in the so-called Karhunen-Loeve expansion of V(t). Two disadvantages are that the process must be defined over a finite time interval, and that each term of the series does not represent any special optical field. Taking into account these limitations of the expansion, the purpose of this work is to find another alternative expansion of stationary optical fields defined over the infinite time interval, and whose terms represent stochastic fields

  18. Early stages of technology intensive companies

    OpenAIRE

    Muhos, M. (Matti)

    2011-01-01

    Abstract This study aims to clarify the early development stages of technology intensive companies. The current literature does not offer an extensive review of stage perspectives for company growth – the overall picture of the field is somewhat vague. The evolution of this field remains unclear as well as the current state. Further, recent empirical stage models focusing on technology intensive companies have not been delineated. As companies move through their early stages, they face ev...

  19. The principal part of plane vector fields with fixed Newton diagram

    International Nuclear Information System (INIS)

    Berezovskaya, F.

    1991-09-01

    Considering the main part of a plane vector field in a neighbourhood of a singular point 0(0,0) it is well known that if the singularity real parts of eigenvalues are non-zero, the linear part of the vector field provides the topological normal form and tangents of all the o-curves. The problem is to find the main part of a plane vector field which would provide the topological orbital normal form in a neighbourhood of singular point and asymptotics of all characteristics trajectories. In this work the solution to the problem for the generic ease of so-called nondegenerate vector fields, using Newton diagram is given. 13 refs, 5 figs

  20. Corona magnetic field over sunspots estimated by m-wave observation

    International Nuclear Information System (INIS)

    Kurihara, Masahiro

    1974-01-01

    The shape of the magnetic field in corona was estimated from the observation of the type I storm occurred in the last decade of August, 1971. It was found from the observation with a 160 MHz interferometer at Mt. Nobeyama that at most three storm sources, which are called radio wave source, were produced. The radio wave sources were fixed above sunspots. The height of the radio wave sources was estimated to be 0.45 R from the photosphere. The sunspots under the radio wave sources can be classified to four sub-groups. Weakening of the magnetic field on the photosphere was found from the reduction of the area of some sub-group. The relation between the activity of type I storm and the intensity of the magnetic field of sunspots is qualitatively suggested. It is considered that the radio wave sources and the sunspots were connected by common magnetic force lines. The probable magnetic field in corona was presumed and is shown in a figure. An interesting point is that the direction of magnetic force lines inclined by about 30 0 outward to the vertical line to the photosphere surface. (Kato, T.)

  1. Intense pulsed neutron source status report

    International Nuclear Information System (INIS)

    Brown, B.S.; Bohringer, D.E.; Brumwell, F.R.; Carpenter, J.M.; Crawford, R.K.; Rauchas, A.V.; Schulke, A.W.; Worlton, T.G.

    1991-01-01

    The status and future plans of IPNS will be reviewed. At the celebration of our 10th anniversary in 7 months, IPNS will have performed over 2000 experiments and has over 230 scientists visiting IPNS annually. Plans for a new spallation source concept using a fixed field alternating gradient synchrotron will be presented. (author)

  2. Red-Shift Effects in Surface Enhanced Raman Spectroscopy: Spectral or Intensity Dependence of the Near-Field?

    KAUST Repository

    Colas, Florent; Cottat, Maximilien; Gillibert, Raymond; Guillot, Nicolas; Djaker, Nadia; Lidgi-Guigui, Nathalie; Toury, Timothé e; Barchiesi, Dominique; Toma, Andrea; Di Fabrizio, Enzo M.; Gucciardi, Pietro Giuseppe; de la Chapelle, Marc Lamy

    2016-01-01

    Optimum amplification in Surface Enhanced Raman Scattering (SERS) from individual nanoantennas is expected when the excitation is slightly blue-shifted with respect to the Localized Surface Plasmon Resonance (LSPR), so that the LSPR peak falls in the middle between the laser and the Stokes Raman emission. Recent experiments have shown when moving the excitation from the visible to the near-infrared that this rule of thumb is no more valid. The excitation has to be red-shifted with respect to the LSPR peak, up to 80nm, to obtain highest SERS. Such discrepancy is usually attributed to a Near-Field (NF) to Far-Field (FF) spectral shift. Here we critically discuss this hypothesis for the case of gold nanocylinders. By combining multi-wavelength excitation SERS experiments with numerical calculations, we show that the red-shift of the excitation energy does not originate from a spectral shift between the extinction (FF) and the near-field distribution (NF), which is found to be not larger than 10nm. Rather, it can be accounted for by looking at the peculiar spectral dependence of the near-field intensity on the cylinders diameter, characterized by an initial increase, up to 180nm diameter, followed by a decrease and a pronounced skewness.

  3. Red-Shift Effects in Surface Enhanced Raman Spectroscopy: Spectral or Intensity Dependence of the Near-Field?

    KAUST Repository

    Colas, Florent

    2016-06-06

    Optimum amplification in Surface Enhanced Raman Scattering (SERS) from individual nanoantennas is expected when the excitation is slightly blue-shifted with respect to the Localized Surface Plasmon Resonance (LSPR), so that the LSPR peak falls in the middle between the laser and the Stokes Raman emission. Recent experiments have shown when moving the excitation from the visible to the near-infrared that this rule of thumb is no more valid. The excitation has to be red-shifted with respect to the LSPR peak, up to 80nm, to obtain highest SERS. Such discrepancy is usually attributed to a Near-Field (NF) to Far-Field (FF) spectral shift. Here we critically discuss this hypothesis for the case of gold nanocylinders. By combining multi-wavelength excitation SERS experiments with numerical calculations, we show that the red-shift of the excitation energy does not originate from a spectral shift between the extinction (FF) and the near-field distribution (NF), which is found to be not larger than 10nm. Rather, it can be accounted for by looking at the peculiar spectral dependence of the near-field intensity on the cylinders diameter, characterized by an initial increase, up to 180nm diameter, followed by a decrease and a pronounced skewness.

  4. Fixed-film processes. Part 2

    International Nuclear Information System (INIS)

    Canziani, R.

    1999-01-01

    Recently, full scale fixed-film or mixed suspended have been applied in many wastewater treatments plants. These processes no longer depend on biomass settle ability and can be used to improve the performance of existing plants as required by more stringent discharge permit limits, especially for nutrients suspended solids. Also, processes may work at high rates making is possible to build small footprint installations. Fixed-film processes include trickling filters (and combined suspended and fixed-films processes), rotating biological contactors, biological aerated submerged, filters moving bed reactors, fluidized bed reactors. In the first part, the theoretical based governing fixed-film processes are briefly outlined, with some simple examples of calculations, underlining the main differences with conventional activate sludge processes. In the second part, the most common types of reactors are reviewed [it

  5. On the Control of the Fixed Charge Densities in Al2O3-Based Silicon Surface Passivation Schemes.

    Science.gov (United States)

    Simon, Daniel K; Jordan, Paul M; Mikolajick, Thomas; Dirnstorfer, Ingo

    2015-12-30

    A controlled field-effect passivation by a well-defined density of fixed charges is crucial for modern solar cell surface passivation schemes. Al2O3 nanolayers grown by atomic layer deposition contain negative fixed charges. Electrical measurements on slant-etched layers reveal that these charges are located within a 1 nm distance to the interface with the Si substrate. When inserting additional interface layers, the fixed charge density can be continuously adjusted from 3.5 × 10(12) cm(-2) (negative polarity) to 0.0 and up to 4.0 × 10(12) cm(-2) (positive polarity). A HfO2 interface layer of one or more monolayers reduces the negative fixed charges in Al2O3 to zero. The role of HfO2 is described as an inert spacer controlling the distance between Al2O3 and the Si substrate. It is suggested that this spacer alters the nonstoichiometric initial Al2O3 growth regime, which is responsible for the charge formation. On the basis of this charge-free HfO2/Al2O3 stack, negative or positive fixed charges can be formed by introducing additional thin Al2O3 or SiO2 layers between the Si substrate and this HfO2/Al2O3 capping layer. All stacks provide very good passivation of the silicon surface. The measured effective carrier lifetimes are between 1 and 30 ms. This charge control in Al2O3 nanolayers allows the construction of zero-fixed-charge passivation layers as well as layers with tailored fixed charge densities for future solar cell concepts and other field-effect based devices.

  6. On the Performance Analysis of Dual-Hop FSO Fixed Gain Transmission Systems

    KAUST Repository

    Zedini, Emna

    2015-12-12

    Novel exact closed-form results for the end-to-end performance analysis of dual-hop free-space optical (FSO) fixed-gain relaying systems under heterodyne detection as well as intensity modulation with direct detection techniques in the presence of atmospheric turbulence as well as pointing errors are presented. By using dual-hop FSO relaying, we demonstrate a better system performance relative to the single FSO link. Numerical and Monte-Carlo simulation results are provided to verify the accuracy of the newly proposed results, and a perfect agreement is observed.

  7. Engineering field theory

    CERN Document Server

    Baden Fuller, A J

    2014-01-01

    Engineering Field Theory focuses on the applications of field theory in gravitation, electrostatics, magnetism, electric current flow, conductive heat transfer, fluid flow, and seepage.The manuscript first ponders on electric flux, electrical materials, and flux function. Discussions focus on field intensity at the surface of a conductor, force on a charged surface, atomic properties, doublet and uniform field, flux tube and flux line, line charge and line sink, field of a surface charge, field intensity, flux density, permittivity, and Coulomb's law. The text then takes a look at gravitation

  8. Fix 40!

    Index Scriptorium Estoniae

    2008-01-01

    Ansambel Fix peab 13. detsembril Tallinnas Saku Suurhallis oma 40. sünnipäeva. Kontserdi erikülaline on ansambel Apelsin, kaastegevad Jassi Zahharov ja HaleBopp Singers. Õhtut juhib Tarmo Leinatamm

  9. Field: a new meta-authoring platform for data-intensive scientific visualization

    Science.gov (United States)

    Downie, M.; Ameres, E.; Fox, P. A.; Goebel, J.; Graves, A.; Hendler, J.

    2012-12-01

    This presentation will demonstrate a new platform for data-intensive scientific visualization, called Field, that rethinks the problem of visual data exploration. Several new opportunities for scientific visualization present themselves here at this moment in time. We believe that when taken together they may catalyze a transformation of the practice of science and to begin to seed a technical culture within science that fuses data analysis, programming and myriad visual strategies. It is at integrative levels that the principle challenges exist, for many fundamental technical components of our field are now well understood and widely available. File formats from CSV through HDF all have broad library support; low-level high-performance graphics APIs (OpenGL) are in a period of stable growth; and a dizzying ecosystem of analysis and machine learning libraries abound. The hardware of computer graphics offers unprecedented computing power within commodity components; programming languages and platforms are coalescing around a core set of umbrella runtimes. Each of these trends are each set to continue — computer graphics hardware is developing at a super-Moore-law rate, and trends in publication and dissemination point only towards an increasing amount of access to code and data. The critical opportunity here for scientific visualization is, we maintain, not a in developing a new statistical library, nor a new tool centered on a particular technique, but rather new visual, "live" programming environment that is promiscuous in its scope. We can identify the necessarily methodological practice and traditions required here not in science or engineering but in the "live-coding" practices prevalent in the fields of digital art and design. We can define this practice as an approach to programming that is live, iterative, integrative, speculative and exploratory. "Live" because it is exclusively practiced in real-time (often during performance); "iterative", because

  10. Comparison of low-intensity pulsed ultrasound and pulsed electromagnetic field treatments on OPG and RANKL expression in human osteoblast-like cells

    NARCIS (Netherlands)

    Borsje, Manon A.; Ren, Yijin; de Haan-Visser, H. Willy; Kuijer, Roel

    OBJECTIVE: To compare two clinically applied treatments to stimulate bone healing-low-intensity pulsed ultrasound (LIPUS) and pulsed electromagnetic field (PEMF)-for their effects on RANKL and OPG expression in osteoblast-like cells in vitro. MATERIALS AND METHODS: LIPUS or PEMF was applied to

  11. Enhancement of Ar sup 8 sup + ion beam intensity from RIKEN 18 GHz electron cyclotron resonance ion source by optimizing the magnetic field configuration

    CERN Document Server

    Higurashi, Y; Kidera, M; Kase, M; Yano, Y; Aihara, T

    2003-01-01

    We successfully produced a 1.55 emA Ar sup 8 sup + ion beam using the RIKEN 18 GHz electron cyclotron resonance ion source at a microwave power of 700 W. To produce such an intense beam, we optimized the minimum magnetic field of mirror magnetic field and plasma electrode position. (author)

  12. Yeast cell inactivation related to local heating induced by low-intensity electric fields with long-duration pulses.

    Science.gov (United States)

    Guyot, Stéphane; Ferret, Eric; Boehm, Jean-Baptiste; Gervais, Patrick

    2007-01-25

    The effects of electric field (EF) treatments on Saccharomyces cerevisiae viability were investigated using a PG200 electroporator (Hoefer Scientific Instrument, San Fransisco, CA, USA) with specific attention to induced thermal effects on cell death. Lethal electric fields (1.5 kV cm(-1) for 5 s) were shown to cause heat variations in the cell suspension medium (water+glycerol), while corresponding classical thermal treatments at equivalent temperatures had no effect on the cells viability. Variations of the electrical conductivity of the intra- and extracellular matrix caused by ions and solutes transfer across the membrane were shown to be involved in the observed heating. The results permitted to build a theoretical model for the temperature variations induced by electric fields. Using this model and the electrical conductivity of the different media, a plausible explanation of the cell death induced by low-intensity electric fields with long-duration pulses has been proposed. Indeed, cell mortality could in part be caused by direct and indirect effects of electric fields. Direct effects are related to well known electromechanical phenomena, whereas indirect effects are related to secondary thermal stress caused by plasma membrane thermoporation. This thermoporation was attributed to electrical conductivity variations and the corresponding intracellular heating.

  13. A technique for determining fast and thermal neutron flux densities in intense high-energy (8-30 MeV) photon fields

    International Nuclear Information System (INIS)

    Price, K.W.; Holeman, G.R.; Nath, R.

    1978-01-01

    A technique for measuring fast and thermal neutron fluxes in intense high-energy photon fields has been developed. Samples of phorphorous pentoxide are exposed to a mixed photon-neutron field. The irradiated samples are then dissolved in distilled water and their activation products are counted in a liquid scintillation spectrometer at 95-97% efficiency. The radioactive decay characteristics of the samples are then analyzed to determine fast and thermal neutron fluxes. Sensitivity of this neutron detector to high energy photons has been measured and found to be small. (author)

  14. Fixed-biofilm reactors applied to waste water treatment and aquacultural water recirculating systems

    NARCIS (Netherlands)

    Bovendeur, J.

    1989-01-01

    Fixed-biofilm waste water treatment may be regarded as one of the oldest engineered biological waste water treatment methods. With the recent introduction of modern packing materials, this type of reactor has received a renewed impuls for implementation in a wide field of water treatment.

    In

  15. Propagation of Solar Energetic Particles in Three-dimensional Interplanetary Magnetic Fields: Radial Dependence of Peak Intensities

    Science.gov (United States)

    He, H.-Q.; Zhou, G.; Wan, W.

    2017-06-01

    A functional form {I}\\max (R)={{kR}}-α , where R is the radial distance of a spacecraft, was usually used to model the radial dependence of peak intensities {I}\\max (R) of solar energetic particles (SEPs). In this work, the five-dimensional Fokker-Planck transport equation incorporating perpendicular diffusion is numerically solved to investigate the radial dependence of SEP peak intensities. We consider two different scenarios for the distribution of a spacecraft fleet: (1) along the radial direction line and (2) along the Parker magnetic field line. We find that the index α in the above expression varies in a wide range, primarily depending on the properties (e.g., location and coverage) of SEP sources and on the longitudinal and latitudinal separations between the sources and the magnetic foot points of the observers. Particularly, whether the magnetic foot point of the observer is located inside or outside the SEP source is a crucial factor determining the values of index α. A two-phase phenomenon is found in the radial dependence of peak intensities. The “position” of the break point (transition point/critical point) is determined by the magnetic connection status of the observers. This finding suggests that a very careful examination of the magnetic connection between the SEP source and each spacecraft should be taken in the observational studies. We obtain a lower limit of {R}-1.7+/- 0.1 for empirically modeling the radial dependence of SEP peak intensities. Our findings in this work can be used to explain the majority of the previous multispacecraft survey results, and especially to reconcile the different or conflicting empirical values of the index α in the literature.

  16. Stability of a Noncanonical Scalar Field Model during Cosmological Date

    Directory of Open Access Journals (Sweden)

    Z. Ossoulian

    2016-01-01

    Full Text Available Using the noncanonical model of scalar field, the cosmological consequences of a pervasive, self-interacting, homogeneous, and rolling scalar field are studied. In this model, the scalar field potential is “nonlinear” and decreases in magnitude with increasing the value of the scalar field. A special solution of the nonlinear field equations of ϕ that has time dependency as fixed point is obtained. The fixed point relies on the noncanonical term of action and γ-parameter; this parameter appeared in energy density of scalar field redshift. By means of such fixed point the different eigenvalues of the equation of motion will be obtained. In different epochs in the evolution of the Universe for different values of q and n, the potentials as a function of scalar field are attained. The behavior of baryonic perturbations in linear perturbation scenario as a considerable amount of energy density of scalar field at low redshifts prevents the growth of perturbations in the ordinary matter fluid. The energy density in the scalar field is not appreciably perturbed by nonrelativistic gravitational fields, in either the radiation or matter dominant or scalar field dominated epoch.

  17. Dynamics and structure of self-generated magnetics fields on solids following high contrast, high intensity laser irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Albertazzi, B. [LULI, École Polytechnique, CNRS, CEA, UPMC, 91128 Palaiseau (France); INRS-EMT, 1650 bd L. Boulet, J3X1S2, Varennes, Québec (Canada); Graduate School of Engineering, University of Osaka, Suita, Osaka 565-087 (Japan); Chen, S. N.; Fuchs, J., E-mail: julien.fuchs@polytechnique.fr [LULI, École Polytechnique, CNRS, CEA, UPMC, 91128 Palaiseau (France); Institute of Applied Physics, 46 Ulyanov Street, 603950 Nizhny Novgorod (Russian Federation); Antici, P. [INRS-EMT, 1650 bd L. Boulet, J3X1S2, Varennes, Québec (Canada); Dept. SBAI, Universita di Roma “La Sapienza,” Via A. Scarpa 14, 00161 Rome (Italy); Böker, J.; Swantusch, M.; Willi, O. [Institut für Laser-und Plasmaphysik, Heinrich-Heine-Universität, Düsseldorf (Germany); Borghesi, M. [School of Mathematics and Physics, The Queen' s University, Belfast (United Kingdom); Breil, J.; Feugeas, J. L.; Nicolaï, Ph.; Tikhonchuk, V. T.; D' Humières, E. [CELIA, University of Bordeaux - CNRS - CEA, 33405 Talence (France); Dervieux, V.; Nakatsutsumi, M.; Romagnagni, L. [LULI, École Polytechnique, CNRS, CEA, UPMC, 91128 Palaiseau (France); Lancia, L. [Dept. SBAI, Universita di Roma “La Sapienza,” Via A. Scarpa 14, 00161 Rome (Italy); Shepherd, R. [LLNL, East Av., Livermore, California 94550 (United States); Sentoku, Y. [Department of Physics, University of Nevada, Reno, Nevada 89557-0058 (United States); Starodubtsev, M. [Institute of Applied Physics, 46 Ulyanov Street, 603950 Nizhny Novgorod (Russian Federation); and others

    2015-12-15

    The dynamics of self-generated magnetic B-fields produced following the interaction of a high contrast, high intensity (I > 10{sup 19 }W cm{sup −2}) laser beam with thin (3 μm thick) solid (Al or Au) targets is investigated experimentally and numerically. Two main sources drive the growth of B-fields on the target surfaces. B-fields are first driven by laser-generated hot electron currents that relax over ∼10–20 ps. Over longer timescales, the hydrodynamic expansion of the bulk of the target into vacuum also generates B-field induced by non-collinear gradients of density and temperature. The laser irradiation of the target front side strongly localizes the energy deposition at the target front, in contrast to the target rear side, which is heated by fast electrons over a much larger area. This induces an asymmetry in the hydrodynamic expansion between the front and rear target surfaces, and consequently the associated B-fields are found strongly asymmetric. The sole long-lasting (>30 ps) B-fields are the ones growing on the target front surface, where they remain of extremely high strength (∼8–10 MG). These B-fields have been recently put by us in practical use for focusing laser-accelerated protons [B. Albertazzi et al., Rev. Sci. Instrum. 86, 043502 (2015)]; here we analyze in detail their dynamics and structure.

  18. The Swarm Initial Field Model for the 2014 Geomagnetic Field

    Science.gov (United States)

    Olsen, Nils; Hulot, Gauthier; Lesur, Vincent; Finlay, Christopher C.; Beggan, Ciaran; Chulliat, Arnaud; Sabaka, Terence J.; Floberghagen, Rune; Friis-Christensen, Eigil; Haagmans, Roger

    2015-01-01

    Data from the first year of ESA's Swarm constellation mission are used to derive the Swarm Initial Field Model (SIFM), a new model of the Earth's magnetic field and its time variation. In addition to the conventional magnetic field observations provided by each of the three Swarm satellites, explicit advantage is taken of the constellation aspect by including east-west magnetic intensity gradient information from the lower satellite pair. Along-track differences in magnetic intensity provide further information concerning the north-south gradient. The SIFM static field shows excellent agreement (up to at least degree 60) with recent field models derived from CHAMP data, providing an initial validation of the quality of the Swarm magnetic measurements. Use of gradient data improves the determination of both the static field and its secular variation, with the mean misfit for east-west intensity differences between the lower satellite pair being only 0.12 nT.

  19. MR signal intensity of the perirolandic cirtex in the neonate and infant

    International Nuclear Information System (INIS)

    Korogi, Y.; Takahashi, M.; Sumi, M.; Hirai, T,; Sakamoto, Y.; Ikushima, I.; Miyayama, H.

    1996-01-01

    Our purpose was to study the magnetic resonance (MR) signal intensity of the perirolandic gyri perinatally and to correlate it with the histological findings in formalin-fixed brains, focusing on myelination. MRI of 20 neurologically normal neonates and infants, of 37-64 weeks postconception (PCA), were studied retrospectively. We reviewed four formalin-fixed brains of infants 37-46 weeks PCA microscopically. The posterior cortex of the precentral gyrus (P-PRE) and the anterior cortex of the postcentral gyrus (A-PST) had different signal intensity form the adjacent surrounding cortex. On T1-weighted images P-PRE and A-PST gave higher signal 41-44 weeks PCA; on T2-weighted images, they gave lower signal 37-51 weeks PCA. Histological examination revealed very little myelination of the nerve fibres within both the P-PRE and the A-PST, while considerable myelination was present in the internal capsule and central corona radiata. The changes in signal intensity in the perirolandic gyri may reflect not only the degree of myelination but also the more advanced development of the nerve cells, associated with rapid proliferation and formation of oligodendroglial cells, synapses and dendrites. They could be another important landmark for brain maturation. (orig.)

  20. Decreasing Temporal Lobe Dose With Five-Field Intensity-Modulated Radiotherapy for Treatment of Pituitary Macroadenomas

    International Nuclear Information System (INIS)

    Parhar, Preeti K.; Duckworth, Tamara; Shah, Parinda; DeWyngaert, J. Keith; Narayana, Ashwatha; Formenti, Silvia C.; Shah, Jinesh N.

    2010-01-01

    Purpose: To compare temporal lobe dose delivered by three pituitary macroadenoma irradiation techniques: three-field three-dimensional conformal radiotherapy (3D-CRT), three-field intensity-modulated radiotherapy (3F IMRT), and a proposed novel alternative of five-field IMRT (5F IMRT). Methods and Materials: Computed tomography-based external beam radiotherapy planning was performed for 15 pituitary macroadenoma patients treated at New York University between 2002 and 2007 using: 3D-CRT (two lateral, one midline superior anterior oblique [SAO] beams), 3F IMRT (same beam angles), and 5F IMRT (same beam angles with additional right SAO and left SAO beams). Prescription dose was 45 Gy. Target volumes were: gross tumor volume (GTV) = macroadenoma, clinical target volume (CTV) = GTV, and planning target volume = CTV + 0.5 cm. Structure contouring was performed by two radiation oncologists guided by an expert neuroradiologist. Results: Five-field IMRT yielded significantly decreased temporal lobe dose delivery compared with 3D-CRT and 3F IMRT. Temporal lobe sparing with 5F IMRT was most pronounced at intermediate doses: mean V25Gy (% of total temporal lobe volume receiving ≥25 Gy) of 13% vs. 28% vs. 29% for right temporal lobe and 14% vs. 29% vs. 30% for left temporal lobe for 5F IMRT, 3D-CRT, and 3F IMRT, respectively (p -7 for 5F IMRT vs. 3D-CRT and 5F IMRT vs. 3F IMRT). Five-field IMRT plans did not compromise target coverage, exceed normal tissue dose constraints, or increase estimated brain integral dose. Conclusions: Five-field IMRT irradiation technique results in a statistically significant decrease in the dose to the temporal lobes and may thus help prevent neurocognitive sequelae in irradiated pituitary macroadenoma patients.

  1. Dosimetric Evaluation of Intensity Modulated Radiotherapy and 4-Field 3-D Conformal Radiotherapy in Prostate Cancer Treatment

    Directory of Open Access Journals (Sweden)

    Bora Uysal

    2013-03-01

    Full Text Available Objective: The purpose of this dosimetric study is the targeted dose homogeneity and critical organ dose comparison of 7-field Intensity Modulated Radiotherapy (IMRT and 3-D 4-field conformal radiotherapy. Study Design: Cross sectional study. Material and Methods: Twenty patients with low and moderate risk prostate cancer treated at Gülhane Military Medical School Radiation Oncology Department between January 2009 and December 2009 are included in this study. Two seperate dosimetric plans both for 7-field IMRT and 3D-CRT have been generated for each patient to comparatively evaluate the dosimetric status of both techniques and all the patients received 7-field IMRT. Results: Dose-comparative evaluation of two techniques revealed the superiority of IMRT technique with statistically significantly lower femoral head doses along with reduced critical organ dose-volume parameters of bladder V60 (the volume receiving 60 Gy and rectal V40 (the volume receiving 40 Gy and V60. Conclusion: It can be concluded that IMRT is an effective definitive management tool for prostate cancer with improved critical organ sparing and excellent dose homogenization in target organs of prostate and seminal vesicles.

  2. Nonadiabatic dynamics in intense continuous wave laser fields and real-time observation of the associated wavepacket bifurcation in terms of spectrogram of induced photon emission.

    Science.gov (United States)

    Mizuno, Yuta; Arasaki, Yasuki; Takatsuka, Kazuo

    2016-11-14

    We propose a theoretical principle to directly monitor the bifurcation of quantum wavepackets passing through nonadiabatic regions of a molecule that is placed in intense continuous wave (CW) laser fields. This idea makes use of the phenomenon of laser-driven photon emission from molecules that can undergo nonadiabatic transitions between ionic and covalent potential energy surfaces like Li + F - and LiF. The resultant photon emission spectra are of anomalous yet characteristic frequency and intensity, if pumped to an energy level in which the nonadiabatic region is accessible and placed in a CW laser field. The proposed method is designed to take the time-frequency spectrogram with an appropriate time-window from this photon emission to detect the time evolution of the frequency and intensity, which depends on the dynamics and location of the relevant nuclear wavepackets. This method is specifically designed for the study of dynamics in intense CW laser fields and is rather limited in scope than other techniques for femtosecond chemical dynamics in vacuum. The following characteristic features of dynamics can be mapped onto the spectrogram: (1) the period of driven vibrational motion (temporally confined vibrational states in otherwise dissociative channels, the period and other states of which dramatically vary depending on the CW driving lasers applied), (2) the existence of multiple nuclear wavepackets running individually on the field-dressed potential energy surfaces, (3) the time scale of coherent interaction between the nuclear wavepackets running on ionic and covalent electronic states after their branching (the so-called coherence time in the terminology of the theory of nonadiabatic interaction), and so on.

  3. Coherence properties of the harmonic generation in intense laser field

    International Nuclear Information System (INIS)

    Salieres, P.

    1995-01-01

    In this thesis is presented an experimental and theoretical study of the harmonic generation in intense field and coherence properties of this radiation. The first part reminds the main harmonic specter characteristics. Follow then experimental studies of the tray extension with the laser lighting, the harmonic generation by ions, and the influence of the laser field on the efficiency of generation. The second part presents the quantum model of the harmonic generation in tunnel regime that we have used for the calculation of the dipoles. We compare dependence in lighting of some harmonic, by insisting on the characteristic behavior of the atomic phase. The theory of the propagation is presented in third part. After the reminder of the case of a perturbative polarization, we develop the case of the polarization in tunnel regime. With the help of numerical simulations, we show the influence of the atomic phase on the agreement of phase, and therefore on the efficiency of conversion and profiles of generation in the medium. The importance of the geometry of the interaction is underlined. The part IV presents the study of the spatial coherence of the harmonic radiation. We develop first consequences of the theory of the agreement of phase for profiles of emission. Then the comparison with experimental profiles is detailed in function of the different parameters( order of non linearity, laser lighting, position of the focus by report in the gaseous medium). The study of the spectral and temporal coherence of the part V begins with the experimental effect investigation of the ionization on specters of the harmonic of weak order. We present then theoretical predictions of the preceding model for spectral and temporal profiles of the harmonic of highest order, generated in tunnel regime. The part VI is devoted to the UVX source aspect of the harmonic radiation. General characteristics (number of photons, agreement) are first detailed, then we present the first experiences

  4. Fixed points of quantum gravity

    OpenAIRE

    Litim, D F

    2003-01-01

    Euclidean quantum gravity is studied with renormalisation group methods. Analytical results for a non-trivial ultraviolet fixed point are found for arbitrary dimensions and gauge fixing parameter in the Einstein-Hilbert truncation. Implications for quantum gravity in four dimensions are discussed.

  5. Impact of fixed-mobile convergence

    DEFF Research Database (Denmark)

    Pachnicke, Stephan; Andrus, Bogdan-Mihai; Autenrieth, Achim

    2016-01-01

    Fixed-Mobile Convergence (FMC) is a very trendy concept as it promises integration of the previously separated fixed access network and the mobile network. From this novel approach telecommunication operators expect significant cost savings and performance improvements. FMC can be separated...

  6. Searching for fixed point combinators by using automated theorem proving: A preliminary report

    International Nuclear Information System (INIS)

    Wos, L.; McCune, W.

    1988-09-01

    In this report, we establish that the use of an automated theorem- proving program to study deep questions from mathematics and logic is indeed an excellent move. Among such problems, we focus mainly on that concerning the construction of fixed point combinators---a problem considered by logicians to be significant and difficult to solve, and often computationally intensive and arduous. To be a fixed point combinator, Θ must satisfy the equation Θx = x(Θx) for all combinators x. The specific questions on which we focus most heavily ask, for each chosen set of combinators, whether a fixed point combinator can be constructed from the members of that set. For answering questions of this type, we present a new, sound, and efficient method, called the kernel method, which can be applied quite easily by hand and very easily by an automated theorem-proving program. For the application of the kernel method by a theorem-proving program, we illustrate the vital role that is played by both paramodulation and demodulation---two of the powerful features frequently offered by an automated theorem-proving program for treating equality as if it is ''understood.'' We also state a conjecture that, if proved, establishes the completeness of the kernel method. From what we can ascertain, this method---which relies on the introduced concepts of kernel and superkernel---offers the first systematic approach for searching for fixed point combinators. We successfully apply the new kernel method to various sets of combinators and, for the set consisting of the combinators B and W, construct an infinite set of fixed point combinators such that no two of the combinators are equal even in the presence of extensionality---a law that asserts that two combinators are equal if they behave the same. 18 refs

  7. Searching for fixed point combinators by using automated theorem proving: A preliminary report

    Energy Technology Data Exchange (ETDEWEB)

    Wos, L.; McCune, W.

    1988-09-01

    In this report, we establish that the use of an automated theorem- proving program to study deep questions from mathematics and logic is indeed an excellent move. Among such problems, we focus mainly on that concerning the construction of fixed point combinators---a problem considered by logicians to be significant and difficult to solve, and often computationally intensive and arduous. To be a fixed point combinator, THETA must satisfy the equation THETAx = x(THETAx) for all combinators x. The specific questions on which we focus most heavily ask, for each chosen set of combinators, whether a fixed point combinator can be constructed from the members of that set. For answering questions of this type, we present a new, sound, and efficient method, called the kernel method, which can be applied quite easily by hand and very easily by an automated theorem-proving program. For the application of the kernel method by a theorem-proving program, we illustrate the vital role that is played by both paramodulation and demodulation---two of the powerful features frequently offered by an automated theorem-proving program for treating equality as if it is ''understood.'' We also state a conjecture that, if proved, establishes the completeness of the kernel method. From what we can ascertain, this method---which relies on the introduced concepts of kernel and superkernel---offers the first systematic approach for searching for fixed point combinators. We successfully apply the new kernel method to various sets of combinators and, for the set consisting of the combinators B and W, construct an infinite set of fixed point combinators such that no two of the combinators are equal even in the presence of extensionality---a law that asserts that two combinators are equal if they behave the same. 18 refs.

  8. Buoyancy effects in vertical rectangular duct with coplanar magnetic field and single sided heat load

    Science.gov (United States)

    Kostichev, P. I.; Poddubnyi, I. I.; Razuvanov, N. G.

    2017-11-01

    In some DEMO blanket designs liquid metal flows in vertical ducts of rectangular cross-section between ceramic breeder units providing their cooling. Heat exchange in these conditions is governed by the influence of magnetic field (coplanar) and by buoyancy effects that depend on the flow orientation to the gravity vector (downward and upward flow). Magnetohydrodynamic and heat transfer of liquid metal in vertical rectangular ducts is not well researched. Experimental study of buoyancy effects in rectangular duct with coplanar magnetic field for one-sided heat load and downward and upward flowsis presented in this paper. The detail research with has been done on mercury MHD close loop with using of the probe technique allow to discover several advantageous and disadvantageous effects. The intensive impact of buoyancy force has been observed in a few regime of downward flow which has been laminarized by magnetic field. Due to the development in the flow of the secondary large-scale vortices heat transfer improved and the temperature fluctuations of the abnormally high intensity have been fixed. On the contrary, in the upward flow the buoyancy force stabilized the flow which lead to decreasing of the turbulence heat transfer ratio and, consequently, deterioration of heat transfer.

  9. SU-E-T-592: Relationship Between Dose of Distribution and Area of Segment Fields Among Different Intensity-Modulated Radiotherapy Planning in Cervix Cancer

    Energy Technology Data Exchange (ETDEWEB)

    Qiu, R; Wang, Y; Cao, Y; Zhang, R; Shang, K; Chi, Z [Hebei Medical University Fourth Hospital, Shijiazhuang, Hebei (China)

    2014-06-01

    Purpose: In premise of uninfluenced to dose distribution of tumor target and organ at risk(OAR) in cervical cancer,area of segment fields was changed to increase efficacy and optimize treatment method by designing different plan of intensity modulated radiotherapy(IMRT). Methods: 12 cases of cervical cancer were confirmed in pathology and treated with step and shoot IMRT. Dose of PTV was 50Gy/25fractions. Every patient was designed 9 treatment plans of IMRT by Pinnacle 8.0m planning system,each plan was used with 9 beams of uniform distribution and fixing incidence direction(200°,240°,280°,320°,0°,40°,80°,120°and 160°respectively),and designed for delivery on Elekta Synergy linear accelerator. All plans were optimized with the direct machine parameter optimization(DMPO) algorithm using the same set of optimization objectives. Number of maximum segment field was defined at 80 and minimum MU in each segment was 5MU,and minimal segment area was 2*1cm{sup 2},2*2cm{sup 2},3*3cm{sup 2},4*4cm{sup 2},5*5cm{sup 2},6*6cm{sup 2},7*7cm{sup 2},8*8cm{sup 2}and 9*9cm{sup 2},respectively.Coverage,homogeneity and conformity of PTV,sparing of OAR, MU and number of segment were compared. Results: In this group, mean volume of PTV was 916.8±228.7 cm{sup 3}. Compared with the area of minimal segment field increased from 2*1cm{sup 2} to 9*9 cm{sup 2},the number of mean MU was decreased from 1405±170 to 490±47 and the number of segment field was reduced from 76±4 to 39±7 respectively(p<0.05). When the limit of minimal segment area was increased from 2*1cm{sup 2} to 7*7 cm{sup 2},dose distribution of PTV,OAR,CI,HI and V{sub 2} {sub 3} were not different (p>0.05),but when the minimal segment area was 8*8 cm{sup 2} and 9*9 cm{sup 2},they were changed compared with 7*7 cm{sup 2} and below(p<0.05). Conclusion: The minimal segment field of IMRT plan designed by Pinnacle 8.0m planning system in cervical carcinoma should be enlarge reasonably and minimal segment area of 7*7 cm

  10. Earle K. Plyler Prize Lecture: The Three Pillars of Ultrafast Molecular Science - Time, Phase, Intensity

    Science.gov (United States)

    Stolow, Albert

    We discuss the probing and control of molecular wavepacket dynamics in the context of three main `pillars' of light-matter interaction: time, phase, intensity. Time: Using short, coherent laser pulses and perturbative matter-field interactions, we study molecular wavepackets with a focus on the ultrafast non-Born-Oppenheimer dynamics, that is, the coupling of electronic and nuclear motions. Time-Resolved Photoelectron Spectroscopy (TRPES) is a powerful ultrafast probe of these processes in polyatomic molecules because it is sensitive both electronic and vibrational dynamics. Ideally, one would like to observe these ultrafast processes from the molecule's point of view - the Molecular Frame - thereby avoiding loss of information due to orientational averaging. This can be achieved by Time-Resolved Coincidence Imaging Spectroscopy (TRCIS) which images 3D recoil vectors of both photofragments and photoelectrons, in coincidence and as a function of time, permitting direct Molecular Frame imaging of valence electronic dynamics during a molecular dynamics. Phase: Using intermediate strength non-perturbative interactions, we apply the second order (polarizability) Non-Resonant Dynamic Stark Effect (NRDSE) to control molecular dynamics without any net absorption of light. NRDSE is also the interaction underlying molecular alignment and applies to field-free 1D of linear molecules and field-free 3D alignment of general (asymmetric) molecules. Using laser alignment, we can transiently fix a molecule in space, yielding a more general approach to direct Molecular Frame imaging of valence electronic dynamics during a chemical reaction. Intensity: In strong (ionizing) laser fields, a new laser-matter physics emerges for polyatomic systems wherein both the single active electron picture and the adiabatic electron response, both implicit in the standard 3-step models, can fail dramatically. This has important consequences for all attosecond strong field spectroscopies of

  11. THE PROBLEMS OF FIXED ASSETS CLASSIFICATION FOR ACCOUNTING

    Directory of Open Access Journals (Sweden)

    Sophiia Kafka

    2016-06-01

    Full Text Available This article provides a critical analysis of research in accounting of fixed assets; the basic issues of fixed assets accounting that have been developed by the Ukrainian scientists during 1999-2016 have been determined. It is established that the problems of non-current assets taxation and their classification are the most noteworthy. In the dissertations the issues of fixed assets classification are of exclusively particular branch nature, so its improvement is important. The purpose of the article is developing science-based classification of fixed assets for accounting purposes since their composition is quite diverse. The classification of fixed assets for accounting purposes have been summarized and developed in Figure 1 according to the results of the research. The accomplished analysis of existing approaches to classification of fixed assets has made it possible to specify its basic types and justify the classification criteria of fixed assets for the main objects of fixed assets. Key words: non-current assets, fixed assets, accounting, valuation, classification of the fixed assets. JEL:G M41  

  12. The Effect of 217 Hz Magnetic Field of Cell Phone with Different Intensities on Apoptosis of Normal and Cancerous Cells Treated with Chemotherapy Drug

    Directory of Open Access Journals (Sweden)

    Mahsa Mansourian

    2012-03-01

    Full Text Available Background: According to the increasing development of home and business electronic equipment in today's world, the biological effects of ELF magnetic fields have been studied at two molecular-cellular and animal- human levels. Considering the therapeutic viewpoint of this study regarding the effects of low-frequency fields of mobile phone, the effect of acute exposure to this field on chemotherapy will be studied.Materials and Methods: In this experimental study, based on measurement of the intensity of the magnetic fields from mobile phones in another research, flux densities of magnetic field of 159.44, 93.25 and 120µ tesla with frequency of 217Hz was generated in magnetic field generator system, and the apoptosis level in K562 cancer cells and healthy cells of lymphocytes was assessed after exposure to field using flow cytometry method. This evaluation method was also performed for the cells treated with bleomycin after exposure to this field.Results: 217 Hz magnetic field exposure significantly increases the rate of apoptosis percentage (p > 0.05 in K562 cancer cells and in two intensities of 120 and 159.44µ tesla compared to the control group, but such effect is not observed in lymphocyte cells. Bleomycin-induced apoptosis percentage following exposure to the mentioned magnetic field shows no significant difference compared to the group of treatment with drug and without field exposure. This lack of significant difference is observed between the groups of drug after field exposure and field alone as well as between groups exposed to field and groups treated with bleomycin.Conclusion: Study results showed that 217 Hz magnetic field of mobile phone can induce apoptosis on cancer cells, but it has no effect on healthy cells. Thus, in order to use mobile phone as an effective factor in their treatment, some studies should be conducted at animal-human level.

  13. Method for the combustion of a gas, in fixed bed, with an oxidized solid and associated installation

    OpenAIRE

    Abanades García, Juan Carlos; Fernández García, José Ramón

    2014-01-01

    [EN] The present invention pertains to the field of the generation of energy from combustible gases, incorporating the capture of carbon dioxide for use or permanent storage and, specifically relates to cyclical methods of gas combustion with oxidized solids (chemical looping processes), in fixed bed, for solving the problem of controlling temperature in the combustion of gaseous fuels in fixed beds of metal oxides operating at high pressures, and also the associated installation.

  14. Intensity-modulated three-dimensional conformal radiotherapy

    International Nuclear Information System (INIS)

    Mohan, Radhe

    1996-01-01

    Optimized intensity-modulated treatments one of the important advances in photon radiotherapy. Intensity modulation provides a greatly increased control over dose distributions. Such control can be maximally exploited to achieve significantly higher levels of conformation to the desired clinical objectives using sophisticated optimization techniques. Safe, rapid and efficient delivery of intensity-modulated treatments has become feasible using a dynamic multi-leaf collimator under computer control. The need for all other field shaping devices such as blocks, wedges and compensators is eliminated. Planning and delivery of intensity-modulated treatments is amenable to automation and development of class solutions for each treatment site and stage which can be implemented not only at major academic centers but on a wide scale. A typical treatment involving as many as 10 fields can be delivered in times shorter than much simpler conventional treatments. The main objective of the course is to give an overview of the current state of the art of planning and delivery methods of intensity-modulated treatments. Specifically, the following topics will be covered using representative optimized plans and treatments: 1. A typical procedure for planning and delivering an intensity-modulated treatment. 2. Quantitative definition of criteria (i.e., the objective function) of optimization of intensity-modulated treatments. Clinical relevance of objectives and the dependence of the quality of optimized intensity-modulated plans upon whether the objectives are stated purely in terms of simple dose or dose-volume criteria or whether they incorporate biological indices. 3. Importance of the lateral transport of radiation in the design of intensity-modulated treatments. Impact on dose homogeneity and the optimum choice of margins. 4. Use of intensity-modulated treatments in escalation of tumor dose for the same or lower normal tissue dose. Fractionation of intensity-modulated treatments

  15. Intensity-modulated three-dimensional conformal radiotherapy

    International Nuclear Information System (INIS)

    Mohan, Radhe

    1997-01-01

    Optimized intensity-modulated treatments one of the important advances in photon radiotherapy. Intensity modulation provides a greatly increased control over dose distributions. Such control can be maximally exploited to achieve significantly higher levels of conformation to the desired clinical objectives using sophisticated optimization techniques. Safe, rapid and efficient delivery of intensity-modulated treatments has become feasible using a dynamic multi-leaf collimator under computer control. The need for all other field shaping devices such as blocks, wedges and compensators is eliminated. Planning and delivery of intensity-modulated treatments is amenable to automation and development of class solutions for each treatment site and stage which can be implemented not only at major academic centers but on a wide scale. A typical treatment involving as many as 10 fields can be delivered in times shorter than much simpler conventional treatments. The main objective of the course is to give an overview of the current state of the art of planning and delivery methods of intensity-modulated treatments. Specifically, the following topics will be covered using representative optimized plans and treatments: 1. A typical procedure for planning and delivering an intensity-modulated treatment. 2. Quantitative definition of criteria (i.e., the objective function) of optimization of intensity-modulated treatments. Clinical relevance of objectives and the dependence of the quality of optimized intensity-modulated plans upon whether the objectives are stated purely in terms of simple dose or dose-volume criteria or whether they incorporate biological indices. 3. Importance of the lateral transport of radiation in the design of intensity-modulated treatments. Impact on dose homogeneity and the optimum choice of margins. 4. Use of intensity-modulated treatments in escalation of tumor dose for the same or lower normal tissue dose. Fractionation of intensity-modulated treatments

  16. Los Alamos field-reversed configuration (FRC) research

    Energy Technology Data Exchange (ETDEWEB)

    Armstrong, W.T.; Bartsch, R.R.; Cochrane, J.C.; Linford, R.K.; Lipson, J.; McKenna, K.F.; Platts, D.A.; Sherwood, E.G.; Siemon, R.E.; Tuszewski, M.

    1981-01-01

    Recent experimental results are discussed for a compact toroid produced by a field-reversed theta-pinch and containing purely poloidal magnetic fields. The confinement time is found to vary inversely with the ion gyro-radius and to be approximately independent of ion temperature for fixed gyro-radius. Within a coil of fixed radius, the plasmoid major radius R was varied by approx. 30% and the confinement appears to scale as R/sup 2/. A semi-empirical formation model has been formulated that predicts reasonably well the plasma parameters as magnetic field and fill pressure are varied in present experiments. The model is used to predict parameters in larger devices under construction.

  17. Los Alamos field-reversed configuration (FRC) research

    International Nuclear Information System (INIS)

    Armstrong, W.T.; Bartsch, R.R.; Cochrane, J.C.; Linford, R.K.; Lipson, J.; McKenna, K.F.; Platts, D.A.; Sherwood, E.G.; Siemon, R.E.; Tuszewski, M.

    1981-01-01

    Recent experimental results are discussed for a compact toroid produced by a field-reversed theta-pinch and containing purely poloidal magnetic fields. The confinement time is found to vary inversely with the ion gyro-radius and to be approximately independent of ion temperature for fixed gyro-radius. Within a coil of fixed radius, the plasmoid major radius R was varied by approx. 30% and the confinement appears to scale as R 2 . A semi-empirical formation model has been formulated that predicts reasonably well the plasma parameters as magnetic field and fill pressure are varied in present experiments. The model is used to predict parameters in larger devices under construction

  18. Physical and structural changes in liquid whole egg treated with high-intensity pulsed electric fields.

    Science.gov (United States)

    Marco-Molés, Raquel; Rojas-Graü, María A; Hernando, Isabel; Pérez-Munuera, Isabel; Soliva-Fortuny, Robert; Martín-Belloso, Olga

    2011-03-01

    Liquid whole egg (LWE) is currently pasteurized through the application of heat; however, this treatment entails deleterious effects against some of the functional and technological properties of the product. In this study, the effect of high-intensity pulsed electric fields (HIPEF) processing (field strength: 19, 32, and 37 kV/cm) was compared to the traditional heat pasteurization (66 °C for 4.5 min). Different physical and structural characteristics of LWE, subjected or not to homogenization, were evaluated and compared, having the untreated LWE as a reference. Thermal treatment caused an increase in the viscosity of LWE, especially in nonhomogenized samples. HIPEF treatments did not modify the original color of LWE, whereas thermally treated samples developed an opaque appearance. LWE treated at 19 and 32 kV/cm exhibited a similar foaming capacity as fresh untreated egg, whereas thermal processing and PEF treatments of 37 kV/cm caused a substantial decrease in the foaming capacity of untreated liquid egg. Regarding the microstructure, the lipoprotein matrix appeared to be less affected by the HIPEF than by heat treatment if compared to the control. In addition, heat pasteurization had a significant impact on both the water-soluble protein content of the LWE samples (19.5% to 23.6% decrease) and the mechanical properties of the egg gels (up to 21.3% and 14.5% increase in hardness and cohesiveness, respectively). On the other hand, these parameters were not substantially affected in the HIPEF-treated samples. Heat-induced gels obtained from HIPEF-treated samples did not exhibit remarkable differences in the water-holding capacity (WHC) with respect to heat-pasteurized samples. The impact of high-intensity pulsed electric fields (HIPEF) processing on technological properties of liquid-whole egg was investigated and compared to that of thermal processing. Heat treatments cause a severe impact on the foaming capacity, the water-soluble protein content, and the

  19. Nonperturbative quantum electrodynamics in a photon-condensate background field

    International Nuclear Information System (INIS)

    Kikuchi, Y.; Ng, Y.J.

    1988-01-01

    Analyses of the Schwinger-Dyson (SD) equation for the fermion self-energy have revealed the existence of a QED ultraviolet nonperturbative fixed point which separates a strong-coupling regime from a weak-coupling regime. Here we study the SD equation in the presence of a weak constant photon-condensate background field. This background field does not seem to affect the fixed point. Better approximations or some more realistic background fields may change the result. The investigation is partly motivated by recent heavy-ion experiments

  20. A single simple procedure for dewaxing, hydration and heat-induced epitope retrieval (HIER for immunohistochemistry in formalin fixed paraffin-embedded tissue

    Directory of Open Access Journals (Sweden)

    I.M.S. Paulsen

    2015-11-01

    Full Text Available Heat-induced epitope retrieval (HIER is widely used for immunohistochemistry on formalin fixed paraffin-embedded tissue and includes temperatures well above the melting point of paraffin. We therefore tested whether traditional xylene-based removal of paraffin is required on sections from paraffin-embedded tissue, when HIER is performed by vigorous boiling in 10 mM Tris/0.5 mM EGTA-buffer (pH=9. Immunohistochemical results using HIER with or without prior dewaxing in xylene were evaluated using 7 primary antibodies targeting proteins located in the cytosol, intracellular vesicles and plasma membrane. No effect of omitting prior dewaxing was observed on staining pattern. Semiquantitative analysis did not show HIER to influence the intensity of labelling consistently. Consequently, quantification of immune labelling intensity using fluorescent secondary antibodies was performed at 5 dilutions of primary antibody with and without prior dewaxing in xylene. No effect of omitting prior dewaxing on signal intensity was detectable indicating similar immunoreactivity in dewaxed and non-dewaxed sections. The intensity of staining the nucleus with the DNA-stain ToPro3 was similarly unaffected by omission of dewaxing in xylene. In conclusion, the HIER procedure described and tested can be used as a single procedure enabling dewaxing, hydration and epitope retrieval for immunohistochemistry in formalin fixed paraffin-embedded tissue.

  1. Gauge fixing and the Hamiltonian for cylindrical spacetimes

    Science.gov (United States)

    Mena Marugán, Guillermo A.

    2001-01-01

    We introduce a complete gauge fixing for cylindrical spacetimes in vacuo that, in principle, do not contain the axis of symmetry. By cylindrically symmetric we understand spacetimes that possess two commuting spacelike Killing vectors, one of them rotational and the other one translational. The result of our gauge fixing is a constraint-free model whose phase space has four field-like degrees of freedom and that depends on three constant parameters. Two of these constants determine the global angular momentum and the linear momentum in the axis direction, while the third parameter is related with the behavior of the metric around the axis. We derive the explicit expression of the metric in terms of the physical degrees of freedom, calculate the reduced equations of motion and obtain the Hamiltonian that generates the reduced dynamics. We also find upper and lower bounds for this reduced Hamiltonian that provides the energy per unit length contained in the system. In addition, we show that the reduced formalism constructed is well defined and consistent at least when the linear momentum in the axis direction vanishes. Furthermore, in that case we prove that there exists an infinite number of solutions in which all physical fields are constant both in the surroundings of the axis and at sufficiently large distances from it. If the global angular momentum is different from zero, the isometry group of these solutions is generally not orthogonally transitive. Such solutions generalize the metric of a spinning cosmic string in the region where no closed timelike curves are present.

  2. Temporal resolution criterion for correctly simulating relativistic electron motion in a high-intensity laser field

    Energy Technology Data Exchange (ETDEWEB)

    Arefiev, Alexey V. [Institute for Fusion Studies, The University of Texas, Austin, Texas 78712 (United States); Cochran, Ginevra E.; Schumacher, Douglass W. [Physics Department, The Ohio State University, Columbus, Ohio 43210 (United States); Robinson, Alexander P. L. [Central Laser Facility, STFC Rutherford-Appleton Laboratory, Didcot OX11 0QX (United Kingdom); Chen, Guangye [Los Alamos National Laboratory, Los Alamos, New Mexico 87545 (United States)

    2015-01-15

    Particle-in-cell codes are now standard tools for studying ultra-intense laser-plasma interactions. Motivated by direct laser acceleration of electrons in sub-critical plasmas, we examine temporal resolution requirements that must be satisfied to accurately calculate electron dynamics in strong laser fields. Using the motion of a single electron in a perfect plane electromagnetic wave as a test problem, we show surprising deterioration of the numerical accuracy with increasing wave amplitude a{sub 0} for a given time-step. We go on to show analytically that the time-step must be significantly less than λ/ca{sub 0} to achieve good accuracy. We thus propose adaptive electron sub-cycling as an efficient remedy.

  3. Flat Coalgebraic Fixed Point Logics

    Science.gov (United States)

    Schröder, Lutz; Venema, Yde

    Fixed point logics are widely used in computer science, in particular in artificial intelligence and concurrency. The most expressive logics of this type are the μ-calculus and its relatives. However, popular fixed point logics tend to trade expressivity for simplicity and readability, and in fact often live within the single variable fragment of the μ-calculus. The family of such flat fixed point logics includes, e.g., CTL, the *-nesting-free fragment of PDL, and the logic of common knowledge. Here, we extend this notion to the generic semantic framework of coalgebraic logic, thus covering a wide range of logics beyond the standard μ-calculus including, e.g., flat fragments of the graded μ-calculus and the alternating-time μ-calculus (such as ATL), as well as probabilistic and monotone fixed point logics. Our main results are completeness of the Kozen-Park axiomatization and a timed-out tableaux method that matches ExpTime upper bounds inherited from the coalgebraic μ-calculus but avoids using automata.

  4. Effect of the R dependence of laser-induced polarizability on molecular dynamic alignment in an intense femtosecond laser field

    International Nuclear Information System (INIS)

    Chen Jianxin; Cui Xiaomei; Huang Bomin; Wu Hongchun; Zhuo Shuangmu

    2006-01-01

    In the rotation equation of the angle θ between the molecular axis and the laser polarization direction, the dependence of laser-induced polarizability on the molecular internuclear distance R is considered. The effect of the R dependence of laser-induced polarizability on molecular dynamic alignment in an intense femtosecond laser field is investigated with 20 and 100 fs laser pulses for N 2 molecules and with 60 and 100 fs laser pulses for Br 2 molecules at intensities of 5x10 14 W cm -2 and 5x10 15 W cm -2 . This effect exists and only occurs during the dissociative process after the molecule is ionized. It enhances the degrees of molecular dynamic alignment and is more significant in reorienting the angular distributions of molecules towards the laser polarization direction in the conditions of high laser intensity and short pulse length. Compared with the N 2 molecule, the effect of the R dependence of laser-induced polarizability on molecular dynamic alignment for Br 2 is stronger. The reasons are presented and discussed

  5. Time variations in geomagnetic intensity

    Science.gov (United States)

    Valet, Jean-Pierre

    2003-03-01

    After many years spent by paleomagnetists studying the directional behavior of the Earth's magnetic field at all possible timescales, detailed measurements of field intensity are now needed to document the variations of the entire vector and to analyze the time evolution of the field components. A significant step has been achieved by combining intensity records derived from archeological materials and from lava flows in order to extract the global field changes over the past 12 kyr. A second significant step was due to the emergence of coherent records of relative paleointensity using the remanent magnetization of sediments to retrace the evolution of the dipole field. A third step was the juxtaposition of these signals with those derived from cosmogenic isotopes. Contemporaneous with the acquisition of records, new techniques have been developed to constrain the geomagnetic origin of the signals. Much activity has also been devoted to improving the quality of determinations of absolute paleointensity from volcanic rocks with new materials, proper selection of samples, and investigations of complex changes in magnetization during laboratory experiments. Altogether these developments brought us from a situation where the field changes were restricted to the past 40 kyr to the emergence of a coherent picture of the changes in the geomagnetic dipole moment for at least the past 1 Myr. On longer timescales the field variability and its average behavior is relatively well documented for the past 400 Myr. Section 3 gives a summary of most methods and techniques that are presently used to track the field intensity changes in the past. In each case, current limits and potential promises are discussed. The section 4 describes the field variations measured so far over various timescales covered by the archeomagnetic and the paleomagnetic records. Preference has always been given to composite records and databases in order to extract and discuss major and global geomagnetic

  6. 30th Course of the International School of Quantum Electronics on Atoms, Solids and Plasmas in Super-Intense Laser Fields

    CERN Document Server

    Joachain, Charles; Martellucci, Sergio; Chester, Arthur; Atoms, Solids and Plasmas in Super-intense Laser Fields "Ettore Majorana"

    2000-01-01

    The recent developement of high power lasers, delivering femtosecond pulses of 20 2 intensities up to 10 W/cm , has led to the discovery of new phenomena in laser interactions with matter. At these enormous laser intensities, atoms, and molecules are exposed to extreme conditions and new phenomena occur, such as the very rapid multi photon ionization of atomic systems, the emission by these systems of very high order harmonics of the exciting laser light, the Coulomb explosion of molecules, and the acceleration of electrons close to the velocity of light. These phenomena generate new behaviour of bulk matter in intense laser fields, with great potential for wide ranging applications which include the study of ultra-fast processes, the development of high-frequency lasers, and the investigation of the properties of plasmas and condensed matter under extreme conditions of temperature and pressure. In particular, the concept of the "fast ignitor" approach to inertial confinement fusion (ICF) has been p...

  7. Progress in Ultrafast Intense Laser Science

    CERN Document Server

    Yamanouchi, Kaoru; Li, Ruxin; Chin, See Leang

    2009-01-01

    The PUILS series presents Progress in Ultrafast Intense Laser Science, a newly emerging interdisciplinary research field spanning atomic and molecular physics, molecular science, and optical science. PUILS has been stimulated by the recent development of ultrafast laser technologies. Each volume contains approximately 15 chapters, authored by researchers at the forefront. Each chapter opens with an overview of the topics to be discussed, so that researchers, who are not experts in the specific topics, as well as graduate students can grasp the importance and attractions of this sub-field of research, and these are followed by reports of cutting-edge discoveries. This fourth volume covers a broad range of topics from this interdisciplinary research field, focusing on strong field ionization of atoms; excitation, ionization and fragmentation of molecules; nonlinear intense optical phenomena and attosecond pulses; and laser - solid interactions and photoemission.

  8. INNOVATIVE SYSTEM OF FIXED CAPITAL REPRODUCTION

    Directory of Open Access Journals (Sweden)

    G. S. Merzlikina

    2015-01-01

    Full Text Available The article presents the basic problems of fixed capital reproduction. There are considered a significant depreciation of fixed assets of Russian enterprises. There are presented arguments in favor of urgency of the problem of reproduction of fixed assets of the Russian Federation. The paper presents theoretical evidence base basic types of fixed capital reproduction. There are identified all possible sources of simple and expanded reproduction of capital. There are considered the role of value and feasibility of depreciation in the formation of Reserve reproduction. Suggested the formation of accounting and analytical management provision fixed capital, as well as an innovative system of fixed capital reproduction, which implies the creation of depreciation , capital, revaluation, liquidation reserves. The algorithm of business valuation based on an innovative system of capital reproduction. The algorithm and the possibility of formation of reserves are considered on a concrete example of one of the industrial enterprises of the city Volgograd. On the basis of the algorithm presented calculations of business valuation of the enterprise. Calculations have shown an increase in value of the business condition of the formation of special reserves, which underlines the necessary and urgency of their formation in accounting policy and economy organizations and enterprises of Russia as a whole.

  9. Reduction of protease activity in milk by continuous flow high-intensity pulsed electric field treatments.

    Science.gov (United States)

    Bendicho, S; Barbosa-Cánovas, G V; Martín, O

    2003-03-01

    High-intensity pulsed electric field (HIPEF) is a non-thermal food processing technology that is currently being investigated to inactivate microorganisms and certain enzymes, involving a limited increase of food temperature. Promising results have been obtained on the inactivation of microbial enzymes in milk when suspended in simulated milk ultrafiltrate. The aim of this study was to evaluate the effectiveness of continuous HIPEF equipment on inactivating a protease from Bacillus subtilis inoculated in milk. Samples were subjected to HIPEF treatments of up to 866 micros of squared wave pulses at field strengths from 19.7 to 35.5 kV/cm, using a treatment chamber that consisted of eight colinear chambers connected in series. Moreover, the effects of different parameters such as pulse width (4 and 7 micros), pulse repetition rates (67, 89, and 111 Hz), and milk composition (skim and whole milk) were tested. Protease activity decreased with increased treatment time or field strength and pulse repetition rate. Regarding pulse width, no differences were observed between 4 and 7 micros pulses when total treatment time was considered. On the other hand, it was observed that milk composition affected the results since higher inactivation levels were reached in skim than in whole milk. The maximum inactivation (81%) was attained in skim milk after an 866-micros treatment at 35.5 kV/cm and 111 Hz.

  10. Ionization of molecular hydrogen in ultrashort intense laser pulses

    Energy Technology Data Exchange (ETDEWEB)

    Vanne, Yulian V.

    2010-03-18

    A novel ab initio numerical approach is developed and applied that solves the time-dependent Schroedinger equation describing two-electron diatomic molecules (e.g. molecular hydrogen) exposed to an intense ultrashort laser pulse. The method is based on the fixed-nuclei and the non-relativistic dipole approximations and aims to accurately describe both correlated electrons in full dimensionality. The method is applicable for a wide range of the laser pulse parameters and is able to describe both few-photon and many-photon single ionization processes, also in a non-perturbative regime. A key advantage of the method is its ability to treat the strong-field response of the molecules with arbitrary orientation of the molecular axis with respect to the linear-polarized laser field. Thus, this work reports on the first successful orientation-dependent analysis of the multiphoton ionization of H{sub 2} performed by means of a full-dimensional numerical treatment. Besides the investigation of few-photon regime, an extensive numerical study of the ionization by ultrashort frequency-doubled Ti:sapphire laser pulses (400 nm) is presented. Performing a series of calculations for different internuclear separations, the total ionization yields of H{sub 2} and D{sub 2} in their ground vibrational states are obtained for both parallel and perpendicular orientations. A series of calculations for 800 nm laser pulses are used to test a popular simple interference model. Besides the discussion of the ab initio numerical method, this work considers different aspects related to the application of the strong-field approximation (SFA) for investigation of a strong-field response of an atomic and molecular system. Thus, a deep analysis of the gauge problem of SFA is performed and the quasistatic limit of the velocity-gauge SFA ionization rates is derived. The applications of the length-gauge SFA are examined and a recently proposed generalized Keldysh theory is criticized. (orig.)

  11. Ionization of molecular hydrogen in ultrashort intense laser pulses

    International Nuclear Information System (INIS)

    Vanne, Yulian V.

    2010-01-01

    A novel ab initio numerical approach is developed and applied that solves the time-dependent Schroedinger equation describing two-electron diatomic molecules (e.g. molecular hydrogen) exposed to an intense ultrashort laser pulse. The method is based on the fixed-nuclei and the non-relativistic dipole approximations and aims to accurately describe both correlated electrons in full dimensionality. The method is applicable for a wide range of the laser pulse parameters and is able to describe both few-photon and many-photon single ionization processes, also in a non-perturbative regime. A key advantage of the method is its ability to treat the strong-field response of the molecules with arbitrary orientation of the molecular axis with respect to the linear-polarized laser field. Thus, this work reports on the first successful orientation-dependent analysis of the multiphoton ionization of H 2 performed by means of a full-dimensional numerical treatment. Besides the investigation of few-photon regime, an extensive numerical study of the ionization by ultrashort frequency-doubled Ti:sapphire laser pulses (400 nm) is presented. Performing a series of calculations for different internuclear separations, the total ionization yields of H 2 and D 2 in their ground vibrational states are obtained for both parallel and perpendicular orientations. A series of calculations for 800 nm laser pulses are used to test a popular simple interference model. Besides the discussion of the ab initio numerical method, this work considers different aspects related to the application of the strong-field approximation (SFA) for investigation of a strong-field response of an atomic and molecular system. Thus, a deep analysis of the gauge problem of SFA is performed and the quasistatic limit of the velocity-gauge SFA ionization rates is derived. The applications of the length-gauge SFA are examined and a recently proposed generalized Keldysh theory is criticized. (orig.)

  12. Fixed mobile convergence handbook

    CERN Document Server

    Ahson, Syed A

    2010-01-01

    From basic concepts to future directions, this handbook provides technical information on all aspects of fixed-mobile convergence (FMC). The book examines such topics as integrated management architecture, business trends and strategic implications for service providers, personal area networks, mobile controlled handover methods, SIP-based session mobility, and supervisory and notification aggregator service. Case studies are used to illustrate technical and systematic implementation of unified and rationalized internet access by fixed-mobile network convergence. The text examines the technolo

  13. A Phase I/II Trial of Intensity Modulated Radiation (IMRT) Dose Escalation With Concurrent Fixed-dose Rate Gemcitabine (FDR-G) in Patients With Unresectable Pancreatic Cancer

    International Nuclear Information System (INIS)

    Ben-Josef, Edgar; Schipper, Mathew; Francis, Isaac R.; Hadley, Scott; Ten-Haken, Randall; Lawrence, Theodore; Normolle, Daniel; Simeone, Diane M.; Sonnenday, Christopher; Abrams, Ross; Leslie, William; Khan, Gazala; Zalupski, Mark M.

    2012-01-01

    Purpose: Local failure in unresectable pancreatic cancer may contribute to death. We hypothesized that intensification of local therapy would improve local control and survival. The objectives were to determine the maximum tolerated radiation dose delivered by intensity modulated radiation with fixed-dose rate gemcitabine (FDR-G), freedom from local progression (FFLP), and overall survival (OS). Methods and Materials: Eligibility included pathologic confirmation of adenocarcinoma, radiographically unresectable, performance status of 0-2, absolute neutrophil count of ≥1500/mm 3 , platelets ≥100,000/mm 3 , creatinine 2 /100 min intravenously) was given on days −22 and −15, 1, 8, 22, and 29. Intensity modulated radiation started on day 1. Dose levels were escalated from 50-60 Gy in 25 fractions. Dose-limiting toxicity was defined as gastrointestinal toxicity grade (G) ≥3, neutropenic fever, or deterioration in performance status to ≥3 between day 1 and 126. Dose level was assigned using TITE-CRM (Time-to-Event Continual Reassessment Method) with the target dose-limiting toxicity (DLT) rate set to 0.25. Results: Fifty patients were accrued. DLTs were observed in 11 patients: G3/4 anorexia, nausea, vomiting, and/or dehydration (7); duodenal bleed (3); duodenal perforation (1). The recommended dose is 55 Gy, producing a probability of DLT of 0.24. The 2-year FFLP is 59% (95% confidence interval [CI]: 32-79). Median and 2-year overall survival are 14.8 months (95% CI: 12.6-22.2) and 30% (95% CI 17-45). Twelve patients underwent resection (10 R0, 2 R1) and survived a median of 32 months. Conclusions: High-dose radiation therapy with concurrent FDR-G can be delivered safely. The encouraging efficacy data suggest that outcome may be improved in unresectable patients through intensification of local therapy.

  14. Accelerating field step-up transformer in wake-field accelerators

    International Nuclear Information System (INIS)

    Chojnacki, E.; Gai, W.; Schoessow, P.; Simpson, J.

    1991-01-01

    In the wake-field scheme of particle acceleration, a short, intense drive bunch of electrons passes through a slow-wave structure, leaving behind high rf power in its wake field. The axial accelerating electric field associated with the rf can be quite large, > 100 MeV/m, and is used to accelerate a much less intense ''witness'' beam to eventual energies > 1 TeV. The rf power is deposited predominantly in the fundamental mode of the structure, which, for dielectric-lined waveguide as used at Argonne, is the TM 01 mode. In all likelihood on the field amplitude will be limited only by rf breakdown of the dielectric material, the limit of which is currently unknown in the short time duration, high frequency regime of wake-field acceleration operation. To obtain such strong electric fields with given wake-field rf power, the dimensions of the dielectric-lined waveguide have to be fairly small, OD of the order of a cm and ID of a few mm, and this gives rise to the generation of strong deflection modes with beam misalignment. While a scheme exists to damp such deflection modes on a bunch-to-bunch time scale, head-tail beam deflection could still be a problem and BNS damping as well as FODO focusing are incomplete cures. Presented here are details of a scheme by which the rf power is generated by in a large-diameter wake-field tube, where deflection mode generation by the intense drive beam is tolerable, and then fed into a small-diameter acceleration tube where the less intense witness beam is accelerated by the greatly enhanced axial electric field. The witness beam generates little deflection-mode power itself, even in the small acceleration tube, thus a final high-quality, high-energy electron beam is produced

  15. Global gauge fixing in lattice gauge theories

    Energy Technology Data Exchange (ETDEWEB)

    Fachin, S.; Parrinello, C. (Physics Department, New York University, 4 Washington Place, New York, New York (USA))

    1991-10-15

    We propose a covariant, nonperturbative gauge-fixing procedure for lattice gauge theories that avoids the problem of Gribov copies. This is closely related to a recent proposal for a gauge fixing in the continuum that we review. The lattice gauge-fixed model allows both analytical and numerical investigations: on the analytical side, explicit nonperturbative calculations of gauge-dependent quantities can be easily performed in the framework of a generalized strong-coupling expansion, while on the numerical side a stochastic gauge-fixing algorithm is very naturally associated with the scheme. In both applications one can study the gauge dependence of the results, since the model actually provides a smooth'' family of gauge-fixing conditions.

  16. Direct formulation of the supersonic acoustic intensity in space domain

    DEFF Research Database (Denmark)

    Fernandez Grande, Efren; Jacobsen, Finn; Leclre, Quentin

    2012-01-01

    into the far field. To date, its calculation has been formulated in the wave number domain, filtering out the evanescent waves outside the radiation circle and reconstructing the acoustic field with only the propagating waves. In this study, the supersonic intensity is calculated directly in space domain......This paper proposes and examines a direct formulation in space domain of the so-called supersonic acoustic intensity. This quantity differs from the usual (active) intensity by excluding the circulating energy in the near-field of the source, providing a map of the acoustic energy that is radiated...... by means of a two-dimensional convolution between the acoustic field and a spatial filter mask that corresponds to the space domain representation of the radiation circle. Therefore, the acoustic field that propagates effectively to the far field is calculated via direct filtering in space domain...

  17. In vivo field-cycling relaxometry using an insert coil for magnetic field offset.

    Science.gov (United States)

    Pine, Kerrin J; Goldie, Fred; Lurie, David J

    2014-11-01

    The T(1) of tissue has a strong dependence on the measurement magnetic field strength. T(1) -dispersion could be a useful contrast parameter, but is unavailable to clinical MR systems which operate at fixed magnetic field strength. The purpose of this work was to implement a removable insert magnet coil for field-cycling T(1) -dispersion measurements on a vertical-field MRI scanner, by offsetting the static field over a volume of interest. An insert magnet coil was constructed for use with a whole-body sized 59 milli-Tesla (mT) vertical-field, permanent-magnet based imager. The coil has diameter 38 cm and thickness 6.1 cm and a homogeneous region (± 5%) of 5 cm DSV, offset by 5 cm from the coil surface. Surface radiofrequency (RF) coils were also constructed. The insert coil was used in conjunction with a surface RF coil and a volume-localized inversion-recovery pulse sequence to plot T(1) -dispersion in a human volunteer's forearm over a range of field strengths from 1 mT to 70 mT. T(1) -dispersion measurements were demonstrated on a fixed-field MRI scanner, using an insert coil. This demonstrates the feasibility of relaxation dispersion measurements on an otherwise conventional MR imager, facilitating the exploitation of T(1) -dispersion contrast for enhanced diagnosis. Copyright © 2013 Wiley Periodicals, Inc.

  18. Neurons are sensitive to the magnetic fields applied within the range of MR intensity used for diagnostic purposes

    International Nuclear Information System (INIS)

    Azanza, M.J.

    1997-01-01

    A very high number of data, obtained from molecular and cell biology experimental work, show that living beings are sensitive to either the static magnetic fields (SMF) or the electromagnetic fields in the extremely low frequency (ELF) range (1). Considering the question of the intensity range of the SMF applied for clinical diagnosis, we have made experiments by applying SMF (0,3-0,7 T) directly to neurons. We have shown that there exist a neuron magneto sensitivity explained as a result of the diamagnetism of the phospholipid and protein molecules of the lipid bilayer plasma membrane. This diamagnetism is working together with electric dipolar interactions (a mixed up interaction coined as super diamagnetism) and binded membrane Ca''2+ cooperative coulomb explosion, which in turn operate Ca''2+ -dependent-K''+ membrane channels (2,3). The specific intrinsic metabolic characteristics of the neurons populations explain two types of responses: either a variation in the firing frequency (increases or decreases) or a decrease in the spikes amplitude. This second effect is explained by the inhibition of the Na''+ -K''+-ATP-ase ionic pumps, inactivated by the same superdiamagnetims mechanism. We show in this paper the dependence of the frequency and amplitude changes, of the electrophysiological activity of the neurons, with the intensity of the applied SMF. (Author) 30 refs

  19. Beneficial effects of aluminum enrichment on nitrogen-fixing cyanobacteria in the South China Sea.

    Science.gov (United States)

    Liu, Jiaxing; Zhou, Linbin; Ke, Zhixin; Li, Gang; Shi, Rongjun; Tan, Yehui

    2018-04-01

    Few studies focus on the effects of aluminum (Al) on marine nitrogen-fixing cyanobacteria, which play important roles in the ocean nitrogen cycling. To examine the effects of Al on the nitrogen-fixing cyanobacteria, bioassay experiments in the oligotrophic South China Sea (SCS) and culture of Crocosphaera watsonii in the laboratory were conducted. Field data showed that 200 nM Al stimulated the growth and the nitrogenase gene expression of Trichodesmium and unicellular diazotrophic cyanobacterium group A, and the nitrogen fixation rates of the whole community. Laboratory experiments demonstrated that Al stimulated the growth and nitrogen fixation of C. watsonii under phosphorus limited conditions. Both field and laboratory results indicated that Al could stimulate the growth of diazotrophs and nitrogen fixation in oligotrophic oceans such as the SCS, which is likely related to the utilization of phosphorus, implying that Al plays an important role in the ocean nitrogen and carbon cycles by influencing nitrogen fixation. Copyright © 2018 Elsevier Ltd. All rights reserved.

  20. Limitations to very high rate wire chambers in fixed target geometries

    International Nuclear Information System (INIS)

    Spiegel, L.

    1989-11-01

    The task is to explore physical limitations to the operation of wire chambers in fixed target geometries at an interaction rate of 52 MHz (chosen as it corresponds to the FNAL accelerator rf rate.) That is, to see if there are physical limitations to the operation of gaseous wire chambers at such a high operating rate. A primary proton beam energy of 800 GeV has been assumed although modest increases in the primary energy should not affect the basic conclusion as secondary multiplicity increases logarithmically with center-of-momentum energy. By sustaining a 52 MHz interaction rate it is meant that results from a given interaction are electronically isolated from preceding and subsequent rf buckets, good wire plane efficiency is maintained throughout the active region of the chamber, and the chamber operates in a stable manner throughout the course of a typical fixed target run -- six months to a full year. Other working assumptions include the understanding that chamber electronics -- amplifiers, discriminators, delay elements, encoders -- will not suffer degradation at 52 MHz and that the intensely populated beam regions have been somehow excluded from the chambers. 7 refs., 2 figs

  1. Efficacy and Tolerability of Fixed-Dose Combination of Dexketoprofen and Dicyclomine Injection in Acute Renal Colic

    Directory of Open Access Journals (Sweden)

    A. Porwal

    2012-01-01

    Full Text Available Objective. To evaluate the efficacy and tolerability of a fixed-dose combination of dexketoprofen and dicyclomine (DXD injection in patients with acute renal colic. Patients and Methods. Two hundred and seventeen patients were randomized to receive either DXD (n=109 or fixed-dose combination of diclofenac and dicyclomine injection (DLD; n=108, intramuscularly. Pain intensity (PI was self-evaluated by patients on visual analogue scale (VAS at baseline and at 1, 2, 4, 6, and 8 hours. Efficacy parameters were proportion of responders, difference in PI (PID at 8 hours, and sum of analogue of pain intensity differences (SAPID. Tolerability was assessed by patients and physicians. Results. DXD showed superior efficacy in terms of proportion of responders (98.17% versus 81.48; P<0.0001, PID at 8 hours (P=0.002, and SAPID0–8 hours (P=0.004. The clinical global impression for change in pain was significantly better for DXD than DLD. The incidence of adverse events was comparable in both groups. However, global assessment of tolerability was rated significantly better for DXD. Conclusion. DXD showed superior efficacy and tolerability than DLD in patients clinically diagnosed to be suffering from acute renal colic.

  2. Efficacy and Tolerability of Fixed-Dose Combination of Dexketoprofen and Dicyclomine Injection in Acute Renal Colic

    Science.gov (United States)

    Porwal, A.; Mahajan, A. D.; Oswal, D. S.; Erram, S. S.; Sheth, D. N.; Balamurugan, S.; Kamat, V.; Enadle, R. P.; Badadare, A.; Bhatnagar, S. K.; Walvekar, R. S.; Dhorepatil, S.; Naik, R. C.; Basu, I.; Kshirsagar, S. N.; Keny, J. V.; Sengupta, S.

    2012-01-01

    Objective. To evaluate the efficacy and tolerability of a fixed-dose combination of dexketoprofen and dicyclomine (DXD) injection in patients with acute renal colic. Patients and Methods. Two hundred and seventeen patients were randomized to receive either DXD (n = 109) or fixed-dose combination of diclofenac and dicyclomine injection (DLD; n = 108), intramuscularly. Pain intensity (PI) was self-evaluated by patients on visual analogue scale (VAS) at baseline and at 1, 2, 4, 6, and 8 hours. Efficacy parameters were proportion of responders, difference in PI (PID) at 8 hours, and sum of analogue of pain intensity differences (SAPID). Tolerability was assessed by patients and physicians. Results. DXD showed superior efficacy in terms of proportion of responders (98.17% versus 81.48; P < 0.0001), PID at 8 hours (P = 0.002), and SAPID0–8 hours (P = 0.004). The clinical global impression for change in pain was significantly better for DXD than DLD. The incidence of adverse events was comparable in both groups. However, global assessment of tolerability was rated significantly better for DXD. Conclusion. DXD showed superior efficacy and tolerability than DLD in patients clinically diagnosed to be suffering from acute renal colic. PMID:22577544

  3. A proton beam delivery system for conformal therapy and intensity modulated therapy

    International Nuclear Information System (INIS)

    Yu Qingchang

    2001-01-01

    A scattering proton beam delivery system for conformal therapy and intensity modulated therapy is described. The beam is laterally spread out by a dual-ring double scattering system and collimated by a program-controlled multileaf collimator and patient specific fixed collimators. The proton range is adjusted and modulated by a program controlled binary filter and ridge filters

  4. Secondary emission detectors for fixed target experiments at Fermilab

    International Nuclear Information System (INIS)

    Drucker, R.; Ford, R.; Tassotto, G.

    1998-02-01

    A description of a Secondary Emission Electron Detector (SEED) is given. The SEEDs provide accurate profiles and positions at small wire spacing (125-500 mm) in a high energy, high rate environment that exceeds the capabilities of traditional segmented wire ion chambers (SWICs). This device has been designed and constructed to monitor beam position and profile of two fixed target beamlines, namely, KTeV (FNAL E-799, E-832) with an average beam sigma at target of 0.22 mm and NuTeV (FNAL E-815) with a sigma = 0.6 mm. KTeV took beam at an intensity of up to 5E12 800 GeV protons over a 20 sec spill and NuTeV received 1E13 800 GeV protons in five pings/spill

  5. Muscle and intensity based hamstring exercise classification in elite female track and field athletes: implications for exercise selection during rehabilitation

    Directory of Open Access Journals (Sweden)

    Tsaklis P

    2015-06-01

    Full Text Available Panagiotis Tsaklis,1,2 Nikos Malliaropoulos,3–5,10 Jurdan Mendiguchia,6 Vasileios Korakakis,7–9 Kyriakos Tsapralis,11 Debasish Pyne,5 Peter Malliaras101Department of Physiotherapy, Laboratory of Biomechanics and Ergonomics, Alexander Technological Educational Institute of Thessaloniki, Thessaloniki, Greece; 2Department of Mechanical Engineering, Bioengineering, Massachusetts Institute of Technology, Cambridge, MA, USA; 3National Track and Field Centre, Sports Injury Clinic, Sports Medicine Clinic of SEGAS, 4Thessaloniki Sports Medicine Clinic, Thessaloniki, Greece; 5Rheumatology Department, Sports Medicine Clinic, Mile End Hospital, London, UK; 6Department of Physical Therapy, Zentrum Rehabilitation and Performance Center, Pamplona, Spain; 7Aspetar, Orthopaedic and Sports Medicine Hospital, Doha, Qatar; 8Faculty of Physical Education and Sport Science, University of Thessaly, Trikala, 9Hellenic Orthopaedic Manipulative Therapy Diploma, Athens, Greece; 10Centre for Sports and Exercise Medicine, Queen Mary, University of London, London, UK; 11K Tsapralis Isokinetic Medical Group, Bologna, ItalyBackground: Hamstring injuries are common in many sports, including track and field. Strains occur in different parts of the hamstring muscle but very little is known about whether common hamstring loading exercises specifically load different hamstring components. The purpose of this study was to investigate muscle activation of different components of the hamstring muscle during common hamstring loading exercises.Methods: Twenty elite female track and field athletes were recruited into this study, which had a single-sample, repeated-measures design. Each athlete performed ten hamstring loading exercises, and an electromyogram (EMG was recorded from the biceps femoris and semitendinosus components of the hamstring. Hamstring EMG during maximal voluntary isometric contraction (MVIC was used to normalize the mean data across ten repetitions of each

  6. FIXED OR REMOVABLE APPLIANCE FOR EARLY ORTHODONTIC TREATMENT OF FUNCTIONAL ANTERIOR CROSSBITE.

    Science.gov (United States)

    Wiedel, Anna-Paulina

    2015-01-01

    angle > 0 degrees, and no previous orthodontic treatment. Sixty-two patients agreed to participate and were randomly allocated for treatment either with FA with brackets and wires, or RA, comprising acrylic plates with protruding springs. Paper I compared and evaluated the efficiency of the two different treatment strategies to correct the anterior crossbite with anterior shift in mixed dentition. Paper II compared and evaluated the stability of the results of the two treatment methods two years after the appliances were removed. In Paper III, the cost-effectiveness of the two treatment methods was compared and evaluated by cost-minimization analysis. Paper IV evaluated and compared the patient's perceptions of the two treatment methods, in terms of perceived pain, discomfort and impairment of jaw function. The following conclusions were drawn from the results: Paper I. Anterior crossbite with functional shift in the mixed dentition can be successfully corrected by either fixed or removable appliance therapy in a short-term perspective. Treatment time for correction of anterior crossbite with functional shift was significantly shorter for FA compared to RA but the difference had minor clinical relevance. Paper II. In the mixed dentition, anterior crossbite affecting one or more incisors can be successfully corrected by either fixed or removable appliances, with similarly stable outcomes and equally favourable prognoses. Either type of appliance can be recommended. Paper III. Correction of anterior crossbite with functional shift using fixed appliance offers significant economic benefits over removable appliances, including lower direct costs for materials and lower indirect costs. Even when only successful outcomes are considered, treatment with removable appliance is more expensive. Paper IV. The general levels of pain intensity and discomfort were low to moderate in both groups. The level of pain and discomfort intensity was higher for the first three days in the

  7. A fixed-point farrago

    CERN Document Server

    Shapiro, Joel H

    2016-01-01

    This text provides an introduction to some of the best-known fixed-point theorems, with an emphasis on their interactions with topics in analysis. The level of exposition increases gradually throughout the book, building from a basic requirement of undergraduate proficiency to graduate-level sophistication. Appendices provide an introduction to (or refresher on) some of the prerequisite material and exercises are integrated into the text, contributing to the volume’s ability to be used as a self-contained text. Readers will find the presentation especially useful for independent study or as a supplement to a graduate course in fixed-point theory. The material is split into four parts: the first introduces the Banach Contraction-Mapping Principle and the Brouwer Fixed-Point Theorem, along with a selection of interesting applications; the second focuses on Brouwer’s theorem and its application to John Nash’s work; the third applies Brouwer’s theorem to spaces of infinite dimension; and the fourth rests ...

  8. Testing light dark matter coannihilation with fixed-target experiments

    Energy Technology Data Exchange (ETDEWEB)

    Izaguirre, Eder; Kahn, Yonatan; Krnjaic, Gordan; Moschella, Matthew

    2017-09-01

    In this paper, we introduce a novel program of fixed-target searches for thermal-origin Dark Matter (DM), which couples inelastically to the Standard Model. Since the DM only interacts by transitioning to a heavier state, freeze-out proceeds via coannihilation and the unstable heavier state is depleted at later times. For sufficiently large mass splittings, direct detection is kinematically forbidden and indirect detection is impossible, so this scenario can only be tested with accelerators. Here we propose new searches at proton and electron beam fixed-target experiments to probe sub-GeV coannihilation, exploiting the distinctive signals of up- and down-scattering as well as decay of the excited state inside the detector volume. We focus on a representative model in which DM is a pseudo-Dirac fermion coupled to a hidden gauge field (dark photon), which kinetically mixes with the visible photon. We define theoretical targets in this framework and determine the existing bounds by reanalyzing results from previous experiments. We find that LSND, E137, and BaBar data already place strong constraints on the parameter space consistent with a thermal freeze-out origin, and that future searches at Belle II and MiniBooNE, as well as recently-proposed fixed-target experiments such as LDMX and BDX, can cover nearly all remaining gaps. We also briefly comment on the discovery potential for proposed beam dump and neutrino experiments which operate at much higher beam energies.

  9. 48 CFR 1852.216-78 - Firm fixed price.

    Science.gov (United States)

    2010-10-01

    ... 48 Federal Acquisition Regulations System 6 2010-10-01 2010-10-01 true Firm fixed price. 1852.216... 1852.216-78 Firm fixed price. As prescribed in 1816.202-70, insert the following clause: Firm Fixed Price (DEC 1988) The total firm fixed price of this contract is $[Insert the appropriate amount]. (End...

  10. 46 CFR 28.260 - Electronic position fixing devices.

    Science.gov (United States)

    2010-10-01

    ... Trade § 28.260 Electronic position fixing devices. Each vessel 79 feet (24 meters) or more in length must be equipped with an electronic position fixing device capable of providing accurate fixes for the... 46 Shipping 1 2010-10-01 2010-10-01 false Electronic position fixing devices. 28.260 Section 28...

  11. On infrared problems of effective Lagrangians of massive spin 2 fields coupled to gauge fields

    Energy Technology Data Exchange (ETDEWEB)

    Canfora, Fabrizio, E-mail: canfora@cecs.cl [Centro de Estudios Científicos (CECs), Casilla 1469, Valdivia (Chile); Giacomini, Alex, E-mail: alexgiacomini@uach.cl [Instituto de Ciencias Físicas y Matemáticas, Universidad Austral de Chile, Valdivia (Chile); Zerwekh, Alfonso R., E-mail: alfonso.zerwekh@usm.cl [Departamento de Física and Centro Científico-Tecnológico de Valparaíso, Universidad Técnica Federico Santa María, Casilla 110-V, Valparaíso (Chile)

    2016-12-15

    In this paper we analyze the interactions of massive spin-2 particles charged under both Abelian and non-Abelian group using the Porrati–Rahman Lagrangian. This theory is valid up to an intrinsic cutoff scale. Phenomenologically a theory valid up to a cutoff scale is sensible as all known higher spin particles are non-fundamental and it is shown that indeed this action can be used to estimate some relevant cross section. Such action necessarily includes Stückelberg field and therefore it is necessary to fix the corresponding gauge symmetry. We show that this theory, when the Stückelberg symmetry is gauge-fixed, possesses a non-trivial infrared problem. A gauge fixing ambiguity arises which is akin to the Gribov problem in QCD in the Abelian case as well. In some cases (such as when the space–time is the four-dimensional torus) the vacuum copies can be found analytically. A similar phenomenon also appears in the case of Proca fields. A very interesting feature of these copies is that they arise only for “large enough” gauge potentials. This opens the possibility to avoid the appearance of such gauge fixing ambiguities by using a Gribov–Zwanziger like approach.

  12. Prosthetic rehabilitation using adhesive bridge and fixed-fixed bridge on the maxilla and telescopic crown overdenture on mandible

    Directory of Open Access Journals (Sweden)

    Indah Sulistiawaty

    2016-12-01

    Full Text Available Prosthetic rehabilitation is the rehabilitation process of masticatory and esthetics function for patients missing teeth and alveolar bone by means of manufacture and installation of dentures. The prosthetic rehabilitation commonly used include denture adhesive bridge, fixed-fixed bridge, as well as telescopic overdenture. Adhesive bridge is bridge denture consisting of single pontic and two retainer wings attached to the abutment using cement or resin. Fixed-fixed bridge is a bridge denture with rigid connectors on both ends of the pontics, whereas the telescopic crown Overdenture is a removable denture that uses linked precision on the original tooth in the form of primary coping on abutment and secondary coping on the denture. To expose the procedures of prosthetic rehabilitation using adhesive bridge and fixed-fixed bridge on the maxilla and telescopic crown Overdenture on mandible. Male patients aged 32 years came with complaints of difficulty to chew food because he had lost some teeth behind. In the maxilla, teeth are lost in the region of 15 and 16 performed by making the fixed-fixed bridge with abutment teeth 14 and 17. Loss of teeth in the region of 26, performed the manufacture of adhesive bridge with a box preparation on the occlusal 25 and 27. In the mandible, tooth loss in the region of 36,37,46, and 47 performed manufacture of telescopic crown Overdenture with primer coping on the teeth 35.38, 45, and 48 and the secondary coping on a metal frame. Prosthetic rehabilitation especially in the case of loss of back teeth is very important because with the denture patients can chew properly and maintain the stomatognathic system.

  13. A new compact fixed-point blackbody furnace

    International Nuclear Information System (INIS)

    Hiraka, K.; Oikawa, H.; Shimizu, T.; Kadoya, S.; Kobayashi, T.; Yamada, Y.; Ishii, J.

    2013-01-01

    More and more NMIs are realizing their primary scale themselves with fixed-point blackbodies as their reference standard. However, commercially available fixed-point blackbody furnaces of sufficient quality are not always easy to obtain. CHINO Corp. and NMIJ, AIST jointly developed a new compact fixed-point blackbody furnace. The new furnace has such features as 1) improved temperature uniformity when compared to previous products, enabling better plateau quality, 2) adoption of the hybrid fixed-point cell structure with internal insulation to improve robustness and thereby to extend lifetime, 3) easily ejectable and replaceable heater unit and fixed-point cell design, leading to reduced maintenance cost, 4) interchangeability among multiple fixed points from In to Cu points. The replaceable cell feature facilitates long term maintenance of the scale through management of a group of fixed-point cells of the same type. The compact furnace is easily transportable and therefore can also function as a traveling standard for disseminating the radiation temperature scale, and for maintaining the scale at the secondary level and industrial calibration laboratories. It is expected that the furnace will play a key role of the traveling standard in the anticipated APMP supplementary comparison of the radiation thermometry scale

  14. Dependence of current density and intensity of electric field on pulsation of thermodynamic parameters of plasma in the MHD generator

    International Nuclear Information System (INIS)

    Kapron, H.

    1976-01-01

    The investigations of pulsation in the MHD generators are described. The influence of termodynamic parameters pulsation on electric parameters of the MHD generator is presented using the method of little disturbances. The results of this investigation are formulas for momentary and average values of: electrical conductivity, the Hall parameter, current density and intensity of electrical field. Analitical investigations were verified by the experiments. (author)

  15. Discomfort associated with fixed orthodontic appliances: determinant factors and influence on quality of life

    Directory of Open Access Journals (Sweden)

    Leandro Silva Marques

    2014-06-01

    Full Text Available OBJECTIVE: To investigate the determinant factors of discomfort attributed to the use of fixed orthodontic appliance and the effect on the quality of life of adolescents. MATERIAL AND METHODS : Two hundred and seventy-two individuals aged between 9 and 18 years old, enrolled in public and private schools and undergoing orthodontic treatment with fixed appliance participated in this cross-sectional study. The participants were randomly selected from a sample comprising 62,496 individuals of the same age group. Data was collected by means of questionnaires and an interview. Discomfort intensity and bio-psychosocial variables were assessed using the Oral Impact on Daily Performance questionnaire. Self-esteem was determined using the Global Negative Self-Evaluation questionnaire. Statistical analysis involved the chi-square test and both simple and multiple Poisson regression analyses. RESULTS: Although most individuals did not present discomfort, there was a prevalence of 15.9% of impact on individuals' daily life exclusively due to the use of fixed orthodontic appliance . Age [PR: 3.2 (95% CI: 1.2-8.5], speech impairment [PR: 2.2 (95% CI: 1.1-4.6], poor oral hygiene [PR: 2.4 (95% CI: 1.2-4.8] and tooth mobility [PR: 3.9 (95% CI: 1.8-8.1] remained independently associated with a greater prevalence of discomfort (P ≤ 0.05. CONCLUSIONS: Discomfort associated with the use of fixed orthodontic appliances exerted a negative influence on the quality of life of the adolescents comprising the present study. The determinants of this association were age, poor oral hygiene, speech impairment and tooth mobility.

  16. Application of optimal control theory to laser heating of a plasma in a solenoidal magnetic field

    International Nuclear Information System (INIS)

    Neal, R.D.

    1975-01-01

    Laser heating of a plasma column confined by a solenoidal magnetic field is studied via modern optimal control techniques. A two-temperature, constant pressure model is used for the plasma so that the temperature and density are functions of time and location along the plasma column. They are assumed to be uniform in the radial direction so that refraction of the laser beam does not occur. The laser intensity used as input to the column at one end is taken as the control variable and plasma losses are neglected. The localized behavior of the plasma heating dynamics is first studied and conventional optimal control theory applied. The distributed parameter optimal control problem is next considered with minimum time to reach a specified final ion temperature criterion as the objective. Since the laser intensity can only be directly controlled at the input end of the plasma column, a boundary control situation results. The problem is unique in that the control is the boundary value of one of the state variables. The necessary conditions are developed and the problem solved numerically for typical plasma parameters. The problem of maximizing the space-time integral of neutron production rate in the plasma is considered for a constant distributed control problem where the laser intensity is assumed fixed at maximum and the external magnetic field is taken as a control variable

  17. Can We Advance Proton Therapy for Prostate? Considering Alternative Beam Angles and Relative Biological Effectiveness Variations When Comparing Against Intensity Modulated Radiation Therapy

    Energy Technology Data Exchange (ETDEWEB)

    Underwood, Tracy, E-mail: tunderwood@mgh.harvard.edu [Department of Radiation Oncology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts (United States); Department of Medical Physics and Bioengineering, University College London, London (United Kingdom); Giantsoudi, Drosoula; Moteabbed, Maryam; Zietman, Anthony; Efstathiou, Jason; Paganetti, Harald; Lu, Hsiao-Ming [Department of Radiation Oncology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts (United States)

    2016-05-01

    Purpose: For prostate treatments, robust evidence regarding the superiority of either intensity modulated radiation therapy (IMRT) or proton therapy is currently lacking. In this study we investigated the circumstances under which proton therapy should be expected to outperform IMRT, particularly the proton beam orientations and relative biological effectiveness (RBE) assumptions. Methods and Materials: For 8 patients, 4 treatment planning strategies were considered: (A) IMRT; (B) passively scattered standard bilateral (SB) proton beams; (C) passively scattered anterior oblique (AO) proton beams, and (D) AO intensity modulated proton therapy (IMPT). For modalities (B)-(D) the dose and linear energy transfer (LET) distributions were simulated using the TOPAS Monte Carlo platform and RBE was calculated according to 3 different models. Results: Assuming a fixed RBE of 1.1, our implementation of IMRT outperformed SB proton therapy across most normal tissue metrics. For the scattered AO proton plans, application of the variable RBE models resulted in substantial hotspots in rectal RBE weighted dose. For AO IMPT, it was typically not possible to find a plan that simultaneously met the tumor and rectal constraints for both fixed and variable RBE models. Conclusion: If either a fixed RBE of 1.1 or a variable RBE model could be validated in vivo, then it would always be possible to use AO IMPT to dose-boost the prostate and improve normal tissue sparing relative to IMRT. For a cohort without rectum spacer gels, this study (1) underlines the importance of resolving the question of proton RBE within the framework of an IMRT versus proton debate for the prostate and (2) highlights that without further LET/RBE model validation, great care must be taken if AO proton fields are to be considered for prostate treatments.

  18. Renormalization group and fixed points in quantum field theory

    International Nuclear Information System (INIS)

    Hollowood, Timothy J.

    2013-01-01

    This Brief presents an introduction to the theory of the renormalization group in the context of quantum field theories of relevance to particle physics. Emphasis is placed on gaining a physical understanding of the running of the couplings. The Wilsonian version of the renormalization group is related to conventional perturbative calculations with dimensional regularization and minimal subtraction. An introduction is given to some of the remarkable renormalization group properties of supersymmetric theories.

  19. СURRENT TRENDS OF THE FIXED CAPITAL CONSUMPTION

    Directory of Open Access Journals (Sweden)

    Nikolay V. Gayfulin

    2014-01-01

    Full Text Available The research article is devoted to the current trends of the fixed capital consumption, to the problems connected with the fixed capital consumption and to the innovations in the Russian economy where the increase of fixed capital consumption efficiency is of the great importance. Under the conditions of the exchange relations formation and escalating competition only those commodity producers who can make the best use of all kinds of the resources will win. The fixed capital consumption efficiency is defined as a set of a measures which is taken by the economic entities. Some of a measures are partially described in this article. Nowadays the fixed capital consumption problem is connected with the performance enhancement and optimization of the fixed assets items.

  20. Fixed points of quantum operations

    International Nuclear Information System (INIS)

    Arias, A.; Gheondea, A.; Gudder, S.

    2002-01-01

    Quantum operations frequently occur in quantum measurement theory, quantum probability, quantum computation, and quantum information theory. If an operator A is invariant under a quantum operation φ, we call A a φ-fixed point. Physically, the φ-fixed points are the operators that are not disturbed by the action of φ. Our main purpose is to answer the following question. If A is a φ-fixed point, is A compatible with the operation elements of φ? We shall show in general that the answer is no and we shall give some sufficient conditions under which the answer is yes. Our results will follow from some general theorems concerning completely positive maps and injectivity of operator systems and von Neumann algebras