WorldWideScience

Sample records for fixed bed coal

  1. Bed retained products in swept fixed bed (SFB) coal hydropyrolysis

    Energy Technology Data Exchange (ETDEWEB)

    Mastral, A.M.; Perez-Surio, M.J. [CSIC, Zaragosa (Spain). Inst. de Carboquimica

    1997-12-31

    The hydropyrolysis of a low rank coal in a swept fixed bed (SFB) reactor is carried out by fixing the hydrogen pressure (40 kg/cm{sup 2}), the hydrogen flow (2 l/min) and the residence time (10 min) at increasing temperatures (400 C, 500 C and 600 C) and coal bed heights (h, 1.5h, 2h, 2.5h and 3h). It is shown that the percentages of tars and char directly depend on the coal bed height and that there is not only a quantitative dependence, but also the height of the coal bed is very important and plays a relevant role on the nature of the conversion products. (orig.)

  2. Drying kinetics characteristic of Indonesia lignite coal (IBC) using lab scale fixed bed reactor

    Energy Technology Data Exchange (ETDEWEB)

    Kang, TaeJin; Jeon, DoMan; Namkung, Hueon; Jang, DongHa; Jeon, Youngshin; Kim, Hyungtaek [Ajou Univ., Suwon (Korea, Republic of). Div. of Energy Systems Research

    2013-07-01

    Recent instability of energy market arouse a lot of interest about coal which has a tremendous amount of proven coal reserves worldwide. South Korea hold the second rank by importing 80 million tons of coal in 2007 following by Japan. Among various coals, there is disused coal. It's called Low Rank Coal (LRC). Drying process has to be preceded before being utilized as power plant. In this study, drying kinetics of LRC is induced by using a fixed bed reactor. The drying kinetics was deduced from particle size, the inlet gas temperature, the drying time, the gas velocity, and the L/D ratio. The consideration on Reynold's number was taken for correction of gas velocity, particle size, and the L/D ratio was taken for correction packing height of coal. It can be found that active drying of free water and phase boundary reaction is suitable mechanism through the fixed bed reactor experiments.

  3. Distribution of volatile sulphur containing products during fixed bed pyrolysis and gasification of coals

    Energy Technology Data Exchange (ETDEWEB)

    Furimsky, E.

    1991-08-01

    Various coals were used to study the evolution of H{sub 2}S COS, and SO{sub 2} in a fixed bed reactor. For all types of coal, most of H{sub 2}S and SO{sub 2} were released during the devolatilization stage. COS was formed only during the gasification stage in the presence of CO{sub 2}.

  4. Formation of N{sub 2} during the fixed-bed pyrolysis of coals

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Zhiheng; Ohtsuka, Yasuo [Tohoku Univ., Sendai (Japan); Furimsky, E. [Natural Resources Canada, Ottawa, Ontario (Canada)

    1995-12-31

    Research on the fate of the nitrogen in coal during pyrolysis has attracted increased attention, since it is related with the NO{sub x} and N{sub 2}O emissions during subsequent combustion. It has been reported that coal nitrogen is initially released as tar, which is then converted to HCN and NH{sub 3} through secondary decomposition reactions. However, little attention to N{sub 2} has been paid so far. We have recently found that N{sub 2} is the dominant product in slow heating rate pyrolysis of a subbituminous coal, and that the finely dispersed iron catalyst promotes drastically the formation of N{sub 2} from a brown coal. If coal nitrogen can be removed efficiently as N{sub 2} during pyrolysis, this method would contribute to the reduction of the NO{sub x} and N{sub 2}O emissions, since such pollutants originate mostly from coal nitrogen. Therefore the present study aims at making clear the influence of coal type, pyrolysis conditions, demineralization, and iron catalyst on the formation of N{sub 2} during the fix-bed pyrolysis of several coals with different ranks.

  5. Temperature prediction in a coal fired boiler with a fixed bed by fuzzy logic based on numerical solution

    International Nuclear Information System (INIS)

    Biyikoglu, A.; Akcayol, M.A.; Oezdemir, V.; Sivrioglu, M.

    2005-01-01

    In this study, steady state combustion in boilers with a fixed bed has been investigated. Temperature distributions in the combustion chamber of a coal fired boiler with a fixed bed are predicted using fuzzy logic based on data obtained from the numerical solution method for various coal and air feeding rates. The numerical solution method and the discretization of the governing equations of two dimensional turbulent flow in the combustion chamber and one dimensional coal combustion in the fixed bed are explained. Control Volume and Finite Difference Methods are used in the discretization of the equations in the combustion chamber and in the fixed bed, respectively. Results are presented as contours within the solution domain and compared with numerical ones. Comparison of the results shows that the difference between the numerical solution and fuzzy logic prediction throughout the computational domain is less than 1.5%. The statistical coefficient of multiple determinations for the investigated cases is about 0.9993 to 0.9998. This accuracy degree is acceptable in predicting the temperature values. So, it can be concluded that fuzzy logic provides a feasible method for defining the system properties

  6. A kinetic study of gaseous potassium capture by coal minerals in a high temperature fixed-bed reactor

    DEFF Research Database (Denmark)

    Zheng, Yuanjing; Jensen, Peter Arendt; Jensen, Anker Degn

    2008-01-01

    The reactions between gaseous potassium chloride and coal minerals were investigated in a lab-scale high temperature fixed-bed reactor using single sorbent pellets. The applied coal minerals included kaolin, mullite, silica, alumina, bituminous coal ash, and lignite coal ash that were formed...... into long cylindrical pellets. Kaolin and bituminous coal ash that both have significant amounts of Si and Al show superior potassium capture characteristics. Experimental results show that capture of potassium by kaolin is independent of the gas oxygen content. Kaolin releases water and forms metakaolin...... when heated at temperatures above 450°C. The amounts of potassium captured by metakaolin pellet decreases with increasing reaction temperature in the range of 900-1300°C and increases again with further increasing the temperature up to 1500°C. There is no reaction of pre-made mullite with KCl...

  7. Enhanced removal of sulfonamide antibiotics by KOH-activated anthracite coal: Batch and fixed-bed studies

    International Nuclear Information System (INIS)

    Zuo, Linzi; Ai, Jing; Fu, Heyun; Chen, Wei; Zheng, Shourong; Xu, Zhaoyi; Zhu, Dongqiang

    2016-01-01

    The presence of sulfonamide antibiotics in aquatic environments poses potential risks to human health and ecosystems. In the present study, a highly porous activated carbon was prepared by KOH activation of an anthracite coal (Anth-KOH), and its adsorption properties toward two sulfonamides (sulfamethoxazole and sulfapyridine) and three smaller-sized monoaromatics (phenol, 4-nitrophenol and 1,3-dinitrobenzene) were examined in both batch and fixed-bed adsorption experiments to probe the interplay between adsorbate molecular size and adsorbent pore structure. A commercial powder microporous activated carbon (PAC) and a commercial mesoporous carbon (CMK-3) possessing distinct pore properties were included as comparative adsorbents. Among the three adsorbents Anth-KOH exhibited the largest adsorption capacities for all test adsorbates (especially the two sulfonamides) in both batch mode and fixed-bed mode. After being normalized by the adsorbent surface area, the batch adsorption isotherms of sulfonamides on PAC and Anth-KOH were displaced upward relative to the isotherms on CMK-3, likely due to the micropore-filling effect facilitated by the microporosity of adsorbents. In the fixed-bed mode, the surface area-normalized adsorption capacities of Anth-KOH for sulfonamides were close to that of CMK-3, and higher than that of PAC. The irregular, closed micropores of PAC might impede the diffusion of the relatively large-sized sulfonamide molecules and in turn led to lowered fixed-bed adsorption capacities. The overall superior adsorption of sulfonamides on Anth-KOH can be attributed to its large specific surface area (2514 m"2/g), high pore volume (1.23 cm"3/g) and large micropore sizes (centered at 2.0 nm). These findings imply that KOH-activated anthracite coal is a promising adsorbent for the removal of sulfonamide antibiotics from aqueous solution. - Highlights: • A high efficiency adsorbent for sulfonamide removal is prepared from anthracite. • Effects of

  8. CO-FIRING COAL: FEEDLOT AND LITTER BIOMASS (CFB AND CLB) FUELS IN PULVERIZED FUEL AND FIXED BED BURNERS

    Energy Technology Data Exchange (ETDEWEB)

    Kalyan Annamalai; John Sweeten; Saqib Mukhtar; Ben Thein; Gengsheng Wei; Soyuz Priyadarsan; Senthil Arumugam; Kevin Heflin

    2003-08-28

    Intensive animal feeding operations create large amounts of animal waste that must be safely disposed of in order to avoid environmental degradation. Cattle feedlots and chicken houses are two examples. In feedlots, cattle are confined to small pens and fed a high calorie grain-diet diet in preparation for slaughter. In chicken houses, thousands of chickens are kept in close proximity. In both of these operations, millions of tons of manure are produced every year. The manure could be used as a fuel by mixing it with coal in a 90:10 blend and firing it in an existing coal suspension fired combustion systems. This technique is known as co-firing, and the high temperatures produced by the coal will allow the biomass to be completely combusted. Reburn is a process where a small percentage of fuel called reburn fuel is injected above the NO{sub x} producing, conventional coal fired burners in order to reduce NO{sub x}. The manure could also be used as reburn fuel for reducing NO{sub x} in coal fired plants. An alternate approach of using animal waste is to adopt the gasification process using a fixed bed gasifier and then use the gases for firing in gas turbine combustors. In this report, the cattle manure is referred to as feedlot biomass (FB) and chicken manure as litter biomass (LB). The report generates data on FB and LB fuel characteristics. Co-firing, reburn, and gasification tests of coal, FB, LB, coal: FB blends, and coal: LB blends and modeling on cofiring, reburn systems and economics of use of FB and LB have also been conducted. The biomass fuels are higher in ash, lower in heat content, higher in moisture, and higher in nitrogen and sulfur (which can cause air pollution) compared to coal. Small-scale cofiring experiments revealed that the biomass blends can be successfully fired, and NO{sub x} emissions will be similar to or lower than pollutant emissions when firing coal. Further experiments showed that biomass is twice or more effective than coal when

  9. Enhanced removal of sulfonamide antibiotics by KOH-activated anthracite coal: Batch and fixed-bed studies.

    Science.gov (United States)

    Zuo, Linzi; Ai, Jing; Fu, Heyun; Chen, Wei; Zheng, Shourong; Xu, Zhaoyi; Zhu, Dongqiang

    2016-04-01

    The presence of sulfonamide antibiotics in aquatic environments poses potential risks to human health and ecosystems. In the present study, a highly porous activated carbon was prepared by KOH activation of an anthracite coal (Anth-KOH), and its adsorption properties toward two sulfonamides (sulfamethoxazole and sulfapyridine) and three smaller-sized monoaromatics (phenol, 4-nitrophenol and 1,3-dinitrobenzene) were examined in both batch and fixed-bed adsorption experiments to probe the interplay between adsorbate molecular size and adsorbent pore structure. A commercial powder microporous activated carbon (PAC) and a commercial mesoporous carbon (CMK-3) possessing distinct pore properties were included as comparative adsorbents. Among the three adsorbents Anth-KOH exhibited the largest adsorption capacities for all test adsorbates (especially the two sulfonamides) in both batch mode and fixed-bed mode. After being normalized by the adsorbent surface area, the batch adsorption isotherms of sulfonamides on PAC and Anth-KOH were displaced upward relative to the isotherms on CMK-3, likely due to the micropore-filling effect facilitated by the microporosity of adsorbents. In the fixed-bed mode, the surface area-normalized adsorption capacities of Anth-KOH for sulfonamides were close to that of CMK-3, and higher than that of PAC. The irregular, closed micropores of PAC might impede the diffusion of the relatively large-sized sulfonamide molecules and in turn led to lowered fixed-bed adsorption capacities. The overall superior adsorption of sulfonamides on Anth-KOH can be attributed to its large specific surface area (2514 m(2)/g), high pore volume (1.23 cm(3)/g) and large micropore sizes (centered at 2.0 nm). These findings imply that KOH-activated anthracite coal is a promising adsorbent for the removal of sulfonamide antibiotics from aqueous solution. Copyright © 2016 Elsevier Ltd. All rights reserved.

  10. CO-FIRING COAL, FEEDLOT, AND LITTER BIOMASS (CFB AND LFB) FUELS IN PULVERIZED FUEL AND FIXED BED BURNERS

    International Nuclear Information System (INIS)

    Kalyan Annamalai; John Sweeten; Saqib Mukhtar; Ben Thien; Gengsheng Wei; Soyuz Priyadarsan

    2002-01-01

    result as the levels of N are higher in the biomass fuel than in coal. Further experiments showed that biomass is twice or more effective than coal when used in a reburning process to reduce NO(sub x) emissions. Since crushing costs of biomass fuels may be prohibitive, stoker firing may be cost effective; in order simulate such a firing, future work will investigate the performance of a gasifier when fired with larger sized coal and biomass. It will be a fixed bed gasifier, and will evaluate blends, coal, and biomass. Computer simulations were performed using the PCGC-2 code supplied by BYU and modified by A and M with three mixture fractions for handling animal based biomass fuels in order to include an improved moisture model for handling wet fuels and phosphorus oxidation. Finally the results of the economic analysis show that considerable savings can be achieved with the use of biomass. In the case of higher ash and moisture biomass, the fuel cost savings will be reduced, due to increased transportation costs. A spreadsheet program was created to analyze the fuel savings for a variety of different moisture levels, ash levels, and power plant operating parameters

  11. CO-FIRING COAL, FEEDLOT, AND LITTER BIOMASS (CFB AND LFB) FUELS IN PULVERIZED FUEL AND FIXED BED BURNERS

    Energy Technology Data Exchange (ETDEWEB)

    Kalyan Annamalai; John Sweeten; Saqib Mukhtar; Ben Thien; Gengsheng Wei; Soyuz Priyadarsan

    2002-01-15

    result as the levels of N are higher in the biomass fuel than in coal. Further experiments showed that biomass is twice or more effective than coal when used in a reburning process to reduce NO{sub x} emissions. Since crushing costs of biomass fuels may be prohibitive, stoker firing may be cost effective; in order simulate such a firing, future work will investigate the performance of a gasifier when fired with larger sized coal and biomass. It will be a fixed bed gasifier, and will evaluate blends, coal, and biomass. Computer simulations were performed using the PCGC-2 code supplied by BYU and modified by A&M with three mixture fractions for handling animal based biomass fuels in order to include an improved moisture model for handling wet fuels and phosphorus oxidation. Finally the results of the economic analysis show that considerable savings can be achieved with the use of biomass. In the case of higher ash and moisture biomass, the fuel cost savings will be reduced, due to increased transportation costs. A spreadsheet program was created to analyze the fuel savings for a variety of different moisture levels, ash levels, and power plant operating parameters.

  12. Study on multi-stage hydropyrolysis of coal in fixed-bed reactor

    Energy Technology Data Exchange (ETDEWEB)

    Wang, N.; Li, W.; Li, B.-Q. [Chinese Academy of Sciences, Taiyuan (China). State Key Lab of Coal Conversion

    1999-07-01

    The composition and quantity of the oil in hydropyrolysis (HyPy) and multi-stage HyPy with high and slow heating rate were compared and the effect of multistage HyPy process on desulfurization was investigated. Multistage HyPy of lignite and high sulphur coal were investigated and the effects of residence time, heating rate and pressure on product yields were studied. 6 refs., 4 figs., 2 tabs.

  13. Formation of N2 in the fixed-bed pyrolysis of low rank coals and the mechanisms; Koteisho netsubunkai ni okeru teitankatan kara no N2 no sisei

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Z.; Otsuka, Y. [Tohoku University, Sendai (Japan). Institute for Chemical Reaction Science

    1996-10-28

    In order to establish coal NOx preventive measures, discussions were given on formation of N2 in the fixed-bed pyrolysis of low rank coals and the mechanisms thereof. Chinese ZN coal and German RB coal were used for the discussions. Both coals do not produce N2 at 600{degree}C, and the main product is volatile nitrogen. Conversion into N2 does not depend on heating rates, but increases linearly with increasing temperature, and reaches 65% to 70% at 1200{degree}C. In contrast, char nitrogen decreases linearly with the temperature. More specifically, these phenomena suggest that the char nitrogen or its precursor is the major supply source of N2. When mineral substances are removed by using hydrochloric acid, their catalytic action is lost, and conversion into N2 decreases remarkably. Iron existing in ion-exchanged condition in low-rank coal is reduced and finely diffused into metallic iron particles. The particles react with heterocyclic nitrogen compounds and turn into iron nitride. A solid phase reaction mechanism may be conceived, in which N2 is produced due to decomposition of the iron nitride. 5 refs., 4 figs., 1 tab.

  14. Coal Bed Methane Primer

    Energy Technology Data Exchange (ETDEWEB)

    Dan Arthur; Bruce Langhus; Jon Seekins

    2005-05-25

    During the second half of the 1990's Coal Bed Methane (CBM) production increased dramatically nationwide to represent a significant new source of income and natural gas for many independent and established producers. Matching these soaring production rates during this period was a heightened public awareness of environmental concerns. These concerns left unexplained and under-addressed have created a significant growth in public involvement generating literally thousands of unfocused project comments for various regional NEPA efforts resulting in the delayed development of public and fee lands. The accelerating interest in CBM development coupled to the growth in public involvement has prompted the conceptualization of this project for the development of a CBM Primer. The Primer is designed to serve as a summary document, which introduces and encapsulates information pertinent to the development of Coal Bed Methane (CBM), including focused discussions of coal deposits, methane as a natural formed gas, split mineral estates, development techniques, operational issues, producing methods, applicable regulatory frameworks, land and resource management, mitigation measures, preparation of project plans, data availability, Indian Trust issues and relevant environmental technologies. An important aspect of gaining access to federal, state, tribal, or fee lands involves education of a broad array of stakeholders, including land and mineral owners, regulators, conservationists, tribal governments, special interest groups, and numerous others that could be impacted by the development of coal bed methane. Perhaps the most crucial aspect of successfully developing CBM resources is stakeholder education. Currently, an inconsistent picture of CBM exists. There is a significant lack of understanding on the parts of nearly all stakeholders, including industry, government, special interest groups, and land owners. It is envisioned the Primer would being used by a variety of

  15. Fungi solubilisation of low rank coal: performances of stirred tank, fluidised bed and packed bed reactors

    CSIR Research Space (South Africa)

    Oboirien, BO

    2013-02-01

    Full Text Available Coal biosolubilisation was investigated in stirred tank reactor, fluidised bed and fixed bed bioreactors with a view to highlight the advantages and shortcomings of each of these reactor configurations. The stirred aerated bioreactor and fluidised...

  16. Synthesis of zeolites coal ash in surfactant modified in application and removal of orange 8 acid solution: study in batch, fixed bed column and evaluation ecotoxicological

    International Nuclear Information System (INIS)

    Magdalena, Carina Pitwak

    2015-01-01

    In this study, synthesized zeolitic material from coal ash and modified cationic surfactant was used for removing the acid dye Orange 8 (AL8) by adsorption process using moving bed and fixed-bed column. The raw material and adsorbents were characterized by different techniques, such as X-ray diffraction, X-ray fluorescence spectroscopy, among others. The adsorption of AL8 was performed by moving bed in order to optimize the results when they are launched in a fixed bed. The effects of adsorption on zeolite AL8 were compared: (1) Effect of counterions Br - and Cl - surfactant used in the modification of the zeolite; (2) effect of type of coal ash used as raw material in the synthesis of zeolites (fly and bottom). The following adsorbents were used in the study: fly and bottom zeolite modified by surfactant hexadecyltrimethylammonium bromide (ZLMS-Br-Br and ZPMS-Br) and fly zeolite modified by surfactant hexadecyltrimethylammonium chloride (ZLMS-Cl). The pseudo-second-order kinetic described the adsorption of the dye on all adsorbents. The equilibrium time was reached 40, 60 and 120 min for ZLMS-Br, ZLMS-Cl and ZPMS-Br, respectively. The adsorption equilibrium was analyzed by the equations of the models of linear and nonlinear isotherms of Langmuir, Freundlich, Temkin and Dubinin- Radushkevivh (DR) and the criterion of best fit was evaluated using the error functions.The DR model was adjusted better to the experimental data for the system AL8 / ZLMS-Br, the Freundlich model for AL8 / ZLMS-Cl and Langmuir for AL8 / ZPMS. According to the Langmuir maximum adsorption capacity was 4.67, 1.48 and 1.38 mg g -1 for ZLMS-Br, ZLMS-Cl and ZPMS-Br, in order. In studies employing fixed bed columns, the effects of inlet concentration (20- 30 mg L -1 ), flow rate (4.0 -5.3 mL min -1 ) and the bed height (5, 5 - 6.5 cm) above the breakthrough curves characteristics in the adsorption system were determined. The Adams-Bohart, Thomas, Yoon-Nelson models were applied to experimental

  17. Gas distributor for fluidized bed coal gasifier

    Science.gov (United States)

    Worley, Arthur C.; Zboray, James A.

    1980-01-01

    A gas distributor for distributing high temperature reaction gases to a fluidized bed of coal particles in a coal gasification process. The distributor includes a pipe with a refractory reinforced lining and a plurality of openings in the lining through which gas is fed into the bed. These feed openings have an expanding tapered shape in the downstream or exhaust direction which aids in reducing the velocity of the gas jets as they enter the bed.

  18. Fluidized bed dry dense medium coal beneficiation

    CSIR Research Space (South Africa)

    North, Brian C

    2017-10-01

    Full Text Available medium beneficiation using a fluidized bed was investigated. Bed materials of sand, magnetite and ilmenite were used in a laboratory sized cylindrical fluidized bed. The materials were individually tested, as were mixes of sand and heavy minerals. Coal...

  19. Fluidized bed selective pyrolysis of coal

    Science.gov (United States)

    Shang, Jer Y.; Cha, Chang Y.; Merriam, Norman W.

    1992-01-01

    The present invention discloses a process for the pyrolysis of coal which comprises the effective utilization of two zonal inclined fluidized beds, where said zones can be selectively controlled as to temperature and heating rate. The first zonal inclined fluidized bed serves as a dryer for crushed coal and additionally is controlled to selectively pyrolyze said coal producing substantially carbon dioxide for recycle use. The second zonal inclined fluidized bed further pyrolyzes the coal to gaseous, liquid and char products under controlled temperature and heating rate zones designed to economically integrate the product mix. The gas and liquid products are recovered from the gaseous effluent stream while the char which remains can be further treated or utilized in a subsequent process step.

  20. Incipient motion of gravel and coal beds

    Indian Academy of Sciences (India)

    R. Narasimhan (Krishtel eMaging) 1461 1996 Oct 15 13:05:22

    2. 1Department of Civil Engineering, Indian Institute of Technology, ... the particle size distribution curve following the relationship by Christensen .... where f = friction factor, ρ = mass density of fluid, and V = mean velocity of flow. .... for the incipient motion of gravel and coal beds have been represented by simple empirical.

  1. Physical-Mathematical Model for Fixed-Bed Solid Fuel Gasification Process Simulation

    Directory of Open Access Journals (Sweden)

    Slyusarskiy Konstantin V.

    2017-01-01

    Full Text Available Phycial-mathmatical model for fixed-bed coal gasification process simulation is proposed. The heterogeneous carbon oxidation chemical reactions were simulated via Arrhenius equation while homogeneous reactions in gas phase were calculated using Gibbs free energy minimization procedure. The syngas component concentration field and fuel conversion distribution as well as syngas final temperature and composition were defined for fixed bed gasification of T-grade coal of Kuznetskiy deposit. The optimal fuel residence time and gasifyer specific productivity were defined. The prevail reactions in oxidizing and reduction zones together with its height were defined.

  2. Fluidised bed gasification of low grade South African coals

    CSIR Research Space (South Africa)

    North, BC

    2006-09-01

    Full Text Available gasifiers. Fluidised bed Entrained flow Coal particle size 0.5 mm – 5 mm 0 – 0.5 mm Coal moisture Dry Dry/slurry Coal type Non-caking coals Any coal Ash in coal < 60% < 30% Gasification agents Air/steam/oxygen Steam/oxygen Gasification... properties important for fluidised bed gasification are: square4 Coal reactivity in atmospheres of CO2 and H2O square4 Caking index and free swelling index (FSI) square4 Ash fusion temperature (AFT) 5.1 Coal reactivity The gasifcation reactions (1...

  3. Fixed bed gasification of solid biomass fuels

    Energy Technology Data Exchange (ETDEWEB)

    Haavisto, I [Condens Oy, Haemeenlinna (Finland)

    1997-12-31

    Fixed bed biomass gasifiers are feasible in the effect range of 100 kW -10 MW. Co-current gasification is available only up to 1 MW for technical reasons. Counter-current gasifiers have been used in Finland and Sweden for 10 years in gasification heating plants, which are a combination of a gasifier and an oil boiler. The plants have proved to have a wide control range, flexible and uncomplicated unmanned operation and an excellent reliability. Counter-current gasifiers can be applied for new heating plants or for converting existing oil and natural gas boilers into using solid fuels. There is a new process development underway, aiming at motor use of the producer gas. The development work involves a new, more flexible cocurrent gasifier and a cleaning step for the counter-current producer gas. (orig.)

  4. Fixed bed gasification of solid biomass fuels

    Energy Technology Data Exchange (ETDEWEB)

    Haavisto, I. [Condens Oy, Haemeenlinna (Finland)

    1996-12-31

    Fixed bed biomass gasifiers are feasible in the effect range of 100 kW -10 MW. Co-current gasification is available only up to 1 MW for technical reasons. Counter-current gasifiers have been used in Finland and Sweden for 10 years in gasification heating plants, which are a combination of a gasifier and an oil boiler. The plants have proved to have a wide control range, flexible and uncomplicated unmanned operation and an excellent reliability. Counter-current gasifiers can be applied for new heating plants or for converting existing oil and natural gas boilers into using solid fuels. There is a new process development underway, aiming at motor use of the producer gas. The development work involves a new, more flexible cocurrent gasifier and a cleaning step for the counter-current producer gas. (orig.)

  5. The fixed bed nuclear reactor concept

    International Nuclear Information System (INIS)

    Sahin, S.; Sefidvash, F.

    2007-01-01

    The core of a water moderated Fixed Bed Nuclear Reactor (FBNR), possessing, for instance, an electrical power of 40 MW, consists of 1.35 million fuel pellets (9.5 t) with a diameter of 1.5 cm each. The low enriched uranium fuel is made of TRISO type microspheres used in the HTGR, embedded in a graphite matrix and cladded by a shell of 1 mm SiC. Under any thinkable operational condition the fuel temperature will be below 400 C whereas its stability limit is at about 1600 C. The first characteristic of the FBNR is, therefore, its robust fuel under relatively 'cold' operating conditions and - due to the outer SiC - shell layer - the freedom from any hydrogen production. To operate the reactor the fuel pellets are pumped by a flow of water from below into the core regions where they form a stable fixed bed of about 4 cubic meter and become critical for energy production heating the outlet water to about 330 C (at 160 bar) which feeds a steam generator. The new safety feature is now the following: In case of any abnormity (e.g. external power failure, overheating etc.) the circulating pump stops and - due to gravity - the fuel pellets fall automatically out of the core region into a helical 'fuel chamber' underneath the core where their decay heat is transferred passively by natural circulation to a water tank housing the fuel chamber. The safety principle, applied here, is: The loss of an active component (circulating pump) induces a self-controlled, passively working shut-down manoeuvre accompanied by a foolproof decay heat removal without any emergency power system or any human interaction. The fuel chamber is sealed and is transported as the only reactor component to and from the reactor site. There is no possibility to irradiate fertile fuel, too. For a long-life core (larger than a 10 years cycle time) the fuel can either be poisoned by gadolinium-oxide or by a piston type core limiter adjusting the height and controlling thereby the number of the fuel pellets in

  6. Method for enhancing the desulfurization of hot coal gas in a fluid-bed coal gasifier

    Science.gov (United States)

    Grindley, Thomas

    1989-01-01

    A process and apparatus for providing additional desulfurization of the hot gas produced in a fluid-bed coal gasifier, within the gasifier. A fluid-bed of iron oxide is located inside the gasifier above the gasification bed in a fluid-bed coal gasifier in which in-bed desulfurization by lime/limestone takes place. The product gases leave the gasification bed typically at 1600.degree. to 1800.degree. F. and are partially quenched with water to 1000.degree. to 1200.degree. F. before entering the iron oxide bed. The iron oxide bed provides additional desulfurization beyond that provided by the lime/limestone.

  7. The Effect of Bedding Structure on Mechanical Property of Coal

    Directory of Open Access Journals (Sweden)

    Zetian Zhang

    2014-01-01

    Full Text Available The mechanical property of coal, influencing mining activity considerably, is significantly determined by the natural fracture distributed within coal mass. In order to study the effecting mechanism of bedding structure on mechanical property of coal, a series of uniaxial compression tests and mesoscopic tests have been conducted. The experimental results show that the distribution characteristic of calcite particles, which significantly influences the growth of cracks and the macroscopic mechanical properties of coal, is obviously affected by the bedding structure. Specifically, the uniaxial compression strength of coal sample is mainly controlled by bedding structure, and the average peak stress of specimens with axes perpendicular to the bedding planes is 20.00 MPa, which is 2.88 times the average amount of parallel ones. The test results also show a close relationship between the bedding structure and the whole deformation process under uniaxial loading.

  8. Fixed-bed Reactor Dynamics and Control - A Review

    DEFF Research Database (Denmark)

    Jørgensen, S. B.

    1986-01-01

    The industrial diversity of fixed bed reactors offers a challenging and relevant set of control problems. These intricate problems arise due to the rather complex dynamics of fixed bed reactors and to the complexity of actual reactor configurations. Many of these control problems are nonlinear...... and multi-variable. During the last decade fixed bed reactor control strategies have been proposed and investigated experimentally. This paper reviews research on these complex control problems with an emphasis upon solutions which have been demon-strated to work in the laboratory and hold promise...

  9. Inclined fluidized bed system for drying fine coal

    Science.gov (United States)

    Cha, Chang Y.; Merriam, Norman W.; Boysen, John E.

    1992-02-11

    Coal is processed in an inclined fluidized bed dryer operated in a plug-flow manner with zonal temperature and composition control, and an inert fluidizing gas, such as carbon dioxide or combustion gas. Recycled carbon dioxide, which is used for drying, pyrolysis, quenching, and cooling, is produced by partial decarboxylation of the coal. The coal is heated sufficiently to mobilize coal tar by further pyrolysis, which seals micropores upon quenching. Further cooling with carbon dioxide enhances stabilization.

  10. The upper pennsylvanian pittsburgh coal bed: Resources and mine models

    Science.gov (United States)

    Watson, W.D.; Ruppert, L.F.; Tewalt, S.J.; Bragg, L.J.

    2001-01-01

    The U.S. Geological Survey recently completed a digital coal resource assessment model of the Upper Pennsylvanian Pittsburgh coal bed, which indicates that after subtracting minedout coal, 16 billion short tons (14 billion tonnes) remain of the original 34 billion short tons (31 billion tonnes) of coal. When technical, environmental, and social restrictions are applied to the remaining Pittsburgh coal model, only 12 billion short tons (11 billion tonnes) are available for mining. Our assessment models estimate that up to 0.61 billion short tons (0.55 billion tonnes), 2.7 billion short tons (2.4 billion tonnes), and 8.5 billion short tons (7.7 billion tonnes) could be available for surface mining, continuous mining, and longwall mining, respectively. This analysis is an example of a second-generation regional coal availability study designed to model recoverability characteristics for all the major coal beds in the United States. ?? 2001 International Association for Mathematical Geology.

  11. Conversion of metallurgical coke and coal using a Coal Direct Chemical Looping (CDCL) moving bed reactor

    International Nuclear Information System (INIS)

    Luo, Siwei; Bayham, Samuel; Zeng, Liang; McGiveron, Omar; Chung, Elena; Majumder, Ankita; Fan, Liang-Shih

    2014-01-01

    Highlights: • Accumulated more than 300 operation hours were accomplished for the moving bed reducer reactor. • Different reactor operation variables were investigated with optimal conditions identified. • High conversions of sub-bituminous coal and bituminous coal were achieved without flow problems. • Co-current and counter-current contact modes were tested and their applicability was discussed. - Abstract: The CLC process has the potential to be a transformative commercial technology for a carbon-constrained economy. The Ohio State University Coal Direct Chemical Looping (CDCL) process directly converts coal, eliminating the need for a coal gasifier oran air separation unit (ASU). Compared to other solid-fuel CLC processes, the CDCL process is unique in that it consists of a countercurrent moving bed reducer reactor. In the proposed process, coal is injected into the middle of the moving bed, whereby the coal quickly heats up and devolatilizes, splitting the reactor roughly into two sections with no axial mixing. The top section consists of gaseous fuel produced from the coal volatiles, and the bottom section consists of the coal char mixed with the oxygen carrier. A bench-scale moving bed reactor was used to study the coal conversion with CO 2 as the enhancing gas. Initial tests using metallurgical cokefines as feedstock were conducted to test the effects of operational variables in the bottom section of the moving bed reducer, e.g., reactor temperature, oxygen carrier to char ratio, enhancer gas CO 2 flow rate, and oxygen carrier flow rates. Experiments directly using coal as the feedstock were subsequently carried out based on these test results. Powder River Basin (PRB) coal and Illinois #6 coal were tested as representative sub-bituminous and bituminous coals, respectively. Nearly complete coal conversion was achieved using composite iron oxide particles as the oxygen carriers without any flow problems. The operational results demonstrated that a

  12. Microbial diversity of western Canadian subsurface coal beds and methanogenic coal enrichment cultures

    Energy Technology Data Exchange (ETDEWEB)

    Penner, Tara J.; Foght, Julia M. [Department of Biological Sciences, University of Alberta, Edmonton, Alberta (Canada); Budwill, Karen [Carbon and Energy Management, Alberta Innovates-Technology Futures, 250 Karl Clark Road, Edmonton, Alberta (Canada)

    2010-05-01

    Coalbed methane is an unconventional fuel source associated with certain coal seams. Biogenic methane can comprise a significant portion of the gas found in coal seams, yet the role of microbes in methanogenesis in situ is uncertain. The purpose of this study was to detect and identify major bacterial and archaeal species associated with coal sampled from sub-bituminous methane-producing coal beds in western Canada, and to examine the potential for methane biogenesis from coal. Enrichment cultures of coal samples were established to determine how nutrient amendment influenced the microbial community and methane production in the laboratory. 16S rRNA gene clone libraries were constructed using DNA extracted and amplified from uncultured coal samples and from methanogenic coal enrichment cultures. Libraries were screened using restriction fragment length polymorphism, and representative clones were sequenced. Most (> 50%) of the bacterial sequences amplified from uncultured coal samples were affiliated with Proteobacteria that exhibit nitrate reduction, nitrogen fixation and/or hydrogen utilization activities, including Pseudomonas, Thauera and Acidovorax spp., whereas enrichment cultures were dominated by Bacteroidetes, Clostridia and/or Lactobacillales. Archaeal 16S rRNA genes could not be amplified from uncultured coal, suggesting that methanogens are present in coal below the detection levels of our methods. However, enrichment cultures established with coal inocula produced significant volumes of methane and the archaeal clone libraries were dominated by sequences closely affiliated with Methanosarcina spp. Enrichment cultures incubated with coal plus organic nutrients produced more methane than either nutrient or coal supplements alone, implying that competent methanogenic consortia exist in coal beds but that nutrient limitations restrict their activity in situ. This report adds to the scant literature on coal bed microbiology and suggests how microbes may be

  13. Numerical modeling of straw combustion in a fixed bed

    DEFF Research Database (Denmark)

    Zhou, Haosheng; Jensen, Anker; Glarborg, Peter

    2005-01-01

    . The straw combustion processes include moisture evaporation, straw pyrolysis, gas combustion, and char combustion. The model provides detailed information of the structure of the ignition flame front. Simulated gas species concentrations at the bed surface, ignition flame front rate, and bed temperature......Straw is being used as main renewable energy source in grate boilers in Denmark. For optimizing operating conditions and design parameters, a one-dimensional unsteady heterogeneous mathematical model has been developed and experiments have been carried out for straw combustion in a fixed bed...... are in good agreement with measurements at different operating conditions such as primary air-flow rate, pre-heating of the primary air, oxygen concentration, moisture content in straw, and bulk density of the straw in the fixed bed. A parametric study indicates that the effective heat conductivity, straw...

  14. Atmospheric fluidized bed coal combustion research, development and application

    CERN Document Server

    Valk, M

    1994-01-01

    The use of fluidized bed coal combustion technology has been developed in the past decade in The Netherlands with a view to expanding the industrial use of coal as an energy supply. Various research groups from universities, institutes for applied science and from boiler industries participated and contributed to this research area. Comprehensive results of such recent experimentation and development work on atmospheric fluidized bed combustion of coal are covered in this volume. Each chapter, written by an expert, treats one specific subject and gives both the theoretical background as well a

  15. Nonlinear dynamics and control of a recycle fixed bed reactor

    DEFF Research Database (Denmark)

    Recke, Bodil; Jørgensen, Sten Bay

    1997-01-01

    The purpose of this paper is twofold. Primarily to describe the dynamic behaviour that can be observed in a fixed bed reactor with recycle of unconverted reactant. Secondly to describe the possibilities of model reduction in order to facilitate control design. Reactant recycle has been shown...... to introduce periodic solution to the fixed bed reactor, a phenomenon which is not seen for the system without the recycle, at least not within the Peclet number range investigated in the present work. The possibility of model reduction by the methods of modal decomposition, and by characteristics...

  16. Thermal Analysis of Fluidized Bed and Fixed Bed Latent Heat Thermal Storage System

    Science.gov (United States)

    Beemkumar, N.; Karthikeyan, A.; Shiva Keshava Reddy, Kota; Rajesh, Kona; Anderson, A.

    2017-05-01

    Thermal energy storage technology is essential because its stores available energy at low cost. Objective of the work is to store the thermal energy in a most efficient method. This work is deal with thermal analysis of fluidized bed and fixed bed latent heat thermal storage (LHTS) system with different encapsulation materials (aluminium, brass and copper). D-Mannitol has been used as phase change material (PCM). Encapsulation material which is in orbicular shape with 4 inch diameter and 2 mm thickness orbicular shaped product is used. Therminol-66 is used as a heat transfer fluid (HTF). Arrangement of encapsulation material is done in two ways namely fluidized bed and fixed bed thermal storage system. Comparison was made between the performance of fixed bed and fluidized bed with different encapsulation material. It is observed that from the economical point of view aluminium in fluidized bed LHTS System has highest efficiency than copper and brass. The thermal energy storage system can be analyzed with fixed bed by varying mass flow rate of oil paves a way to find effective heat energy transfer.

  17. Potential health impacts of burning coal beds and waste banks

    Science.gov (United States)

    Finkelman, R.B.

    2004-01-01

    Uncontrolled release of pollutants from burning coal beds and waste banks presents potential environmental and human health hazards. On a global scale, the emissions of large volumes of greenhouse gases from burning coal beds may contribute to climate change that alters ecosystems and patterns of disease occurrence. On regional and local scales, the emissions from burning coal beds and waste banks of acidic gases, particulates, organic compounds, and trace elements can contribute to a range of respiratory and other human health problems. Although there are few published reports of health problems caused by these emissions, the potential for problems can be significant. In India, large numbers of people have been displaced from their homes because of health problems caused by emissions from burning coal beds. Volatile elements such as arsenic, fluorine, mercury, and selenium are commonly enriched in coal deposits. Burning coal beds can volatilize these elements, which then can be inhaled, or adsorbed on crops and foods, taken up by livestock or bioaccumulated in birds and fish. Some of these elements can condense on dust particles that can be inhaled or ingested. In addition, selenium, arsenic, lead, tin, bismuth, fluorine, and other elements condense where the hot gaseous emissions come in contact with ambient air, forming mats of concentrated efflorescent minerals on the surface of the ground. These mats can be leached by rainwater and washed into local water bodies providing other potential routes of exposure. Although there are little data linking burning coal beds and waste banks to known health problems, a possibly analogous situation exists in rural China where mineralized coal burned in a residential environment has caused widespread and severe health problems such as fluorosis and arseniasis. ?? 2004 Elsevier B.V. All rights reserved.

  18. Particle Distribution in a Fixed Bed Down Draft Wood Gasifier

    DEFF Research Database (Denmark)

    Hindsgaul, Claus

    2005-01-01

    Char particle samples were collected from six distances above the grate in a fixed bed of a down draft biomass gasifier. Each sample was separated into twelve size fractions by screening through standard sieves in order to determine the local particle size distribution. The ash contents of each...

  19. Dimensioning of aerated submerged fixed bed biofilm reactors ...

    African Journals Online (AJOL)

    The description of a biofilm mathematical model application for dimensioning an aerated fixed bed biofilm reactor (ASFBBR) for petrochemical wastewater polishing is presented. A simple one-dimensional model of biofilm, developed by P Harremöes, was chosen for this purpose. The model was calibrated and verified ...

  20. The Bulgarian coal and the fluid bed technology

    International Nuclear Information System (INIS)

    Konstantinov, M.; Georgiev, J.; Lebedov, K.; Petrov, N.

    2000-01-01

    Because of low-quality of the most of Bulgarian coal and more rigorous ecological restrictions for decreasing of greenhouse gases the fluidized bed technology is the most appropriate combustion technology. A study with a pilot plant aiming to establish the values of technological parameters in view to maintain stable process of fluidized bed combustion at the specific burning characteristics of the Bulgarian coal was carried out. Coal of different quality and particle size production of 'Marbas' LTD mines were used. Series of experiments with batches of strictly determined content were carried out at minimal, average and maximal load. The technological factors as: layer's aerodynamics, layer's height, fuel's quantity and quantity of inert material were changed at each batch. The ecological factors were optimized considering coal's quality, plant's parameters, limestone's dosing and layer's aerodynamics. A regressive model for optimization of technological and ecological factors was created. An average coefficient of performance was achieved, resp. 82.27 % at combustion of coal from mines 'Maritsa-West' and 90 % from mine 'Lev'. A coefficient of sulfur oxides' capture 70 % was obtained at coal with sulfur content 3.1-3.9 %. In conclusion the fluidized bed technology is very suitable for combustion's characteristics of the Bulgarian coal

  1. Fluidized bed gasification of selected South African coals

    CSIR Research Space (South Africa)

    Engelbrecht, AD

    2010-05-01

    Full Text Available that due to the good heat and mass transfer properties of fluidised beds, coal with ash contents up to 70% can be utilised. The CSIR’s research and development work resulted in the installation of five bubbling fluidised bed combustors (BFBCs) between... 1989 and 1999. Other companies, such as Babcock and Scientific Design, also installed a number of BFBC plants during this time. It was realised during the development of BFBC technology that due to the low lateral dispersion coefficient of coal...

  2. Hydrogeochemistry and coal-associated bacterial populations from a methanogenic coal bed

    Science.gov (United States)

    Barnhart, Elliott P.; Weeks, Edwin P.; Jones, Elizabeth J.P.; Ritter, Daniel J.; McIntosh, Jennifer C.; Clark, Arthur C.; Ruppert, Leslie F.; Cunningham, Alfred B.; Vinson, David S.; Orem, William H.; Fields, Matthew W.

    2016-01-01

    Biogenic coalbed methane (CBM), a microbially-generated source of natural gas trapped within coal beds, is an important energy resource in many countries. Specific bacterial populations and enzymes involved in coal degradation, the potential rate-limiting step of CBM formation, are relatively unknown. The U.S. Geological Survey (USGS) has established a field site, (Birney test site), in an undeveloped area of the Powder River Basin (PRB), with four wells completed in the Flowers-Goodale coal bed, one in the overlying sandstone formation, and four in overlying and underlying coal beds (Knoblach, Nance, and Terret). The nine wells were positioned to characterize the hydraulic conductivity of the Flowers-Goodale coal bed and were selectively cored to investigate the hydrogeochemistry and microbiology associated with CBM production at the Birney test site. Aquifer-test results indicated the Flowers-Goodale coal bed, in a zone from about 112 to 120 m below land surface at the test site, had very low hydraulic conductivity (0.005 m/d) compared to other PRB coal beds examined. Consistent with microbial methanogenesis, groundwater in the coal bed and overlying sandstone contain dissolved methane (46 mg/L average) with low δ13C values (−67‰ average), high alkalinity values (22 meq/kg average), relatively positive δ13C-DIC values (4‰ average), and no detectable higher chain hydrocarbons, NO3−, or SO42−. Bioassay methane production was greatest at the upper interface of the Flowers-Goodale coal bed near the overlying sandstone. Pyrotag analysis identified Aeribacillus as a dominant in situbacterial community member in the coal near the sandstone and statistical analysis indicated Actinobacteria predominated coal core samples compared to claystone or sandstone cores. These bacteria, which previously have been correlated with hydrocarbon-containing environments such as oil reservoirs, have demonstrated the ability to produce biosurfactants to break down

  3. Fixed-bed gasifier and cleanup system engineering summary report through Test Run No. 100

    Energy Technology Data Exchange (ETDEWEB)

    Pater, K. Jr.; Headley, L.; Kovach, J.; Stopek, D.

    1984-06-01

    The state-of-the-art of high-pressure, fixed-bed gasification has been advanced by the many refinements developed over the last 5 years. A novel full-flow gas cleanup system has been installed and tested to clean coal-derived gases. This report summarizes the results of tests conducted on the gasifier and cleanup system from its inception through 1982. Selected process summary data are presented along with results from complementary programs in the areas of environmental research, process simulation, analytical methods development, and component testing. 20 references, 32 figures, 42 tables.

  4. HgCl{sub 2} sorption on lignite activated carbon: Analysis of fixed-bed results

    Energy Technology Data Exchange (ETDEWEB)

    Mibeck, Blaise A.F.; Olson, Edwin S.; Miller, Stanley J. [University of North Dakota Energy and Environmental Research Center, 15 North 23rd Street, Stop 9018, Grand Forks, ND 58202-9018 (United States)

    2009-11-15

    Factors that influence kinetic reactivity and equilibrium between elemental mercury, carbon, and flue gas components have been the focus of numerous studies. This study pertains to recent bench-scale fixed-bed tests in which activated carbon was exposed to HgCl{sub 2} in a flue gas composition typical of an unscrubbed eastern bituminous coal. Results are discussed in light of a refined binding site model based on the zigzag carbene structures recently proposed for electronic states at the edges of the carbon graphene layers. (author)

  5. Synthesis of zeolites coal ash in surfactant modified in application and removal of orange 8 acid solution: study in batch, fixed bed column and evaluation ecotoxicological; Sintese de zeolitas de cinzas de carvao modificada por surfactante e aplicacao na remocao de acido laranja 8 de solucao aquosa: estudo em leito movel, coluna de leito fixo e avaliacao ecotoxicologica

    Energy Technology Data Exchange (ETDEWEB)

    Magdalena, Carina Pitwak

    2015-09-01

    In this study, synthesized zeolitic material from coal ash and modified cationic surfactant was used for removing the acid dye Orange 8 (AL8) by adsorption process using moving bed and fixed-bed column. The raw material and adsorbents were characterized by different techniques, such as X-ray diffraction, X-ray fluorescence spectroscopy, among others. The adsorption of AL8 was performed by moving bed in order to optimize the results when they are launched in a fixed bed. The effects of adsorption on zeolite AL8 were compared: (1) Effect of counterions Br{sup -} and Cl{sup -} surfactant used in the modification of the zeolite; (2) effect of type of coal ash used as raw material in the synthesis of zeolites (fly and bottom). The following adsorbents were used in the study: fly and bottom zeolite modified by surfactant hexadecyltrimethylammonium bromide (ZLMS-Br-Br and ZPMS-Br) and fly zeolite modified by surfactant hexadecyltrimethylammonium chloride (ZLMS-Cl). The pseudo-second-order kinetic described the adsorption of the dye on all adsorbents. The equilibrium time was reached 40, 60 and 120 min for ZLMS-Br, ZLMS-Cl and ZPMS-Br, respectively. The adsorption equilibrium was analyzed by the equations of the models of linear and nonlinear isotherms of Langmuir, Freundlich, Temkin and Dubinin- Radushkevivh (DR) and the criterion of best fit was evaluated using the error functions.The DR model was adjusted better to the experimental data for the system AL8 / ZLMS-Br, the Freundlich model for AL8 / ZLMS-Cl and Langmuir for AL8 / ZPMS. According to the Langmuir maximum adsorption capacity was 4.67, 1.48 and 1.38 mg g{sup -1} for ZLMS-Br, ZLMS-Cl and ZPMS-Br, in order. In studies employing fixed bed columns, the effects of inlet concentration (20- 30 mg L{sup -1}), flow rate (4.0 -5.3 mL min{sup -1}) and the bed height (5, 5 - 6.5 cm) above the breakthrough curves characteristics in the adsorption system were determined. The Adams-Bohart, Thomas, Yoon-Nelson models were

  6. STUDY OF HYDRODYNAMICS IN FIXED BED OF COMPOSITE GRANULAR MATERIALS

    Directory of Open Access Journals (Sweden)

    Stelian Petrescu

    2010-12-01

    Full Text Available This study aims at the experimental determination of pressure drop and friction factor at gas flow through fixed beds of granular silica gel, alumina and activated carbon, and establishment of an equation containing a modified friction factor Fm to calculate pressure drop. In order to calculate the modified friction factor, an equation was suggested.The experimental values for pressure drop and friction factor were determined using spherical grains of silica gel, cylindrical grains of alumina and silica gel, alumina and activated carbon impregnated with calcium chloride. By means of the suggested equation, the values of pressure drop in fixed bed were calculated and compared with the experimental values. A good agreement between the predicted and experimental data is noticed.

  7. Adsorption of aromatic amino acids in a fixed bed column

    Directory of Open Access Journals (Sweden)

    Cremasco M.A.

    2003-01-01

    Full Text Available Phenylalanine (Phe and tyrosine (Tyr are two of the twenty amino acids in proteins; they are classified as aromatic amino acids, because both have a benzene ring in their structures. These amino acids are important in the synthesis of several biologically active amines, such as beta-endorphin, a neurotransmitter. Amino acids can be separated by ion-exchange chromatography. In this case, it is important that fixed-bed adsorber design adequately predict the breakthrough curve. This work presents a mathematical model for both fluid and porous phases. In the solution proposed for this model the liquid-phase concentration inside the particles is solved analytically and is related to the liquid-phase concentration in the bed using Duhamel's theorem. The solution for liquid-phase concentration in the bed is then solved numerically instead of analytically. The basic mass transfer parameters are from the literature. The results from the model are compared with those obtained experimentally using Phe and Tyr diluted in aqueous solutions in a fixed bed of PVP (poly-4-vinylpyridine resin.

  8. Anaerobic treatment of winery wastewater in fixed bed reactors.

    Science.gov (United States)

    Ganesh, Rangaraj; Rajinikanth, Rajagopal; Thanikal, Joseph V; Ramanujam, Ramamoorty Alwar; Torrijos, Michel

    2010-06-01

    The treatment of winery wastewater in three upflow anaerobic fixed-bed reactors (S9, S30 and S40) with low density floating supports of varying size and specific surface area was investigated. A maximum OLR of 42 g/l day with 80 +/- 0.5% removal efficiency was attained in S9, which had supports with the highest specific surface area. It was found that the efficiency of the reactors increased with decrease in size and increase in specific surface area of the support media. Total biomass accumulation in the reactors was also found to vary as a function of specific surface area and size of the support medium. The Stover-Kincannon kinetic model predicted satisfactorily the performance of the reactors. The maximum removal rate constant (U(max)) was 161.3, 99.0 and 77.5 g/l day and the saturation value constant (K(B)) was 162.0, 99.5 and 78.0 g/l day for S9, S30 and S40, respectively. Due to their higher biomass retention potential, the supports used in this study offer great promise as media in anaerobic fixed bed reactors. Anaerobic fixed-bed reactors with these supports can be applied as high-rate systems for the treatment of large volumes of wastewaters typically containing readily biodegradable organics, such as the winery wastewater.

  9. 40 CFR 147.52 - State-administered program-Hydraulic Fracturing of Coal Beds.

    Science.gov (United States)

    2010-07-01

    ... Fracturing of Coal Beds. 147.52 Section 147.52 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... PROGRAMS Alabama § 147.52 State-administered program—Hydraulic Fracturing of Coal Beds. The UIC program for hydraulic fracturing of coal beds in the State of Alabama, except those on Indian lands, is the program...

  10. Pulverized coal vs. circulating fluidized bed: An economic comparison

    International Nuclear Information System (INIS)

    Johns, R.F.

    1991-01-01

    As the power industry looks to the 1990s for expanded steam generation capacity, boiler owners will continue on their long-standing assignment to evaluate and select the best, lowest cost alternative to meet their energy needs. For coal-fired plants, this evaluation process includes pulverized coal-fired boilers (PC) and circulating fluidized bed boilers (CFB). The cost difference between these products is site specific and depends on several variables, including: Boiler size, pressure, and temperature; Operating variables, such as the cost for fuel, auxiliary power, SO 2 reagent, and ash disposal; Capital cost; and Financial variables, such as evaluation period and interest rate. This paper provides a technical and economic comparison between a pulverized coal-fired boiler and circulating fluidized bed boiler

  11. Risk factors for the undermined coal bed mining method

    Energy Technology Data Exchange (ETDEWEB)

    Arad, V. [Petrosani Univ., Petrosani (Romania). Dept. of Mining Engineering; Arad, S. [Petrosani Univ., Petrosani (Romania). Dept of Electrical Engineering

    2009-07-01

    The Romanian mining industry has been in a serious decline and is undergoing ample restructuring. Analyses of reliability and risk are most important during the early stages of a project in guiding the decision as to whether or not to proceed and in helping to establish design criteria. A technical accident occurred in 2008 at the Petrila coal mine involving an explosion during the exploitation of a coal seam. Over time a series of technical accidents, such as explosions and ignitions of methane gas, roof blowing phenomena or self-ignition of coal and hazard combustions have occurred. This paper presented an analysis of factors that led to this accident as well an analysis of factors related to the mining method. Specifically, the paper discussed the geomechanical characteristics of rocks and coal; the geodynamic phenomenon from working face 431; the spontaneous combustion phenomenon; gas accumulation; and the pressure and the height of the undermined coal bed. It was concluded that for the specific conditions encountered in Petrila colliery, the undermined bed height should be between 5 and 7 metres, depending on the geomechanic characteristics of coal and surrounding rocks. 8 refs., 1 tab., 3 figs.

  12. Method and apparatus for enhancing the desulfurization of hot coal gas in a fluid-bed coal gasifier

    Science.gov (United States)

    Grindley, T.

    1988-04-05

    A process and apparatus for providing additional desulfurization of the hot gas produced in a fluid-bed coal gasifier, within the gasifier is described. A fluid-bed of iron oxide is located inside the gasifier above the gasification bed in a fluid-bed coal gasifier in which in-bed desulfurization by lime/limestone takes place. The product gases leave the gasification bed typically at 1600 to 1800 F and are partially quenched with water to 1000 to 1200 F before entering the iron oxide bed. The iron oxide bed provides additional desulfurization beyond that provided by the lime /limestone. 1 fig.

  13. Staged fluidized-bed coal combustor for boiler retrofit

    International Nuclear Information System (INIS)

    Rehmat, A.; Dorfman, L.; Shibayama, G.; Waibel, R.

    1991-01-01

    The Advanced Staged Fluidized-Bed Coal Combustion System (ASC) is a novel clean coal technology for either coal-fired repowering of existing boilers or for incremental power generation using combined-cycle gas turbines. This new technology combines staged combustion for gaseous emission control, in-situ sulfur capture, and an ash agglomeration/vitrification process for the agglomeration/vitrification of ash and spent sorbent, thus rendering solid waste environmentally benign. The market for ASC is expected to be for clean coal-fired repowering of generating units up to 250 MW, especially for units where space is limited. The expected tightening of the environmental requirements on leachable solids residue by-products could considerably increase the marketability for ASC. ASC consists of modular low-pressure vessels in which coal is partially combusted and gasified using stacked fluidized-bed processes to produce low-to-medium-Btu, high-temperature gas. This relatively clean fuel gas is used to repower/refuel existing pulverized-coal, natural gas, or oil-fired boilers using bottom firing and reburning techniques. The benefits of ASC coal-fired repowering include the ability to repower boilers without obtaining additional space while meeting the more stringent environmental requirements of the future. Low NO x , SO x , and particulate levels are expected while a nonleachable solid residue with trace metal encapsulation is produced. ASC also minimizes boiler modification and life-extension expenditures. Repowered efficiencies can be restored to the initial operating plant efficiency, and the existing boiler capacity can be increased by 10%. Preliminary cost estimates indicate that ASC will have up to a $250/kW capital cost advantage over existing coal-fired repowering options. 4 figs., 4 tabs

  14. Steam gasification of coal using a pressurized circulating fluidized bed

    International Nuclear Information System (INIS)

    Werner, K.F.J.

    1989-09-01

    Subject of this investigation is the process engineering of a coal gasification using nuclear heat. A special aspect is the efficiency. To this purpose a new method for calculating the kinetics of hard coal steam gasification in a fluidized bed is presented. It is used for evaluations of gasification kinetics in a large-scale process on the basis of laboratory-scale experiments. The method is verified by experimental data from a large-scale gasifier. The investment costs and the operating costs of the designed process are estimated. (orig.) [de

  15. Passive cooling of a fixed bed nuclear reactor

    International Nuclear Information System (INIS)

    Petry, V.J.; Bortoli, A.L. de; Sefidwash, F.

    2005-01-01

    Small nuclear reactors without the need for on-site refuelling have greater simplicity, better compliance with passive safety systems, and are more adequate for countries with small electric grids and limited investment capabilities. Here the passive cooling characteristic of the fixed bed nuclear reactor (FBNR), that is being developed under the International Atomic Energy Agency (IAEA) Coordinated Research Project, is studied. A mathematical model is developed to calculate the temperature distribution in the fuel chamber of the reactor. The results demonstrate the passive cooling of this nuclear reactor concept. (authors)

  16. Aerosol sampling of an experimental fluidized bed coal combustor

    International Nuclear Information System (INIS)

    Newton, G.J.; Peele, E.R.; Carpenter, R.L.; Yeh, H.C.

    1977-01-01

    Fluidized bed combustion of coal, lignite or other materials has a potential for widespread use in central electric generating stations in the near future. This technology may allow widespread use of low-grade and/or high sulfur fuels due to its high energy utilization at low combustion temperature and its ability to meet emission criteria by using limestone bed material. Particulate and gaseous products resulting from fuel combustion and fluidization of bed material are discharged and proceed out the exhaust clean-up system. Sampling philosophy, methodology and equipment used to obtain aerosol samples from the exhaust system of the 18-inch fluidized bed combustor (FBC) at the Morgantown Energy Research Center (MERC) are described. Identification of sampling sites led to design of an aerosol sampling train which allowed a known quantity of the effluent streams to be sampled. Depending on the position, a 15 to 25 l/min sample is extracted from the duct, immediately diluted and transferred to a sampling/aging chamber. Transmission and scanning electron microscope samples, two types of cascade impactor samples, vapor-phase and particulate-phase organic samples, spiral duct aerosol centrifuge samples, optical size measurements and filter samples were obtained. Samples are undergoing physical, chemical and biological tests to help establish human health risk estimates for fluidized bed coal combustion and to provide information for use in design and evaluation of control technologies

  17. Coal pyrolysis in a continuous fluidized bed - process development studies

    Energy Technology Data Exchange (ETDEWEB)

    Ramakrishnan, N N; Akmal, M A.K.; Vaidyeswaran, R

    1981-10-01

    The paper deals with the development of a process development unit (PDU) for the fluid bed pyrolysis of non-caking slack coal obtained from Singareni and Talcher coalfields. Preheated air is used as the fluidizing medium. It is necessary to avoid its maldistribution by a suitable design of the gas distributor. In this regard perforated conical distributors appear to play an important role. In the low temperature carbonization of coal an operation around 500 C gives optimum yields of char and tar of desirable quality. Carbonization reactions are generally completed within about 20 min of the feed entry into the fluidized bed and the char attains an equilibrium volatile matter content. Since air is used as the fluidizing medium carbonization gas is diluted with nitrogen and non-combustibles. The heating value of the gas is low. (5 refs.)

  18. Coal bed methane: current status and outlook - Panorama 2008

    International Nuclear Information System (INIS)

    2008-01-01

    In many parts of the world, there is growing interest in coal bed methane (CBM), which has been exploited for years in the United States. One reason is undoubtedly that some new gas producing countries, including India and China, are seeking to limit the level of their gas dependence. Another is the need to control greenhouse gas emissions, especially using mechanisms set up under the Kyoto Protocol. Finally, the increase in gas prices on international markets also encourages this trend

  19. Carbon dioxide hydrate formation in a fixed-bed reactor

    Energy Technology Data Exchange (ETDEWEB)

    Fan, S.; Lang, X. [South China Univ. of Technology, Guangzhou (China). Key Laboratory of Enhanced Heat Transfer and Energy Conservation; Wang, Y.; Liang, D. [Chinese Academy of Sciences, Guangzhou (China). Guangzhou Inst. of Energy Conversion and Guangzhou Center of Natural Gas Hydrate; Sun, X.; Jurcik, B. [Air Liquide Laboratories, Tsukuba (Japan)

    2008-07-01

    Gas hydrates are thermodynamically stable at high pressures and near the freezing temperature of pure water. Methane hydrates occur naturally in sediments in the deep oceans and permafrost regions and constitute an extensive hydrocarbon reservoir. Carbon dioxide (CO{sub 2}) hydrates are of interest as a medium for marine sequestration of anthropogenic carbon dioxide. Sequestering CO{sub 2} as hydrate has potential advantages over most methods proposed for marine CO{sub 2} sequestration. Because this technique requires a shallower depth of injection when compared with other ocean sequestration methods, the costs of CO{sub 2} hydrate sequestration may be lower. Many studies have successfully used different continuous reactor designs to produce CO{sub 2} hydrates in both laboratory and field settings. This paper discussed a study that involved the design and construction of a fixed-bed reactor for simulation of hydrate formation system. Water, river sands and carbon dioxide were used to simulate the seep kind of hydrate formation. Carbon dioxide gas was distributed as small bubbles to enter from the bottom of the fixed-bed reactor. The paper discussed the experimental data and presented a diagram of the gas hydrate reactor system. The morphology as well as the reaction characters of CO{sub 2} hydrate was presented in detail. The results were discussed in terms of experimental phenomena and hydrate formation rate. A mathematical model was proposed for describing the process. 17 refs., 7 figs.

  20. PERKEMBANGAN BIOFILM NITRIFIKASI DI FIXED BED REACTOR PADA SALINITAS TINGGI

    Directory of Open Access Journals (Sweden)

    Sudarno

    2012-03-01

    Full Text Available Development of nitrification biomass that is growing attached on carried material was examined by measuring its ammonium or nitrit oxidation rates. Porous ceramic rings (36 pieces were put into the fixed bed reactor (FBR . The fixed bed reactor that was operated continuously for more than 500 day was continued to be operated at a HRT of 1 day, a DO of above 5 mg L-1 and pH of 8. Ammonia concentration in the feeding was 50 mg NH4+-N L-1. At days 1, 5, 12, 20, 33 and 50, six porous ceramic rings were taken out and then ammonia and nitrite removal rate by biofilm in the ceramic rings was separately measured. The measurement of rates was done in small cylindrical glass reactors with initial concentration of ammonia and nitrite was 10 mg N L-1. Until 50 days of incubation AORs were always higher than NORs. Additionally, ammonia oxidizers attach or grow faster in the porous ceramic material than nitrite oxidizers.

  1. Fluidized bed and pulverized coal combustion residues for secondary pavements

    International Nuclear Information System (INIS)

    Ghafoori, N.; Diawara, H.; Wang, L.

    2009-01-01

    The United States produced nearly 125 million tons of coal combustion products in 2006. These by-products include fly ash, flue gas desulphurization materials, bottom ash, boiler slag, and other power plant by-products. The expense associated with waste disposal, lack of disposal sites, and significant environmental damage linked with the disposal of coal combustion residues have encouraged innovative utilization strategies such as the fluidized bed combustion (FBC) unit. This paper presented the results of a laboratory investigation that examined the properties of composites developed with different proportions of pre-conditioned FBC spent bed, pulverized coal combustion fly ash, natural fine aggregate, and Portland cement. The purpose of the study was to examine the extent to which the by-product composites could replace currently used materials in secondary roads. The paper presented the research objectives and experimental programs, including matrix constituent and proportions; mixture proportions; and mixing, curing, sampling, and testing. The discussion of results centered around compressive strength and expansion by internal sulfate attack. It was concluded that with proper proportioning, by-products of pulverized and fluidized bed combustion promote binding of sand particles and provide adequate strength under various curing and moisture conditions 4 refs., 6 tabs.

  2. Variations in pore characteristics in high volatile bituminous coals: Implications for coal bed gas content

    Science.gov (United States)

    Mastalerz, Maria; Drobniak, A.; Strapoc, D.; Solano-Acosta, W.; Rupp, J.

    2008-01-01

    The Seelyville Coal Member of the Linton Formation (Pennsylvanian) in Indiana was studied to: 1) understand variations in pore characteristics within a coal seam at a single location and compare these variations with changes occurring between the same coal at different locations, 2) elaborate on the influence of mineral-matter and maceral composition on mesopore and micropore characteristics, and 3) discuss implications of these variations for coal bed gas content. The coal is high volatile bituminous rank with R0 ranging from 0.57% to 0.60%. BET specific surface areas (determined by nitrogen adsorption) of the coals samples studied range from 1.8 to 22.9??m2/g, BJH adsorption mesopore volumes from 0.0041 to 0.0339??cm3/g, and micropore volumes (determined by carbon dioxide adsorption) from 0.0315 to 0.0540??cm3/g. The coals that had the largest specific surface areas and largest mesopore volumes occur at the shallowest depths, whereas the smallest values for these two parameters occur in the deepest coals. Micropore volumes, in contrast, are not depth-dependent. In the coal samples examined for this study, mineral-matter content influenced both specific surface area as well as mesopore and micropore volumes. It is especially clear in the case of micropores, where an increase in mineral-matter content parallels the decrease of micropore volume of the coal. No obvious relationships were observed between the total vitrinite content and pore characteristics but, after splitting vitrinite into individual macerals, we see that collotelinite influences both meso- and micropore volume positively, whereas collodetrinite contributes to the reduction of mesopore and micropore volumes. There are large variations in gas content within a single coal at a single location. Because of this variability, the entire thickness of the coal must be desorbed in order to determine gas content reliably and to accurately calculate the level of gas saturation. ?? 2008 Elsevier B.V. All

  3. Optimization of annatto (Bixa orellana L. drying in fixed bed

    Directory of Open Access Journals (Sweden)

    Faria L.J.G.

    2000-01-01

    Full Text Available The drying of annatto seeds (Bixa orellana L., red piave cultivate, was studied in a fixed bed dryer. The best conditions were estimated to minimize the loss of coloring and to obtain final moisture of the seeds in appropriate levels to its conservation and maintenance of quality. The quantification of the influence of entrance variables in the final contents of bixin and moisture seeds and the identification of the optimal point was performed through the techniques of factorial design, response surfaces methodology, canonical analysis and desirability function. It was verified that the final moisture of the seeds may be estimated by a second-order polynomial model and that the final content of bixin is only significantly influenced by the time of drying being described properly by a linear model, for the seeds used in this study.

  4. Fixed (slow moving) bed updraft gasification of agricultural residues

    Energy Technology Data Exchange (ETDEWEB)

    Vigouroux, Rolando Zanzi [Royal Institute of Technology (KTH), Stockholm (Sweden). Dept. of Chemical Engineering and Technology], E-mail: rolando@ket.kth.se; Escalona, Ronoldy Faxas [University of Oriente, Santiago de Cuba (Cuba). Fac. of Mechanical Engineering], E-mail: faxas@fim.uo.edu.cu

    2009-07-01

    Birch, in form of pellets has been gasified in updraft fixed-bed gasifier using air as oxidation agent. The main objectives were to study the effect of the treatment conditions on the distribution of the products and the composition of product gas. The influence of the air flow rates on the composition of the producer gas has been studied. The amount of the biomass used in the experiments was varied between 1 and 4 kg and the flow rate of the air was varied from 1.1 to 2.6 m3/h. Increased airflow rates favored higher temperatures. Excessively high airflow rates resulted in fast consumption of the biomass and it also favored combustion over gasification and thus formation of lower amounts of combustible products. High airflow rates caused also higher yields of tars, due to the shorter residence time of the tar-rich gas in the gasifier and thus unfavorable conditions for tar cracking. (author)

  5. A FIXED BED SORPTION SYSTEM FOR DEFLUORIDATION OF GROUND WATER

    Directory of Open Access Journals (Sweden)

    Ayoob Sulaiman

    2009-06-01

    Full Text Available The presence of excess fluoride in ground water has become a global threat with as many as 200 million people affected in more than 35 countries in all the continents. Of late, there have been significant advances in the knowledge base regarding the effects of excess fluoride on human health. As a result, defluoridation of ground water is regarded as one of the key areas of attention among the universal water community triggering global research. This study describes the sorptive responses of a newly developed adsorbent, alumina cement granules (ALC, in its real-life application in fixed beds, for removing fluoride from the ground waters of a rural Indian village. ALC exhibited almost consistent scavenging capacity at various bed depths in column studies with an enhanced adsorption potential of 0.818 mg/g at a flow rate of 4 ml/min. The Thomas model was examined to describe the sorption process. The process design parameters of the column were obtained by linear regression of the model. In all the conditions examined, the Thomas model could consistently predict its characteristic parameters and describe the breakthrough sorption profiles in the whole range of sorption process.

  6. Coal-char combustion in a fluidised bed reactor

    Energy Technology Data Exchange (ETDEWEB)

    Mehrotra, S.P.; Pande, M. [Indian Institute of Technolgy, Kanpur (India)

    2001-12-01

    Combustion of bituminous coal chars ranging from 0.8 mm to 1.8 mm has been studied in a fluidised bed reactor at temperatures ranging from 500 to 850{sup o}C. The fluidised bed consists of inert sand particles of average size of 0.5 mm and reactive coal char particles. A heat balance has been worked out to calculate the rate of combustion of char from measured incremental changes in the bed temperature during combustion. Investigations on partially burnt particles suggest that the ash layer which builds up around the burning core of char particles is non-flaking and the particles burn in a shrinking core manner. Analysis of rate data indicates that the rate of combustion is controlled by chemical reaction kinetics, though diffusion of oxygen through the bundary layer begins to influence the overall reaction kinetics at higher temperatures. The burnt out time varies linearly with particle size. Activation energy for the chemical reaction control regime is found to be around 68 kJ/mole.

  7. Conversion of different ash content brown coal in fluidized bed

    Energy Technology Data Exchange (ETDEWEB)

    Osipov, P.; Chernyavskiy, N.; Ryzhkov, A.; Remenuk, A. [Ural Federal Univ., Ekaterinburg (Russian Federation). Dept. of Thermal Power Plants; Dulienko, S. [National Academy of Science of Ukraine, Kiev (Ukraine). Coal Energy Technology Inst.

    2013-07-01

    Available equations used to determine combustion specific rate of coal-derived cokes describe the burning of carbon particles well enough but are not accurate in case of ash-containing coke particles combustion. This study is an attempt to account for the influence of both initial ash content and its increase in the course of carbon conversion in specific rate calculations. The results of experimental study of burn-out dynamics of Volchanskiy field (North Urals) brown coal and its coke with different ash content under conditions of fluidized bed combustion at impulse-type non-gradient reactor RSC-1 and dynamic installation Pyrolysis-M are summarized. Diffusion and heterogeneous (kinetic) components of carbon combustion rate are identified separately by using diffusion and kinetics equation with correction for carbon mass fraction in particles. Burning particle overheating values and heterogeneous combustion rate constants at different temperatures are estimated.

  8. Investigation of Adsorbed Gases Content in Coal Beds in Bosnia and Herzegovina

    Directory of Open Access Journals (Sweden)

    Sadadinovic, J.

    2008-09-01

    Full Text Available Investigation of the gas fraction in coal beds in Bosnia & Herzegovina has been performed systematically since 1988. Gas in coal beds can be present in free or adsorbed form, and dissolved in water. Methods of investigation are based on the direct approach, according to which the gas fraction is determined in the undisturbed coal bed.The quantity of the adsorbed and free gas in the coal bed is directly proportional to the gas pressure. Dependence is hyperbolic. The quantity of the free gas in mining conditions is being determined by measurement of the desorption index (Δp2. The desorption index for the Srednjobosanski coal basin ranges to 1571 Pa, and the free gas pressure in this coal basin amounts up to 3.75 MPa. The desorption index for coal beds in “Kreka” and “Banoviće” coal basins has negative values, which means that the free gas fraction within the coal beds is negligible, while separation of adsorbed gases is diffuse. The free gas pressure in the mentioned coal basins is below 0.1 MPa. Adsorbed gases within the coal are connected by physical adsorption according to Langmuir’s isothermal adsorption curve. Langmuir’s quantities, for coal bed conditions, ranges as follows: am from 0.826 to 9.52 m3 t–1 pcs, and b from 6.65 10–3 to 0.247 MPa–1. Adsorbed gas within Miocene coal beds contains methane in amounts of 1.49 m3 t–1 čus CH4 andcarbon(IVoxide in amounts of 0.15 m3 t–1 čus CO2. Adsorbed gas within Pliocene coal beds, without methane, dominant is content of carbon(IVoxide.The investigation of the gas content in coal beds of BiH conducted in this article reveal that the coal beds primarily contain methane, while others hydrocarbons such as ethane, ethene, propane, propene and butane are present sporadically in fraction below φ/10–6. Based on the investigation results conducted in this article, simple mathematical forms were obtained for quick calculation of the free gas quantity by measurement of the

  9. The formation of impurities in fluidized-bed gasification of biomass, peat and coal; Epaepuhtauksien muodostuminen leijukerroskaasutuksessa

    Energy Technology Data Exchange (ETDEWEB)

    Kurkela, E.; Laatikainen-Luntama, J.; Kurkela, M.; Leppaelahti, J.; Koljonen, T.; Oesch, P. [VTT Energy, Espoo (Finland); Alen, R. [Jyvaeskylae Univ. (Finland)

    1996-12-01

    The objective of this three-year-long project was to study the effects of different process parameters and bed materials on the formation of impurities in pressurized fluidized-bed gasification. The main emphasis of the project was focused on the formation of tars and nitrogen compounds in wood, peat and coal gasification. The aims of the research were to find out such operating conditions, where the formation of problematic high-molecular-weight tars can be minimised and to create a better understanding on the fate of fuel nitrogen in fluidized-bed gasifiers. Main part of the research was carried out in a bench-scale pressurised fluidized-bed reactor (ID 30 mm), where the effects of pressure, temperature, gas atmosphere and bed material were studied with different feedstocks. Most of the test series were carried out using the same feedstocks as earlier used in the PDU-scale fluidized-bed gasification tests of VTT (pine wood, pine bark, wheat straw, two peats, Rhenish brown coal, Polish and Illinois No.6 bituminous coals). The effects of operating parameters on the product yields (gas components, tars, char) were first studied under inert nitrogen atmosphere. The conversion of fuel nitrogen into ammonia and HCN were also determined for the different feedstocks over the different operating conditions. These studies showed that ammonia is the main fixed nitrogen compound of fluidized-bed pyrolysis with all the feedstocks studied. The conversions of fuel nitrogen into ammonia and HCN was highest with the high volatile fuels and lowest with the two hard coals. Gas atmosphere had a dramatic effect on the conversion of fuel nitrogen; much higher ammonia yields were determined in real gasification gas atmosphere than in inert pyrolysis carried out in N{sub 2} or Argon atmosphere. In addition to the pressurised fluidized-bed pyrolysis tests, laboratory scale pyrolysis research was carried out in order to compare the pyrolysis behaviour of the different feedstocks

  10. Casing drilling TM : a viable technology for coal bed methane?

    Energy Technology Data Exchange (ETDEWEB)

    Madell, G.; Muqeem, M. [Tesco Corp., Calgary, AB (Canada)

    2001-07-01

    This paper highlighted the experience that Tesco has gained by drilling more than 30 wells using only casings as the drill stem, suggesting that such technology could be advantageous for Coal Bed Methane (CBM) exploration and development. Tesco has manufactured a mobile and compact hydraulic drilling rig that is ideal to meet the great demand for CBM development in Canada. The Casing Drilling TM system, when used in conjunction with the drilling rig, could be very effective and efficient for exploration and development of CBM reserves which typically require extensive coring. Continuous coring while drilling ahead and wire line retrieval can offer time savings and quick core recovery of large diameter core required for exploration core desorption tests. The proposed system may also have the potential to core or drill typically tight gas sands or coal beds under balanced with air or foam. This would reduce drilling fluid damage while finding gas at the same time. Compared to conventional drill pipes, Casing Drilling TM could also be effective with water production from shallow sands because of the smaller annual clearance which requires less air volumes to lift any produced water. 8 refs., 3 tabs., 9 figs.

  11. The combustion of coal blends in a fluidised bed reactor

    Energy Technology Data Exchange (ETDEWEB)

    Boavida, Dulce; Abelha, Pedro; Gulyurtlu, Ibrahim; Cabrita, Isabel

    1999-07-01

    Combustion studies of five coals of different origin were carried out in a laboratory scale fluidised bed combustor. Five blends prepared by mixing two coals based on their petrological characterisation, in varying amounts, were selected to study the possibility of reduction NO{sub x}, N{sub 2}O and SO{sub 2} emissions. The results showed that some blends had the opposite behaviour concerning the release of NO{sub x} and SO{sub 2} in relation to parent coals, and the emissions were higher than expected. The N{sub 2}O amounts observed were, however, in almost all blends tested, lower than predicted values. With some blends, the mixing levels intended to reduce SO{sub 2} were not always found to correspond to those for simultaneous decrease of Nox. Most of the blends studied showed some evidence of interaction between them. Varying the proportion of the blend components was observed to alter the temperatures at which interactions were stronger.

  12. Sustainability and the Fixed Bed Nuclear Reactor (FBNR

    Directory of Open Access Journals (Sweden)

    Farhang Sefidvash

    2012-08-01

    Full Text Available Sustainability as a multifaceted and holistic concept is analyzed. Sustainability involves human relationship with elements such as natural environment, economy, power, governance, education and technology with the ultimate purpose of carrying forward an ever-advancing civilization. The Fixed Bed Nuclear Reactor (FBNR is an innovative, small, simple in design, inherently safe, non-proliferating, and environmentally friendly concept that its deployment can generate energy in a sustainable manner contributing to the prosperity of humanity. The development of FBNR will provide electricity as well as desalinated water through a simple but advanced technology for the developing, as well as developed countries. FBNR is environmentally friendly due to its inherent safety and the convenience of using its spent fuel as the source of radiation for irradiation purposes in agriculture, industry, and medicine. Politically, if a ping pong game brought peace between China and USA, a program of development of FBNR supported by the peace loving international community can become a more mature means to bring peace among certain apparently hostile nations who crave sustainable energy, desalinated water and simple advanced technology.

  13. Nitrification in moving bed and fixed bed biofilters treating effluent water from a large commercial outdoor rainbow trout RAS

    DEFF Research Database (Denmark)

    Suhr, Karin; Pedersen, Per Bovbjerg

    2010-01-01

    The nitrification performance of two fixed bed (FB) biofilters and two moving bed (MB) biofilters was evaluated. They received the same cold (8 degrees C) influent water from a commercial outdoor RAS facility producing rainbow trout (average density 32 kg m(-3)). The filters were constructed as f...

  14. Coal-bed methane water: effects on soil properties and camelina productivity

    Science.gov (United States)

    Every year the production of coal-bed natural gas in the Powder River Basin results in the discharge of large amounts of coal-bed methane water (CBMW) in Wyoming; however, no sustainable disposal methods for CBMW are currently available. A greenhouse study was conducted to evaluate the potential to ...

  15. Heat Transfer in a Fixed Biomass Char Bed

    DEFF Research Database (Denmark)

    Fjellerup, Jan Søren; Henriksen, Ulrik Birk; Glarborg, P.

    2002-01-01

    A thermal conductivity model based on the Yagi and Kunii model together with a bed model was developed to describe the thermal conductivity of a straw char bed. The bed model describes the relationship between the distance between particles and the external porosity. To verify the model, thermal ...

  16. Impacts of Coal Seam Gas (Coal Bed Methane) Extraction on Water Resources in Australia

    Science.gov (United States)

    Post, David

    2017-04-01

    While extraction of methane from shale gas deposits has been the principal source of the recent expansion of the industry in the United States, in Australia extraction of methane from coal bed methane deposits (termed 'coal seam gas' in Australia) has been the focus to date. The two sources of methane share many of the same characteristics including the potential requirement for hydraulic fracturing. However, as coal seam gas deposits generally occur at shallower depths than shale gas, the potential impacts of extraction on surface and groundwater resources may be of even greater concern. In Australia, an Independent Expert Scientific Committee (IESC) has been established to provide scientific advice to federal and state government regulators on the impact that coal seam gas and large coal mining developments may have on water resources. This advice is provided to enable decisions to be informed by the best available science about the potential water-related impacts associated with these developments. To support this advice, the Australian Government Department of the Environment has implemented a programme of research termed 'bioregional assessments' to investigate these potential impacts. A bioregional assessment is defined as a scientific analysis of the ecology, hydrology, geology and hydrogeology of a bioregion with explicit assessment of the potential direct, indirect and cumulative impacts of coal seam gas and large coal mining development on water resources. These bioregional assessments are currently being carried out across large portions of eastern Australia underlain by coal reserves. Further details of the programme and results to date can be found at http://www.bioregionalassessments.gov.au. The bioregional assessment programme has modelled the impacts of coal seam gas development on surface and groundwater resources in three regions of eastern Australia, namely the Clarence-Moreton, Gloucester, and Namoi regions. This presentation will discuss the

  17. Application of computer graphics to generate coal resources of the Cache coal bed, Recluse geologic model area, Campbell County, Wyoming

    Science.gov (United States)

    Schneider, G.B.; Crowley, S.S.; Carey, M.A.

    1982-01-01

    Low-sulfur subbituminous coal resources have been calculated, using both manual and computer methods, for the Cache coal bed in the Recluse Model Area, which covers the White Tail Butte, Pitch Draw, Recluse, and Homestead Draw SW 7 1/2 minute quadrangles, Campbell County, Wyoming. Approximately 275 coal thickness measurements obtained from drill hole data are evenly distributed throughout the area. The Cache coal and associated beds are in the Paleocene Tongue River Member of the Fort Union Formation. The depth from the surface to the Cache bed ranges from 269 to 1,257 feet. The thickness of the coal is as much as 31 feet, but in places the Cache coal bed is absent. Comparisons between hand-drawn and computer-generated isopach maps show minimal differences. Total coal resources calculated by computer show the bed to contain 2,316 million short tons or about 6.7 percent more than the hand-calculated figure of 2,160 million short tons.

  18. Nitrogen Chemistry in Fluidized Bed Combustion of Coal

    DEFF Research Database (Denmark)

    Jensen, Anker Degn

    and reduction by homogeneous and heterogeneous reactions. The data for the estimation of kinetics of the heterogeneous reactions were measured by one of the partners in the project for char and bed material sampled from a pressurized FBC pilot plant burning Kiveton Park coal. Experimental data from the pilot...... plant were used for model verification. The simulations of the NO emission during staged combustion and NH3 injection for NO reduction were in qualitative agreement with the experimental data. A parametric study of the influence of operating conditions on the conversion of fuel-N to NO showed......, the gas interchange coefficient, the bubble size and the bubble rise velocity. The most important combustion parameters were the rate of CO and CH4 combustion and the fraction of CO produced from char combustion. By using a rate of production analysis, the important reactions in the NO model were...

  19. Fluid flow with heat transfer in a fix-bed

    International Nuclear Information System (INIS)

    Gasparetto, C.A.

    1982-01-01

    Tests with two different fluids, water and air, flowing in a bed with irregular particles of silica were done. The bed was confined inside a tube, which was heated by an external jacket. The bed is characterized by permeability and porosity. The tests showed a wall effect face to the relation between the tube diameter and the medium dimension of the particles. The results are presented as a relation between Nusselt number / Peclet number. (E.G.) [pt

  20. Factors affecting cleanup of exhaust gases from a pressurized, fluidized-bed coal combustor

    Science.gov (United States)

    Rollbuhler, R. J.; Kobak, J. A.

    1980-01-01

    The cleanup of effluent gases from the fluidized-bed combustion of coal is examined. Testing conditions include the type and feed rate of the coal and the sulfur sorbent, the coal-sorbent ratio, the coal-combustion air ratio, the depth of the reactor fluidizing bed, and the technique used to physically remove fly ash from the reactor effluent gases. Tests reveal that the particulate loading matter in the effluent gases is a function not only of the reactor-bed surface gas velocity, but also of the type of coal being burnt and the time the bed is operating. At least 95 percent of the fly ash particules in the effluent gas are removed by using a gas-solids separator under controlled operating conditions. Gaseous pollutants in the effluent (nitrogen and sulfur oxides) are held within the proposed Federal limits by controlling the reactor operating conditions and the type and quantity of sorbent material.

  1. Arsenic removal in a sulfidogenic fixed-bed column bioreactor

    Energy Technology Data Exchange (ETDEWEB)

    Altun, Muslum, E-mail: muslumaltun@hotmail.com [Hacettepe University, Department of Chemistry, Beytepe, Ankara (Turkey); Sahinkaya, Erkan [Istanbul Medeniyet University, Bioengineering Department, Goztepe, Istanbul (Turkey); Durukan, Ilknur; Bektas, Sema [Hacettepe University, Department of Chemistry, Beytepe, Ankara (Turkey); Komnitsas, Kostas [Technical University of Crete, Department of Mineral Resources Engineering, Chania (Greece)

    2014-03-01

    Highlights: • Sulfidogenic treatment of As-containing AMD was investigated. • High rate simultaneous removal of As and Fe was achieved. • As was removed without adding alkalinity or adjusting pH. • As and Fe removal mechanisms were elucidated. - Abstract: In the present study, the bioremoval of arsenic from synthetic acidic wastewater containing arsenate (As{sup 5+}) (0.5–20 mg/L), ferrous iron (Fe{sup 2+}) (100–200 mg/L) and sulfate (2000 mg/L) was investigated in an ethanol fed (780–1560 mg/L chemical oxygen demand (COD)) anaerobic up-flow fixed bed column bioreactor at constant hydraulic retention time (HRT) of 9.6 h. Arsenic removal efficiency was low and averaged 8% in case iron was not supplemented to the synthetic wastewater. Neutral to slightly alkaline pH and high sulfide concentration in the bioreactor retarded the precipitation of arsenic. Addition of 100 mg/L Fe{sup 2+} increased arsenic removal efficiency to 63%. Further increase of influent Fe{sup 2+} concentration to 200 mg/L improved arsenic removal to 85%. Decrease of influent COD concentration to its half, 780 mg/L, resulted in further increase of As removal to 96% when Fe{sup 2+} and As{sup 5+} concentrations remained at 200 mg/L and 20 mg/L, respectively. As a result of the sulfidogenic activity in the bioreactor the effluent pH and alkalinity concentration averaged 7.4 ± 0.2 and 1736 ± 239 mg CaCO{sub 3}/L respectively. Electron flow from ethanol to sulfate averaged 72 ± 10%. X-ray diffraction (XRD), X-ray fluorescence (XRF), scanning electron microscopy (SEM) and energy dispersive X-ray spectroscopy (EDS) analyses were carried out to identify the nature of the precipitate generated by sulfate reducing bacteria (SRB) activity. Precipitation of arsenic in the form of As{sub 2}S{sub 3} (orpiment) and co-precipitation with ferrous sulfide (FeS), pyrite (FeS{sub 2}) or arsenopyrite (FeAsS) were the main arsenic removal mechanisms.

  2. A depositional model for the Taylor coal bed, Martin and Johnson counties, eastern Kentucky

    Science.gov (United States)

    Andrews, W.M.; Hower, J.C.; Ferm, J.C.; Evans, S.D.; Sirek, N.S.; Warrell, M.; Eble, C.F.

    1996-01-01

    This study investigated the Taylor coal bed in Johnson and Martin counties, eastern Kentucky, using field and petrographic techniques to develop a depositional model of the coal bed. Petrography and chemistry of the coal bed were examined. Multiple benches of the Taylor coal bed were correlated over a 10 km distance. Three sites were studied in detail. The coal at the western and eastern sites were relatively thin and split by thick clastic partings. The coal at the central site was the thickest and unsplit. Two major clastic partings are included in the coal bed. Each represents a separate and distinct fluvial splay. The Taylor is interpreted to have developed on a coastal plain with periodic flooding from nearby, structurally-controlled fluvial systems. Doming is unlikely due to the petrographic and chemical trends, which are inconsistent with modern Indonesian models. The depositional history and structural and stratigraphic setting suggest contemporaneous structural influence on thickness and quality of the Taylor coal bed in this area.

  3. Co-combustion of risk husk with coal in a fluidized bed

    International Nuclear Information System (INIS)

    Ghani, A.K.; Alias, A.B.; Savory, R.M.; Cliffe, K.R.

    2006-01-01

    Power generation from biomass is an attractive technology which utilizes agricultural residue waste. In order to explain the behavior of biomass-fired fluidized bed incinerator, biomass sources from agricultural residues (rice husk) was co-fired with coal in a 0.15 m diameter and 2.3 m high fluidized bed combustor. The combustion efficiency and CO emissions were studied and compared with those for pure coal combustion. Biomass waste with up to 70% mass fraction can be co-combusted in a fluidized bed combustor designed for coal combustion with a maximum drop of efficiency of 20% depending upon excess air levels. CO levels fluctuated between 200-700 ppm were observed when coal is added. It is evident from this research that efficient co-firing of rice husk with coal can be achieved with minimum modification of existing coal-fired boilers. (Author)

  4. 3D Geological Modeling of CoalBed Methane (CBM) Resources in the Taldykuduk Block Karaganda Coal Basin, Kazakhstan

    Science.gov (United States)

    Sadykov, Raman; Kiponievich Ogay, Evgeniy; Royer, Jean-Jacques; Zhapbasbayev, Uzak; Panfilova, Irina

    2015-04-01

    Coal Bed Methane (CBM) is gas stored in coal layers. It can be extracted from wells after hydraulic fracturing and/or solvent injection, and secondary recovery techniques such as CO2 injection. Karaganda Basin is a very favorable candidate region to develop CBM production for the following reasons: (i) Huge gas potential; (ii) Available technologies for extracting and commercializing the gas produced by CBM methods; (iii) Experience in degassing during underground mining operations for safety reasons; (iv) Local needs in energy for producing electricity for the industrial and domestic market. The objectives of this work are to model the Taldykuduk block coal layers and their properties focusing on Coal Bed Methane production. It is motivated by the availability of large coal bed methane resources in Karaganda coal basin which includes 4 300 Bm3 equivalent 2 billion tons of coal (B = billion = 109) with gas content 15-25 m3/t of coal (for comparison San Juan basin (USA) has production in a double porosity model considering two domains: the matrix (m) and the fracture (f) for which the initial and boundary conditions are different. The resulting comprehensive 3D models had helped in better understanding the tectonic structures of the region, especially the relationships between the fault systems.

  5. Heat Transfer in a Fixed Bed of Straw Char

    DEFF Research Database (Denmark)

    Fjellerup, Jan Søren; Henriksen, Ulrik Birk; Jensen, Anker

    2003-01-01

    A model for the thermal conductivity of a straw char bed has been developed. The model extends the work of Yagi and Kunii to describe heat transfer in a bed of cylinders, using a relationship between the interparticle distance and the external porosity. To verify the model, thermal conductivity...... the experimental uncertainty over the range of conditions investigated. The heat transfer model was used in a parametric study to evaluate the effect of gas flow rate, particle diameter, porosity, and temperature on the thermal conductivity in a straw char bed....... experiments were performed on shredded and un-shredded straw char samples, varying particle size, bed packing (loose or dense), and temperature. Predictions with the model, using the measured external porosity and particle diameter as input parameters, are in agreement with measurements within...

  6. Use of a fluidized bed combustor and thermogravimetric analyzer for the study of coal ignition temperature

    International Nuclear Information System (INIS)

    Ávila, Ivonete; Crnkovic, Paula M.; Luna, Carlos M.R.; Milioli, Fernando E.

    2017-01-01

    Highlights: • Coal ignition tests were conducted in a fluidized bed and thermogravimetric conditions. • The use of two different ignition criteria showed a similar coal ignition temperature. • Coal ignition temperature was obtained by the changes of gas concentrations in FBC. • Ignition temperatures were associated with the activation energy of coal combustion. - Abstract: Ignition experiments with two bituminous coals were carried out in an atmospheric bubbling fluidized bed combustor (FBC) and a thermogravimetric analyzer (TGA). In the FBC tests, the rapid increase in O_2, CO_2, and SO_2 concentrations is an indication of the coal ignition. In the TGA technique, the ignition temperature was determined by the evaluation of the TGA curves in both combustion and pyrolysis processes. Model-Free Kinetics was applied and the coal ignition temperatures were associated with changes in the activation energy values during the combustion process. The results show the coal with the lowest activation energy also showed the lowest ignition temperature, highest values of volatile content and a higher heating value. The application of two different ignition criteria (TGA and FBC) resulted in similar ignition temperatures. The FBC curves indicated the high volatile coal ignites in the freeboard, i.e. during the feeding in the reactor, whereas the low volatile coal ignites in the bed. Finally, the physicochemical characteristics of the investigated coal types were correlated with their reactivities for the prediction of the ignition temperatures behaviors under different operating conditions as those in FBC.

  7. Dynamic transition between fixed- and mobile-bed: mathematical and numerical aspects

    Science.gov (United States)

    Zugliani, Daniel; Pasqualini, Matteo; Rosatti, Giorgio

    2017-04-01

    Free-surface flows with high sediment transport (as debris flow or hyper-concentrated flow) are composed by a mixture of fluid and solid phase, usually water and sediment. When these flows propagate over loose beds, particles constituting the mixture of water and sediments strongly interact with the ones forming the bed, leading to erosion or deposition. However, there are lots of other situations when the mixture flows over rigid bedrocks or over artificially paved transects, so there is no mass exchange between bed and mixture. The two situations are usually referred to as, respectively, mobile- and fixed-bed conditions. From a mathematical point of view, the systems of Partial Differential Equations (PDEs) that describe these flows derive from mass and momentum balance of both phases, but, the two resulting PDEs systems are different. The main difference concerns the concentration: in the mobile-bed condition, the concentration is linked to the local flow conditions by means of a suitable rheological relation, while in the fixed-bed case, the concentration is an unknown of the problem. It is quite common that a free surface flow with high sediment transport, in its path, encounters both conditions. In the recent work of Rosatti & Zugliani 2015, the mathematical and numerical description of the transition between fixed- and mobile-bed was successfully resolved, for the case of low sediment transport phenomena, by the introduction of a suitable erodibility variable and satisfactory results were obtained. The main disadvantage of the approach is related to the erodibility variable, that changes in space, based on bed characteristics, but remains constant in time. However, the nature of the bed can change dynamically as result of deposition over fixed bed or high erosion over mobile bed. With this work, we extend the applicability of the mentioned approach to the more complex PDEs describing the hyper-concentrated flow. Moreover, we introduce a strategy that allows

  8. Complex nonlinear behaviour of a fixed bed reactor with reactant recycle

    DEFF Research Database (Denmark)

    Recke, Bodil; Jørgensen, Sten Bay

    1999-01-01

    The fixed bed reactor with reactant recycle investigated in this paper can exhibit periodic solutions. These solutions bifurcate from the steady state in a Hopf bifurcation. The Hopf bifurcation encountered at the lowest value of the inlet concentration turns the steady state unstable and marks......,that the dynamic behaviour of a fixed bed reactor with reactant recycle is much more complex than previously reported....

  9. Study of Pressure Drop in Fixed Bed Reactor Using a Computational Fluid Dynamics (CFD Code

    Directory of Open Access Journals (Sweden)

    Soroush Ahmadi

    2018-04-01

    Full Text Available Pressure drops of water and critical steam flowing in the fixed bed of mono-sized spheres are studied using SolidWorks 2017 Flow Simulation CFD code. The effects of the type of bed formation, flow velocity, density, and pebble size are evaluated. A new equation is concluded from the data, which is able to estimate pressure drop of a packed bed for high particle Reynolds number, from 15,000 to 1,000,000.

  10. Methanol steam-reforming in a catalytic fixed bed reactor

    Energy Technology Data Exchange (ETDEWEB)

    Duesterwald, H G; Hoehlein, B; Kraut, H; Meusinger, J; Peters, R [Research Centre Juelich (KFA) (Germany). Inst. of Energy Process Engineering; Stimming, U [Technische Univ. Muenchen, Garching (Germany). Inst. fuer Festkoerperphysik und Techn. Phys.

    1997-12-01

    Designing an appropriate methanol steam reformer requires detailed knowledge about the processes within such a reactor. Thus, the axial temperature and concentration gradients and catalyst ageing were investigated. It was found that for a fresh catalyst load, the catalyst located in the reactor entrance was most active during the experiment. The activity of this part of the catalyst bed decreased after some time of operation due to ageing. With further operation, the most active zone moved through the catalyst bed. From the results concerning hydrogen production and catalyst degradation, the necessary amount of catalyst for a mobile PEMFC-system can be estimated. (orig.)

  11. The research and development of pressurized ash agglomerating fluidized bed coal gasification

    Energy Technology Data Exchange (ETDEWEB)

    Fang Yitian; Wu Jinhu; Chen Hanshi [Chinese Academy of Sciences, Taiyuan (China). Institute of Coal Chemistry

    1999-11-01

    Coal gasification tests in a pressurized ash agglomeration fluidized bed coal gasifier were carried out. The effects of pressure and temperature on the gasification capacity, carbon conversion, carbon content in discharged ash and gas composition were investigated. Gasification capacity was shown to be in direct proportion to operation pressure. Tests of hot gas dedusting using a moving granular bed were also carried out. 3 refs., 6 figs., 2 tabs.

  12. Theory and measurements of electrophoretic effects in monolith, fixed-bed, and fluidized-bed plasma reactors

    International Nuclear Information System (INIS)

    Morin, T.J.

    1989-01-01

    Pressure gradients and secondary flow fields generated by the passage of electrical current in a d.c. gas discharge or gas laser are topics of longstanding interest in the gaseous electronics literature. These hydrodynamic effects of space charge fields and charged particle density gradients have been principally exploited in the development of gas separation and purification processes. In recent characterization studies of fixed-bed and fluidized-bed plasma reactors several anomalous flow features have been observed. These reactors involve the contacting of a high-frequency, resonantly-sustained, disperse gas discharge with granular solids in a fixed or fluidized bed. Anomalies in the measured pressure drops and fluidization velocities have motivated the development of an appropriate theoretical approach to, and some additional experimental investigations of electrophoretic effects in disperse gas discharges. In this paper, a theory which includes the effects of space charge and diffusion is used to estimate the electric field and charged particle density profiles. These profiles are then used to calculate velocity fields and gas flow rates for monolith, fixed-bed, and fluidized-bed reactors. These results are used to rationalize measurements of gas flow rates and axial pressure gradients in high-frequency disperse gas discharges with and without an additional d.c. axial electric field

  13. Research on preventive technologies for bed-separation water hazard in China coal mines

    Science.gov (United States)

    Gui, Herong; Tong, Shijie; Qiu, Weizhong; Lin, Manli

    2018-03-01

    Bed-separation water is one of the major water hazards in coal mines. Targeted researches on the preventive technologies are of paramount importance to safe mining. This article studied the restrictive effect of geological and mining factors, such as lithological properties of roof strata, coal seam inclination, water source to bed separations, roof management method, dimensions of mining working face, and mining progress, on the formation of bed-separation water hazard. The key techniques to prevent bed-separation water-related accidents include interception, diversion, destructing the buffer layer, grouting and backfilling, etc. The operation and efficiency of each technique are corroborated in field engineering cases. The results of this study will offer reference to countries with similar mining conditions in the researches on bed-separation water burst and hazard control in coal mines.

  14. Thermal and chemical modifications on a low rank coal by iron addition in swept fixed by hydropyrolysis

    Energy Technology Data Exchange (ETDEWEB)

    Mastral, A.M.; Perez-Surio, M.J.; Palacios, J.M. [CSIC, Zaragoza (Spain). Inst. de Carboquimica

    1998-05-01

    The paper discusses the thermal and chemical changes taking place on a low rank coal when it is subjected to hydropyrolysis conditions with Red Mud as the catalytic precursor. For each run, 5 g of coal were pyrolysed in a swept fixed bed reactor at 40 kg/cm{sup 2} hydrogen pressure. The variables of the process were: temperatures ranging from 400 to 600{degree}C; 0.5 and 2 l/min of hydrogen flow; 10 and 30 min residence time; and in the presence and absence of Red Mud. Conversion products distribution and a wide battery of complementary analyses allow information to be gathered regarding the changes undergone by the coal structure, both in its organic and inorganic components, in its conversion into liquids and chars. From the data obtained, it can be deduced that: (1) at 400{degree}C the iron catalyst is not active; (2) at higher temperatures iron catalytic cracking is observed more than hydrogenating activity, due to the Fe{sub 2}O{sub 3} transformation into (Fe{sub 3}S{sub 4}) crystallographically as spinel; (3) in this coal hydropyrolysis one third of the coal is converted into liquids; and (4) Red Mud helps to reduce sulfur emissions by H{sub 2}S fixation as Fe{sub 3}S{sub 4}. 10 refs., 5 figs., 5 tabs.

  15. Coal-bed methane water effects on dill and essential oils

    Science.gov (United States)

    Pumping water from coal seams decreases the pressure in the seam and in turn releases trapped methane; this is the most common and economic way of methane extraction. The water that is pumped out is known as coal-bed methane water (CBMW), which is high in sodium and other salts. In past 25 years, th...

  16. Coal. Fluidized bed, a world record; Charbon. Lit fluidise: record mondial

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-12-31

    In April 1996, the `Societe Provencale du Lit Fluidise`, a subsidiary of Electricite de France (EDF) has put into service in Gardanne, the most powerful circulating fluidized bed boiler in the world, producing 600 MWt; it was constructed by GEC Alsthom Stein Industrie, and will strongly reduce the SO{sub 2} emissions from the coal power plant of Gardanne, which use a highly sulfurous coal. New regulations concerning the French coal industry are also introduced

  17. Coal. Fluidized bed, a world record; Charbon. Lit fluidise: record mondial

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-12-31

    In April 1996, the `Societe Provencale du Lit Fluidise`, a subsidiary of Electricite de France (EDF) has put into service in Gardanne, the most powerful circulating fluidized bed boiler in the world, producing 600 MWt; it was constructed by GEC Alsthom Stein Industrie, and will strongly reduce the SO{sub 2} emissions from the coal power plant of Gardanne, which use a highly sulfurous coal. New regulations concerning the French coal industry are also introduced

  18. Co-combustion of waste with coal in a circulating fluidised bed combustor

    Energy Technology Data Exchange (ETDEWEB)

    Gulyurtlu, I.; Boavida, D.; Abelha, P.; Lopes, H.; Cabrita, I. [DEECA-INETI, Lisboa (Portugal)

    2002-07-01

    The results of a study of cocombustion of waste with coal is described. Various wastes (biomass, sludge, and refuse derived fuel) were burned with coal in a circulating fluidised bed combustor. Conditions that prevent segregated combustion, reduce production of nitrogen oxides, and attain high combustion efficiency were studied. The effects of variations in air staging in the riser, mixing of air with volatiles, coal/biomass ratio, methods of feeding biomass, and temperature are described. 5 refs., 3 figs., 5 tabs.

  19. Coal facies evolution of the main minable coal-bed in the Heidaigou Mine, Jungar Coalfield, Inner Mongolia, northern China

    Energy Technology Data Exchange (ETDEWEB)

    Dai, S.F.; Ren, D.Y.; Li, S.S.; Zhao, L.; Zhang, Y. [China University of Mining & Technology, Beijing (China)

    2007-11-15

    The No. 6 Coal-bed from the Heidaigou Mine, Jungar Coalfield, Inner Mongolia is a super-large Ga deposit. The dominant carrier of Ga is boehmite in coal. The study of coal facies may provide genetic enrichment information of Ga and its carrier (boehmite) in the Ga deposit. On the basis of study on coal petrology and mineralogy, it was found that the No. 6 Coal-bed from the Heidaigou Mine of Jungar was enriched in inertinites and the microlithotypes were dominated by clarodurite. The maceral morphological features and association indicate that the coal-bed was formed in a dry sedimentary environment or in a periodic dry sedimentary environment caused by the alternating variations of groundwater level. The optimum conditions for the enrichment of Ga and its particular carrier (boehmite) were dominated by four transitional conditions: (1) the upper delta plain which was the transitional zone between alluvial and lower delta plains, (2) the transitional zone between the dry and wet forest swamps, being slightly apt to the dry one, (3) the transitional tree density between the thick and loose ones, and (4) the low moor that was the transitional zone between two high moors during peat accumulation.

  20. The identification of unusual microscopic features in coal and their derived chars: Influence on coal fluidized bed combustion

    Energy Technology Data Exchange (ETDEWEB)

    Valentim, B. [Centro de Geologia da Universidade do Porto, Rua do Campo Alegre 687, 4169-007 Porto (Portugal); Lemos de Sousa, M.J. [Centro de Geologia da Universidade do Porto, Praca de Gomes Teixeira, 4099-002 Porto (Portugal); Abelha, P.; Boavida, D.; Gulyurtlu, I. [Departamento de Engenharia Energetica e Controlo Ambiental (DEECA), Instituto Nacional de Engenharia, Tecnologia e Inovacao (INETI), Estrada do Paco do Lumiar, 22, Edif. J, 1649-038, Lisboa (Portugal)

    2006-06-06

    During the petrographic study of seven feed coals from different origins, it was found that these coals presented microfeatures such as: material size, shape, weathering, thermally affected particles and contamination. After devolatilization under fluidized bed conditions, some chars presented the consequences of the above mentioned microfeatures, i.e., unreacted coal, unswelled particles, coatings and microstratification. Since the amounts of the microfeatures observed were low (less than 1%), the present study is essentially observational/descriptional. However, it seems very likely, from the observations that were made, that the occurrence of one or more of these microfeatures in coal, depending on their kind and abundance, may have significant effect on the coal devolatilization. (author)

  1. Mathematical model for the technological system of working a thin coal bed

    Energy Technology Data Exchange (ETDEWEB)

    Isayev, V V

    1979-01-01

    The principle for constructing a mathematical model of working a thin coal bed using the adaptation criterion is examined. Intersecting parameters of the medium and the unit are presented. Based on these parameters, dependences are presented for the adaptation criterion and its maximization. A general mathematical model is presented for the technological system of unmanned extraction of a thin bed D/sub 5/ under conditions of the mine ''Dolinskaya'' of the Karaganda Basin. The work results can be used to plan technological systems for working thin coal beds.

  2. Chemical-looping combustion in a reverse-flow fixed bed reactor

    International Nuclear Information System (INIS)

    Han, Lu; Bollas, George M.

    2016-01-01

    A reverse-flow fixed bed reactor concept for CLC (chemical-looping combustion) is explored. The limitations of conventional fixed bed reactors, as applied to CLC, are overcome by reversing the gas flow direction periodically to enhance the mixing characteristics of the bed, thus improving oxygen carrier utilization and energy efficiency with respect to power generation. The reverse-flow reactor is simulated by a dusty-gas model and compared with an equivalent fixed bed reactor without flow reversal. Dynamic optimization is used to calculate conditions at which each reactor operates at maximum energy efficiency. Several cases studies illustrate the benefits of reverse-flow operation for the CLC with CuO and NiO oxygen carriers and methane and syngas fuels. The results show that periodic reversal of the flow during reduction improves the contact between the fuel and unconverted oxygen carrier, enabling the system to suppress unwanted catalytic reactions and axial temperature and conversion gradients. The operational scheme presented reduces the fluctuations of temperature during oxidation and increases the high-temperature heat produced by the process. CLC in a reverse-flow reactor has the potential to achieve higher energy efficiency than conventional fixed bed CLC reactors, when integrated with a downstream gas turbine of a combined cycle power plant. - Highlights: • Reverse-flow fixed bed CLC reactors for combined cycle power systems. • Dynamic optimization tunes operation of batch and transient CLC systems. • The reverse-flow CLC system provides stable turbine-ready gas stream. • Reverse-flow CLC fixed bed reactor has superior CO 2 capture and thermal efficiency.

  3. CO-COMBUSTION OF REFUSE DERIVED FUEL WITH COAL IN A FLUIDISED BED COMBUSTOR

    Directory of Open Access Journals (Sweden)

    W. A. WAN AB KARIM GHANI

    2009-03-01

    Full Text Available Power generation from biomass is an attractive technology which utilizes municipal solid waste-based refused derived fuel. In order to explain the behavior of biomass-fired fluidized bed incinerator, biomass sources from refuse derived fuel was co-fired with coal in a 0.15 m diameter and 2.3 m high fluidized bed combustor. The combustion efficiency and carbon monoxide emissions were studied and compared with those from pure coal combustion. This study proved that the blending effect had increased the carbon combustion efficiency up to 12% as compared to single MSW-based RDF. Carbon monoxide levels fluctuated between 200-1600 ppm were observed when coal is added. It is evident from this research that efficient co-firing of biomass with coal can be achieved with minimum modification of existing coal-fired boilers.

  4. A batch and fixed bed column study for fluorescein removal using chitosan modified by epichlorohydrin.

    Science.gov (United States)

    Silva, P M O; Francisco, J E; Cajé, J C M; Cassella, R J; Pacheco, W F

    2018-01-02

    This study evaluates the feasibility of commercial chitosan (CQ) and modified chitosan (MQ) by epichlorohydrin to be used as a solid phase to remove fluorescein (FSC) from aqueous solutions by two different approaches: in batch and on a fixed column bed. For the batch study, all parameters that influence sorption capacity were evaluated, such as: pH, mass, ionic strength, temperature and time of contact. In the optimized condition, 75% removal was obtained for FSC using CQ, while the modification allowed an increase up to 99%, as well as an increase in the stability of the polymer. In the fixed column bed study, the influence of all the parameters was evaluated through breakthrough curves, and the thermodynamics parameters of each approach were obtained. The results of these studies demonstrate that the modification with epichlorohydrin enhanced the sorptive properties (from 35% to 95% in fixed bed experiments) and the polymer stability (making it insoluble), making it suitable to be used in wastewater treatment.

  5. Seismic modelling of coal bed methane strata, Willow Creek, Alberta

    Energy Technology Data Exchange (ETDEWEB)

    Richardson, S.E.; Mayer, R.; Lawton, D.C.; Langenberg, W. [Consortium for Research in Elastic Wave Exploration Seismology, Calgary, AB (Canada)

    2001-07-01

    The purpose is to determine the feasibility of applying high- resolution reflection seismic surveying to coalbed methane (CBM) exploration and development. Numerical reflection seismic methods are examined for measuring the mapping continuity and coherence of coal zones. Numerical modelling of a coal zone in Upper Cretaceous sediments near Willow Creek, Alberta indicates that seismic data that is predominantly of 100 Hz is required to map the coal zone and lateral facies variations within the deposit. For resolution of individual coal seams, a central frequency >150 Hz would be needed. 26 refs., 17 figs., 3 tabs.

  6. Enhanced coal bed methane production and sequestration of CO2 in unmineable coal

    Energy Technology Data Exchange (ETDEWEB)

    Locke, James [CONSOL Energy Inc., South Park, PA (United States); Winschel, Richard [CONSOL Energy Inc., South Park, PA (United States)

    2005-03-01

    The Marshall County Project was undertaken by CONSOL Energy Inc. (CONSOL) with partial funding from the U. S. Department of Energy’s (DOE) Carbon Storage Program (CSP). The project, initiated in October 2001, was conducted to evaluate opportunities for carbon dioxide CO2 sequestration in an unmineable coal seam in the Northern Appalachian Basin with simultaneous enhanced coal bed methane recovery. This report details the final results from the project that established a pilot test in Marshall County, West Virginia, USA, where a series of coal bed methane (CBM) production wells were developed in an unmineable coal seam (Upper Freeport (UF)) and the overlying mineable Pittsburgh (PIT) seam. The initial wells were drilled beginning in 2003, using slant-hole drilling procedures with a single production leg, in a down-dip orientation that provided limited success. Improved well design, implemented in the remaining wells, allowed for greater CBM production. The nearly-square-shaped project area was bounded by the perimeter production wells in the UF and PIT seams encompassing an area of 206 acres. Two CBM wells were drilled into the UF at the center of the project site, and these were later converted to serve as CO2 injection wells through which, 20,000 short tons of CO2 were planned to be injected at a maximum rate of 27 tons per day. A CO2 injection system comprised of a 50-ton liquid CO2 storage tank, a cryogenic pump, and vaporization system was installed in the center of the site and, after obtaining a Class II underground injection permit (UIC) permit from the West Virginia Department of Environmental Protection (WVDEP), CO2 injection, through the two center wells, into the UF was initiated in September 2009. Numerous complications limited CO2 injection continuity, but CO2 was injected until breakthrough was encountered in September 2013, at which point the project had achieved an injection total of 4,968 tons of CO2. During the injection and post

  7. Adsorption of ciprofloxacin and norfloxacin from aqueous solution onto granular activated carbon in fixed bed column.

    Science.gov (United States)

    Darweesh, Teeba M; Ahmed, Muthanna J

    2017-04-01

    Carbonization of Phoenix dactylifera L stones followed by microwave K 2 CO 3 activation was adopted for preparation of granular activated carbon (KAC). High yield and favorable pore characteristics in terms of surface area and pore volume were reported for KAC as follows: 44%, 852m 2 /g, and 0.671cm 3 /g, respectively. The application of KAC as adsorbent for attraction of ciprofloxacin (CIP) and norfloxacin (NOR) was investigated using fixed bed systems. The effect of flow rate (0.5-1.5ml/min), bed height (15-25cm), and initial drug concentration (75-225mg/l) on the behavior of breakthrough curves was explained. The fixed bed analysis showed the better correlation of breakthrough data by both Thomas and Yoon-Nelson models. Inlet drug concentration was of greatest effect on breakthrough data compared to other fixed bed variables. Experimental and calculated breakthrough data were obtained for CIP and NOR adsorption on KAC, thus being important for design of fixed bed column. Copyright © 2016 Elsevier Inc. All rights reserved.

  8. Exchange between the stagnant and flowing zone in gas-flowing solids-fixed bed contactors

    Directory of Open Access Journals (Sweden)

    ALEKSANDAR P. DUDUKOVIC

    2005-02-01

    Full Text Available In countercurrent gas – flowing solids – fixed bed contactors, a fraction of the flowing solids is in motion (dynamic holdup, while the other fraction is resting on the fixed bed elements. In this study it was experimentally proved that the stagnant zone should not be considered as a dead part of the column, but that there is a dynamic exchange between these two portions of flowing solids particles. Combining a mathematical model with tracer experiments, the rate of exchange was determined and it was shown that only a small part (ca. 20 % of the stagnant region should be considered as a dead one.

  9. Dynamic behavior of tobacco waste in the coal-fired fluidized-bed boiler

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Kai; Chang, Jian; Chen, Honggang; Yang, Yongping [North China Electric Power Univ., Beijing (China). National Eng Lab for Biomass Power Generation Equipment; Yu, Bangting [China Univ. of Petroleum, Beijing (China). State Key Lab. of Heavy Oil Processing

    2013-07-01

    Circulating fluidized bed (CFB) technology is an advanced method for utilizing coal and other solid fuels in an environmentally acceptable manner. During the processing procedure in the nicotiana tabacum plants, lots of tobacco stem wastes are produced, which are normally being dumped to the landfill field. If this kind of waste can be used as a part of the fuel to be added into the coal in a CFB combustor, it will reduce the use of coal and then cut the net carbon emissions. To understand the complicated fluid dynamics of nicotiana tabacum wastes in the coal-fired CFB boiler, the mixing and segregation behavior of tobacco stalk are preliminary measured in a cylindrical fluidized bed. Obvious segregation behavior is found due to distinct differences in density and shape between tobacco stem and coal, which results in poor fluidization quality and bad combustion efficiency. To overcome this disadvantage, a jet with high gas velocity is introduced through the air distributor and a detailed experimental study is conducted in a fluidized bed made up of stem-sand mixture with different solid components at various jet velocities, which greatly improve the mixing performance of stem in the fluidized bed. The above findings are helpful for the technological upgrading of small- or middle-sized CFB boiler with adding tobacco stem into coal.

  10. Post-combustion CO2 capture with activated carbons using fixed bed adsorption

    Science.gov (United States)

    Al Mesfer, Mohammed K.; Danish, Mohd; Fahmy, Yasser M.; Rashid, Md. Mamoon

    2018-03-01

    In the current work, the capturing of carbon dioxide from flue gases of post combustion emission using fixed bed adsorption has been carried out. Two grades of commercial activated carbon (sorbent-1 and sorbent-2) were used as adsorbent. Feed consisting of CO2 and N2 mixture was used for carrying out the adsorption. The influence of bed temperature, feed rate, equilibrium partial pressure and initial % CO2 in feed were considered for analyzing adsorption-desorption process. It was found that the total adsorption-desorption cycle time decreases with increased column temperature and feed rates. The time required to achieve the condition of bed saturation decreases with increased bed temperature and feed rates. The amount of CO2 adsorbed/Kg of the adsorbent declines with increased bed temperature with in studied range for sorbent-1 and sorbent-2. It was suggested that the adsorption capacity of the both the sorbents increases with increased partial pressure of the gas.

  11. Method of cutting steeply falling coal beds. [Bacteria, which only grow on methane, are injected into the coal bed and form low viscosity polysaccharides: as a result the coal collapses into the haulage gallery and is hauled away

    Energy Technology Data Exchange (ETDEWEB)

    Gretsinger, B Ye; Chernyshenko, D V; Levin, A D; Malashenko, Yu R; Shinkovskiy, V A; Shurova, Z P; Volkov, V I

    1982-01-01

    The purpose of the invention is to reduce outlays for collapse and output of coal by creating artificial cavities of sliding along the coal bed in the surrounding rocks. This goal is achieved because in the well drilled in the bed for the entire height of the level, a suspension of cells of methane-oxidizing microorganisms is injected. The methane-oxidizing microorganisms used are, for example, the thermophilic culture Methylococcus thermophilus of strains ShP which grow at 45-65/sup 0/ C, or the mesophilic culture Methanomonas rubna of strains 15 Sh growing at 20-37/sup 0/ C. As a result of the vital activity of these cultures, polysaccharides are formed with viscosity of 5-7 and 3-4 St respectively. The mine pressure disrupts the blocks between the wells, and the outline section of the steeply dropping coal bed, being destroyed, slides on the products of vital activity of the microorganisms to the haulage gallery. Then the coal drops on cross cuts to the field gallery through which it is transported. Studies established that the only coal substrate which is suitable for growth of these microorganism cultures is methane. The synthesis of one g of absolutely dry substance of these microorganism requires 1.78 g of methane and 4.7 g of oxygen. The cultures are resistant to hydrostatic pressure from 20 to 150 atm and short-term pressure of gradient drops which occur during injection of the cellular suspension into the coal bed. They are filtered through the coal with preservation of the oxidizing and reproductive properties and are cultivated on the methane contained in the bed and form considerable number of exopolysaccarides. The polysaccarides weaken the bond between the bed and the surrounding rocks and serve as a unique lubricant promoting the sliding towards the haulage gallery of the coal blocks destroyed by mine pressure.

  12. Experimental investigations on drying behaviour of Bulgarian brown coal in steam fluidized bed

    International Nuclear Information System (INIS)

    Buschsieweke, F.; Koenig, J.

    1999-01-01

    The main targets were: to investigate the parameters for optimizing the drying process as steam pressure, fluidization velocity and particle size; to identify the cost of drying and combustion processes considering the necessity of milling the coal (raw or dried). Test series with Bulgarian brown coal from Maritsa-East has been made. Two fractions with different particle size was got: A from 0 to 1.6 mm (0.5 mm average) and B, resp. 1.6 to 6.3 (1.7 mm). The particle size is depending on the coal moisture. The fluidized bed process with the both fractions was performed at variations of the following parameters: steam velocity (0.07 to 1.7 m/s); raw coal feed rate (4 to 16 kg/h); raw moisture (18 to 43 wt %) and pressure (1.3 and 5 bar). Also the shrinking behaviour of the coal in different pore sizes was tested. Comparing pore size of the oven dried coal to the fluidized bed dried coal, significantly higher inner surface for the oven dried coal was established. To indicate the pore size of raw coal samples were made by freeze drying. Ice expanding should cause higher inner surface compared to oven drying method but no significant difference was established. A significant increase of heat transfer of the particles from A fraction (300 to 350 W/m 2 K0 compared to B (200 to 230 W/m 2 K) was determined. The heat transfer coefficient increased at increasing of the raw coal feed rate, mostly significant for A, due to higher particle contact. In conclusion: the particle convective mechanism is predominant for the heat transfer; development of pressurized fluidized bed drying is not of interest and the question about the total expenditure for crushing and milling remains open

  13. Environmental impact assessment for steeply dipping coal beds: North Knobs site

    Energy Technology Data Exchange (ETDEWEB)

    1978-11-08

    The US Department of Energy is funding an underground coal gasification (UCG) project in steeply dipping coal beds (SDB), at North Knobs, about 8 miles west of Rawlins, Carbon County, Wyoming. The project is being conducted to determine the technical, economic and environmental viability of such a technology. The development of SDB is an interesting target for UCG since such beds contain coals not normally mineable economically by ordinary techniques. Although the underground gasification of SDB has not been attempted in the US, Soviet experience and theoretical work indicate that the gasification of SDB in place offers all the advantages of underground gasification of horizontal coal seams plus some unique characteristics. The steep angle of dip helps to channel the produced gases up dip to offtake holes and permits the ash and rubble to fall away from the reaction zone helping to mitigate the blocking of the reaction zone in swelling coals. The intersection of SDB with the surface makes the seam accessible for drilling and other preparation. The tests at the North Knobs site will consist of three tests, lasting 20, 80 and 80 days, respectively. A total of 9590 tons of coal is expected to be gasified, with surface facilities utilizing 15 acres of the total section of land. The environmental effects of the experiment are expected to be very small. The key environmental impact is potential groundwater contamination by reaction products from coal gasification. There is good evidence that the surrounding coal effectively blocks the migration of these contaminants.

  14. Fixed-bed column adsorption of methyl blue using carbon derived ...

    African Journals Online (AJOL)

    Axle Wood Carbon (AWC) was used to study the removal of Methyl Blue (MB) from its aqueous solution in a fixed-bed column adsorption system. The adsorbent (AWC) was characterized using SEM and pHPZC. SEM revealed the surface morphology and from the pHPZC determination, it was found that at pH of 8.21 the ...

  15. STUDY OF GAS SEPARATION PROCESS BY DYNAMIC ADSORPTION IN FIXED BED

    Directory of Open Access Journals (Sweden)

    Ioan Solomon

    2010-10-01

    Full Text Available An experimental study of mass transfer at gas separation by dynamic adsorption in fixed bed of impregnated silica gel is presented in this work. By means of a mathematical model based on constants and coefficient easy to evaluate, the distributions of adsorbate concentration in gas and solid phases were determined as a function of time and throughout the height of the fixed bed, under isothermal conditions.With this aim, water vapors from air were adsorbed in a fixed bed of impregnated silica gel. The values of the volumetric mass transfer coefficient, Kv, were determined experimentally at several values of air superficial velocity, an air relative humidity of 69�20at 38 °C. The influence of the gas flow velocity and initial water concentration in adsorbent on the distribution of water concentration in both phases was established as a function of time and throughout the height of the fixed bed. The results obtained allow one to determination of the local adsorption rate.

  16. Performance of a sisal fibre fixed-bed anaerobic digester for biogas ...

    African Journals Online (AJOL)

    A single stage anaerobic digester employing a sisal fibre waste fixed bed was studied for biogas production from sisal pulp waste. The fibre was colonized by microorganisms involved in biogas production. The sisal pulp waste to be digested was fed from the top and was sprinkled intermittently with recirculating leachate ...

  17. Determination of coal bed quality in wells by geophysical methods

    International Nuclear Information System (INIS)

    Popov, V.V.

    1974-01-01

    The dependence of the specific electric resistivity of coal and terrigenous material of the Donbass region on the degree of their metamorphism is discussed. From this dependence a method is derived to determine the metamorphism of coal from the effective specific resistivity of rocks by taking into account the self-polarisation and the density of the coal layers. The degree of metamorphism (from the coefficient of gas components in the heating mass of coal) is obtained with a standard deviation of 2.9%. Special physical properties of coal are related to its qualitative composition in a complex and very close way. With the whole complex of geophysical measurements the quality parameters can be estimated in more detail. For the Pavlogradsij-Petropavlovskij region of the Donbass non-linear mutli-dimensional relations between the quality parmaeters of coal are derived, and the measurements with standard geophysical methods (resistivity-, spontaneous-potential-, latero-, calibre- and gamma-gamma-log as well as cavernometry) are presented. The results obtained with these methods are tested by a comparison with 8 samples from mines. The standard deviation for the ash content is 3.73% (for core sampling 1.0%) and for the thickness of the plastic layer 3.63 mm (for core sampling 3.34mm)

  18. Parameters estimation for amino acids adsorption in a fixed bed by moment analysis

    Directory of Open Access Journals (Sweden)

    M.A. Cremasco

    2001-06-01

    Full Text Available Equilibrium constant and mass transfer parameters are needed for the study of amino acid separation in any process involving adsorption in fixed beds. The adsorption constants, effective diffusion coefficients, and axial dispersion coefficients for two amino acids, L-phenylalanine (Phe and L-tyrosine (Tyr, are determined from a series of pulse tests in a fixed bed packed with PVP (poly-4-vinylpyridine resin. Total bed voidage at different flow rates is estimated from NaCl pulse test data. The effective pore diffusivities of Phe, Tyr, and NaCl are estimated from moment analysis of pulse data. A detailed rate model is then solved numerically and adsorption constants, effective diffusion coefficients, axial dispersion coefficients are determined by moment analysis and compared with the pulse data. The advantage of this method is that the effective intraparticle diffusivities can be determined without the influence of extracolumn dispersion or intracolumn axial dispersion effects.

  19. Fluidized bed combustion of low-grade coal and wastes: Research and development

    Energy Technology Data Exchange (ETDEWEB)

    Borodulya, V.A.; Dikalenko, V.I.; Palchonok, G.I.; Vinogradov, L.M. [Academy of Sciences of Belarus, Minsk (Belarus). A.V. Luikov Heat and Mass Transfer Inst.; Dobkin, S.M.; Telegin, E.M. [Special Design Office, Brest (Belarus)

    1994-12-31

    Experimental studies were carried out to investigate devolatilization of fuel as single spherical particles of wood, hydrolytic lignin, leather sewage sludge and Belarussian brown coals in a fluidized bed of sand. It is found that the devolatilization process depends on moisture and ash contents in fuel and on the external heat and mass transfer rate. The char combustion occurs largely in the intermediate region. Kinetic parameters of the devolatilization and char combustion are obtained. A low-capacity fluidized bed boiler suitable for combustion of coal and different wastes is described.

  20. Faciologic characterization of coal beds in the Cerquilho region, state of Sao Paulo, Brazil

    International Nuclear Information System (INIS)

    Nagalli, J.T.; Consoni, J.O.C.

    1984-01-01

    Since 1981, NUCLEBRAS, researches the Tubarao group in the state of Sao Paulo, in order to evaluate the uraniferous potential of carbonaceous sediments in the Parana Basin. This work discusses geologic information concerning the Cerquilho area, where, the faciologic and structural characterization of the coal beds (or seams) were analyzed, and the main targets for uranium concentration were identified. Such study was performed through detailed field observations, imagery and aerial photograph interpretation as well as well logging analysis. Results suggested that the uraniferous anomalies are controlled by fluvial channels cutting the coal beds, with periglacial influence. (Author) [pt

  1. Measurement of alkali-vapor emission from pressurized fluidized-bed combustion of Illinois coals

    Energy Technology Data Exchange (ETDEWEB)

    Lee, S.H.D.; Teats, F.G.; Swift, W.M. (Argonne National Lab., IL (United States)); Banerjee, D.D. (Illinois Clean Coal Inst., Carterville, IL (United States))

    1993-01-01

    Two Illinois Herrin No. 6 coals and one Illinois Springfield No. 5 coal were separately combusted in a laboratory-scale (15-cm dia) pressurized fluidized-bed combustor (PFBC) combined with an alkali sorber. These coals were combusted in a fluidized bed of Tymochtee dolomite at temperatures ranging from 910 to 950[degree]C and a system pressure of 9.2 atm absolute. Alkali-vapor emission (Na and K) in the PFBC flue gas was determined by the analytical activated-bauxite sorber bed technique developed at Argonne National Laboratory. The test results showed that sodium is the major alkali-vapor species present in the PFBC flue gas, and that the level of sodium-vapor emission increases linearly with both Na and Cl contents in the coals. This suggests that the sodium-vapor emission results from direct vaporization of NaCl present in the coals. The measured alkali-vapor concentration (Na + K), 67 to 190 ppbW, is more than 2.5 times greater than the allowable alkali limit of 24 ppb for an industrial gas turbine. Combusting these coals in a PFBC for power generation may require developing a method to control alkali vapors.

  2. Measurement of alkali-vapor emission from pressurized fluidized-bed combustion of Illinois coals

    Energy Technology Data Exchange (ETDEWEB)

    Lee, S.H.D.; Teats, F.G.; Swift, W.M. [Argonne National Lab., IL (United States); Banerjee, D.D. [Illinois Clean Coal Inst., Carterville, IL (United States)

    1993-04-01

    Two Illinois Herrin No. 6 coals and one Illinois Springfield No. 5 coal were separately combusted in a laboratory-scale (15-cm dia) pressurized fluidized-bed combustor (PFBC) combined with an alkali sorber. These coals were combusted in a fluidized bed of Tymochtee dolomite at temperatures ranging from 910 to 950{degree}C and a system pressure of 9.2 atm absolute. Alkali-vapor emission (Na and K) in the PFBC flue gas was determined by the analytical activated-bauxite sorber bed technique developed at Argonne National Laboratory. The test results showed that sodium is the major alkali-vapor species present in the PFBC flue gas, and that the level of sodium-vapor emission increases linearly with both Na and Cl contents in the coals. This suggests that the sodium-vapor emission results from direct vaporization of NaCl present in the coals. The measured alkali-vapor concentration (Na + K), 67 to 190 ppbW, is more than 2.5 times greater than the allowable alkali limit of 24 ppb for an industrial gas turbine. Combusting these coals in a PFBC for power generation may require developing a method to control alkali vapors.

  3. The behavior of catalysts in hydrogasification of sub-bituminous coal in pressured fluidized bed

    International Nuclear Information System (INIS)

    Yan, Shuai; Bi, Jicheng; Qu, Xuan

    2017-01-01

    Highlights: •CCHG in a pressured fluidized bed achieved 77.3 wt.% of CH 4 yield in 30 min. •Co-Ca and Ni-Ca triggered catalytic coal pyrolysis and char hydrogasification. •The reason for better catalytic performance of 5%Co-1%Ca was elucidated. •Sintered catalyst blocked the reactive sites and suppressed coal conversion. •Co-Ca made the catalyzed coal char rich in mesopore structures and reactive sites. -- Abstract: The catalytic hydrogasification of the sub-bituminous coal was carried out in a lab-scale pressurized fluidized bed with the Co-Ca, Ni-Ca and Fe-Ca as catalysts at 850 °C and 3 MPa. The effect of different catalysts on the characteristics of gasification products was investigated, and the behavior of the catalysts was also explored by means of the X-ray diffraction (XRD), FT-Raman, Brunauer–Emmett–Teller (BET), etc. Experiment results showed that all the catalysts promoted the carbon conversion in the coal catalytic hydrogasification (CCHG), and the catalytic activity was in the order: 5%Co-1%Ca > 5%Ni-1%Ca > 5%Fe-1%Ca. Compared with the raw coal hydrogasification, the carbon conversion increased from 43.4 wt.% to 91.3 wt.%, and the CH 4 yield increased from 23.7 wt.% to 77.3 wt.% within 30 min after adding the 5%Co-1%Ca catalyst into the coal. Co-Ca and Ni-Ca possessed catalytic effect on both processes of pyrolysis of coal and hydrogasification of coal char in CCHG, by which the graphitization of the coal was suppressed and methane formation rate was significantly accelerated. Fe/Co/Ni-Ca could penetrate into the interior of coal during CCHG, making the catalytic production of CH 4 conduct in the pore structures. The activity difference of the catalysts was owing to the different ability of rupturing the amorphous C−C bonds in coal structure. The incomplete carbon conversion of the 5%Co-1%Ca loaded coal was due to the agglomeration of the catalyst and the blockage of the reactive sites by the sintered catalyst. This work will provide

  4. Evaluation of coal bed methane potential of coal seams of Sawang ...

    Indian Academy of Sciences (India)

    This analysis shows that the maximum methane gas adsorbed in the coal sample CG-81 is 17 m3/t (Std. daf), at maximum pressure of 5.92 MPa ... vast coal reserves are ideal reservoirs for the gen- eration and accumulation of CBM. ... of gases in coal seams, such as, compression as free gas in the pore spaces, condensed ...

  5. Fluidised bed gasification of high-ash South African coals: An experimental and modelling study

    CSIR Research Space (South Africa)

    Engelbrecht, AS

    2011-11-01

    Full Text Available model (CeSFaMB). The predictive capability of the model was analysed in terms of the degree of variation between experimental and simulated results for each test. The calibrated model was used to design a 15 MW fluidised bed coal gasifier...-scale BFBG are given in Figure 1 and Table 1. Process description Coal, air, oxygen and steam are the input streams to the process which produce the output streams: gas and char (ash). Coal is fed to the gasifier by means of a screw conveyor at a...

  6. Temporal measurements and kinetics of selenium release during coal combustion and gasification in a fluidized bed

    International Nuclear Information System (INIS)

    Shen, Fenghua; Liu, Jing; Zhang, Zhen; Yang, Yingju

    2016-01-01

    Highlights: • The temporal release of Se from coal combustion and gasification was measured. • Kinetic laws for Se release from coal combustion and gasification were determined. • The influences of temperature and chemical composition of flue gas were clarified. • The interactions of Se species with mineral affect the release kinetics of Se. - Abstract: The temporal release of selenium from coal during combustion and gasification in a fluidized bed was measured in situ by an on-line analysis system of trace elements in flue gas. The on-line analysis system is based on an inductively coupled plasma optical emission spectroscopy (ICP-OES), and can measure concentrations of trace elements in flue gas quantitatively and continuously. The results of on-line analysis suggest that the concentration of selenium in flue gas during coal gasification is higher than that during coal combustion. Based on the results of on-line analysis, a second-order kinetic law r(x) = 0.94e −26.58/RT (−0.56 x 2 −0.51 x + 1.05) was determined for selenium release during coal combustion, and r(x) = 11.96e −45.03/RT (−0.53 x 2 −0.56 x + 1.09) for selenium release during coal gasification. These two kinetic laws can predict respectively the temporal release of selenium during coal combustion and gasification with an acceptable accuracy. Thermodynamic calculations were conducted to predict selenium species during coal combustion and gasification. The speciation of selenium in flue gas during coal combustion differs from that during coal gasification, indicating that selenium volatilization is different. The gaseous selenium species can react with CaO during coal combustion, but it is not likely to interact with mineral during coal gasification.

  7. Modeling of carbon sequestration in coal-beds: A variable saturated simulation

    International Nuclear Information System (INIS)

    Liu Guoxiang; Smirnov, Andrei V.

    2008-01-01

    Storage of carbon dioxide in deep coal seams is a profitable method to reduce the concentration of green house gases in the atmosphere while the methane as a byproduct can be extracted during carbon dioxide injection into the coal seam. In this procedure, the key element is to keep carbon dioxide in the coal seam without escaping for a long term. It is depended on many factors such as properties of coal basin, fracture state, phase equilibrium, etc., especially the porosity, permeability and saturation of the coal seam. In this paper, a variable saturation model was developed to predict the capacity of carbon dioxide sequestration and coal-bed methane recovery. This variable saturation model can be used to track the saturation variability with the partial pressures change caused by carbon dioxide injection. Saturation variability is a key factor to predict the capacity of carbon dioxide storage and methane recovery. Based on this variable saturation model, a set of related variables including capillary pressure, relative permeability, porosity, coupled adsorption model, concentration and temperature equations were solved. From results of the simulation, historical data agree with the variable saturation model as well as the adsorption model constructed by Langmuir equations. The Appalachian basin, as an example, modeled the carbon dioxide sequestration in this paper. The results of the study and the developed models can provide the projections for the CO 2 sequestration and methane recovery in coal-beds within different regional specifics

  8. Effect of coal blending on the leaching characteristics of arsenic and selenium in fly ash from fluidized bed coal combustion

    Energy Technology Data Exchange (ETDEWEB)

    Jiao, F.; Yamada, N.; Sato, A.; Ninomiya, Yoshihiko [Chubu Univ., Aichi (Japan). Dept. of Applied Chemistry; Zhang, L. [Monash Univ., Clayton, VIC (Australia). Dept. of Chemical Engineering

    2013-07-01

    The capture ability of fly ash to arsenic (As) and selenium (Se) was investigated through the combustion of two single bituminous coals A and B and their mixture (blending ratio of 1:1, wt/wt) in a lab-scale fluidized bed reactor. The leaching characteristics of As and Se in corresponding fly ash were also conducted according to Japanese Industrial Standard (JIS). Speciation of As and Se during fly ash leaching test were predicted from the perspective of thermodynamic equilibrium. The results indicate that, combustion of coal B, containing abundant calcium, possesses a higher capture ability of As and Se than that of coal A through possible chemical reaction between As/Se with CaO. Leaching behavior of As and Se from fly ash is strongly dependent on the pH of the leachate. Free calcium in fly ash generates an alkaline leachate during leaching test and subsequently reduces As and Se leaching, which cause the leaching ratio of As and Se in fly ash derived from the combustion of coal B was much lower, relative to that in coal A. Combustion of blending coal promotes the overall capture ability of the fly ash to As/Se and reduces their leaching from fly ash through the synergy of free CaO between this two kind of fly ash.

  9. Carbon capture from coal fired power plant using pressurized fluid bed technology

    Energy Technology Data Exchange (ETDEWEB)

    Williams, Dennis; Christensen, Tor

    2010-09-15

    This presentation will discuss the use of a pressurized fluid bed boiler system and specialized carbon capture system to burn coal and generagte clean electricity. The paper will present the existing boiler and carbon capture technology and present economics, thermal performance and emissions reduction for a 100Mw module.

  10. Sage-Grouse and Coal-Bed Methane: Can They Coexist within the Powder River Basin?

    Science.gov (United States)

    Duncan, Michael B.

    2010-01-01

    Concerns are growing regarding the availability of sustainable energy sources due to a rapidly growing human population and a better understanding of climate change. In recent years, the United States has focused much attention on developing domestic energy sources, which include coal-bed methane (CBM). There are vast deposits of the natural gas…

  11. Depositional history of the Fire Clay coal bed (Late Duckmantian), Eastern Kentucky, USA

    Science.gov (United States)

    Greb, S.F.; Eble, C.F.; Hower, J.C.

    1999-01-01

    More than 3800 coal thickness measurements, proximate analyses from 97 localities, and stratigraphic and sedimentological analyses from more than 300 outcrops and cores were used in conjunction with previously reported palynological and petrographic studies to map individual benches of the coal and document bench-scale variability in the Fire Clay (Hazard No. 4) coal bed across a 1860 km2 area of the Eastern Kentucky Coal Field. The bench architecture of the Fire Clay coal bed consists of uncommon leader benches, a persistent but variable lower bench, a widespread, and generally thick upper bench, and local, variable rider benches. Rheotrophic conditions are inferred for the leader benches and lower bench based on sedimentological associations, mixed palynomorph assemblages, locally common cannel coal layers, and generally high ash yields. The lower bench consistently exhibits vertical variability in petrography and palynology that reflects changing trophic conditions as topographic depressions infilled. Infilling also led to unconfined flooding and ultimately the drowning of the lower bench mire. The drowned mire was covered by an air-fall volcanic-ash deposit, which produced the characteristic flint clay parting. The extent and uniform thickness of the parting suggests that the ash layer was deposited in water on a relatively flat surface without a thick canopy or extensive standing vegetation across most of the study area. Ash deposits led to regional ponding and establishment of a second planar mire. Because the topography had become a broadly uniform, nutrient-rich surface, upper-bench peats became widespread with large areas of the mire distant to clastic sources. Vertical sections of thick (> 70 cm), low-ash yield, upper coal bench show a common palynomorph change from arborescent lycopod dominance upward to fern and densospore-producing, small lycopod dominance, inferred as a shift from planar to ombrotrophic mire phases. Domed mires appear to have been

  12. Simultaneous determination of devolatilization and char burnout times during fluidized bed combustion of coal

    International Nuclear Information System (INIS)

    Christofiedes, N.; Brown, R.C.

    1992-01-01

    In this paper, the authors investigate a method for simultaneous determination of devolatilization and char burnout times based on the analysis of CO 2 emissions from a fluidized bed combustor. The technique is non-intrusive and can be performed under realistic combustion conditions. The authors' method involves batching single-size coal samples in a fluidized bed combustor that is heated with propane gas or other fuel. Carbon dioxide profiles versus time for the batch tests are analyzed with a linear model to obtain characteristic time constants for coal devolatilization and char combustion which can be related to total devolatilization time and burnout time for a coal sample. The authors' approach does not require special sample preparation, can be performed in actual combustion equipment and employs standard boiler instrumentation

  13. N2 O A greenhouse gas released from the combustion of coals in fluidized beds

    International Nuclear Information System (INIS)

    Boavida, D.; Lobo, L. S.; Gulyurtlu, I.; Cabrita, I.

    1996-01-01

    This paper discusses the results of the experimental work investigating the formation of N-2 O and NO during fluidized bed combustion of coals, and of chars and volatiles produced from the pyrolysis of these coals. Ammonia (N H 3 ) and hydrogen cyanide (HCN) are shown to play important roles as gas phase precursors of both NO and N 2 O. The conversion of fuel-N through N H 3 and HCN to N 2 O and NO was studied using a fluidized bed combustor in the temperature range between 973 K and 1273 K, for two different coals. The results suggest that the principal contribution to N 2 O emission Originated from volatile-N, however, char-N could also have an important role, depending upon the temperature. 1 fig., 8 tabs

  14. Gasification of Coal and PET in Fluidized Bed Reactor

    Czech Academy of Sciences Publication Activity Database

    Pohořelý, Michael; Vosecký, Martin; Kameníková, Petra; Punčochář, Miroslav; Skoblia, Sergej; Staf, M.; Vošta, J.; Koutský, B.; Svoboda, Karel

    2006-01-01

    Roč. 85, 17-18 (2006), s. 2458-2468 ISSN 0016-2361 R&D Projects: GA ČR(CZ) GA104/04/0829 Institutional research plan: CEZ:AV0Z40720504 Keywords : fludized bed * gasification * plastic waste Subject RIV: CI - Industrial Chemistry, Chemical Engineering Impact factor: 1.358, year: 2006

  15. Organic geochemical investigation and coal-bed methane characteristics of the Guasare coals (Paso Diablo mine, western Venezuela)

    Science.gov (United States)

    Quintero, K.; Martinez, M.; Hackley, P.; Marquez, G.; Garban, G.; Esteves, I.; Escobar, M.

    2011-01-01

    The aim of this work was to carry out a geochemical study of channel samples collected from six coal beds in the Marcelina Formation (Zulia State, western Venezuela) and to determine experimentally the gas content of the coals from the Paso Diablo mine. Organic geochemical analyses by gas chromatography-mass spectrometry and isotopic analyses on-line in coalbed gas samples were performed. The results suggest that the Guasare coals were deposited in a continental environment under highly dysoxic and low salinity conditions. The non-detection of 18??(H)-oleanane does not preclude that the organic facies that gave rise to the coals were dominated by angiosperms. In addition, the presence of the sesquiterpenoid cadalene may indicate the subordinate contribution of gymnosperms (conifers) in the Paleocene Guasare mire. The average coalbed gas content obtained was 0.6 cm3/g. ??13C and D values indicate that thermogenic gas is prevalent in the studied coals. Copyright ?? Taylor & Francis Group, LLC.

  16. The influence of bamboo-packed configuration to mixing characteristics in a fixed-bed reactor

    Science.gov (United States)

    Detalina, M.; Pradanawati, S. A.; Widyarani; Mamat; Nilawati, D.; Sintawardani, N.

    2018-03-01

    Fixed-bed reactors are commonly used as bioreactors for various applications, including chemicals production and organic wastewater treatment. Bioreactors are fixed with packing materials for attaching microorganisms. Packing materials should have high surface area and enable sufficient fluid flow in the reactor. Natural materials e.g. rocks and fibres are often used as packing materials. Commercially, packing materials are also produced from polymer with the advantage of customizable shapes. The objective of this research was to study the mixing pattern in a packed-bed reactor using bamboo as packing material. Bamboo was selected for its pipe-like and porous form, as well as its abundant availability in Indonesia. The cut bamboo sticks were installed in a reactor in different configurations namely vertical, horizontal, and random. Textile dye was used as a tracer. Our results show that the vertical configuration gave the least liquid resistant flow. Yet, the random configuration was the best configuration during mixing process.

  17. Empirical correlations for axial dispersion coefficient and Peclet number in fixed-bed columns.

    Science.gov (United States)

    Rastegar, Seyed Omid; Gu, Tingyue

    2017-03-24

    In this work, a new correlation for the axial dispersion coefficient was obtained using experimental data in the literature for axial dispersion in fixed-bed columns packed with particles. The Chung and Wen correlation, the De Ligny correlation are two popular empirical correlations. However, the former lacks the molecular diffusion term and the latter does not consider bed voidage. The new axial dispersion coefficient correlation in this work was based on additional experimental data in the literature by considering both molecular diffusion and bed voidage. It is more comprehensive and accurate. The Peclet number correlation from the new axial dispersion coefficient correlation on the average leads to 12% lower Peclet number values compared to the values from the Chung and Wen correlation, and in many cases much smaller than those from the De Ligny correlation. Copyright © 2017 Elsevier B.V. All rights reserved.

  18. Computer-aided modeling framework – a generic modeling template for catalytic membrane fixed bed reactors

    DEFF Research Database (Denmark)

    Fedorova, Marina; Sin, Gürkan; Gani, Rafiqul

    2013-01-01

    and users to generate and test models systematically, efficiently and reliably. In this way, development of products and processes can be faster, cheaper and very efficient. In this contribution, as part of the framework a generic modeling template for the systematic derivation of problem specific catalytic...... membrane fixed bed models is developed. The application of the modeling template is highlighted with a case study related to the modeling of a catalytic membrane reactor coupling dehydrogenation of ethylbenzene with hydrogenation of nitrobenzene....

  19. Fixed bed adsorption of hexavalent chromium onto natural zeolite from air stream

    OpenAIRE

    F. Golbabaei; E. Rahmanzadeh; G. R. Moussavi; A. Faghihi zarandi; M. R. Baneshi

    2014-01-01

    Introduction: Chromium (VI) is a known human carcinogenic agent which is used in numerous industrial processes such as electroplating, welding, textile, cement and steel fabrication. The aim of this study was to determine the effectiveness of natural zeolite on the fixed bed adsorption of Cr (VI) from air stream. . Material and Method: In this experimental study, chromium mists were generated by a nebulizer (3A model, Italy). Performance of natural zeolite in the Cr (VI) adsorption and ...

  20. Reactivity of coal chars prepared in a fluidised bed reactor at different burn-off degrees

    Energy Technology Data Exchange (ETDEWEB)

    Moreno, A.H.; Arenillas, A.; Rubiera, F.; Fuente, E.; Pis, J.J. [Inst. Nacional del Carbon, Oviedo (Spain)

    1997-12-31

    The main goal of this work has been to study the effect of the textural properties of coal chars, obtained from partially burned coal, on their reactivity to oxygen. A low volatile bituminous coal was used to prepare chars, with different levels of burn-off, in a bench-scale fluidised bed reactor. Textural characterisation of the samples was accomplished by measuring true (helium) and apparent (mercury) densities, and mercury porosimetry. An increase in the burn-off degree gave rise to a densification of the chars. Porosity development greatly changed during progressive burning of the samples. DTG burning profiles and isothermal gasification were utilised to estimate the reactivities of the precursor coal and its partially burned chars. Reactivity reached a maximum value at an intermediate burn-off and strongly decreased at higher burn-off degrees. (orig.)

  1. ELECTRODEPOSITION OF COPPER IONS ON FIXED BED ELECTRODES: KINETIC AND HYDRODYNAMIC STUDY

    Directory of Open Access Journals (Sweden)

    L.A.M. Ruotolo

    2002-03-01

    Full Text Available The kinetic and hydrodynamic behaviour of a fixed-bed electrochemical reactor was studied in terms of current efficiency (CE and energy efficiency (EE. In the kinetic experiments the effects of fixed bed thickness (L, current density (i and initial concentration of copper (C0 were studied. In the hydrodynamic experiments the permeability (k of the electrode and the coefficient for inertial forces (c were also studied as functions of the applied current density. At low current densities and bed thicknesses greater than 1.0 cm, negative CE and EE were observed as a consequence of the dissolution of the porous matrix. At high current densities low CE and EE were observed and a powdery deposit was formed on the surface of the particles. From the results of the kinetic study bed thickness and the range of current densities employed in the hydrodynamic experiments were chosen. In these experiments the electrodeposition process continued until the whole electrode had been clogged and no more electrolyte could pass through it. The relationship between pressure drop and flow rate was well described by the Forchheimer equation. It was observed that the reduction in porosity due to copper electrodeposition causes the flow rate to decrease because of the decrease in electrode permeability, but it had no influence on current efficiency.

  2. Uptake of Cd(II Using Natural Zeolite: Batch and Continuous Fixed-Bed Studies

    Directory of Open Access Journals (Sweden)

    Luna M. LMarashdeh

    2009-12-01

    Full Text Available Uptake of Cd(II ions by natural phillipsite tuff was investigated both in shake-flask and fixed-bed columns. Equilibrium uptake, qe, was found to best fit Langmuir adsorption isotherm with a maximum value of 25.78 mg/g. Percent removal of Cd ions was close to 100% from initial metal ion concentrations in the range 50 - 75 mg/L at 5.0 g zeolite/L. Also, qe was found to vary exponentially with zeolite dose. Break points as high as 350 minutes were obtained from bed treatment at favorable conditions of a low solution flow rate and high bed depth. In batch experiments, equilibrium pH increased to < 8.0 excluding chemical precipitation as part of the removal while in fixed-beds the final pH exceeded 9.0. It is suggested that a sieve action of zeolite porous structure plays a role as an uptake mechanism in addition to the ion exchange.

  3. Homogeneity of Continuum Model of an Unsteady State Fixed Bed Reactor for Lean CH4 Oxidation

    Directory of Open Access Journals (Sweden)

    Subagjo

    2014-07-01

    Full Text Available In this study, the homogeneity of the continuum model of a fixed bed reactor operated in steady state and unsteady state systems for lean CH4 oxidation is investigated. The steady-state fixed bed reactor system was operated under once-through direction, while the unsteady-state fixed bed reactor system was operated under flow reversal. The governing equations consisting of mass and energy balances were solved using the FlexPDE software package, version 6. The model selection is indispensable for an effective calculation since the simulation of a reverse flow reactor is time-consuming. The homogeneous and heterogeneous models for steady state operation gave similar conversions and temperature profiles, with a deviation of 0.12 to 0.14%. For reverse flow operation, the deviations of the continuum models of thepseudo-homogeneous and heterogeneous models were in the range of 25-65%. It is suggested that pseudo-homogeneous models can be applied to steady state systems, whereas heterogeneous models have to be applied to unsteady state systems.

  4. Characteristic Studies of Micron Zinc Particle Hydrolysis in a Fixed Bed Reactor

    Directory of Open Access Journals (Sweden)

    Lv Ming

    2015-09-01

    Full Text Available Zinc fuel is considered as a kind of promising energy sources for marine propeller. As one of the key steps for zinc marine energy power system, zinc hydrolysis process had been studied experimentally in a fixed bed reactor. In this study, we focus on the characteristics of micron zinc particle hydrolysis. The experimental results suggested that the steam inner diffusion is the controlling step of accumulative zinc particles hydrolysis reaction at a relative lower temperature and a relative higher water partial pressure. In other conditions, the chemical reaction kinetics was the controlling step. And two kinds of chemical reaction kinetics appeared in experiments: the surface reaction and the gas-gas reaction. The latter one occurs usually for larger zinc particles and high reaction temperature. Temperature seems to be one of the most important parameters for the dividing of different reaction mechanisms. Several parameters of the hydrolysis process including heating rate, water partial pressure, the particle size and temperature were also studied in this paper. Results show that the initial reaction temperature of zinc hydrolysis in fixed bed is about 410°C. And the initial reaction temperature increases as the heating rate increases and as the water partial pressure decreases. The total hydrogen yield increases as the heating rate decreases, as the water partial pressure increases, as the zinc particle size decreases, and as the reaction temperature increases. A hydrogen yield of more than 81.5% was obtained in the fixed bed experiments.

  5. Comparison of the Effects of Fluidized-Bed and Fixed-Bed Reactors in Microwave-Assisted Catalytic Decomposition of TCE by Hydrogen

    Directory of Open Access Journals (Sweden)

    Lili Ren

    2012-01-01

    Full Text Available Trichloroethylene (TCE decomposition by hydrogen with microwave heating under different reaction systems was investigated. The activities of a series of catalysts for microwave-assisted TCE hydrodechlorination were tested through the fixed-bed and the fluidized-bed reactor systems. This study found that the different reaction system is suitable for different catalyst type. And there is an interactive relationship between the catalyst type and the reaction bed type.

  6. Characterisation of coal and chars in fluidised bed gasification

    CSIR Research Space (South Africa)

    Oboirien, BO

    2009-03-01

    Full Text Available impact on the physical structure of the residual char. 4 In summary, the distinct burnout characteristics of coals could be attributed to the differences in the macerals and microlithotypes compositions, and mineral matter distribution....0 2.5 3.0 3.5 4.0 4.5 5.0 5.5 6.0 6.5 7.0 7.5 8.0 8.5 9.0 9.5 10.0 REFLECTANCE % RE LA TIV E FR EQ UE NC Y % Increasing reflectance, decreasing volatiles, expected Increase in ignition temperature and time for burn-out Figure...

  7. Microbially-Enhanced Coal Bed Methane: Strategies for Increased Biogenic Production

    Science.gov (United States)

    Davis, K.; Barhart, E. P.; Schweitzer, H. D.; Cunningham, A. B.; Gerlach, R.; Hiebert, R.; Fields, M. W.

    2014-12-01

    Coal is the largest fossil fuel resource in the United States. Most of this coal is deep in the subsurface making it costly and potentially dangerous to extract. However, in many of these deep coal seams, methane, the main component of natural gas, has been discovered and successfully harvested. Coal bed methane (CBM) currently accounts for approximately 7.5% of the natural gas produced in the U.S. Combustion of natural gas produces substantially less CO2 and toxic emissions (e.g. heavy metals) than combustion of coal or oil thereby making it a cleaner energy source. In the large coal seams of the Powder River Basin (PRB) in southeast Montana and northeast Wyoming, CBM is produced almost entirely by biogenic processes. The in situ conversion of coal to CBM by the native microbial community is of particular interest for present and future natural gas sources as it provides the potential to harvest energy from coal seams with lesser environmental impacts than mining and burning coal. Research at Montana State University has shown the potential for enhancing the subsurface microbial processes that produce CBM. Long-term batch enrichments have investigated the methane enhancement potential of yeast extract as well as algal and cyanobacterial biomass additions with increased methane production observed with all three additions when compared to no addition. Future work includes quantification of CBM enhancement and normalization of additions. This presentation addresses the options thus far investigated for increasing CBM production and the next steps for developing the enhanced in situ conversion of coal to CBM.

  8. DOLOMITE DESULFURIZATION BEHAVIOR IN A BUBBLING FLUIDIZED BED PILOT PLANT FOR HIGH ASH COAL

    Directory of Open Access Journals (Sweden)

    G. M. F. Gomes

    Full Text Available Abstract Although fluidized bed in situ desulphurization from coal combustion has been widely studied, there are aspects that remain under investigation. Additionally, few publications address Brazilian coal desulphurization via fluidized beds. This study used a 250 kWth bubbling fluidized bed pilot plant to analyze different aspects of the dolomite desulphurization of two Brazilian coals. Superficial velocities of 0.38 and 0.46 m/s, flue gas recycling, Ca/S molar ratios and elutriation were assessed. Results confirmed the influence of the Ca/S molar ratio and superficial velocity - SO2 conversion up to 60.5% was achieved for one coal type, and 70.9% was achieved for the other type. A recycling ratio of 54.6% could increase SO2 conversion up to 86.1%. Elutriation and collection of ashes and Ca-containing products did not present the same behavior because a lower wt. % of CaO was collected by the gas controlled mechanism compared to the ash.

  9. Enhanced Coal Bed Methane Recovery and CO2 Sequestration in the Powder River Basin

    Energy Technology Data Exchange (ETDEWEB)

    Eric P. Robertson

    2010-06-01

    Unminable coal beds are potentially large storage reservoirs for the sequestration of anthropogenic CO2 and offer the benefit of enhanced methane production, which can offset some of the costs associated with CO2 sequestration. The objective of this report is to provide a final topical report on enhanced coal bed methane recovery and CO2 sequestration to the U.S. Department of Energy in fulfillment of a Big Sky Carbon Sequestration Partnership milestone. This report summarizes work done at Idaho National Laboratory in support of Phase II of the Big Sky Carbon Sequestration Partnership. Research that elucidates the interaction of CO2 and coal is discussed with work centering on the Powder River Basin of Wyoming and Montana. Sorption-induced strain, also referred to as coal swelling/shrinkage, was investigated. A new method of obtaining sorption-induced strain was developed that greatly decreases the time necessary for data collection and increases the reliability of the strain data. As coal permeability is a strong function of sorption-induced strain, common permeability models were used to fit measured permeability data, but were found inadequate. A new permeability model was developed that can be directly applied to coal permeability data obtained under laboratory stress conditions, which are different than field stress conditions. The coal permeability model can be used to obtain critical coal parameters that can be applied in field models. An economic feasibility study of CO2 sequestration in unminable coal seams in the Powder River Basin of Wyoming was done. Economic analyses of CO2 injection options are compared. Results show that injecting flue gas to recover methane from CBM fields is marginally economical; however, this method will not significantly contribute to the need to sequester large quantities of CO2. Separating CO2 from flue gas and injecting it into the unminable coal zones of the Powder River Basin seam is currently uneconomical, but can

  10. Characterization of coal-derived hydrocarbons and source-rock potential of coal beds, San Juan Basin, New Mexico and Colorado, U.S.A.

    Science.gov (United States)

    Rice, D.D.; Clayton, J.L.; Pawlewicz, M.J.

    1989-01-01

    Coal beds are considered to be a major source of nonassociated gas in the Rocky Mountain basins of the United States. In the San Juan basin of northwestern New Mexico and southwestern Colorado, significant quantities of natural gas are being produced from coal beds of the Upper Cretaceous Fruitland Formation and from adjacent sandstone reservoirs. Analysis of gas samples from the various gas-producing intervals provided a means of determining their origin and of evaluating coal beds as source rocks. The rank of coal beds in the Fruitland Formation in the central part of the San Juan basin, where major gas production occurs, increases to the northeast and ranges from high-volatile B bituminous coal to medium-volatile bituminous coal (Rm values range from 0.70 to 1.45%). On the basis of chemical, isotopic and coal-rank data, the gases are interpreted to be thermogenic. Gases from the coal beds show little isotopic variation (??13C1 values range -43.6 to -40.5 ppt), are chemically dry (C1/C1-5 values are > 0.99), and contain significant amounts of CO2 (as much as 6%). These gases are interpreted to have resulted from devolatilization of the humic-type bituminous coal that is composed mainly of vitrinite. The primary products of this process are CH4, CO2 and H2O. The coal-generated, methane-rich gas is usually contained in the coal beds of the Fruitland Formation, and has not been expelled and has not migrated into the adjacent sandstone reservoirs. In addition, the coal-bed reservoirs produce a distinctive bicarbonate-type connate water and have higher reservoir pressures than adjacent sandstones. The combination of these factors indicates that coal beds are a closed reservoir system created by the gases, waters, and associated pressures in the micropore coal structure. In contrast, gases produced from overlying sandstones in the Fruitland Formation and underlying Pictured Cliffs Sandstone have a wider range of isotopic values (??13C1 values range from -43.5 to -38

  11. Waste Water Treatment-Bed of Coal Fly Ash for Dyes and Pigments Industry

    Directory of Open Access Journals (Sweden)

    Syed Farman Ali Shah

    2015-12-01

    Full Text Available The highly porous power plant waste ashes have been utilized to treat toxic effluent of a dyes manufacturing plant. An attempt has been made for the first time in Pakistan, to generate an effective and economically sound treatment facility for the toxic effluent of a dyes manufacturing plant. This is an indigenous bed which could replace expensive treatment facilities, such as reverse osmosis (RO, granulated activated carbon (GAC bed, etc. The treatment efficiency was improved by coupling coagulants with fly ash adsorbent bed. The ash was collected from coal fired boilers of power plant at Lakhra Power Generation Company, Jamshoro, Pakistan. The use of this ash resolved the disposal and environmental issues by treating wastewater of chemical, dyes and pigment industry. The treatment bed comprised of briquettes of coal fly ash coupled with commercial coagulant ferrous sulfate-lime reduced COD, color, turbidity and TSS of effluent remarkably. An adsorption capacity and chemical behavior of fly ash bed was also studied. In coagulation treatment, coagulant FeSO4-lime influenced reduction of COD, color, turbidity and TSS by 32%, 48%, 50% and 51%, respectively. The CFAB coupled with coagulant, resulted an excessive removal of color, TSS, COD, and turbidity by 88%, 92%, 67% and89%, respectively.

  12. Waste Water Treatment-Bed of Coal Fly Ash for Dyes and Pigments Industry

    International Nuclear Information System (INIS)

    Shah, S.F.A.; Aftab, A.; Soomro, N.; Nawaz, M.S.; Vafai, K.

    2015-01-01

    The highly porous power plant waste ashes have been utilized to treat toxic effluent of a dyes manufacturing plant. An attempt has been made for the first time in Pakistan, to generate an effective and economically sound treatment facility for the toxic effluent of a dyes manufacturing plant. This is an indigenous bed which could replace expensive treatment facilities, such as reverse osmosis (RO), granulated activated carbon (GAC) bed, etc. The treatment efficiency was improved by coupling coagulants with fly ash adsorbent bed. The ash was collected from coal fired boilers of power plant at Lakhra Power Generation Company, Jamshoro, Pakistan. The use of this ash resolved the disposal and environmental issues by treating wastewater of chemical, dyes and pigment industry. The treatment bed comprised of briquettes of coal fly ash coupled with commercial coagulant ferrous sulfate-lime reduced COD, color, turbidity and TSS of effluent remarkably. An adsorption capacity and chemical behavior of fly ash bed was also studied. In coagulation treatment, coagulant FeSO/sun 4/-lime influenced reduction of COD, color, turbidity and TSS by 32 percentage, 48 percentage, 50 percentage and 51 percentage, respectively. The CFAB coupled with coagulant, resulted an excessive removal of color, TSS, COD, and turbidity by 88 percentage, 92 percentage, 67 percentage and 89 percentage, respectively. (author)

  13. Comparative study between fluidized bed and fixed bed reactors in methane reforming with CO2 and O2 to produce syngas

    International Nuclear Information System (INIS)

    Jing Qiangshan; Lou Hui; Mo Liuye; Zheng Xiaoming

    2006-01-01

    Reforming of methane with carbon dioxide and oxygen was investigated over Ni/MgO-SiO 2 catalysts using fixed bed and fluidized bed reactors. The conversions of CH 4 and CO 2 in a fluidized bed reactor were close to thermodynamic equilibrium. The activity and stability of the catalyst in the fixed bed reactor were lower than that in the fluidized bed reactor due to carbon deposition and nickel sintering. TGA and TEM techniques were used to characterize the spent catalysts. The results showed that a lot of whisker carbon was found on the catalyst in the rear of the fixed bed reactor, and no deposited carbon was observed on the catalysts in the fluidized bed reactor after reaction. It is suggested that this phenomenon is related to a permanent circulation of catalyst particles between the oxygen rich and oxygen free zones. That is, fluidization of the catalysts in the fluidized bed reactor favors inhibiting deposited carbon and thermal uniformity in the reactor

  14. In situ and Enriched Microbial Community Composition and Function Associated with Coal Bed Methane from Powder River Basin Coals

    Science.gov (United States)

    Barnhart, Elliott; Davis, Katherine; Varonka, Matthew; Orem, William; Fields, Matthew

    2016-04-01

    Coal bed methane (CBM) is a relatively clean source of energy but current CBM production techniques have not sustained long-term production or produced enough methane to remain economically practical with lower natural gas prices. Enhancement of the in situ microbial community that actively generates CBM with the addition of specific nutrients could potentially sustain development. CBM production more than doubled from native microbial populations from Powder River Basin (PRB) coal beds, when yeast extract and several individual components of yeast extract (proteins and amino acids) were added to laboratory microcosms. Microbial populations capable of hydrogenotrophic (hydrogen production/utilization) methanogenesis were detected in situ and under non-stimulated conditions. Stimulation with yeast extract caused a shift in the community to microorganisms capable of acetoclastic (acetate production/utilization) methanogenesis. Previous isotope analysis from CBM production wells indicated a similar microbial community shift as observed in stimulation experiments: hydrogenotrophic methanogenesis was found throughout the PRB, but acetoclastic methanogenesis dominated major recharge areas. In conjunction, a high proportion of cyanobacterial and algal SSU rRNA gene sequences were detected in a CBM well within a major recharge area, suggesting that these phototrophic organisms naturally stimulate methane production. In laboratory studies, adding phototrophic (algal) biomass stimulated CBM production by PRB microorganisms similarly to yeast extract (~40μg methane increase per gram of coal). Analysis of the British thermal unit (BTU) content of coal from long-term incubations indicated >99.5% of BTU content remained after CBM stimulation with either algae or yeast extract. Biomimicry of in situ algal CBM stimulation could lead to technologies that utilize coupled biological systems (photosynthesis and methane production) that sustainably enhance CBM production and generate

  15. The relationship of fluidized bed technology to the U.S. Clean Coal Technology demonstration program

    International Nuclear Information System (INIS)

    Weth, G.; Geffken, J.; Huber, D.A.

    1991-01-01

    Fluidized Bed Combustion projects (both AFBCs and PFBCs) have a prominent role in the US DOE Clean Coal Technology (CCT) Program. This program has the successful commercialization of these technologies as its primary objective and this is the basic criterion for government funding and participation in the development and demonstration of the technologies. Under the CCT program the US DOE is actively involved in the development and operation of three Fluidized Bed Technology projects, NUCLA, TIDD, and SPORN, and is in the negotiation stage on others, Dairyland, Nichols and Tallahassee. All of these projects, along with the operating information on fluidized beds in the industrial sector, will provide a basis for evaluating future utilization of Fluidized Bed Technology in the market place. Impacting upon further utilization will be the time-frame and the Clean Air Act Amendments of 1990. This paper presents the results of a study to ascertain the commercial readiness of Fluidized Bed Technology to meet the emissions and time-frame requirements of the Clean Air Act Amendments of 1990. Specifically addressed are: Commercialization criteria/factors which candidate and/or existing CCTs must achieve in order to gain market acceptance. The status of Fluidized Bed Technology in achieving these commercialization criteria for market acceptance (industrial and utility) consistent with the time frame of the Clean Air Act Amendments of 1990. Recommendations of commercialization criteria for future fluidized bed CCT demonstration projects

  16. Temperature profile in a fix-bed reactor and with cylindrical geometry by the method of orthogonal collocation

    International Nuclear Information System (INIS)

    Basta, C.

    1982-01-01

    Using the method of orthogonal colocation the boundary problem for a fix bed with cylindrical geometry was solved. The axial disposal term was despicable and the results were compared with those the explicit finite difference method. (E.G.) [pt

  17. Liquid hydrocarbons from coal beds – risk factor for the underground work environment - Case study

    Directory of Open Access Journals (Sweden)

    Tomescu Cristian

    2017-01-01

    Full Text Available Liquid hydrocarbons from the coal bed and surrounding rocks, besides the stored gases, methane, carbon dioxide, carbon oxide, generate the increase of the risk factor from the occupational health and safety point of view. If for reducing the gas concentrations level and the methane emissions in order to increase the safety in exploitation exist well-known solutions and methods, the oxidation or self-oxidation of the hydrocarbons from the coal bed generate a series of compounds, reaction products over maximum admitted concentrations which give birth to a toxic atmosphere and which is hazardous for workers, at the same time inducing an error in noting the occurrence of a spontaneous combustion phenomena, a major risk for the workers and for the mineral resource. This paper represents a case study performed in one underground mine unit from Jiu Valley and presents the analysis for underground environment factors monitoring and for solutions for diminishing the OHS risk factors.

  18. Geospatial data for coal beds in the Powder River Basin, Wyoming and Montana

    Science.gov (United States)

    Kinney, Scott A.; Scott, David C.; Osmonson, Lee M.; Luppens, James A.

    2015-01-01

    The purpose of this report is to provide geospatial data for various layers and themes in a Geographic Information System (GIS) format for the Powder River Basin, Wyoming and Montana. In 2015, as part of the U.S. Coal Resources and Reserves Assessment Project, the U.S. Geological Survey (USGS) completed an assessment of coal resources and reserves within the Powder River Basin, Wyoming and Montana. This report is supplemental to USGS Professional Paper 1809 and contains GIS data that can be used to view digital layers or themes, including the Tertiary limit of the Powder River Basin boundary, locations of drill holes, clinker, mined coal, land use and technical restrictions, geology, mineral estate ownership, coal thickness, depth to the top of the coal bed (overburden), and coal reliability categories. Larger scale maps may be viewed using the GIS data provided in this report supplemental to the page-size maps provided in USGS Professional Paper 1809. Additionally, these GIS data can be exported to other digital applications as needed by the user. The database used for this report contains a total of 29,928 drill holes, of which 21,393 are in the public domain. The public domain database is linked to the geodatabase in this report so that the user can access the drill-hole data through GIS applications. Results of this report are available at the USGS Energy Resources Program Web site,http://energy.usgs.gov/RegionalStudies/PowderRiverBasin.aspx.

  19. Pressurized fluidized bed combustion combined cycle power plant with coal gasification: Second generation pilot plant

    International Nuclear Information System (INIS)

    Farina, G.L.; Bressan, L.

    1991-01-01

    This paper presents the technical and economical background of a research and development program of a novel power generation scheme, which is based on coal gasification, pressurized fluid bed combustion and combined cycles. The participants in this program are: Foster Wheeler (project leader), Westinghouse, IGT and the USA Dept. of Energy. The paper describes the characteristics of the plant, the research program in course of implementation, the components of the pilot plant and the first results obtained

  20. Coal bed methane: current status and outlook - Panorama 2008; CBM: bilan et perspectives - Panorama 2008

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2008-07-01

    In many parts of the world, there is growing interest in coal bed methane (CBM), which has been exploited for years in the United States. One reason is undoubtedly that some new gas producing countries, including India and China, are seeking to limit the level of their gas dependence. Another is the need to control greenhouse gas emissions, especially using mechanisms set up under the Kyoto Protocol. Finally, the increase in gas prices on international markets also encourages this trend.

  1. A new model for coal gasification on pressurized bubbling fluidized bed gasifiers

    International Nuclear Information System (INIS)

    Sánchez, Cristian; Arenas, Erika; Chejne, Farid; Londoño, Carlos A.; Cisneros, Sebastian; Quintana, Juan C.

    2016-01-01

    Highlights: • A new model was proposed for the simulation of fluidized bed reactors. • The model was validated against experimental data found in the literature. • The model was compared and found to be superior to other models reported in the literature. • Effects of pressure, temperature, steam/coal and air/coal ratios over gas composition were studied. - Abstract: Many industries have taken interest in the use of coal gasification for the production of chemicals and fuels. This gasification can be carried out inside a fluidized bed reactor. This non-ideal reactor is difficult to predict due to the complex physical phenomena and the different chemical changes that the feedstock undergoes. The lack of a good model to simulate the reactor’s behavior produces less efficient processes and plant designs. Various approaches to the proper simulation of such reactor have been proposed. In this paper, a new model is developed for the simulation of a pressurized bubbling fluidized bed (PBFB) gasifier that rigorously models the physical phenomena and the chemical changes of the feedstock inside the reactor. In the model, the reactor is divided into three sections; devolatilization, volatile reactions and combustion-gasification. The simulation is validated against experimental data reported in the literature and compared with other models proposed by different authors; once the model is validated, the dependence of the syngas composition on operational pressure, temperature, steam/coal and air/coal ratios are studied. The results of this article show how this model satisfactorily predicts the performance of PBFB gasifiers.

  2. Method for the combustion of a gas, in fixed bed, with an oxidized solid and associated installation

    OpenAIRE

    Abanades García, Juan Carlos; Fernández García, José Ramón

    2014-01-01

    [EN] The present invention pertains to the field of the generation of energy from combustible gases, incorporating the capture of carbon dioxide for use or permanent storage and, specifically relates to cyclical methods of gas combustion with oxidized solids (chemical looping processes), in fixed bed, for solving the problem of controlling temperature in the combustion of gaseous fuels in fixed beds of metal oxides operating at high pressures, and also the associated installation.

  3. Numerical simulation of coupled binary gas-solid interaction during carbon dioxide sequestration in a coal bed

    International Nuclear Information System (INIS)

    Feng Qiyan; Zhou Lai; Chen Zhongwei; Liu Jishan

    2008-01-01

    Complicated coupled binary gas-solid interaction arises during carbon dioxide sequestration in a coal seam, which combines effects of CO 2 -CH 4 counter adsorption, CO 2 -CH 4 counter diffusion, binary gas flow and coal bed deformation. Through solving a set of coupled field governing equations, a novel full coupled Finite Element (FE) model was established by COMSOL Multiphysics. The new FE model was applied to the quantification of coal porous pressure, coal permeability, gas composition fraction and coal displacement when CO 2 was injected in a CH 4 saturated coal bed. Numerical results demonstrate that CH 4 is swept by the injected CO 2 accompanied by coal volumetric deformation. Compared to the single CH 4 in situ, CH 4 -CO 2 counter-diffusion induced coal swelling can make more compensation for coal shrinkage due to effective stress. Competing influences between the effective stress and the CH 4 -CO 2 counter-diffusion induced volume change governs the evolution of porous pressure and permeability, which is controlled by the porous pressure correspondingly. This achievement extends our ability to understand the coupled multi-physics of the CO 2 geological sequestration and CO 2 enhanced coal bed methane recovery under field conditions. (authors)

  4. Mathematical simulation of hazardous ion retention from radioactive waste in fixed bed reactor

    International Nuclear Information System (INIS)

    Sohsah, M.A.; Gohneim, M.M.; Othman, S.H.; El-Anadouli, B.E.

    2007-01-01

    Reactor design for fluid-solid, noncatalytic reaction depends on the prediction of the performance of the reactor kinetically. The most mathematical models used to handle fixed bed reactor in which the solid bed constitute one of the reactants, while a second reactant is in the fluid phase are complex and difficult to handle. A new mathematical model which easier to handle has been developed to describe the system under investigation. The model was examined theoretically and experimentally. A column backed with chelating cloth filter to separate radionuclide form radioactive waste solution is used as a practical application for the model. Comparison of the model predictions with the experimental results gives satisfactory agreement at most of the process stages

  5. Co-gasification of Colombian coal and biomass in fluidized bed: An experimental study

    Energy Technology Data Exchange (ETDEWEB)

    Jhon F. Velez; Farid Chejne; Carlos F. Valdes; Eder J. Emery; Carlos A. Londono [Universidad Nacional de Colombia, Antioquia (Colombia). Grupo de Termodinamica Aplicada y Energias Alternativas

    2009-03-15

    The main results of an experimental work on co-gasification of Colombian biomass/coal blends in a fluidized bed working at atmospheric pressure are reported in this paper. Several samples of blends were prepared by mixing 6-15wt% biomass (sawdust, rice or coffee husk) with coal. Experimental assays were carried out by using mixtures of different steams/blends (Rvc) and air/blend (Rac) ratios showing the feasibility to implement co-gasification as energetic alternative to produce fuel gas to heat and to generate electricity and the possibility of converting clean and efficiently the refuse coal to a low-heating value gas. 29 refs., 5 figs., 4 tabs.

  6. Development and linearization of generalized material balance equation for coal bed methane reservoirs

    International Nuclear Information System (INIS)

    Penuela, G; Ordonez R, A; Bejarano, A

    1998-01-01

    A generalized material balance equation was presented at the Escuela de Petroleos de la Universidad Industrial de Santander for coal seam gas reservoirs based on Walsh's method, who worked in an analogous approach for oil and gas conventional reservoirs (Walsh, 1995). Our equation was based on twelve similar assumptions itemized by Walsh for his generalized expression for conventional reservoirs it was started from the same volume balance consideration and was finally reorganized like Walsh (1994) did. Because it is not expressed in terms of traditional (P/Z) plots, as proposed by King (1990), it allows to perform a lot of quantitative and qualitative analyses. It was also demonstrated that the existent equations are only particular cases of the generalized expression evaluated under certain restrictions. This equation is applicable to coal seam gas reservoirs in saturated, equilibrium and under saturated conditions, and to any type of coal beds without restriction on especial values of the constant diffusion

  7. Computational fluid dynamics simulation for chemical looping combustion of coal in a dual circulation fluidized bed

    International Nuclear Information System (INIS)

    Su, Mingze; Zhao, Haibo; Ma, Jinchen

    2015-01-01

    Highlights: • CFD simulation of a 5 kW_t_h CLC reactor of coal was conducted. • Gas leakage, flow pattern and combustion efficiency of the reactor was analyzed. • Optimal condition was achieved based on operation characteristics understanding. - Abstract: A dual circulation fluidized bed system is widely accepted for chemical looping combustion (CLC) for enriching CO_2 from the utilization of fossil fuels. Due to the limitations of the measurement, the details of multiphase reactive flows in the interconnected fluidized bed reactors are difficult to obtain. Computational Fluid Dynamics (CFD) simulation provides a promising method to understand the hydrodynamics, chemical reaction, and heat and mass transfers in CLC reactors, which are very important for the rational design, optimal operation, and scaling-up of the CLC system. In this work, a 5 kW_t_h coal-fired CLC dual circulation fluidized bed system, which was developed by our research group, was first simulated for understanding gas leakage, flow pattern and combustion efficiency. The simulation results achieved good agreement with the experimental measurements, which validates the simulation model. Subsequently, to improve the combustion efficiency, a new operation condition was simulated by increasing the reactor temperature and decreasing the coal feeding. An improvement in the combustion efficiency was attained, and the simulation results for the new operation condition were also validated by the experimental measurements in the same CLC combustor. All of the above processes demonstrated the validity and usefulness of the simulation results to improve the CLC reactor operation.

  8. Design Strategy for CO2 Adsorption from Ambient Air Using a Supported Amine Based Sorbent in a Fixed Bed Reactor

    NARCIS (Netherlands)

    Yu, Qian; Brilman, D. W.F.

    In this work, a fixed bed reactor is evaluated for CO2 capture from ambient air using an amine based ion exchange resin. Using adsorption experiments, the effect of superficial velocity and bed length on process economics is investigated. It is shown that the optimal conditions are found at an

  9. Paleoecology of the Late Pennsylvanian-age Calhoun coal bed and implications for long-term dynamics of wetland ecosystems

    Energy Technology Data Exchange (ETDEWEB)

    Willard, Debra A. [US Geological Survey, 926A National Center, Reston (VA 20192 USA); Phillips, Tom L. [Department of Plant Biology, University of Illinois, Urbana (IL 61801 USA); Lesnikowska, Alicia D. [Box 24, Rt. 2, Vineyard Haven (MA 02568 USA); DiMichele, William A. [Department of Paleobiology, NMNH, Smithsonian Institution, Washington (DC 20560 USA)

    2007-01-02

    Quantitative plant assemblage data from coal balls, miospores, megaspores, and compression floras from the Calhoun coal bed (Missourian) of the Illinois Basin (USA) are used to interpret spatial and temporal changes in plant communities in the paleo-peat swamp. Coal-ball and miospore floras from the Calhoun coal bed are dominated strongly by tree ferns, and pteridosperms and sigillarian lycopsids are subdominant, depending on geographic location within the coal bed. Although the overall composition of Calhoun peat-swamp assemblages is consistent both temporally and spatially, site-to-site differences and short-term shifts in species dominance indicate local topographic and hydrologic control on species composition within the broader context of the swamp. Statistical comparison of the Calhoun miospore assemblages with those from other Late Pennsylvanian coal beds suggests that the same basic species pool was represented in each peat-swamp landscape and that the relative patterns of dominance and diversity were persistent from site to site. Therefore, it appears that the relative patterns of proportional dominance stayed roughly the same from one coal bed to the next during Late Pennsylvanian glacially-driven climatic oscillations. (author)

  10. Discussion on 'Solar detoxification of fuel-contaminated groundwater using fixed-bed photocatalysts'

    Energy Technology Data Exchange (ETDEWEB)

    Farrell, Joseph B.

    1997-03-15

    In a discussion of the 1997 paper by J. C. Crittenden et al. on the solar detoxification of fuel-contaminated groundwater using fixed-bed photocatalysts, the writer indicates a number of problems with the interpretation of the data and invites the authors to speculate on the reaction mechanism in the photocatalytic destruction of BTEX compounds in groundwater. In reply, Crittenden points out that it is not easy to speculate on the reaction mechanism because there are many compounds other than BTEX compounds contained in the water matrix, as well as many unknown compounds and by-products.

  11. Post-treatment of Fly Ash by Ozone in a Fixed Bed Reactor

    DEFF Research Database (Denmark)

    Pedersen, Kim Hougaard; Melia, M. C.; Jensen, Anker Degn

    2009-01-01

    to be fast. A kinetic model has been formulated, describing the passivation of carbon, and it includes the stoichiometry of the ozone consumption (0.8 mol of O-3/kg of C) and an ineffective ozone loss caused by catalytic decomposition. The simulated results correlated well with the experimental data....... prevents the AEA to be adsorbed. In the present work, two fly ashes have been ozonated in a fixed bed reactor and the results showed that ozonation is a potential post-treatment method that can lower the AEA requirements of a fly ash up to 6 times. The kinetics of the carbon oxidation by ozone was found...

  12. Modeling and Experimental Studies of Mercury Oxidation and Adsorption in a Fixed-Bed Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Buitrago, Paula A.; Morrill, Mike; Lighty, JoAnn S.; Silcox, Geoffrey D.

    2009-06-15

    This report presents experimental and modeling mercury oxidation and adsorption data. Fixed-bed and single-particle models of mercury adsorption were developed. The experimental data were obtained with two reactors: a 300-W, methane-fired, tubular, quartz-lined reactor for studying homogeneous oxidation reactions and a fixed-bed reactor, also of quartz, for studying heterogeneous reactions. The latter was attached to the exit of the former to provide realistic combustion gases. The fixed-bed reactor contained one gram of coconut-shell carbon and remained at a temperature of 150°C. All methane, air, SO2, and halogen species were introduced through the burner to produce a radical pool representative of real combustion systems. A Tekran 2537A Analyzer coupled with a wet conditioning system provided speciated mercury concentrations. At 150°C and in the absence of HCl or HBr, the mercury uptake was about 20%. The addition of 50 ppm HCl caused complete capture of all elemental and oxidized mercury species. In the absence of halogens, SO2 increased the mercury adsorption efficiency to up to 30 percent. The extent of adsorption decreased with increasing SO2 concentration when halogens were present. Increasing the HCl concentration to 100 ppm lessened the effect of SO2. The fixed-bed model incorporates Langmuir adsorption kinetics and was developed to predict adsorption of elemental mercury and the effect of multiple flue gas components. This model neglects intraparticle diffusional resistances and is only applicable to pulverized carbon sorbents. It roughly describes experimental data from the literature. The current version includes the ability to account for competitive adsorption between mercury, SO2, and NO2. The single particle model simulates in-flight sorbent capture of elemental mercury. This model was developed to include Langmuir and Freundlich isotherms, rate equations, sorbent feed rate, and

  13. Degradation of whey in an anaerobic fixed bed (AnFB) reactor

    OpenAIRE

    Handajani, Marisa

    2004-01-01

    An Anaerobic Fixed Bed (AnFB) reactor was run as an upflow anaerobic reactor with an arrangement of supporting material for growth of a biofilm. The supporting material was made from Liapor-clay-polyethylene sinter lamellas (Herding Co., Amberg). The AnFB reactor was used for treating high concentrations of whey-containing wastewater. Optimal operating conditions for whey treatment at a concentration of COD in the influent of around 50 g whey·l-1 were found for a hydraulic retention ...

  14. Integration of coal gasification and packed bed CLC for high efficiency and near-zero emission power generation

    NARCIS (Netherlands)

    Spallina, V.; Romano, M.C.; Chiesa, P.; Gallucci, F.; Sint Annaland, van M.; Lozza, G.

    2014-01-01

    A detailed thermodynamic analysis has been carried out of large-scale coal gasification-based power plant cycles with near zero CO2 emissions, integrated with chemical looping combustion (CLC). Syngas from coal gasification is oxidized in dynamically operated packed bed reactors (PBRs), generating a

  15. Comparison of coal/solid recovered fuel (SRF) with coal/refuse derived fuel (RDF) in a fluidised bed reactor

    International Nuclear Information System (INIS)

    Wagland, S.T.; Kilgallon, P.; Coveney, R.; Garg, A.; Smith, R.; Longhurst, P.J.; Pollard, S.J.T.; Simms, N.

    2011-01-01

    An experimental study was undertaken to compare the differences between municipal solid waste (MSW) derived solid recovered fuel (SRF) (complying with CEN standards) and refuse derived fuel (RDF). Both fuels were co-combusted with coal in a 50 kW fluidised bed combustor and the metal emissions were compared. Synthetic SRF was prepared in the laboratory by grinding major constituents of MSW such as paper, plastic, textile and wood. RDF was obtained from a local mechanical treatment plant. Heavy metal emissions in flue gas and ash samples from the (coal + 10% SRF) fuel mixture were found to be within the acceptable range and were generally lower than that obtained for coal + 10% RDF fuel mixture. The relative distribution of heavy metals in ash components and the flue gas stream shows the presence of a large fraction (up to 98%) of most of the metals in the ash (except Hg and As). Thermo-gravimetric (TG) analysis of SRF constituents was performed to understand the behaviour of fuel mixtures in the absence and presence of air. The results obtained from the experimental study will enhance the confidence of fuel users towards using MSW-derived SRF as an alternative fuel.

  16. Non-slag co-gasification of biomass and coal in entrained-bed furnace

    Science.gov (United States)

    Itaya, Yoshinori; Suami, Akira; Kobayashi, Nobusuke

    2018-02-01

    Gasification is a promising candidate of processes to upgrade biomass and to yield clean gaseous fuel for utilization of renewable energy resources. However, a sufficient amount of biomass is not always available to operate a large scale of the plant. Co-gasification of biomass with coal is proposed as a solution of the problem. Tar emission is another subject during operation in shaft or kiln type of gasifiers employed conventionally for biomass. The present authors proposed co-gasification of biomass and coal in entrained-bed furnace, which is a representative process without tar emission under high temperature, but operated so to collect dust as flyash without molten slag formation. This paper presents the works performed on co-gasification performance of biomass and pulverized coal to apply to entrained-bed type of furnaces. At first, co-gasification of woody powder and pulverized coal examined using the lab-scale test furnace of the down-flow entrained bed showed that the maximum temperatures in the furnace was over 1500 K and the carbon conversion to gas achieved at higher efficiency than 80-90 percent although the residence time in the furnace was as short as a few seconds. Non-slag co-gasification was carried out successfully without slag formation in the furnace if coal containing ash with high fusion temperature was employed. The trend suggesting the effect of reaction rate enhancement of co-gasification was also observed. Secondary, an innovative sewage sludge upgrading system consisting of self-energy recovery processes was proposed to yield bio-dried sludge and to sequentially produce char without adding auxiliary fuel. Carbonization behavior of bio-dried sludge was evaluated through pyrolysis examination in a lab-scale quartz tube reactor. The thermal treatment of pyrolysis of sludge contributed to decomposition and removal of contaminant components such as nitrogen and sulfur. The gasification kinetics of sludge and coal was also determined by a

  17. Hydrodynamic characteristics of a two-phase gas-liquid flow upward through a fixed bed of spherical particles

    Directory of Open Access Journals (Sweden)

    VELIZAR D. STANKOVIC

    2001-01-01

    Full Text Available The influence of an electrochemically generated gas phase on the hydrodynamic characteristics of a three-phase system has been examined. The two-phase fluid, (gas-liquid, in which the liquid phase is the continuous one, flows through a packed bed with glass spheres. The influence of the liquid velocity was examined, as well as the gas velocity and particle diameter on the pressure drop through the fixed bed. It was found that with increasing liquid velocity (wl = 0.0162–0.03 m/s, the relative pressure drop decreases through the fixed bed. With increasing current density, the pressure drop increases, since greater gas quantities stay behind in the fixed bed. Besides, it was found that with decreasing diameter of the glass particles, the relative pressure drop also decreases. The relationship betweeen the experimentally obtained friction factor and the Reynolds number was established.

  18. Gas generation by co-gasification of biomass and coal in an autothermal fluidized bed gasifier

    International Nuclear Information System (INIS)

    Wang, Li-Qun; Chen, Zhao-Sheng

    2013-01-01

    In this study, thermochemical biomass and coal co-gasification were performed on an autothermal fluidized bed gasifier, with air and steam as oxidizing and gasifying media. The experiments were completed at reaction temperatures of 875 °C–975 °C, steam-to-biomass ratio of 1.2, and biomass-to-coal ratio of 4. This research aims to determine the effects of reaction temperature on gas composition, lower heating value (LHV), as well as energy and exergy efficiencies, of the product gas. Over the ranges of the test conditions used, the product gas LHV varies between 12 and 13.8 MJ/Nm 3 , and the exergy and energy efficiencies of the product gas are in the ranges of 50.7%–60.8% and 60.3%–85.1%, respectively. The results show that high reaction temperature leads to higher H 2 and CO contents, as well as higher exergy and energy efficiencies of the product gas. In addition, gas LHV decreases with temperature. The molar ratio of H 2 /CO is larger than 1 at temperatures above 925 °C. Our experimental analysis shows that co-gasification of biomass and coal in an autothermal fluidized bed gasifier for gas production is feasible and promising. -- Highlights: • An innovative steam co-gasification process for gas production was proposed. • Co-gasification of biomass and coal in an autothermal fluidized bed gasifier was tested. • High temperature favors H 2 production. • H 2 and CO contents increase, whereas CO 2 and CH 4 levels decrease with increase in T. • Exergy and energy efficiencies of gases increase with increase in T

  19. Considerations on valorization of biomass origin materials in co-combustion with coal in fluidized beds

    Energy Technology Data Exchange (ETDEWEB)

    I. Gulyurtlu; P. Abelha; H. Lopes; A. Crujeira; I. Cabrita [DEECA-INETI, Lisbon (Portugal)

    2007-07-01

    Co-combustion of biomass materials with coal is currently gaining increasing importance, in order to meet the targets on greenhouse gas emissions, defined in the Kyoto protocol. Co-firing of coal with biomass materials could be the short-term solution in reducing CO{sub 2} emissions from power stations. The work undertaken studied co-firing of meat and bone meal (MBM), olive cake and straw pellets with bituminous coals from Colombia (CC) and Poland (PC), which are commonly used in European power stations. The co-combustion studies were carried out on the pilot fluidized bed installation of INETI. Gaseous pollutants and solid concentration in flue gases and ashes from different locations were monitored. Results obtained indicate that the co-feeding of biomass materials did not present any problem and ensured stable combustion conditions and high efficiency. However, for temperatures above 800{sup o}C, bed agglomeration could be observed for all biomass species studied. Most of the combustion of biomass material, contrary to that of coal, was observed to take place in the riser where the temperature was as high as 150-250{sup o}C above that of the bed. SO{sub 2} and NOx levels were found to be lower. The emissions of dioxins could be considerable with fuels with high Cl as is the case with straw. However, mixing of fuels with high S content could lead to a strong reduction in dioxin emissions. Ashes produced from biomass combustion may be considered for further reutilization or landfilling. Other options depend on their characteristics, chemical composition and leaching behaviour. This was evaluated in this study.

  20. Methodology for the exploration of coal bed methane (CBM in Colombia coal basins

    Directory of Open Access Journals (Sweden)

    Jorge E. Mariño

    2013-07-01

    additional equipment have been adapted and improved in the UPTC by Geological Engineering research group during the last years. These CBM guides have been written following the current knowledge on CBM and propose additional recommendations for making the sampling and gas measuring more reliable and supportive of the CBM exploration projects that are taking place in the different coal basins in Colombia.

  1. Agglomeration and reaction characteristics of various coal chars in fluidized-bed coal gasifier; Ryudoso sekitan gas ka ronai deno sekitan no gyoshu tokusei to hanno tokusei

    Energy Technology Data Exchange (ETDEWEB)

    Uemiya, S.; Aoki, K.; Mori, S.; Kojima, T. [Seikei University, Tokyo (Japan). Faculty of Engineering

    1996-10-28

    With relation to the coals delivered as common samples in the coal fundamental technology development project, an experimental study was conducted on agglomeration characteristics and reaction characteristics in the fluidized-bed coal gasifier. For the experiment, used was a fluidized bed gasifier inserted with a cone-shape dispersion plate with a nozzle in the center. After raising the temperature of the gasifier up to 773K, gasification was conducted sending to the gasifier air from the nozzle and steam from the dispersion plate. The mean particle diameter and gas concentration of chars were measured till the temperature reaches 1373K. As a result of the experiment, it was confirmed that the carbon conversion ratio increases with a decrease in coalification degree of the coal. Moreover, influence of the coal kind was markedly observed at the grid zone of the lower part of the bed, and it was clarified that the lower carbon content ratio the coal kind has, the faster the speed of CO formation and water gasification get. The agglomeration temperature of charcoal which is a product of the condensate is lower by as many as several hundred K than the point of softening, and it was considered to be necessary to study the relation with the temperature distribution in the bed. 3 refs., 3 figs., 1 tab.

  2. Remediation of trichloroethylene by bio-precipitated and encapsulated palladium nanoparticles in a fixed bed reactor.

    Science.gov (United States)

    Hennebel, Tom; Verhagen, Pieter; Simoen, Henri; De Gusseme, Bart; Vlaeminck, Siegfried E; Boon, Nico; Verstraete, Willy

    2009-08-01

    Trichloroethylene is a toxic and recalcitrant groundwater pollutant. Palladium nanoparticles bio-precipitated on Shewanella oneidensis were encapsulated in polyurethane, polyacrylamide, alginate, silica or coated on zeolites. The reactivity of these bio-Pd beads and zeolites was tested in batch experiments and trichloroethylene dechlorination followed first order reaction kinetics. The calculated k-values of the encapsulated catalysts were a factor of six lower compared to non-encapsulated bio-Pd. Bio-Pd, used as a catalyst, was able to dechlorinate 100 mgL(-1) trichloroethylene within a time period of 1h. The main reaction product was ethane; yet small levels of chlorinated intermediates were detected. Subsequently polyurethane cubes empowered with bio-Pd were implemented in a fixed bed reactor for the treatment of water containing trichloroethylene. The influent recycle configuration resulted in a cumulative removal of 98% after 22 h. The same reactor in a flow through configuration achieved removal rates up to 1059 mg trichloroethylene g Pd(-1)d(-1). This work showed that fixed bed reactors with bio-Pd polyurethane cubes can be instrumental for remediation of water contaminated with trichloroethylene.

  3. A Photocatalytic Active Adsorbent for Gas Cleaning in a Fixed Bed Reactor

    Directory of Open Access Journals (Sweden)

    Peter Pucher

    2008-01-01

    Full Text Available Efficient photocatalysis for gas cleaning purposes requires a large accessible, illuminated active surface in a simple and compact reactor. Conventional concepts use powdered catalysts, which are nontransparent. Hence a uniform distribution of light is difficult to be attained. Our approach is based on a coarse granular, UV-A light transparent, and highly porous adsorbent that can be used in a simple fixed bed reactor. A novel sol-gel process with rapid micro mixing is used to coat a porous silica substrate with TiO2-based nanoparticles. The resulting material posses a high adsorption capacity and a photocatalytic activity under UV-A illumination (PCAA = photocatalytic active adsorbent. Its photocatalytic performance was studied on the oxidation of trichloroethylene (TCE in a fixed bed reactor setup in continuous and discontinuous operation modes. Continuous operation resulted in a higher conversion rate due to less slip while discontinuous operation is superior for a total oxidation to CO2 due to a user-defined longer residence time.

  4. High temperature CO2 capture using calcium oxide sorbent in a fixed-bed reactor

    International Nuclear Information System (INIS)

    Dou Binlin; Song Yongchen; Liu Yingguang; Feng Cong

    2010-01-01

    The gas-solid reaction and breakthrough curve of CO 2 capture using calcium oxide sorbent at high temperature in a fixed-bed reactor are of great importance, and being influenced by a number of factors makes the characterization and prediction of these a difficult problem. In this study, the operating parameters on reaction between solid sorbent and CO 2 gas at high temperature were investigated. The results of the breakthrough curves showed that calcium oxide sorbent in the fixed-bed reactor was capable of reducing the CO 2 level to near zero level with the steam of 10 vol%, and the sorbent in CaO mixed with MgO of 40 wt% had extremely low capacity for CO 2 capture at 550 deg. C. Calcium oxide sorbent after reaction can be easily regenerated at 900 deg. C by pure N 2 flow. The experimental data were analyzed by shrinking core model, and the results showed reaction rates of both fresh and regeneration sorbents with CO 2 were controlled by a combination of the surface chemical reaction and diffusion of product layer.

  5. Dynamic modeling of fixed-bed adsorption of flue gas using a variable mass transfer model

    International Nuclear Information System (INIS)

    Park, Jehun; Lee, Jae W.

    2016-01-01

    This study introduces a dynamic mass transfer model for the fixed-bed adsorption of a flue gas. The derivation of the variable mass transfer coefficient is based on pore diffusion theory and it is a function of effective porosity, temperature, and pressure as well as the adsorbate composition. Adsorption experiments were done at four different pressures (1.8, 5, 10 and 20 bars) and three different temperatures (30, 50 and 70 .deg. C) with zeolite 13X as the adsorbent. To explain the equilibrium adsorption capacity, the Langmuir-Freundlich isotherm model was adopted, and the parameters of the isotherm equation were fitted to the experimental data for a wide range of pressures and temperatures. Then, dynamic simulations were performed using the system equations for material and energy balance with the equilibrium adsorption isotherm data. The optimal mass transfer and heat transfer coefficients were determined after iterative calculations. As a result, the dynamic variable mass transfer model can estimate the adsorption rate for a wide range of concentrations and precisely simulate the fixed-bed adsorption process of a flue gas mixture of carbon dioxide and nitrogen.

  6. Determination of the enzyme reaction rate in a differential fixed-bed reactor: a case study

    Directory of Open Access Journals (Sweden)

    Baruque Filho E.A.

    2001-01-01

    Full Text Available The reaction rate of starch hydrolysis catalyzed by a glucoamylase covalently bound to chitin particles was measured in a Differential Fixed-Bed Reactor (DFBR. Under selected test conditions the initial reaction rate may represent biocatalyst activity. Some aspects which influence measurement of the initial reaction rate of an immobilized enzyme were studied: the amount of desorbed enzyme and its hydrolytic activity, the extent of pore blockage of the biocatalyst caused by substrate solution impurities and the internal and external diffusional mass transfer effects. The results showed that the enzyme glucoamylase was firmly bound to the support, as indicated by the very low amount of desorbed protein found in the recirculating liquid. Although this protein was very active, its contribution to the overall reaction rate was negligible. It was observed that the biocatalyst pores were susceptible to being blocked by the impurities of the starch solution. This latter effect was accumulative, increasing with the number of sequential experiments carried out. When the substrate solution was filtered before use, very reliable determinations of immobilized enzyme reaction rates could be performed in the DFBR. External and internal diffusional resistences usually play a significant role in fixed-bed reactors. However, for the experimental system studied, internal mass transfer effects were not significant, and it was possible to select an operational condition (recirculation flow rate value that minimized the external diffusional limitations.

  7. Optimal scheduling for enhanced coal bed methane production through CO2 injection

    International Nuclear Information System (INIS)

    Huang, Yuping; Zheng, Qipeng P.; Fan, Neng; Aminian, Kashy

    2014-01-01

    Highlights: • A novel deterministic optimization model for CO 2 -ECBM production scheduling. • Maximize the total profit from both sales of natural gas and CO 2 credits trading in the carbon market. • A stochastic model incorporating uncertainties and dynamics of NG price and CO 2 credit. - Abstract: Enhanced coal bed methane production with CO 2 injection (CO 2 -ECBM) is an effective technology for accessing the natural gas embedded in the traditionally unmineable coal seams. The revenue via this production process is generated not only by the sales of coal bed methane, but also by trading CO 2 credits in the carbon market. As the technology of CO 2 -ECBM becomes mature, its commercialization opportunities are also springing up. This paper proposes applicable mathematical models for CO 2 -ECBM production and compares the impacts of their production schedules on the total profit. A novel basic deterministic model for CO 2 -ECBM production including the technical and chemical details is proposed and then a multistage stochastic programming model is formulated in order to address uncertainties of natural gas price and CO 2 credit. Both models are nonlinear programming problems, which are solved by commercial nonlinear programming software BARON via GAMS. Numerical experiments show the benefits (e.g., expected profit gain) of using stochastic models versus deterministic models

  8. Pyrolysis of the lignocellulose fermentation residue by fixed-bed micro reactor

    International Nuclear Information System (INIS)

    Wang, Ze; Lin, Weigang; Song, Wenli; Wu, Xuexing

    2012-01-01

    Thermal gravimetric (TG) analysis was conducted to compare the fundamental pyrolytic behaviors between the lignocellulose fermentation residue (LFR) and three other biomass raw materials. It was found that the TG weight loss curve of LFR appeared very close to the curve of acidified alkaline lignin (AAL), but different to the material of dried distillers grains with solubles (DDGS, also a fermentation residue but obtained from liquor producing process). Pyrolysis of LFR by fixed-bed micro reactor in the range of 430 °C–700 °C was carried out. It was found that the liquid yield had a maximum value at the pyrolytic temperature of 475 °C. The oil phase of the liquid was mainly composed of phenols, and the content of dimethyl phenol and fatty acids decreased with increasing pyrolytic temperature. In the aqueous liquid, besides the most abundant phenol derivatives, small acids and nitrogen containing compounds appeared more. -- Highlights: ► The tense of the paper has been revised. ► The description of the experimental procedure was kept in past tense. ► The expression of ‘fixed bed’ was changed to ‘fixed-bed’.

  9. The correlation of coal beds in Squaw Basin and part of Eden Ridge, T. 33 S., R. 11 W., W. M., southwestern Oregon

    Science.gov (United States)

    Wayland, Russell Gibson

    1965-01-01

    A conflict in correlation of coal beds dating from 1914 is reexamined-with the aid of new. core hole data, photogeologic interpretation, a broader understanding of the stratigraphy, and brief field studies. It is concluded that the known coal beds in Squaw Basin area of limited lateral extent and are older than those exposed at Eden Ridge. Similar coal beds may be found in other rocks of the Tyee Formation in this area. More core drilling could be justified.

  10. FY 1996 report on the results of the development of an entrained bed coal gasification power plant. Part 2. Investigational study of verification plant; 1995 nendo seika hokokusho. Funryusho sekitan gaska hatsuden plant kaihatsu - Sono 2. Jissho plant ni kansuru chosa kenkyu hen

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-01-01

    For the purpose of developing the technology of the integrated coal gasification combined cycle power generation, an investigational study of verification plant was made, and the FY 1996 results were summarized. In this fiscal year, the conceptual design was made of the Nakoso method based on the method of Nakoso pilot plant, the fixed bed method in which fixed bed gas refining facilities tested in Nakoso pilot plant were adopted, and the packed bed method. In the Nakoso method, 5 cases were studied using the air blown two-stage entrained bed for gasifier, dry two-stage fluidized bed for desulfurization and dry granular bed packed bed for dust removal. In the fixed bed method, 2 cases were studied using the air blown two-stage entrained bed for gasifier and dry fixed bed for gas refining. In the packed bed method, 2 cases were studied using the air blown two-stage entrained bed for gasifier and dry packed bed for gas refining. As to gas turbine facilities, 5 cases were studied in which GT output is 115MW - 215MW (output of combined cycle power generation: 220MW - 420MW). (NEDO)

  11. Removing heavy metals from wastewaters with use of shales accompanying the coal beds.

    Science.gov (United States)

    Jabłońska, Beata; Siedlecka, Ewa

    2015-05-15

    A possibility of using clay waste rocks (shales) from coal mines in the removal of heavy metals from industrial wastewaters is considered in this paper. Raw and calcined (600 °C) shales accompanying the coal beds in two Polish coal mines were examined with respect to their adsorptive capabilities for Pb, Ni and Cu ions. The mineralogical composition of the shales was determined and the TG/DTG analysis was carried out. The granulometric compositions of raw and calcined shales were compared. Tests of adsorption for various Pb(II), Ni(II) and Cu(II) concentrations were conducted and the pH before and after adsorption was analyzed. The results indicate that the shales from both coal mines differ in adsorptive capabilities for particular metal ions. The calcination improved the adsorptive capabilities for lead, but worsened them for nickel. The examined shales have good adsorptive capabilities, and could be used as inexpensive adsorbents of heavy metal ions, especially in the regions where resources of shale are easy accessible in the form of spoil tips. Copyright © 2015 Elsevier Ltd. All rights reserved.

  12. Entrained bed gasification of coal: prediction of contaminant levels using thermodynamic calculations

    Energy Technology Data Exchange (ETDEWEB)

    Furimsky, E.; Zheng, L.; Boudreau, F.; Kovacik, G. (CANMET, Ottawa, ON (Canada). Energy Research Labs.)

    1993-10-01

    The F.A.C.T. method was used for predicting the emissions of S-, Cl-, N-, Pb- and As-containing contaminants from entrained bed gasification of one bituminous coal and one subbituminous coal. When the effect of mineral matter was included, the emissions of H[sub 2]S, CS[sub 2], COS, HCl and HCN decreased substantially whereas the amount of predicted NH[sub 3] remained unaffected. The decrease was offset by increased formation of metal sulphides, chlorides and cyanides. Relatively large amounts of Na, K, Mg, Ca, Pb and As in the gas were predicted by the method. The chlorides of these metals are also rather volatile. The presence of steam increased the amount of H[sub 2]S and HCl and decreased the amount of HCN in the products. 8 refs., 5 figs., 5 tabs.

  13. Investigation of combustion of coal briquettes in a fluidized bed reactor

    Energy Technology Data Exchange (ETDEWEB)

    Boavida, Dulce; Abelha, Pedro; Gulyurtlu, Ibrahim; Cabrita, Isabel

    1999-07-01

    This paper discusses the results obtained from an experimental combustion work undertaken to investigate the behaviour of multicomponent briquettes, prepared by mixing two different particle sizes of coal and two different types of binder species. single briquettes were burned over a wide range of temperatures in a laboratory scale fluidised bed combustor facility. Nitrogen (NO{sub x}, and N{sub 2}O) and Sulphur (SO{sub 2}) oxides emissions resulting from the combustion of these briquettes were constantly monitored during the time of burning. The levels of O{sub 2}, CO{sub 2} and CO were also recorded during the same period. Experimental results showed that coal particle size influenced burn-out times and emissions levels of some of gaseous species. The hinder type was also found to have a major influence on the emissions of different pollutants.The temperature was observed to significantly influence the extent of the effects of the other operating parameters studied.

  14. Analysis of flammability limits for the liquefaction process of oxygen-bearing coal-bed methane

    International Nuclear Information System (INIS)

    Li, Q.Y.; Wang, L.; Ju, Y.L.

    2011-01-01

    Highlights: → A novel liquefaction and distillation process is designed for oxygen bearing coal-bed methane. → Oxygen contained in coal-bed methane is removed in distillation process. → Flammability limits are analyzed for the whole operation process. → We find explosion hazard may exist in distillation tower. → Effective measures are proposed to ensure the operation safety in distillation tower. - Abstract: A novel liquefaction and distillation process has been proposed and designed for the typical oxygen-bearing coal-bed methane (CBM), in which the impurities of the oxygen and nitrogen components are removed in the distillation column. The flammability limit theory combining with HYSYS simulation results are employed to analyze and calculate the flammability limits and the results indicate that no flammability hazard exists in the stages of compression, liquefaction and throttling. However, flammability hazard exists at the top the distillation column because the methane mole fraction decreases to the value below the upper flammability limit (UFL). The safety measures of initially removing oxygen content from the feed gas combining with the control of the bottom flowrate (flowrate of the liquid product at column bottom) are proposed to ensure the operation safety of the liquefaction process. The results reveal that the operation safety of the whole process can be guaranteed, together with high methane recovery rate and high purity of the liquid product. The applicability of the liquefaction process has also been analyzed in this paper. The simulation results can offer references for the separation of oxygen from CBM, the analysis of flammability limits and the safety measures for the whole process.

  15. Conceptual designs of pressurized fluidized bed and pulverized coal fired power plants

    International Nuclear Information System (INIS)

    Doss, H.S.; Bezella, W.A.; Hamm, J.R.; Pietruszkiewicz, J.

    1984-01-01

    This paper presents the major technical and economic characteristics of steam and air-cooled pressurized fluidized bed (PFB) power plant concepts, along with the characteristics of a pulverized coal fired power plant equipped with an adipic acid enhanced wet-limestone flue gas desulfurization system. Conceptual designs for the three plants were prepared to satisfy a set of common groundrules developed for the study. Grassroots plants, located on a generic plant site were assumed. The designs incorporate technologies projected to be commercial in the 1990 time frame. Power outputs, heat rates, and costs are presented

  16. Gasification of biomass and coal in a pressurised fluidised bed gasifier

    Energy Technology Data Exchange (ETDEWEB)

    Andries, J; Jong, W de; Hein, K R.G. [Technische Univ. Delft (Netherlands)

    1998-09-01

    During a 3 year (1996-1998) multinational JOULE project, partly funded by the EU, experimental and theoretical research is being done on co-gasification of biomass (pelletised straw and Miscanthus) and coal in a pressurised fluidised bed reactor. The influence of feedstock and operating conditions on gasification characteristics has been studied using a 1.5 MW{sub th} gasifier, which has been operated at a pressure of 5 bar and temperatures up to 900 C. The project and the test rig are described and results obtained in the first part of the project are presented and analysed. (orig.)

  17. Geology and coal-bed methane resources of the northern San Juan Basin, Colorado and New Mexico

    International Nuclear Information System (INIS)

    Fassett, J.E.

    1988-01-01

    This guidebook is the first of its kind: A focused look at coal-bed methane in a large Rocky Mountain Laramide basin. The papers in this volume cover every aspect of coal-bed methane in the San Juan Basin, including: The geology, environments of deposition, and geometry of the coal beds that contain the resource; the origin and migration history of the gas; basin-wide resource estimates; the engineering aspects of getting the gas out of the ground; the marketing and economics of producing coal-bed methane in the San Juan Basin; the legal ownership of the gas; state regulations governing well spacing and field rules; disposal of produced water; and land and mineral ownership patterns in the northern part of the basin. Also included are detailed papers on all of the major coal-bed methane fields in the basin, and in a paper on the history of Fruitland gas production, a discussion of most of the not-so-major fields. A small section of the book deals with geophysical methods, as yet still experimental, for surface detection of underground hydrocarbon resources. Individual papers have been processed separately for inclusion on the data base

  18. Hydropyrolysis of extracted Euphorbia rigida in a well-swept fixed-bed tubular reactor

    Energy Technology Data Exchange (ETDEWEB)

    Gercel, H.F.; Putun, A.E.; Putun, E.

    2002-05-01

    Tubular reactor fixed-bed hydropyrolysis experiments have been conducted on a sample of extracted Euphorbia rigida to determine the possibility of being a potential source of renewable fuels and chemical feedstock. The effects of hydropyrolysis temperature and heating rate on the hydropyrolysis yields and chemical compositions have been investigated. The maximum bio-oil yield of 39.8 wt% was obtained in H{sub 2} atmosphere at a hydrogen pressure of 150 bar, a hydrogen flow rate of 5 dm{sup 3} min{sup -} {sup 1}, a hydropyrolysis temperature of 550{sup o}C, and a heating rate of 100{sup o}C min{sup -1}. Then this bio-oil was characterized by elemental analysis and {sup 1}H nuclear magnetic resonance (NMR) techniques. (author)

  19. Fixed-bed hydrogen pyrolysis of rapeseed: product yields and compositions

    International Nuclear Information System (INIS)

    Onay, O.; Kockar, O.M.; Gaines, A.F.; Snape, C.E.

    2006-01-01

    The fixed-bed hydro pyrolysis tests have been conducted on a sample of rapeseed to investigate the effect of hydro pyrolysis on the yields and chemical structures of bio-oils, with a view to improving overall product quality. A ammonium dioxydithiomolybdenate catalyst has been used in some tests to further increase conversion. The maximum bio-oil yield of 84% was obtained in hydrogen atmosphere (with catalyst) at hydrogen pressure of 15 MPa, hydrogen flow rate of 10 dm 3 min -1 , hydro pyrolysis temperature of 520 degree C, and heating rate of 5 o Cmin -1 . Then this bio-oil was characterized by elemental analysis and some spectroscopic and chromatographic techniques. And finally, this bio-oil yield and chemical composition compared with oil obtained from fast pyrolysis condition

  20. Transient Effects in Fischer-Tropsch Reactor with a Fixed Bed of Catalyst Particles

    Directory of Open Access Journals (Sweden)

    I. V. Derevich

    2015-01-01

    Full Text Available Based on analysis of small temperature disturbances in the Fischer-Tropsch reactor with a fixed bed of catalyst particles various scenarios of thermal instability were investigated. There are two possible scenarios of thermal instability of the reactor. First, thermal explosion may occur due to growth of temperature disturbances inside a catalytic granule. Second scenario connected with loss of thermal stability as a result of an initial increase in temperature in the reactor volume. The boundaries of thermal stability of the reactor were estimated by solving the eigenvalue problems for spherical catalyst particles and cylindrical reactor. Processes of diffusional resistance inside the catalytic granule and heat transfer from wall of the reactor tube are taken into account. Estimation of thermal stability area is compared with the results of numerical simulation of behavior of temperature and concentration of synthesis gas.

  1. Sintering study in vertical fixed bed reactor for synthetic aggregate production

    International Nuclear Information System (INIS)

    Quaresma, D.S.; Neves, A.S.S.; Melo, A.O.; Pereira, L.F.S.; Bezerra, P.T.S.; Macedo, E.N.; Souza, J.A.S.

    2017-01-01

    The synthetic aggregates are being employed in civil construction for the reduction of mineral extraction activities. Within this context, the recycling of industrial waste is the basis of the majority of processes to reduce the exploitation of mineral resources. In this work the sintering in a vertical fixed bed reactor for synthetic aggregate production using 20% pellets and 80% charcoal was studied. The pellets were prepared from a mixture containing clay, charcoal and fly ash. Two experiments varying the speed of air sucking were carried out. The material produced was analyzed by X-ray diffraction, scanning electron microscopy, measures of their ceramic properties, and particle size analysis. The results showed that the solid-state reactions, during the sintering process, were efficient and the produced material was classified as coarse lightweight aggregate. The process is interesting for the sintering of aggregates, and can be controlled by composition, particle size, temperature gradient and gaseous flow. (author)

  2. Numerical modelling of biomass combustion: Solid conversion processes in a fixed bed furnace

    Science.gov (United States)

    Karim, Md. Rezwanul; Naser, Jamal

    2017-06-01

    Increasing demand for energy and rising concerns over global warming has urged the use of renewable energy sources to carry a sustainable development of the world. Bio mass is a renewable energy which has become an important fuel to produce thermal energy or electricity. It is an eco-friendly source of energy as it reduces carbon dioxide emissions. Combustion of solid biomass is a complex phenomenon due to its large varieties and physical structures. Among various systems, fixed bed combustion is the most commonly used technique for thermal conversion of solid biomass. But inadequate knowledge on complex solid conversion processes has limited the development of such combustion system. Numerical modelling of this combustion system has some advantages over experimental analysis. Many important system parameters (e.g. temperature, density, solid fraction) can be estimated inside the entire domain under different working conditions. In this work, a complete numerical model is used for solid conversion processes of biomass combustion in a fixed bed furnace. The combustion system is divided in to solid and gas phase. This model includes several sub models to characterize the solid phase of the combustion with several variables. User defined subroutines are used to introduce solid phase variables in commercial CFD code. Gas phase of combustion is resolved using built-in module of CFD code. Heat transfer model is modified to predict the temperature of solid and gas phases with special radiation heat transfer solution for considering the high absorptivity of the medium. Considering all solid conversion processes the solid phase variables are evaluated. Results obtained are discussed with reference from an experimental burner.

  3. Release of nitrogen precursors from coal and biomass residues in a bubbling fluidized bed

    Energy Technology Data Exchange (ETDEWEB)

    P. Abelha; I. Gulyurtlu; I. Cabrita [Instituto Nacional de Engenharia, Lisbon (Portugal)

    2008-01-15

    This work was undertaken with the aim of quantifying the relative amounts of NH{sub 3} and HCN released from different residues during their devolatilization under fluidized bed conditions. The results were compared with data collected for bituminous coals of different origin. The relation between amounts of HCN and NH{sub 3} released and the levels of NOX and N{sub 2}O formed during cocombustion was also addressed. The partitioning of nitrogen between volatiles and char was also quantified. The pyrolysis studies were undertaken in a small fluidized bed reactor of 80 mm of ID and 500 mm high using an inert atmosphere (N{sub 2}). The HCN and NH{sub 3} were quantified by bubbling the pyrolysis gases in absorbing solutions which were subsequently analyzed with selective electrodes. The combustion studies were carried out on a pilot installation. The fluidized bed combustor is square in cross section with each side being 300 mm long. There is secondary air supply to the freeboard at different heights to deal with high volatile fuels as almost all waste materials are. The temperatures in the bed and in the freeboard and that of the flue gases leaving the reactor were continuously monitored. The results obtained suggest that, while coal releases nitrogen mostly as HCN, residues like RDF and sewage sludge give out fuel-N in greater quantities as NH{sub 3}. Residues at fluidized bed combustion (FBC) temperatures release more than 80% of the fuel-N with the volatiles. The NH{sub 3} evolved during pyrolysis acted as a reducing agent on NOX emissions. The presence of calcium significantly reduces the emission of N{sub 2}O probably by interfering with HCN chemistry. With high amounts of residues in the fuel mixture, the relative importance of char on the nitrogen chemistry substantially decreases. By using cocombustion, it is possible to reduce fuel-N conversion to NOX and N{sub 2}O, by tuning the amounts of coal and residue in the mixture. 29 refs., 18 figs., 3 tabs.

  4. Computational Fluid Dynamics Simulations of Gas-Phase Radial Dispersion in Fixed Beds with Wall Effects

    Directory of Open Access Journals (Sweden)

    Anthony G. Dixon

    2017-10-01

    Full Text Available The effective medium approach to radial fixed bed dispersion models, in which radial dispersion of mass is superimposed on axial plug flow, is based on a constant effective dispersion coefficient, DT. For packed beds of a small tube-to-particle diameter ratio (N, the experimentally-observed decrease in this parameter near the tube wall is accounted for by a lumped resistance located at the tube wall, the wall mass transfer coefficient km. This work presents validated computational fluid dynamics (CFD simulations to obtain detailed radial velocity and concentration profiles for eight different computer-generated packed tubes of spheres in the range 5.04 ≤ N ≤ 9.3 and over a range of flow rates 87 ≤ Re ≤ 870 where Re is based on superficial velocity and the particle diameter dp. Initial runs with pure air gave axial velocity profiles vz(r averaged over the length of the packing. Then, simulations with the tube wall coated with methane yielded radial concentration profiles. A model with only DT could not describe the radial concentration profiles. The two-parameter model with DT and km agreed better with the bed-center concentration profiles, but not with the sharp decreases in concentration close to the tube wall. A three-parameter model based on classical two-layer mixing length theory, with a wall-function for the decrease in transverse radial convective transport in the near-wall region, showed greatly improved ability to reproduce the near-wall concentration profiles.

  5. Preliminary assessment of the health and environmental impacts of fluidized-bed combustion of coal as applied to electrical utility systems

    Energy Technology Data Exchange (ETDEWEB)

    None

    1977-02-01

    The objective of this study was to assess the health and environmental impacts of fluidized-bed combustion of coal (FBC), specifically as applied to base-load generation of electrical energy by utilities. The public health impacts of Fluidized-Bed Combustion (FBC) plants are expected to be quite similar to those for Low Sulfur Coal (LSC) and Flue Gas Desulfurization (FGD) plants because all appear to be able to meet Federal emission standards; however, there are emissions not covered by standards. Hydrocarbon emissions are higher and trace element emissions are lower for FBC than for conventional technologies. For FBC, based on an analytical model and a single emission data point, the polycyclic organic material decreases the anticipated lifespan of the highly exposed public very slightly. Added health protection due to lower trace element emissions is not known. Although there is a large quantity of solid wastes from the generating plant, the environmental impact of the FBC technology due to solid residue appears lower than for FGD, where sludge management requires larger land areas and presents problems due to the environmentally noxious calcium sulfite in the waste. Fixing the sludge may become a requirement that increases the cost of wet-limestone FGD but makes that system more acceptable. The potential for aquatic or terrestrial impacts from hydrocarbon emissions is low. If application of AFBC technology increases the use of local high-sulfur coals to the detriment of western low-sulfur coal, a sociological benefit could accrue to the FBC (or FGD) technology, because impacts caused by western boom towns would decrease. The infrastructure of areas that mine high-sulfur coal in the Midwest are better equipped to handle increased mining than the West.

  6. Co-firing coal and hospital waste in a circulating fluidized bed boiler

    International Nuclear Information System (INIS)

    Coulthard, E.J.; Korenberg, J.; Oswald, K.D.

    1991-01-01

    The Department of Energy - Morgantown Energy Technology Center and the Pennsylvania Energy Development Authority are co-funding a project which will demonstrate the reduction of infectious hospital waste to an environmentally safe disposable ash by cofiring the waste with coal in a circulating fluidized bed (CFB). The main objective of this paper is increased utilization of coal but the project also provides a solution to a problem which has grown rapidly and become very visible in recent years (e.g., hospital waste washed up on beaches). The application of CFB boilers in hospitals introduces an economical clean coal technology into a size range and market dominated by gas and oil combustion systems. The use of CFB represents the utilization of state-of-the-art technology for burning coal in an environmentally benign manner. SO 2 , NO x , CO and particulate emissions lower than the latest New Source Performance Standards have proven to be achievable in CFB combustion systems. By processing the infectious waste in a steam generation system which operates continuously, the problem of creating excessive gaseous emissions during repeated start-ups (as is the case with current incinerator technology) is avoided. The operating conditions with respect to residence time, temperature and turbulence that are inherent to a CFB combustion system, provide an excellent environment for complete combustion and destruction of potentially hazardous solid and gaseous emissions (e.g., dioxins). The limestone, which is injected into the combustion system to reduce SO 2 emissions, will also react with chlorine. Thus chlorine compound emissions and the corrosive nature of the flue gas are reduced. The work efforts to date indicate that infectious waste thermal processing in a coal-fired CFB is a technically and economically viable on-site disposal option

  7. Solid diffusion control of the adsorption of basic dyes onto granular activated carbon and natural zeolite in fixed bed columns

    Directory of Open Access Journals (Sweden)

    M. MARINKOVSKI

    2001-07-01

    Full Text Available The adsorption of basic dyes from aqueous solutions onto granular activated carbon and natural zeolite was studied using a fixed bed column. The design procedures for fixed bed adsorption columns were investigated for two basic dyes Maxilon Goldgelb GL EC 400 % (MG-400 and Maxilon Schwarz FBL-01 300 % (MS-300. A computer program based on the solid diffusion control model has been developed. The model parameters: solid diffusion coefficient, DS, axial dispersion coefficient, DL and external mass transfer coefficient, kf for all the investigated systems were estimated by means of a best fit approach.

  8. Thermal activation and characterization of clay aiming their use as sorbent in fixed bed columns to remove cadmium

    International Nuclear Information System (INIS)

    Silva, M.M. da; Rodrigues, M.G.F.; Silva, M.L.P.; Kleinübing, S.J.; Silva, M.G.C.

    2011-01-01

    In this work we studied the removal of cadmium in a synthetic wastewater using clay of Pernambuco - Brazil, in systems of fixed bed column. Clay was thermally activated at 500 °C. The materials were characterized using X-ray Fluorescence (XRF), X-ray Diffraction (XRD) and nitrogen adsorption (BET method). For tests in fixed bed column, we applied a factorial design 2"2 and found that increasing the flow adversely affects the process of removing cadmium concentration while acting positively. The studies showed these materials as promising for the removal of Cd"2"+ ions in synthetic wastewater containing low levels of this metal. (author)

  9. Flow of power-law fluids in fixed beds of cylinders or spheres

    KAUST Repository

    Singh, John P.

    2012-10-29

    An ensemble average of the equations of motion for a Newtonian fluid over particle configurations in a dilute fixed bed of spheres or cylinders yields Brinkman\\'s equations of motion, where the disturbance velocity produced by a test particle is influenced by the Newtonian fluid stress and a body force representing the linear drag on the surrounding particles. We consider a similar analysis for a power-law fluid where the stress τ is related to the rate of strain e by τ = 2m en-1e, where m and n are constants. In this case, the ensemble-averaged momentum equation includes a body force resulting from the nonlinear drag exerted on the surrounding particles, a power-law stress associated with the disturbance velocity of the test particle, and a stress term that is linear with respect to the test particle\\'s disturbance velocity. The latter term results from the interaction of the test particle\\'s velocity disturbance with the random straining motions produced by the neighbouring particles and is important only in shear-thickening fluids where the velocity disturbances of the particles are long-ranged. The solutions to these equations using scaling analyses for dilute beds and numerical simulations using the finite element method are presented. We show that the drag force acting on a particle in a fixed bed can be written as a function of a particle-concentration-dependent length scale at which the fluid velocity disturbance produced by a particle is modified by hydrodynamic interactions with its neighbours. This is also true of the drag on a particle in a periodic array where the length scale is the lattice spacing. The effects of particle interactions on the drag in dilute arrays (periodic or random) of cylinders and spheres in shear-thickening fluids is dramatic, where it arrests the algebraic growth of the disturbance velocity with radial position when n≥ 1 for cylinders and n≥ 2 for spheres. For concentrated random arrays of particles, we adopt an

  10. Simultaneous nitrification-denitrification and phosphorus removal in a fixed bed sequencing batch reactor (FBSBR)

    International Nuclear Information System (INIS)

    Rahimi, Yousef; Torabian, Ali; Mehrdadi, Naser; Shahmoradi, Behzad

    2011-01-01

    Research highlights: → Sludge production in FSBR reactor is 20-30% less than SBR reactor. → FSBR reactor showed more nutrient removal rate than SBR reactor. → FSBR reactor showed less VSS/TSS ratio than SBR reactor. - Abstract: Biological nutrient removal (BNR) was investigated in a fixed bed sequencing batch reactor (FBSBR) in which instead of activated sludge polypropylene carriers were used. The FBSBR performance on carbon and nitrogen removal at different loading rates was significant. COD, TN, and phosphorus removal efficiencies were at range of 90-96%, 60-88%, and 76-90% respectively while these values at SBR reactor were 85-95%, 38-60%, and 20-79% respectively. These results show that the simultaneous nitrification-denitrification (SND) is significantly higher than conventional SBR reactor. The higher total phosphorus (TP) removal in FBSBR correlates with oxygen gradient in biofilm layer. The influence of fixed media on biomass production yield was assessed by monitoring the MLSS concentrations versus COD removal for both reactors and results revealed that the sludge production yield (Y obs ) is significantly less in FBSBR reactors compared with SBR reactor. The FBSBR was more efficient in SND and phosphorus removal. Moreover, it produced less excess sludge but higher in nutrient content and stabilization ratio (less VSS/TSS ratio).

  11. Simultaneous nitrification-denitrification and phosphorus removal in a fixed bed sequencing batch reactor (FBSBR)

    Energy Technology Data Exchange (ETDEWEB)

    Rahimi, Yousef, E-mail: you.rahimi@gmail.com [Department of Civil and Environmental Engineering, Graduate Faculty of Environment, University of Tehran, No. 25 Qods St., Enghelab Ave, Tehran (Iran, Islamic Republic of); Torabian, Ali, E-mail: atorabi@ut.ac.ir [Department of Civil and Environmental Engineering, Graduate Faculty of Environment, University of Tehran, No. 25 Qods St., Enghelab Ave, Tehran (Iran, Islamic Republic of); Mehrdadi, Naser, E-mail: mehrdadi@ut.ac.ir [Department of Civil and Environmental Engineering, Graduate Faculty of Environment, University of Tehran, No. 25 Qods St., Enghelab Ave, Tehran (Iran, Islamic Republic of); Shahmoradi, Behzad, E-mail: bshahmorady@gmail.com [Department of Environmental Science, University of Mysore, MGM-06 Mysore (India)

    2011-01-30

    Research highlights: {yields} Sludge production in FSBR reactor is 20-30% less than SBR reactor. {yields} FSBR reactor showed more nutrient removal rate than SBR reactor. {yields} FSBR reactor showed less VSS/TSS ratio than SBR reactor. - Abstract: Biological nutrient removal (BNR) was investigated in a fixed bed sequencing batch reactor (FBSBR) in which instead of activated sludge polypropylene carriers were used. The FBSBR performance on carbon and nitrogen removal at different loading rates was significant. COD, TN, and phosphorus removal efficiencies were at range of 90-96%, 60-88%, and 76-90% respectively while these values at SBR reactor were 85-95%, 38-60%, and 20-79% respectively. These results show that the simultaneous nitrification-denitrification (SND) is significantly higher than conventional SBR reactor. The higher total phosphorus (TP) removal in FBSBR correlates with oxygen gradient in biofilm layer. The influence of fixed media on biomass production yield was assessed by monitoring the MLSS concentrations versus COD removal for both reactors and results revealed that the sludge production yield (Y{sub obs}) is significantly less in FBSBR reactors compared with SBR reactor. The FBSBR was more efficient in SND and phosphorus removal. Moreover, it produced less excess sludge but higher in nutrient content and stabilization ratio (less VSS/TSS ratio).

  12. Electrodialysis reversal: Process and cost approximations for treating coal-bed methane waters

    Energy Technology Data Exchange (ETDEWEB)

    Sajtar, E.T.; Bagley, D.M. [University of Wyoming, Laramie, WY (United States)

    2009-02-15

    Brackish waters with total dissolved solids (TDS) concentrations less than 10,000 mg/L are extracted from coal-beds in the Wyoming Powder River basin to facilitate the production of coal-bed methane. These waters frequently require treatment before disposal or use. Electrodialysis reversal (EDR) has not yet been used to treat these waters but this technology should be suitable. The question is whether EDR would be cost-effective. The purpose of this work, then, was to develop models for predicting the cost of EDR for brackish waters. These models, developed from data available in the literature, were found to predict actual EDR costs as a function of TDS removal, influent flow rate, chemical rejection efficiency, water recovery, electricity use, and labor cost within 10% of reported values. The total amortized cost for removing 1,000 mg/L of TDS from 10,000 m{sup 3}/day of influent assuming no concentrate disposal costs was predicted to range from $0.23/m{sup 3} to $0.85/m{sup 3} and was highly dependent on capital cost and facility life. Concentrate disposal costs significantly affected total treatment cost, providing a total treatment cost range from $0.38/m{sup 3} to $6.38/m{sup 3}, depending on concentrate disposal cost and water recovery. Pilot demonstrations of EDR in the Powder River basin should be conducted to determine the achievable water recovery when treating these waters.

  13. Co-combustion of peach and apricot stone with coal in a bubbling fluidized bed

    Energy Technology Data Exchange (ETDEWEB)

    Atimtay, Aysel T.; Kaynak, Burcak [Department of Environmental Engineering, Middle East Technical University, Ankara 06531 (Turkey)

    2008-02-15

    In this study a bubbling fluidized bed combustor (BFBC) having an inside diameter of 102 mm and a height of 900 mm was used to investigate the co-combustion characteristics of peach and apricot stones produced as a waste from the fruit juice industry with coal. A lignite coal was used for co-combustion. On-line concentrations of O{sub 2}, CO, CO{sub 2}, SO{sub 2}, NO{sub X} and total hydrocarbons (C{sub m}H{sub n}) were measured in the flue gas during combustion experiments. Variations of emissions of various pollutants were studied by changing the operating parameters (excess air ratio, fluidization velocity, and fuel feed rate). Temperature distribution along the bed was measured with thermocouples. For co-combustion of apricot and peach fruit stones with a lignite coal, various ratios of biomass to coal ranging from 0 to 100 wt.% were tested. For the peach stone co-combustion tests, efficiencies are about 98% and for the apricot stone co-combustion tests, efficiencies ranged between 94.7% and 96.9% for 25%, 50% and 75% of apricot stone in the fuel mixture. The results of this study have shown that as the biomass ratio in the fuel mixture increases, the combustion takes place at the upper regions of the main column. This causes higher temperatures in the freeboard than the bed. Also the CO and hydrocarbon (C{sub m}H{sub n}) emissions increase as the biomass percentage increases in the fuel mixture. This causes decrease in the combustion efficiency. These results suggest that peach and apricot stones are potential fuels that can be utilized for clean energy production in small-scale fruit juice industries by using BFBC. The percentage of peach stones or apricot stones in the fuel mixture is suggested to be below 50 wt.% in order to obtain the emission limits of EU. During the design of the BFBC, one has to be careful about the volatile matter (VM) content of the biomass. For the complete combustion of the VM, longer freeboard or secondary air addition should be

  14. Axial concentration profiles and N{sub 2}O flue gas in a pilot scale bubbling fluidised bed coal combustor

    Energy Technology Data Exchange (ETDEWEB)

    Tarelho, L.A.C.; Matos, M.A.A.; Pereira, F.J.M.A. [Environment and Planning Department, University of Aveiro, 3810-193 Aveiro (Portugal)

    2005-05-15

    Atmospheric Bubbling Fluidised Bed Coal Combustion (ABFBCC) of a bituminous coal and anthracite with particle diameters in the range 500-4000 {mu}m was investigated in a pilot-plant facility (circular section with 0.25 m internal diameter and 3 m height). The experiments were conducted at steady-state conditions using three excess air levels (10%, 25% and 50%) and bed temperatures in the 750-900 {sup o}C range. Combustion air was staged, with primary air accounting for 100%, 80% and 60% of total combustion air. For both types of coal, virtually no N{sub 2}O was found in significant amounts inside the bed. However, just above the bed-freeboard interface, the N{sub 2}O concentration increased monotonically along the freeboard and towards the exit flue. The N{sub 2}O concentrations in the reactor ranged between 0-90 ppm during bituminous coal combustion and 0-30 ppm for anthracite. For both coals, the lowest values occurred at the higher bed temperature (900 {sup o}C) with low excess air (10%) and high air staging (60% primary air), whereas the highest occurred at the lower bed temperature (750 {sup o}C for bituminous, 825 {sup o}C for anthracite) with high excess air (50%) and single stage combustion. Most of the observed results could be qualitatively interpreted in terms of a set of homogeneous and heterogeneous reactions, where catalytic surfaces (such as char, sand and coal ash) can play an important role in the formation and destruction of N{sub 2}O and its precursors (such as HCN, NH{sub 3} and HCNO) by free radicals (O, H, OH) and reducing species (H{sub 2}, CO, HCs)

  15. Making the most of South Africa’s low-quality coal: Converting high-ash coal to fuel gas using bubbling fluidised bed gasifiers

    CSIR Research Space (South Africa)

    Engelbrecht, AD

    2010-08-31

    Full Text Available for process heating or for power generation using the IGCC (Integrated Gasification Combined Cycle) process. A high-ash coal from the Waterberg coalfield was tested in a bubbling fluidised bed gasifier using various gasification agents and operating conditions...

  16. Methylotrophic methanogenesis governs the biogenic coal bed methane formation in Eastern Ordos Basin, China

    Energy Technology Data Exchange (ETDEWEB)

    Guo, Hongguang; Yu, Zhisheng; Liu, Ruyin [Graduate Univ. of Chinese Academy of Sciences, Beijing (China). College of Resources and Environment; Zhang, Hongxun [Graduate Univ. of Chinese Academy of Sciences, Beijing (China). College of Resources and Environment; Chinese Academy of Sciences, Beijing (China). Research Center for Eco-Environmental Sciences; Zhong, Qiding; Xiong, Zhenghe [China National Research Institute of Food and Fermentation Industries, Beijing (China). Food Analysis using Isotope Technology Lab

    2012-12-15

    To identify the methanogenic pathways present in a deep coal bed methane (CBM) reservoir associated with Eastern Ordos Basin in China, a series of geochemical and microbiological studies was performed using gas and water samples produced from the Liulin CBM reservoir. The composition and stable isotopic ratios of CBM implied a mixed biogenic and thermogenic origin of the methane. Archaeal 16S rRNA gene analysis revealed the dominance of the methylotrophic methanogen Methanolobus in the water produced. The high potential of methane production by methylotrophic methanogens was found in the enrichments using the water samples amended with methanol and incubated at 25 and 35 C. Methylotrophic methanogens were the dominant archaea in both enrichments as shown by polymerase chain reaction (PCR)-denaturing gradient gel electrophoresis (DGGE). Bacterial 16S rRNA gene analysis revealed that fermentative, sulfate-reducing, and nitrate-reducing bacteria inhabiting the water produced were a factor in coal biodegradation to fuel methanogens. These results suggested that past and ongoing biodegradation of coal by methylotrophic methanogens and syntrophic bacteria, as well as thermogenic CBM production, contributed to the Liulin CBM reserves associated with the Eastern Ordos Basin. (orig.)

  17. Fluidized-Bed Gasification of Plastic Waste, Wood, and Their Blends with Coal

    Directory of Open Access Journals (Sweden)

    Lucio Zaccariello

    2015-08-01

    Full Text Available The effect of fuel composition on gasification process performance was investigated by performing mass and energy balances on a pre-pilot scale bubbling fluidized bed reactor fed with mixtures of plastic waste, wood, and coal. The fuels containing plastic waste produced less H2, CO, and CO2 and more light hydrocarbons than the fuels including biomass. The lower heating value (LHV progressively increased from 5.1 to 7.9 MJ/Nm3 when the plastic waste fraction was moved from 0% to 100%. Higher carbonaceous fines production was associated with the fuel containing a large fraction of coal (60%, producing 87.5 g/kgFuel compared to only 1.0 g/kgFuel obtained during the gasification test with just plastic waste. Conversely, plastic waste gasification produced the highest tar yield, 161.9 g/kgFuel, while woody biomass generated only 13.4 g/kgFuel. Wood gasification showed a carbon conversion efficiency (CCE of 0.93, while the tests with two fuels containing coal showed lowest CCE values (0.78 and 0.70, respectively. Plastic waste and wood gasification presented similar cold gas efficiency (CGE values (0.75 and 0.76, respectively, while that obtained during the co-gasification tests varied from 0.53 to 0.73.

  18. The study of partitioning of heavy metals during fluidized bed combustion of sewage sludge and coal

    Energy Technology Data Exchange (ETDEWEB)

    Gulyurtlu, I.; Lopes, M.H.; Abelha, P.; Cabrita, I.; Oliveira, J.F.S. [INETI, Lisbon (Portugal)

    2006-06-15

    The behavior of Cd, Cr, Cu, Co, Mn, Ni, Pb, Zn, and Hg during the combustion tests of a dry granular sewage sludge on a fluidized bed combustor pilot (FBC) of about 0.3 MW was evaluated. The emissions of these heavy metals from mono-combustion were compared with those of co-combustion of the sludge with a bituminous coal. The effect of the addition of limestone was also studied in order to retain sulphur compounds and to verify its influence on the retention of heavy metals (HM). Heavy metals were collected and analyzed from different locations of the installation, which included the stack, the two cyclones, and the material removed from the bed. The results showed that the volatility of metals was rather low, resulting in emissions below the legal limits of the new directive on incineration, with the exception of Hg during the mono-combustion tests. The partitioning of metals, except for Hg, appeared to follow that of ashes, amounting to levels above 90% in the bed streams in the mono-combustion case. For co-combustion, there was a lower fixation of HM in the bed ashes, mostly originating essentially from the sewage sludge, ranging between 40% and 80%. It is believed that in this latter case, a slightly higher temperature could have enhanced the volatilization, especially of Cd and Pb. However these metals were then retained in fly ashes captured in the cyclones. In the case of Hg, the volatilisation was complete. The bed ashes were free of Hg and part of Hg was retained in the cyclones and the rest was emitted either with fine ash particles or in gaseous forms. In mono-combustion the Hg emissions from the stack (particles and gas) accounted, for about 50%. This appeared to have significantly decreased in the case of co-combustion, as only about 75% has been emitted, due to the retention effect of cyclone ashes.

  19. The study of partitioning of heavy metals during fluidized bed combustion of sewage sludge and coal

    Energy Technology Data Exchange (ETDEWEB)

    Gulyurtlu, Ibrahim; Lopes, M. Helena; Abelha, Pedro; Cabrita, Isabel; Oliveira, J.F. Santos

    2003-07-01

    The behaviour of Cd, Cr, Cu, Co, Mn, Pb, Zn and Hg during the combustion tests of granular dry sewage sludges on a pilot FBC of about 0,3 MW was evaluated. The emissions of these heavy metals from mono-combustion were compared with those of co-combustion of the sludge with a bituminous coal. The effect of the addition of limestone was also studied in order to retain sulphur compounds and to verify its influence on the retention of heavy metals. Heavy metals were collected and analysed from different locations of the installation, which included the stack, the two cyclones and the material removed from the bed. The results showed that the volatility of metals was rather low, resulting in emissions below the legal limits of the new directive on incineration, with the exception of Hg during the mono-combustion tests. The partitioning of metals, except for Hg, appeared to follow that of ashes, amounting to levels above 90% in the bed streams in the mono-combustion case. For co-combustion, there was a lower fixation of HM in the bed ashes, mostly originating essentially from the sewage sludge, ranging between 40 and 80%. It is believed that in this latter case, a slightly higher bed temperature could have enhanced the volatilisation, especially of Cd and Pb. However these metals were then retained in cyclone ashes. In the case of Hg, the volatilisation was complete. The bed ashes were free of Hg and part of it was retained in the cyclone and emitted as both fine ash particles and in gaseous forms. In mono-combustion the Hg emissions from the stack (particles and gas) accounted for about 50%, although there was a significant amount unaccounted for. This appeared to have significantly decreased in the case of co-combustion, as only about 15% has been emitted, due to the retention effect of cyclone ashes which presented high quantities of unburned carton and possibly condensed sulphur species.

  20. Northern Cheyenne Reservation Coal Bed Natural Resource Assessment and Analysis of Produced Water Disposal Options

    Energy Technology Data Exchange (ETDEWEB)

    Shaochang Wo; David A. Lopez; Jason Whiteman Sr.; Bruce A. Reynolds

    2004-07-01

    Coalbed methane (CBM) development in the Powder River Basin (PRB) is currently one of the most active gas plays in the United States. Monthly production in 2002 reached about 26 BCF in the Wyoming portion of the basin. Coalbed methane reserves for the Wyoming portion of the basin are approximately 25 trillion cubic feet (TCF). Although coal beds in the Powder River Basin extend well into Montana, including the area of the Northern Cheyenne Indian Reservation, the only CBM development in Montana is the CX Field, operated by the Fidelity Exploration, near the Wyoming border. The Northern Cheyenne Reservation is located on the northwest flank of the PRB in Montana with a total land of 445,000 acres. The Reservation consists of five districts, Lame Deer, Busby, Ashland, Birney, and Muddy Cluster and has a population of 4,470 according to the 2000 Census. The CBM resource represents a significant potential asset to the Northern Cheyenne Indian Tribe. Methane gas in coal beds is trapped by hydrodynamic pressure. Because the production of CBM involves the dewatering of coalbed to allow the release of methane gas from the coal matrix, the relatively large volume of the co-produced water and its potential environmental impacts are the primary concerns for the Tribe. Presented in this report is a study conducted by the Idaho National Engineering and Environmental Laboratory (INEEL) and the Montana Bureau of Mines and Geology (MBMG) in partnership with the Northern Cheyenne Tribe to assess the Tribe’s CBM resources and evaluate applicable water handling options. The project was supported by the U.S. Department of Energy (DOE) through the Native American Initiative of the National Petroleum Technology Office, under contract DEAC07- 99ID13727. Matching funds were granted by the MBMG in supporting the work of geologic study and mapping conducted at MBMG.

  1. Ash transformation in suspension fired boilers co-firing coal and straw

    DEFF Research Database (Denmark)

    Zheng, Yuanjing; Jensen, Peter Arendt; Jensen, Anker Degn

    Appendix C: Paper in Fuel 87 (2008) 3304-3312: A kinetic study of gaseous potassium capture by coal minerals in a high temperature fixed-bed reactor......Appendix C: Paper in Fuel 87 (2008) 3304-3312: A kinetic study of gaseous potassium capture by coal minerals in a high temperature fixed-bed reactor...

  2. Combustion of agro-waste with coal in a fluidized bed

    Energy Technology Data Exchange (ETDEWEB)

    Atimtay, Aysel T. [Middle East Technical University, Department of Environmental Engineering, Ankara (Turkey)

    2010-02-15

    In this study, a review of the studies done on the co-combustion of some agro-waste in a bubbling fluidized bed combustor (BFBC) having an inside diameter of 102 mm and a height of 900 mm is given. The agro-waste used to investigate the co-combustion characteristics were peach and apricot stones produced as a waste from the fruit juice industry, and olive cake produced as a waste from the olive oil industry. These are typical wastes for a Mediterranean country. A lignite coal was used for co-combustion. On-line concentrations of O{sub 2}, CO, CO{sub 2}, SO{sub 2}, NO{sub x} and total hydrocarbons (C{sub m} H{sub n}) were measured in the flue gas during combustion experiments. Variations of emissions of various pollutants were studied by changing the operating parameters (excess air ratio, fluidization velocity and fuel feed rate). Temperature distribution along the bed was measured with thermocouples. Emissions were also monitored from the exhaust. Various combinations of coal and biomass mixtures were tested. During the combustion tests, it was observed that the volatile matter from the biomass quickly volatilizes and mostly burns in the freeboard. The temperature profiles along the bed and the freeboard also confirmed this phenomenon. It was found that as the volatile matter of the biomass increases, combustion takes place more in the freeboard region. Better combustion conditions occur at higher excess air ratios. The results showed that co-combustion with these three proposed biomasses lowers the SO{sub 2} and NO{sub x} emissions considerably. CO and hydrocarbon emissions are lower at the higher excess air ratios. (orig.)

  3. Cultivation-independent analysis of archaeal and bacterial communities of the formation water in an Indian coal bed to enhance biotransformation of coal into methane

    Energy Technology Data Exchange (ETDEWEB)

    Singh, Durgesh Narain; Kumar, Ashok; Tripathi, Anil Kumar [Banaras Hindu Univ., Varanasi (India). School of Biotechnolgy; Sarbhai, Munish Prasad [Oil and Natural Gas Commission, Ahmedabad (India). Inst. of Reservoir Studies

    2012-02-15

    Biogenic origin of the significant proportion of coal bed methane has indicated the role of microbial communities in methanogenesis. By using cultivation-independent approach, we have analysed the archaeal and bacterial community present in the formation water of an Indian coal bed at 600-700 m depth to understand their role in methanogenesis. Presence of methanogens in the formation water was inferred by epifluorescence microscopy and PCR amplification of mcrA gene. Archaeal 16S rRNA gene clone library from the formation water metagenome was dominated by methanogens showing similarity to Methanobacterium, Methanothermobacter and Methanolinea whereas the clones of bacterial 16S rRNA gene library were closely related to Azonexus, Azospira, Dechloromonas and Thauera. Thus, microbial community of the formation water consisted of predominantly hydrogenotrophic methanogens and the proteobacteria capable of nitrogen fixation, nitrate reduction and polyaromatic compound degradation. Methanogenic potential of the microbial community present in the formation water was elucidated by the production of methane in the enrichment culture, which contained 16S rRNA gene sequences showing close relatedness to the genus Methanobacterium. Microcosm using formation water as medium as well as a source of inoculum and coal as carbon source produced significant amount of methane which increased considerably by the addition of nitrite. The dominance of Diaphorobacter sp. in nitrite amended microcosm indicated their important role in supporting methanogenesis in the coal bed. This is the first study indicating existence of methanogenic and bacterial community in an Indian coal bed that is capable of in situ biotransformation of coal into methane. (orig.)

  4. Continuous synthesis of methanol: heterogeneous hydrogenation of ethylene carbonate over Cu/HMS catalysts in a fixed bed reactor system.

    Science.gov (United States)

    Chen, Xi; Cui, Yuanyuan; Wen, Chao; Wang, Bin; Dai, Wei-Lin

    2015-09-18

    Continuous fixed-bed catalytic hydrogenation of ethylene carbonate (EC) to methanol and ethylene glycol (EG), an emerging synthetic process of methanol via indirect conversion of CO2, was successfully performed over Cu/HMS catalysts prepared by the ammonia evaporation (AE) method. The catalysts possessed superb performance with a conversion of 100% and a selectivity to methanol of 74%.

  5. Experimental investigation on a 0.35 MWth coal-fired horizontal circulating fluidized bed boiler

    Energy Technology Data Exchange (ETDEWEB)

    Meng, Aihong; Li, Qinghai; Zhang, Yanguo; Wang, Zhaojun; Dang, Wenda [Tsinghua Univ., Beijing (China); Ministry of Education, Beijing (China). Key Lab. for Thermal Science and Power Engineering

    2013-07-01

    The capacities of industrial coal-fired boilers are normally less than 20-30 MWe. And these coal-fired boilers of low capacity are facing the severe situation of low efficiency and heavy environmental pollution. Hence, an innovative horizontal circulating fluidized bed (HCFB) boiler was developed to enhance heat efficiency and reduce pollutant emission of industrial boilers in China. The chamber in the HCFB boiler consists of primary combustion chamber, secondary combustion chamber and burnout chamber, which were combined horizontally side by side. To verify the conception of horizontal fluidized circulation and to obtain the characteristic data, a 0.35 MWth coal-combustion HCFB boiler was designed and installed to perform some experiments of combustion and mass circulation. In the boiler there were two mass circulating paths, one is inner circulating through the inertia separator and another was external circulating through the cyclone separator. The connection bottom of the secondary chamber and the burnout chamber was designed as an inertia separator, in which separated and collected solid materials were returned to the primary combustion. In fact the secondary separator was a small cyclone separator connecting to the exit of the burnout chamber. Heat efficiency and separating efficiency of the experimental boiler were measured and analyzed. Furthermore, mass and temperature distribution along the chambers height were also investigated. The results showed that the heat efficiency of the bare boiler was 82%. The mass balance based on ash content was measured and analyzed. Separating efficiency of the inertia separator and cyclone separator was 60 and 99.9%, respectively. It showed that the two stage material separation and circulation enhanced coal combustion in the HCFB boiler and help to minimize the height of the furnace.

  6. Relation between the petrographic composition of coal and the morphology of pyrolysis char produced in fluidized bed

    Energy Technology Data Exchange (ETDEWEB)

    B. Valentim; M.J. Lemos de Sousa; P. Abelha; D. Boavida; I. Gulyurtlu [Centro de Geologia da Universidade do Porto, Porto (Portugal)

    2004-06-01

    Several previous studies have already established, for pulverized coal combustion conditions, global correlations between petrographic composition of the coal and those of char produced from the same coal. However, for fluidized bed combustion, there has not been much new work since the eighties. The results presented in this paper include the petrographic characterization of seven different coals from several origins and also of their respective chars produced at 700, 800, 900, and 1000{sup o}C in a laboratory fluidized bed reactor. The results show a marked predominance of tenuispheres as the trial temperatures increase. While vitrinite-rich coals essentially produced highly porous chars, the inertinite-rich coals produced large amounts of medium- and low-porous chars. Semi-anthracite vitrinite produced high-porous chars and thermal affected coal particles originated low-porous and angular char morphotypes. The analysis of the data obtained revealed that vitrinite + liptinite related well with the high-porous char (sum of cenospheres and tenuinetworks), classified as Group 1. The same trend, but with a weaker relation, was also observed between vitrinite and liptinite rich microlithotypes and Group 1. 32 refs., 17 refs., 3 tabs.

  7. Using simulated maps to interpret the geochemistry, formation and quality of the Blue Gem Coal Bed, Kentucky, USA

    Science.gov (United States)

    Geboy, Nicholas J.; Olea, Ricardo A.; Engle, Mark A.; Martin-Fernandez, Jose Antonio

    2013-01-01

    This study presents geostatistical simulations of coal-quality parameters, major oxides and trace metals for an area covering roughly 812 km2 of the Blue Gem coal bed in southeastern Kentucky, USA. The Blue Gem, characterized by low ash yield and low sulfur content, is an important economic resource. Past studies have characterized the Blue Gem's geochemistry, palynology and petrography and inferred a depositional setting of a planar peat deposit that transitioned to slightly domed later in its development. These studies have focused primarily on vertical geochemical trends within the coal bed. Simulated maps of chemical elements derived from 45 measured sample locations across the study area provide an opportunity to observe changes in the horizontal direction within the coal bed. As the Blue Gem coal bed shows significant vertical chemical trends, care was taken in this study to try to select samples from a single, middle portion of the coal. By revealing spatial distribution patterns of elements across the middle of the bed, associations between different components of the coal can be seen. The maps therefore help to provide a picture of the coal-forming peat bog at an instant in geologic time and allow interpretation of a depositional setting in the horizontal direction. Results from this middle portion of the coal suggest an association of SiO2 with both K2O and TiO2 in different parts of the study area. Further, a pocket in the southeast of the study area shows elevated concentrations of elements attributable to observed carbonate-phase minerals (MgO, CaO, Ba and Sr) as well as elements commonly associated with sulfide-phase minerals (Cu, Mo and Ni). Areas of relatively high ash yield are observed in the north and south of the mapped area, in contrast to the low ash yields seen towards the east. Additionally, we present joint probability maps where multiple coal-quality parameters are plotted simultaneously on one figure. This application allows researchers

  8. FY 1989 report on the results of the development of the entrained bed coal gasification power plant. Part 1. Element study; 1989 nendo seika hokokusho. Funryusho sekitan gaska hatsuden plant kaihatsu - Sono 1. Yoso kenkyu hen

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1990-03-01

    For the purpose of establishing the technology of integrated coal gasification combined cycle power generation, element study was conducted of a 200t/d entrained bed coal gasification pilot plant, and the FY 1989 results were summarized. In the gasification test using 2t/d gasifier equipment, the following were carried out: test on gasification of the coal proposed for pilot plant, test on changes in coal feed ratio, analysis of trace gas elements in coal, study of the fixed bed gas refining system, etc. In the study of large gas turbine combustor for demonstration machine, development of combustor which makes stable combustion in the low load region possible, development of low NOx combustor which controls the conversion of nitrogen compounds such as ammonia in coal gasification gas to NOx, development of combustor which makes the optimum and effective cooling possible by combining film cooling, impingement cooling, etc. In the study of simulation of the combined power generation total system, verification tests on the control mode switching function of the general load pressure control system, movement to meet anomaly of the control system, integrated cooperation control system, etc. (NEDO)

  9. Fixed bed column study for Cu (II) removal from aqueous solution using water hyacinth (Eichornia crassipes) biomass.

    Science.gov (United States)

    Gandhimathi, R; Ramesh, S T; Yadu, Anubhav; Bharathi, K S

    2013-07-01

    This paper reports the results of the study on the performance of low-cost biosorbent water hyacinth (WH) in removing Cu (II) from aqueous solution. The adsorbent material adopted was found to be an efficient media for the removal of Cu (II) in continuous mode using fixed bed column. The column studies were conducted with 10 mg/L metal solution with a flow rate of 10 mL/min with different bed depths such as 10, 20 and 30 cm. The column design parameters like adsorption rate constant, adsorption capacity and minimum bed depth were calculated. It was found that, the adsorption capacity of copper ions by water hyacinth increased by increasing the bed depth and the contact time.

  10. Biofilm development in fixed bed biofilm reactors: experiments and simple models for engineering design purposes.

    Science.gov (United States)

    Szilágyi, N; Kovács, R; Kenyeres, I; Csikor, Zs

    2013-01-01

    Biofilm development in a fixed bed biofilm reactor system performing municipal wastewater treatment was monitored aiming at accumulating colonization and maximum biofilm mass data usable in engineering practice for process design purposes. Initially a 6 month experimental period was selected for investigations where the biofilm formation and the performance of the reactors were monitored. The results were analyzed by two methods: for simple, steady-state process design purposes the maximum biofilm mass on carriers versus influent load and a time constant of the biofilm growth were determined, whereas for design approaches using dynamic models a simple biofilm mass prediction model including attachment and detachment mechanisms was selected and fitted to the experimental data. According to a detailed statistical analysis, the collected data have not allowed us to determine both the time constant of biofilm growth and the maximum biofilm mass on carriers at the same time. The observed maximum biofilm mass could be determined with a reasonable error and ranged between 438 gTS/m(2) carrier surface and 843 gTS/m(2), depending on influent load, and hydrodynamic conditions. The parallel analysis of the attachment-detachment model showed that the experimental data set allowed us to determine the attachment rate coefficient which was in the range of 0.05-0.4 m d(-1) depending on influent load and hydrodynamic conditions.

  11. CFD Simulation of Dimethyl Ether Synthesis from Methanol in an Adiabatic Fixed-bed Reactor

    Directory of Open Access Journals (Sweden)

    Mohammad Golshadi

    2013-04-01

    Full Text Available A computational fluid dynamic (CFD study of methanol (MeOH to dimethyl ether (DME process in an adiabatic fixed-bed reactor is presented. One of the methods of industrial DME production is the catalytic dehydration of MeOH. Kinetic model was derived based on Bercic rate. The parameters of this equation for a specific catalyst were tuned by solving a one-dimensional homogenous model using MATLAB optimization module. A two-dimensional CFD simulation of the reaction is demonstrated and considered as numerical experiments. A sensitivity analysis was run in order to find the effect of temperature, pressure, and WHSV on the reactor performance. Good agreement was achieved between bench experimental data and the model. The results show that the maximum conversion of reaction (about 85.03% is obtained at WHSV=10 h-1 and T=563.15 K, whereas the inlet temperature has a greater effect on methanol conversion. Moreover, the effect of water in inlet feed on methanol conversion is quantitatively studied. It was concluded that the results obtained from CFD analysis give precise guidelines for further studies on the optimization of reactor performance.

  12. Modeling of convective drying kinetics of Pistachio kernels in a fixed bed drying system

    Directory of Open Access Journals (Sweden)

    Balbay Asım

    2013-01-01

    Full Text Available Drying kinetics of Pistachio kernels (PKs with initial moisture content of 32.4% (w.b was investigated as a function of drying conditions in a fixed bed drying system. The drying experiments were carried out at different temperatures of drying air (40, 60 and 80°C and air velocities (0.05, 0.075 and 0.1 m/s. Several experiments were performed in terms of mass of PKs (15g and 30g using a constant air velocity of 0.075 m/s. The fit quality of models was evaluated using the determination coefficient (R2, sum square error (SSE and root mean square error (RMSE. Among the selected models, the Midilli et al model was found to be the best models for describing the drying behavior of PKs. The activation energies were calculated as 29.2 kJ/mol and effective diffusivity values were calculated between 1.38 and 4.94x10-10 m2/s depending on air temperatures.

  13. Efficient expansion of mesenchymal stromal cells in a disposable fixed bed culture system.

    Science.gov (United States)

    Mizukami, Amanda; Orellana, Maristela D; Caruso, Sâmia R; de Lima Prata, Karen; Covas, Dimas T; Swiech, Kamilla

    2013-01-01

    The need for efficient and reliable technologies for clinical-scale expansion of mesenchymal stromal cells (MSC) has led to the use of disposable bioreactors and culture systems. Here, we evaluate the expansion of cord blood-derived MSC in a disposable fixed bed culture system. Starting from an initial cell density of 6.0 × 10(7) cells, after 7 days of culture, it was possible to produce of 4.2(±0.8) × 10(8) cells, which represents a fold increase of 7.0 (±1.4). After enzymatic retrieval from Fibra-Cell disks, the cells were able to maintain their potential for differentiation into adipocytes and osteocytes and were positive for many markers common to MSC (CD73, CD90, and CD105). The results obtained in this study demonstrate that MSC can be efficiently expanded in the culture system. This novel approach presents several advantages over the current expansion systems, based on culture flasks or microcarrier-based spinner flasks and represents a key element for MSC cellular therapy according to GMP compliant clinical-scale production system. Copyright © 2013 American Institute of Chemical Engineers.

  14. Synthesis of biodiesel from waste cooking oil using immobilized lipase in fixed bed reactor

    Energy Technology Data Exchange (ETDEWEB)

    Chen Yingming [School of Environment and Urban Construction, Wuhan University of Science and Engineering, Wuhan 430073 (China); Guangzhou Institute of Energy Conversion, Chinese Academy of Science, Guangzhou 510640 (China); Xiao Bo [School of Environmental Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074 (China); Chang Jie [School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510641 (China)], E-mail: changjie@scut.edu.cn; Fu Yan [School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510641 (China); Lv Pengmei; Wang Xuewei [Guangzhou Institute of Energy Conversion, Chinese Academy of Science, Guangzhou 510640 (China)

    2009-03-15

    Waste cooking oil (WCO) is the residue from the kitchen, restaurants, food factories and even human and animal waste which not only harm people's health but also causes environmental pollution. The production of biodiesel from waste cooking oil to partially substitute petroleum diesel is one of the measures for solving the twin problems of environment pollution and energy shortage. In this project, synthesis of biodiesel was catalyzed by immobilized Candida lipase in a three-step fixed bed reactor. The reaction solution was a mixture of WCO, water, methanol and solvent (hexane). The main product was biodiesel consisted of fatty acid methyl ester (FAME), of which methyl oleate was the main component. Effects of lipase, solvent, water, and temperature and flow of the reaction mixture on the synthesis of biodiesel were analyzed. The results indicate that a 91.08% of FAME can be achieved in the end product under optimum conditions. Most of the chemical and physical characters of the biodiesel were superior to the standards for 0 diesel (GB/T 19147) and biodiesel (DIN V51606 and ASTM D-6751)

  15. Synthesis of biodiesel from waste cooking oil using immobilized lipase in fixed bed reactor

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Yingming [School of Environment and Urban Construction, Wuhan University of Science and Engineering, Wuhan 430073 (China)]|[Guangzhou Institute of Energy Conversion, Chinese Academy of Science, Guangzhou 510640 (China); Xiao, Bo [School of Environmental Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074 (China); Chang, Jie; Fu, Yan [School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510641 (China); Lv, Pengmei; Wang, Xuewei [Guangzhou Institute of Energy Conversion, Chinese Academy of Science, Guangzhou 510640 (China)

    2009-03-15

    Waste cooking oil (WCO) is the residue from the kitchen, restaurants, food factories and even human and animal waste which not only harm people's health but also causes environmental pollution. The production of biodiesel from waste cooking oil to partially substitute petroleum diesel is one of the measures for solving the twin problems of environment pollution and energy shortage. In this project, synthesis of biodiesel was catalyzed by immobilized Candida lipase in a three-step fixed bed reactor. The reaction solution was a mixture of WCO, water, methanol and solvent (hexane). The main product was biodiesel consisted of fatty acid methyl ester (FAME), of which methyl oleate was the main component. Effects of lipase, solvent, water, and temperature and flow of the reaction mixture on the synthesis of biodiesel were analyzed. The results indicate that a 91.08% of FAME can be achieved in the end product under optimum conditions. Most of the chemical and physical characters of the biodiesel were superior to the standards for 0diesel (GB/T 19147) and biodiesel (DIN V51606 and ASTM D-6751). (author)

  16. Synthesis of biodiesel from waste cooking oil using immobilized lipase in fixed bed reactor

    International Nuclear Information System (INIS)

    Chen Yingming; Xiao Bo; Chang Jie; Fu Yan; Lv Pengmei; Wang Xuewei

    2009-01-01

    Waste cooking oil (WCO) is the residue from the kitchen, restaurants, food factories and even human and animal waste which not only harm people's health but also causes environmental pollution. The production of biodiesel from waste cooking oil to partially substitute petroleum diesel is one of the measures for solving the twin problems of environment pollution and energy shortage. In this project, synthesis of biodiesel was catalyzed by immobilized Candida lipase in a three-step fixed bed reactor. The reaction solution was a mixture of WCO, water, methanol and solvent (hexane). The main product was biodiesel consisted of fatty acid methyl ester (FAME), of which methyl oleate was the main component. Effects of lipase, solvent, water, and temperature and flow of the reaction mixture on the synthesis of biodiesel were analyzed. The results indicate that a 91.08% of FAME can be achieved in the end product under optimum conditions. Most of the chemical and physical characters of the biodiesel were superior to the standards for 0 diesel (GB/T 19147) and biodiesel (DIN V51606 and ASTM D-6751)

  17. Extraction of uranium from sea water with the granular composite adsorbent by using the fixed bed

    International Nuclear Information System (INIS)

    Katoh, Shunsaku; Sakane, Kohji; Hirotsu, Takahiro; Fujii, Ayako; Kitamura, Takao

    1981-01-01

    To clarify the technical problems existing in the extraction process of uranium from sea water, uranium was extracted from natural sea water, with the granulated C-Ti-OH composite adsorbent. The adsorption of uranium from sea water was carried out by using the fixed bed that had been designed in our laboratory. The uranium recovery from the sea water was 13.9% in the adsorption process of 56 d. The adsorbed uranium was eluted from the adsorbent with 0.5 N NaHCO 3 -0.5N Na 2 CO 3 soln. at 70 0 C. The elution recovery was 97.4% for 35 h. The uranium contained in the eluate was concentrated twenty times as much as in the anion exchange process, and then 100 times in the solvent extraction process with oxine-chloroform and TOA-kerosene. About 0.7 g of yellow cake was prepared from natural sea water, and it was identified to be pure 2UO 2 .NH 3 .3H 2 O by X-ray diffraction method and X-ray fluorometry. (author)

  18. Passive deca-heat removal in the fixed bed nuclear reactor (FBNR) - 15551

    International Nuclear Information System (INIS)

    Solano Diaz, E.C.; Luna Aguilera, G.M.; Santos, R.A.; Vaca, D.E.

    2015-01-01

    The Fixed Bed Nuclear Reactor (FBNR) is a Generation IV small reactor concept, where the spherical elements contain Triso-type microspheres with UO 2 , which serves as nuclear fuel. In the event that adverse operation conditions occur, the water pump is automatically shut off and the fuel pebbles fall back by gravity into the fuel chamber. Since the FBNR relies on passive security systems, the removal of the decay heat in the fuel chamber is achieved by contact with quiescent water. In the present paper, a mathematical simulation of the passive cooling of the system was conducted in SOLIDWORKS so as to obtain a temperature profile in the body during the decay heat removal process. Homogenization techniques were employed to smooth out spatial variations across the multiphase system and to derive expression for the effective thermophysical properties that are valid through the macroscopic entry (the chamber). The simulation showed that the chamber's temperature rose from 573 K to its maximum temperature, 1234 K, in the first hour. Afterwards, the temperature fluctuated, but stayed under 552 K. Since the temperature of the system was always kept under the value of the safety parameter (1200 C. degrees) the simulation confirmed that an effective passive cooling of the fuel chamber is indeed feasible. (authors)

  19. Co-pyrolysis of rice straw and polypropylene using fixed-bed pyrolyzer

    Science.gov (United States)

    Izzatie, N. I.; Basha, M. H.; Uemura, Y.; Mazlan, M. A.; Hashim, M. S. M.; Amin, N. A. M.; Hamid, M. F.

    2016-11-01

    The present work encompasses the impact of temperature (450, 500, 550, 600 °C) on the properties of pyrolysis oil and on other product yield for the co-pyrolysis of Polypropylene (PP) plastics and rice straw. Co-pyrolysis of PP plastic and rice straw were conducted in a fixed-bed drop type pyrolyzer under an inert condition to attain maximum oil yield. Physically, the pyrolysis oil is dark-brown in colour with free flowing and has a strong acrid smell. Copyrolysis between these typically obtained in maximum pyrolysis oil yields up to 69% by ratio 1:1 at a maximum temperature of 550 °C. From the maximum yield of pyrolysis oil, characterization of pyrolysis product and effect of biomass type of the composition were evaluated. Pyrolysis oil contains a high water content of 66.137 wt.%. Furfural, 2- methylnaphthalene, tetrahydrofuran (THF), toluene and acetaldehyde were the major organic compounds found in pyrolysis oil of rice straw mixed with PP. Bio-char collected from co-pyrolysis of rice straw mixed with PP plastic has high calorific value of 21.190 kJ/g and also carbon content with 59.02 wt.% and could contribute to high heating value. The non-condensable gases consist of hydrogen, carbon monoxide, and methane as the major gas components.

  20. CFD analysis of hot spot formation through a fixed bed reactor of Fischer-Tropsch synthesis

    Directory of Open Access Journals (Sweden)

    Hamed Aligolzadeh

    2015-12-01

    Full Text Available One of the interesting methods for conversion of synthesis gas to heavy hydrocarbons is Fischer–Tropsch process. The process has some bottlenecks, such as hot spot formation and low degree of conversion. In this work, computational fluid dynamics technique was used to simulate conversion of synthetic gas and product distribution. Also, hot spot formation in the catalytic fixed-bed reactor was investigated in several runs. Simulation results indicated that hot spot formation occurred more likely in the early and middle part of reactor due to high reaction rates. Based on the simulation results, the temperature of hot spots increased with increase in the inlet temperature as well as pressure. Among the many CFD runs conducted, it is found that the optimal temperature and pressure for Fischer–Tropsch synthesis are 565 K and 20 bar, respectively. As it seems that the reactor shall work very well under optimal conditions, the reaction rates and catalyst duration would simultaneously be maximum .

  1. Co-pyrolysis of corn cob and waste cooking oil in a fixed bed.

    Science.gov (United States)

    Chen, Guanyi; Liu, Cong; Ma, Wenchao; Zhang, Xiaoxiong; Li, Yanbin; Yan, Beibei; Zhou, Weihong

    2014-08-01

    Corn cob (CC) and waste cooking oil (WCO) were co-pyrolyzed in a fixed bed. The effects of various temperatures of 500 °C, 550 °C, 600 °C and CC/WCO mass ratios of 1:0, 1:0.1, 1:0.5, 1:1 and 0:1 were investigated, respectively. Results show that co-pyrolysis of CC/WCO produce more liquid and less bio-char than pyrolysis of CC individually. Bio-oil and bio-char yields were found to be largely dependent on temperature and CC/WCO ratios. GC/MS of bio-oil show it consists of different classes and amounts of organic compounds other than that from CC pyrolysis. Temperature of 550 °C and CC/WCO ratio of 1:1 seem to be the optimum considering high bio-oil yields (68.6 wt.%) and good bio-oil properties (HHV of 32.78 MJ/kg). In this case, bio-char of 24.96 MJ/kg appears attractive as a renewable source, while gas with LHV of 16.06 MJ/Nm(3) can be directly used in boilers as fuel. Copyright © 2014 Elsevier Ltd. All rights reserved.

  2. Artificial neural network modelling approach for a biomass gasification process in fixed bed gasifiers

    International Nuclear Information System (INIS)

    Mikulandrić, Robert; Lončar, Dražen; Böhning, Dorith; Böhme, Rene; Beckmann, Michael

    2014-01-01

    Highlights: • 2 Different equilibrium models are developed and their performance is analysed. • Neural network prediction models for 2 different fixed bed gasifier types are developed. • The influence of different input parameters on neural network model performance is analysed. • Methodology for neural network model development for different gasifier types is described. • Neural network models are verified for various operating conditions based on measured data. - Abstract: The number of the small and middle-scale biomass gasification combined heat and power plants as well as syngas production plants has been significantly increased in the last decade mostly due to extensive incentives. However, existing issues regarding syngas quality, process efficiency, emissions and environmental standards are preventing biomass gasification technology to become more economically viable. To encounter these issues, special attention is given to the development of mathematical models which can be used for a process analysis or plant control purposes. The presented paper analyses possibilities of neural networks to predict process parameters with high speed and accuracy. After a related literature review and measurement data analysis, different modelling approaches for the process parameter prediction that can be used for an on-line process control were developed and their performance were analysed. Neural network models showed good capability to predict biomass gasification process parameters with reasonable accuracy and speed. Measurement data for the model development, verification and performance analysis were derived from biomass gasification plant operated by Technical University Dresden

  3. Near-Bed Turbulent Kinetic Energy Budget Under a Large-Scale Plunging Breaking Wave Over a Fixed Bar

    Science.gov (United States)

    van der Zanden, Joep; van der A, Dominic A.; Cáceres, Iván.; Hurther, David; McLelland, Stuart J.; Ribberink, Jan S.; O'Donoghue, Tom

    2018-02-01

    Hydrodynamics under regular plunging breaking waves over a fixed breaker bar were studied in a large-scale wave flume. A previous paper reported on the outer flow hydrodynamics; the present paper focuses on the turbulence dynamics near the bed (up to 0.10 m from the bed). Velocities were measured with high spatial and temporal resolution using a two component laser Doppler anemometer. The results show that even at close distance from the bed (1 mm), the turbulent kinetic energy (TKE) increases by a factor five between the shoaling, and breaking regions because of invasion of wave breaking turbulence. The sign and phase behavior of the time-dependent Reynolds shear stresses at elevations up to approximately 0.02 m from the bed (roughly twice the elevation of the boundary layer overshoot) are mainly controlled by local bed-shear-generated turbulence, but at higher elevations Reynolds stresses are controlled by wave breaking turbulence. The measurements are subsequently analyzed to investigate the TKE budget at wave-averaged and intrawave time scales. Horizontal and vertical turbulence advection, production, and dissipation are the major terms. A two-dimensional wave-averaged circulation drives advection of wave breaking turbulence through the near-bed layer, resulting in a net downward influx in the bar trough region, followed by seaward advection along the bar's shoreward slope, and an upward outflux above the bar crest. The strongly nonuniform flow across the bar combined with the presence of anisotropic turbulence enhances turbulent production rates near the bed.

  4. Reactor design and operation strategies for a large-scale packed-bed CLC power plant with coal syngas

    NARCIS (Netherlands)

    Spallina, V.; Chiesa, P.; Martelli, E; Gallucci, F.; Romano, M.C.; Lozza, G.; Sint Annaland, van M.

    2015-01-01

    This paper deals with the design and operation strategies of dynamically operated packed-bed reactors (PBRs) of a chemical looping combustion (CLC) system included in an integrated gasification combined cycle (IGCC) for electric power generation with low CO2 emission from coal. The CLC reactors,

  5. Inhibition and recovery of nitrification in treating real coal gasification wastewater with moving bed biofilm reactor

    Institute of Scientific and Technical Information of China (English)

    Huiqiang Li; Hongjun Han; Maoan Du; Wei Wang

    2011-01-01

    Moving bed biofilm reactor (MBBR) was used to treat real coal gasification wastewater.Nitrification of the MBBR was inhibited almost completely during start-up period.Sudden increase of influent total NH3 concentration was the main factor inducing nitrification inhibition.Increasing DO concentration in the bulk liquid (from 2 to 3 mg/L) had little effect on nitrification recovery.Nitrification of the MBBR recovered partially by the addition of nitrifying sludge into the reactor and almost ceased within 5 days.Nitrification ratio of the MBBR achieved 65% within 12 days by increasing dilute ratio of the influent wastewater with tap water.The ratio of nitrification decreased to 25% when infiuent COD concentration increased from 650 to 1000 mg/L after nitrification recovery and recovered 70%for another 4 days.

  6. A study of geochemical prospecting for uranium-bearing low grade coal beds in Korea

    International Nuclear Information System (INIS)

    Kim, O.B.

    1980-01-01

    Trend surface analysis was applied in order to find the criteria for geochemcial prospecting of uranium bearing narrow coal bed in Ogcheon Group. Soil samples were taken from the Mogso-ri area, the Deogpyeong-ri area, and the Jeogum-ri area and were analyzed for U, V, Mo, Pb, Zn, Cu, Cd, and Cr by colorimetry and atomic absorption. All data were processed statistically by HP 3000 computer. The results were as follows: Molybdenium could be used as the best competent indicator element for uranium. Lead, Copper, Vanadium could be used as assistant indicator. The trend surface analysis and the residual map were very useful for statistical interpretation of analyzed data. Second or third degree trend surface analysis was sufficient for this work. The trend map revealed that the origin of uranium in these area was the same. (Author)

  7. Coupling membrane pervaporation with a fixed-bed reactor for enhanced esterification of oleic acid with ethanol

    International Nuclear Information System (INIS)

    Han, Ying; Lv, Enmin; Ma, Lingling; Lu, Jie; Chen, Kexun; Ding, Jincheng

    2015-01-01

    Highlights: • The reactor coupling membrane pervaporation with a fixed-bed reactor was studied. • The factors effecting the esterification of oleic acid were investigated. • NaA zeolite membrane was used for dehydration in the coupled reactor. - Abstract: Process intensification through membrane pervaporation (PV) integrated with a fixed-bed reactor could be successfully applied to the esterification of oleic acid and ethanol, which is a crucial step in the biodiesel synthesis using waste oil and grease as resource. The properties of the NaA zeolite membrane such as structure, formulation and separation were investigated by scanning electronic microscopy–energy dispersive spectrometry (SEM–EDS), X-ray diffractometry (XRD) and PV dehydration. Results showed that the NaA zeolite membrane had good separating property for removing water from the organics mixture. The operating conditions were optimized as the ethanol to oleic acid molar ratio of 15:1, feedstock flow rate of 1.0 ml/min, reaction temperature of 80.0 °C and catalyst bed height of 132 mm. The final conversion of oleic acid increased from 84.23% to 87.18% by PV using the NaA zeolite membrane at 24.0 h of operation. The membrane showed good PV performance after used for eight successive runs in the PV-assisted esterification. The resin exhibited a much high catalytic activity and operation stability after used for 100 h in the consecutive single pass fixed-bed esterification.

  8. Esterification of oleic acid in a three-phase, fixed-bed reactor packed with a cation exchange resin catalyst.

    Science.gov (United States)

    Son, Sung Mo; Kimura, Hiroko; Kusakabe, Katsuki

    2011-01-01

    Esterification of oleic acid was performed in a three-phase fixed-bed reactor with a cation exchange resin catalyst (Amberlyst-15) at high temperature, which was varied from 80 to 120 °C. The fatty acid methyl ester (FAME) yields in the fixed-bed reactor were increased with increases in the reaction temperature, methanol flow rate and bed height. Moreover, the FAME yields were higher than those obtained using a batch reactor due to an equilibrium shift toward the product that resulted from continuous evaporation of the produced water. In addition, there was no catalyst deactivation during the esterification of oleic acid. However, addition of sunflower oil to the oleic acid reduced the FAME yield obtained from simultaneous esterification and transesterification. The FAME yield was 97.5% at a reaction temperature of 100 °C in the fixed-bed with a height of 5 cm when the methanol and oleic acid feed rates were 8.6 and 9.0 mL/h, respectively. Copyright © 2010 Elsevier Ltd. All rights reserved.

  9. Co-gasification of meat and bone meal with coal in a fluidised bed reactor

    Energy Technology Data Exchange (ETDEWEB)

    E. Cascarosa; L. Gasco; G. Gea; J.L. Sanchez; J. Arauzo [Universidad de Zaragoza (Spain). Thermochemical Processes Group

    2011-08-15

    After the Bovine Spongiform Encephalopathy illness appeared, the meat and bone meat (MBM) produced from animal residues became an important waste. In spite of being a possible fuel due to its heating value (around 21.4 MJ/kg), an important fraction of the meat and bone meal is being sent to landfills. The aim of this work is to evaluate the co-gasification of low percentages of meat and bone meal with coal in a fluidised bed reactor as a potential waste management alternative. The effect of the bed temperature (800-900{sup o}C), the equivalence ratio (0.25-0.35) and the percentage of MBM in the solid fed (0-1 wt.%) on the co-gasification product yields and properties is evaluated. The results show the addition of 1 wt.% of MBM in a coal gasification process increases the gas and the liquid yield and decreases the solid yield at 900{sup o}C and 0.35 of temperature and equivalence ratio operational conditions. At operational conditions of 900{sup o}C and equivalence ratio of 0.35, the specific yield to gas (y{sub gas}) increases from 3.18 m{sup 3}(STP)/kg to 4.47 m{sup 3}(STP)/kg. The gas energy yield decreased 24.1% and the lower heating value of the gas decreases from 3.36 MJ/m{sup 3}(STP) to 2.16 MJ/m{sup 3}(STP). The concentration of the main gas components (H{sub 2}, CO and CO{sub 2}) hardly varies with the addition of MBM, however the light hydrocarbon concentrations decrease and the H{sub 2}S concentration increases at the higher temperature (900{sup o}C). 32 refs., 9 figs., 7 tabs.

  10. Co-combustion of coal and non-recyclable paper & plastic waste in a fluidised bed reactor

    Energy Technology Data Exchange (ETDEWEB)

    Boavida, D.; Abelha, P.; Gulyurtlu, I.; Cabrita, I. [DEECA-INETI, Lisbon (Portugal)

    2002-07-01

    Co-combustion of waste with coal was carried out using a fluidised bed combustor with the aim of achieving a fuel mixture with little variations in its heating value and simultaneously reducing the accumulation of non-toxic waste material by upgrading them for energy purposes. Results obtained indicate that the feeding of waste materials could present serious problems which could render conditions for a stable combustion difficult to achieve. The waste was fed mixed with coal and there was some difference observed in results regarding the combustion efficiency and emissions. Part of the combustion of waste material, contrary to that of coal, was observed to take place in the freeboard where the temperature was as much as 150{degree}C above that of the bed. 6 refs., 8 figs., 8 tabs.

  11. Co-combustion of coal and non-recyclable paper and plastic waste in a fluidised bed reactor

    Energy Technology Data Exchange (ETDEWEB)

    D. Boavida; P. Abelha; I. Gulyurtlu; I. Cabrita [DEECA-INETI, Lisbon (Portugal)

    2003-10-01

    Co-combustion of waste with coal was carried out using a fluidised bed combustor with the aim of achieving a fuel mixture with little variations in its heating value and simultaneously reducing the accumulation of non-toxic waste material by upgrading them for energy purposes. Results obtained indicate that the feeding of waste materials plays an important role to achieve conditions for a stable combustion. The form in which the fuel is fed to the combustor makes a significant contribution to achieve desirable combustion performance and differences were observed in results regarding the combustion efficiency and emissions when waste was fed densified or in a fluffy state when it was burned mixed with coal. Part of the combustion of waste material, contrary to that of coal, was observed to take place in the freeboard where the temperature was as much as 150{sup o}C above that of the bed. 15 refs., 8 figs., 8 tabs.

  12. Sequestration and Enhanced Coal Bed Methane: Tanquary Farms Test Site, Wabash County, Illinois

    Energy Technology Data Exchange (ETDEWEB)

    Frailey, Scott; Parris, Thomas; Damico, James; Okwen, Roland; McKaskle, Ray; Monson, Charles; Goodwin, Jonathan; Beck, E; Berger, Peter; Butsch, Robert; Garner, Damon; Grube, John; Hackley, Keith; Hinton, Jessica; Iranmanesh, Abbas; Korose, Christopher; Mehnert, Edward; Monson, Charles; Roy, William; Sargent, Steven; Wimmer, Bracken

    2012-05-01

    The Midwest Geological Sequestration Consortium (MGSC) carried out a pilot project to test storage of carbon dioxide (CO{sub 2}) in the Springfield Coal Member of the Carbondale Formation (Pennsylvanian System), in order to gauge the potential for large-scale CO{sub 2} sequestration and/or enhanced coal bed methane recovery from Illinois Basin coal beds. The pilot was conducted at the Tanquary Farms site in Wabash County, southeastern Illinois. A four-well design an injection well and three monitoring wells was developed and implemented, based on numerical modeling and permeability estimates from literature and field data. Coal cores were taken during the drilling process and were characterized in detail in the lab. Adsorption isotherms indicated that at least three molecules of CO{sub 2} can be stored for each displaced methane (CH{sub 4}) molecule. Microporosity contributes significantly to total porosity. Coal characteristics that affect sequestration potential vary laterally between wells at the site and vertically within a given seam, highlighting the importance of thorough characterization of injection site coals to best predict CO{sub 2} storage capacity. Injection of CO{sub 2} gas took place from June 25, 2008, to January 13, 2009. A continuous injection period ran from July 21, 2008, to December 23, 2008, but injection was suspended several times during this period due to equipment failures and other interruptions. Injection equipment and procedures were adjusted in response to these problems. Approximately 92.3 tonnes (101.7 tons) of CO{sub 2} were injected over the duration of the project, at an average rate of 0.93 tonne (1.02 tons) per day, and a mode injection rate of 0.6-0.7 tonne/day (0.66-0.77 ton/day). A Monitoring, Verification, and Accounting (MVA) program was set up to detect CO{sub 2 leakage. Atmospheric CO{sub 2} levels were monitored as were indirect indicators of CO{sub 2} leakage such as plant stress, changes in gas composition at

  13. Feasibility analysis of As(III) removal in a continuous flow fixed bed system by modified calcined bauxite (MCB)

    International Nuclear Information System (INIS)

    Bhakat, P.B.; Gupta, A.K.; Ayoob, S.

    2007-01-01

    This study examine the feasibility of As(III) removal from aqueous environment by an adsorbent, modified calcined bauxite (MCB) in a continuous flow fixed bed system. MCB exhibited excellent adsorption capacity of 520.2 mg/L (0.39 mg/g) with an adsorption rate constant 0.7658 L/mg h for an influent As(III) concentration of 1 mg/L. In a 2 cm diameter continuous flow fixed MCB bed, a depth of only 1.765 cm was found necessary to produce effluent As(III) concentration of 0.01 mg/L, from an influent of 1 mg/L at a flow rate of 8 mL/min. Also, bed heights of 10, 20, and 30 cm could treat 427.85, 473.88 and 489.17 bed volumes of water, respectively, to breakthrough. A reduction in adsorption capacity of MCB was observed with increase in flow rates. The theoretical service times evaluated from bed depth service time (BDST) approach for different flow rates and influent As(III) concentrations had shown good correlation with the corresponding experimental values. The theoretical breakthrough curve developed from constantly mixed batch reactor (CMBR) isotherm data also correlated well with experimental breakthrough curve

  14. Hydrogen-rich gas production by cogasification of coal and biomass in an intermittent fluidized bed.

    Science.gov (United States)

    Wang, Li-Qun; Chen, Zhao-Sheng

    2013-01-01

    This paper presents the experimental results of cogasification of coal and biomass in an intermittent fluidized bed reactor, aiming to investigate the influences of operation parameters such as gasification temperature (T), steam to biomass mass ratio (SBMR), and biomass to coal mass ratio (BCMR) on hydrogen-rich (H2-rich) gas production. The results show that H2-rich gas free of N2 dilution is produced and the H2 yield is in the range of 18.25~68.13 g/kg. The increases of T, SBMR, and BCMR are all favorable for promoting the H2 production. Higher temperature contributes to higher CO and H2 contents, as well as H2 yield. The BCMR has a weak influence on gas composition, but the yield and content of H2 increase with BCMR, reaching a peak at the BCMR of 4. The H2 content and yield in the product gas increase with SBMR, whilst the content of CO increases first and then decreases correspondingly. At a typical case, the relative linear sensitivity coefficients of H2 production efficiency to T, SBMR, and BCMR were calculated. The results reveal that the order of the influence of the operation parameters on H2 production efficiency is T > SBMR > BCMR.

  15. Co-Combustion of Municipal Sewage Sludge and Hard Coal on Fluidized Bed Boiler WF-6

    Directory of Open Access Journals (Sweden)

    Rajczyk Rafał

    2014-12-01

    Full Text Available According to data of the Central Statistical Office, the amount of sludge produced in municipal wastewater treatment plants in 2010 amounted to 526000 Mg d.m. The forecast of municipal sewage sludge amount in 2015 according to KPGO2014 will reach 642400 Mg d.m. and is expected to increase in subsequent years. Significant amounts of sludge will create problems due to its utilization. In order to solve this problem the use of thermal methods for sludge utilization is expected. According to the National Waste Management Plan nearly 30% of sewage sludge mass should be thermally utilized by 2022. The article presents the results of co-combustion of coal and municipal sewage sludge in a bubbling fluidized bed boiler made by SEFAKO and located in the Municipal Heating Company in Morag. Four tests of hard coal and sewage sludge co-combustion have been conducted. Boiler performance, emissions and ash quality were investigated.

  16. Atmospheric fluidized-bed combustion (AFBC) co-firing of coal and hospital waste

    International Nuclear Information System (INIS)

    1993-02-01

    The proposed project involves co-firing of coal and medical waste (including infectious medical waste) in an atmospheric fluidized-bed combustor (AFBC) to safely dispose of medical waste and produce steam for hospital needs. Combustion at the design temperature and residence time (duration) in the AFBC has been proven to render infectious medical waste free of disease producing organisms. The project would be located at the Veterans Affairs (VA) Medical Center in Lebanon, Pennsylvania. The estimated cost of the proposed AFBC facility is nearly $4 million. It would be jointly funded by DOE, Veterans Affairs, and Donlee Technologies, Inc., of York, Pennsylvania, under a cooperative agreement between DOE and Donlee. Under the terms of this agreement, $3.708 million in cost-shared financial assistance would be jointly provided by DOE and the Veterans Affairs (50/50), with $278,000 provided by Donlee. The purposes of the proposed project are to: (1) provide the VA Medical Center and the Good Samaritan Hospital (GSH), also of Lebanon, Pennsylvania, with a solution for disposal of their medical waste; and (2) demonstrate that a new coal-burning technology can safely incinerate infectious medical waste, produce steam to meet hospital needs, and comply with environmental regulations

  17. Fluidized bed combustion of single coal char particles at high CO{sub 2} concentration

    Energy Technology Data Exchange (ETDEWEB)

    Scala, F.; Chirone, R. [CNR, Naples (Italy)

    2010-12-15

    Combustion of single coal char particles was studied at 850{sup o}C in a lab-scale fluidized bed at high CO{sub 2} concentration, typical of oxyfiring conditions. The burning rate of the particles was followed as a function of time by continuously measuring the outlet CO and O{sub 2} concentrations. Some preliminary evaluations on the significance of homogeneous CO oxidation in the reactor and of carbon gasification by CO{sub 2} in the char were also carried out. Results showed that the carbon burning rate increases with oxygen concentration and char particle size. The particle temperature is approximately equal to that of the bed up to an oxygen concentration of 2%, but it is considerably higher for larger oxygen concentrations. Both CO{sub 2} gasification of char and homogeneous CO oxidation are not negligible. The gasification reaction rate is slow and it is likely to be controlled by intrinsic kinetics. During purely gasification conditions the extent of carbon loss due to particle attrition by abrasion (estimated from the carbon mass balance) appears to be much more important than under combustion conditions.

  18. Cadmium removal by bioclastic granules (Lithothamnium calcareum): batch and fixed-bed column systems sorption studies.

    Science.gov (United States)

    Veneu, Diego Macedo; Schneider, Claudio Luiz; de Mello Monte, Marisa Bezerra; Cunha, Osvaldo Galvão Caldas; Yokoyama, Lídia

    2017-06-19

    The potential of Bioclastic Granules - BG (calcium-carbonate-based material) using the algae Lithothamnium calcareum as sorbent for the removal of Cd(II) from aqueous solutions by sorption was evaluated through batch and continuous systems tests using a fixed-bed column. Sorption process variables, in particular pH (2-7), particle size (<38-300 μm), initial BG concentration (0.1-1.0 g L -1 ), initial Cd(II) concentrations (5-400 mg L -1 ) and contact time (5-240 min), were evaluated. Adsorption isotherm profiles of Cd(II) per BG were similar to an L-type, or Langmuir type, with the adsorption forming a monolayer of approximately 0.61 μm, with a q max of 188.74 mg g -1 and k L of 0.710 L mg -1 . Thomas's model considers that sorption is not limited to a chemical reaction but is controlled by mass transfer at the interface. In the present study, the obtained value of k Th was 0.895 mL h -1  mg -1 , reaching a sorption capacity q o of 124.4 mg g -1 . For the Yoon-Nelson model, it was possible to obtain two important parameters to describe the behavior of the column, the rate constant (k YN ), obtaining a value of 0.09 h -1 and an τ of 82.12 h corresponding to the time required for sorption to occur of 50% of the solute in the rupture curve. X-ray diffraction and scanning electron microscopy analyses coupled to the X-ray dispersive energy system (SEM/EDS) of the BG after the Cd(II) ion sorption tests evidenced the formation of crystals with the prevalence of a new mineral phase (otavite).

  19. Porous filtering media comparison through wet and dry sampling of fixed bed gasification products

    Science.gov (United States)

    Allesina, G.; Pedrazzi, S.; Montermini, L.; Giorgini, L.; Bortolani, G.; Tartarini, P.

    2014-11-01

    The syngas produced by fixed bed gasifiers contains high quantities of particulate and tars. This issue, together with its high temperature, avoids its direct exploitation without a proper cleaning and cooling process. In fact, when the syngas produced by gasification is used in an Internal Combustion engine (IC), the higher the content of tars and particulate, the higher the risk to damage the engine is. If these compounds are not properly removed, the engine may fail to run. A way to avoid engine fails is to intensify the maintenance schedule, but these stops will reduce the system profitability. From a clean syngas does not only follow higher performance of the generator, but also less pollutants in the atmosphere. When is not possible to work on the gasification reactions, the filter plays the most important role in the engine safeguard process. This work is aimed at developing and comparing different porous filters for biomass gasifiers power plants. A drum filter was developed and tested filling it with different filtering media available on the market. As a starting point, the filter was implemented in a Power Pallet 10 kW gasifier produced by the California-based company "ALL Power Labs". The original filter was replaced with different porous biomasses, such as woodchips and corn cobs. Finally, a synthetic zeolites medium was tested and compared with the biological media previously used. The Tar Sampling Protocol (TSP) and a modified "dry" method using the Silica Gel material were applied to evaluate the tars, particulate and water amount in the syngas after the filtration process. Advantages and disadvantages of every filtering media chosen were reported and discussed.

  20. Fast pyrolysis of hardwood residues using a fixed bed drop-type pyrolyzer

    International Nuclear Information System (INIS)

    Mazlan, Mohammad Amir Firdaus; Uemura, Yoshimitsu; Osman, Noridah B.; Yusup, Suzana

    2015-01-01

    Highlights: • Pyrolysis of rubber and Meranti wood was conducted by using a drop-type pyrolyzer. • As temperature increase, char yield decrease, but bio-oil and gas yield increase. • Maximum pyrolysis temperature for pyrolysis of RWS is 550 °C and 600 °C for MWS. • Calorific value of bio-char is very high and potential to be used as a solid fuel. • CO and CO 2 are the major gas components in the non-condensable gases by-product. - Abstract: In this research, rubber wood sawdust (RWS) and Meranti wood sawdust (MWS) were pyrolyzed in a fixed bed drop-type pyrolyzer under an inert condition. The first part of the study is to determine the influence of pyrolysis temperature (450, 500, 550, 600, 650 °C) on the yield of pyrolysis products. Pyrolysis of these different residues generate an almost identical maximum amount of bio-oil close to 33 wt.%, but at different maximum temperature (550 °C for pyrolysis of RWS and 600 °C for pyrolysis of MWS). To evaluate the effect of biomass type on the composition and characterization of pyrolysis products, the second part involves the analyses of pyrolysis products from the maximum pyrolysis temperature. Acetic acid, tetrahydrofuran, and benzene were the main bio-oil components. The bio-oil contained high percentage of oxygen and hydrogen, indicating high water content in the bio-oil. High amount of water in bio-oil significantly reduced its calorific value. Under extensive heating, particle size of the bio-char from SEM images decreased due to breakage and shrinkage mechanisms. The major components of non-condensable gases were CO and CO 2

  1. Adsorptive control of water in esterification with immobilized enzymes: II. fixed-bed reactor behavior.

    Science.gov (United States)

    Mensah, P; Gainer, J L; Carta, G

    1998-11-20

    Experimental and theoretical studies are conducted to understand the dynamic behavior of a continuous-flow fixed-bed reactor in which an esterification is catalyzed by an immobilized enzyme in an organic solvent medium. The experimental system consists of a commercial immobilized lipase preparation known as Lipozyme as the biocatalyst, with propionic acid and isoamyl alcohol (dissolved in hexane) as the reaction substrates. A complex dynamic behavior is observed experimentally as a result of the simultaneous occurrence of reaction and adsorption phenomena. Both propionic acid and water are adsorbed by the biocatalyst resulting in lower reaction rates. In addition, an excessive accumulation of water in the reactor leads to a rapid irreversible inactivation of the enzyme. A model based on previously-obtained adsorption isotherms and kinetic expressions, as well as on adsorption rate measurements obtained in this work, is used to predict the concentration and thermodynamic activity of water along the reactor length. The model successfully predicts the dynamic behavior of the reactor and shows that a maximum thermodynamic activity of water occurs at a point at some distance from the reactor entrance. A cation exchange resin in sodium form, packed in the reactor as a selective water adsorbent together with the catalyst particles, is shown to be an effective means for preventing an excessive accumulation of water formed in the reaction. Its use results in longer cycle times and greater productivity. As predicted by the model, the experimental results show that the water adsorbed on the catalyst and on the ion exchange resin can be removed with isoamyl alcohol with no apparent loss in enzyme activity. Copyright 1998 John Wiley & Sons, Inc.

  2. Release of alkali salts and coal volatiles affecting internal components in fluidized bed combustion systems

    Directory of Open Access Journals (Sweden)

    Arias del Campo, E.

    2003-12-01

    Full Text Available In spite of the potential advantages of atmospheric fluidized bed systems, experience has proved that, under certain environments and operating conditions, a given material employed for internal components could lead to catastrophic events. In this study, an attempt is made to establish material selection and operational criteria that optimize performance and availability based on theoretical considerations of the bed hydrodynamics, thermodynamics and combustion process. The theoretical results may indicate that, for high-volatile coals with particle diameters (dc of 1-3 mm and sand particle size (ds of 0.674 mm, a considerable proportion of alkali chlorides may be transferred into the freeboard region of fluidized bed combustors as vapor phase, at bed temperatures (Tb < 840 °C, excess air (XSA ≤ 20 %, static bed height (Hs ≤ 0.2 m and fluidizing velocity (Uo < 1 m/s. Under these operating conditions, a high alkali deposition may be expected to occur in heat exchange tubes located above the bed. Conversely, when the combustors operate at Tb > 890 °C and XSA > 30 %, a high oxidation rate of the in-bed tubes may be present. Nevertheless, for these higher Tb values and XSA < 10 %, corrosion attack of metallic components, via sulfidation, would occur since the excessive gas-phase combustion within the bed induced a local oxygen depletion.

    A pesar de las ventajas potenciales de los sistemas atmosféricos de lecho fluidizado, la experiencia ha demostrado que, bajo ciertas atmósferas y condiciones de operación, un material que se emplea como componente interno podría experimentar una falla y conducir a eventos catastróficos. En este estudio, se intenta establecer un criterio tanto operativo como de selección del material que permita optimizar su disponibilidad y funcionalidad basados en consideraciones teóricas de la hidrodinámica del lecho, la termodin

  3. Models comparative study for heat storage in fixed beds; Estudo comparativo de modelos para armazenamento de calor em leitos fixos

    Energy Technology Data Exchange (ETDEWEB)

    Stuginski, Junior, Rubens

    1991-07-01

    This work presents comparative results of a numerical investigation of four possible models for the prediction of thermal performance of fixed bed storage units and their thermal design. These models includes Schumann's model, the radial dispersion model, a model that include both axial heat conduction in the fluid phase and admits thermal gradient in the solids particles and finally a two dimensional single phase model. For each of these models a computer code was written and tested to evaluate the computing time of same data and analyze any other computational problems. The tests of thermal performance included particle size, porosity, particle material, flow rate, inlet temperature and heat losses form tank walls and extremities. Dynamics behaviour of the storage units due to transient variation in either flow rate or inlet temperature was also investigated. The results presented include temperature gradients, pressure drop and heat storage. The results obtained are very useful for analysis and design of fixed bed storage units. (author)

  4. Fixed bed sorption of phosphorus from wastewater using iron oxide-based media derived from acid mine drainage

    Science.gov (United States)

    Sibrell, Philip L.; Tucker, T.W.

    2012-01-01

    Phosphorus (P) releases to the environment have been implicated in the eutrophication of important water bodies worldwide. Current technology for the removal of P from wastewaters consists of treatment with aluminum (Al) or iron (Fe) salts, but is expensive. The neutralization of acid mine drainage (AMD) generates sludge rich in Fe and Al oxides that has hitherto been considered a waste product, but these sludges could serve as an economical adsorption media for the removal of P from wastewaters. Therefore, we have evaluated an AMD-derived media as a sorbent for P in fixed bed sorption systems. The homogenous surface diffusion model (HSDM) was used to analyze fixed bed test data and to determine the value of related sorption parameters. The surface diffusion modulus Ed was found to be a useful predictor of sorption kinetics. Values of Ed treatment costs while at the same time ameliorating the impacts of P contamination.

  5. Methanogenic pathways of coal-bed gas in the Powder River Basin, United States: The geologic factor

    Energy Technology Data Exchange (ETDEWEB)

    Flores, Romeo M.; Rice, Cynthia A.; Stricker, Gary D.; Warden, Augusta; Ellis, Margaret S. [U.S. Geological Survey, Box 25046, MS 939, Denver, Colorado 80225 (United States)

    2008-10-02

    Coal-bed gas of the Tertiary Fort Union and Wasatch Formations in the Powder River Basin in Wyoming and Montana, U.S. was interpreted as microbial in origin by previous studies based on limited data on the gas and water composition and isotopes associated with the coal beds. To fully evaluate the microbial origin of the gas and mechanisms of methane generation, additional data for 165 gas and water samples from 7 different coal-bed methane-bearing coal-bed reservoirs were collected basinwide and correlated to the coal geology and stratigraphy. The C{sub 1}/(C{sub 2} + C{sub 3}) ratio and vitrinite reflectance of coal and organic shale permitted differentiation between microbial gas and transitional thermogenic gas in the central part of the basin. Analyses of methane {delta}{sup 13}C and {delta}D, carbon dioxide {delta}{sup 13}C, and water {delta}D values indicate gas was generated primarily from microbial CO{sub 2} reduction, but with significant gas generated by microbial methyl-type fermentation (aceticlastic) in some areas of the basin. Microbial CO{sub 2} reduction occurs basinwide, but is generally dominant in Paleocene Fort Union Formation coals in the central part of the basin, whereas microbial methyl-type fermentation is common along the northwest and east margins. Isotopically light methane {delta}{sup 13}C is distributed along the basin margins where {delta}D is also depleted, indicating that both CO{sub 2}-reduction and methyl-type fermentation pathways played major roles in gas generation, but gas from the latter pathway overprinted gas from the former pathway. More specifically, along the northwest basin margin gas generation by methyl-type fermentation may have been stimulated by late-stage infiltration of groundwater recharge from clinker areas, which flowed through highly fractured and faulted coal aquifers. Also, groundwater recharge controlled a change in gas composition in the shallow Eocene Wasatch Formation with the increase of nitrogen and

  6. Sorptive Removal of Cesium and Cobalt Ions in a Fixed bed Column Using Lewatit S100 Cation Exchange Resin

    International Nuclear Information System (INIS)

    El-Naggar, M.R.; Ibrahim, H.A.; El-Kamash, A.M.

    2014-01-01

    The sorptive removal of cesium and cobalt ions from aqueous solutions in a fixed bed column packed with Lewatit S100® cation exchange resin has been investigated. A preliminary batch studies were performed to estimate the effect of pH and contact time on the sorption process. Results indicated that Cs + and Co 2+ could be efficiently removed using Lewatit S100® at a ph range of 4-7 with more affinity towards Cs than Co 2+ . Kinetic models have been applied to the sorption rate data and the relevant parameters were determined. The obtained results indicated that the sorption of both Cs + and Co 2+ on Lewatit S100 followed pseudo second-order rather than pseudo first-order or Morris-Webber model. Fixed bed experiments were conducted at a constant initial concentration of 100 mg/l whereas the effect of bed depth (3, 4.5 and 6 cm) and volumetric flow rate (3 and 5 ml/min.) on the breakthrough characteristics of the fixed bed sorption systems were determined. The experimental sorption data were fitted to the well-established column models namely; Thomas and BDST models to compute the different model parameters. The higher column sorption capacities were obtained at bed depth of 3 cm with a flow rate of 3 ml/min., for both Cs + and Co 2+ . The BDST model appeared to describe experimental results better than Thomas model. Results indicate that Lewatit S100® is an efficient material for the removal of cesium and cobalt ions from aqueous solutions.

  7. NUMERICAL SOLUTION OF STEADY STATE DISPERSION FLOW MODEL FOR LACTOSE-LACTASE HYDROLYSIS WITH DIFFERENT KINETICS IN FIXED BED

    Directory of Open Access Journals (Sweden)

    OLAOSEBIKAN ABIDOYE OLAFADEHAN

    2010-06-01

    Full Text Available A detailed computational procedure for evaluating lactose hydrolysis with immobilized enzyme in a packed bed tubular reactor under dispersion flow conditions is presented. The dispersion flow model for lactose hydrolysis using different kinetics, taking cognizance of external mass transfer resistances, was solved by the method of orthogonal collocation. The reliability of model simulations was tested using experimental data from a laboratory packed bed column, where the -galactosidase of Kluyveromyces fragilis was immobilized on spherical chitosan beads. Comparison of the simulated results with experimental exit conversion shows that the dispersion flow model and using Michaelis-Menten kinetics with competitive product (galactose inhibition are appropriate to interpret the experimental results and simulate the process of lactose hydrolysis in a fixed bed.

  8. Carbonaceous materials in petrochemical wastewater before and after treatment in an aerated submerged fixed-bed biofilm reactor

    OpenAIRE

    Trojanowicz Karol; Wojcik Wlodzimierz

    2016-01-01

    Results of the studies for determining fractions of organic contaminants in a pretreated petrochemical wastewater flowing into a pilot Aerated Submerged Fixed-Bed Biofilm Reactor (ASFBBR) are presented and discussed. The method of chemical oxygen demand (COD) fractionation consisted of physical tests and biological assays. It was found that the main part of the total COD in the petrochemical, pretreated wastewater was soluble organic substance with average value of 57.6%. The fractions of par...

  9. Fixed bed sorption of phosphorus from wastewater using iron oxide-based media derived from acid mine drainage

    Science.gov (United States)

    Sibrell, Philip L.; Tucker, T.W.

    2012-01-01

    Phosphorus (P) releases to the environment have been implicated in the eutrophication of important water bodies worldwide. Current technology for the removal of P from wastewaters consists of treatment with aluminum (Al) or iron (Fe) salts, but is expensive. The neutralization of acid mine drainage (AMD) generates sludge rich in Fe and Al oxides that has hitherto been considered a waste product, but these sludges could serve as an economical adsorption media for the removal of P from wastewaters. Therefore, we have evaluated an AMD-derived media as a sorbent for P in fixed bed sorption systems. The homogenous surface diffusion model (HSDM) was used to analyze fixed bed test data and to determine the value of related sorption parameters. The surface diffusion modulus Ed was found to be a useful predictor of sorption kinetics. Values of Ed < 0.2 were associated with early breakthrough of P, while more desirable S-shaped breakthrough curves resulted when 0.2 < Ed < 0.5. Computer simulations of the fixed bed process with the HSDM confirmed that if Ed was known, the shape of the breakthrough curve could be calculated. The surface diffusion coefficient D s was a critical factor in the calculation of Ed and could be estimated based on the sorption test conditions such as media characteristics, and influent flow rate and concentration. Optimal test results were obtained with a relatively small media particle size (average particle radius 0.028 cm) and resulted in 96 % removal of P from the influent over 46 days of continuous operation. These results indicate that fixed bed sorption of P would be a feasible option for the utilization of AMD residues, thus helping to decrease AMD treatment costs while at the same time ameliorating the impacts of P contamination.

  10. Damage Effects and Fractal Characteristics of Coal Pore Structure during Liquid CO2 Injection into a Coal Bed for E-CBM

    Directory of Open Access Journals (Sweden)

    Li Ma

    2018-05-01

    Full Text Available Pore structure has a significant influence on coal-bed methane (CBM enhancement. Injecting liquid CO2 into coal seams is an effective way to increase CBM recovery. However, there has been insufficient research regarding the damage effects and fractal characteristics of pore structure at low temperature induced by injecting liquid CO2 into coal samples. Therefore, the methods of low-pressure nitrogen adsorption-desorption (LP-N2-Ad and mercury intrusion porosimetry (MIP were used to investigate the damage effects and fractal characteristics of pore structure with full aperture as the specimens were frozen by liquid CO2. The adsorption isotherms revealed that the tested coal samples belonged to type B, indicating that they contained many bottle and narrow-slit shaped pores. The average pore diameter (APD; average growth rate of 18.20%, specific surface area (SSA; average growth rate of 7.38%, and total pore volume (TPV; average growth rate of 18.26% increased after the specimens were infiltrated by liquid CO2, which indicated the generation of new pores and the transformation of original pores. Fractal dimensions D1 (average of 2.58 and D2 (average of 2.90 of treated coal samples were both larger the raw coal (D1, average of 2.55 and D2, average of 2.87, which indicated that the treated specimens had more rough pore surfaces and complex internal pore structures than the raw coal samples. The seepage capacity was increased because D4 (average of 2.91 of the treated specimens was also higher than the raw specimens (D4, average of 2.86. The grey relational coefficient between the fractal dimension and pore structure parameters demonstrated that the SSA, APD, and porosity positively influenced the fractal features of the coal samples, whereas the TPV and permeability exerted negative influences.

  11. Pilot-scale fluidized-bed combustor testing cofiring animal-tissue biomass with coal as a carcass disposal option

    Energy Technology Data Exchange (ETDEWEB)

    Bruce G. Miller; Sharon Falcone Miller; Elizabeth M. Fedorowicz; David W. Harlan; Linda A. Detwiler; Michelle L. Rossman [Pennsylvania State University, University Park, PA (United States). Energy Institute

    2006-10-15

    This study was performed to demonstrate the technical viability of cofiring animal-tissue biomass (ATB) in a coal-fired fluidized-bed combustor (FBC) as an option for disposing of specified risk materials (SRMs) and carcasses. The purpose of this study was to assess the technical issues of feeding/combusting ATB and not to investigate prion deactivation/pathogen destruction. Overall, the project successfully demonstrated that carcasses and SRMs can be cofired with coal in a bubbling FBC. Feeding ATB into the FBC did, however, present several challenges. Specifically, handling/feeding issues resulting from the small scale of the equipment and the extremely heterogeneous nature of the ATB were encountered during the testing. Feeder modifications and an overbed firing system were necessary. Through statistical analysis, it was shown that the ATB feed location had a greater effect on CO emissions, which were used as an indication of combustion performance, than the fuel type due to the feeding difficulties. Baseline coal tests and tests cofiring ATB into the bed were statistically indistinguishable. Fuel feeding issues would not be expected at the full scale since full-scale units routinely handle low-quality fuels. In a full-scale unit, the disproportionate ratio of feed line size to unit diameter would be eliminated thereby eliminating feed slugging. Also, the ATB would either be injected into the bed, thereby ensuring uniform mixing and complete combustion, or be injected directly above the bed with overfire air ports used to ensure complete combustion. Therefore, it is anticipated that a demonstration at the full scale, which is the next activity in demonstrating this concept, should be successful. As the statistical analysis shows, emissions cofiring ATB with coal would be expected to be similar to that when firing coal only. 14 refs., 5 figs., 6 tabs.

  12. Media arrangement impacts cell growth in anaerobic fixed-bed reactors treating sugarcane vinasse: Structured vs. randomic biomass immobilization.

    Science.gov (United States)

    de Aquino, Samuel; Fuess, Lucas Tadeu; Pires, Eduardo Cleto

    2017-07-01

    This study reports on the application of an innovative structured-bed reactor (FVR) as an alternative to conventional packed-bed reactors (PBRs) to treat high-strength solid-rich wastewaters. Using the FVR prevents solids from accumulating within the fixed-bed, while maintaining the advantages of the biomass immobilization. The long-term operation (330days) of a FVR and a PBR applied to sugarcane vinasse under increasing organic loads (2.4-18.0kgCODm -3 day -1 ) was assessed, focusing on the impacts of the different media arrangements over the production and retention of biomass. Much higher organic matter degradation rates, as well as long-term operational stability and high conversion efficiencies (>80%) confirmed that the FVR performed better than the PBR. Despite the equivalent operating conditions, the biomass growth yield was different in both reactors, i.e., 0.095gVSSg -1 COD (FVR) and 0.066gVSSg -1 COD (PBR), indicating a clear control of the media arrangement over the biomass production in fixed-bed reactors. Copyright © 2017 Elsevier Ltd. All rights reserved.

  13. Activated Carbon Adsorption Characteristics of Multi-component Volatile Organic compounds in a Fixed Bed Adsorption Bed

    Energy Technology Data Exchange (ETDEWEB)

    Cho, Jong Hoon; Rhee, Young Woo [Chungnam National University, Daejeon (Korea, Republic of); Lee, Sihyun [Korea Institute of Energy Research, Daejeon (Korea, Republic of)

    2016-04-15

    This study aims to examine absorption characteristics of toluene, isopropyl alcohol (IPA), ethyl acetate (EA), and ternary-compounds, all of which are widely used in industrial processes, by means of four types of commercial activated carbon substances. It turned out that among the three types of volatile organic compounds, the breakthrough point of activated carbon and that of IPA, whose affinity was the lowest, were the lowest, and then that of EA and that of toluene in the order. With the breakthrough point of IPA, which was the shortest, as the standard, changes in the breakthrough points of unary-compounds, binary-compounds, and ternary-compounds were examined. As a result, it turned out that the larger the number of elements, the lower the breakthrough point. This resulted from competitive adsorption, that is, substitution of substances with a low level of affinity with those with a high level of affinity. Hence, the adsorption of toluene-IPA-EA and ternary-compounds require a design of the activated carbon bed based on the breakthrough of IPA, and in the design of activated carbon beds in actual industries as well, a substance whose level of affinity is the lowest needs to be the standard.

  14. Application of wasted sea-shell to desulfurizer in fluidized bed coal combustion

    Energy Technology Data Exchange (ETDEWEB)

    Naruse, Ichiro; Saito, Katsuhiro; Murakami, Takahiro

    1999-07-01

    Almost all wasted seashells consist of CaCo{sub 3}, and are similar to limestone. It would be proposed that the seashell could be applied as a desulfurizer. In this study, desulfurization characteristics of the seashell are fundamentally studied by using a thermobalance and a bubbling fluidized coal combustor with comparing the results obtained by limestone as a reference. Under the constant calcination temperature, the desulfurization efficiency for the seashells attains more than about 70% after the desulfurization period of 30 h. For the limestones, on the other hand, the desulfurization efficiency becomes only 38%. Under practical conditions of fluidized bed coal combustion, the desulfurization efficiency for the seashells also indicates higher value than that for the limestones. The desulfurization efficiency depends on the pore size distribution of CaO rather than its specific surface area. The mean pore size of the calcined seashell is about 10 times as large as that of the calcined limestones. from Scanning Electro-Microscope (SEM) photos of the surface of CaCO{sub 3}, CaO and the sulfurized particles of the seashells the large pores can be observed. In measuring cross-sectional distribution of sulfur inside the particles by using an Energy Dispersed X-ray (EDX) system, the sulfur in the sulfurized particle of limestone is only trapped near the particle surface. For the seashells, whereas, the sulfur is distributed over the whole body of particle. Desulfurization efficiency for the limestone, into which some alkali metal compounds are added, increases with increasing the concentration of alkali metal compounds added. In order of increasing effect the key elemental species to enhance the desulfurization activities are Cl, Na and K. Alkali metal compounds can enhance the desulfurization activities, due to solution of CaO in molten NaCl. This is one of the reasons why the desulfurization efficiency for the seashells improves.

  15. Coupled hydrology and biogeochemistry of Paleocene–Eocene coal beds, northern Gulf of Mexico

    Science.gov (United States)

    McIntosh, Jennifer C.; Warwick, Peter D.; Martini, Anna M.; Osborn, Stephen G.

    2010-01-01

    Thirty-six formation waters, gas, and microbial samples were collected and analyzed from natural gas and oil wells producing from the Paleocene to Eocene Wilcox Group coal beds and adjacent sandstones in north-central Louisiana, USA, to investigate the role hydrology plays on the generation and distribution of microbial methane. Major ion chemistry and Cl−Br relations of Wilcox Group formation waters suggest mixing of freshwater with halite-derived brines. High alkalinities (up to 47.8 meq/L), no detectable SO4, and elevated δ13C values of dissolved inorganic carbon (up to 20.5‰ Vienna Peedee belemnite [VPDB]) and CO2 (up to 17.67‰ VPDB) in the Wilcox Group coals and adjacent sandstones indicate the dominance of microbial methanogenesis. The δ13C and δD values of CH4, and carbon isotope fractionation of CO2 and CH4, suggest CO2 reduction is the major methanogenic pathway. Geochemical indicators for methanogenesis drop off significantly at chloride concentrations above ∼1.7 mol/L, suggesting that high salinities inhibit microbial activity at depths greater than ∼1.6 km. Formation waters in the Wilcox Group contain up to 1.6% modern carbon (A14C) to at least 1690 m depth; the covariance of δD values of co-produced H2O and CH4 indicate that the microbial methane was generated in situ with these Late Pleistocene or younger waters. The most enriched carbon isotope values for dissolved inorganic carbon (DIC) and CO2, and highest alkalinities, were detected in Wilcox Group sandstone reservoirs that were CO2 flooded in the 1980s for enhanced oil recovery, leading to the intriguing hypothesis that CO2 sequestration may actually enhance methanogenesis in organic-rich formations.

  16. SHRIMP zircon U–Pb ages from coal beds across the Permian–Triassic boundary, eastern Yunnan, southwestern China

    Directory of Open Access Journals (Sweden)

    Juan Wang

    2018-04-01

    Full Text Available The first SHRIMP zircon U–Pb ages from coal beds close to the end-Permian mass extinction are reported from the C1 coal seam in the Yantang Mine in Laibin Town, Xuanwei County, eastern Yunnan Province. Zircons were extracted from kaolinite claystone layers, defined as tonsteins (volcanic ash deposits, in the sub-seam B1 and B3 of the coal seam C1. The U–Pb ages are 252.0 ± 2.3 Ma and 250.3 ± 2.1 Ma for the sub-seam B1 and B3, respectively. Within analytical uncertainties, these U–Pb ages include the time period of the onset of the mass extinction at 251.941 ± 0.037 Ma, which was obtained from the marine Meishan section in Zhejiang Province, ∼1600 km away from the Yantang Mine. These new ages represent not only the first and closest ages to the PTB mass extinction in terrestrial coal beds, but also ages from the nearest site to the Emeishan volcanoes investigated so far. Therefore these new data provide the most accurate stratigraphic horizon of terrestrial facies of the end-Permian extinction in South China. The Emeishan volcanoes were likely the source of volcanic ash in the coal seams at the Xuanwei County and broader areas in South China. Furthermore, the minerals and geochemistry characteristics of the C1 coal seam also implied the influences of contemporaneous volcanic activities. Keywords: PTB mass extinction, C1 coal seam, SHRIMP U–Pb isotope age, Xuanwei County, Yunnan Province

  17. An investigation of the physical and chemical changes occuring in a Fischer-Tropsch fixed bed catalyst during hydrocarbon synthesis

    International Nuclear Information System (INIS)

    Duvenhage, D.J.

    1990-01-01

    Deactivation studies: making use of fixed bed reactors, wet chemical analysis, surface area, pore volume determinations and X-ray diffraction spectrometry, scanning electron microscope spectrometry and secondary ion mass spectrometry techniques; were performed on a low temperature iron Fischer-Tropsch catalyst. It was revealed that this catalyst is mainly deactivated by sulphur poisoning, oxidation of the catalytic reactive phases, sintering of the iron crystallites and to a lesser extent deactivation through fouling of the catalytic surface by carbonaceous deposits. It was found that the top entry section of the catalyst bed deactivated relatively fast, the bottom exit section also deactivated, but not as fast as the top section. The central portion of the catalyst bed was least affected. Sulphur contaminants in the feed gas, even though present in only minute quantities, results in a loss of catalyst performance of the top section of the catalyst bed, while water, produced as a product from the Fischer-Tropsch reaction, oxidized and sintered the catalyst over the bottom section of the catalyst bed. 88 figs., 7 tabs., 224 refs

  18. Stratified Sampling to Define Levels of Petrographic Variation in Coal Beds: Examples from Indonesia and New Zealand

    Directory of Open Access Journals (Sweden)

    Tim A. Moore

    2016-01-01

    Full Text Available DOI: 10.17014/ijog.3.1.29-51Stratified sampling of coal seams for petrographic analysis using block samples is a viable alternative to standard methods of channel sampling and particulate pellet mounts. Although petrographic analysis of particulate pellets is employed widely, it is both time consuming and does not allow variation within sampling units to be assessed - an important measure in any study whether it be for paleoenvironmental reconstruction or in obtaining estimates of industrial attributes. Also, samples taken as intact blocks provide additional information, such as texture and botanical affinity that cannot be gained using particulate pellets. Stratified sampling can be employed both on ‘fine’ and ‘coarse’ grained coal units. Fine-grained coals are defined as those coal intervals that do not contain vitrain bands greater than approximately 1 mm in thickness (as measured perpendicular to bedding. In fine-grained coal seams, a reasonable sized block sample (with a polished surface area of ~3 cm2 can be taken that encapsulates the macroscopic variability. However, for coarse-grained coals (vitrain bands >1 mm a different system has to be employed in order to accurately account for the larger particles. Macroscopic point counting of vitrain bands can accurately account for those particles>1 mm within a coal interval. This point counting method is conducted using something as simple as string on a coal face with marked intervals greater than the largest particle expected to be encountered (although new technologies are being developed to capture this type of information digitally. Comparative analyses of particulate pellets and blocks on the same interval show less than 6% variation between the two sample types when blocks are recalculated to include macroscopic counts of vitrain. Therefore even in coarse-grained coals, stratified sampling can be used effectively and representatively.

  19. The quality of microorganism on coal bed methane processing with various livestock waste in laboratory scale

    Science.gov (United States)

    Marlina, E. T.; Kurnani, Tb. B. A.; Hidayati, Y. A.; Rahmah, K. N.; Joni, I. M.; Harlia, E.

    2018-02-01

    Coal-bed Methane (CBM) is a form of natural gas extracted from coal and has been developed as future energy source. Organic materials are required as nutrition source for methanogenic microbes. The addition of cattle waste in the formation of CBM on coal media can be utilized as organic materials as well as methanogenic microbe sources. This research covered study of total amount of anaerobic microbes, methane production, protozoa, fungi and endoparasites. Descriptive approach is conducted for this study. Media used for culturing methanogens is Nutrient Agar in powder form and Lactose Broth with the addition of rumen fluid. The technique for counting microbes is through Total Plate Count in anaerobic Hungate tube, methane was analyzed using Gas Chromatography (GC), while identification of protozoa, fungi and endoparasites based on its morphology is conducted before and after anaerobic fermentation process. Incubation period is 30 days. The results showed that growth of anaerobic microbes from dairy cattle waste i.e. biogas sludge is 3.57×103 CFU/ml and fresh feces is 3.38 × 104 CFU/ml, growth of anaerobic microbes from beef cattle waste i.e. biogas sludge is 7.0 × 105 CFU/ml; fresh feces is 7.5 x 104 CFU/ml; and rumen contents of about 1.33 × 108 CFU/ml. Methane production in dairy cattle waste in sludge and fresh feces amounted to 10.57% and 2.39%, respectively. Methane production in beef cattle waste in sludge accounted for 5.95%; in fresh feces it is about 0.41%; and rumen contents of 4.92%. Decreasing of protozoa during fermentation to 84.27%, dominated by Eimeria sp. Decreasing of fungi to 16%, dominated by A. Niger, A. Flavus, A. Fumigatus and Monilia sitophila. Decreasing of endoparasitic worms to 15%, dominated by Strongylus sp. and Fasciola sp. The growth of anaerobic microbes and methane production indicated that dairy cattle waste and beef cattle waste have potential as source of methanogenic microbes, meanwhile the decreasing amount of protozoa

  20. Polycyclic aromatic hydrocarbons and organic matter associated to particulate matter emitted from atmospheric fluidized bed coal combustion

    International Nuclear Information System (INIS)

    Mastral, A.M.; Callen, M.S.; Garcia, T.

    1999-01-01

    The polycyclic aromatic hydrocarbons (PAH) and the organic matter (OM) content associated with particulate matter (PM) emissions from atmospheric fluidized bed coal combustion have been studied. The two main aims of the work have been (a) to study OM and PAH emissions as a function of the coal fluidized bed combustion (FBC) variables in solid phase and (b) to check if there is any correlation between OM and PAH contained in the PM. The combustion was carried out in a laboratory scale plant at different combustion conditions: temperature, percentage of oxygen excess, and total air flow. PAH associated on the particulate matter have been analyzed by fluorescence spectroscopy in the synchronous mode (FS) after PM extraction by sonication with dimethylformamide (DMF). It can be concluded that there is not a direct relationship between the OM content and the PAH supported in the PM emitted. In addition, neither PM or OM show dependence between themselves

  1. Performance of the fixed-bed of granular activated carbon for the removal of pesticides from water supply.

    Science.gov (United States)

    Alves, Alcione Aparecida de Almeida; Ruiz, Giselle Louise de Oliveira; Nonato, Thyara Campos Martins; Müller, Laura Cecilia; Sens, Maurício Luiz

    2018-02-26

    The application of a fixed bed adsorption column of granular activated carbon (FBAC-GAC), in the removal of carbaryl, methomyl and carbofuran at a concentration of 25 μg L -1 for each carbamate, from the public water supply was investigated. For the determination of the presence of pesticides in the water supply, the analytical technique of high-performance liquid chromatography with post-column derivatization was used. Under conditions of constant diffusivity, the FBAC-GAC was saturated after 196 h of operation on a pilot scale. The exhaust rate of the granular activated carbon (GAC) in the FBAC-GAC until the point of saturation was 0.02 kg GAC m -3 of treated water. By comparing a rapid small-scale column test and FBAC-GAC, it was confirmed that the predominant intraparticle diffusivity in the adsorption column was constant diffusivity. Based on the results obtained on a pilot scale, it was possible to estimate the values to be applied in the FBAC-GAC (full scale) to remove the pesticides, which are particle size with an average diameter of 1.5 mm GAC; relationship between the internal diameter of the column and the average diameter of GAC ≥50 in order to avoid preferential flow near the adsorption column wall; surface application rate 240 m 3  m -2  d -1 and an empty bed contact time of 3 min. BV: bed volume; CD: constant diffusivity; EBCT: empty bed contact time; FBAC-GAC: fixed bed adsorption column of granular activated carbon; GAC: granular activated carbon; MPV: maximum permitted values; NOM: natural organic matter; PD: proportional diffusivity; pH PCZ : pH of the zero charge point; SAR: surface application rate; RSSCT: rapid small-scale column test; WTCS: water treated conventional system.

  2. Mineralogical anomalies and their influences on elemental geochemistry of the main workable coal beds from the Dafang Coalfield, Guizhou, China

    Science.gov (United States)

    Dai, S.; Ren, D.; Li, D.; Chou, C.-L.; Luo, K.

    2006-01-01

    Mineralogy and geochemistry of the No. 11 Coal bed were investigated by using inductively-coupled plasma mass spectrometry (ICP-MS), X-ray fluorescence (XRF), scanning electron microscopy equipped with energy-dispersive X-ray (SEM-EDX), sequential chemical extraction procedure (SCEP), and optical microscopy. The results show that the No. 11 Coal bed has very high contents of veined quartz (Vol. 11.4%) and veined ankerite (Vol. 10.2 %). The veined ankerite was generally coated by goethite and the veined quartz embraced chalcopyrite, sphalerite, and selenio-galena. In addition, a trace amount of kaolinite was filled in the veins. These seven minerals often occur in the same veins. The formation temperatures of the veined ankerite and quartz are 85??C and 180??C respectively, indicating their origins of iron-rich calcic and siliceous low-temperature hydrothermal fluids in different epigenetic periods. Studies have also found that the veined quartz probably formed earlier than the veined ankerite, and at least three distinct ankerite formation stages were observed by the ration of Ca/Sr and Fe/Mn of ankerite. The mineral formation from the early to late stage is in order of sulfide, quartz, kaolinite, ankerite, and goethite. The veined ankerite is the dominant source of Mn, Cu, Ni, Pb, and Zn, which are as high as 0.09%, 74.0 ??g/g, 33.6 ??g/g, 185 ??g/g, and 289 ??g/g in this coal seam, respectively. However, the veined quartz is the main carrier of Pd, Pt, and Ir, which are 1.57 ??g/g, 0.15 ??g/g, and 0.007 ??g/g in this coal seam, respectively. In addition, chalcopyrite, sphalerite, and selenio-galena of hydrothermal origin were determined in the veined quartz, and these three sulfide minerals are also important carriers of Cu, Zn and Pb in the No. 11 Coal bed.

  3. Emergence of traveling wave endothermic reaction in a catalytic fixed bed under microwave heating

    International Nuclear Information System (INIS)

    Gerasev, Alexander P.

    2017-01-01

    This paper presents a new phenomenon in a packed bed catalytic reactor under microwave heating - traveling wave (moving reaction zones) endothermic chemical reaction. A two-phase model is developed to simulate the nonlinear dynamic behavior of the packed bed catalytic reactor with an irreversible first-order chemical reaction. The absorbed microwave power was obtained from Lambert's law. The structure of traveling wave endothermic chemical reaction was explored. The effects of the gas velocity and microwave power on performance of the packed bed catalytic reactor were presented. Finally, the effects of the change in the location of the microwave source at the packed bed reactor was demonstrated. - Highlights: • A new phenomenon - traveling waves of endothermic reaction - is predicted. • The physical and mathematical model of a packed bed catalytic reactor under microwave heating is presented. • The structure of the traveling waves is explored. • The configuration of heating the packed bed reactor via microwave plays a key role.

  4. PROTON MICROPROBE ANALYSIS OF TRACE-ELEMENT VARIATIONS IN VITRINITES IN THE SAME AND DIFFERENT COAL BEDS.

    Science.gov (United States)

    Minkin, J.A.; Chao, E.C.T.; Blank, Herma; Dulong, F.T.

    1987-01-01

    The PIXE (proton-induced X-ray emission) microprobe can be used for nondestructive, in-situ analyses of areas as small as those analyzed by the electron microprobe, and has a sensitivity of detection as much as two orders of magnitude better than the electron microprobe. Preliminary studies demonstrated that PIXE provides a capability for quantitative determination of elemental concentrations in individual coal maceral grains with a detection limit of 1-10 ppm for most elements analyzed. Encouraged by the earlier results, we carried out the analyses reported below to examine trace element variations laterally (over a km range) as well as vertically (cm to m) in the I and J coal beds in the Upper Cretaceous Ferron Sandstone Member of the Mancos Shale in central Utah, and to compare the data with the data from two samples of eastern coals of Pennsylvanian age.

  5. Batch and continuous (fixed-bed column) biosorption of crystal violet by Artocarpus heterophyllus (jackfruit) leaf powder.

    Science.gov (United States)

    Saha, Papita Das; Chakraborty, Sagnik; Chowdhury, Shamik

    2012-04-01

    In this study, batch and fixed-bed column experiments were performed to investigate the biosorption potential of Artocarpus heterophyllus (jackfruit) leaf powder (JLP) to remove crystal violet (CV) from aqueous solutions. Batch biosorption studies were carried out as a function of solution pH, contact time, initial dye concentration and temperature. The biosorption equilibrium data showed excellent fit to the Langmuir isotherm model with maximum monolayer biosorption capacity of 43.39 mg g(-1) at pH 7.0, initial dye concentration=50 mg L(-1), temperature=293 K and contact time=120 min. According to Dubinin-Radushkevich (D-R) isotherm model, biosorption of CV by JLP was chemisorption. The biosorption kinetics followed the pseudo-second-order kinetic model. Thermodynamic analysis revealed that biosorption of CV from aqueous solution by JLP was a spontaneous and exothermic process. In order to ascertain the practical applicability of the biosorbent, fixed-bed column studies were also performed. The breakthrough time increased with increasing bed height and decreased with increasing flow rate. The Thomas model as well as the BDST model showed good agreement with the experimental results at all the process parameters studied. It can be concluded that JLP is a promising biosorbent for removal of CV from aqueous solutions. Copyright © 2011 Elsevier B.V. All rights reserved.

  6. Study of the obtainment of Mo_2C by gas-solid reaction in a fixed and rotary bed reactor

    International Nuclear Information System (INIS)

    Araujo, C.P.B. de; Souza, C.P. de; Souto, M.V.M.; Barbosa, C.M.; Frota, A.V.V.M.

    2016-01-01

    Carbides' synthesis via gas-solid reaction overcomes many of the difficulties found in other processes, requiring lower temperatures and reaction times than traditional metallurgic routes, for example. In carbides' synthesis in fixed bed reactors (FB) the solid precursor is permeated by the reducing/carburizing gas stream forming a packed bed without mobility. The use of a rotary kiln reactor (RK) adds a mixing character to this process, changing its fluid-particle dynamics. In this work ammonium molybdate was subjected to carbo-reduction reaction (CH4 / H2) in both reactors under the same gas flow (15L / h) and temperature (660 ° C) for 180 minutes. Complete conversion was observed Mo2C (dp = 18.9nm modal particles sizes' distribution) in the fixed bed reactor. In the RK reactor this conversion was only partial (∼ 40%) and Mo2C and MoO3 (34nm dp = bimodal) could be observed on the produced XRD pattern. Partial conversion was attributed to the need to use higher solids loading in the reactor CR (50% higher) to avoid solids to centrifuge. (author)

  7. A green strategy for desorption of trihalomethanes adsorbed by humin and reuse of the fixed bed column.

    Science.gov (United States)

    Cunha, G C; Romão, L P C; Santos, M C; Costa, A S; Alexandre, M R

    2012-03-30

    The objective of the present work was to develop a thermal desorption method for the removal of trihalomethanes (THM) adsorbed by humin, followed by multiple recycling of the fixed bed column in order to avoid excessive consumption of materials and reduce operating costs. The results obtained for adsorption on a fixed bed column confirmed the effectiveness of humin as an adsorbent, extracting between 45.9% and 90.1% of the total THM (TTHM). In none of the tests was the column fully saturated after 10h. Experiments involving thermal desorption were used to evaluate the potential of the technique for column regeneration. The adsorptive capacity of the humin bed increased significantly (p<0.05) between the first and fifth desorption cycle, by 18.9%, 18.1%, 24.2%, 20.2% and 24.2% for CHBr(3), CHBr(2)Cl, CHBrCl(2), CHCl(3) and TTHM, respectively. Copyright © 2011 Elsevier B.V. All rights reserved.

  8. Fixed-bed biosorption of cadmium using immobilized Scenedesmus obliquus CNW-N cells on loofa (Luffa cylindrica) sponge.

    Science.gov (United States)

    Chen, Bor-Yann; Chen, Chun-Yen; Guo, Wan-Qian; Chang, Hao-Wei; Chen, Wen-Ming; Lee, Duu-Jong; Huang, Chieh-Chen; Ren, Nan-Qi; Chang, Jo-Shu

    2014-05-01

    A continuous fixed-bed biosorption process was established for cadmium (Cd) removal by Scenedesmus obliquus CNW-N (isolated from southern Taiwan) cells immobilized onto loofa sponge. This immobilized-cell biosorption process allows better recovery and reusability of the microalgal biomass. The growth of microalgae on the matrix support with appropriate nutrient supplementation could enhance the overall metal removal activity. Major operating parameters (e.g., feeding flow rate, cycle number of medium replacement, and particle diameter of the sponge) were studied for treatability evaluation. The most promising cell growth on the sponge support was obtained at a flow rate of 0.284 bed volume (BV)/min, sponge particle diameter of 1 cm, and with one cycle of medium replacement. The performance of fixed-bed biosorption (adsorption capacity of 38.4 mg, breakthrough time at 15.5 h) was achieved at a flow rate of 5 ml/min with an influent concentration of 7.5 mg Cd/l. Copyright © 2014 Elsevier Ltd. All rights reserved.

  9. Pressurised fluidised-bed gasification experiments with biomass, peat and coal at VTT in 1991-1994. Gasification of Danish wheat, straw and coal

    Energy Technology Data Exchange (ETDEWEB)

    Kurkela, E; Laatikainen-Luntama, J; Staahlberg, P; Moilanen, A [VTT Energy, Espoo (Finland). Energy Production Technologies

    1997-12-31

    Fluidised-bed air gasification of three different Danish straw feedstocks and Colombian bituminous coal was studied in the PDU-scale test facilities of VTT. The test programme was divided into two different modes of operation. First, the usability of straw as the only feedstock was investigated by operating the gasifier at relatively low temperature normally used in biomass gasifiers. In this operation mode the main aim was to find out the limits for gasification temperatures, set by the sintering behaviour of the straw. Secondly, the use of straw as an additional feedstock in a fluidised-bed coal gasifier was examined by operating the gasifier at about 1 000 deg C with different ratings of straw and coal feeding. The gasifier was operated at 5 bar pressure and at 80 990 deg C. The product gas was cleaned by ceramic candle filters operated at 465-540 deg C. Concentrations of tars, nitrogen com- pounds, sulphur gases, vapour-phase alkali metals as well as chlorine were determined in different operating conditions. (12 refs.)

  10. Fixed-bed studies of the interactions between mercury and coal combustion fly ash

    Energy Technology Data Exchange (ETDEWEB)

    Dunham, Grant E.; DeWall, Raymond A. [Energy and Environmental Research Center, 15 North 23rd Street, Grand Forks, ND 58203 (United States); Senior, Constance L. [Reaction Engineering International, 77 West 200 South, Suite 210, Salt Lake City, UT 84101 (United States)

    2003-08-15

    Sixteen different fly ash samples, generated from both pilot-scale and full-scale combustion systems, were exposed to a simulated flue gas containing either elemental mercury or HgCl{sub 2} in a bench-scale reactor system at the Energy and Environmental Research Center to evaluate the interactions and determine the effects of temperature, mercury species, and ash type on adsorption of mercury and oxidation of elemental mercury. The fly ash samples were characterized for surface area, loss on ignition, and forms of iron in the ash. While many of the ash samples oxidized elemental mercury, not all of the samples that oxidized mercury also captured elemental mercury. However, no capture of elemental mercury was observed without accompanying oxidation. Generally, oxidation of elemental mercury increased with increasing amount of magnetite in the ash. However, one high-carbon subbituminous ash with no magnetite showed considerable mercury oxidation that may have been due to unburned carbon. Surface area as well as the nature of the surface appeared to be important for oxidation and adsorption of elemental mercury. The capacity of the ash samples for HgCl{sub 2} was similar to that for elemental mercury. There was a good correlation between the capacity for HgCl{sub 2} and the surface area; capacity decreased with increasing temperature.

  11. Partial oxidation of Raffinate II and other mixtures of n-Butane and n-Butenes to maleic anhydride in a fixed-bed reactor

    OpenAIRE

    Brandstädter, Willi Michael

    2008-01-01

    The utilisation of the C4 streams of steamcrackers by converting raffinate II to maleic anhydride was studied. The oxidation reactions were investigated in a laboratory-scale fixed-bed reactor to determine reaction kinetics. The effects of pore diffusional resistance were investigated and explained. A two-dimensional pseudo-homogeneous reactor model was used for the simulation of a production-scale fixed-bed reactor. A flow scheme of the reactor section including a recycle was proposed.

  12. Fixed-bed column study for hexavalent chromium removal and recovery by short-chain polyaniline synthesized on jute fiber

    Energy Technology Data Exchange (ETDEWEB)

    Kumar, Potsangbam Albino [Department of Civil Engineering, Indian Institute of Technology Guwahati, Assam 781039 (India); Chakraborty, Saswati [Department of Civil Engineering, Indian Institute of Technology Guwahati, Assam 781039 (India)], E-mail: saswati@iitg.ernet.in

    2009-03-15

    Fixed-bed column studies were conducted to evaluate performance of a short-chain polymer, polyaniline, synthesized on the surface of jute fiber (PANI-jute) for the removal of hexavalent chromium [Cr(VI)] in aqueous environment. Influent pH, column bed depth, influent Cr(VI) concentrations and influent flow rate were variable parameters for the present study. Optimum pH for total chromium removal was observed as 3 by electrostatic attraction of acid chromate ion (HCrO{sub 4}{sup -}) with protonated amine group (NH{sub 3}{sup +}) of PANI-jute. With increase in column bed depth from 40 to 60 cm, total chromium uptake by PANI-jute increased from 4.14 to 4.66 mg/g with subsequent increase in throughput volume from 9.84 to 12.6 L at exhaustion point. The data obtained for total chromium removal were well described by BDST equation till 10% breakthrough. Adsorption rate constant and dynamic bed capacity at 10% breakthrough were observed as 0.01 L/mg h and 1069.46 mg/L, respectively. Adsorbed total chromium was recovered back from PANI-jute as non-toxic Cr(III) after ignition with more than 97% reduction in weight, minimizing the problem of solid waste disposal.

  13. Use of rice husk for the removal of methylene blue in fixed-bed columns

    Directory of Open Access Journals (Sweden)

    Yurany A. Villada-Villada

    2014-08-01

    Full Text Available This work shows the use of rice husk in the removal of cationic dye methylene blue on continuous system. A factorial design 23 with center points and random distribution was implemented to evaluate the correlation of the experimental factors in the adsorption process. The considered variables were pH, particle size, salt presence, flow rate, dye initial concentration, and bed depth. The samples were analyzed in defined time intervals. The amount of removed dye was quantified by UV spectroscopy - Visible. Adams-Bohart, Thomas and BDST (Bed-depht/service time analysis models were used to predict the breakthrough curves using non-linear regression and establish the characteristic parameters of the process. It was found that the transference of dye toward the adsorbent is favored by a basic pH, a small particle size, low flow rate and dye concentration, and high bed depth. The design of experiments established that the initial dye concentration and the bed depth were the most significant factors. Regarding the models, the Thomas provided the best fit to describe the breakthrough curves in experimental conditions and Adams-Bohart was found suitable for dynamic behavior limited to the initial part. Finally, BDST model exhibited a good correlation and allowed to establish that bed depth is a determinant factor for scaling process.

  14. Biosorption of cobalt(II) with sunflower biomass from aqueous solutions in a fixed bed column and neural networks modelling.

    Science.gov (United States)

    Oguz, Ensar; Ersoy, Muhammed

    2014-01-01

    The effects of inlet cobalt(II) concentration (20-60 ppm), feed flow rate (8-19 ml/min) and bed height (5-15 cm), initial solution pH (3-5) and particle size (0.25shells of sunflower biomass was found to be 1.82 m(2)/g. A relationship between the predicted results of the ANN model and experimental data was conducted. The ANN model yielded determination coefficient of (R(2) 0.972), standard deviation ratio (0.166), mean absolute error (0.0158) and root mean square error (0.0141). The results indicated that the shells of the sunflower biomass is a suitable biosorbent for the uptake of cobalt(II) in fixed bed columns. © 2013 Published by Elsevier Inc.

  15. Mathematical Modeling and Simulation of the Dehydrogenation of Ethyl Benzene to Form Styrene Using Steady-State Fixed Bed Reactor

    Directory of Open Access Journals (Sweden)

    Zaidon M. Shakoor

    2013-05-01

    Full Text Available In this research, two models are developed to simulate the steady state fixed bed reactor used for styrene production by ethylbenzene dehydrogenation. The first is one-dimensional model, considered axial gradient only while the second is two-dimensional model considered axial and radial gradients for same variables.The developed mathematical models consisted of nonlinear simultaneous equations in multiple dependent variables. A complete description of the reactor bed involves partial, ordinary differential and algebraic equations (PDEs, ODEs and AEs describing the temperatures, concentrations and pressure drop across the reactor was given. The model equations are solved by finite differences method. The reactor models were coded with Mat lab 6.5 program and various numerical techniques were used to obtain the desired solution.The simulation data for both models were validated with industrial reactor results with a very good concordance.

  16. On changes in bed-material particles from a 550 MWth CFB boiler burning coal, bark and peat

    Energy Technology Data Exchange (ETDEWEB)

    Vesna Barisic; Mikko Hupa [Aabo Akademi Process Chemistry Centre, Turku (Finland). Combustion and Materials Chemistry

    2007-02-15

    This paper presents our observations on coating build up, morphology and the elemental composition of bed-material particles collected from a 550 MWth CFB boiler burning coal, bark and peat fuel/fuel mixture. The special focus was on the changes of the elemental composition of coating layer on bed-material particles when different fuels were burned. The results were obtained using a scanning electron microscope coupled with an energy depressive X-ray analyser (SEM/EDX). The results clearly show that properties of bed-material particles are a result of complex interaction between the fuels burned previously, and the fuels used at the time of sampling. Short communication. 8 refs., 1 fig., 2 tabs.

  17. Experimental and theoretical studies on hydrogenation of olefins in multiphase fixed bed reactors

    Energy Technology Data Exchange (ETDEWEB)

    Battsengel, B.; Datsevitch, L.; Jess, A. [Bayreuth Univ. (Germany). Dept. of Chemical Engineering

    2003-07-01

    Multi phase reactors like trickle bed systems are frequently used for gas-liquid reactions. In general, they have complex mass and heat transfer characteristics; scale-up is therefore difficult. The present work focuses on the role of mass transfer on the effective reaction rate, taking catalytic octene hydrogenation as a model reaction. The reaction rate in a trickle bed reactor is by a factor of about 20 smaller than (theoretically) in the absence of any mass transfer limitations. Based on the experimental results, the so-called pre-saturation concept is presented, where only the liquid saturated with hydrogen is fed into the reactor. The effective reaction rate in this two phase system (liquid and solid cat.) is equal or even higher than in a trickle bed reactor. Scale-up problems do not occur, and the pre-saturation concept has also other advantages (lower energy consumption), as discussed in detail in this paper. (orig.)

  18. A model for complex flows of soft glassy materials with application to flows through fixed fiber beds

    Energy Technology Data Exchange (ETDEWEB)

    Sarkar, Arijit; Koch, Donald L., E-mail: dlk15@cornell.edu [School of Chemical and Biomolecular Engineering, Cornell University, 120 Olin Hall, Ithaca, New York 14853-5201 (United States)

    2015-11-15

    The soft glassy rheology (SGR) model has successfully described the time dependent simple shear rheology of a broad class of complex fluids including foams, concentrated emulsions, colloidal glasses, and solvent-free nanoparticle-organic hybrid materials (NOHMs). The model considers a distribution of mesoscopic fluid elements that hop from trap to trap at a rate which is enhanced by the work done to strain the fluid element. While an SGR fluid has a broad exponential distribution of trap energies, the rheology of NOHMs is better described by a narrower energy distribution and we consider both types of trap energy distributions in this study. We introduce a tensorial version of these models with a hopping rate that depends on the orientation of the element relative to the mean stress field, allowing a range of relative strengths of the extensional and simple shear responses of the fluid. As an application of these models we consider the flow of a soft glassy material through a dilute fixed bed of fibers. The dilute fixed bed exhibits a range of local linear flows which alternate in a chaotic manner with time in a Lagrangian reference frame. It is amenable to an analytical treatment and has been used to characterize the strong flow response of many complex fluids including fiber suspensions, dilute polymer solutions and emulsions. We show that the accumulated strain in the fluid elements has an abrupt nonlinear growth at a Deborah number of order one in a manner similar to that observed for polymer solutions. The exponential dependence of the hopping rate on strain leads to a fluid element deformation that grows logarithmically with Deborah number at high Deborah numbers. SGR fluids having a broad range of trap energies flowing through fixed beds can exhibit a range of rheological behaviors at small Deborah numbers ranging from a yield stress, to a power law response and finally to Newtonian behavior.

  19. A model for complex flows of soft glassy materials with application to flows through fixed fiber beds

    KAUST Repository

    Sarkar, Arijit; Koch, Donald L.

    2015-01-01

    © 2015 The Society of Rheology. The soft glassy rheology (SGR) model has successfully described the time dependent simple shear rheology of a broad class of complex fluids including foams, concentrated emulsions, colloidal glasses, and solvent-free nanoparticle-organic hybrid materials (NOHMs). The model considers a distribution of mesoscopic fluid elements that hop from trap to trap at a rate which is enhanced by the work done to strain the fluid element. While an SGR fluid has a broad exponential distribution of trap energies, the rheology of NOHMs is better described by a narrower energy distribution and we consider both types of trap energy distributions in this study. We introduce a tensorial version of these models with a hopping rate that depends on the orientation of the element relative to the mean stress field, allowing a range of relative strengths of the extensional and simple shear responses of the fluid. As an application of these models we consider the flow of a soft glassy material through a dilute fixed bed of fibers. The dilute fixed bed exhibits a range of local linear flows which alternate in a chaotic manner with time in a Lagrangian reference frame. It is amenable to an analytical treatment and has been used to characterize the strong flow response of many complex fluids including fiber suspensions, dilute polymer solutions and emulsions. We show that the accumulated strain in the fluid elements has an abrupt nonlinear growth at a Deborah number of order one in a manner similar to that observed for polymer solutions. The exponential dependence of the hopping rate on strain leads to a fluid element deformation that grows logarithmically with Deborah number at high Deborah numbers. SGR fluids having a broad range of trap energies flowing through fixed beds can exhibit a range of rheological behaviors at small Deborah numbers ranging from a yield stress, to a power law response and finally to Newtonian behavior.

  20. A model for complex flows of soft glassy materials with application to flows through fixed fiber beds

    KAUST Repository

    Sarkar, Arijit

    2015-11-01

    © 2015 The Society of Rheology. The soft glassy rheology (SGR) model has successfully described the time dependent simple shear rheology of a broad class of complex fluids including foams, concentrated emulsions, colloidal glasses, and solvent-free nanoparticle-organic hybrid materials (NOHMs). The model considers a distribution of mesoscopic fluid elements that hop from trap to trap at a rate which is enhanced by the work done to strain the fluid element. While an SGR fluid has a broad exponential distribution of trap energies, the rheology of NOHMs is better described by a narrower energy distribution and we consider both types of trap energy distributions in this study. We introduce a tensorial version of these models with a hopping rate that depends on the orientation of the element relative to the mean stress field, allowing a range of relative strengths of the extensional and simple shear responses of the fluid. As an application of these models we consider the flow of a soft glassy material through a dilute fixed bed of fibers. The dilute fixed bed exhibits a range of local linear flows which alternate in a chaotic manner with time in a Lagrangian reference frame. It is amenable to an analytical treatment and has been used to characterize the strong flow response of many complex fluids including fiber suspensions, dilute polymer solutions and emulsions. We show that the accumulated strain in the fluid elements has an abrupt nonlinear growth at a Deborah number of order one in a manner similar to that observed for polymer solutions. The exponential dependence of the hopping rate on strain leads to a fluid element deformation that grows logarithmically with Deborah number at high Deborah numbers. SGR fluids having a broad range of trap energies flowing through fixed beds can exhibit a range of rheological behaviors at small Deborah numbers ranging from a yield stress, to a power law response and finally to Newtonian behavior.

  1. Investigation of flow behaviour of coal particles in a pilot-scale fluidized bed gasifier (FBG) using radiotracer technique.

    Science.gov (United States)

    Pant, H J; Sharma, V K; Kamudu, M Vidya; Prakash, S G; Krishanamoorthy, S; Anandam, G; Rao, P Seshubabu; Ramani, N V S; Singh, Gursharan; Sonde, R R

    2009-09-01

    Knowledge of residence time distribution (RTD), mean residence time (MRT) and degree of axial mixing of solid phase is required for efficient operation of coal gasification process. Radiotracer technique was used to measure the RTD of coal particles in a pilot-scale fluidized bed gasifier (FBG). Two different radiotracers i.e. lanthanum-140 and gold-198 labeled coal particles (100 gm) were independently used as radiotracers. The radiotracer was instantaneously injected into the coal feed line and monitored at the ash extraction line at the bottom and gas outlet at the top of the gasifier using collimated scintillation detectors. The measured RTD data were treated and MRTs of coal/ash particles were determined. The treated data were simulated using tanks-in-series model. The simulation of RTD data indicated good degree of mixing with small fraction of the feed material bypassing/short-circuiting from the bottom of the gasifier. The results of the investigation were found useful for optimizing the design and operation of the FBG, and scale-up of the gasification process.

  2. Modeling and Experimental Studies of Mercury Oxidation and Adsorption in a Fixed-Bed and Entrained-Flow Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Buitrago, Paula A. [Univ. of Utah, Salt Lake City, UT (United States); Morrill, Mike [Univ. of Utah, Salt Lake City, UT (United States); Lighty, JoAnn S. [Univ. of Utah, Salt Lake City, UT (United States); Silcox, Geoffrey D. [Univ. of Utah, Salt Lake City, UT (United States)

    2009-06-01

    This report presents experimental and modeling mercury oxidation and adsorption data. Fixed-bed and single-particle models of mercury adsorption were developed. The experimental data were obtained with two reactors: a 300-W, methane-fired, tubular, quartz-lined reactor for studying homogeneous oxidation reactions and a fixed-bed reactor, also of quartz, for studying heterogeneous reactions. The latter was attached to the exit of the former to provide realistic combustion gases. The fixed-bed reactor contained one gram of coconut-shell carbon and remained at a temperature of 150°C. All methane, air, SO2, and halogen species were introduced through the burner to produce a radical pool representative of real combustion systems. A Tekran 2537A Analyzer coupled with a wet conditioning system provided speciated mercury concentrations. At 150°C and in the absence of HCl or HBr, the mercury uptake was about 20%. The addition of 50 ppm HCl caused complete capture of all elemental and oxidized mercury species. In the absence of halogens, SO2 increased the mercury adsorption efficiency to up to 30 percent. The extent of adsorption decreased with increasing SO2 concentration when halogens were present. Increasing the HCl concentration to 100 ppm lessened the effect of SO2. The fixed-bed model incorporates Langmuir adsorption kinetics and was developed to predict adsorption of elemental mercury and the effect of multiple flue gas components. This model neglects intraparticle diffusional resistances and is only applicable to pulverized carbon sorbents. It roughly describes experimental data from the literature. The current version includes the ability to account for competitive adsorption between mercury, SO2, and NO2. The single particle model simulates in-flight sorbent capture of elemental mercury. This model was developed to include Langmuir and Freundlich isotherms, rate equations, sorbent feed rate, and

  3. Assessment of an atmospheric fluidized-bed coal-combustion gas-turbine cogeneration system for industrial application

    Energy Technology Data Exchange (ETDEWEB)

    Graves, R. L.; Holcomb, R. S.; Tallackson, J. R.

    1979-10-01

    This study was initiated to provide information on the future potential industrial market for a cogeneration system consisting of a fluidized-bed coal combustor coupled to a gas-turbine (Brayton cycle) power system that uses air as the working fluid. In assessing the potential applications for the system, the process heat energy consumption by industry is identified, with special detail included on the six most energy-intensive industries. The potential impact on the nation's oil and natural gas consumption that would result from wide-spread utilization of coal for process heat is also estimated. The fraction of industrial process heat that the system could feasibly satisfy from a thermodynamic viewpoint is estimated, and the performance (potential fuel efficiency and heat/power ratio) of the atmospheric fluidized-bed gas-turbine system is calculated. Also treated are several specific case studies of industries in which the system could be incorporated. Major parameters are specified, and flow sheets are derived for systems that would satisfy the heat and power requirements of the process or industry. The overall fuel utilization efficiency, thermal power rating, and potential number of installations are specified for these case studies. The findings of the study indicate that there is a sizable potential market for the system, with over 1000 possible installations disclosed after reviewing only 8 specific industries from 6 major Standard Industrial Classification (SIC) groups. The potential displacement of oil and gas by coal in process heating is shown to be about 1.60 m/sup 3//sec (870,000 bbl/d) of oil and 4590 m/sup 3//sec (14.0 billion ft/sup 3//d) of natural gas for all industries combined. Continued development of the fluidized-bed coal combustor and power system is recommended so that this potential may be at least partially realized.

  4. Co-firing option of palm shell waste and Malaysian coal blends in a circulating fluidized bed

    International Nuclear Information System (INIS)

    Ahmad Hussain; Farid Nasir Ani

    2010-01-01

    Palm oil shell waste is one of the main agriculture wastes in Malaysia. In order to utilize these wastes efficiently, pyrolysis of oil-palm shell waste was first carried out using Thermogravimetric analysis (TGA). The effects of heating rate on the pyrolytic properties were investigated to evaluate its suitability for co-firing. The TGA analyses of oil palm shell waste and Malaysian coal blends suggests that there is an obvious lateral shift in the thermo grams for different heating rate. Kinetics calculations were also done using integral method. For palm shell waste powder it was found that the activation energies ranged from 112-119 kJ/mole and for the Mukah coal blends it ranged from 93.3 -100.8 kJ/mole. Combustion studies for palm shell wastes and coal blends were done in a hot circulating fluidized-bed (CFB) test rig. This is the first practical experience of using this type of rig in Malaysia. The temperature dependence on the combustion and emission behaviour were identified. The effects of variation of primary air and feed rate have also been analyzed and their influence on emissions has been established. The combustion studies of palm shell wastes were done and it was found that the emission of NO x ranged from 20-164 ppm while the CO emissions were high for some operating conditions. For the co-firing studies, the NO x and CO deceased with the percentage increase in the blending ratio of coal with palm shell waste.. The optimum blending ratio was found to be in a ratio of 40 percent coal and 60 percent Mukah coal. It was also found that Mukah coal show agglomeration behaviour with when it is blended in 80% ratio. (author)

  5. Breakthrough analysis for water disinfection using silver nanoparticles coated resin beads in fixed-bed column

    International Nuclear Information System (INIS)

    Mthombeni, Nomcebo H.; Mpenyana-Monyatsi, Lizzy; Onyango, Maurice S.; Momba, Maggie N.B.

    2012-01-01

    Highlights: ► Performance of silver nanoparticles coated resin in water disinfection is presented. ► Sigmoidal models are used to describe breakthrough curves. ► The performance of the media in water disinfection is affected by process variables. ► Test with environmental water shows the media is effective in water disinfection. - Abstract: This study demonstrates the use of silver nanoparticles coated resin beads in deactivating microbes in drinking water in a column filtration system. The coated resin beads are characterized using X-ray diffraction (XRD), Fourier transform infra-red (FT-IR), scanning electron microscope (SEM), transmission electron microscope (TEM) and energy dispersive spectroscopy (EDS) to confirm the functional groups, morphology and the presence of silver nanoparticles on the surface of the resin. The performance of the coated resin is evaluated as a function of bed mass, initial bacterial concentration and flow rate using Escherichia coli as model microbial contaminant in water. The survival curves of E. coli are expressed as breakthrough curves (BTCs), which are modeled using sigmoidal regression equations to obtain relevant rate parameters. The number of bed volumes processed at breakthrough point and capacity of the bed are used as performance indicators. Results show that performance increases with a decrease in initial bacterial concentration, an increase in flow rate and an increase in bed mass.

  6. Fixed-bed column study for 90Sr removal from solution by sunflower straw

    International Nuclear Information System (INIS)

    Ai Lian; Luo Xuegang; Lin Xiaoyan; Li Wenming

    2014-01-01

    This paper deals with removal of strontium ions from solution by sunflower straw. Metal sorption performance of the packed column was assessed under variable operating conditions, such as, bed depths, flow rates and initial influent strontium concentration. It was found that the breakthrough time and the depletion time were extended with increase of bed heights but obviously shortened with increase of influent concentration and flow rates, respectively. The equilibrium uptake (q e(exp) ) of sunflower straw increased with increase in initial influent strontium concentration and flow rates but decreased with increase in bed depth, respectively. The data in regard to the effect of bed depths were fitted well to the Bohrat-Adams model. The saturated column was successfully regenerated by 0.1 mol/L hydrogen chloride solution and sunflower straw could be reused in strontium removal. The results indicated that the column could efficiently remove strontium ions from real industrial effluents, and hence the sunflower straw is a good candidate for commercial application. (authors)

  7. Production of gasoline from coal or natural gas by the methanol-to-gasoline process

    Energy Technology Data Exchange (ETDEWEB)

    Heinritz-Adrian, M.; Brandl, A.; Zhoa, Xinjin; Tabak, S. [Uhde GmbH, Dortmund (Germany)

    2007-07-01

    After discussing the basis of the methanol-to-gas (MTG) process, the fixed bed and fluid bed versions are described. The Motunui and MTG complex near Montunui, New Zealand that methanol uses natural gas is briefly described. Shanxi Jincheng, Anthracite Coal Mining Co. is currently building its first coal-based MTG plant. 7 refs., 2 tabs.

  8. Pre-combustion capture of carbon dioxide in a fixed bed reactor using the clathrate hydrate process

    International Nuclear Information System (INIS)

    Babu, Ponnivalavan; Kumar, Rajnish; Linga, Praveen

    2013-01-01

    Hydrate based gas separation (HBGS) process with silica sand and silica gel as contact medium was employed to capture CO 2 from fuel gas mixture. Gas uptake measurement at three different pressures (7.5, 8.5 and 9.0 MPa) and 274.15 K were conducted for hydrate formation kinetics and overall conversion of water to hydrate, rate of hydrate formation were determined. Water conversion of up to 36% was achieved with silica sand bed compared to 13% conversion in the silica gel bed. Effect of driving force on the rate of hydrate formation and gas consumption was significant in silica sand bed whereas it was found to be insignificant in silica gel bed. Hydrate dissociation experiments by thermal stimulation (at constant pressure) alone and a combination of depressurization and thermal stimulation were carried out for complete recovery of the hydrated gas. A driving force of 23 K was found to be sufficient to recover all the hydrated gas within 1 h. This study indicates that silica sand can be an effective porous media for separation of CO 2 from fuel gas when compared to silica gel. - Highlights: ► The clathrate process for pre-combustion capture of carbon dioxide in a novel fixed bed reactor is presented. ► Performance of two contact media (silica gel and silica sand) was investigated. ► Water to hydrate conversion was higher in a silica sand column. ► A pressure reduction and thermal stimulation approach is presented for a complete recovery of the hydrated gas

  9. Deep subsurface drip irrigation using coal-bed sodic water: part I. water and solute movement

    Science.gov (United States)

    Bern, Carleton R.; Breit, George N.; Healy, Richard W.; Zupancic, John W.; Hammack, Richard

    2013-01-01

    Water co-produced with coal-bed methane (CBM) in the semi-arid Powder River Basin of Wyoming and Montana commonly has relatively low salinity and high sodium adsorption ratios that can degrade soil permeability where used for irrigation. Nevertheless, a desire to derive beneficial use from the water and a need to dispose of large volumes of it have motivated the design of a deep subsurface drip irrigation (SDI) system capable of utilizing that water. Drip tubing is buried 92 cm deep and irrigates at a relatively constant rate year-round, while evapotranspiration by the alfalfa and grass crops grown is seasonal. We use field data from two sites and computer simulations of unsaturated flow to understand water and solute movements in the SDI fields. Combined irrigation and precipitation exceed potential evapotranspiration by 300-480 mm annually. Initially, excess water contributes to increased storage in the unsaturated zone, and then drainage causes cyclical rises in the water table beneath the fields. Native chloride and nitrate below 200 cm depth are leached by the drainage. Some CBM water moves upward from the drip tubing, drawn by drier conditions above. Chloride from CBM water accumulates there as root uptake removes the water. Year over year accumulations indicated by computer simulations illustrate that infiltration of precipitation water from the surface only partially leaches such accumulations away. Field data show that 7% and 27% of added chloride has accumulated above the drip tubing in an alfalfa and grass field, respectively, following 6 years of irrigation. Maximum chloride concentrations in the alfalfa field are around 45 cm depth but reach the surface in parts of the grass field, illustrating differences driven by crop physiology. Deep SDI offers a means of utilizing marginal quality irrigation waters and managing the accumulation of their associated solutes in the crop rooting zone.

  10. Deep subsurface drip irrigation using coal-bed sodic water: part II. geochemistry

    Science.gov (United States)

    Bern, Carleton R.; Breit, George N.; Healy, Richard W.; Zupancic, John W.

    2013-01-01

    Waters with low salinity and high sodium adsorption ratios (SARs) present a challenge to irrigation because they degrade soil structure and infiltration capacity. In the Powder River Basin of Wyoming, such low salinity (electrical conductivity, EC 2.1 mS cm-1) and high-SAR (54) waters are co-produced with coal-bed methane and some are used for subsurface drip irrigation(SDI). The SDI system studied mixes sulfuric acid with irrigation water and applies water year-round via drip tubing buried 92 cm deep. After six years of irrigation, SAR values between 0 and 30 cm depth (0.5-1.2) are only slightly increased over non-irrigated soils (0.1-0.5). Only 8-15% of added Na has accumulated above the drip tubing. Sodicity has increased in soil surrounding the drip tubing, and geochemical simulations show that two pathways can generate sodic conditions. In soil between 45-cm depth and the drip tubing, Na from the irrigation water accumulates as evapotranspiration concentrates solutes. SAR values >12, measured by 1:1 water-soil extracts, are caused by concentration of solutes by factors up to 13. Low-EC (-1) is caused by rain and snowmelt flushing the soil and displacing ions in soil solution. Soil below the drip tubing experiences lower solute concentration factors (1-1.65) due to excess irrigation water and also contains relatively abundant native gypsum (2.4 ± 1.7 wt.%). Geochemical simulations show gypsum dissolution decreases soil-water SAR to 14 and decreasing EC in soil water to 3.2 mS cm-1. Increased sodicity in the subsurface, rather than the surface, indicates that deep SDI can be a viable means of irrigating with sodic waters.

  11. Candidate for solar power: a novel desalination technology for coal bed methane produced water

    International Nuclear Information System (INIS)

    Sattler, Allan; Hanley, Charles; Hightower, Michael; Wright, Emily; Wallace, Sam; Pohl, Phillip; Donahe, Ryan; Andelman, Marc

    2006-01-01

    Laboratory and field developments are underway to use solar energy to power a desalination technology - capacitive deionization - for water produced by remote Coal Bed Methane (CBM) natural gas wells. Due to the physical remoteness of many CBM wells throughout the Southwestern U>S> as shown in Figure 1, this approach may offer promise. This promise is not only from its effectiveness in removing salt from CBM water and allowing it to be utilized for various applications, but also for its potentially lower energy consumption compared Figure 1: Candidate remote well sites for planned field implementation of new PV-powered desalination process: (a) Raton Basin and (b) San Juan Basin, New Mexico to other technologies, such as reverse osmosis. This coupled with the remoteness (Figure 1) of thousands these wells, makes them more feasible for use with photovoltaic (solar, electric, PV) systems. Concurrent laboratory activities are providing information about the effectiveness of this technology and of the attender energy requirements of this technology under various produced water qualities and water reuse applications, such as salinity concentrations and water flows. These parameters are being used to drive the design of integrated PV-powered desalination systems. Full-scale field implementations are planned, with data collection and analysis designed to optimize the system design for practical remote applications. Earlier laboratory (and very recent laboratory) studies of capacitive deionization have shown promise at common CBM salinity levels. The technology may require less energy. be less susceptible to fouling and is more compact than equivalent reverse osmosis (RO) systems. The technology uses positively and negatively charged electrodes to attract charged ions in a liquid, such as dissolved salts, metals, and some organics, to the electrodes. This concentrates the ions at the electrodes and reduced the ion concentrations in the liquid. This paper discusses the

  12. The chronic toxicity of sodium bicarbonate, a major component of coal bed natural gas produced waters

    Science.gov (United States)

    Farag, Aïda M.; Harper, David D.

    2014-01-01

    Sodium bicarbonate (NaHCO3) is the principal salt in coal bed natural gas produced water from the Powder River Structural Basin, Wyoming, USA, and concentrations of up to 3000 mg NaHCO3/L have been documented at some locations. No adequate studies have been performed to assess the chronic effects of NaHCO3 exposure. The present study was initiated to investigate the chronic toxicity and define sublethal effects at the individual organism level to explain the mechanisms of NaHCO3 toxicity. Three chronic experiments were completed with fathead minnows (Pimephales promelas), 1 with white suckers (Catostomus commersoni), 1 with Ceriodaphnia dubia, and 1 with a freshwater mussel, (Lampsilis siliquoidea). The data demonstrated that approximately 500 mg NaHCO3/L to 1000 mg NaHCO3/L affected all species of experimental aquatic animals in chronic exposure conditions. Freshwater mussels were the least sensitive to NaHCO3 exposure, with a 10-d inhibition concentration that affects 20% of the sample population (IC20) of 952 mg NaHCO3/L. The IC20 for C. dubia was the smallest, at 359 mg NaHCO3/L. A significant decrease in sodium–potassium adenosine triphosphatase (Na+/K+ ATPase) together with the lack of growth effects suggests that Na+/K+ ATPase activity was shut down before the onset of death. Several histological anomalies, including increased incidence of necrotic cells, suggested that fish were adversely affected as a result of exposure to >450 mg NaHCO3/L.

  13. Wastewater treatment with submerged fixed bed biofilm reactor systems--design rules, operating experiences and ongoing developments.

    Science.gov (United States)

    Schlegel, S; Koeser, H

    2007-01-01

    Wastewater treatment systems using bio-films that grow attached to a support media are an alternative to the widely used suspended growth activated sludge process. Different fixed growth biofilm reactors are commercially used for the treatment of municipal as well as industrial wastewater. In this paper a fairly new fixed growth biofilm system, the submerged fixed bed biofilm reactor (SFBBR), is discussed. SFBBRs are based on aerated submerged fixed open structured plastic media for the support of the biofilm. They are generally operated without sludge recirculation in order to avoid clogging of the support media and problems with the control of the biofilm. Reactor and process design considerations for these reactors are reviewed. Measures to ensure the development and maintenance of an active biofilm are examined. SFBBRs have been applied successfully to small wastewater treatment plants where complete nitrification but no high degree of denitrification is necessary. For the pre-treatment of industrial wastewater the use of SFBBRs is advantageous, especially in cases of wastewater with high organic loading or high content of compounds with low biodegradability. Performance data from exemplary commercial plants are given. Ongoing research and development efforts aim at achieving a high simultaneous total nitrogen (TN) removal of aerated SFBBRs and at improving the efficiency of TN removal in anoxic SFBBRs.

  14. In Developping a Bench-Scale Circulating Fluidized Bed Combustor to Burn High Ash Brazilian Coal-Dolomites Mixtures

    Science.gov (United States)

    Ramírez Behainne, Jhon Jairo; Hory, Rogério Ishikawa; Goldstein, Leonardo; Bernárdez Pécora, Araí Augusta

    This work considers some of the questions in burning high ash Brazilian coal-dolomite mixtures in a bench-scale circulating fluidized bed combustor (CFBC). Experimental tests were performed with the CE4500 coal from Santa Catarina State, in southern Brazil, with a Sauter mean diameter d p =43 μm. The coal particles were mixed with dolomite particles of d p = 111 μm and this fuel mixture was fed into the circulating fluidized reactor, previously loaded with quartz sand particles of d p =353 μm. This inert material was previously heated by the combustion of liquefied petroleum gas up to the ignition temperature of the fuel mixture. The CFBC unit has a 100mm internal diameter riser, 4.0m high, as well as a 62.8mm internal diameter downcomer. The loop has a cyclone, a sampling valve to collect particles and a 62.8mm internal diameter L-valve to recirculate the particles in the loop. A screw feeder with a rotation control system was used to feed the fuel mixture to the reactor. The operational conditions were monitored by pressure taps and thermocouples installed along the loop. A data acquisition system showed the main operational conditions to control. Experimental tests performed put in evidence the problems found during bed operation, with special attention to the solids feed device, to the L-valve operation, to particle size, solids inventory, fluidized gas velocity, fuel mixture and recirculated solids feeding positions.

  15. Forecast fire damp emission in thin, steep coal bed; Prevision de Desprendimiento de Grisu en Capas Estrechas e Inclindas

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-12-31

    A model to forecast fire damp emission in thin, steep coal bed, mining in advance and backfill works, has been developed and validated. The model estimates the amount of methane released towards the works, including fire damp proceeding from the actually mined seam, as well as methane coming from adjacent seams layers, depending on easy-to find parameters. Methane coming from the mined seam is determined as a function of the methane concentration in the seam and methane from adjacent seams is assessed by the degassification degree. This parameter depends also on the distance to the mined seam. The influence volume of a thin, steep mined coal bed has been determined, in order to study which seams and layers release methane towards the works. The works to develop the methane emission model were done in a coal face on Maria seam, in San Antonio mine, belonging to HUNOSA. The validation works were carried out in 24 left south seam, in the belonging to Minas de Figaredo, S. A. (Author)

  16. Pyrolysis of Jatropha curcas pressed cake for bio-oil production in a fixed-bed system

    International Nuclear Information System (INIS)

    Jourabchi, Seyed Amirmostafa; Gan, Suyin; Ng, Hoon Kiat

    2014-01-01

    Highlights: • The pyrolysis of Jatropha curcas waste in a fixed-bed rig was studied. • Yield, calorific value, water content and acidity of bio-oil were compared. • Empirical correlations for bio-oil yield and specifications were developed. • Optimisation of bio-oil production based on combined specifications was achieved. - Abstract: This study investigated the effects of pyrolysis parameters on the yield and quality of bio-oil from Jatropha curcas pressed cake. This biomass was pyrolysed in a fixed-bed reactor over a temperature range of 573.15 K to 1073.15 K and a nitrogen linear speed range of 7.8 × 10 −5 m/s to 6.7 × 10 −2 m/s. The heating rate and biomass grain size were 50 K/min and <2 mm, respectively. The bio-oils were tested for the gross calorific value, water content and acidity. The pyrolysis process was simulated using Thermo-Gravimetric Analysis (TGA) and Differential Scanning Calorimeter (DSC) for mass and energy balances analyses. Empirical correlations between the bio-oil specifications and pyrolysis parameters were developed using linear and nonlinear multiple regression methods for process optimisation. At optimum pyrolysis conditions, above 50% of the waste is converted to bio-oil with less than 30% water content, a gross calorific value of 15.12 MJ/kg and a pH of 6.77

  17. Design and optimization of a fixed - bed reactor for hydrogen production via bio-ethanol steam reforming

    International Nuclear Information System (INIS)

    Maria A Goula; Olga A Bereketidou; Costas G Economopoulos; Olga A Bereketidou; Costas G Economopoulos

    2006-01-01

    Global climate changes caused by CO 2 emissions are currently debated around the world. Renewable sources of energy are being sought as alternatives to replace fossil fuels. Hydrogen is theoretically the best fuel, environmentally friendly and its combustion reaction leads only to the production of water. Bio-ethanol has been proven to be effective in the production of hydrogen via steam reforming reaction. In this research the steam reforming reaction of bio-ethanol is studied at low temperatures over 15,3 % Ni/La 2 O 3 catalyst. The reaction and kinetic analysis takes place in a fixed - bed reactor in 130 - 250 C in atmospheric pressure. This study lays emphasis on the design and the optimization of the fixed - bed reactor, including the total volume of the reactor, the number and length of the tubes and the degree of ethanol conversion. Finally, it is represented an approach of the total cost of the reactor, according to the design characteristics and the materials that can be used for its construction. (authors)

  18. Effect of hydraulic retention time on hydrodynamic behavior of anaerobic-aerobic fixed bed reactor treating cattle slaughterhouse effluent

    Directory of Open Access Journals (Sweden)

    Daiane Cristina de Freitas

    2017-09-01

    Full Text Available The study of the hydrodynamic behavior in reactors provides characteristics of the flow regime and its anomalies that can reduce biological processes efficiency due to the decrease of the useful volume and the hydraulic retention time required for the performance of microbial activity. In this study, the hydrodynamic behavior of an anaerobic-aerobic fixed bed reactor, operated with HRT (hydraulic retention time of 24, 18 and 12 hours, was evaluated in the treatment of raw cattle slaughterhouse wastewater. Polyurethane foam and expanded clay were used as support media for biomass immobilization. Experimental data of pulse type stimulus-response assays were performed with eosin Y and bromophenol blue, and adjusted to the single-parameter theoretical models of dispersion and N-continuous stirred tank reactors in series (N-CSTR. N-CSTR model presented the best adjustment for the HRT and tracers evaluated. RDT (residence time distribution curves obtained with N-CSTR model in the assays with bromophenol blue resulted in better adjustment compared to the eosin Y. The predominant flow regime in AAFBR (anaerobic aerobic fixed bed reactor is the N-CSTR in series, as well as the existence of preferential paths and hydraulic short-circuiting.

  19. Fixed-bed adsorption separation of xylene isomers over sio2/silicallite-1 core-shell adsorbents

    KAUST Repository

    Khan, Easir A.

    2013-12-29

    SiO2/Silicalite-1 core-shell material has been demonstrated as potential shape selective adsorbent in gas phase separation of p-xylene from a mixture of p/o-xylene isomers. The core-shell composite comprised of large silica core and thin polycrystalline silicalite-1 shell which was synthesized via a self-assembly of silicalite-1 nanocrystals on core silica surface followed by a secondary seeded growth method. The core materials, SiO2 used in this study has mesoporosity with an average pore diameter of 60Å and hence offers no shape selectivity for xylene isomers. However, the shell, silicalite-1 contains rigid pore structures and preferentially adsorbs p-xylene from their isomers mixtures. A series of adsorption fixed bed breakthrough adsorption/desorption experiment was performed to obtain the equilibrium isotherms and adsorption isotherm parameters of xylene isomers. The equilibrium isotherms of xylene isomers follow the Langmuir\\'s model. A chromatographic adsorption model has been used to describe the fixed-bed breakthrough profiles of xylene isomers. The model has successfully predicted the responses of the binary mixtures of p/o-xylene isomers. The SiO2/silicalite-1 core-shell adsorbents have shown para-selectivity as high as 15. © Bangladesh Uni. of Engg. & Tech.

  20. Modeling and Performance of Waste Tires as Media in Fixed Bed Sequence Batch Reactor

    Directory of Open Access Journals (Sweden)

    Zahra Derakhshan

    2016-12-01

    Results: The maximum removal efficiencies of dissolved chemical oxygen demand for FBSBR and SBR reactors were 98.3 % and 97.9 %, respectively. In addition, Stover-Kincannon model provided a very suitable fitness (R2   > 0.99 for loading the bioreactor FBSBR. Conclusion: According to the results, not only waste tires can be reused, but also these wastes can be employed as a proper biological bed in wastewater refineries to improve their efficiency.

  1. Ozo-Dyes mixture degradation in a fixed bed biofilm reactor packed with volcanic porous rock

    International Nuclear Information System (INIS)

    Contreras-Blancas, E.; Cobos-Vasconcelos, D. de los; Juarez-Ramirez, C.; Poggi-Varaldo, H. M.; Ruiz-Ordaz, N.; Galindez-Mayer, J.

    2009-01-01

    Textile industries discharge great amounts of dyes and dyeing-process auxiliaries, which pollute streams and water bodies. Several dyes, especially the ones containing the azo group, can cause harmful effects to different organisms including humans. Through bacterial and mammalian tests, azo dyes or their derived aromatic amines have shown cell genotoxicity. The purpose of this work was to evaluate the effect of air flow rate on azo-dyes mixture biodegradation by a microbial community immobilized in a packed bed reactor. (Author)

  2. Ozo-Dyes mixture degradation in a fixed bed biofilm reactor packed with volcanic porous rock

    Energy Technology Data Exchange (ETDEWEB)

    Contreras-Blancas, E.; Cobos-Vasconcelos, D. de los; Juarez-Ramirez, C.; Poggi-Varaldo, H. M.; Ruiz-Ordaz, N.; Galindez-Mayer, J.

    2009-07-01

    Textile industries discharge great amounts of dyes and dyeing-process auxiliaries, which pollute streams and water bodies. Several dyes, especially the ones containing the azo group, can cause harmful effects to different organisms including humans. Through bacterial and mammalian tests, azo dyes or their derived aromatic amines have shown cell genotoxicity. The purpose of this work was to evaluate the effect of air flow rate on azo-dyes mixture biodegradation by a microbial community immobilized in a packed bed reactor. (Author)

  3. Adsorption of phosphate from aqueous solutions and sewage using zirconium loaded okara (ZLO): Fixed-bed column study

    International Nuclear Information System (INIS)

    Nguyen, T.A.H.; Ngo, H.H.; Guo, W.S.; Pham, T.Q.; Li, F.M.; Nguyen, T.V.; Bui, X.T.

    2015-01-01

    This study explores the potential of removing phosphorus from aqueous solutions and sewage by Zr(IV)-loaded okara (ZLO) in the fixed-bed column. Soybean residue (okara) was impregnated with 0.25 M Zr(IV) solution to prepare active binding sites for phosphate. The effect of several factors, including flow rate, bed height, initial phosphorus concentration, pH and adsorbent particle size on the performance of ZLO was examined. The maximum dynamic adsorption capacity of ZLO for phosphorus was estimated to be 16.43 mg/g. Breakthrough curve modeling indicated that Adams–Bohart model and Thomas model fitted the experimental data better than Yoon–Nelson model. After treatment with ZLO packed bed column, the effluent could meet the discharge standard for phosphorus in Australia. Successful desorption and regeneration were achieved with 0.2 NaOH and 0.1 HCl, respectively. The results prove that ZLO can be used as a promising phosphorus adsorbent in the dynamic adsorption system. - Highlights: • Dynamic adsorption of P from water and wastewater by Zr(IV)-loaded okara was tested. • Effects of column design parameters on the adsorption performance were investigated. • The dynamic adsorption capacity of Zr(IV)-loaded okara for P was reasonably high. • The spent column was effectively regenerated with 0.2 M NaOH followed by 0.1 M HCl. • Zr(IV)-loaded okara column was efficient in eliminating P from municipal sewage

  4. Optimal oxygen feeding policy to maximize the production of Maleic anhydride in unsteady state fixed bed catalytic reactors

    Directory of Open Access Journals (Sweden)

    E. Ali

    2017-07-01

    Full Text Available The effect of different oxygen feeding scenarios in a fixed bed reactor for the production of Maleic anhydride (MA is studied. Two reactor configurations were examined. In the first configuration, a cross flow reactor (CFR with 4 discrete feeding points is considered. Another configuration is the conventional packed-bed reactor (PBR with a single feed. Nonlinear Model Predictive Controller (NLMPC was used as optimal controller to operate the CFR in dynamic mode and to optimize the multiple feed dosages in order to enhance the MA yield. The simulation results indicated that different combinations of the four feed ratios can operate the reactor at the best value for the yield provided the first feeding point is kept as low as possible. For the packed bed reactor configuration, a single oxygen feed is considered and is optimized transiently by NLMPC. The simulation outcomes showed that the reactor performance in terms of the produced MA mole fraction can also be enhanced to the same magnitude obtained by CFR configuration. This improvement requires decreasing the oxygen ratio in the reactor single feed by 70%.

  5. Adsorption of phosphate from aqueous solutions and sewage using zirconium loaded okara (ZLO): Fixed-bed column study

    Energy Technology Data Exchange (ETDEWEB)

    Nguyen, T.A.H. [Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology, Sydney (UTS), 15 Broadway, Ultimo, NSW 2007 (Australia); Ngo, H.H., E-mail: ngohuuhao121@gmail.com [Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology, Sydney (UTS), 15 Broadway, Ultimo, NSW 2007 (Australia); Guo, W.S. [Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology, Sydney (UTS), 15 Broadway, Ultimo, NSW 2007 (Australia); Pham, T.Q. [Faculty of Geography, University of Science, Vietnam National University, Hanoi (Viet Nam); Li, F.M. [College of Environmental Science and Engineering, Ocean University of China, Qingdao 266100 (China); Nguyen, T.V. [Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology, Sydney (UTS), 15 Broadway, Ultimo, NSW 2007 (Australia); Bui, X.T. [Environmental Engineering and Management Research Group, Ton Duc Thang University, Ho Chi Minh City (Viet Nam); Faculty of Environment and Natural Resources, Ho Chi Minh City University of Technology-Vietnam National University, Ho Chi Minh City (Viet Nam)

    2015-08-01

    This study explores the potential of removing phosphorus from aqueous solutions and sewage by Zr(IV)-loaded okara (ZLO) in the fixed-bed column. Soybean residue (okara) was impregnated with 0.25 M Zr(IV) solution to prepare active binding sites for phosphate. The effect of several factors, including flow rate, bed height, initial phosphorus concentration, pH and adsorbent particle size on the performance of ZLO was examined. The maximum dynamic adsorption capacity of ZLO for phosphorus was estimated to be 16.43 mg/g. Breakthrough curve modeling indicated that Adams–Bohart model and Thomas model fitted the experimental data better than Yoon–Nelson model. After treatment with ZLO packed bed column, the effluent could meet the discharge standard for phosphorus in Australia. Successful desorption and regeneration were achieved with 0.2 NaOH and 0.1 HCl, respectively. The results prove that ZLO can be used as a promising phosphorus adsorbent in the dynamic adsorption system. - Highlights: • Dynamic adsorption of P from water and wastewater by Zr(IV)-loaded okara was tested. • Effects of column design parameters on the adsorption performance were investigated. • The dynamic adsorption capacity of Zr(IV)-loaded okara for P was reasonably high. • The spent column was effectively regenerated with 0.2 M NaOH followed by 0.1 M HCl. • Zr(IV)-loaded okara column was efficient in eliminating P from municipal sewage.

  6. Development of a computer program for the simulation of one-dimensional fixed- and moving-bed reactors

    International Nuclear Information System (INIS)

    Hartner, P.

    1996-11-01

    Chemical reactors with a flow through a bed of solid particles are of great importance in the processing industry. Modern computational tools allow for an improved characterization of the complex facts in such reactors leading to new opportunities of optimizing the reactor operation and environmental effects. This thesis is concerned with the development of the one-dimensional simulation software REASIM. The program covers the effects within a reacting bed and is designed for fixed and moving beds. To describe the reactor the balances for energy, momentum and mass are solved. The drying of the particles, pyrolysis and chemical gas-solid and gas-gas reactions are considered. For the description of the chemical gas-solid reactions a particle model for porous solids is developed. The calculation of mass transfer and of chemical reactions is strictly separated. All parameters necessary for the model can be measured in the laboratory. The model equations form a system of partial differential equations. This system is transformed to a set of ordinary differential equations. It is found that the best discretization method is the method of finite differences with the upwind-scheme for situations where convection is strong. The program has a modular structure making it is easy to replace parts of the program by new, improved modules if they become available. (author)

  7. Reuse of Produced Water from CO2 Enhanced Oil Recovery, Coal-Bed Methane, and Mine Pool Water by Coal-Based Power Plants

    Energy Technology Data Exchange (ETDEWEB)

    Knutson, Chad [Univ. of Illinois, Champaign, IL (United States); Dastgheib, Seyed A. [Univ. of Illinois, Champaign, IL (United States); Yang, Yaning [Univ. of Illinois, Champaign, IL (United States); Ashraf, Ali [Univ. of Illinois, Champaign, IL (United States); Duckworth, Cole [Univ. of Illinois, Champaign, IL (United States); Sinata, Priscilla [Univ. of Illinois, Champaign, IL (United States); Sugiyono, Ivan [Univ. of Illinois, Champaign, IL (United States); Shannon, Mark A. [Univ. of Illinois, Champaign, IL (United States); Werth, Charles J. [Univ. of Illinois, Champaign, IL (United States)

    2012-07-01

    Power generation in the Illinois Basin is expected to increase by as much as 30% by the year 2030, and this would increase the cooling water consumption in the region by approximately 40%. This project investigated the potential use of produced water from CO2 enhanced oil recovery (CO2-EOR) operations; coal-bed methane (CBM) recovery; and active and abandoned underground coal mines for power plant cooling in the Illinois Basin. Specific objectives of this project were: (1) to characterize the quantity, quality, and geographic distribution of produced water in the Illinois Basin; (2) to evaluate treatment options so that produced water may be used beneficially at power plants; and (3) to perform a techno-economic analysis of the treatment and transportation of produced water to thermoelectric power plants in the Illinois Basin. Current produced water availability within the basin is not large, but potential flow rates up to 257 million liters per day (68 million gallons per day (MGD)) are possible if CO2-enhanced oil recovery and coal bed methane recovery are implemented on a large scale. Produced water samples taken during the project tend to have dissolved solids concentrations between 10 and 100 g/L, and water from coal beds tends to have lower TDS values than water from oil fields. Current pretreatment and desalination technologies including filtration, adsorption, reverse osmosis (RO), and distillation can be used to treat produced water to a high quality level, with estimated costs ranging from $2.6 to $10.5 per cubic meter ($10 to $40 per 1000 gallons). Because of the distances between produced water sources and power plants, transportation costs tend to be greater than treatment costs. An optimization algorithm was developed to determine the lowest cost pipe network connecting sources and sinks. Total water costs increased with flow rate up to 26 million liters per day (7 MGD), and the range was from $4 to $16 per cubic meter

  8. Phosphorite ash in coal of certain beds of the Orzeskich (Zaleskich) layers. [Poland

    Energy Technology Data Exchange (ETDEWEB)

    Kuhl, J

    1982-01-01

    In ashes from coals of the Orzeskich (Zaleskich) layers, the variable content of P/sub 2/O/sub 5/ (0.4-1.15%) rises in an inverse proportion to the ash content of the coal. Chemical and mineral compositions of the ash in the coals of two levels of the mine ''Manifest Liptsovy'' are presented. The coal which yields phosphorite ash belongs to the type G. The phosphorus is mainly fruits and seeds of swamp plants. The smaller part of the phosphorus is formed by influx of terrigenous and volcanic material, as well as hydrothermal solutions.

  9. Pressured fluidized-bed gasification experiments with wood, peat and coal at VTT in 1991-1992. Test facilities and gasification experiments with sawdust

    Energy Technology Data Exchange (ETDEWEB)

    Kurkela, E; Staahlberg, P; Laatikainen, J [Technical Research Centre of Finland, Espoo (Finland). Lab. of Fuel and Process Technology

    1994-12-31

    Fluidized-bed air gasification of Finnish pine saw dust was studied in the PDU-scale test facilities of VTT to support the development of simplified integrated gasification combined-cycle processes by providing new information on the formation and behaviour of different gas impurities in wood gasification. The gasifier was operated at 4-5 bar pressure and at 880-1 020 deg C Product gas was cleaned by ceramic candle filters operated at 490-715 deg C. Concentrations of tars, fixed nitrogen species and vapour-phase alkali metals were determined in different operating conditions. Carbon conversion exceeded 95 deg C in all test periods although the gasifier was operated without recycling the cyclone or filter fines back to the reactor. However, at the gasification temperature of 880-900 deg C more than 5 deg C of the wood carbon was converted to tars. The total concentration of tars (compounds heavier than benzene) was reduced from 6 000 to 3 000 mg/m{sup 3}n by increasing the gasification temperature from 880 deg C to 1 000 deg C. The expected catalytic effects of calcium on tar decomposition could not be achieved in these experiments by feeding coarse dolomite into the bed. The use of sand or aluminium oxide as an inert bed material did neither lead to any decrease in tar concentrations. However, the tar concentrations were dramatically reduced in the cogasification experiments, when a mixture of approximately 50 deg C/50 deg C wood and coal was used as the feed stock. Wood nitrogen was mainly converted into ammonia, while the concentrations of HCN and organic nitrogen containing compounds were very low

  10. Pressured fluidized-bed gasification experiments with wood, peat and coal at VTT in 1991-1992. Test facilities and gasification experiments with sawdust

    Energy Technology Data Exchange (ETDEWEB)

    Kurkela, E.; Staahlberg, P.; Laatikainen, J. [Technical Research Centre of Finland, Espoo (Finland). Lab. of Fuel and Process Technology

    1993-12-31

    Fluidized-bed air gasification of Finnish pine saw dust was studied in the PDU-scale test facilities of VTT to support the development of simplified integrated gasification combined-cycle processes by providing new information on the formation and behaviour of different gas impurities in wood gasification. The gasifier was operated at 4-5 bar pressure and at 880-1 020 deg C Product gas was cleaned by ceramic candle filters operated at 490-715 deg C. Concentrations of tars, fixed nitrogen species and vapour-phase alkali metals were determined in different operating conditions. Carbon conversion exceeded 95 deg C in all test periods although the gasifier was operated without recycling the cyclone or filter fines back to the reactor. However, at the gasification temperature of 880-900 deg C more than 5 deg C of the wood carbon was converted to tars. The total concentration of tars (compounds heavier than benzene) was reduced from 6 000 to 3 000 mg/m{sup 3}n by increasing the gasification temperature from 880 deg C to 1 000 deg C. The expected catalytic effects of calcium on tar decomposition could not be achieved in these experiments by feeding coarse dolomite into the bed. The use of sand or aluminium oxide as an inert bed material did neither lead to any decrease in tar concentrations. However, the tar concentrations were dramatically reduced in the cogasification experiments, when a mixture of approximately 50 deg C/50 deg C wood and coal was used as the feed stock. Wood nitrogen was mainly converted into ammonia, while the concentrations of HCN and organic nitrogen containing compounds were very low

  11. Continuous adsorption of Pb(II) and methylene blue by engineered graphite oxide coated sand in fixed-bed column

    Energy Technology Data Exchange (ETDEWEB)

    Gong, Ji-Lai, E-mail: jilaigong@gmail.com [College of Environmental Science and Engineering, Key Laboratory of Environmental Biology and Pollution Control, Ministry of Education, Hunan University, Changsha 410082 (China); Zhang, Yong-Liang; Jiang, Yan [College of Environmental Science and Engineering, Key Laboratory of Environmental Biology and Pollution Control, Ministry of Education, Hunan University, Changsha 410082 (China); Zeng, Guang-Ming, E-mail: zgming@hnu.edu.cn [College of Environmental Science and Engineering, Key Laboratory of Environmental Biology and Pollution Control, Ministry of Education, Hunan University, Changsha 410082 (China); Cui, Zhi-Hui; Liu, Ke; Deng, Can-Hui; Niu, Qiu-Ya; Deng, Jiu-Hua [College of Environmental Science and Engineering, Key Laboratory of Environmental Biology and Pollution Control, Ministry of Education, Hunan University, Changsha 410082 (China); Huan, Shuang-Yan [State Key Laboratory for Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082 (China)

    2015-03-01

    Highlights: • GO-sand was prepared by coating GO on the surface of sand. • Pb(II) and MB were efficiently removed by GO-sand filter in column. • The removal of MB was enhanced with the presence of Pb(II). • GO-sand is low-cost and convenient for its application as packed bed filter. - Abstract: The mixture of several effluents, caused by the improper handling and management of effluents, generated multi-component wastewater containing both metals and dyes, leading to the complicated treatment process. In this study, a continuous adsorption of Pb(II) and methylene blue (MB) has been studied in single and binary solutions by using graphite oxide coated sand (GO-sand) as an adsorbent in a fixed-bed column. GO-sand was analyzed by X-ray photoelectron spectroscopy before and after analyte adsorption. Compared with sand filter, adsorption quantity and capacity for Pb(II) and MB by GO-sand filter were greatly increased. In Pb(II) and MB single solutions, the experimental parameters were investigated in detail including initial concentration, flow rate, bed depth and pH. Exhaustion time decreased with increasing initial concentration and flow rate, and increased with increasing bed depth and pH. In the Pb(II)-MB binary solution, exhaustion time significantly decreased for Pb(II) adsorption, but increased for MB adsorption. The reason was explained that the more favorable adsorption for MB onto the surface of GO-sand than that for Pb(II), which was derived from π–π interaction between MB and GO on sand surface in packed filter. The Yoon–Nelson model was applied at different concentration of Pb(II) and MB to predict the breakthrough curves. The experimental data were well fit with the model indicating that it was suitable for this column design.

  12. Batch and fixed-bed adsorption of tartrazine azo-dye onto activated carbon prepared from apricot stones

    Science.gov (United States)

    Albroomi, H. I.; Elsayed, M. A.; Baraka, A.; Abdelmaged, M. A.

    2017-07-01

    This work describes the potential of utilizing prepared activated carbon from apricot stones as an efficient adsorbent material for tartrazine (TZ) azo-dye removal in a batch and dynamic adsorption system. The results revealed that activated carbons with well-developed surface area (774 m2/g) and pore volume (1.26 cm3/g) can be manufactured from apricot stones by H3PO4 activation. In batch experiments, effects of the parameters such as initial dye concentration and temperature on the removal of the dye were studied. Equilibrium was achieved in 120 min. Adsorption capacity was found to be dependent on the initial concentration of dye solution, and maximum adsorption was found to be 76 mg/g at 100 mg/L of TZ. The adsorption capacity at equilibrium ( q e) increased from 22.6 to 76 mg/g with an increase in the initial dye concentrations from 25 to 100 mg/L. The thermodynamic parameters such as change in free energy (Δ G 0), enthalpy (Δ H 0) and entropy (Δ S 0) were determined and the positive value of (Δ H) 78.1 (K J mol-1) revealed that adsorption efficiency increased with an increase in the process temperature. In fixed-bed column experiments, the effect of selected operating parameters such as bed depth, flow rate and initial dye concentration on the adsorption capacity was evaluated. Increase in bed height of adsorption columns leads to an extension of breakthrough point as well as the exhaustion time of adsorbent. However, the maximum adsorption capacities decrease with increases of flow rate. The breakthrough data fitted well to bed depth service time and Thomas models with high coefficient of determination, R 2 ≥ 94.

  13. Investigation on catalytic gasification of high-ash coal with mixing-gas in a small-scale fluidised bed

    Energy Technology Data Exchange (ETDEWEB)

    Chen, X.; Zhang, J.; Lin, J. [Fuzhou University, Fuzhou (China)

    2005-10-15

    The experimental study on the Yangquan high-ash coal catalytic gasification with mixing gas by using solid alkali or waste liquid of viscose fiber as the catalyst in a small-scale fluidized bed with 28 mm i.d. was carried out. The loading saturation levels of two catalysts in Yangquan high-ash coal are about 6%. Under the gasification temperature ranging from 830 to 900{sup o}C and from 900 to 920{sup o}C, the apparent reaction order of Yangquan high-ash coal with respect to the unreacted carbon fraction approximates to 2.3 and 1/3 for the non-catalyst case, respectively. Also, the different values of apparent reaction order in the two temperature ranges are presented for the case with 3% solid alkali catalyst loaded. At the low temperature ranging from 830 to 860{sup o}C, the apparent reaction order of catalytic gasification is 1 since enough active carbon sites on the coal surface are formed during the catalytic gasification by solid alkali. But at the high temperature ranging from 860 to 920{sup o}C, the sodium carbonate produced by the reaction of solid alkali with carbon dioxide can be easily fused, transferred and re-distributed, which affects the gasification reaction rate, and the apparent reaction order of catalytic gasification is reduced to 1.3. 10 refs., 9 figs., 4 tab s.

  14. Experience in a 6.2 MW{sub e} pressurized fluidized bed gasifier with high ash Indian coals

    Energy Technology Data Exchange (ETDEWEB)

    Viswanathan, G.; Rajasekaran, A.; Periyakaruppan, V.; Krishnamoorthy, S. [Bharat Heavy Electricals Ltd., Tiruchirappalli (India)

    2006-07-01

    Bharat Heavy Electrical Limited has installed a 165 tons/day air-blown pressurized fluidized bed gasifier (PFBG) as an add-on to their 6.2 MW IGCC demonstration plant and has operated it for more than 4000 hours. Improvements in the gasifier refractory lining, ash extraction and cooling devices, air distribution and temperature measuring devices were incorporated to improve the reliability and performance. Coal with 30-42% ash and high calorific value in the range of 15-20 MJ/kg was used during these operations with crushed coal of 1-4 mm as well as -6 mm coal with fines. Tests were conducted at gasifier pressure of 0.3-1.0 MPa, fluidized bed temperature of 980-1050{sup o}C and at various fluidized velocities and air to steam ratios. Once through carbon conversion efficiency of 90%, cold gas efficiency of 69% and dry gas calorific value of 4.4-4.6 MJ/Nm{sup 3} were obtained. About 15% char in fly ash (with 40% ash coal) was established by TGA. Seal pot system was added for recyling fly ash from the first cyclone to enhance carbon conversion, other parameters and to reduce the char in fly ash to acceptable level. Trends and correlations were established for constituents of gas, carbon conversion efficiency, cold gas efficiency, calorific value of gas and gas yield. BHEL is currently working with a partner to install a 125 MW IGCC plant. The paper elaborates the schematic and constructional details of the PFBG, operating experience and performance. 3 refs., 9 figs.

  15. Avoidable and unavoidable exergy destructions of a fluidized bed coal combustor and a heat recovery steam generator

    International Nuclear Information System (INIS)

    Callak, Meliha; Balkan, Firuz; Hepbasli, Arif

    2015-01-01

    Highlights: • Performing advanced exergy analysis of a fluidized-bed combustion for the first time. • Comparing conventional and modified exergy efficiencies of the subsystems. • Deducting inefficiencies of the system components for possible improvements. - Abstract: Advanced exergy analysis was performed using the actual operational data taken from a fluidized bed coal combustor (FBCC) and a heat recovery steam generator (HRSG) in a textile plant located at Torbalı, Izmir. First, the conventional exergy analysis of the units was carried out. The exergetic efficiencies of the units were found to be 44.2% and 46.2%, respectively. Advanced exergy analysis was then performed by splitting the exergy destructions of the units into avoidable and unavoidable parts. The avoidable exergy destruction rates of the FBCC and the HRSG were determined to be 2999 kW and 760 kW according to the measurements. Correspondingly, the exergy efficiencies were modified to 53.1% and 48.1%, respectively

  16. Supercritical extraction of pupunha (Guilielma speciosa oil in a fixed bed using carbon dioxide

    Directory of Open Access Journals (Sweden)

    Araújo M.E.

    2000-01-01

    Full Text Available The pupunha (Guilielma speciosa is the fruit of a palm tree typical of the Brazilian Northern region, whose stem is used as a source of heart of palm. The fruit, which is about 65% pulp, is a source of oil and carotenes. In the present work, an analysis of the kinetics of supercritical extraction of oil from the pupunha pulp is presented. Carbon dioxide was used as solvent. The extractions were carried out at 25 MPa and 323 K and 30 MPa and 318 K. The chemical composition of the extracts in terms of fatty acids was determined by gas chromatography. The amount of oleic acid, a saturated fatty acid, in the CO2 extracts was larger than that in the extract obtained with hexane. The overall extraction curves were modeled using the single-parameter model proposed in the literature to describe the desorption of toluene from activated coal.

  17. TiO2-photocatalyzed As(III) oxidation in a fixed-bed, flow-through reactor.

    Science.gov (United States)

    Ferguson, Megan A; Hering, Janet G

    2006-07-01

    Compliance with the U.S. drinking water standard for arsenic (As) of 10 microg L(-1) is required in January 2006. This will necessitate implementation of treatment technologies for As removal by thousands of water suppliers. Although a variety of such technologies is available, most require preoxidation of As(III) to As(V) for efficient performance. Previous batch studies with illuminated TiO2 slurries have demonstrated that TiO2-photocatalyzed AS(III) oxidation occurs rapidly. This study examined reaction efficiency in a flow-through, fixed-bed reactor that provides a better model for treatment in practice. Glass beads were coated with mixed P25/sol gel TiO2 and employed in an upflow reactor irradiated from above. The reactor residence time, influent As(III) concentration, number of TiO2 coatings on the beads, solution matrix, and light source were varied to characterize this reaction and determine its feasibility for water treatment. Repeated usage of the same beads in multiple experiments or extended use was found to affect effluent As(V) concentrations but not the steady-state effluent As(III) concentration, which suggests that As(III) oxidation at the TiO2 surface undergoes dynamic sorption equilibration. Catalyst poisoning was not observed either from As(V) or from competitively adsorbing anions, although the higher steady-state effluent As(III) concentrations in synthetic groundwater compared to 5 mM NaNO3 indicated that competitive sorbates in the matrix partially hinder the reaction. A reactive transport model with rate constants proportional to incident light at each bead layer fit the experimental data well despite simplifying assumptions. TiO2-photocatalyzed oxidation of As(III) was also effective under natural sunlight. Limitations to the efficiency of As(III) oxidation in the fixed-bed reactor were attributable to constraints of the reactor geometry, which could be overcome by improved design. The fixed-bed TiO2 reactor offers an environmentally

  18. Trace elements partitioning during coal combustion in fluidized bed under O{sub 2}/CO{sub 2} atmosphere

    Energy Technology Data Exchange (ETDEWEB)

    Li, Haixin; Zhao, Changsui; Liang, Cai; Duan, Lunbo; Chen, Huichao [Southeast Univ., Nanjing (China). School of Energy and Environment

    2013-07-01

    Experiments were conducted to investigate the effects of temperature and O{sub 2}/CO{sub 2} atmosphere on trace elements (Cr, Mn, Co, Ni, Cd, Pb, Hg, As, Se) partitioning during combustion of Xuzhou bituminous coal in a 6 kWth fluidized bed. Inductively coupled plasma mass spectrometry (ICP-MS) and atomic fluorescence spectrometry (AFS) were used to determine trace elements contents in raw coal, bottom ash, fly ash and flue gas. The results indicate that with bed temperature increase, the relative enrichment of all the trace elements except Cr in bottom ash decreases suggesting that their volatility is enhanced. The relative enrichments of hardly volatile elements, like Cr and Mn in fly ash increase with bed temperature increase while those of partially volatile and highly volatile elements in fly ash are opposite. The relative enrichments of trace elements except Cr and Mn in fly ash are higher than those in bottom ash. Increasing bed temperature promotes elements like As, Se and Hg to migrate to vapor phase, Mn to migrate to fly ash and Cr to migrate to both bottom ash and fly ash. 21%O{sub 2}/79%CO{sub 2} atmosphere improves the volatility of Cr, Mn, Co, Se and their migration to fly ash, while restrains the volatility of As, Ni, Pb. It has little effect on the volatility of Hg but improves its migration to fly ash. Mass balance ratio was also calculated to observe trace elements distribution in bottom ash, fly ash and flue gas. There is no much difference in trace elements distribution between the two atmospheres. It can be seen that the trace elements proportion in fly ash is much greater, and more than 40% of Hg is distributed in the gas phase. Most of Hg and Se volatilize during combustion. The mass balance ratios are 87 {proportional_to} 129% which is considered acceptable.

  19. The use of coal mining wastes in building road beds; Utilizacion de los Esteriles del Carbon como Materiales para Capas de Firmes

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-12-31

    This project was aimed at carrying out a study in order to determine the nature and characteristics of coal mining wastes for its possible use in building road beds and to establish the acceptance, implementation and quality control criteria, which can be included in the Spanish General Technical Standard of Road and Bridges Works (PG-3). With that aim, six types of coal mining wastes were selected out of an inventory and several tests were conducted and following the results, the most appropriate coal mining wastes, the acceptance limits and the quality control tests to be applied to the materials obtained from coal mining wastes to road beds were established. A grinding and classification plant was designed in order to obtain the necessary granular materials for conducting real scale compaction tests in road stages. Several types of coal mining wastes were tested: red, black, treated (in the above mentioned plant) untreated, with different bed thickness and runs in the compactors. Likewise, laboratory tests were carried out on black and red coal mining wastes by adding binder materials. The results proved that coal mining wastes can be used as granular material for building different road beds, such as bound with cement, gravel-emulsion or on their own. As a result of this study 53,000 tons of black coal mining wastes mixed with 6% of cement as binder were used for building a 5 km stage of the Highway Oviedo-Mieres, as well as 16,000 tons of red coal mining wastes in the Ujo-Caborana road, which is still being used in the works carried out a present. (Author)

  20. Chromate (CrO2-4) Reduction in Groundwaters by Using Reductive Bacteria in Fixed-Bed Bioreactors

    International Nuclear Information System (INIS)

    Battaglia-Brunet, F.; Foucher, S.; Morin, D.; Ignatiadis, I.

    2004-01-01

    A biological method for the reduction Cr(VI), using sulphate-reducing bacteria (SRB), was tested in 2-L then 20-L fixed-bed reactors, with H 2 as a low-cost and clean substrate. The systems were inoculated with Desulfomicrobium norvegicum, that proved to be particularly efficient for direct Cr(VI) enzymatic reduction. The bacterial reduction was efficient when some SO 2- 4 was provided in the feeding, in order to allow their growth and to combine the direct enzymatic reduction to the indirect chemical reduction by dissolved H 2 S. The Cr(VI)/SO 2- 4 , ratio in the influent was adjusted in order to avoid excess sulphide production. A real polluted groundwater and an industrial electroplating effluent were treated in the 20-L pilot plant

  1. Effect of small-scale biomass gasification at the state of refractory lining the fixed bed reactor

    Energy Technology Data Exchange (ETDEWEB)

    Janša, Jan, E-mail: jan.jansa@vsb.cz; Peer, Vaclav, E-mail: vaclav.peer@vsb.cz; Pavloková, Petra, E-mail: petra.pavlokova@vsb.cz [VŠB – Technical University of Ostrava, Energy Research Center, 708 33 Ostrava (Czech Republic)

    2016-06-30

    The article deals with the influence of biomass gasification on the condition of the refractory lining of a fixed bed reactor. The refractory lining of the gasifier is one part of the device, which significantly affects the operational reliability and durability. After removing the refractory lining of the gasifier from the experimental reactor, there was done an assessment how gasification of different kinds of biomass reflected on its condition in terms of the main factors affecting its life. Gasification of biomass is reflected on the lining, especially through sticking at the bottom of the reactor. Measures for prolonging the life of lining consist in the reduction of temperature in the reactor, in this case, in order to avoid ash fusion biomass which it is difficult for this type of gasifier.

  2. Evaluation of Two Biosorbents in the Removal of Metal Ions in Aqueous Using a Pilot Scale Fixed-bed System

    Directory of Open Access Journals (Sweden)

    Andre Gadelha Oliveira

    2014-05-01

    Full Text Available The aim of the present work was to investigate the adsorption of toxic metal ions copper, nickel and zinc from aqueous solutions using low cost natural biomass (sugar cane bagasse and green coconut fiber in pilot scale fixed-bed system. The Hydraulic retention time (HRT was 229 minutes and the lowest adsorbent usage rate (AUR found was 0.10 g.L-1 for copper using green coconut fibers. The highest values of adsorption capacities founded were 1.417 and 2.772 mg.g-1 of Cu(II ions for sugarcane bagasse and green coconut fibers, respectively. The results showed that both sugarcane bagasse and green coconut fiber presented potential in the removal of metal ions copper, nickel and zinc ions from aqueous solution and the possible use in wastewater treatment station.

  3. Fluidized bed combustion of refuse-derived fuel in presence of protective coal ash

    Energy Technology Data Exchange (ETDEWEB)

    Ferrer, Eduardo [CIRCE, Universidad de Zaragoza, Maria de Luna, 3, Zaragoza (Spain); Aho, Martti [VTT Processes, P.O. Box 1603, 40101 Jyvaeskylae (Finland); Silvennoinen, Jaani; Nurminen, Riku-Ville [Kvaerner Power, P.O.Box 109, FIN-33101 Tampere (Finland)

    2005-12-15

    Combustion of refuse-derived fuel (RDF) alone or together with other biomass leads to superheater fouling and corrosion in efficient power plants (with high steam values) due to vaporization and condensation of alkali chlorides. In this study, means were found to raise the portion of RDF to 40% enb without risk to boilers. This was done by co-firing RDF with coal and optimizing coal quality. Free aluminum silicate in coal captured alkalies from vaporized alkali chlorides preventing Cl condensation to superheaters. Strong fouling and corrosion were simultaneously averted. Results from 100 kW and 4 MW CFB reactors are reported. (author)

  4. Co-gasification of biomass and coal in a pressurised fluidised bed gasifier

    Energy Technology Data Exchange (ETDEWEB)

    Andries, L.; Hein, K.R.G. [Lab. for Thermal Power Engineering, Dept. of Mechanical Engineering and Marine Technology, Delft Univ. of Technology (Netherlands)

    1996-12-31

    The Laboratory for Thermal Power Engineering of the Delft University of Technology is participating in an EU funded, international, R + D project which is designed to aid European industry in addressing issues regarding co-utilisation of biomass and/or waste in advanced coal conversion processes. The project comprises three main programmes, each of which includes a number of smaller subprogrammes. The three main programmes are: Coal-biomass systems component development and design; Coal-biomass environmental studies; Techno-economic assessment studies. (orig)

  5. Co-gasification of biomass and coal in a pressurised fluidised bed gasifier

    Energy Technology Data Exchange (ETDEWEB)

    Andries, L; Hein, K R.G. [Lab. for Thermal Power Engineering, Dept. of Mechanical Engineering and Marine Technology, Delft Univ. of Technology (Netherlands)

    1997-12-31

    The Laboratory for Thermal Power Engineering of the Delft University of Technology is participating in an EU funded, international, R + D project which is designed to aid European industry in addressing issues regarding co-utilisation of biomass and/or waste in advanced coal conversion processes. The project comprises three main programmes, each of which includes a number of smaller subprogrammes. The three main programmes are: Coal-biomass systems component development and design; Coal-biomass environmental studies; Techno-economic assessment studies. (orig)

  6. Characterisation and catalytic upgrading of tars from coal-tyre hydropyrolysis

    Energy Technology Data Exchange (ETDEWEB)

    Mastral, A.M.; Murillo, R.; Callen, M.S.; Garcia, T. [Instituto de Carboquimica, Zaragoza (Spain)

    1999-07-01

    Tars from coal-tyre hydropyrolysis obtained in a swept fixed bed reactor were upgraded with catalysts. Upgraded oils were characterized, and naphtha, kerosene, gas oil, heavy gas oil and vacuum residue percentages were quantified. 7 refs., 3 tabs.

  7. Adsorptive removal of heavy metals from water using sodium titanate nanofibres loaded onto GAC in fixed-bed columns.

    Science.gov (United States)

    Sounthararajah, D P; Loganathan, P; Kandasamy, J; Vigneswaran, S

    2015-04-28

    Heavy metals are serious pollutants in aquatic environments. A study was undertaken to remove Cu, Cd, Ni, Pb and Zn individually (single metal system) and together (mixed metals system) from water by adsorption onto a sodium titanate nanofibrous material. Langmuir adsorption capacities (mg/g) at 10(-3)M NaNO3 ionic strength in the single metal system were 60, 83, 115 and 149 for Ni, Zn, Cu, and Cd, respectively, at pH 6.5 and 250 for Pb at pH 4.0. In the mixed metals system they decreased at high metals concentrations. In column experiments with 4% titanate material and 96% granular activated carbon (w/w) mixture at pH 5.0, the metals breakthrough times and adsorption capacities (for both single and mixed metals systems) decreased in the order Pb>Cd, Cu>Zn>Ni within 266 bed volumes. The amounts adsorbed were up to 82 times higher depending on the metal in the granular activated carbon+titanate column than in the granular activated carbon column. The study showed that the titanate material has high potential for removing heavy metals from polluted water when used with granular activated carbon at a very low proportion in fixed-bed columns. Copyright © 2015 Elsevier B.V. All rights reserved.

  8. Characterization, morphology and composition of biofilm and precipitates from a sulphate-reducing fixed-bed reactor

    International Nuclear Information System (INIS)

    Remoundaki, Emmanouela; Kousi, Pavlina; Joulian, Catherine; Battaglia-Brunet, Fabienne; Hatzikioseyian, Artin; Tsezos, Marios

    2008-01-01

    The characteristics of the biofilm and the solids formed during the operation of a sulphate-reducing fixed-bed reactor, fed with a moderately acidic synthetic effluent containing zinc and iron, are presented. A diverse population of δ-Proteobacteria SRB, affiliated to four distinct genera, colonized the system. The morphology, mineralogy and surface chemistry of the precipitates were studied by X-ray diffraction (XRD), scanning electron microscopy (SEM) and energy dispersive X-ray (EDX). The XRD patterns observed are characteristic of amorphous solid phases. Peaks corresponding to crystalline iron sulphide, marcasite, sphalerite and wurtzite were also identified. SEM-EDX results confirm the predominance of amorphous phases appearing as a cloudy haze. EDX spectra of spots on the surface of these amorphous phases reveal the predominance of iron, zinc and sulphur indicating the formation of iron and zinc sulphides. The predominance of these amorphous phases and the formation of very fine particles, during the operation of the SRB column, are in agreement and can be explained by the formation pathways of metal sulphides at ambient temperature, alkaline pH and reducing conditions. Solids are precipitated either as (i) amorphous phases deposited on the bed material, as well as on surface of crystals, e.g. Mg 3 (PO 4 ) 2 and (ii) as rod-shaped solids characterized by a rough hazy surface, indicating the encapsulation of bacterial cells by amorphous metal sulphides

  9. Numerical and experimental studies on effects of moisture content on combustion characteristics of simulated municipal solid wastes in a fixed bed

    International Nuclear Information System (INIS)

    Sun, Rui; Ismail, Tamer M.; Ren, Xiaohan; Abd El-Salam, M.

    2015-01-01

    Highlights: • The effects of moisture content on the burning process of MSW are investigated. • A two-dimensional mathematical model was built to simulate the combustion process. • Temperature distributions, process rates, gas species were measured and simulated. • The The conversion ratio of C/CO and N/NO in MSW are inverse to moisture content. - Abstract: In order to reveal the features of the combustion process in the porous bed of a waste incinerator, a two-dimensional unsteady state model and experimental study were employed to investigate the combustion process in a fixed bed of municipal solid waste (MSW) on the combustion process in a fixed bed reactor. Conservation equations of the waste bed were implemented to describe the incineration process. The gas phase turbulence was modeled using the k–ε turbulent model and the particle phase was modeled using the kinetic theory of granular flow. The rate of moisture evaporation, devolatilization rate, and char burnout was calculated according to the waste property characters. The simulation results were then compared with experimental data for different moisture content of MSW, which shows that the incineration process of waste in the fixed bed is reasonably simulated. The simulation results of solid temperature, gas species and process rate in the bed are accordant with experimental data. Due to the high moisture content of fuel, moisture evaporation consumes a vast amount of heat, and the evaporation takes up most of the combustion time (about 2/3 of the whole combustion process). The whole bed combustion process reduces greatly as MSW moisture content increases. The experimental and simulation results provide direction for design and optimization of the fixed bed of MSW

  10. Numerical and experimental studies on effects of moisture content on combustion characteristics of simulated municipal solid wastes in a fixed bed

    Energy Technology Data Exchange (ETDEWEB)

    Sun, Rui, E-mail: Sunsr@hit.edu.cn [School of Energy Science and Engineering, Harbin Institute of Technology, 92, West Dazhi Street, Harbin 150001 (China); Ismail, Tamer M., E-mail: temoil@aucegypt.edu [Department of Mechanical Engineering, Suez Canal University, Ismailia (Egypt); Ren, Xiaohan [School of Energy Science and Engineering, Harbin Institute of Technology, 92, West Dazhi Street, Harbin 150001 (China); Abd El-Salam, M. [Department of Basic Science, Cairo University, Giza (Egypt)

    2015-05-15

    Highlights: • The effects of moisture content on the burning process of MSW are investigated. • A two-dimensional mathematical model was built to simulate the combustion process. • Temperature distributions, process rates, gas species were measured and simulated. • The The conversion ratio of C/CO and N/NO in MSW are inverse to moisture content. - Abstract: In order to reveal the features of the combustion process in the porous bed of a waste incinerator, a two-dimensional unsteady state model and experimental study were employed to investigate the combustion process in a fixed bed of municipal solid waste (MSW) on the combustion process in a fixed bed reactor. Conservation equations of the waste bed were implemented to describe the incineration process. The gas phase turbulence was modeled using the k–ε turbulent model and the particle phase was modeled using the kinetic theory of granular flow. The rate of moisture evaporation, devolatilization rate, and char burnout was calculated according to the waste property characters. The simulation results were then compared with experimental data for different moisture content of MSW, which shows that the incineration process of waste in the fixed bed is reasonably simulated. The simulation results of solid temperature, gas species and process rate in the bed are accordant with experimental data. Due to the high moisture content of fuel, moisture evaporation consumes a vast amount of heat, and the evaporation takes up most of the combustion time (about 2/3 of the whole combustion process). The whole bed combustion process reduces greatly as MSW moisture content increases. The experimental and simulation results provide direction for design and optimization of the fixed bed of MSW.

  11. Fluidised bed combustion: a new route to power and heat from coal

    Energy Technology Data Exchange (ETDEWEB)

    Schilling, H D [Bergbau-Forschung G.m.b.H., Essen (Germany, F.R.)

    1978-02-01

    The functioning of fluidized-bed firings and their advantages with regard to SO/sub 2/ emissions are described. The principle of design of a fluidized-bed boiler and a gas/steam turbine power plant with fluidized-bed firing under pressure is outlined. The application and their economics in heat and power generation and marketing potential of fluidized-bed firings and their economics in heat and power generation is pointed out. The construction of waste-fired incinerators has already become possible, but there is still a lot of development work to be done until fluidized-bed firings can be used in central heatings, combined-cycle power plants, and large power plants.

  12. Solar detoxification of fuel-contaminated groundwater using fixed-bed photocatalysts

    Energy Technology Data Exchange (ETDEWEB)

    Crittenden, J. C. [Michigan Technological University, Houghton, Michigan (United States); Zhang, Y.; Hand, D. W.; Perram, D. L.; Marchand, E. G.

    1996-05-15

    A field test of a solar photocatalytic process for detoxification of water was conducted at Tyndall Air Force Base, Florida, where benzene, toluene, ethylbenzene, and xylene (BTEX) compounds were found in the fuel-contaminated groundwater. Platinized titanium dioxide supported on silica gel is packed in tubular photoreactors and used for single-pass operations. Catalyst fouling, destruction inhibition, and water pretreatment are investigated in addition to BTEX destruction. Ionic species were found to be primarily responsible for photocatalyst fouling and destruction inhibition. A simple pretreatment unit was developed for removing turbidity, adding oxidant, and ionic species. By using pretreatment, the reactor system operated efficiently, and no loss in catalyst photoactivity was found during the month-long test. On a rainy day, BTEX compounds of a total influent concentration of more than 2 mg/L were destroyed within 6.5 minutes of empty-bed contact time. Test results with various flow rates, reactor diameters, influent concentrations, solar irradiances, and weather conditions confirm the application potential of the process.

  13. Solar detoxification of fuel-contaminated groundwater using fixed-bed photocatalysts

    International Nuclear Information System (INIS)

    Crittenden, J.C.; Zhang, Y.; Hand, D.W.; Perram, D.L.; Marchand, E.G.

    1996-01-01

    A field test of a solar photocatalytic process for detoxification of water was conducted at Tyndall Air Force Base, Florida, where benzene, toluene, ethylbenzene, and xylene (BTEX) compounds were found in the fuel-contaminated groundwater. Platinized titanium dioxide supported on silica gel is packed in tubular photoreactors and used for single-pass operations. Catalyst fouling, destruction inhibition, and water pretreatment are investigated in addition to BTEX destruction. Ionic species were found to be primarily responsible for photocatalyst fouling and destruction inhibition. A simple pretreatment unit was developed for removing turbidity, adding oxidant, and ionic species. By using pretreatment, the reactor system operated efficiently, and no loss in catalyst photoactivity was found during the month-long test. On a rainy day, BTEX compounds of a total influent concentration of more than 2 mg/L were destroyed within 6.5 minutes of empty-bed contact time. Test results with various flow rates, reactor diameters, influent concentrations, solar irradiances, and weather conditions confirm the application potential of the process

  14. Quantification of chlorine and alkali emissions from fluid bed combustion of coal by equilibrium calculations

    Energy Technology Data Exchange (ETDEWEB)

    Furimsky, Edward [IMAF Group, 184 Marlborough Avenue, Ottawa, ON (Canada) K1N 8G4; Zheng, Ligang [Natural Resources Canada, CANMET Energy Technology Centre, 1 Haanel Drive, Nepean, ON (Canada) K1A 1M1

    2003-04-15

    A computer model based on the Gibbs energy minimization principle was used to identify and quantify chlorine (Cl)- and alkali-containing species formed in the temperature range from 1100 to 1200 K, air/coal ratio of 1.0 and 1.1 and Ca/S ratio varying from 0 to 2.5 using low and high Cl content coals. HCl, KCl and NaCl were the major Cl-containing volatile compounds. The amount of HCl in the vapor phase decreased and that of KCl and NaCl increased with increasing Ca/S ratio from 0 to 2.5, whereas the increase in the air/coal ratio from 1.0 to 1.1 had the opposite effect. KCl and NaCl were the major, and KOH, NaOH, K{sub 2}SO{sub 4} and Na{sub 2}SO{sub 4} the minor alkali-containing species in the vapor phase of all the cases analyzed. The amount of all alkali metal-containing compounds increased with increasing Ca/S ratio and decreased with increasing air/coal ratio from 1.0 to 1.1. For the low Cl coal, the relative contribution of KOH and NaOH to the overall alkali emissions was greater than that for the high Cl coal.

  15. Fluidized Bed Gasification of Coal-Oil and Coal-Water-Oil Slurries by Oxygen –Steam and Oxygen-CO2 Mixtures

    Czech Academy of Sciences Publication Activity Database

    Svoboda, Karel; Pohořelý, Michael; Jeremiáš, Michal; Kameníková, Petra; Hartman, Miloslav; Skoblia, S.; Šyc, Michal

    2012-01-01

    Roč. 95, č. 1 (2012), s. 16-26 ISSN 0378-3820 R&D Projects: GA MŠk 2B08048; GA MŠk 7C08034 Grant - others:RFCR(XE) CT-2010-00009 Institutional research plan: CEZ:AV0Z40720504 Keywords : fluidized bed * gasification * coal slurries Subject RIV: JE - Non-nuclear Energetics, Energy Consumption ; Use Impact factor: 2.816, year: 2012 http://www.scopus.com/record/display.url?eid=2-s2.0-82455175439&origin=resultslist&sort=plf-f&src=s&st1=svoboda%2ck&sid=ikNGw6d45E-yyuMoDwlGiWn%3a420&sot=b&sdt=b&sl=22&s=AUTHOR-NAME%28svoboda%2ck%29&relpos=1&relpos=1&searchTerm=AUTHOR-NAME(svoboda,k)

  16. Coefficient of solid-gas heat transfer in particle fixed bed; Coeficiente de transferencia de calor gas-solido em leito fixo de particulas

    Energy Technology Data Exchange (ETDEWEB)

    Fernandes Filho, Francisco

    1991-03-01

    The work presents a study on heat transfer between gas and solid phases for fixed beds in the absence of mass transfer and chemical reactions. Mathematical models presented in the literature were analyzed concerning to the assumptions made on axial dispersion in the fluid phase and interparticle thermal conductivity. Heat transfer coefficients and their dependency on flow conditions, particles and packed bed characteristics were experimentally determined through the solution of the previous mathematical models. Pressure drop behaviour for the packed beds used for the heat transfer study was also included. (author) 32 refs., 12 figs.

  17. Lipase production by solid-state fermentation in fixed-bed bioreactors

    Directory of Open Access Journals (Sweden)

    Elisa d'Avila Costa Cavalcanti

    2005-06-01

    Full Text Available In the present work, packed bed bioreactors were employed with the aim of increasing productivity and scaling up of lipase production using Penicillium simplicissimum in solid-state fermentation. The influence of temperature and air flow rate on enzyme production was evaluated employing statistical experimental design, and an empirical model was adjusted to the experimental data. It was shown that higher lipase activities could be achieved at lower temperatures and higher air flow rates. The maximum lipase activity (26.4 U/g was obtained at the temperature of 27°C and air flow rate of 0.8 L/min.O fungo Penicillium simplicissimum se mostrou, em trabalhos anteriores, um ótimo produtor de lipase por fermentação no estado sólido, quando cultivado em biorreatores do tipo bandeja, utilizando a torta de babaçu como meio de cultura. Com o objetivo de aumentar a produtividade e possibilitar uma ampliação de escala, foi investigado, no presente trabalho, o emprego de biorreatores de leito fixo com aeração forçada. Os biorreatores utilizados tinham 4 cm de diâmetro interno e 14 cm de altura útil. Empregando-se planejamento estatístico de experimentos como ferramenta, foram avaliadas as influências da temperatura e da vazão de ar sobre a produção de lipase nestes biorreatores. Os resultados obtidos permitiram ajustar um modelo empírico, o qual indicou que maiores atividades lipásicas são alcançadas para temperaturas mais baixas e vazões de ar mais altas. A atividade lipásica máxima (26,4 U/g foi obtida para temperatura de 27°C e vazão de ar de 0,8 L/min.

  18. Performance of an anaerobic, static bed, fixed film bioreactor for chlorinated solvent treatment

    Science.gov (United States)

    Lorah, Michelle M.; Walker, Charles; Graves, Duane

    2015-01-01

    Anaerobic, fixed film, bioreactors bioaugmented with a dechlorinating microbial consortium were evaluated as a potential technology for cost effective, sustainable, and reliable treatment of mixed chlorinated ethanes and ethenes in groundwater from a large groundwater recovery system. Bench- and pilot-scale testing at about 3 and 13,500 L, respectively, demonstrated that total chlorinated solvent removal to less than the permitted discharge limit of 100 μg/L. Various planned and unexpected upsets, interruptions, and changes demonstrated the robustness and reliability of the bioreactor system, which handled the operational variations with no observable change in performance. Key operating parameters included an adequately long hydraulic retention time for the surface area, a constant supply of electron donor, pH control with a buffer to minimize pH variance, an oxidation reduction potential of approximately −200 millivolts or lower, and a well-adapted biomass capable of degrading the full suite of chlorinated solvents in the groundwater. Results indicated that the current discharge criteria can be met using a bioreactor technology that is less complex and has less downtime than the sorption based technology currently being used to treat the groundwater.

  19. Coal

    International Nuclear Information System (INIS)

    Teissie, J.; Bourgogne, D. de; Bautin, F.

    2001-12-01

    Coal world production represents 3.5 billions of tons, plus 900 millions of tons of lignite. 50% of coal is used for power generation, 16% by steel making industry, 5% by cement plants, and 29% for space heating and by other industries like carbo-chemistry. Coal reserves are enormous, about 1000 billions of tons (i.e. 250 years of consumption with the present day rate) but their exploitation will be in competition with less costly and less polluting energy sources. This documents treats of all aspects of coal: origin, composition, calorific value, classification, resources, reserves, production, international trade, sectoral consumption, cost, retail price, safety aspects of coal mining, environmental impacts (solid and gaseous effluents), different technologies of coal-fired power plants and their relative efficiency, alternative solutions for the recovery of coal energy (fuel cells, liquefaction). (J.S.)

  20. Mathematic modulation of a simulation program for a coal and wood counter-current moving bed gasifier, which includes pyrolysis and drying processes and processes alternatives; Modelagem matematica e simulacao em computador de gaseificador de leito fixo contra-corrente para carvoes e biomassa com inclusao de processos de pirolise, secagem e alternativas do processo

    Energy Technology Data Exchange (ETDEWEB)

    Souza Santos, M.L. de [Instituto de Pesquisas Tecnologicas (IPT), Sao Paulo, SP (Brazil)

    1985-12-31

    A new version of a simulation program for coal and wood counter-current fixed bed gasifier has been completed and provides: all the principal information variables of the process throughout the bed as mass flow and composition for 13 gases and 6 solids, temperature of the gas and solid phases, reaction rates of combustion, gasification, pyrolysis and drying processes; composition, mass flow, temperature, combustion enthalpy and other produced gases physical and chemical properties; possibility of process alternatives analysis as volatiles recycling in order to eliminate tar, double withdrawn of gases and combinations. Comparisons between simulation and experimental results are presented. (author). 26 refs., 1 tab

  1. Waste Water Treatment-Bed of Coal Fly Ash for Dyes and Pigments Industry

    OpenAIRE

    Syed Farman Ali Shah; Aziza Aftab; Noorullah Soomro; Mir Shah Nawaz; Kambiz Vafai

    2015-01-01

    The highly porous power plant waste ashes have been utilized to treat toxic effluent of a dyes manufacturing plant. An attempt has been made for the first time in Pakistan, to generate an effective and economically sound treatment facility for the toxic effluent of a dyes manufacturing plant. This is an indigenous bed which could replace expensive treatment facilities, such as reverse osmosis (RO), granulated activated carbon (GAC) bed, etc. The treatment efficiency was improved by coupling c...

  2. Measurement and modeling of advanced coal conversion processes

    Energy Technology Data Exchange (ETDEWEB)

    Solomon, P.R.; Serio, M.A.; Hamblen, D.G.; Smoot, L.D.; Brewster, B.S. (Advanced Fuel Research, Inc., East Hartford, CT (United States) Brigham Young Univ., Provo, UT (United States))

    1991-01-01

    The overall objective of this program is the development of predictive capability for the design, scale up, simulation, control and feedstock evaluation in advanced coal conversion devices. This program will merge significant advances made in measuring and quantitatively describing the mechanisms in coal conversion behavior. Comprehensive computer codes for mechanistic modeling of entrained-bed gasification. Additional capabilities in predicting pollutant formation will be implemented and the technology will be expanded to fixed-bed reactors.

  3. Factors affecting biological reduction of CO{sub 2} into CH{sub 4} using a hydrogenotrophic methanogen in a fixed bed reactor

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Jae Hyung; Pak, Daewon [Seoul National University of Science and Technology, Seoul (Korea, Republic of); Chang, Won Seok [Korea District Heating Corp, Seongnam (Korea, Republic of)

    2015-10-15

    Biological conversion of CO{sub 2} was examined in a fixed bed reactor inoculated with anaerobic mixed culture to investigate influencing factors, the type of packing material and the composition of the feeding gas mixture. During the operation of the fixed bed reactor by feeding the gas mixture (80% H{sub 2} and 20% CO{sub 2} based on volume basis), the volumetric CO{sub 2} conversion rate was higher in the fixed bed reactor packed with sponge due to its large surface area and high mass transfer from gas to liquid phase compared with PS ball. Carbon dioxide loaded into the fixed bed reactor was not completely converted because some of H{sub 2} was used for biomass growth. When a mole ratio of H{sub 2} to CO{sub 2} in the feeding gas mixture increased from 4 to 5, CO{sub 2} was completely converted into CH{sub 4}. The packing material with large surface area is effective in treating gaseous substrate such as CO{sub 2} and H{sub 2}. H{sub 2}, electron donor, should be providing more than required according to stoichiometry because some of it is used for biomass growth.

  4. Cultivation and Differentiation of Encapsulated hMSC-TERT in a Disposable Small-Scale Syringe-Like Fixed Bed Reactor

    DEFF Research Database (Denmark)

    Weber, Christian; Pohl, Sebastian; Pörtner, Ralf

    2007-01-01

    The use of commercially available plastic syringes is introduced as disposable small-scale fixed bed bioreactors for the cultivation of implantable therapeutic cell systems on the basis of an alginate-encapsulated human mesenchymal stem cell line. The system introduced is fitted with a noninvasiv...

  5. Structural characterisation of pretreated solids from flow-through liquid hot water treatment of sugarcane bagasse in a fixed-bed reactor

    CSIR Research Space (South Africa)

    Reddy, P

    2015-05-01

    Full Text Available Untreated sugarcane bagasse and sugarcane bagasse pretreated with flow-through liquid hot water (LHW) treatment (170-207°C and 204-250 ml/min) in a fixed-bed reactor have been structurally characterised. Field emission gun scanning electron...

  6. Design of adiabatic fixed-bed reactors for the partial oxidation of methane to synthesis gas. Application to production of methanol and hydrogen-for-fuel-cells

    NARCIS (Netherlands)

    Smet, de C.R.H.; Croon, de M.H.J.M.; Berger, R.J.; Marin, G.B.M.M.; Schouten, J.C.

    2001-01-01

    Adiabatic fixed-bed reactors for the catalytic partial oxidn. (CPO) of methane to synthesis gas were designed at conditions suitable for the prodn. of methanol and hydrogen-for-fuel-cells. A steady-state, one-dimensional heterogeneous reactor model was applied in the simulations. Intra-particle

  7. Absorption of CO2 and H2S in Aqueous Alkanolamine Solutions using a Fixed-Bed Reactor with Cocurrent Downflow Operation in the Pulsing Flow Regime

    NARCIS (Netherlands)

    Versteeg, G.F.; Swaaij, W.P.M. van

    1988-01-01

    Absorption rates of H2S and CO2 in several aqueous alkanolamines in a cocurrent downflow fixed-bed reactor operated in the pulse flow regime have been measured in order to obtain information on the potential selectivity and on the mass transfer parameters. From these experiments it can be concluded

  8. ADSORPTION OF MANGANESE FROM ACID MINE DRAINAGE EFFLUENTS USING BONE CHAR: CONTINUOUS FIXED BED COLUMN AND BATCH DESORPTION STUDIES

    Directory of Open Access Journals (Sweden)

    D. C. Sicupira

    2015-06-01

    Full Text Available AbstractIn the present study, continuous fixed bed column runs were carried out in an attempt to evaluate the feasibility of using bone char for the removal of manganese from acid mine drainage (AMD. Tests using a laboratory solution of pure manganese at typical concentration levels were also performed for comparison purposes. The following operating variables were evaluated: column height, flow rate, and initial pH. Significant variations in resistance to the mass transfer of manganese into the bone char were identified using the Thomas model. A significant effect of the bed height could only be observed in tests using the laboratory solution. No significant change in the breakthrough volume could be observed with different flow rates. By increasing the initial pH from 2.96 to 5.50, the breakthrough volume was also increased. The maximum manganese loading capacity in continuous tests using bone char for AMD effluents was 6.03 mg g-1, as compared to 26.74 mg g-1 when using the laboratory solution. The present study also performed desorption tests, using solutions of HCl, H2SO4, and water, aimed at the reuse of the adsorbent; however, no promising results were obtained due to low desorption levels associated with a relatively high mass loss. Despite the desorption results, the removal of manganese from AMD effluents using bone char as an adsorbent is technically feasible and attends to environmental legislation. It is interesting to note that the use of bone char for manganese removal may avoid the need for pH corrections of effluents after treatment. Moreover, bone char can also serve to remove fluoride ions and other metals, thus representing an interesting alternative material for the treatment of AMD effluents.

  9. Electrochemical treatment of water containing Microcystis aeruginosa in a fixed bed reactor with three-dimensional conductive diamond anodes

    International Nuclear Information System (INIS)

    Mascia, Michele; Monasterio, Sara; Vacca, Annalisa; Palmas, Simonetta

    2016-01-01

    Highlights: • Inactivation of M. aeruginosa was achieved by electrolysis with BDD anodes. • A fixed bed reactor with 3-D electrodes was tested in batch and continuous mode. • The kinetics of the process was determined from batch experiments. • A mathematical model of the process was implemented and validated. • The model was used to predict the system behaviour under different conditions. - Abstract: An electrochemical treatment was investigated to remove Microcystis aeruginosa from water. A fixed bed reactor in flow was tested, which was equipped with electrodes constituted by stacks of grids electrically connected in parallel, with the electric field parallel to the fluid flow. Conductive diamond were used as anodes, platinised Ti as cathode. Electrolyses were performed in continuous and in batch recirculated mode with flow rates corresponding to Re from 10 to 160, current densities in the range 10–60 A m −2 and Cl − concentrations up to 600 g m −3 . The absorbance of chlorophyll-a pigment and the concentration of products and by-products of electrolysis were measured. In continuous experiments without algae in the inlet stream, total oxidants concentrations as equivalent Cl 2 , of about 0.7 g Cl 2 m −3 were measured; the maximum values were obtained at Re = 10 and i = 25 A m −2 , with values strongly dependent on the concentration of Cl − . The highest algae inactivation was obtained under the operative conditions of maximum generation of oxidants; in the presence of microalgae the oxidants concentrations were generally below the detection limit. Results indicated that most of the bulk oxidants electrogenerated is constituted by active chlorine. The prevailing mechanism of M. aeruginosa inactivation is the disinfection by bulk oxidants. The experimental data were quantitatively interpreted through a simple plug flow model, in which the axial dispersion accounts for the non-ideal flow behaviour of the system; the model was successfully

  10. Electrochemical treatment of water containing Microcystis aeruginosa in a fixed bed reactor with three-dimensional conductive diamond anodes

    Energy Technology Data Exchange (ETDEWEB)

    Mascia, Michele, E-mail: michele.mascia@unica.it; Monasterio, Sara; Vacca, Annalisa; Palmas, Simonetta

    2016-12-05

    Highlights: • Inactivation of M. aeruginosa was achieved by electrolysis with BDD anodes. • A fixed bed reactor with 3-D electrodes was tested in batch and continuous mode. • The kinetics of the process was determined from batch experiments. • A mathematical model of the process was implemented and validated. • The model was used to predict the system behaviour under different conditions. - Abstract: An electrochemical treatment was investigated to remove Microcystis aeruginosa from water. A fixed bed reactor in flow was tested, which was equipped with electrodes constituted by stacks of grids electrically connected in parallel, with the electric field parallel to the fluid flow. Conductive diamond were used as anodes, platinised Ti as cathode. Electrolyses were performed in continuous and in batch recirculated mode with flow rates corresponding to Re from 10 to 160, current densities in the range 10–60 A m{sup −2} and Cl{sup −} concentrations up to 600 g m{sup −3}. The absorbance of chlorophyll-a pigment and the concentration of products and by-products of electrolysis were measured. In continuous experiments without algae in the inlet stream, total oxidants concentrations as equivalent Cl{sub 2}, of about 0.7 g Cl{sub 2} m{sup −3} were measured; the maximum values were obtained at Re = 10 and i = 25 A m{sup −2}, with values strongly dependent on the concentration of Cl{sup −}. The highest algae inactivation was obtained under the operative conditions of maximum generation of oxidants; in the presence of microalgae the oxidants concentrations were generally below the detection limit. Results indicated that most of the bulk oxidants electrogenerated is constituted by active chlorine. The prevailing mechanism of M. aeruginosa inactivation is the disinfection by bulk oxidants. The experimental data were quantitatively interpreted through a simple plug flow model, in which the axial dispersion accounts for the non-ideal flow behaviour of the

  11. Toxicity of Sodium Bicarbonate to Fish from Coal-Bed Natural Gas Production in the Tongue and Powder River Drainages, Montana and Wyoming

    Science.gov (United States)

    ,

    2006-01-01

    This study evaluates the sensitivity of aquatic life to sodium bicarbonate (NaHCO3), a major constituent of coal-bed natural gas-produced water. Excessive amounts of sodium bicarbonate in the wastewater from coal-bed methane natural gas production released to freshwater streams and rivers may adversely affect the ability of fish to regulate their ion uptake. The collaborative study focuses on the acute and chronic toxicity of sodium bicarbonate on select fish species in the Tongue and Powder River drainages in southeastern Montana and northeastern Wyoming. Sodium bicarbonate is not naturally present in appreciable concentrations within the surface waters of the Tongue and Powder River drainages; however, the coal-bed natural gas wastewater can reach levels over 1,000 milligrams per liter. Large concentrations have been shown to be acutely toxic to native fish (Mount and others, 1997). In 2003, with funding and guidance provided by the U.S. Environmental Protection Agency, the Montana Fish, Wildlife, and Parks and the U.S. Geological Survey initiated a collaborative study on the potential effects of coal-bed natural gas wastewater on aquatic life. A major goal of the study is to provide information to the State of Montana Water Quality Program needed to develop an aquatic life standard for sodium bicarbonate. The standard would allow the State, if necessary, to establish targets for sodium bicarbonate load reductions.

  12. Simultaneous production of laccase and decolouration of the diazo dye Reactive Black 5 in a fixed-bed bioreactor

    Energy Technology Data Exchange (ETDEWEB)

    Enayatzamir, Kheirghadam [Department of Chemical Engineering, Rovira i Virgili University, Av. Paisos Catalans 26, 43007 Tarragona (Spain); Department of Soil Science Engineering, University of Tehran, Karaj (Iran, Islamic Republic of); Alikhani, Hossein A. [Department of Soil Science Engineering, University of Tehran, Karaj (Iran, Islamic Republic of); Rodriguez Couto, Susana [Department of Chemical Engineering, Rovira i Virgili University, Av. Paisos Catalans 26, 43007 Tarragona (Spain)], E-mail: susana.rodriguez@urv.cat

    2009-05-15

    In this paper the production of laccase and the decolouration of the recalcitrant diazo dye Reactive Black 5 (RB5) by the white-rot fungus Trametes pubescens immobilised on stainless steel sponges in a fixed-bed reactor were studied. Laccase production was increased by 10-fold in the presence of RB5 and reached a maximum value of 1025 U/l. Enhanced laccase production in the presence of RB5 in this fungus is an added advantage during biodegradation of RB5-containing effluents. The decolouration of RB5 was due to two processes: dye adsorption onto the fungal mycelium and dye degradation by the laccase enzymes produced by the fungus. RB5 decolouration was performed during four successive batches obtaining high decolouration percentages (74%, 43% and 52% in 24 h for the first, third and four batch, respectively) without addition of redox mediators. Also, the in vitro decolouration of RB5 by the concentrated culture extract, containing mainly laccase, produced in the above bioreactor was studied. The decolouration percentages obtained were considerably lower (around 20% in 24 h) than that attained with the whole culture.

  13. Carbonaceous materials in petrochemical wastewater before and after treatment in an aerated submerged fixed-bed biofilm reactor

    Directory of Open Access Journals (Sweden)

    Trojanowicz Karol

    2016-09-01

    Full Text Available Results of the studies for determining fractions of organic contaminants in a pretreated petrochemical wastewater flowing into a pilot Aerated Submerged Fixed-Bed Biofilm Reactor (ASFBBR are presented and discussed. The method of chemical oxygen demand (COD fractionation consisted of physical tests and biological assays. It was found that the main part of the total COD in the petrochemical, pretreated wastewater was soluble organic substance with average value of 57.6%. The fractions of particulate and colloidal organic matter were found to be 31.8% and 10.6%, respectively. About 40% of COD in the influent was determined as readily biodegradable COD. The inert fraction of the soluble organic matter in the petrochemical wastewater constituted about 60% of the influent colloidal and soluble COD. Determination of degree of hydrolysis (DH of the colloidal fraction of COD was also included in the paper. The estimated value of DH was about 62%. Values of the assayed COD fractions were compared with the same parameters obtained for municipal wastewater by other authors.

  14. On the effect of cross sectional shape on incipient motion and deposition of sediments in fixed bed channels

    Directory of Open Access Journals (Sweden)

    Safari Mir-Jafar-Sadegh

    2014-03-01

    Full Text Available The condition of incipient motion and deposition are of the essential issues for the study of sediment transport. This phenomenon is of great importance to hydraulic engineers for designing sewers, drainage, as well as other rigid boundary channels. This is a study carried out with the objectives of describing the effect of cross-sectional shape on incipient motion and deposition of particles in rigid boundary channels. In this research work, the experimental data given by Loveless (1992 and Mohammadi (2005 are used. On the basis of the critical velocity approach, a new incipient motion equation for a V-shaped bottom channel and incipient deposition of sediment particles equations for rigid boundary channels having circular, rectangular, and U-shaped cross sections are obtained. New equations were compared to the other incipient motion equations. The result shows that the cross-sectional shape is an important factor for defining the minimum velocity for no-deposit particles. This study also distinguishes incipient motion of particles from incipient deposition for particles. The results may be useful for designing fixed bed channels with a limited deposition condition.

  15. Simultaneous production of laccase and decolouration of the diazo dye Reactive Black 5 in a fixed-bed bioreactor

    International Nuclear Information System (INIS)

    Enayatzamir, Kheirghadam; Alikhani, Hossein A.; Rodriguez Couto, Susana

    2009-01-01

    In this paper the production of laccase and the decolouration of the recalcitrant diazo dye Reactive Black 5 (RB5) by the white-rot fungus Trametes pubescens immobilised on stainless steel sponges in a fixed-bed reactor were studied. Laccase production was increased by 10-fold in the presence of RB5 and reached a maximum value of 1025 U/l. Enhanced laccase production in the presence of RB5 in this fungus is an added advantage during biodegradation of RB5-containing effluents. The decolouration of RB5 was due to two processes: dye adsorption onto the fungal mycelium and dye degradation by the laccase enzymes produced by the fungus. RB5 decolouration was performed during four successive batches obtaining high decolouration percentages (74%, 43% and 52% in 24 h for the first, third and four batch, respectively) without addition of redox mediators. Also, the in vitro decolouration of RB5 by the concentrated culture extract, containing mainly laccase, produced in the above bioreactor was studied. The decolouration percentages obtained were considerably lower (around 20% in 24 h) than that attained with the whole culture

  16. Adsorptive Removal of Trichloroethylene in Water by Crop Residue Biochars Pyrolyzed at Contrasting Temperatures: Continuous Fixed-Bed Experiments

    Directory of Open Access Journals (Sweden)

    Ming Zhang

    2015-01-01

    Full Text Available Biochar (BC has attracted great attention as an alternative sorbent to activated carbon (AC. Objective of this study was to determine trichloroethylene (TCE removal by soybean stover BC pyrolyzed at 300 (BC300 and 700°C (BC700 in continuous fixed-bed column. Columns packed with BC300, BC700, and AC reached breakthrough time in 1.1, 27.0, and 50.7 h, respectively. BC700 had higher TCE adsorption capacity than BC300 due to its higher surface area, nonpolarity, and aromaticity. The sorption capacities of AC (774.0 mg g−1 and BC700 (515.1 mg g−1 were 21.6 and 14.4 times higher than that of BC300 (35.9 mg g−1. The lower desorption rate of TCE from BC300 than BC700 and AC may be attributed to the strong binding/partition of TCE to the noncarbonized part of BC. Thomas model also adequately described the adsorption data indicating interphase mass transfer. Overall, AC showed best efficiency for removing TCE from water in column experiments. However, although sorption and desorption capabilities of BC700 were a little lower than AC, it is still a good alternative for AC to remove organic contaminants such as TCE from water due to its cost-effectiveness.

  17. Co-pyrolysis of rice straw and Polyethylene Terephthalate (PET) using a fixed bed drop type pyrolyzer

    Science.gov (United States)

    Izzatie, N. I.; Basha, M. H.; Uemura, Y.; Hashim, M. S. M.; Amin, N. A. M.; Hamid, M. F.

    2017-10-01

    In this work, co-pyrolysis of rice straw and polyethylene terephthalate (PET) was carried out at different temperatures (450,500,550, and 600°C) at ratio 1:1 by using fixed bed drop-type pyrolyzer. The purpose of this work is to determine the effect of pyrolysis temperature on the product yield. As the temperature increased, the pyrolysis oil increased until it reaches certain high temperature (600°C), the pyrolysis oil decreased as of more NCG were produced. The temperature 550°C is considered as the optimum pyrolysis temperature since it produced the highest amount of pyrolysis oil with 36 wt.%. In pyrolysis oil, the calorific value (13.98kJ/g) was low because of the presence of high water content (52.46 wt.%). Main chemicals group from pyrolysis oil were an aldehyde, ketones, acids, aromatics, and phenol and all compound have abundant of hydrogen and carbon were identified. Co-pyrolysis of rice straw and PET produced a higher amount of carbon oxides and recycling back the NCG could increase liquid and char yields.

  18. Comparative study on pyrolysis of lignocellulosic and algal biomass using a thermogravimetric and a fixed-bed reactor.

    Science.gov (United States)

    Yuan, Ting; Tahmasebi, Arash; Yu, Jianglong

    2015-01-01

    Pyrolysis characteristics of four algal and lignocellulosic biomass samples were studied by using a thermogravimetric analyzer (TGA) and a fixed-bed reactor. The effects of pyrolysis temperature and biomass type on the yield and composition of pyrolysis products were investigated. The average activation energy for pyrolysis of biomass samples by FWO and KAS methods in this study were in the range of 211.09-291.19kJ/mol. CO2 was the main gas component in the early stage of pyrolysis, whereas H2 and CH4 concentrations increased with increasing pyrolysis temperature. Bio-oil from Chlorellavulgaris showed higher content of nitrogen containing compounds compared to lignocellulosic biomass. The concentration of aromatic organic compounds such as phenol and its derivatives were increased with increasing pyrolysis temperature up to 700°C. FTIR analysis results showed that with increasing pyrolysis temperature, the concentration of OH, CH, CO, OCH3, and CO functional groups in char decreased sharply. Copyright © 2014 Elsevier Ltd. All rights reserved.

  19. Anaerobic degradation of landfill leachate using an upflow anaerobic fixed-bed reactor with microbial sulfate reduction

    International Nuclear Information System (INIS)

    Ben Dhia Thabet, Olfa; Bouallagui, Hassib; Cayol, Jean-luc; Ollivier, Bernard; Fardeau, Marie-Laure; Hamdi, Moktar

    2009-01-01

    This study evaluated the anaerobic degradation of landfill leachate and sulfate reduction as a function of COD/(SO 4 2- ) ratio in an upflow anaerobic fixed-bed reactor. The reactor, which was inoculated with a mixed consortium, was operated under a constant hydraulic retention time (HRT) of 5 days. We investigated the effect of COD/(SO 4 2- ) ratio variation on the sulfate reduction efficiency, hydrogen sulfide production, chemical oxygen demand (COD) removal, conductivity, and pH variation. The best reactor performance, with significant sulfate reduction efficiency and COD removal efficiency of 91% and 87%, respectively, was reached under a COD/(SO 4 2- ) ratio of 1.17. Under these conditions, microscopic analysis showed the abundance of vibrios and rod-shaped bacterial cells. Two anaerobic bacteria were isolated from the reactor sludge. Phylogenetic studies performed on these strains identified strain A1 as affiliated to Clostridium genus and strain H1 as a new species of sulfate-reducing bacteria affiliated to the Desulfovibrio genus. The closest phylogenetic relative of strain H1 was Desulfovibrio desulfuricans, at 96% similarity for partial 16S RNA gene sequence data. Physiological and metabolic characterization was performed for this strain.

  20. The emissions of VOCs during co-combustion of coal with different waste materials in a fluidized bed

    Energy Technology Data Exchange (ETDEWEB)

    I. Gulyurtlu; P. Abelha; A. Gregorio; A. Garcia-Garcia; D. Boavida; A. Crujeira; I. Cabrita [DEECA-INETI, Lisbon (Portugal)

    2004-06-01

    The combustion of different fuels gives rise to the formation of small but appreciable amounts of volatile organic compounds (VOCs). They basically result from incomplete combustion and their emissions have negative repercussions on health and on the environment in general. As their measurement is difficult, costly, and very time-consuming, very little is reported on the emissions of VOCs from combustion installations. In this study, various blends of two different coals with several wastes were burned in a pilot-scale fluidized bed combustor and measurements of VOCs at several locations along the combustor height as well as just before the stack were carried out. The results demonstrate that the parameters important for the formation of VOCs are temperature, excess air levels, and the effectiveness of the mixing of air with fuel. Furthermore, it was observed that coal was the principal source of VOCs, but the combustion of volatiles from fuels such as biomass, occurring in the freeboard, was important in reducing the emissions of VOCs to almost zero. 8 refs., 6 figs., 6 tabs.

  1. Feasibility analysis of color removal from textile dyeing wastewater in a fixed-bed column system by surfactant-modified zeolite (SMZ)

    International Nuclear Information System (INIS)

    Ozdemir, Ozgur; Turan, Mustafa; Turan, Abdullah Zahid; Faki, Aysegul; Engin, Ahmet Baki

    2009-01-01

    In this study, the ability of surfactant-modified zeolite (SMZ) to remove color from real textile wastewater was investigated. Tests were performed in a fixed-bed column reactor and the surface of natural zeolite was modified with a quaternary amine surfactant hexadecyltrimethylammonium bromide (HTAB). The zeolite bed that was modified at 1 g L -1 HTAB concentration and HTAB flow rate of 0.015 L min -1 showed good performance in removing color. Effects of wastewater color intensity, flow rates and bed heights were also studied. Wastewater was diluted several times in the ratios of 25%, 50% and 75% in order to assess the influence of wastewater strength. The breakthrough curves of the original and diluted wastewaters are dispersed due to the fact that breakthrough came late at lower color intensities and saturation of the bed appeared faster at higher color intensities. The column had a 3-cm diameter and four different bed heights of 12.5, 25, 37.5 and 50 cm, which treated 5.25, 19.50, 35.25 and 51 L original textile wastewater, respectively, at the breakthrough time at a flow rate of 0.025 L min -1 . The theoretical service times evaluated from bed depth service time (BDST) approach for different column variables. The calculated and theoretical values of the exchange zone height were found with a difference of 27%. The various design parameters obtained from fixed-bed experimental studies showed good correlation with corresponding theoretical values, under different bed heights. The regeneration of the SMZ was also evaluated using a solution consisting of 30 g L -1 NaCl and 1.5 g L -1 NaOH at pH 12 and temperature 30 o C. Twice-regenerated SMZ showed the best performance compared with the others while first- and thrice-regenerated perform lower than the original SMZ.

  2. Co-firing of oil sludge with coal-water slurry in an industrial internal circulating fluidized bed boiler.

    Science.gov (United States)

    Liu, Jianguo; Jiang, Xiumin; Zhou, Lingsheng; Wang, Hui; Han, Xiangxin

    2009-08-15

    Incineration has been proven to be an alternative for disposal of sludge with its unique characteristics to minimize the volume and recover energy. In this paper, a new fluidized bed (FB) incineration system for treating oil sludge is presented. Co-firing of oil sludge with coal-water slurry (CWS) was investigated in the new incineration system to study combustion characteristics, gaseous pollutant emissions and ash management. The study results show the co-firing of oil sludge with CWS in FB has good operating characteristic. CWS as an auxiliary fuel can flexibly control the dense bed temperatures by adjusting its feeding rate. All emissions met the local environmental requirements. The CO emission was less than 1 ppm or essentially zero; the emissions of SO(2) and NO(x) were 120-220 and 120-160 mg/Nm(3), respectively. The heavy metal analyses of the bottom ash and the fly ash by ICP/AES show that the combustion ashes could be recycled as soil for farming.

  3. Seal evaluation and confinement screening criteria for beneficial carbon dioxide storage with enhanced coal bed methane recovery in the Pocahontas Basin, Virginia

    Science.gov (United States)

    Grimm, R.P.; Eriksson, K.A.; Ripepi, N.; Eble, C.; Greb, S.F.

    2012-01-01

    The geological storage of carbon dioxide in Appalachian basin coal seams is one possible sink for sequestration of greenhouse gases, with the added benefit of enhanced-coal bed methane (ECBM) recovery. The Pocahontas Basin (part of the central Appalachian Basin) of southwestern Virginia is a major coal bed methane (CBM) province with production mostly from coal beds in the Lower Pennsylvanian Pocahontas and New River formations. As part of the Southeast Regional Carbon Sequestration Partnership's Phase II research program, a CO 2-injection demonstration well was installed into Lower Pennsylvanian coal bed-methane producing strata in southwest Virginia. Samples of siliciclastic lithologies above coal beds in this Oakwood Field well, and from several other cores in the Nora Field were taken to establish a baseline of the basic confinement properties of overlying strata to test seal competency at local and regional scales.Strata above CBM-producing coal beds in the Pocahontas and New River formations consist of dark-gray shales; silty gray shales; heterolithic siltstones, sandstones, and shales; lithic sandstones, and quartzose sandstones. Standard measurements of porosity, permeability and petrography were used to evaluate potential leakage hazards and any possible secondary storage potential for typical lithologies. Both lithic- and quartz-rich sandstones exhibit only minor porosity, with generally low permeability (Member. Analyses of 1500 geophysical logs in southwest Virginia indicate that this unit is moderately thick (>50ft, 15m), laterally continuous (>3000km 2), and a homogenous shale, which coarsens upward into siltstone and sandstone, or is truncated by sandstone. Calculations from two mercury injection capillary porosimetry tests of the shale indicate that a displacement entry pressure of 207psi (1427kPa) would generate an estimated seal capacity of 1365ft (416m) of CO 2 before buoyant leakage. Scanning electron microscopy indicates a microfabric of narrow

  4. Use of moist run-of-mine coal for gasification

    Energy Technology Data Exchange (ETDEWEB)

    Sowka, K.; Duerlich, M.; Rabe, W. (VEB Gaskombinat Fritz Selbmann, Schwarze Pumpe (German Democratic Republic))

    1988-01-01

    A Series of experiments was performed in 1982 and 1986 to assess the feasibility of substituting brown coal briquets by raw brown coal in the fixed bed gasification plant for producing town gas at Schwarze Pumpe, GDR. Raw brown coal (50% coal moisture, screened coal of fractions 20 to 80 mm) had to be mixed with dry briquets to maintain a maximum 35% coal charge moisture. Briquet substitution degree varied from 20 to 50%. Short-term gasification tests were also carried out at an experimental generator examining 80 to 100% substitution degrees. Parameters of generator operation that were achieved are provided. Experiments proved that 50% briquet substitution is technologically feasible in industrial plant operation employing unscreened coal containing all coal fines. An economic assessment is further made that shows substantial energy savings in coal drying and briquetting.

  5. Pyrolysis and hydropyrolysis performance of Shendong and Pingshuo coal

    Energy Technology Data Exchange (ETDEWEB)

    Shiping Huang; Bo Wu; Yunpeng Zhao; Lijun Jin; Haoquan Hu [Dalian University of Technology, Dalian (China). Institute of Coal Chemical Engineering

    2007-07-01

    Pyrolysis and hydropyrolysis of Shendong (SD) and Pingshuo (PS) coal were performed from 500 to 700{sup o}C in a fixed-bed reactor and the product distribution and gas evolution of both processes were analyzed. The results show that, the tar yields of both PS coal and SD coal reach the highest value, about 17 wt% and 13 wt% respectively at temperature 650{sup o}C for pyrolysis. However, the tar yields of PS coal get to the highest value, about 20 wt% at temperature 650{sup o}C, and the tar yields of SD coal are improving with temperature increasing, about 12 wt% at temperature 700{sup o}C for hydropyrolysis. The tar yields of PS coal are higher than those of SD coal at the same conditions for both pyrolysis and hydropyrolysis. The total gas yield of PS coal is higher than that of SD coal for pyrolysis, but lower for hydropyrolysis.

  6. Use of black oil simulator for coal bed methane reservoir model

    Energy Technology Data Exchange (ETDEWEB)

    Sonwa, R.; Enachescu, C.; Rohs, S. [Golder Associates GmbH, Celle (Germany)

    2013-08-01

    This paper starts from the work done by Seidle et al. (1990) and other authors on the topic of coal degasification and develops a more accurate representative naturally fractured CBM-reservoir by using a Discrete Fracture Network modeling approach. For this issue we firstly calibrate the reservoir simulator tNAVIGATOR by showing his ability to reproduce the work done by Seidle et al. and secondly generate a DFN model using FracMan in accordance with the distribution and orientation of the cleats. tNavigator was then used to simulate multiphase flow through the DFN- Model. (orig.)

  7. Morphological study of biomass during the start-up period of a fixed-bed anaerobic reactor treating domestic sewage

    Directory of Open Access Journals (Sweden)

    Cláudio Antonio Andrade Lima

    2005-09-01

    Full Text Available This work focused on a morphological study of the microorganisms attached to polyurethane foam matrices in a horizontal-flow anaerobic immobilized biomass (HAIB reactor treating domestic sewage. The experiments consisted of monitoring the biomass colonization process of foam matrices in terms of the amount of retained biomass and the morphological characteristics of the cells attached to the support during the start-up period. Non-fluorescent rods and cocci were found to predominate in the process of attachment to the polyurethane foam surface. From the 10th week of operation onwards, an increase was observed in the morphological diversity, mainly due to rods, cocci, and Methanosaeta-like archaeal cells. Hydrodynamic problems, such as bed clogging and channeling occurred in the fixed-bed reactor, mainly due to the production of extracellular polymeric substances and their accumulation in the interstices of the bed causing a gradual deterioration of its performance, which eventually led to the system's collapse. These results demonstrated the importance and usefulness of monitoring the dynamics of the formation of biofilm during the start-up period of HAIB reactors, since it allowed the identification of operational problems.Este trabalho apresenta um estudo morfológico de microrganismos aderidos à espuma de poliuretano em reator anaeróbio horizontal de leito fixo (RAHLF, aplicado ao tratamento de esgoto sanitário. O processo de colonização do suporte pela biomassa anaeróbia e as características morfológicas das células aderidas foram monitorados durante o período de partida do reator. Bacilos e cocos não fluorescentes foram predominantes no processo de aderência direta à espuma de poliuretano. Aumento na diversidade biológica foi observado a partir da 10ª semana de operação do reator, com predominância de bacilos, cocos e arqueas metanogênicas semelhantes a Methanosaeta. Problemas hidrodinâmicos, tais como formação de

  8. Electrochemical treatment of water containing Microcystis aeruginosa in a fixed bed reactor with three-dimensional conductive diamond anodes.

    Science.gov (United States)

    Mascia, Michele; Monasterio, Sara; Vacca, Annalisa; Palmas, Simonetta

    2016-12-05

    An electrochemical treatment was investigated to remove Microcystis aeruginosa from water. A fixed bed reactor in flow was tested, which was equipped with electrodes constituted by stacks of grids electrically connected in parallel, with the electric field parallel to the fluid flow. Conductive diamond were used as anodes, platinised Ti as cathode. Electrolyses were performed in continuous and in batch recirculated mode with flow rates corresponding to Re from 10 to 160, current densities in the range 10-60Am(-2) and Cl(-) concentrations up to 600gm(-3). The absorbance of chlorophyll-a pigment and the concentration of products and by-products of electrolysis were measured. In continuous experiments without algae in the inlet stream, total oxidants concentrations as equivalent Cl2, of about 0.7gCl2m(-3) were measured; the maximum values were obtained at Re=10 and i=25Am(-2), with values strongly dependent on the concentration of Cl(-). The highest algae inactivation was obtained under the operative conditions of maximum generation of oxidants; in the presence of microalgae the oxidants concentrations were generally below the detection limit. Results indicated that most of the bulk oxidants electrogenerated is constituted by active chlorine. The prevailing mechanism of M. aeruginosa inactivation is the disinfection by bulk oxidants. The experimental data were quantitatively interpreted through a simple plug flow model, in which the axial dispersion accounts for the non-ideal flow behaviour of the system; the model was successfully used to simulate the performances of the reactor in the single-stack configuration used for the experiments and in multi-stack configurations. Copyright © 2016 Elsevier B.V. All rights reserved.

  9. Thin-film fixed-bed reactor for solar photocatalytic inactivation of Aeromonas hydrophila: influence of water quality

    Directory of Open Access Journals (Sweden)

    Khan Sadia J

    2012-11-01

    Full Text Available Abstract Background Controlling fish disease is one of the major concerns in contemporary aquaculture. The use of antibiotics or chemical disinfection cannot provide a healthy aquaculture system without residual effects. Water quality is also important in determining the success or failure of fish production. Several solar photocatalytic reactors have been used to treat drinking water or waste water without leaving chemical residues. This study has investigated the impact of several key aspects of water quality on the inactivation of the pathogenic bacterium Aeromonas hydrophila using a pilot-scale thin-film fixed-bed reactor (TFFBR system. Results The level of inactivation of Aeromonas hydrophila ATCC 35654 was determined using a TFFBR with a photocatalytic area of 0.47 m2 under the influence of various water quality variables (pH, conductivity, turbidity and colour under high solar irradiance conditions (980–1100 W m-2, at a flow rate of 4.8 L h-1 through the reactor. Bacterial enumeration were obtained through conventional plate count using trypticase soy agar media, cultured in conventional aerobic conditions to detect healthy cells and under ROS-neutralised conditions to detect both healthy and sub-lethally injured (oxygen-sensitive cells. The results showed that turbidity has a major influence on solar photocatalytic inactivation of A. hydrophila. Humic acids appear to decrease TiO2 effectiveness under full sunlight and reduce microbial inactivation. pH in the range 7–9 and salinity both have no major effect on the extent of photoinactivation or sub-lethal injury. Conclusions This study demonstrates the effectiveness of the TFFBR in the inactivation of Aeromonas hydrophila under the influence of several water quality variables at high solar irradiance, providing an opportunity for the application of solar photocatalysis in aquaculture systems, as long as turbidity remains low.

  10. Adiabatic Fixed-Bed Gasification of Colombian Coffee Husk Using Air-Steam Blends for Partial Oxidation

    Directory of Open Access Journals (Sweden)

    Javier Bonilla

    2017-01-01

    Full Text Available The increasing energy consumption, mostly supplied by fossil fuels, has motivated the research and development of alternative fuel technologies to decrease the humanity’s dependence on fossil fuels, which leads to pollution of natural sources. Small-scale biomass gasification, using air-steam blends for partial oxidation, is a good alternative since biomass is a neutral carbon feedstock for sustainable energy generation. This research presents results obtained from an experimental study on coffee husk (CH gasification, using air-steam blends for partial oxidation in a 10 kW fixed-bed gasifier. Parametric studies on equivalence ratio (ER (1.53 < ER < 6.11 and steam-fuel (SF ratio (0.23 < SF < 0.89 were carried out. The results show that increasing both SF and ER results in a syngas rich in CH4 and H2 but poor in CO. Also, decreased SF and ER decrease the peak temperature (Tpeak at the gasifier combustion zone. The syngas high heating value (HHV ranged from 3112 kJ/SATPm3 to 5085 kJ/SATPm3 and its maximum value was obtained at SF = 0.87 and ER = 4.09. The dry basis molar concentrations of the species, produced under those operating conditions (1.53 < ER < 6.11 and 0.23 < SF < 0.89, were between 1.12 and 4.1% for CH4, between 7.77 and 13.49% for CO, and between 7.54 and 19.07% for H2. Other species were in trace amount.

  11. Treatment of petroleum refinery wastewater containing heavily polluting substances in an aerobic submerged fixed-bed reactor.

    Science.gov (United States)

    Vendramel, S; Bassin, J P; Dezotti, M; Sant'Anna, G L

    2015-01-01

    Petroleum refineries produce large amount of wastewaters, which often contain a wide range of different compounds. Some of these constituents may be recalcitrant and therefore difficult to be treated biologically. This study evaluated the capability of an aerobic submerged fixed-bed reactor (ASFBR) containing a corrugated PVC support material for biofilm attachment to treat a complex and high-strength organic wastewater coming from a petroleum refinery. The reactor operation was divided into five experimental runs which lasted more than 250 days. During the reactor operation, the applied volumetric organic load was varied within the range of 0.5-2.4 kgCOD.m(-3).d(-1). Despite the inherent fluctuations on the characteristics of the complex wastewater and the slight decrease in the reactor performance when the influent organic load was increased, the ASFBR showed good stability and allowed to reach chemical oxygen demand, dissolved organic carbon and total suspended solids removals up to 91%, 90% and 92%, respectively. Appreciable ammonium removal was obtained (around 90%). Some challenging aspects of reactor operation such as biofilm quantification and important biofilm constituents (e.g. polysaccharides (PS) and proteins (PT)) were also addressed in this work. Average PS/volatile attached solids (VAS) and PT/VAS ratios were around 6% and 50%, respectively. The support material promoted biofilm attachment without appreciable loss of solids and allowed long-term operation without clogging. Microscopic observations of the microbial community revealed great diversity of higher organisms, such as protozoa and rotifers, suggesting that toxic compounds found in the wastewater were possibly removed in the biofilm.

  12. Biomass gasification in fixed bed type down draft: theoretical and experimental aspects; Gasificacao de biomassa em leito fixo tipo concorrente: aspectos teoricos e experimentais

    Energy Technology Data Exchange (ETDEWEB)

    Martinez, Juan Daniel; Andrade, Rubenildo Vieira; Lora, Electo Eduardo Silva [Universidade Federal de Itajuba (UNIFEI), MG (Brazil). Inst. de Engenharia Mecanica. Nucleo de Excelencia em Geracao Termeletrica e Distribuida

    2008-07-01

    Actually are recognizing the advantages of biomass in reducing dependence on fossil fuels and significant reduction in emissions of greenhouse effect gases such as Co2. Also are known the different conversion of biomass routes for their use or exploitation, such as thermochemical process (gasification, pyrolysis and combustion), the biological process (fermentation and transesterification) and the physical process (densification, reducing grain and mechanical pressing). In this sense, the gasification is regarded as the most promising mechanism to obtain a homogeneous gaseous fuel with sufficient quality in the small scale distributed generation. This work presents some aspects of biomass gasification in fixed bed, as well as some preliminary results in the evaluation and operation of fixed bed down draft gasifier with double stage air supply of the NEST, identifying the adequate air supply quantity (equivalence ratio in the range of 0,35 to 0,45) for obtaining a fuel gas with lower heating value around 4 MJ/N m3. (author)

  13. Dimensioning of aerated submerged fixed bed biofilm reactors based on a mathematical biofilm model applied to petrochemical wastewater - the link between theory and practice

    OpenAIRE

    Trojanowicz, Karol; Wójcik, Wtodzimierz

    2014-01-01

    The description of a biofilm mathematical model application for dimensioning an aerated fixed bed biofilm reactor (ASFBBR) for petrochemical wastewater polishing is presented. A simple one-dimensional model of biofilm, developed by P Harremöes, was chosen for this purpose. The model was calibrated and verified under conditions of oil-refinery effluent. The results of ASFBBR dimensioning on the basis of the biofilm model were compared with the bioreactor dimensions determined by application of...

  14. Single-stage anaerobic treatment of non-settled slaughterhouse waste water using a fixed-bed reactor. Einstufige anaerobe Behandlung von nicht abgesetztem Schlachthofabwasser in einem Festbettreaktor

    Energy Technology Data Exchange (ETDEWEB)

    Tritt, W.P. (Bundesforschungsanstalt fuer Landwirtschaft, Braunschweig (Germany). Inst. fuer Technologie); Meyer-Jacob, H.

    1992-01-01

    Along with the determination of the degree of acidification during an intermediate storage of the crude slaughterhouse wastewater and deriving a single-stage or two-stage process, the start-up behaviour of the fixed-bed reactor, its degradation rates in upflow and downflow operation is descirbed. With regard to a subsequent biological denitrification the COD/N ratio of anaerobically treated wastewater is given. (orig.).

  15. Experimental studies of the influence of fuel properties and operational conditions on stoking when combusting fuels in a fixed-bed reactor

    Energy Technology Data Exchange (ETDEWEB)

    Arias, Fabiana; Kolb, T.; Seifert, H.; Gehrmann, Hans-Joachim [Karlsruhe Institute of Technology (KIT), Karlsruhe (Germany). Inst. for Technical Chemistry (ITC)

    2013-09-01

    Besides from knowledge about pollutant emission, knowledge of the combustion behavior of fuels plays a major role in the operation and optimization of combustion plants for waste and biomass. If the fuel is exchanged partly or completely in existing or newly designed grate-type combustion plants, adaptation of technical parameters is usually based on purely empirical studies. In the KLEAA fixed-bed reactor of KIT, Institute for Technical Chemistry (ITC), quantitative data on the combustion behavior can be determined from experimental investigations on the laboratory scale. Based on the characteristics obtained, the combustion behavior on a continuous grate can be estimated, This estimation is based on the assumption that no back mixing of the fuel occurs on the grate. Depending on the type of grate, however, stoking and back mixing play an important role. To improve the quality of the characteristics determined in KLEAA and enhance their transferability to the continuous process, it is necessary to determine the influence of fuel properties and operation conditions on stoking. Work is aimed at further developing the characteristics model taking into account a stoking factor describing the combustion behavior of a non-stoked fixed bed compared to a stoked fixed bed. The main task is to make a systematic study of the major parameters influencing stoking (e.g. stroke length, stroke frequency, geometry of the stoking unit, and fuel properties) in a fixed-bed reactor. The results shall be presented in the form of a semi-empirical equation. It is recommended to first study a model fuel, whose fuel properties are defined exactly and can be adjusted variably. Then, a stoking factor shall be derived from the studies. Possibly, a dimension analysis may be helpful. Finally, the results obtained are to be verified for residue-derived fuel. (orig.)

  16. Axial Changes of Catalyst Structure and Temperature in a Fixed-Bed Microreactor During Noble Metal Catalysed Partial Oxidation of Methane

    DEFF Research Database (Denmark)

    Hannemann, S.; Grunwaldt, Jan-Dierk; Kimmerle, B.

    2009-01-01

    The catalytic partial oxidation of methane (CPO) over flame-made 2.5%Rh-2.5%Pt/Al2O3 and 2.5%Rh/Al2O3 in 6%CH4/3%O-2/He shows the potential of in situ studies using miniaturized fixed-bed reactors, the importance of spatially resolved studies and its combination with infrared thermography and on-...

  17. Particulate and PCDD/F emissions from coal co-firing with solid biofuels in a bubbling fluidised bed reactor

    Energy Technology Data Exchange (ETDEWEB)

    H. Lopes; I. Gulyurtlu; P. Abelha; T. Crujeira; D. Salema; M. Freire; R. Pereira; I. Cabrita [INETI, Lisbon (Portugal). DEECA

    2009-12-15

    In the scope of the COPOWER project SES6-CT-2004 to investigate potential synergies of co-combustion of different biofuels with coal, a study of emissions of particulate matter and PCDD/F was carried out. The biofuels tested were meat and bone meal (MBM), sewage sludge biopellets (BP), straw pellets (SP), olive bagasse (OB) and wood pellets (WP). The tests performed include co-firing of 5%, 15% and 25% by weight of biofuels with coals of different origin. Both monocombustion and co-firing were carried out. Combustion tests were performed on a pilot fluidised bed, equipped with cyclones and air staging was used in order to achieve almost complete combustion of fuels with high volatile contents and to control gaseous emissions. Particulate matter emissions were isokinetically sampled in the stack and their particle size analysis was performed with a cascade impactor (Mark III). The results showed that most particles emitted were below 10 {mu}m (PM10) for all the tests, however, with the increasing share of biofuels and also during combustion of pure biofuels, especially olive bagasse, straw and MBM, very fine particles, below about 1 {mu}m were present. With the exception of sewage sludge, greater amounts of biofuels appeared to give rise to the decrease in particulate mean diameters and increase in PM percentages below 1 {mu}m. The formation of very fine particles could be related with the presence of aerosol forming elements such as K, Na (in the case of MBM) and Cl in biofuels, which even resulted in higher PM emissions when the ash content of fuels decreased. A correlation wasverified between the increase of PCDD/F with the decrease of PM mean diameter. This may be due to higher specific surface area and greater Cu concentration in the fly ashes. 33 refs., 11 figs., 4 tabs.

  18. Process Optimization for Ethyl Ester Production in Fixed Bed Reactor Using Calcium Oxide Impregnated Palm Shell Activated Carbon (CaO/PSAC

    Directory of Open Access Journals (Sweden)

    A Buasri

    2012-11-01

    Full Text Available : The continuous production of ethyl ester was studied by using a steady-state fixed bed reactor (FBR. Transesterification of palm stearin (PS and waste cooking palm oil (WCPO with ethanol in the presence of calcium oxide impregnated palm shell activated carbon (CaO/PSAC solid catalyst was investigated. This work was determined the optimum conditions for the production of ethyl ester from PS and WCPO in order to obtain fatty acid ethyl ester (FAEE with the highest yield. The effects of reaction variables such as residence time, ethanol/oil molar ratio, reaction temperature, catalyst bed height and reusability of catalyst in a reactor system on the yield of biodiesel were considered. The optimum conditions were the residence time 2-3 h, ethanol/oil molar ratio 16-20, reaction temperature at 800C, and catalyst bed height 300 mm which yielded 89.46% and 83.32% of the PS and WCPO conversion, respectively. CaO/PSAC could be used repeatedly for 4 times without any activation treatment and no obvious activity loss was observed. It has potential for industrial application in the transesterification of triglyceride (TG. The fuel properties of biodiesel were determined. Keywords: biodiesel, calcium oxide, ethyl ester, fixed bed reactor, palm shell activated carbon

  19. Green Algae from Coal Bed Methane Ponds as a Source of Fertilizer for Economically Important Plants of Montana

    Science.gov (United States)

    Ogunsakin, O. R.; Apple, M. E.; Zhou, X.; Peyton, B.

    2016-12-01

    The Tongue River Basin of northeastern Wyoming and southeastern Montana is the location of natural gas reserves and coal bed methane (CBM) acreage. Although the water that emanates from CBM extraction varies with site, it is generally of higher quality than the waters produced by conventional oil and gas wells, in part because it is low in volatile organic compounds. However, since CBM water contains dissolved solids, including sodium (Na), bicarbonate (HCO3) and chloride (Cl) ions, the water must be treated before it can be discharged into the river or wetlands, or used for stock ponds or irrigation. Several ponds have been constructed to serve as a holding facility for CBM water. Algae from the CBM ponds of the Tongue River Basin have the potential to be utilized as fertilizer on economically important plants of Montana. Two very important crop plants of Montana are wheat, Triticum aestivum, and potatoes, Solanum tuberosum. To explore this potential, isolates of unicellular green algae (Chlorella sp.) from the CBM ponds were cultured in aerated vessels with Bold's Basic Growth Medium and natural and/or supplemental light. Algal biomass was condensed in and collected from a valved funnel, after which cell density was determined via light microscopy and a hemacytometer. Algal/water slurries with known nutrient contents were added to seedlings of hard winter wheat, T.aestivum, grown in a greenhouse for three months before harves. When compared to wheat provided with just water, or with water and a commercially available fertilizer, the wheat fertilized with algae had a higher chlorophyll content, more tillers (side shoots), and a higher ratio of influorescences (groups of flowers) per stem. In a related experiment, Ranger Russet seed potatoes, S. tuberosum were given just water, water and Hoagland's nutrient solution, or water with algae in order to compare aboveground growth and potato production among the treatments. The results of this study suggest that

  20. Modelling the transition between fixed and mobile bed conditions in two-phase free-surface flows: The Composite Riemann Problem and its numerical solution

    Science.gov (United States)

    Rosatti, Giorgio; Zugliani, Daniel

    2015-03-01

    In a two-phase free-surface flow, the transition from a mobile-bed condition to a fixed-bed one (and vice versa) occurs at a sharp interface across which the relevant system of partial differential equations changes abruptly. This leads to the possibility of conceiving a new type of Riemann Problem (RP), which we have called Composite Riemann Problem (CRP), where not only the initial constant values of the variables but also the system of equations change from left to right of a discontinuity. In this paper, we present a strategy for solving a CRP by reducing it to a standard RP of a single, composite system of equations. This can be obtained by combining the two original systems by means of a suitable weighting function, namely the erodibility variable, and the introduction of an appropriate differential equation for this quantity. In this way, the CRP problem can be analyzed theoretically with standard methods, and the features of the solutions can be clearly identified. In particular, a stationary contact wave is able to correctly describe the sharp transition between mobile- and fixed-bed conditions. A finite volume scheme based on the Multiple Averages Generalized Roe approach (Rosatti and Begnudelli (2013) [22]) was used to numerically solve the fixed-mobile CRP. Several test cases demonstrate the effectiveness, exact well balanceness and high accuracy of the scheme when applied to problems that fall within the physical range of applicability of the relevant mathematical model.

  1. Cow bones char as a green sorbent for fluorides removal from aqueous solutions: batch and fixed-bed studies.

    Science.gov (United States)

    Nigri, Elbert M; Cechinel, Maria Alice P; Mayer, Diego A; Mazur, Luciana P; Loureiro, José M; Rocha, Sônia D F; Vilar, Vítor J P

    2017-01-01

    Cow bone char was investigated as sorbent for the defluoridation of aqueous solutions. The cow bone char was characterized in terms of its morphology, chemical composition, and functional groups present on the bone char surface using different analytical techniques: SEM, EDS, N 2 -BET method, and FTIR. Batch equilibrium studies were performed for the bone chars prepared using different procedures. The highest sorption capacities for fluoride were obtained for the acid washed (q = 6.2 ± 0.5 mg/g) and Al-doped (q = 6.4 ± 0.3 mg/g) bone chars. Langmuir and Freundlich models fitted well the equilibrium sorption data. Fluoride removal rate in batch system is fast in the first 5 h, decreasing after this time until achieving equilibrium due to pore diffusion. The presence of carbonate and bicarbonate ions in the aqueous solution contributes to a decrease of the fluoride sorption capacity of the bone char by 79 and 31 %, respectively. Regeneration of the F-loaded bone char using 0.5 M NaOH solution leads to a sorption capacity for fluoride of 3.1 mg/g in the second loading cycle. Fluoride breakthrough curve obtained in a fixed-bed column presents an asymmetrical S-shaped form, with a slow approach of C/C 0  → 1.0 due to pore diffusion phenomena. Considering the guideline value for drinking water of 1.5 mg F - /L, as recommended by World Health Organization, the service cycle for fluoride removal was of 71.0 h ([F - ] feed  ∼ 9 mg/L; flow rate = 1 mL/min; m sorbent  = 12.6 g). A mass transfer model considering the pore diffusion was able to satisfactorily describe the experimental data obtained in batch and continuous systems.

  2. Thin-film fixed-bed reactor (TFFBR for solar photocatalytic inactivation of aquaculture pathogen Aeromonas hydrophila

    Directory of Open Access Journals (Sweden)

    Khan Sadia J

    2012-01-01

    Full Text Available Abstract Background Outbreaks of infectious diseases by microbial pathogens can cause substantial losses of stock in aquaculture systems. There are several ways to eliminate these pathogens including the use of antibiotics, biocides and conventional disinfectants, but these leave undesirable chemical residues. Conversely, using sunlight for disinfection has the advantage of leaving no chemical residue and is particularly suited to countries with sunny climates. Titanium dioxide (TiO2 is a photocatalyst that increases the effectiveness of solar disinfection. In recent years, several different types of solar photocatalytic reactors coated with TiO2 have been developed for waste water and drinking water treatment. In this study a thin-film fixed-bed reactor (TFFBR, designed as a sloping flat plate reactor coated with P25 DEGUSSA TiO2, was used. Results The level of inactivation of the aquaculture pathogen Aeromonas hydrophila ATCC 35654 was determined after travelling across the TFFBR under various natural sunlight conditions (300-1200 W m-2, at 3 different flow rates (4.8, 8.4 and 16.8 L h-1. Bacterial numbers were determined by conventional plate counting using selective agar media, cultured (i under conventional aerobic conditions to detect healthy cells and (ii under conditions designed to neutralise reactive oxygen species (agar medium supplemented with the peroxide scavenger sodium pyruvate at 0.05% w/v, incubated under anaerobic conditions, to detect both healthy and sub-lethally injured (oxygen-sensitive cells. The results clearly demonstrate that high sunlight intensities (≥ 600 W m-2 and low flow rates (4.8 L h-1 provided optimum conditions for inactivation of A. hydrophila ATCC 3564, with greater overall inactivation and fewer sub-lethally injured cells than at low sunlight intensities or high flow rates. Low sunlight intensities resulted in reduced overall inactivation and greater sub-lethal injury at all flow rates. Conclusions This

  3. A comparison of circulating fluidised bed combustion and gasification power plant technologies for processing mixtures of coal, biomass and plastic waste

    International Nuclear Information System (INIS)

    McIlveen-Wright, D.R.; Huang, Y.; McMullan, J.T.; Pinto, F.; Franco, C.; Gulyurtlu, I.; Armesto, L.; Cabanillas, A.; Caballero, M.A.; Aznar, M.P.

    2006-01-01

    Environmental regulations concerning emission limitations from the use of fossil fuels in large combustion plants have stimulated interest in biomass for electricity generation. The main objective of the present study was to examine the technical and economic viability of using combustion and gasification of coal mixed with biomass and plastic wastes, with the aim of developing an environmentally acceptable process to decrease their amounts in the waste stream through energy recovery. Mixtures of a high ash coal with biomass and/or plastic using fluidised bed technologies (combustion and gasification) were considered. Experiments were carried out in laboratory and pilot plant fluidised bed systems on the combustion and air/catalyst and air/steam gasification of these feedstocks and the data obtained were used in the techno-economic analyses. The experimental results were used in simulations of medium to large-scale circulating fluidised bed (CFB) power generation plants. Techno-economic analysis of the modelled CFB combustion systems showed efficiencies of around 40.5% (and around 46.5% for the modelled CFB gasification systems) when fuelled solely by coal, which were only minimally affected by co-firing with up to 20% biomass and/or wastes. Specific investments were found to be around $2150/kWe to $2400/kWe ($1350/kWe to $1450/kWe) and break-even electricity selling prices to be around $68/MWh to $78/MWh ($49/MWh to $54/MWh). Their emissions were found to be within the emission limit values of the large combustion plant directive. Fluidised bed technologies were found to be very suitable for co-firing coal and biomass and/or plastic waste and to offer good options for the replacement of obsolete or polluting power plants. (author)

  4. Coal gasification by indirect heating in a single moving bed reactor: Process development & simulation

    Directory of Open Access Journals (Sweden)

    Junaid Akhlas

    2015-10-01

    Full Text Available In this work, the development and simulation of a new coal gasification process with indirect heat supply is performed. In this way, the need of pure oxygen production as in a conventional gasification process is avoided. The feasibility and energetic self-sufficiency of the proposed processes are addressed. To avoid the need of Air Separation Unit, the heat required by gasification reactions is supplied by the combustion flue gases, and transferred to the reacting mixture through a bayonet heat exchanger installed inside the gasifier. Two alternatives for the flue gas generation have been investigated and compared. The proposed processes are modeled using chemical kinetics validated on experimental gasification data by means of a standard process simulator (Aspen PlusTM, integrated with a spreadsheet for the modeling of a special type of heat exchanger. Simulation results are presented and discussed for proposed integrated process schemes. It is shown that they do not need external energy supply and ensure overall efficiencies comparable to conventional processes while producing syngas with lower content of carbon dioxide.

  5. Nitrogen evolution during the co-combustion of hydrothermally treated municipal solid waste and coal in a bubbling fluidized bed.

    Science.gov (United States)

    Lu, Liang; Jin, Yuqi; Liu, Hongmei; Ma, Xiaojun; Yoshikawa, Kunio

    2014-01-01

    Nitrogen evolution was studied during the co-combustion of hydrothermally treated municipal solid wastes (HT MSW) and coal in a bubbling fluidized bed (BFB). HT MSW blending ratios as 10%, 20% and 30% (wt.%) were selected and tested at 700, 800, 900 °C. Emissions of NO and N2O from blends were measured and compared with the results of mono-combustion trials. Moreover, concentrations of precursors like NH3 and HCN were also quantified. The results are summarized as follows: NO emissions were predominant in all the cases, which rose with increasing temperature. The blending of HT MSW contributed to the NO reduction. N2O emissions decreased with temperature rising and the blending of HT MSW also presented positive effects. At 30% HT MSW addition, both NO and N2O emissions showed the lowest values (391.85 ppm and 55.33 ppm, respectively at 900 °C). For the precursors, more HCN was detected than NH3 and both played important roles on the gas side nitrogen evolution. Copyright © 2013. Published by Elsevier Ltd.

  6. The relative contribution of methanotrophs to microbial communities and carbon cycling in soil overlying a coal-bed methane seep

    Science.gov (United States)

    Mills, Christopher T.; Slater, Gregory F.; Dias, Robert F.; Carr, Stephanie A.; Reddy, Christopher M.; Schmidt, Raleigh; Mandernack, Kevin W.

    2013-01-01

    Seepage of coal-bed methane (CBM) through soils is a potential source of atmospheric CH4 and also a likely source of ancient (i.e. 14C-dead) carbon to soil microbial communities. Natural abundance 13C and 14C compositions of bacterial membrane phospholipid fatty acids (PLFAs) and soil gas CO2 and CH4 were used to assess the incorporation of CBM-derived carbon into methanotrophs and other members of the soil microbial community. Concentrations of type I and type II methanotroph PLFA biomarkers (16:1ω8c and 18:1ω8c, respectively) were elevated in CBM-impacted soils compared with a control site. Comparison of PLFA and 16s rDNA data suggested type I and II methanotroph populations were well estimated and overestimated by their PLFA biomarkers, respectively. The δ13C values of PLFAs common in type I and II methanotrophs were as negative as −67‰ and consistent with the assimilation of CBM. PLFAs more indicative of nonmethanotrophic bacteria had δ13C values that were intermediate indicating assimilation of both plant- and CBM-derived carbon. Δ14C values of select PLFAs (−351 to −936‰) indicated similar patterns of CBM assimilation by methanotrophs and nonmethanotrophs and were used to estimate that 35–91% of carbon assimilated by nonmethanotrophs was derived from CBM depending on time of sampling and soil depth.

  7. Thermodynamic Analysis on of Skid-Mounted Coal-bed Methane Liquefaction Device using Cryogenic Turbo-Expander

    Science.gov (United States)

    Chen, Shuangtao; Niu, Lu; Zeng, Qiang; Li, Xiaojiang; Lou, Fang; Chen, Liang; Hou, Yu

    2017-12-01

    Coal-bed methane (CBM) reserves are rich in Sinkiang of China, and liquefaction is a critical step for the CBM exploration and utilization. Different from other CBM gas fields in China, CBM distribution in Sinkiang is widespread but scattered, and the pressure, flow-rate and nitrogen content of CBM feed vary significantly. The skid-mounted liquefaction device is suggested as an efficient and economical way to recover methane. Turbo-expander is one of the most important parts which generates the cooling capacity for the cryogenic liquefaction system. Using turbo-expander, more cooling capacity and higher liquefied fraction can be achieved. In this study, skid-mounted CBM liquefaction processes based on Claude cycle are established. Cryogenic turbo-expander with high expansion ratio is employed to improve the efficiency of CBM liquefaction process. The unit power consumption per liquefaction mole flow-rate for CBM feed gas is used as the object function for process optimization, compressor discharge pressure, flow ratio of feed gas to turbo-expander and nitrogen friction are analyzed, and optimum operation range of the liquefaction processes are obtained.

  8. Survey of radionuclide emissions from coal-fired power plants and examination of impacts from a proposed circulating fluidized bed boiler power plant

    International Nuclear Information System (INIS)

    Steiner, C.P.; Militana, L.M.; Harvey, K.A.; Kinsey, G.D.

    1995-01-01

    This paper presents the results of a literature survey that examined radionuclide emissions from coal-fired power plants. Literature references from both the US and foreign countries are presented. Emphasis is placed on references from the US because the radionuclide emissions from coal-fired power plants are related to radionuclide concentrations in the coal, which vary widely throughout the world. The radionuclides were identified and quantified for various existing power plants reported in the literature. Applicable radionuclide emissions criteria discovered in the literature search were then applied to a proposed circulating fluidized bed boiler power plant. Based upon the derived radionuclide emission rates applied to the proposed power plant, an air quality modeling analysis was performed. The estimated ambient concentrations were compared to the most relevant existing regulatory ambient levels for radionuclides

  9. Utilization of coal ash from fluidized-bed combustion boilers as road base material; Sekitandaki ryudoso boiler kara no sekitanbai no robanzai to shite no riyo

    Energy Technology Data Exchange (ETDEWEB)

    Shibata, Y. [Kawasaki Heavy Industries, Ltd., Kobe (Japan); Kozasa, K. [Center for Coal Utilization, Japan, Tokyo (Japan); Tsuzura, K. [Naruto Salt Mfg. Co. Ltd., Tokushima (Japan); Izumi, H. [Nippon Hodo Co. Ltd., Tokyo (Japan)

    1998-03-01

    Coal ash from the fluidized bed boiler is evaluated for its properties as is, as solidified or granulated, and as the roadbed material. The coal ash tested in the experiment is a mixture of ash from the fluidized bed boiler bottom, ash from the cyclone separator, and ash from the bag filter. In the manufacture of solid or granulated bodies, coal ashes are kneaded in water whose amount puts the mixture near the plasticization limit, are pressed in a low-pressure press and made into solid bodies by a 15-hour curing in 60degC saturated steam, and the solid bodies are crushed into solid granules. A content release test is conducted about the release of dangerous substances, and road paving experiments are conducted to learn the workability and serviceability of the granulated material as a road paving material. A study of the experimental results discloses what is mentioned below. Coal ash containing 10-20vol% of CaO and 15vol% or less of unburnt carbon turns into a high-strength solid after curing in saturated steam whose temperature is not higher than 60degC. The granulated solid satisfies the standards that an upper subbase material is expected to satisfy. It also meets the environmental standards in a release content test for soil set forth by Environment Agency notification No.46. 8 refs., 8 figs., 4 tabs.

  10. Leaching behavior of harmful components from cement solidities of fluidized-bed coal ash

    Energy Technology Data Exchange (ETDEWEB)

    Baba, T.; Fukuoka, H.; Shigemoto, N. [Fuji Clean Co., Kagawa (Japan)

    2008-07-15

    Solidifies of fluidized-bed fly ash with slag cement were prepared by hydrothermal treatment after adding gypsum, Na3PO{sub 4}, or Al2(SO{sub 4}){sub 3}. XRD analysis of the solidifies was performed and leaching behavior of Pb and F from the solidities was investigated. The fly ash-cement and fly ash-cement-gypsum solidifies showed rather high leaching concentration of F and Pb. The F leaching was explained by solubility products of a Ca(OH){sub 2} CaF2 system. The Pb leaching concentrations roughly agreed with the theoretical curve for hydroxo complexes of Pb, showing a strong dependence on pH. Addition of Na3PO{sub 4} and Al2(SO{sub 4}){sub 3}, to cement solidities gave katoite and aluminium phosphate, and ettringite, respectively, and these solidities showed lower leaching concentrations of F and Pb than the fly ash-cement and fly ash-cement-gypsum solidifies. Capture of F and Pb in crystalline components such as ettringite probably accounts for such leaching suppression.

  11. Synthesis and characterization of organic–inorganic core–shell structure nanocomposite and application for Zn ions removal from aqueous solution in a fixed-bed column

    Energy Technology Data Exchange (ETDEWEB)

    Ghasemi, Shokoofeh [Faculty of Chemical, Gas and Petroleum Engineering, Semnan University, Semnan 35131-19111 (Iran, Islamic Republic of); Ghorbani, Mohsen, E-mail: M.ghorbani@nit.ac.ir [Faculty of Chemical Engineering, Babol University of Technology, P.O. Box 484, Babol (Iran, Islamic Republic of); Ghazi, Mohsen Mehdipour [Faculty of Chemical, Gas and Petroleum Engineering, Semnan University, Semnan 35131-19111 (Iran, Islamic Republic of)

    2015-12-30

    Graphical abstract: - Highlights: • The γ-Fe{sub 2}O{sub 3} nanoparticles were prepared in one step using ultrasonic radiation and coated by polyrhodanine. • Nanocomposite synthesized with core average diameter of 15 nm and polyrhodanine as shell with thickness of 1.5 nm • Application of products was investigated to separate zinc ions from aqueous solution in a fixed-bed column. • The Adams–Bohart, BDST, Thomas and Yoon–Nelson models used to predict model parameters. • The models were nearly in good agreement with the experimental data. - Abstract: An organic–inorganic core/shell structure, γ-Fe{sub 2}O{sub 3}/polyrhodanine nanocomposite with γ-Fe{sub 2}O{sub 3} nanoparticle as core with average diameter of 15 nm and polyrhodanine as shell with thickness of 1.5 nm, has been synthesized via chemical oxidation polymerization and applied for adsorption of Zn ions from aqueous solution in a fixed-bed column. The properties of nanocomposite were characterized with transmission electron microscope (TEM), Fourier transform infrared (FT-IR) spectroscopy and vibrating sample magnetometer (VSM). The performance of the column was assessed under variable bed heights (10, 15 and 20 cm) and influent Zn concentrations (50, 100 and 150 ppm) at a constant flow rate (0.5 mL/min). The results demonstrated that the breakthrough curves are S-shaped and the breakthrough time increases with increasing bed height and decreases with increasing influent concentration. Moreover, the dynamics of the adsorption process were evaluated by using Adams–Bohart, bed depth service time (BDST), Thomas and Yoon–Nelson kinetic models. The models were nearly in good agreement with the experimental data.

  12. Phyto-bioconversion of hard coal in the Cynodon dactylon/coal rhizosphere.

    Science.gov (United States)

    Igbinigie, Eric E; Mutambanengwe, Cecil C Z; Rose, Peter D

    2010-03-01

    Fundamental processes involved in the microbial degradation of coal and its derivatives have been well documented. A mutualistic interaction between plant roots and certain microorganisms to aid growth of plants such as Cynodon dactylon (Bermuda grass) on hard coal dumps has recently been suggested. In the present study coal bioconversion activity of nonmycorrhizal fungi was investigated in the C. dactylon/coal rhizosphere. Fungal growth on 2% Duff-agar, gutation formation on nitric acid treated coal and submerged culture activity in nitrogen-rich and -deficient broth formed part of the screening and selection of the fungi. The selected fungal isolates were confirmed to be found in pristine C. dactylon/coal rhizosphere. To simulate bioconversion, a fungal aliquot of this rhizosphere was used as inoculum for a Perfusate fixed bed bioreactor, packed with coal. The results demonstrate an enhanced coal bioconversion facilitated by low molecular weight organics and the bioconversion of coal may be initiated by an introduction of nitrogen moieties to the coal substrate. These findings suggest a phyto-bioconversion of hard coal involving plant and microbes occurring in the rhizosphere to promote the growth of C. dactylon. An understanding of this relationship can serve as a benchmark for coal dumps rehabilitation as well as for the industrial scale bioprocessing of hard coal.

  13. Measurement and modeling of advanced coal conversion processes. Annual report, October 1990--September 1991

    Energy Technology Data Exchange (ETDEWEB)

    Solomon, P.R.; Serio, M.A.; Hamblen, D.G.; Smoot, L.D.; Brewster, B.S. [Advanced Fuel Research, Inc., East Hartford, CT (United States)]|[Brigham Young Univ., Provo, UT (United States)

    1991-12-31

    The overall objective of this program is the development of predictive capability for the design, scale up, simulation, control and feedstock evaluation in advanced coal conversion devices. This program will merge significant advances made in measuring and quantitatively describing the mechanisms in coal conversion behavior. Comprehensive computer codes for mechanistic modeling of entrained-bed gasification. Additional capabilities in predicting pollutant formation will be implemented and the technology will be expanded to fixed-bed reactors.

  14. Report on the results of the R and D of a 200 t/d entrained bed coal gasification pilot plant. Summary - Part 2. Volume 3: Results of the study operation and the evaluation; 1986- 200t/nichi funryusho sekitan gaska hatsuden pilot plant no kenkyu seika hokokusho (Matome). Sono 2. Dai 3 hen kenkyu unten seika to sono hyoka

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-01-01

    A project was finished which had been carried out for 11 years since 1986 for technology of the entrained bed coal gasification power generation technology using a 200 t/d coal gasification combined cycle power generation pilot plant, and it was comprehensively summed up. In Volume 3: Results of the study operation and the evaluation, the following were summarized on gasifier: gasification performance of 200 t/d furnace, operation ability of the bituminous coal supply system, stability of char recovery, deposition of slag and char in furnace, discharge characteristics of molten slag, operation characteristics, etc. The following on gas refining facilities: dry desulfurizer, dust remover, new gas refining equipment (fixed bed dust removal/desulfurization system, packed bed desulfuriztion/dust removal system), etc. The following on gas turbine facilities: 12.5 MW gas turbine, large gas turbine, large gas turbine combustor, etc. Additionally, the paper summarized the control system and total function, operation characteristics of the whole pilot plant, relations of environmental preservation, study of the effective slag utilization, collection/study of unfavorable conditions/troubles and matters for the reflection, etc. (NEDO)

  15. 3D numerical model of the spherical particle saltation in a channel with a rough fixed bed

    Czech Academy of Sciences Publication Activity Database

    Lukerchenko, Nikolay; Piatsevich, Siarhei; Chára, Zdeněk; Vlasák, Pavel

    2009-01-01

    Roč. 57, č. 2 (2009), s. 100-112 ISSN 0042-790X R&D Projects: GA ČR GA103/06/1487 Institutional research plan: CEZ:AV0Z20600510 Keywords : 3D Saltation Model * Bed-Load Transport * Particle-Bed Collision * Particle Rotation * Particle Lateral Dispersion Subject RIV: BK - Fluid Dynamics Impact factor: 1.000, year: 2009

  16. An overview of CFD modelling of small-scale fixed-bed biomass pellet boilers with preliminary results from a simplified approach

    International Nuclear Information System (INIS)

    Chaney, Joel; Liu Hao; Li Jinxing

    2012-01-01

    Highlights: ► Overview of the overall approach of modelling fixed-bed biomass boilers in CFD. ► Bed sub-models of moisture evaporation, devolatisation and char combustion reviewed. ► A method of embedding a combustion model in discrete fuel zones within the CFD is suggested. ► Includes sample of preliminary results for a 50 kW pellet boiler. ► Clear physical trends predicted. - Abstract: The increasing global energy demand and mounting pressures for CO 2 mitigation call for increased efficient utilization of biomass, particularly for heating domestic and commercial buildings. The authors of the present paper are investigating the optimization of the combustion performance and NO x emissions of a 50 kW biomass pellet boiler fabricated by a UK manufacturer. The boiler has a number of adjustable parameters including the ratio of air flow split between the primary and secondary supplies, the orientation, height, direction and number of the secondary inlets. The optimization of these parameters provides opportunities to improve both the combustion efficiency and NO x emissions. When used carefully in conjunction with experiments, Computational Fluid Dynamics (CFD) modelling is a useful tool for rapidly and at minimum cost examining the combustion performance and emissions from a boiler with multiple variable parameters. However, modelling combustion and emissions of a small-scale biomass pellet boiler is not trivial and appropriate fixed-bed models that can be coupled with the CFD code are required. This paper reviews previous approaches specifically relevant to simulating fixed-bed biomass boilers. In the first part it considers approaches to modelling the heterogeneous solid phase and coupling this with the gas phase. The essential components of the sub-models are then overviewed. Importantly, for the optimization process a model is required that has a good balance between accuracy in predicting physical trends, with low computational run time. Finally, a

  17. BATCH AND FIXED BED ADSORPTION STUDIES OF LEAD (II CATIONS FROM AQUEOUS SOLUTIONS ONTO GRANULAR ACTIVATED CARBON DERIVED FROM MANGOSTANA GARCINIA SHELL

    Directory of Open Access Journals (Sweden)

    Zaira Zaman Chowdhury,

    2012-05-01

    Full Text Available The feasibility of granular activated carbon (GAC derived from Mangostene (Mangostana garcinia fruit shell to remove lead, Pb2+ cations was investigated in batch and fixed bed sorption systems. Batch experiments were carried out to study equilibrium isotherms, kinetics, and thermodynamics by using an initial lead (Pb2+ ions concentration of 50 to 100 mg/L at pH 5.5. Equilibrium data were fitted using Langmuir, Freundlich, and Temkin linear equation models at temperatures 30°C, 50°C, and 70°C. Langmuir maximum monolayer sorption capacity was 25.00 mg/g at 30°C. The experimental data were best represented by pseudo-second-order and Elovich models. The sorption process was found to be feasible, endothermic, and spontaneous. In column experiments, the effects of initial cation concentration (50 mg/L, 70 mg/L, and 100 mg/L, bed height (4.5 cm and 3 cm, and flow rate (1 mL/min and 3 mL/min on the breakthrough characteristics were evaluated. Breakthrough curves were further analyzed by using Thomas and Yoon Nelson models to study column dynamics. The column was regenerated and reused consecutively for four cycles. The result demonstrated that the prepared activated carbon was suitable for removal of Pb2+ from synthetic aqueous solution using batch, as well as fixed bed sorption systems.

  18. Batch and fixed bed adsorption of levofloxacin on granular activated carbon from date (Phoenix dactylifera L.) stones by KOH chemical activation.

    Science.gov (United States)

    Darweesh, Teeba M; Ahmed, Muthanna J

    2017-03-01

    Granular activated carbon (KAC) was prepared from abundant Phoenix dactylifera L. stones by microwave- assisted KOH activation. The characteristics of KAC were tested by pore analyses, scanning electron microscopy (SEM) and Fourier transforms infrared spectroscopy (FTIR). The adsorption behavior of levofloxacin (LEV) antibiotic on KAC with surface area of 817m 2 /g and pore volume of 0.638cm 3 /g were analyzed using batch and fixed bed systems. The equilibrium data collected by batch experiments were well fitted with Langmuir compared to Freundlich and Temkin isotherms. The effect of flow rate (0.5-1.5ml/min), bed height (15-25cm), and initial LEV concentration (75-225mg/l) on the behavior of breakthrough curves was explained. The fixed bed analysis showed the better correlation of breakthrough data by both Thomas and Yoon-Nelson models. High LEV adsorption capacity of 100.3mg/g was reported on KAC, thus being an efficient adsorbent for antibiotic pollutants to protect ecological systems. Copyright © 2017 Elsevier B.V. All rights reserved.

  19. Coal at the crossroads

    International Nuclear Information System (INIS)

    Scaroni, A.W.; Davis, A.; Schobert, H.; Gordon, R.L.; Ramani, R.V.; Frantz, R.L.

    1992-01-01

    Worldwide coal reserves are very large but coal suffers from an image of being an environmentally unfriendly and inconvenient fuel. Aspects discussed in the article include: coal's poor image; techniques for coal analysis, in particular instrumented techniques; developments in clean coal technology e.g. coal liquefaction, fluidized bed combustion, co-generation and fuel slurries; the environmental impact of mining and land reclamation; and health aspects. It is considered that coal's future depends on overcoming its poor image. 6 photos

  20. The emissions of SO{sub 2}, NO{sub x} and N{sub 2}O during the combustion of coal blends in a fluidized bed reactor

    Energy Technology Data Exchange (ETDEWEB)

    Abelha, P.; Boavida, D.; Gulyurtlu, I.; Cabrita, I.

    1999-07-01

    Combustion studies of five coals of different origins around the world (Colombia, Spain, South Africa and the US), were carried out in a laboratory scale fluidized bed combustor. Five blends prepared by mixing two coals, in three varying amounts, based on their petrological characterization, were selected to study the possibility of reduction NO{sub x}, N{sub 2}O and SO{sub 2} emissions. Temperature, fuel ratio and N/C ratio were found to be the most important parameters affecting NO{sub x} and N{sub 2}O emissions among the single coals, while fuel-S content was the major factor in SO{sub 2} emissions. The results showed that some blends had the opposite behavior concerning the release of NO{sub x} and SO{sub 2} in relation to parent coals, and the emissions were higher than expected. The N{sub 2}O amounts observed were however, in almost all blends tested, lower than predicted values. With some blends, the mixing levels intended to reduce SO{sub 2} were not always found to correspond to those for simultaneous decrease of NO{sub x}, raising difficulties in the optimization of both emission levels. Most of the blends studied showed some evidence of interaction between the individual constituent coals. Varying the proportion of the blend components was observed to alter the temperatures at which interactions were stronger.

  1. Fixed-bed column studies of total organic carbon removal from industrial wastewater by use of diatomite decorated with polyethylenimine-functionalized pyroxene nanoparticles.

    Science.gov (United States)

    Hethnawi, Afif; Manasrah, Abdallah D; Vitale, Gerardo; Nassar, Nashaat N

    2018-03-01

    In this study, a fixed-bed column adsorption process was employed to remove organic pollutants from a real industrial wastewater effluent using polyethylenimine-functionalized pyroxene nanoparticles (PEI-PY) embedded into Diatomite at very low mass percentage. Various dynamic parameters (e.g., inlet concentration, inlet flow rate, bed height, and PEI-nanoparticle concentration in Diatomite, (%nps)) were investigated to determine the breakthrough behavior. The obtained breakthrough curves were fit with a convection-dispersion model to determine the characteristic parameters based on mass transfer phenomena. The axial dispersion coefficient (D L ) and group of dimensionless numbers; including Renold number (Re), Schmidt number (Sc), and Sherwood number (Sh) were all determined and correlated by Wilson-Geankoplis correlation that was used to estimate the external film diffusion coefficients (Kc) at 0.0015 < Re<55. Copyright © 2017 Elsevier Inc. All rights reserved.

  2. Effect of process parameters on removal and recovery of Cd(II) and Cu(II) from electroplating wastewater by fixed-bed column of nano-dimensional titanium (IV) oxide agglomerates

    CSIR Research Space (South Africa)

    Debnath, S

    2014-01-01

    Full Text Available Removal performances of Cd(II) and Cu(II) from water was investigated using agglomerated nanoparticle of hydrous titanium(IV) oxide (NTO) packed fixed bed. The parameters varied were the bed depth, flow rate and feed solution concentrations...

  3. Dips, ramps, and rolls- Evidence for paleotopographic and syn-depositional fault control on the Western Kentucky No. 4 coal bed, tradewater formation (Bolsovian) Illinois Basin

    Science.gov (United States)

    Greb, S.F.; Eble, C.F.; Williams, D.A.; Nelson, W.J.

    2001-01-01

    The Western Kentucky No. 4 coal is a high-volatile B to high-volatile C bituminous coal that has been heavily mined along the southern margin of the Western Kentucky Coal Field. The seam has a reputation for rolling floor elevation. Elongate trends of floor depressions are referred to as "dips" and "rolls" by miners. Some are relatively narrow and straight to slightly curvilinear in plan view, with generally symmetric to slightly asymmetric cross-sections. Others are broader and asymmetric in section, with sharp dips on one limb and gradual, ramp-like dips on the other. Some limbs change laterally from gradual dip, to sharp dip, to offset of the coal. Lateral changes in the rate of floor elevation dip are often associated with changes in coal thickness, and in underground mines, changes in floor elevation are sometimes associated with roof falls and haulage problems. In order to test if coal thickness changes within floor depressions were associated with changes in palynology, petrography and coal quality, the coal was sampled at a surface mine across a broad. ramp-like depression that showed down-dip coal thickening. Increment samples of coal from a thick (150 cm), down-ramp and thinner (127 cm), up-ramp position at one surface mine correlate well between sample sites (a distance of 60 m) except for a single increment. The anomalous increment (31 cm) in the lower-middle part of the thick coal bed contained 20% more Lycospora orbicula spores. The rolling floor elevations noted in the study mines are inferred to have been formed as a result of pre-peat paleotopographic depressions, syn-depositional faulting, fault-controlled pre-peat paleotopography, and from compaction beneath post-depositional channels and slumps. Although the association of thick coal with linear trends and inferred faults has been used in other basins to infer syn-depositional faulting, changes in palynology within increment samples of the seam along a structural ramp in this study provide

  4. Discussion of the applicability of overdammed fixed-bed reactors in nitrification processes; Beitrag zum Einsatz von ueberstauten Festbettreaktoren zur Nitrifikation

    Energy Technology Data Exchange (ETDEWEB)

    Guenter, H.O.

    1996-12-31

    The investigation aimed at developing a dimensioning method for overdammed fixed bed nitrification reactors with plug flow which takes account of the reactor height. Further, information was to be obtained for assessing sudden loads and for comparing energy consumption with the data of conventional activated sludge plants. (orig./SR) [Deutsch] Ziel dieser Arbeit ist es, fuer ueberstaute, pfropfendurchstroemte Festbettreaktoren zur Nitrifikation einen Bemessungsansatz aufzustellen, welcher den Einfluss der Reaktorhoehe mit beruecksichtigt. Ferner sollten Erkenntnisse zur Beurteilung von Stossbelastungen sowie zum Energiebedarf im Vergleich zu herkoemmlichen Belebungsanlagen gewonnen werden. (orig./SR)

  5. Propene and l-octene hydroformylation with silica-supported, ionic liquid-phase (SILP) Rh-phosphine catalysts in continuous fixed-bed mode

    DEFF Research Database (Denmark)

    Riisager, Anders; Eriksen, Kim Michael; Wasserscheid, Peter

    2003-01-01

    - and liquid-phase hydroformylation of propene and 1-octene, exhibiting TOFs up to 88 h(-1) for SILP Rh-2 catalysts, while only low selectivities up to 74% n-aldehyde (n/iso ratio of 2.8) were obtained. This is the first example of continuous fixed-bed liquid-phase hydroformylation using SILP catalysts.......Supported ionic liquid-phase (SILP) catalysts were made by immobilizing Rh-monophosphine complexes of bis(m-phenylguanidinium) phenylphosphine 1 and NORBOS 2 ligands in 1-n-butyl-3-methylimidazolium hexafluorophosphate, [BMIM] [PF6], on a silica support. The catalysts were active in continuous gas...

  6. Report on fundamental survey on developing coal resources in fiscal 1999 - summarized edition. Survey and development of new exploration technology (exploration of shallow land area beds); 1999 nendo shintansa gijutsu chosa kaihatsu (rikuiki senso tansa) hokokusho (yoyakuban)

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2000-03-01

    Coal resource surveys have been performed using mainly the physical exploration method on the NSW State of Australia as the object. The Caroona area has a Permian period ground bed distributed, in which multiple number of coal layers exist. The ground bed is covered with sedimentary layers of the Triassic period inconsistently, and this Triassic period system is covered by volcanic rocks of the Jurassic period inconsistently. Faults are going through the coal beds in their upper or lower layers at locations having soft rock beds. The faults were identified by seismic exploration using the two-dimensional reflection method, assisted by the result of the physical logging. The results of pursuit on reflective events and the result of test drilling were unified to identify the summary of basset lines of the major coal beds. Furthermore, the seismic exploration using the three-dimensional reflective method capable of high-level imaging of underground structures was applied to coal beds existing in depths less than 480 m. Multiple number of local and small-scale sinking were detected with time difference of 5 ms and depth conversion to 7 m. Locations, runs, and inclination were interpreted also on faults having small fall whose details have been unclear in the exploration using the two-dimensional method. The seismic exploration using the three-dimensional reflective method was found capable of identifying micro structural changes and fault runs that cannot be tracked by the two-dimensional method. (NEDO)

  7. Effects of reduction temperature to Ni and Fe content and the morphology of agglomerate of reduced laterite limonitic nickel ore by coal-bed method

    Science.gov (United States)

    Abdul, Fakhreza; Pintowantoro, Sungging; Kawigraha, Adji; Nursidiq, Ahlidin

    2018-04-01

    As the current drop of nickel sulfide ore on earth, the attention to nickel laterite ore processing was inscreased in order to fulfill the future nickel demand needs. This research aims to optimized the process of nickel laterite ore extraction using coal bed method. This research was conducted by reducing low grade nickel laterite ore (limonitic) with nickel content of 1.25 %. The reduction process was carried out using CO gas which formed by the reaction of coal and dolomite. The Briquette of nickel ore, coal, Na2SO4 mixtures incorporated in the crucible with bed, then reduced for 6 hours at the temperature of 1200 °C. 1400 °C, and 1400 °C. The result of the research shown that the highest increase of Ni content and Ni recovery value was in the reduction temperature of 1400 °C with the increase of 3.44 %, and the recovery value of Ni equal to 86.75 %. While the highest increase of Fe content and Fe recovery value, respectively, was in the reduction temperature of 1300 °C with the increase of 22.67 % and 1200 °C with Fe recovery value of 89.41 %.

  8. Experimental on fly ash recirculation with bottom feeding to improve the performance of a circulating fluidized bed boiler co-burning coal sludge

    Energy Technology Data Exchange (ETDEWEB)

    Duan, Lunbo; Xu, Guiling; Liu, Daoyin; Chen, Xiaoping; Zhao, Changsui [Southeast Univ., Nanjing (China). School of Energy and Environment

    2013-07-01

    With the aim of reducing carbon content in fly ash, fly ash recirculation with bottom feeding (FARBF) technology was applied to a 75 t/h Circulating Fluidized Bed (CFB) boiler burning mixture of coal and coal sludge. And industrial experiments were carried out to investigate the influence of FARBF technology on the combustion performance and pollutant emission characteristics of the CFB boiler. Results show that as the recirculation rate of fly ash increases, the CFB dense bed temperature decreases while the furnace outlet temperature increases, and the temperature distribution in the furnace becomes uniform. Compared with the conditions without fly ash recirculation, the combustion efficiency increases from 92 to 95% when the recirculation rate increases to 8 t/h, and the desulfurization efficiency also increases significantly. As the recirculation rate increases, the emissions of NO and CO decrease, but the particulate emission increases. The present study indicates that FARBF technology can improve the combustion performance and desulfurization efficiency for the CFB boilers burning coal sludge, and this can bring large economical and environmental benefits in China.

  9. FEASIBILITY ANALYSIS FOR INSTALLING A CIRCULATING FLUIDIZED BED BOILER FOR COFIRING MULTIPLE BIOFUELS AND OTHER WASTES WITH COAL AT PENN STATE UNIVERSITY

    International Nuclear Information System (INIS)

    Bruce G. Miller; Sharon Falcone Miller; Robert Cooper; Douglas Donovan; John Gaudlip; Matthew Lapinsky; William Serencsits; Neil Raskin; Dale Lamke; Joseph J. Battista

    2001-01-01

    The Pennsylvania State University, under contract to the U.S. Department of Energy (DOE), National Energy Technology Laboratory (NETL) is performing a feasibility analysis on installing a state-of-the-art circulating fluidized bed (CFB) boiler and ceramic filter emission control device at Penn State's University Park campus for cofiring multiple biofuels and other wastes with coal, and developing a test program to evaluate cofiring multiple biofuels and coal-based feedstocks. Penn State currently operates an aging stoker-fired steam plant at its University Park campus and has spent considerable resources over the last ten to fifteen years investigating boiler replacements and performing life extension studies. This effort, in combination with a variety of agricultural and other wastes generated at the agricultural-based university and the surrounding rural community, has led Penn State to assemble a team of fluidized bed and cofiring experts to assess the feasibility of installing a CFB boiler for cofiring biomass and other wastes along with coal-based fuels. The objective of the project is being accomplished using a team that includes personnel from Penn State's Energy Institute and the Office of Physical Plant, Foster Wheeler Energy Services, Inc., and Cofiring Alternatives

  10. Chromium(VI) removal from water using fixed bed column of polypyrrole/Fe3O4 nanocomposite

    CSIR Research Space (South Africa)

    Bhaumik, M

    2013-06-07

    Full Text Available on the adsorption characteristics of adsorbent was explored at pH 2. Experimental results confirmed that the breakthrough curves were dependent on bed mass, initial Cr(VI) concentration and flow rate. Three kinetic models; Yoon–Nelson, Thomas, Bohart–Adams were...

  11. Co-firing a pressurized fluidized-bed combustion system with coal and refuse derived fuels and/or sludges. Task 16

    Energy Technology Data Exchange (ETDEWEB)

    DeLallo, M.; Zaharchuk, R.

    1994-01-01

    The co-firing of waste materials with coal in utility scale power plants has emerged as an effective approach to produce energy and manage municipal waste. Leading this approach, the atmospheric fluidized-bed combustor (AFBC) has demonstrated its commercial acceptance in the utility market as a reliable source of power burning a variety of waste and alternative fuels. The fluidized bed, with its stability of combustion, reduces the amount of thermochemical transients and provides for easier process control. The application of pressurized fluidized-bed combustor (PFBC) technology, although relatively new, can provide significant enhancements to the efficient production of electricity while maintaining the waste management benefits of AFBC. A study was undertaken to investigate the technical and economic feasibility of co-firing a PFBC with coal and municipal and industrial wastes. Focus was placed on the production of electricity and the efficient disposal of wastes for application in central power station and distributed locations. Wastes considered for co-firing include municipal solid waste (MSW), tire-derived fuel (TDF), sewage sludge, and industrial de-inking sludge. Issues concerning waste material preparation and feed, PFBC operation, plant emissions, and regulations are addressed. This paper describes the results of this investigation, presents conclusions on the key issues, and provides recommendations for further evaluation.

  12. Mathematical modeling of a fluidized bed gasifier for steam gasification of coal using high-temperature nuclear reactor heat

    International Nuclear Information System (INIS)

    Kubiak, H.; vanHeek, K.-H.; Juntgen, H.

    1986-01-01

    Coal gasification is a well-known technique and has already been developed and used since a long time. In the last few years, forced by the energy situation, new efforts have been made to improve known processes and to start new developments. Conventional gasification processes use coal not only as feedstock to be gasified but also for supply of energy for reaction heat, steam production, and other purposes. With a nuclear high temperature reactor (HTR) as a source for process heat, it is possible to transform the whole of the feed coal into gas. This concept offers advantages over existing gasification processes: saving of coal, as more gas can be produced from coal; less emission of pollutants, as the HTR is used for the production of steam and electricity instead of a coal-fired boiler; and lower production costs for the gas

  13. Application of response surface methodology and semi-mechanistic model to optimize fluoride removal using crushed concrete in a fixed-bed column.

    Science.gov (United States)

    Gu, Bon-Wun; Lee, Chang-Gu; Park, Seong-Jik

    2018-03-01

    The aim of this study was to investigate the removal of fluoride from aqueous solutions by using crushed concrete fines as a filter medium under varying conditions of pH 3-7, flow rate of 0.3-0.7 mL/min, and filter depth of 10-20 cm. The performance of fixed-bed columns was evaluated on the basis of the removal ratio (Re), uptake capacity (qe), degree of sorbent used (DoSU), and sorbent usage rate (SUR) obtained from breakthrough curves (BTCs). Three widely used semi-mechanistic models, that is, Bohart-Adams, Thomas, and Yoon-Nelson models, were applied to simulate the BTCs and to derive the design parameters. The Box-Behnken design of response surface methodology (RSM) was used to elucidate the individual and interactive effects of the three operational parameters on the column performance and to optimize these parameters. The results demonstrated that pH is the most important factor in the performance of fluoride removal by a fixed-bed column. The flow rate had a significant negative influence on Re and DoSU, and the effect of filter depth was observed only in the regression model for DoSU. Statistical analysis indicated that the model attained from the RSM study is suitable for describing the semi-mechanistic model parameters.

  14. Mathematical Modelling of Catalytic Fixed-Bed Reactor for Carbon Dioxide Reforming of Methane over Rh/Al2O3 Catalyst

    Directory of Open Access Journals (Sweden)

    New Pei Yee

    2008-04-01

    Full Text Available A one-dimensional mathematical model was developed to simulate the performance of catalytic fixed bedreactor for carbon dioxide reforming of methane over Rh/Al2O3 catalyst at atmospheric pressure. The reactionsinvolved in the system are carbon dioxide reforming of methane (CORM and reverse water gas shiftreaction (RWGS. The profiles of CH4 and CO2 conversions, CO and H2 yields, molar flow rate and molefraction of all species as well as reactor temperature along the axial bed of catalyst were simulated. In addition,the effects of different reactor temperature on the reactor performance were also studied. The modelscan also be applied to analyze the performances of lab-scale micro reactor as well as pilot-plant scale reactorwith certain modifications and model verification with experimental data. © 2008 BCREC UNDIP. All rights reserved.[Received: 20 August 2008; Accepted: 25 September 2008][How to Cite: N.A.S. Amin, I. Istadi, N.P. Yee. (2008. Mathematical Modelling of Catalytic Fixed-Bed Reactor for Carbon Dioxide Reforming of Methane over Rh/Al2O3 Catalyst. Bulletin of Chemical Reaction Engineering and Catalysis, 3 (1-3: 21-29. doi:10.9767/bcrec.3.1-3.19.21-29

  15. Removal of furan and phenolic compounds from simulated biomass hydrolysates by batch adsorption and continuous fixed-bed column adsorption methods.

    Science.gov (United States)

    Lee, Sang Cheol; Park, Sunkyu

    2016-09-01

    It has been proposed to remove all potential inhibitors and sulfuric acid in biomass hydrolysates generated from dilute-acid pretreatment of biomass, based on three steps of sugar purification process. This study focused on its first step in which furan and phenolic compounds were selectively removed from the simulated hydrolysates using activated charcoal. Batch adsorption experiments demonstrated that the affinity of activated charcoal for each component was highest in the order of vanillic acid, 4-hydroxybenzoic acid, furfural, acetic acid, sulfuric acid, and xylose. The affinity of activated charcoal for furan and phenolic compounds proved to be significantly higher than that of the other three components. Four separation strategies were conducted with a combination of batch adsorption and continuous fixed-bed column adsorption methods. It was observed that xylose loss was negligible with near complete removal of furan and phenolic compounds, when at least one fixed-bed column adsorption was implemented in the strategy. Copyright © 2016 Elsevier Ltd. All rights reserved.

  16. Numerical investigation of flow and heat transfer in a novel configuration multi-tubular fixed bed reactor for propylene to acrolein process

    Science.gov (United States)

    Jiang, Bin; Hao, Li; Zhang, Luhong; Sun, Yongli; Xiao, Xiaoming

    2015-01-01

    In the present contribution, a numerical study of fluid flow and heat transfer performance in a pilot-scale multi-tubular fixed bed reactor for propylene to acrolein oxidation reaction is presented using computational fluid dynamics (CFD) method. Firstly, a two-dimensional CFD model is developed to simulate flow behaviors, catalytic oxidation reaction, heat and mass transfer adopting porous medium model on tube side to achieve the temperature distribution and investigate the effect of operation parameters on hot spot temperature. Secondly, based on the conclusions of tube-side, a novel configuration multi-tubular fixed-bed reactor comprising 790 tubes design with disk-and-doughnut baffles is proposed by comparing with segmental baffles reactor and their performance of fluid flow and heat transfer is analyzed to ensure the uniformity condition using molten salt as heat carrier medium on shell-side by three-dimensional CFD method. The results reveal that comprehensive performance of the reactor with disk-and-doughnut baffles is better than that of with segmental baffles. Finally, the effects of operating conditions to control the hot spots are investigated. The results show that the flow velocity range about 0.65 m/s is applicable and the co-current cooling system flow direction is better than counter-current flow to control the hottest temperature.

  17. Determination of the Removal Efficiency of Linear Alkyl Benzene Sulphonate Acids (LAS in Fixed Bed Aeration Tank and Conventional Activated Sludge

    Directory of Open Access Journals (Sweden)

    Asghar Ebrahimi

    2011-03-01

    Full Text Available Linear Alkyl Benzene Sulphonate Acids (LAS are one of the anionic surfactants that are produced and used in large quantities in different countries and find their way into the natural environment through sewer systems. These compounds may potentially cause environmental hazards in such surface waters as rivers. It is, therefore, necessary to remove as much of these compounds as possible by biological processes in wastewater treatment plants. For this purpose, four parallel biological reactors were constructed that used the conventional activated sludge and aeration tanks with fixed bed on the bench scale in order to evaluate the removal efficiency of LAS. The reactors were operated under conditions similar to domestic wastewater treatment plants. Parameters of interest were measured according to standard methods and ANOVA and T-test were used for the statistical analysis of the data. The results showed that aeration tanks with fixed beds yielded higher values of LAS and COD removal and air consumption compared to the conventional activated sludge system. It was shown that the two systems studied achieved LAS removal efficiencies of 96% and 94% for an influent LAS concentration of 5 mg/L. Further, it was found that the effluents from both systems satisfied water quality standards for discharge into surface waters (

  18. Use of nitrogen stable isotope analysis to understand char nitrogen evolution during the fluidized-bed co-combustion of coal and sewage sludge

    Energy Technology Data Exchange (ETDEWEB)

    Ana Arenillas; Roberto Garcia; Chenggong Sun; Colin E. Snape; Angel H. Moreno; Fernando Rubiera; Jose J. Pis [University of Nottingham, Nottingham (United Kingdom). Nottingham Fuel and Energy Centre, School of Chemical, Environmental and Mining Engineering

    2005-04-01

    NOx emissions from sewage sludge combustion are a concern, because of the usually high nitrogen content of this fuel. The interactions during co-combustion in a fluidized-bed reactor of sewage sludge and a bituminous coal were evaluated, in relation to the nitrogen evolution during the combustion process. The nitrogen stable isotope measurements provide novel results regarding the tracing of nitrogen during combustion. Our preliminary results show that the co-combustion chars retain more nitrogen than expected, with the additional nitrogen being mainly derived from the sludge. Additional measurements are planned on the resultant co-combustion gases, to aid source apportionment of the NOx arising from coal/sewage interactions. 14 refs., 3 figs., 2 tabs.

  19. Thermal-hydraulic study of fixed bed nuclear reactor (FBNR), in FCC, BCC and pseudo-random configurations of the core through CFD method

    International Nuclear Information System (INIS)

    Luna, M.; Chavez, I.; Cajas, D.; Santos, R.

    2015-01-01

    The study of thermal-hydraulic performance of a fixed bed nuclear reactor (FBNR) core and the effect of the porosity was studied by the CFD method with 'SolidWorks' software. The representative sections of three different packed beds arrangements were analyzed: face-centered cubic (FCC), body-centered cubic (BCC), and a pseudo-random, with values of porosity of 0.28, 0.33 and 0.53 respectively. The minimum coolant flow required to avoid the phase change for each one of the configurations was determined. The results show that the heat transfer rate increases when the porosity value decreases, and consequently the minimum coolant flow in each configuration. The results of minimum coolant flow were: 728.51 kg/s for the FCC structure, 372.72 kg/s for the BCC, and 304.96 kg/s for the pseudo-random. Meanwhile, the heat transfer coefficients in each packed bed were 6480 W/m 2 *K, 3718 W/m 2 *K and 3042 W/m 2 *K respectively. Finally the pressure drop was calculated, and the results were 0.588 MPa for FCC configuration, 0.033 MPa for BCC and 0.017 MPa for the pseudo-random one. This means that with a higher porosity, the fluid can circulate easier because there are fewer obstacles to cross, so there are fewer energy losses. (authors)

  20. Observations of the vertical structure of turbulent oscillatory boundary layers above fixed roughness beds using a prototype wideband coherent Doppler profiler: 1. The oscillatory component of the flow

    Science.gov (United States)

    Hay, Alex E.; Zedel, Len; Cheel, Richard; Dillon, Jeremy

    2012-03-01

    Results are presented from an experimental investigation of rough turbulent oscillatory boundary layers using a prototype wideband bistatic coherent Doppler profiler. The profiler operates in the 1.2 MHz to 2.3 MHz frequency band and uses software-defined radio technologies for digital control of the frequency content and shape of the transmit pulse and for digital complex demodulation of the received signals. Velocity profiles are obtained at sub-millimeter range resolution and 100 Hz profiling rates (each profile being an ensemble average of 10 pulse pairs). The measurements were carried out above beds of fixed sand or gravel particles, with median grain diameters of 0.37 mm and 3.9 mm, respectively, oscillating sinusoidally at a 10 s period through excursions of 0.75 m to 1.5 m. The resulting vertical profiles of horizontal velocity magnitude and phase, with the vertical axis scaled by ℓ = κu∗m/ω, are comparable to similarly scaled profiles obtained using laser Doppler anemometry by Sleath (1987) and Jensen (1988). A key objective of the comparisons between the previous experiments and those reported here was to establish how close to the bed reliable velocity measurements can be made with the sonar. This minimum distance above the bed is estimated to be 5 ± 1 mm, a value approaching the 3 to 4 mm limit set by the path of least time.

  1. Evaluating Design Parameters for Breakthrough Curve Analysis and Kinetics of Fixed Bed Columns for Cu(II Cations Using Lignocellulosic Wastes

    Directory of Open Access Journals (Sweden)

    Zaira Zaman Chowdhury

    2014-12-01

    Full Text Available A continuous adsorption study for removal of Cu(II cations from wastewater using a fixed-bed column was conducted. A granular carbonaceous activated adsorbent produced by carbonization of the outer rind, or exocarp, of mangostene fruit shell was used for column packing. The effects of feed flow rate, influent cation concentration, and bed depth on the breakthrough curve were investigated at pH 5.5. Experimental analysis confirmed that the breakthrough curves were dependent on flow rate, initial concentration of Cu(II cations, and bed height related to the amount of activated carbon used for column packing. Thomas, Yoon–Nelson, and Adams–Bohart models were applied to analyze the breakthrough curves at different conditions. Linear regression analysis of experimental data demonstrated that Thomas and Yoon–Nelson models were appropriate to explain the breakthrough curve, while the Adams–Bohart model was only applicable to predict the initial part of the dynamic process. It was concluded that the column packed with fruit rind based activated carbon can be used to treat Cu(II-enriched wastewater.

  2. Design, fabrication and initial evaluation of an upflow fixed-bed adsorption column for lead (Pb2+) using Carica papaya seeds

    International Nuclear Information System (INIS)

    Piquero, Ronald E.

    2005-03-01

    The study is about the adsorption pf lead (Pb 2+ ) using Carica papaya as biosorbent in an upflow continuous fixed-bed adsorption column. A column was designed and fabricated which was used in the experiment. It aimed to determine the effect of flowrates in the adsorption mechanism of the biosorbent. Three flowrates were used in the experiment: 100 mL/min, 150 mL/min, and 200 mL/min. A solution of 100 ppm of unbuffered lead was allowed to pass through a bed of biosorbent that has a length of 15 cm and the amount of lead ions was measured using flame atomic absorption spectroscopy in terms of residual concentration of lead in the outlet stream. The result showed that the 100 mL/min flowrate had the lowest amount of residual concentration measured compared to the 150 mL/min and 200 mL/min. This means that the 100 mL/min had the most lead ions adsorbed. Statistical test like the one-factor anova and t-test were also done in the research. Anova result showed that the flowrate has significant effect in the adsorption of lead ions of the biosorbent while the t-test results showed that the 100 ml/min is the most effective flowrate wherein the bed had adsorbed the most amounts of ions. (Author)

  3. Differentiation of volcanic ash-fall and water-borne detrital layers in the Eocene Senakin coal bed, Tanjung Formation, Indonesia

    Science.gov (United States)

    Ruppert, L.F.; Moore, T.A.

    1993-01-01

    The Sangsang deposit of the Eocene Senakin coal bed, Tanjung Formation, southeastern Kalimantan, Indonesia, contains 11 layers, which are thin ( 70%). These layers are characterized by their pelitic macroscopic texture. Examination of eight of the layers by scanning-electron microscopy, energy-dispersive X-ray, and X-ray diffraction analyses show that they are composed primarily of fairly well-crystallized kaolinite, much of which is vermicular. Accessory minerals include abundant Ti oxide, rare-earth element-rich Ca and A1 phosphates, quartz that luminescences in the blue color range, and euhedral to subhedral pyroxene, hornblende, zircon, and sanidine. Although this mineral suite is suggestive of volcanic ash-fall material, only the four pelitic layers in the middle of the bed are thought to be solely derived from volcanic ash-falls on the basis of diagnostic minerals, replaced glass shards, and lithostratigraphic relationships observed in core and outcrop. The three uppermost pelitic layers contain octahedral chromites, some quartz grains that luminesce in teh orange color range, and some quartz grains that contain two-phase fluid inclusions. These layers are interpreted to be derived from a combination of volcanic ash-fall material and hydrologic transport of volcaniclastic sediment. In contrast, the lowermost pelitic layer, which contains large, rounded FeMg-rich chromites, is thought to have been dominantly deposited by water. The source of the volcanic ash-fall material may have been middle Tertiary volcanism related to plate tectonic activity between Kalimantan and Sulawesi. The volcanic ash was deposited in sufficient amounts to be preserved as layers within the coal only in the northern portions of the Senakin region: the southern coal beds in the region do not contain pelitic layers. ?? 1993.

  4. Differentiation of volcanic ash-fall and water-borne detrital layers in the Eocene Senakin coal bed, Tanjung Formation, Indonesia

    Energy Technology Data Exchange (ETDEWEB)

    Ruppert, L F; Moore, T A [US Geological Survey, Reston, VA (USA). National Center

    1993-02-01

    The Sangsang deposit of the Eocene Senakin coal bed, Tanjung Formation, southeastern Kalimantan, Indonesia, contains 11 layers, which are thin ([lt] 5 cm) and high in ash ([gt] 70%). These layers are characterized by their pelitic macroscopic texture. Examination of eight of the layers by scanning-electron microscopy, energy-dispersive X-ray, and X-ray diffraction analyses show that they are composed primarily of fairly well-crystallized kaolinite, much of which is vermicular. Accessory minerals include abundant Ti oxide, rare-earth element-rich Ca and Al phosphates, quartz that luminesces in the blue colour range, and euhedral to subhedral pyrooxene, hornblende, zircon, and sanidine. Although this mineral suite is suggestive of volcanic ash-fall material, only the four pelitic layers in the middle of the bed are thought to be solely derived from volcanic ash-falls on the basis of diagnostic minerals, replaced glass shards, and lithostratigraphic relationships observed in core and outcrop. The three uppermost pelitic layers contain octahedral chromites, some quartz grains that luminesce in the organic colour range, and some quartz grains that contain two-phase fluid inclusions. These layers are interpreted to be derived from a combination of volcanic ash-fall material and hydrologic transport of volcaniclastic sediment. In contrast, the lowermost pelitic layer, which contains large, rounded FeMg-rich chromites, is thought to have been dominantly deposited by water. The source of the volcanic ash-fall material may have been middle Tertiary volcanism related to plate tectonic activity between Kalimantan and Sulawesi. The volcanic ash was deposited in sufficient amounts to be preserved as layers within the coal only in the northern portions of the Senakin region: the southern coal beds in the region do not contain pelitic layers. 29 refs., 8 figs., 3 tabs.

  5. Organic geochemistry and petrology of subsurface Paleocene-Eocene Wilcox and Claiborne Group coal beds, Zavala County, Maverick Basin, Texas, USA

    Science.gov (United States)

    Hackley, Paul C.; Warwick, Peter D.; Hook, Robert W.; Alimi, Hossein; Mastalerz, Maria; Swanson, Sharon M.

    2012-01-01

    Coal samples from a coalbed methane exploration well in northern Zavala County, Maverick Basin, Texas, were characterized through an integrated analytical program. The well was drilled in February, 2006 and shut in after coal core desorption indicated negligible gas content. Cuttings samples from two levels in the Eocene Claiborne Group were evaluated by way of petrographic techniques and Rock–Eval pyrolysis. Core samples from the Paleocene–Eocene Indio Formation (Wilcox Group) were characterized via proximate–ultimate analysis in addition to petrography and pyrolysis. Two Indio Formation coal samples were selected for detailed evaluation via gas chromatography, and Fourier transform infrared (FTIR) and 13C CPMAS NMR spectroscopy. Samples are subbituminous rank as determined from multiple thermal maturity parameters. Elevated rank (relative to similar age coal beds elsewhere in the Gulf Coast Basin) in the study area is interpreted to be a result of stratigraphic and/or structural thickening related to Laramide compression and construction of the Sierra Madre Oriental to the southwest. Vitrinite reflectance data, along with extant data, suggest the presence of an erosional unconformity or change in regional heat flow between the Cretaceous and Tertiary sections and erosion of up to >5 km over the Cretaceous. The presence of liptinite-rich coals in the Claiborne at the well site may indicate moderately persistent or recurring coal-forming paleoenvironments, interpreted as perennially submerged peat in shallow ephemeral lakes with herbaceous and/or flotant vegetation. However, significant continuity of individual Eocene coal beds in the subsurface is not suggested. Indio Formation coal samples contain abundant telovitrinite interpreted to be preserved from arborescent, above-ground woody vegetation that developed during the middle portion of mire development in forested swamps. Other petrographic criteria suggest enhanced biological, chemical and physical

  6. Report on fundamental survey on developing coal resources in fiscal 1999. Survey and development of new exploration technology (exploration of shallow land area beds); 1999 nendo sekitan shigen kaihatsu kiso chosa hokokusho. Shintansa gijutsu chosa kaihatsu (rikuiki senso tansa)

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2000-03-01

    This paper describes the survey and development of new coal exploration technology applied in the NSW State of Australia. It is intended to develop a coal resource assessment method with high accuracy using the reflection method seismic exploration, assisted by other physical exploration methods. The Caroona area has a Permian period ground bed distributed, in which multiple number of coal layers exist. The ground bed is covered with sedimentary layers of the Triassic period inconsistently, and this Triassic period system is covered by volcanic rocks of the Jurassic period inconsistently. Faults are going through the coal beds in their upper or lower layers at locations having soft rock beds. Existence of the faults was estimated by seismic exploration using the two-dimensional reflection method, assisted by the result of the physical logging. The results were unified with the result of test drilling to identify the summary of the latent basset lines. Furthermore, the seismic exploration using the three-dimensional reflective method capable of high-level imaging of underground structures was applied to coal beds existing in depths less than 480 m. Multiple number of local and small-scale sinking were detected with time difference of 5 ms and depth conversion to 7 m. Locations, runs, and inclination were interpreted also on faults having small fall which cannot be detected by the two-dimensional method. The three-dimensional method was found capable of identifying micro structural changes and fault runs that cannot be tracked by the two-dimensional method. (NEDO)

  7. Study on the influence of electromagnetic field on the property of coal combustion burnout in circulating fluidized bed

    Energy Technology Data Exchange (ETDEWEB)

    Xiang, Y. [Ruiping Coal and Electric Power Ltd. Co., Ruzhou (China)

    2008-08-15

    To study the influences of electromagnetism field pretreatment of pulverized Coal (EFPPC) on the properties of its combustion, thermogravimetric analysis, a Muffle furnace experiment and an X-ray diffraction experiment were carried out for three Coal banks. It was shown that EFPPC will induce the molecular structure of Coal to change into amorphous carbon, which causes an increase in the rate of oxygen absorption during the initial stages of Coal burning and reaction activity. It is also shown that the residual carbon of bituminous Coal would be increased by about 0.33% - 0.41%, i.e, the loss of standard Coal is about 3,000 t/a for double 480 t/h boilers, when applying EFPPC for 1 min at a temperature of 800 - 1,000 {sup o}C. When the temperature increases 200 {sup o}C, the residual carbon increases by about 2.07% but the effect of EFPPC is less than 0.21% for bituminous Coal and residual carbon is about 1.47% and the effect of EFPPC is less than 0.05% for lean Coal. Therefore the effect of increasing the temperature of EFPPC on residual carbon is less than that of increasing the time of EFPPC. 9 refs., 4 figs., 2 tabs.

  8. NO Reduction over Biomass and Coal Char during Simultaneous Combustion

    DEFF Research Database (Denmark)

    Zhao, Ke; Glarborg, Peter; Jensen, Anker Degn

    2013-01-01

    This paper reports an experimental study of NO reduction over chars of straw, bark, bituminous coal, and lignite. The experiments were performed in a fixed bed reactor in the temperature range 850–1150 °C. The chars were generated by in situ pyrolysis at the reaction temperature to minimize further...

  9. Mathematical modeling of the adsorption/desorption characteristics of anthocyanins from muscadine (Vitis rotundifolia cv. Noble) juice pomace on Amberlite FPX66 resin in a fixed bed column.

    Science.gov (United States)

    Uzdevenes, Chad G; Gao, Chi; Sandhu, Amandeep K; Yagiz, Yavuz; Gu, Liwei

    2018-03-24

    Muscadine grape pomace, a by-product of juicing and wine-making, contains significant amounts of anthocyanin 3,5-diglucosides, known to be beneficial to human health. The objective of this research was to use mathematical modeling to investigate the adsorption/desorption characteristics of these anthocyanins from muscadine grape pomace on Amberlite FPX66 resin in a fixed bed column. Anthocyanins were extracted using hot water and ultrasound, and the extracts were loaded onto a resin column at five bed depths (5, 6, 8, 10 and 12 cm) using three flow rates (4, 6 and 8 mL min -1 ). It was found that adsorption on the column fitted the bed depth service time (BDST) model and the empty bed residence time (EBRT) model. Desorption was achieved by eluting the column using ethanol at four concentrations (25, 40, 55 and 70% v/v) and could be described with an empirical sigmoid model. The breakthrough curves of anthocyanins fitted the BDST model for all three flow rates with R 2 values of 0.983, 0.992 and 0.984 respectively. The EBRT model was successfully employed to find the operating lines, which allow for column scale-up while still achieving similar results to those found in a laboratory operation. Desorption with 40% (v/v) ethanol achieved the highest recovery rate of anthocyanins at 79.6%. The mathematical models established in this study can be used in designing a pilot/industrial- scale column for the separation and concentration of anthocyanins from muscadine juice pomace. © 2018 Society of Chemical Industry. © 2018 Society of Chemical Industry.

  10. Prospects for coal: technical developments

    Energy Technology Data Exchange (ETDEWEB)

    Kaye, W G; Peirce, T J

    1983-07-01

    This article summarises the reasons for predicting an increase in the use of coal as an industrial energy source in the United Kingdom. The development of efficient and reliable coal-burning techniques is therefore of great importance. Various techniques are then discussed, including conventional combustion systems, fluidised bed combustion systems, fluidised bed boilers and furnaces, coal and ash handling, coal-liquid mixtures, coal gasification and coal liquefaction. (4 refs.)

  11. Scaled-up electrochemical reactor with a fixed bed three-dimensional cathode for electro-Fenton process: Application to the treatment of bisphenol A

    International Nuclear Information System (INIS)

    Chmayssem, Ayman; Taha, Samir; Hauchard, Didier

    2017-01-01

    In this study, we report on the development of an open undivided electrochemical reactor with a compact fixed bed of glassy carbon pellets as three-dimensional cathode for the application of electro-Fenton process. Bisphenol A (BPA) was chosen as model molecule in order to improve its efficiency to the treatment of persistent pollutants. The study of the BPA removal efficiency in function of the applied current intensity was investigated in order to determine the limiting current of O 2 reduction (optimal conditions of H 2 O 2 production at flow rate of 0.36 m 3 .h −1 ) which was 0.8 A (0.5 A/100 g of glassy carbon pellets). Many parameters have been carried out using this electro-Fenton reactor namely degradation kinetics, influence of anodic reactions on DSA, effect of initial pollutant concentration. In the optimal current condition, the global production rate of H 2 O 2 and ·OH was investigated. The yield of electro-Fenton reaction (conversion of H 2 O 2 to ·OH) was very high (> 90%). The absolute rate of BPA degradation was determined as 4.3 × 10 9 M −1 s −1 . COD, TOC and BOD 5 measurements indicated that only few minutes of treatment by electro-Fenton process were needed to eliminate BPA for dilute solutions (10 and 25 mg.L −1 ). In this case, the biodegradability of the treated solutions occurred rapidly. For higher concentration levels, an efficient removal of BPA appeared for treatment time higher than 1 hour and more than 90 minutes were necessary to obtain the biodegradability of BPA solutions. In optimum conditions, the scale-up of the electrochemical reactor applied to electro-Fenton process was suggested and depended on the concentration level of the pollutant. The operating parameters of the scaled-up reactor might be deduced from the new section of each fixed bed exposed to the flow, from values of liquid flow velocity and from the corresponding limiting current density obtained with the reactor at laboratory scale. The compact fixed bed

  12. FEASIBILITY ANALYSIS FOR INSTALLING A CIRCULATING FLUIDIZED BED BOILER FOR COFIRING MULTIPLE BIOFUELS AND OTHER WASTES WITH COAL AT PENN STATE UNIVERSITY

    Energy Technology Data Exchange (ETDEWEB)

    Bruce G. Miller; Sharon Falcone Miller; Robert Cooper; John Gaudlip; Matthew Lapinsky; Rhett McLaren; William Serencsits; Neil Raskin; Tom Steitz; Joseph J. Battista

    2003-03-26

    The Pennsylvania State University, utilizing funds furnished by the U.S. Department of Energy's Biomass Power Program, investigated the installation of a state-of-the-art circulating fluidized bed boiler at Penn State's University Park campus for cofiring multiple biofuels and other wastes with coal, and developing a test program to evaluate cofiring biofuels and coal-based feedstocks. The study was performed using a team that included personnel from Penn State's Energy Institute, Office of Physical Plant, and College of Agricultural Sciences; Foster Wheeler Energy Services, Inc.; Foster Wheeler Energy Corporation; Parsons Energy and Chemicals Group, Inc.; and Cofiring Alternatives. The activities included assessing potential feedstocks at the University Park campus and surrounding region with an emphasis on biomass materials, collecting and analyzing potential feedstocks, assessing agglomeration, deposition, and corrosion tendencies, identifying the optimum location for the boiler system through an internal site selection process, performing a three circulating fluidized bed (CFB) boiler design and a 15-year boiler plant transition plan, determining the costs associated with installing the boiler system, developing a preliminary test program, determining the associated costs for the test program, and exploring potential emissions credits when using the biomass CFB boiler.

  13. Composition and Structure of Microalgae Indicated in Raman and Hyperspectral Spectra and Scanning Electron Microscopy: from Cyanobacteria to Isolates from Coal-bed Methane Water Ponds

    Science.gov (United States)

    Zhou, X.; Zhou, Z.; Apple, M. E.; Spangler, L.

    2017-12-01

    Microalgae can be used for many potential applications for human's benefits. These potential applications included biofuel production from microalgae, biofiltering to cleaning water, chemical extraction as nutrients, etc. However, exploration for such applications is still in the early stages. For instance, many species and strains of microalgae have been investigated for their lipid content and growing conditions for efficient productions of lipids, but no specific species have yet been chosen as a fuel source for commercial production because of the huge biodiversity and subsequently a wide range of species that can potentially be exploited for biodiesel production, the great variability between species in their fuel precursor producing capabilities. Numerous coal-bed methane water ponds were established in the world as a consequence of coal-bed methane production from deep coal seams. Microalgae were isolated from such ponds and potentially these ponds can be used as venues for algal production. In this study, we characterized chemical composition and structure of the Cyanobacteria Anabaena cylindrica (UTEX # 1611) and isolates from coal-bed methane ponds Nannochloropsis gaditana and PW95 using Laser Raman Spectroscopy (LRS), hyperspectral spectra, and Scanning Electron Microscope (SEM). The objective is to seek bio-indicators for potential applications of these microalgae species. For instance, indicator of rich content lips shows the great potential for biofuel production. Fig.1 shows an example of the Raman spectra of the three species in desiccated form. The spectral peaks were isolated and the corresponding composition was identified. The insert at the right hand of the Raman spectrum of each species is the micrograph of the cell morphology under a microscope. The Raman spectra of cells in aquatic solutions were also obtained and compared with the desiccated form. The hyperspectral reflectances of the three species show quite different characteristics and

  14. Evaluation of Phytoremediation of Coal Bed Methane Product Water and Waters of Quality Similar to that Associated with Coal Bed Methane Reserves of the Powder River Basin, Montana and Wyoming

    Energy Technology Data Exchange (ETDEWEB)

    James Bauder

    2008-09-30

    U.S. emphasis on domestic energy independence, along with advances in knowledge of vast biogenically sourced coalbed methane reserves at relatively shallow sub-surface depths with the Powder River Basin, has resulted in rapid expansion of the coalbed methane industry in Wyoming and Montana. Techniques have recently been developed which constitute relatively efficient drilling and methane gas recovery and extraction techniques. However, this relatively efficient recovery requires aggressive reduction of hydrostatic pressure within water-saturated coal formations where the methane is trapped. Water removed from the coal formation during pumping is typically moderately saline and sodium-bicarbonate rich, and managed as an industrial waste product. Current approaches to coalbed methane product water management include: surface spreading on rangeland landscapes, managed irrigation of agricultural crop lands, direct discharge to ephermeral channels, permitted discharge of treated and untreated water to perennial streams, evaporation, subsurface injection at either shallow or deep depths. A Department of Energy-National Energy Technology Laboratory funded research award involved the investigation and assessment of: (1) phytoremediation as a water management technique for waste water produced in association with coalbed methane gas extraction; (2) feasibility of commercial-scale, low-impact industrial water treatment technologies for the reduction of salinity and sodicity in coalbed methane gas extraction by-product water; and (3) interactions of coalbed methane extraction by-product water with landscapes, vegetation, and water resources of the Powder River Basin. Prospective, greenhouse studies of salt tolerance and water use potential of indigenous, riparian vegetation species in saline-sodic environments confirmed the hypothesis that species such as Prairie cordgrass, Baltic rush, American bulrush, and Nuttall's alkaligrass will thrive in saline-sodic environments

  15. Study on the structure and gasification characteristics of selected South African bituminous coals in fluidised bed gasification

    CSIR Research Space (South Africa)

    Oboirien, BO

    2011-04-01

    Full Text Available . The microstructural characteristics of the parent coals and their resultant chars were determined using XRD, FT-IR, Raman and petrographic analysis. The microstructural changes that occurred in the organic (maceral) and the inorganic (mineral) fractions...

  16. Automation and control in industrial installations. Its application in pressurized fluidized bed plants, coal washeries etc. Automatizacion y control en instalaciones industriales. Su aplicacion en centrales de lecho fluido a presion, lavaderos de carbon etc

    Energy Technology Data Exchange (ETDEWEB)

    Trujillo Tarifa, R. (ENDESA, Madrid (Spain))

    1988-01-01

    This paper presents the automation and electronic control systems, based on the most advanced technologies on the market. The most recent techniques concerning industrial plant supervision and the processing of information obtained from the above mentioned systems are discussed. Intraplant communications between the control systems and the supervision computers as well as communications among cascade computers are described. These studies are applied to specific cases of pressurized fluidized bed plants, coal washing plants, coal yards, etc.

  17. Active methods of preventing bumps in situations where the longwall face advances to and crosses a roadway in thick coal beds

    Energy Technology Data Exchange (ETDEWEB)

    Loboda, C

    1978-01-01

    The method was analyzed in the Wujek coal mine, where the coal bed is located at 600 m and was 5.3 m to 5.7 m thick. The following situation is described: A longwall face had to pass through a ventilation tunnel. To reduce the inner stress of the coal mass above and below the ventilation tunnel infusion was used. Water was forced into the walls of the tunnel. The tunnel section was 200 m long, 28 holes were drilled, each 40 m deep, diameter of the bore 42 to 45 mm, water pressure 300 at. To prevent bumps the orientation of the longwall face, which had been parallel to the ventilation tunnel, was changed so that it was at the angle of 15 degrees to the ventilation tunnel. Experience showed that the most dangerous situation in the tunnel arises when the distance between a longwall face and a roadway is reduced to 45 m. At that moment pressure on the road support system is the greatest. The danger of bumps at a longwall face is the greatest when it is 25 m away from a roadway.

  18. Sintering study in vertical fixed bed reactor for synthetic aggregate production; Estudo da sinterizacao em reator vertical de leito fixo para producao de agregado sintetico

    Energy Technology Data Exchange (ETDEWEB)

    Quaresma, D.S.; Neves, A.S.S.; Melo, A.O.; Pereira, L.F.S.; Bezerra, P.T.S.; Macedo, E.N.; Souza, J.A.S., E-mail: danysq@gmail.com [Universidade Federal do Para (UFPA), Belem, PA (Brazil). Faculdade de Engenharia Quimica

    2017-04-15

    The synthetic aggregates are being employed in civil construction for the reduction of mineral extraction activities. Within this context, the recycling of industrial waste is the basis of the majority of processes to reduce the exploitation of mineral resources. In this work the sintering in a vertical fixed bed reactor for synthetic aggregate production using 20% pellets and 80% charcoal was studied. The pellets were prepared from a mixture containing clay, charcoal and fly ash. Two experiments varying the speed of air sucking were carried out. The material produced was analyzed by X-ray diffraction, scanning electron microscopy, measures of their ceramic properties, and particle size analysis. The results showed that the solid-state reactions, during the sintering process, were efficient and the produced material was classified as coarse lightweight aggregate. The process is interesting for the sintering of aggregates, and can be controlled by composition, particle size, temperature gradient and gaseous flow. (author)

  19. Systematic staging design applied to the fixed-bed reactor series for methanol and one-step methanol/dimethyl ether synthesis

    International Nuclear Information System (INIS)

    Manenti, Flavio; Leon-Garzon, Andres R.; Ravaghi-Ardebili, Zohreh; Pirola, Carlo

    2014-01-01

    This work investigates possible design advances in the series of fixed-bed reactors for methanol and dimethyl ether synthesis. Specifically, the systematic staging design proposed by Hillestad [1] is applied to the water-cooled and gas-cooled series of reactors of Lurgi's technology. The procedure leads to new design and operating conditions with respect to the current best industrial practice, with relevant benefits in terms of process yield, energy saving, and net income. The overall mathematical model for the process simulation and optimization is reported in the work together with dedicated sensitivity analysis studies. - Highlights: • Systematic staging design is applied to methanol and methanol/DME synthesis. • New configurations for the synthesis reactor network are proposed and assessed. • Comparison with the industrial best practice is provided. • Energy-process optimization is performed to improve the overall yield of the process

  20. Measurement and modeling of advanced coal conversion processes, Volume III

    Energy Technology Data Exchange (ETDEWEB)

    Ghani, M.U.; Hobbs, M.L.; Hamblen, D.G. [and others

    1993-08-01

    A generalized one-dimensional, heterogeneous, steady-state, fixed-bed model for coal gasification and combustion is presented. The model, FBED-1, is a design and analysis tool that can be used to simulate a variety of gasification, devolatilization, and combustion processes. The model considers separate gas and solid temperatures, axially variable solid and gas flow rates, variable bed void fraction, coal drying, devolatilization based on chemical functional group composition, depolymerization, vaporization and crosslinking, oxidation, and gasification of char, and partial equilibrium in the gas phase.

  1. Neural fuzzy modelization of copper removal from water by biosorption in fixed-bed columns using olive stone and pinion shell.

    Science.gov (United States)

    Calero, M; Iáñez-Rodríguez, I; Pérez, A; Martín-Lara, M A; Blázquez, G

    2018-03-01

    Continuous copper biosorption in fixed-bed column by olive stone and pinion shell was studied. The effect of three operational parameters was analyzed: feed flow rate (2-6 ml/min), inlet copper concentration (40-100 mg/L) and bed-height (4.4-13.4 cm). Artificial Neural-Fuzzy Inference System (ANFIS) was used in order to optimize the percentage of copper removal and the retention capacity in the column. The highest percentage of copper retained was achieved at 2 ml/min, 40 mg/L and 4.4 cm. However, the optimum biosorption capacity was obtained at 6 ml/min, 100 mg/L and 13.4 cm. Finally, breakthrough curves were simulated with mathematical traditional models and ANFIS model. The calculated results obtained with each model were compared with experimental data. The best results were given by ANFIS modelling that predicted copper biosorption with high accuracy. Breakthrough curves surfaces, which enable the visualization of the behavior of the system in different process conditions, were represented. Copyright © 2017 Elsevier Ltd. All rights reserved.

  2. In situ magnetic resonance measurement of conversion, hydrodynamics and mass transfer during single- and two-phase flow in fixed-bed reactors.

    Science.gov (United States)

    Gladden, L F; Alexander, P; Britton, M M; Mantle, M D; Sederman, A J; Yuen, E H L

    2003-01-01

    In recent years there has been increasing interest in applying magnetic resonance (MR) techniques in areas of engineering and chemical technology. The science that underpins many of these applications is the physics and chemistry of transport and reaction processes in porous materials. Key to the exploitation of MR methods will be our ability to demonstrate that MR yields information that cannot be obtained using conventional measurement techniques in engineering research. This article describes two case studies that highlight the power of MR to give new insights to chemical engineers. First, we demonstrate the application of MR techniques to explore both mass transfer and chemical conversion in situ within a fixed bed of catalyst, and we then use these data to identify the rate-controlling step of the chemical conversion. Second, we implement a rapid imaging technique to study the stability of the gas-liquid distribution in the low- and high-interaction two-phase flow regimes in a trickle-bed reactor.

  3. Effects of Temperature and Residence Time on the Emissions of PIC and Fine Particles during Fixed Bed Combustion of Conifer Stemwood Pellets

    Energy Technology Data Exchange (ETDEWEB)

    Boman, Christoffer; Lindmark, Fredrik; Oehman, Marcus; Nordin, Anders [Umeaa Univ. (Sweden). Energy Technology and Thermal Process Chemistry; Pettersson, Esbjoern [Energy Technology Centre, Piteaa (Sweden); Westerholm, Roger [Stockholm Univ., Arrhenius Laboratory (Sweden). Dept. of Analytical Chemistry

    2006-07-15

    The use of wood fuel Pellets has proved to be well suited for the small-scale market enabling controlled and efficient combustion with low emission of products of incomplete combustion (PIC). Still a potential for further emission reduction exists and a thorough understanding of the influence of combustion conditions on the emission characteristics of air pollutants like PAH and particulate matter (PM) is important. The objective was to determine the effects of temperature and residence time on the emission performance and characteristics with focus on hydrocarbons and PM during combustion of conifer stemwood Pellets in a laboratory fixed bed reactor (<5 kW). Temperature and residence time after the bed section were varied according to statistical experimental designs (650-970 deg C and 0.5-3.5 s) with the emission responses; CO, organic gaseous carbon, NO, 20 VOC compounds, 43 PAH compounds, PM{sub tot}, fine particle mass/count median diameter (MMD and CMD) and number concentration. Temperature was negatively correlated with the emissions of all studied PIC with limited effects of residence time. The PM{sub tot} emissions of 15-20 mg/MJ was in all cases dominated by fine (<1 {mu}m) particles of K, Na, S, Cl, C, O and Zn. Increased residence time resulted in increased fine particle sizes (i.e. MMD and CMD) and decreased number concentrations. The importance of high temperature (>850 deg C) in the bed zone with intensive, air rich and well mixed isothermal conditions for 0.5-1.0 s in the post combustion zone was illustrated for wood Pellets combustion with almost a total depletion of all studied PIC. The results emphasize the need for further verification studies and technology development work.

  4. Numerical Simulation of Fixed-Bed Catalytic Reforming Reactors: Hydrodynamics / Chemical Kinetics Coupling Simulation numérique des réacteurs de reformage catalytique en lit fixe : couplage hydrodynamique-cinétique chimique

    Directory of Open Access Journals (Sweden)

    Ferschneider G.

    2006-11-01

    Full Text Available Fixed bed reactors with a single fluid phase are widely used in the refining or petrochemical industries for reaction processes catalysed by a solid phase. The design criteria for industrial reactors are relatively well known. However, they rely on a one-dimensional writing and on the separate resolution of the equation of conservation of mass and energy, and of momentum. Thus, with complex geometries, the influence of hydrodynamics on the effectiveness of the catalyst bed cannot be taken into account. The calculation method proposed is based on the multi-dimensional writing and the simultaneous resolution of the local conservation equations. The example discussed concerns fixed-bed catalytic reactors. These reactors are distinguished by their annular geometry and the radial circulation of the feedstock. The flow is assumed to be axisymmetric. The reaction process is reflected by a simplified kinetic mechanism involving ten chemical species. Calculation of the hydrodynamic (mean velocities, pressure, thermal and mass fields (concentration of each species serves to identify the influence of internal components in two industrial reactor geometries. The map of the quantity of coke formed and deposited on the catalyst, calculated by the model, reveals potential areas of poor operation. Les réacteurs à lit fixe avec une seule phase fluide sont largement utilisés dans l'industrie du raffinage et de la pétrochimie, pour mettre en oeuvre un processus réactionnel catalysé par une phase solide. Les règles de conception des réacteurs industriels sont relativement bien connues. Cependant, elles reposent sur l'écriture monodimensionnelle et la résolution séparée, d'une part, des équations de conservation de la masse et de l'énergie et d'autre part, de la quantité de mouvement. Ainsi dans le cas de géométries complexes, l'influence de l'hydrodynamique sur l'efficacité du lit catalytique ne peut être prise en compte. La méthode de calcul

  5. Capturing Lithium from Wastewater Using a Fixed Bed Packed with 3-D MnO2 Ion Cages.

    Science.gov (United States)

    Luo, Xubiao; Zhang, Kai; Luo, Jinming; Luo, Shenglian; Crittenden, John

    2016-12-06

    3-D MnO 2 ion cages (CMO) were fabricated and shown to have a high capacity for lithium removal from wastewater. CMO had a maximum Li(I) adsorption capacity of 56.87 mg/g, which is 1.38 times greater than the highest reported value (41.36 mg/g). X-ray photoelectron spectroscopy indicated that the stability of the -Mn-O-Mn-O- skeleton played an essential role in Li adsorption. The lattice clearance had a high charge density, forming a strong electrostatic field. The Dubinin-Ashtakhov (DA) site energy distribution model based on Polanyi theory described the linear increase of Li adsorption capacity (Q 0 ) with increasing temperature (Q 0 = k 3 × E m + d 3 = k 3 × (a × T) + d 3 ). Furthermore, the pore diffusion model (PDM) accurately predicted the lithium breakthrough (R 2 ≈ 0.99). The maximum number of bed volumes (BVs) treated was 1374, 1972, and 2493 for 200 μg/L at 20, 30, and 40 °C, respectively. Higher temperatures increased the number of BVs that may be treated, which implies that CMO will be useful in treating industrial Li(I) wastewater in regions with different climates (e.g., Northern or Southern China).

  6. Thermal activation and characterization of clay aiming their use as sorbent in fixed bed columns to remove cadmium; Ativacao termica e caracterizacao da argila visando sua utilizacao como adsorvente em colunas de leito fixo para a remocao de cadmio

    Energy Technology Data Exchange (ETDEWEB)

    Silva, M.M. da; Rodrigues, M.G.F. [Universidade Federal de Campina Grande (UFCG), PB (Brazil); Silva, M.L.P. [Universidade Federal Rural do Semi-Arido (UFERSA), RN (Brazil); Kleinübing, S.J.; Silva, M.G.C., E-mail: marciliomaximo@yahoo.com.br [Universidade Estadual de Campinas (UNICAMP), SP (Brazil)

    2011-07-01

    In this work we studied the removal of cadmium in a synthetic wastewater using clay of Pernambuco - Brazil, in systems of fixed bed column. Clay was thermally activated at 500 °C. The materials were characterized using X-ray Fluorescence (XRF), X-ray Diffraction (XRD) and nitrogen adsorption (BET method). For tests in fixed bed column, we applied a factorial design 2{sup 2} and found that increasing the flow adversely affects the process of removing cadmium concentration while acting positively. The studies showed these materials as promising for the removal of Cd{sup 2+} ions in synthetic wastewater containing low levels of this metal. (author)

  7. Treatment of waste gas from the breather vent of a vertical fixed roof p-xylene storage tank by a trickle-bed air biofilter.

    Science.gov (United States)

    Chang, Shenteng; Lu, Chungsying; Hsu, Shihchieh; Lai, How-Tsan; Shang, Wen-Lin; Chuang, Yeong-Song; Cho, Chi-Huang; Chen, Sheng-Han

    2011-01-01

    This study applied a pilot-scale trickle-bed air biofilter (TBAB) system for treating waste gas emitted from the breather vent of a vertical fixed roof storage tank containing p-xylene (p-X) liquid. The volatile organic compound (VOC) concentration of the waste gas was related to ambient temperature as well as solar radiation, peaking at above 6300 ppmv of p-X and 25000 ppmv of total hydrocarbons during the hours of 8 AM to 3 PM. When the activated carbon adsorber was employed as a VOC buffer, the peak waste gas VOC concentration was significantly reduced resulting in a stably and efficiently performing TBAB system. The pressure drop appeared to be low, reflecting that the TBAB system could be employed in the prolonged operation with a low running penalty. These advantages suggest that the TBAB system is a cost-effective treatment technology for VOC emission from a fixed roof storage tank. Copyright © 2010 Elsevier Ltd. All rights reserved.

  8. Correlation chart of Pennsylvanian rocks in Alabama, Tennessee, Kentucky, Virginia, West Virginia, Ohio, Maryland, and Pennsylvania showing approximate position of coal beds, coal zones, and key stratigraphic units: Chapter D.2 in Coal and petroleum resources in the Appalachian basin: distribution, geologic framework, and geochemical character

    Science.gov (United States)

    Ruppert, Leslie F.; Trippi, Michael H.; Slucher, Ernie R.; Ruppert, Leslie F.; Ryder, Robert T.

    2014-01-01

    The Appalachian basin, one of the largest Pennsylvanian bituminous coal-producing regions in the world, currently contains nearly one-half of the top 15 coal-producing States in the United States (Energy Information Agency, 2006). Anthracite of Pennsylvanian age occurs in synclinal basins in eastern Pennsylvania, but production is minimal. A simplified correlation chart was compiled from published and unpublished sources as a means of visualizing currently accepted stratigraphic relations between the rock formations, coal beds, coal zones, and key stratigraphic units in Alabama, Tennessee, Kentucky, Virginia, West Virginia, Ohio, Maryland, and Pennsylvania. The thickness of each column is based on chronostratigraphic divisions (Lower, Middle, and Upper Pennsylvanian), not the thickness of strata. Researchers of Pennsylvanian strata in the Appalachian basin also use biostratigraphic markers and other relative and absolute geologic age associations between the rocks to better understand the spatial relations of the strata. Thus, the stratigraphic correlation data in this chart should be considered provisional and will be updated as coal-bearing rocks within the Appalachian coal regions continue to be evaluated.

  9. Design, scale-up, Six Sigma in processing different feedstocks in a fixed bed downdraft biomass gasifier

    Science.gov (United States)

    Boravelli, Sai Chandra Teja

    This thesis mainly focuses on design and process development of a downdraft biomass gasification processes. The objective is to develop a gasifier and process of gasification for a continuous steady state process. A lab scale downdraft gasifier was designed to develop the process and obtain optimum operating procedure. Sustainable and dependable sources such as biomass are potential sources of renewable energy and have a reasonable motivation to be used in developing a small scale energy production plant for countries such as Canada where wood stocks are more reliable sources than fossil fuels. This thesis addresses the process of thermal conversion of biomass gasification process in a downdraft reactor. Downdraft biomass gasifiers are relatively cheap and easy to operate because of their design. We constructed a simple biomass gasifier to study the steady state process for different sizes of the reactor. The experimental part of this investigation look at how operating conditions such as feed rate, air flow, the length of the bed, the vibration of the reactor, height and density of syngas flame in combustion flare changes for different sizes of the reactor. These experimental results also compare the trends of tar, char and syngas production for wood pellets in a steady state process. This study also includes biomass gasification process for different wood feedstocks. It compares how shape, size and moisture content of different feedstocks makes a difference in operating conditions for the gasification process. For this, Six Sigma DMAIC techniques were used to analyze and understand how each feedstock makes a significant impact on the process.

  10. Fluidized bed boiler feed system

    Science.gov (United States)

    Jones, Brian C.

    1981-01-01

    A fluidized bed boiler feed system for the combustion of pulverized coal. Coal is first screened to separate large from small particles. Large particles of coal are fed directly to the top of the fluidized bed while fine particles are first mixed with recycled char, preheated, and then fed into the interior of the fluidized bed to promote char burnout and to avoid elutriation and carryover.

  11. Effective Diffusion Coefficients in Coal Chars

    DEFF Research Database (Denmark)

    Johnsson, Jan Erik; Jensen, Anker

    2001-01-01

    Knowledge of effective diffusion coefficients in char particles is important when interpreting experimental reactivity measurements and modeling char combustion or NO and N2O reduction. In this work, NO and N2O reaction with a bituminous coal char was studied in a fixed-bed quartz glass reactor....... In the case of strong pore diffusion limitations, the error in the interpretation of experimental results using the mean pore radius could be a factor of 5 on the intrinsic rate constant. For an average coal char reacting with oxygen at 1300 K, this would be the case for particle sizes larger than about 50...

  12. Fiscal 1995 survey report on the environmentally friendly type coal utilization system introduction support project. Verification project on the circulating fluidized bed boiler; Kankyo chowagata sekitan riyo system donyu shien jigyo. Junkan ryudosho boiler ni kakawaru jissho jigyo

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-12-01

    In relation to the circulating fluidized bed boiler which reduces the amount of sulfur oxides emitted in coal utilization, a verification project was carried out on installation of the equipment and spread activity in China and the Philippines contributing to the control of environmental pollutant associated with coal utilization and the effective use of energy. At the Fanshan area, installed was a 10t/h internal circulating fluidized bed boiler. At the performance test, coal includes around 7% of impurities such as stone, and the impurities should be excluded continuously at the time of actual run. Therefore, the boiler efficiency had to be changed from 89.5% to 85.8%. Further, power generation facilities have not yet been finished, and the overall operation of boiler turbine has not been executed. At the Zibo area, a 30t/h external circulating fluidized bed boiler was installed. The boiler efficiency reached 86.1%, over the targeted value. At the Batangas area in the Philippines, a 10t/h internal circulating fluidized bed boiler was installed. The boiler efficiency reached 85.8%, over the designed value. About the coal produced in the Philippines, slagging was feared, but the combustion state was favorable. 82 figs., 21 tabs.

  13. Effect of Gas Recycling on the Performance of a Moving Bed Temperature-Swing (MBTSA Process for CO2 Capture in a Coal Fired Power Plant Context

    Directory of Open Access Journals (Sweden)

    Giorgia Mondino

    2017-05-01

    Full Text Available A mathematical model of a continuous moving-bed temperature-swing adsorption (MBTSA process for post-combustion CO2 capture in a coal-fired power plant context has been developed. Process simulations have been done using single component isotherms and measured gas diffusion parameters of an activated carbon adsorbent. While a simple process configuration with no gas re-circulation gives quite low capture rate and CO2 purity, 86% and 65%, respectively, more advanced process configurations where some of the captured gas is recirculated to the incoming flue gas drastically increase both the capture rate and CO2 purity, the best configuration reaching capture rate of 86% and CO2 purity of 98%. Further improvements can be achieved by using adsorbents with higher CO2/N2 selectivity and/or higher temperature of the regeneration section.

  14. Testing of a new mining system performance at narrow coal bed; Ensayo de un sistema de arranque con cepillo mediante accionamiento hidraulico para capas estrechas de carbon

    Energy Technology Data Exchange (ETDEWEB)

    1999-09-01

    This researching project had the aim of: Testing a new mining system performance at narrow coal bed, which uses plough equipment with hydraulic driving devices. Minimising driving power group size to avoid problems regarding with the wall mining-heading transition, decreasing the needed room to house it and thus, simplifying wall mining edge support. The expected goals were: Take advantage of hydraulic driving devices to obtain a good efficiency with a variable and discontinuous load, but without loosing the electric driving devices advantages, consisting on increase driving torque, being the engine blocked Lengthen the mechanical equipment life (chains, driving sprockets, etc) Reach an economic production rate Researching project was developed in El Bierzo basin (leon, Spain), in Grupo Ampliacion, a mining group belonged to Viloria Hnos, S. A. (Author)

  15. Assessment of Appalachian basin oil and gas resources: Carboniferous Coal-bed Gas Total Petroleum System: Chapter G.1 in Coal and petroleum resources in the Appalachian basin: distribution, geologic framework, and geochemical character

    Science.gov (United States)

    Milici, Robert C.; Ruppert, Leslie F.; Ryder, Robert T.

    2014-01-01

    The Carboniferous Coal-bed Gas Total Petroleum System, which lies within the central and southern Appalachian basin, consists of the following five assessment units (AUs): (1) the Pocahontas Basin AU in southern West Virginia, eastern Kentucky, and southwestern Virginia; (2) the Central Appalachian Shelf AU in Tennessee, eastern Kentucky, and southern West Virginia; (3) the East Dunkard (Folded) AU in western Pennsylvania and northern West Virginia; (4) the West Dunkard (Unfolded) AU in Ohio and adjacent parts of Pennsylvania and West Virginia; and (5) the Appalachian Anthracite and Semi-Anthracite AU in Pennsylvania and Virginia. Only two of these assessment units were assessed quantitatively by the U.S. Geological Survey (USGS) in the National Oil and Gas Assessment in 2002. The USGS estimated the Pocahontas Basin AU and the East Dunkard (Folded) AU to contain a mean of about 3.6 and 4.8 trillion cubic feet (TCF) of undiscovered, technically recoverable gas, respectively.

  16. Testing of marrow coal bed systems by hydraulic driving device for thin films of coal; Ensayo de un Sistema de Arranque con Cepillo mediante Accionamiento Hidraulico para Capas Estrechas de CArbon

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2000-07-01

    This researching project had the aim of: Testing a new mining system performance at narrow coal bed, which uses plough equipment with hydraulic driving devices. Minimising driving power group size to avoid problems regarding with the wall mining-heading transition, decreasing the needed room to house it and thus simplifying wall mining edge support The expected goals were: Take advantage of hydraulic driving devices to obtain a good efficiency with a variable and discontinuous load, bu t without loosing the electric driving devices advantages, consisting on increase driving torque, being the engine blocked Lengthen the mechanical equipment life (chains, driving sprockets, etc.) Reach and economic production rate Researching project was developed in El Bierzo basin (Leon, Spain), in Grupo Ampliacion, a mining group belonged to Viloria Hnos S. A.. (Author)

  17. Contribution to the combustion and emission of nitrogen oxides of Kosovo and Kolubara coals in fluidized bed

    Energy Technology Data Exchange (ETDEWEB)

    Radovanovic, M.; Savic, R.

    1996-12-31

    In this paper, the results of combustion of different sizes of domestic lignites Kosovo and Kolubara are presented. Investigation has been carried on a laboratory experimental facility for combustion in fluidized bed, power 1 kW. Specified amount of fuel is put into fluidized bed and temperature and concentration of combustion products (O{sub 2}, CO{sub 2}, CO, NO, NO{sub s} and SO{sub 2}) are recorded and produced. The emission of nitrogen oxides is specially treated in this paper. Also, the ignition delay of volatile matter, combustion of volatiles and total time of combustion are found. 25 refs., 9 figs., 4 tabs.

  18. Autotrophic denitrification of synthetic nitrate-contaminated groundwater in up-flow fixed-bed bioreactor by pumice as porous media

    Directory of Open Access Journals (Sweden)

    Masoud Tourang1

    2018-05-01

    Full Text Available Background: Background: Increasing nitrate concentrations in groundwater resources is considered a common environmental and public health problem worldwide. In this research, an autotrophic up-flow bioreactor with pumice as media was used to study the effects of the sulfur-to-nitrogen (S/N ratio and empty bed contact time (EBCT on nitrate removal efficiency and byproducts. Methods: Experiments were carried out in a 3.47 L up-flow, fixed-bed reactor with 3 sampling ports. To evaluate the overall impact of S/N ratio and EBCT on the performance of the bioreactor, several phases with different S/N ratios and EBCTs were applied. Results: At a constant S/N ratio of 3.85 g/g, as EBCT decreased from 24 hours to 2 hours, the nitrate removal efficiency decreased from 98% to 64%. On the other hand, at the desired EBCT of 4 hr, as S/N ratio decreased from 3.85 to 1.51 g/g, nitrate removal efficiency was reduced from 85% to 32%. Changing the EBCT and S/N ratio also affected the effluent nitrite and sulfate concentrations as byproducts. At the S/N ratio of 3.85 g/g and EBCT of 24 hours, effluent nitrite and sulfate concentrations were 0.1 mg NO2--N/L and 463 mg SO4 2-/L, respectively. Decreasing the S/N ratio to 1.51 g/g and the EBCT to 4 hours caused drastic changes in effluent nitrite and sulfate concentrations. Conclusion: The results indicated that the autotrophic denitrification with thiosulfate as electron donor and pumice as media was feasible and applicable for nitrate contaminated groundwater.

  19. Effect of air-assisted backwashing on the performance of an anaerobic fixed-bed bioreactor that simultaneously removes nitrate and arsenic from drinking water sources.

    Science.gov (United States)

    Upadhyaya, Giridhar; Clancy, Tara M; Snyder, Kathryn V; Brown, Jess; Hayes, Kim F; Raskin, Lutgarde

    2012-03-15

    Contaminant removal from drinking water sources under reducing conditions conducive for the growth of denitrifying, arsenate reducing, and sulfate reducing microbes using a fixed-bed bioreactor may require oxygen-free gas (e.g., N2 gas) during backwashing. However, the use of air-assisted backwashing has practical advantages, including simpler operation, improved safety, and lower cost. A study was conducted to evaluate whether replacing N2 gas with air during backwashing would impact performance in a nitrate and arsenic removing anaerobic bioreactor system that consisted of two biologically active carbon reactors in series. Gas-assisted backwashing, comprised of 2 min of gas injection to fluidize the bed and dislodge biomass and solid phase products, was performed in the first reactor (reactor A) every two days. The second reactor (reactor B) was subjected to N2 gas-assisted backwashing every 3-4 months. Complete removal of 50 mg/L NO3- was achieved in reactor A before and after the switch from N2-assisted backwashing (NAB) to air-assisted backwashing (AAB). Substantial sulfate removal was achieved with both backwashing strategies. Prolonged practice of AAB (more than two months), however, diminished sulfate reduction in reactor B somewhat. Arsenic removal in reactor A was impacted slightly by long-term use of AAB, but arsenic removals achieved by the entire system during NAB and AAB periods were not significantly different (p>0.05) and arsenic concentrations were reduced from approximately 200 μg/L to below 20 μg/L. These results indicate that AAB can be implemented in anaerobic nitrate and arsenic removal systems. Copyright © 2011 Elsevier Ltd. All rights reserved.

  20. Thermophilic two-phase anaerobic digestion using an innovative fixed-bed reactor for enhanced organic matter removal and bioenergy recovery from sugarcane vinasse

    International Nuclear Information System (INIS)

    Fuess, Lucas Tadeu; Kiyuna, Luma Sayuri Mazine; Ferraz, Antônio Djalma Nunes; Persinoti, Gabriela Felix

    2017-01-01

    Highlights: • An innovative fixed-film anaerobic reactor was applied to sugarcane vinasse. • Stable operation was observed for OLRs as high as 30 kg COD m"−"3 day"−"1. • Propionate buildup did not impact the stability of the structured-bed reactor. • Enhanced bioenergy recovery was estimated from biodigestion with phase separation. • Energy extraction was over 20% higher compared to single-phase systems. - Abstract: This study considered the application of anaerobic digestion (AD) with phase separation combined with the use of an anaerobic structured-bed reactor (ASTBR) as the methanogenic phase for the treatment of sugarcane vinasse, a high-strength wastewater resulting from ethanol production. Two combined thermophilic acidogenic-methanogenic systems formed by one single acidogenic reactor followed by two methanogenic reactors operated in parallel were compared, namely, a conventional UASB reactor and an upflow ASTBR reactor. Increasing organic loading rate (OLR) conditions (15–30 kg COD m"−"3 d"−"1) were applied to the methanogenic reactors. The results highlighted the feasibility of applying the ASTBR to vinasse, indicating a global COD removal higher than 80%. The ASTBR exhibited a stable long-term operation (240 days), even for OLR values as high as 30 kg COD m"−"3 d"−"1. The application of similar conditions to the UASB reactor indicated severe performance losses, leading to the accumulation of acids for every increase in the OLR. An energetic potential of 181.5 MJ for each cubic meter of vinasse was estimated from both hydrogen and methane. The provision of bicarbonate alkalinity proved to be a key factor in obtaining stable performance, offsetting the limitations of relatively low hydraulic retention times (<24 h).

  1. Analysis of holding time variations to Ni and Fe content and morphology in nickel laterite limonitic reduction process by using coal-dolomite bed

    Science.gov (United States)

    Abdul, Fakhreza; Pintowantoro, Sungging; Yuwandono, Ridwan Bagus

    2018-04-01

    With the depletion of nickel sulfide ore resources, the nickel laterit processing become an attention to fulfill nickel world demans. Reducing laterite nickel by using a low cost carbonaceous reductan has proved produces high grade ferronickel alloy. In this research, reduction was carried out to low grade laterite nickel (limonite) with 1.25% nikel content by using CO gas reductant formed by reaction between coal and dolomite. Reduction process preceded by forming brickets mixture from limonit ore, coal, and Na2SO4, then the brickets placed inside crucible bed together with dolomit and reduced at temperature 1400 °C with holding time variations 4, 6, and 8 hours. EDX, XRD, and SEM test were carried out to find out the Ni and nickel grade after reduced, the phases that formed, and the morphology brickets after reduced. The reduction results shows that the highest increase on nickel grade was obtained by 8 hours holding time increasing 5.84 % from initial grade, and the highest recovery was obtained by 6 hours holding time with recovery 88.51 %. While the higest increase on Fe grade was obtained by 4 hours holding time, and the highest recovery Fe was obtained by 4 hours holding time with recovery 85.41%.

  2. Modelling of Effects of Operating Conditions and Coal Reactivity on Temperature of Burning Particles in Fluidized Bed Combustion

    Czech Academy of Sciences Publication Activity Database

    Svoboda, Karel; Hartman, Miloslav; Pohořelý, Michael; Trnka, Otakar

    2004-01-01

    Roč. 1, č. 2 (2004), s. 261-274 ISSN 1211-1910 R&D Projects: GA AV ČR IAA4072201; GA AV ČR IAA4072001 Institutional research plan: CEZ:AV0Z4072921 Keywords : fluidized bed combustion * char temperature * modelling Subject RIV: DI - Air Pollution ; Quality

  3. Basinal analysis of the Ecca and Lowermost Beaufort Beds and associated coal, uranium and heavy mineral beach sand occurrences

    International Nuclear Information System (INIS)

    Ryan, P.J.; Whitfield, G.G.

    1979-01-01

    The regional sediment transport directions, major provenance areas and the controlling palaeotectonic and palaeogeographic frameworks of sedimentation have been reconstructed for the Great Karoo Basin during the Permian. Analyses of this magnitude can be useful in regional exploration programmes for coal, uranium and fossil heavy mineral beach sand deposits. The strong palaeogeographic control on coal deposition is demonstrated by the fact that some of the most important deposits accumulated in topographically low lying areas on the pre-Karoo surface. Such areas formed sheltered environments ideal for the growth and accumulation of organic material. Elsewhere relatively slow rates of subsidence of a broad, protected, low lying delta plain controlled the deposition of coal. North of the main Karoo Basin many of the coal deposits are confined to structurally controlled linear basins. Hundreds of sedimentary uranium occurrences of varying grade and size occur within a broad, discontinuous belt in the Lower Beaufort of the southwestern portion of the Karoo Basin. The uranium mineralization occurs in a variety of fluvial deposits usually rich in carbonaceous material. Minute tuffaceous fragments, reflecting contemporaneous vulcanism, form a minor but significant constituent in some of the uraniferous sandstones. The uranium occurrences are confined largely to the Southern and Western Facies of the Lower Beaufort, and occur mainly within the confines of the Karoo Trough. Consolidated heavy mineral beach deposits have been found in the predominantly fluvio-deltaic Middle Ecca Group of the Northern Facies at a number of widely separated locations. These deposits were formed by shore line processes, such as the reworking of delta-front sands, during periods of temporary marine regression

  4. Effect of Amount of Carbon on the Reduction Efficiency of Iron Ore-Coal Composite Pellets in Multi-layer Bed Rotary Hearth Furnace (RHF)

    Science.gov (United States)

    Mishra, Srinibash; Roy, Gour Gopal

    2016-08-01

    The effect of carbon-to-hematite molar ratio has been studied on the reduction efficiency of iron ore-coal composite pellet reduced at 1523 K (1250 °C) for 20 minutes in a laboratory scale multi-layer bed rotary hearth furnace (RHF). Reduced pellets have been characterized through weight loss measurement, estimation of porosity, shrinkage, qualitative and quantitative phase analysis by XRD. Performance parameters such as the degree of reduction, metallization, carbon efficiency, productivity, and compressive strength have been calculated to compare the process efficacy at different carbon levels in the pellets. Pellets with optimum carbon-to-hematite ratio (C/Fe2O3 molar ratio = 1.66) that is much below the stoichiometric carbon required for direct reduction of hematite yielded maximum reduction, better carbon utilization, and productivity for all three layers. Top layer exhibited maximum reduction at comparatively lower carbon level (C/Fe2O3 molar ratio 2.33). Correlation between degree of reduction and metallization indicated non-isothermal kinetics influenced by heat and mass transfer in multi-layer bed RHF. Compressive strength of the partially reduced pellet with optimum carbon content (C/Fe2O3 molar ratio = 1.66) showed that they could be potentially used as an alternate feed in a blast furnace or any other smelting reactor.

  5. Coal option. [Shell Co

    Energy Technology Data Exchange (ETDEWEB)

    1978-01-01

    This paper notes the necessity of developing an international coal trade on a very large scale. The role of Shell in the coal industry is examined; the regions in which Shell companies are most active are Australia, Southern Africa, Indonesia; Europe and North America. Research is being carried out on marketing and transportation, especially via slurry pipelines; coal-oil emulsions; briquets; fluidized-bed combustion; recovery of coal from potential waste material; upgrading of low-rank coals; unconventional forms of mining; coal conversion (the Shell/Koppers high-pressure coal gasification process). Techniques for cleaning flue gas (the Shell Flue Gas Desulfurization process) are being examined.

  6. Steam gasification of Bulmer coal in the presence of lignite ash

    Energy Technology Data Exchange (ETDEWEB)

    Palmer, A.; Furimsky, E.

    1986-01-01

    Steam gasification of blends prepared from Balmer coal and the ash from combustion of Onakawana lignite was performed in a fixed bed reactor. The blends were prepared by co-slurrying followed by drying. In the presence of 20 wt% ash the gasification rate doubled at 830 and 930 C. Direct blending of coal and lignite resulted in an overall increase in carbon conversion at 830 C but had no effect at 930 C. 5 refs.

  7. Effect of bacterial lipase on anaerobic co-digestion of slaughterhouse wastewater and grease in batch condition and continuous fixed-bed reactor.

    Science.gov (United States)

    Affes, Maha; Aloui, Fathi; Hadrich, Fatma; Loukil, Slim; Sayadi, Sami

    2017-10-10

    This study aimed to investigate the effects of bacterial lipase on biogas production of anaerobic co-digestion of slaughterhouse wastewater (SHWW) and hydrolyzed grease (HG). A neutrophilic Staphylococcus xylosus strain exhibiting lipolytic activity was used to perform microbial hydrolysis pretreatment of poultry slaughterhouse lipid rich waste. Optimum proportion of hydrolyzed grease was evaluated by determining biochemical methane potential. A high biogas production was observed in batch containing a mixture of slaughterhouse composed of 75% SHWW and 25% hydrolyzed grease leading to a biogas yield of 0.6 L/g COD introduced. Fixed bed reactor (FBR) results confirmed that the proportion of 25% of hydrolyzed grease gives the optimum condition for the digester performance. Biogas production was significantly high until an organic loading rate (OLR) of 2 g COD/L. d. This study indicates that the use of biological pre-treatment and FBR for the co-digestion of SHWW and hydrolyzed grease is feasible and effective.

  8. Validation of the catalytic properties of Cu-Os/13X using single fixed bed reactor in selective catalytic reduction of NO

    International Nuclear Information System (INIS)

    Oh, Kwang Seok; Woo, Seong Ihl

    2007-01-01

    Catalytic decomposition of NO over Cu-Os/13X has been carried out in a tubular fixed bed reactor at atmospheric pressure and the results were compared with literature data performed by high-throughput screening (HTS). The activity and durability of Cu-Os/13X prepared by conventional ion-exchange method have been investigated in the presence of H 2 O and SO 2 . It was found that Cu-Os/13X prepared by ion-exchange shows a high activity in a wide temperature range in selective catalytic reduction (SCR) of NO with C 3 H 6 compared to Cu/13X, proving the existence of more NO adsorption site on Cu-Os/13X. However, Cu-Os/13X exhibited low activity in the presence of water, and was quite different from the result reported in literature. SO 2 resistance is also low and does not recover its original activity when the SO 2 was blocked in the feed gas stream. This result suggested that catalytic activity between combinatorial screening and conventional testing should be compared to confirm the validity of high-throughput screening

  9. A comprehensive small and pilot-scale fixed-bed reactor approach for testing Fischer–Tropsch catalyst activity and performance on a BTL route

    Directory of Open Access Journals (Sweden)

    Piyapong Hunpinyo

    2017-05-01

    Full Text Available Ruthenium (Ru-based catalysts were prepared by the sol–gel technique for biomass-to-liquid (BTL operation and had their performance tested under different conditions. The catalytic study was carried out in two steps using a simple and reliable method. In the first step, the effects of reaction temperatures and inlet H2/CO molar feed ratios obtained from biomass gasification were investigated on the catalyst performance. A set of experimental results obtained in a laboratory fixed bed reactor was described and summarized. Moreover, a simplified Langmuir–Hinshelwood–Hougen–Watson (LHHW kinetic model was proposed with two promising models, where the surface decomposition of carbon monoxide was assumed as the rate determining step (RDS. In the second step, a FT pilot plant was conducted to validate the catalyst performance, especially the conversion efficiency, heat and mass transfer effects, and system controllability. The results indicated that our catalyst performances under mild conditions were not significantly different in many regards from those previously reported for a severe condition, as especially Ru-based catalyst can be performed to vary over a wide range of conditions to yield specific liquid productivity. The results in terms of the hydrocarbon product distribution obtained from the pilot scale operations were similar with that obtained from the related lab scale experiments.

  10. Pyrolysis of waste animal fats in a fixed-bed reactor: Production and characterization of bio-oil and bio-char

    Energy Technology Data Exchange (ETDEWEB)

    Ben Hassen-Trabelsi, A., E-mail: aidabenhassen@yahoo.fr [Centre de Recherche et de Technologies de l’Energie (CRTEn), Technopôle Borj-Cédria, B.P 95, 2050, Hammam Lif (Tunisia); Kraiem, T. [Centre de Recherche et de Technologies de l’Energie (CRTEn), Technopôle Borj-Cédria, B.P 95, 2050, Hammam Lif (Tunisia); Département de Géologie, Université de Tunis, 2092, Tunis (Tunisia); Naoui, S. [Centre de Recherche et de Technologies de l’Energie (CRTEn), Technopôle Borj-Cédria, B.P 95, 2050, Hammam Lif (Tunisia); Belayouni, H. [Département de Géologie, Université de Tunis, 2092, Tunis (Tunisia)

    2014-01-15

    Highlights: • Produced bio-fuels (bio-oil and bio-char) from some animal fatty wastes. • Investigated the effects of main parameters on pyrolysis products distribution. • Determined the suitable conditions for the production of the maximum of bio-oil. • Characterized bio-oils and bio-chars obtained from several animal fatty wastes. - Abstract: Several animal (lamb, poultry and swine) fatty wastes were pyrolyzed under nitrogen, in a laboratory scale fixed-bed reactor and the main products (liquid bio-oil, solid bio-char and syngas) were obtained. The purpose of this study is to produce and characterize bio-oil and bio-char obtained from pyrolysis of animal fatty wastes. The maximum production of bio-oil was achieved at a pyrolysis temperature of 500 °C and a heating rate of 5 °C/min. The chemical (GC–MS analyses) and spectroscopic analyses (FTIR analyses) of bio-oil showed that it is a complex mixture consisting of different classes of organic compounds, i.e., hydrocarbons (alkanes, alkenes, cyclic compounds…etc.), carboxylic acids, aldehydes, ketones, esters,…etc. According to fuel properties, produced bio-oils showed good properties, suitable for its use as an engine fuel or as a potential source for synthetic fuels and chemical feedstock. Obtained bio-chars had low carbon content and high ash content which make them unattractive for as renewable source energy.

  11. Preparation of a carbon molecular sieve and application to separation of N2, O2 and CO2 in a fixed bed

    Directory of Open Access Journals (Sweden)

    Soares J.L.

    2003-01-01

    Full Text Available The emission of CO2 from power plants that burn fossil fuels is the major cause of the accumulation of CO2 in the atmosphere. The separation of CO2 from CO2/air mixtures can play a key role in alleviating this problem. This separation can be carried out by using suitable adsorbents, such as carbon molecular sieves. In this work, a CMS was prepared by deposition of polyfurfuryl alcohol polymer on activated carbon. After deposition of the polymer, the material was carbonized at 800masculineC for 2 hours. This material was used to separate O2/N2 mixtures and CO2 in a fixed bed at room temperature. Experimental breakthrough curves obtained were fitted to theoretical models in order to establish the main mechanisms of mass transfer. The breakthrough curves showed that it is possible to separate O2, N2 and CO2. The shape of the breakthrough curves was not influenced by the total flow, indicating that the gas contact for the gas mixture was good. The experimental data were fitted to theoretical models and it was established that the main mechanism of mass transfer was intraparticle diffusion.

  12. Pyrolysis of oil palm mesocarp fiber and palm frond in a slow-heating fixed-bed reactor: A comparative study.

    Science.gov (United States)

    Kabir, G; Mohd Din, A T; Hameed, B H

    2017-10-01

    Oil palm mesocarp fiber (OPMF) and palm frond (PF) were respectively devolatilized by pyrolysis to OPMF-oil and PF-oil bio-oils and biochars, OPMF-char and PF-char in a slow-heating fixed-bed reactor. In particular, the OPMF-oil and PF-oil were produced to a maximum yield of 48wt% and 47wt% bio-oils at 550°C and 600°C, respectively. The high heating values (HHVs) of OPMF-oil and PF-oil were respectively found to be 23MJ/kg and 21MJ/kg, whereas 24.84MJ/kg and 24.15MJ/kg were for the corresponding biochar. The HHVs of the bio-oils and biochars are associated with low O/C ratios to be higher than those of the corresponding biomass. The Fourier transform infrared spectra and peak area ratios highlighted the effect of pyrolysis temperatures on the bio-oil compositions. The bio-oils are pervaded with numerous oxygenated carbonyl and aromatic compounds as suitable feedstocks for renewable fuels and chemicals. Copyright © 2017 Elsevier Ltd. All rights reserved.

  13. The effects of fixed-bed drying on the yield and composition of essential oil from long pepper (Piper hispidinervium C. DC leaves

    Directory of Open Access Journals (Sweden)

    N. P. Braga

    2005-06-01

    Full Text Available Piper hispidinervium C.DC (Piperaceae is popularly known as long pepper. It grows in degraded areas of natural fields in the state of Acre, Brazil. Its leaves are 3 to 4 % essential oil rich in safrole, within the range of 90 to 94 %. In the chemical industry, safrole is an important raw material, mainly due to two of its derivatives: heliotropin, which is widely used as a fragrance and flavoring agent, and piperonyl butoxide (PBO, a vital ingredient of pyrethroid insecticides. Natural pyrethrum in particular would not be an economical insecticide without the synergistic effect of PBO; therefore, its industrial future is linked to the continued availability of PBO. As a fragrance, safrole has many applications in household products such as floor waxes, polishes, soaps, detergents and cleaning agents. In this work, leaves were dried in a fixed-bed dryer using different drying-air temperatures (35, 40, 45, 50, 55 and 60 ºC and drying times (900, 2700 and 3600 seconds. Essential oil was extracted by cohobation (meaning that the conden