WorldWideScience

Sample records for fixed discrete surfaces

  1. Discrete Curvatures and Discrete Minimal Surfaces

    KAUST Repository

    Sun, Xiang

    2012-01-01

    This thesis presents an overview of some approaches to compute Gaussian and mean curvature on discrete surfaces and discusses discrete minimal surfaces. The variety of applications of differential geometry in visualization and shape design leads

  2. Discrete Curvatures and Discrete Minimal Surfaces

    KAUST Repository

    Sun, Xiang

    2012-06-01

    This thesis presents an overview of some approaches to compute Gaussian and mean curvature on discrete surfaces and discusses discrete minimal surfaces. The variety of applications of differential geometry in visualization and shape design leads to great interest in studying discrete surfaces. With the rich smooth surface theory in hand, one would hope that this elegant theory can still be applied to the discrete counter part. Such a generalization, however, is not always successful. While discrete surfaces have the advantage of being finite dimensional, thus easier to treat, their geometric properties such as curvatures are not well defined in the classical sense. Furthermore, the powerful calculus tool can hardly be applied. The methods in this thesis, including angular defect formula, cotangent formula, parallel meshes, relative geometry etc. are approaches based on offset meshes or generalized offset meshes. As an important application, we discuss discrete minimal surfaces and discrete Koenigs meshes.

  3. DISCRETE FIXED POINT THEOREMS AND THEIR APPLICATION TO NASH EQUILIBRIUM

    OpenAIRE

    Sato, Junichi; Kawasaki, Hidefumi

    2007-01-01

    Fixed point theorems are powerful tools in not only mathematics but also economic. In some economic problems, we need not real-valued but integer-valued equilibriums. However, classical fixed point theorems guarantee only real-valued equilibria. So we need discrete fixed point theorems in order to get discrete equilibria. In this paper, we first provide discrete fixed point theorems, next apply them to a non-cooperative game and prove the existence of a Nash equilibrium of pure strategies.

  4. Causal Dynamics of Discrete Surfaces

    Directory of Open Access Journals (Sweden)

    Pablo Arrighi

    2014-03-01

    Full Text Available We formalize the intuitive idea of a labelled discrete surface which evolves in time, subject to two natural constraints: the evolution does not propagate information too fast; and it acts everywhere the same.

  5. Fixed Points in Discrete Models for Regulatory Genetic Networks

    Directory of Open Access Journals (Sweden)

    Orozco Edusmildo

    2007-01-01

    Full Text Available It is desirable to have efficient mathematical methods to extract information about regulatory iterations between genes from repeated measurements of gene transcript concentrations. One piece of information is of interest when the dynamics reaches a steady state. In this paper we develop tools that enable the detection of steady states that are modeled by fixed points in discrete finite dynamical systems. We discuss two algebraic models, a univariate model and a multivariate model. We show that these two models are equivalent and that one can be converted to the other by means of a discrete Fourier transform. We give a new, more general definition of a linear finite dynamical system and we give a necessary and sufficient condition for such a system to be a fixed point system, that is, all cycles are of length one. We show how this result for generalized linear systems can be used to determine when certain nonlinear systems (monomial dynamical systems over finite fields are fixed point systems. We also show how it is possible to determine in polynomial time when an ordinary linear system (defined over a finite field is a fixed point system. We conclude with a necessary condition for a univariate finite dynamical system to be a fixed point system.

  6. An application of a discrete fixed point theorem to the Cournot model

    OpenAIRE

    Sato, Junichi

    2008-01-01

    In this paper, we apply a discrete fixed point theorem of [7] to the Cournot model [1]. Then we can deal with the Cournot model where the production of the enterprises is discrete. To handle it, we define a discrete Cournot-Nash equilibrium, and prove its existence.

  7. Smooth surfaces from bilinear patches: Discrete affine minimal surfaces

    KAUST Repository

    Kä ferbö ck, Florian; Pottmann, Helmut

    2013-01-01

    Motivated by applications in freeform architecture, we study surfaces which are composed of smoothly joined bilinear patches. These surfaces turn out to be discrete versions of negatively curved affine minimal surfaces and share many properties

  8. Critical bifurcation surfaces of 3D discrete dynamics

    Directory of Open Access Journals (Sweden)

    Michael Sonis

    2000-01-01

    Full Text Available This paper deals with the analytical representation of bifurcations of each 3D discrete dynamics depending on the set of bifurcation parameters. The procedure of bifurcation analysis proposed in this paper represents the 3D elaboration and specification of the general algorithm of the n-dimensional linear bifurcation analysis proposed by the author earlier. It is proven that 3D domain of asymptotic stability (attraction of the fixed point for a given 3D discrete dynamics is bounded by three critical bifurcation surfaces: the divergence, flip and flutter surfaces. The analytical construction of these surfaces is achieved with the help of classical Routh–Hurvitz conditions of asymptotic stability. As an application the adjustment process proposed by T. Puu for the Cournot oligopoly model is considered in detail.

  9. Smooth surfaces from bilinear patches: Discrete affine minimal surfaces

    KAUST Repository

    Käferböck, Florian

    2013-06-01

    Motivated by applications in freeform architecture, we study surfaces which are composed of smoothly joined bilinear patches. These surfaces turn out to be discrete versions of negatively curved affine minimal surfaces and share many properties with their classical smooth counterparts. We present computational design approaches and study special cases which should be interesting for the architectural application. 2013 Elsevier B.V.

  10. fixedTimeEvents: An R package for the distribution of distances between discrete events in fixed time

    Directory of Open Access Journals (Sweden)

    Kristian Hovde Liland

    2016-01-01

    Full Text Available When a series of Bernoulli trials occur within a fixed time frame or limited space, it is often interesting to assess if the successful outcomes have occurred completely at random, or if they tend to group together. One example, in genetics, is detecting grouping of genes within a genome. Approximations of the distribution of successes are possible, but they become inaccurate for small sample sizes. In this article, we describe the exact distribution of time between random, non-overlapping successes in discrete time of fixed length. A complete description of the probability mass function, the cumulative distribution function, mean, variance and recurrence relation is included. We propose an associated test for the over-representation of short distances and illustrate the methodology through relevant examples. The theory is implemented in an R package including probability mass, cumulative distribution, quantile function, random number generator, simulation functions, and functions for testing.

  11. A curvature theory for discrete surfaces based on mesh parallelity

    KAUST Repository

    Bobenko, Alexander Ivanovich

    2009-12-18

    We consider a general theory of curvatures of discrete surfaces equipped with edgewise parallel Gauss images, and where mean and Gaussian curvatures of faces are derived from the faces\\' areas and mixed areas. Remarkably these notions are capable of unifying notable previously defined classes of surfaces, such as discrete isothermic minimal surfaces and surfaces of constant mean curvature. We discuss various types of natural Gauss images, the existence of principal curvatures, constant curvature surfaces, Christoffel duality, Koenigs nets, contact element nets, s-isothermic nets, and interesting special cases such as discrete Delaunay surfaces derived from elliptic billiards. © 2009 Springer-Verlag.

  12. Discrete exterior calculus discretization of incompressible Navier–Stokes equations over surface simplicial meshes

    KAUST Repository

    Mohamed, Mamdouh S.

    2016-02-11

    A conservative discretization of incompressible Navier–Stokes equations is developed based on discrete exterior calculus (DEC). A distinguishing feature of our method is the use of an algebraic discretization of the interior product operator and a combinatorial discretization of the wedge product. The governing equations are first rewritten using the exterior calculus notation, replacing vector calculus differential operators by the exterior derivative, Hodge star and wedge product operators. The discretization is then carried out by substituting with the corresponding discrete operators based on the DEC framework. Numerical experiments for flows over surfaces reveal a second order accuracy for the developed scheme when using structured-triangular meshes, and first order accuracy for otherwise unstructured meshes. By construction, the method is conservative in that both mass and vorticity are conserved up to machine precision. The relative error in kinetic energy for inviscid flow test cases converges in a second order fashion with both the mesh size and the time step.

  13. Discrete exterior calculus discretization of incompressible Navier-Stokes equations over surface simplicial meshes

    Science.gov (United States)

    Mohamed, Mamdouh S.; Hirani, Anil N.; Samtaney, Ravi

    2016-05-01

    A conservative discretization of incompressible Navier-Stokes equations is developed based on discrete exterior calculus (DEC). A distinguishing feature of our method is the use of an algebraic discretization of the interior product operator and a combinatorial discretization of the wedge product. The governing equations are first rewritten using the exterior calculus notation, replacing vector calculus differential operators by the exterior derivative, Hodge star and wedge product operators. The discretization is then carried out by substituting with the corresponding discrete operators based on the DEC framework. Numerical experiments for flows over surfaces reveal a second order accuracy for the developed scheme when using structured-triangular meshes, and first order accuracy for otherwise unstructured meshes. By construction, the method is conservative in that both mass and vorticity are conserved up to machine precision. The relative error in kinetic energy for inviscid flow test cases converges in a second order fashion with both the mesh size and the time step.

  14. A curvature theory for discrete surfaces based on mesh parallelity

    KAUST Repository

    Bobenko, Alexander Ivanovich; Pottmann, Helmut; Wallner, Johannes

    2009-01-01

    We consider a general theory of curvatures of discrete surfaces equipped with edgewise parallel Gauss images, and where mean and Gaussian curvatures of faces are derived from the faces' areas and mixed areas. Remarkably these notions are capable

  15. Counterion release from a discretely charged surface in an electrolyte: Monte Carlo simulation study

    International Nuclear Information System (INIS)

    Hernández-Contreras, M

    2015-01-01

    Monte Carlo simulations allowed us to determine the amount of released electric charges from a discretely charged surface in 1:1 aqueous electrolyte solution as a function of surface charge density. Within the restricted primitive model and for a fixed concentration of 0.1 M bulk electrolyte in solution, there is an increase in the number of released counterions per unit surface area as the strength of the surface charge is enhanced. A similar behaviour of the number of released counterions was also found through the use of mean field and liquid theory methods

  16. Surface Design Based on Discrete Conformal Transformations

    Science.gov (United States)

    Duque, Carlos; Santangelo, Christian; Vouga, Etienne

    Conformal transformations are angle-preserving maps from one domain to another. Although angles are preserved, the lengths between arbitrary points are not generally conserved. As a consequence there is always a given amount of distortion associated to any conformal map. Different uses of such transformations can be found in various fields, but have been used by us to program non-uniformly swellable gel sheets to buckle into prescribed three dimensional shapes. In this work we apply circle packings as a kind of discrete conformal map in order to find conformal maps from the sphere to the plane that can be used as nearly uniform swelling patterns to program non-Euclidean sheets to buckle into spheres. We explore the possibility of tuning the area distortion to fit the experimental range of minimum and maximum swelling by modifying the boundary of the planar domain through the introduction of different cutting schemes.

  17. Traffic flow model at fixed control signals with discrete service time distribution

    Directory of Open Access Journals (Sweden)

    Lucky I. Igbinosun

    2016-04-01

    Full Text Available Most of the models of road traffic flow at fixed-cycle controlled intersection assume stationary distributions and provide steady state results. The assumption that a constant number of vehicles can leave the system during the green phase is unrealistic in real life situations. A discrete time queuing model was developed to describe the operation of traffic flow at a road intersection with fixed-cycle signalized control and to account for the randomness in the number of vehicles that can leave the system. The results show the expected queue size in the system when the traffic is light and for a busy period, respectively. For the light period, when the traffic intensity is less than one, it takes a shorter green cycle time for vehicles to clear up than during high traffic intensity (the road junction is saturated. Increasing the number of cars that can leave the junction at the turn of the green phase reduces the number of cycle times before the queue is cleared.

  18. Fixed-time synchronization of memristor-based BAM neural networks with time-varying discrete delay.

    Science.gov (United States)

    Chen, Chuan; Li, Lixiang; Peng, Haipeng; Yang, Yixian

    2017-12-01

    This paper is devoted to studying the fixed-time synchronization of memristor-based BAM neural networks (MBAMNNs) with discrete delay. Fixed-time synchronization means that synchronization can be achieved in a fixed time for any initial values of the considered systems. In the light of the double-layer structure of MBAMNNs, we design two similar feedback controllers. Based on Lyapunov stability theories, several criteria are established to guarantee that the drive and response MBAMNNs can realize synchronization in a fixed time. In particular, by changing the parameters of controllers, this fixed time can be adjusted to some desired value in advance, irrespective of the initial values of MBAMNNs. Numerical simulations are included to validate the derived results. Copyright © 2017 Elsevier Ltd. All rights reserved.

  19. Total effective dose equivalent associated with fixed uranium surface contamination

    International Nuclear Information System (INIS)

    Bogard, J.S.; Hamm, R.N.; Ashley, J.C.; Turner, J.E.; England, C.A.; Swenson, D.E.; Brown, K.S.

    1997-04-01

    This report provides the technical basis for establishing a uranium fixed-contamination action level, a fixed uranium surface contamination level exceeding the total radioactivity values of Appendix D of Title 10, Code of Federal Regulations, part 835 (10CFR835), but below which the monitoring, posting, and control requirements for Radiological Areas are not required for the area of the contamination. An area of fixed uranium contamination between 1,000 dpm/100 cm 2 and that level corresponding to an annual total effective dose equivalent (TEDE) of 100 mrem requires only routine monitoring, posting to alert personnel of the contamination, and administrative control. The more extensive requirements for monitoring, posting, and control designated by 10CFR835 for Radiological Areas do not have to be applied for these intermediate fixed-contamination levels

  20. Discrete Surface Evolution and Mesh Deformation for Aircraft Icing Applications

    Science.gov (United States)

    Thompson, David; Tong, Xiaoling; Arnoldus, Qiuhan; Collins, Eric; McLaurin, David; Luke, Edward; Bidwell, Colin S.

    2013-01-01

    Robust, automated mesh generation for problems with deforming geometries, such as ice accreting on aerodynamic surfaces, remains a challenging problem. Here we describe a technique to deform a discrete surface as it evolves due to the accretion of ice. The surface evolution algorithm is based on a smoothed, face-offsetting approach. We also describe a fast algebraic technique to propagate the computed surface deformations into the surrounding volume mesh while maintaining geometric mesh quality. Preliminary results presented here demonstrate the ecacy of the approach for a sphere with a prescribed accretion rate, a rime ice accretion, and a more complex glaze ice accretion.

  1. [Surface aspect of fixed restaurations and parodontal influences].

    Science.gov (United States)

    Ciocan-Pendefunda, Alice-Arina; Forna, Norina Consuela

    2012-01-01

    Any new class of materials requires a new cutting technology which, unless complied with properly, may negatively impact on the advantages and performance of the material. The modifications appeared as a result of the technological processes in the structure or surface aspect of the materials not only affects the mechanical resistance of the restorations but also casts doubts on their biological qualities. This study evaluates the impact of biomaterials involved in fixed restorations on the periodontal architecture, bearing extremely important connotations in the long run. The "in vitro" testing was conducted on culture cells for the cytotoxic effect of certain restorative materials--metallic alloys used in prosthetic restorations, composite materials, in collaboration with the Virology Laboratory of the Public Health Institute.The tested materials were metallic alloys, composite materials and acrylic resins used for the construction of standard sized plates (out of each material) in order to avoid the differences that might arise from the technological process. Artificial saliva processed to reach a pH = 7 was prepared in the Biophysics Laboratory of UMF Iasi. Material samples and the saliva inoculated with these were tested. -p. The cytotoxic effect of the tested materials on the celular cultures takes on extremely diverse forms, from discrete morphological modifications of the cells with regard to the size, shape, internal structure (for the noble and semi-noble alloys) up to the partial stripping-off of the celular film, the modification of density and coloration. In the case of the witness of non-inoculated culture, the testing results showed the presence of a continuous film, with cells having the same size, transparency and colouring, with an unaltered polyhedral contour, with visible nuclei, an image also kept in the case of the saliva witness. The involvement of restaurative materials in triggering, maintaining and aggravating a periodontal pathology

  2. Emissions of Photonic Crystal Waveguides with Discretely Modulated Surfaces

    International Nuclear Information System (INIS)

    Dong-Hua, Tang; Li-Xue, Chen; Yan, Liu; Xiu-Dong, Sun; Wei-Qiang, Ding

    2009-01-01

    Transmission properties of photonic crystal (PC) waveguides with discretely modulated exit surfaces are investigated numerically using the unite-difference time-domain (FDTD) method. Unlike the case of periodically modulated surfaces, where the transmission beam tends to be a single and directional beam, when the exit surfaces are modulated only at several discrete points, the emission power tends to split into multiple and directional beams. We explain this phenomenon using a multiple point source interference model. Based on these results, we propose a 1-to-N beam splitter, and numerically realized high efficiency coupling between a PC sub-wavelength waveguide and three traditional dielectric waveguides with a total efficiency larger than 92%. This simple, easy fabrication, and controllable mechanism may find more potential applications in integrated optical circuits. (fundamental areas of phenomenology(including applications))

  3. A Model Stitching Architecture for Continuous Full Flight-Envelope Simulation of Fixed-Wing Aircraft and Rotorcraft from Discrete Point Linear Models

    Science.gov (United States)

    2016-04-01

    AND ROTORCRAFT FROM DISCRETE -POINT LINEAR MODELS Eric L. Tobias and Mark B. Tischler Aviation Development Directorate Aviation and Missile...Stitching Architecture for Continuous Full Flight-Envelope Simulation of Fixed-Wing Aircraft and Rotorcraft from Discrete -Point Linear Models 5...of discrete -point linear models and trim data. The model stitching simulation architecture is applicable to any aircraft configuration readily

  4. Discrete exterior calculus discretization of incompressible Navier–Stokes equations over surface simplicial meshes

    KAUST Repository

    Mohamed, Mamdouh S.; Hirani, Anil N.; Samtaney, Ravi

    2016-01-01

    A conservative discretization of incompressible Navier–Stokes equations is developed based on discrete exterior calculus (DEC). A distinguishing feature of our method is the use of an algebraic discretization of the interior product operator and a

  5. Numerical convergence of discrete exterior calculus on arbitrary surface meshes

    KAUST Repository

    Mohamed, Mamdouh S.

    2018-02-13

    Discrete exterior calculus (DEC) is a structure-preserving numerical framework for partial differential equations solution, particularly suitable for simplicial meshes. A longstanding and widespread assumption has been that DEC requires special (Delaunay) triangulations, which complicated the mesh generation process especially for curved surfaces. This paper presents numerical evidence demonstrating that this restriction is unnecessary. Convergence experiments are carried out for various physical problems using both Delaunay and non-Delaunay triangulations. Signed diagonal definition for the key DEC operator (Hodge star) is adopted. The errors converge as expected for all considered meshes and experiments. This relieves the DEC paradigm from unnecessary triangulation limitation.

  6. On a discrete version of the CP 1 sigma model and surfaces immersed in R3

    International Nuclear Information System (INIS)

    Grundland, A M; Levi, D; Martina, L

    2003-01-01

    We present a discretization of the CP 1 sigma model. We show that the discrete CP 1 sigma model is described by a nonlinear partial second-order difference equation with rational nonlinearity. To derive discrete surfaces immersed in three-dimensional Euclidean space a 'complex' lattice is introduced. The so-obtained surfaces are characterized in terms of the quadrilateral cross-ratio of four surface points. In this way we prove that all surfaces associated with the discrete CP 1 sigma model are of constant mean curvature. An explicit example of such discrete surfaces is constructed

  7. Comparison of discrete Hodge star operators for surfaces

    KAUST Repository

    Mohamed, Mamdouh S.

    2016-05-10

    We investigate the performance of various discrete Hodge star operators for discrete exterior calculus (DEC) using circumcentric and barycentric dual meshes. The performance is evaluated through the DEC solution of Darcy and incompressible Navier–Stokes flows over surfaces. While the circumcentric Hodge operators may be favorable due to their diagonal structure, the barycentric (geometric) and the Galerkin Hodge operators have the advantage of admitting arbitrary simplicial meshes. Numerical experiments reveal that the barycentric and the Galerkin Hodge operators retain the numerical convergence order attained through the circumcentric (diagonal) Hodge operators. Furthermore, when the barycentric or the Galerkin Hodge operators are employed, a super-convergence behavior is observed for the incompressible flow solution over unstructured simplicial surface meshes generated by successive subdivision of coarser meshes. Insofar as the computational cost is concerned, the Darcy flow solutions exhibit a moderate increase in the solution time when using the barycentric or the Galerkin Hodge operators due to a modest decrease in the linear system sparsity. On the other hand, for the incompressible flow simulations, both the solution time and the linear system sparsity do not change for either the circumcentric or the barycentric and the Galerkin Hodge operators.

  8. Crack Models for Concrete, Discrete or Smeared? Fixed, Multi-Directional or Rotating?

    NARCIS (Netherlands)

    Rots, J.G.; Blaauwendraad, J.

    1989-01-01

    Numerical tools to simulate cracking in concrete and similar materials are developed. Firstly, a treatment is given of smeared and discrete crack concepts, which start from the notion of a continuum and a discontinuum respectively. With the smeared crack concept a distinction is furthermore made

  9. On Discrete Killing Vector Fields and Patterns on Surfaces

    KAUST Repository

    Ben-Chen, Mirela

    2010-09-21

    Symmetry is one of the most important properties of a shape, unifying form and function. It encodes semantic information on one hand, and affects the shape\\'s aesthetic value on the other. Symmetry comes in many flavors, amongst the most interesting being intrinsic symmetry, which is defined only in terms of the intrinsic geometry of the shape. Continuous intrinsic symmetries can be represented using infinitesimal rigid transformations, which are given as tangent vector fields on the surface - known as Killing Vector Fields. As exact symmetries are quite rare, especially when considering noisy sampled surfaces, we propose a method for relaxing the exact symmetry constraint to allow for approximate symmetries and approximate Killing Vector Fields, and show how to discretize these concepts for generating such vector fields on a triangulated mesh. We discuss the properties of approximate Killing Vector Fields, and propose an application to utilize them for texture and geometry synthesis. Journal compilation © 2010 The Eurographics Association and Blackwell Publishing Ltd.

  10. Comparison of discrete Hodge star operators for surfaces

    KAUST Repository

    Mohamed, Mamdouh S.; Hirani, Anil N.; Samtaney, Ravi

    2016-01-01

    We investigate the performance of various discrete Hodge star operators for discrete exterior calculus (DEC) using circumcentric and barycentric dual meshes. The performance is evaluated through the DEC solution of Darcy and incompressible Navier

  11. Effect of the surface charge discretization on electric double layers. A Monte Carlo simulation study

    OpenAIRE

    Madurga Díez, Sergio; Martín-Molina, Alberto; Vilaseca i Font, Eudald; Mas i Pujadas, Francesc; Quesada-Pérez, Manuel

    2007-01-01

    The structure of the electric double layer in contact with discrete and continuously charged planar surfaces is studied within the framework of the primitive model through Monte Carlo simulations. Three different discretization models are considered together with the case of uniform distribution. The effect of discreteness is analyzed in terms of charge density profiles. For point surface groups,a complete equivalence with the situation of uniformly distributed charge is found if profiles are...

  12. Automated vehicle guidance using discrete reference markers. [road surface steering techniques

    Science.gov (United States)

    Johnston, A. R.; Assefi, T.; Lai, J. Y.

    1979-01-01

    Techniques for providing steering control for an automated vehicle using discrete reference markers fixed to the road surface are investigated analytically. Either optical or magnetic approaches can be used for the sensor, which generates a measurement of the lateral offset of the vehicle path at each marker to form the basic data for steering control. Possible mechanizations of sensor and controller are outlined. Techniques for handling certain anomalous conditions, such as a missing marker, or loss of acquisition, and special maneuvers, such as u-turns and switching, are briefly discussed. A general analysis of the vehicle dynamics and the discrete control system is presented using the state variable formulation. Noise in both the sensor measurement and in the steering servo are accounted for. An optimal controller is simulated on a general purpose computer, and the resulting plots of vehicle path are presented. Parameters representing a small multipassenger tram were selected, and the simulation runs show response to an erroneous sensor measurement and acquisition following large initial path errors.

  13. Numerical convergence of discrete exterior calculus on arbitrary surface meshes

    KAUST Repository

    Mohamed, Mamdouh S.; Hirani, Anil N.; Samtaney, Ravi

    2018-01-01

    Discrete exterior calculus (DEC) is a structure-preserving numerical framework for partial differential equations solution, particularly suitable for simplicial meshes. A longstanding and widespread assumption has been that DEC requires special

  14. On Discrete Killing Vector Fields and Patterns on Surfaces

    KAUST Repository

    Ben-Chen, Mirela; Butscher, Adrian; Solomon, Justin; Guibas, Leonidas

    2010-01-01

    , and show how to discretize these concepts for generating such vector fields on a triangulated mesh. We discuss the properties of approximate Killing Vector Fields, and propose an application to utilize them for texture and geometry synthesis. Journal

  15. Explicit formulation of a nodal transport method for discrete ordinates calculations in two-dimensional fixed-source problems

    Energy Technology Data Exchange (ETDEWEB)

    Tres, Anderson [Universidade Federal do Rio Grande do Sul, Porto Alegre, RS (Brazil). Programa de Pos-Graduacao em Matematica Aplicada; Becker Picoloto, Camila [Universidade Federal do Rio Grande do Sul, Porto Alegre, RS (Brazil). Programa de Pos-Graduacao em Engenharia Mecanica; Prolo Filho, Joao Francisco [Universidade Federal do Rio Grande do Sul, Porto Alegre, RS (Brazil). Inst de Matematica, Estatistica e Fisica; Dias da Cunha, Rudnei; Basso Barichello, Liliane [Universidade Federal do Rio Grande do Sul, Porto Alegre, RS (Brazil). Inst de Matematica

    2014-04-15

    In this work a study of two-dimensional fixed-source neutron transport problems, in Cartesian geometry, is reported. The approach reduces the complexity of the multidimensional problem using a combination of nodal schemes and the Analytical Discrete Ordinates Method (ADO). The unknown leakage terms on the boundaries that appear from the use of the derivation of the nodal scheme are incorporated to the problem source term, such as to couple the one-dimensional integrated solutions, made explicit in terms of the x and y spatial variables. The formulation leads to a considerable reduction of the order of the associated eigenvalue problems when combined with the usual symmetric quadratures, thereby providing solutions that have a higher degree of computational efficiency. Reflective-type boundary conditions are introduced to represent the domain on a simpler form than that previously considered in connection with the ADO method. Numerical results obtained with the technique are provided and compared to those present in the literature. (orig.)

  16. Effect of the surface charge discretization on electric double layers: a Monte Carlo simulation study.

    Science.gov (United States)

    Madurga, Sergio; Martín-Molina, Alberto; Vilaseca, Eudald; Mas, Francesc; Quesada-Pérez, Manuel

    2007-06-21

    The structure of the electric double layer in contact with discrete and continuously charged planar surfaces is studied within the framework of the primitive model through Monte Carlo simulations. Three different discretization models are considered together with the case of uniform distribution. The effect of discreteness is analyzed in terms of charge density profiles. For point surface groups, a complete equivalence with the situation of uniformly distributed charge is found if profiles are exclusively analyzed as a function of the distance to the charged surface. However, some differences are observed moving parallel to the surface. Significant discrepancies with approaches that do not account for discreteness are reported if charge sites of finite size placed on the surface are considered.

  17. Discrete dislocation simulations of the flattening of nanoimprinted surfaces

    International Nuclear Information System (INIS)

    Zhang, Yunhe; Nicola, Lucia; Van der Giessen, Erik

    2010-01-01

    Simulations of rough surface flattening are performed on thin metal films whose roughness is created by nanoimprinting flat single crystals. The imprinting is carried out by means of a rigid template with equal flat contacts at varying spacing. The imprinted surfaces are subsequently flattened by a rigid platen, while the change of roughness and surface profile is computed. Attention is focused mainly on comparing the response of the film surfaces with those of identical films cleared of the dislocations and residual stresses left by the imprinting process. The aim of these studies is to understand to what extent the loading history affects deformation and roughness during flattening. The limiting cases of sticking and frictionless contact between rough surface and platen are analyzed. Results show that when the asperities are flattened such that the contact area is up to about one third of the surface area, the loading history strongly affects the flattening. Specifically, the presence of initial dislocations facilitates the squeezing of asperities independently of the friction conditions of the contact. For larger contact areas, the initial conditions affect only sticking contacts, while frictionless contacts lead to a homogeneous flattening of the asperities due to yield of the metal film. In all cases studied the final surface profile obtained after flattening has little to no resemblance to the original imprinted surface

  18. Discrete impurity band from surface danging bonds in nitrogen and phosphorus doped SiC nanowires

    Science.gov (United States)

    Li, Yan-Jing; Li, Shu-Long; Gong, Pei; Li, Ya-Lin; Cao, Mao-Sheng; Fang, Xiao-Yong

    2018-04-01

    The electronic structure and optical properties of the nitrogen and phosphorus doped silicon carbide nanowires (SiCNWs) are investigated using first-principle calculations based on density functional theory. The results show doping can change the type of the band gap and improve the conductivity. However, the doped SiCNWs form a discrete impurity levels at the Fermi energy, and the dispersion degree decreases with the diameter increasing. In order to reveal the root of this phenomenon, we hydrogenated the doped SiCNWs, found that the surface dangling bonds were saturated, and the discrete impurity levels are degeneracy, which indicates that the discrete impurity band of the doped SiCNWs is derived from the dangling bonds. The surface passivation can degenerate the impurity levels. Therefore, both doping and surface passivation can better improve the photoelectric properties of the SiCNWs. The result can provide additional candidates in producing nano-optoelectronic devices.

  19. Quantum Riemann surfaces. Pt. 2; The discrete series

    Energy Technology Data Exchange (ETDEWEB)

    Klimek, S. (Dept. of Mathematics, IUPUI, Indianapolis, IN (United States)); Lesniewski, A. (Dept. of Physics, Harvard Univ., Cambridge, MA (United States))

    1992-02-01

    We continue our study of noncommutative deformations of two-dimensional hyperbolic manifolds which we initiated in Part I. We construct a sequence of C{sup *}-algebras which are quantizations of a compact Riemann surface of genus g corresponding to special values of the Planck constant. These algebras are direct integrals of finite-dimensional C{sup *}-algebras. (orig.).

  20. Discrete microfluidics based on aluminum nitride surface acoustic wave devices

    OpenAIRE

    Zhou, J.; Pang, H.F.; Garcia-Gancedo, L.; Iborra, E.; Clement, M.; De Miguel-Ramos, M.; Jin, H.; Luo, J.K.; Smith, S.; Dong, S.R.; Wang, D.M.; Fu, Y.Q.

    2015-01-01

    To date, most surface acoustic wave (SAW) devices have been made from bulk piezoelectric materials, such as quartz, lithium niobate or lithium tantalite. These bulk materials are brittle, less easily integrated with electronics for control and signal processing, and difficult to realize multiple wave modes or apply complex electrode designs. Using thin film SAWs makes it convenient to integrate microelectronics and multiple sensing or microfluidics techniques into a lab-on-a-chip with low cos...

  1. Friction reduction using discrete surface textures: principle and design

    International Nuclear Information System (INIS)

    Hsu, Stephen M; Jing, Yang; Hua, Diann; Zhang, Huan

    2014-01-01

    There have been many reports on the use of dimples, grooves, and other surface textures to control friction in sliding interfaces. The effectiveness of surface textures in friction reduction has been demonstrated in conformal contacts under high speed low load applications such as mechanical seals and automotive water pump seals, etc., resulting in reduced friction and longer durability. For sliding components with higher contact pressures or lower speeds, conflicting results were reported. Reasons for the inconsistency may be due to the differences in texture fabrication techniques, lack of dimple size and shape uniformity, and different tester used. This paper examines the basic principles on which surface textural patterns influence friction under the three principle lubrication regimes: hydrodynamic, elastohydrodynamic, and boundary lubrication regimes. Our findings suggest that each regime requires specific dimple size, shape, depth, and areal density to achieve friction reduction. Control experiments were also conducted to explore mechanisms of friction reduction. The dimple geometric shape and the dimple's orientation with respect to the sliding direction influence friction significantly. The underlying mechanisms for friction control via textures are discussed. (paper)

  2. Clinical Effectiveness of Using Aesthetic Fixed Prosthetic Appliances with Combined Occlusal Surface

    Directory of Open Access Journals (Sweden)

    Andrii Biben

    2017-06-01

    Conclusions. Aesthetic fixed prosthetic appliances with combined occlusal surface demonstrated high functional and aesthetic characteristics. The use of the USHPS system showed a decisive advantage of milled frameworks and combined occlusal surface over traditional cast ceramic frameworks.The combination of high mechanical, strength and tribological properties of zirconium dioxide and high biological as well as aesthetic properties of ceramic materials helped reveal high clinical characteristics of aesthetic appliances with combined occlusal surface.

  3. Clinical Effectiveness of Using Aesthetic Fixed Prosthetic Appliances with Combined Occlusal Surface

    OpenAIRE

    Andrii Biben; Zinovii Ozhohan

    2017-01-01

    The objective of the research was to evaluate the clinical effectiveness of using aesthetic fixed prosthetic appliances with combined occlusal surface. Materials and methods. The study included 30 patients who were divided into 2 groups: Group I included 20 patients with combined occlusal surface of the crowns; Group II included 22 patients with ceramic occlusal surface of the crowns. The patients were observed 3, 6 and 12 months after prosthetic repair. Results. 6 months after prosthet...

  4. In situ measurement of fixed charge evolution at silicon surfaces during atomic layer deposition

    International Nuclear Information System (INIS)

    Ju, Ling; Watt, Morgan R.; Strandwitz, Nicholas C.

    2015-01-01

    Interfacial fixed charge or interfacial dipoles are present at many semiconductor-dielectric interfaces and have important effects upon device behavior, yet the chemical origins of these electrostatic phenomena are not fully understood. We report the measurement of changes in Si channel conduction in situ during atomic layer deposition (ALD) of aluminum oxide using trimethylaluminum and water to probe changes in surface electrostatics. Current-voltage data were acquired continually before, during, and after the self-limiting chemical reactions that result in film growth. Our measurements indicated an increase in conductance on p-type samples with p + ohmic contacts and a decrease in conductance on analogous n-type samples. Further, p + contacted samples with n-type channels exhibited an increase in measured current and n + contacted p-type samples exhibited a decrease in current under applied voltage. Device physics simulations, where a fixed surface charge was parameterized on the channel surface, connect the surface charge to changes in current-voltage behavior. The simulations and analogous analytical relationships for near-surface conductance were used to explain the experimental results. Specifically, the changes in current-voltage behavior can be attributed to the formation of a fixed negative charge or the modification of a surface dipole upon chemisorption of trimethylaluminum. These measurements allow for the observation of fixed charge or dipole formation during ALD and provide further insight into the electrostatic behavior at semiconductor-dielectric interfaces during film nucleation

  5. The number of k-colorings of a graph on a fixed surface

    DEFF Research Database (Denmark)

    Thomassen, Carsten

    2006-01-01

    We prove that, for every fixed surface S, there exists a largest positive constant c such that every 5-colorable graph with n vertices on S has at least c center dot 2(n) distinct 5-colorings. This is best possible in the sense that, for each sufficiently large natural number n, there is a graph ...

  6. Air loads on a rigid plate oscillating normal to a fixed surface

    NARCIS (Netherlands)

    Beltman, W.M.; van der Hoogt, Peter; Spiering, R.M.E.J.; Tijdeman, H.

    1997-01-01

    This paper deals with the theoretical and experimental investigation on a rigid, rectangular plate oscillating in the proximity of a fixed surface. The plate is suspended by springs. The airloads generated by the oscillating motion of the plate are determined. Due to the fact that the plate is

  7. Current in heavy-current planar diode with discrete emission surface

    International Nuclear Information System (INIS)

    Belomyttsev, S.Ya.; Korovin, S.D.; Pegel', I.V

    1999-01-01

    Dependence of current in a high-current planar diode on the size of emission centres was studied. Essential effect of emission surface microstructure on the current value in the planar diode was demonstrated. It was determined that if the distance between the emitter essentially exceeded their size then current dependence on the ratio of size to the value of the diode gap was an exponential function with 3/2 index. Current dependence on voltage obeyed the exponential law with 3/2 index up to higher voltage values in the planar diode with discrete emission surface in contrast to the case of a planar diode with homogeneous emission surface [ru

  8. Prediction of Nanoparticle and Colloid Attachment on Unfavorable Mineral Surfaces Using Representative Discrete Heterogeneity.

    Science.gov (United States)

    Trauscht, Jacob; Pazmino, Eddy; Johnson, William P

    2015-09-01

    Despite several decades of research there currently exists no mechanistic theory to predict colloid attachment in porous media under environmental conditions where colloid-collector repulsion exists (unfavorable conditions for attachment). It has long been inferred that nano- to microscale surface heterogeneity (herein called discrete heterogeneity) drives colloid attachment under unfavorable conditions. Incorporating discrete heterogeneity into colloid-collector interaction calculations in particle trajectory simulations predicts colloid attachment under unfavorable conditions. As yet, discrete heterogeneity cannot be independently measured by spectroscopic or other approaches in ways directly relevant to colloid-surface interaction. This, combined with the fact that a given discrete heterogeneity representation will interact differently with differently sized colloids as well as different ionic strengths for a given sized colloid, suggests a strategy to back out representative discrete heterogeneity by a comparison of simulations to experiments performed across a range of colloid size, solution IS, and fluid velocity. This has recently been performed for interaction of carboxylate-modified polystyrene latex (CML) microsphere attachment to soda lime glass at pH 6.7 with NaCl electrolyte. However, extension to other surfaces, pH values, and electrolytes is needed. For this reason, the attachment of CML (0.25, 1.1, and 2.0 μm diameters) from aqueous suspension onto a variety of unfavorable mineral surfaces (soda lime glass, muscovite, and albite) was examined for pH values of 6.7 and 8.0), fluid velocities (1.71 × 10(-3) and 5.94 × 10(-3) m s(-1)), IS (6.0 and 20 mM), and electrolytes (NaCl, CaSO4, and multivalent mixtures). The resulting representative heterogeneities (heterodomain size and surface coverage, where heterodomain refers to nano- to microscale attractive domains) yielded colloid attachment predictions that were compared to predictions from existing

  9. Observations of discrete energy loss effects in spectra of positrons reflected from solid surfaces

    International Nuclear Information System (INIS)

    Dale, J.M.; Hulett, L.D.; Pendyala, S.

    1980-01-01

    Surfaces of tungsten and silicon have been bombarded with monoenergetic beams of positrons and electrons. Spectra of reflected particles show energy loss tails with discrete peaks at kinetic energies about 15 eV lower than that of the elastic peaks. In the higher energy loss range for tungsten, positron spectra show fine structure that is not apparent in the electron spectra. This suggests that the positrons are losing energy through mechanisms different from that of the electrons

  10. The chromatic number of a graph of girth 5 on a fixed surface

    DEFF Research Database (Denmark)

    Thomassen, Carsten

    2003-01-01

    We prove a color extension result implying that, for every fixed surface S, there are only finitely many 4-color-critical graphs of girth 5 on S. The result is best possible in the sense that there are infinitely many 4-color-critical graphs of girth 4 on S, except when S is the sphere, As a cons......, As a consequence, the chromatic number of graphs of girth 5 on S can be found in polynomial time....

  11. Analysis of surface properties of fixed and live cells using derivatized agarose beads.

    Science.gov (United States)

    Navarro, Vanessa M; Walker, Sherri L; Badali, Oliver; Abundis, Maria I; Ngo, Lylla L; Weerasinghe, Gayani; Barajas, Marcela; Zem, Gregory; Oppenheimer, Steven B

    2002-01-01

    A novel assay has been developed for the histochemical characterization of surface properties of cells based on their adhesion to agarose beads derivatized with more than 100 types of molecules, including sugars, lectins and other proteins, and amino acids. The assay simply involves mixing small quantities of washed cells and beads in droplets on glass microscope slides and determining to which beads various cell types adhere. Distilled water was found to be the best medium for this assay because added ions or molecules in other media inhibit adhesion in some cases. Many cells, however, cannot tolerate distilled water. Here we show that cells fixed with either of two fixatives (1% formaldehyde or Prefer fixative) displayed similar bead-binding properties as did live cells. Specificity of cell-bead binding was tested by including specific free molecules in the test suspensions in hapten-type inhibition experiments. If a hapten compound inhibited live-cell adhesion to a specific bead, it also inhibited fixed-cell adhesion to a specific bead. The results of these experiments suggest that fixed cells display authentic surface properties, opening the door for the use of this assay with many cell types that cannot tolerate distilled water.

  12. Constructing irregular surfaces to enclose macromolecular complexes for mesoscale modeling using the discrete surface charge optimization (DISCO) algorithm.

    Science.gov (United States)

    Zhang, Qing; Beard, Daniel A; Schlick, Tamar

    2003-12-01

    Salt-mediated electrostatics interactions play an essential role in biomolecular structures and dynamics. Because macromolecular systems modeled at atomic resolution contain thousands of solute atoms, the electrostatic computations constitute an expensive part of the force and energy calculations. Implicit solvent models are one way to simplify the model and associated calculations, but they are generally used in combination with standard atomic models for the solute. To approximate electrostatics interactions in models on the polymer level (e.g., supercoiled DNA) that are simulated over long times (e.g., milliseconds) using Brownian dynamics, Beard and Schlick have developed the DiSCO (Discrete Surface Charge Optimization) algorithm. DiSCO represents a macromolecular complex by a few hundred discrete charges on a surface enclosing the system modeled by the Debye-Hückel (screened Coulombic) approximation to the Poisson-Boltzmann equation, and treats the salt solution as continuum solvation. DiSCO can represent the nucleosome core particle (>12,000 atoms), for example, by 353 discrete surface charges distributed on the surfaces of a large disk for the nucleosome core particle and a slender cylinder for the histone tail; the charges are optimized with respect to the Poisson-Boltzmann solution for the electric field, yielding a approximately 5.5% residual. Because regular surfaces enclosing macromolecules are not sufficiently general and may be suboptimal for certain systems, we develop a general method to construct irregular models tailored to the geometry of macromolecules. We also compare charge optimization based on both the electric field and electrostatic potential refinement. Results indicate that irregular surfaces can lead to a more accurate approximation (lower residuals), and the refinement in terms of the electric field is more robust. We also show that surface smoothing for irregular models is important, that the charge optimization (by the TNPACK

  13. Lung ventilation injures areas with discrete alveolar flooding, in a surface tension-dependent fashion.

    Science.gov (United States)

    Wu, You; Kharge, Angana Banerjee; Perlman, Carrie E

    2014-10-01

    With proteinaceous-liquid flooding of discrete alveoli, a model of the edema pattern in the acute respiratory distress syndrome, lung inflation over expands aerated alveoli adjacent to flooded alveoli. Theoretical considerations suggest that the overexpansion may be proportional to surface tension, T. Yet recent evidence indicates proteinaceous edema liquid may not elevate T. Thus whether the overexpansion is injurious is not known. Here, working in the isolated, perfused rat lung, we quantify fluorescence movement from the vasculature to the alveolar liquid phase as a measure of overdistension injury to the alveolar-capillary barrier. We label the perfusate with fluorescence; micropuncture a surface alveolus and instill a controlled volume of nonfluorescent liquid to obtain a micropunctured-but-aerated region (control group) or a region with discrete alveolar flooding; image the region at a constant transpulmonary pressure of 5 cmH2O; apply five ventilation cycles with a positive end-expiratory pressure of 0-20 cmH2O and tidal volume of 6 or 12 ml/kg; return the lung to a constant transpulmonary pressure of 5 cmH2O; and image for an additional 10 min. In aerated areas, ventilation is not injurious. With discrete alveolar flooding, all ventilation protocols cause sustained injury. Greater positive end-expiratory pressure or tidal volume increases injury. Furthermore, we determine T and find injury increases with T. Inclusion of either plasma proteins or Survanta in the flooding liquid does not alter T or injury. Inclusion of 2.7-10% albumin and 1% Survanta together, however, lowers T and injury. Contrary to expectation, albumin inclusion in our model facilitates exogenous surfactant activity. Copyright © 2014 the American Physiological Society.

  14. Iterative discrete ordinates solution of the equation for surface-reflected radiance

    Science.gov (United States)

    Radkevich, Alexander

    2017-11-01

    This paper presents a new method of numerical solution of the integral equation for the radiance reflected from an anisotropic surface. The equation relates the radiance at the surface level with BRDF and solutions of the standard radiative transfer problems for a slab with no reflection on its surfaces. It is also shown that the kernel of the equation satisfies the condition of the existence of a unique solution and the convergence of the successive approximations to that solution. The developed method features two basic steps: discretization on a 2D quadrature, and solving the resulting system of algebraic equations with successive over-relaxation method based on the Gauss-Seidel iterative process. Presented numerical examples show good coincidence between the surface-reflected radiance obtained with DISORT and the proposed method. Analysis of contributions of the direct and diffuse (but not yet reflected) parts of the downward radiance to the total solution is performed. Together, they represent a very good initial guess for the iterative process. This fact ensures fast convergence. The numerical evidence is given that the fastest convergence occurs with the relaxation parameter of 1 (no relaxation). An integral equation for BRDF is derived as inversion of the original equation. The potential of this new equation for BRDF retrievals is analyzed. The approach is found not viable as the BRDF equation appears to be an ill-posed problem, and it requires knowledge the surface-reflected radiance on the entire domain of both Sun and viewing zenith angles.

  15. An optimized surface plasmon photovoltaic structure using energy transfer between discrete nano-particles.

    Science.gov (United States)

    Lin, Albert; Fu, Sze-Ming; Chung, Yen-Kai; Lai, Shih-Yun; Tseng, Chi-Wei

    2013-01-14

    Surface plasmon enhancement has been proposed as a way to achieve higher absorption for thin-film photovoltaics, where surface plasmon polariton(SPP) and localized surface plasmon (LSP) are shown to provide dense near field and far field light scattering. Here it is shown that controlled far-field light scattering can be achieved using successive coupling between surface plasmonic (SP) nano-particles. Through genetic algorithm (GA) optimization, energy transfer between discrete nano-particles (ETDNP) is identified, which enhances solar cell efficiency. The optimized energy transfer structure acts like lumped-element transmission line and can properly alter the direction of photon flow. Increased in-plane component of wavevector is thus achieved and photon path length is extended. In addition, Wood-Rayleigh anomaly, at which transmission minimum occurs, is avoided through GA optimization. Optimized energy transfer structure provides 46.95% improvement over baseline planar cell. It achieves larger angular scattering capability compared to conventional surface plasmon polariton back reflector structure and index-guided structure due to SP energy transfer through mode coupling. Via SP mediated energy transfer, an alternative way to control the light flow inside thin-film is proposed, which can be more efficient than conventional index-guided mode using total internal reflection (TIR).

  16. Extension of the constraint algebra for a closed string with a world surface of fixed topology

    International Nuclear Information System (INIS)

    Kashaev, R.M.; Osipov, A.A.

    1989-01-01

    The recently proposed choice of gauge in which the constraints and auxiliary conditions form a closed algebra is extended to the case of the Krichever--Novikov generalized graded algebras. It is shown that the central element of the extended algebra can be represented by an inexact form on a closed contour of the world surface of the string. A realization of the given algebra in terms of string variables is obtained. For this purpose, the classical dynamics of a closed bosonic string with a world surface of fixed genus is discussed. The dynamical variables are introduced in a covariant way and Hamilton equations are obtained in terms of them. These equations are equivalent to the Lagrange equations only in the case of a harmonic function of ''time.''

  17. 'Thermal ghosts': apparent decay of fixed surfaces caused by heat diffusion

    International Nuclear Information System (INIS)

    Livadiotis, George

    2007-01-01

    The behaviour concerning classical heat diffusion on fixed thermal surfaces, studied by observations, still holds surprises. As soon as convective and radiative processes are negligible within the medium, this is considered to be free from energy sources and sinks. Then, the heat diffusion equation is conveniently solved using standard Fourier methods. Some considerations about the contrast effect suggest that the surface boundary would rather be observed to follow specific area decay dynamics than remaining fixed and static. Here it is shown that the apparent boundary lies on a specific isothermal spatiotemporal curve, which depends on the observing device. This is characterized by a slight, though determinative, difference between its radiance and that of the ambient background. Thereafter, the heat diffusion yields apparent boundary shrinkage with the passing of time. This phenomenon is particularly notable for two reasons: its lifetime and final decay rate depend only on the medium thermal properties, while being independent of the apparent boundary spatiotemporal curve. Thus, the former provides a suitable method for measuring the medium thermal properties via the observational data. The latter strongly reveal a kind of universality of some characteristic properties of the phenomenon, common to all observers

  18. Sub-discretized surface model with application to contact mechanics in multi-body simulation

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, S; Williams, J

    2008-02-28

    The mechanics of contact between rough and imperfectly spherical adhesive powder grains are often complicated by a variety of factors, including several which vary over sub-grain length scales. These include several traction factors that vary spatially over the surface of the individual grains, including high energy electron and acceptor sites (electrostatic), hydrophobic and hydrophilic sites (electrostatic and capillary), surface energy (general adhesion), geometry (van der Waals and mechanical), and elasto-plastic deformation (mechanical). For mechanical deformation and reaction, coupled motions, such as twisting with bending and sliding, as well as surface roughness add an asymmetry to the contact force which invalidates assumptions for popular models of contact, such as the Hertzian and its derivatives, for the non-adhesive case, and the JKR and DMT models for adhesive contacts. Though several contact laws have been offered to ameliorate these drawbacks, they are often constrained to particular loading paths (most often normal loading) and are relatively complicated for computational implementation. This paper offers a simple and general computational method for augmenting contact law predictions in multi-body simulations through characterization of the contact surfaces using a hierarchically-defined surface sub-discretization. For the case of adhesive contact between powder grains in low stress regimes, this technique can allow a variety of existing contact laws to be resolved across scales, allowing for moments and torques about the contact area as well as normal and tangential tractions to be resolved. This is especially useful for multi-body simulation applications where the modeler desires statistical distributions and calibration for parameters in contact laws commonly used for resolving near-surface contact mechanics. The approach is verified against analytical results for the case of rough, elastic spheres.

  19. Genomics and ecophysiology of heterotrophic nitrogen fixing bacteria isolated from estuarine surface water

    DEFF Research Database (Denmark)

    Bentzon-Tilia, Mikkel; Severin, Ina; Hansen, Lars H.

    2015-01-01

    The ability to reduce atmospheric nitrogen (N2) to ammonia, known as N2 fixation, is a widely distributed trait among prokaryotes that accounts for an essential input of new N to a multitude of environments. Nitrogenase reductase gene (nifH) composition suggests that putative N2-fixing heterotrop......The ability to reduce atmospheric nitrogen (N2) to ammonia, known as N2 fixation, is a widely distributed trait among prokaryotes that accounts for an essential input of new N to a multitude of environments. Nitrogenase reductase gene (nifH) composition suggests that putative N2-fixing...... heterotrophic organisms are widespread in marine bacterioplankton, but their autecology and ecological significance are unknown. Here, we report genomic and ecophysiology data in relation to N2 fixation by three environmentally relevant heterotrophic bacteria isolated from Baltic Sea surface water: Pseudomonas...... liter-1, presumably accommodated through aggregate formation. Glucose stimulated N2 fixation in general, and reactive N repressed N2 fixation, except that ammonium (NH4 ) stimulated N2 fixation in R. palustris BAL398, indicating the use of nitrogenase as an electron sink. The lack of correlations...

  20. Fast centroid algorithm for determining the surface plasmon resonance angle using the fixed-boundary method

    International Nuclear Information System (INIS)

    Zhan, Shuyue; Wang, Xiaoping; Liu, Yuling

    2011-01-01

    To simplify the algorithm for determining the surface plasmon resonance (SPR) angle for special applications and development trends, a fast method for determining an SPR angle, called the fixed-boundary centroid algorithm, has been proposed. Two experiments were conducted to compare three centroid algorithms from the aspects of the operation time, sensitivity to shot noise, signal-to-noise ratio (SNR), resolution, and measurement range. Although the measurement range of this method was narrower, the other performance indices were all better than the other two centroid methods. This method has outstanding performance, high speed, good conformity, low error and a high SNR and resolution. It thus has the potential to be widely adopted

  1. Comparison of Pyranometers and Reference Cells on Fixed and One-Axis Tracking Surfaces: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Dooraghi, Michael R [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Sengupta, Manajit [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Vignola, Frank [University of Oregon; Peterson, Josh [University of Oregon; Mavromatakis, Fotis [Technological Educational Institute of Crete; Chiu, Chun-Yu [University of Oregon

    2017-12-19

    A wide variety of sensors are used to monitor the irradiance incident on solar modules to evaluate the performance of photovoltaic (PV) systems. These instruments range from secondary standard pyranometers to photodiode-based pyranometers to reference cells. Although instruments are mounted in the plane of array of the modules, a wide range of results have been obtained. Some of these difference have been assumed to come from systematic uncertainties associated with the irradiance sensors. This study is an attempt to quantify these differences by comparing the output of selected thermopile pyranometers to photodiode-based pyranometers and reference cells on a horizontal surface, a fixed-tilt surface, and a one-axis tracking surface. This analysis focuses on clear-sky results from two sites with different climatic conditions. Several important features were observed. Photodiode-based pyranometers and reference cells produce widely different results under clear skies, especially at larger angles of incidence, even though both instruments are based on measuring the short-circuit current of solar cells. The difference is caused by the scattering of light as it passes through the glazing of the reference cell or the diffuser lens of the photodioded-base pyranometer. Both instruments are shown to have similar response to the spectral distribution of the irradiance when compared to the thermopile-based pyranometer, which has a response nearly independent of the wavelength of light used by PV modules.

  2. Digitally Milled Metal Framework for Fixed Complete Denture with Metal Occlusal Surfaces: A Design Concept.

    Science.gov (United States)

    AlBader, Bader; AlHelal, Abdulaziz; Proussaefs, Periklis; Garbacea, Antonela; Kattadiyil, Mathew T; Lozada, Jaime

    Implant-supported fixed complete dentures, often referred to as hybrid prostheses, have been associated with high implant survival rates but also with a high incidence of mechanical prosthetic complications. The most frequent of these complications have been fracture and wear of the veneering material. The proposed design concept incorporates the occlusal surfaces of the posterior teeth as part of a digital milled metal framework by designing the posterior first molars in full contour as part of the framework. The framework can be designed, scanned, and milled from a titanium blank using a milling machine. Acrylic resin teeth can then be placed on the framework by conventional protocol. The metal occlusal surfaces of the titanium-countered molars will be at centric occlusion. It is hypothesized that metal occlusal surfaces in the posterior region may reduce occlusal wear in these types of prostheses. When the proposed design protocol is followed, the connection between the metal frame and the cantilever part of the prosthesis is reinforced, which may lead to fewer fractures of the metal framework.

  3. Comparison of Pyranometers and Reference Cells on Fixed and One-axis Tracking Surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Dooraghi, Michael R [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Sengupta, Manajit [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Vignola, Frank [University of Oregon; Peterson, Josh [University of Oregon; Mavromatakis, Fotis [Technological Educational Institute of Crete; Chiu, Chun-Yu [University of Oregon

    2017-10-12

    Photovoltaic (PV) system perfomance is monitored by a wide variety of sensors. These instruments range from secondary standard pyranometers to photodiode-based pyranometers to reference cells. Although instruments are mounted in the plane of array of the modules a wide range of results have been obtained. Some of these difference have been assumed to come from systematic uncertainties associated with the irradiance sensors. This study is an attempt to quantify these differences by comparing the output of selected thermopile-based pyranometers to photodiode-based pyranometers and reference cells on a horizontal surface, a fixed-tilt surface, and a one-axis tracking surface. This analysis focuses on clear-sky results from two sites with different climatic conditions. Several important features were observed. Photodiode-based pyranometers and reference cells produce widely different results under clear skies, especially at larger angles-of-incidence even though both instruments are based on measuring the short circuit current of solar cells. The difference is caused by the scattering of light as it passes through the glazing of the reference cell or the diffuser lens of the photodioded- base pyranometer. Both instruments are shown to have similar response to the spectral distribution of the irradiance when compared to the thermopile-based pyranometer that has a response nearly independent of the wavelength of light used by PV modules.

  4. Preparing the generalized Harvey–Shack rough surface scattering method for use with the discrete ordinates method

    DEFF Research Database (Denmark)

    Johansen, Villads Egede

    2015-01-01

    The paper shows how to implement the generalized Harvey–Shack (GHS) method for isotropic rough surfaces discretized in a polar coordinate system and approximated using Fourier series. This is particularly relevant for the use of the GHS method as a boundary condition for radiative transfer proble...

  5. Effects of image charges, interfacial charge discreteness, and surface roughness on the zeta potential of spherical electric double layers.

    Science.gov (United States)

    Gan, Zecheng; Xing, Xiangjun; Xu, Zhenli

    2012-07-21

    We investigate the effects of image charges, interfacial charge discreteness, and surface roughness on spherical electric double layer structures in electrolyte solutions with divalent counterions in the setting of the primitive model. By using Monte Carlo simulations and the image charge method, the zeta potential profile and the integrated charge distribution function are computed for varying surface charge strengths and salt concentrations. Systematic comparisons were carried out between three distinct models for interfacial charges: (1) SURF1 with uniform surface charges, (2) SURF2 with discrete point charges on the interface, and (3) SURF3 with discrete interfacial charges and finite excluded volume. By comparing the integrated charge distribution function and the zeta potential profile, we argue that the potential at the distance of one ion diameter from the macroion surface is a suitable location to define the zeta potential. In SURF2 model, we find that image charge effects strongly enhance charge inversion for monovalent interfacial charges, and strongly suppress charge inversion for multivalent interfacial charges. For SURF3, the image charge effect becomes much smaller. Finally, with image charges in action, we find that excluded volumes (in SURF3) suppress charge inversion for monovalent interfacial charges and enhance charge inversion for multivalent interfacial charges. Overall, our results demonstrate that all these aspects, i.e., image charges, interfacial charge discreteness, their excluding volumes, have significant impacts on zeta potentials of electric double layers.

  6. Discrete wavelet transform analysis of surface electromyography for the fatigue assessment of neck and shoulder muscles.

    Science.gov (United States)

    Chowdhury, Suman Kanti; Nimbarte, Ashish D; Jaridi, Majid; Creese, Robert C

    2013-10-01

    Assessment of neuromuscular fatigue is essential for early detection and prevention of risks associated with work-related musculoskeletal disorders. In recent years, discrete wavelet transform (DWT) of surface electromyography (SEMG) has been used to evaluate muscle fatigue, especially during dynamic contractions when the SEMG signal is non-stationary. However, its application to the assessment of work-related neck and shoulder muscle fatigue is not well established. Therefore, the purpose of this study was to establish DWT analysis as a suitable method to conduct quantitative assessment of neck and shoulder muscle fatigue under dynamic repetitive conditions. Ten human participants performed 40min of fatiguing repetitive arm and neck exertions while SEMG data from the upper trapezius and sternocleidomastoid muscles were recorded. The ten of the most commonly used wavelet functions were used to conduct the DWT analysis. Spectral changes estimated using power of wavelet coefficients in the 12-23Hz frequency band showed the highest sensitivity to fatigue induced by the dynamic repetitive exertions. Although most of the wavelet functions tested in this study reasonably demonstrated the expected power trend with fatigue development and recovery, the overall performance of the "Rbio3.1" wavelet in terms of power estimation and statistical significance was better than the remaining nine wavelets. Copyright © 2013 Elsevier Ltd. All rights reserved.

  7. Ray effects in the discrete-ordinate solution for surface radiation exchange

    Energy Technology Data Exchange (ETDEWEB)

    Liou, B T [Dept. of Mechanical Engineering, National Cheng Kung Univ., Tainan (Taiwan, Province of China); Wu, C Y [Dept. of Mechanical Engineering, National Cheng Kung Univ., Tainan (Taiwan, Province of China)

    1997-04-01

    A study of the application of the discrete-ordinate method (DOM) with remedy for the ray effects to the solution of surface radiation exchange is presented in this paper. The remedy for the ray effects is achieved by dividing the radiative intensity into the attenuated incident and the medium emitting components. To demonstrate the application of the technique, this work considers radiative heat transfer in a two-dimensional cylindrical enclosure filled with a nearly transparent medium. The results obtained by the present DOM are in excellent agreement with those by the radiosity/irradiation method. (orig.). With 4 figs., 3 tabs. [Deutsch] In der Arbeit wird ein Weg aufgezeigt, wie die Stoerstrahlungseffekte bei Anwendung der Methode der diskreten Ordinaten auf die Berechnung des Energietausches zwischen Oberflaechenstrahlern vermieden werden koennen. Dies laesst sich durch Aufspaltung der Strahlungsintensitaet in die abgeschwaechte einfallende und die vom Medium emittierte Komponente erreichen. Als Beispiel fuer die Anwendung dieses Verfahrens dient der Waermeaustausch durch Strahlung in einem zweidimensionalen zylindrischen Behaeltnis, das mit einem nahezu transparenten Medium befuellt ist. Die mit der modifizierten Methode erhaltenen Ergebnisse stimmen ausgezeichnet mit jenen nach dem klassischen Brutto-Verfahren ueberein. (orig.)

  8. On the Control of the Fixed Charge Densities in Al2O3-Based Silicon Surface Passivation Schemes.

    Science.gov (United States)

    Simon, Daniel K; Jordan, Paul M; Mikolajick, Thomas; Dirnstorfer, Ingo

    2015-12-30

    A controlled field-effect passivation by a well-defined density of fixed charges is crucial for modern solar cell surface passivation schemes. Al2O3 nanolayers grown by atomic layer deposition contain negative fixed charges. Electrical measurements on slant-etched layers reveal that these charges are located within a 1 nm distance to the interface with the Si substrate. When inserting additional interface layers, the fixed charge density can be continuously adjusted from 3.5 × 10(12) cm(-2) (negative polarity) to 0.0 and up to 4.0 × 10(12) cm(-2) (positive polarity). A HfO2 interface layer of one or more monolayers reduces the negative fixed charges in Al2O3 to zero. The role of HfO2 is described as an inert spacer controlling the distance between Al2O3 and the Si substrate. It is suggested that this spacer alters the nonstoichiometric initial Al2O3 growth regime, which is responsible for the charge formation. On the basis of this charge-free HfO2/Al2O3 stack, negative or positive fixed charges can be formed by introducing additional thin Al2O3 or SiO2 layers between the Si substrate and this HfO2/Al2O3 capping layer. All stacks provide very good passivation of the silicon surface. The measured effective carrier lifetimes are between 1 and 30 ms. This charge control in Al2O3 nanolayers allows the construction of zero-fixed-charge passivation layers as well as layers with tailored fixed charge densities for future solar cell concepts and other field-effect based devices.

  9. Simulations of incompressible Navier Stokes equations on curved surfaces using discrete exterior calculus

    Science.gov (United States)

    Samtaney, Ravi; Mohamed, Mamdouh; Hirani, Anil

    2015-11-01

    We present examples of numerical solutions of incompressible flow on 2D curved domains. The Navier-Stokes equations are first rewritten using the exterior calculus notation, replacing vector calculus differential operators by the exterior derivative, Hodge star and wedge product operators. A conservative discretization of Navier-Stokes equations on simplicial meshes is developed based on discrete exterior calculus (DEC). The discretization is then carried out by substituting the corresponding discrete operators based on the DEC framework. By construction, the method is conservative in that both the discrete divergence and circulation are conserved up to machine precision. The relative error in kinetic energy for inviscid flow test cases converges in a second order fashion with both the mesh size and the time step. Numerical examples include Taylor vortices on a sphere, Stuart vortices on a sphere, and flow past a cylinder on domains with varying curvature. Supported by the KAUST Office of Competitive Research Funds under Award No. URF/1/1401-01.

  10. Calculating and controlling the error of discrete representations of Pareto surfaces in convex multi-criteria optimization.

    Science.gov (United States)

    Craft, David

    2010-10-01

    A discrete set of points and their convex combinations can serve as a sparse representation of the Pareto surface in multiple objective convex optimization. We develop a method to evaluate the quality of such a representation, and show by example that in multiple objective radiotherapy planning, the number of Pareto optimal solutions needed to represent Pareto surfaces of up to five dimensions grows at most linearly with the number of objectives. The method described is also applicable to the representation of convex sets. Copyright © 2009 Associazione Italiana di Fisica Medica. Published by Elsevier Ltd. All rights reserved.

  11. A multi-resolution approach to heat kernels on discrete surfaces

    KAUST Repository

    Vaxman, Amir; Ben-Chen, Mirela; Gotsman, Craig

    2010-01-01

    process - limits this type of analysis to 3D models of modest resolution. We show how to use the unique properties of the heat kernel of a discrete two dimensional manifold to overcome these limitations. Combining a multi-resolution approach with a novel

  12. A response matrix method for one-speed discrete ordinates fixed source problems in slab geometry with no spatial truncation error

    International Nuclear Information System (INIS)

    Lydia, Emilio J.; Barros, Ricardo C.

    2011-01-01

    In this paper we describe a response matrix method for one-speed slab-geometry discrete ordinates (SN) neutral particle transport problems that is completely free from spatial truncation errors. The unknowns in the method are the cell-edge angular fluxes of particles. The numerical results generated for these quantities are exactly those obtained from the analytic solution of the SN problem apart from finite arithmetic considerations. Our method is based on a spectral analysis that we perform in the SN equations with scattering inside a discretization cell of the spatial grid set up on the slab. As a result of this spectral analysis, we are able to obtain an expression for the local general solution of the SN equations. With this local general solution, we determine the response matrix and use the prescribed boundary conditions and continuity conditions to sweep across the discretization cells from left to right and from right to left across the slab, until a prescribed convergence criterion is satisfied. (author)

  13. DISCRETIZATION APPROACH USING RAY-TESTING MODEL IN PARTING LINE AND PARTING SURFACE GENERATION

    Institute of Scientific and Technical Information of China (English)

    HAN Jianwen; JIAN Bin; YAN Guangrong; LEI Yi

    2007-01-01

    Surface classification, 3D parting line, parting surface generation and demoldability analysis which is helpful to select optimal parting direction and optimal parting line are involved in automatic cavity design based on the ray-testing model. A new ray-testing approach is presented to classify the part surfaces to core/cavity surfaces and undercut surfaces by automatic identifying the visibility of surfaces. A simple, direct and efficient algorithm to identify surface visibility is developed. The algorithm is robust and adapted to rather complicated geometry, so it is valuable in computer-aided mold design systems. To validate the efficiency of the approach, an experimental program is implemented. Case studies show that the approach is practical and valuable in automatic parting line and parting surface generation.

  14. A risk-informed basis for establishing non-fixed surface contamination limits for spent fuel transportation casks

    International Nuclear Information System (INIS)

    Rawl, R.R.; Eckerman, K.F.; Bogard, J.S.; Cook, J.R.

    2004-01-01

    The current limits for non-fixed contamination on packages used to transport radioactive materials were introduced in the 1961 edition of the International Atomic Energy Agency (IAEA) transport regulations and were based on radiation protection guidance and practices in use at that time. The limits were based on exposure scenarios leading to intakes of radionuclides by inhalation and external irradiation of the hands. These considerations are collectively referred to as the Fairbairn model. Although formulated over 40 years ago, the model remains unchanged and is still the basis of current regulatory-derived limits on package non-fixed surface contamination. There can also be doses that while not resulting directly from the contamination, are strongly influenced by and attributable to transport regulatory requirements for contamination control. For example, actions necessary to comply with the current derived limits for light-water-reactor (LWR) spent nuclear fuel (SNF) casks can result in significant external doses to workers. This is due to the relatively high radiation levels around the loaded casks, where workers must function during the measurement of contamination levels and while decontaminating the cask. In order to optimize the total dose received due to compliance with cask contamination levels, it is necessary to take into account all the doses that vary as a result of the regulatory limit. Limits for non-fixed surface contamination on spent fuel casks should be established by using a model that considers and optimizes the appropriate exposure scenarios both in the workplace and in the public environment. A risk-informed approach is needed to ensure optimal use of personnel and material resources for SNF-based packaging operations. This paper is a summary of a study sponsored by the US Nuclear Regulatory Commission and performed by Oak Ridge National Laboratory that examined the dose implications for removable surface contamination limits on spent fuel

  15. Influence of the surface free energy of silane-coupled mica substrate on the fixing and straightening of DNA

    International Nuclear Information System (INIS)

    Sasou, Megumi; Sugiyama, Shigeru; Ishida, Takao; Ohtani, Toshio; Miyake, Koji

    2009-01-01

    Methyltrimethoxysilane (MTMS)-coupled mica substrate is reportedly suitable for fixing and straightening of DNA, but 3-aminopropyltriethoxysilane (APTES)-coupled mica substrate has been found less suitable. On MTMS-coupled mica substrate, the straightness of fixed DNA was sufficient, and the adsorption of contaminants was not observed using fluorescence microscopy and atomic force microscopy. For the APTES-coupled mica substrate, however, aggregated or curved DNA and adsorption of contaminants were observed. To clarify the surface factors that are responsible for this suitability, we analyzed the surface free energies of these substrates using the extended Fowkes theory. In each of the surface free energy components, the dispersion force component in the MTMS-coupled mica substrate was lower than that in the APTES-coupled mica substrate. The ratio of the polar force component on the MTMS-coupled mica substrate was about one order of magnitude on the APTES-coupled mica substrate. In addition, the ratio of the hydrogen-bonding force component for the MTMS-coupled mica substrate was about two times larger than that of the APTES-coupled mica substrate. These results suggest that the polar force and hydrogen-bonding force components are important factors for the fixation and straightening of DNA and that the dispersion force components influence the production and adsorption of contaminants.

  16. Discrete Exterior Calculus Discretization of Incompressible Navier-Stokes Equations

    KAUST Repository

    Mohamed, Mamdouh S.; Hirani, Anil N.; Samtaney, Ravi

    2017-01-01

    A conservative discretization of incompressible Navier-Stokes equations over surface simplicial meshes is developed using discrete exterior calculus (DEC). Numerical experiments for flows over surfaces reveal a second order accuracy

  17. A multi-resolution approach to heat kernels on discrete surfaces

    KAUST Repository

    Vaxman, Amir

    2010-07-26

    Studying the behavior of the heat diffusion process on a manifold is emerging as an important tool for analyzing the geometry of the manifold. Unfortunately, the high complexity of the computation of the heat kernel - the key to the diffusion process - limits this type of analysis to 3D models of modest resolution. We show how to use the unique properties of the heat kernel of a discrete two dimensional manifold to overcome these limitations. Combining a multi-resolution approach with a novel approximation method for the heat kernel at short times results in an efficient and robust algorithm for computing the heat kernels of detailed models. We show experimentally that our method can achieve good approximations in a fraction of the time required by traditional algorithms. Finally, we demonstrate how these heat kernels can be used to improve a diffusion-based feature extraction algorithm. © 2010 ACM.

  18. Response-surface models for deterministic effects of localized irradiation of the skin by discrete β/γ -emitting sources

    International Nuclear Information System (INIS)

    Scott, B.R.

    1995-01-01

    Individuals who work at nuclear reactor facilities can be at risk for deterministic effects in the skin from exposure to discrete Β- and γ-emitting (ΒγE) sources (e.g., ΒγE hot particles) on the skin or clothing. Deterministic effects are non-cancer effects that have a threshold and increase in severity as dose increases (e.g., ulcer in skin). Hot ΒγE particles are 60 Co- or nuclear fuel-derived particles with diameters > 10 μm and < 3 mm and contain at least 3.7 kBq (0.1 μCi) of radioactivity. For such ΒγE sources on the skin, it is the beta component of the dose that is most important. To develop exposure limitation systems that adequately control exposure of workers to discrete ΒγE sources, models are needed for systems that adequately control exposure of workers to discrete ΒγE sources, models are needed for evaluating the risk of deterministic effects of localized Β irradiation of the skin. The purpose of this study was to develop dose-rate and irradiated-area dependent, response-surface models for evaluating risks of significant deterministic effects of localized irradiation of the skin by discrete ΒγE sources and to use modeling results to recommend approaches to limiting occupational exposure to such sources. The significance of the research results as follows: (1) response-surface models are now available for evaluating the risk of specific deterministic effects of localized irradiation of the skin; (2) modeling results have been used to recommend approaches to limiting occupational exposure of workers to Β radiation from ΒγE sources on the skin or on clothing; and (3) the generic irradiated-volume, weighting-factor approach to limiting exposure can be applied to other organs including the eye, the ear, and organs of the respiratory or gastrointestinal tract and can be used for both deterministic and stochastic effects

  19. Response-surface models for deterministic effects of localized irradiation of the skin by discrete {beta}/{gamma} -emitting sources

    Energy Technology Data Exchange (ETDEWEB)

    Scott, B.R.

    1995-12-01

    Individuals who work at nuclear reactor facilities can be at risk for deterministic effects in the skin from exposure to discrete {Beta}- and {gamma}-emitting ({Beta}{gamma}E) sources (e.g., {Beta}{gamma}E hot particles) on the skin or clothing. Deterministic effects are non-cancer effects that have a threshold and increase in severity as dose increases (e.g., ulcer in skin). Hot {Beta}{gamma}E particles are {sup 60}Co- or nuclear fuel-derived particles with diameters > 10 {mu}m and < 3 mm and contain at least 3.7 kBq (0.1 {mu}Ci) of radioactivity. For such {Beta}{gamma}E sources on the skin, it is the beta component of the dose that is most important. To develop exposure limitation systems that adequately control exposure of workers to discrete {Beta}{gamma}E sources, models are needed for systems that adequately control exposure of workers to discrete {Beta}{gamma}E sources, models are needed for evaluating the risk of deterministic effects of localized {Beta} irradiation of the skin. The purpose of this study was to develop dose-rate and irradiated-area dependent, response-surface models for evaluating risks of significant deterministic effects of localized irradiation of the skin by discrete {Beta}{gamma}E sources and to use modeling results to recommend approaches to limiting occupational exposure to such sources. The significance of the research results as follows: (1) response-surface models are now available for evaluating the risk of specific deterministic effects of localized irradiation of the skin; (2) modeling results have been used to recommend approaches to limiting occupational exposure of workers to {Beta} radiation from {Beta}{gamma}E sources on the skin or on clothing; and (3) the generic irradiated-volume, weighting-factor approach to limiting exposure can be applied to other organs including the eye, the ear, and organs of the respiratory or gastrointestinal tract and can be used for both deterministic and stochastic effects.

  20. HARDENING OF CRANE RAILS BY PLASMA DISCRETE-TIME SURFACE TREATMENT

    Directory of Open Access Journals (Sweden)

    S. S. Samotugin

    2017-01-01

    Full Text Available Crane wheels and rails are subjected to intensive wear in the process of operation. Therefore, improvement of these components’ performance can be considered a task of high importance. A promising direction in this regard is surface treatment by highly concentrated energy flows such as laser beams or plasma jets. This thesis suggests that the use of gradient plasma surface treatment can improve the performance of crane rails. A research was conducted, according to which hardened zones were deposited on crane rails under different treatment modes. Microhardness was measured both at the surface and in depth using custom-made microsections. The article includes the results of study of plasma surface hardening effects on wear resistance of crane rails. Change of plasma surface treatment parameters (current, plasma torch movement speed, argon gas flow rate allows for desired steel hardness and structure, while the choice of optimal location for hardened zones makes it possible to significantly improve wear resistance and crack resistance. As a result of plasma surface hardening, the fine-grained martensite structure is obtained with mainly lamellar morphology and higher hardness rate compared toinduction hardening or overlaying. Wear test of carbon steels revealed that plasma surfacing reduces abrasive wear rate compared to the irinitial state by 2 to 3 times. Enough sharp boundary between hardened and non-hardened portions has a positive effect on the performance of parts under dynamic loads, contributing to the inhibition of cracks during the transition from solid to a soft metal. For carbon and low alloy rail steels, the properties achieved by plasma surface hardening can effectively replace induction hardening or overlaying.The mode range for plasma surface treatment that allow sobtaining a surface layer with certain operating properties has been determined.

  1. A model to determine the radiological implications of non-fixed radioactive contamination on the surfaces of packages and conveyances

    International Nuclear Information System (INIS)

    Hughes, J.S.; Warner Jones, S.M.; Lizot, M.T.; Perrin, M.L.; Thierfeld, S.; Schroedl, E.; Schwarz, G.; Rawl, R.; Munakata, M.; Hirose, M.

    2004-01-01

    The surfaces of packages and conveyances used to transport radioactive materials can sometimes become contaminated with radioactive material. This usually occurs as a result of the transfer of radioactive material from areas in which these packages and conveyances are handled. This contamination may subsequently be transferred to transport equipment, workers and to areas accessible to the public. This can represent a significant radiation safety issue that requires careful management. The current regulatory limits for non-fixed contamination on packages and conveyances have been in use for over 40 years, and are based on a simple exposure model. However, the bases on which these limits were derived have been subject to changes, as a result of successive revisions of international recommendations. In recognition of this need for a review and analysis of the current contamination limits an IAEA Co-ordinated Research Project (CRP) on the ''Radiological Aspects of Package and Conveyance Non-Fixed Contamination'' was initiated to review the scientific basis for the current regulatory limits for surface contamination. The CRP was also to develop guidance material for evaluating the radiological significance of surface contamination to workers and the public in light of state-of-the-art research, technical developments and current transport practices. The specific objectives of the work undertaken within this multi-national CRP were, in accordance with the terms of reference: To ensure that appropriate models exist for all package types including consideration of the aspects pertinent for assessing and revising a surface contamination model for transport. To collect - where possible - contamination, operational and dosimetric data to ensure modelling consistency. To use models for assessing the limitations and optimisation of radiation doses incurred in transport operations, and to consider preventive methods for package and conveyance contamination

  2. Effects of metal surface grinding at the porcelain try-in stage of fixed dental prostheses.

    Science.gov (United States)

    Kılınç, Halil İbrahim; Kesim, Bülent; Gümüş, Hasan Önder; Dinçel, Mehmet; Erkaya, Selçuk

    2014-08-01

    This study was to evaluate the effect of grinding of the inner metal surface during the porcelain try-in stage on metal-porcelain bonding considering the maximum temperature and the vibration of samples. Ninety-one square prism-shaped (1 × 1 × 1.5 mm) nickel-chrome cast frameworks 0.3 mm thick were prepared. Porcelain was applied on two opposite outer axial surfaces of the frameworks. The grinding was performed from the opposite axial sides of the inner metal surfaces with a low-speed handpiece with two types of burs (diamond, tungsten-carbide) under three grinding forces (3.5 N, 7 N, 14 N) and at two durations (5 seconds, 10 seconds). The shear bond strength (SBS) test was performed with universal testing machine. Statistical analyzes were performed at 5% significance level. The samples subjected to grinding under 3.5 N showed higher SBS values than those exposed to grinding under 7 N and 14 N (P.05). The types of bur (P=.965) and the duration (P=.679) did not affect the SBS values. On the other hand, type of bur, force applied, and duration of the grinding affected the maximum temperatures of the samples, whereas the maximum vibration was affected only by the type of bur (PGrinding the inner metal surface did not affect the metal-porcelain bond strength. Although the grinding affected the maximum temperature and the vibration values of the samples, these did not influence the bonding strength.

  3. Discrete lattice plane broken bond interfacial energy calculations and the use of the dividing surface concept

    International Nuclear Information System (INIS)

    Ramanujan, R.V.

    2003-01-01

    The concept of the dividing surface has been extensively used to define the relationships between thermodynamic quantities at the interface between two phases; it is also useful in calculations of interfacial energy (γ). However, in the original formulation, the two phases are continuum phases, the atomistic nature of the interface was not considered. It is, therefore, useful to examine the use of the dividing surface in the context of atomistic interfacial energy calculations. The case of a planar fcc:hcp interface is considered and the dividing surface positions which are useful in atomistic interfacial energy calculations are stated, one position equates γ to the excess internal energy, the other position allows us to use the Gibbs adsorption equation. An example of a calculation using the convenient dividing surface positions is presented

  4. Sampling design and procedures for fixed surface-water sites in the Georgia-Florida coastal plain study unit, 1993

    Science.gov (United States)

    Hatzell, H.H.; Oaksford, E.T.; Asbury, C.E.

    1995-01-01

    The implementation of design guidelines for the National Water-Quality Assessment (NAWQA) Program has resulted in the development of new sampling procedures and the modification of existing procedures commonly used in the Water Resources Division of the U.S. Geological Survey. The Georgia-Florida Coastal Plain (GAFL) study unit began the intensive data collection phase of the program in October 1992. This report documents the implementation of the NAWQA guidelines by describing the sampling design and procedures for collecting surface-water samples in the GAFL study unit in 1993. This documentation is provided for agencies that use water-quality data and for future study units that will be entering the intensive phase of data collection. The sampling design is intended to account for large- and small-scale spatial variations, and temporal variations in water quality for the study area. Nine fixed sites were selected in drainage basins of different sizes and different land-use characteristics located in different land-resource provinces. Each of the nine fixed sites was sampled regularly for a combination of six constituent groups composed of physical and chemical constituents: field measurements, major ions and metals, nutrients, organic carbon, pesticides, and suspended sediments. Some sites were also sampled during high-flow conditions and storm events. Discussion of the sampling procedure is divided into three phases: sample collection, sample splitting, and sample processing. A cone splitter was used to split water samples for the analysis of the sampling constituent groups except organic carbon from approximately nine liters of stream water collected at four fixed sites that were sampled intensively. An example of the sample splitting schemes designed to provide the sample volumes required for each sample constituent group is described in detail. Information about onsite sample processing has been organized into a flowchart that describes a pathway for each of

  5. Tritium retention on the surface of stainless steel samples fixed on the plasma-facing wall in LHD

    International Nuclear Information System (INIS)

    Matsuyama, Masao; Abe, Shinsuke; Nishimura, Kiyohiko; Ashikawa, Naoko; Sagara, Akio; Oya, Yasuhisa; Okuno, Kenji; Yamauchi, Yuji; Nobuta, Yuji

    2014-01-01

    Effects of pre-heating for retention and distribution of tritium have been studied using samples fixed on the wall of the Large Helical Device during a plasma campaign. The samples were fixed at four different locations. The plasma-facing surface of the samples was covered with deposition layers of different thickness in each sample. Retention behavior in deposition layers was observed using β-ray-induced X-ray spectrometry and imaging plate technique. Pre-heating of the samples in vacuum was changed in a temperature range from 300 to 623 K, and subsequent tritium exposure was carried out at 300 K in every runs. Non-uniformity of tritium distribution clearly appeared even in the as-received samples which was not pre-heated. It is considered, therefore, that non-uniform adsorption sites of tritium have been produced during a formation process of deposition layers. In addition, it was seen that the amount of tritium retention increased with an increase in the pre-heating temperature, indicating that adsorption sites of tritium were newly formed in the deposition layers by heating in vacuum. (author)

  6. Control of fingertip forces in young and older adults pressing against fixed low- and high-friction surfaces.

    Directory of Open Access Journals (Sweden)

    Kevin G Keenan

    Full Text Available Mobile computing devices (e.g., smartphones and tablets that have low-friction surfaces require well-directed fingertip forces of sufficient and precise magnitudes for proper use. Although general impairments in manual dexterity are well-documented in older adults, it is unclear how these sensorimotor impairments influence the ability of older adults to dexterously manipulate fixed, low-friction surfaces in particular. 21 young and 18 older (65+ yrs adults produced maximal voluntary contractions (MVCs and steady submaximal forces (2.5 and 10% MVC with the fingertip of the index finger. A Teflon covered custom-molded splint was placed on the fingertip. A three-axis force sensor was covered with either Teflon or sandpaper to create low- and high-friction surfaces, respectively. Maximal downward forces (F(z were similar (p = .135 for young and older adults, and decreased by 15% (p<.001 while pressing on Teflon compared to sandpaper. Fluctuations in F(z during the submaximal force-matching tasks were 2.45× greater (p<.001 for older adults than in young adults, and reached a maximum when older adults pressed against the Teflon surface while receiving visual feedback. These age-associated changes in motor performance are explained, in part, by altered muscle activity from three hand muscles and out-of-plane forces. Quantifying the ability to produce steady fingertip forces against low-friction surfaces may be a better indicator of impairment and disability than the current practice of evaluating maximal forces with pinch meters. These age-associated impairments in dexterity while interacting with low-friction surfaces may limit the use of the current generation of computing interfaces by older adults.

  7. Monitoring surface-water quality in Arizona: the fixed-station network

    Science.gov (United States)

    Tadayon, Saeid

    2000-01-01

    Arizona is an arid State in which economic development is influenced largely by the quantity and quality of water and the location of adequate water supplies. In 1995, surface water supplied about 58 percent of total withdrawals in Arizona. Of the total amount of surface water used in 1995, about 89 percent was for agriculture, 10 percent for public supply, and 1 percent for industrial supply (including mining and thermoelectric; Solley and others, 1998). As a result of rapid population growth in Arizona, historic agricultural lands in the Phoenix (Maricopa County) and Tucson (Pima County) areas are now being developed for residential and commercial use; thus, the amount of water used for public supply is increasing. The Clean Water Act was established by U.S. Congress (1972) in response to public concern about water-pollution control. The act defines a process by which the United States Congress and the citizens are informed of the Nation’s progress in restoring and maintaining the quality of our waters. The Arizona Department of Environmental Quality (ADEQ) is the State-designated agency for this process and, as a result, has developed a monitoring program to assess water quality in Arizona. The ADEQ is required to submit a water-quality assessment report to the United States Environmental Protection Agency (USEPA) every 2 years. The USEPA summarizes the reports from each State and submits a report to the Congress characterizing water quality in the United States. These reports serve to inform Congress and the public of the Nation’s progress toward the restoration and maintenance of water quality in the United States (Arizona Department of Environmental Quality, 1998).

  8. Comparison of CFD Predictions with Shuttle Global Flight Thermal Imagery and Discrete Surface Measurements

    Science.gov (United States)

    Wood, William A.; Kleb, William L.; Tang, chun Y.; Palmer, Grant E.; Hyatt, Andrew J.; Wise, Adam J.; McCloud, Peter L.

    2010-01-01

    Surface temperature measurements from the STS-119 boundary-layer transition experiment on the space shuttle orbiter Discovery provide a rare opportunity to assess turbulent CFD models at hypersonic flight conditions. This flight data was acquired by on-board thermocouples and by infrared images taken off-board by the Hypersonic Thermodynamic Infrared Measurements (HYTHIRM) team, and is suitable for hypersonic CFD turbulence assessment between Mach 6 and 14. The primary assessment is for the Baldwin-Lomax and Cebeci-Smith algebraic turbulence models in the DPLR and LAURA CFD codes, respectively. A secondary assessment is made of the Shear-Stress Transport (SST) two-equation turbulence model in the DPLR code. Based upon surface temperature comparisons at eleven thermocouple locations, the algebraic-model turbulent CFD results average 4% lower than the measurements for Mach numbers less than 11. For Mach numbers greater than 11, the algebraic-model turbulent CFD results average 5% higher than the three available thermocouple measurements. Surface temperature predictions from the two SST cases were consistently 3 4% higher than the algebraic-model results. The thermocouple temperatures exhibit a change in trend with Mach number at about Mach 11; this trend is not reflected in the CFD results. Because the temperature trends from the turbulent CFD simulations and the flight data diverge above Mach 11, extrapolation of the turbulent CFD accuracy to higher Mach numbers is not recommended.

  9. The signs of ocular-surface disorders after switching from latanoprost to tafluprost/timolol fixed combination: a prospective study

    Directory of Open Access Journals (Sweden)

    Okumichi H

    2017-06-01

    Full Text Available Hideaki Okumichi,1 Yoshiaki Kiuchi,1 Tetsuya Baba,2 Takashi Kanamoto,3 Tomoko Naito,4,5 Shunsuke Nakakura,6 Hitoshi Tabuchi,6 Hiroki Nii,7 Chie Sueoka,7 Yosuke Sugimoto1,8 1Department of Ophthalmology and Visual Science, Graduate School of Biomedical & Health Sciences, Hiroshima University, Hiroshima, Japan; 2Shirai Eye Hospital, Mitoyo, Japan; 3Department of Ophthalmology, Hiroshima Memorial Hospital, Hiroshima, Japan; 4Department of Ophthalmology, Okayama University Graduate School of Medicine, Okayama, Japan; 5Department of Ophthalmology, Konko Hospital, Asakuchi, Japan; 6Department of Ophthalmology, Saneikai Tsukazaki Hospital, Himeji, Japan; 7Department of Ophthalmology, Hiroshima General Hospital, Hiroshima, Japan; 8Department of Ophthalmology, Hiroshima Prefectural Hospital, Hiroshima, Japan Purpose: To evaluate the ocular-surface safety of a 0.001% benzalkonium chloride-containing tafluprost/timolol fixed combination (TTFC in patients with primary open-angle glaucoma (POAG or ocular hypertension who have inadequate intraocular pressure (IOP control with latanoprost monotherapy.Methods: This study is a multicenter, prospective, single-arm, open-label clinical study. Patients with POAG or ocular hypertension who have inadequate IOP control with latanoprost monotherapy were considered eligible. After providing informed consent, patients continued latanoprost monotherapy for 12 weeks, followed by a switch to TTFC. We evaluated the extent of ocular-surface damage using superficial punctate keratopathy (SPK score, tear breakup time (TBUT, hyperemia score, IOP, systolic blood pressure (SBP, diastolic blood pressure (DBP, and heart rate at 0, 4, and 12 weeks after switching.Results: A total of 68 patients were enrolled, of whom, 64 patients were included in the final analysis. No significant changes in SPK score, TBUT, or hyperemia score were observed at 4 and 12 weeks compared with week 0. IOP decreased significantly at 4 (13.9±2.5 mmHg and 12

  10. Discrete cilia modelling with singularity distributions: application to the embryonic node and the airway surface liquid.

    Science.gov (United States)

    Smith, D J; Gaffney, E A; Blake, J R

    2007-07-01

    We discuss in detail techniques for modelling flows due to finite and infinite arrays of beating cilia. An efficient technique, based on concepts from previous 'singularity models' is described, that is accurate in both near and far-fields. Cilia are modelled as curved slender ellipsoidal bodies by distributing Stokeslet and potential source dipole singularities along their centrelines, leading to an integral equation that can be solved using a simple and efficient discretisation. The computed velocity on the cilium surface is found to compare favourably with the boundary condition. We then present results for two topics of current interest in biology. 1) We present the first theoretical results showing the mechanism by which rotating embryonic nodal cilia produce a leftward flow by a 'posterior tilt,' and track particle motion in an array of three simulated nodal cilia. We find that, contrary to recent suggestions, there is no continuous layer of negative fluid transport close to the ciliated boundary. The mean leftward particle transport is found to be just over 1 mum/s, within experimentally measured ranges. We also discuss the accuracy of models that represent the action of cilia by steady rotlet arrays, in particular, confirming the importance of image systems in the boundary in establishing the far-field fluid transport. Future modelling may lead to understanding of the mechanisms by which morphogen gradients or mechanosensing cilia convert a directional flow to asymmetric gene expression. 2) We develop a more complex and detailed model of flow patterns in the periciliary layer of the airway surface liquid. Our results confirm that shear flow of the mucous layer drives a significant volume of periciliary liquid in the direction of mucus transport even during the recovery stroke of the cilia. Finally, we discuss the advantages and disadvantages of the singularity technique and outline future theoretical and experimental developments required to apply this

  11. Multiscale modeling of electroosmotic flow: Effects of discrete ion, enhanced viscosity, and surface friction

    Science.gov (United States)

    Bhadauria, Ravi; Aluru, N. R.

    2017-05-01

    We propose an isothermal, one-dimensional, electroosmotic flow model for slit-shaped nanochannels. Nanoscale confinement effects are embedded into the transport model by incorporating the spatially varying solvent and ion concentration profiles that correspond to the electrochemical potential of mean force. The local viscosity is dependent on the solvent local density and is modeled using the local average density method. Excess contributions to the local viscosity are included using the Onsager-Fuoss expression that is dependent on the local ionic strength. A Dirichlet-type boundary condition is provided in the form of the slip velocity that is dependent on the macroscopic interfacial friction. This solvent-surface specific interfacial friction is estimated using a dynamical generalized Langevin equation based framework. The electroosmotic flow of Na+ and Cl- as single counterions and NaCl salt solvated in Extended Simple Point Charge (SPC/E) water confined between graphene and silicon slit-shaped nanochannels are considered as examples. The proposed model yields a good quantitative agreement with the solvent velocity profiles obtained from the non-equilibrium molecular dynamics simulations.

  12. SURF: a subroutine code to draw the axonometric projection of a surface generated by a scalar function over a discretized plane domain using finite element computations

    International Nuclear Information System (INIS)

    Giuliani, Giovanni; Giuliani, Silvano.

    1980-01-01

    The FORTRAN IV subroutine SURF has been designed to help visualising the results of Finite Element computations. It drawns the axonometric projection of a surface generated in 3-dimensional space by a scalar function over a discretized plane domain. The most important characteristic of the routine is to remove the hidden lines and in this way it enables a clear vision of the details of the generated surface

  13. Adaptive Discrete Hypergraph Matching.

    Science.gov (United States)

    Yan, Junchi; Li, Changsheng; Li, Yin; Cao, Guitao

    2018-02-01

    This paper addresses the problem of hypergraph matching using higher-order affinity information. We propose a solver that iteratively updates the solution in the discrete domain by linear assignment approximation. The proposed method is guaranteed to converge to a stationary discrete solution and avoids the annealing procedure and ad-hoc post binarization step that are required in several previous methods. Specifically, we start with a simple iterative discrete gradient assignment solver. This solver can be trapped in an -circle sequence under moderate conditions, where is the order of the graph matching problem. We then devise an adaptive relaxation mechanism to jump out this degenerating case and show that the resulting new path will converge to a fixed solution in the discrete domain. The proposed method is tested on both synthetic and real-world benchmarks. The experimental results corroborate the efficacy of our method.

  14. Discrete Hamiltonian evolution and quantum gravity

    International Nuclear Information System (INIS)

    Husain, Viqar; Winkler, Oliver

    2004-01-01

    We study constrained Hamiltonian systems by utilizing general forms of time discretization. We show that for explicit discretizations, the requirement of preserving the canonical Poisson bracket under discrete evolution imposes strong conditions on both allowable discretizations and Hamiltonians. These conditions permit time discretizations for a limited class of Hamiltonians, which does not include homogeneous cosmological models. We also present two general classes of implicit discretizations which preserve Poisson brackets for any Hamiltonian. Both types of discretizations generically do not preserve first class constraint algebras. Using this observation, we show that time discretization provides a complicated time gauge fixing for quantum gravity models, which may be compared with the alternative procedure of gauge fixing before discretization

  15. A 2-year report on maxillary and mandibular fixed partial dentures supported by Astra Tech dental implants. A comparison of 2 implants with different surface textures

    DEFF Research Database (Denmark)

    Karlsson, U; Gotfredsen, K; Olsson, C

    1998-01-01

    In 50 partially edentulous patients, 133 (48 maxillary; 85 mandibular) Astra Tech dental implants of 2 different surface textures (machined; TiO-blasted) were alternately installed, supporting 52 fixed partial dentures (FPDs). Before abutment connection 2 machined implants (1 mandibular; 1...

  16. Discrete Mathematics

    DEFF Research Database (Denmark)

    Sørensen, John Aasted

    2011-01-01

    The objectives of Discrete Mathematics (IDISM2) are: The introduction of the mathematics needed for analysis, design and verification of discrete systems, including the application within programming languages for computer systems. Having passed the IDISM2 course, the student will be able...... to accomplish the following: -Understand and apply formal representations in discrete mathematics. -Understand and apply formal representations in problems within discrete mathematics. -Understand methods for solving problems in discrete mathematics. -Apply methods for solving problems in discrete mathematics......; construct a finite state machine for a given application. Apply these concepts to new problems. The teaching in Discrete Mathematics is a combination of sessions with lectures and students solving problems, either manually or by using Matlab. Furthermore a selection of projects must be solved and handed...

  17. Discrete mKdV and discrete sine-Gordon flows on discrete space curves

    International Nuclear Information System (INIS)

    Inoguchi, Jun-ichi; Kajiwara, Kenji; Matsuura, Nozomu; Ohta, Yasuhiro

    2014-01-01

    In this paper, we consider the discrete deformation of the discrete space curves with constant torsion described by the discrete mKdV or the discrete sine-Gordon equations, and show that it is formulated as the torsion-preserving equidistant deformation on the osculating plane which satisfies the isoperimetric condition. The curve is reconstructed from the deformation data by using the Sym–Tafel formula. The isoperimetric equidistant deformation of the space curves does not preserve the torsion in general. However, it is possible to construct the torsion-preserving deformation by tuning the deformation parameters. Further, it is also possible to make an arbitrary choice of the deformation described by the discrete mKdV equation or by the discrete sine-Gordon equation at each step. We finally show that the discrete deformation of discrete space curves yields the discrete K-surfaces. (paper)

  18. Discrete differential geometry. Consistency as integrability

    OpenAIRE

    Bobenko, Alexander I.; Suris, Yuri B.

    2005-01-01

    A new field of discrete differential geometry is presently emerging on the border between differential and discrete geometry. Whereas classical differential geometry investigates smooth geometric shapes (such as surfaces), and discrete geometry studies geometric shapes with finite number of elements (such as polyhedra), the discrete differential geometry aims at the development of discrete equivalents of notions and methods of smooth surface theory. Current interest in this field derives not ...

  19. Integrable structure in discrete shell membrane theory.

    Science.gov (United States)

    Schief, W K

    2014-05-08

    We present natural discrete analogues of two integrable classes of shell membranes. By construction, these discrete shell membranes are in equilibrium with respect to suitably chosen internal stresses and external forces. The integrability of the underlying equilibrium equations is proved by relating the geometry of the discrete shell membranes to discrete O surface theory. We establish connections with generalized barycentric coordinates and nine-point centres and identify a discrete version of the classical Gauss equation of surface theory.

  20. Discrete Mathematics

    DEFF Research Database (Denmark)

    Sørensen, John Aasted

    2011-01-01

    ; construct a finite state machine for a given application. Apply these concepts to new problems. The teaching in Discrete Mathematics is a combination of sessions with lectures and students solving problems, either manually or by using Matlab. Furthermore a selection of projects must be solved and handed...... to accomplish the following: -Understand and apply formal representations in discrete mathematics. -Understand and apply formal representations in problems within discrete mathematics. -Understand methods for solving problems in discrete mathematics. -Apply methods for solving problems in discrete mathematics...... to new problems. Relations and functions: Define a product set; define and apply equivalence relations; construct and apply functions. Apply these concepts to new problems. Natural numbers and induction: Define the natural numbers; apply the principle of induction to verify a selection of properties...

  1. Digital Discretion

    DEFF Research Database (Denmark)

    Busch, Peter Andre; Zinner Henriksen, Helle

    2018-01-01

    discretion is suggested to reduce this footprint by influencing or replacing their discretionary practices using ICT. What is less researched is whether digital discretion can cause changes in public policy outcomes, and under what conditions such changes can occur. Using the concept of public service values......This study reviews 44 peer-reviewed articles on digital discretion published in the period from 1998 to January 2017. Street-level bureaucrats have traditionally had a wide ability to exercise discretion stirring debate since they can add their personal footprint on public policies. Digital......, we suggest that digital discretion can strengthen ethical and democratic values but weaken professional and relational values. Furthermore, we conclude that contextual factors such as considerations made by policy makers on the macro-level and the degree of professionalization of street...

  2. Ion association at discretely-charged dielectric interfaces: Giant charge inversion [Dielectric response controlled ion association at physically heterogeneous surfaces: Giant charge reversal

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Zhi -Yong [Chongqing Univ. of Technology, Chongqing (China); Univ. of California, Riverside, CA (United States); Wu, Jianzhong [Univ. of California, Riverside, CA (United States)

    2017-07-11

    Giant charge reversal has been identified for the first time by Monte Carlo simulation for a discretely charged surface in contact with a trivalent electrolyte solution. It takes place regardless of the surface charge density under study and the monovalent salt. In stark contrast to earlier predictions based on the 2-dimensional Wigner crystal model to describe strong correlation of counterions at the macroion surface, we find that giant charge reversal reflects an intricate interplay of ionic volume effects, electrostatic correlations, surface charge heterogeneity, and the dielectric response of the confined fluids. While the novel phenomenon is yet to be confirmed with experiment, the simulation results appear in excellent agreement with a wide range of existing observations in the subregime of charge inversion. Lastly, our findings may have far-reaching implications to understanding complex electrochemical phenomena entailing ionic fluids under dielectric confinements.

  3. Integrable lattices and their sublattices: From the discrete Moutard (discrete Cauchy-Riemann) 4-point equation to the self-adjoint 5-point scheme

    International Nuclear Information System (INIS)

    Doliwa, A.; Grinevich, P.; Nieszporski, M.; Santini, P. M.

    2007-01-01

    We present the sublattice approach, a procedure to generate, from a given integrable lattice, a sublattice which inherits its integrability features. We consider, as illustrative example of this approach, the discrete Moutard 4-point equation and its sublattice, the self-adjoint 5-point scheme on the star of the square lattice, which are relevant in the theory of the integrable discrete geometries and in the theory of discrete holomorphic and harmonic functions (in this last context, the discrete Moutard equation is called discrete Cauchy-Riemann equation). Therefore an integrable, at one energy, discretization of elliptic two-dimensional operators is considered. We use the sublattice point of view to derive, from the Darboux transformations and superposition formulas of the discrete Moutard equation, the Darboux transformations and superposition formulas of the self-adjoint 5-point scheme. We also construct, from algebro-geometric solutions of the discrete Moutard equation, algebro-geometric solutions of the self-adjoint 5-point scheme. In particular, we show that the corresponding restrictions on the finite-gap data are of the same type as those for the fixed energy problem for the two-dimensional Schroedinger operator. We finally use these solutions to construct explicit examples of discrete holomorphic and harmonic functions, as well as examples of quadrilateral surfaces in R 3

  4. Perfect discretization of path integrals

    OpenAIRE

    Steinhaus, Sebastian

    2011-01-01

    In order to obtain a well-defined path integral one often employs discretizations. In the case of General Relativity these generically break diffeomorphism symmetry, which has severe consequences since these symmetries determine the dynamics of the corresponding system. In this article we consider the path integral of reparametrization invariant systems as a toy example and present an improvement procedure for the discretized propagator. Fixed points and convergence of the procedure are discu...

  5. Fixed Points

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 5; Issue 5. Fixed Points - From Russia with Love - A Primer of Fixed Point Theory. A K Vijaykumar. Book Review Volume 5 Issue 5 May 2000 pp 101-102. Fulltext. Click here to view fulltext PDF. Permanent link:

  6. Discrete Exterior Calculus Discretization of Incompressible Navier-Stokes Equations

    KAUST Repository

    Mohamed, Mamdouh S.

    2017-05-23

    A conservative discretization of incompressible Navier-Stokes equations over surface simplicial meshes is developed using discrete exterior calculus (DEC). Numerical experiments for flows over surfaces reveal a second order accuracy for the developed scheme when using structured-triangular meshes, and first order accuracy otherwise. The mimetic character of many of the DEC operators provides exact conservation of both mass and vorticity, in addition to superior kinetic energy conservation. The employment of barycentric Hodge star allows the discretization to admit arbitrary simplicial meshes. The discretization scheme is presented along with various numerical test cases demonstrating its main characteristics.

  7. Perfect discretization of path integrals

    International Nuclear Information System (INIS)

    Steinhaus, Sebastian

    2012-01-01

    In order to obtain a well-defined path integral one often employs discretizations. In the case of General Relativity these generically break diffeomorphism symmetry, which has severe consequences since these symmetries determine the dynamics of the corresponding system. In this article we consider the path integral of reparametrization invariant systems as a toy example and present an improvement procedure for the discretized propagator. Fixed points and convergence of the procedure are discussed. Furthermore we show that a reparametrization invariant path integral implies discretization independence and acts as a projector onto physical states.

  8. Perfect discretization of path integrals

    Science.gov (United States)

    Steinhaus, Sebastian

    2012-05-01

    In order to obtain a well-defined path integral one often employs discretizations. In the case of General Relativity these generically break diffeomorphism symmetry, which has severe consequences since these symmetries determine the dynamics of the corresponding system. In this article we consider the path integral of reparametrization invariant systems as a toy example and present an improvement procedure for the discretized propagator. Fixed points and convergence of the procedure are discussed. Furthermore we show that a reparametrization invariant path integral implies discretization independence and acts as a projector onto physical states.

  9. The origin of discrete particles

    CERN Document Server

    Bastin, T

    2009-01-01

    This book is a unique summary of the results of a long research project undertaken by the authors on discreteness in modern physics. In contrast with the usual expectation that discreteness is the result of mathematical tools for insertion into a continuous theory, this more basic treatment builds up the world from the discrimination of discrete entities. This gives an algebraic structure in which certain fixed numbers arise. As such, one agrees with the measured value of the fine-structure constant to one part in 10,000,000 (10 7 ). Sample Chapter(s). Foreword (56 KB). Chapter 1: Introduction

  10. Discrete Mathematics

    DEFF Research Database (Denmark)

    Sørensen, John Aasted

    2010-01-01

    The introduction of the mathematics needed for analysis, design and verification of discrete systems, including applications within programming languages for computer systems. Course sessions and project work. Semester: Spring 2010 Ectent: 5 ects Class size: 18......The introduction of the mathematics needed for analysis, design and verification of discrete systems, including applications within programming languages for computer systems. Course sessions and project work. Semester: Spring 2010 Ectent: 5 ects Class size: 18...

  11. Discrete Mathematics

    DEFF Research Database (Denmark)

    Sørensen, John Aasted

    2010-01-01

    The introduction of the mathematics needed for analysis, design and verification of discrete systems, including applications within programming languages for computer systems. Course sessions and project work. Semester: Autumn 2010 Ectent: 5 ects Class size: 15......The introduction of the mathematics needed for analysis, design and verification of discrete systems, including applications within programming languages for computer systems. Course sessions and project work. Semester: Autumn 2010 Ectent: 5 ects Class size: 15...

  12. The Impact of the discreteness of low-fluence ion beam processing on the spatial architecture of GaN nanostructures fabricated by surface charge lithography

    International Nuclear Information System (INIS)

    Tiginyanu, I.M.; Volciuc, O.; Gutowski, J.; Stevens-Kalceff, M.A.; Popa, V.; Wille, S.; Adelung, R.; Foell, H.

    2013-01-01

    We show that the discrete nature of ion beam processing used as a component in the approach of surface charge lithography leads to spatial modulation of the edges of the GaN nanostructures such as nanobelts and nanoperforated membranes. According to the performed Monte Carlo simulations, the modulation of the nanostructure edges is caused by the stochastic spatial distribution of the radiation defects generated by the impacting ions and related recoils. The obtained results pave the way for direct visualization of the networks of radiation defects induced by individual ions impacting a solid-state material. (authors)

  13. Fix 40!

    Index Scriptorium Estoniae

    2008-01-01

    Ansambel Fix peab 13. detsembril Tallinnas Saku Suurhallis oma 40. sünnipäeva. Kontserdi erikülaline on ansambel Apelsin, kaastegevad Jassi Zahharov ja HaleBopp Singers. Õhtut juhib Tarmo Leinatamm

  14. Advances in discrete differential geometry

    CERN Document Server

    2016-01-01

    This is one of the first books on a newly emerging field of discrete differential geometry and an excellent way to access this exciting area. It surveys the fascinating connections between discrete models in differential geometry and complex analysis, integrable systems and applications in computer graphics. The authors take a closer look at discrete models in differential geometry and dynamical systems. Their curves are polygonal, surfaces are made from triangles and quadrilaterals, and time is discrete. Nevertheless, the difference between the corresponding smooth curves, surfaces and classical dynamical systems with continuous time can hardly be seen. This is the paradigm of structure-preserving discretizations. Current advances in this field are stimulated to a large extent by its relevance for computer graphics and mathematical physics. This book is written by specialists working together on a common research project. It is about differential geometry and dynamical systems, smooth and discrete theories, ...

  15. Dissolved inorganic carbon, pH, oxygen, and other variables collected from surface discrete and surface underway observations using flow-through pump from NOAA Ship Gordon Gunter off the U.S. East Coast during the East Coast Ocean Acidification (ECOA) Cruise from 2015-06-19 to 2015-07-24 (NCEI Accession 0157485)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This archival package contains dissolved inorganic carbon, pH, oxygen, and other variables collected from surface discrete and surface underway observations during...

  16. Effects of Cement, Abutment Surface Pretreatment, and Artificial Aging on the Force Required to Detach Cantilever Fixed Dental Prostheses from Dental Implants.

    Science.gov (United States)

    Kappel, Stefanie; Chepura, Taras; Schmitter, Marc; Rammelsberg, Peter; Rues, Stefan

    To examine the in vitro effects of different cements, abutment surface preconditioning, and artificial aging on the maximum tensile force needed to detach cantilever fixed dental prostheses (FDPs) from dental implants with titanium abutments. A total of 32 tissue-level implants were combined with standardized titanium abutments. For each test group, eight cantilever FDPs were fabricated using selective laser melting (cobalt-chromium [CoCr] alloy). The inner surfaces of the cantilever FDPs and half of the abutments were sandblasted and then joined by use of four different cements (two permanent and two semi-permanent) in two different amounts per cement. Subgroups were tested after either artificial aging (thermocycling and chewing simulation) or 3 days of water storage. Finally, axial pull off-tests were performed for each abutment separately. Cement type and surface pretreatment significantly affected decementation behavior. The highest retention forces (approximately 1,200 N) were associated with sandblasted abutments and permanent cements. With unconditioned abutments, temporary cements (Fu cement (Fu ≈ 100 N), resulted in rather low retention forces. Zinc phosphate cement guaranteed high retention forces. After aging, retention was sufficient only for cementation with zinc phosphate cement and for the combination of sandblasted abutments and glass-ionomer cement. When glass-ionomer cement is used to fix cantilever FDPs on implants, sandblasting of standard titanium abutments may help prevent loss of retention. Retention forces were still high for FDPs fixed with zinc phosphate cement, even when the abutments were not pretreated. Use of permanent cements only, however, is recommended to prevent unwanted loosening of cantilever FDPs.

  17. Modelling the transition between fixed and mobile bed conditions in two-phase free-surface flows: The Composite Riemann Problem and its numerical solution

    Science.gov (United States)

    Rosatti, Giorgio; Zugliani, Daniel

    2015-03-01

    In a two-phase free-surface flow, the transition from a mobile-bed condition to a fixed-bed one (and vice versa) occurs at a sharp interface across which the relevant system of partial differential equations changes abruptly. This leads to the possibility of conceiving a new type of Riemann Problem (RP), which we have called Composite Riemann Problem (CRP), where not only the initial constant values of the variables but also the system of equations change from left to right of a discontinuity. In this paper, we present a strategy for solving a CRP by reducing it to a standard RP of a single, composite system of equations. This can be obtained by combining the two original systems by means of a suitable weighting function, namely the erodibility variable, and the introduction of an appropriate differential equation for this quantity. In this way, the CRP problem can be analyzed theoretically with standard methods, and the features of the solutions can be clearly identified. In particular, a stationary contact wave is able to correctly describe the sharp transition between mobile- and fixed-bed conditions. A finite volume scheme based on the Multiple Averages Generalized Roe approach (Rosatti and Begnudelli (2013) [22]) was used to numerically solve the fixed-mobile CRP. Several test cases demonstrate the effectiveness, exact well balanceness and high accuracy of the scheme when applied to problems that fall within the physical range of applicability of the relevant mathematical model.

  18. Discrete mechanics

    CERN Document Server

    Caltagirone, Jean-Paul

    2014-01-01

    This book presents the fundamental principles of mechanics to re-establish the equations of Discrete Mechanics. It introduces physics and thermodynamics associated to the physical modeling.  The development and the complementarity of sciences lead to review today the old concepts that were the basis for the development of continuum mechanics. The differential geometry is used to review the conservation laws of mechanics. For instance, this formalism requires a different location of vector and scalar quantities in space. The equations of Discrete Mechanics form a system of equations where the H

  19. Discrete mechanics

    International Nuclear Information System (INIS)

    Lee, T.D.

    1985-01-01

    This paper reviews the role of time throughout all phases of mechanics: classical mechanics, non-relativistic quantum mechanics, and relativistic quantum theory. As an example of the relativistic quantum field theory, the case of a massless scalar field interacting with an arbitrary external current is discussed. The comparison between the new discrete theory and the usual continuum formalism is presented. An example is given of a two-dimensional random lattice and its duel. The author notes that there is no evidence that the discrete mechanics is more appropriate than the usual continuum mechanics

  20. Use of cadmium in solution in the EL 4 reactor moderator irreversible fixing of cadmium on the metallic surfaces; Utilisation du cadmium en solution dans le moderateur du reacteur EL 4 - fixation irreversible du cadmium sur les surfaces metalliques

    Energy Technology Data Exchange (ETDEWEB)

    Croix, O; Paoli, O; Lecomte, J; Dolle, L; Gallic, Y [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires

    1964-07-01

    In the framework of research into the poisoning of the EL-4 reactor by cadmium sulphate, measurements have been made by two different methods of the residual amounts of cadmium liable to be fixed irreversibly on the surfaces in contact with the heavy water. A marked influence of the pH has been noticed. The mechanism of the irreversible fixing is compatible with the hypothesis of an ion-exchange in the surface oxide layer. In a sufficiently wide range of pH the cadmium thus fixed causes very little residual poisoning. The stability of the cadmium sulphate solutions is however rather low in the conditions of poisoning. (authors) [French] Dans le cadre des etudes sur l'empoisonnement du reacteur EL-4 par le sulfate de cadmium, les quantites residuelles de cadmium susceptibles de se fixer irreversiblement sur les parois que mouillerait l'eau lourde, ont ete mesurees experimentalement par deux methodes differentes. On observe une influence nette du pH. Le mecanisme de la fixation irreversible est compatible avec l'hypothese d'un echange d'ions dans la pellicule d'oxyde superficielle. Dans des limites suffisamment larges de pH, la cadmium ainsi fixe n'occasionne pas d'empoisonnement residuel important. La stabilite des solutions de sulfate de cadmium dans les conditions de l'empoisonnement est cependant mediocre. (auteurs)

  1. The desorption of Phosphorous (32 P) fixed on iron and aluminum oxy-hydroxide surfaces by the soil microbial biomass

    International Nuclear Information System (INIS)

    Araujo, Lilian Maria Cesar de.

    1995-02-01

    This work determines whether the soil microbial biomass, with an ample supply of available C, can utilize P adsorber in the surfaces of oxy-hydroxides of Fe or Al of soil-P deficient soils. To simulate the surfaces of the natural Fe and Al compounds, synthetic oxy-hydroxides of Fe and Al, impregnated in strips of filter paper, and containing P tagged with 32 P, were used. (author). 60 refs., 7 figs., 7 tabs

  2. Intercomparison of the finite difference and nodal discrete ordinates and surface flux transport methods for a LWR pool-reactor benchmark problem in X-Y geometry

    International Nuclear Information System (INIS)

    O'Dell, R.D.; Stepanek, J.; Wagner, M.R.

    1983-01-01

    The aim of the present work is to compare and discuss the three of the most advanced two dimensional transport methods, the finite difference and nodal discrete ordinates and surface flux method, incorporated into the transport codes TWODANT, TWOTRAN-NODAL, MULTIMEDIUM and SURCU. For intercomparison the eigenvalue and the neutron flux distribution are calculated using these codes in the LWR pool reactor benchmark problem. Additionally the results are compared with some results obtained by French collision probability transport codes MARSYAS and TRIDENT. Because the transport solution of this benchmark problem is close to its diffusion solution some results obtained by the finite element diffusion code FINELM and the finite difference diffusion code DIFF-2D are included

  3. Application of response surface methodology and semi-mechanistic model to optimize fluoride removal using crushed concrete in a fixed-bed column.

    Science.gov (United States)

    Gu, Bon-Wun; Lee, Chang-Gu; Park, Seong-Jik

    2018-03-01

    The aim of this study was to investigate the removal of fluoride from aqueous solutions by using crushed concrete fines as a filter medium under varying conditions of pH 3-7, flow rate of 0.3-0.7 mL/min, and filter depth of 10-20 cm. The performance of fixed-bed columns was evaluated on the basis of the removal ratio (Re), uptake capacity (qe), degree of sorbent used (DoSU), and sorbent usage rate (SUR) obtained from breakthrough curves (BTCs). Three widely used semi-mechanistic models, that is, Bohart-Adams, Thomas, and Yoon-Nelson models, were applied to simulate the BTCs and to derive the design parameters. The Box-Behnken design of response surface methodology (RSM) was used to elucidate the individual and interactive effects of the three operational parameters on the column performance and to optimize these parameters. The results demonstrated that pH is the most important factor in the performance of fluoride removal by a fixed-bed column. The flow rate had a significant negative influence on Re and DoSU, and the effect of filter depth was observed only in the regression model for DoSU. Statistical analysis indicated that the model attained from the RSM study is suitable for describing the semi-mechanistic model parameters.

  4. Modelling the impact of blood flow on the temperature distribution in the human eye and the orbit: fixed heat transfer coefficients versus the Pennes bioheat model versus discrete blood vessels

    Energy Technology Data Exchange (ETDEWEB)

    Flyckt, V M M; Raaymakers, B W; Lagendijk, J J W [Department of Radiotherapy, University Medical Center Utrecht, Heidelberglaan 100, 3584 CX Utrecht (Netherlands)

    2006-10-07

    Prediction of the temperature distribution in the eye depends on how the impact of the blood flow is taken into account. Three methods will be compared: a simplified eye anatomy that applies a single heat transfer coefficient to describe all heat transport mechanisms between the sclera and the body core, a detailed eye anatomy in which the blood flow is accounted for either by the bioheat approach, or by including the discrete vasculature in the eye and the orbit. The comparison is done both for rabbit and human anatomies, normo-thermally and when exposed to homogeneous power densities. The first simplified model predicts much higher temperatures than the latter two. It was shown that the eye is very hard to heat when taking physiological perfusion correctly into account. It was concluded that the heat transfer coefficient describing the heat transport from the sclera to the body core reported in the literature for the first simplified model is too low. The bioheat approach is appropriate for a first-order approximation of the temperature distribution in the eye when exposed to a homogeneous power density, but the discrete vasculature down to 0.2 mm in diameter needs to be taken into account when the heterogeneity of the temperature distribution at a mm scale is of interest.

  5. Modelling the impact of blood flow on the temperature distribution in the human eye and the orbit: fixed heat transfer coefficients versus the Pennes bioheat model versus discrete blood vessels

    International Nuclear Information System (INIS)

    Flyckt, V M M; Raaymakers, B W; Lagendijk, J J W

    2006-01-01

    Prediction of the temperature distribution in the eye depends on how the impact of the blood flow is taken into account. Three methods will be compared: a simplified eye anatomy that applies a single heat transfer coefficient to describe all heat transport mechanisms between the sclera and the body core, a detailed eye anatomy in which the blood flow is accounted for either by the bioheat approach, or by including the discrete vasculature in the eye and the orbit. The comparison is done both for rabbit and human anatomies, normo-thermally and when exposed to homogeneous power densities. The first simplified model predicts much higher temperatures than the latter two. It was shown that the eye is very hard to heat when taking physiological perfusion correctly into account. It was concluded that the heat transfer coefficient describing the heat transport from the sclera to the body core reported in the literature for the first simplified model is too low. The bioheat approach is appropriate for a first-order approximation of the temperature distribution in the eye when exposed to a homogeneous power density, but the discrete vasculature down to 0.2 mm in diameter needs to be taken into account when the heterogeneity of the temperature distribution at a mm scale is of interest

  6. Detection of Soluble and Fixed NH4+ in Clay Minerals by DTA and IR Reflectance Spectroscopy : A Potential Tool for Planetary Surface Exploration

    Science.gov (United States)

    Janice, Bishop; Banin, A.; Mancinelli, R. L.; Klovstad, M. R.; DeVincenzi, Donald L. (Technical Monitor)

    2001-01-01

    Nitrogen is an essential element for life. It is the only element among the six major biogenic elements, C, O, S, O, P, H, whose presence in the Martian soil has not been positively and directly established. We describe here a study assessing the ability to detect NH4 in soils by two methods: differential thermal analysis (DTA) and infrared (IR) reflectance spectroscopy. Four standard clay minerals (kaolinite, montmorillonite, illite and attapulgite) and an altered tephra sample from Mauna Kea were treated with NH4 in this study. Samples of the NH4-treated and leached clays were analyzed by DTA and infrared (IR) reflectance spectroscopy to quantify the delectability of soluble and sorbed/fixed NH4. An exotherm at 270-280 C was clearly detected in the DTA curves of NH4-treated (non-leached) samples. This feature is assigned to the thermal decomposition reaction of NH4. Spectral bands observed at 1.56, 2.05, 2.12, 3.06, 3.3, 3.5, 5.7 and 7.0 microns in the reflectance spectra of NH4-treated and leached samples are assigned to the sorbed/fixed ammonium in the clays. The montmorillonite has shown the most intense absorbance due to fixed ammonium among the leached samples in this study, as a result of its high cation sorption capacity. It is concluded that the presence of sorbed or fixed NH4 in clays may be detected by infrared (IR) reflectance or emission spectroscopy. Distinction between soluble and sorbed NH4 may be achieved through the presence or absence of several spectral features assigned to the sorbed NH4 moietyi and, specifically, by use of the 4.2 micrometer feature assigned to solution NH4. Thermal analyses furnish supporting evidence of ammonia in our study through detection of N released at temperatures of 270-330 C. Based on these results it is estimated that IR spectra measured from a rover should be able to detect ammonia if present above 20 mg NH4/g sample in the surface layers. Orbital IR spectra and thermal analyses measured on a rover may be able to

  7. Discrete optimization

    CERN Document Server

    Parker, R Gary

    1988-01-01

    This book treats the fundamental issues and algorithmic strategies emerging as the core of the discipline of discrete optimization in a comprehensive and rigorous fashion. Following an introductory chapter on computational complexity, the basic algorithmic results for the two major models of polynomial algorithms are introduced--models using matroids and linear programming. Further chapters treat the major non-polynomial algorithms: branch-and-bound and cutting planes. The text concludes with a chapter on heuristic algorithms.Several appendixes are included which review the fundamental ideas o

  8. Fixed Full Arches Supported by Tapered Implants with Knife-Edge Thread Design and Nanostructured, Calcium-Incorporated Surface: A Short-Term Prospective Clinical Study

    Directory of Open Access Journals (Sweden)

    Soheil Bechara

    2017-01-01

    Full Text Available Purpose. To evaluate implant survival, peri-implant bone loss, and complications affecting fixed full-arch (FFA restorations supported by implants with a knife-edge thread design and nanostructured, calcium-incorporated surface. Methods. Between January 2013 and December 2015, all patients referred for implant-supported FFA restorations were considered for enrollment in this study. All patients received implants with a knife-edge thread design and nanostructured calcium-incorporated surface (Anyridge®, Megagen, South Korea were restored with FFA restorations and enrolled in a recall program. The final outcomes were implant survival, peri-implant bone loss, biologic/prosthetic complications, and “complication-free” survival of restorations. Results. Twenty-four patients were selected. Overall, 215 implants were inserted (130 maxilla, 85 mandible, 144 in extraction sockets and 71 in healed ridges. Thirty-six FFAs were delivered (21 maxilla, 15 mandible: 27 were immediately loaded and 9 were conventionally loaded. The follow-up ranged from 1 to 3 years. Two fixtures failed, yielding an implant survival rate of 95.9% (patient-based. A few complications were registered, for a “complication-free” survival of restorations of 88.9%. Conclusions. FFA restorations supported by implants with a knife-edge thread design and nanostructured, calcium-incorporated surface are successful in the short term, with high survival and low complication rates; long-term studies are needed to confirm these outcomes.

  9. An Exact Method to Determine the Photonic Resonances of Quasicrystals Based on Discrete Fourier Harmonics of Higher-Dimensional Atomic Surfaces

    Directory of Open Access Journals (Sweden)

    Farhad A. Namin

    2016-08-01

    Full Text Available A rigorous method for obtaining the diffraction patterns of quasicrystals is presented. Diffraction patterns are an essential analytical tool in the study of quasicrystals, since they can be used to determine their photonic resonances. Previous methods for approximating the diffraction patterns of quasicrystals have relied on evaluating the Fourier transform of finite-sized super-lattices. Our approach, on the other hand, is exact in the sense that it is based on a technique that embeds quasicrystals into higher dimensional periodic hyper-lattices, thereby completely capturing the properties of the infinite structure. The periodicity of the unit cell in the higher dimensional space can be exploited to obtain the Fourier series expansion in closed-form of the corresponding atomic surfaces. The utility of the method is demonstrated by applying it to one-dimensional Fibonacci and two-dimensional Penrose quasicrystals. The results are verified by comparing them to those obtained by using the conventional super-lattice method. It is shown that the conventional super-cell approach can lead to inaccurate results due to the continuous nature of the Fourier transform, since quasicrystals have a discrete spectrum, whereas the approach introduced in this paper generates discrete Fourier harmonics. Furthermore, the conventional approach requires very large super-cells and high-resolution sampling of the reciprocal space in order to produce accurate results leading to a very large computational burden, whereas the proposed method generates accurate results with a relatively small number of terms. Finally, we propose how this approach can be generalized from the vertex model, which assumes identical particles at all vertices, to a more realistic case where the quasicrystal is composed of different atoms.

  10. Discrete gradients in discrete classical mechanics

    International Nuclear Information System (INIS)

    Renna, L.

    1987-01-01

    A simple model of discrete classical mechanics is given where, starting from the continuous Hamilton equations, discrete equations of motion are established together with a proper discrete gradient definition. The conservation laws of the total discrete momentum, angular momentum, and energy are demonstrated

  11. Discrete transforms

    CERN Document Server

    Firth, Jean M

    1992-01-01

    The analysis of signals and systems using transform methods is a very important aspect of the examination of processes and problems in an increasingly wide range of applications. Whereas the initial impetus in the development of methods appropriate for handling discrete sets of data occurred mainly in an electrical engineering context (for example in the design of digital filters), the same techniques are in use in such disciplines as cardiology, optics, speech analysis and management, as well as in other branches of science and engineering. This text is aimed at a readership whose mathematical background includes some acquaintance with complex numbers, linear differen­ tial equations, matrix algebra, and series. Specifically, a familiarity with Fourier series (in trigonometric and exponential forms) is assumed, and an exposure to the concept of a continuous integral transform is desirable. Such a background can be expected, for example, on completion of the first year of a science or engineering degree cour...

  12. Discrete Curvature Theories and Applications

    KAUST Repository

    Sun, Xiang

    2016-08-25

    Discrete Di erential Geometry (DDG) concerns discrete counterparts of notions and methods in di erential geometry. This thesis deals with a core subject in DDG, discrete curvature theories on various types of polyhedral surfaces that are practically important for free-form architecture, sunlight-redirecting shading systems, and face recognition. Modeled as polyhedral surfaces, the shapes of free-form structures may have to satisfy di erent geometric or physical constraints. We study a combination of geometry and physics { the discrete surfaces that can stand on their own, as well as having proper shapes for the manufacture. These proper shapes, known as circular and conical meshes, are closely related to discrete principal curvatures. We study curvature theories that make such surfaces possible. Shading systems of freeform building skins are new types of energy-saving structures that can re-direct the sunlight. From these systems, discrete line congruences across polyhedral surfaces can be abstracted. We develop a new curvature theory for polyhedral surfaces equipped with normal congruences { a particular type of congruences de ned by linear interpolation of vertex normals. The main results are a discussion of various de nitions of normality, a detailed study of the geometry of such congruences, and a concept of curvatures and shape operators associated with the faces of a triangle mesh. These curvatures are compatible with both normal congruences and the Steiner formula. In addition to architecture, we consider the role of discrete curvatures in face recognition. We use geometric measure theory to introduce the notion of asymptotic cones associated with a singular subspace of a Riemannian manifold, which is an extension of the classical notion of asymptotic directions. We get a simple expression of these cones for polyhedral surfaces, as well as convergence and approximation theorems. We use the asymptotic cones as facial descriptors and demonstrate the

  13. Recent airborne EM system (helicopter VTEM and fixed-wing ZTEM) development for near-surface and regional applications for oil and gas exploration

    Energy Technology Data Exchange (ETDEWEB)

    Legault, Jean; Prikhodko, Alexander; Kumar, Harish; Genereux, Jim [Geotech Ltd., Aurora, ON (Canada)], email: jean@geotech.ca, email: alexander@geotech.ca, email: harish@geotech.ca, email: jim.genereux@geotech.ca

    2011-07-01

    The helicopter-borne VTEM (versatile time-domain electromagnetic) system is a geophysical instrument, whose development has been ongoing since 2002, and which was designed to improve detection of many kinds of conductive targets, primarily for mining. However, although deep penetration characteristics of this system have progressively achieved significant improvements, its capacity for near-surface imaging has been limited by its early-time data. To solve this problem, Geotech has undertaken a system design strategy in order to improve the early-channel VTEM data and to obtain quantitative measurements closer to the transmitter current turn-off. With this development, a new model of the VTEM system could be designed specifically for near-surface, high-resolution applications, while deep penetration characteristics still remained reasonably optimal. The standard ZTEM (z-axis tipper electromagnetic) acquisition system obtains vertical-component data by means of an aircoil receiver that is suspended below the aircraft. Then the z-axis data are proportioned to fixed horizontal field measurements obtained with identical reference coils.

  14. On organizing principles of discrete differential geometry. Geometry of spheres

    International Nuclear Information System (INIS)

    Bobenko, Alexander I; Suris, Yury B

    2007-01-01

    Discrete differential geometry aims to develop discrete equivalents of the geometric notions and methods of classical differential geometry. This survey contains a discussion of the following two fundamental discretization principles: the transformation group principle (smooth geometric objects and their discretizations are invariant with respect to the same transformation group) and the consistency principle (discretizations of smooth parametrized geometries can be extended to multidimensional consistent nets). The main concrete geometric problem treated here is discretization of curvature-line parametrized surfaces in Lie geometry. Systematic use of the discretization principles leads to a discretization of curvature-line parametrization which unifies circular and conical nets.

  15. Discrete choice models with multiplicative error terms

    DEFF Research Database (Denmark)

    Fosgerau, Mogens; Bierlaire, Michel

    2009-01-01

    The conditional indirect utility of many random utility maximization (RUM) discrete choice models is specified as a sum of an index V depending on observables and an independent random term ε. In general, the universe of RUM consistent models is much larger, even fixing some specification of V due...

  16. Discretion in Student Discipline: Insight into Elementary Principals' Decision Making

    Science.gov (United States)

    Findlay, Nora M.

    2015-01-01

    Little research exists that examines the exercise of discretion by principals in their disciplinary decision making. This study sought to understand the application of values by principals as they engage in student disciplinary decision making within legally fixed parameters of their administrative discretion. This qualitative methodology used…

  17. Effect of different surface treatments and retainer designs on the retention of posterior Pd-Ag porcelain-fused-to-metal resin-bonded fixed partial dentures.

    Science.gov (United States)

    Chen, Xiwen; Zhang, Yixin; Zhou, Jinru; Chen, Chenfeng; Zhu, Zhimin; Li, Lei

    2018-02-01

    The aim of this study was to investigate the adhesive property of palladium-silver alloy (Pd-Ag) and the simulated clinical performance of Pd-Ag porcelain-fused-to-metal (PFM), resin-bonded, fixed partial dentures (RBFPDs). A total of 40 Pd-Ag discs (diameter=5 mm) were prepared and divided into the following four groups (n=10): a) No sandblasting, used as a control; and b, 50 µm; c, 110 µm; and d, 250 µm aluminum oxide (Al 2 O 3 ) particles, respectively. Another 50 discs were pre-sandblasted and divided into five groups (n=10) subjected to different treatments: e) Sandblasting, used as a control; f) silane; g) alloy primer; h) silica coating + silane and i) silica coating + alloy primer. All 90 discs were bonded to enamel with Panavia F 2.0 and then subjected to shear bond strength (SBS) testing. The fracture surfaces were examined by scanning electron microscopy. Next, 40 missing maxillary second premolar models were restored with one of the four following RBFPD designs (n=10): I) A premolar occlusal bar combined with molar double rests (MDR); II) both occlusal bars with a wing (OBB); III) a premolar occlusal bar combined with a molar dental band (MDB); and IV) two single rests adjacent to the edentulous space with a wing (SRB) used as a control. All specimens were aged with thermal cycling and mechanical loading. Subsequently, they were loaded until broken. The data were analyzed by one-way analysis of variance. Al 2 O 3 (250 µm) abrasion provided the highest SBS (P<0.05). The alloy primer and silica + silane exhibited increased SBS. Furthermore, fracture analysis revealed that the failure mode varied among the different treatments. Whereas MDB exhibited the highest retention (P<0.05), that of OBB was greater than that of MDR (P<0.05), and the control exhibited the lowest retention. Abrasion with Al 2 O 3 (250 µm) effectively increased the adhesive property of Pd-Ag. Additionally, treatment with the alloy primer and silica coating + silane was able to

  18. Mimetic discretization methods

    CERN Document Server

    Castillo, Jose E

    2013-01-01

    To help solve physical and engineering problems, mimetic or compatible algebraic discretization methods employ discrete constructs to mimic the continuous identities and theorems found in vector calculus. Mimetic Discretization Methods focuses on the recent mimetic discretization method co-developed by the first author. Based on the Castillo-Grone operators, this simple mimetic discretization method is invariably valid for spatial dimensions no greater than three. The book also presents a numerical method for obtaining corresponding discrete operators that mimic the continuum differential and

  19. Time Discretization Techniques

    KAUST Repository

    Gottlieb, S.; Ketcheson, David I.

    2016-01-01

    The time discretization of hyperbolic partial differential equations is typically the evolution of a system of ordinary differential equations obtained by spatial discretization of the original problem. Methods for this time evolution include

  20. Partial pressure (or fugacity) of carbon dioxide, dissolved inorganic carbon, pH, alkalinity, temperature, salinity and other variables collected from discrete sample, profile and underway - surface observations using Alkalinity titrator, CTD and other instruments from the MIRAI in the Coral Sea, North Pacific Ocean and others from 2009-04-10 to 2009-07-03 (NODC Accession 0108084)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NODC Accession 0108084 includes chemical, discrete sample, meteorological, physical, profile and underway - surface data collected from MIRAI in the Coral Sea, North...

  1. Dissolved inorganic carbon, pH, alkalinity, temperature, salinity and other variables collected from Surface underway, discrete sample and profile observations using Alkalinity titrator, CTD and other instruments from MIRAI in the Bering Sea, North Pacific Ocean and South Pacific Ocean from 2007-10-08 to 2007-12-26 (NODC Accession 0108123)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NCEI Accession 0108123 includes Surface underway, discrete sample and profile data collected from MIRAI in the Bering Sea, North Pacific Ocean and South Pacific...

  2. Dissolved inorganic carbon, pH, alkalinity, temperature, salinity and other variables collected from discrete sample, profile and underway - surface observations using Alkalinity titrator, CTD and other instruments from the MIRAI in the Bismarck Sea, North Pacific Ocean and South Pacific Ocean from 2005-05-25 to 2005-07-02 (NODC Accession 0108081)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NODC Accession 0108081 includes chemical, discrete sample, physical, profile and underway - surface data collected from MIRAI in the Bismarck Sea, North Pacific...

  3. Dissolved inorganic carbon, total alkalinity, pH, nutrients, and other variables collected from surface discrete observations using Niskin bottle and other instruments from R/V F. G. Walton Smith in the west coast of Florida within Gulf of Mexico from 2015-09-23 to 2015-09-24 (NCEI Accession 0157025)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This archival package contains the surface discrete measurements of dissolved inorganic carbon, total alkalinity, pH and nutrients in the west coast of Florida near...

  4. Dissolved inorganic carbon, total alkalinity, pH, and other variables collected from surface and discrete observations using flow-through pump and other instruments from M/V Equinox in the North Atlantic ocean (east coast of Miami, FL, Bahamas, and Turks and Caicos Islands) from 2015-03-07 to 2015-03-09 (NCEI Accession 0154382)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This archival package contains surface discrete measurements of dissolved inorganic carbon, total alkalinity, and pH from the east coast of Florida to Puerto Rico....

  5. Dissolved inorganic carbon, total alkalinity, pH, and other variables collected from surface discrete observations using flow through pump and other instruments from Explorer of the Seas (ID: 33KF) in the Caribbean Sea and North Atlantic ocean during the Ocean Acidification Cruise EX1507 from 2015-02-14 to 2015-02-15 (NCEI Accession 0154385)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This archival package contains surface discrete measurements of dissolved inorganic carbon, total alkalinity, pH in the Caribbean Sea. Increasing amounts of...

  6. Dissolved inorganic carbon, total alkalinity, pH, and other variables collected from surface and discrete observations using Niskin bottle, flow-through pump and other instruments from F.G. Walton Smith in the Gulf of Mexico (east coast of Florida near the Keys) from 2014-12-03 to 2014-12-04 (NCEI Accession 0154383)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This archival package contains surface discrete measurement of dissolved inorganic carbon, total alkalinity, pH, dissolved oxygen and nutrients from a transect off...

  7. Partial pressure (or fugacity) of carbon dioxide, dissolved inorganic carbon, alkalinity, temperature, salinity and other variables collected from Surface underway, discrete sample and profile observations using CTD, Carbon dioxide (CO2) gas analyzer and other instruments from THOMAS G. THOMPSON in the Bismarck Sea, Coral Sea and others from 1993-10-05 to 1993-11-10 (NODC Accession 0115019)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NCEI Accession 0115019 includes Surface underway, chemical, discrete sample, meteorological, physical and profile data collected from THOMAS G. THOMPSON in the...

  8. Partial pressure (or fugacity) of carbon dioxide, dissolved inorganic carbon, alkalinity, temperature, salinity and other variables collected from discrete sample, profile and underway - surface observations using CTD, Carbon dioxide (CO2) gas analyzer and other instruments from the KNORR in the North Atlantic Ocean and South Atlantic Ocean from 1994-04-03 to 1994-05-21 (NODC Accession 0115002)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NODC Accession 0115002 includes chemical, discrete sample, meteorological, physical, profile and underway - surface data collected from KNORR in the North Atlantic...

  9. Partial pressure (or fugacity) of carbon dioxide, dissolved inorganic carbon, alkalinity, temperature, salinity and other variables collected from discrete sample, profile and underway - surface observations using CTD, Carbon dioxide (CO2) gas analyzer and other instruments from the METEOR in the North Atlantic Ocean from 1991-09-02 to 1991-09-26 (NODC Accession 0115001)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NODC Accession 0115001 includes chemical, discrete sample, physical, profile and underway - surface data collected from METEOR in the North Atlantic Ocean from...

  10. Partial pressure (or fugacity) of carbon dioxide, dissolved inorganic carbon, pH, alkalinity, temperature, salinity and other variables collected from discrete sample, profile and underway - surface observations using CTD, Carbon dioxide (CO2) gas analyzer and other instruments from the METEOR in the South Atlantic Ocean from 1992-12-27 to 1993-01-31 (NODC Accession 0115173)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NODC Accession 0115173 includes chemical, discrete sample, meteorological, physical, profile and underway - surface data collected from METEOR in the South Atlantic...

  11. Partial pressure (or fugacity) of carbon dioxide, dissolved inorganic carbon, pH, alkalinity, temperature, salinity and other variables collected from Surface underway, discrete sample and profile observations using CTD, Carbon dioxide (CO2) gas analyzer and other instruments from MAURICE EWING in the North Atlantic Ocean and South Atlantic Ocean from 1994-01-04 to 1994-03-21 (NODC Accession 0115157)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NCEI Accession 0115157 includes Surface underway, discrete sample and profile data collected from MAURICE EWING in the North Atlantic Ocean and South Atlantic Ocean...

  12. Partial pressure (or fugacity) of carbon dioxide, dissolved inorganic carbon, pH, alkalinity, temperature, salinity and other variables collected from Surface underway, discrete sample and profile observations using Alkalinity titrator, CTD and other instruments from PELICAN in the Coastal Waters of Louisiana, Coastal Waters of Texas and Gulf of Mexico from 2013-09-09 to 2013-09-22 (NCEI Accession 0157461)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NCEI Accession 0157461 includes Surface underway, chemical, discrete sample, meteorological, physical and profile data collected from PELICAN in the Coastal Waters...

  13. Dissolved inorganic carbon, total alkalinity, pH, nutrients, and other variables collected from surface discrete observations using flow-through pump and other instruments from NOAA Ship Henry B. Bigelow on the Northeast U.S. Shelf (Gulf of Maine and Mid-Atlantic Bight) from 2013-03-17 to 2013-05-09 (NCEI Accession 0154386)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This archival package contains surface discrete measurements of dissolved inorganic carbon, total alkalinity, pH and nutrients in the Mid-Atlantic Bight and Gulf of...

  14. Dissolved inorganic carbon, total alkalinity, pH, nutrients and other variables collected from surface discrete sampling using flow through pump and other instruments from NOAA Ship Gordon Gunter in the U.S. East Coast during the East Coast Ocean Acidification (GU-15-04 ECOA1) from 2015-06-20 to 2015-07-23 (NCEI Accession 0157389)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This archival package contains dissolved inorganic carbon, total alkalinity, pH, nutrients and other variables collected from surface discrete sampling using flow...

  15. Discrete anti-gravity

    International Nuclear Information System (INIS)

    Noyes, H.P.; Starson, S.

    1991-03-01

    Discrete physics, because it replaces time evolution generated by the energy operator with a global bit-string generator (program universe) and replaces ''fields'' with the relativistic Wheeler-Feynman ''action at a distance,'' allows the consistent formulation of the concept of signed gravitational charge for massive particles. The resulting prediction made by this version of the theory is that free anti-particles near the surface of the earth will ''fall'' up with the same acceleration that the corresponding particles fall down. So far as we can see, no current experimental information is in conflict with this prediction of our theory. The experiment crusis will be one of the anti-proton or anti-hydrogen experiments at CERN. Our prediction should be much easier to test than the small effects which those experiments are currently designed to detect or bound. 23 refs

  16. A prospective 5-year study of fixed partial prostheses supported by implants with machined and TiO2-blasted surface

    DEFF Research Database (Denmark)

    Gotfredsen, K; Karlsson, U

    2001-01-01

    PURPOSE: The aim of the present study was to evaluate whether there was a difference between machined and TiO(2)-blasted implants regarding survival rate and marginal bone loss during a 5-year observation period. MATERIALS AND METHODS: A total of 133 implants (Astra Tech Dental Implants; Astra Tech...... AB, Mölndal, Sweden) were placed in 50 patients at 6 centers in 4 Scandinavian countries. Forty-eight implants were installed in the maxilla and 85 implants in the mandible. A randomization and a stratification were done, so that each fixed partial prosthesis was supported by at least 1 machined...... and 1 TiO(2)-blasted implant. The implant-supported fixed partial prostheses (ISFPP) were fabricated within 2 months after postoperative healing. A total of 52 ISFPP (17 maxillary, 35 mandibular) were inserted. The patients were clinically examined once a year for 5 years. At the annual follow...

  17. Discretization-induced delays and their role in the dynamics

    International Nuclear Information System (INIS)

    Ramani, A; Grammaticos, B; Satsuma, J; Willox, R

    2008-01-01

    We show that a discretization of a continuous system may entail 'hidden' delays and thus introduce instabilities. In this case, while the continuous system has an attractive fixed point, the instabilities present in the equivalent discrete one may lead to the appearance of a limit cycle. We explain that it is possible, thanks to the proper staggering of the discrete variables, to eliminate the hidden delay. However, in general, other instabilities may appear in the discrete system which can even lead to chaotic behaviour

  18. Domain Discretization and Circle Packings

    DEFF Research Database (Denmark)

    Dias, Kealey

    A circle packing is a configuration of circles which are tangent with one another in a prescribed pattern determined by a combinatorial triangulation, where the configuration fills a planar domain or a two-dimensional surface. The vertices in the triangulation correspond to centers of circles...... to domain discretization problems such as triangulation and unstructured mesh generation techniques. We wish to ask ourselves the question: given a cloud of points in the plane (we restrict ourselves to planar domains), is it possible to construct a circle packing preserving the positions of the vertices...... and constrained meshes having predefined vertices as constraints. A standard method of two-dimensional mesh generation involves conformal mapping of the surface or domain to standardized shapes, such as a disk. Since circle packing is a new technique for constructing discrete conformal mappings, it is possible...

  19. A conjunct near-surface spectroscopy system for fix-angle and multi-angle continuous measurements of canopy reflectance and sun-induced chlorophyll fluorescence

    Science.gov (United States)

    Zhang, Qian; Fan, Yifeng; Zhang, Yongguang; Chou, Shuren; Ju, Weimin; Chen, Jing M.

    2016-09-01

    An automated spectroscopy system, which is divided into fix-angle and multi-angle subsystems, for collecting simultaneous, continuous and long-term measurements of canopy hyper-spectra in a crop ecosystem is developed. The fix-angle subsystem equips two spectrometers: one is HR2000+ (OceanOptics) covering the spectral range 200-1100 nm with 1.0 nm spectral resolution, and another one is QE65PRO (OceanOptics) providing 0.1 nm spectral resolution within the 730-780 nm spectral range. Both spectrometers connect a cosine-corrected fiber-optic fixed up-looking to collect the down-welling irradiance and a bare fiber-optic to measure the up-welling radiance from the vegetation. An inline fiber-optic shutter FOS-2x2-TTL (OceanOptics) is used to switch between input fibers to collect the signal from either the canopy or sky at one time. QE65PRO is used to permit estimation of vegetation Sun-Induced Fluorescence (SIF) in the O2-A band. The data collection scheme includes optimization of spectrometer integration time to maximize the signal to noise ratio and measurement of instrument dark currency. The multi-angle subsystem, which can help understanding bidirectional reflectance effects, alternatively use HR4000 (OceanOptics) providing 0.1 nm spectral resolution within the 680-800 nm spectral range to measure multi-angle SIF. This subsystem additionally includes a spectrometer Unispec-DC (PPSystems) featuring both up-welling and down-welling channels with 3 nm spectral resolution covering the 300-1100 nm spectral range. Two down-looking fiber-optics are mounted on a rotating device PTU-D46 (FLIR Systems), which can rotate horizontally and vertically at 10° angular step widths. Observations can be used to calculate canopy reflectance, vegetation indices and SIF for monitoring plant physiological processes.

  20. Intelligent shell feedback control in EXTRAP T2R reversed field pinch with partial coverage of the toroidal surface by a discrete active coil array

    Science.gov (United States)

    Yadikin, D.; Brunsell, P. R.; Drake, J. R.

    2006-01-01

    An active feedback system is required for long pulse operation of the reversed field pinch (RFP) device to suppress resistive wall modes (RWMs). A general feature of a feedback system using a discrete active coil array is a coupling effect which arises when a set of side band modes determined by the number of active coils is produced. Recent results obtained on the EXTRAP T2R RFP demonstrated the suppression of independent m = 1 RWMs using an active feedback system with a two-dimensional array of discrete active coils in the poloidal and toroidal directions. One of the feedback algorithms used is the intelligent shell feedback scheme. Active feedback systems having different number of active coils in the poloidal (Mc) and toroidal (Nc) directions (Mc × Nc = 2 × 32 and Mc × Nc = 4 × 16) are studied. Different side band effects are seen for these configurations. A significant prolongation of the plasma discharge is achieved for the intelligent shell feedback scheme using the 2 × 32 active coil configuration. This is attributed to the side band sets including only one of the dominant unstable RWMs and avoiding coupling to resonant modes. Analog proportional-integral-derivative controllers are used in the feedback system. Regimes with different values of the proportional gain are studied. The requirement of the proportional-integral control for low proportional gain and proportional-derivative control for high proportional gain is seen in the experiments.

  1. Baecklund transformations for discrete Painleve equations: Discrete PII-PV

    International Nuclear Information System (INIS)

    Sakka, A.; Mugan, U.

    2006-01-01

    Transformation properties of discrete Painleve equations are investigated by using an algorithmic method. This method yields explicit transformations which relates the solutions of discrete Painleve equations, discrete P II -P V , with different values of parameters. The particular solutions which are expressible in terms of the discrete analogue of the classical special functions of discrete Painleve equations can also be obtained from these transformations

  2. Discrete Gabor transform and discrete Zak transform

    NARCIS (Netherlands)

    Bastiaans, M.J.; Namazi, N.M.; Matthews, K.

    1996-01-01

    Gabor's expansion of a discrete-time signal into a set of shifted and modulated versions of an elementary signal or synthesis window is introduced, along with the inverse operation, i.e. the Gabor transform, which uses an analysis window that is related to the synthesis window and with the help of

  3. Discrete Mathematics Re "Tooled."

    Science.gov (United States)

    Grassl, Richard M.; Mingus, Tabitha T. Y.

    1999-01-01

    Indicates the importance of teaching discrete mathematics. Describes how the use of technology can enhance the teaching and learning of discrete mathematics. Explorations using Excel, Derive, and the TI-92 proved how preservice and inservice teachers experienced a new dimension in problem solving and discovery. (ASK)

  4. Homogenization of discrete media

    International Nuclear Information System (INIS)

    Pradel, F.; Sab, K.

    1998-01-01

    Material such as granular media, beam assembly are easily seen as discrete media. They look like geometrical points linked together thanks to energetic expressions. Our purpose is to extend discrete kinematics to the one of an equivalent continuous material. First we explain how we build the localisation tool for periodic materials according to estimated continuum medium type (classical Cauchy, and Cosserat media). Once the bridge built between discrete and continuum media, we exhibit its application over two bidimensional beam assembly structures : the honey comb and a structural reinforced variation. The new behavior is then applied for the simple plan shear problem in a Cosserat continuum and compared with the real discrete solution. By the mean of this example, we establish the agreement of our new model with real structures. The exposed method has a longer range than mechanics and can be applied to every discrete problems like electromagnetism in which relationship between geometrical points can be summed up by an energetic function. (orig.)

  5. Discrete density of states

    International Nuclear Information System (INIS)

    Aydin, Alhun; Sisman, Altug

    2016-01-01

    By considering the quantum-mechanically minimum allowable energy interval, we exactly count number of states (NOS) and introduce discrete density of states (DOS) concept for a particle in a box for various dimensions. Expressions for bounded and unbounded continua are analytically recovered from discrete ones. Even though substantial fluctuations prevail in discrete DOS, they're almost completely flattened out after summation or integration operation. It's seen that relative errors of analytical expressions of bounded/unbounded continua rapidly decrease for high NOS values (weak confinement or high energy conditions), while the proposed analytical expressions based on Weyl's conjecture always preserve their lower error characteristic. - Highlights: • Discrete density of states considering minimum energy difference is proposed. • Analytical DOS and NOS formulas based on Weyl conjecture are given. • Discrete DOS and NOS functions are examined for various dimensions. • Relative errors of analytical formulas are much better than the conventional ones.

  6. Discrete density of states

    Energy Technology Data Exchange (ETDEWEB)

    Aydin, Alhun; Sisman, Altug, E-mail: sismanal@itu.edu.tr

    2016-03-22

    By considering the quantum-mechanically minimum allowable energy interval, we exactly count number of states (NOS) and introduce discrete density of states (DOS) concept for a particle in a box for various dimensions. Expressions for bounded and unbounded continua are analytically recovered from discrete ones. Even though substantial fluctuations prevail in discrete DOS, they're almost completely flattened out after summation or integration operation. It's seen that relative errors of analytical expressions of bounded/unbounded continua rapidly decrease for high NOS values (weak confinement or high energy conditions), while the proposed analytical expressions based on Weyl's conjecture always preserve their lower error characteristic. - Highlights: • Discrete density of states considering minimum energy difference is proposed. • Analytical DOS and NOS formulas based on Weyl conjecture are given. • Discrete DOS and NOS functions are examined for various dimensions. • Relative errors of analytical formulas are much better than the conventional ones.

  7. Discrete control systems

    CERN Document Server

    Okuyama, Yoshifumi

    2014-01-01

    Discrete Control Systems establishes a basis for the analysis and design of discretized/quantized control systemsfor continuous physical systems. Beginning with the necessary mathematical foundations and system-model descriptions, the text moves on to derive a robust stability condition. To keep a practical perspective on the uncertain physical systems considered, most of the methods treated are carried out in the frequency domain. As part of the design procedure, modified Nyquist–Hall and Nichols diagrams are presented and discretized proportional–integral–derivative control schemes are reconsidered. Schemes for model-reference feedback and discrete-type observers are proposed. Although single-loop feedback systems form the core of the text, some consideration is given to multiple loops and nonlinearities. The robust control performance and stability of interval systems (with multiple uncertainties) are outlined. Finally, the monograph describes the relationship between feedback-control and discrete ev...

  8. Discrete repulsive oscillator wavefunctions

    International Nuclear Information System (INIS)

    Munoz, Carlos A; Rueda-Paz, Juvenal; Wolf, Kurt Bernardo

    2009-01-01

    For the study of infinite discrete systems on phase space, the three-dimensional Lorentz algebra and group, so(2,1) and SO(2,1), provide a discrete model of the repulsive oscillator. Its eigenfunctions are found in the principal irreducible representation series, where the compact generator-that we identify with the position operator-has the infinite discrete spectrum of the integers Z, while the spectrum of energies is a double continuum. The right- and left-moving wavefunctions are given by hypergeometric functions that form a Dirac basis for l 2 (Z). Under contraction, the discrete system limits to the well-known quantum repulsive oscillator. Numerical computations of finite approximations raise further questions on the use of Dirac bases for infinite discrete systems.

  9. Discrete Element Modeling

    Energy Technology Data Exchange (ETDEWEB)

    Morris, J; Johnson, S

    2007-12-03

    The Distinct Element Method (also frequently referred to as the Discrete Element Method) (DEM) is a Lagrangian numerical technique where the computational domain consists of discrete solid elements which interact via compliant contacts. This can be contrasted with Finite Element Methods where the computational domain is assumed to represent a continuum (although many modern implementations of the FEM can accommodate some Distinct Element capabilities). Often the terms Discrete Element Method and Distinct Element Method are used interchangeably in the literature, although Cundall and Hart (1992) suggested that Discrete Element Methods should be a more inclusive term covering Distinct Element Methods, Displacement Discontinuity Analysis and Modal Methods. In this work, DEM specifically refers to the Distinct Element Method, where the discrete elements interact via compliant contacts, in contrast with Displacement Discontinuity Analysis where the contacts are rigid and all compliance is taken up by the adjacent intact material.

  10. Discrete Weighted Pseudo Asymptotic Periodicity of Second Order Difference Equations

    Directory of Open Access Journals (Sweden)

    Zhinan Xia

    2014-01-01

    Full Text Available We define the concept of discrete weighted pseudo-S-asymptotically periodic function and prove some basic results including composition theorem. We investigate the existence, and uniqueness of discrete weighted pseudo-S-asymptotically periodic solution to nonautonomous semilinear difference equations. Furthermore, an application to scalar second order difference equations is given. The working tools are based on the exponential dichotomy theory and fixed point theorem.

  11. Discrete Calculus by Analogy

    CERN Document Server

    Izadi, F A; Bagirov, G

    2009-01-01

    With its origins stretching back several centuries, discrete calculus is now an increasingly central methodology for many problems related to discrete systems and algorithms. The topics covered here usually arise in many branches of science and technology, especially in discrete mathematics, numerical analysis, statistics and probability theory as well as in electrical engineering, but our viewpoint here is that these topics belong to a much more general realm of mathematics; namely calculus and differential equations because of the remarkable analogy of the subject to this branch of mathemati

  12. Fuel rod fixing system

    International Nuclear Information System (INIS)

    Christiansen, D.W.

    1982-01-01

    This is a reusable system for fixing a nuclear reactor fuel rod to a support. An interlock cap is fixed to the fuel rod and an interlock strip is fixed to the support. The interlock cap has two opposed fingers, which are shaped so that a base is formed with a body part. The interlock strip has an extension, which is shaped so that this is rigidly fixed to the body part of the base. The fingers of the interlock cap are elastic in bending. To fix it, the interlock cap is pushed longitudinally on to the interlock strip, which causes the extension to bend the fingers open in order to engage with the body part of the base. To remove it, the procedure is reversed. (orig.) [de

  13. Gauge origin of discrete flavor symmetries in heterotic orbifolds

    Directory of Open Access Journals (Sweden)

    Florian Beye

    2014-09-01

    Full Text Available We show that non-Abelian discrete symmetries in orbifold string models have a gauge origin. This can be understood when looking at the vicinity of a symmetry enhanced point in moduli space. At such an enhanced point, orbifold fixed points are characterized by an enhanced gauge symmetry. This gauge symmetry can be broken to a discrete subgroup by a nontrivial vacuum expectation value of the Kähler modulus T. Using this mechanism it is shown that the Δ(54 non-Abelian discrete symmetry group originates from a SU(3 gauge symmetry, whereas the D4 symmetry group is obtained from a SU(2 gauge symmetry.

  14. On the complete integrability of the discrete Nahm equations

    International Nuclear Information System (INIS)

    Murray, M.K.

    2000-01-01

    The discrete Nahm equations, a system of matrix valued difference equations, arose in the work of Braam and Austin on half-integral mass hyperbolic monopoles. We show that the discrete Nahm equations are completely integrable in a natural sense: to any solution we can associate a spectral curve and a holomorphic line-bundle over the spectral curve, such that the discrete-time DN evolution corresponds to walking in the Jacobian of the spectral curve in a straight line through the line-bundle with steps of a fixed size. Some of the implications for hyperbolic monopoles are also discussed. (orig.)

  15. Generalised discrete torsion and mirror symmetry for G2 manifolds

    International Nuclear Information System (INIS)

    Gaberdiel, Matthias R.; Kaste, Peter

    2004-01-01

    A generalisation of discrete torsion is introduced in which different discrete torsion phases are considered for the different fixed points or twist fields of a twisted sector. The constraints that arise from modular invariance are analysed carefully. As an application we show how all the different resolutions of the T 7 /Z 2 3 orbifold of Joyce have an interpretation in terms of such generalised discrete torsion orbifolds. Furthermore, we show that these manifolds are pairwise identified under G 2 mirror symmetry. From a conformal field theory point of view, this mirror symmetry arises from an automorphism of the extended chiral algebra of the G 2 compactification. (author)

  16. Finite Discrete Gabor Analysis

    DEFF Research Database (Denmark)

    Søndergaard, Peter Lempel

    2007-01-01

    frequency bands at certain times. Gabor theory can be formulated for both functions on the real line and for discrete signals of finite length. The two theories are largely the same because many aspects come from the same underlying theory of locally compact Abelian groups. The two types of Gabor systems...... can also be related by sampling and periodization. This thesis extends on this theory by showing new results for window construction. It also provides a discussion of the problems associated to discrete Gabor bases. The sampling and periodization connection is handy because it allows Gabor systems...... on the real line to be well approximated by finite and discrete Gabor frames. This method of approximation is especially attractive because efficient numerical methods exists for doing computations with finite, discrete Gabor systems. This thesis presents new algorithms for the efficient computation of finite...

  17. Discrete fractional calculus

    CERN Document Server

    Goodrich, Christopher

    2015-01-01

    This text provides the first comprehensive treatment of the discrete fractional calculus. Experienced researchers will find the text useful as a reference for discrete fractional calculus and topics of current interest. Students who are interested in learning about discrete fractional calculus will find this text to provide a useful starting point. Several exercises are offered at the end of each chapter and select answers have been provided at the end of the book. The presentation of the content is designed to give ample flexibility for potential use in a myriad of courses and for independent study. The novel approach taken by the authors includes a simultaneous treatment of the fractional- and integer-order difference calculus (on a variety of time scales, including both the usual forward and backwards difference operators). The reader will acquire a solid foundation in the classical topics of the discrete calculus while being introduced to exciting recent developments, bringing them to the frontiers of the...

  18. Discrete quantum gravity

    International Nuclear Information System (INIS)

    Williams, Ruth M

    2006-01-01

    A review is given of a number of approaches to discrete quantum gravity, with a restriction to those likely to be relevant in four dimensions. This paper is dedicated to Rafael Sorkin on the occasion of his sixtieth birthday

  19. Discrete computational structures

    CERN Document Server

    Korfhage, Robert R

    1974-01-01

    Discrete Computational Structures describes discrete mathematical concepts that are important to computing, covering necessary mathematical fundamentals, computer representation of sets, graph theory, storage minimization, and bandwidth. The book also explains conceptual framework (Gorn trees, searching, subroutines) and directed graphs (flowcharts, critical paths, information network). The text discusses algebra particularly as it applies to concentrates on semigroups, groups, lattices, propositional calculus, including a new tabular method of Boolean function minimization. The text emphasize

  20. Fixed automated spray technology.

    Science.gov (United States)

    2011-04-19

    This research project evaluated the construction and performance of Boschungs Fixed Automated : Spray Technology (FAST) system. The FAST system automatically sprays de-icing material on : the bridge when icing conditions are about to occur. The FA...

  1. Fixed mobile convergence handbook

    CERN Document Server

    Ahson, Syed A

    2010-01-01

    From basic concepts to future directions, this handbook provides technical information on all aspects of fixed-mobile convergence (FMC). The book examines such topics as integrated management architecture, business trends and strategic implications for service providers, personal area networks, mobile controlled handover methods, SIP-based session mobility, and supervisory and notification aggregator service. Case studies are used to illustrate technical and systematic implementation of unified and rationalized internet access by fixed-mobile network convergence. The text examines the technolo

  2. On stability of fixed points and chaos in fractional systems

    Science.gov (United States)

    Edelman, Mark

    2018-02-01

    In this paper, we propose a method to calculate asymptotically period two sinks and define the range of stability of fixed points for a variety of discrete fractional systems of the order 0 logistic maps. Based on our analysis, we make a conjecture that chaos is impossible in the corresponding continuous fractional systems.

  3. On stability of fixed points and chaos in fractional systems.

    Science.gov (United States)

    Edelman, Mark

    2018-02-01

    In this paper, we propose a method to calculate asymptotically period two sinks and define the range of stability of fixed points for a variety of discrete fractional systems of the order 0chaos is impossible in the corresponding continuous fractional systems.

  4. Discrete geometric structures for architecture

    KAUST Repository

    Pottmann, Helmut

    2010-06-13

    The emergence of freeform structures in contemporary architecture raises numerous challenging research problems, most of which are related to the actual fabrication and are a rich source of research topics in geometry and geometric computing. The talk will provide an overview of recent progress in this field, with a particular focus on discrete geometric structures. Most of these result from practical requirements on segmenting a freeform shape into planar panels and on the physical realization of supporting beams and nodes. A study of quadrilateral meshes with planar faces reveals beautiful relations to discrete differential geometry. In particular, we discuss meshes which discretize the network of principal curvature lines. Conical meshes are among these meshes; they possess conical offset meshes at a constant face/face distance, which in turn leads to a supporting beam layout with so-called torsion free nodes. This work can be generalized to a variety of multilayer structures and laid the ground for an adapted curvature theory for these meshes. There are also efforts on segmenting surfaces into planar hexagonal panels. Though these are less constrained than planar quadrilateral panels, this problem is still waiting for an elegant solution. Inspired by freeform designs in architecture which involve circles and spheres, we present a new kind of triangle mesh whose faces\\' in-circles form a packing, i.e., the in-circles of two triangles with a common edge have the same contact point on that edge. These "circle packing (CP) meshes" exhibit an aesthetic balance of shape and size of their faces. They are closely tied to sphere packings on surfaces and to various remarkable structures and patterns which are of interest in art, architecture, and design. CP meshes constitute a new link between architectural freeform design and computational conformal geometry. Recently, certain timber structures motivated us to study discrete patterns of geodesics on surfaces. This

  5. Host determinant residue lysine 627 lies on the surface of a discrete, folded domain of influenza virus polymerase PB2 subunit.

    Directory of Open Access Journals (Sweden)

    Franck Tarendeau

    Full Text Available Understanding how avian influenza viruses adapt to human hosts is critical for the monitoring and prevention of future pandemics. Host specificity is determined by multiple sites in different viral proteins, and mutation of only a limited number of these sites can lead to inter-species transmission. Several of these sites have been identified in the viral polymerase, the best characterised being position 627 in the PB2 subunit. Efficient viral replication at the relatively low temperature of the human respiratory tract requires lysine 627 rather than the glutamic acid variant found systematically in avian viruses. However, the molecular mechanism by which any of these host specific sites determine host range are unknown, although adaptation to host factors is frequently evoked. We used ESPRIT, a library screening method, to identify a new PB2 domain that contains a high density of putative host specific sites, including residue 627. The X-ray structure of this domain (denoted the 627-domain exhibits a novel fold with the side-chain of Lys627 solvent exposed. The structure of the K627E mutated domain shows no structural differences but the charge reversal disrupts a striking basic patch on the domain surface. Five other recently proposed host determining sites of PB2 are also located on the 627-domain surface. The structure of the complete C-terminal region of PB2 comprising the 627-domain and the previously identified NLS-domain, which binds the host nuclear import factor importin alpha, was also determined. The two domains are found to pack together with a largely hydrophilic interface. These data enable a three-dimensional mapping of approximately half of PB2 sites implicated in cross-species transfer onto a single structural unit. Their surface location is consistent with roles in interactions with other viral proteins or host factors. The identification and structural characterization of these well-defined PB2 domains will help design

  6. Theoretical Study of Local Surface Plasmon Resonances on a Dielectric-Ag Core-Shell Nanosphere Using the Discrete-Dipole Approximation Method

    International Nuclear Information System (INIS)

    Ma Ye-Wan; Wu Zhao-Wang; Zhang Li-Hua; Liu Wan-Fang; Zhang Jie

    2015-01-01

    The local surface plasmon resonances (LSPRs) of dielectric-Ag core-shell nanospheres are studied by the discretedipole approximation method. The result shows that LSPRs are sensitive to the surrounding medium refractive index, which shows a clear red-shift with the increasing surrounding medium refractive index. A dielectric-Ag core-shell nanosphere exhibits a strong coupling between the core and shell plasmon resonance modes. LSPRs depend on the shell thickness and the composition of dielectric-core and metal-shell. LSPRs can be tuned over a longer wavelength range by changing the ratio of core to shell value. The lower energy mode ω_− shows a red-shift with the increasing dielectric-core value and the inner core radius, while blue-shifted with the increasing outer shell thickness. The underlying mechanisms are analyzed with the plasmon hybridization theory and the phase retardation effect. (paper)

  7. Homogenization of discrete media

    Energy Technology Data Exchange (ETDEWEB)

    Pradel, F.; Sab, K. [CERAM-ENPC, Marne-la-Vallee (France)

    1998-11-01

    Material such as granular media, beam assembly are easily seen as discrete media. They look like geometrical points linked together thanks to energetic expressions. Our purpose is to extend discrete kinematics to the one of an equivalent continuous material. First we explain how we build the localisation tool for periodic materials according to estimated continuum medium type (classical Cauchy, and Cosserat media). Once the bridge built between discrete and continuum media, we exhibit its application over two bidimensional beam assembly structures : the honey comb and a structural reinforced variation. The new behavior is then applied for the simple plan shear problem in a Cosserat continuum and compared with the real discrete solution. By the mean of this example, we establish the agreement of our new model with real structures. The exposed method has a longer range than mechanics and can be applied to every discrete problems like electromagnetism in which relationship between geometrical points can be summed up by an energetic function. (orig.) 7 refs.

  8. Search Parameter Optimization for Discrete, Bayesian, and Continuous Search Algorithms

    Science.gov (United States)

    2017-09-01

    NAVAL POSTGRADUATE SCHOOL MONTEREY, CALIFORNIA THESIS SEARCH PARAMETER OPTIMIZATION FOR DISCRETE , BAYESIAN, AND CONTINUOUS SEARCH ALGORITHMS by...to 09-22-2017 4. TITLE AND SUBTITLE SEARCH PARAMETER OPTIMIZATION FOR DISCRETE , BAYESIAN, AND CON- TINUOUS SEARCH ALGORITHMS 5. FUNDING NUMBERS 6...simple search and rescue acts to prosecuting aerial/surface/submersible targets on mission. This research looks at varying the known discrete and

  9. Partial pressure (or fugacity) of carbon dioxide, dissolved inorganic carbon, alkalinity, temperature, salinity and other variables collected from Surface underway, discrete sample and profile observations using CTD, Carbon dioxide (CO2) gas analyzer and other instruments from ANTEA and L'ATALANTE in the Gulf of Guinea, North Atlantic Ocean and South Atlantic Ocean from 2005-06-09 to 2007-09-30 (NODC Accession 0108086)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NCEI Accession 0108086 includes Surface underway, chemical, discrete sample, meteorological, physical and profile data collected from ANTEA and L'ATALANTE in the...

  10. Partial pressure (or fugacity) of carbon dioxide, dissolved inorganic carbon, alkalinity, temperature, salinity and other variables collected from Surface underway, discrete sample and profile observations using Alkalinity titrator, Barometric pressure sensor and other instruments from NOAA Ship RONALD H. BROWN in the Coastal Waters of Florida, Gray's Reef National Marine Sanctuary and others from 2007-05-11 to 2007-08-04 (NODC Accession 0083633)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NCEI Accession 0083633 includes Surface underway, chemical, discrete sample, meteorological, optical, physical and profile data collected from NOAA Ship RONALD H....

  11. Partial pressure (or fugacity) of carbon dioxide, dissolved inorganic carbon, alkalinity, temperature, salinity and other variables collected from discrete sample, profile and underway - surface observations using CTD, Carbon dioxide (CO2) gas analyzer and other instruments from the THOMAS G. THOMPSON in the Coastal Waters of SE Alaska, Gulf of Alaska and North Pacific Ocean from 1993-05-15 to 1993-06-26 (NODC Accession 0115172)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NODC Accession 0115172 includes chemical, discrete sample, meteorological, physical, profile and underway - surface data collected from THOMAS G. THOMPSON in the...

  12. DISCRETE MATHEMATICS/NUMBER THEORY

    OpenAIRE

    Mrs. Manju Devi*

    2017-01-01

    Discrete mathematics is the study of mathematical structures that are fundamentally discrete rather than continuous. In contrast to real numbers that have the property of varying "smoothly", the objects studied in discrete mathematics such as integers, graphs, and statements do not vary smoothly in this way, but have distinct, separated values. Discrete mathematics therefore excludes topics in "continuous mathematics" such as calculus and analysis. Discrete objects can often be enumerated by ...

  13. Discrete-Event Simulation

    Directory of Open Access Journals (Sweden)

    Prateek Sharma

    2015-04-01

    Full Text Available Abstract Simulation can be regarded as the emulation of the behavior of a real-world system over an interval of time. The process of simulation relies upon the generation of the history of a system and then analyzing that history to predict the outcome and improve the working of real systems. Simulations can be of various kinds but the topic of interest here is one of the most important kind of simulation which is Discrete-Event Simulation which models the system as a discrete sequence of events in time. So this paper aims at introducing about Discrete-Event Simulation and analyzing how it is beneficial to the real world systems.

  14. Discrete systems and integrability

    CERN Document Server

    Hietarinta, J; Nijhoff, F W

    2016-01-01

    This first introductory text to discrete integrable systems introduces key notions of integrability from the vantage point of discrete systems, also making connections with the continuous theory where relevant. While treating the material at an elementary level, the book also highlights many recent developments. Topics include: Darboux and Bäcklund transformations; difference equations and special functions; multidimensional consistency of integrable lattice equations; associated linear problems (Lax pairs); connections with Padé approximants and convergence algorithms; singularities and geometry; Hirota's bilinear formalism for lattices; intriguing properties of discrete Painlevé equations; and the novel theory of Lagrangian multiforms. The book builds the material in an organic way, emphasizing interconnections between the various approaches, while the exposition is mostly done through explicit computations on key examples. Written by respected experts in the field, the numerous exercises and the thoroug...

  15. Computing the Gromov hyperbolicity of a discrete metric space

    KAUST Repository

    Fournier, Hervé ; Ismail, Anas; Vigneron, Antoine E.

    2015-01-01

    We give exact and approximation algorithms for computing the Gromov hyperbolicity of an n-point discrete metric space. We observe that computing the Gromov hyperbolicity from a fixed base-point reduces to a (max,min) matrix product. Hence, using

  16. Cycles of a discrete time bipolar artificial neural network

    International Nuclear Information System (INIS)

    Cheng Suisun; Chen, J.-S.; Yueh, W.-C.

    2009-01-01

    A discrete time bipolar neural network depending on two parameters is studied. It is observed that its dynamical behaviors can be classified into six cases. For each case, the long time behaviors can be summarized in terms of fixed points, periodic points, basin of attractions, and related initial distributions. Mathematical reasons are supplied for these observations and applications in cellular automata are illustrated.

  17. A Progressive Approach to Discrete Trial Teaching: Some Current Guidelines

    Science.gov (United States)

    Leaf, Justin B.; Cihon, Joseph H.; Leaf, Ronald; McEachin, John; Taubman, Mitchell

    2016-01-01

    Discrete trial teaching (DTT) is one of the cornerstones of applied behavior analysis (ABA) based interventions. Conventionally, DTT is commonly implemented within a prescribed, fixed manner in which the therapist is governed by a strict set of rules. In contrast to conventional DTT, a progressive approach to DTT allows the therapist to remain…

  18. Discrete Sparse Coding.

    Science.gov (United States)

    Exarchakis, Georgios; Lücke, Jörg

    2017-11-01

    Sparse coding algorithms with continuous latent variables have been the subject of a large number of studies. However, discrete latent spaces for sparse coding have been largely ignored. In this work, we study sparse coding with latents described by discrete instead of continuous prior distributions. We consider the general case in which the latents (while being sparse) can take on any value of a finite set of possible values and in which we learn the prior probability of any value from data. This approach can be applied to any data generated by discrete causes, and it can be applied as an approximation of continuous causes. As the prior probabilities are learned, the approach then allows for estimating the prior shape without assuming specific functional forms. To efficiently train the parameters of our probabilistic generative model, we apply a truncated expectation-maximization approach (expectation truncation) that we modify to work with a general discrete prior. We evaluate the performance of the algorithm by applying it to a variety of tasks: (1) we use artificial data to verify that the algorithm can recover the generating parameters from a random initialization, (2) use image patches of natural images and discuss the role of the prior for the extraction of image components, (3) use extracellular recordings of neurons to present a novel method of analysis for spiking neurons that includes an intuitive discretization strategy, and (4) apply the algorithm on the task of encoding audio waveforms of human speech. The diverse set of numerical experiments presented in this letter suggests that discrete sparse coding algorithms can scale efficiently to work with realistic data sets and provide novel statistical quantities to describe the structure of the data.

  19. Effects of Macroion Geometry and Charge Discretization in Charge Reversal

    OpenAIRE

    Mukherjee, Arup K.

    2008-01-01

    The effects of discrete macroion surface charge distribution and valences of these surface charges and counterions on charge reversal have been studied for macroions of three different geometries and compared with those of continuous surface charge distributions. The geometry of the macroion has been observed to play an important role in overcharging in these cases. The interplay of valences of discrete microions and counterions have noticeable effects on overcharging efficiency. For some val...

  20. Introductory discrete mathematics

    CERN Document Server

    Balakrishnan, V K

    2010-01-01

    This concise text offers an introduction to discrete mathematics for undergraduate students in computer science and mathematics. Mathematics educators consider it vital that their students be exposed to a course in discrete methods that introduces them to combinatorial mathematics and to algebraic and logical structures focusing on the interplay between computer science and mathematics. The present volume emphasizes combinatorics, graph theory with applications to some stand network optimization problems, and algorithms to solve these problems.Chapters 0-3 cover fundamental operations involv

  1. Discrete-Event Simulation

    OpenAIRE

    Prateek Sharma

    2015-01-01

    Abstract Simulation can be regarded as the emulation of the behavior of a real-world system over an interval of time. The process of simulation relies upon the generation of the history of a system and then analyzing that history to predict the outcome and improve the working of real systems. Simulations can be of various kinds but the topic of interest here is one of the most important kind of simulation which is Discrete-Event Simulation which models the system as a discrete sequence of ev...

  2. Surface targeting of the dopamine transporter involves discrete epitopes in the distal C terminus but does not require canonical PDZ domain interactions.

    Science.gov (United States)

    Bjerggaard, Christian; Fog, Jacob U; Hastrup, Hanne; Madsen, Kenneth; Loland, Claus J; Javitch, Jonathan A; Gether, Ulrik

    2004-08-04

    The human dopamine transporter (hDAT) contains a C-terminal type 2 PDZ (postsynaptic density 95/Discs large/zona occludens 1) domain-binding motif (LKV) known to interact with PDZ domain proteins such as PICK1 (protein interacting with C-kinase 1). As reported previously, we found that, after deletion of this motif, hDAT was retained in the endoplasmic reticulum (ER) of human embryonic kidney (HEK) 293 and Neuro2A cells, suggesting that PDZ domain interactions might be critical for hDAT targeting. Nonetheless, substitution of LKV with SLL, the type 1 PDZ-binding sequence from the beta2-adrenergic receptor, did not disrupt plasma membrane targeting. Moreover, the addition of an alanine to the hDAT C terminus (+Ala), resulting in an LKVA termination sequence, or substitution of LKV with alanines (3xAla_618-620) prevented neither plasma membrane targeting nor targeting into sprouting neurites of differentiated N2A cells. The inability of +Ala and 3xAla_618-620 to bind PDZ domains was confirmed by lack of colocalization with PICK1 in cotransfected HEK293 cells and by the inability of corresponding C-terminal fusion proteins to pull down purified PICK1. Thus, although residues in the hDAT C terminus are indispensable for proper targeting, PDZ domain interactions are not required. By progressive substitutions with beta2-adrenergic receptor sequence, and by triple-alanine substitutions in the hDAT C terminus, we examined the importance of epitopes preceding the LKV motif. Substitution of RHW(615-617) with alanines caused retention of the transporter in the ER despite preserved ability of this mutant to bind PICK1. We propose dual roles of the hDAT C terminus: a role independent of PDZ interactions for ER export and surface targeting, and a not fully clarified role involving PDZ interactions with proteins such as PICK1.

  3. Discrete-Time Systems

    Indian Academy of Sciences (India)

    We also describe discrete-time systems in terms of difference ... A more modern alternative, especially for larger systems, is to convert ... In other words, ..... picture?) State-variable equations are also called state-space equations because the ...

  4. Discrete Lorentzian quantum gravity

    NARCIS (Netherlands)

    Loll, R.

    2000-01-01

    Just as for non-abelian gauge theories at strong coupling, discrete lattice methods are a natural tool in the study of non-perturbative quantum gravity. They have to reflect the fact that the geometric degrees of freedom are dynamical, and that therefore also the lattice theory must be formulated

  5. What Is Discrete Mathematics?

    Science.gov (United States)

    Sharp, Karen Tobey

    This paper cites information received from a number of sources, e.g., mathematics teachers in two-year colleges, publishers, and convention speakers, about the nature of discrete mathematics and about what topics a course in this subject should contain. Note is taken of the book edited by Ralston and Young which discusses the future of college…

  6. Indirect adaptive control of discrete chaotic systems

    International Nuclear Information System (INIS)

    Salarieh, Hassan; Shahrokhi, Mohammad

    2007-01-01

    In this paper an indirect adaptive control algorithm is proposed to stabilize the fixed points of discrete chaotic systems. It is assumed that the functionality of the chaotic dynamics is known but the system parameters are unknown. This assumption is usually applicable to many chaotic systems, such as the Henon map, logistic and many other nonlinear maps. Using the recursive-least squares technique, the system parameters are identified and based on the feedback linearization method an adaptive controller is designed for stabilizing the fixed points, or unstable periodic orbits of the chaotic maps. The stability of the proposed scheme has been shown and the effectiveness of the control algorithm has been demonstrated through computer simulations

  7. Digital and discrete geometry theory and algorithms

    CERN Document Server

    Chen, Li

    2014-01-01

    This book provides comprehensive coverage of the modern methods for geometric problems in the computing sciences. It also covers concurrent topics in data sciences including geometric processing, manifold learning, Google search, cloud data, and R-tree for wireless networks and BigData.The author investigates digital geometry and its related constructive methods in discrete geometry, offering detailed methods and algorithms. The book is divided into five sections: basic geometry; digital curves, surfaces and manifolds; discretely represented objects; geometric computation and processing; and a

  8. Least fixed points revisited

    NARCIS (Netherlands)

    J.W. de Bakker (Jaco)

    1975-01-01

    textabstractParameter mechanisms for recursive procedures are investigated. Contrary to the view of Manna et al., it is argued that both call-by-value and call-by-name mechanisms yield the least fixed points of the functionals determined by the bodies of the procedures concerned. These functionals

  9. Bacterial adhesion of porphyromonas gingivalis on provisional fixed prosthetic materials

    Directory of Open Access Journals (Sweden)

    Mustafa Zortuk

    2010-01-01

    Conclusion : The quantity of bacterial adhesion and surface roughness differed among the assessed provisional fixed prosthodontic materials. The light-polymerized provisional material Revotek LC had rougher surface and more bacterial adhesion compared with the others.

  10. Characterizing fixed points

    Directory of Open Access Journals (Sweden)

    Sanjo Zlobec

    2017-04-01

    Full Text Available A set of sufficient conditions which guarantee the existence of a point x⋆ such that f(x⋆ = x⋆ is called a "fixed point theorem". Many such theorems are named after well-known mathematicians and economists. Fixed point theorems are among most useful ones in applied mathematics, especially in economics and game theory. Particularly important theorem in these areas is Kakutani's fixed point theorem which ensures existence of fixed point for point-to-set mappings, e.g., [2, 3, 4]. John Nash developed and applied Kakutani's ideas to prove the existence of (what became known as "Nash equilibrium" for finite games with mixed strategies for any number of players. This work earned him a Nobel Prize in Economics that he shared with two mathematicians. Nash's life was dramatized in the movie "Beautiful Mind" in 2001. In this paper, we approach the system f(x = x differently. Instead of studying existence of its solutions our objective is to determine conditions which are both necessary and sufficient that an arbitrary point x⋆ is a fixed point, i.e., that it satisfies f(x⋆ = x⋆. The existence of solutions for continuous function f of the single variable is easy to establish using the Intermediate Value Theorem of Calculus. However, characterizing fixed points x⋆, i.e., providing answers to the question of finding both necessary and sufficient conditions for an arbitrary given x⋆ to satisfy f(x⋆ = x⋆, is not simple even for functions of the single variable. It is possible that constructive answers do not exist. Our objective is to find them. Our work may require some less familiar tools. One of these might be the "quadratic envelope characterization of zero-derivative point" recalled in the next section. The results are taken from the author's current research project "Studying the Essence of Fixed Points". They are believed to be original. The author has received several feedbacks on the preliminary report and on parts of the project

  11. Discrete mathematics with applications

    CERN Document Server

    Koshy, Thomas

    2003-01-01

    This approachable text studies discrete objects and the relationsips that bind them. It helps students understand and apply the power of discrete math to digital computer systems and other modern applications. It provides excellent preparation for courses in linear algebra, number theory, and modern/abstract algebra and for computer science courses in data structures, algorithms, programming languages, compilers, databases, and computation.* Covers all recommended topics in a self-contained, comprehensive, and understandable format for students and new professionals * Emphasizes problem-solving techniques, pattern recognition, conjecturing, induction, applications of varying nature, proof techniques, algorithm development and correctness, and numeric computations* Weaves numerous applications into the text* Helps students learn by doing with a wealth of examples and exercises: - 560 examples worked out in detail - More than 3,700 exercises - More than 150 computer assignments - More than 600 writing projects*...

  12. Discrete and computational geometry

    CERN Document Server

    Devadoss, Satyan L

    2011-01-01

    Discrete geometry is a relatively new development in pure mathematics, while computational geometry is an emerging area in applications-driven computer science. Their intermingling has yielded exciting advances in recent years, yet what has been lacking until now is an undergraduate textbook that bridges the gap between the two. Discrete and Computational Geometry offers a comprehensive yet accessible introduction to this cutting-edge frontier of mathematics and computer science. This book covers traditional topics such as convex hulls, triangulations, and Voronoi diagrams, as well as more recent subjects like pseudotriangulations, curve reconstruction, and locked chains. It also touches on more advanced material, including Dehn invariants, associahedra, quasigeodesics, Morse theory, and the recent resolution of the Poincaré conjecture. Connections to real-world applications are made throughout, and algorithms are presented independently of any programming language. This richly illustrated textbook also fe...

  13. Lectures on discrete geometry

    CERN Document Server

    2002-01-01

    Discrete geometry investigates combinatorial properties of configurations of geometric objects. To a working mathematician or computer scientist, it offers sophisticated results and techniques of great diversity and it is a foundation for fields such as computational geometry or combinatorial optimization. This book is primarily a textbook introduction to various areas of discrete geometry. In each area, it explains several key results and methods, in an accessible and concrete manner. It also contains more advanced material in separate sections and thus it can serve as a collection of surveys in several narrower subfields. The main topics include: basics on convex sets, convex polytopes, and hyperplane arrangements; combinatorial complexity of geometric configurations; intersection patterns and transversals of convex sets; geometric Ramsey-type results; polyhedral combinatorics and high-dimensional convexity; and lastly, embeddings of finite metric spaces into normed spaces. Jiri Matousek is Professor of Com...

  14. Time Discretization Techniques

    KAUST Repository

    Gottlieb, S.

    2016-10-12

    The time discretization of hyperbolic partial differential equations is typically the evolution of a system of ordinary differential equations obtained by spatial discretization of the original problem. Methods for this time evolution include multistep, multistage, or multiderivative methods, as well as a combination of these approaches. The time step constraint is mainly a result of the absolute stability requirement, as well as additional conditions that mimic physical properties of the solution, such as positivity or total variation stability. These conditions may be required for stability when the solution develops shocks or sharp gradients. This chapter contains a review of some of the methods historically used for the evolution of hyperbolic PDEs, as well as cutting edge methods that are now commonly used.

  15. Discrete variational methods and their application to electronic structures

    International Nuclear Information System (INIS)

    Ellis, D.E.

    1987-01-01

    Some general concepts concerning Discrete Variational methods are developed and applied to problems of determination of eletronic spectra, charge densities and bonding of free molecules, surface-chemisorbed species and bulk solids. (M.W.O.) [pt

  16. Discrete pseudo-integrals

    Czech Academy of Sciences Publication Activity Database

    Mesiar, Radko; Li, J.; Pap, E.

    2013-01-01

    Roč. 54, č. 3 (2013), s. 357-364 ISSN 0888-613X R&D Projects: GA ČR GAP402/11/0378 Institutional support: RVO:67985556 Keywords : concave integral * pseudo-addition * pseudo-multiplication Subject RIV: BA - General Mathematics Impact factor: 1.977, year: 2013 http://library.utia.cas.cz/separaty/2013/E/mesiar-discrete pseudo-integrals.pdf

  17. Discrete variational Hamiltonian mechanics

    International Nuclear Information System (INIS)

    Lall, S; West, M

    2006-01-01

    The main contribution of this paper is to present a canonical choice of a Hamiltonian theory corresponding to the theory of discrete Lagrangian mechanics. We make use of Lagrange duality and follow a path parallel to that used for construction of the Pontryagin principle in optimal control theory. We use duality results regarding sensitivity and separability to show the relationship between generating functions and symplectic integrators. We also discuss connections to optimal control theory and numerical algorithms

  18. Discrete Routh reduction

    International Nuclear Information System (INIS)

    Jalnapurkar, Sameer M; Leok, Melvin; Marsden, Jerrold E; West, Matthew

    2006-01-01

    This paper develops the theory of Abelian Routh reduction for discrete mechanical systems and applies it to the variational integration of mechanical systems with Abelian symmetry. The reduction of variational Runge-Kutta discretizations is considered, as well as the extent to which symmetry reduction and discretization commute. These reduced methods allow the direct simulation of dynamical features such as relative equilibria and relative periodic orbits that can be obscured or difficult to identify in the unreduced dynamics. The methods are demonstrated for the dynamics of an Earth orbiting satellite with a non-spherical J 2 correction, as well as the double spherical pendulum. The J 2 problem is interesting because in the unreduced picture, geometric phases inherent in the model and those due to numerical discretization can be hard to distinguish, but this issue does not appear in the reduced algorithm, where one can directly observe interesting dynamical structures in the reduced phase space (the cotangent bundle of shape space), in which the geometric phases have been removed. The main feature of the double spherical pendulum example is that it has a non-trivial magnetic term in its reduced symplectic form. Our method is still efficient as it can directly handle the essential non-canonical nature of the symplectic structure. In contrast, a traditional symplectic method for canonical systems could require repeated coordinate changes if one is evoking Darboux' theorem to transform the symplectic structure into canonical form, thereby incurring additional computational cost. Our method allows one to design reduced symplectic integrators in a natural way, despite the non-canonical nature of the symplectic structure

  19. Discrete port-Hamiltonian systems

    NARCIS (Netherlands)

    Talasila, V.; Clemente-Gallardo, J.; Schaft, A.J. van der

    2006-01-01

    Either from a control theoretic viewpoint or from an analysis viewpoint it is necessary to convert smooth systems to discrete systems, which can then be implemented on computers for numerical simulations. Discrete models can be obtained either by discretizing a smooth model, or by directly modeling

  20. A paradigm for discrete physics

    International Nuclear Information System (INIS)

    Noyes, H.P.; McGoveran, D.; Etter, T.; Manthey, M.J.; Gefwert, C.

    1987-01-01

    An example is outlined for constructing a discrete physics using as a starting point the insight from quantum physics that events are discrete, indivisible and non-local. Initial postulates are finiteness, discreteness, finite computability, absolute nonuniqueness (i.e., homogeneity in the absence of specific cause) and additivity

  1. Vilified and Fixed

    DEFF Research Database (Denmark)

    Jensen, Thessa; Westberg, Lysa

    , and imbalances of power between scholars and journalists on one side, and fans on the other are not rare occurrences. An analysis of a number of recent news articles, scholarly works, and websites, shows how the attempt of fixing fandom still prevails. Like Said's view on how the Orient is treated, fandom...... and tween website", 'Teen' managed to outrage fans. It took days and hundreds of comments, tweets, and mails to the publishers, before the article was taken down. Vilification in scholarly works and the media may have significantly lessened in recent years. Still, misunderstandings, applied exoticism...... is similarly exotisised, incorporated, and fixed. Scholars explain how to become better fans, attempting authority over fandom by applying rules to a culture, which already has their own. This, the notion of the 'better fan', devalues the existing discourses, rules, and traditions within fandom. The expert...

  2. Two new discrete integrable systems

    International Nuclear Information System (INIS)

    Chen Xiao-Hong; Zhang Hong-Qing

    2013-01-01

    In this paper, we focus on the construction of new (1+1)-dimensional discrete integrable systems according to a subalgebra of loop algebra à 1 . By designing two new (1+1)-dimensional discrete spectral problems, two new discrete integrable systems are obtained, namely, a 2-field lattice hierarchy and a 3-field lattice hierarchy. When deriving the two new discrete integrable systems, we find the generalized relativistic Toda lattice hierarchy and the generalized modified Toda lattice hierarchy. Moreover, we also obtain the Hamiltonian structures of the two lattice hierarchies by means of the discrete trace identity

  3. Raman imaging using fixed bandpass filter

    Science.gov (United States)

    Landström, L.; Kullander, F.; Lundén, H.; Wästerby, P.

    2017-05-01

    By using fixed narrow band pass optical filtering and scanning the laser excitation wavelength, hyperspectral Raman imaging could be achieved. Experimental, proof-of-principle results from the Chemical Warfare Agent (CWA) tabun (GA) as well as the common CWA simulant tributyl phosphate (TBP) on different surfaces/substrates are presented and discussed.

  4. Asymptotic analysis of spatial discretizations in implicit Monte Carlo

    International Nuclear Information System (INIS)

    Densmore, Jeffery D.

    2009-01-01

    We perform an asymptotic analysis of spatial discretizations in Implicit Monte Carlo (IMC). We consider two asymptotic scalings: one that represents a time step that resolves the mean-free time, and one that corresponds to a fixed, optically large time step. We show that only the latter scaling results in a valid spatial discretization of the proper diffusion equation, and thus we conclude that IMC only yields accurate solutions when using optically large spatial cells if time steps are also optically large. We demonstrate the validity of our analysis with a set of numerical examples.

  5. Symmetric discrete coherent states for n-qubits

    International Nuclear Information System (INIS)

    Muñoz, C; Klimov, A B; Sánchez-Soto, L L

    2012-01-01

    We put forward a method of constructing discrete coherent states for n qubits. After establishing appropriate displacement operators, the coherent states appear as displaced versions of a fiducial vector that is fixed by imposing a number of natural symmetry requirements on its Q-function. Using these coherent states, we establish a partial order in the discrete phase space, which allows us to picture some n-qubit states as apparent distributions. We also analyze correlations in terms of sums of squared Q-functions. This article is part of a special issue of Journal of Physics A: Mathematical and Theoretical devoted to ‘Coherent states: mathematical and physical aspects’. (paper)

  6. Discrete dark matter

    CERN Document Server

    Hirsch, M; Peinado, E; Valle, J W F

    2010-01-01

    We propose a new motivation for the stability of dark matter (DM). We suggest that the same non-abelian discrete flavor symmetry which accounts for the observed pattern of neutrino oscillations, spontaneously breaks to a Z2 subgroup which renders DM stable. The simplest scheme leads to a scalar doublet DM potentially detectable in nuclear recoil experiments, inverse neutrino mass hierarchy, hence a neutrinoless double beta decay rate accessible to upcoming searches, while reactor angle equal to zero gives no CP violation in neutrino oscillations.

  7. Discrete Dynamics Lab

    Science.gov (United States)

    Wuensche, Andrew

    DDLab is interactive graphics software for creating, visualizing, and analyzing many aspects of Cellular Automata, Random Boolean Networks, and Discrete Dynamical Networks in general and studying their behavior, both from the time-series perspective — space-time patterns, and from the state-space perspective — attractor basins. DDLab is relevant to research, applications, and education in the fields of complexity, self-organization, emergent phenomena, chaos, collision-based computing, neural networks, content addressable memory, genetic regulatory networks, dynamical encryption, generative art and music, and the study of the abstract mathematical/physical/dynamical phenomena in their own right.

  8. Finite discrete field theory

    International Nuclear Information System (INIS)

    Souza, Manoelito M. de

    1997-01-01

    We discuss the physical meaning and the geometric interpretation of implementation in classical field theories. The origin of infinities and other inconsistencies in field theories is traced to fields defined with support on the light cone; a finite and consistent field theory requires a light-cone generator as the field support. Then, we introduce a classical field theory with support on the light cone generators. It results on a description of discrete (point-like) interactions in terms of localized particle-like fields. We find the propagators of these particle-like fields and discuss their physical meaning, properties and consequences. They are conformally invariant, singularity-free, and describing a manifestly covariant (1 + 1)-dimensional dynamics in a (3 = 1) spacetime. Remarkably this conformal symmetry remains even for the propagation of a massive field in four spacetime dimensions. We apply this formalism to Classical electrodynamics and to the General Relativity Theory. The standard formalism with its distributed fields is retrieved in terms of spacetime average of the discrete field. Singularities are the by-products of the averaging process. This new formalism enlighten the meaning and the problem of field theory, and may allow a softer transition to a quantum theory. (author)

  9. Fixed target beams

    CERN Document Server

    Kain, V; Cettour-Cave, S; Cornelis, K; Fraser, M A; Gatignon, L; Goddard, B; Velotti, F

    2017-01-01

    The CERN SPS (Super Proton Synchrotron) serves asLHC injector and provides beam for the North Area fixedtarget experiments. At low energy, the vertical acceptancebecomes critical with high intensity large emittance fixed tar-get beams. Optimizing the vertical available aperture is a keyingredient to optimize transmission and reduce activationaround the ring. During the 2016 run a tool was developed toprovide an automated local aperture scan around the entirering.The flux of particles slow extracted with the1/3inte-ger resonance from the Super Proton Synchrotron at CERNshould ideally be constant over the length of the extractionplateau, for optimum use of the beam by the fixed target ex-periments in the North Area. The extracted intensity is con-trolled in feed-forward correction of the horizontal tune viathe main SPS quadrupoles. The Mains power supply noiseat 50 Hz and harmonics is also corrected in feed-forwardby small amplitude tune modulation at the respective fre-quencies with a dedicated additional quad...

  10. Flexible Visual Quality Inspection in Discrete Manufacturing

    OpenAIRE

    Petković, Tomislav; Jurić, Darko; Lončarić, Sven

    2013-01-01

    Most visual quality inspections in discrete manufacturing are composed of length, surface, angle or intensity measurements. Those are implemented as end-user configurable inspection tools that should not require an image processing expert to set up. Currently available software solutions providing such capability use a flowchart based programming environment, but do not fully address an inspection flowchart robustness and can require a redefinition of the flowchart if a small variation is int...

  11. Discrete Biogeography Based Optimization for Feature Selection in Molecular Signatures.

    Science.gov (United States)

    Liu, Bo; Tian, Meihong; Zhang, Chunhua; Li, Xiangtao

    2015-04-01

    Biomarker discovery from high-dimensional data is a complex task in the development of efficient cancer diagnoses and classification. However, these data are usually redundant and noisy, and only a subset of them present distinct profiles for different classes of samples. Thus, selecting high discriminative genes from gene expression data has become increasingly interesting in the field of bioinformatics. In this paper, a discrete biogeography based optimization is proposed to select the good subset of informative gene relevant to the classification. In the proposed algorithm, firstly, the fisher-markov selector is used to choose fixed number of gene data. Secondly, to make biogeography based optimization suitable for the feature selection problem; discrete migration model and discrete mutation model are proposed to balance the exploration and exploitation ability. Then, discrete biogeography based optimization, as we called DBBO, is proposed by integrating discrete migration model and discrete mutation model. Finally, the DBBO method is used for feature selection, and three classifiers are used as the classifier with the 10 fold cross-validation method. In order to show the effective and efficiency of the algorithm, the proposed algorithm is tested on four breast cancer dataset benchmarks. Comparison with genetic algorithm, particle swarm optimization, differential evolution algorithm and hybrid biogeography based optimization, experimental results demonstrate that the proposed method is better or at least comparable with previous method from literature when considering the quality of the solutions obtained. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Poisson hierarchy of discrete strings

    International Nuclear Information System (INIS)

    Ioannidou, Theodora; Niemi, Antti J.

    2016-01-01

    The Poisson geometry of a discrete string in three dimensional Euclidean space is investigated. For this the Frenet frames are converted into a spinorial representation, the discrete spinor Frenet equation is interpreted in terms of a transfer matrix formalism, and Poisson brackets are introduced in terms of the spinor components. The construction is then generalised, in a self-similar manner, into an infinite hierarchy of Poisson algebras. As an example, the classical Virasoro (Witt) algebra that determines reparametrisation diffeomorphism along a continuous string, is identified as a particular sub-algebra, in the hierarchy of the discrete string Poisson algebra. - Highlights: • Witt (classical Virasoro) algebra is derived in the case of discrete string. • Infinite dimensional hierarchy of Poisson bracket algebras is constructed for discrete strings. • Spinor representation of discrete Frenet equations is developed.

  13. Poisson hierarchy of discrete strings

    Energy Technology Data Exchange (ETDEWEB)

    Ioannidou, Theodora, E-mail: ti3@auth.gr [Faculty of Civil Engineering, School of Engineering, Aristotle University of Thessaloniki, 54249, Thessaloniki (Greece); Niemi, Antti J., E-mail: Antti.Niemi@physics.uu.se [Department of Physics and Astronomy, Uppsala University, P.O. Box 803, S-75108, Uppsala (Sweden); Laboratoire de Mathematiques et Physique Theorique CNRS UMR 6083, Fédération Denis Poisson, Université de Tours, Parc de Grandmont, F37200, Tours (France); Department of Physics, Beijing Institute of Technology, Haidian District, Beijing 100081 (China)

    2016-01-28

    The Poisson geometry of a discrete string in three dimensional Euclidean space is investigated. For this the Frenet frames are converted into a spinorial representation, the discrete spinor Frenet equation is interpreted in terms of a transfer matrix formalism, and Poisson brackets are introduced in terms of the spinor components. The construction is then generalised, in a self-similar manner, into an infinite hierarchy of Poisson algebras. As an example, the classical Virasoro (Witt) algebra that determines reparametrisation diffeomorphism along a continuous string, is identified as a particular sub-algebra, in the hierarchy of the discrete string Poisson algebra. - Highlights: • Witt (classical Virasoro) algebra is derived in the case of discrete string. • Infinite dimensional hierarchy of Poisson bracket algebras is constructed for discrete strings. • Spinor representation of discrete Frenet equations is developed.

  14. Fixed term employment

    International Nuclear Information System (INIS)

    Durant, B.W.; Schonberner, M.J.

    1999-01-01

    A series of brief notes were included with this presentation which highlighted certain aspects of contract management. Several petroleum companies have realized the benefits of taking advantage of contract personnel to control fixed G and A, manage the impacts on their organization, contain costs, to manage termination costs, and to fill gaps in lean personnel rosters. An independent contractor was described as being someone who is self employed, often with a variety of work experiences. The tax benefits and flexibility of contractor personnel were also described. Some liability aspects of hiring an independent contractor were also reviewed. The courts have developed the following 4 tests to help determine whether an individual is an employee or an independent contractor: (1) the control test, (2) the business integration test, (3) specific result test, and (4) the economic reality test

  15. Principles of discrete time mechanics

    CERN Document Server

    Jaroszkiewicz, George

    2014-01-01

    Could time be discrete on some unimaginably small scale? Exploring the idea in depth, this unique introduction to discrete time mechanics systematically builds the theory up from scratch, beginning with the historical, physical and mathematical background to the chronon hypothesis. Covering classical and quantum discrete time mechanics, this book presents all the tools needed to formulate and develop applications of discrete time mechanics in a number of areas, including spreadsheet mechanics, classical and quantum register mechanics, and classical and quantum mechanics and field theories. A consistent emphasis on contextuality and the observer-system relationship is maintained throughout.

  16. Fixed Access Network Sharing

    Science.gov (United States)

    Cornaglia, Bruno; Young, Gavin; Marchetta, Antonio

    2015-12-01

    Fixed broadband network deployments are moving inexorably to the use of Next Generation Access (NGA) technologies and architectures. These NGA deployments involve building fiber infrastructure increasingly closer to the customer in order to increase the proportion of fiber on the customer's access connection (Fibre-To-The-Home/Building/Door/Cabinet… i.e. FTTx). This increases the speed of services that can be sold and will be increasingly required to meet the demands of new generations of video services as we evolve from HDTV to "Ultra-HD TV" with 4k and 8k lines of video resolution. However, building fiber access networks is a costly endeavor. It requires significant capital in order to cover any significant geographic coverage. Hence many companies are forming partnerships and joint-ventures in order to share the NGA network construction costs. One form of such a partnership involves two companies agreeing to each build to cover a certain geographic area and then "cross-selling" NGA products to each other in order to access customers within their partner's footprint (NGA coverage area). This is tantamount to a bi-lateral wholesale partnership. The concept of Fixed Access Network Sharing (FANS) is to address the possibility of sharing infrastructure with a high degree of flexibility for all network operators involved. By providing greater configuration control over the NGA network infrastructure, the service provider has a greater ability to define the network and hence to define their product capabilities at the active layer. This gives the service provider partners greater product development autonomy plus the ability to differentiate from each other at the active network layer.

  17. Dark discrete gauge symmetries

    International Nuclear Information System (INIS)

    Batell, Brian

    2011-01-01

    We investigate scenarios in which dark matter is stabilized by an Abelian Z N discrete gauge symmetry. Models are surveyed according to symmetries and matter content. Multicomponent dark matter arises when N is not prime and Z N contains one or more subgroups. The dark sector interacts with the visible sector through the renormalizable kinetic mixing and Higgs portal operators, and we highlight the basic phenomenology in these scenarios. In particular, multiple species of dark matter can lead to an unconventional nuclear recoil spectrum in direct detection experiments, while the presence of new light states in the dark sector can dramatically affect the decays of the Higgs at the Tevatron and LHC, thus providing a window into the gauge origin of the stability of dark matter.

  18. Linear deformations of discrete groups and constructions of multivalued groups

    International Nuclear Information System (INIS)

    Yagodovskii, Petr V

    2000-01-01

    We construct deformations of discrete multivalued groups described as special deformations of their group algebras in the class of finite-dimensional associative algebras. We show that the deformations of ordinary groups producing multivalued groups are defined by cocycles with coefficients in the group algebra of the original group and obtain classification theorems on these deformations. We indicate a connection between the linear deformations of discrete groups introduced in this paper and the well-known constructions of multivalued groups. We describe the manifold of three-dimensional associative commutative algebras with identity element, fixed basis, and a constant number of values. The group algebras of n-valued groups of order three (three-dimensional n-group algebras) form a discrete set in this manifold

  19. Infant differential behavioral responding to discrete emotions.

    Science.gov (United States)

    Walle, Eric A; Reschke, Peter J; Camras, Linda A; Campos, Joseph J

    2017-10-01

    Emotional communication regulates the behaviors of social partners. Research on individuals' responding to others' emotions typically compares responses to a single negative emotion compared with responses to a neutral or positive emotion. Furthermore, coding of such responses routinely measure surface level features of the behavior (e.g., approach vs. avoidance) rather than its underlying function (e.g., the goal of the approach or avoidant behavior). This investigation examined infants' responding to others' emotional displays across 5 discrete emotions: joy, sadness, fear, anger, and disgust. Specifically, 16-, 19-, and 24-month-old infants observed an adult communicate a discrete emotion toward a stimulus during a naturalistic interaction. Infants' responses were coded to capture the function of their behaviors (e.g., exploration, prosocial behavior, and security seeking). The results revealed a number of instances indicating that infants use different functional behaviors in response to discrete emotions. Differences in behaviors across emotions were clearest in the 24-month-old infants, though younger infants also demonstrated some differential use of behaviors in response to discrete emotions. This is the first comprehensive study to identify differences in how infants respond with goal-directed behaviors to discrete emotions. Additionally, the inclusion of a function-based coding scheme and interpersonal paradigms may be informative for future emotion research with children and adults. Possible developmental accounts for the observed behaviors and the benefits of coding techniques emphasizing the function of social behavior over their form are discussed. (PsycINFO Database Record (c) 2017 APA, all rights reserved).

  20. Control of Discrete Event Systems

    NARCIS (Netherlands)

    Smedinga, Rein

    1989-01-01

    Systemen met discrete gebeurtenissen spelen in vele gebieden een rol. In dit proefschrift staat de volgorde van gebeurtenissen centraal en worden tijdsaspecten buiten beschouwing gelaten. In dat geval kunnen systemen met discrete gebeurtenissen goed worden gemodelleerd door gebruik te maken van

  1. Discrete Mathematics and Its Applications

    Science.gov (United States)

    Oxley, Alan

    2010-01-01

    The article gives ideas that lecturers of undergraduate Discrete Mathematics courses can use in order to make the subject more interesting for students and encourage them to undertake further studies in the subject. It is possible to teach Discrete Mathematics with little or no reference to computing. However, students are more likely to be…

  2. Discrete Mathematics and Curriculum Reform.

    Science.gov (United States)

    Kenney, Margaret J.

    1996-01-01

    Defines discrete mathematics as the mathematics necessary to effect reasoned decision making in finite situations and explains how its use supports the current view of mathematics education. Discrete mathematics can be used by curriculum developers to improve the curriculum for students of all ages and abilities. (SLD)

  3. Connections on discrete fibre bundles

    International Nuclear Information System (INIS)

    Manton, N.S.; Cambridge Univ.

    1987-01-01

    A new approach to gauge fields on a discrete space-time is proposed, in which the fundamental object is a discrete version of a principal fibre bundle. If the bundle is twisted, the gauge fields are topologically non-trivial automatically. (orig.)

  4. Discrete dynamics versus analytic dynamics

    DEFF Research Database (Denmark)

    Toxværd, Søren

    2014-01-01

    For discrete classical Molecular dynamics obtained by the “Verlet” algorithm (VA) with the time increment h there exists a shadow Hamiltonian H˜ with energy E˜(h) , for which the discrete particle positions lie on the analytic trajectories for H˜ . Here, we proof that there, independent...... of such an analytic analogy, exists an exact hidden energy invariance E * for VA dynamics. The fact that the discrete VA dynamics has the same invariances as Newtonian dynamics raises the question, which of the formulations that are correct, or alternatively, the most appropriate formulation of classical dynamics....... In this context the relation between the discrete VA dynamics and the (general) discrete dynamics investigated by Lee [Phys. Lett. B122, 217 (1983)] is presented and discussed....

  5. Modern approaches to discrete curvature

    CERN Document Server

    Romon, Pascal

    2017-01-01

     This book provides a valuable glimpse into discrete curvature, a rich new field of research which blends discrete mathematics, differential geometry, probability and computer graphics. It includes a vast collection of ideas and tools which will offer something new to all interested readers. Discrete geometry has arisen as much as a theoretical development as in response to unforeseen challenges coming from applications. Discrete and continuous geometries have turned out to be intimately connected. Discrete curvature is the key concept connecting them through many bridges in numerous fields: metric spaces, Riemannian and Euclidean geometries, geometric measure theory, topology, partial differential equations, calculus of variations, gradient flows, asymptotic analysis, probability, harmonic analysis, graph theory, etc. In spite of its crucial importance both in theoretical mathematics and in applications, up to now, almost no books have provided a coherent outlook on this emerging field.

  6. A study on fixing force generation mechanism of ER gel

    International Nuclear Information System (INIS)

    Tanaka, H; Kakinuma, Y; Aoyama, T; Anzai, H

    2009-01-01

    Electro-rheological Gel (ERG) is a new functional elastomer which changes its surface frictional and adhesive property according to the intensity of applied electrical field. This unique property is called ERG effect. The upper sliding electrode placed on the surface of ERG is fixed by the adhesive effect of ERG under electrical field. Variable fixing forces due to adhesion are generated by this effect. However, relationship between physical factors and generated fixing force has not yet been clarified. In this study, physical mechanism of fixing phenomenon is elucidated experimentally from the view point of frictional force and adhesive force. From the results, empirical equation of generated fixing force is originally derived to establish the theory of ERG effect.

  7. A study on fixing force generation mechanism of ER gel

    Energy Technology Data Exchange (ETDEWEB)

    Tanaka, H; Kakinuma, Y; Aoyama, T [School of Integrated Design Engineering, Keio University, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama 223-8522 (Japan); Anzai, H [Fujikura kasei Co., Ltd., 2-6-15 Shibakouen, Minato-ku, Tokyo (Japan)], E-mail: h-tanaka@ina.sd.keio.ac.jp

    2009-02-01

    Electro-rheological Gel (ERG) is a new functional elastomer which changes its surface frictional and adhesive property according to the intensity of applied electrical field. This unique property is called ERG effect. The upper sliding electrode placed on the surface of ERG is fixed by the adhesive effect of ERG under electrical field. Variable fixing forces due to adhesion are generated by this effect. However, relationship between physical factors and generated fixing force has not yet been clarified. In this study, physical mechanism of fixing phenomenon is elucidated experimentally from the view point of frictional force and adhesive force. From the results, empirical equation of generated fixing force is originally derived to establish the theory of ERG effect.

  8. Discretion and Disproportionality

    Directory of Open Access Journals (Sweden)

    Jason A. Grissom

    2015-12-01

    Full Text Available Students of color are underrepresented in gifted programs relative to White students, but the reasons for this underrepresentation are poorly understood. We investigate the predictors of gifted assignment using nationally representative, longitudinal data on elementary students. We document that even among students with high standardized test scores, Black students are less likely to be assigned to gifted services in both math and reading, a pattern that persists when controlling for other background factors, such as health and socioeconomic status, and characteristics of classrooms and schools. We then investigate the role of teacher discretion, leveraging research from political science suggesting that clients of government services from traditionally underrepresented groups benefit from diversity in the providers of those services, including teachers. Even after conditioning on test scores and other factors, Black students indeed are referred to gifted programs, particularly in reading, at significantly lower rates when taught by non-Black teachers, a concerning result given the relatively low incidence of assignment to own-race teachers among Black students.

  9. Discrete Planck spectra

    International Nuclear Information System (INIS)

    Vlad, Valentin I.; Ionescu-Pallas, Nicholas

    2000-10-01

    The Planck radiation spectrum of ideal cubic and spherical cavities, in the region of small adiabatic invariance, γ = TV 1/3 , is shown to be discrete and strongly dependent on the cavity geometry and temperature. This behavior is the consequence of the random distribution of the state weights in the cubic cavity and of the random overlapping of the successive multiplet components, for the spherical cavity. The total energy (obtained by summing up the exact contributions of the eigenvalues and their weights, for low values of the adiabatic invariance) does not obey any longer Stefan-Boltzmann law. The new law includes a corrective factor depending on γ and imposes a faster decrease of the total energy to zero, for γ → 0. We have defined the double quantized regime both for cubic and spherical cavities by the superior and inferior limits put on the principal quantum numbers or the adiabatic invariance. The total energy of the double quantized cavities shows large differences from the classical calculations over unexpected large intervals, which are measurable and put in evidence important macroscopic quantum effects. (author)

  10. Quasicanonical structure of optimal control in constrained discrete systems

    Science.gov (United States)

    Sieniutycz, S.

    2003-06-01

    This paper considers discrete processes governed by difference rather than differential equations for the state transformation. The basic question asked is if and when Hamiltonian canonical structures are possible in optimal discrete systems. Considering constrained discrete control, general optimization algorithms are derived that constitute suitable theoretical and computational tools when evaluating extremum properties of constrained physical models. The mathematical basis of the general theory is the Bellman method of dynamic programming (DP) and its extension in the form of the so-called Carathéodory-Boltyanski (CB) stage criterion which allows a variation of the terminal state that is otherwise fixed in the Bellman's method. Two relatively unknown, powerful optimization algorithms are obtained: an unconventional discrete formalism of optimization based on a Hamiltonian for multistage systems with unconstrained intervals of holdup time, and the time interval constrained extension of the formalism. These results are general; namely, one arrives at: the discrete canonical Hamilton equations, maximum principles, and (at the continuous limit of processes with free intervals of time) the classical Hamilton-Jacobi theory along with all basic results of variational calculus. Vast spectrum of applications of the theory is briefly discussed.

  11. Boundary Fixed Points, Enhanced Gauge Symmetry and Singular Bundles on K3

    CERN Document Server

    Fuchs, J; Lerche, Wolfgang; Lütken, C A; Schweigert, C; Walcher, J

    2001-01-01

    We investigate certain fixed points in the boundary conformal field theory representation of type IIA D-branes on Gepner points of K3. They correspond geometrically to degenerate brane configurations, and physically lead to enhanced gauge symmetries on the world-volume. Non-abelian gauge groups arise if the stabilizer group of the fixed points is realized projectively, which is similar to D-branes on orbifolds with discrete torsion. Moreover, the fixed point boundary states can be resolved into several irreducible components. These correspond to bound states at threshold and can be viewed as (non-locally free) sub-sheaves of semi-stable sheaves. Thus, the BCFT fixed points appear to carry two-fold geometrical information: on the one hand they probe the boundary of the instanton moduli space on K3, on the other hand they probe discrete torsion in D-geometry.

  12. Fixed points of quantum gravity

    OpenAIRE

    Litim, D F

    2003-01-01

    Euclidean quantum gravity is studied with renormalisation group methods. Analytical results for a non-trivial ultraviolet fixed point are found for arbitrary dimensions and gauge fixing parameter in the Einstein-Hilbert truncation. Implications for quantum gravity in four dimensions are discussed.

  13. Synchronization Techniques in Parallel Discrete Event Simulation

    OpenAIRE

    Lindén, Jonatan

    2018-01-01

    Discrete event simulation is an important tool for evaluating system models in many fields of science and engineering. To improve the performance of large-scale discrete event simulations, several techniques to parallelize discrete event simulation have been developed. In parallel discrete event simulation, the work of a single discrete event simulation is distributed over multiple processing elements. A key challenge in parallel discrete event simulation is to ensure that causally dependent ...

  14. 3-D Discrete Analytical Ridgelet Transform

    OpenAIRE

    Helbert , David; Carré , Philippe; Andrès , Éric

    2006-01-01

    International audience; In this paper, we propose an implementation of the 3-D Ridgelet transform: the 3-D discrete analytical Ridgelet transform (3-D DART). This transform uses the Fourier strategy for the computation of the associated 3-D discrete Radon transform. The innovative step is the definition of a discrete 3-D transform with the discrete analytical geometry theory by the construction of 3-D discrete analytical lines in the Fourier domain. We propose two types of 3-D discrete lines:...

  15. A study of MRI gradient echo signals from discrete magnetic particles with considerations of several parameters in simulations.

    Science.gov (United States)

    Kokeny, Paul; Cheng, Yu-Chung N; Xie, He

    2018-05-01

    Modeling MRI signal behaviors in the presence of discrete magnetic particles is important, as magnetic particles appear in nanoparticle labeled cells, contrast agents, and other biological forms of iron. Currently, many models that take into account the discrete particle nature in a system have been used to predict magnitude signal decays in the form of R2* or R2' from one single voxel. Little work has been done for predicting phase signals. In addition, most calculations of phase signals rely on the assumption that a system containing discrete particles behaves as a continuous medium. In this work, numerical simulations are used to investigate MRI magnitude and phase signals from discrete particles, without diffusion effects. Factors such as particle size, number density, susceptibility, volume fraction, particle arrangements for their randomness, and field of view have been considered in simulations. The results are compared to either a ground truth model, theoretical work based on continuous mediums, or previous literature. Suitable parameters used to model particles in several voxels that lead to acceptable magnetic field distributions around particle surfaces and accurate MR signals are identified. The phase values as a function of echo time from a central voxel filled by particles can be significantly different from those of a continuous cubic medium. However, a completely random distribution of particles can lead to an R2' value which agrees with the prediction from the static dephasing theory. A sphere with a radius of at least 4 grid points used in simulations is found to be acceptable to generate MR signals equivalent from a larger sphere. Increasing number of particles with a fixed volume fraction in simulations reduces the resulting variance in the phase behavior, and converges to almost the same phase value for different particle numbers at each echo time. The variance of phase values is also reduced when increasing the number of particles in a fixed

  16. Exact analysis of discrete data

    CERN Document Server

    Hirji, Karim F

    2005-01-01

    Researchers in fields ranging from biology and medicine to the social sciences, law, and economics regularly encounter variables that are discrete or categorical in nature. While there is no dearth of books on the analysis and interpretation of such data, these generally focus on large sample methods. When sample sizes are not large or the data are otherwise sparse, exact methods--methods not based on asymptotic theory--are more accurate and therefore preferable.This book introduces the statistical theory, analysis methods, and computation techniques for exact analysis of discrete data. After reviewing the relevant discrete distributions, the author develops the exact methods from the ground up in a conceptually integrated manner. The topics covered range from univariate discrete data analysis, a single and several 2 x 2 tables, a single and several 2 x K tables, incidence density and inverse sampling designs, unmatched and matched case -control studies, paired binary and trinomial response models, and Markov...

  17. Discrete geometric structures for architecture

    KAUST Repository

    Pottmann, Helmut

    2010-01-01

    . The talk will provide an overview of recent progress in this field, with a particular focus on discrete geometric structures. Most of these result from practical requirements on segmenting a freeform shape into planar panels and on the physical realization

  18. Convergence of discrete Aubry–Mather model in the continuous limit

    Science.gov (United States)

    Su, Xifeng; Thieullen, Philippe

    2018-05-01

    We develop two approximation schemes for solving the cell equation and the discounted cell equation using Aubry–Mather–Fathi theory. The Hamiltonian is supposed to be Tonelli, time-independent and periodic in space. By Legendre transform it is equivalent to find a fixed point of some nonlinear operator, called Lax-Oleinik operator, which may be discounted or not. By discretizing in time, we are led to solve an additive eigenvalue problem involving a discrete Lax–Oleinik operator. We show how to approximate the effective Hamiltonian and some weak KAM solutions by letting the time step in the discrete model tend to zero. We also obtain a selected discrete weak KAM solution as in Davini et al (2016 Invent. Math. 206 29–55), and show that it converges to a particular solution of the cell equation. In order to unify the two settings, continuous and discrete, we develop a more general formalism of the short-range interactions.

  19. CERN: Fixed target targets

    Energy Technology Data Exchange (ETDEWEB)

    Anon.

    1993-03-15

    Full text: While the immediate priority of CERN's research programme is to exploit to the full the world's largest accelerator, the LEP electron-positron collider and its concomitant LEP200 energy upgrade (January, page 1), CERN is also mindful of its long tradition of diversified research. Away from LEP and preparations for the LHC proton-proton collider to be built above LEP in the same 27-kilometre tunnel, CERN is also preparing for a new generation of heavy ion experiments using a new source, providing heavier ions (April 1992, page 8), with first physics expected next year. CERN's smallest accelerator, the LEAR Low Energy Antiproton Ring continues to cover a wide range of research topics, and saw a record number of hours of operation in 1992. The new ISOLDE on-line isotope separator was inaugurated last year (July, page 5) and physics is already underway. The remaining effort concentrates around fixed target experiments at the SPS synchrotron, which formed the main thrust of CERN's research during the late 1970s. With the SPS and LEAR now approaching middle age, their research future was extensively studied last year. Broadly, a vigorous SPS programme looks assured until at least the end of 1995. Decisions for the longer term future of the West Experimental Area of the SPS will have to take into account the heavy demand for test beams from work towards experiments at big colliders, both at CERN and elsewhere. The North Experimental Area is the scene of larger experiments with longer lead times. Several more years of LEAR exploitation are already in the pipeline, but for the longer term, the ambitious Superlear project for a superconducting ring (January 1992, page 7) did not catch on. Neutrino physics has a long tradition at CERN, and this continues with the preparations for two major projects, the Chorus and Nomad experiments (November 1991, page 7), to start next year in the West Area. Delicate neutrino oscillation effects could become visible for the first

  20. Effects of Discrete Charge Clustering in Simulations of Charged Interfaces.

    Science.gov (United States)

    Grime, John M A; Khan, Malek O

    2010-10-12

    A system of counterions between charged surfaces is investigated, with the surfaces represented by uniform charged planes and three different arrangements of discrete surface charges - an equispaced grid and two different clustered arrangements. The behaviors of a series of systems with identical net surface charge density are examined, with particular emphasis placed on the long ranged corrections via the method of "charged slabs" and the effects of the simulation cell size. Marked differences are observed in counterion distributions and the osmotic pressure dependent on the particular representation of the charged surfaces; the uniformly charged surfaces and equispaced grids of discrete charge behave in a broadly similar manner, but the clustered systems display a pronounced decrease in osmotic pressure as the simulation size is increased. The influence of the long ranged correction is shown to be minimal for all but the very smallest of system sizes.

  1. Applied discrete-time queues

    CERN Document Server

    Alfa, Attahiru S

    2016-01-01

    This book introduces the theoretical fundamentals for modeling queues in discrete-time, and the basic procedures for developing queuing models in discrete-time. There is a focus on applications in modern telecommunication systems. It presents how most queueing models in discrete-time can be set up as discrete-time Markov chains. Techniques such as matrix-analytic methods (MAM) that can used to analyze the resulting Markov chains are included. This book covers single node systems, tandem system and queueing networks. It shows how queues with time-varying parameters can be analyzed, and illustrates numerical issues associated with computations for the discrete-time queueing systems. Optimal control of queues is also covered. Applied Discrete-Time Queues targets researchers, advanced-level students and analysts in the field of telecommunication networks. It is suitable as a reference book and can also be used as a secondary text book in computer engineering and computer science. Examples and exercises are includ...

  2. CERN: Fixed target targets

    International Nuclear Information System (INIS)

    Anon.

    1993-01-01

    Full text: While the immediate priority of CERN's research programme is to exploit to the full the world's largest accelerator, the LEP electron-positron collider and its concomitant LEP200 energy upgrade (January, page 1), CERN is also mindful of its long tradition of diversified research. Away from LEP and preparations for the LHC proton-proton collider to be built above LEP in the same 27-kilometre tunnel, CERN is also preparing for a new generation of heavy ion experiments using a new source, providing heavier ions (April 1992, page 8), with first physics expected next year. CERN's smallest accelerator, the LEAR Low Energy Antiproton Ring continues to cover a wide range of research topics, and saw a record number of hours of operation in 1992. The new ISOLDE on-line isotope separator was inaugurated last year (July, page 5) and physics is already underway. The remaining effort concentrates around fixed target experiments at the SPS synchrotron, which formed the main thrust of CERN's research during the late 1970s. With the SPS and LEAR now approaching middle age, their research future was extensively studied last year. Broadly, a vigorous SPS programme looks assured until at least the end of 1995. Decisions for the longer term future of the West Experimental Area of the SPS will have to take into account the heavy demand for test beams from work towards experiments at big colliders, both at CERN and elsewhere. The North Experimental Area is the scene of larger experiments with longer lead times. Several more years of LEAR exploitation are already in the pipeline, but for the longer term, the ambitious Superlear project for a superconducting ring (January 1992, page 7) did not catch on. Neutrino physics has a long tradition at CERN, and this continues with the preparations for two major projects, the Chorus and Nomad experiments (November 1991, page 7), to start next year in the West Area. Delicate neutrino oscillation effects could become

  3. Factors influencing bonding fixed restorations

    Directory of Open Access Journals (Sweden)

    Medić Vesna

    2008-01-01

    Full Text Available INTRODUCTION Crown displacement often occurs because the features of tooth preparations do not counteract the forces directed against restorations. OBJECTIVE The purpose of this study was to evaluate the effect of preparation designs on retention and resistance of fixed restorations. METHOD The study was performed on 64 differently sized stainless steel dies. Also, caps which were used for evaluated retention were made of stainless steel for each die. After cementing the caps on experimental dies, measuring of necessary tensile forces to separate cemented caps from dies was done. Caps, which were made of a silver-palladium alloy with a slope of 60° to the longitudinal axis formed on the occlusal surface, were used for evaluating resistance. A sudden drop in load pressure recorded by the test machine indicated failure for that cap. RESULTS A significant difference was found between the tensile force required to remove the caps from the dies with different length (p<0.05 and different taper (p<0.01. The greatest retentive strengths (2579.2 N and 2989.8 N were noticed in experimental dies with the greatest length and smallest taper. No statistically significant (p>0.05 differences were found between tensile loads for caps cemented on dies with different diameter. Although there was an apparent slight increase in resistance values for caps on dies with smaller tapers, the increase in resistance for those preparation designs was not statistically significant. There was a significant difference among the resistance values for caps on dies with different length (p<0.01 and diameter (p<0.05. CONCLUSION In the light of the results obtained, it could be reasonably concluded that retention and resistance of the restoration is in inverse proportion to convergence angle of the prepared teeth. But, at a constant convergence angle, retention and resistance increase with rising length and diameter.

  4. Wall shear stress fixed points in blood flow

    Science.gov (United States)

    Arzani, Amirhossein; Shadden, Shawn

    2017-11-01

    Patient-specific computational fluid dynamics produces large datasets, and wall shear stress (WSS) is one of the most important parameters due to its close connection with the biological processes at the wall. While some studies have investigated WSS vectorial features, the WSS fixed points have not received much attention. In this talk, we will discuss the importance of WSS fixed points from three viewpoints. First, we will review how WSS fixed points relate to the flow physics away from the wall. Second, we will discuss how certain types of WSS fixed points lead to high biochemical surface concentration in cardiovascular mass transport problems. Finally, we will introduce a new measure to track the exposure of endothelial cells to WSS fixed points.

  5. National Radiological Fixed Lab Data

    Data.gov (United States)

    U.S. Environmental Protection Agency — The National Radiological Fixed Laboratory Data Asset includes data produced in support of various clients such as other EPA offices, EPA Regional programs, DOE,...

  6. Can mushrooms fix atmospheric nitrogen?

    Indian Academy of Sciences (India)

    Unknown

    Introduction. Rhizobium is a genus of symbiotic N2-fixing soil bacteria that induce ... To produce biofilm cultures, a 2 × 2 cm yeast manitol agar. (YMA) slab was .... determination of antibiotic susceptibilities of bacterial biofilms;. J. Clin. Microbiol.

  7. Elevated Fixed Platform Test Facility

    Data.gov (United States)

    Federal Laboratory Consortium — The Elevated Fixed Platform (EFP) is a helicopter recovery test facility located at Lakehurst, NJ. It consists of a 60 by 85 foot steel and concrete deck built atop...

  8. Analysis of Discrete Mittag - Leffler Functions

    Directory of Open Access Journals (Sweden)

    N. Shobanadevi

    2015-03-01

    Full Text Available Discrete Mittag - Leffler functions play a major role in the development of the theory of discrete fractional calculus. In the present article, we analyze qualitative properties of discrete Mittag - Leffler functions and establish sufficient conditions for convergence, oscillation and summability of the infinite series associated with discrete Mittag - Leffler functions.

  9. The Role of Discrete Global Grid Systems in the Global Statistical Geospatial Framework

    Science.gov (United States)

    Purss, M. B. J.; Peterson, P.; Minchin, S. A.; Bermudez, L. E.

    2016-12-01

    The United Nations Committee of Experts on Global Geospatial Information Management (UN-GGIM) has proposed the development of a Global Statistical Geospatial Framework (GSGF) as a mechanism for the establishment of common analytical systems that enable the integration of statistical and geospatial information. Conventional coordinate reference systems address the globe with a continuous field of points suitable for repeatable navigation and analytical geometry. While this continuous field is represented on a computer in a digitized and discrete fashion by tuples of fixed-precision floating point values, it is a non-trivial exercise to relate point observations spatially referenced in this way to areal coverages on the surface of the Earth. The GSGF states the need to move to gridded data delivery and the importance of using common geographies and geocoding. The challenges associated with meeting these goals are not new and there has been a significant effort within the geospatial community to develop nested gridding standards to tackle these issues over many years. These efforts have recently culminated in the development of a Discrete Global Grid Systems (DGGS) standard which has been developed under the auspices of Open Geospatial Consortium (OGC). DGGS provide a fixed areal based geospatial reference frame for the persistent location of measured Earth observations, feature interpretations, and modelled predictions. DGGS address the entire planet by partitioning it into a discrete hierarchical tessellation of progressively finer resolution cells, which are referenced by a unique index that facilitates rapid computation, query and analysis. The geometry and location of the cell is the principle aspect of a DGGS. Data integration, decomposition, and aggregation is optimised in the DGGS hierarchical structure and can be exploited for efficient multi-source data processing, storage, discovery, transmission, visualization, computation, analysis, and modelling. During

  10. Foundations of a discrete physics

    International Nuclear Information System (INIS)

    McGoveran, D.; Noyes, P.

    1988-01-01

    Starting from the principles of finiteness, discreteness, finite computability and absolute nonuniqueness, we develop the ordering operator calculus, a strictly constructive mathematical system having the empirical properties required by quantum mechanical and special relativistic phenomena. We show how to construct discrete distance functions, and both rectangular and spherical coordinate systems(with a discrete version of ''π''). The richest discrete space constructible without a preferred axis and preserving translational and rotational invariance is shown to be a discrete 3-space with the usual symmetries. We introduce a local ordering parameter with local (proper) time-like properties and universal ordering parameters with global (cosmological) time-like properties. Constructed ''attribute velocities'' connect ensembles with attributes that are invariant as the appropriate time-like parameter increases. For each such attribute, we show how to construct attribute velocities which must satisfy the '' relativistic Doppler shift'' and the ''relativistic velocity composition law,'' as well as the Lorentz transformations. By construction, these velocities have finite maximum and minimum values. In the space of all attributes, the minimum of these maximum velocities will predominate in all multiple attribute computations, and hence can be identified as a fundamental limiting velocity, General commutation relations are constructed which under the physical interpretation are shown to reduce to the usual quantum mechanical commutation relations. 50 refs., 18 figs

  11. Bayesian estimation of the discrete coefficient of determination.

    Science.gov (United States)

    Chen, Ting; Braga-Neto, Ulisses M

    2016-12-01

    The discrete coefficient of determination (CoD) measures the nonlinear interaction between discrete predictor and target variables and has had far-reaching applications in Genomic Signal Processing. Previous work has addressed the inference of the discrete CoD using classical parametric and nonparametric approaches. In this paper, we introduce a Bayesian framework for the inference of the discrete CoD. We derive analytically the optimal minimum mean-square error (MMSE) CoD estimator, as well as a CoD estimator based on the Optimal Bayesian Predictor (OBP). For the latter estimator, exact expressions for its bias, variance, and root-mean-square (RMS) are given. The accuracy of both Bayesian CoD estimators with non-informative and informative priors, under fixed or random parameters, is studied via analytical and numerical approaches. We also demonstrate the application of the proposed Bayesian approach in the inference of gene regulatory networks, using gene-expression data from a previously published study on metastatic melanoma.

  12. Degree distribution in discrete case

    International Nuclear Information System (INIS)

    Wang, Li-Na; Chen, Bin; Yan, Zai-Zai

    2011-01-01

    Vertex degree of many network models and real-life networks is limited to non-negative integer. By means of measure and integral, the relation of the degree distribution and the cumulative degree distribution in discrete case is analyzed. The degree distribution, obtained by the differential of its cumulative, is only suitable for continuous case or discrete case with constant degree change. When degree change is not a constant but proportional to degree itself, power-law degree distribution and its cumulative have the same exponent and the mean value is finite for power-law exponent greater than 1. -- Highlights: → Degree change is the crux for using the cumulative degree distribution method. → It suits for discrete case with constant degree change. → If degree change is proportional to degree, power-law degree distribution and its cumulative have the same exponent. → In addition, the mean value is finite for power-law exponent greater than 1.

  13. Discrete coherent and squeezed states of many-qudit systems

    International Nuclear Information System (INIS)

    Klimov, Andrei B.; Munoz, Carlos; Sanchez-Soto, Luis L.

    2009-01-01

    We consider the phase space for n identical qudits (each one of dimension d, with d a primer number) as a grid of d n xd n points and use the finite Galois field GF(d n ) to label the corresponding axes. The associated displacement operators permit to define s-parametrized quasidistributions on this grid, with properties analogous to their continuous counterparts. These displacements allow also for the construction of finite coherent states, once a fiducial state is fixed. We take this reference as one eigenstate of the discrete Fourier transform and study the factorization properties of the resulting coherent states. We extend these ideas to include discrete squeezed states, and show their intriguing relation with entangled states of different qudits.

  14. Sampled-data and discrete-time H2 optimal control

    NARCIS (Netherlands)

    Trentelman, Harry L.; Stoorvogel, Anton A.

    1993-01-01

    This paper deals with the sampled-data H2 optimal control problem. Given a linear time-invariant continuous-time system, the problem of minimizing the H2 performance over all sampled-data controllers with a fixed sampling period can be reduced to a pure discrete-time H2 optimal control problem. This

  15. On the discrete Gabor transform and the discrete Zak transform

    NARCIS (Netherlands)

    Bastiaans, M.J.; Geilen, M.C.W.

    1996-01-01

    Gabor's expansion of a discrete-time signal into a set of shifted and modulated versions of an elementary signal (or synthesis window) and the inverse operation -- the Gabor transform -- with which Gabor's expansion coefficients can be determined, are introduced. It is shown how, in the case of a

  16. Discrete Choice and Rational Inattention

    DEFF Research Database (Denmark)

    Fosgerau, Mogens; Melo, Emerson; de Palma, André

    2017-01-01

    This paper establishes a general equivalence between discrete choice and rational inattention models. Matejka and McKay (2015, AER) showed that when information costs are modelled using the Shannon entropy, the result- ing choice probabilities in the rational inattention model take the multinomial...... logit form. We show that when information costs are modelled using a class of generalized entropies, then the choice probabilities in any rational inattention model are observationally equivalent to some additive random utility discrete choice model and vice versa. This equivalence arises from convex...

  17. Design of self-supporting surfaces

    KAUST Repository

    Vouga, Etienne; Hö binger, Mathias; Wallner, Johannes; Pottmann, Helmut

    2012-01-01

    us to close connections between diverse topics in discrete differential geometry, such as a finite-element discretization of the Airy stress potential, perfect graph Laplacians, and computing admissible loads via curvatures of polyhedral surfaces

  18. Nonlinear Dynamics, Fixed Points and Coupled Fixed Points in Generalized Gauge Spaces with Applications to a System of Integral Equations

    Directory of Open Access Journals (Sweden)

    Adrian Petruşel

    2015-01-01

    Full Text Available We will discuss discrete dynamics generated by single-valued and multivalued operators in spaces endowed with a generalized metric structure. More precisely, the behavior of the sequence (fn(xn∈N of successive approximations in complete generalized gauge spaces is discussed. In the same setting, the case of multivalued operators is also considered. The coupled fixed points for mappings t1:X1×X2→X1 and t2:X1×X2→X2 are discussed and an application to a system of nonlinear integral equations is given.

  19. Canonical quantization of general relativity in discrete space-times.

    Science.gov (United States)

    Gambini, Rodolfo; Pullin, Jorge

    2003-01-17

    It has long been recognized that lattice gauge theory formulations, when applied to general relativity, conflict with the invariance of the theory under diffeomorphisms. We analyze discrete lattice general relativity and develop a canonical formalism that allows one to treat constrained theories in Lorentzian signature space-times. The presence of the lattice introduces a "dynamical gauge" fixing that makes the quantization of the theories conceptually clear, albeit computationally involved. The problem of a consistent algebra of constraints is automatically solved in our approach. The approach works successfully in other field theories as well, including topological theories. A simple cosmological application exhibits quantum elimination of the singularity at the big bang.

  20. A progressive approach to discrete trial teaching: Some current guidelines

    Directory of Open Access Journals (Sweden)

    Justin B. Leaf

    2016-12-01

    Full Text Available Discrete trial teaching (DTT is one of the cornerstones of applied behavior analysis (ABA based interventions. Conventionally, DTT is commonly implemented within a prescribed, fixed manner in which the therapist is governed by a strict set of rules. In contrast to conventional DTT, a progressive approach to DTT allows the therapist to remain flexible, making in-the-moment analyses and changes based on several variables (e.g., individual responding, current and previous history. The present paper will describe some guidelines to a progressive approach to DTT. The guidelines presented here should not be taken as a set of rules or as an exhaustive list.

  1. A Progressive Approach to Discrete Trial Teaching: Some Current Guidelines

    Directory of Open Access Journals (Sweden)

    Justin B. LEAF

    2016-12-01

    Full Text Available Discrete trial teaching (DTT is one of the cornerstones of applied behavior analysis (ABA based interventions. Conventionally, DTT is commonly implemented within a prescribed, fixed manner in which the therapist is governed by a strict set of rules. In contrast to conventional DTT, a progressive approach to DTT allows the therapist to remain flexible, making in-the-moment analyses and changes based on several variables (e.g., individual responding, current and previous history. The present paper will describe some guidelines to a progressive approach to DTT. The guidelines presented here should not be taken as a set of rules or as an exhaustive list.

  2. Fixed points of quantum operations

    International Nuclear Information System (INIS)

    Arias, A.; Gheondea, A.; Gudder, S.

    2002-01-01

    Quantum operations frequently occur in quantum measurement theory, quantum probability, quantum computation, and quantum information theory. If an operator A is invariant under a quantum operation φ, we call A a φ-fixed point. Physically, the φ-fixed points are the operators that are not disturbed by the action of φ. Our main purpose is to answer the following question. If A is a φ-fixed point, is A compatible with the operation elements of φ? We shall show in general that the answer is no and we shall give some sufficient conditions under which the answer is yes. Our results will follow from some general theorems concerning completely positive maps and injectivity of operator systems and von Neumann algebras

  3. Solving discrete zero point problems

    NARCIS (Netherlands)

    van der Laan, G.; Talman, A.J.J.; Yang, Z.F.

    2004-01-01

    In this paper an algorithm is proposed to .nd a discrete zero point of a function on the collection of integral points in the n-dimensional Euclidean space IRn.Starting with a given integral point, the algorithm generates a .nite sequence of adjacent integral simplices of varying dimension and

  4. Succinct Sampling from Discrete Distributions

    DEFF Research Database (Denmark)

    Bringmann, Karl; Larsen, Kasper Green

    2013-01-01

    We revisit the classic problem of sampling from a discrete distribution: Given n non-negative w-bit integers x_1,...,x_n, the task is to build a data structure that allows sampling i with probability proportional to x_i. The classic solution is Walker's alias method that takes, when implemented...

  5. Symplectomorphisms and discrete braid invariants

    NARCIS (Netherlands)

    Czechowski, Aleksander; Vandervorst, Robert

    2017-01-01

    Area and orientation preserving diffeomorphisms of the standard 2-disc, referred to as symplectomorphisms of D2, allow decompositions in terms of positive twist diffeomorphisms. Using the latter decomposition, we utilize the Conley index theory of discrete braid classes as introduced in Ghrist et

  6. The remarkable discreteness of being

    Indian Academy of Sciences (India)

    Life is a discrete, stochastic phenomenon: for a biological organism, the time of the two most important events of its life (reproduction and death) is random and these events change the number of individuals of the species by single units. These facts can have surprising, counterintuitive consequences. I review here three ...

  7. Discrete tomography in neutron radiography

    International Nuclear Information System (INIS)

    Kuba, Attila; Rodek, Lajos; Kiss, Zoltan; Rusko, Laszlo; Nagy, Antal; Balasko, Marton

    2005-01-01

    Discrete tomography (DT) is an imaging technique for reconstructing discrete images from their projections using the knowledge that the object to be reconstructed contains only a few homogeneous materials characterized by known discrete absorption values. One of the main reasons for applying DT is that we will hopefully require relatively few projections. Using discreteness and some a priori information (such as an approximate shape of the object) we can apply two DT methods in neutron imaging by reducing the problem to an optimization task. The first method is a special one because it is only suitable if the object is composed of cylinders and sphere shapes. The second method is a general one in the sense that it can be used for reconstructing objects of any shape. Software was developed and physical experiments performed in order to investigate the effects of several reconstruction parameters: the number of projections, noise levels, and complexity of the object to be reconstructed. We give a summary of the experimental results and make a comparison of the results obtained using a classical reconstruction technique (FBP). The programs we developed are available in our DT reconstruction program package DIRECT

  8. Group-theoretical aspects of the discrete sine-Gordon equation

    International Nuclear Information System (INIS)

    Orfanidis, S.J.

    1980-01-01

    The group-theoretical interpretation of the sine-Gordon equation in terms of connection forms on fiber bundles is extended to the discrete case. Solutions of the discrete sine-Gordon equation induce surfaces on a lattice in the SU(2) group space. The inverse scattering representation, expressing the parallel transport of fibers, is implemented by means of finite rotations. Discrete Baecklund transformations are realized as gauge transformations. The three-dimensional inverse scattering representation is used to derive a discrete nonlinear sigma model, and the corresponding Baecklund transformation and Pohlmeyer's R transformation are constructed

  9. Fixed-point signal processing

    CERN Document Server

    Padgett, Wayne T

    2009-01-01

    This book is intended to fill the gap between the ""ideal precision"" digital signal processing (DSP) that is widely taught, and the limited precision implementation skills that are commonly required in fixed-point processors and field programmable gate arrays (FPGAs). These skills are often neglected at the university level, particularly for undergraduates. We have attempted to create a resource both for a DSP elective course and for the practicing engineer with a need to understand fixed-point implementation. Although we assume a background in DSP, Chapter 2 contains a review of basic theory

  10. Apparatus for fixing radioactive waste

    International Nuclear Information System (INIS)

    Murphy, J.D.; Pirro, J. Jr.; Lawrence, M.; Wisla, S.F.

    1975-01-01

    Fixing radioactive waste is disclosed in which the waste is collected as a slurry in aqueous media in a metering tank located within the nuclear facilities. Collection of waste is continued from time to time until a sufficient quantity of material to make up a full shipment to a burial ground has been collected. The slurry is then cast in shipping containers for shipment to a burial ground or the like by metering through a mixer into which fixing materials are simultaneously metered at a rate to yield the desired proportions of materials. (U.S.)

  11. Discrete elements method of neutron transport

    International Nuclear Information System (INIS)

    Mathews, K.A.

    1988-01-01

    In this paper a new neutron transport method, called discrete elements (L N ) is derived and compared to discrete ordinates methods, theoretically and by numerical experimentation. The discrete elements method is based on discretizing the Boltzmann equation over a set of elements of angle. The discrete elements method is shown to be more cost-effective than discrete ordinates, in terms of accuracy versus execution time and storage, for the cases tested. In a two-dimensional test case, a vacuum duct in a shield, the L N method is more consistently convergent toward a Monte Carlo benchmark solution

  12. Spatial Treatment of the Slab-geometry Discrete Ordinates Equations Using Artificial Neural Networks

    International Nuclear Information System (INIS)

    Brantley, P S

    2001-01-01

    An artificial neural network (ANN) method is developed for treating the spatial variable of the one-group slab-geometry discrete ordinates (S N ) equations in a homogeneous medium with linearly anisotropic scattering. This ANN method takes advantage of the function approximation capability of multilayer ANNs. The discrete ordinates angular flux is approximated by a multilayer ANN with a single input representing the spatial variable x and N outputs representing the angular flux in each of the discrete ordinates angular directions. A global objective function is formulated which measures how accurately the output of the ANN approximates the solution of the discrete ordinates equations and boundary conditions at specified spatial points. Minimization of this objective function determines the appropriate values for the parameters of the ANN. Numerical results are presented demonstrating the accuracy of the method for both fixed source and incident angular flux problems

  13. A class of conservative Hamiltonians with exactly integrable discrete two-dimensional parametric maps

    International Nuclear Information System (INIS)

    Dikande, Alain M; Njumbe, E Epie

    2010-01-01

    A class of discrete conservative Hamiltonians with completely integrable two-dimensional (2D) mappings is constructed whose generic models are three families of non-integrable discrete Hamiltonians with on-site potentials whose double-well shapes vary. Unlike the discrete 2D mappings associated with the generic models, which all display pitchfork bifurcations towards randomly pinned states with chaotic features, for the derived models the pitchfork bifurcation leads to fixed points always surrounded by periodic trajectories. A nonlinear stability analysis reveals a finite crossover on the bifurcation line at which the pitchfork transition takes the maps from regular real periodic trajectories towards a regime dominated by a cluster of periodic point trajectories representing the allowed real solutions. The rich variety of structures displayed by the new class of discrete maps, combined with their complete integrability, offer rich perspectives for theoretical modelling of a wide class of systems undergoing structural instabilities without noticeable chaotic precursors.

  14. Flat Coalgebraic Fixed Point Logics

    Science.gov (United States)

    Schröder, Lutz; Venema, Yde

    Fixed point logics are widely used in computer science, in particular in artificial intelligence and concurrency. The most expressive logics of this type are the μ-calculus and its relatives. However, popular fixed point logics tend to trade expressivity for simplicity and readability, and in fact often live within the single variable fragment of the μ-calculus. The family of such flat fixed point logics includes, e.g., CTL, the *-nesting-free fragment of PDL, and the logic of common knowledge. Here, we extend this notion to the generic semantic framework of coalgebraic logic, thus covering a wide range of logics beyond the standard μ-calculus including, e.g., flat fragments of the graded μ-calculus and the alternating-time μ-calculus (such as ATL), as well as probabilistic and monotone fixed point logics. Our main results are completeness of the Kozen-Park axiomatization and a timed-out tableaux method that matches ExpTime upper bounds inherited from the coalgebraic μ-calculus but avoids using automata.

  15. Enumerating matroids of fixed rank

    NARCIS (Netherlands)

    Pendavingh, R.; van der Pol, J.

    2017-01-01

    It has been conjectured that asymptotically almost all matroids are sparse paving, i.e. that~s(n)∼m(n)s(n)∼m(n), where m(n)m(n) denotes the number of matroids on a fixed groundset of size nn, and s(n)s(n) the number of sparse paving matroids. In an earlier paper, we showed that

  16. Fixed Costs and Hours Constraints

    Science.gov (United States)

    Johnson, William R.

    2011-01-01

    Hours constraints are typically identified by worker responses to questions asking whether they would prefer a job with more hours and more pay or fewer hours and less pay. Because jobs with different hours but the same rate of pay may be infeasible when there are fixed costs of employment or mandatory overtime premia, the constraint in those…

  17. Discrete gauge symmetries in discrete MSSM-like orientifolds

    International Nuclear Information System (INIS)

    Ibáñez, L.E.; Schellekens, A.N.; Uranga, A.M.

    2012-01-01

    Motivated by the necessity of discrete Z N symmetries in the MSSM to insure baryon stability, we study the origin of discrete gauge symmetries from open string sector U(1)'s in orientifolds based on rational conformal field theory. By means of an explicit construction, we find an integral basis for the couplings of axions and U(1) factors for all simple current MIPFs and orientifolds of all 168 Gepner models, a total of 32 990 distinct cases. We discuss how the presence of discrete symmetries surviving as a subgroup of broken U(1)'s can be derived using this basis. We apply this procedure to models with MSSM chiral spectrum, concretely to all known U(3)×U(2)×U(1)×U(1) and U(3)×Sp(2)×U(1)×U(1) configurations with chiral bi-fundamentals, but no chiral tensors, as well as some SU(5) GUT models. We find examples of models with Z 2 (R-parity) and Z 3 symmetries that forbid certain B and/or L violating MSSM couplings. Their presence is however relatively rare, at the level of a few percent of all cases.

  18. Adhesives for fixed orthodontic bands.

    Science.gov (United States)

    Millett, Declan T; Glenny, Anne-Marie; Mattick, Rye Cr; Hickman, Joy; Mandall, Nicky A

    2016-10-25

    Orthodontic treatment involves using fixed or removable appliances (dental braces) to correct the positions of teeth. It has been shown that the quality of treatment result obtained with fixed appliances is much better than with removable appliances. Fixed appliances are, therefore, favoured by most orthodontists for treatment. The success of a fixed orthodontic appliance depends on the metal attachments (brackets and bands) being attached securely to the teeth so that they do not become loose during treatment. Brackets are usually attached to the front and side teeth, whereas bands (metal rings that go round the teeth) are more commonly used on the back teeth (molars). A number of adhesives are available to attach bands to teeth and it is important to understand which group of adhesives bond most reliably, as well as reducing or preventing dental decay during the treatment period. To evaluate the effectiveness of the adhesives used to attach bands to teeth during fixed appliance treatment, in terms of:(1) how often the bands come off during treatment; and(2) whether they protect the banded teeth against decay during fixed appliance treatment. The following electronic databases were searched: Cochrane Oral Health's Trials Register (searched 2 June 2016), Cochrane Central Register of Controlled Trials (CENTRAL; 2016, Issue 5) in the Cochrane Library (searched 2 June 2016), MEDLINE Ovid (1946 to 2 June 2016) and EMBASE Ovid (1980 to 2 June 2016). We searched ClinicalTrials.gov and the World Health Organization International Clinical Trials Registry Platform for ongoing trials. No restrictions were placed on the language or date of publication when searching the electronic databases. Randomised and controlled clinical trials (RCTs and CCTs) (including split-mouth studies) of adhesives used to attach orthodontic bands to molar teeth were selected. Patients with full arch fixed orthodontic appliance(s) who had bands attached to molars were included. All review authors

  19. Numerical Method for Darcy Flow Derived Using Discrete Exterior Calculus

    Science.gov (United States)

    Hirani, A. N.; Nakshatrala, K. B.; Chaudhry, J. H.

    2015-05-01

    We derive a numerical method for Darcy flow, and also for Poisson's equation in mixed (first order) form, based on discrete exterior calculus (DEC). Exterior calculus is a generalization of vector calculus to smooth manifolds and DEC is one of its discretizations on simplicial complexes such as triangle and tetrahedral meshes. DEC is a coordinate invariant discretization, in that it does not depend on the embedding of the simplices or the whole mesh. We start by rewriting the governing equations of Darcy flow using the language of exterior calculus. This yields a formulation in terms of flux differential form and pressure. The numerical method is then derived by using the framework provided by DEC for discretizing differential forms and operators that act on forms. We also develop a discretization for a spatially dependent Hodge star that varies with the permeability of the medium. This also allows us to address discontinuous permeability. The matrix representation for our discrete non-homogeneous Hodge star is diagonal, with positive diagonal entries. The resulting linear system of equations for flux and pressure are saddle type, with a diagonal matrix as the top left block. The performance of the proposed numerical method is illustrated on many standard test problems. These include patch tests in two and three dimensions, comparison with analytically known solutions in two dimensions, layered medium with alternating permeability values, and a test with a change in permeability along the flow direction. We also show numerical evidence of convergence of the flux and the pressure. A convergence experiment is included for Darcy flow on a surface. A short introduction to the relevant parts of smooth and discrete exterior calculus is included in this article. We also include a discussion of the boundary condition in terms of exterior calculus.

  20. Relativity and the question of discretization in astronomy

    CERN Document Server

    Edelen, Dominic G B

    1970-01-01

    Theoretical researches in general relativity and observational data from galactic astronomy combine in this volume in contributions to one of the oldest questions of natural philosophy: Is the structure of the physical world more adequately described by a continuous or a discrete mode of representation? Since the days of the Pythagoreans, this question has surfaced from time to time in various guises in science as well as in philosophy. One of the most bitterly contested and illuminating controversies between the continuous and the discrete viewpoints is to be found in the wave versus corpuscular description of optical phenom­ enae. This controversy was not resolved to the satisfaction of most of its protaganists until the development of the quantum theory. However, several obscurities that still becloud the question suggest that some deeper formulation may be necessary before more satisfactory answers can be given 1. The firm establishment of the validity of quantized structure and discrete energy distribut...

  1. Controlling the chaotic discrete-Hénon system using a feedforward neural network with an adaptive learning rate

    OpenAIRE

    GÖKCE, Kürşad; UYAROĞLU, Yılmaz

    2013-01-01

    This paper proposes a feedforward neural network-based control scheme to control the chaotic trajectories of a discrete-Hénon map in order to stay within an acceptable distance from the stable fixed point. An adaptive learning back propagation algorithm with online training is employed to improve the effectiveness of the proposed method. The simulation study carried in the discrete-Hénon system verifies the validity of the proposed control system.

  2. Plane shear flows of frictionless spheres: Kinetic theory and 3D soft-sphere discrete element method simulations

    OpenAIRE

    Vescovi, Dalila; Berzi, Diego; Richard, Patrick; Brodu, Nicolas

    2014-01-01

    International audience; We use existing 3D Discrete Element simulations of simple shear flows of spheres to evaluate the radial distribution function at contact that enables kinetic theory to correctly predict the pressure and the shear stress, for different values of the collisional coefficient of restitution. Then, we perform 3D Discrete Element simulations of plane flows of frictionless, inelastic spheres, sheared between walls made bumpy by gluing particles in a regular array, at fixed av...

  3. Positivity for Convective Semi-discretizations

    KAUST Repository

    Fekete, Imre; Ketcheson, David I.; Loczi, Lajos

    2017-01-01

    We propose a technique for investigating stability properties like positivity and forward invariance of an interval for method-of-lines discretizations, and apply the technique to study positivity preservation for a class of TVD semi-discretizations

  4. Quantum chaos on discrete graphs

    International Nuclear Information System (INIS)

    Smilansky, Uzy

    2007-01-01

    Adapting a method developed for the study of quantum chaos on quantum (metric) graphs (Kottos and Smilansky 1997 Phys. Rev. Lett. 79 4794, Kottos and Smilansky 1999 Ann. Phys., NY 274 76), spectral ζ functions and trace formulae for discrete Laplacians on graphs are derived. This is achieved by expressing the spectral secular equation in terms of the periodic orbits of the graph and obtaining functions which belong to the class of ζ functions proposed originally by Ihara (1966 J. Mat. Soc. Japan 18 219) and expanded by subsequent authors (Stark and Terras 1996 Adv. Math. 121 124, Kotani and Sunada 2000 J. Math. Sci. Univ. Tokyo 7 7). Finally, a model of 'classical dynamics' on the discrete graph is proposed. It is analogous to the corresponding classical dynamics derived for quantum graphs (Kottos and Smilansky 1997 Phys. Rev. Lett. 79 4794, Kottos and Smilansky 1999 Ann. Phys., NY 274 76). (fast track communication)

  5. Dark energy from discrete spacetime.

    Directory of Open Access Journals (Sweden)

    Aaron D Trout

    Full Text Available Dark energy accounts for most of the matter-energy content of our universe, yet current theories of its origin rely on radical physical assumptions such as the holographic principle or controversial anthropic arguments. We give a better motivated explanation for dark energy, claiming that it arises from a small negative scalar-curvature present even in empty spacetime. The vacuum has this curvature because spacetime is fundamentally discrete and there are more ways for a discrete geometry to have negative curvature than positive. We explicitly compute this effect using a variant of the well known dynamical-triangulations (DT model for quantum gravity. Our model predicts a time-varying non-zero cosmological constant with a current value, [Formula: see text] in natural units, in agreement with observation. This calculation is made possible by a novel characterization of the possible DT action values combined with numerical evidence concerning their degeneracies.

  6. Applied geometry and discrete mathematics

    CERN Document Server

    Sturm; Gritzmann, Peter; Sturmfels, Bernd

    1991-01-01

    This volume, published jointly with the Association for Computing Machinery, comprises a collection of research articles celebrating the occasion of Victor Klee's sixty-fifth birthday in September 1990. During his long career, Klee has made contributions to a wide variety of areas, such as discrete and computational geometry, convexity, combinatorics, graph theory, functional analysis, mathematical programming and optimization, and theoretical computer science. In addition, Klee made important contributions to mathematics education, mathematical methods in economics and the decision sciences, applications of discrete mathematics in the biological and social sciences, and the transfer of knowledge from applied mathematics to industry. In honor of Klee's achievements, this volume presents more than forty papers on topics related to Klee's research. While the majority of the papers are research articles, a number of survey articles are also included. Mirroring the breadth of Klee's mathematical contributions, th...

  7. Emissivity of discretized diffusion problems

    International Nuclear Information System (INIS)

    Densmore, Jeffery D.; Davidson, Gregory; Carrington, David B.

    2006-01-01

    The numerical modeling of radiative transfer by the diffusion approximation can produce artificially damped radiation propagation if spatial cells are too optically thick. In this paper, we investigate this nonphysical behavior at external problem boundaries by examining the emissivity of the discretized diffusion approximation. We demonstrate that the standard cell-centered discretization produces an emissivity that is too low for optically thick cells, a situation that leads to the lack of radiation propagation. We then present a modified boundary condition that yields an accurate emissivity regardless of cell size. This modified boundary condition can be used with a deterministic calculation or as part of a hybrid transport-diffusion method for increasing the efficiency of Monte Carlo simulations. We also discuss the range of applicability, as a function of cell size and material properties, when this modified boundary condition is employed in a hybrid technique. With a set of numerical calculations, we demonstrate the accuracy and usefulness of this modified boundary condition

  8. Discrete symmetries in the MSSM

    Energy Technology Data Exchange (ETDEWEB)

    Schieren, Roland

    2010-12-02

    The use of discrete symmetries, especially abelian ones, in physics beyond the standard model of particle physics is discussed. A method is developed how a general, abelian, discrete symmetry can be obtained via spontaneous symmetry breaking. In addition, anomalies are treated in the path integral approach with special attention to anomaly cancellation via the Green-Schwarz mechanism. All this is applied to the minimal supersymmetric standard model. A unique Z{sup R}{sub 4} symmetry is discovered which solves the {mu}-problem as well as problems with proton decay and allows to embed the standard model gauge group into a simple group, i.e. the Z{sup R}{sub 4} is compatible with grand unification. Also the flavor problem in the context of minimal flavor violation is addressed. Finally, a string theory model is presented which exhibits the mentioned Z{sup R}{sub 4} symmetry and other desirable features. (orig.)

  9. Discrete Bose-Einstein spectra

    International Nuclear Information System (INIS)

    Vlad, Valentin I.; Ionescu-Pallas, Nicholas

    2001-03-01

    The Bose-Einstein energy spectrum of a quantum gas, confined in a rigid cubic box, is shown to become discrete and strongly dependent on the box geometry (size L), temperature, T and atomic mass number, A at , in the region of small γ=A at TV 1/3 . This behavior is the consequence of the random state degeneracy in the box. Furthermore, we demonstrate that the total energy does not obey the conventional law any longer, but a new law, which depends on γ and on the quantum gas fugacity. This energy law imposes a faster decrease to zero than it is classically expected, for γ→0. The lighter the gas atoms, the higher the temperatures or the box size, for the same effects in the discrete Bose-Einstein regime. (author)

  10. Discrete symmetries in the MSSM

    International Nuclear Information System (INIS)

    Schieren, Roland

    2010-01-01

    The use of discrete symmetries, especially abelian ones, in physics beyond the standard model of particle physics is discussed. A method is developed how a general, abelian, discrete symmetry can be obtained via spontaneous symmetry breaking. In addition, anomalies are treated in the path integral approach with special attention to anomaly cancellation via the Green-Schwarz mechanism. All this is applied to the minimal supersymmetric standard model. A unique Z R 4 symmetry is discovered which solves the μ-problem as well as problems with proton decay and allows to embed the standard model gauge group into a simple group, i.e. the Z R 4 is compatible with grand unification. Also the flavor problem in the context of minimal flavor violation is addressed. Finally, a string theory model is presented which exhibits the mentioned Z R 4 symmetry and other desirable features. (orig.)

  11. Dark energy from discrete spacetime.

    Science.gov (United States)

    Trout, Aaron D

    2013-01-01

    Dark energy accounts for most of the matter-energy content of our universe, yet current theories of its origin rely on radical physical assumptions such as the holographic principle or controversial anthropic arguments. We give a better motivated explanation for dark energy, claiming that it arises from a small negative scalar-curvature present even in empty spacetime. The vacuum has this curvature because spacetime is fundamentally discrete and there are more ways for a discrete geometry to have negative curvature than positive. We explicitly compute this effect using a variant of the well known dynamical-triangulations (DT) model for quantum gravity. Our model predicts a time-varying non-zero cosmological constant with a current value, [Formula: see text] in natural units, in agreement with observation. This calculation is made possible by a novel characterization of the possible DT action values combined with numerical evidence concerning their degeneracies.

  12. Discrete mathematics using a computer

    CERN Document Server

    Hall, Cordelia

    2000-01-01

    Several areas of mathematics find application throughout computer science, and all students of computer science need a practical working understanding of them. These core subjects are centred on logic, sets, recursion, induction, relations and functions. The material is often called discrete mathematics, to distinguish it from the traditional topics of continuous mathematics such as integration and differential equations. The central theme of this book is the connection between computing and discrete mathematics. This connection is useful in both directions: • Mathematics is used in many branches of computer science, in applica­ tions including program specification, datastructures,design and analysis of algorithms, database systems, hardware design, reasoning about the correctness of implementations, and much more; • Computers can help to make the mathematics easier to learn and use, by making mathematical terms executable, making abstract concepts more concrete, and through the use of software tools su...

  13. Duality for discrete integrable systems

    International Nuclear Information System (INIS)

    Quispel, G R W; Capel, H W; Roberts, J A G

    2005-01-01

    A new class of discrete dynamical systems is introduced via a duality relation for discrete dynamical systems with a number of explicitly known integrals. The dual equation can be defined via the difference of an arbitrary linear combination of integrals and its upshifted version. We give an example of an integrable mapping with two parameters and four integrals leading to a (four-dimensional) dual mapping with four parameters and two integrals. We also consider a more general class of higher-dimensional mappings arising via a travelling-wave reduction from the (integrable) MKdV partial-difference equation. By differencing the trace of the monodromy matrix we obtain a class of novel dual mappings which is shown to be integrable as level-set-dependent versions of the original ones

  14. Observability of discretized partial differential equations

    Science.gov (United States)

    Cohn, Stephen E.; Dee, Dick P.

    1988-01-01

    It is shown that complete observability of the discrete model used to assimilate data from a linear partial differential equation (PDE) system is necessary and sufficient for asymptotic stability of the data assimilation process. The observability theory for discrete systems is reviewed and applied to obtain simple observability tests for discretized constant-coefficient PDEs. Examples are used to show how numerical dispersion can result in discrete dynamics with multiple eigenvalues, thereby detracting from observability.

  15. The Effect of Haptic Guidance on Learning a Hybrid Rhythmic-Discrete Motor Task.

    Science.gov (United States)

    Marchal-Crespo, Laura; Bannwart, Mathias; Riener, Robert; Vallery, Heike

    2015-01-01

    Bouncing a ball with a racket is a hybrid rhythmic-discrete motor task, combining continuous rhythmic racket movements with discrete impact events. Rhythmicity is exceptionally important in motor learning, because it underlies fundamental movements such as walking. Studies suggested that rhythmic and discrete movements are governed by different control mechanisms at different levels of the Central Nervous System. The aim of this study is to evaluate the effect of fixed/fading haptic guidance on learning to bounce a ball to a desired apex in virtual reality with varying gravity. Changing gravity changes dominance of rhythmic versus discrete control: The higher the value of gravity, the more rhythmic the task; lower values reduce the bouncing frequency and increase dwell times, eventually leading to a repetitive discrete task that requires initiation and termination, resembling target-oriented reaching. Although motor learning in the ball-bouncing task with varying gravity has been studied, the effect of haptic guidance on learning such a hybrid rhythmic-discrete motor task has not been addressed. We performed an experiment with thirty healthy subjects and found that the most effective training condition depended on the degree of rhythmicity: Haptic guidance seems to hamper learning of continuous rhythmic tasks, but it seems to promote learning for repetitive tasks that resemble discrete movements.

  16. Discrete fracture in quasi-brittle materials under compressive and tensile stress states

    CSIR Research Space (South Africa)

    Klerck, PA

    2004-01-01

    Full Text Available A method for modelling discrete fracture in geomaterials under tensile and compressive stress fields has been developed based on a Mohr-Coulomb failure surface in compression and three independent anisotropic rotating crack models in tension...

  17. A discrete element based simulation framework to investigate particulate spray deposition processes

    KAUST Repository

    Mukherjee, Debanjan; Zohdi, Tarek I.

    2015-01-01

    © 2015 Elsevier Inc. This work presents a computer simulation framework based on discrete element method to analyze manufacturing processes that comprise a loosely flowing stream of particles in a carrier fluid being deposited on a target surface

  18. Comparative study of in vitro ocular surface cytotoxicity of a fixed combination of 0.5% timolol/1% dorzolamide eyedrop and its components with 0.005% benzalkonium chloride.

    Science.gov (United States)

    Ayaki, Masahiko; Iwasawa, Atsuo; Niwano, Yoshimi

    2012-01-01

    We evaluated the cytotoxicity of antiglaucoma ophthalmic solutions preserved with the same concentration of benzalkonium chloride (BAK) in four cultured corneal and conjunctival cell lines. The viability of cell cultures was determined following the exposure of cells to timolol maleate, dorzolamide, and their fixed combination, Kosoputo(®) (MSD, a Japanese formulation of Cosopt(®) (Merck)), and two commercially available eyedrop solutions, 0.5% Timpotol(®) (containing 0.5% timolol maleate, MSD) and 1% Trusopt(®) (containing 1% dorzolamide, MSD) for varying exposure times and at various dilutions using the MTT and neutral red assays. All the three commercially available eyedrop solutions tested in this study were preserved with 0.005% BAK. The toxicity of each solution was compared using the % cell viability score (CVS) . Cell viability was also subjected to statistical analysis using ANOVA, Dunnett's multiple comparison tests and a chi-square test. %CVS50/%CVS40/80s for the tested solutions were 53/-13 for 0.5% Timoptol(®), 100/88 for preservative-free 0.5% timolol maleate, 50/ -10 for 1% Trusopt(®), 72/100 for preservative-free 1% dorzolamide, and 44/-17 for Kosoputo(®). The results of statistical analysis were consistent to them. In conclusion, Kosoputo(®) had greater cytotoxicity than each component; however, in actual use it may have the advantages of reduced toxicity (side effect) due to reduced instillation frequency, and better patient adherence to the treatment regimen as well as a comparable pressure reduction effect.

  19. Discrete Line Congruences for Shading and Lighting

    KAUST Repository

    Wang, Jun

    2013-07-01

    Two-parameter families of straight lines (line congruences) are implicitly present in graphics and geometry processing in several important ways including lighting and shape analysis. In this paper we make them accessible to optimization and geometric computing, by introducing a general discrete version of congruences based on piecewise-linear correspondences between triangle meshes. Our applications of congruences are based on the extraction of a so-called torsion-free support structure, which is a procedure analogous to remeshing a surface along its principal curvature lines. A particular application of such structures are freeform shading and lighting systems for architecture. We combine interactive design of such systems with global optimization in order to satisfy geometric constraints. In this way we explore a new area where architecture can greatly benefit from graphics.

  20. Effective lagrangian description on discrete gauge symmetries

    International Nuclear Information System (INIS)

    Banks, T.

    1989-01-01

    We exhibit a simple low-energy lagrangian which describes a system with a discrete remnant of a spontaneously broken continuous gauge symmetry. The lagrangian gives a simple description of the effects ascribed to such systems by Krauss and Wilczek: black holes carry discrete hair and interact with cosmic strings, and wormholes cannot lead to violation of discrete gauge symmetries. (orig.)

  1. Discrete port-Hamiltonian systems : mixed interconnections

    NARCIS (Netherlands)

    Talasila, Viswanath; Clemente-Gallardo, J.; Schaft, A.J. van der

    2005-01-01

    Either from a control theoretic viewpoint or from an analysis viewpoint it is necessary to convert smooth systems to discrete systems, which can then be implemented on computers for numerical simulations. Discrete models can be obtained either by discretizing a smooth model, or by directly modeling

  2. Discrete fractional solutions of a Legendre equation

    Science.gov (United States)

    Yılmazer, Resat

    2018-01-01

    One of the most popular research interests of science and engineering is the fractional calculus theory in recent times. Discrete fractional calculus has also an important position in fractional calculus. In this work, we acquire new discrete fractional solutions of the homogeneous and non homogeneous Legendre differential equation by using discrete fractional nabla operator.

  3. Computing the Gromov hyperbolicity constant of a discrete metric space

    KAUST Repository

    Ismail, Anas

    2012-07-01

    Although it was invented by Mikhail Gromov, in 1987, to describe some family of groups[1], the notion of Gromov hyperbolicity has many applications and interpretations in different fields. It has applications in Biology, Networking, Graph Theory, and many other areas of research. The Gromov hyperbolicity constant of several families of graphs and geometric spaces has been determined. However, so far, the only known algorithm for calculating the Gromov hyperbolicity constant δ of a discrete metric space is the brute force algorithm with running time O (n4) using the four-point condition. In this thesis, we first introduce an approximation algorithm which calculates a O (log n)-approximation of the hyperbolicity constant δ, based on a layering approach, in time O(n2), where n is the number of points in the metric space. We also calculate the fixed base point hyperbolicity constant δr for a fixed point r using a (max, min)−matrix multiplication algorithm by Duan in time O(n2.688)[2]. We use this result to present a 2-approximation algorithm for calculating the hyper-bolicity constant in time O(n2.688). We also provide an exact algorithm to compute the hyperbolicity constant δ in time O(n3.688) for a discrete metric space. We then present some partial results we obtained for designing some approximation algorithms to compute the hyperbolicity constant δ.

  4. Bifurcation Analysis and Chaos Control in a Discrete Epidemic System

    Directory of Open Access Journals (Sweden)

    Wei Tan

    2015-01-01

    Full Text Available The dynamics of discrete SI epidemic model, which has been obtained by the forward Euler scheme, is investigated in detail. By using the center manifold theorem and bifurcation theorem in the interior R+2, the specific conditions for the existence of flip bifurcation and Neimark-Sacker bifurcation have been derived. Numerical simulation not only presents our theoretical analysis but also exhibits rich and complex dynamical behavior existing in the case of the windows of period-1, period-3, period-5, period-6, period-7, period-9, period-11, period-15, period-19, period-23, period-34, period-42, and period-53 orbits. Meanwhile, there appears the cascade of period-doubling 2, 4, 8 bifurcation and chaos sets from the fixed point. These results show the discrete model has more richer dynamics compared with the continuous model. The computations of the largest Lyapunov exponents more than 0 confirm the chaotic behaviors of the system x→x+δ[rN(1-N/K-βxy/N-(μ+mx], y→y+δ[βxy/N-(μ+dy]. Specifically, the chaotic orbits at an unstable fixed point are stabilized by using the feedback control method.

  5. Discrete-time control system design with applications

    CERN Document Server

    Rabbath, C A

    2014-01-01

    This book presents practical techniques of discrete-time control system design. In general, the design techniques lead to low-order dynamic compensators that ensure satisfactory closed-loop performance for a wide range of sampling rates. The theory is given in the form of theorems, lemmas, and propositions. The design of the control systems is presented as step-by-step procedures and algorithms. The proposed feedback control schemes are applied to well-known dynamic system models. This book also discusses: Closed-loop performance of generic models of mobile robot and airborne pursuer dynamic systems under discrete-time feedback control with limited computing capabilities Concepts of discrete-time models and sampled-data models of continuous-time systems, for both single- and dual-rate operation Local versus global digital redesign Optimal, closed-loop digital redesign methods Plant input mapping design Generalized holds and samplers for use in feedback control loops, Numerical simulation of fixed-point arithm...

  6. Continuous versus discrete structures II -- Discrete Hamiltonian systems and Helmholtz conditions

    OpenAIRE

    Cresson, Jacky; Pierret, Frédéric

    2015-01-01

    We define discrete Hamiltonian systems in the framework of discrete embeddings. An explicit comparison with previous attempts is given. We then solve the discrete Helmholtz's inverse problem for the discrete calculus of variation in the Hamiltonian setting. Several applications are discussed.

  7. Asymptotic behavior of discrete holomorphic maps z^c, log(z) and discrete Painleve transcedents

    OpenAIRE

    Agafonov, S. I.

    2005-01-01

    It is shown that discrete analogs of z^c and log(z) have the same asymptotic behavior as their smooth counterparts. These discrete maps are described in terms of special solutions of discrete Painleve-II equations, asymptotics of these solutions providing the behaviour of discrete z^c and log(z) at infinity.

  8. Discrete integrable couplings associated with Toda-type lattice and two hierarchies of discrete soliton equations

    International Nuclear Information System (INIS)

    Zhang Yufeng; Fan Engui; Zhang Yongqing

    2006-01-01

    With the help of two semi-direct sum Lie algebras, an efficient way to construct discrete integrable couplings is proposed. As its applications, the discrete integrable couplings of the Toda-type lattice equations are obtained. The approach can be devoted to establishing other discrete integrable couplings of the discrete lattice integrable hierarchies of evolution equations

  9. Numerical Integration Techniques for Curved-Element Discretizations of Molecule–Solvent Interfaces

    Science.gov (United States)

    Bardhan, Jaydeep P.; Altman, Michael D.; Willis, David J.; Lippow, Shaun M.; Tidor, Bruce; White, Jacob K.

    2012-01-01

    Surface formulations of biophysical modeling problems offer attractive theoretical and computational properties. Numerical simulations based on these formulations usually begin with discretization of the surface under consideration; often, the surface is curved, possessing complicated structure and possibly singularities. Numerical simulations commonly are based on approximate, rather than exact, discretizations of these surfaces. To assess the strength of the dependence of simulation accuracy on the fidelity of surface representation, we have developed methods to model several important surface formulations using exact surface discretizations. Following and refining Zauhar’s work (J. Comp.-Aid. Mol. Des. 9:149-159, 1995), we define two classes of curved elements that can exactly discretize the van der Waals, solvent-accessible, and solvent-excluded (molecular) surfaces. We then present numerical integration techniques that can accurately evaluate nonsingular and singular integrals over these curved surfaces. After validating the exactness of the surface discretizations and demonstrating the correctness of the presented integration methods, we present a set of calculations that compare the accuracy of approximate, planar-triangle-based discretizations and exact, curved-element-based simulations of surface-generalized-Born (sGB), surface-continuum van der Waals (scvdW), and boundary-element method (BEM) electrostatics problems. Results demonstrate that continuum electrostatic calculations with BEM using curved elements, piecewise-constant basis functions, and centroid collocation are nearly ten times more accurate than planartriangle BEM for basis sets of comparable size. The sGB and scvdW calculations give exceptional accuracy even for the coarsest obtainable discretized surfaces. The extra accuracy is attributed to the exact representation of the solute–solvent interface; in contrast, commonly used planar-triangle discretizations can only offer improved

  10. Fixed target flammable gas upgrades

    International Nuclear Information System (INIS)

    Schmitt, R.; Squires, B.; Gasteyer, T.; Richardson, R.

    1996-12-01

    In the past, fixed target flammable gas systems were not supported in an organized fashion. The Research Division, Mechanical Support Department began to support these gas systems for the 1995 run. This technical memo describes the new approach being used to supply chamber gasses to fixed target experiments at Fermilab. It describes the engineering design features, system safety, system documentation and performance results. Gas mixtures provide the medium for electron detection in proportional and drift chambers. Usually a mixture of a noble gas and a polyatomic quenching gas is used. Sometimes a small amount of electronegative gas is added as well. The mixture required is a function of the specific chamber design, including working voltage, gain requirements, high rate capability, aging and others. For the 1995 fixed target run all the experiments requested once through gas systems. We obtained a summary of problems from the 1990 fixed target run and made a summary of the operations logbook entries from the 1991 run. These summaries primarily include problems involving flammable gas alarms, but also include incidents where Operations was involved or informed. Usually contamination issues were dealt with by the experimenters. The summaries are attached. We discussed past operational issues with the experimenters involved. There were numerous incidents of drift chamber failure where contaminated gas was suspect. However analyses of the gas at the time usually did not show any particular problems. This could have been because the analysis did not look for the troublesome component, the contaminant was concentrated in the gas over the liquid and vented before the sample was taken, or that contaminants were drawn into the chambers directly through leaks or sub-atmospheric pressures. After some study we were unable to determine specific causes of past contamination problems, although in argon-ethane systems the problems were due to the ethane only

  11. A fixed-point farrago

    CERN Document Server

    Shapiro, Joel H

    2016-01-01

    This text provides an introduction to some of the best-known fixed-point theorems, with an emphasis on their interactions with topics in analysis. The level of exposition increases gradually throughout the book, building from a basic requirement of undergraduate proficiency to graduate-level sophistication. Appendices provide an introduction to (or refresher on) some of the prerequisite material and exercises are integrated into the text, contributing to the volume’s ability to be used as a self-contained text. Readers will find the presentation especially useful for independent study or as a supplement to a graduate course in fixed-point theory. The material is split into four parts: the first introduces the Banach Contraction-Mapping Principle and the Brouwer Fixed-Point Theorem, along with a selection of interesting applications; the second focuses on Brouwer’s theorem and its application to John Nash’s work; the third applies Brouwer’s theorem to spaces of infinite dimension; and the fourth rests ...

  12. Computation of 2-D pinhole image-formation process of large-scale furnaces using the discrete ordinates method

    CERN Document Server

    Li Hong; Lu Ji Dong; Zheng Chu Guan

    2003-01-01

    In most of the discrete ordinate schemes (DOS) reported in the literature, the discrete directions are fixed, and unable to be arbitrarily adjusted; therefore, it is difficult to employ these schemes to calculate the radiative energy image-formation of pulverized-coal furnaces. On the basis of a new DOS, named the discrete ordinate scheme with (an) infinitely small weight(s), which was recently proposed by the authors, a novel algorithm for computing the pinhole image-formation process is developed in this work. The performance of this algorithm is tested, and is found to be also suitable for parallel computation.

  13. Computation of 2-D pinhole image-formation process of large-scale furnaces using the discrete ordinates method

    International Nuclear Information System (INIS)

    Li Hongshun; Zhou Huaichun; Lu Jidong; Zheng Chuguang

    2003-01-01

    In most of the discrete ordinate schemes (DOS) reported in the literature, the discrete directions are fixed, and unable to be arbitrarily adjusted; therefore, it is difficult to employ these schemes to calculate the radiative energy image-formation of pulverized-coal furnaces. On the basis of a new DOS, named the discrete ordinate scheme with (an) infinitely small weight(s), which was recently proposed by the authors, a novel algorithm for computing the pinhole image-formation process is developed in this work. The performance of this algorithm is tested, and is found to be also suitable for parallel computation

  14. Cuspidal discrete series for projective hyperbolic spaces

    DEFF Research Database (Denmark)

    Andersen, Nils Byrial; Flensted-Jensen, Mogens

    2013-01-01

    Abstract. We have in [1] proposed a definition of cusp forms on semisimple symmetric spaces G/H, involving the notion of a Radon transform and a related Abel transform. For the real non-Riemannian hyperbolic spaces, we showed that there exists an infinite number of cuspidal discrete series......, and at most finitely many non-cuspidal discrete series, including in particular the spherical discrete series. For the projective spaces, the spherical discrete series are the only non-cuspidal discrete series. Below, we extend these results to the other hyperbolic spaces, and we also study the question...

  15. Space-Time Discrete KPZ Equation

    Science.gov (United States)

    Cannizzaro, G.; Matetski, K.

    2018-03-01

    We study a general family of space-time discretizations of the KPZ equation and show that they converge to its solution. The approach we follow makes use of basic elements of the theory of regularity structures (Hairer in Invent Math 198(2):269-504, 2014) as well as its discrete counterpart (Hairer and Matetski in Discretizations of rough stochastic PDEs, 2015. arXiv:1511.06937). Since the discretization is in both space and time and we allow non-standard discretization for the product, the methods mentioned above have to be suitably modified in order to accommodate the structure of the models under study.

  16. Integrable discretizations of the short pulse equation

    International Nuclear Information System (INIS)

    Feng Baofeng; Maruno, Ken-ichi; Ohta, Yasuhiro

    2010-01-01

    In this paper, we propose integrable semi-discrete and full-discrete analogues of the short pulse (SP) equation. The key construction is the bilinear form and determinant structure of solutions of the SP equation. We also give the determinant formulas of N-soliton solutions of the semi-discrete and full-discrete analogues of the SP equations, from which the multi-loop and multi-breather solutions can be generated. In the continuous limit, the full-discrete SP equation converges to the semi-discrete SP equation, and then to the continuous SP equation. Based on the semi-discrete SP equation, an integrable numerical scheme, i.e. a self-adaptive moving mesh scheme, is proposed and used for the numerical computation of the short pulse equation.

  17. Contamination effects on fixed-bias Langmuir probes

    Energy Technology Data Exchange (ETDEWEB)

    Steigies, C. T. [Institut fuer Experimentelle und Angewandte Physik, Christian-Albrechts-Universitaet zu Kiel, 24098 Kiel (Germany); Barjatya, A. [Department of Physical Sciences, Embry-Riddle Aeronautical University, Daytona Beach, Florida 32114 (United States)

    2012-11-15

    Langmuir probes are standard instruments for plasma density measurements on many sounding rockets. These probes can be operated in swept-bias as well as in fixed-bias modes. In swept-bias Langmuir probes, contamination effects are frequently visible as a hysteresis between consecutive up and down voltage ramps. This hysteresis, if not corrected, leads to poorly determined plasma densities and temperatures. With a properly chosen sweep function, the contamination parameters can be determined from the measurements and correct plasma parameters can then be determined. In this paper, we study the contamination effects on fixed-bias Langmuir probes, where no hysteresis type effect is seen in the data. Even though the contamination is not evident from the measurements, it does affect the plasma density fluctuation spectrum as measured by the fixed-bias Langmuir probe. We model the contamination as a simple resistor-capacitor circuit between the probe surface and the plasma. We find that measurements of small scale plasma fluctuations (meter to sub-meter scale) along a rocket trajectory are not affected, but the measured amplitude of large scale plasma density variation (tens of meters or larger) is attenuated. From the model calculations, we determine amplitude and cross-over frequency of the contamination effect on fixed-bias probes for different contamination parameters. The model results also show that a fixed bias probe operating in the ion-saturation region is affected less by contamination as compared to a fixed bias probe operating in the electron saturation region.

  18. Zero of the discrete beta function in SU(3) lattice gauge theory with color sextet fermions

    International Nuclear Information System (INIS)

    Shamir, Yigal; Svetitsky, Benjamin; DeGrand, Thomas

    2008-01-01

    We have carried out a Schrodinger functional calculation for the SU(3) lattice gauge theory with two flavors of Wilson fermions in the sextet representation of the gauge group. We find that the discrete beta function, which governs the change in the running coupling under a discrete change of spatial scale, changes sign when the Schrodinger functional renormalized coupling is in the neighborhood of g 2 =2.0. The simplest explanation is that the theory has an infrared-attractive fixed point, but more complicated possibilities are allowed by the data. While we compare rescalings by factors of 2 and 4/3, we work at a single lattice spacing.

  19. Settling of fixed erythrocyte suspension droplets

    Science.gov (United States)

    Omenyi, S. N.; Snyder, R. S.

    1983-01-01

    It is pointed out that when particles behave collectively rather than individually, the fractionation of micron-size particles on the basis of size, density, and surface characteristics by centrifugation and electrophoresis is hindered. The formation and sedimentation of droplets containing particles represent an extreme example of collective behavior and pose a major problem for these separation methods when large quantities of particles need to be fractionated. Experiments are described that measure droplet sizes and settling rates for a variety of particles and droplets. Expressions relating the particle concentration in a drop to measurable quantities of the fluids and particles are developed. The number of particles in each droplet is then estimated, together with the effective droplet density. Red blood cells from different animals fixed in glutaraldehyde provide model particle groups.

  20. Radiative transfer on discrete spaces

    CERN Document Server

    Preisendorfer, Rudolph W; Stark, M; Ulam, S

    1965-01-01

    Pure and Applied Mathematics, Volume 74: Radiative Transfer on Discrete Spaces presents the geometrical structure of natural light fields. This book describes in detail with mathematical precision the radiometric interactions of light-scattering media in terms of a few well established principles.Organized into four parts encompassing 15 chapters, this volume begins with an overview of the derivations of the practical formulas and the arrangement of formulas leading to numerical solution procedures of radiative transfer problems in plane-parallel media. This text then constructs radiative tran

  1. Parametric instability of spinning elastic rings excited by fluctuating space-fixed stiffnesses

    Science.gov (United States)

    Liu, Chunguang; Cooley, Christopher G.; Parker, Robert G.

    2017-07-01

    This study investigates the vibration of rotating elastic rings that are dynamically excited by an arbitrary number of space-fixed discrete stiffnesses with periodically fluctuating stiffnesses. The rotating, elastic ring is modeled using thin-ring theory with radial and tangential deformations. Primary and combination instability regions are determined in closed-form using the method of multiple scales. The ratio of peak-to-peak fluctuation to average discrete stiffness is used as the perturbation parameter, so the resulting perturbation analysis is not limited to small mean values of discrete stiffnesses. The natural frequencies and vibration modes are determined by discretizing the governing equations using Galerkin's method. Results are demonstrated for compliant gear applications. The perturbation results are validated by direct numerical integration of the equations of motion and Floquet theory. The bandwidths of the instability regions correlate with the fractional strain energy stored in the discrete stiffnesses. For rings with multiple discrete stiffnesses, the phase differences between them can eliminate large amplitude response under certain conditions.

  2. Adhesives for fixed orthodontic brackets.

    Science.gov (United States)

    Mandall, N A; Millett, D T; Mattick, C R; Hickman, J; Macfarlane, T V; Worthington, H V

    2003-01-01

    Bonding of orthodontic brackets to teeth is important to enable effective and efficient treatment with fixed appliances. The problem is bracket failure during treatment which increases operator chairside time and lengthens treatment time. A prolonged treatment is likely to increase the oral health risks of orthodontic treatment with fixed appliances one of which is irreversible enamel decalcification. To evaluate the effectiveness of different orthodontic adhesives for bonding. Electronic databases: the Cochrane Oral Health Group's Trials Register, the Cochrane Central Register of Controlled Trials (CENTRAL), MEDLINE and EMBASE. Date of most recent searches: August 2002 (CENTRAL) (The Cochrane Library Issue 2, 2002). Trials were selected if they met the following criteria: randomised controlled trials (RCTs) and controlled clinical trials (CCTs) comparing two different adhesive groups. Participants were patients with fixed orthodontic appliances. The interventions were adhesives that bonded stainless steel brackets to all teeth except the molars. The primary outcome was debond or bracket failure. Data were recorded on decalcification as a secondary outcome, if present. Information regarding methods, participants, interventions, outcome measures and results were extracted in duplicate by pairs of reviewers (Nicky Mandall (NM) and Rye Mattick (CRM); Declan Millett (DTM) and Joy Hickman (JH2)). Since the data were not presented in a form that was amenable to meta-analysis, the results of the review are presented in narrative form only. Three trials satisfied the inclusion criteria. A chemical cured composite was compared with a light cure composite (one trial), a conventional glass ionomer cement (one trial) and a polyacid-modified resin composite (compomer) (one trial). The quality of the trial reports was generally poor. It is difficult to draw any conclusions from this review, however, suggestions are made for methods of improving future research involving

  3. BRST gauge fixing and regularization

    International Nuclear Information System (INIS)

    Damgaard, P.H.; Jonghe, F. de; Sollacher, R.

    1995-05-01

    In the presence of consistent regulators, the standard procedure of BRST gauge fixing (or moving from one gauge to another) can require non-trivial modifications. These modifications occur at the quantum level, and gauges exist which are only well-defined when quantum mechanical modifications are correctly taken into account. We illustrate how this phenomenon manifests itself in the solvable case of two-dimensional bosonization in the path-integral formalism. As a by-product, we show how to derive smooth bosonization in Batalin-Vilkovisky Lagrangian BRST quantization. (orig.)

  4. GOLD and the fixed ratio

    Directory of Open Access Journals (Sweden)

    Vestbo J

    2012-09-01

    Full Text Available Jørgen VestboUniversity of Manchester, Manchester, UKI read with interest the paper entitled "Diagnosis of airway obstruction in the elderly: contribution of the SARA study" by Sorino et al in a recent issue of this journal.1 Being involved in the Global Initiative for Obstructive Lung Diseases (GOLD, it is nice to see the interest sparked by the GOLD strategy document. However, in the paper by Sorino et al, there are a few misunderstandings around GOLD and the fixed ratio (forced expiratory volume in 1 second/forced volume vital capacity < 0.70 that need clarification.View original paper by Sorino and colleagues.

  5. Computing the Gromov hyperbolicity of a discrete metric space

    KAUST Repository

    Fournier, Hervé

    2015-02-12

    We give exact and approximation algorithms for computing the Gromov hyperbolicity of an n-point discrete metric space. We observe that computing the Gromov hyperbolicity from a fixed base-point reduces to a (max,min) matrix product. Hence, using the (max,min) matrix product algorithm by Duan and Pettie, the fixed base-point hyperbolicity can be determined in O(n2.69) time. It follows that the Gromov hyperbolicity can be computed in O(n3.69) time, and a 2-approximation can be found in O(n2.69) time. We also give a (2log2⁡n)-approximation algorithm that runs in O(n2) time, based on a tree-metric embedding by Gromov. We also show that hyperbolicity at a fixed base-point cannot be computed in O(n2.05) time, unless there exists a faster algorithm for (max,min) matrix multiplication than currently known.

  6. 3-D discrete analytical ridgelet transform.

    Science.gov (United States)

    Helbert, David; Carré, Philippe; Andres, Eric

    2006-12-01

    In this paper, we propose an implementation of the 3-D Ridgelet transform: the 3-D discrete analytical Ridgelet transform (3-D DART). This transform uses the Fourier strategy for the computation of the associated 3-D discrete Radon transform. The innovative step is the definition of a discrete 3-D transform with the discrete analytical geometry theory by the construction of 3-D discrete analytical lines in the Fourier domain. We propose two types of 3-D discrete lines: 3-D discrete radial lines going through the origin defined from their orthogonal projections and 3-D planes covered with 2-D discrete line segments. These discrete analytical lines have a parameter called arithmetical thickness, allowing us to define a 3-D DART adapted to a specific application. Indeed, the 3-D DART representation is not orthogonal, It is associated with a flexible redundancy factor. The 3-D DART has a very simple forward/inverse algorithm that provides an exact reconstruction without any iterative method. In order to illustrate the potentiality of this new discrete transform, we apply the 3-D DART and its extension to the Local-DART (with smooth windowing) to the denoising of 3-D image and color video. These experimental results show that the simple thresholding of the 3-D DART coefficients is efficient.

  7. The structure of the interface in the solvent mediated interaction of dipolar surfaces

    International Nuclear Information System (INIS)

    Dzhavakhidze, P.G.; Levadny, V.G.

    1987-08-01

    Interaction of two dipolar surfaces separated by a polar medium is considered within the framework of nonlocal electrostatics. The dipolar surface layers are modelled as regular lattices with fixed orientation of dipoles which are immersed into the solvent; solvent response is characterized by nonlocal dielectric function. The model is elaborated in order to reveal the role of the dipolar layer discreteness in the electric field produced by one surface and the interaction between two surfaces (which gives rise to the so called ''hydration'' or ''structural'' force acting between mineral surfaces and phospholipid bilayers). The discreteness effects are present only for commensurate lattices. Their special mutual arrangement then may lead to considerable reduction of structural forces, viz. the usual repulsion regime may change at short distances to attraction. Conditions are considered when repulsion is entirely replaced by attraction, i.e. the ''hydration barrier'' disappears. In appended note we discuss the role of solvation of surface dipolar groups. We propose an explanation of why two modes of decay (one with oscillative fine structure) may be present in the dependence of the force upon distance if the surface dipolar groups are immersed deep enough in the solvent and how the long-range oscillative mode disappears when the surface is but weakly solvated. (author). 35 refs, 5 figs

  8. The structure of the interface in the solvent-mediated interaction of dipolar surfaces

    International Nuclear Information System (INIS)

    Dzhavakhidze, P.G.; Kornyshev, A.A.; Levadny, V.G.

    1988-01-01

    Interaction of two dipolar surfaces separated by a polar medium is considered within the framework of nonlocal electrostatics. The dipolar-surface layers are modelled as regular lattices with fixed orientation of dipoles which are immersed into the solvent; solvent response is characterized by nonlocal dielectric function. The model is elaborated in order to reveal the role of the dypolar-layer discreteness in the electric field produced by one surface and the interaction between two surfaces (which gives rise to the so-called ''hydration'' or ''structural'' force acting between mineral surfaces and phospholipid bilayers). The discreteness effects are present only for commensurate lattices. Their special mutual arrangement then may lead to considerable reduction of structural forces, viz. the usual repulsion regime may change at short distances to attraction. Conditions are considered when repulsion is entirely replaced by attraction, i.e. the ''hydration barrier'' disappears. In appended note it is discussed the role of solvation of surface dipolar groups. It is proposed an explanation of why two modes of decay (one with oscillative fine structure) may be present in the dependence of the force upon distance, if the surface dipolar groups are immersed deep enough in the solvent, and how the long-range oscillative mode disappears when the surface is but weakly solvated

  9. Discrete symmetries in the Weyl expansion for quantum billiards

    International Nuclear Information System (INIS)

    Pavloff, N.

    1994-01-01

    2 and 3 dimensional quantum billiards with discrete symmetries are considered. The boundary condition is either Dirichlet or Neumann. The first terms of the Weyl expansion are derived for the level density projected onto the irreducible representations of the symmetry group. The formulae require only the knowledge of the character table of the group and the geometrical properties (such as surface, perimeter etc.) of sub-parts of the billiard invariant under a group transformation. (author). 17 refs., 1 fig., 1 tab

  10. Discrete modeling of multiple discontinuities in rock mass using XFEM

    OpenAIRE

    Das, Kamal C.; Ausas, Roberto Federico; Carol, Ignacio; Rodrigues, Eduardo; Sandeep, Sandra; Vargas, P. E.; Gonzalez, Nubia Aurora; Segura, Josep María; Lakshmikantha, Ramasesha Mookanahallipatna; Mello,, U.

    2017-01-01

    Modeling of discontinuities (fractures and fault surfaces) is of major importance to assess the geomechanical behavior of oil and gas reservoirs, especially for tight and unconventional reservoirs. Numerical analysis of discrete discontinuities traditionally has been studied using interface element concepts, however more recently there are attempts to use extended finite element method (XFEM). The development of an XFEM tool for geo-mechanical fractures/faults modeling has significant industr...

  11. Scanning conductance microscopy investigations on fixed human chromosomes

    DEFF Research Database (Denmark)

    Clausen, Casper Hyttel; Lange, Jacob Moresco; Jensen, Linda Boye

    2008-01-01

    Scanning conductance microscopy investigations were carried out in air on human chromosomes fixed on pre-fabricated SiO2 surfaces with a backgate. The point of the investigation was to estimate the dielectric constant of fixed human chromosomes in order to use it for microfluidic device...... optimization. The phase shift caused by the electrostatic forces, together with geometrical measurements of the atomic force microscopy (AFM) cantilever and the chromosomes were used to estimate a value,for the dielectric constant of different human chromosomes....

  12. Fixed Target Collisions at STAR

    Energy Technology Data Exchange (ETDEWEB)

    Meehan, Kathryn C.

    2016-12-15

    The RHIC Beam Energy Scan (BES) program was proposed to look for the turn-off of signatures of the quark gluon plasma (QGP), search for a possible QCD critical point, and study the nature of the phase transition between hadronic and partonic matter. Previous results have been used to claim that the onset of deconfinement occurs at a center-of-mass energy of 7 GeV. Data from lower energies are needed to test if this onset occurs. The goal of the STAR Fixed-Target Program is to extend the collision energy range in BES II to energies that are likely below the onset of deconfinement. Currently, STAR has inserted a gold target into the beam pipe and conducted test runs at center-of-mass energies of 3.9 and 4.5 GeV. Tests have been done with both Au and Al beams. First physics results from a Coulomb potential analysis of Au + Au fixed-target collisions are presented and are found to be consistent with results from previous experiments. Furthermore, the Coulomb potential, which is sensitive to the Z of the projectile and degree of baryonic stopping, will be compared to published results from the AGS.

  13. Utilization of nitrogen fixing trees

    Energy Technology Data Exchange (ETDEWEB)

    Brewbaker, J.L.; Beldt, R. van den; MacDicken, K.; Budowski, G.; Kass, D.C.L.; Russo, R.O.; Escalante, G.; Herrera, R.; Aranguren, J.; Arkcoll, D.B.; Doebereinger, J. (cord.)

    1983-01-01

    Six papers from the symposium are noted. Brewbaker, J.L., Beldt, R. van den, MacDicken, K. Fuelwood uses and properties of nitrogen-fixing trees, pp 193-204, (Refs. 15). Includes a list of 35 nitrogen-fixing trees of high fuelwood value. Budowski, G.; Kass, D.C.L.; Russo, R.O. Leguminous trees for shade, pp 205-222, (Refs. 68). Escalante, G., Herrera, R., Aranguren, J.; Nitrogen fixation in shade trees (Erythrina poeppigiana) in cocoa plantations in northern Venezuela, pp 223-230, (Refs. 13). Arkcoll, D.B.; Some leguminous trees providing useful fruits in the North of Brazil, pp 235-239, (Refs. 13). This paper deals with Parkia platycephala, Pentaclethra macroloba, Swartzia sp., Cassia leiandra, Hymenaea courbaril, dipteryz odorata, Inga edulis, I. macrophylla, and I. cinnamonea. Baggio, A.J.; Possibilities of the use of Gliricidia sepium in agroforestry systems in Brazil, pp 241-243; (Refs. 15). Seiffert, N.F.; Biological nitrogen and protein production of Leucaena cultivars grown to supplement the nutrition of ruminants, pp 245-249, (Refs. 14). Leucaena leucocephala cv. Peru, L. campina grande (L. leucocephala), and L. cunningham (L. leucocephalae) were promising for use as browse by beef cattle in central Brazil.

  14. Fixed-Target Electron Accelerators

    International Nuclear Information System (INIS)

    Brooks, William K.

    2001-01-01

    A tremendous amount of scientific insight has been garnered over the past half-century by using particle accelerators to study physical systems of sub-atomic dimensions. These giant instruments begin with particles at rest, then greatly increase their energy of motion, forming a narrow trajectory or beam of particles. In fixed-target accelerators, the particle beam impacts upon a stationary sample or target which contains or produces the sub-atomic system being studied. This is in distinction to colliders, where two beams are produced and are steered into each other so that their constituent particles can collide. The acceleration process always relies on the particle being accelerated having an electric charge; however, both the details of producing the beam and the classes of scientific investigations possible vary widely with the specific type of particle being accelerated. This article discusses fixed-target accelerators which produce beams of electrons, the lightest charged particle. As detailed in the report, the beam energy has a close connection with the size of the physical system studied. Here a useful unit of energy is a GeV, i.e., a giga electron-volt. (ne GeV, the energy an electron would have if accelerated through a billion volts, is equal to 1.6 x 10 -10 joules.) To study systems on a distance scale much smaller than an atomic nucleus requires beam energies ranging from a few GeV up to hundreds of GeV and more

  15. Topological Fixed Point Theory and Applications : Conference held at the Nankai Institute of Mathematics

    CERN Document Server

    1989-01-01

    This selection of papers from the Beijing conference gives a cross-section of the current trends in the field of fixed point theory as seen by topologists and analysts. Apart from one survey article, they are all original research articles, on topics including equivariant theory, extensions of Nielsen theory, periodic orbits of discrete and continuous dynamical systems, and new invariants and techniques in topological approaches to analytic problems.

  16. Discrete element weld model, phase 2

    Science.gov (United States)

    Prakash, C.; Samonds, M.; Singhal, A. K.

    1987-01-01

    A numerical method was developed for analyzing the tungsten inert gas (TIG) welding process. The phenomena being modeled include melting under the arc and the flow in the melt under the action of buoyancy, surface tension, and electromagnetic forces. The latter entails the calculation of the electric potential and the computation of electric current and magnetic field therefrom. Melting may occur at a single temperature or over a temperature range, and the electrical and thermal conductivities can be a function of temperature. Results of sample calculations are presented and discussed at length. A major research contribution has been the development of numerical methodology for the calculation of phase change problems in a fixed grid framework. The model has been implemented on CHAM's general purpose computer code PHOENICS. The inputs to the computer model include: geometric parameters, material properties, and weld process parameters.

  17. Improved Landau gauge fixing and discretisation errors

    International Nuclear Information System (INIS)

    Bonnet, F.D.R.; Bowman, P.O.; Leinweber, D.B.; Richards, D.G.; Williams, A.G.

    2000-01-01

    Lattice discretisation errors in the Landau gauge condition are examined. An improved gauge fixing algorithm in which O(a 2 ) errors are removed is presented. O(a 2 ) improvement of the gauge fixing condition displays the secondary benefit of reducing the size of higher-order errors. These results emphasise the importance of implementing an improved gauge fixing condition

  18. Fermion systems in discrete space-time

    International Nuclear Information System (INIS)

    Finster, Felix

    2007-01-01

    Fermion systems in discrete space-time are introduced as a model for physics on the Planck scale. We set up a variational principle which describes a non-local interaction of all fermions. This variational principle is symmetric under permutations of the discrete space-time points. We explain how for minimizers of the variational principle, the fermions spontaneously break this permutation symmetry and induce on space-time a discrete causal structure

  19. Fermion systems in discrete space-time

    Energy Technology Data Exchange (ETDEWEB)

    Finster, Felix [NWF I - Mathematik, Universitaet Regensburg, 93040 Regensburg (Germany)

    2007-05-15

    Fermion systems in discrete space-time are introduced as a model for physics on the Planck scale. We set up a variational principle which describes a non-local interaction of all fermions. This variational principle is symmetric under permutations of the discrete space-time points. We explain how for minimizers of the variational principle, the fermions spontaneously break this permutation symmetry and induce on space-time a discrete causal structure.

  20. Fermion Systems in Discrete Space-Time

    OpenAIRE

    Finster, Felix

    2006-01-01

    Fermion systems in discrete space-time are introduced as a model for physics on the Planck scale. We set up a variational principle which describes a non-local interaction of all fermions. This variational principle is symmetric under permutations of the discrete space-time points. We explain how for minimizers of the variational principle, the fermions spontaneously break this permutation symmetry and induce on space-time a discrete causal structure.

  1. Fermion systems in discrete space-time

    Science.gov (United States)

    Finster, Felix

    2007-05-01

    Fermion systems in discrete space-time are introduced as a model for physics on the Planck scale. We set up a variational principle which describes a non-local interaction of all fermions. This variational principle is symmetric under permutations of the discrete space-time points. We explain how for minimizers of the variational principle, the fermions spontaneously break this permutation symmetry and induce on space-time a discrete causal structure.

  2. Adhesives for fixed orthodontic brackets.

    Science.gov (United States)

    Mandall, Nicky A; Hickman, Joy; Macfarlane, Tatiana V; Mattick, Rye Cr; Millett, Declan T; Worthington, Helen V

    2018-04-09

    Bonding of orthodontic brackets to teeth is important to enable effective and efficient treatment with fixed appliances. The problem is bracket failure during treatment which increases operator chairside time and lengthens treatment time. A prolonged treatment is likely to increase the oral health risks of orthodontic treatment with fixed appliances one of which is irreversible enamel decalcification. This is an update of the Cochrane Review first published in 2003. A new full search was conducted on 26 September 2017 but no new studies were identified. We have only updated the search methods section in this new version. The conclusions of this Cochrane Review remain the same. To evaluate the effects of different orthodontic adhesives for bonding. Cochrane Oral Health's Information Specialist searched the following databases: Cochrane Oral Health's Trials Register (to 26 September 2017), the Cochrane Central Register of Controlled Trials (CENTRAL; 2017, Issue 8) in the Cochrane Library (searched 26 September 2017), MEDLINE Ovid (1946 to 26 September 2017), and Embase Ovid (1980 to 26 September 2017). The US National Institutes of Health Ongoing Trials Register (ClinicalTrials.gov) and the World Health Organization International Clinical Trials Registry Platform were searched for ongoing trials. No restrictions were placed on the language or date of publication when searching the electronic databases. Trials were selected if they met the following criteria: randomised controlled trials (RCTs) and controlled clinical trials (CCTs) comparing two different adhesive groups. Participants were patients with fixed orthodontic appliances. The interventions were adhesives that bonded stainless steel brackets to all teeth except the molars. The primary outcome was debond or bracket failure. Data were recorded on decalcification as a secondary outcome, if present. Information regarding methods, participants, interventions, outcome measures and results were extracted in

  3. Inevitable randomness in discrete mathematics

    CERN Document Server

    Beck, Jozsef

    2009-01-01

    Mathematics has been called the science of order. The subject is remarkably good for generalizing specific cases to create abstract theories. However, mathematics has little to say when faced with highly complex systems, where disorder reigns. This disorder can be found in pure mathematical arenas, such as the distribution of primes, the 3n+1 conjecture, and class field theory. The purpose of this book is to provide examples--and rigorous proofs--of the complexity law: (1) discrete systems are either simple or they exhibit advanced pseudorandomness; (2) a priori probabilities often exist even when there is no intrinsic symmetry. Part of the difficulty in achieving this purpose is in trying to clarify these vague statements. The examples turn out to be fascinating instances of deep or mysterious results in number theory and combinatorics. This book considers randomness and complexity. The traditional approach to complexity--computational complexity theory--is to study very general complexity classes, such as P...

  4. Quantum evolution by discrete measurements

    International Nuclear Information System (INIS)

    Roa, L; Guevara, M L Ladron de; Delgado, A; Olivares-RenterIa, G; Klimov, A B

    2007-01-01

    In this article we review two ways of driving a quantum system to a known pure state via a sequence discrete of von Neumann measurements. The first of them assumes that the initial state of the system is unknown, and the evolution is attained only with the help of two non-commuting observables. For this method, the overall success probability is maximized when the eigentstates of the involved observables constitute mutually unbiased bases. The second method assumes the initial state is known and it uses N observables which are consecutively measured to make the state of the system approach the target state. The probability of success of this procedure converges to 1 as the number of observables increases

  5. Quantum evolution by discrete measurements

    Energy Technology Data Exchange (ETDEWEB)

    Roa, L [Center for Quantum Optics and Quantum Information, Departamento de Fisica, Universidad de Concepcion, Casilla 160-C, Concepcion (Chile); Guevara, M L Ladron de [Departamento de Fisica, Universidad Catolica del Norte, Casilla 1280, Antofagasta (Chile); Delgado, A [Center for Quantum Optics and Quantum Information, Departamento de Fisica, Universidad de Concepcion, Casilla 160-C, Concepcion (Chile); Olivares-RenterIa, G [Center for Quantum Optics and Quantum Information, Departamento de Fisica, Universidad de Concepcion, Casilla 160-C, Concepcion (Chile); Klimov, A B [Departamento de Fisica, Universidad de Guadalajara, Revolucion 1500, 44420 Guadalajara, Jalisco (Mexico)

    2007-10-15

    In this article we review two ways of driving a quantum system to a known pure state via a sequence discrete of von Neumann measurements. The first of them assumes that the initial state of the system is unknown, and the evolution is attained only with the help of two non-commuting observables. For this method, the overall success probability is maximized when the eigentstates of the involved observables constitute mutually unbiased bases. The second method assumes the initial state is known and it uses N observables which are consecutively measured to make the state of the system approach the target state. The probability of success of this procedure converges to 1 as the number of observables increases.

  6. Discrete stochastic processes and applications

    CERN Document Server

    Collet, Jean-François

    2018-01-01

    This unique text for beginning graduate students gives a self-contained introduction to the mathematical properties of stochastics and presents their applications to Markov processes, coding theory, population dynamics, and search engine design. The book is ideal for a newly designed course in an introduction to probability and information theory. Prerequisites include working knowledge of linear algebra, calculus, and probability theory. The first part of the text focuses on the rigorous theory of Markov processes on countable spaces (Markov chains) and provides the basis to developing solid probabilistic intuition without the need for a course in measure theory. The approach taken is gradual beginning with the case of discrete time and moving on to that of continuous time. The second part of this text is more applied; its core introduces various uses of convexity in probability and presents a nice treatment of entropy.

  7. Discrete calculus methods for counting

    CERN Document Server

    Mariconda, Carlo

    2016-01-01

    This book provides an introduction to combinatorics, finite calculus, formal series, recurrences, and approximations of sums. Readers will find not only coverage of the basic elements of the subjects but also deep insights into a range of less common topics rarely considered within a single book, such as counting with occupancy constraints, a clear distinction between algebraic and analytical properties of formal power series, an introduction to discrete dynamical systems with a thorough description of Sarkovskii’s theorem, symbolic calculus, and a complete description of the Euler-Maclaurin formulas and their applications. Although several books touch on one or more of these aspects, precious few cover all of them. The authors, both pure mathematicians, have attempted to develop methods that will allow the student to formulate a given problem in a precise mathematical framework. The aim is to equip readers with a sound strategy for classifying and solving problems by pursuing a mathematically rigorous yet ...

  8. Modeling discrete competitive facility location

    CERN Document Server

    Karakitsiou, Athanasia

    2015-01-01

    This book presents an up-to-date review of modeling and optimization approaches for location problems along with a new bi-level programming methodology which captures the effect of competition of both producers and customers on facility location decisions. While many optimization approaches simplify location problems by assuming decision making in isolation, this monograph focuses on models which take into account the competitive environment in which such decisions are made. New insights in modeling, algorithmic and theoretical possibilities are opened by this approach and new applications are possible. Competition on equal term plus competition between market leader and followers are considered in this study, consequently bi-level optimization methodology is emphasized and further developed. This book provides insights regarding modeling complexity and algorithmic approaches to discrete competitive location problems. In traditional location modeling, assignment of customer demands to supply sources are made ...

  9. Discrete modelling of drapery systems

    Science.gov (United States)

    Thoeni, Klaus; Giacomini, Anna

    2016-04-01

    Drapery systems are an efficient and cost-effective measure in preventing and controlling rockfall hazards on rock slopes. The simplest form consists of a row of ground anchors along the top of the slope connected to a horizontal support cable from which a wire mesh is suspended down the face of the slope. Such systems are generally referred to as simple or unsecured draperies (Badger and Duffy 2012). Variations such as secured draperies, where a pattern of ground anchors is incorporated within the field of the mesh, and hybrid systems, where the upper part of an unsecured drapery is elevated to intercept rockfalls originating upslope of the installation, are becoming more and more popular. This work presents a discrete element framework for simulation of unsecured drapery systems and its variations. The numerical model is based on the classical discrete element method (DEM) and implemented into the open-source framework YADE (Šmilauer et al., 2010). The model takes all relevant interactions between block, drapery and slope into account (Thoeni et al., 2014) and was calibrated and validated based on full-scale experiments (Giacomini et al., 2012).The block is modelled as a rigid clump made of spherical particles which allows any shape to be approximated. The drapery is represented by a set of spherical particle with remote interactions. The behaviour of the remote interactions is governed by the constitutive behaviour of the wire and generally corresponds to a piecewise linear stress-strain relation (Thoeni et al., 2013). The same concept is used to model wire ropes. The rock slope is represented by rigid triangular elements where material properties (e.g., normal coefficient of restitution, friction angle) are assigned to each triangle. The capabilities of the developed model to simulate drapery systems and estimate the residual hazard involved with such systems is shown. References Badger, T.C., Duffy, J.D. (2012) Drapery systems. In: Turner, A.K., Schuster R

  10. Surface-complexation models for sorption onto heterogeneous surfaces

    International Nuclear Information System (INIS)

    Harvey, K.B.

    1997-10-01

    This report provides a description of the discrete-logK spectrum model, together with a description of its derivation, and of its place in the larger context of surface-complexation modelling. The tools necessary to apply the discrete-logK spectrum model are discussed, and background information appropriate to this discussion is supplied as appendices. (author)

  11. Selection and Storage of Perceptual Groups Is Constrained by a Discrete Resource in Working Memory

    OpenAIRE

    Anderson, David E.; Vogel, Edward K.; Awh, Edward

    2012-01-01

    Perceptual grouping can lead observers to perceive a multielement scene as a smaller number of hierarchical units. Past work has shown that grouping enables more elements to be stored in visual working memory (WM). Although this may appear to contradict so-called discrete resource models that argue for fixed item limits in WM storage, it is also possible that grouping reduces the effective number of “items” in the display. To test this hypothesis, we examined how mnemonic resolution declined ...

  12. Thickness optimization of fiber reinforced laminated composites using the discrete material optimization method

    DEFF Research Database (Denmark)

    Sørensen, Søren Nørgaard; Lund, Erik

    2012-01-01

    This work concerns a novel large-scale multi-material topology optimization method for simultaneous determination of the optimum variable integer thickness and fiber orientation throughout laminate structures with fixed outer geometries while adhering to certain manufacturing constraints....... The conceptual combinatorial/integer problem is relaxed to a continuous problem and solved on basis of the so-called Discrete Material Optimization method, explicitly including the manufacturing constraints as linear constraints....

  13. THE NISSL SUBSTANCE OF LIVING AND FIXED SPINAL GANGLION CELLS

    Science.gov (United States)

    Deitch, Arline D.; Moses, Montrose J.

    1957-01-01

    Living chick spinal ganglion neurons grown for 19 to 25 days in vitro were photographed with a color-translating ultraviolet microscope (UV-91) at 265, 287, and 310 mµ. This instrument was unique in permitting rapid accumulation of ultraviolet information with minimal damage to the cell. In the photographs taken at 265 mµ of the living neurons, discrete ultraviolet-absorbing cytoplasmic masses were observed which were found to be virtually unchanged in appearance after formalin fixation. These were identical with the Nissl bodies of the same cells seen after staining with basic dyes. The correlation of ultraviolet absorption, ribonuclease extraction, and staining experiments with acid and basic dyes confirmed the ribonucleoprotein nature of these Nissl bodies in the living and fixed cells. No change in distribution or concentration of ultraviolet-absorbing substance was observed in the first 12 ultraviolet photographs of a neuron, and it is concluded that the cells had not been subjected to significant ultraviolet damage during the period of photography. On the basis of these observations, as well as previous findings with phase contrast microscopy, it is concluded that Nissl bodies preexist in the living neuron as discrete aggregates containing high concentrations of nucleoprotein. PMID:13438929

  14. Anaerobic treatment of winery wastewater in fixed bed reactors.

    Science.gov (United States)

    Ganesh, Rangaraj; Rajinikanth, Rajagopal; Thanikal, Joseph V; Ramanujam, Ramamoorty Alwar; Torrijos, Michel

    2010-06-01

    The treatment of winery wastewater in three upflow anaerobic fixed-bed reactors (S9, S30 and S40) with low density floating supports of varying size and specific surface area was investigated. A maximum OLR of 42 g/l day with 80 +/- 0.5% removal efficiency was attained in S9, which had supports with the highest specific surface area. It was found that the efficiency of the reactors increased with decrease in size and increase in specific surface area of the support media. Total biomass accumulation in the reactors was also found to vary as a function of specific surface area and size of the support medium. The Stover-Kincannon kinetic model predicted satisfactorily the performance of the reactors. The maximum removal rate constant (U(max)) was 161.3, 99.0 and 77.5 g/l day and the saturation value constant (K(B)) was 162.0, 99.5 and 78.0 g/l day for S9, S30 and S40, respectively. Due to their higher biomass retention potential, the supports used in this study offer great promise as media in anaerobic fixed bed reactors. Anaerobic fixed-bed reactors with these supports can be applied as high-rate systems for the treatment of large volumes of wastewaters typically containing readily biodegradable organics, such as the winery wastewater.

  15. A Discrete Spectral Problem and Related Hierarchy of Discrete Hamiltonian Lattice Equations

    International Nuclear Information System (INIS)

    Xu Xixiang; Cao Weili

    2007-01-01

    Staring from a discrete matrix spectral problem, a hierarchy of lattice soliton equations is presented though discrete zero curvature representation. The resulting lattice soliton equations possess non-local Lax pairs. The Hamiltonian structures are established for the resulting hierarchy by the discrete trace identity. Liouville integrability of resulting hierarchy is demonstrated.

  16. A discrete ordinate response matrix method for massively parallel computers

    International Nuclear Information System (INIS)

    Hanebutte, U.R.; Lewis, E.E.

    1991-01-01

    A discrete ordinate response matrix method is formulated for the solution of neutron transport problems on massively parallel computers. The response matrix formulation eliminates iteration on the scattering source. The nodal matrices which result from the diamond-differenced equations are utilized in a factored form which minimizes memory requirements and significantly reduces the required number of algorithm utilizes massive parallelism by assigning each spatial node to a processor. The algorithm is accelerated effectively by a synthetic method in which the low-order diffusion equations are also solved by massively parallel red/black iterations. The method has been implemented on a 16k Connection Machine-2, and S 8 and S 16 solutions have been obtained for fixed-source benchmark problems in X--Y geometry

  17. A geometric renormalization group in discrete quantum space-time

    International Nuclear Information System (INIS)

    Requardt, Manfred

    2003-01-01

    We model quantum space-time on the Planck scale as dynamical networks of elementary relations or time dependent random graphs, the time dependence being an effect of the underlying dynamical network laws. We formulate a kind of geometric renormalization group on these (random) networks leading to a hierarchy of increasingly coarse-grained networks of overlapping lumps. We provide arguments that this process may generate a fixed limit phase, representing our continuous space-time on a mesoscopic or macroscopic scale, provided that the underlying discrete geometry is critical in a specific sense (geometric long range order). Our point of view is corroborated by a series of analytic and numerical results, which allow us to keep track of the geometric changes, taking place on the various scales of the resolution of space-time. Of particular conceptual importance are the notions of dimension of such random systems on the various scales and the notion of geometric criticality

  18. Clebsch-Gordan coefficients of discrete groups in subgroup bases

    Science.gov (United States)

    Chen, Gaoli

    2018-04-01

    We express each Clebsch-Gordan (CG) coefficient of a discrete group as a product of a CG coefficient of its subgroup and a factor, which we call an embedding factor. With an appropriate definition, such factors are fixed up to phase ambiguities. Particularly, they are invariant under basis transformations of irreducible representations of both the group and its subgroup. We then impose on the embedding factors constraints, which relate them to their counterparts under complex conjugate and therefore restrict the phases of embedding factors. In some cases, the phase ambiguities are reduced to sign ambiguities. We describe the procedure of obtaining embedding factors and then calculate CG coefficients of the group 𝒫𝒮ℒ2(7) in terms of embedding factors of its subgroups S4 and 𝒯7.

  19. Kato's chaos in set-valued discrete systems

    International Nuclear Information System (INIS)

    Gu Rongbao

    2007-01-01

    In this paper, we investigate the relationships between Kato's chaoticity of a dynamical system (X,f) and Kato's chaoticity of the set-valued discrete system (K(X),f-bar ) associated to (X,f), where X is a compact metric space and f:X->X is a continuous map. We show that Kato's chaoticity of (K(X),f-bar ) implies the Kato's chaoticity of (X,f) in general and (X,f) is chaotic in the sense of Kato if and only if (K(X),f-bar ) is Kato chaotic in w e -topology. We also show that Ruelle-Takens' chaoticity implies Kato's chaoticity for a continuous map with a fixed point from a complete metric space without isolated point into itself

  20. Geometry and Hamiltonian mechanics on discrete spaces

    International Nuclear Information System (INIS)

    Talasila, V; Clemente-Gallardo, J; Schaft, A J van der

    2004-01-01

    Numerical simulation is often crucial for analysing the behaviour of many complex systems which do not admit analytic solutions. To this end, one either converts a 'smooth' model into a discrete (in space and time) model, or models systems directly at a discrete level. The goal of this paper is to provide a discrete analogue of differential geometry, and to define on these discrete models a formal discrete Hamiltonian structure-in doing so we try to bring together various fundamental concepts from numerical analysis, differential geometry, algebraic geometry, simplicial homology and classical Hamiltonian mechanics. For example, the concept of a twisted derivation is borrowed from algebraic geometry for developing a discrete calculus. The theory is applied to a nonlinear pendulum and we compare the dynamics obtained through a discrete modelling approach with the dynamics obtained via the usual discretization procedures. Also an example of an energy-conserving algorithm on a simple harmonic oscillator is presented, and its effect on the Poisson structure is discussed

  1. Cuspidal discrete series for semisimple symmetric spaces

    DEFF Research Database (Denmark)

    Andersen, Nils Byrial; Flensted-Jensen, Mogens; Schlichtkrull, Henrik

    2012-01-01

    We propose a notion of cusp forms on semisimple symmetric spaces. We then study the real hyperbolic spaces in detail, and show that there exists both cuspidal and non-cuspidal discrete series. In particular, we show that all the spherical discrete series are non-cuspidal. (C) 2012 Elsevier Inc. All...

  2. Discrete Riccati equation solutions: Distributed algorithms

    Directory of Open Access Journals (Sweden)

    D. G. Lainiotis

    1996-01-01

    Full Text Available In this paper new distributed algorithms for the solution of the discrete Riccati equation are introduced. The algorithms are used to provide robust and computational efficient solutions to the discrete Riccati equation. The proposed distributed algorithms are theoretically interesting and computationally attractive.

  3. Painleve test and discrete Boltzmann equations

    International Nuclear Information System (INIS)

    Euler, N.; Steeb, W.H.

    1989-01-01

    The Painleve test for various discrete Boltzmann equations is performed. The connection with integrability is discussed. Furthermore the Lie symmetry vector fields are derived and group-theoretical reduction of the discrete Boltzmann equations to ordinary differentiable equations is performed. Lie Backlund transformations are gained by performing the Painleve analysis for the ordinary differential equations. 16 refs

  4. Variance Swap Replication: Discrete or Continuous?

    Directory of Open Access Journals (Sweden)

    Fabien Le Floc’h

    2018-02-01

    Full Text Available The popular replication formula to price variance swaps assumes continuity of traded option strikes. In practice, however, there is only a discrete set of option strikes traded on the market. We present here different discrete replication strategies and explain why the continuous replication price is more relevant.

  5. Discretization vs. Rounding Error in Euler's Method

    Science.gov (United States)

    Borges, Carlos F.

    2011-01-01

    Euler's method for solving initial value problems is an excellent vehicle for observing the relationship between discretization error and rounding error in numerical computation. Reductions in stepsize, in order to decrease discretization error, necessarily increase the number of steps and so introduce additional rounding error. The problem is…

  6. Discrete/PWM Ballast-Resistor Controller

    Science.gov (United States)

    King, Roger J.

    1994-01-01

    Circuit offers low switching loss and automatic compensation for failure of ballast resistor. Discrete/PWM ballast-resistor controller improved shunt voltage-regulator circuit designed to supply power from high-resistance source to low-impedance bus. Provides both coarse discrete voltage levels (by switching of ballast resistors) and continuous fine control of voltage via pulse-width modulation.

  7. Current Density and Continuity in Discretized Models

    Science.gov (United States)

    Boykin, Timothy B.; Luisier, Mathieu; Klimeck, Gerhard

    2010-01-01

    Discrete approaches have long been used in numerical modelling of physical systems in both research and teaching. Discrete versions of the Schrodinger equation employing either one or several basis functions per mesh point are often used by senior undergraduates and beginning graduate students in computational physics projects. In studying…

  8. Geometry and Hamiltonian mechanics on discrete spaces

    NARCIS (Netherlands)

    Talasila, V.; Clemente-Gallardo, J.; Schaft, A.J. van der

    2004-01-01

    Numerical simulation is often crucial for analysing the behaviour of many complex systems which do not admit analytic solutions. To this end, one either converts a ‘smooth’ model into a discrete (in space and time) model, or models systems directly at a discrete level. The goal of this paper is to

  9. Geometry and Hamiltonian mechanics on discrete spaces

    NARCIS (Netherlands)

    Talasila, V.; Clemente Gallardo, J.J.; Clemente-Gallardo, J.; van der Schaft, Arjan

    2004-01-01

    Numerical simulation is often crucial for analysing the behaviour of many complex systems which do not admit analytic solutions. To this end, one either converts a 'smooth' model into a discrete (in space and time) model, or models systems directly at a discrete level. The goal of this paper is to

  10. Discrete mathematics in the high school curriculum

    NARCIS (Netherlands)

    Anderson, I.; Asch, van A.G.; van Lint, J.H.

    2004-01-01

    In this paper we present some topics from the field of discrete mathematics which might be suitable for the high school curriculum. These topics yield both easy to understand challenging problems and important applications of discrete mathematics. We choose elements from number theory and various

  11. Discrete Fourier analysis of multigrid algorithms

    NARCIS (Netherlands)

    van der Vegt, Jacobus J.W.; Rhebergen, Sander

    2011-01-01

    The main topic of this report is a detailed discussion of the discrete Fourier multilevel analysis of multigrid algorithms. First, a brief overview of multigrid methods is given for discretizations of both linear and nonlinear partial differential equations. Special attention is given to the

  12. The adaptive collision source method for discrete ordinates radiation transport

    International Nuclear Information System (INIS)

    Walters, William J.; Haghighat, Alireza

    2017-01-01

    Highlights: • A new adaptive quadrature method to solve the discrete ordinates transport equation. • The adaptive collision source (ACS) method splits the flux into n’th collided components. • Uncollided flux requires high quadrature; this is lowered with number of collisions. • ACS automatically applies appropriate quadrature order each collided component. • The adaptive quadrature is 1.5–4 times more efficient than uniform quadrature. - Abstract: A novel collision source method has been developed to solve the Linear Boltzmann Equation (LBE) more efficiently by adaptation of the angular quadrature order. The angular adaptation method is unique in that the flux from each scattering source iteration is obtained, with potentially a different quadrature order used for each. Traditionally, the flux from every iteration is combined, with the same quadrature applied to the combined flux. Since the scattering process tends to distribute the radiation more evenly over angles (i.e., make it more isotropic), the quadrature requirements generally decrease with each iteration. This method allows for an optimal use of processing power, by using a high order quadrature for the first iterations that need it, before shifting to lower order quadratures for the remaining iterations. This is essentially an extension of the first collision source method, and is referred to as the adaptive collision source (ACS) method. The ACS methodology has been implemented in the 3-D, parallel, multigroup discrete ordinates code TITAN. This code was tested on a several simple and complex fixed-source problems. The ACS implementation in TITAN has shown a reduction in computation time by a factor of 1.5–4 on the fixed-source test problems, for the same desired level of accuracy, as compared to the standard TITAN code.

  13. Handbook on modelling for discrete optimization

    CERN Document Server

    Pitsoulis, Leonidas; Williams, H

    2006-01-01

    The primary objective underlying the Handbook on Modelling for Discrete Optimization is to demonstrate and detail the pervasive nature of Discrete Optimization. While its applications cut across an incredibly wide range of activities, many of the applications are only known to specialists. It is the aim of this handbook to correct this. It has long been recognized that "modelling" is a critically important mathematical activity in designing algorithms for solving these discrete optimization problems. Nevertheless solving the resultant models is also often far from straightforward. In recent years it has become possible to solve many large-scale discrete optimization problems. However, some problems remain a challenge, even though advances in mathematical methods, hardware, and software technology have pushed the frontiers forward. This handbook couples the difficult, critical-thinking aspects of mathematical modeling with the hot area of discrete optimization. It will be done in an academic handbook treatment...

  14. Discrete elements method of neutral particle transport

    International Nuclear Information System (INIS)

    Mathews, K.A.

    1983-01-01

    A new discrete elements (L/sub N/) transport method is derived and compared to the discrete ordinates S/sub N/ method, theoretically and by numerical experimentation. The discrete elements method is more accurate than discrete ordinates and strongly ameliorates ray effects for the practical problems studied. The discrete elements method is shown to be more cost effective, in terms of execution time with comparable storage to attain the same accuracy, for a one-dimensional test case using linear characteristic spatial quadrature. In a two-dimensional test case, a vacuum duct in a shield, L/sub N/ is more consistently convergent toward a Monte Carlo benchmark solution than S/sub N/, using step characteristic spatial quadrature. An analysis of the interaction of angular and spatial quadrature in xy-geometry indicates the desirability of using linear characteristic spatial quadrature with the L/sub N/ method

  15. Spatially localized, temporally quasiperiodic, discrete nonlinear excitations

    International Nuclear Information System (INIS)

    Cai, D.; Bishop, A.R.; Gronbech-Jensen, N.

    1995-01-01

    In contrast to the commonly discussed discrete breather, which is a spatially localized, time-periodic solution, we present an exact solution of a discrete nonlinear Schroedinger breather which is a spatially localized, temporally quasiperiodic nonlinear coherent excitation. This breather is a multiple-soliton solution in the sense of the inverse scattering transform. A discrete breather of multiple frequencies is conceptually important in studies of nonlinear lattice systems. We point out that, for this breather, the incommensurability of its frequencies is a discrete lattice effect and these frequencies become commensurate in the continuum limit. To understand the dynamical properties of the breather, we also discuss its stability and its behavior in the presence of an external potential. Finally, we indicate how to obtain an exact N-soliton breather as a discrete generalization of the continuum multiple-soliton solution

  16. Laplacians on discrete and quantum geometries

    International Nuclear Information System (INIS)

    Calcagni, Gianluca; Oriti, Daniele; Thürigen, Johannes

    2013-01-01

    We extend discrete calculus for arbitrary (p-form) fields on embedded lattices to abstract discrete geometries based on combinatorial complexes. We then provide a general definition of discrete Laplacian using both the primal cellular complex and its combinatorial dual. The precise implementation of geometric volume factors is not unique and, comparing the definition with a circumcentric and a barycentric dual, we argue that the latter is, in general, more appropriate because it induces a Laplacian with more desirable properties. We give the expression of the discrete Laplacian in several different sets of geometric variables, suitable for computations in different quantum gravity formalisms. Furthermore, we investigate the possibility of transforming from position to momentum space for scalar fields, thus setting the stage for the calculation of heat kernel and spectral dimension in discrete quantum geometries. (paper)

  17. Discrete breathers in graphane: Effect of temperature

    Energy Technology Data Exchange (ETDEWEB)

    Baimova, J. A., E-mail: julia.a.baimova@gmail.com [Russian Academy of Sciences, Institute of Metal Physics, Ural Branch (Russian Federation); Murzaev, R. T.; Lobzenko, I. P.; Dmitriev, S. V. [Russian Academy of Sciences, Institute for Metals Superplasticity Problems (Russian Federation); Zhou, Kun [Nanyang Technological University, School of Mechanical and Aerospace Engineering (Singapore)

    2016-05-15

    The discrete breathers in graphane in thermodynamic equilibrium in the temperature range 50–600 K are studied by molecular dynamics simulation. A discrete breather is a hydrogen atom vibrating along the normal to a sheet of graphane at a high amplitude. As was found earlier, the lifetime of a discrete breather at zero temperature corresponds to several tens of thousands of vibrations. The effect of temperature on the decay time of discrete breathers and the probability of their detachment from a sheet of graphane are studied in this work. It is shown that closely spaced breathers can exchange energy with each other at zero temperature. The data obtained suggest that thermally activated discrete breathers can be involved in the dehydrogenation of graphane, which is important for hydrogen energetics.

  18. Discrete stochastic charging of aggregate grains

    Science.gov (United States)

    Matthews, Lorin S.; Shotorban, Babak; Hyde, Truell W.

    2018-05-01

    Dust particles immersed in a plasma environment become charged through the collection of electrons and ions at random times, causing the dust charge to fluctuate about an equilibrium value. Small grains (with radii less than 1 μm) or grains in a tenuous plasma environment are sensitive to single additions of electrons or ions. Here we present a numerical model that allows examination of discrete stochastic charge fluctuations on the surface of aggregate grains and determines the effect of these fluctuations on the dynamics of grain aggregation. We show that the mean and standard deviation of charge on aggregate grains follow the same trends as those predicted for spheres having an equivalent radius, though aggregates exhibit larger variations from the predicted values. In some plasma environments, these charge fluctuations occur on timescales which are relevant for dynamics of aggregate growth. Coupled dynamics and charging models show that charge fluctuations tend to produce aggregates which are much more linear or filamentary than aggregates formed in an environment where the charge is stationary.

  19. Discrete rate and variable power adaptation for underlay cognitive networks

    KAUST Repository

    Abdallah, Mohamed M.

    2010-01-01

    We consider the problem of maximizing the average spectral efficiency of a secondary link in underlay cognitive networks. In particular, we consider the network setting whereby the secondary transmitter employs discrete rate and variable power adaptation under the constraints of maximum average transmit power and maximum average interference power allowed at the primary receiver due to the existence of an interference link between the secondary transmitter and the primary receiver. We first find the optimal discrete rates assuming a predetermined partitioning of the signal-to-noise ratio (SNR) of both the secondary and interference links. We then present an iterative algorithm for finding a suboptimal partitioning of the SNR of the interference link assuming a fixed partitioning of the SNR of secondary link selected for the case where no interference link exists. Our numerical results show that the average spectral efficiency attained by using the iterative algorithm is close to that achieved by the computationally extensive exhaustive search method for the case of Rayleigh fading channels. In addition, our simulations show that selecting the optimal partitioning of the SNR of the secondary link assuming no interference link exists still achieves the maximum average spectral efficiency for the case where the average interference constraint is considered. © 2010 IEEE.

  20. Fixed telephony evolution at CERN

    CERN Multimedia

    CERN. Geneva

    2015-01-01

    The heart of CERN’s telephony infrastructure consists of the Alcatel IP-PBX that links CERN’s fixed line phones, Lync softphones and CERN’s GSM subscribers to low-cost local and international telephony services. The PABX infrastructure also supports the emergency “red telephones” in the LHC tunnel and provides vital services for the Fire and Rescue Service and the CERN Control Centre. Although still reliable, the Alcatel hardware is increasingly costly to maintain and looking increasingly outmoded in a market where open source solutions are increasingly dominant. After presenting an overview of the Alcatel PABX and the services it provides, including innovative solutions such as the Closed User Group for our mobile telephony services, we present a possible architecture for a software based system designed to meet tomorrow’s communication needs and describe how the introduction of open-source call routers based on the SIP protocol and Session Border Controllers (SBC) could foster the introduction...

  1. Fixed type incore measuring device

    International Nuclear Information System (INIS)

    Oda, Naotaka; Ito, Hitoshi; Maeda, Hiroyuki

    1998-01-01

    The present invention concerns a measuring device using gamma thermometers to be used in a BWR type reactor. An input switch is inserted to the vicinity of a detection signal input portion of a signal cable connecting GT with the detection signal input portion of a fixed type incore measuring device, and a loop resistance measuring means is disposed to the input switch on the side of the GT by way of a measurement switch. Upon measuring loop resistance, the GT measuring circuit is switched from the detection signal input portion to the loop resistance measuring means by a switching operation of the input switch and the measurement switch thereby enabling to confirm the value of the loop resistance. In addition, the lowering of the voltage in the loop resistance is compensated to confirm the accurate measurement values to be used thereby enabling to measure GT detection signals accurately. A diagnosing means for diagnosing the state of GT based on the results of the measurement for the loop resistance is disposed, and the results are reported to an operator. (N.H.)

  2. Chaotic properties between the nonintegrable discrete nonlinear Schroedinger equation and a nonintegrable discrete Heisenberg model

    International Nuclear Information System (INIS)

    Ding Qing

    2007-01-01

    We prove that the integrable-nonintegrable discrete nonlinear Schroedinger equation (AL-DNLS) introduced by Cai, Bishop and Gronbech-Jensen (Phys. Rev. Lett. 72 591(1994)) is the discrete gauge equivalent to an integrable-nonintegrable discrete Heisenberg model from the geometric point of view. Then we study whether the transmission and bifurcation properties of the AL-DNLS equation are preserved under the action of discrete gauge transformations. Our results reveal that the transmission property of the AL-DNLS equation is completely preserved and the bifurcation property is conditionally preserved to those of the integrable-nonintegrable discrete Heisenberg model

  3. Submerged Fixed Floating Structure under the Action of Surface Current

    Directory of Open Access Journals (Sweden)

    Zhen Cui

    2018-01-01

    Full Text Available The implementation of floating structures has increased with the construction of new sluices for flood control. The overturning moment of floating structure and its influencing factors are the important parameters that determine the structural safety. It is essential to understand the overturning characteristics of these structures in currents. Based on hydrodynamic theory and equilibrium analysis, the hydraulic characteristics of a floating structure are discussed by means of theoretical analysis and experiments. A formula for the overturning moment is developed in terms of the time-averaged pressure on the structure. The corresponding parametric study aims to assess the effects of flow velocities, vertical positions, shape ratios and water levels on the overturning moment. The experimental results show that hydrodynamic factors have a significant influence on the overturning of the structure. Furthermore, a relationship is obtained between the overturning moment and the contributing parameters according to dimensional analysis and the linear fitting method of multidimensional ordinary least squares (OLS. The results predicted by the formula agree with the experimental results, demonstrating the potential for general applicability.

  4. Prediction of leakage in the fixed mechanical seal

    Directory of Open Access Journals (Sweden)

    Asheichik Anatoly A.

    2017-01-01

    Full Text Available The questions of influence of the shape of contact surfaces on leakages through rubber seals in fixed connection of subassemblies are considered in the article. It is known from practice of operation of seals of various designs that the shape of contact surfaces and consequently also the shape of diagram of stresses in a contact zone considerably influences on value of leaks Linking leakage magnitude and distribution of contact stresses enables, firstly, more precisely calculate the amount of leakage for existing seals, and, secondly, to optimize the shape of the seals in their design in each case. As the result of experimental studies on the introduction of the rubber gasket ring fixed indenters different profiles found that by optimizing the shape of the indenter magnitude of leakage can be reduced by 10 times.

  5. Bacterial Adhesion of Porphyromonas Gingivalis on Provisional Fixed Prosthetic Materials

    OpenAIRE

    Zortuk, Mustafa; Kesim, Servet; Kaya, Esma; Özbilge, Hatice; Kiliç, Kerem; Çölgeçen, Özlem

    2010-01-01

    Background: When provisional restorations are worn for long term period, the adhesion of bacteria becomes a primary factor in the development of periodontal diseases. The aims of this study were to evaluate the surface roughness and bacterial adhesion of four different provisional fixed prosthodon-tic materials. Methods: Ten cylindrical specimens were prepared from bis-acrylic composites (PreVISION CB and Protemp 3 Garant), a light-polymerized composite (Revotek LC), and a polymethyl metha...

  6. Compatible Spatial Discretizations for Partial Differential Equations

    Energy Technology Data Exchange (ETDEWEB)

    Arnold, Douglas, N, ed.

    2004-11-25

    From May 11--15, 2004, the Institute for Mathematics and its Applications held a hot topics workshop on Compatible Spatial Discretizations for Partial Differential Equations. The numerical solution of partial differential equations (PDE) is a fundamental task in science and engineering. The goal of the workshop was to bring together a spectrum of scientists at the forefront of the research in the numerical solution of PDEs to discuss compatible spatial discretizations. We define compatible spatial discretizations as those that inherit or mimic fundamental properties of the PDE such as topology, conservation, symmetries, and positivity structures and maximum principles. A wide variety of discretization methods applied across a wide range of scientific and engineering applications have been designed to or found to inherit or mimic intrinsic spatial structure and reproduce fundamental properties of the solution of the continuous PDE model at the finite dimensional level. A profusion of such methods and concepts relevant to understanding them have been developed and explored: mixed finite element methods, mimetic finite differences, support operator methods, control volume methods, discrete differential forms, Whitney forms, conservative differencing, discrete Hodge operators, discrete Helmholtz decomposition, finite integration techniques, staggered grid and dual grid methods, etc. This workshop seeks to foster communication among the diverse groups of researchers designing, applying, and studying such methods as well as researchers involved in practical solution of large scale problems that may benefit from advancements in such discretizations; to help elucidate the relations between the different methods and concepts; and to generally advance our understanding in the area of compatible spatial discretization methods for PDE. Particular points of emphasis included: + Identification of intrinsic properties of PDE models that are critical for the fidelity of numerical

  7. Common fixed points for weakly compatible maps

    Indian Academy of Sciences (India)

    Springer Verlag Heidelberg #4 2048 1996 Dec 15 10:16:45

    In 1976, Jungck [4] proved a common fixed point theorem for commuting maps generalizing the Banach's fixed point theorem, which states that, 'let (X, d) be a complete metric space. If T satisfies d(Tx,Ty) ≤ kd(x,y) for each x,y ∈ X where 0 ≤ k < 1, then T has a unique fixed point in X'. This theorem has many applications, ...

  8. Infra-red fixed points in supersymmetry

    Indian Academy of Sciences (India)

    ¾c /font>, and c stands for the color quadratic Casimir of the field. Fixed points arise when R* ¼ or when R*. /nobr>. ´S-½. µ ´r ·b¿µ. The stability of the solutions may be tested by linearizing the system about the fixed points. For the non-trivial fixed points we need to consider the eigenvalues of the stability matrix whose ...

  9. On the spectral theory and dispersive estimates for a discrete Schroedinger equation in one dimension

    International Nuclear Information System (INIS)

    Pelinovsky, D. E.; Stefanov, A.

    2008-01-01

    Based on the recent work [Komech et al., 'Dispersive estimates for 1D discrete Schroedinger and Klein-Gordon equations', Appl. Anal. 85, 1487 (2006)] for compact potentials, we develop the spectral theory for the one-dimensional discrete Schroedinger operator, Hφ=(-Δ+V)φ=-(φ n+1 +φ n-1 -2φ n )+V n φ n . We show that under appropriate decay conditions on the general potential (and a nonresonance condition at the spectral edges), the spectrum of H consists of finitely many eigenvalues of finite multiplicities and the essential (absolutely continuous) spectrum, while the resolvent satisfies the limiting absorption principle and the Puiseux expansions near the edges. These properties imply the dispersive estimates parallel e itH P a.c. (H) parallel l σ 2 →l -σ 2 -3/2 for any fixed σ>(5/2) and any t>0, where P a.c. (H) denotes the spectral projection to the absolutely continuous spectrum of H. In addition, based on the scattering theory for the discrete Jost solutions and the previous results by Stefanov and Kevrekidis [''Asymptotic behaviour of small solutions for the discrete nonlinear Schroedinger and Klein-Gordon equations,'' Nonlinearity 18, 1841 (2005)], we find new dispersive estimates parallel e itH P a.c. (H) parallel l 1 →l ∞ -1/3 , which are sharp for the discrete Schroedinger operators even for V=0

  10. Fixed point theorems in spaces and -trees

    Directory of Open Access Journals (Sweden)

    Kirk WA

    2004-01-01

    Full Text Available We show that if is a bounded open set in a complete space , and if is nonexpansive, then always has a fixed point if there exists such that for all . It is also shown that if is a geodesically bounded closed convex subset of a complete -tree with , and if is a continuous mapping for which for some and all , then has a fixed point. It is also noted that a geodesically bounded complete -tree has the fixed point property for continuous mappings. These latter results are used to obtain variants of the classical fixed edge theorem in graph theory.

  11. Perfect discretization of reparametrization invariant path integrals

    International Nuclear Information System (INIS)

    Bahr, Benjamin; Dittrich, Bianca; Steinhaus, Sebastian

    2011-01-01

    To obtain a well-defined path integral one often employs discretizations. In the case of gravity and reparametrization-invariant systems, the latter of which we consider here as a toy example, discretizations generically break diffeomorphism and reparametrization symmetry, respectively. This has severe implications, as these symmetries determine the dynamics of the corresponding system. Indeed we will show that a discretized path integral with reparametrization-invariance is necessarily also discretization independent and therefore uniquely determined by the corresponding continuum quantum mechanical propagator. We use this insight to develop an iterative method for constructing such a discretized path integral, akin to a Wilsonian RG flow. This allows us to address the problem of discretization ambiguities and of an anomaly-free path integral measure for such systems. The latter is needed to obtain a path integral, that can act as a projector onto the physical states, satisfying the quantum constraints. We will comment on implications for discrete quantum gravity models, such as spin foams.

  12. Perfect discretization of reparametrization invariant path integrals

    Science.gov (United States)

    Bahr, Benjamin; Dittrich, Bianca; Steinhaus, Sebastian

    2011-05-01

    To obtain a well-defined path integral one often employs discretizations. In the case of gravity and reparametrization-invariant systems, the latter of which we consider here as a toy example, discretizations generically break diffeomorphism and reparametrization symmetry, respectively. This has severe implications, as these symmetries determine the dynamics of the corresponding system. Indeed we will show that a discretized path integral with reparametrization-invariance is necessarily also discretization independent and therefore uniquely determined by the corresponding continuum quantum mechanical propagator. We use this insight to develop an iterative method for constructing such a discretized path integral, akin to a Wilsonian RG flow. This allows us to address the problem of discretization ambiguities and of an anomaly-free path integral measure for such systems. The latter is needed to obtain a path integral, that can act as a projector onto the physical states, satisfying the quantum constraints. We will comment on implications for discrete quantum gravity models, such as spin foams.

  13. Higher dimensional discrete Cheeger inequalities

    Directory of Open Access Journals (Sweden)

    Anna Gundert

    2015-01-01

    Full Text Available For graphs there exists a strong connection between spectral and combinatorial expansion properties. This is expressed, e.g., by the discrete Cheeger inequality, the lower bound of which states that $\\lambda(G \\leq h(G$, where $\\lambda(G$ is the second smallest eigenvalue of the Laplacian of a graph $G$ and $h(G$ is the Cheeger constant measuring the edge expansion of $G$. We are interested in generalizations of expansion properties to finite simplicial complexes of higher dimension (or uniform hypergraphs. Whereas higher dimensional Laplacians were introduced already in 1945 by Eckmann, the generalization of edge expansion to simplicial complexes is not straightforward. Recently, a topologically motivated notion analogous to edge expansion that is based on $\\mathbb{Z}_2$-cohomology was introduced by Gromov and independently by Linial, Meshulam and Wallach. It is known that for this generalization there is no direct higher dimensional analogue of the lower bound of the Cheeger inequality. A different, combinatorially motivated generalization of the Cheeger constant, denoted by $h(X$, was studied by Parzanchevski, Rosenthal and Tessler. They showed that indeed $\\lambda(X \\leq h(X$, where $\\lambda(X$ is the smallest non-trivial eigenvalue of the ($(k-1$-dimensional upper Laplacian, for the case of $k$-dimensional simplicial complexes $X$ with complete $(k-1$-skeleton. Whether this inequality also holds for $k$-dimensional complexes with non-com\\-plete$(k-1$-skeleton has been an open question.We give two proofs of the inequality for arbitrary complexes. The proofs differ strongly in the methods and structures employed,and each allows for a different kind of additional strengthening of the original result.

  14. Resonance and web structure in discrete soliton systems: the two-dimensional Toda lattice and its fully discrete and ultra-discrete analogues

    International Nuclear Information System (INIS)

    Maruno, Ken-ichi; Biondini, Gino

    2004-01-01

    We present a class of solutions of the two-dimensional Toda lattice equation, its fully discrete analogue and its ultra-discrete limit. These solutions demonstrate the existence of soliton resonance and web-like structure in discrete integrable systems such as differential-difference equations, difference equations and cellular automata (ultra-discrete equations)

  15. Hairs of discrete symmetries and gravity

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Kang Sin [Scranton Honors Program, Ewha Womans University, Seodaemun-Gu, Seoul 03760 (Korea, Republic of); Center for Fields, Gravity and Strings, CTPU, Institute for Basic Sciences, Yuseong-Gu, Daejeon 34047 (Korea, Republic of); Kim, Jihn E., E-mail: jihnekim@gmail.com [Department of Physics, Kyung Hee University, 26 Gyungheedaero, Dongdaemun-Gu, Seoul 02447 (Korea, Republic of); Center for Axion and Precision Physics Research (IBS), 291 Daehakro, Yuseong-Gu, Daejeon 34141 (Korea, Republic of); Kyae, Bumseok [Department of Physics, Pusan National University, 2 Busandaehakro-63-Gil, Geumjeong-Gu, Busan 46241 (Korea, Republic of); Nam, Soonkeon [Department of Physics, Kyung Hee University, 26 Gyungheedaero, Dongdaemun-Gu, Seoul 02447 (Korea, Republic of)

    2017-06-10

    Gauge symmetries are known to be respected by gravity because gauge charges carry flux lines, but global charges do not carry flux lines and are not conserved by gravitational interaction. For discrete symmetries, they are spontaneously broken in the Universe, forming domain walls. Since the realization of discrete symmetries in the Universe must involve the vacuum expectation values of Higgs fields, a string-like configuration (hair) at the intersection of domain walls in the Higgs vacua can be realized. Therefore, we argue that discrete charges are also respected by gravity.

  16. Hairs of discrete symmetries and gravity

    Directory of Open Access Journals (Sweden)

    Kang Sin Choi

    2017-06-01

    Full Text Available Gauge symmetries are known to be respected by gravity because gauge charges carry flux lines, but global charges do not carry flux lines and are not conserved by gravitational interaction. For discrete symmetries, they are spontaneously broken in the Universe, forming domain walls. Since the realization of discrete symmetries in the Universe must involve the vacuum expectation values of Higgs fields, a string-like configuration (hair at the intersection of domain walls in the Higgs vacua can be realized. Therefore, we argue that discrete charges are also respected by gravity.

  17. Discrete Morse functions for graph configuration spaces

    International Nuclear Information System (INIS)

    Sawicki, A

    2012-01-01

    We present an alternative application of discrete Morse theory for two-particle graph configuration spaces. In contrast to previous constructions, which are based on discrete Morse vector fields, our approach is through Morse functions, which have a nice physical interpretation as two-body potentials constructed from one-body potentials. We also give a brief introduction to discrete Morse theory. Our motivation comes from the problem of quantum statistics for particles on networks, for which generalized versions of anyon statistics can appear. (paper)

  18. Discrete Tomography and Imaging of Polycrystalline Structures

    DEFF Research Database (Denmark)

    Alpers, Andreas

    High resolution transmission electron microscopy is commonly considered as the standard application for discrete tomography. While this has yet to be technically realized, new applications with a similar flavor have emerged in materials science. In our group at Ris� DTU (Denmark's National...... Laboratory for Sustainable Energy), for instance, we study polycrystalline materials via synchrotron X-ray diffraction. Several reconstruction problems arise, most of them exhibit inherently discrete aspects. In this talk I want to give a concise mathematical introduction to some of these reconstruction...... problems. Special focus is on their relationship to classical discrete tomography. Several open mathematical questions will be mentioned along the way....

  19. Ensemble simulations with discrete classical dynamics

    DEFF Research Database (Denmark)

    Toxværd, Søren

    2013-01-01

    For discrete classical Molecular dynamics (MD) obtained by the "Verlet" algorithm (VA) with the time increment $h$ there exist a shadow Hamiltonian $\\tilde{H}$ with energy $\\tilde{E}(h)$, for which the discrete particle positions lie on the analytic trajectories for $\\tilde{H}$. $\\tilde......{E}(h)$ is employed to determine the relation with the corresponding energy, $E$ for the analytic dynamics with $h=0$ and the zero-order estimate $E_0(h)$ of the energy for discrete dynamics, appearing in the literature for MD with VA. We derive a corresponding time reversible VA algorithm for canonical dynamics...

  20. Stochastic Kuramoto oscillators with discrete phase states

    Science.gov (United States)

    Jörg, David J.

    2017-09-01

    We present a generalization of the Kuramoto phase oscillator model in which phases advance in discrete phase increments through Poisson processes, rendering both intrinsic oscillations and coupling inherently stochastic. We study the effects of phase discretization on the synchronization and precision properties of the coupled system both analytically and numerically. Remarkably, many key observables such as the steady-state synchrony and the quality of oscillations show distinct extrema while converging to the classical Kuramoto model in the limit of a continuous phase. The phase-discretized model provides a general framework for coupled oscillations in a Markov chain setting.

  1. Stochastic Kuramoto oscillators with discrete phase states.

    Science.gov (United States)

    Jörg, David J

    2017-09-01

    We present a generalization of the Kuramoto phase oscillator model in which phases advance in discrete phase increments through Poisson processes, rendering both intrinsic oscillations and coupling inherently stochastic. We study the effects of phase discretization on the synchronization and precision properties of the coupled system both analytically and numerically. Remarkably, many key observables such as the steady-state synchrony and the quality of oscillations show distinct extrema while converging to the classical Kuramoto model in the limit of a continuous phase. The phase-discretized model provides a general framework for coupled oscillations in a Markov chain setting.

  2. Discrete-Time Biomedical Signal Encryption

    Directory of Open Access Journals (Sweden)

    Victor Grigoraş

    2017-12-01

    Full Text Available Chaotic modulation is a strong method of improving communication security. Analog and discrete chaotic systems are presented in actual literature. Due to the expansion of digital communication, discrete-time systems become more efficient and closer to actual technology. The present contribution offers an in-depth analysis of the effects chaos encryption produce on 1D and 2D biomedical signals. The performed simulations show that modulating signals are precisely recovered by the synchronizing receiver if discrete systems are digitally implemented and the coefficients precisely correspond. Channel noise is also applied and its effects on biomedical signal demodulation are highlighted.

  3. Discrete symmetries and de Sitter spacetime

    Energy Technology Data Exchange (ETDEWEB)

    Cotăescu, Ion I., E-mail: gpascu@physics.uvt.ro; Pascu, Gabriel, E-mail: gpascu@physics.uvt.ro [West University of Timişoara, V. Pârvan Ave. 4, RO-300223 Timişoara (Romania)

    2014-11-24

    Aspects of the ambiguity in defining quantum modes on de Sitter spacetime using a commuting system composed only of differential operators are discussed. Discrete symmetries and their actions on the wavefunction in commonly used coordinate charts are reviewed. It is argued that the system of commuting operators can be supplemented by requiring the invariance of the wavefunction to combined discrete symmetries- a criterion which selects a single state out of the α-vacuum family. Two such members of this family are singled out by particular combined discrete symmetries- states between which exists a well-known thermality relation.

  4. Exterior difference systems and invariance properties of discrete mechanics

    International Nuclear Information System (INIS)

    Xie Zheng; Xie Duanqiang; Li Hongbo

    2008-01-01

    Invariance properties describe the fundamental physical laws in discrete mechanics. Can those properties be described in a geometric way? We investigate an exterior difference system called the discrete Euler-Lagrange system, whose solution has one-to-one correspondence with solutions of discrete Euler-Lagrange equations, and use it to define the first integrals. The preservation of the discrete symplectic form along the discrete Hamilton phase flows and the discrete Noether's theorem is also described in the language of difference forms

  5. Magnetic Fixed Points and Emergent Supersymmetry

    DEFF Research Database (Denmark)

    Antipin, Oleg; Mojaza, Matin; Pica, Claudio

    2013-01-01

    We establish in perturbation theory the existence of fixed points along the renormalization group flow for QCD with an adjoint Weyl fermion and scalar matter reminiscent of magnetic duals of QCD [1-3]. We classify the fixed points by analyzing their basin of attraction. We discover that among...

  6. Fixed Wireless may be a temporary answer

    Indian Academy of Sciences (India)

    Possible to enhance throughput by 4 with respect to Mobile Wireless. And get 8 to 10 bps / Hz / cell; Examples: BB corDECT: today provides 256/512kbps to each connection in fixed environment. Ideal for small town / rural Broadband. Fixed 802.16d/e does the same in but at much higher price-points.

  7. Metallic and antiferromagnetic fixed points from gravity

    Science.gov (United States)

    Paul, Chandrima

    2018-06-01

    We consider SU(2) × U(1) gauge theory coupled to matter field in adjoints and study RG group flow. We constructed Callan-Symanzik equation and subsequent β functions and study the fixed points. We find there are two fixed points, showing metallic and antiferromagnetic behavior. We have shown that metallic phase develops an instability if certain parametric conditions are satisfied.

  8. Gaining Insight into an Organization's Fixed Assets.

    Science.gov (United States)

    Hardy, Elisabet

    2003-01-01

    Discusses issues related to school district implementation of June 2001 Government Accounting Standards Board (GASB) Statement 34 designed to change how schools report fixed assets. Includes planning for GASB implementation, conducting fixed-asset inventories, and making time for GASB reporting. (PKP)

  9. 78 FR 20705 - Fixed Income Roundtable

    Science.gov (United States)

    2013-04-05

    ... SECURITIES AND EXCHANGE COMMISSION [Release No. 34-69275; File No. 4-660] Fixed Income Roundtable... of fixed income markets. The roundtable will focus on the municipal securities, corporate bonds, and asset-backed securities markets. The roundtable discussion will be held in the multi-purpose room of the...

  10. Gauge fixing problem in the conformal QED

    International Nuclear Information System (INIS)

    Ichinose, Shoichi

    1986-01-01

    The gauge fixing problem in the conformal (spinor and scalar) QED is examined. For the analysis, we generalize Dirac's manifestly conformal-covariant formalism. It is shown that the (vector and matter) fields must obey a certain mixed (conformal and gauge) type of transformation law in order to fix the local gauge symmetry preserving the conformal invariance in the Lagrangian. (orig.)

  11. Fixed export cost heterogeneity, trade and welfare

    DEFF Research Database (Denmark)

    Jørgensen, Jan Guldager; Schröder, Philipp J.H.

    2008-01-01

    -country intra-industry trade model where firms are of two different marginal costs types and where fixed export costs are heterogeneous across firms. This model traces many of the stylized facts of international trade. However, we find that with heterogeneous fixed export costs there exists a positive bilateral...

  12. Impact of fixed-mobile convergence

    DEFF Research Database (Denmark)

    Pachnicke, Stephan; Andrus, Bogdan-Mihai; Autenrieth, Achim

    2016-01-01

    Fixed-Mobile Convergence (FMC) is a very trendy concept as it promises integration of the previously separated fixed access network and the mobile network. From this novel approach telecommunication operators expect significant cost savings and performance improvements. FMC can be separated...

  13. Discrete-Feature Model Implementation of SDM-Site Forsmark

    International Nuclear Information System (INIS)

    Geier, Joel

    2010-03-01

    A discrete-feature model (DFM) was implemented for the Forsmark repository site based on the final site descriptive model from surface based investigations. The discrete-feature conceptual model represents deformation zones, individual fractures, and other water-conducting features around a repository as discrete conductors surrounded by a rock matrix which, in the present study, is treated as impermeable. This approximation is reasonable for sites in crystalline rock which has very low permeability, apart from that which results from macroscopic fracturing. Models are constructed based on the geological and hydrogeological description of the sites and engineering designs. Hydraulic heads and flows through the network of water-conducting features are calculated by the finite-element method, and are used in turn to simulate migration of non-reacting solute by a particle-tracking method, in order to estimate the properties of pathways by which radionuclides could be released to the biosphere. Stochastic simulation is used to evaluate portions of the model that can only be characterized in statistical terms, since many water-conducting features within the model volume cannot be characterized deterministically. Chapter 2 describes the methodology by which discrete features are derived to represent water-conducting features around the hypothetical repository at Forsmark (including both natural features and features that result from the disturbance of excavation), and then assembled to produce a discrete-feature network model for numerical simulation of flow and transport. Chapter 3 describes how site-specific data and repository design are adapted to produce the discrete-feature model. Chapter 4 presents results of the calculations. These include utilization factors for deposition tunnels based on the emplacement criteria that have been set forth by the implementers, flow distributions to the deposition holes, and calculated properties of discharge paths as well as

  14. Discrete-Feature Model Implementation of SDM-Site Forsmark

    Energy Technology Data Exchange (ETDEWEB)

    Geier, Joel (Clearwater Hardrock Consulting, Corvallis, OR (United States))

    2010-03-15

    A discrete-feature model (DFM) was implemented for the Forsmark repository site based on the final site descriptive model from surface based investigations. The discrete-feature conceptual model represents deformation zones, individual fractures, and other water-conducting features around a repository as discrete conductors surrounded by a rock matrix which, in the present study, is treated as impermeable. This approximation is reasonable for sites in crystalline rock which has very low permeability, apart from that which results from macroscopic fracturing. Models are constructed based on the geological and hydrogeological description of the sites and engineering designs. Hydraulic heads and flows through the network of water-conducting features are calculated by the finite-element method, and are used in turn to simulate migration of non-reacting solute by a particle-tracking method, in order to estimate the properties of pathways by which radionuclides could be released to the biosphere. Stochastic simulation is used to evaluate portions of the model that can only be characterized in statistical terms, since many water-conducting features within the model volume cannot be characterized deterministically. Chapter 2 describes the methodology by which discrete features are derived to represent water-conducting features around the hypothetical repository at Forsmark (including both natural features and features that result from the disturbance of excavation), and then assembled to produce a discrete-feature network model for numerical simulation of flow and transport. Chapter 3 describes how site-specific data and repository design are adapted to produce the discrete-feature model. Chapter 4 presents results of the calculations. These include utilization factors for deposition tunnels based on the emplacement criteria that have been set forth by the implementers, flow distributions to the deposition holes, and calculated properties of discharge paths as well as

  15. Discrete nature of thermodynamics in confined ideal Fermi gases

    International Nuclear Information System (INIS)

    Aydin, Alhun; Sisman, Altug

    2014-01-01

    Intrinsic discrete nature in thermodynamic properties of Fermi gases appears under strongly confined and degenerate conditions. For a rectangular confinement domain, thermodynamic properties of an ideal Fermi gas are expressed in their exact summation forms. For 1D, 2D and 3D nano domains, variations of both number of particles and internal energy per particle with chemical potential are examined. It is shown that their relation with chemical potential exhibits a discrete nature which allows them to take only some definite values. Furthermore, quasi-irregular oscillatory-like sharp peaks are observed in heat capacity. New nano devices can be developed based on these behaviors. - Highlights: • “Discrete behaviors” appear in thermodynamic properties of ideal Fermi gases at nano scale. • Variations of particle number and internal energy with chemical potential have stepwise behavior. • There are oscillations and peaks in the variation of heat capacity with domain size and particle number. • Fermi line and Fermi surface at nano scale are not continuous but “discrete”. • Heat capacity oscillations can be used for excess thermal energy storage at nano scale

  16. The discrete cones method for two-dimensional neutron transport calculations

    International Nuclear Information System (INIS)

    Watanabe, Y.; Maynard, C.W.

    1986-01-01

    A novel method, the discrete cones method (DC/sub N/), is proposed as an alternative to the discrete ordinates method (S/sub N/) for solutions of the two-dimensional neutron transport equation. The new method utilizes a new concept, discrete cones, which are made by partitioning a unit spherical surface that the direction vector of particles covers. In this method particles in a cone are simultaneously traced instead of those in discrete directions so that an anomaly of the S/sub N/ method, the ray effects, can be eliminated. The DC/sub N/ method has been formulated for X-Y geometry and a program has been creaed by modifying the standard S/sub N/ program TWOTRAN-II. Our sample calculations demonstrate a strong mitigation of the ray effects without a computing cost penalty

  17. Dissolved inorganic carbon, alkalinity, salinity and SEA SURFACE TEMPERATURE collected from discrete sample and profile observations using Alkalinity titrator, CTD and other instruments from the ANTEA in the Gulf of Guinea, North Atlantic Ocean and South Atlantic Ocean from 2005-09-04 to 2005-09-26 (NODC Accession 0108087)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NODC Accession 0108087 includes chemical, discrete sample, physical and profile data collected from ANTEA in the Gulf of Guinea, North Atlantic Ocean and South...

  18. Dissolved inorganic carbon, alkalinity, salinity and SEA SURFACE TEMPERATURE collected from discrete sample and profile observations using Alkalinity titrator, CTD and other instruments from the ANTEA in the Gulf of Guinea, North Atlantic Ocean and South Atlantic Ocean from 2007-06-06 to 2007-07-03 (NODC Accession 0108090)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NODC Accession 0108090 includes chemical, discrete sample, physical and profile data collected from ANTEA in the Gulf of Guinea, North Atlantic Ocean and South...

  19. Dissolved inorganic carbon, total alkalinity, pH, phosphate, dissolved oxygen, and other variables collected from surface discrete observations using Niksin bottle and other instruments from R/V Sultana in the southwest coast of Puerto Rico from 2009-01-05 to 2016-02-01 (NCEI Accession 0145164)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This time series dataset includes weekly and bi-weekly discrete seawater samples of pH and total alkalinity, dissolved inorganic carbon, phosphates and profile...

  20. Dissolved inorganic carbon, alkalinity, temperature, salinity and SEA SURFACE TEMPERATURE collected from discrete sample and profile observations using CTD, bottle and other instruments from L'ASTROLABE in the Indian Ocean, South Pacific Ocean and others from 2002-10-16 to 2012-03-06 (NCEI Accession 0157351)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NCEI Accession 0157351 includes chemical, discrete sample, physical and profile data collected from L'ASTROLABE in the Indian Ocean, South Pacific Ocean, Southern...

  1. Dissolved inorganic carbon, alkalinity, salinity and SEA SURFACE TEMPERATURE collected from discrete sample and profile observations using Alkalinity titrator, CTD and other instruments from the ANTEA in the Gulf of Guinea, North Atlantic Ocean and South Atlantic Ocean from 2006-11-01 to 2006-11-30 (NODC Accession 0108089)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NODC Accession 0108089 includes chemical, discrete sample, physical and profile data collected from ANTEA in the Gulf of Guinea, North Atlantic Ocean and South...

  2. Dissolved inorganic carbon, alkalinity, salinity and SEA SURFACE TEMPERATURE collected from discrete sample and profile observations using Alkalinity titrator, CTD and other instruments from the ANTEA in the Gulf of Guinea, North Atlantic Ocean and South Atlantic Ocean from 2007-09-03 to 2007-09-24 (NODC Accession 0108091)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NODC Accession 0108091 includes chemical, discrete sample, physical and profile data collected from ANTEA in the Gulf of Guinea, North Atlantic Ocean and South...

  3. Discrete measurement of Carbon Dioxide, Hydrographic, and Chemical Data and surface underway measurements of partial pressure of CO2 during the R/V Meteor cruise 68/3 in the tropical Atlantic Ocean from 2006-07-12 to 2006-08-06 (NODC Accession 0109917)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NODC Accession 0109917 includes chemical, discrete sample, physical and profile data collected from METEOR in the North Atlantic Ocean from 2006-07-12 to 2006-08-06...

  4. Water Entry and Exit of Horizontal Cylinder in Free Surface Flow

    International Nuclear Information System (INIS)

    Hafsia, Zouhaier; Maalel, Khlifa; Mnasri, Chokri; Mohamed, Omri

    2009-01-01

    This paper describes two-dimensional numerical simulations of the water entry and exit of horizontal circular cylinder at constant velocity. The deformation of free surface is described by Navier-Stokes (N S) equations of incompressible and viscous fluid with additional transport equation of the volume-of-fluid (VOF). The motion of the cylinder is modeled by the associated momentum source term implemented in the Phoenicis (Parabolic Hyperbolic Or Elliptic Numerical Integration Code Series) code. The domain is discretized by a fixed Cartesian grid using a finite volume method and the cylinder is represented and cut cell method. The simulated results are compared with the numerical results of Lin (2007). This comparison shows good agreement in terms of free surface evolution for water exit and sinking. However, for water entry, the jet flow simulated by Lin is not reproduced. The free surface deformation around the cylinder in downward direction is accurately predicted

  5. Global gauge fixing in lattice gauge theories

    Energy Technology Data Exchange (ETDEWEB)

    Fachin, S.; Parrinello, C. (Physics Department, New York University, 4 Washington Place, New York, New York (USA))

    1991-10-15

    We propose a covariant, nonperturbative gauge-fixing procedure for lattice gauge theories that avoids the problem of Gribov copies. This is closely related to a recent proposal for a gauge fixing in the continuum that we review. The lattice gauge-fixed model allows both analytical and numerical investigations: on the analytical side, explicit nonperturbative calculations of gauge-dependent quantities can be easily performed in the framework of a generalized strong-coupling expansion, while on the numerical side a stochastic gauge-fixing algorithm is very naturally associated with the scheme. In both applications one can study the gauge dependence of the results, since the model actually provides a smooth'' family of gauge-fixing conditions.

  6. Algorithms for solving common fixed point problems

    CERN Document Server

    Zaslavski, Alexander J

    2018-01-01

    This book details approximate solutions to common fixed point problems and convex feasibility problems in the presence of perturbations. Convex feasibility problems search for a common point of a finite collection of subsets in a Hilbert space; common fixed point problems pursue a common fixed point of a finite collection of self-mappings in a Hilbert space. A variety of algorithms are considered in this book for solving both types of problems, the study of which has fueled a rapidly growing area of research. This monograph is timely and highlights the numerous applications to engineering, computed tomography, and radiation therapy planning. Totaling eight chapters, this book begins with an introduction to foundational material and moves on to examine iterative methods in metric spaces. The dynamic string-averaging methods for common fixed point problems in normed space are analyzed in Chapter 3. Dynamic string methods, for common fixed point problems in a metric space are introduced and discussed in Chapter ...

  7. The price of fixed income market volatility

    CERN Document Server

    Mele, Antonio

    2015-01-01

    Fixed income volatility and equity volatility evolve heterogeneously over time, co-moving disproportionately during periods of global imbalances and each reacting to events of different nature. While the methodology for options-based "model-free" pricing of equity volatility has been known for some time, little is known about analogous methodologies for pricing various fixed income volatilities. This book fills this gap and provides a unified evaluation framework of fixed income volatility while dealing with disparate markets such as interest-rate swaps, government bonds, time-deposits and credit. It develops model-free, forward looking indexes of fixed-income volatility that match different quoting conventions across various markets, and uncovers subtle yet important pitfalls arising from naïve superimpositions of the standard equity volatility methodology when pricing various fixed income volatilities. The ultimate goal of the authors´ efforts is to make interest rate volatility standardization a valuable...

  8. Can time be a discrete dynamical variable

    International Nuclear Information System (INIS)

    Lee, T.D.

    1983-01-01

    The possibility that time can be regarded as a discrete dynamical variable is examined through all phases of mechanics: from classical mechanics to nonrelativistic quantum mechanics, and to relativistic quantum field theories. (orig.)

  9. Local discrete symmetries from superstring derived models

    International Nuclear Information System (INIS)

    Faraggi, A.E.

    1996-10-01

    Discrete and global symmetries play an essential role in many extensions of the Standard Model, for example, to preserve the proton lifetime, to prevent flavor changing neutral currents, etc. An important question is how can such symmetries survive in a theory of quantum gravity, like superstring theory. In a specific string model the author illustrates how local discrete symmetries may arise in string models and play an important role in preventing fast proton decay and flavor changing neutral currents. The local discrete symmetry arises due to the breaking of the non-Abelian gauge symmetries by Wilson lines in the superstring models and forbids, for example dimension five operators which mediate rapid proton decay, to all orders of nonrenormalizable terms. In the context of models of unification of the gauge and gravitational interactions, it is precisely this type of local discrete symmetries that must be found in order to insure that a given model is not in conflict with experimental observations

  10. Breatherlike impurity modes in discrete nonlinear lattices

    DEFF Research Database (Denmark)

    Hennig, D.; Rasmussen, Kim; Tsironis, G. P.

    1995-01-01

    We investigate the properties of a disordered generalized discrete nonlinear Schrodinger equation, containing both diagonal and nondiagonal nonlinear terms. The equation models a Linear host lattice doped with nonlinear impurities. We find different types of impurity states that form itinerant...

  11. Inferring gene networks from discrete expression data

    KAUST Repository

    Zhang, L.; Mallick, B. K.

    2013-01-01

    graphical models applied to continuous data, which give a closedformmarginal likelihood. In this paper,we extend network modeling to discrete data, specifically data from serial analysis of gene expression, and RNA-sequencing experiments, both of which

  12. A discrete control model of PLANT

    Science.gov (United States)

    Mitchell, C. M.

    1985-01-01

    A model of the PLANT system using the discrete control modeling techniques developed by Miller is described. Discrete control models attempt to represent in a mathematical form how a human operator might decompose a complex system into simpler parts and how the control actions and system configuration are coordinated so that acceptable overall system performance is achieved. Basic questions include knowledge representation, information flow, and decision making in complex systems. The structure of the model is a general hierarchical/heterarchical scheme which structurally accounts for coordination and dynamic focus of attention. Mathematically, the discrete control model is defined in terms of a network of finite state systems. Specifically, the discrete control model accounts for how specific control actions are selected from information about the controlled system, the environment, and the context of the situation. The objective is to provide a plausible and empirically testable accounting and, if possible, explanation of control behavior.

  13. Running Parallel Discrete Event Simulators on Sierra

    Energy Technology Data Exchange (ETDEWEB)

    Barnes, P. D. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Jefferson, D. R. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2015-12-03

    In this proposal we consider porting the ROSS/Charm++ simulator and the discrete event models that run under its control so that they run on the Sierra architecture and make efficient use of the Volta GPUs.

  14. Effective Hamiltonian for travelling discrete breathers

    Science.gov (United States)

    MacKay, Robert S.; Sepulchre, Jacques-Alexandre

    2002-05-01

    Hamiltonian chains of oscillators in general probably do not sustain exact travelling discrete breathers. However solutions which look like moving discrete breathers for some time are not difficult to observe in numerics. In this paper we propose an abstract framework for the description of approximate travelling discrete breathers in Hamiltonian chains of oscillators. The method is based on the construction of an effective Hamiltonian enabling one to describe the dynamics of the translation degree of freedom of moving breathers. Error estimate on the approximate dynamics is also studied. The concept of the Peierls-Nabarro barrier can be made clear in this framework. We illustrate the method with two simple examples, namely the Salerno model which interpolates between the Ablowitz-Ladik lattice and the discrete nonlinear Schrödinger system, and the Fermi-Pasta-Ulam chain.

  15. Comparing the Discrete and Continuous Logistic Models

    Science.gov (United States)

    Gordon, Sheldon P.

    2008-01-01

    The solutions of the discrete logistic growth model based on a difference equation and the continuous logistic growth model based on a differential equation are compared and contrasted. The investigation is conducted using a dynamic interactive spreadsheet. (Contains 5 figures.)

  16. Discrete-time nonlinear sliding mode controller

    African Journals Online (AJOL)

    user

    Keywords: Discrete-time delay system, Sliding mode control, nonlinear sliding ... of engineering systems such as chemical process control, delay in the actuator ...... instrumentation from Motilal Nehru National Institute of Technology (MNNIT),.

  17. Rich dynamics of discrete delay ecological models

    International Nuclear Information System (INIS)

    Peng Mingshu

    2005-01-01

    We study multiple bifurcations and chaotic behavior of a discrete delay ecological model. New form of chaos for the 2-D map is observed: the combination of potential period doubling and reverse period-doubling leads to cascading bubbles

  18. Discrete and Continuous Models for Partitioning Problems

    KAUST Repository

    Lellmann, Jan; Lellmann, Bjö rn; Widmann, Florian; Schnö rr, Christoph

    2013-01-01

    -based techniques. This work is concerned with the sources of such artifacts. We discuss the importance of differentiating between artifacts caused by discretization and those caused by relaxation and provide supporting numerical examples. Moreover, we consider

  19. Memorized discrete systems and time-delay

    CERN Document Server

    Luo, Albert C J

    2017-01-01

    This book examines discrete dynamical systems with memory—nonlinear systems that exist extensively in biological organisms and financial and economic organizations, and time-delay systems that can be discretized into the memorized, discrete dynamical systems. It book further discusses stability and bifurcations of time-delay dynamical systems that can be investigated through memorized dynamical systems as well as bifurcations of memorized nonlinear dynamical systems, discretization methods of time-delay systems, and periodic motions to chaos in nonlinear time-delay systems. The book helps readers find analytical solutions of MDS, change traditional perturbation analysis in time-delay systems, detect motion complexity and singularity in MDS; and determine stability, bifurcation, and chaos in any time-delay system.

  20. Testing Preference Axioms in Discrete Choice experiments

    DEFF Research Database (Denmark)

    Hougaard, Jens Leth; Østerdal, Lars Peter; Tjur, Tue

    Recent studies have tested the preference axioms of completeness and transitivity, and have detected other preference phenomena such as unstability, learning- and tiredness effects, ordering effects and dominance, in stated preference discrete choice experiments. However, it has not been explicitly...... of the preference axioms and other preference phenomena in the context of stated preference discrete choice experiments, and examine whether or how these can be subject to meaningful (statistical) tests...

  1. Quadratic Term Structure Models in Discrete Time

    OpenAIRE

    Marco Realdon

    2006-01-01

    This paper extends the results on quadratic term structure models in continuos time to the discrete time setting. The continuos time setting can be seen as a special case of the discrete time one. Recursive closed form solutions for zero coupon bonds are provided even in the presence of multiple correlated underlying factors. Pricing bond options requires simple integration. Model parameters may well be time dependent without scuppering such tractability. Model estimation does not require a r...

  2. Symmetries in discrete-time mechanics

    International Nuclear Information System (INIS)

    Khorrami, M.

    1996-01-01

    Based on a general formulation for discrete-time quantum mechanics, introduced by M. Khorrami (Annals Phys. 224 (1995), 101), symmetries in discrete-time quantum mechanics are investigated. It is shown that any classical continuous symmetry leads to a conserved quantity in classical mechanics, as well as quantum mechanics. The transformed wave function, however, has the correct evolution if and only if the symmetry is nonanomalous. Copyright copyright 1996 Academic Press, Inc

  3. Nonlinear integrodifferential equations as discrete systems

    Science.gov (United States)

    Tamizhmani, K. M.; Satsuma, J.; Grammaticos, B.; Ramani, A.

    1999-06-01

    We analyse a class of integrodifferential equations of the `intermediate long wave' (ILW) type. We show that these equations can be formally interpreted as discrete, differential-difference systems. This allows us to link equations of this type with previous results of ours involving differential-delay equations and, on the basis of this, propose new integrable equations of ILW type. Finally, we extend this approach to pure difference equations and propose ILW forms for the discrete lattice KdV equation.

  4. Definable maximal discrete sets in forcing extensions

    DEFF Research Database (Denmark)

    Törnquist, Asger Dag; Schrittesser, David

    2018-01-01

    Let  be a Σ11 binary relation, and recall that a set A is -discrete if no two elements of A are related by . We show that in the Sacks and Miller forcing extensions of L there is a Δ12 maximal -discrete set. We use this to answer in the negative the main question posed in [5] by showing...

  5. Application of multivariate splines to discrete mathematics

    OpenAIRE

    Xu, Zhiqiang

    2005-01-01

    Using methods developed in multivariate splines, we present an explicit formula for discrete truncated powers, which are defined as the number of non-negative integer solutions of linear Diophantine equations. We further use the formula to study some classical problems in discrete mathematics as follows. First, we extend the partition function of integers in number theory. Second, we exploit the relation between the relative volume of convex polytopes and multivariate truncated powers and giv...

  6. Discrete symmetries and solar neutrino mixing

    Energy Technology Data Exchange (ETDEWEB)

    Kapetanakis, D.; Mayr, P.; Nilles, H.P. (Physik Dept., Technische Univ. Muenchen, Garching (Germany) Max-Planck-Inst. fuer Physik, Werner-Heisenberg-Inst., Muenchen (Germany))

    1992-05-21

    We study the question of resonant solar neutrino mixing in the framework of the supersymmetric extension of the standard model. Discrete symmetries that are consistent with solar neutrino mixing and proton stability are classified. In the minimal model they are shown to lead to two distinct patterns of allowed dimension-four operators. Imposing anomaly freedom, only three different discrete Z{sub N}-symmetries (with N=2, 3, 6) are found to be phenomenologically acceptable. (orig.).

  7. Discrete symmetries and solar neutrino mixing

    International Nuclear Information System (INIS)

    Kapetanakis, D.; Mayr, P.; Nilles, H.P.

    1992-01-01

    We study the question of resonant solar neutrino mixing in the framework of the supersymmetric extension of the standard model. Discrete symmetries that are consistent with solar neutrino mixing and proton stability are classified. In the minimal model they are shown to lead to two distinct patterns of allowed dimension-four operators. Imposing anomaly freedom, only three different discrete Z N -symmetries (with N=2, 3, 6) are found to be phenomenologically acceptable. (orig.)

  8. Discrete symmetries and coset space dimensional reduction

    International Nuclear Information System (INIS)

    Kapetanakis, D.; Zoupanos, G.

    1989-01-01

    We consider the discrete symmetries of all the six-dimensional coset spaces and we apply them in gauge theories defined in ten dimensions which are dimensionally reduced over these homogeneous spaces. Particular emphasis is given in the consequences of the discrete symmetries on the particle content as well as on the symmetry breaking a la Hosotani of the resulting four-dimensional theory. (orig.)

  9. On discrete models of space-time

    International Nuclear Information System (INIS)

    Horzela, A.; Kempczynski, J.; Kapuscik, E.; Georgia Univ., Athens, GA; Uzes, Ch.

    1992-02-01

    Analyzing the Einstein radiolocation method we come to the conclusion that results of any measurement of space-time coordinates should be expressed in terms of rational numbers. We show that this property is Lorentz invariant and may be used in the construction of discrete models of space-time different from the models of the lattice type constructed in the process of discretization of continuous models. (author)

  10. Discrete approximations to vector spin models

    Energy Technology Data Exchange (ETDEWEB)

    Van Enter, Aernout C D [University of Groningen, Johann Bernoulli Institute of Mathematics and Computing Science, Postbus 407, 9700 AK Groningen (Netherlands); Kuelske, Christof [Ruhr-Universitaet Bochum, Fakultaet fuer Mathematik, D44801 Bochum (Germany); Opoku, Alex A, E-mail: A.C.D.v.Enter@math.rug.nl, E-mail: Christof.Kuelske@ruhr-uni-bochum.de, E-mail: opoku@math.leidenuniv.nl [Mathematisch Instituut, Universiteit Leiden, Postbus 9512, 2300 RA, Leiden (Netherlands)

    2011-11-25

    We strengthen a result from Kuelske and Opoku (2008 Electron. J. Probab. 13 1307-44) on the existence of effective interactions for discretized continuous-spin models. We also point out that such an interaction cannot exist at very low temperatures. Moreover, we compare two ways of discretizing continuous-spin models, and show that except for very low temperatures, they behave similarly in two dimensions. We also discuss some possibilities in higher dimensions. (paper)

  11. Discrete approximations to vector spin models

    International Nuclear Information System (INIS)

    Van Enter, Aernout C D; Külske, Christof; Opoku, Alex A

    2011-01-01

    We strengthen a result from Külske and Opoku (2008 Electron. J. Probab. 13 1307–44) on the existence of effective interactions for discretized continuous-spin models. We also point out that such an interaction cannot exist at very low temperatures. Moreover, we compare two ways of discretizing continuous-spin models, and show that except for very low temperatures, they behave similarly in two dimensions. We also discuss some possibilities in higher dimensions. (paper)

  12. A study of discrete nonlinear systems

    International Nuclear Information System (INIS)

    Dhillon, H.S.

    2001-04-01

    An investigation of various spatially discrete time-independent nonlinear models was undertaken. These models are generically applicable to many different physical systems including electron-phonon interactions in solids, magnetic multilayers, layered superconductors and classical lattice systems. To characterise the possible magnetic structures created on magnetic multilayers a model has been formulated and studied. The Euler-Lagrange equation for this model is a discrete version of the Sine-Gordon equation. Solutions of this equation are generated by applying the methods of Chaotic Dynamics - treating the space variable associated with the layer number as a discrete time variable. The states found indicate periodic, quasiperiodic and chaotic structures. Analytic solutions to the discrete nonlinear Schroedinger Equation (DNSE) with cubic nonlinearity are presented in the strong coupling limit. Using these as a starting point, a procedure is developed to determine the wave function and the energy eigenvalue for moderate coupling. The energy eigenvalues of the different structures of the wave function are found to be in excellent agreement with the exact strong coupling result. The solutions to the DNSE indicate commensurate and incommensurate spatial structures associated with different localisation patterns of the wave function. The states which arise may be fractal, periodic, quasiperiodic or chaotic. This work is then extended to solve a first order discrete nonlinear equation. The exact solutions for both the first and second order discrete nonlinear equations with cubic nonlinearity suggests that this method of studying discrete nonlinear equations may be applied to solve discrete equations with any order difference and cubic nonlinearity. (author)

  13. Explicit solutions to the semi-discrete modified KdV equation and motion of discrete plane curves

    International Nuclear Information System (INIS)

    Inoguchi, Jun-ichi; Kajiwara, Kenji; Matsuura, Nozomu; Ohta, Yasuhiro

    2012-01-01

    We construct explicit solutions to continuous motion of discrete plane curves described by a semi-discrete potential modified KdV equation. Explicit formulas in terms of the τ function are presented. Bäcklund transformations of the discrete curves are also discussed. We finally consider the continuous limit of discrete motion of discrete plane curves described by the discrete potential modified KdV equation to motion of smooth plane curves characterized by the potential modified KdV equation. (paper)

  14. Discrete and modal focusing effects: principles and applications

    International Nuclear Information System (INIS)

    Stamate, E

    2012-01-01

    Charge flux distribution on the surface of biased electrodes of different geometries immersed in a plasma is investigated by three-dimensional simulations and experiments. It is demonstrated that the sheath surrounding the electrodes that interface insulators acts as an electrostatic lens, focusing the charges to distinct locations on the electrode surface depending on the entrance coordinates at the sheath edge. Two focusing effects are identified. Discrete focusing leads to the formation of a passive surface of no ion impact, near the edge of the electrodes interfacing insulators. Modal focusing results in the formation of certain ‘modal spots’ and/or ‘modal lines’. Several phenomenological aspects and potential applications are reviewed and further discussed, including charge focusing by a three-dimensional plasma–sheath–lens, ion dose uniformity during plasma immersion ion implantation, mass spectrometry and plasma monitoring. (paper)

  15. Discrete and modal focusing effects: principles and applications

    DEFF Research Database (Denmark)

    Stamate, Eugen

    2012-01-01

    Charge flux distribution on the surface of biased electrodes of different geometries immersed in a plasma is investigated by three-dimensional simulations and experiments. It is demonstrated that the sheath surrounding the electrodes that interface insulators acts as an electrostatic lens, focusing...... the charges to distinct locations on the electrode surface depending on the entrance coordinates at the sheath edge. Two focusing effects are identified. Discrete focusing leads to the formation of a passive surface of no ion impact, near the edge of the electrodes interfacing insulators. Modal focusing...... results in the formation of certain ‘modal spots’ and/or ‘modal lines’. Several phenomenological aspects and potential applications are reviewed and further discussed, including charge focusing by a three-dimensional plasma–sheath–lens, ion dose uniformity during plasma immersion ion implantation, mass...

  16. Extended discrete-ordinate method considering full polarization state

    International Nuclear Information System (INIS)

    Box, Michael A.; Qin Yi

    2006-01-01

    This paper presents an extension to the standard discrete-ordinate method (DOM) to consider generalized sources including: beam sources which can be placed at any (vertical) position and illuminate in any direction, thermal emission from the atmosphere and angularly distributed sources which illuminate from a surface as continuous functions of zenith and azimuth angles. As special cases, the thermal emission from the surface and deep space can be implemented as angularly distributed sources. Analytical-particular solutions for all source types are derived using the infinite medium Green's function. Radiation field zenith angle interpolation using source function integration is developed for all source types. The development considers the full state of polarization, including the sources (as applicable) and the (BRDF) surface, but the development can be reduced easily to scalar problems and is ready to be implemented in a single set of code for both scalar and vector radiative transfer computation

  17. Extended discrete-ordinate method considering full polarization state

    Energy Technology Data Exchange (ETDEWEB)

    Box, Michael A. [School of Physics, University of New South Wales (Australia)]. E-mail: m.box@unsw.edu.au; Qin Yi [School of Physics, University of New South Wales (Australia)]. E-mail: yi.qin@csiro.au

    2006-01-15

    This paper presents an extension to the standard discrete-ordinate method (DOM) to consider generalized sources including: beam sources which can be placed at any (vertical) position and illuminate in any direction, thermal emission from the atmosphere and angularly distributed sources which illuminate from a surface as continuous functions of zenith and azimuth angles. As special cases, the thermal emission from the surface and deep space can be implemented as angularly distributed sources. Analytical-particular solutions for all source types are derived using the infinite medium Green's function. Radiation field zenith angle interpolation using source function integration is developed for all source types. The development considers the full state of polarization, including the sources (as applicable) and the (BRDF) surface, but the development can be reduced easily to scalar problems and is ready to be implemented in a single set of code for both scalar and vector radiative transfer computation.

  18. Discrete space charge affected field emission: Flat and hemisphere emitters

    Energy Technology Data Exchange (ETDEWEB)

    Jensen, Kevin L., E-mail: kevin.jensen@nrl.navy.mil [Code 6854, Naval Research Laboratory, Washington, DC 20375 (United States); Shiffler, Donald A.; Tang, Wilkin [Air Force Research Laboratory, Kirtland AFB, New Mexico 87117 (United States); Rittersdorf, Ian M. [Code 6770, Naval Research Laboratory, Washington, DC 20375 (United States); Lebowitz, Joel L. [Department of Mathematics and Department of Physics, Rutgers University, Piscataway, New Jersey 08854-8019 (United States); Harris, John R. [U.S. Navy Reserve, New Orleans, Louisiana 70143 (United States); Lau, Y. Y. [Department of Nuclear Engineering and Radiological Sciences, University of Michigan, Ann Arbor, Michigan 48109 (United States); Petillo, John J. [Leidos, Billerica, Massachusetts 01821 (United States); Luginsland, John W. [Physics and Electronics Directorate, AFOSR, Arlington, Virginia 22203 (United States)

    2015-05-21

    Models of space-charge affected thermal-field emission from protrusions, able to incorporate the effects of both surface roughness and elongated field emitter structures in beam optics codes, are desirable but difficult. The models proposed here treat the meso-scale diode region separate from the micro-scale regions characteristic of the emission sites. The consequences of discrete emission events are given for both one-dimensional (sheets of charge) and three dimensional (rings of charge) models: in the former, results converge to steady state conditions found by theory (e.g., Rokhlenko et al. [J. Appl. Phys. 107, 014904 (2010)]) but show oscillatory structure as they do. Surface roughness or geometric features are handled using a ring of charge model, from which the image charges are found and used to modify the apex field and emitted current. The roughness model is shown to have additional constraints related to the discrete nature of electron charge. The ability of a unit cell model to treat field emitter structures and incorporate surface roughness effects inside a beam optics code is assessed.

  19. Discrete modeling considerations in multiphase fluid dynamics

    International Nuclear Information System (INIS)

    Ransom, V.H.; Ramshaw, J.D.

    1988-01-01

    The modeling of multiphase flows play a fundamental role in light water reactor safety. The main ingredients in our discrete modeling Weltanschauung are the following considerations: (1) Any physical model must be cast into discrete form for a digital computer. (2) The usual approach of formulating models in differential form and then discretizing them is potentially hazardous. It may be preferable to formulate the model in discrete terms from the outset. (3) Computer time and storage constraints limit the resolution that can be employed in practical calculations. These limits effectively define the physical phenomena, length scales, and time scales which cannot be directly represented in the calculation and therefore must be modeled. This information should be injected into the model formulation process at an early stage. (4) Practical resolution limits are generally so coarse that traditional convergence and truncation-error analyses become irrelevant. (5) A discrete model constitutes a reduced description of a physical system, from which fine-scale details are eliminated. This elimination creates a statistical closure problem. Methods from statistical physics may therefore be useful in the formulation of discrete models. In the present paper we elaborate on these themes and illustrate them with simple examples. 48 refs

  20. Theoretical Basics of Teaching Discrete Mathematics

    Directory of Open Access Journals (Sweden)

    Y. A. Perminov

    2012-01-01

    Full Text Available  The paper deals with the research findings concerning the process of mastering the theoretical basics of discrete mathematics by the students of vocational pedagogic profile. The methodological analysis is based on the subject and functions of the modern discrete mathematics and its role in mathematical modeling and computing. The modern discrete mathematics (i.e. mathematics of the finite type structures plays the important role in modernization of vocational training. It is especially rele- vant to training students for vocational pedagogic qualifications, as in the future they will be responsible for training the middle and the senior level specialists in engineer- ing and technical spheres. Nowadays in different industries, there arise the problems which require for their solving both continual – based on the classical mathematical methods – and discrete modeling. The teaching course of discrete mathematics for the future vocational teachers should be relevant to the target qualification and aimed at mastering the mathematical modeling, systems of computer mathematics and computer technologies. The author emphasizes the fundamental role of mastering the language of algebraic and serial structures, as well as the logical, algorithmic, combinatory schemes dominating in dis- crete mathematics. The guidelines for selecting the content of the course in discrete mathematics are specified. The theoretical findings of the research can be put into practice whilst developing curricula and working programs for bachelors and masters’ training. 

  1. Current density and continuity in discretized models

    International Nuclear Information System (INIS)

    Boykin, Timothy B; Luisier, Mathieu; Klimeck, Gerhard

    2010-01-01

    Discrete approaches have long been used in numerical modelling of physical systems in both research and teaching. Discrete versions of the Schroedinger equation employing either one or several basis functions per mesh point are often used by senior undergraduates and beginning graduate students in computational physics projects. In studying discrete models, students can encounter conceptual difficulties with the representation of the current and its divergence because different finite-difference expressions, all of which reduce to the current density in the continuous limit, measure different physical quantities. Understanding these different discrete currents is essential and requires a careful analysis of the current operator, the divergence of the current and the continuity equation. Here we develop point forms of the current and its divergence valid for an arbitrary mesh and basis. We show that in discrete models currents exist only along lines joining atomic sites (or mesh points). Using these results, we derive a discrete analogue of the divergence theorem and demonstrate probability conservation in a purely localized-basis approach.

  2. Discrete Calculus as a Bridge between Scales

    Science.gov (United States)

    Degiuli, Eric; McElwaine, Jim

    2012-02-01

    Understanding how continuum descriptions of disordered media emerge from the microscopic scale is a fundamental challenge in condensed matter physics. In many systems, it is necessary to coarse-grain balance equations at the microscopic scale to obtain macroscopic equations. We report development of an exact, discrete calculus, which allows identification of discrete microscopic equations with their continuum equivalent [1]. This allows the application of powerful techniques of calculus, such as the Helmholtz decomposition, the Divergence Theorem, and Stokes' Theorem. We illustrate our results with granular materials. In particular, we show how Newton's laws for a single grain reproduce their continuum equivalent in the calculus. This allows introduction of a discrete Airy stress function, exactly as in the continuum. As an application of the formalism, we show how these results give the natural mean-field variation of discrete quantities, in agreement with numerical simulations. The discrete calculus thus acts as a bridge between discrete microscale quantities and continuous macroscale quantities. [4pt] [1] E. DeGiuli & J. McElwaine, PRE 2011. doi: 10.1103/PhysRevE.84.041310

  3. Recent developments in discrete ordinates electron transport

    International Nuclear Information System (INIS)

    Morel, J.E.; Lorence, L.J. Jr.

    1986-01-01

    The discrete ordinates method is a deterministic method for numerically solving the Boltzmann equation. It was originally developed for neutron transport calculations, but is routinely used for photon and coupled neutron-photon transport calculations as well. The computational state of the art for coupled electron-photon transport (CEPT) calculations is not as developed as that for neutron transport calculations. The only production codes currently available for CEPT calculations are condensed-history Monte Carlo codes such as the ETRAN and ITS codes. A deterministic capability for production calculations is clearly needed. In response to this need, we have begun the development of a production discrete ordinates code for CEPT calculations. The purpose of this paper is to describe the basic approach we are taking, discuss the current status of the project, and present some new computational results. Although further characterization of the coupled electron-photon discrete ordinates method remains to be done, the results to date indicate that the discrete ordinates method can be just as accurate and from 10 to 100 times faster than the Monte Carlo method for a wide variety of problems. We stress that these results are obtained with standard discrete ordinates codes such as ONETRAN. It is clear that even greater efficiency can be obtained by developing a new generation of production discrete ordinates codes specifically designed to solve the Boltzmann-Fokker-Planck equation. However, the prospects for such development in the near future appear to be remote

  4. Discrete symmetries and their stringy origin

    International Nuclear Information System (INIS)

    Mayorga Pena, Damian Kaloni

    2014-05-01

    Discrete symmetries have proven to be very useful in controlling the phenomenology of theories beyond the standard model. In this work we explore how these symmetries emerge from string compactifications. Our approach is twofold: On the one hand, we consider the heterotic string on orbifold backgrounds. In this case the discrete symmetries can be derived from the orbifold conformal field theory, and it can be shown that they are in close relation with the orbifold geometry. We devote special attention to R-symmetries, which arise from discrete remnants of the Lorentz group in compact space. Further we discuss the physical implications of these symmetries both in the heterotic mini-landscape and in newly constructed models based on the Z 2 x Z 4 orbifold. In both cases we observe that the discrete symmetries favor particular locations in the orbifold where the particles of standard model should live. On the other hand we consider a class of F-theory models exhibiting an SU(5) gauge group, times additional U(1) symmetries. In this case, the smooth compactification background does not permit us to track the discrete symmetries as transparently as in orbifold models. Hence, we follow a different approach and search for discrete subgroups emerging after the U(1)s are broken. We observe that in this approach it is possible to obtain the standard Z 2 matter parity of the MSSM.

  5. A non-linear branch and cut method for solving discrete minimum compliance problems to global optimality

    DEFF Research Database (Denmark)

    Stolpe, Mathias; Bendsøe, Martin P.

    2007-01-01

    This paper present some initial results pertaining to a search for globally optimal solutions to a challenging benchmark example proposed by Zhou and Rozvany. This means that we are dealing with global optimization of the classical single load minimum compliance topology design problem with a fixed...... finite element discretization and with discrete design variables. Global optimality is achieved by the implementation of some specially constructed convergent nonlinear branch and cut methods, based on the use of natural relaxations and by applying strengthening constraints (linear valid inequalities...

  6. Avoidance of transmission line pressure oscillations in discrete hydraulic systems – by shaping of valve opening characteristics

    DEFF Research Database (Denmark)

    Hansen, Anders Hedegaard; Pedersen, Henrik C.; Bech, Michael Møller

    2015-01-01

    The architecture of multi pressure line discrete fluid power force systems imposes rapid pressure shifts in the actuator volumes. These fast shifts between pressure levels often introduce pressure oscillations in the actuator chamber and connecting pipes. The topic of this paper is to perform...... pressure shifts by changing the connection between various fixed pressure lines without introducing significant pressure oscillation. As a case study a discrete force system is utilised is a Power Take Off(PTO) system of a wave energy converter. Four pressure shifting algorithms are proposed...

  7. A non-linear branch and cut method for solving discrete minimum compliance problems to global optimality

    DEFF Research Database (Denmark)

    Stolpe, Mathias; Bendsøe, Martin P.

    2007-01-01

    This paper present some initial results pertaining to a search for globally optimal solutions to a challenging benchmark example proposed by Zhou and Rozvany. This means that we are dealing with global optimization of the classical single load minimum compliance topology design problem with a fixed...... finite element discretization and with discrete design variables. Global optimality is achieved by the implementation of some specially constructed convergent nonlinear branch and cut methods, based on the use of natural relaxations and by applying strengthening constraints (linear valid inequalities......) and cuts....

  8. Indigenous Fixed Nitrogen on Mars: Implications for Habitability

    Science.gov (United States)

    Stern, J. C.; Sutter, B.; Navarro-Gonzalez, R.; McKay, C. P.; Freissinet, C.; Archer, D., Jr.; Eigenbrode, J. L.; Mahaffy, P. R.; Conrad, P. G.

    2015-12-01

    Nitrate has been detected in Mars surface sediments and aeolian deposits by the Sample Analysis at Mars (SAM) instrument on the Mars Science Laboratory Curiosity rover (Stern et al., 2015). This detection is significant because fixed nitrogen is necessary for life, a requirement that drove the evolution of N-fixing metabolism in life on Earth. The question remains as to the extent to which a primitive N cycle ever developed on Mars, and whether N is currently being deposited on the martian surface at a non-negligible rate. It is also necessary to consider processes that could recycle oxidized N back into the atmosphere, and how these processes may have changed the soil inventory of N over time. The abundance of fixed nitrogen detected as NO from thermal decomposition of nitrate is consistent with both delivery of nitrate via impact generated thermal shock early in martian history and dry deposition from photochemistry of thermospheric NO, occurring in the present. Processes that could recycle N back into the atmosphere may include nitrate reduction by Fe(II) in aqueous environments on early Mars, impact decomposition, and/or UV photolysis. In order to better understand the history of nitrogen fixation on Mars, we look to cycling of N in Mars analog environments on Earth such as the Atacama Desert and the Dry Valleys of Antarctica. In particular, we examine the ratio of nitrate to perchlorate (NO3-/ClO4-) in these areas compared to those calculated from data acquired on Mars.

  9. Discrete integrable systems and deformations of associative algebras

    International Nuclear Information System (INIS)

    Konopelchenko, B G

    2009-01-01

    Interrelations between discrete deformations of the structure constants for associative algebras and discrete integrable systems are reviewed. Theory of deformations for associative algebras is presented. Closed left ideal generated by the elements representing the multiplication table plays a central role in this theory. Deformations of the structure constants are generated by the deformation driving algebra and governed by the central system of equations. It is demonstrated that many discrete equations such as discrete Boussinesq equation, discrete WDVV equation, discrete Schwarzian KP and BKP equations, discrete Hirota-Miwa equations for KP and BKP hierarchies are particular realizations of the central system. An interaction between the theories of discrete integrable systems and discrete deformations of associative algebras is reciprocal and fruitful. An interpretation of the Menelaus relation (discrete Schwarzian KP equation), discrete Hirota-Miwa equation for KP hierarchy, consistency around the cube as the associativity conditions and the concept of gauge equivalence, for instance, between the Menelaus and KP configurations are particular examples.

  10. Darboux and binary Darboux transformations for discrete integrable systems I. Discrete potential KdV equation

    International Nuclear Information System (INIS)

    Shi, Ying; Zhang, Da-jun; Nimmo, Jonathan J C

    2014-01-01

    The Hirota–Miwa equation can be written in ‘nonlinear’ form in two ways: the discrete KP equation and, by using a compatible continuous variable, the discrete potential KP equation. For both systems, we consider the Darboux and binary Darboux transformations, expressed in terms of the continuous variable, and obtain exact solutions in Wronskian and Grammian form. We discuss reductions of both systems to the discrete KdV and discrete potential KdV equation, respectively, and exploit this connection to find the Darboux and binary Darboux transformations and exact solutions of these equations. (paper)

  11. Gauge fixing, BRS invariance and Ward identities for randomly stirred flows

    International Nuclear Information System (INIS)

    Berera, Arjun; Hochberg, David

    2009-01-01

    The Galilean invariance of the Navier-Stokes equation is shown to be akin to a global gauge symmetry familiar from quantum field theory. This symmetry leads to a multiple counting of infinitely many inertial reference frames in the path integral approach to randomly stirred fluids. This problem is solved by fixing the gauge, i.e., singling out one reference frame. The gauge fixed theory has an underlying Becchi-Rouet-Stora (BRS) symmetry which leads to the Ward identity relating the exact inverse response and vertex functions. This identification of Galilean invariance as a gauge symmetry is explored in detail, for different gauge choices and by performing a rigorous examination of a discretized version of the theory. The Navier-Stokes equation is also invariant under arbitrary rectilinear frame accelerations, known as extended Galilean invariance (EGI). We gauge fix this extended symmetry and derive the generalized Ward identity that follows from the BRS invariance of the gauge-fixed theory. This new Ward identity reduces to the standard one in the limit of zero acceleration. This gauge-fixing approach unambiguously shows that Galilean invariance and EGI constrain only the zero mode of the vertex but none of the higher wavenumber modes.

  12. Gauge fixing, BRS invariance and Ward identities for randomly stirred flows

    Energy Technology Data Exchange (ETDEWEB)

    Berera, Arjun [School of Physics and Astronomy, University of Edinburgh, Edinburgh, EH9 3JZ (United Kingdom)], E-mail: ab@ph.ed.ac.uk; Hochberg, David [Centro de Astrobiologia (CSIC-INTA), Ctra. Ajalvir Km. 4, 28850 Torrejon de Ardoz, Madrid (Spain)], E-mail: hochbergd@inta.es

    2009-06-21

    The Galilean invariance of the Navier-Stokes equation is shown to be akin to a global gauge symmetry familiar from quantum field theory. This symmetry leads to a multiple counting of infinitely many inertial reference frames in the path integral approach to randomly stirred fluids. This problem is solved by fixing the gauge, i.e., singling out one reference frame. The gauge fixed theory has an underlying Becchi-Rouet-Stora (BRS) symmetry which leads to the Ward identity relating the exact inverse response and vertex functions. This identification of Galilean invariance as a gauge symmetry is explored in detail, for different gauge choices and by performing a rigorous examination of a discretized version of the theory. The Navier-Stokes equation is also invariant under arbitrary rectilinear frame accelerations, known as extended Galilean invariance (EGI). We gauge fix this extended symmetry and derive the generalized Ward identity that follows from the BRS invariance of the gauge-fixed theory. This new Ward identity reduces to the standard one in the limit of zero acceleration. This gauge-fixing approach unambiguously shows that Galilean invariance and EGI constrain only the zero mode of the vertex but none of the higher wavenumber modes.

  13. Development of discrete gas kinetic scheme for simulation of 3D viscous incompressible and compressible flows

    Science.gov (United States)

    Yang, L. M.; Shu, C.; Wang, Y.; Sun, Y.

    2016-08-01

    The sphere function-based gas kinetic scheme (GKS), which was presented by Shu and his coworkers [23] for simulation of inviscid compressible flows, is extended to simulate 3D viscous incompressible and compressible flows in this work. Firstly, we use certain discrete points to represent the spherical surface in the phase velocity space. Then, integrals along the spherical surface for conservation forms of moments, which are needed to recover 3D Navier-Stokes equations, are approximated by integral quadrature. The basic requirement is that these conservation forms of moments can be exactly satisfied by weighted summation of distribution functions at discrete points. It was found that the integral quadrature by eight discrete points on the spherical surface, which forms the D3Q8 discrete velocity model, can exactly match the integral. In this way, the conservative variables and numerical fluxes can be computed by weighted summation of distribution functions at eight discrete points. That is, the application of complicated formulations resultant from integrals can be replaced by a simple solution process. Several numerical examples including laminar flat plate boundary layer, 3D lid-driven cavity flow, steady flow through a 90° bending square duct, transonic flow around DPW-W1 wing and supersonic flow around NACA0012 airfoil are chosen to validate the proposed scheme. Numerical results demonstrate that the present scheme can provide reasonable numerical results for 3D viscous flows.

  14. Numerical modeling of straw combustion in a fixed bed

    DEFF Research Database (Denmark)

    Zhou, Haosheng; Jensen, Anker; Glarborg, Peter

    2005-01-01

    . The straw combustion processes include moisture evaporation, straw pyrolysis, gas combustion, and char combustion. The model provides detailed information of the structure of the ignition flame front. Simulated gas species concentrations at the bed surface, ignition flame front rate, and bed temperature......Straw is being used as main renewable energy source in grate boilers in Denmark. For optimizing operating conditions and design parameters, a one-dimensional unsteady heterogeneous mathematical model has been developed and experiments have been carried out for straw combustion in a fixed bed...... are in good agreement with measurements at different operating conditions such as primary air-flow rate, pre-heating of the primary air, oxygen concentration, moisture content in straw, and bulk density of the straw in the fixed bed. A parametric study indicates that the effective heat conductivity, straw...

  15. About Applications of the Fixed Point Theory

    Directory of Open Access Journals (Sweden)

    Bucur Amelia

    2017-06-01

    Full Text Available The fixed point theory is essential to various theoretical and applied fields, such as variational and linear inequalities, the approximation theory, nonlinear analysis, integral and differential equations and inclusions, the dynamic systems theory, mathematics of fractals, mathematical economics (game theory, equilibrium problems, and optimisation problems and mathematical modelling. This paper presents a few benchmarks regarding the applications of the fixed point theory. This paper also debates if the results of the fixed point theory can be applied to the mathematical modelling of quality.

  16. The 1994 Fermilab Fixed Target Program

    International Nuclear Information System (INIS)

    Conrad, J.

    1994-11-01

    This paper highlights the results of the Fermilab Fixed Target Program that were announced between October, 1993 and October, 1994. These results are drawn from 18 experiments that took data in the 1985, 1987 and 1990/91 fixed target running periods. For this discussion, the Fermilab Fixed Target Program is divided into 5 major topics: hadron structure, precision electroweak measurements, heavy quark production, polarization and magnetic moments, and searches for new phenomena. However, it should be noted that most experiments span several subtopics. Also, measurements within each subtopic often affect the results in other subtopics. For example, parton distributions from hadron structure measurements are used in the studies of heavy quark production

  17. Hybrid fixed point in CAT(0 spaces

    Directory of Open Access Journals (Sweden)

    Hemant Kumar Pathak

    2018-02-01

    Full Text Available In this paper, we introduce an ultrapower approach to prove fixed point theorems for $H^{+}$-nonexpansive multi-valued mappings in the setting of CAT(0 spaces and prove several hybrid fixed point results in CAT(0 spaces for families of single-valued nonexpansive or quasinonexpansive mappings and multi-valued upper semicontinuous, almost lower semicontinuous or $H^{+}$-nonexpansive mappings which are weakly commuting. We also establish a result about structure of the set of fixed points of $H^{+}$-quasinonexpansive mapping on a CAT(0 space.

  18. Fixation of Soil Using PEC and Separation of Fixed Soil

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Yong Suk; Yang, Hee-Man; Lee, Kune Woo; Seo, Bum-Kyoung; Moon, Jei Kwon [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2014-10-15

    Radioactive cesium (Cs-137) is the most apprehensive element due to its long half-lives, high solubility in water, and strong radiation emission in the form of gamma rays. Because the radioactivity is localized within topsoil, soil surface on topsoil should be fixed to prevent the spreading of the contaminated soils by wind and water erosion. Many methods have been developing for soil fixation to remove radioactive contaminants in soil and prevent to diffuse radioactive materials. Various materials have been used as fixatives such as clays, molecular sieves, polymer, and petroleum based products. One of the methods is a soil fixation or solidification using polyelectrolyte. Polyelectrolytes have many ionic groups and form the polyelectrolyte complex (PEC) due to electrostatic interaction of anion and cation in an aqueous solution. polyelectrolyte complex can fix soil particles by flocculation and formation of crust between soil. The method can prevent a spread of radioactive material by floating on a soil surface. The decontamination efficiency of the surface soils reached about 90%, and dust release was effectively suppressed during the removal of surface soils. However it has a problem that the removed soil must separate soil and polymer to treat as the waste. In this study, the fixation of soil by polyelectrolyte complex to suppress the spread of contaminant and the separation method of soil and polymer was investigated. The properties of polyelectrolyte complex solution and the stability of fixed soil by polyelectrolyte complex were investigated. The concentration of salt in the polyelectrolyte complex solution is a very important parameter for the soil fixation.

  19. State transformations and Hamiltonian structures for optimal control in discrete systems

    Science.gov (United States)

    Sieniutycz, S.

    2006-04-01

    Preserving usual definition of Hamiltonian H as the scalar product of rates and generalized momenta we investigate two basic classes of discrete optimal control processes governed by the difference rather than differential equations for the state transformation. The first class, linear in the time interval θ, secures the constancy of optimal H and satisfies a discrete Hamilton-Jacobi equation. The second class, nonlinear in θ, does not assure the constancy of optimal H and satisfies only a relationship that may be regarded as an equation of Hamilton-Jacobi type. The basic question asked is if and when Hamilton's canonical structures emerge in optimal discrete systems. For a constrained discrete control, general optimization algorithms are derived that constitute powerful theoretical and computational tools when evaluating extremum properties of constrained physical systems. The mathematical basis is Bellman's method of dynamic programming (DP) and its extension in the form of the so-called Carathéodory-Boltyanski (CB) stage optimality criterion which allows a variation of the terminal state that is otherwise fixed in Bellman's method. For systems with unconstrained intervals of the holdup time θ two powerful optimization algorithms are obtained: an unconventional discrete algorithm with a constant H and its counterpart for models nonlinear in θ. We also present the time-interval-constrained extension of the second algorithm. The results are general; namely, one arrives at: discrete canonical equations of Hamilton, maximum principles, and (at the continuous limit of processes with free intervals of time) the classical Hamilton-Jacobi theory, along with basic results of variational calculus. A vast spectrum of applications and an example are briefly discussed with particular attention paid to models nonlinear in the time interval θ.

  20. Convergence of posteriors for discretized log Gaussian Cox processes

    DEFF Research Database (Denmark)

    Waagepetersen, Rasmus Plenge

    2004-01-01

    In Markov chain Monte Carlo posterior computation for log Gaussian Cox processes (LGCPs) a discretization of the continuously indexed Gaussian field is required. It is demonstrated that approximate posterior expectations computed from discretized LGCPs converge to the exact posterior expectations...... when the cell sizes of the discretization tends to zero. The effect of discretization is studied in a data example....